
Document Number: 335252-001

5-Level Paging and 5-Level EPT
White Paper

Revision 1.0

December 2016

2 Document Number: 335252-001, Revision: 1.0

Legal Lines and DisclaimersIntel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.
The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for
a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
Copyright © 2016, Intel Corporation. All Rights Reserved.

Notice: This document contains information on products in the design phase of development. The information here is subject to
change without notice. Do not finalize a design with this information.

http://www.intel.com/design/literature.htm

Document Number: 335252-001, Revision: 1.0 3

Contents

1 Introduction ..3
1.1 Existing Paging in IA-32e Mode ...3
1.2 Linear-Address Width and VMX Transitions ...5
1.3 Existing Extended Page Tables (EPT)..6

2 Expanding Linear Addresses: 5-Level Paging ...7
2.1 5-Level Paging: Introduction...7
2.2 Enumeration and Enabling ..7

2.2.1 Enumeration by CPUID..7
2.2.2 Enabling by Software ..8

2.3 Linear-Address Generation and Canonicality..8
2.4 5-Level Paging: Linear-Address Translation...9
2.5 Linear-Address Registers and Canonicality .. 10

2.5.1 Canonicality Checking on RIP Loads .. 11
2.5.2 Canonicality Checking on Other Loads ... 12

2.6 Interactions with TLB-Invalidation Instructions .. 13
2.7 Interactions with Intel® MPX .. 14
2.8 Interactions with Intel® SGX .. 15

3 Linear-Address Expansion and VMX Transitions... 17
3.1 Linear-Address Expansion and VM Entries... 17
3.2 Linear-Address Expansion and VM Exits.. 17

4 5-Level EPT ... 19
4.1 4-Level EPT: Guest-Physical-Address Limit.. 19
4.2 5-Level EPT: Enumeration and Enabling ... 19

4.2.1 Enumeration.. 19
4.2.2 Enabling by Software .. 20

4.3 5-Level EPT: Guest-Physical-Address Translation ... 20
4.4 5-Level EPT and EPTP Switching .. 21

5 Intel® Virtualization Technology for Directed I/O ... 23

Figures
1-1 Linear-Address Translation Using IA-32e Paging ..4
2-1 Linear-Address Translation Using 5-Level Paging ... 11

Tables
2-1 Format of a PML5 Entry (PML5E) that References a PML4 Table9
4-1 Format of an EPT PML5 Entry (EPT PML5E) ... 20

4 Document Number: 335252-001, Revision: 1.0

Revision History

Document
Number

Revision
Number Description Date

335252-001 1.0 • Initial Release December 2016

Document Number: 335252-001, Revision: 1.0 3

1 Introduction

This document describes planned extensions to the Intel 64 architecture to expand the
size of addresses that can be translated through a processor’s memory-translation
hardware.

Modern operating systems use address-translation support called paging. Paging
translates linear addresses (also known as virtual addresses), which are used by
software, to physical addresses, which are used to access memory (or memory-
mapped I/O). Section 1.1 describes the 64-bit paging hardware on Intel 64 processors.
Existing processors limit linear addresses to 48 bits. Chapter 2 describes paging
extensions that would relax that limit to 57 linear-address bits.

Virtual-machine monitors (VMMs) use the virtual-machine extensions (VMX) to
support guest software operating in a virtual machine. VMX transitions are control-
flow transfers between the VMM and guest software. VMX transitions involve the
loading and storing of various processor registers. Some of these registers are defined
to contain linear addresses. Because of this, the operation of VMX transitions depends
in part on the linear-address width supported by the processor. Section 1.2 describes
the existing treatment of linear-address registers by VMX transitions, while Chapter 3
describes the changes required to support larger linear addresses.

VMMs may also use additional address-translation support called extended page
tables (EPT). When EPT is used, paging produces guest-physical addresses, which
EPT translates to physical addresses. Section 1.3 describes the EPT hardware on
existing Intel 64 processors, which limit guest-physical addresses to 48 bits. Chapter 4
describes EPT extensions to support 57 guest-physical-address bits.

1.1 Existing Paging in IA-32e Mode
On processors supporting Intel 64 architecture, software typically references memory
using linear addresses. Most modern operating systems configure processors to use
paging, which translates linear addresses to physical addresses. The processor uses
the resulting physical addresses to access memory.

IA-32e mode is a mode of processor execution that extends the older 32-bit
operation, known as legacy mode. Software can enter IA-32e mode with the following
algorithm.

1. Use the MOV CR instruction to set CR4.PAE[bit 5]. (Physical-address extension
must be enabled to enter IA-32e mode.)

2. Use the WRMSR instruction to set bit 8 (LME) of the IA32_EFER MSR (index
C0000080H).

3. Use the MOV CR instruction to load CR3 with the address of a PML4 table (see
below).

4. Use the MOV CR instruction to set CR0.PG[bit 31].

A logical processor is in IA-32e mode whenever CR0.PG = 1 and IA32_EFER.LME = 1.
This fact is reported in IA32_EFER.LMA[bit 10]. Software cannot set this bit directly; it
is always the logical-AND of CR0.PG and IA32_EFER.LME.

4 Document Number: 335252-001, Revision: 1.0

In IA-32e mode, linear addresses are 64 bits in size.1 However, the corresponding
paging mode (currently called IA-32e paging) does not use all 64 linear-address bits.

IA-32e paging does not use all 64 linear-address bits because processors limit the size
of linear addresses. This limit is enumerated by the CPUID instruction. Specifically,
CPUID.80000008H:EAX[bits 15:8] enumerates the number of linear-address bits (the
maximum linear-address width) supported by the processor. Existing processors
enumerate this value as 48.

Note: Processors also limit the size of physical addresses and enumerate the limit using
CPUID. CPUID.80000008H:EAX[bits 7:0] enumerates the number of physical-address
bits supported by the processor, the maximum physical-address width. Existing
processors have enumerated values up to 46. Software can use more than 32 physical-
address bits only if physical-address extension has been enabled by setting
CR4.PAE, bit 5 of control register CR4.

The enumerated limitation on the linear-address width implies that paging translates
only the low 48 bits of each 64-bit linear address. After a linear address is generated
but before it is translated, the processor confirms that the address uses only the 48 bits
that the processor supports.

The limitation to 48 linear-address bits results from the nature of IA-32e paging, which
is illustrated in Figure 1-1.

1. IA-32e mode comprises two sub-modes: compatibility mode and 64-bit mode. In compatibility
mode, software uses 32-bit addresses, which the processor zero-extends to 64-bit linear
addresses. In 64-bit mode, software uses 64-bit addresses directly.

Figure 1-1. Linear-Address Translation Using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE

Table
011122021

Directory
30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

40

Document Number: 335252-001, Revision: 1.0 5

The processor performs IA-32e paging by traversing a 4-level hierarchy of paging
structures whose root structure resides at the physical address in control register
CR3. Each paging structure is 4-KBytes in size and comprises 512 8-byte entries. The
processor uses the upper 36 bits of a linear address (bits 47:12), 9 bits at a time, to
select paging-structure entries from the hierarchy.

Note: Figure 1-1 illustrates the translation of a linear address to a 4-KByte page. The paging
process can be configured so that the translation of some linear addresses stops one or
two levels earlier, translating instead to 2-MByte pages or 1-GByte pages.

In general, bits 51:12 of each paging-structure entry contain a 4-KByte aligned
physical address. For each entry except the last, this address is that of the next paging
structure; in the last entry, it is the physical address of a 4-KByte page frame. The
final physical address is obtained by combining this page-frame address with the page
offset, bits 11:0 of the original linear address.

Because only bits 47:0 of a linear address are used in address-translation, the
processor reserves bits 63:48 for future expansion using a concept known as
canonicality. A linear address is canonical if bits 63:47 of the address are identical.
(Put differently, a linear address is canonical only if bits 63:48 are a sign-extension of
bit 47, which is the uppermost bit used in linear-address translation.)

When a 64-bit linear address is generated to access memory, the processor first
confirms that the address is canonical. If the address is not canonical, the memory
access causes a fault, and the processor makes no attempt to translate the address.1

Intel 64 architecture includes numerous registers that are defined to hold linear
addresses. These registers may be loaded using a variety of instructions. In most
cases, these instructions cause a general-protection exception (#GP) if an attempt is
made to load one of these registers with a value that is not canonical.

Physical-address bits in a paging-structure entry beyond the enumerated physical-
address width are reserved. A page-fault exception (#PF) results if an attempt is made
to access a linear address whose translation encounters a paging-structure entry that
sets any of those bits.

1.2 Linear-Address Width and VMX Transitions
VM entries and VM exits manipulate numerous processor registers that contain linear
addresses. The transitions respect the processor’s linear-address width in a manner
based on canonicality.

Certain fields in the VMCS correspond to registers that contain linear addresses.
VM entries confirm that most of those fields contain values that are canonical. Some
registers, such as RIP and the LDTR base address, receive special treatment.

VM exits save into the VMCS the state of certain registers, some of which contain linear
addresses. Because the processor generally ensures that the values in these registers
are canonical (see Section 1.1), the values that VM exits save for these registers will
generally be canonical.

1. In general, an attempt to access memory using a linear address that is not canonical causes a
general-protection exception (#GP). A stack-fault exception — #SS — occurs instead if the
memory access was made using the SS segment.

6 Document Number: 335252-001, Revision: 1.0

VM exits also load from the VMCS certain registers, some of which contain linear
addresses. Each VM exit ensures that the value of each of these registers is canonical.
Specifically, bits 47:0 of the register are loaded from the field in the host-state area;
the value of bit 47 is then sign-extended into bits 63:48 of the register.

1.3 Existing Extended Page Tables (EPT)
Most Intel 64 processors supporting VMX also support an additional layer of address
translation called extended page tables (EPT).

VM entry can be configured to activate EPT for guest software. When EPT is active, the
addresses used and produced by paging (Section 1.1) are not used as physical
addresses to reference in memory. Instead, the processor interprets them as guest-
physical addresses, and translates them to physical addresses in a manner
determined by the VMM. (This translation from guest-physical to physical applies not
only to the output of paging but also to the addresses that the processor uses to
reference the guest paging structures.)

If the EPT translation process cannot translate a guest-physical address, it causes an
EPT violation. (EPT violations may also occur when an access to a guest-physical
address violates the permissions established by EPT for that guest-physical address.)
An EPT violation is a VMX-specific exception, usually causing a VM exit.

As noted in Section 1.1, existing processors limit physical addresses to 46 bits. That
limit applies also to guest-physical addresses. As a result, guest-physical addresses
that set bits beyond this limit are not translated by EPT. (For example, a page fault
results if linear-address translation encounters a paging-structure entry with such an
address.) Because of this, existing EPT has been limited to translating only 48 guest-
physical-address bits.

The existing EPT translation process is analogous to the paging process that was
illustrated earlier in Figure 1-1. Like 4-level paging, the processor implements EPT by
traversing a 4-level hierarchy of 4-KByte EPT paging structures. The last EPT paging-
structure entry contains the upper bits of the final physical address, while the lowest
bits come from the original guest-physical address.

Document Number: 335252-001, Revision: 1.0 7

2 Expanding Linear Addresses:
5-Level Paging

2.1 5-Level Paging: Introduction
5-level paging is a new paging mode that will be available in IA-32e mode. As its
name suggests, it will translate linear addresses by traversing a 5-level hierarchy of
paging structures. Because the process is otherwise unmodified, 5-level paging extends
the processor’s linear-address width to 57 bits. (The additional 9 bits are used to select
an entry from the fifth level of the hierarchy.) For clarity, the paging mode formerly
called IA-32e paging will now be called 4-level paging.

The remainder of this chapter specifies the architectural changes that define and are
entailed by 5-level paging. Section 2.2 specifies how the CPU enumerates the new
feature and how it is enabled by software. Section 2.3 describes changes to the process
of linear-address generation, as well as a revision to the concept of canonicality.
Section 2.4 details how 5-level paging translates linear addresses. Section 2.5 clarifies
how the processor treats loads of registers containing linear addresses, while Section
2.6 to Section 2.8 consider interactions with various other features. (Interactions with
the virtual-machine extensions are specified in Chapter 3.)

2.2 Enumeration and Enabling
This section describes how processors enumerate to software support for 5-level paging
and related features and also how software enables the processor to use that support.

2.2.1 Enumeration by CPUID
Processors supporting the Intel 64 architecture typically use the CPUID instruction to
enumerate to software specific processor functionality. Those processors that support
5-level paging enumerate that fact through a new feature flag as well as through
changes in how related features are reported:

• CPUID.(EAX=07H, ECX=0):ECX[bit 16] is a new feature flag that will enumerate
basic support for 5-level paging. All older processors clear this bit. A processor will
set this bit if and only if it supports 5-level paging.

• As noted in Section 1.1, CPUID.80000008H:EAX[bits 15:8] enumerates the
maximum linear-address width supported by the processor. All older processors
that support Intel 64 architecture enumerated this value as 48. Processors that
support 5-level paging will instead enumerate this value as 57.

• As noted in Section 1.1, CPUID.80000008H:EAX[bits 7:0] enumerates the
maximum physical-address width supported by the processor. Processors that
support Intel 64 architecture have enumerated at most 46 for this value.
Processors that support 5-level paging are expected to enumerate higher values,
up to 52.

• CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17] is an existing field that
enumerates the user MPX address-width adjust (MAWAU). This value specifies the
number of linear-address bits above 48 on which the BNDLDX and BNDSTX
instructions operate in 64-bit mode when CPL = 3.

8 Document Number: 335252-001, Revision: 1.0

Older processors that support Intel® MPX enumerated 0 for this value. Processors
that support 5-level paging may enumerate either 0 or 9, depending on
configuration by system software. See Section 2.7 for more details on how BNDLDX
and BNDSTX use MAWAU and how system software determines its value.

• CPUID.(EAX=12H,ECX=0H):EDX[bits 15:8] is an existing field that enumerates
information that specifies the maximum supported size of a 64-bit enclave. If the
value enumerated is n, the maximum size is 2n. Older processors that support
Intel® SGX enumerated at most 47 for this value. Processors that support 5-level
paging are expected to enumerate this value as 56.

2.2.2 Enabling by Software
Section 1.1 identified an algorithm by which software can enter IA-32e mode. On
processors that do not support 5-level paging, this algorithm enables 4-level paging.
On processors that support 5-level paging, it can be adapted to enable 5-level paging
instead.

Processors that support 5-level paging allow software to set a new enabling bit,
CR4.LA57[bit 12].1 A logical processor in IA-32e mode (IA32_EFER.LMA = 1) uses 5-
level paging if CR4.LA57 = 1. Outside of IA-32e mode (IA32_EFER.LMA = 0), the value
of CR4.LA57 does not affect paging operation.

The following items detail how a logical processor determines the current paging mode.

• If CR0.PG = 0, paging is disabled.

• If IA32_EFER.LMA = 0, one of the legacy 32-bit paging modes is used (depending
on the value of legacy paging-mode bits in CR4).2

• If IA32_EFER.LMA = 1 and CR4.LA57 = 0, 4-level paging is used.

• If IA32_EFER.LMA = 1 and CR4.LA57 = 1, 5-level paging is used.

Software can thus use the following algorithm to enter IA-32e mode with 5-level
paging.

1. Use the MOV CR instruction to set CR4.PAE and CR4.LA57.
2. Use the WRMSR instruction to set IA32_EFER.LME.

3. Use the MOV CR instruction to load CR3 with the address of a PML5 table (see
Section 2.4).

4. Use the MOV CR instruction to set CR0.PG.

The processor allows software to modify CR4.LA57 only outside of IA-32e mode. In
IA-32e mode, an attempt to modify CR4.LA57 using the MOV CR instruction causes a
general-protection exception (#GP).

2.3 Linear-Address Generation and Canonicality
As noted in Section 1.1, processors with a linear-address width of 48 bits reserve
linear-address bits 63:48 for future expansion. Linear addresses that use only bits 47:0
(because bits 63:48 are a sign-extension of bit 47) are called canonical.

1. Software can set CR4.LA57 only if CPUID.(EAX=07H, ECX=0):ECX[bit 16] is enumerated as 1.
2. Recall that IA32_EFER.LMA is the logical-AND of CR0.PG and IA32_EFER.LME.

Document Number: 335252-001, Revision: 1.0 9

When a 64-bit linear address is generated to access memory, the processor first
confirms that the address is canonical. If the address is not canonical, the memory
access causes a fault, and the address is not translated.

Processors that support 5-level paging can translate 57-bit linear addresses when 5-
level paging is enabled. But if software has enabled only 4-level paging, such a
processor can translate only 48-bit linear addresses. This fact motivates the definition
of two levels of canonicality.

A linear address is 48-bit canonical if bits 63:47 of the address are identical.
Similarly, an address is 57-bit canonical if bits 63:56 of the address are identical. Any
linear address is that 48-bit canonical is also 57-bit canonical.

When a 64-bit linear address is generated to access memory, a processor that supports
5-level paging checks for canonicality based on the current paging mode: if 4-level
paging is enabled, the address must be 48-bit canonical; if 5-level paging is enabled,
the address need only be 57-bit canonical. If the appropriate canonicality is not
observed, the memory access causes a fault.

2.4 5-Level Paging: Linear-Address Translation
As noted in Section 2.2.2, a logical processor uses 5-level paging if IA32_EFER.LMA = 1
and CR4.LA57 = 1.

Like 4-level paging, 5-level paging translates linear addresses using a hierarchy of in-
memory paging structures. Because 5-level paging increases the linear-address width
to 57 bits (from the 48 bits supported by 4-level paging), 5-level paging allows up to
128 PBytes of linear-address space to be accessed at any given time.

Also like 4-level paging, 5-level paging uses CR3 to locate the first paging-structure in
the hierarchy. (CR3 has the same mode-specific format with 5-level paging as it does
with 4-level paging.) The following items describe in more detail the changes that 5-
level paging makes to the translation process.

• Translation begins by identifying a 4-KByte naturally aligned PML5 table. It is
located at the physical address specified in bits 51:12 of CR3. A PML5 table
comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical
address defined as follows.

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 56:48 of the linear address.
— Bits 2:0 are all 0.

Because a PML5E is identified using bits 56:48 of the linear address, it controls
access to a 256-TByte region of the linear-address space. The format of a PML5E is
given in Table 2-1.

Table 2-1. Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit Position(s) Contents

0 (P) Present; must be 1 to reference a PML4 table.

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry.

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 256-TByte region
controlled by this entry.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4
table referenced by this entry.

10 Document Number: 335252-001, Revision: 1.0

• The next step of the translation process identifies a 4-KByte naturally aligned PML4
table. It is located at the physical address specified in bits 51:12 of the PML5E (see
Table 2-1). A PML4 table comprises 512 64-bit entries (PML4Es). A PML4E is
selected using the physical address defined as follows.

— Bits 51:12 are from the PML5E.
— Bits 11:3 are bits 47:39 of the linear address.
— Bits 2:0 are all 0.

As is normally the case when accessing a paging-structure entry, the memory type
used to access the PML4E is based in part on the PCD and PWT bits in the PML5E.

Because a PML4E is identified using bits 56:39 of the linear address, it controls
access to a 512-GByte region of the linear-address space.

Once the PML4E is identified, bits 38:0 of the linear address determine the remainder
of the translation process exactly as is done for 4-level paging. As suggested in
Table 2-1, the values of bit 1, bit 2, and bit 63 of the PML5E are used normally (in
combination with the corresponding bits in other paging-structure entries) to determine
access rights. The accessed flag (bit 5) in the PML5E is updated as is done for other
paging-structure entries.

The operation of 5-level paging is illustrated in Figure 2-1.

2.5 Linear-Address Registers and Canonicality
Intel 64 architecture includes numerous registers that are defined to hold linear
addresses. These registers may be loaded using a variety of instructions. As noted in
Section 1.1, each of these instructions typically causes a general-protection exception
(#GP) if an attempt is made to load a linear-address register with a value that is not
canonical.

As noted in Section 2.3, processors that support 5-level paging use two definitions of
canonicality: 48-bit canonicality and 57-bit canonicality. This section describes how
such a processor checks the canonicality of the values being loaded into the linear-
address registers. One approach is used for operations that load RIP (the instruction
pointer; see Section 2.5.1) and another is used for those that load other registers (see
Section 2.5.2).

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4
table referenced by this entry.

5 (A) Accessed; indicates whether this entry has been used for linear-address translation.

6 Ignored.

7 (PS) Reserved (must be 0).

11:8 Ignored.

M–1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry.

51:M Reserved (must be 0).

62:52 Ignored.

63 If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the
256-TByte region controlled by this entry); otherwise, reserved (must be 0).

Table 2-1. Format of a PML5 Entry (PML5E) that References a PML4 Table (Continued)

Bit Position(s) Contents

Document Number: 335252-001, Revision: 1.0 11

2.5.1 Canonicality Checking on RIP Loads
The RIP register contains the offset of the current instruction pointer within the CS
segment. Because the processor treats the CS base address as zero in 64-bit mode, the
value of the RIP register in that mode is the linear address of the instruction pointer.

Operations that load RIP (including both instructions such as JMP as well as control
transfers through the IDT) check first whether the value to be loaded is canonical
relative to the current paging mode. If the processor determines that the address is not
canonical, the RIP load is not performed and a general-protection exception (#GP)
occurs.

Note: An instruction that would load RIP with a non-canonical address faults, meaning that
the return instruction pointer of the fault handler is the address of the faulting
instruction and not the non-canonical address whose load was attempted.

The canonicality checking performed by these operations uses 48-bit canonicality when
4-level paging is active. When 5-level paging is active, the checking is relaxed to
require only 57-bit canonicality.

The SYSCALL and SYSENTER instructions load RIP from the IA32_LSTAR and
IA32_SYSENTER_EIP MSRs, respectively. On processors that support only 4-level
paging, these instructions do not check that the values being loaded are canonical
because the WRMSR instruction ensures that each of these MSRs contains a value that
is 48-bit canonical. On processors that support 5-level paging, the checking by WRMSR
is relaxed to 57-bit canonicality (see Section 2.5.2). On such processors, an execution

Figure 2-1. Linear-Address Translation Using 5-Level Paging

PDE

Linear Address

Page Directory

PML4E

CR3

39 38

9 9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDPTE

01112202130 29

Page-Directory

47

9

PML5E

40

40

40

56
TableDirectoryDirectory PtrPML4PML5

Pointer Table

Page Table

PTE

9

40

12 Document Number: 335252-001, Revision: 1.0

of SYSCALL or SYSENTER with 4-level paging checks that the value being loaded into
RIP is 48-bit canonical.1

The normal advancing of the instruction pointer to the next instruction boundary may
result in the RIP register holding a non-canonical address. The fetch of the next
instruction from that non-canonical address will result in a general-protection exception
as indicated in Section 2.3. In this case, the return instruction pointer of the fault
handler will be that non-canonical address.

2.5.2 Canonicality Checking on Other Loads
In addition to RIP, the CPU maintains numerous other registers that hold linear
addresses:

• GDTR and IDTR (in their base-address portions).

• LDTR, TR, FS, and GS (in the base-address portions of their hidden descriptor
caches).

• The debug-address registers (DR0 through DR3), which hold the linear addresses
of breakpoints.

• The following MSRs: IA32_BNDCFGS, IA32_DS_AREA, IA32_KERNEL_GS_BASE,
IA32_LSTAR, IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A,
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B,
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_SYSENTER_EIP, and
IA32_SYSENTER_ESP.

• The x87 FPU instruction pointer (FIP).

• The user-mode configuration register BNDCFGU, used by Intel® MPX.

With a few exceptions, the processor ensures that the addresses in these registers are
always canonical in the following ways.

• Some instructions fault on attempts to load a linear-address register with a non-
canonical address:

— An execution of the LGDT or LIDT instruction causes a general-protection
exception (#GP) if the base address specified in the instruction’s memory
operand is not canonical.

— An execution of the LLDT or LTR instruction causes a #GP if the base address to
be loaded from the GDT is not canonical.

— An execution of WRMSR, WRFSBASE, or WRGSBASE causes a #GP if it would
load the base address of either FS or GS with a non-canonical address.

— An execution of WRMSR causes a #GP if it would load any of the following MSRs
with a non-canonical address: IA32_BNDCFGS, IA32_DS_AREA,
IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A,
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B,
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_SYSENTER_EIP, or
IA32_SYSENTER_ESP.2

1. The SYSRET and SYSEXIT instructions, which complement SYSCALL and SYSENTER, load RIP
from RCX and RDX, respectively. Even before 5-level paging, these instructions checked the
canonicality of the value to be loaded into RIP. As with other instructions that load RIP, this
checking will be based on the current paging mode.

2. Such canonicality checking may apply also when the WRMSR instruction is used to load some
non-architectural MSRs (not listed here) that hold a linear address.

Document Number: 335252-001, Revision: 1.0 13

— An execution of XRSTORS causes a #GP if it would load any of the following
MSRs with a non-canonical address: IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B,
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, and
IA32_RTIT_ADDR3_B.

This enforcement always uses the enumerated maximum linear-address width and
is independent of the current paging mode. Thus, a processor that supports 5-level
paging will allow the instructions mentioned above to load these registers with
addresses that are 57-bit canonical but not 48-bit canonical — even if 4-level
paging is active. (As a result, instructions that store these values — SGDT, SIDT,
SLDT, STR, RDFSBASE, RDGSBASE, RDMSR, XSAVE, XSAVEC, XSAVEOPT, and
XSAVES — may save addresses that are 57-bit canonical but not 48-bit canonical,
even if 4-level paging is active.)

• The FXRSTOR, XRSTOR, and XRSTORS instructions ignore attempts to load some of
these registers with non-canonical addresses:

— Loads of FIP ignore any bits in the memory image beyond the enumerated
maximum linear-address width. The processor sign-extends to most significant
bit (e.g., bit 56 on processors that support 5-level paging) to ensure that FIP is
always canonical.

— Loads of BNDCFGU (by XRSTOR or XRSTORS) ignore any bits in the memory
image beyond the enumerated maximum linear-address width. The processor
sign-extends to most significant bit (e.g., bit 56 on processors that support 5-
level paging) to ensure that BNDCFGU is always canonical.

• Every non-control x87 instruction loads FIP. The value loaded is always canonical
relative to the current paging mode: 48-bit canonical if 4-level paging is active, and
57-bit canonical if 5-level paging is active.

DR0 through DR3 can be loaded with the MOV to DR instruction. The instruction allows
those registers to be loaded with non-canonical addresses. The MOV from DR
instruction will return the value last loaded with the MOV to DR instruction, even if the
address is not canonical. Breakpoint address matching is supported only for canonical
linear addresses.

2.6 Interactions with TLB-Invalidation Instructions
Intel 64 architecture includes three instructions that may invalidate TLB entries for the
linear address of an instruction operand: INVLPG, INVPCID, and INVVPID. The following
items describe how they are affected by linear-address width.

• The INVLPG instruction takes a memory operand. It invalidates any TLB entries
that the logical processor is caching for the linear address of that operand for the
current linear address space. The instruction does not fault if that address is not
canonical relative to the current paging mode (e.g., is not 48-bit canonical when 4-
level paging is active). However, no invalidation is performed because the processor
does not cache TLB entries for addresses that are not canonical relative to the
current paging mode.

• The INVPCID instruction takes a register operand (INVPCID type) and a memory
operand (INVPCID descriptor). If the INVPCID type is 0, the instruction invalidates
any TLB entries that the logical processor is caching for the linear address and PCID
specified in the INVPCID descriptor. If the linear address is not canonical relative
the linear-address width supported by the processor, the instruction causes a
general-protection exception (#GP). If the processor supports 5-level paging, the
instruction will not cause such a #GP for an address that is 57-bit canonical,
regardless of paging mode, even if 4-level paging is active and the address is not
48-bit canonical.

14 Document Number: 335252-001, Revision: 1.0

• The INVVPID instruction takes a register operand (INVVPID type) and a memory
operand (INVVPID descriptor). If the INVPCID type is 0, the instruction invalidates
any TLB entries that the logical processor is caching for the linear address and VPID
specified in the INVVPID descriptor. If the linear address is not canonical relative
the linear-address width supported by the processor, the instruction fails.1 If the
processor supports 5-level paging, the instruction will not fail for an address that is
57-bit canonical, regardless of paging mode, even if 4-level paging is active and the
address is not 48-bit canonical.

2.7 Interactions with Intel® MPX
The Intel® Memory Protection Extensions (Intel® MPX) define a set of 4 bound
registers, each of which software can associate with a specific pointer in memory.
Intel MPX includes two instructions — BNDLDX and BNDSTX — that allow software to
load from or store into memory the bounds associated with a particular pointer in
memory.

The BNDLDX and BNDSTX instructions each take a bound register and a memory
operand (the associated pointer). Each of these parses the linear address of the
memory operand to traverse a hierarchical data structure in memory. In 64-bit mode,
these instructions do not necessarily use all the bits in the supplied 64-bit addresses.
The number of bits used is 48 plus a value called the MPX address-width adjust
(MAWA).

The value of MAWA depends on CPL; the current paging mode (4-level paging or 5-level
paging); and, if 5-level paging is active, the value of a new MSR. Processors that
support both Intel MPX and 5-level paging support the IA32_MPX_LAX MSR (MSR index
1000H). Only bit 0 of the MSR is defined.

If CPL < 3, the supervisor MAWA (MAWAS) is used. The value of MAWAS is determined
by the setting of CR4.LA57. If CR4.LA57 = 0 (4-level paging is active; recall that MAWA
is relevant only in 64-bit mode), the value of MAWAS is 0. If CR4.LA57 = 1 (5-level
paging is active), the value of MAWAS is 9. The value of MAWAS is not enumerated by
the CPUID instruction.

If CPL = 3, the user MAWA (MAWAU) is used. The value of MAWAU is determined as
follows. If CR4.LA57 = 0 or IA32_MPX_LAX[bit 0] = 0, the value of MAWAU is 0. If
CR4.LA57 = 1 and IA32_MPX_LAX[bit 0] = 1, the value of MAWAU is 9. The current
value of MAWAU is enumerated in
CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17].

The following items specify how an execution of the BNDLDX and BNDSTX instructions
in 64-bit mode parses a linear address to traverse a hierarchical data structure.

• A bound directory is located at the 4-KByte aligned linear address specified in
bits 63:12 of BNDCFGx.2 A BDE is selected using the LAp (linear address of pointer
to a buffer) to construct a 64-bit offset as follows:

— bits 63:31+MAWA are 0;
— bits 30+MAWA:3 are LAp[bits 47+MAWA:20]; and
— bits 2:0 are 0.

1. INVVPID is a VMX instruction. In response to certain conditions, execution of a VMX may fail,
meaning that it does not complete its normal operation. When a VMX instruction fails, control
passes to the next instruction (rather than to a fault handler) and a flag is set to report the
failure.

2. If CPL < 3, BNDCFGS is used; if CPL = 3, BNDCFGU is used.

Document Number: 335252-001, Revision: 1.0 15

The address of the BDE is the sum of the bound-directory base address (from
BNDCFGx) plus this 64-bit offset.

If either BNDLDX or BNDSTX is executed inside an enclave, the instruction operates
as if MAWAU = 0 (regardless of the values of CR4.LA57 and IA32_MPX_LAX[bit 0]).

• The processor uses bits 63:3 of the BDE as the 8-byte aligned address of a bound
table (BT). A BTE is selected using the LAp (linear address of pointer to a buffer) to
construct a 64-bit offset as follows:

— bits 63:22 are 0;
— bits 21:5 are LAp[bits 19:3]; and
— bits 4:0 are 0.

The address of the BTE is the sum of the bound-table base address (from the BDE)
plus this 64-bit offset.

A bound directory comprises 228+MAWA 64-bit entries (BDEs);1 thus, the size of a
bound directory in 64-bit mode is 21+MAWA GBytes. A bound table comprises 217 32-
byte entries (BTEs); thus, the size of a bound table in 64-bit mode is 4 MBytes
(independent of MAWA).

2.8 Interactions with Intel® SGX
Intel® Software Guard Extensions (Intel® SGX) define new processor functionality that
is implemented as SGX leaf functions within the ENCLS (supervisor) and ENCLU (user)
instructions.

The SGX leaf functions include memory accesses using linear addresses normally.
When executed in 64-bit mode, the linear address are 64 bits in width and are subject
to the normal treatment of accesses to memory with 64-bit linear addresses (see
Section 2.3). In addition, some of the leaf functions apply specific architectural checks
related to linear-address width. The following items detail these checks and how they
are defined for processors that support 5-level paging.

• The ECREATE leaf function of ENCLS creates a new enclave by creating a new SGX
enclave control structure (SECS). For a 64-bit enclave, the processor checks
whether the enclave base linear address (specified in the SECS) is canonical,
generating a general-protection exception (#GP) if it is not. On processors that
support 5-level paging, this check is for 57-bit canonicality, regardless of the
current paging mode.

In addition to checking the canonicality of the enclave base linear address,
ECREATE confirms that the enclave size (specified in the SECS) is not greater than
the maximum size supported by the processor (if the enclave size is too large,
ECREATE generates a #GP). As noted in Section 2.2.1, older processors supported
64-bit enclaves with sizes up to 247 bytes; processors that support 5-level paging
are expected to support enclaves with sizes up to 256 bytes.

If bits 4:3 of the enclave’s XSAVE feature request mask (XFRM) are set (indicating
that Intel MPX will be enabled during execution of the enclave), ECREATE generates
a #GP if the enclave’s size is greater than 248 bytes, even if the processor
enumerates support for larger enclaves.

• The EENTER and ERESUME leaf functions of ENCLU transfer control flow to an entry
point within a specified enclave. For entry to a 64-bit enclave, the processor checks

1. A bound directory used in a 64-bit enclave always comprises 228 64-bit BDEs and thus has a size
of 2 GBytes.

16 Document Number: 335252-001, Revision: 1.0

whether certain linear addresses are canonical, generating a general-protection
exception (#GP) if any one is not. The following items detail these checks.

— The linear address of the specified entry point must be canonical. If 4-level
paging is active, it must be 48-bit canonical; if 5-level paging is active, it must
be 57-bit canonical.

— The linear address of the asynchronous exit point (AEP — the address to which
the processor transfers control on an asynchronous enclave exit) must be
canonical. If 4-level paging is active, it must be 48-bit canonical; if 5-level
paging is active, it must be 57-bit canonical.

— The enclave values for the base addresses of the FS and GS segments must be
canonical. On processors that supports 5-level paging, these checks are for 57-
bit canonicality, regardless of the current paging mode.

• The EEXIT leaf function exits the currently executing enclave and branches to a
specified address. For an exit from a 64-bit enclave, the processor checks whether
that target linear address is canonical, generating a general-protection exception
(#GP) if it is not. If 4-level paging is active, it must be 48-bit canonical; if 5-level
paging is active, it need only be 57-bit canonical.

As noted in Section 2.7, executions of BNDLDX and BNDSTX in a 64-bit enclave always
operate as if MAWAU = 0.

Document Number: 335252-001, Revision: 1.0 17

3 Linear-Address Expansion and
VMX Transitions

As noted in Section 1.2, VM entries and VM exits manipulate numerous processor
registers that contain linear addresses. The transitions respect the processor’s linear-
address width in a manner based on canonicality.

As discussed in Chapter 2, processors that support 5-level paging expand the linear-
address width from 48 bits to 57 bits. That expansion changes the operation of VMX
transitions. Changes to VM entries are detailed in Section 3.1, while changes to
VM exits are given in Section 3.2.

3.1 Linear-Address Expansion and VM Entries
Certain fields in the VMCS correspond to registers that contain linear addresses.
VM entries confirm those fields contain values that are canonical. This checking is
based on the linear-address width supported by the processor (e.g., is based on 57-bit
canonicality if the processor supports 5-level paging). The following are the fields to
which this applies.

• In the host-state area:

— The fields for the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs.
— The base-address fields for FS, GS, TR, GDTR, and IDTR.

• In the guest-state area:

— The fields for the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs.
— The base-address fields for FS, GS, TR, GDTR, and IDTR.
— The base-address field for LDTR (if LDTR will be usable).
— The field for the IA32_BNDCFGS MSR (if VM entry is loading that MSR).

A VM entry to 64-bit mode also performs a check on the RIP field in the guest-state
area of the current VMCS. If the VM entry would result in 4-level paging, it checks that
bits 63:48 of the guest RIP field are identical; if it would result in 5-level paging, that
check is on bits 63:57.1

3.2 Linear-Address Expansion and VM Exits
VM exits save the state of certain registers into the guest-state area of the VMCS.
Some of these registers contain linear addresses. As discussed in Section 1.1, the CPU
generally ensures that the values in these registers respect the CPU’s linear-address
width. As a result, the values the VM exits save for these registers will do the same.

1. Note that these checks do not confirm that the guest RIP field is canonical relative to the paging
mode being entered. For example, bits 63:47 are identical in a 48-bit canonical address. However,
VM entry to 4-level paging may load RIP with a value in which bit 47 differs from that of
bits 63:48.

18 Document Number: 335252-001, Revision: 1.0

There is a special case for LDTR base address. If LDTR was not usable at the time of a
VM exit, the value saved for the base address is undefined. However, this undefined
value is always 48-bit canonical on processors that do not support 5-level paging and is
always 57-bit canonical on processors that do support 5-level paging.

VM exits load the state of certain registers from the host-state area of the VMCS. Some
of these registers contain linear addresses. Each VM exit ensures that the value of each
of the following registers is canonical: the IA32_SYSENTER_EIP and
IA32_SYSENTER_ESP MSRs; and the base addresses for FS, GS, TR, GDTR, and IDTR.
How this is done depends on whether the processor supports 5-level paging.

• If the processor does not support 5-level paging, bits 47:0 of the register are
loaded from the field in the host-state area; the value of bit 47 is then sign-
extended into bits 63:48 of the register.

• If the processor does support 5-level paging, bits 56:0 of the register are loaded
from the field in the host-state area; the value of bit 56 is then sign-extended into
bits 63:57 of the register.

Again, there is a special case for LDTR. LDTR is always unusable after a VM exit. Its
base address may be loaded with an undefined value. This undefined value is always
48-bit canonical on processors that do not support 5-level paging and is always 57-bit
canonical on processors that do support 5-level paging.

Document Number: 335252-001, Revision: 1.0 19

4 5-Level EPT

5-level EPT is a new mode for EPT. As its name suggests, it will translate guest-
physical addresses by traversing a 5-level hierarchy of EPT paging structures. Because
the process is otherwise unmodified, 5-level paging extends the processor’s guest-
physical-address width to 57 bits. (The additional 9 bits are used to select an entry
from the fifth level of the hierarchy.) For clarity, the original EPT mode will now be
called 4-level EPT.

The remainder of this chapter specifies architectural changes to 4-level EPT as well as
those that define and are entailed by 5-level EPT. Section 4.1 describes how the
expansion of the guest-physical-address width affects 4-level EPT. Section 4.2 specifies
how the CPU enumerates 5-level EPT and how the feature is enabled by software.
Section 4.3 details how 5-level EPT translates guest-physical addresses.

4.1 4-Level EPT: Guest-Physical-Address Limit
As explained in Section 1.3, 4-level EPT is limited to translating 48-bit guest-physical
addresses.

This is not a problem on existing processors, because they limit the physical-address
width to 46 bits (see Section 1.1). A processor’s physical-address width also limits
guest-physical addresses. That means that, on existing processors, any attempt to use
a guest-physical address that sets a bit above the low 48 bits will cause a page-fault
exception (#PF).

Processors that support 5-level paging are expected to support 52 physical-address
bits. Such processors allow use of a guest-physical address that sets bits in the range
51:48; no #PF is generated.

A guest-physical address that sets bits in the range 51:48 cannot be translated by 4-
level EPT. An attempt to access such an address when 4-level EPT is active causes an
EPT violation (see Section 1.3).

EPT violations generate information about the exception in a value called the exit
qualification. In general, EPT violations caused by attempts to access a guest-physical
address that is too wide establish the exit qualification as is currently done for other
EPT violations. Exceptions are made for bits 6:3 of the exit qualification, which report
the access rights for the guest-physical address. The new EPT violations always clear
these bits.

4.2 5-Level EPT: Enumeration and Enabling
This section describes how processors enumerate to software support for 5-level EPT
and how software enables the processor to use that support.

4.2.1 Enumeration
Processors supporting EPT enumerate details related to EPT in the
IA32_VMX_EPT_VPID_CAP MSR (index 48CH). Currently,
IA32_VMX_EPT_VPID_CAP[bit 6] enumerates support for 4-level EPT. Processors that
also support 5-level EPT will enumerate that fact by also setting
IA32_VMX_EPT_VPID_CAP[bit 7].

20 Document Number: 335252-001, Revision: 1.0

The guest-physical-address width supported by a processor is not enumerated using
the IA32_VMX_EPT_VPID_CAP MSR. This is because that width is always the same as
the processor’s maximum physical-address width as enumerated by
CPUID.80000008H:EAX[bits 7:0].

4.2.2 Enabling by Software
A VMM enables EPT by setting the “enable EPT” VM-execution control in the current
VMCS before using the VMCS for VM entry.

Specific details of EPT operation are determined by the extended-page-table pointer
field (EPTP) in the VMCS. In particular, EPTP[bits 5:3] contain a value that is 1 less than
the number of levels used by the EPT. On existing processors, this value must be 3,
indicating 4-level EPT. (VM entry fails if a different value is used.) Processors that also
support 5-level EPT will also allow the value 4 (indicating 5-level EPT).

In summary, VM entry on a processor that supports 5-level check EPTP[bits 5:3]. If the
value is 3, the VM entry activates 4-level EPT. If the value is 4, the VM entry activates
5-level EPT. With any other value, VM entry fails.

4.3 5-Level EPT: Guest-Physical-Address Translation
Like 4-level EPT, 5-level EPT translates guest-physical addresses using a hierarchy of
in-memory paging structures. Because 5-level EPT increases the guest-physical-
address width to 57 bits (from the 48 bits supported by 4-level EPT), 5-level EPT allows
up to 128 PBytes of guest-physical-address space to be accessed at any given time.

The following items describe in more detail the changes that 5-level EPT makes to the
translation process.

• Translation begins by identifying a 4-KByte naturally aligned EPT PML5 table. It is
located at the physical address specified in bits 51:12 of EPTP. An EPT PML5 table
comprises 512 64-bit entries (EPT PML5Es). An EPT PML5E is selected using the
physical address defined as follows.

— Bits 63:52 are all 0.
— Bits 51:12 are from EPTP.
— Bits 11:3 are bits 56:48 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PML5E is identified using bits 56:48 of the guest-physical address, it
controls access to a 256-TByte region of the linear-address space. The format of an EPT
PML5E is given in Table 4-1.

Table 4-1. Format of an EPT PML5 Entry (EPT PML5E)

Bit Position(s) Contents

0 Read access; indicates whether reads are allowed from the 256-TByte region controlled by
this entry.

1 Write access; indicates whether writes are allowed from the 256-TByte region controlled by
this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access;
indicates whether instruction fetches are allowed from the 256-TByte region controlled by
this entry.
If that control is 1, execute access for supervisor-mode linear addresses; indicates whether
instruction fetches are allowed from supervisor-mode linear addresses in the 256-TByte
region controlled by this entry.

Document Number: 335252-001, Revision: 1.0 21

• The next step of the translation process identifies a 4-KByte naturally aligned EPT
PML4 table. It is located at the physical address specified in bits 51:12 of the EPT
PML5E (see Table 4-1). An EPT PML4 table comprises 512 64-bit entries (EPT
PML4Es). An EPT PML4E is selected using the physical address defined as follows.

— Bits 51:12 are from the EPT PML5E.
— Bits 11:3 are bits 47:39 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PML4E is identified using bits 56:39 of the guest-physical address,
it controls access to a 512-GByte region of the guest-physical-address space.

Once the EPT PML4E is identified, bits 38:0 of the guest-physical address determine the
remainder of the translation process exactly as is done for 4-level EPT. As suggested in
Table 4-1, the values of bits 2:0 and bit 10 of the EPT PML5E are used normally (in
combination with the corresponding bits in other EPT paging-structure entries) to
determine whether EPT violations occur. The accessed flag (bit 8) in the EPT PML5E is
updated as is done for other EPT paging-structure entries.

4.4 5-Level EPT and EPTP Switching
The value of EPTP may be modified in VMX non-root operation by invoking
VM function 0 (EPTP switching). This is done by executing the VMFUNC instruction with
value 0 in the EAX register. Invocation of VM function 0 loads EPTP with a value
selected from a data structure in memory.

Before loading EPTP in this way, the processor first confirms that the value to be loaded
is valid. The definition of a valid EPTP value depends on whether the processor supports
5-level EPT.

• If the processor does not support 5-level EPT, an EPTP value in memory is
considered valid if it would not cause VM entry to fail (e.g., it does not set any
reserved bits).

• If the processor does support 5-level EPT, an EPTP value in memory is considered
valid only if it would not cause VM entry to fail (as above) and if its value in
bits 5:3 (which controls the number of EPT levels) is the same as that of the
current value of EPTP.

The implication is that an invocation of VM function 0 cannot change the EPT mode
between 4-level EPT and 5-level EPT.

7:3 Reserved (must be 0).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the
256-TByte region controlled by this entry. Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for
EPT” VM-execution control is 1, indicates whether instruction fetches are allowed from user-
mode linear addresses in the 256-TByte region controlled by this entry. If that control is 0,
this bit is ignored.

11 Ignored.

M–1:12 Physical address of 4-KByte aligned EPT PML4 table referenced by this entry.

51:M Reserved (must be 0).

63:52 Ignored.

Table 4-1. Format of an EPT PML5 Entry (EPT PML5E) (Continued)

Bit Position(s) Contents

22 Document Number: 335252-001, Revision: 1.0

Document Number: 335252-001, Revision: 1.0 23

5 Intel® Virtualization
Technology for Directed I/O

Intel® Virtualization Technology for Directed I/O includes a feature called DMA
remapping.

DMA remapping provides hardware support for isolation of device accesses to memory.
When a device attempts to access system memory, DMA-remapping hardware
intercepts the access and utilizes paging structures to determine whether the access
can be permitted; it also determines the actual location to access.

The DMA-remapping hardware may support two levels of address translation. One level
may translate a linear address to a guest-physical address, while a second level may
remap the guest-physical address to physical address.

The first-level translation uses paging structures with the same format as those used
for ordinary paging. The second-level translation uses paging structures with the same
format as those used for EPT.

It is expected that, on platforms that support wider linear and guest-physical addresses
(using 5-level paging and 5-level EPT, respectively), the DMA-remapping hardware will
be similarly enhanced to support those wider addresses with 5-level translation
processes.

This enhanced support for DMA remapping will be detailed in a future revision of the
Intel® Virtualization Technology for Directed I/O Architecture Specification.

24 Document Number: 335252-001, Revision: 1.0

	1 Introduction
	1.1 Existing Paging in IA-32e Mode
	1.2 Linear-Address Width and VMX Transitions
	1.3 Existing Extended Page Tables (EPT)

	2 Expanding Linear Addresses: 5-Level Paging
	2.1 5-Level Paging: Introduction
	2.2 Enumeration and Enabling
	2.2.1 Enumeration by CPUID
	2.2.2 Enabling by Software

	2.3 Linear-Address Generation and Canonicality
	2.4 5-Level Paging: Linear-Address Translation
	2.5 Linear-Address Registers and Canonicality
	2.5.1 Canonicality Checking on RIP Loads
	2.5.2 Canonicality Checking on Other Loads

	2.6 Interactions with TLB-Invalidation Instructions
	2.7 Interactions with Intel® MPX
	2.8 Interactions with Intel® SGX

	3 Linear-Address Expansion and VMX Transitions
	3.1 Linear-Address Expansion and VM Entries
	3.2 Linear-Address Expansion and VM Exits

	4 5-Level EPT
	4.1 4-Level EPT: Guest-Physical-Address Limit
	4.2 5-Level EPT: Enumeration and Enabling
	4.2.1 Enumeration
	4.2.2 Enabling by Software

	4.3 5-Level EPT: Guest-Physical-Address Translation
	4.4 5-Level EPT and EPTP Switching

	5 Intel® Virtualization Technology for Directed I/O

