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CHAPTER 1
INTRODUCTION TO iAPX 286

The iAPX 286 is the most powerful processor
in the iAPX 86 series of microprocessors,
which includes the iAPX 86 (8086), the iAPX
88 (8088), the iIAPX 186 (80186), and now
the iAPX 286 (80286). It is designed for
applications that require very high perfor-
mance. It is also an excellent choice for
sophisticated ‘“high end” applications that will
benefit from its advanced architectural
features: memory management, protection
mechanisms, task management, and virtual
memory support. The iAPX 286 provides, on
a single VLSI chip, computational and archi-
tectural characteristics normally associated
with much larger minicomputers.

Sections 1.1, 1.2, and 1.3 provide an overview
of the iAPX 286 architecture. Because the
iAPX 286 represents a revolutionary exten-
sion of the iAPX 86 architecture, some of this
overview material may be new and unfamil-
iar to previous users of the iAPX 86 and
similar microprocessors. But the iAPX 286 is
also an evolutionary development, with the
new architecture superimposed upon the
industry standard iAPX 86 in such a way as
to affect only the design and programming of
operating systems and other such system
software. Section 1.4 provides a guide to the
organization of this manual, suggesting
which chapters are relevant to the needs of
particular readers.

1.1 GENERAL ATTRIBUTES

The iAPX 286 base architecture has many
features in common with the architecture of
other members of the iAPX 86 family, such
as byte addressable memory, I/O interfacing
hardware, interrupt vectoring, and support for
both multiprocessing and processor exten-
sions. The entire family has a common set of
addressing modes and basic instructions. The

iAPX 286 base architecture also includes a
number of extensions which add to the versa-
tility of the computer.

The iAPX 286 processor can function in two
modes of operation (see section 1.2, Modes of
Operation). In one of these modes only the
base architecture is available to program-
mers, whereas in the other mode a number of
very powerful advanced features have been
added, including support for virtual memory,
multitasking, and a sophisticated protection
mechanism. These advanced features are
described in section 1.3.

The iAPX 286 base architecture was designed
to support programming in high-level
languages, such as Pascal, C or PL/M. The
register set and instructions are well suited to
compiler-generated code. The addressing
modes (see section 2.6.3) allow efficient
addressing of complex data structures, such
as static and dynamic arrays, records, and
arrays within records, which are commonly
supported by high-level languages. The data
types supported by the architecture include,
along with bytes and words, high level
language constructs such as strings, BCD, and
floating point.

The memory architecture of the iAPX 286
was designed to support modular program-
ming techniques. Memory is divided into
segments, which may be of arbitrary size, that
can be used to contain procedures and data
structures. Segmentation has several advan-
tages over more conventional linear memory
architectures. It supports structured software,
since segments can contain meaningful
program units and data, and more compact
code, since references within a segment can
be shorter (and locality of reference usually
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insures that the next few references will be
within the same segment). Segmentation also
lends itself to efficient implementation of
sophisticated memory management, virtual
memory, and memory protection.

In addition, new instructions have been added
to the base architecture to give hardware
support for procedure invocations, parameter
passing, and array bounds checking.

1.2 MODES OF OPERATION

The iAPX 286 can be operated in either of
two different modes: Real Address Mode or
Protected Virtual Address Mode (also
referred to as Protected Mode). In either
mode of operation, the iAPX 286 represents
an upwardly compatible addition to the iAPX
86 family of processors.

In. Real Address Mode, the iAPX 286
operates essentially as a very high-perfor-
mance iAPX 86 (8086). Programs written for
the iAPX 86 or the iAPX 186 can be executed
in this mode without any modification (the
few exceptions are described in Appendix D,
"~ “Compatibility Considerations’”). Such
upward compatibility extends even to the
object code level; for example, an 8086
program stored in read-only memory will
execute successfully in iAPX 286 Real
Address Mode. An iAPX 286 operating in
Real Address Mode provides a number of
instructions not found on the iAPX 86. These
additional instructions, also present with the
iAPX 186, allow for efficient subroutine
linkage, parameter validation, index calcula-
tions, and block I/0O transfers.

The advanced architectural features and full
capabilities of the iAPX 286 are realized in
its native Protected Mode. Among these
features are sophisticated mechanisms to
support-data protection, system integrity, task
concurrency, and memory management,
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including virtual storage. Nevertheless, even
in Protected Mode, the iAPX 286 remains
upwardly compatible with most iAPX 86 and
iAPX 186 application programs. Most iAPX
86 applications programs can be re-compiled
or re-assembled and executed on the
iAPX 286 in Protected Mode.

1.3 ADVANCED FEATURES

The architectural features described in section
1.1 are common to both operating modes of
the processor. In addition to these common
features, Protected Mode provides a number
of advanced features, including a greatly
extended physical and logical address space,
new instructions, and support for additional
hardware-recognized data structures. The
Protected Mode iAPX 286 includes a sophis-
ticated memory management and multilevel
protection mechanism. Full hardware support
is-included for multitasking and task switch-
ing operations.

1.3.1 Memory Management

The memory architecture of the Protected
Mode iAPX 286 represents a significant
advance over that of the iAPX 86. The physi-
cal address space has been increased from
1 megabyte to 16 megabytes (22 bytes), while
the virtual address space (i.e., the address
space visible to a program) has been increased
from 1 megabyte to 1 gigabyte (23° bytes).
Moreover, separate virtual address spaces are
provided for each task in a multi-
tasking system (see section 1.3.2, “Task
Management”).

The iAPX 286 supports on-chip memory
management instead of relying on an exter-
nal memory management unit. The one-chip
solution is preferable because no software is
required to manage an external memory
management unit, performance is much
better, and hardware designs are significantly
simpler.
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Mechanisms have been included in the iAPX
286 architecture to allow the efficient imple-
mentation of virtual memory systems. (In
virtual memory systems, the user regards the
combination of main and external storage as
a single large memory. The user can write
large programs without worrying about the
physical memory limitations of the system. To
accomplish this, the operating system places
some of the user programs and data in exter-
nal storage and brings them into main
memory only as they are needed.) All
instructions that can cause a segment-not-
present fault are fully restartable. Thus, a not-
present segment can be loaded from external
storage, and the task can be restarted at the
point where the fault occurred.

The iAPX 286, like all members of the iAPX
86 series, supports a segmented memory
architecture. The iAPX 286 also fully
integrates memory segmentation into a
comprehensive protection scheme. This
protection scheme includes hardware-enforced
length and type checking to protect segments
from inadvertent misuse.

1.3.2 Task Management

The iAPX 286 is designed to support multi-
tasking systems. The architecture provides
direct support for the concept of a task. For
example, task state segments (see section 8.2)
are hardware-recognized and hardware-
manipulated structures that contain infor-
mation on the current state of all tasks in the
system.

Very efficient context-switching (task-
switching) can be invoked with a single
instruction. Separate logical address spaces
are provided for each task in the system.
Finally, mechanisms exist to support inter-
task communication, synchronization,
memory sharing, and task scheduling. Task
Management is described in Chapter 8.
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1.3.3 Protection Mechanisms

The iAPX 286 allows the system designer to
define a comprehensive protection policy to be
applied, uniformly and continuously, to all
ongoing operations of the system. Such a
policy may be desirable to ensure system
reliability, privacy of data, rapid error recov-
ery, and separation of multiple users.

The iAPX 286 protection mechanisms are
based on the notion of a “hierarchy of trust.”
Four privilege levels are distinguished,
ranging from Level 0 (most trusted) to Level
3 (least trusted). Level 0 is usually reserved
for the operating system kernel. The four
levels may be visualized as concentric rings,
with the most privileged level in the center
(see figure 1-1).

This four-level scheme offers system reliabil-
ity, flexibility, and design options not possible
with the typical two-level (supervisor/user)
separation provided by other processors. A
four-level division is capable of separating
kernel, executive, system services, and
application software, each with different
privileges.

At any one time, a task executes at one of the
four levels. Moreover, all data segments and
code segments are also assigned to privilege
levels. A task executing at one level cannot
access data at a more privileged level, nor can
it call a procedure at a less privileged level
(i.e., trust a less privileged procedure to do
work for it). Thus, both access to data and
transfer of control are restricted in appro-
priate ways.

A complete separation can exist between the
logical address spaces local to different tasks,
providing users with automatic protection
against accidental or malicious interference by
other users. The hardware also provides
immediate detection of a number of fault and
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‘Figure 1-1. Four Privilege Levels

error conditions, a feature that can be useful
in the development and maintenance of
software.

Finally, these protection mechanisms require
relatively little system overhead because they
are integrated into the memory management
and protection hardware of the processor
itself.

1.3.4 Support for Operating Systems

Most operating systems involve some degree
of concurrency, with multiple tasks vying for
system resources. The task management
mechanisms described above provide the
iAPX 286 with inherent support for such
multi-tasking systems. - Moreover, the
advanced memory management features of
the iAPX 286 allow the implementation of
sophisticated virtual memory systems.

14

Operating system implementors have found
that a multi-level approach to system services
provides better security and more reliable
systems. For example, a very secure kernel
might implement critical functions such as
task scheduling and resource allocation, while
less fundamental functions (such as I/O) are
built around the kernel. This layered approach
also makes program development and
enhancement simpler and facilitates error
detection and debugging. The iAPX 286
supports the layered approach through its
four-level privilege scheme.

1.4 ORGANIZATION OF THIS MANUAL

To facilitate the use of this manual both as
an introduction to the iAPX 286 architecture
and as a reference guide, the remaining
chapters are divided into three major parts.
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Part I, comprising chapters 2 through 4,
should be read by all those who wish to
acquire a basic familiarity with the iAPX 286
architecture. These chapters provide detailed
information on memory segmentation, regis-
ters, addressing modes and the general
(application level) iAPX 286 instruction set.
In conjunction with the iAPX 286 Assembly
Language Reference Manual, these chapters
provide sufficient information for an assem-
bly language programmer to design and write
application programs.

The chapters in Part I are:

Chapter 2, “Architectural Features.” This
chapter discusses those features of the iAPX
286 architecture that are significant for
application programmers. The information
presented can also function as an introduc-
tion to the machine for system programmers.
Memory organization and segmentation,
processor registers, addressing modes, and
instruction formats are all discussed.

Chapter 3, “Basic Instruction Set.’” This
chapter presents the core instructions of the
iAPX 86 family.

Chapter 4, “Extended Instruction Set.” This
chapter presents the extended instructions
shared by the iAPX 186 and iAPX 286
processors.

Part II of the manual consists of a single
chapter:

Chapter 5, “Real Address Mode.” This
chapter presents the system programmer’s
view of the iAPX 286 when the processor is
operated in Real Address Mode.

Part III of the manual comprises chapters 6
through 11. Aimed primarily at system
programmers, these chapters discuss the more
advanced architectural features of the iAPX

286, which are available when the processor
is in Protected Mode. Details on memory
management, protection mechanisms, and
task switching are provided.

The chapters in Part III are:

Chapter 6, “Virtual Memory.” This chapter
describes the iAPX 286 address translation
mechanisms that support virtual memory.
Segment descriptors, global and local
descriptor tables, and descriptor caches are
discussed.

Chapter 7, “‘Protection.” This chapter
describes the protection features of the iAPX
286. Privilege levels, segment attributes,
access restrictions, and call gates are
discussed.

Chapter 8, “Tasks and State Transitions.”
This chapter describes the iAPX 286 mecha-
nisms that support concurrent tasks. Context-
switching, task state segments, task gates, and
interrupt tasks are discussed.

Chapter 9, “Interrupts, Traps and Faults.”
This chapter describes interrupt and trap
handling. Special attention is paid to the
exception traps, or faults, which may occur in
Protected Mode. Interrupt gates, trap gates,
and the interrupt descriptor table are
discussed.

Chapter 10, “System Control and Initializa-
tion.”” This chapter describes the actual
instructions used to implement the memory
management, protection, and task support
features of the iAPX 286. System registers,
privileged instructions, and the initial machine
state are discussed.

Chapter 11, “Advanced Topics.” This chapter
completes Part III with a description of
several advanced topics, including special
segment attributes and pointer validation.



1.5 RELATED PUBLICATIONS

The following manuals also contain informa-
tion of interest to programmers of iAPX
286/20 systems:

® - Introduction to the iAPX 286, order
number 210308

® ASM286 Assembly Language Reference
Manuql, order number 121924

® [APX 286 Operating System Writer’s
Guide, order number 121960
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iAPX 286 Hardware Reference Manual,
order number 210760

Microprocessor ~ and  Peripheral
Handbook, order number 210844

PL/M-286 User’s Guide, order number
121945

80287 Support Library Reference
Manual, order number 122129

8086 Software Toolbox Manual, order
number 122203 (includes informaton
about 80287 Emulator Software)
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CHAPTER 2
iAPX 286 BASE ARCHITECTURE

This chapter describes the iAPX 286 appli-
cation programming environment as seen by
assembly language programmers. It is
intended to introduce the programmer to
those features of the iAPX 286 architecture
that directly affect the design and implemen-
tation of iAPX 286 application programs.

2.1 MEMORY ORGANIZATION AND
SEGMENTATION

The main memory of an iAPX 286 system
makes up its physical address space. This
address space is organized as a sequence of
8-bit quantities, called bytes. Each byte is
assigned a unique address ranging from O up
to a maximum of 22° (1 megabyte) in Real
Address Mode, and up to 22* (16 megabytes)
in Protected Mode.

A virtual address space is the organization of
memory as viewed by a program. Virtual
address space is also organized in units of
bytes. (Other addressable units such as words,
strings, and BCD digits are described below
in section 2.2, “Data Types.””) In Real
Address Mode, as with the 8086 itself,
programs view physical memory directly,
inasmuch as they manipulate pure physical
addresses. Thus, the virtual address space is
identical to the physical address space (1
megabyte). '

In Protected Mode, however, programs have
no direct access to physical addresses. Instead,
memory is viewed as a much larger virtual
address space of 23° bytes (1 gigabyte). This
1 gigabyte virtual address is mapped onto the
Protected Mode’s 16-megabyte physical
address space by the address translation
mechanisms described in Chapter 6.-

The programmer views the virtual address
space on the iAPX 286 as a collection of up
to sixteen thousand linear subspaces, each
with a specified size or length. Each of these
linear address spaces is called a segment. A
segment is a logical unit of contiguous
memory. Segment sizes may range from one
byte up to 64K (65,536) bytes.

iAPX 286 memory segmentation supports the
logical structure of programs and data in
memory. Programs are not written as single
linear sequences of instructions and data, but
rather as modules of code and data. For
example, program code may include a main
routine and several separate procedures. Data
may also be organized into various data
structures, some private and some shared with
other programs in the system. Run-time
stacks constitute yet another data require-
ment. Each of these several modules of code
and data, moreover, may be very different in
size or vary dynamically with program
execution.

Segmentation supports this logical structure
(see figure 2-1). Each meaningful module of
a program may be separately contained in
individual segments. The degree of modular-
ization, of course, depends on the require-
ments of a particular application. Use of
segmentation benefits almost all applications.
Programs execute faster and require less
space. Segmentation also simplifies the design
of structured software.

2.2 DATA TYPES

Bytes and words are the fundamental units in
which the iAPX 286 manipulates data, i.e.,
the fundamental data types.
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A byte is 8 contiguous bits starting on an
addressable byte boundary. The bits are
numbered O through 7, starting from the
right. Bit 7 is the most significant bit:

A word is defined as two contiguous bytes
starting on an arbitrary byte boundary; a word
thus contains 16 bits. The bits are numbered
0 through 15, starting from the right. Bit 15
is the most significant bit. The byte contain-
ing bit O of the word is called the low byte;
the byte containing bit 15 is called the high
byte.

15

0

L | L 1 LI LI LI
HIGH BYTE : LOW BYTE
I N U W T W | I S W N N S |
LOCATION N+ 1 LOCATION N

2-2

Segmented Virtual Memory

Each byte within a word has its own particu-
lar address, and the smaller of the two
addresses is used as the address of the word.
The byte at this lower address contains the
eight least significant bits of the word, while
the byte at the higher address contains the
eight most significant bits. The arrangement
of bytes within words is illustrated in
figure 2-2. '

Note that a word need not be aligned at an
even-numbered byte address. This allows
maximum flexibility in data structures (e.g.,
records containing mixed byte and word
entries) and efficiency in memory utilization.
Although actual transfers of data between the
processor and memory take place at physi-
cally aligned word boundaries, the iAPX 286
converts requests for unaligned words into the
appropriate sequences of requests acceptable
to the memory interface. Such odd aligned
word transfers, however, may impact
performance by requiring two memory cycles
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Figure 2-2. Bytes and Words in Memory

to transfer the word rather than one. Data
structures (e.g., stacks) should therefore be
designed in such a way that word operands
are aligned on word boundaries whenever
possible for maximum system performance.
Due to instruction prefetching and queueing
within the CPU, there is no requirement for
instructions to be aligned on word boundaries
and no performance loss if they are not.

Although bytes and words are the fundamen-
tal data types of operands, the processor also
supports additional interpretations on these
bytes or words. Depending on the instruction
referencing the operand, the following
additional data types can be recognized:

Integer:

A signed binary numeric value contained
in an 8-bit byte or a 16-bit word. All
operations assume a 2’s complement
representation. (Signed 32- and 64-bit
integers are supported using the iAPX
286,/20 Numeric Data Processor.)
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Ordinal:

An unsigned binary numeric value
contained in an 8-bit byte or 16-bit word.

Pointer:

A 32-bit address quantity composed of a
segment selector component and an offset
component. Each component is a 16-bit
word.

String:

A contiguous sequence of bytes or words.
A string may contain from 1 byte to 64K
bytes.

ASCIIL

A byte representation of alphanumeric and
control characters using the ASCII
standard of character representation.

BCD:

A byte (unpacked) representation of the
decimal digits (0-9).

Packed BCD:

A byte (packed) representation of two
decimal digits (0-9). One digit is stored in
each nibble of the byte.

Floating Point:

A signed 32-, 64-, or 80-bit real number
representation. (Floating operands are
supported using the iAPX 286/20 Numeric
Processor Configuration.)

Figure 2-3 graphically represents the data
types supported by the iAPX 286. iAPX 286
arithmetic operations may be performed on
five types of numbers: unsigned binary, signed
binary (integers), unsigned packed decimal,
unsigned unpacked decimal, and floating
point. Binary numbers may be 8 or 16 bits
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long. Decimal numbers are stored in bytes;
two digits per byte for packed decimal, one
digit per byte for unpacked decimal. The
processor always assumes that the operands
specified in arithmetic instructions contain
data that represent valid numbers for the type
of instruction being performed. Invalid data
may produce unpredictable results.

Unsigned binary numbers may be either § or
16 bits long; all bits are considered in deter-
mining a number’s magnitude. The value
range of an 8-bit unsigned binary number is
0-255; 16 bits can represent values from 0
through 65,535. Addition, subtraction, multi-
plication'and division operations are available
for unsigned binary numbers.

Signed binary numbers (integers) may be
either 8 or 16 bits long. The high-order

(leftmost) bit is interpreted as the number’s

sign: O=positive and 1=negative. Negative
numbers are represented in standard two’s
complement notation. Since the high-order bit
is used for a sign, the range of an 8-bit integer
is —128 through +127; 16-bit integers may
range from —32,768 through +32,767. The
value zero has a positive sign.

Separate multiplication and division opera-
tions are provided for both signed and
unsigned binary numbers. The same addition
and subtraction instructions are used with
signed or unsigned binary values. Conditional
jump instructions, as well as an “interrupt on
overflow” instruction, can be used following
an unsigned operation on an integer to detect
overflow into the sign bit.

Unpacked decimal numbers are stored as
unsigned byte quantities. One digit-is stored
in each byte. The magnitude of the number
is determined from the low-order half-byte;
hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-

order half-byte must be zero for multiplica-
tion and division; it may contain any value for
addition and subtraction.

Arithmetic on unpacked decimal numbers is
performed in two steps. The unsigned binary
addition, subtraction and multiplication
operations are used to produce an intermedi-
ate result. An adjustment instruction then
changes the value to a final correct unpacked
decimal number. Division is performed
similarly, except that the adjustment is carried
out on the two digit numerator operand in
register AX first, followed by an unsigned
binary division instruction that produces a
correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits
0-9. Note, however, that the high-order half-
byte of an ASCII numeral is always 3.
Unpacked decimal arithmetic may be
performed on ASCII numeric characters
under the following conditions:

e the high-order half-byte of an ASCII
numeral must be set to OH prior to
multiplication or division.

® unpacked decimal arithmetic leaves the
high-order half-byte set to OH; it must be
set to 3 to produce a valid ASCII
numeral.

Packed decimal numbers are stored as
unsigned byte quantities. The byte is treated
as having one decimal digit in each half-byte
(nibble); the digit in the high-order half-byte
is the most significant. Values 0-9 are valid
in each half-byte, and the range of a packed
decimal number is 0-99. Additions and
subtractions are performed in two steps. First,
an addition or subtraction instruction is used
to produce an intermediate result. Then, an
adjustment operation is performed which
changes the intermediate value to a final
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correct packed decimal result. Multiplication
and division adjustments are only available for
unpacked decimal numbers.

Pointers and addresses are described below in
section 2.3.3, “Index, Pointer, and Base
Registers,” and in section 3.8, ““Address
Manipulation Instructions.”

Strings are contiguous bytes or words from 1
to 64K bytes in length. They generally contain
ASCII or other character data representa-
tions. The iIAPX 286 provides string manip-
ulation instructions to move, examine, or
modify a string (see section 3.7, “Character
Translation and String Instructions”).

If the 80287 numerics processor extension
(NPX) is present in the system (the iAPX
286/20 configuration)— see Numeric
Supplement following Appendix D—the
iAPX 286 architecture also supports floating
point numbers, 32- and 64-bit integers, and
18-digit BCD data types. '

The iAPX 286/20 Numeric Data Processor
supports and stores real numbers in a three-
field binary format as required by IEEE
standard 754 for floating point numerics (see
figure 2-3). The number’s significant digits
are held in the significand field, the exponent
field locates the binary point within the
significant digits (and therefore determines
the number’s magnitude), and the sign field
indicates whether the number is positive or
negative. (The exponent and significand are
analogous to the terms “‘characteristic” and
“mantissa,” typically used to describe float-
ing point numbers on some computers.) This
format is used by the iAPX 286/20 with
various length significands and exponents to
support single precision, double precision and
extended (80-bit) precision floating point data
types. Negative numbers differ from positive
numbers only in their sign bits.
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2.3 REGISTERS

The iAPX 286 contains a total of fourteen
registers that are of interest to the applica-
tion programmer. (Five additional registers
used by system programmers are covered in
section 10.1.) As shown in figure 2-4, these
registers may be grouped into four basic
categories: ‘

® General registers. These eight 16-bit
general-purpose registers are used
primarily to contain operands for arith-
metic and logical operations.

® Segment registers. These four special-
purpose registers determine, at any given
time, which segments of memory are
currently addressable.

e Status and Control registers. These three
special-purpose registers are used to
record and alter certain aspects of the
1APX 286 processor state.

2.3.1 General Registers

The general registers of the iAPX 286 are the
16-bit registers AX, BX, CX, DX, SP, BP,
SI, and DI. These registers are used inter-
changeably to contain the operands of logical
and arithmetic operations.

Some instructions and addressing modes (see
section 2.4), however, dedicate certain general
registers to specific uses. BX and BP are often
used to contain the base address of data
structures in memory (for example, the start-
ing address of an array); for this reason, they
are often referred to as the base registers.
Similarly, SI and DI are often used to contain
an index value that will be incremented to step
through a data structure; these two registers
are called the index registers. Finally, SP and
BP are used for stack manipulation. Both SP
and BP normally contain offsets into the
current stack. SP generally contains the offset
of the top of the stack and BP contains the
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offset or base address of the current stack
frame. The use of these general-purpose
registers for operand addressing is discussed
in section 2.3.3, “Index, Pointer, and Base
Registers.” Register usage for individual
instructions is discussed in chapters 3 and 4.

As shown in figure 2-4, eight byte registers
overlap four of the 16-bit general registers.
These registers are named AH, BH, CH, and
DH (high bytes); and AL, BL, CL, and DL
(low bytes); they overlap AX, BX, CX, and
DX. These registers can be used either in their
entirety or as individual 8-bit registers. This
dual interpretation simplifies the handling of
both 8- and 16-bit data elements.

2.3.2 Memory Segmentation and Segment
Registers

Complete programs generally consist of many
different code modules (or segments), and
different types of data segments. However, at
any given time during program execution,
only a small subset of a program’s segments

are actually in use. Generally, this subset will
include code, data, and possibly a stack. The
iAPX 286 architecture takes advantage of this
by providing mechanisms to support direct
access to the working set of a program’s
execution environment and access to
additional segments on demand.

At any given instant, four segments of
memory are immediately accessible to an
executing iAPX 286 program. The segment
registers DS, ES, SS, and CS are used to
identify these four current segments. Each of
these registers specifies a particular kind of
segment, as characterized by the associated
mnemonics (‘‘code,” “stack,” ‘“‘data,” or
“extra’) shown in figure 2-4.

An executing program is provided with
concurrent access to the four individual
segments of memory—a code segment, a stack
segment, and two data segments—by means
of the four segment registers. Each may be
said to select a.segment, since it uniquely

SI

DI

SP

|
BX BH BL :
—
|

15 [

GENERAL
REGISTERS

STACK POINTER

16-BIT SPECIAL
REGISTER REGISTER
NAME FUNCTIONS
7 07 0
ax|  aw AL
BYTE MULTIPLY /DIVIDE
ApoRessABLE | px| on oL 170 INSTRUCTIONS
(8-BIT
REGISTER LOOP/SHIFT/
Names | ©X| CH cL REPEAT COUNT
SHOWN)

BASE REGISTERS -

INDEX REGISTERS

15 0
Cs . CODE SEGMENT SELECTOR
DS DATA SEGMENT SELECTOR
Ss STACK SEGMENT SELECTOR
ES EXTRA SEGMENT SELECTOR
SEGMENT REGISTERS
15 0
F FLAGS
P INSTRUCTION POINTER
MSwW MACHINE STATUS WORD

STATUS AND CONTROL
REGISTERS

Figure 2-4. iAPX 286 Base Architecture Register Set
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determines the one particular segment from
among the numerous segments in memory,
which is to be immediately accessible at
highest speed. Thus, the 16-bit contents of a
segment register is called a segment selector.

Once a segment is selected, a base address is
associated with it. To address an element
within a segment, a 16-bit offset from the
segment’s base address must be supplied. The
16-bit segment selector and the 16-bit offset
taken together form the high and low order
halves, respectively, of a 32-bit virtual address
pointer. Once a segment is selected, only the
lower 16-bits of the pointer, called the offset,
generally need to be specified by an instruc-
tion. Simple rules define which segment
register is used to form an address when only
a 16-bit offset is specified.

An executing program requires, first of all,
that its instructions reside somewhere in
memory. The segment of memory containing
the currently executing sequence of instruc-
tions is known as the current code segment; it
is specified by means of the CS register. All
instructions are fetched from this code
segment, using as an offset the contents of the
instruction pointer (IP). The CS:IP register
combination therefore forms the full 32-bit
pointer for the next sequential program
instruction. The CS register is manipulated
indirectly. Transitions from one code segment
to another (e.g., a procedure call) are effected
implicitly as the result of control-transfer
instructions, interrupts, and trap operations.

Stacks play a fundamental role in the iAPX
286 architecture; subroutine calls, for
example, involve a number of implicit stack
operations. Thus, an executing program will
generally require a region of memory for its
stack. The segment containing this region is
known as the current stack segment, and it is
specified by means of the SS register. All
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stack operations are performed within this
segment, usually in terms of address offsets
contained in the stack pointer (SP) and stack
frame base (BP) registers. Unlike CS, the SS
register can be loaded explicitly for dynamic
stack definition.

Beyond their code and stack requirements,
most programs must also fetch and store data
in memory. The DS and ES registers allow
the specification of two data segments, each
addressable by the currently executing
program. Accessibility to two separate data
areas supports differentiation and access
requirements like local procedure data and
global process data. An operand within a data
segment is addressed by specifying its offset
either directly in an instruction or indirectly
via index and/or base registers (described in
the next subsection).

Depending on the data structure (e.g., the way
data is parceled into one or more segments),
a program may require access to multiple data
segments. To access additional segments, the
DS ‘and ES registers can be loaded under
program control during the course of a
program’s execution. This simply requires
loading the appropriate data pointer prior to
accessing the data. '

The interpretation of segment selector values
depends on the operating mode of the proces-

“sor. In Real Address Mode, a segment selec-

tor is a physical address (figure 2-5). In
Protected Mode, a segment selector selects a
segment of the user’s virtual address space
(figure 2-6). An intervening level of logical-
to-physical address translation converts the
logical address to a physical memory address.
Chapter 6, “Memory Management,” provides
a detailed discussion of Protected Mode
addressing. In general, considerations of
selector formats and the details of memory
mapping need. not concern the application
programmer:
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SEGMENT BYTES
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Figure 2-5. Real Address Mode Segment Selector Interpretation
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Figure 2-6. Protected Mode Segment Selector Interpretation
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2.3.3 Index, Pointer, and Base Registers

Five of the general-purpose registers are
available for offset address calculations. These
five registers, shown in figure 2-4, are SP, BP,
BX, SI, and DI. SP is called a pointer regis-
ter; BP and BX are called base registers; SI
and DI are called index registers.

As described in the previous section, segment
- registers define the set of four segments
currently addressable by a program. A
pointer, base, or index register may contain
an offset value relative to the start of one of
these segments; it thereby points to a partic-
ular operand’s location within that segment.

To allow for efficient computations of effec--

tive address offsets, all base and index regis-
ters may participate interchangeably as
operands in most arithmetical operations.

Stack operations are facilitated by the stack
pointer (SP) and stack frame base (BP)
registers. By specifying offsets into the current
stack segment, each of these registers provides
access to data on the stack. The SP register
is the customary top-of-stack pointer,
addressing the uppermost datum on a push-

down stack. It is referenced implicitly by
PUSH and POP operations, subroutine calls,
and interrupt operations. The BP register
provides yet another offset into the stack
segment. The existence of this stack relative
base register, in conjunction with certain
addressing modes described in section 2.6.3,
is particularly useful for accessing data struc-
tures, variables and dynamically allocated
work space within the stack.

Stacks in the iAPX 286 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register
(SP). A system may have an unlimited
number of stacks, and a stack may be up to
64K bytes long, the maximum length of a
segment.

One stack is directly addressable at a time;
this is the current stack, often referred to
simply as “the” stack. SP contains the current
top of the stack (TOS). In other words, SP
contains the offset to the top of the push down
stack from the stack segment’s base address.
Note, however, that the stack’s base address
(contained in SS) is not the “bottom” of the
stack (figure 2-7).

LOGICAL
<¢——— BOTTOM OF STACK
(initial SP value)

T POP-UP

LOGICAL
TOP OF STACK

l PUSH-DOWN

STACK SEGMENT BASE ADDRESS

Figure 2-7.

iAPX 286 Stack



iAPX 286 BASE ARCHITECTURE

iAPX 286 stack entries are 16 bits wide.
Instructions operate on the stack by adding
and removing stack items one word at a time.
An item is pushed onto the stack (see figure
2-8) by decrementing SP by 2 and writing the
item at the new TOS. An item is popped off
the stack by copying it from TOS and then
incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items
on the stack; nor do they erase them. The top
of the stack changes only as a result of updat-
ing the stack pointer.

The stack frame base pointer (BP) is often
used to access elements on the stack relative
to a fixed point on the stack rather than
relative to the current TOS. It typically
identifies the base address of the current stack
frame established for the current procedure
(figure 2-9). If an index register is used
relative to BP (e.g., base + index addressing
mode using BP as the base), the offset will be
calculated automatically in the current stack
segment.

Accessing data structures in data segments is
facilitated by the BX register, which has the
same function in addressing operands within
data segments that BP does for stack
segments. They are called base registers
because they may contain an offset to the base
of a data structure. The similar usage of these
two registers is especially important when
discussing addressing modes (see section 2.4,
“Addressing Modes™).

Operations on data are also facilitated by the
SI and DI registers. By specifying an offset
relative to the start of the currently address-
able data segment, an index register can be
used to address an operand in the segment. If
an index register is used in conjunction with
the BX base register (i.e., base + index
addressing) to form an offset address, the data

is also assumed to reside in the current data
segment. As a rule, data referenced through
an index register or BX is presumed to reside
in the current data segment. That is, if an
instruction invokes addressing for one of its
operands using either BX, DI, SI, or BX with
SI or DI, the contents of the register(s) (BX,
DI, or SI) implicitly specify an offset in the
current data segment. As previously men-
tioned, data referenced via SP, BP or BP with
SI or DI implicitly specify an operand in the
current stack segment (refer to table 2-1).

There are two exceptions to the rules listed
above. The first concerns the operation of
certain iAPX 286 string instructions. For the
most flexibility, these instructions assume that
the DI register addresses destination strings
not in the data segment, but rather in the
extra segment (ES register). This allows
movement of strings between different
segments. This has led to the descriptive
names ‘‘source index” and ‘‘destination
index.” In all cases other than string instruc-
tions, however, the SI and DI registers may
be used interchangeably to reference either
source or destination operands.

Table 2-1. Implied Segment Usage by Index,
Pointer, and Base Registers

Register Implied Segment
SP SS
BP SS
BX DS
Si DS
DI DS, ES for String Operations
BP + SI, DI SS
BX + SI, DI DS
NOTE:

All implied Segment usage, except SP to SS and DI
to ES for String Operations, may be explicitly speci-
fied with a segment override prefix for any of the four
segments. The prefix precedes the instruction for
which explicit reference is desired.
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BP IS A CONSTANT POINTER TO STACK BASED VARIABLES AND WORK SPACE. ALL REFERENCES
USE BP AND ARE INDEPENDENT OF SP, WHICH MAY VARY DURING A ROUTINE EXECUTION.

PROC N
PUSH AX
PUSH ARRAY_SIZE
CALL PROC_N+1 ———————— PROC_N+1:
PUSH BP
< PUSH CX

MOV BP, SP

SUB SP, WORK_SPACE

“PROCEDURE BODY”

MOV SP, BP
POP CX
POP BP
RET
“n
BOTTOM OF
STACK PARAMETERS
RETURN ADDR
r==a REGISTERS
1 BP - >
| M
WORKSPACE
PARAMETERS

RETURN ADDR

Y

REGISTERS
E

WORKSPACE

PROCEDURE N STACK FRAME

PROCEDURE N+ 1 STACK FRAME

DYNAMICALLY ALLOCATED ON
DEMAND RATHER THAN STATICALLY

TOP OF STACK

STACK SEGMENT BASE

Figure 2-9. BP Usage as a Stack Frame Base Pointer
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A second more general override capability
allows the programmer complete control of
which segment is used for a specific opera-
tion. Segment-override prefixes, discussed in
section 2.4.3, allow the index and base regis-
ters to address data in any of the four
currently addressable segments.

2.3.4 Status and Control Registers

Two status and control registers are of
immediate concern to applications program-
mers: the instruction pointer and the FLAGS
registers.

The instruction pointer register (IP) contains
the offset address, relative to the start of the
current code segment, of the next sequential
instruction to be executed. Together, the
CS:IP registers thus define a 32-bit program-
counter. The instruction pointer is not directly
visible to the programmer; it is controlled
implicitly, by interrupts, traps, and control-
transfer operations.

The FLAGS register encompasses eleven flag
fields, mostly one-bit wide, as shown in figure
2-10. Six of the flags are status flags that
record processor status information. The
status flags are affected by the execution of
arithmetic and logical instructions. The carry
flag is also modifiable with instructions that
will clear, set or complement this flag bit. See
Chapters 3 and 4.

The carry flag (CF) generally indicates a
carry or borrow out of the most significant
bit of an 8- or 16-bit operand after perform-
ing an arithmetic operation; this flag is also
useful for bit manipulation operations involv-
ing the shift and rotate instructions. The effect
on the remaining status flags, when defined
for a particular instruction, is generally as
follows: the zero flag (ZF) indicates a zero
result when set; the sign flag (SF) indicates
whether the result was negative (SF=1) or
positive (SF=0); when set, the overflow flag
(OF) indicates whether an operation results

STATUS FLAGS:
CARRY

PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW

15 14 13 12 L 11 10

8

oy

T
FLAGS: % NT I IOPL | OF | DF l IF

6 5 Y4 3 2 1{0
SF|ZFW%AFW%PFW4 CF|

1 r

b———————————— INTERRUPT ENABLE

CONTROL FLAGS:

TRAP FLAG

DIRECTION FLAG

SPECIAL FIELDS:

170 PRIVILEGE LEVEL

NESTED TASK FLAG

Figure 2-10. Flags Register
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in a carry into the high order bit of the result
but not a carry out of the high-order bit, or
vice versa; the parity flag (PF) indicates
whether the modulo 2 sum of the low-order
eight bits of the operation is even (PF=0) or
odd (PF=1) parity. The auxiliary carry flag
(AF) represents a carry out of or borrow into
the least significant 4-bit digit when perform-
ing binary coded decimal (BCD) arithmetic.

The FLAGS register also contains three
control flags that are used, under program
control, to direct certain processor opera-
tions. The interrupt-enable flag (IF), if set,
enables external interrupts; otherwise, inter-
rupts are disabled. The trap flag (TF), if set,
puts the processor into a single-step mode for
debugging purposes where the target program
is automatically interrupted to a user supplied
debug routine after the execution of each
target program instruction. The direction flag
(DF) controls the forward or backward direc-
tion of string operations: 0 = forward or auto
increment the address register(s) (SI, DI or
SI and DI), 1 = backward or auto-decre-
ment the address register(s) (SI, DI or SI'and
DI).

In general, the interrupt enable flag may be
set or reset with specialinstructions (STI = set,
CLI = clear) or by placing the flags on the
stack, modifying the stack, and returning the
flag image from the stack to the flag register.
If operating in Protected Mode, the ability to
alter the IF bit is subject to protection checks
to prevent non-privileged programs from
effecting the interrupt state of the CPU. This
applies to both instruction -and stack options
for modifying the IF bit.

The TF flag may only be modified by copying
the flag register to the stack, setting the TF
bit in the stack image, and returning the
modified stack image to the flag register. The
trap interrupt occurs on completion of the
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next instruction. Entry to the single step
routine saves the flag register on the stack
with the TF bit set, and resets the TF bit in
the register. After completion of the single
step routine, the TF bit is automatically set
on return to the program being single stepped
to interrupt the program again after comple-
tion of the next instruction. Use of TF is not
inhibited by the protection mechanism in
Protected Mode.

The DF flag, like the IF flag, is controlled by
instructions (CLD = clear, STD = set) or
flag register modification through the stack.
Typically, routines that use string instruc-
tions will save the flags on the stack, modify
DF as necessary via the instructions provided,
and restore DF to its original state by restor-
ing the Flag register from the stack before
returning. Access or control of the DF flag is
not inhibited by the protection mechanism in
Protected Mode.

The Special Fields bits are only relevant in
Protected Mode. Real Address Mode
programs should treat these bits as don’t-
care’s, making no assumption about their
status. Attempts to modify the IOPL and NT
fields are subject to protection checking in
Protected Mode. In general, the application’s
programmer will not be able to and should
not attempt to modify these bits. (See section
9.4, “Privileged and Trusted Instructions” for
more details.)

2.4 ADDRESSING MODES

The information encoded in an iAPX 286
instruction includes a specification of the
operation to be performed, the type of the
operands to be manipulated, and the location
of these operands. If an operand is located in
memory, the instruction must also select,
explicitly or implicitly, which of the currently
addressable segments contains the operand.
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This section covers the operand addressing
mechanisms; iAPX 286 operators are
discussed in Chapter 3.

The five elements of a general instruction are
briefly described below. The exact format of
iAPX 286 instructions is specified in
Appendix B.

® The opcode is present in all instructions;
in fact, it is the only required element. Its
principal function is the specification of
the ~operation performed = by the
instruction.

® A register specifier.

® The addressing mode specifier, when
present, is used to specify the addressing
mode of an operand for referencing data
or performing indirect calls or jumps.

® The displacement, when present, is used
to compute the effective address of an
operand in memory.

® The immediate operand, when present,
directly specifies one operand of the
instruction.

Of the four elements, only one, the opcode, is
always present. The other elements may or
may not be present, depending on the partic-
ular operation involved and on the location
and type of the operands.

2.4.1 Operands

Generally speaking, an instruction is an
operation performed on zero, one, or two
operands, which are the data manipulated by
the instruction. An operand can be located
either in a register (AX, BX, CX, DX, SI,
DI, SP, or BP in the case of 16-bit operands;
AH, AL, BH, BL, CH, CL, DH, or DL in
the case of 8-bit operands; the FLAG register
for flag operations in the instruction itself (as
an immediate operand)), or in memory or an

2-16

I/O port. Immediate operands and operands
in registers can be accessed more rapidly than
operands in memory since memory operands
must be fetched from memory while immedi-
ate and register operands are available in the
processor. ‘

An iAPX 286 instruction can reference zero,
one, or two operands. The three forms are as
follows: '

® Zero-operand instructions, such as RET,
NOP, and HLT. Consult Appendix B.

® One-operand instructions, such as INC or

DEC. The location of the single operand
can be specified implicitly, as in AAM
(where the register AX contains the
operand), or explicitly, as in INC (where
the operand can be in any register or
memory location). Explicitly specified
operands are accessed via one of the
addressing modes described in section
2.4.2.

® Two operand instructions such as MOV,

ADD, XOR, etc., generally overwrite one
of the two participating operands with the
result. A distinction can thus be made
between the source operand (the one left
unaffected by the operation) and the
destination operand (the one overwritten
by the result). Like one-operand instruc-
tions, two-operand instructions can
specify the location of operands either
explicitly or implicitly. If an instruction
contains two explicitly specified operands,
only one of them—-either the source or the
destination—can be in a register or
memory location. The other operand must
be in a register or be an immediate source
operand. Special cases of two-operand
instructions are the string instructions and
stack manipulation. Both operands of
some string instructions are in memory
and are explicitly specified. Push and pop
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stack operations allow transfer between
memory operands and the memory based
stack.

Thus, the two-operand instructions of the
iAPX 286 permit operations of the following
sort:

® Register-to-register

® Register-to-memory

® Memory-to-register

® Immediate-to-register
® Immediate-to-memory

® Memory-to-memory

Instructions can specify the location of their
operands by means of eight addressing modes,
which are described in sections 2.4.2
and 2.4.3.

2.4.2 Register and Immediate Modes

Two addressing modes are used to reference
operands contained in registers and
instructions:

® Register Operand Mode. The operand is
located in one of the 16-bit registers (AX,
BX, CX, DX, SI, DI, SP, or BP) or in
one of the 8-bit general registers (AH,
BH, CH, DH, AL, BL, CL, or DL)

Special instructions are also included for
referencing the CS, DS, ES, SS, and Flag
registers as operands also.

® Immediate Operand Mode. The operand
is part of the instruction itself (the
immediate operand element).

2.4.3 Memory Addressing Modes

Six modes are used to access operands in
memory. Memory operands are accessed by
means of a pointer consisting of a segment
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selector (see section 2.3.2) and an offset,
which specifies the operand’s displacement in
bytes from the beginning of the segment in
which it resides. Both the segment selector
component and the offset component are
16-bit values. (See section 2.1 for a discus-
sion of segmentation.) Only some instruc-
tions use a full 32-bit address.

Most memory references do not require the
instruction to specify a full 32-bit pointer
address. Operands that are located within one
of the currently addressable segments, as
determined by the four segment registers (see
section 2.3.2, “Segment Registers”), can be
referenced very efficiently simply by means
of the 16-bit offset. This form of address is
called by short address. The choice of segment
(CS, DS, ES, or SS) is either implicit within
the instruction itself or explicitly specified by
means of a segment override prefix (see
below).

See figure 2-11 for a diagram of the address-
ing process.

2.4.3.1 SEGMENT SELECTION

All instructions that address operands in
memory must specify the segment and the
offset. For speed and compact instruction
encoding, segment selectors are usually stored
in the high speed segment registers. An
instruction need specify only the desired
segment register and an offset in order to
address a memory operand.

Most instructions need not explicitly specify
which segment register is used. The correct
segment register is automatically chosen
according to the rules of table 2-1 and table
2-2. These rules follow the way programs are
written (see figure 2-12) as independent
modules that require areas for code and data,
a stack, and access to external data areas.
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Figure 2-11. Two-Component Address

Table 2-2. Segment Register Selection Rules

Memory Segment Register Implicit Segment
Reference Needed Used Selection Rule
Instructions Code (CS) Automatic with instruction prefetch.
Stack Stack (SS) All stack pushes and pops. Any memory refer-
ence which uses BP as a base register.
Local Data Data (DS) All data references except when relative to stack
or string destination.
External (Global) Data Extra (ES) Alternate data segment and destination of string
: operation. )

~ There is a close connection between the type
of memory reference and the segment in
which that operand resides (see the next
section for a discussion of how memory
addressing mode calculations are performed).
As a rule, a memory reference implies the
current data segment (i.e., the implicit
segment selector is in DS) unless the BP
register is involved in the address specifica-
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tion, in which case the current stack segment
is implied (i.e, SS contains the selector).

The iAPX 286 instruction set defines special
instruction prefix elements (see Appendix B).
One of these is SEG, the segment-override
prefix. Segment-override prefixes allow an
explicit segment selection. Only in two special
cases—namely, the use of DI to reference
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CODE
MODULE A
DATA
| |
| |
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STACK
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SEGMENT
REGISTERS
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DATA
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DATA
BLOCK 2
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L——_d
MEMORY

Figure 2-12. Use of Memory Segmentation

destination strings in the ES segment, and the
use of SP to reference stack locations in the
SS segment—is there an implied segment
selection which cannot be overridden. The
format of segment override prefixes is shown
in Appendix B.

2.4.3.2 OFFSET COMPUTATION

The offset within the desired segment is
calculated in accordance with the desired
addressing mode. The offset is calculated by
taking the sum of up to three components:

e the displacement element in the instruc-

tion

e the base (contents of BX or BP—a base
register)

o the index (contents of SI or DI—an index
register)

Each of the three components of an offset may
be either a positive or negative value. Offsets
are calculated modulo 2.

The six memory addressing modes are gener-
ated using various combinations of these three
components. The six modes are used for
accessing different types of data stored in
memory:

addressing mode offset calculation

displacement alone
base or index alone
base + displacement
index + displacement
base + index

base + index + disp

direct address

register indirect

based

indexed

based indexed

based indexed with
displacement

In all six modes, the operand is located at the
specified offset within the selected segment.
All displacements, except direct address mode,
are optionally 8- or 16-bit values. 8-bit
displacements are automatically sign-
extended to 16 bits. The six addressing modes
are described and demonstrated in the
following section on memory addressing
modes.
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2.4.3.3 MEMORY MODE

Two modes are used for simple scalar
operands located in memory:

Direct Address Mode. The offset of the
operand is contained in the instruction as
the displacement element. The offset is a
16-bit quantity.

Register Indirect Mode. The offset of the
operand is in one of the registers SI, DI,
or BX. (BP is excluded; if BP is used as
a stack frame base, it requires an index
or displacement component to reference
either parameters passed on the stack or
temporary variables allocated on the
stack. The instruction level bit encoding
for the BP only address mode is used to
specify Direct Address mode. See
Chapter 12 for more details.)

The following four modes are used for
accessing complex data structures in
memory (see figure 2-13):

Based Mode. The operand is located
within the selected segment at an offset
computed as the sum of the displacement
and the contents of a base register (BX
or BP). Based mode is often used to
access the same field in different copies
of a structure (often called a record). The
base register points to the base of the
structure (hence the term ‘“base” regis-
ter), and the displacement selects a
particular field. Corresponding fields
within a collection of structures can be
accessed simply by changing the base
register. (See figure 2-13, example 1.)

Indexed Mode.. The operand is located
within the selected segment at an offset
computed as the sum of the displacement
and the contents of an index register (SI
or DI). Indexed mode is often used to
access elements in a static array (e.g., an

array whose starting location is fixed at -
translation time). The displacement
locates the beginning of the array, and the
value of the index register selects one
element. Since all array elements are the
same length, simple arithmetic on the
index register will select any element.
(See figure 2-13, example 2.)

Based Indexed Mode. The operand is
located within the selected segment at an
offset computed as the sum of the base
register’s contents and an index register’s
contents. Based Indexed mode is often
used to access elements of a dynamic
array (i.e., an array whose base address
can change during execution). The base
register points to the base of the array,
and the value of the index register is used
to select one element. (See figure 2-13,
example 3.)

Based Indexed Mode with Displacement.
The operand is located with the selected
segment at an offset computed as the sum
of a base register’s contents, an index
register’s contents, and the displacement.
This mode is often ‘used to access
elements of an array within a structure.
For example, .the structure could be an
activation record (i.e., a region of the
stack containing the register contents,
parameters, and variables associated with
one instance of a procedure); and one
variable could be an array. The base
register points to the start of the activa-
tion record, the displacement expresses
the distance from the start of the record
to the beginning of the array variable, and
the index register selects.a particular
element of the array. (See figure 2-13,
example 4.)

Table 2-3 gives a summary of all memory
operand addressing options.
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1. BASED MODE

MOV AX, [BP + DATE_CODE]
ADD [BX + BALANCE], CX

OPERAND

DISPL

—

4

SEGMENT

2. INDEXED MODE

MoV ID [si], bx
SUB BX, DATA_TBL [SI]

INDEX

Y

OPERAND

DISPL

+l+1
/

SEGMENT

|

3. BASED INDEXED

MoV DX, [BP)[D1]
AND [BX + Si], 3FFH

INDEX

\

OPERAND

+H+ |
Y

SEGMENT

0

4. BASED INDEXED MODE WITH DISPLACEMENT

MoV CX, [BP][SI + CNT]
SHR[BX + DI + MASK] INDEX

\

e

OPERAND

DISPL

777

SEGMENT

il

\

FIXED
ARRAY

BASED
ARRAY

ARRAY

BASED
STRUCTURE
CONTAINING
ARRAY

Figure 2-13. Complex Addressing Modes
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Table 2-3. Memory Operand Addressing Modes

Addressing Mode

Offset Calculation

Direct

Register Indirect

Based

Indexed

Based Indexed

Based Indexed + Displacement

16-bit Displacement in the instruction
BX, SI, DI

(BX or BP) + Displacement*

(Sl or DI) + Displacement*

(BX or BP) + (Sl or DI)

(BX or BP) + (Sl or DI) + Displacement*

* The displacement can be a 0, 8 or 16-bit value.

2.5 INPUT/OUTPUT

The iAPX 286 allows input/output to be
performed in either of two ways: by means of
a separate I/O address space (using specific
I/O instructions) or by means of memory-
mapped 1/O (using general-purpose operand
manipulation instructions).

2.5.1 170 Address Space

The iAPX 286 provides a separate I/O
address space, distinct from physical memory,
to address the input/output ports that are
used for external devices. The I/O address
space consists of 2'¢ (64K) individually
addressable 8-bit ports. Any two consecutive
8-bit ports can be treated as a 16-bit port.
Thus, the I/O address space can accommo-
date up to 64K 8-bit ports or up to 32K
16-bit ports. I/O port addresses 00F8H to
00FFH are reserved by Intel.

The iAPX 286 can transfer either 8 or 16 bits
at a time to a device located in the I/O space.
Like words in memory, 16-bit ports should be
aligned at even-numbered addresses so that
the 16 bits will be transferred in a single
access. An 8-bit port may be located at either
an even or odd address. The internal registers

in a given peripheral controller device should
be assigned addresses as shown below.

The I/O instructions IN and OUT (described
in section 3.11.3) are provided to move data
between I/O ports and the AX (16-bit I/0)
or AL (8-bit I/O) general registers. The block
I/O instructions INS and OUTS (described
in section 4.1) move blocks of data between
I/O ports and memory space (as shown
below). In Protected Mode, an operating
system may prevent a program from execut-
ing these I/O instructions. Otherwise, the
function of the I/O instructions and the
structure of the I/O space are identical for
both modes of operation.

INS ~es:byte ptr [dil, DX
DUTS DX, byte ptr [s5i]

IN and OUT instructions address /O with
either a direct address to one of up.to 256 port
addresses, or indirectly via the DX register to
one of up to 64K port addresses. Block I/O
uses the DX register to specify the I/O
address and either SI or DI to designate the
source or destination memory address. For
each transfer, SI or DI are either incre-
mented or decremented as specified by the
direction bit in the flag word while DX is
constant to select the I/O device.

Port Register Port Addresses Example
16-bit even word addresses OUT FE,AX
8-bit; device on lower half even byte addresses IN AL,FE
of 16-bit data bus
8-bit; device on upper half odd byte addresses OUT FFAL

of 16-bit data bus
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2.5.2 Memory-Mapped I/0

I/0 devices also may be placed in the iAPX
286 memory address space. So long as the
devices respond like memory components,
they are indistinguishable to the processor.

Memory-mapped I/O provides additional
programming flexibility. Any instruction that
references memory may be used to access an
I/0O port located in the memory space. For
example, the MOV instruction can transfer
data between any register and a port; and the
AND, OR, and TEST instructions may be
used to manipulate bits in the internal regis-
ters of a device (see figure 2-14). Memory-
mapped I/O performed via the full instruc-
tion set maintains the full complement of
addressing modes for selecting the desired
I/0 device.

Memory-mapped 1/0, like any other memory
reference, is subject to access protection and
control when executing in protected mode.

2.6 INTERRUPTS AND EXCEPTIONS

The iAPX 286 architecture supports several
mechanisms for interrupting program execu-

tion. Internal interrupts are synchronous
events that are the responses of the CPU to
certain events detected during the execution
of an instruction: External interrupts are
asynchronous events typically triggered by
external devices needing attention. The iAPX
286 supports both maskable (controlled by the
IF flag) and non-maskable interrupts. They
cause the processor to temporarily suspend its
present program execution in order to service
the requesting device. The major distinction
between these two kinds of interrupts is their
origin: an internal interrupt is always repro-
ducible by re-executing with the program and
data that caused the interrupt, whereas an
external interrupt is generally independent of
the currently executing task.

Interrupts 0-31 are reserved by Intel.

Application programmers will normally not be
concerned with servicing external interrupts.
More information on external interrupts for
system programmers may be found in Chapter
5, section 5.2, “Interrupt Handling for Real
Address Mode,” and in Chapter 9, “Inter-
rupts, Traps and Faults for Protected Virtual
Address Mode.”

R
ADDRESS SPACE

RN I

| O DEVICE 1

INTERNAL REGISTER

| O DEVICE 2

INTERNAL REGISTER

Figure 2-14. Memory-Mapped I/0
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Table 2-4. iAPX 286 Interrupt Vector Assignments (Real Address Mode)

Return Address
Function :1:::::: In;?tlnactteigns Before Instruction
Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 All
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined Yes
opcode
Processor extension not available exception 7 ESC or WAIT Yes
Interrupt table limit too small exception 8 INT vector is not Yes
within table limit
Processor extension segment overrun 9 ESC with memory No
interrupt operand extending
beyond offset
FFFF(H)
Reserved 10-12
Segment overrun exception 13 Word memory Yes
reference with
offset = FFFF(H) or
an attempt to
execute past the
end of a segment
Reserved 14,15
Processor extension error interrupt 16 ESC or WAIT
Reserved 17-31
User defined 32-255

In Real Address Mode, the application
programmer is affected by two kinds of inter-
nal interrupts. (Internal interrupts are the

result of executing an instruction which causes
the interrupt.) One type of interrupt is called
an exception because the interrupt only occurs
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if a particular fault condition exists. The other
type of interrupt generates the interrupt every
time the instruction is executed.

The exceptions are: divide error, INTO
detected overflow, bounds check, segment
overrun, invalid operation code, and proces-
sor extension error (see table 2-4)., A divide
error exception results when the instructions
DIV or IDIV are executed with a zero
denominator; otherwise, the quotient will be
too large for the destination operand (see
section 3.3.4 for a discussion of DIV and
IDIV). An overflow exception results when
the INTO instruction is executed and the OF
flag is set (after an arithmetic operation that
set the overflow (OF) flag). (See section 3.6.3,
“Software Generated Interrupts,” for a
discussion of INTO.) A bounds check excep-
tion results when the BOUND instruction is
executed and the array index it checks falls
outside the bounds of the array. (See section
4.2 for a discussion of the BOUND instruc-
tion.) The segment overrun exception occurs
when a word memory reference is attempted
which extends beyond the end of a segment.
An invalid operation code exception occurs if
an attempt is made to execute an undefined
instruction operation code. A processor

extension error is generated when a processor
extension detects an illegal operation. Refer
to Chapter 5 for a more complete description
of these exception conditions.

The instruction INT generates an internal
interrupt whenever it is executed. The effects
of this interrupt (and the effects of all inter-
rupts) is determined by the interrupt handler
routines provided by the application program
or as part of the system software (provided
by system programmers). See Chapter 5 for
more on this topic. The INT instruction itself
is discussed in section 3.6.3.

In Protected Mode, many more fault condi-
tions are detected and result in internal inter-
rupts. Protected Mode interrupts and faults
are discussed in Chapter 10.

2.7 HIERARCHY OF INSTRUCTION SETS

For descriptive purposes, the iAPX 286
instruction set is partitioned into three distinct
subsets: the Basic Instruction Set, the
Extended Instruction Set, and the System
Control Instruction Set. The “hierarchy” of
instruction sets defined by this partitioning
helps to clarify the relationships between the
various processors in the iAPX 86 family (see
figure 2-15).

iAPX 86
iAPX 88

iAPX 186

iAPX 286

BASIC INSTRUCTION SET

EXTENDED INSTRUCTION SET

SYSTEM CONTROL INSTRUCTION SET

Figure 2-15. Hierachy of Instructions
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The Basic Instruction Set, presented in

Chapter 3, comprises the common subset of

instructions found on all processors of the
iAPX 86 family. Included are instructions for
logical and arithmetic operations, data
movement, input/output, string manipula-
tion, and transfer of control.

The Extended Instruction Set, presehted in
Chapter 4, consists of those instructions found
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only on the iAPX 186 and iAPX 286 proces-
sors. Included are instructions for block
structured procedure entry and exit, parame-
ter validation, and block I1/0O transfers.

The System Control Instruction Set,
presented in Chapter 10, consists of those
instructions unique to the iAPX 286. These
instructions control the memory management
and protection mechanisms of the iAPX 286.
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CHAPTER 3
BASIC INSTRUCTION SET

The base architecture of the iAPX 286 is
identical to the complete instruction set of the
iAPX 86, 88, and 186 processors. The iAPX
286 instruction set includes new forms of some
instructions. These new forms reduce program
size and improve the performance and ease of
implementation of source coce.

This chapter describes the instructions which
programmers can use to write application
software for the iAPX 286. The following
chapters describe the operation of more
complicated I/O and system control
instructions.

All instructions described in this chapter are
available for both Real Address Mode and
Protected Virtual Address Mode operation.
The instruction descriptions note any differ-
ences that exist between the operation of an
instruction in these two modes.

This chapter also describes the operation of
each application program-relative instruction
and includes an example of using the instruc-
tion. The Instruction Dictionary in Appendix
B contains formal descriptions of all instruc-
tions. Any opcode pattern that is not described
in the Instruction Dictionary is undefined
and results in an opcode violation trap
(interrupt 6).

3.1 DATA MOVEMENT INSTRUCTIONS

These instructions provide convenient methods
for moving bytes or words of data between
memory and the registers of the base
architecture.

3.1.1 General-Purpose Data Movement
Instructions

MOV (Move) transfers a byte or a word from
the source operand to the destination operand.

3-1

The MOV instruction is useful for transfer-
ring data to a register from memory, to
memory from a register, between registers,
immediate-to-register, or immediate-to-
memory. Memory-to-memory or segment
register-to-segment register moves are not
allowed.

Example: MOV DS,AX

Replaces the contents of register
DS with the contents of register
AX.

XCHG (Exchange) swaps the contents of two
operands. This instruction takes the place of
three MOV instructions. It does not require a
temporary memory location to save the
contents of one operand while you load the
other.

The XCHG instruction can swap two byte
operands or two word operands, but not a byte
for a word or a word for a byte. The operands
for the XCHG instruction may be two regis-
ter operands, or a register operand with a
memory operand. When used with a memory
operand, XCHG automatically activates the
LOCK signal.

Example: XCHG BX,WORDOPRND

Swaps the contents of register BX
with the contents of the memory
word identified by the label
WORDOPRND after asserting
bus lock.

3.1.2 Stack Manipulation Instructions

PUSH (Push) decrements the stack pointer
(SP) by two and then transfers a word from
the source operand to the top of stack
indicated by SP. See figure 3-1. PUSH is
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often used to place parameters on the stack Example: PUSH WORDOPRND
before calling a procedure; it is also the basic Transfers a 16-bit value from the
means of storing temporary variables on the memory word identified by the
stack. The PUSH instruction operates on label WORDOPRND to the
memory operands, immediate operands (new memory location which repre-
with the iAPX 286), and register operands sents the current top of stack
(including segment registers). ‘ (byte transfers are not allowed).
HIGH ADDRESS - ¥ e 9
e ss LMt
OPERANDS FROM ARRRRNW!
PREVIOUS PUSH N
INSTRUCTIONS Rigy $p E“t&-va gggq;ﬁ s'rHo
- TH ED
OPERAND. ™" ONTO THE STACK (T0S)
R A A A
:§S ALWAYS POINTS TO
LOWEST ADDRESS USED BY
THE STACK .
LOW ADDRESS AN N SN H
BEFORE AFTER
PUSH OPERAND PUSH OPERAND

PUSH decrements SP by 2 bytes and places the operand in the stack at the location to which SP points.

Figure 3-1. PUSH
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PUSHA (Push All Registers) saves the
contents of the eight general registers on the
stack. See figure 3-2. This instruction simpli-
fies procedure calls by reducing the number
of instructions required to retain the contents

The processor pushes the general registers on
the stack in the following order: AX, CX, DX,
BX, the initial value of SP before AX was
pushed, BP, SI, and DI.

. . Example: PUSHA
of the general registers for use in a proce-
dure. PUSHA is complemented by POPA - Pushes onto the stack the contents
(see below). of the eight general registers..
HIGH ADDRESS N N ‘€T b
SS LIMIT
OPERANDS FROM
PREVIOUS PUSH
INSTRUCTIONS NS
| AX
SP -
CcX
DX
BX
OLD SP
BP
Sl
DI ~— SP
J N u_‘: u'_:
) \1" N ‘1
SSs
LOW ADDRESS NS N NS Hh
BEFORE AFTER
PUSHA PUSHA

8 words) to point to the last word pushed on the stack.

PUSHA copies the contents of the eight general registers to the stack in the above order. The lnstruction decrements SP by 16 bytes

Figure 3-2. PUSHA
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POP (Pop) transfers the word at the current Example: POP BX
top of stack (indicated by SP) to the desti- ,

nation operand, and then increments SP by
two to point to the new top of stack. See
figure 3-3. POP moves information from the

Replaces the contents of register
BX with the contents of the
memory location at the top of

. . stack.
stack to either a register or memory. The only
restriction on POP is that it cannot place a POPA (Pop All Registers) restores the
value in register CS. registers saved on the stack by PUSHA,
HIGH ADDRESS P B "
SS LIMIT
OPERANDS FROM
PREVIOUS PUSH
INSTRUCTIONS |¢—— SP
SP ———3 OPERAND
N v J UL‘
) N N N
SS
LOW ADDRESS J J J Vgl
BEFORE AFTER
POP OPERAND POP OPERAND
POP copies the contents of the stack location before SP to the operand in the instruction. POP then increments SP by 2 bytes (1 word).

Figure 3-3. POP
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except that it ignores the value of SP. See instruction or instructions. The arithmetic
figure 3-4. instructions use OF, SF, ZF, AF, PF, and CF.
Example: POPA The SCAS (Scan String), CMPS (Compare

Pops from the stack the saved String), and LOOP instructions use ZF to

contents of the general registers, signal that their operations are complete. The
and restores the registers (except base architecture includes instructions to set,
SP) to their original state. clear, and complement CF before execution

of an arithmetic instruction. See figure 3-5

3.2 FLAG OPERATION WITH THE BASIC and tables 3-1 and 3-2.

INSTRUCTION SET 3.2.2 Control Flags
3.2.1 Status Flags The control flags of the FLAGS register
determine processor operations for string
The status flags of the FLAGS register reflect instructions, maskable interrupts, and
conditions that result from a previous debugging.
HIGH ADDRESS N P o
T SS LIMIT
OPERANDS FROM
PREVIOUS PUSH
INSTRUCTIONS <€— SP
CX
DX
BX
SP
BP
Sl
SP — DI
JN [V a) J v o
‘_1\ N ) P
SS
LOW ADDRESS  } J N 5 B S
BEFORE AFTER
POPA POPA
POPA copies the contents of seven stack locati to the corresponding general registers. POPA discards the stored value of SP.

Figure 3-4. POPA
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STATUS FLAGS:
_CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

OVERFLOW ———————————

1‘70

CONTROL FLAGS:
TRAP FLAG

INTERRUPT ENABLE

DIRECTION FLAG

SPECIAL FIELDS:
1/0 PRIVILEGE LEVEL

NESTED TASK FLAG

Figure 3-5. Flag Word Contents

Setting DF (direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from ‘right-to-left.” Clearing
DF causes string instructions to auto-incre-
ment, or to process strings from ““left-to-
right.”

Setting IF (interrupt flag) allows the CPU to
recognize external (maskable) interrupt
requests. Clearing IF disables these inter-
rupts. IF has no effect on either internally
generated interrupts, nonmaskable external
interrupts, or processor extension segment
overrun interrupts.

Setting TF (trap flag) puts the processor into
single-step mode for debugging. In this mode,
the CPU automatically generates an internal
interrupt after each instruction, allowing a

program to be inspected as it executes each
instruction, instruction by instruction.

3.3 ARITHMETIC INSTRUCTIONS

The arithmetic instructions of the iAPX 86-
family processors simplify the manipulation
of numerical data. Multiplication and division
instructions ease the handling of signed and
unsigned binary integers as well as unpacked
decimal integers.

An arithmetic operation may consist of two
register operands, a general register source
operand with a memory destination operand,
a memory source operand with a register
destination operand, or an immediate field
with either a register or memory destination
operand, but not two memory operands.
Arithmetic instructions can operate on either
byte or word operands.
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Table 3-1.

Status Flags’ Functions

Bit
Position

Name

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared other-
wise

PF

Parity Flag—Set if low-order
eight bits of result contain an
even number of 1 bits; cleared
otherwise

AF

Set on carry from or borrow to
the low order four bits of AL;
cleared otherwise

ZF

Zero Flag—Set if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-
order bit of result (0 if positive, 1
if negative)

1

OF

Overflow Flag—Set if result is
too-large a positive number or
too-small a negative number
(excluding sign-bit) to fit in
destination operand; cleared
otherwise

Table 3-2.

Control Flags’ Functions

Bit
Position

Name

Function

8

TF

Trap (Single Step) Flag—Once
set, a single step interrupt occurs
after the next instruction
executes. TF is cleared by the
single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the

| CPU to transfer control to an

interrupt vector-specified

location.

10

DF

Direction Flag—Causes string
instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes
auto increment.

3.3.1 Addition Instructions

ADD (Add Integers) replaces the destination
operand with the sum of the source and desti-
nation operands. ADD affects OF, SF, AF,
PF, CF, and ZF.

Example: ADD BL, BYTEOPRND

Adds the contents of the memory
byte labeled BYTEOPRND to
the contents of BL, and replaces
BL with the resulting sum.

ADC (Add Integers with Carry)‘sums the
operands, adds one if CF is set, and replaces
the destination operand with the result. ADC
can be used to add numbers longer than 16
bits. ADC affects OF, SF, AF, PF, CF,
and ZF. '

Example: ADC BX, CX

Replaces the contents of the
destination operand BX with the
sum of BX, CS, and 1 (if CF is
set). If CF is cleared, ADC
performs the same operation as
the ADD instruction.

INC (Increment) adds one to the destination
operand. The processor treats the operand as
an unsigned binary number. INC updates AF,
OF, PF, SF, and ZF, but it does not affect
CF. Use ADD with an immediate value of 1
if an increment that updates carry (CF) is
needed.

INC BL
Adds 1 to the contents of BL.

Example:

3.3.2 Subtraction Instructions

SUB (Subtract Integers) subtracts the source
operand from the destination operand and
replaces the destination operand with the
result. If a borrow. is required, carry flag is
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set. The operands may be signed or unsigned
bytes or words. SUB affects OF, SF, ZF, AF,
PF, and CF.

Example: SUB WORDOPRND, AX

Replaces the contents of the des-
tination operand WORDOPRND
with the result obtained by
subtracting the contents of AX
from the contents of the memory
word labeled WORDOPRND.

SBB (Subtract Integers with Borrow)
subtracts the source operand from the desti-
nation operand, subtracts 1 if CF is set, and
returns the result to the destination operand.
The operands may be signed or unsigned bytes
or words. SBB may be used to subtract
numbers longer than 16 bits. This instruction
affects OF, SF, ZF, AF, PF, and CF. The
carry flag is set if a borrow is required.

Example: SBB BL, 32

Subtracts 32 from the contents of
BL and then decrements the
result of this subtraction by one if
CF is set. If CF is cleared, SBB
performs the same operation
as SUB.

DEC (Decrement) subtracts 1 from the desti-
nation operand. DEC updates AF, OF, PF,
SF, and ZF, but it does not affect CF. Use
SUB with an immediate value of 1 to perform
a decrement that affects carry.

Example: DEC BX '

Subtracts 1 from the contents of
BX and places the result back
in BX.

3.3.3 Multiplication Instructions

MUL (Unsigned Integer Multiply) performs
an unsigned multiplication of the source
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operand and the accumulator. If the source is
a byte, the processor multiplies it by the
contents of AL and returns the double-length
result to AH and AL. '

If the source operand is a word, the processor
multiplies it by the contents of AX and
returns the double-length result to DX and
AX. MUL sets CF and OF to indicate that
the upper half of the result is nonzero; other-
wise, they are cleared. This instruction leaves
SF, ZF, AF, and PF undefined. o

Example: MUL BX

Replaces the contents of DX and
AX with the product of BX and
AX. The low-order 16 bits of the
result replace the contents of AX;
the high-order word goes to DX.
The processor sets CF and OF if
the unsigned result is greater than
16 bits.

IMUL (Signed Integer Multiply) performs a
signed multiplication operation. IMUL uses
AX and DX in the same way as the MUL
instruction, except when used in the immedi-
ate form.

The immediate form of IMUL allows the
specification of a destination register other
than the combination of DX and AX. In this
case, the result cannot exceed 16 bits without
causing an overflow. If the immediate operand
is a byte, the processor automatically extends
it to 16 bits before performing the
multiplication.

The immediate form of IMUL may also be
used with unsigned operands because the low
16 bits of a signed or unsigned multiplication
of two 16-bit values will always be the same.

IMUL clears CF and OF to indicate that the
upper half of the result is the sign of the lower



~ BASIC INSTRUCTION SET

half. This instruction leaves SF, ZF, AF, and
PF undefined.

IMUL BL

Replaces the contents of AX with
the product of BL and AL. The
processor sets CF and OF if the
result is more than & bits long.

Example:

Example: IMUL BX, SI, 5

Replaces the contents of BX with
the product of the contents of SI
and an immediate value of 5. The
processor sets CF and OF if the
signed result is longer than
16 bits.

3.3.4 Division Instructions

DIV (Unsigned Integer Divide) performs an
unsigned division of the accumulator by the
source operand. If the source operand is a
byte, it is divided into the double-length
dividend assumed to be in registers AL and
AH (AH = most significant byte; AL =
least significant byte). The single-length
quotient is returned in AL, and the single-
length remainder is returned in AH.

If the source operand is a word, it is divided
into the double-length dividend in registers
AX and DX. The single-length quotient is
returned in AX, and the single-length
remainder is returned in DX. Non-integral
quotients are truncated to integers toward 0.
The remainder is always less than the
quotient.

For unsigned byte division, the largest
quotient is 255. For unsigned word division,
the largest quotient is 65,535. DIV leaves OF,
SF, ZF, AF, PF, and CF undefined. Inter-
rupt (INT 0) occurs if the divisor is zero or
if the quotient is too large for AL or AX.
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Example: DIV BX

Replaces the contents of AX with
the unsigned quotient of the
doubleword value contained in
DX and AX, divided by BX. The
unsigned modulo replaces the
contents of DX.

Example: DIV BL

Replaces the contents of AL with
the unsigned quotient of the word
value in AX, divided by BL. The
unsigned modulo replaces the
contents of AH.

IDIV (Signed Integer Divide) performs a
signed division of the accumulator by the
source operand. IDIV uses the same registers
as the DIV instruction.

For signed byte division, the maximum
positive quotient is +127 and the minimum
negative quotient is —128. For signed word
division, the maximum positive quotient is
432,767 and the minimum negative quotient
is —32,768. Non-integral results are
truncated towards 0. The remainder will
always have the same sign as the dividend and
will be less than the divisor in magnitude.
IDIV leaves OF, SF, ZF, AF, PF, and CF
undefined. A division by zero causes an inter-
rupt (INT 0) to occur if the divisor is O or if
the quotient is too large for AL or AX.

Example: IDIV WORDOPRND

Replaces the contents of AX with
the signed quotient of the double-
word value contained in DX and
AX, divided by the value
contained in the memory word
labeled WORDOPRND. The
signed modulo replaces the
contents of DX.
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3.4 LOGICAL INSTRUCTIONS

The group of logical instructions includes the
Boolean operation instructions, rotate and
shift instructions, type conversion instruc-
tions, and the no-operation (NOP)
instruction.

3.4.1 Boolean Operation Instructions

Except for the NOT and NEG instructions,
the Boolean operation instructions can use two
register operands, a general purpose register
operand with a memory operand, an immedi-
ate operand with a general purpose register
operand, or a memory operand. The NOT and
NEG instructions are unary operations that
use a single operand in a register or memory.

AND (And) performs the logical ““and” of the
operands (byte or word) and returns the result
to the destination operand. AND clears OF
and DF, leaves AF undefined, and updates
SF, ZF, and PF.

Example: AND WORDOPRND, BX

Replaces the contents of
WORDOPRND with the logical
“and” of the contents of
the memory word labeled
WORDOPRND and the contents
of BX.

NOT (Not) inverts the bits in the specified
operand to form a one’s complement of the
operand. NOT has no effect on the flags.

Example: NOT BYTEOPRND

Replaces the original contents of
BYTEOPRND with the one’s
complement of the contents of
the memory word labeled
BYTEOPRND.
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OR (Or) performs the logical “inclusive or”
of the two operands and returns the result to
the destination operand. OR clears OF and
DF, leaves AF undefined, and updates SF,
ZF, and PF. '

Example: OR AL,S

Replaces the original contents of
AL with the logical “inclusive or”
of the contents of AL and the
immediate value 5.

XOR (Exclusive OR) performs the logical
“exclusive or” of the two operands and returns
the result to the destination operand. XOR
clears OF -and DF, leaves AF undefined, and
updates SF, ZF, and PF.

XOR DX, WORDOPRND

Replaces the original contents of
DX with the logical “exclusive or”
or the contents of DX and the
contents of the memory word
labeled WORDOPRND.

Example:

NEG (Negate) forms a two’s complement of
a signed byte or word operand. The effect of
NEG is to reverse the sign of the operand
from positive to negative or from negative to
positive. NEG updates OF, SF, ZF, AF, PF,
and CF.

Example: NEG AX

Replaces the original contents of
AX with the two’s complement of
the contents of AX.

3.4.2 Shift and Rotate Instructions

The shift and rotate instructions reposition the
bits within the specified operand. The shift
instructions provide a convenient way to
accomplish division or multiplication by
binary power. The rotate instructions are
useful for bit testing.
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3.4.2.1 SHIFT INSTRUCTIONS

The bits in bytes and words may be shifted
arithmetically or logically. Depending on the
value of a specified count, up to 31 shifts may
be performed.

A shift instruction can specify the count in
one of three ways. One form of shift instruc-
tion implicitly specifies the count as a single
shift. The second form specifies the count as
an immediate value. The third form specifies
the count as the value contained in CL. This
last form allows the shift count to be a
variable that the program supplies during
execution. Only the low order 5 bits of CL
are used.

Shift instructions affect the flags as follows.
AF is always undefined following a shift
operation. PF, SF, and ZF are updated
normally as in the logical instructions.

CF always contains the value of the last bit
shifted out of the destination operand. In a
single-bit shift, OF is set if the value of the
high-order (sign) bit was changed by the
operation. Otherwise, OF is cleared. Follow-
ing a multibit shift, however, the content of
OF is always undefined.

SAL (Shift Arithmetic Left) shifts the desti-
nation byte or word operand left by one or by
the number of bits specified in the count

operand (an immediate value or the value
contained in CL). The processor shifts zeros
in from the right side of the operand as bits
exit from the left side. See figure 3-6.

Example: SAL BL,2

Shifts the contents of BL. left by
2 bits and replaces the two low-
order bits with zeros.

Example: SAL BL,1

Shifts the contents of BL left by
1 bit and replaces the low-order
bit with a zero. Because the
processor does not have to decode
the immediate count operand to
obtain the shift count, this form
of the instruction takes 2 clock
cycles:rather than the 6 clock
cycles (5 cycles + 1 cycle for
each bit shifted) required by the
previous example.

SHL (Shift Logical Left) is physically the
same instruction as SAL (see SAL above).

SHR (Shift Logical Right) shifts the desti-
nation byte or word operand right by one or
by the number of bits specified in the count
operand (an immediate value or the value
contained in CL). The processor shifts zeros
in from the left side of the operand as bits
exit from the right side. See figure 3-7.

" BEFORE
I T L e e L L e o] s
SHL

AFTER

) : SAL OR
LodlodA T o[ Jefofofoe]efefofofe]o]efo]she

1BIT

FTER

A
SAL OR

T1|°r°|°l°|°|°|°|°]smsv
8

byte operands as well as word operands.

Ledlef~t-f el fofofols
OF CF

Both SAL and SHL shift the bits in the register or memory operand to the left bﬁ the specified number of bit positions. CF receives the
last bit shifted out of the left of the operand. SAL and SHL shift in zeros to fill the vacated bit locations. These instructions operate on

OPERAND

BITS

Figure 3-6. SAL and SHL
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Example: SHR BYTEOPRND, CL

Shifts the contents of the memory
byte labeled BY TEOPRND right
by the number of bits specified in
CL, and pads the left side of
BYTEOPRND with an equal
number of zeros.

SAR (Shift Arithmetic Right) shifts the
destination byte or word operand to the right
by one or by the number of bits specified in
the count operand (an immediate value or the
value contained in CL). The processor

preserves the sign of the operand by shifting
in zeros on the left side if the value is positive
or by shifting by ones if the value is negative.
See figure 3-8.

Example: SAR WORDPRND,1

Shifts the contents of the memory
byte labeled WORDPRND right
by one, and replaces the high-
order sign bit with a value equal
to the original sign of
WORDPRND.

LJlelelefofefefefefofefofe]ofofefr]
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Leflef[ofefolefefefofofefe]efofofof—|]

AFTER
SHR BY
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IE

AFTER
SHR BY
10 BITS

1]

OF

word operands.

oJofofofofofrlr]o]
OPERAND )

SHR shifts the bits in the register or memory operand to the right by the specified number of bit positions. CF receives the last bit shifted
out of the right of the operand. SHR shifts in zeros to fill the vacated bit locations. This instruction operates on byte operands as well as

T

Figure 3-7. SHR
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SAR preserves the sign of the register or memory operand as it shifts the operand.to the right the specified number of bit positions. CF
receives the last bit shifted out of the right of the operand. This instruction also operates on byte operands.
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Figure 3-8. SAR
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3.4.2.2 ROTATE INSTRUCTIONS

Rotate instructions allow bits in bytes and
words to be rotated. Bits rotated out of an
operand are not lost as in a shift, but are
“circled” back into the other “end” of the
operand.

Rotates affect only the carry and overflow
flags. CF may act as an extension of the
operand in two of the rotate instructions,
allowing a bit to be isolated and then tested
by a conditional jump instruction (JC or
JNC). CF always contains the value of the
last bit rotated out, even if the instruction does
not use this bit as an extension of the rotated
operand.

In single-bit rotates, OF is set if the operation
changes the high-order (sign) bit of the desti-
nation operand. If the sign bit retains its

original value, OF is cleared. On multibit
rotates, the value-of OF is always undefined.

ROL (Rotate Left) rotates the byte or word
destination operand left by one or by the
number of bits specified in the count operand
(an immediate value or the value contained
in CL). For each rotation specified, the high-
order bit that exists from the left of the
operand returns at the right to become the
new low-order bit of the operand. See
figure 3-9.

Example: ROL AL, 8

Rotates the contents of AL left by
8 bits. This rotate instruction
returns AL to its original state but
isolates the low-order bit in CF
for testing by a JC or JNC
instruction.

L

Lefefofofofefefofefofofefefofofo]

BEFORE ROL

Ll fgelelol e fefofoliofofefifoofofr e

AFTER ROL BY 1 BIT

I | S I I I K K N K K K N R

OF CF

AFTER ROL BY 12 BITS
OPERAND

This instruction also operates on byte operands.

ROL shifts the bits in the memory or register operand to the left by the specified number of bit positions. It copies the bit shifted out of
the left of the operand into the right of the operand. The last bit shifted into the least significant bit of the operand also appears in CF.

Figure 3-9. ROL
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ROR (Rotate Right) rotates the byte or word
destination operand right by one or by the
number of bits specified in the count operand
(an immediate value or the value contained
in CL). For each rotation specified, the low-
order bit that exits from the right of the
operand returns at the left to become the new
high-order bit of the operand. See
figure 3-10.

Example:

ROR WORDOPRND, CL
Rotates  the  contents -of
the. memory word labeled
WORDOPRND by the number.
of bits specified by the value
contained in CL. CF reflects the
value of the last bit rotated from
the right to the left side of the
operand.

LTl Tl Telel To" T+ T TeleTo] [¥]

BEFORE ROR

|->I°_|‘l1f°|1l1l1l°|°l_‘I°I‘L‘I‘1°Jil—*f°l

AFTER ROR BY 1 BIT

Ll frfelefofefifofrfrfrlelofp{ ]

AFTER ROR BY 8 BITS

CF. This Instruction also operates on byte operands.

OPERAND

ROR shifts the bits in the' memory or register operand to the right by the specified number of bit positions. It copies each bit shifted out
of the right of the operand into the left of the operand. The last bit shifted into.the most significant bit of the operand also appears in

Figure 3-10. ROR
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RCL (Rotate Through Carry Left) rotates bits
in the byte or word destination operand left
by one or by the number of bits specified in
the count operand (an immediate value or the
value contained in CL).

This instruction differs from ROL in that it
treats CF as a high-order 1-bit extension of
the destination operand. Each high-order bit
that exits from the left side of the operand
moves to CF before it returns to the operand

as the low-order bit on the next rotation cycle.
See figure 3-11.

Example:

RCL BX,1

Rotates the contents of BX left by
one bit. The high-order bit of the
operand moves to CF, the
remaining 15 bits move left one
position, and the original value of
CF becomes the new low-order
bit.

Ll LelefeJoefofolofefofofe]efofofe]el]

BEFORE RCL

[ fofefof e ofelrfrfofofo]o]t e

AFTER RCL BY 1 BIT

= K = KN KN KR KN K3 K3 X KR KA K KA KR KR KA N

CF

OPERAND

AFTER RCL BY 16 BITS

also operates on byte operands.

RCL rotates the bits in the memory or register operand to the left in the same way as ROL except that RCL treats CF as a 1-bit extension
of the operand. Note that a 16-bit RCL produces the same result as a 1-bit RCR (though it takes much longer to execute). This instruction

Figure 3-11. RCL
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RCR (Rotate Through Carry Right) rotates
bits in the byte or word destination operand
right by one or by the number of bits speci-
fied in the count operand (an immediate value
or the value contained in CL).

This instruction differs from ROR in that it
treats CF as a low-order 1-bit extension of the
destination operand. Each low-order bit that
exits from the right side of the operand moves
to CF before it returns to the operand as the

high-order bit on the next rotation cycle. See
figure 3-12.

RCR BYTEOPRND,3

Rotates the contents of the
memory byte labeled
BYTEOPRND to the right by 3
bits. Following the execution of
this instruction, CF reflects the
original value of bit number 5 of
BYTEOPRND, and the original
value of CF becomes bit 2.

Example:

I 0

[ {i]efofelo] [+]

Llfefefofef-] ]c

BEFORE RCR

[ofol [+]

O KRR

L

AFTER RCRBY 1BIT

T

['fole]e

[ ] o

LT h

OPERAND

AFTER RCR BY 3 BITS
CF

RCR rotates the bits in the memory or register operand to the right in the same way as ROR excepl that RCR treats CF as a 1-bit extension
of the operand. This instruction also operates on byte operands. .

Figure 3-12. RCR
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3.4.3 Type Conversion and No-Operation
Instructions

The type conversion instructions prepare

operands for division. The NOP instruction is

a 1-byte filler instruction with no effect on

registers or flags.

CWD (Convert Word to Double-Word)
extends the sign of the word in register AX
throughout register DX. CWD does not affect
any flags. CWD can be used to produce a
double-length (double-word) dividend from a
word before a word division.

CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout AX.
CBW does not affect any flags.

CWD

Sign-extends the 16-bit value in
AX to a 32-bit value in DX and
AX with the high-order 16-bits
occupying DX.

Example:

NOP (No Operation) occupies a byte of
storage but affects nothing but the instruc-
tion pointer, IP. The amount of time that a
NOP instruction requires for execution varies
in proportion to the CPU clocking rate. This
variation makes it inadvisable to use NOP
instructions in the construction of timing loops
because the operation of such a program will
not be independent of the system hardware
configuration.

NOP

The processor performs no opera-
tion for 2 clock cycles.

Example:

3.5 TEST AND COMPARE INSTRUCTIONS

The test and compare instructions are similar
in that they do not alter their operands.
Instead, these instructions perform opera-
tions that only set the appropriate flags to
indicate the relationship between the two
operands.
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TEST (Test) performs the logical “and” of
the two operands, clears OF and DF, leaves
AF undefined, and updates SF, ZF, and PF.
The difference between TEST and AND is
that TEST does not alter the destination
operand.

Example: TEST BL,32

Performs a logical “and” and sets
SF, ZF, and PF according to the
results of this operation. The
contents of BL remain
unchanged.

CMP (Compare) subtracts the source operand
from the destination operand. It updates OF,
SF, ZF, AF, PF, and CF but does not alter
the source and destination operands. A subse-
quent signed or unsigned conditional transfer
instruction can test the result using the
appropriate flag result.

CMP can compare two register operands, a
register operand and a memory operand, a
register operand and an immediate operand,
or an immediate operand and a memory
operand. The operands may be words or bytes,
but CMP cannot compare a byte with a word.

Example: CMP BX,32

Subtracts the immediate operand,
32, from the contents of BX and
sets OF, SF, ZF, AF, PF, and CF
to reflect the result. The contents
of BX remain unchanged.

3.6 CONTROL TRANSFER INSTRUCTIONS

The iAPX 286 provides both conditional and
unconditional program transfer instructions to
direct the flow of execution. Conditional
program transfers depend on the results of
operations that affect the flag register.
Unconditional program transfers are always
executed.
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3.6.1 Unconditional Transfer Instructions

JMP, CALL, RET, INT and IRET instruc-
tions transfer control from one code segment
location to another. These locations can be
within the same code segment or in different
code segments.

3.6.1.1 JUMP INSTRUCTION

JMP (Jump) unconditionally transfers control
to the target location. JMP is a one-way
transfer of execution; it does not save a return
address on the stack.

The JMP instruction always performs the
same basic function of transferring control
from the current location to a new location.
Its implementation varies depending on the
following factors:

® Is the address specified directly within the
instruction or indirectly through a regis-
ter or memory?

@ Is the target location inside or outside the
current code segment selected in CS?

A direct JMP instruction includes the desti-
nation address as part of the instruction. An
indirect JMP instruction obtains the destina-
tion address indirectly through a register or a
pointer variable.

Control transfers through a gate or to a task
state segment are available only in Protected
Mode operation of the iAPX 286. The formats
of the instructions that transfer control
through a call gate, a task gate, or to a task
state segment are the same. The label
included in the instruction selects one of these
three paths to a new code segment.

Direct JMP within the current code segment.
A direct JMP that transfers control to a target
location within the current code segment uses
a relative displacement value contained in the
instruction. This can be either a 16-bit value
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or an 8-bit value sign extended to 16 bits. The
processor forms an effective address by adding
this relative displacement to the address
contained in IP. IP refers to the next instruc-
tion when the additions are performed.

Example: JMP NEAR_NEWCODE
Transfers  control to  the
target location labeled

NEAR_NEWCODE, which is
within the code segment currently
selected in CS.

Indirect JMP within the current code
segment. Indirect JMP instructions that
transfer control to a location within the
current code segment specify an absolute
address in one of several ways. First, the
program can JMP to a location specified by
a 16-bit register (any of AX, DX, CX, BX,
BP, SI, or DI). The processor moves this 16-
bit value into IP and resumes execution.

Example: JMP SI

Transfers control to the target
address formed by adding the 16-
bit value contained in SI to the
base address contained in CS.

The processor can also obtain the destination
address within a current segment from a
memory word operand specified in the
instruction.

JMP PTR_X

Transfers control to the target
address formed by adding the 16-
bit value contained in the memory
word labeled PTR X to the base
address contained in CS.

Example:

A register can modify the address of the
memory word pointer to select a destination
address.
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JMP CASE_TABLE [BX]

CASE_TABLE is the first word
in an array of word pointers. The
value of BX determines which
pointer the program selects from
the array. The JMP instruction
then transfers control to the
location specified by the selected
pointer.

Example:

Direct JMP outside of the current code
segment. Direct JMP instructions that specify
a target location outside the current code
segment contain a full 32-bit pointer. This
pointer consists of a selector for the new code
segment and an offset within the new
segment.

Example: JMP FAR_NEWCODE_FOO

Places the selector contained in
the instruction into CS and the
offset into IP. The program
resumes execution at this location
in the new code segment.

Indirect JMP outside of the current code
segment. Indirect JMP instructions that
specify a target location outside the current
code segment use a double-word variable to
specify the pointer.

JMP NEWCODE

NEWCODE the first word of two
consecutive words in memory
which represent the new pointer.
NEWCODE contains the new
offset for IP and the word follow-
ing NEWCODE contains the
selector for CS. The program
resumes execution at this location
in the new code segment.
(Protected mode programs treat

Example:
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this differently. See Chapters 6
and 7).

Direct JMP outside of the current code
segment to a call gate. If the selector included
with the instruction refers to a call gate, then
the processor ignores the offset in the instruc-
tion and takes the pointer of the routine being
entered from the call gate.

JMP outside of current code segment may
only go to the same level.

Example: JMP CALL_GATE_FOO

The selector in the instruction
refers to the call gate
CALL_GATE_FOQO, and the call
gate actually provides the new
contents of CS and IP to specify
the address of the next
instructions.

Indirect JMP outside the current code
segment to a call gate. If the selector speci-
fied by the instruction refers to a call gate,
the processor ignores the offset in the double-
word and takes the address of the routine
being entered from the call gate. The JMP
instruction uses the same format to indirectly
specify a task gate or a task state segment.

Example: JMP CASE_TABLE [BX]

The instruction refers to the
double-word in the array of
pointers called CASE_TABLE.
The specific double-word chosen
depends on the value in BX when
the instruction executes. The
selector portion of this double-
word selects a call gate, and the
processor takes the address of the
routine being entered .from the
call gate.
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3.6.1.2 CALL INSTRUCTION

CALL (Call Procedure) activates an out-of-
line procedure, saving on the stack the address
of the instruction following the CALL for
later use by a RET (Return) instruction. An
intrasegment CALL places the current value
of IP on the stack. An intersegment CALL
places both the value of IP and CS on the
stack. The RET instruction in the called
procedure uses this address to transfer control
back to the calling program.

A long CALL instruction that invokes a task- Example:
switch stores the outgoing task’s task state
segment selector in the incoming task state
segment’s link field and sets the nested task
flag in the new task. In this case, the IRET
instruction takes the place of the RET
instruction to return control to the nested task.

Examples:

CALL NEAR_NEWCODE
CALL SI

CALL PTR_X

CALL CASE_TABLE [BP]
CALL FAR_NEWCODE_FOO
CALL NEWCODE

CALL CALL_GATE_FOO
CALL CASE_TABLE [BX]

Example:

See the previous treatment of JMP for a
discussion of the operations of these
instructions.

intrasegment CALL instruction. An inter-
segment RET restores the values of both CS
and IP which were saved on the stack by the
previous intersegment CALL instruction.

RET instructions may optionally specify a
constant to the stack pointer. This constant
specifies the new top of stack to effectively
remove any arguments that the calling
program pushed on the stack before the
execution of the CALL instruction.

RET

If the previous CALL instruction
did not transfer control to a new
code segment, RET restores the
value of IP pushed by the CALL-
instruction. If the previous CALL
instruction transferred control to
a new segment, RET restores the
values of both IP and CS which
were pushed on the stack by the
CALL instruction.

RET n

This form of the RET instruction
performs identically to the above
example except that it adds n
(must be an even value) to the
value of SP to eliminate n bytes
of parameter information previ-
ously pushed by the calling
program.

IRET (Return From Interrupt or Nested
Task) returns control to an interrupted
routine or, optionally, reverses the action of a
CALL or INT instruction that caused a task
switch. See Chapter 8 for further information
on task switching.

3.6.1.3 RETURN AND RETURN FROM INTERRUPT
INSTRUCTION

RET (Return From Procedure) terminates the
execution of a procedure and transfers control
through a back-link on the stack to the
program that -originally invoked the

procedure. IRET

Example:

Returns from an interrupt with or

An intrasegment RET restores the value of
IP that was saved on the stack by the previous
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without a task-switch based on the
value of the NT bit.
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3.6.2 Conditional Transfer Instructions

The conditional transfer instructions are
jumps that may or may not transfer control,
depending on the state of the CPU flags when
the instruction executes. Instruction encoding
is most efficient when the target for the
conditional jumps is in the current code
segment and within — 128 to + 127 bytes of
the first byte of the next instruction. Alter-
natively, the opposite sense of the conditional
jump can skip around an unconditional jump
to the destination.

3.6.2.1 CONDITIONAL JUMP INSTRUCTIONS
Table 3-3 shows the conditional transfer
mnemonics and their interpretations. The
conditional jumps that are listed as pairs are
actually the same instruction. The assembler
provides the alternate mnemonics for greater
clarity within a program listing.

3.6.2.2 LOOP INSTRUCTIONS

The loop instructions are conditional jumps
that use a value placed in CX to specify the
number of repetitions of a software loop. All
loop instructions automatically decrement CX
and terminate the loop when CX=0. Four of
the five loop instructions specify a condition
of ZF that terminates the loop before CX
decrements to zero.

LOOP (Loop While CX Not Zero) is a condi-
tional transfer that auto-decrements the CX
register before testing CX for the branch
condition. If CX is non-zero, the program
branches to the target label specified in the
instruction. The LOOP instruction causes the
repetition of a code section until the opera-
tion of the LOOP instruction decrements CX
to a value of zero. If LOOP finds CX=0,
control transfers to the instruction immedi-

Table 3-3. Interpretation of Conditional Transfers

Unsigned Conditional Transfers
Mnemonic Condition Tested “Jumplf...”
JA/IJNBE (CForZF) =0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/INAE CF =1 below/not above nor equal
JBE/JNA (CFor ZF) = 1 below or equal/not above
JC CF =1 carry
JE/JZ ZF =1 equal/zero
JNC CF=0 not carry
JNE/INZ ZF =0 not equal/not zero
JNP/JPO PF =0 not parity/parity odd
JP/JPE PF =1 parity/parity even

Signed Conditional Transfers

Mnemonic Condition Tested “Jump If. ..
JG/JNLE ((SF xor OF) or ZF) = 0 greater/not less nor equal
JGE/JNL (SF xor OF) = 0 greater or equal/not less
JL/INGE (SF xor OF) = 0 less/not greater nor equal
JLE/ING ((SF xor OF) or ZF) = 1 less or equal/not greater
JNO OF =0 not overflow
JNS SF=0 not sign (positive, including 0)
JOo OF =1 overflow :
JS SF =1 sign (negative)
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ately following the LOOP instruction. If the
value of CX is initially zero, then the LOOP
executes 65536 times.

Example: LOOP START_LOOP

Each time the program encoun-
ters this instruction, it decre-
ments CX and then tests it. If the
value of CX is non-zero, then the
program branches to the instruc-
tion labeled START_LOOP. If
the value in CX is zero, then the
program continues with the
instruction that follows the LOOP
instruction. -

LOOPE (Loop While. Equal) and LOOPZ
(Loop While Zero) are physically the same
instruction. These instructions auto-decre-
ment the CX register before testing CX and
ZF for the branch conditions. If CX is non-
~zero and ZF =1, the program branches to the
target label specified in"the instruction. If

LOOPE or LOOPZ finds that CX=0 or

ZF=0, control transfers to the instruction
immediately succeeding the LOOPE or
LOOPZ instruction.

LOOPE START_LOOP (or
LOOPZ START_LOOP)

Example:

Each time the program encoun-
ters this instruction, it decre-
ments CX and tests CX and ZF.
If the value in CX is non-zero and
the value of ZF is 1, the program
branches to the instruction labeled
START_LOOP. If CX=0 or
ZF =0, the program continues
with the instruction that follows
the LOOPE <(or LOOPZ)
instruction.

LOOPNE (Loop While Not Equal) and
LOOPNZ (Loop While Not -Zero) are physi-
cally the same instruction. These instructions
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auto-decrement the CX register before testing
CX and ZF for the branch conditions. If CX
is non-zero and ZF=0, the program branches
to the target label specified in the instruction.
If LOOPNE or LOOPNZ finds that CX=0
or ZF=1, control transfers to the instruction
immediately succeeding the LOOPNE or
LOOPNZ instruction.

Example: LOOPNE START_LOOP (or
LOOPNZ START_LOOP)

Each time the program encoun-
ters this instruction, it decre-
ments CX and tests CX and ZF.
If the value of CX is non-zero and
the value of ZF is 0, the program
branches to the instruction labeled
START_LOOP. If CX=0 or
ZF=1, the program continues
with the instruction that follows
the LOOPNE (or LOOPNZ)
instruction.

3.6.2.3 EXECUTING A LOOP OR REPEAT
ZERO TIMES

JCXZ (Jump if CX Zero) branches to the
label specified in the instruction if it finds a
value of zero in CX. Sometimes, it is desira-
ble to design a loop that executes zero times
if the count variable in CX is initialized to
zero. Because the LOOP instructions (and
repeat prefixes) decrement CX before they
test it, a loop will execute 65536 times if the
program enters the loop with a zero value in
CX. A programmer may conveniently
overcome this problem with JCXZ, which
enables the program to branch around -the
code within the loop if CX is zero when JCXZ
executes.

Example: - JCXZ TARGETLABEL

Causes the program to branch
to the instruction labeled
TARGETLABEL if CX=0 when
the instruction executes.
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3.6.3 Software-Generated Interrupts

The INT n and INTO instructions allow the
programmer to specify a transfer to an inter-
rupt service routine from within a program.
Interrupts 0-31 are reserved by Intel.

3.6.3.1 SOFTWARE INTERRUPT INSTRUCTION
INT n (Software Interrupt) activates the
interrupt service routine that corresponds to
the number coded within the instruction.
Interrupt type 3 is reserved for internal
software-generated interrupts. However, the
INT instruction may-specify any interrupt
type to allow multiple types of internal inter-
rupts or to test the operation of a service
routine. The interrupt service routine termi-
nates with an IRET instruction that returns
control to the instruction that follows INT.

Example: INT 3

Transfers control to the interrupt
service routine specified by a type
3 interrupt.

Example: INT 0

Transfers control to the interrupt
service routine specified by a type
0 interrupt, which is reserved for
a divide error.

INTO (Interrupt on Overflow) invokes a type
4 interrupt if OF is set when the INTO
instruction executes. The type 4 interrupt is
reserved for this purpose.

Example: INTO

If the result of a previous opera-
tion has set OF and no interven-
ing operation has reset OF, then
INTO invokes a type 4 interrupt.
The interrupt service routine
terminates with an IRET instruc-
tion, which returns control to the
instruction following INTO.

3.7 CHARACTER TRANSLATION AND
STRING INSTRUCTIONS

The instructions in this category operate on
characters or string elements rather than on
logical or numeric values.

3.7.1 Translate Instruction

XLAT (Translate) replaces a byte in the AL
register with a byte from a user-coded trans-
lation table. When XLAT is executed, AL
should have the unsigned index to the table
addressed by BX. XLAT changes the contents
of AL from table index to table entry. BX is
unchanged. The XLAT instruction is useful
for translating from one coding system to
another such as from ASCII to EBCDIC. The
translate table may be up to 256 bytes long.
The value placed in the AL register serves as
an index to the location of the corresponding
translation value. Used with a LOOP instruc-
tion, the XLAT instruction can translate a
block of codes up to 64K bytes long.

Example: XLAT

Replaces the byte in AL with the
byte from the translate table that
is selected by the value in AL.

3.7.2 String Manipulation Instructions and
Repeat Prefixes

The string instructions (also called primi-
tives) operate on string elements to move,
compare, and scan byte or word strings. One-
byte repeat prefixes can cause the operation
of a string primitive to be repeated to process
strings as long as 64K bytes.

The repeated string primitives use the direc-
tion flag, DF, to specify left-to-right or right-
to-left string processing, and use a count in
CX to limit the processing operation. These
instructions use the register pair DS:SI to
point to the source string element and the
register pair ES:DI to point to the
destination.
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One of two possible opcodes represent. each
string primitive, depending on whether it is
operating on byte strings or word strings. The
string primitives are generic and require one
or more operands along with the primitive to
determine the size of the string elements being
processed. These operands do not determine
the addresses of the strings; the addresses
must already be present in the appropriate
registers.

Each repetition of a string operation using the
Repeat prefixes includes the following steps:

1. Acknowledge pending interrupts.

2. Check CX for zero and stop repeating if
CX is zero.

3. Perform the string operation once.

4. Adjust the memory pointers in DS:SI and
ES:DI by incrementing SI and DI if DF
is 0 or by decrementing SI and DI if DF
is 1.

5. Decrement CX (this step does not affect
the flags).

6. For SCAS (Scan String) and CMPS
(Compare String), check ZF for a match
with the repeat condition and stop
repeating if the ZF fails to match,

The Load String and Store String instruc-
tions allow a program to perform arithmetic
or logical operations on string characters
(using AX for word strings and AL for byte
strings). Repeated operations that include
instructions other than string primitives must
use the loop instructions rather than a repeat
prefix.

3.7.2.1 STRING MOVEMENT INSTRUCTIONS

REP (Repeat While CX Not Zero) specifies
a repeated operation of a string primitive. The
REP prefix causes the hardware to automat-
ically repeat the associated string primitive
until CX=0. This form of iteration allows the
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CPU to process strings much faster than
would be possible with a regular software
loop.

When the REP prefix accompanies a MOVS
instruction, it operates as a memory-to-
memory block transfer. To set up for this
operation, the program must initialize CX and
the register pairs DS:SI and ES:DI. CX
specifies the number of bytes or words in the
block.

If DF=0, the program must point DS:SI to
the first element of the source string and point
ES:DI to the destination address for the first
element. If DF=1, the program must point
these two register pairs to the last element of
the source string and to the destination
address for the last element, respectively.

Example: REP MOVSW

The processor checks the value in
CX for zero. If this value is not
zero, the processor moves a word
from the location pointed to by
DS:SI to the location pointed to
by ES:DI and increments SI and
DI by two (if DF=0). Next, the
processor decrements CX by one
and returns to the beginning of
the repeat cycle to check CX
again. After CX decrements to
zero, the processor executes the
instruction that follows.

MOVS (Move String) moves the string

character pointed to by the combination of DS
and SI to the location pointed to by the
combination of ES and DI. This is the only
memory-to-memory transfer supported by the
instruction set of the base architecture.
MOVSB operates on byte elements. The
destination segment register cannot be
overridden by a segment override prefix while
the source segment register can be
overridden.
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Example: MOVSW

Moves the contents of the
memory byte pointed to by DS:SI
to the location pointed to by
ES:DI.

3.7.2.2 OTHER STRING OPERATIONS

CMPS (Compare Strings) subtracts the
destination string element (ES:DI) from the
source string element (DS:SI) and updates the
flags AF, SF, PF, CF and OF. If the string
elements are equal, ZF=1; otherwise, ZF=0.
If DF=0, the processor increments the
memory pointers (SI and DI) for the two
strings. The segment register used for the
source address can be changed with a segment
override prefix while the destination segment
register cannot be overridden.

Example: CMPSB

Compares the source and desti-
nation string elements with each
other and returns the result of the
comparison to ZF.

SCAS (Scan String) subtracts the destination
string element at ES:DI from AX or AL and
updates the flags AF, SF, ZF, PF, CF and
OF. If the values are equal, ZF=1; other-
wise, ZF=0. If DF=0, the processor incre-
ments the memory pointer (DI) for the string.
The segment register used for the source
address can be changed with a segment
override prefix while the destination segment
register cannot be overridden.

Example: SCASW

Compares the value in AX with
the destination string element.

REPE/REPZ (Repeat While CX Equal/Zero)
and REPNE/REPNZ (Repeat While CX Not
Equal/Not Zero) are the prefixes that are
used exclusively with the SCAS (Scan
String) and CMPS (Compare String)
primitives.
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The difference between these two types of
prefix bytes is that REPE/REPZ terminates
when ZF=0 and REPNE/REPNZ termi-
nates when ZF=1. ZF does not require
initialization before execution of a repeated
string instruction.

When these prefixes modify either the SCAS
or CMPS primitives, the processor compares
the value of the current string element with
the value in AX for word elements or with
the value in AL for byte elements. The
resulting state of ZF can then limit the
operation of the repeated operation as well as
a zero value in CX.

Example: REPE SCASB

Causes the processor to scan the
string pointed to by ES:DI until
it encounters a match with the
byte value in AL or until CX
decrements to zero.

LODS (Load String) places the source string
element at DS:SI into AX for word strings or
into AL for byte strings.

LODSW

Loads AX with the value pointed
to by DS:SI.

Example:

3.8 ADDRESS MANIPULATION
INSTRUCTIONS

The set of address manipulation instructions
provide a way to perform address calcula-
tions or to move to a new data segment or
extra segment.

LEA (Load Effective Address) transfers the
offset of the source operand (rather than its
value) to the destination operand. The source
operand must be a memory operand, and the
destination operand must be a 16-bit general
register (AX, DX, BX, CX, BP, SP, SI,
or DI).
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LEA does not affect any flags. This instruc-
tion is useful for initializing the registers
before the execution of the string primitives
or the XLAT instruction.

Example: LEA BX EBCDIC_TABLE

Causes the processor to place
the address of the starting
location of the table labeled
EBCDIC_TABLE into BX.

LDS (Load Pointer Using DS) transfers a
32-bit pointer variable from the source
operand to DS and the destination register.
The source operand must be a memory
operand, and the destination operand must be
a 16-bit general register (AX, DX, BX, CX,
BP, SP, SI or DI). DS receives the high-order
segment word of the pointer. The destination
register receives the low-order word, which
points to a specific location within the
segment.

LDS SI, STRING_X

Loads DS with the word identi-
fying the segment pointed to by
STRING_X, and loads the offset
of STRING_X into SI. Specify-
ing SI as the destination operand
is a convenient way to prepare for
a string operation on a source
string that is not in the current
data segment.

Example:

LES (Load Pointer Using ES) operates
identically to LDS except that ES receives the
offset word rather than DS.

LES DI, DESTINATION_X

Loads ES with the word identi-
fying the segment pointed to by
DESTINATION_X, and loads
the offset of DESTINATION_X
into DI. This instruction provides

Example:
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a convenient way to select a
destination for a string operation
if the desired location is not in the
current extra segment.

3.9 FLAG CONTROL INSTRUCTIONS

The flag control instructions provide a method
of changing the state of bits in the flag
register.

3.9.1 Carry Flag Control Instructions

The carry flag instructions are useful in
conjunction with rotate-with-carry instruc-
tions RCL and RCR. They can initialize the
carry flag, CF, to a known state before
execution of a rotate that moves the carry bit
into one end of the rotated operand.

STC (Set Carry Flag) sets the carry flag (CF)
to L.
Example: STC

CLC (Clear Carry Flag) zeros the carry flag
(CF).
Example: CLC

CMC (Complement Carry Flag) reverses the
current status of the carry flag (CF).

Example: CMC

3.9.2 Direction Flag Control Instructions

The direction flag control instructions are
specifically included to set or clear the direc-
tion flag, DF, which controls the left-to-right
or right-to-left direction of string processing.
IF DF=0, the processor automatically incre-
ments the string memory pointers, SI and DI,
after each execution of a string primitive. If
DF=1, the processor decrements these
pointer values. The initial state of DF is 0.
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CLD (Clear Direction Flag) zeros DF, causing
the string instructions to auto-increment SI
and/or DI. CLD does not affect any other
flags.

Example: CLD

STD (Set Direction Flag) sets DF to 1,
causing the string instructions to auto-decre-
ment SI and/or DI. STD does not affect any
other flags.

Example: STD

3.9.3 Flag Transfer Instructions

Though specific instructions exist to alter CF
and DF, there is no direct method of altering
the other flags. The flag transfer instructions
allow a program to alter the other flag bits
with the bit manipulation instructions after
transferring these flags to the stack or the AH
register.

The PUSHF and POPF instructions are also
useful for preserving the state of the flag
register before executing a procedure.

LAHF (Load AH from Flags) copies SF, ZF,
AF, PF, and CF to AH bits 7, 6, 4, 2, and 0,
respectively (see figure 3-13). The contents of
the remaining bits (5, 3, and 1) are undefined.
The flags remain unaffected. This instruction
can assist in converting 8080/8085 assembly
language programs to run on the base archi-

tecture of the iAPX 86, 88, 186,
and 286.
Example: LAHF

SAHF (Store AH into Flags) transfers bits 7,
6, 4, 2, and 0 from AH into SF, ZF, AF, PF,
and CF, respectively (see figure 3-13). This
instruction also provides 8080/8085 compat-
ibility with the iAPX 86, 88, 186, and 286.

Example: SAHF
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7 6 5 4 3 2 1 0
FLDLTIF]

REGISTER AH

LAHF loads five flags from the flag register into register AH. SAHF
stores these same five flags from AH into the flag register. The
bit position ot each flag is the same In AH as it is in the flag
register. The r ining bits are ind inat:

Figure 3-13. LAHF and SAHF

PUSHF (Push Flags) decrements SP by two
and then transfers all flags to the word at the
top of stack pointed to by SP (see figure
3-14). The flags remain unaffected. This
instruction enables a procedure to save the
state of the flag register for later use.

Example: PUSHF

POPF (Pop Flags) transfers specific bits from
the word at the top of stack into the low-order
byte of the flag register (see figure 3-14). The
processor then increments SP by two.

Note that an application program in the
protected virtual address mode may not alter
IOPL (the 1/O privilege level flag) unless the
program is executing at privilege level 0. A
program may alter IF (the interrupt flag) only
when executing at a level that is at least as
privileged as IOPL. ‘

Procedures may use this instruction to restore
the flag status from a previous value.

Example: POPF

3.10 BINARY-CODED DECIMAL
ARITHMETIC INSTRUCTIONS

These instructions adjust the results of a
previous arithmetic operation to produce a
valid packed or unpacked decimal result.
These instructions operate only on AL or AH
registers.
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15 14 1

3. 12 .1 10 9 8 7 6 5 4 3 2 1 0
%NTI 1oPL |OF|DF| IFlTFISFIZF%AF%PF%CFI
STACK WORD
PUSHF decrements SP by 2 bytes (1 word) and copies the contents of the flag register to the top of stack. POPF loads the flag register

with the contents of the last word pushed onto the stack. The bit position of each flag is the same in the stack word as it is in the flag
t privilege level (level 0) may alter the 2-bit IOPL flag. Only programs executing at a level at

register. Only prog
least as privileged as that indi

ting at the high
ted by IOPL may alter IF.

Figure 3-14. PUSHF and POPF

3.10.1 Packed BCD Adjustment
Instructions

DAA (Decimal Adjust) corrects the result of
adding two valid packed decimal operands in
AL. DAA must always follow the addition of
two pairs of packed decimal numbers (one
digit in each nibble) to obtain a pair of valid
packed decimal digits as results. The carry
flag will be set if carry was needed.

Exarhple: DAA ‘

DAS (Decimal Adjust for Subtraction)
corrects the result of subtracting two valid
packed decimal operands in AL. DAS must
always follow the subtraction of one pair of
packed decimal numbers (one digit in each
nibble) from another to obtain a pair of valid
packed decimal digits as results. The carry
flag will be set if a borrow was needed.

Example: DAS

3.10.2 Unpacked BCD Adjustment
Instructions

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid
unpacked decimal number, and zeros the top
4 bits. AAA must always follow the addition
of two unpacked decimal operands in AL. The
carry flag will be set and AH will be incre-
mented if a carry was necessary.

Example: AAA
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AAS (ASCII Adjust for Subtraction) changes
the contents of register AL to a valid
unpacked decimal number, and zeros the top
4 bits. AAS must always follow the subtrac-
tion of one unpacked decimal operand from
another in AL. The carry flag will be set and
AH decremented if a borrow was necessary.

Example: AAS

AAM (ASCII Adjust for Multiplication)
corrects the result of a multiplication of two
valid unpacked decimal numbers. AAM must
always follow the multiplication of two
decimal numbers to produce a valid decimal
result. The high order digit will be left in AH,
the low order digit in AL.

Example: AAM

AAD (ASCII Adjust for Division) modifies
the numerator in AH and AL to prepare for
the division of two valid unpacked decimal
operands so that the quotient produced by the
division will be a valid unpacked decimal
number.. AH should contain the high-order
digit and AL the low-order digit. This
instruction will adjust the value and leave it
in AL. AH will contain 0.

Example: AAD
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3.11 TRUSTED INSTRUCTIONS

When operating in Protected Mode (Chapter
6 and following), the iAPX 286 processor
restricts the execution of trusted instructions
according to the Current Privilege Level
(CPL) and the current value of IOPL, the
2-bit I/0 privilege flag. Only a program
operating at the highest privilege level (level
0) may alter the value of IOPL. A program
may execute trusted instructions only when
executing at a level that is at least as privi-
leged as that specified by IOPL.

Trusted instructions control I/O operations,
interprocessor communications in a multipro-
cessor system, interrupt enabling, and the
HLT instruction.

These protection considerations do not apply
in the real address mode.

3.11.1 Trusted and Privileged Restrictions
on POPF and IRET

POPF (POP Flags) and IRET (Interrupt
Return) are not affected by IOPL unless they
attempt to alter IF (flag register bit 9). To
change IF, POPF must be part of a program
that is executing at a privilege level greater
than or equal to that specified by [OPL. Any
attempt to change IF when CPL = 0 will be
ignored (i.e., the IF flag will be ignored). To
change the IOPL field, CPL must be zero.

3.11.2 Machine State Instructions

These trusted instructions affect the machine
state control interrupt response, the processor
halt state, and the bus LOCK signal that
regulates memory access in multiprocessor
systems.

CLI (Clear Interrupt-Enable Flag) and STI
(Set Interrupt-Enable Flag) alter bit 9 in the
flag register. When IF=0, the processor
responds only to internal interrupts and to
non-maskable external interrupts. When
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IF=1, the processor responds to all inter-
rupts. An interrupt service routine might use
these instructions to avoid further interrup-
tion while it processes a previous interrupt
request. As with the other flag bits, the
processor clears IF during initialization. These
instructions may be executed only if CPL <
IOPL. A protection exception will occur if
they are executed when CPL > IOPL.

Example: STI
Sets IF=1, which enables the
processing of maskable external
interrupts.

Example: CLI

Sets IF=0 to disable maskable
interrupt processing.

HLT (Halt) causes the processor to suspend
processing operations pending an interrupt or
a system reset. This trusted instruction
provides an alternative to an endless software
loop in situations where a program must wait
for an interrupt. The return address saved
after the interrupt will point to the instruc-
tion immediately following HLT. This
instruction may be executed only when
CPL = 0.
Example: HLT

LOCK (Assert Bus Lock) is a 1-byte prefix
code that causes the processor to assert the
bus LOCK signal during execution of the
instruction that follows. LOCK does not affect
any flags. LOCK may be used only when CPL
= IOPL. A protection exception will occur if
LOCK is used when CPL > IOPL.

3.11.3 Input and Output Instructions

‘These trusted instructions provide access to

the processor’s I/O ports to transfer data to
and from peripheral devices. In Protected
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Mode, these instructions may be executed
only when CPL < IOPL.

IN (Input from Port) transfers a byte or a
word from an input port to AL or AX. If a
program specifies AL with the IN instruc-
tion, the processor transfers 8 bits from the
selected port to AL. Alternately, if a program
specifies AX with the IN instruction, the
processor transfers 16 bits from the port
to AX.

The program can specify the number of the
port in two ways. Using an immediate byte
constant, the program can specify 256 8-bit,
ports numbered O through 255 or 128 16-bit
ports numbered 0,2,4,...,252,254. Using the
current value contained in DX, the program
can specify 8-bit ports numbered O through
65,535, or 16-bit ports using even-numbered
ports in the same range.

Example: "IN AL,
BYTE_PORT_NUMBER

Transfers 8 bits to AL
from the port identified
by the immediate constant

BYTE_PORT_NUMBER.

OUT (Output to Port) transfers a byte or a
word to an output port from AL or AX. The
program can specify the number of the port
using the same methods of the IN instruc-
tion.

OUT AX, DX

Transfers 16 bits from AX to the
port identified by the 16-bit
number contained in DX.

Example:

INS and OUTS (Input String and Output
String) cause block input or output opera-
tions using a Repeat prefix. See Chapter 4 for
more information on INS and OUTS.
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3.12 PROCESSOR EXTENSION
INSTRUCTIONS

Processor Extension provides an extension to
the instruction set of the base architecture
(e.g., 80287). The NPX extends the instruc-
tion set of the CPU-based architecture to
support high-precision integer and floating-
point calculations. This extended instruction
set includes arithmetic, comparison,
transcendental, and data transfer instruc-
tions. The NPX also contains a set of useful
constants to enhance the speed of numeric
calculations.

A program contains instructions for the NPX
in line with the instructions for the CPU. The
system executes these instructions in the same
order as they appear in the instruction stream.
The NPX operates concurrently with the
CPU to provide maximum throughput for
numeric calculations.

The software emulation of the NPX is trans-
parent to application software but requires
more time for execution.

3.12.1 Processor Extension
Synchronization Instructions

Escape and wait instructions allow'a proces-
sor extension such as the 80287 NPX to
obtain instructions and data from the system
bus and to wait for the NPX to return a result.

ESC (Escape) identifies floating point
numeric instructions and allows the iAPX 286
to send the opcode to the NPX or to transfer
a memory operand to the NPX. The 80287
NPX uses the Escape instructions to perform
high-performance, high-precision floating
point arithmetic that conforms to the IEEE
floating point standard 754. ‘

Example: ESC 6, ARRAY [SI]

The CPU sends the escape opcode
6 and the location of the array
pointed to by SI to the NPX.
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WAIT (Wait) suspends program execution
until the iAPX 286 CPU detects a signal on
the BUSY pin. In an iAPX 286/20 configu-
ration that includes a numeric processor
extension, the NPX activates the BUSY pin
to signal that it has completed its processing
task and that the CPU may obtain the results.

Example: WAIT

3.12.2 Numeric Data Processor
Instructions

This section describes the categories of
instructions available with Numeric Data
Processor systems that include a Numeric
Processor Extension or a software emulation
of this processor extension. Refer to the
Numeric Supplement following Appendix D
and to the 80287 data sheet for more
information.

3.12.2.1 ARITHMETIC INSTRUCTIONS

The extended instruction set includes not only
the four arithmetic operations (add, subtract,
multiply, and divide), but also subtract-
reversed and divide-reversed instructions. The
arithmetic functions include square root,
modulus, absolute value, integer part, change
sign, scale exponent, and extract exponent
instructions.
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3.12.2.2 COMPARISON INSTRUCTIONS

The comparison operations are the compare,
examine, and test instructions. Special forms
of the compare instruction can optimize
algorithms by allowing comparisons of binary
integers with real numbers in memory.

3.12.2.3 TRANSCENDENTAL INSTRUCTIONS

The instructions in this group perform the
otherwise time-consuming calculations for all
common trigonometric, inverse trigonome-
tric, hyperbolic, inverse hyperbolic, logarith-
mic, and exponential functions. The
transcendental instructions include tangent,
arctangent, 2 x —1, Y . log,X, and Y. log,
(X+1).

3.12.2.4 DATA TRANSFER INSTRUCTIONS

The data transfer instructions move operands
among the registers and between a register
and memory. This group includes the load,
store, and exchange instructions.

3.12.2.5 CONSTANT INSTRUCTIONS

Each of the constant instructions loads a
commonly used constant into an NPX regis-
ter. The values have a real precision of 64 bits
and are accurate to approximately 19 decimal
places. The constants loaded by these instruc-
tions include 0, 1, Pi, log, 10, log, e, log,, 2,
and log 2..
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CHAPTER 4
EXTENDED INSTRUCTION SET

The instructions described in this chapter
extend the capabilities of the base architec-
ture instruction set described in Chapter 3.
These extensions consist of new instructions
and variations of some instructions that are
not strictly part of the base architecture (in
other words, not included in the iAPX 86, 88).
These instructions are also available in the
iAPX 186, 188. The instruction variations,
described in Chapter 3, include the immedi-
ate forms of the PUSH and MUL instruc-
tions, PUSHA, POPA, and the privilege level
restrictions on POPF.

New instructions described in this chapter
include the string input and output instruc-
tions (INS and OUTS), the ENTER proce-
dure and LEAVE procedure instructions, and
the check index BOUND instruction.

4.1 BLOCK 170 INSTRUCTIONS

REP, the Repeat prefix, modifies INS and
OUTS (the string I/O instructions) to provide
a means of transferring blocks of data
between an I/O port and Memory. These
block I/O instructions are string primitives.
They simplify programming and increase the
speed of data transfer by eliminating the need
to use a separate LOOP instruction or an
intermediate register to hold the data.

INS and OUTS are trusted instructions. To
use trusted instructions, a program must
execute at a privilege level at least as privi-
leged as that specified by the 2-bit IOPL flag
(CPL =< IOPL). Any attempt by a less-privi-
leged program to use a trusted instruction
results in a protection exception. See Chapter
7 for information on protection concepts.

One of two possible opcodes represents each
string primitive depending on whether it
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operates on byte strings or word strings. After
each transfer, the memory address in SI or
DI is updated by 1 for byte values and by 2
for word values. The value in the DF field
determines if SI or DI is to be auto incre-
mented (DF=0) or auto decremented
(DF=1).

INS and OUTS use DX to specify I/O ports
numbered 0 through 65,535 or 16-bit ports
using only even port addresses in the same
range.

INS (Input String from Port) transfers a byte
or a word string element from an input port
to memory. If a program specifies INSB, the
processor transfers 8 bits from the selected
port to the memory location indicated by
ES:DI. Alternately, if a program specifies
INSW, the processor transfers 16 bits from
the port to the memory location indicated by
ES:DI. The destination segment register
choice (ES) cannot be changed for the INS
instruction.

Combined with the REP prefix, INS moves a
block of information from an input port to a
series of consecutive memory locations.

Example: REP INSB

The processor repeatedly trans-
fers 8 bits to the memory location
indicated by ES:DI from the port
selected by the 16-bit port number
contained in DX. Following each
byte transfer, the CPU decre-
ments CX. The instruction termi-
nates the block transfer when
CX=0. After decrementing CX,
the processor increments DI by
one if DF=0. It decrements DI
by one if DF=1.



EXTENDED INSTRUCTION SET

OUTS (Output String to Port) transfers a
byte or a word string element to an output
port from memory. Combined with the REP
prefix, OUTS moves a block of information
from a series of consecutive memory locations
indicated by DS:SI to an output port.

Example: REP OUTS WSTRING

Assuming that the program
declares WSTRING to be a
word-length string element, the
assembler uses the 16-bit form of
the OUTS instruction to create
the object code for the program.
The processor repeatedly trans-
fers words from the memory
locations indicated by DI to the
output port selected by the 16-bit
port number in DX.

Following each word transfer, the
CPU decrements CX. The
instruction terminates the block
transfer when CX=0. After
decrementing CX, the processor
increments SI by two to point to
the next word in memory if
DF=0, it decrements SI by two
if DF=1.

4.2 HIGH-LEVEL INSTRUCTIONS

The instructions in this section provide
machine-language functions normally found
only in high-level languages. These instruc-
tions include ENTER and LEAVE, which
simplify the programming of procedures, and
BOUND, which provides a simple method of
testing an index against its predefined range.

ENTER (Enter Procedure) creates the stack
frame required by most block-structured high-
level languages. A LEAVE instruction at the
end of a procedure complements an ENTER
at the beginning of the procedure to simplify
stack management and to control access to
variables for nested procedures.
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Example: ENTER 2048,3

Allocates 2048 bytes of dynamic
storage on the stack and sets up
pointers to two previous stack
frames in the stack frame that
ENTER  creates for this
procedure.

The ENTER instruction includes two param-
eters. The first parameter specifies the
number of bytes of dynamic storage to be
allocated on the stack for the routine being
entered. The second parameter corresponds to
the lexical nesting level (0-31) of the routine.
(Note that the lexical level has no relation-
ship to either the protection privilege levels or
to the I/O privilege level.)

The specified lexical level determines how
many sets of stack frame pointers the CPU
copies into the new stack frame from the
preceding frame. This list of stack frame
pointers is sometimes called the “display.”
The first word of the display is a pointer to
the last stack frame. This pointer enables a
LEAVE instruction to reverse the action of
the previous ENTER instruction by effec-
tively discarding the last stack frame.

After ENTER creates the new display for a
procedure, it allocates the dynamic storage
space for that procedure by decrementing SP
by the number of bytes specified in the first
parameter. This new value of SP serves as a
base for all PUSH and POP operations within
that procedure.

To enable a procedure to address its display,
ENTER leaves BP pointing to the beginning
of the new stack frame. Data manipulation
instructions that specify BP as a base register
implicitly address locations within the stack
segment instead of the data segment. Two
forms of the ENTER instruction exist: nested
and non-nested. If the lexical level is O, the
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The Formal Definition Of The ENTER Instruction For All Cases Is
Given By The Following Listing. LEVEL Denotes The Value Of
The Second Operand.

Push BP
Set a temporary value FRAME_PTR := SP
It LEVEL > O then
Repeat (LEVEL — 1) times:
BP:=BP —2
Push the word pointed to by BP
End repeat
Push FRAME_PTR
End it
BP := FRAME_PTR
SP := SP — first operand.

Figure 4-1. Formal Definition of the ENTER
Instruction

non-nested form is used. Since the second
operand is 0, ENTER pushes BP, copies SP
to BP and then subtracts the first operand
from SP. The nested form of ENTER occurs
when the second parameter (lexical level) is
not 0. Figure 4-1 gives the formal definition
of ENTER.

The main procedure (with other procedures
nested within) operates at the highest lexical
level, level 1. The first procedure it calls
operates at the next deeper lexical level, level
2. A level 2 procedure can access the varia-
bles of the main program which are at fixed
locations specified by the compiler. In the case
of level 1, ENTER allocates only the
requested dynamic storage on the stack
because there is no previous display to copy.

A program operating at a higher lexical level
calling a program at a lower lexical level
requires that the called procedure should have
access to the variables of the calling program.
ENTER provides this access through a
display that provides addressability to the
calling program’s stack frame.

A procedure calling another procedure at the
same lexical level implies that they are paral-
lel procedures and that the called procedure
should not have access to the variables of the
calling procedure. In this case, ENTER copies
only that portion of the display from the
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calling procedure which refers to previously
nested procedures operating at higher lexical
levels. The new stack frame does not include
the pointer for addressing the calling proce-
dure’s stack frame.

ENTER treats a reentrant procedure as a
procedure calling another procedure at the
same lexical level. In this case, each succeed-
ing iteration of the reentrant procedure can
address only its own variables and the varia-
bles of the calling procedures at higher lexical
levels. A reentrant procedure can always
address its own variables; it does not require
pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of
procedures at higher lexical levels, ENTER
makes sure that procedures access only those
variables of higher lexical levels, not those at
parallel lexical levels (see figure 4-2). Figures
4-2a through 4-2d demonstrate the actions of
the ENTER instruction if the modules shown
in figure 4-1 were to call one another in
alphabetic order.

Block-structured high-level languages can use
the lexical levels defined by ENTER to
control access to the variables of previously
nested procedures. For example, if
PROCEDURE A calls PROCEDURE B
which, in turn, calls PROCEDURE C, then
PROCEDURE C will have access to the
variables of MAIN and PROCEDURE A,
but not PROCEDURE B because they
operate at the same lexical level. Following is
the complete definition of the variable access
for figure 4-2.

1. MAIN PROGRAM has variables at
fixed locations.

2. PROCEDURE A can access only the
fixed variables of MAIN.
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MAIN PROGRAM (LEXICAL LEVEL 1)

PROCEDURE A (LEXICAL LEVEL 2)

I PROCEDURE B (LEXICAL LEVEL 3) I

PROCEDURE C (LEXICAL LEVEL 3)

I PROCEDURE D (LEXICAL LEVEL 4) I

Figure 4-2. Variable Access in Nested Procedures

3. PROCEDURE B can access only the
variables of PROCEDURE A and
MAIN. PROCEDURE B cannot access
the variables of PROCEDURE C or
PROCEDURE D.

4, PROCEDURE C can access only the
variables of PROCEDURE A and
MAIN. PROCEDURE C cannot access
the variables of PROCEDURE B or
PROCEDURE D.

5. PROCEDURE D can access the
variables of @ PROCEDURE C,
PROCEDURE A, and MAIN.

PROCEDURE D cannot access the
variables of PROCEDURE B.
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ENTER at the beginning of the MAIN
PROGRAM creates dynamic storage space
for MAIN but copies no pointers. The first
and only word in the display points to itself
because there is no previous value for LEAVE
to return to BP. See figure 4-2a.

After MAIN calls PROCEDURE A,
ENTER creates a new display for PROCE-
DURE A with the first word pointing to the
previous value of BP (BPM for LEAVE to
return to the MAIN stack frame) and the
second word pointing to the current value of
BP. Procedure A can access variables in
MAIN since MAIN is at level 1. Therefore
the base for the dynamic storage for MAIN
is at [BP—2]. All dynamic variables for
MAIN will be at a fixed offset from this
value. See figure 4-2b.

After PROCEDURE A calls PROCEDURE
B, ENTER creates a new display for
PROCEDURE B with the first word point-
ing to the previous value of BP, the second
word pointing to the value of BP for MAIN,
and the third word pointing to the value of
BP for A and the last word pointing to the
current BP. B can access variables in A and
MAIN by fetching from the display the base
addresses of the respective dynamic storage
areas. See figure 4-2c.

After PROCEDURE B calls PROCEDURE
C, ENTER creates a new display for
PROCEDURE C with the first word point-
ing to the previous value of BP; the second
word pointing to the value of BP for MAIN,
and the third word pointing to the BP value
for A and the third word pointing to the
current value of BP. Because PROCEDURE
B and PROCEDURE C have the same lexical
level, PROCEDURE C is not allowed access
to variables in B and therefore does not
receive a pointer to the beginning of
PROCEDURE B’s stack frame. See
figure 4-2d. ‘
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15

BP FOR

OLD BP

MAIN

BPM'

SP—~——>

‘BPM = BP VALUE FOR MAIN

DISPLAY

. DYNAMIC
STORAGE

Figure 4-2a. Stack Frame for MAIN at Level 1

15

OLD BP

BPM

BPM

BP FOR
A

BPM

BPA’

SP

DISPLAY

DYNAMIC
STORAGE

‘BPA = BP VALUE FOR PROCEDURE A

Figure 4-2b. Stack Frame for Procedure A
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BP

OLD BP
BPM

BPM
BPM
BPA

BPA

SP

BPM
BPA DISPLAY
BPB

DYNAMIC
STORAGE

Figure 4-2c. Stack Frame for Procedure B at

Level 3 Called from A

LEAVE (Leave Procedure) reverses the action
of the previous ENTER instruction. The
LEAVE instruction does not include any

operands.

Example:

LEAVE

First, LEAVE copies BP to SP to
release all stack space allocated to
the procedure by the most recent
ENTER instruction. - Next,
LEAVE pops the old value of BP
from the stack. A subsequent
RET instruction can then remove
any arguments that were pushed
on the stack by the calling
program for use by the called
procedure.
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15 0
OLD BP
BPM

BPM
BPM
BPA

BPA
BPM
BPA
BPB

BP —>

DISPLAY

DYNAMIC
STORAGE

P —n

Figure 4-2d. Stack Frame for Procedure C at
Level 3 Called from B

BOUND (Detect Value Out of Range) verifies
that the signed value contained in the speci-
fied register lies within specified limits. An
interrupt (INT 5) occurs if the value
contained in the register is less than the lower
bound or greater than the upper bound.
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The BOUND instruction includes two
operands. The first operand specifies the
register being tested. The second operand
contains the effective relative address of the
two signed BOUND limit values. The
BOUND instruction assumes that it can
obtain the upper limit from the-memory word
that immediately follows the lower limit.
These limit values cannot be register
operands; if they are, an invalid opcode
exception occurs.

BOUND is useful for checking array bounds
before using a new index value to access an
element within the array. BOUND provides
a simple way to check the value of an index
register before the program overwrites infor-
mation in a location beyond the limit of the
array.

The two-word block of memory that specifies
the lower and upper limits of an array might
typically reside just before the array itself.
This makes the array bounds accessible at a
constant offset of —4 from the beginning of
the array. Because the address of the array
will already be present in a register, this
practice avoids extra calculations to obtain the
effective address of the array bounds.

Example: BOUND BX,ARRAY—4

Compares the value in BX with
the lower limit at address
ARRAY —4 and the upper limit
at address ARRAY —2. If the
signed value in BX is less than the
lower bound or greater than the
upper bound, the interrupt for this
instruction (INT 5) occurs.
Otherwise, this instruction has no
effect.
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CHAPTER 5
REAL ADDRESS MODE

The iAPX 286 can be operated in either of
two modes according to the status of the
Protection Enabled bit of the MSW status
register. In contrast to the “modes’ and
“mode bits” of some processors, however, the
iAPX 286 modes do not represent a radical
transition between conflicting architectures.
Instead, the setting of the Protection Enabled
bit simply determines whether certain
advanced features, in addition to the baseline
architecture of the iAPX 286, are to be
made available to system designers and
programmers.

If the Protection Enabled (PE) bit is set by
the programmer, the processor changes into
Protected Virtual Address Mode. In this
mode of operation, memory addressing is
performed in terms of virtual addresses, with
on-chip mapping mechanisms performing the
virtual-to-physical translation. Only in this
mode can the system designer make use of the
advanced architectural features of the iAPX
286: virtual memory support, system-wide
protection, and built-in multitasking mecha-
nisms are among the new features provided in
this mode of operation. Refer to Part II of
this manual (Chapters 6 through 11) for
details on Protected Mode operation.

Initially, upon system reset, the processor
starts up in Real Address Mode. In this mode
of operation, all memory addressing is
performed in terms of real physical addresses.
In effect, the architecture of the iAPX 286 in
this mode is identical to that of the 8086 and
other processors in the iAPX 86 family. The
principal features of this baseline architec-
ture have already been discussed throughout
Part I (Chapters 2 through 4) of this manual.
This chapter discusses certain additional
topics—addressing, interrupt handling, and
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system initialization—that complete the
system programmer’s view of the iAPX 286
in Real Address Mode.

5.1 ADDRESSING AND SEGMENTATION

Like other processors in the iAPX 86 family,
the iAPX 286 provides a/one-megabyte
memory space (2%° bytes) when operated in
Real Address Mode. Physical addresses are
the 20-bit values that uniquely identify each
byte location in this address space. Physical
addresses, therefore, may range from 0
through FFFFFH. ’

An address is specified by a 32-bit pointer
containing two components: (1) a 16-bit
effective address offset that determines the
displacement, in bytes, of a particular location
within a segment; and (2) a 16-bit segment
selector component that determines the start-
ing address of the segment. Both components
of an address may be referenced explicitly by
an instruction (such as JMP, LES, LDS, or
CALL); more often, however, the segment
selector is simply the contents of a segment
register.

The interpretation of the first component, the
effective address offset, is straight-forward.
Segments are at most 64K (2'¢) bytes in
length, so an unsigned 16-bit quantity is
sufficient to address any arbitrary byte
location with a segment. The lowest-addressed
byte within a segment has an offset of 0, and
the highest-addressed byte has an offset of
FFFFH. Data operands must be completely
contained within a segment and must be
contiguous. (These rules apply in both modes.)

A segment selector is the second component
of a logical address. This 16-bit quantity
specifies the starting address of a segment
within a physical address space of 2% bytes.
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Whenever the iAPX 286 accesses memory in
Real Address Mode, it generates a 20-bit
physical address from a segment selector and
offset value. The segment selector value is left-
shifted four bit positions to form the segment
base address. The offset is extended with 4
high order zeroes and added to the base to
form the physical address (see figure 5-1).

Therefore, every segment is required to start
at a byte address that is evenly divisible by
16; thus, each segment is positioned at a
20-bit physical address whose least signifi-
cant four bits are zeroes. This arrangement
allows the iAPX 286 to interpret a segment

selector as the high-order 16 bits of a 20-bit
segment base address.

No limit or access checks are performed by
the iAPX 286 in the Real Address Mode. All
segments are readable, writable, executable,
and have a limit of OFFFFH (65535 bytes).
To save physical memory, you can use unused
portions of a segment as another segment by
overlapping the two (see figure 5-2). The Intel
iAPX 86 software development tools support
this feature via the segment override and
group operators. However, programs that
access segment B from segment A become
incompatible in the protected virtual address
mode.

16 BIT SEGMENT SELECTOR

A
e Y
15 0
LT T T T T T T T T T T T T T T TeTorored
19 0
Figure 5-1a. Forming the Segment Base Address
SEGMENT BASE LI I I T T T T T T T T T T T TTeTot01e]
+ 19 o
OFFSET edote el T T T T T T T T T TITTITTITITIT
19 15 [
pvscacaooress | | ] [ [ 1 [ T T T T T I T T TTTTT]
19 0

Figure 5-1b. Forming the 20-Bit Physical Address in the Real Address Mode
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64K SEGMENT B

OVERLAP

- BASE OF
SEGMENT B

SEGMENT A 64K

BASE OF
SEGMENT A

Figure 5-2. Overlapping Segments to Save
Physical Memory

5.2 INTERRUPT HANDLING

Program interrupts may be generated in either
of two distinct ways. An internal interrupt is
caused directly by the currently executing
program. The execution of a particular
instruction results in the occurrence of an
interrupt, whether intentionally (e.g., an INT
n instruction) or as an unanticipated excep-
tion (e.g., invalid opcode). On the other hand,
an external interrupt occurs asynchronously
as the result of an event external to the
processor, and bears no necessary relation-
ship with the currently executing program.
The INTR and NMI pins of the iAPX 286
provide the means by which external
hardware signals the occurrence of such
events. '

5.2.1 Interrupt Vector Table

Whatever its origin, whether internal or
external, an interrupt demands immediate
attention from an associated service routine.
Control must be transferred, at least for the
moment, from the currently executing
program to the appropriate interrupt service
routine. By means of interrupt vectors, the
iAPX 286 handles such control transfers
uniformly for both kinds of interrupts.
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An interrupt vector is an unsigned integer in
the range of 0-255; every interrupt is assigned
such a vector. In some cases, the assignment
is predetermined and fixed: for example, an
external NMI interrupt is invariably associ-
ated with vector 2, while an internal divide
exception is always associated with vector O.
In most cases, however, the association of an
interrupt and a vector is established dynami-
cally. An external INTR interrupt, for
example, supplies a vector in response to an
interrupt acknowledge bus cycle, while the
INT n instruction supplies a vector incor-
porated within the instruction itself. The
vector is shifted two places left to form a byte
address into the table (see figure 5-3).

In any case, the iAPX 286 uses the interrupt
vector as an index into a table in order to
determine the address of the corresponding
interrupt service routine. For Real Address
Mode, this table is known as the Interrupt
Vector Table. Its format is illustrated in
figure 5-3.

The Interrupt Vector Table consists of as
many as 256 consecutive entries, each four
bytes long. Each entry defines the address of
a service routine to be associated with the
correspondingly numbered interrupt vector
code. Within each entry, an address is speci-
fied by a full 32-bit pointer that consists of a
16-bit offset and a 16-bit segment selector.
Interrupts 0-31 are reserved by Intel.

In Real Address Mode, the interrupt table can
be accessed directly at physical memory
location O through 1023. In the protected
virtual address mode, however, the interrupt
vector table has no fixed physical address and
cannot be directly accessed. Therefore, Real
Address mode programs that directly
manipulate the interrupt vector table will not
work in the protected virtual address mode.
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POINTER TO

PHYSICAL
ADDRESS

1020

1016

1012

INTERRUPT HANDLER
FOR:
INTERRUPT 255 POINTER
INTERRUPT 254 POINTER
INTERRUPT 253 POINTER -
A J h
] )
INTERRUPT 1 POINTER
INTERRUPT 0 POINTER
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L OI VECTOR

[o....
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10 9

Figure 5-3. Interrupt Vector Table for Real Address Mode

5.2.1.1 INTERRUPT PRIORITIES

When simultaneous interrupt requests occur,
they are processed in a fixed order as shown
in table 5-1. Interrupt processing involves
saving the flags, the return address, and
setting CS:IP to point at the first instruction
of the interrupt handler. If other interrupts
remain enabled, they are processed before the
first instruction of the current interrupt
handler is executed. The last interrupt
processed is therefore the first one serviced.

5.2.2 Interrupt Procedures

When an interrupt occurs in Real Address
Mode, the iAPX 86 performs the following
sequence of steps. First, the FLAGS register,
as well as the old values of CS and IP, are
pushed onto the stack (see figure 5-4). The
IF and TF flag bits are cleared. The vector
number is then used to read the address of
the interrupt service routine from the inter-
rupt table. Execution begins at this address.

Table 5-1. Interrupt Processing Order
Order Interrupt

1. Instruction exception

2. Single step

3. NMI

4. Processor extension segment overrun

5. INTR

J.

o

55—

OLD FLAGS
INCREASING
ADDRESSES oLp ¢S
oLp IP <«— <SS:SP>

.

Jo
T

J
T

Figure 5-4. Stack Structure After Interrupt

(Real Address Mode)
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Thus, when control is passed to an interrupt
service routine, the return linkage is placed
on the stack, interrupts are disabled, and
single-step trace (if in effect) is turned off.
The IRET instruction at the end of the inter-
rupt service routine will reverse these steps
before transferring control to the program
that was interrupted.

An interrupt service routine may affect regis-
ters other than other IP, CS, and FLAGS. It
is the responsibility of an interrupt routine to
save additional context information before
proceeding so that the state of the machine
can be restored upon completion of the inter-
rupt service routine (PUSHA and POPA
instructions are intended for these opera-
tions). Finally, execution of the IRET
instruction pops the old IP, CS, and FLAGS
from the stack and resumes the execution of
the interrupted program.

5.2.3 Reserved and Dedicated Interrupt
Vectors

In general, the system designer is free to use
almost any interrupt vectors for any given
purpose. Some of the lowest-numbered
vectors, however, are reserved by Intel for
dedicated functions; their use is specifically
implied by certain types of exceptions. None
of the first 32 vectors should be defined by
the user; these vectors are either invoked by
pre-defined exceptions or reserved by Intel for
future expansion. Table 5-2 shows the
dedicated and reserved vectors of the iAPX
286 in Real Address Mode.

The purpose and function of the dedicated
interrupt vectors may be summarized as
follows (the saved value of CS:IP will include
all leading prefixes):

e Divide error (Interrupt 0). This exception
will occur if the quotient is too large or
an attempt is made to divide by zero using

either the DIV or IDIV instruction. The
saved CS:IP points at the first byte of the
failing instruction. DX and AX are
unchanged.

Single-Step (Interrupt 1). This interrupt
will occur after each instruction if the
Trap Flag (TF) bit of the FLAGS regis-
ter is set. Of course, TF is cleared upon
entry to this or any other interrupt to
prevent infinite recursion. The saved
value of CS:IP will point to the next
instruction.

Nonmaskable (Interrupt 2). This inter-
rupt will occur upon receipt of an exter-
nal signal on the NMI pin. Typically, the
nonmaskable interrupt is used to imple-
ment power-fail/auto-restart procedures.
The saved value of CS:IP will point to the
first byte of the interrupted instruction.

Breakpoint (Interrupt 3). Execution of
the one-byte breakpoint instruction causes
this interrupt to occur. This instruction is
useful for the implementation of software
debuggers since it requires only one code
byte and can be substituted for any
instruction opcode byte. The saved value
of CS:IP will point to the next
instruction.

INTO Detected Overflow (Interrupt 4).
Execution of the INTO conditional
software interrupt instruction will cause
this interrupt to occur if the overflow bit
(OF) of the FLAGS register is set. The
saved value of CS:IP will point to the next
instruction.

BOUND Range Exceeded (Interrupt 5).
Execution of the BOUND instruction will
cause this interrupt to occur if the speci-
fied array index is found to be invalid
with respect to the given array bounds.
The saved value of CS:IP will point to the
first byte of the BOUND instruction.
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Table 5-2. Dedicated and Reserved Interrupt Vectors in Real Address Mode

Return Address
Function Iz:s:";'eprt Ingf:zazzttei:ns Before Instruction
Causing Exception?

Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All N/A
NMI interrupt 2 All N/A
Breakpoint interrupt 3 INT N/A
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
Invalid opcode exception . 6 Any undefined opcode Yes
Processor extension not available | 7 ESC or WAIT: Yes
exception
Interrupt table limit too small 8 LIDT -‘Yes
Processor extension segment overrun | 9 ESC Yes
interrupt
Segment overrun exception 13 Any memory reference Yes

instruction that attempts

to reference 16-bit word

at offset OFFFFH.
Reserved - 10-12, 14,15
Processor extension error interrupt 16 ESC or WAIT N/A
Reserved 17-31
User defined 32-255

N/A = Not Applicable

Invalid Opcode (Interrupt 6). This
exception will occur if execution of an
invalid opcode is attempted. (In Real
Address Mode, most of the Protected

Virtual Address Mode instructions are

classified as invalid and should not be
used). This interrupt can also occur if the
effective. address given by -certain
instructions, notably BOUND, LDS,
LES, and LIDT, specifies a register
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rather than a memory location. The saved
value of CS:IP will point to the first byte
of the invalid instruction or opcode.

Processor Extension Not Available
(Interrupt 7). Execution of the ESC
instruction will cause this interrupt to
occur if the status bits of the MSW
indicate that processor - extension
functions are to be emulated in software.
Refer to section 10.2.2 for more details.
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The saved value of CS:IP will point to the
first byte of the ESC or the WAITin-
struction.

Interrupt Table Limit Too Small (Inter-
rupt 8). This interrupt will occur if the
limit of the interrupt vector table was
changed from 3FFH by the LIDT
instruction and an interrupt whose vector
is outside the limit occurs. The saved
value of CS:IP will point to the first byte
of the instruction that caused the inter-
rupt or that was ready to execute before
an external interrupt occurred. No error
code is pushed.

Processor Extension Segment Overrun
Interrupt (Interrupt 9). The interrupt will
occur if a processor extension memory
operand does not fit in a segment. The
saved CS:IP will point at the first byte of
the instruction that caused the interrupt.

Segment Overrun Exception (Interrupt
13). This interrupt will occur if a memory
operand does not fit in a segment. In Real
Mode the only time when this will occur
is when a word operand begins at segment
offset OFFFFH. The saved CS:IP will
point at the first byte of the instruction
that caused the interrupt. No error code
is pushed.

Processor Extension Error (Interrupt 16).
This interrupt occurs after the numeric
instruction that caused the error. It can
only occur while executing a subsequent
WAIT or ESC. The saved value of CS:IP
will point to the first byte of the ESC or
the WAIT instruction. The address of the
failed numeric instruction is saved in the
NPX.

5.3 SYSTEM INITIALIZATION

The iAPX 286 provides an orderly way to
start or restart an executing system. Upon
receipt of the RESET signal, certain proces-
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Table 5-3. Processor State After RESET

Register Contents
FLAGS 0002
MSW FFFO
IP FFFO
CS F000
DS 0000
SS 0000
ES 0000

sor registers go into the determinate state
shown in table 5-3.

Since the CS register contains FO00 (thus
specifying a code segment starting at physi-
cal address FO000) and the instruction pointer
contains FFFO, the processor will execute its
first instruction at physical address FFFFOH.
The uppermost 16 bytes of physical memory
are therefore reserved for initial startup logic.
Ordinarily, this location contains an interseg-
ment direct JMP instruction whose target is
the actual beginning of a system initialization
or restart program.

Some of the steps normally performed by a
system initialization routine are as follows:

® Allocate a stack.

® Load programs and data from secondary
storage into memory.

® Initialize external devices.

e Enable interrupts (i.e., set the IF bit of
the FLAGS register). Set any other
desired FLAGS bit as well.

® Set the appropriate MSW flags if a
processor extension is present, or if
processor extension functions are to be
emulated by software.

® Set other registers, as appropriate, to the
desired initial values.

e Execute. (Ordinarily, this last step is

performed as an intersegment JMP to the
main system program.)
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CHAPTER 6
MEMORY MANAGEMENT AND VIRTUAL ADDRESSING

In Protected Virtual Address Mode, the iAPX
286 provides an advanced architecture that
retains substantial compatibility with the 8086
and other processors in the iAPX 86 family.
In many respects, the baseline architecture of
the processor remains constant regardless of
the mode of operation. Application program-
mers continue to use the same set of instruc-
tions, addressing modes, and data types in
Protected Mode as in Real Address Mode.

The major difference between the two modes
of operation is that the Protected Mode
provides system programmers with additional
architectural features, supplementary to the
baseline architecture, that can be used to good
advantage in the design and implementation
of advanced systems. Especially noteworthy
are the mechanisms provided for memory
management, protection, and multitasking.

This chapter focuses on the memory manage-
ment mechanisms of Protected Mode; the
concept of a virtual address and the process
of virtual-to-physical address translation are
described in detail in this chapter. Subse-
quent chapters deal with other key aspects of
Protected Mode operation. Chapter 7
discusses the issue of protection and the
integrated mechanisms that support a system-
wide protection policy. Chapter 8 discusses the
notion of a task and its central role in the
iAPX 286 architecture. Chapters 9 through
11 discuss certain additional topics—inter-
rupt handling, special instructions, system
initialization, etc.—that complete the system
programmer’s view of iAPX 286 Protected
Mode.

6.1 MEMORY MANAGEMENT OVERVIEW

A memory management scheme interposes a
mapping operation between logical addresses

(i.e., addresses as they are viewed by
programs) and physical addresses (i.e., actual
addresses in real memory). Since the logical
address spaces are independent of physical
memory (dynamically relocatable), the
mapping (the assignment of real address space
to virtual address space) is transparent to
software. This allows the program develop-
ment tools (for static systems) or the system
software (for reprogrammable systems) to
control the allocation of space in real memory
without regard to the specifics of individual
programs.

Application programs may be translated and
loaded independently since they deal strictly
with virtual addresses. Any program can be
relocated to use any available segments of
physical memory.

The iAPX 286, when operated in Protected
Mode, provides an efficient on-chip memory
management architecture. Moreover, as
described in Chapter 11, the iAPX 286 also
supports the implementation of virtual
memory systems—that is, systems that
dynamically swap chunks of code and data
between real memory and secondary storage
devices (e.g., a disk) independent of and
transparent to the executing application
programs. Thus, a program-visible address is
more aptly termed a virtual address rather
than a logical address since it may actually
refer to a location not currently present in real
memory. :

Memory management, then, consists of a
mechanism for mapping the virtual addresses
that are visible to the program onto the
physical addresses of real memory. With the
iAPX 286, segmentation is the key to virtual
memory addressing. Virtual memory is parti-
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tioned into a number of individual segments,
which are the units of memory that are
mapped into physical memory and swapped
to and from secondary storage devices. Most
of this chapter is devoted to a detailed discus-
sion of the mapping and virtual memory
mechanisms of the iAPX 286.

The concept of a task also plays a significant
role in memory management since distinct
memory mappings may be assigned to the
different tasks in a multitask or multi-user
environment. A complete discussion of tasks
is deferred until Chapter 8, “Tasks and State
Transition.” For present purposes, it is suffi-
cient to think of a task as an ongoing process,
or execution path, that is dedicated to a
particular function. In a multi-user time-
sharing environment, for example, the
processing required to interact with a partic-
ular user may be considered as a single task,
functionally independent of the other tasks
(i.e., users) in the system.

6.2 VIRTUAL ADDRESSES

In Protected Mode, application programs deal
exclusively with virtual addresses; programs
have no access whatsoever to-the actual
physical addresses generated by the proces-
sor. As discussed in Chapter 2, an address is
specified by a program in terms of two
components: (1) a 16-bit effective address
offset that determines the displacement, in
bytes, of a location within a segment; and (2)
a 16-bit segment selector that uniquely refer-
ences a particular segment. Jointly, these two
components constitute a complete 32-bit
address (pointer data type), as shown in
figure 6-1.

These 32-bit virtual addresses are manipu-
lated by programs in exactly the same way as
the two-component addresses of Real Address
Mode. After a program loads the segment
selector component of an address into a

segment register, each subsequent reference
to locations within the selected segment
requires only a 16-bit offset be specified.
Locality of reference will ordinarily insure
that addresses can be specified very efficiently
using only 16-bit offsets.

An important difference between Real
Address Mode and Protected Mode, however,
concerns the actual format and information
content of segment selectors. In Real Address
Mode, as with the 8086 and other processors
in the iAPX 86 family, a 16-bit selector is
merely the upper bits of a segment’s physical
base address. By contrast, segment selectors
in Protected Mode follow an entirely differ-
ent format, as illustrated by figure 6-1.

Two of the selector bits, designated as the
RPL field in figure 6-1, are not actually
involved in the selection and specification of
segments; their use is discussed in Chapter 7.

32-BIT POINTER

31 16 15 0
SEGMENT SELECTOR SEGMENT OFFSET 1
15 3 2 170
LI T 1T 1T 1 1 1
INDEX TI| RPL
1 | 1 1 1 | 1 1 1 1 ] -
SELECTOR

Figure 6-1. Format of the Segment Selector
Component -



MEMORY MANAGEMENT AND VIRTUAL ADDRESSING

The remaining 14 bits of the selector compo-
nent uniquely designate a particular segment.
The virtual address space of a program,
therefore, may encompass as many as 16,384
(2'4) distinct segments. Segments themselves
are of variable size, ranging from as small as
a single byte to as large as 64K (2'¢) bytes.
Thus, a program’s virtual address space may
contain, altogether, up to a full gigabyte
(230 = 214 X 216) of individually addressable
byte locations.

The entirety of a program’s virtual address
space is further subdivided into two separate
halves, as distinguished by the TI (“table
indicator”) bit in the virtual address. These
two halves are the global address space and
the local address space.

The global address space is used for system-
wide data and procedures including operating
system software, library routines, runtime
language support and other commonly shared

system services. (To application programs, the
operating system appears to be a set of service
routines that are accessible to all tasks.)
Global space is shared by all tasks to avoid
unnecessary replication of system service
routines and to facilitate shared data and
interrupt handling. Global address space is
defined by addresses with a zero in the TI bit
position; it is identically mapped for all tasks
in the system.

The other half of the virtual address space—
comprising those addresses with the TI bit
set—is separately mapped for each task in the
system. Because such an address space is local
to the task for which it is defined, it is referred
to as a local address space. In general, code
and data segments within a task’s local
address space are private to that particular
task or user. Figure 6-2 illustrates the task
isolation made possible by partitioning the
virtual address spaces into local and global
regions.

TASK 3 VIRTUAL ADDRESS SPACE\

TASK 3
LOCAL ADDRESS
SPACE

TASK 1
LOCAL ADDRESS
SPACE

GLOBAL
ADDRESS
SPACE

/—— TASK 1 VIRTUAL ADDRESS SPACE

TASK 2 VIRTUAL ADDRESS SPACE

TASK 2
LOCAL ADDRESS
SPACE

Figure 6-2. Address Spaces and Task Isolation
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Within each of the two regions addressable
by a program-—either the global address space
or a particular local address space—as many
as 8,192 (2'?) distinct segments may be
defined. The INDEX field of the segment
selector allows for a unique specification of
each of these segments. This 13-bit quantity
acts as an index into a memory-resident table,
called a descriptor table, that records the
mapping between segment address and the
physical locations allocated to each distinct
segment. (These descriptor tables, and their
role in virtual-to-physical address translation,
are described in the sections that follow.)

In summary, a Protected Mode virtual
address is a 32-bit pointer to a particular byte
location within a one-gigabyte virtual address
space. Each such pointer consists of a-16-bit
selector component and a 16-bit offset
component. The selector component, in turn,
comprises a 13-bit table index, a 1-bit table
indicator (local versus global), and a 2-bit
RPL field; all but this last field serve to select
a particular segment from among the 16K
segments in a task’s virtual address space. The
offset component of a full pointer is an
unsigned 16-bit integer that specifies the
desired byte location within the selected
segment.

6.3 DESCRIPTOR TABLES

A descriptor table is a memory-resident table
either defined by program development tools
in a static system or controlled by operating
system software in systems that are repro-
grammable. The descriptor table contents
govern the interpretation of virtual addresses.
Whenever the iAPX 286 decodes a virtual
address, translating a full 32-bit pointer into
a corresponding 24-bit physical address, it
implicitly references one of these tables.

Within a Protected Mode system, there are
ordinarily several descriptor tables resident in
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memory. One of these is the global descriptor
table (GDT); this table provides a complete
description of the global address space. In
addition, there may be one or more local
descriptor tables (LDTs), each describing the
local address space of one or more tasks.

For each task in the system, a pair of descrip-
tor tables—consisting of the GDT (shared by
all tasks) and a particular LDT (private to
the task or to a group of closely related
tasks)—provides a complete description of
that task’s virtual address space. The protec-
tion mechanism described in Chapter 7,
“Protection,” ensures that a task is granted
access only to its own virtual address space.
In the simplest of system configurations, tasks
can reside entirely within the GDT without
the use of local descriptor tables. This will
simplify system software by only requiring
maintenance of one table (the GDT) at the
expense of no isolation between tasks. The
point is: the iAPX 286 memory management
scheme is flexible enough to accommodate a
variety of implementations and does not
require use of all possible facilities when
implementing a system.

The descriptor tables consist of a sequence of
8-byte entries called descriptors. A descriptor
table may contain from 1 to 8192 entries.

Within a descriptor table, two main classes of
descriptors are recognized by the iAPX 286
architecture. The most important of these,
from the standpoint of memory management,
are called segment descriptors; these deter-
mine the set of segments that are included
within a given address space. The other class
are special-purpose control descriptors—such
as call gates and task descriptors—to imple-
ment protection (described in succeeding
chapters) and special system data segments.
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Figure 6-3 shows the format of a segment
descriptor. Note that it provides information
about the physical-memory base address and
size of a segment, as well as certain access
information. If a particular segment is to be
included within a virtual address space, then
a segment descriptor that describes that
segment must be included within the appro-
priate descriptor table. Thus, within the GDT,
there are segment descriptors for all of the
segments that comprise a system’s global
address space. Similarly, within a task’s LDT,
there must be a descriptor for each of the
segments that are to be included in that task’s
local address space.

Each local descriptor table is itself a special
system segment, recognizable as such by the
iAPX 286 architecture and described by a
specific type of segment descriptor (see figure
6-4). Because there is only a single GDT
segment, it is not defined by a segment
descriptor. Its base and size information is
maintained in a dedicated register, GDTR, as
described below (section 6.6.2).

Similarly, there is another dedicated register
within the iAPX 286, LDTR, that records the
base and size of the current LDT segment
(i.e., the LDT associated with the currently
executing task). The LDTR register state,
however, is volatile: its contents are automat-
ically altered whenever a task switch is made
from one task to another. An alternate speci-
fication independent of changeable register
contents must therefore exist for each LDT
in the system. This independent specification
is accomplished by means of special system
segment descriptors known as descriptor table
descriptors or LDT descriptors.

Figure 6-4 shows the format of a descriptor
table descriptor. (Note that it is distinguished
from an ordinary segment descriptor by the
contents of certain bits in the access byte.)

This special type of descriptor is used to
specify the physical base address and size of
a local descriptor table that defines the virtual
address space and address mapping for an
individual user or task (figure 6-5).

7 0 7 0

U
INTEL RESERVED"

+7 MUST BE 0 +6

S
+5)pP ) oPL |0 TYPE A BASEj 3.1 +4

+3 BASE 5.0 +2
1

+1 LIMIT 5.0 0
Il
15 8 7 0

ACCESS RIGHTS BYTE

ACCESS RIGHTS BYTES:

P = PRESENT

DPL -~ DESCRIPTOR PRIVILEGE LEVEL

S = SEGMENT DESCRIPTOR

TYPE = SEGMENT TYPE AND ACCESS INFORMATION
(see Figure 6-7)

A = ACCESSED

*MUST BE SET TO 0 FOR

COMPATIBILITY WITH iAPX 386

Figure 6-3. Segment Descriptor (S=1)
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[
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COMPATIBILITY WITH IAFX 386

Figure 6-4. Special Purpose Descriptors or
System Segment Descriptors
(5=0)
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Figure 6-5. LDT Descriptor

Each LDT segment in a system must lie
within that system’s global address space.
Thus, all of the descriptor table descriptors
must be included among the entries in the
global descriptor table (the GDT) of a system.
In fact, these special descriptors may appear
only in the GDT. Reference to an LDT
descriptor within an LDT will cause a protec-
tion violation. Even though they are in the
global address space available to all tasks, the
descriptor table descriptors are protected from
corruption within the GDT since they are
special system segments and can only be
accessed for loading into the LDTR register.
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6.4 VIRTUAL-TO-PHYSICAL ADDRESS
TRANSLATION

The translation of a full 32-bit virtual address
pointer into a real 24-bit physical address is
shown by figure 6-6. When the segment’s base
address is determined as a result of the
mapping process, the offset value is added to
the result to obtain the physical address.

The actual mapping is performed on the
selector component of the virtual address. The
16-bit segment selector is mapped to a 24-bit
segment base address via a segment descrip-
tor maintained in one of the descriptor tables.
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VIRTUAL ADDRESS

‘f TARGET ‘W

SEGMENT

SELECTOR OFFSET

Tl %
PHYSICAL

DESCRIPTOR ADDRESS
TABLE

DATUM

1

SEGMENT
SEGMENT BASE
DESCRIPTOR

i

Figure 6-6. Virtual-to-Physical Address Translation

The TI bit in the segment selector (see figure
6-1) determines which of two descriptor
tables, either the GDT or the current LDT,
is to be chosen for memory mapping. In either
case, using the GDTR or LDTR register, the
processor can readily determine the physical
base address of the memory-resident table.

The INDEX field in the segment selector
specifies a particular descriptor entry within
the chosen table. The processor simply multi-
plies this index value by 8 (the length of a
descriptor), and adds the result to the base
address of the descriptor table in order to
access the appropriate segment descriptor in
the table.

Finally, the segment descriptor contains the
physical base address of the target segment,
as well as size (limit) and access information.
The processor sums the 24-bit segment base
and the specified 16-bit offset to generate the
resulting 24-bit physical address.

6.5 SEGMENTS AND SEGMENT
DESCRIPTORS

Segments are the basic units of iAPX 286
memory management. In contrast to schemes
based on fixed-size pages, segmentation allows
for a very efficient implementation of
software: variable-length segments can be
tailored to the exact requirements of an
application. Segmentation, moreover, is
consistent with the way a programmer
naturally deals with his virtual address space:
programmers are encouraged to divide code
and data into clearly defined modules and
structures which are manipulated as con-
sistent entities. This reduces (minimizes) the
potential for virtual memory thrashing.
Segmentation also eliminates the restrictions
on data structures that span a page (e.g., a
word that crosses page boundaries).

Each segment within an iAPX 286 system is
defined by an associated segment descriptor,
which may appear in one or more descriptor
tables. Its inclusion within a descriptor table
represents the presence of its associated
segment within the virtual address space
defined by that table. Conversely, its ommis-
sion from a descriptor table means that the
segment is absent from the corresponding
address space. '

As shown previously in figure 6-3, an 8-byte
segment descriptor encodes the following
information about a particular segment:

® Size. This 16-bit field, comprising bytes
0 and 1 of a segment descriptor, specifies
an unsigned integer as the size, in bytes
(from 1 byte to 64K bytes), of the
segment.

Unlike segments in the 8086 (or the
iAPX 286 in Real Address Mode)—
which are never explicitly limited to less
than a full 64K bytes—Protected Mode
segments are always assigned a specific
size value. In conjunction with the
protection features described in Chapter
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7, this assigned size allows the enforce-
ment of a very desirable and natural rule:
inadvertent accesses to locations beyond
a segment’s actual boundaries are
prohibited.

® Base. This 24-bit field, comprising bytes
2 through 4 of a segment descriptor,
specifies the physical base address of the
segment; it thus defines the actual
location of the segment within the 16-
megabyte real memory space. The base
may be any byte address within the 16-
megabyte real memory space.

® Access. This 8-bit field comprises byte 5
of a segment descriptor. This access byte
specifies a variety of additional informa-
tion about a segment, particularly in
regard to the protection features of the
iAPX 286. For example, code segments
are distinguished from data segments; and
certain special access restrictions (such as
Execute-Only or Read-Only) may be
defined for segments of each type. Access
byte values of O0H or 80H will always
denote “invalid.”

Figure 6-7 shows the access byte format for
both code and data segment descriptors.
Detailed discussion of the protection related
fields within an access byte (Conforming,
Execute-Only, Descriptor Privilege Level,
Expand Down, and Write-Permitted), and
their use in implementing protection policies,
is deferred to Chapter 7. The two fields
Accessed and Present are used for virtual
memory implementations.

6.6 MEMORY MANAGEMENT REGISTERS

The Protected Virtual Address Mode features
of the iAPX 286 operate at high performance
due to extensions to the basic iAPX 86 regis-
ter set. Figure 6-8 illustrates that portion of
the extended register structure that pertains
to memory management. (For a complete
summary of all Protected Mode registers,
refer to section 10.1).
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CODE SEGMENT  TYPE
MSB e LSB

oEnneEnn |

ACCESSED(1=yes)

READABLE (1=yes)

CONFORMING (1=yes)
b EXECUTABLE (1=yes for code)

)
DESCRIPTOR PRIVILEGE LEVEL
RE! T (1=yes)

DATA OR
STACK SEGMENT
MsB _TPE_ s

P rDPL T1—[0 IEDl w I/A]
L ACCESSED (1=yes)

WRITEABLE (1=yes)

EXPAND DOWN (1-=-down)

EXECUTABLE (0=no for data)

)
DESCRIPTOR PRIVILEGE LEVEL
ENT (1=yes)

Figure 6-7. Segment Descriptor Access Bytes
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SEGMENT ADDRESS TRANSLATION REGISTERS
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cs CODE SEGMENT REGISTER
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!
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Figure 6-8. Memory Management Registers

6.6.1 Segment Address Translation
Registers :

Figure 6-8 shows the segment registers

CS,DS,ES, and SS. In contrast to their usual

representation, however, these registers are

now depicted as 64-bit registers, each with

“visible” and “hidden” components.

The visible portions of these segment address
translation registers are manipulated by
programs exactly as if they were simply the
16-bit segment registers of Real Address
Mode. By loading a segment selector into one
of these registers, the program makes the
associated segment one of its four currently
addressable segments.
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The operations that load these registers—or,
more exactly, those that load the visible
portion of these registers—are normal
program instructions. These instructions may
be divided into two categories:

1. Direct segment-register load instruc-
tions. These instructions (such as LDS,
.LES, MOV, POP, etc.) can explicitly
reference the SS, DS, or ES segment
registers as the destination operand.

2. Implied segment-register load instruc-
tions. These instructions (such as inter-
segment CALL and JMP) implicitly
reference the CS code segment register;
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as a result of these operations, the
contents of CS are altered.

Using these instructions, a program loads the
visible part of the segment register with a
16-bit selector (i.e., the high-order word of a
virtual address pointer). Whenever this is
done, the processor automatically uses the
selector to reference the appropriate descrip-
tor and loads the 48-bit hidden descriptor
cache for that segment register.

The correspondence between selectors and
descriptors has already been described.
Remember that the selector’s TI bit indicates
one of the two descriptor tables, either the
LDT or the GDT. Within the indicated table,
a particular entry is chosen by the selector’s

13-bit INDEX field. This index, scaled by a
factor of 8, represents the relative displace-
ment of the chosen table entry (a descriptor).

Thus, so long as a particular selector value is
valid (i.e., it points to a valid segment
descriptor within the bounds of the descriptor
table), it can be readily associated with an
8-byte descriptor. When a selector value is

loaded into the visible part of a segment

register, the iAPX 286 automatically loads 6
bytes of the associated descriptor into the
hidden part of the register. These 6 bytes,
therefore, contain the size, base, and access
type of the selected segment. Figure 6-9 illus-
trates  this  transparent  process  of
descriptor loading.

[eco -~~~ """ 7"77— !
| APPLICATION DESCRIPTOR I svsTem |
I VISIBLE CACHE [ ~ MEMORY
] SEGMENT SEGMENT ]
| REGISTER DESCRIPTOR |
| SELECTOR TYPE |
I T l
I I BASE [ 2
| | ! |
| | LIMIT |
l ! T !
| | |
l l TRANSPARENT
DESCRIPTOR [
| I LOADING |
T
| | | DESCRIPTOR
| | TABLE
}—
: L —»| INDEX |
= ——— ———
[ L |
| | oescripTor |
I TABLE
BASE |
. - __ ST § J.

Figure 6-9. Descriptor Loading
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In effect, the hidden descriptor fields of the
segment registers function as the memory
management cache of the iAPX 286. All the
information required to address the current
working set of segments—that is, the base
address, size, and access rights of the
currently addressable segments—is stored in
this memory cache. Unlike the probabilistic
caches of other architectures, however, the
iAPX 286 cache is completely deterministic:
the caching of descriptors is explicitly
controlled by the program.

Most memory references do not require the
translation of a full 32-bit virtual address, or
long pointer. Operands that are located within
one of the currently addressable segments, as
determined by the four segment registers, can
be referenced very efficiently by means of a
short pointer, which is simply a 16-bit offset.

In fact, most iAPX 286 instructions reference
memory locations in precisely this way, speci-
fying only a 16-bit offset with respect to one
of the currently addressable segments. The
choice of segments (CS, DS, ES, or SS) is
either implicit within the instruction itself, or
explicitly specified by means of a segment-
override prefix (as described in Chapter 2).

Thus, in most cases, virtual-to-physical
address translation is actually performed in
two separate steps. First, when a program
loads a new value into a segment register, the
processor immediately performs a mapping
operation; the physical base address of the
selected segment (as well as certain additional
information) is automatically loaded into the
hidden portion of the register. The internal
cache registers (virtual address translation
hardware) are therefore dynamically shared
among the 16K different segments poten-
tially addressable within the user’s virtual
address space. No software overhead (either
system or application) is required to perform
this operation.
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Subsequently, as the program utilizes a short
pointer to reference a location within a
segment, the processor generates a 24-bit
physical address simply by adding the speci-
fied offset value to the previously cached
segment base address. By encouraging the use
of short pointers in this way, rather than
requiring a full 32-bit virtual address for every
memory reference, the iAPX 286 provides a
very efficient on-chip mechanism for address
translation, with minimum overhead for
references to memory-based tables or the need
for external address-translation devices.

6.6.2 System Address Registers

The Global Descriptor Table Register
(GDTR) is a dedicated 40-bit (5 byte) regis-
ter used to record the base and size of a
system’s global descriptor table (GDT). Thus,
two of these bytes define the size of the GDT,
and three bytes define its base address.

In figure 6-8, the contents of the GDTR are
referred to as a “hidden descriptor.” The term
“descriptor” here emphasizes the analogy with
the segment descriptors ordinarily found in
descriptor tables. Just as these descriptors
specify the base and size (limit) of ordinary
segments, the GDTR register specifies these
same parameters for that segment of memory
serving as the system GDT. The limit prevents
accesses to descriptors in the GDT from
accessing beyond the end of the GDT and thus
provides address space isolation at the system
level as well as at the task level.

The register contents are “hidden” only in the
sense that they are not accessible by means
of ordinary instructions. Instead, the
dedicated protected instructions LGDT and
SGDT are reserved for loading and storing,
respectively, the contents of the GDTR at
Protected Mode initialization (refer to section
10.2 for details). Subsequent alteration of the
GDT base and size values is not recom-
mended but is a system option at the most
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privileged level of software (see section 7.3 for
a discussion of privilege levels).

The Local Descriptor Table Register (LDTR)
is a dedicated 40-bit register that contains, at
any given moment, the base and size of the
local descriptor table (LDT) associated with
the currently executing task. Unlike GDTR,
the LDTR register contains both a “visible”
and a “hidden” component. Only the visible
component is accessible, while the hidden
component remains truly inaccessible e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>