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1 Introduction

This document describes planned extensions to the Intel 64 architecture to expand the 
size of addresses that can be translated through a processor’s memory-translation 
hardware.

Modern operating systems use address-translation support called paging. Paging 
translates linear addresses (also known as virtual addresses), which are used by 
software, to physical addresses, which are used to access memory (or memory-
mapped I/O). Section 1.1 describes the 64-bit paging hardware on Intel 64 processors. 
Existing processors limit linear addresses to 48 bits. Chapter 2 describes paging 
extensions that would relax that limit to 57 linear-address bits.

Virtual-machine monitors (VMMs) use the virtual-machine extensions (VMX) to 
support guest software operating in a virtual machine. VMX transitions are control-
flow transfers between the VMM and guest software. VMX transitions involve the 
loading and storing of various processor registers. Some of these registers are defined 
to contain linear addresses. Because of this, the operation of VMX transitions depends 
in part on the linear-address width supported by the processor. Section 1.2 describes 
the existing treatment of linear-address registers by VMX transitions, while Chapter 3 
describes the changes required to support larger linear addresses.

VMMs may also use additional address-translation support called extended page 
tables (EPT). When EPT is used, paging produces guest-physical addresses, which 
EPT translates to physical addresses. Section 1.3 describes the EPT hardware on 
existing Intel 64 processors, which limit guest-physical addresses to 48 bits. Chapter 4 
describes EPT extensions to support 57 guest-physical-address bits.

1.1 Existing Paging in IA-32e Mode
On processors supporting Intel 64 architecture, software typically references memory 
using linear addresses. Most modern operating systems configure processors to use 
paging, which translates linear addresses to physical addresses. The processor uses 
the resulting physical addresses to access memory.

IA-32e mode is a mode of processor execution that extends the older 32-bit 
operation, known as legacy mode. Software can enter IA-32e mode with the following 
algorithm.

1. Use the MOV CR instruction to set CR4.PAE[bit 5]. (Physical-address extension 
must be enabled to enter IA-32e mode.)

2. Use the WRMSR instruction to set bit 8 (LME) of the IA32_EFER MSR (index 
C0000080H).

3. Use the MOV CR instruction to load CR3 with the address of a PML4 table (see 
below).

4. Use the MOV CR instruction to set CR0.PG[bit 31].

A logical processor is in IA-32e mode whenever CR0.PG = 1 and IA32_EFER.LME = 1. 
This fact is reported in IA32_EFER.LMA[bit 10]. Software cannot set this bit directly; it 
is always the logical-AND of CR0.PG and IA32_EFER.LME.
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In IA-32e mode, linear addresses are 64 bits in size.1 However, the corresponding 
paging mode (currently called IA-32e paging) does not use all 64 linear-address bits.

IA-32e paging does not use all 64 linear-address bits because processors limit the size 
of linear addresses. This limit is enumerated by the CPUID instruction. Specifically, 
CPUID.80000008H:EAX[bits 15:8] enumerates the number of linear-address bits (the 
maximum linear-address width) supported by the processor. Existing processors 
enumerate this value as 48.

Note: Processors also limit the size of physical addresses and enumerate the limit using 
CPUID. CPUID.80000008H:EAX[bits 7:0] enumerates the number of physical-address 
bits supported by the processor, the maximum physical-address width. Existing 
processors have enumerated values up to 46. Software can use more than 32 physical-
address bits only if physical-address extension has been enabled by setting 
CR4.PAE, bit 5 of control register CR4.

The enumerated limitation on the linear-address width implies that paging translates 
only the low 48 bits of each 64-bit linear address. After a linear address is generated 
but before it is translated, the processor confirms that the address uses only the 48 bits 
that the processor supports.

The limitation to 48 linear-address bits results from the nature of IA-32e paging, which 
is illustrated in Figure 1-1.

1. IA-32e mode comprises two sub-modes: compatibility mode and 64-bit mode. In compatibility 
mode, software uses 32-bit addresses, which the processor zero-extends to 64-bit linear 
addresses. In 64-bit mode, software uses 64-bit addresses directly.

Figure 1-1. Linear-Address Translation Using IA-32e Paging
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The processor performs IA-32e paging by traversing a 4-level hierarchy of paging 
structures whose root structure resides at the physical address in control register 
CR3. Each paging structure is 4-KBytes in size and comprises 512 8-byte entries. The 
processor uses the upper 36 bits of a linear address (bits 47:12), 9 bits at a time, to 
select paging-structure entries from the hierarchy.

Note: Figure 1-1 illustrates the translation of a linear address to a 4-KByte page. The paging 
process can be configured so that the translation of some linear addresses stops one or 
two levels earlier, translating instead to 2-MByte pages or 1-GByte pages.

In general, bits 51:12 of each paging-structure entry contain a 4-KByte aligned 
physical address. For each entry except the last, this address is that of the next paging 
structure; in the last entry, it is the physical address of a 4-KByte page frame. The 
final physical address is obtained by combining this page-frame address with the page 
offset, bits 11:0 of the original linear address.

Because only bits 47:0 of a linear address are used in address-translation, the 
processor reserves bits 63:48 for future expansion using a concept known as 
canonicality. A linear address is canonical if bits 63:47 of the address are identical. 
(Put differently, a linear address is canonical only if bits 63:48 are a sign-extension of 
bit 47, which is the uppermost bit used in linear-address translation.)

When a 64-bit linear address is generated to access memory, the processor first 
confirms that the address is canonical. If the address is not canonical, the memory 
access causes a fault, and the processor makes no attempt to translate the address.1

Intel 64 architecture includes numerous registers that are defined to hold linear 
addresses. These registers may be loaded using a variety of instructions. In most 
cases, these instructions cause a general-protection exception (#GP) if an attempt is 
made to load one of these registers with a value that is not canonical.

Physical-address bits in a paging-structure entry beyond the enumerated physical-
address width are reserved. A page-fault exception (#PF) results if an attempt is made 
to access a linear address whose translation encounters a paging-structure entry that 
sets any of those bits.

1.2 Linear-Address Width and VMX Transitions
VM entries and VM exits manipulate numerous processor registers that contain linear 
addresses. The transitions respect the processor’s linear-address width in a manner 
based on canonicality.

Certain fields in the VMCS correspond to registers that contain linear addresses. 
VM entries confirm that most of those fields contain values that are canonical. Some 
registers, such as RIP and the LDTR base address, receive special treatment.

VM exits save into the VMCS the state of certain registers, some of which contain linear 
addresses. Because the processor generally ensures that the values in these registers 
are canonical (see Section 1.1), the values that VM exits save for these registers will 
generally be canonical.

1. In general, an attempt to access memory using a linear address that is not canonical causes a 
general-protection exception (#GP). A stack-fault exception — #SS — occurs instead if the 
memory access was made using the SS segment.
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VM exits also load from the VMCS certain registers, some of which contain linear 
addresses. Each VM exit ensures that the value of each of these registers is canonical. 
Specifically, bits 47:0 of the register are loaded from the field in the host-state area; 
the value of bit 47 is then sign-extended into bits 63:48 of the register.

1.3 Existing Extended Page Tables (EPT)
Most Intel 64 processors supporting VMX also support an additional layer of address 
translation called extended page tables (EPT).

VM entry can be configured to activate EPT for guest software. When EPT is active, the 
addresses used and produced by paging (Section 1.1) are not used as physical 
addresses to reference in memory. Instead, the processor interprets them as guest-
physical addresses, and translates them to physical addresses in a manner 
determined by the VMM. (This translation from guest-physical to physical applies not 
only to the output of paging but also to the addresses that the processor uses to 
reference the guest paging structures.)

If the EPT translation process cannot translate a guest-physical address, it causes an 
EPT violation. (EPT violations may also occur when an access to a guest-physical 
address violates the permissions established by EPT for that guest-physical address.) 
An EPT violation is a VMX-specific exception, usually causing a VM exit.

As noted in Section 1.1, existing processors limit physical addresses to 46 bits. That 
limit applies also to guest-physical addresses. As a result, guest-physical addresses 
that set bits beyond this limit are not translated by EPT. (For example, a page fault 
results if linear-address translation encounters a paging-structure entry with such an 
address.) Because of this, existing EPT has been limited to translating only 48 guest-
physical-address bits.

The existing EPT translation process is analogous to the paging process that was 
illustrated earlier in Figure 1-1. Like 4-level paging, the processor implements EPT by 
traversing a 4-level hierarchy of 4-KByte EPT paging structures. The last EPT paging-
structure entry contains the upper bits of the final physical address, while the lowest 
bits come from the original guest-physical address.
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2 Expanding Linear Addresses: 
5-Level Paging

2.1 5-Level Paging: Introduction
5-level paging is a new paging mode that will be available in IA-32e mode. As its 
name suggests, it will translate linear addresses by traversing a 5-level hierarchy of 
paging structures. Because the process is otherwise unmodified, 5-level paging extends 
the processor’s linear-address width to 57 bits. (The additional 9 bits are used to select 
an entry from the fifth level of the hierarchy.) For clarity, the paging mode formerly 
called IA-32e paging will now be called 4-level paging.

The remainder of this chapter specifies the architectural changes that define and are 
entailed by 5-level paging. Section 2.2 specifies how the CPU enumerates the new 
feature and how it is enabled by software. Section 2.3 describes changes to the process 
of linear-address generation, as well as a revision to the concept of canonicality. 
Section 2.4 details how 5-level paging translates linear addresses. Section 2.5 clarifies 
how the processor treats loads of registers containing linear addresses, while Section 
2.6 to Section 2.8 consider interactions with various other features. (Interactions with 
the virtual-machine extensions are specified in Chapter 3.)

2.2 Enumeration and Enabling
This section describes how processors enumerate to software support for 5-level paging 
and related features and also how software enables the processor to use that support.

2.2.1 Enumeration by CPUID
Processors supporting the Intel 64 architecture typically use the CPUID instruction to 
enumerate to software specific processor functionality. Those processors that support 
5-level paging enumerate that fact through a new feature flag as well as through 
changes in how related features are reported:

• CPUID.(EAX=07H, ECX=0):ECX[bit 16] is a new feature flag that will enumerate 
basic support for 5-level paging. All older processors clear this bit. A processor will 
set this bit if and only if it supports 5-level paging.

• As noted in Section 1.1, CPUID.80000008H:EAX[bits 15:8] enumerates the 
maximum linear-address width supported by the processor. All older processors 
that support Intel 64 architecture enumerated this value as 48. Processors that 
support 5-level paging will instead enumerate this value as 57.

• As noted in Section 1.1, CPUID.80000008H:EAX[bits 7:0] enumerates the 
maximum physical-address width supported by the processor. Processors that 
support Intel 64 architecture have enumerated at most 46 for this value. 
Processors that support 5-level paging are expected to enumerate higher values, 
up to 52.

• CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17] is an existing field that 
enumerates the user MPX address-width adjust (MAWAU). This value specifies the 
number of linear-address bits above 48 on which the BNDLDX and BNDSTX 
instructions operate in 64-bit mode when CPL = 3.



8 Document Number: 335252-001, Revision: 1.0

Older processors that support Intel® MPX enumerated 0 for this value. Processors 
that support 5-level paging may enumerate either 0 or 9, depending on 
configuration by system software. See Section 2.7 for more details on how BNDLDX 
and BNDSTX use MAWAU and how system software determines its value.

• CPUID.(EAX=12H,ECX=0H):EDX[bits 15:8] is an existing field that enumerates 
information that specifies the maximum supported size of a 64-bit enclave. If the 
value enumerated is n, the maximum size is 2n. Older processors that support 
Intel® SGX enumerated at most 47 for this value. Processors that support 5-level 
paging are expected to enumerate this value as 56.

2.2.2 Enabling by Software
Section 1.1 identified an algorithm by which software can enter IA-32e mode. On 
processors that do not support 5-level paging, this algorithm enables 4-level paging. 
On processors that support 5-level paging, it can be adapted to enable 5-level paging 
instead.

Processors that support 5-level paging allow software to set a new enabling bit, 
CR4.LA57[bit 12].1 A logical processor in IA-32e mode (IA32_EFER.LMA = 1) uses 5-
level paging if CR4.LA57 = 1. Outside of IA-32e mode (IA32_EFER.LMA = 0), the value 
of CR4.LA57 does not affect paging operation.

The following items detail how a logical processor determines the current paging mode.

• If CR0.PG = 0, paging is disabled.

• If IA32_EFER.LMA = 0, one of the legacy 32-bit paging modes is used (depending 
on the value of legacy paging-mode bits in CR4).2

• If IA32_EFER.LMA = 1 and CR4.LA57 = 0, 4-level paging is used.

• If IA32_EFER.LMA = 1 and CR4.LA57 = 1, 5-level paging is used.

Software can thus use the following algorithm to enter IA-32e mode with 5-level 
paging.

1. Use the MOV CR instruction to set CR4.PAE and CR4.LA57.
2. Use the WRMSR instruction to set IA32_EFER.LME.

3. Use the MOV CR instruction to load CR3 with the address of a PML5 table (see 
Section 2.4).

4. Use the MOV CR instruction to set CR0.PG.

The processor allows software to modify CR4.LA57 only outside of IA-32e mode. In 
IA-32e mode, an attempt to modify CR4.LA57 using the MOV CR instruction causes a 
general-protection exception (#GP).

2.3 Linear-Address Generation and Canonicality
As noted in Section 1.1, processors with a linear-address width of 48 bits reserve 
linear-address bits 63:48 for future expansion. Linear addresses that use only bits 47:0 
(because bits 63:48 are a sign-extension of bit 47) are called canonical.

1. Software can set CR4.LA57 only if CPUID.(EAX=07H, ECX=0):ECX[bit 16] is enumerated as 1.
2. Recall that IA32_EFER.LMA is the logical-AND of CR0.PG and IA32_EFER.LME.
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When a 64-bit linear address is generated to access memory, the processor first 
confirms that the address is canonical. If the address is not canonical, the memory 
access causes a fault, and the address is not translated.

Processors that support 5-level paging can translate 57-bit linear addresses when 5-
level paging is enabled. But if software has enabled only 4-level paging, such a 
processor can translate only 48-bit linear addresses. This fact motivates the definition 
of two levels of canonicality.

A linear address is 48-bit canonical if bits 63:47 of the address are identical. 
Similarly, an address is 57-bit canonical if bits 63:56 of the address are identical. Any 
linear address is that 48-bit canonical is also 57-bit canonical.

When a 64-bit linear address is generated to access memory, a processor that supports 
5-level paging checks for canonicality based on the current paging mode: if 4-level 
paging is enabled, the address must be 48-bit canonical; if 5-level paging is enabled, 
the address need only be 57-bit canonical. If the appropriate canonicality is not 
observed, the memory access causes a fault.

2.4 5-Level Paging: Linear-Address Translation
As noted in Section 2.2.2, a logical processor uses 5-level paging if IA32_EFER.LMA = 1 
and CR4.LA57 = 1.

Like 4-level paging, 5-level paging translates linear addresses using a hierarchy of in-
memory paging structures. Because 5-level paging increases the linear-address width 
to 57 bits (from the 48 bits supported by 4-level paging), 5-level paging allows up to 
128 PBytes of linear-address space to be accessed at any given time.

Also like 4-level paging, 5-level paging uses CR3 to locate the first paging-structure in 
the hierarchy. (CR3 has the same mode-specific format with 5-level paging as it does 
with 4-level paging.) The following items describe in more detail the changes that 5-
level paging makes to the translation process.

• Translation begins by identifying a 4-KByte naturally aligned PML5 table. It is 
located at the physical address specified in bits 51:12 of CR3. A PML5 table 
comprises 512 64-bit entries (PML5Es). A PML5E is selected using the physical 
address defined as follows.

— Bits 51:12 are from CR3.
— Bits 11:3 are bits 56:48 of the linear address.
— Bits 2:0 are all 0.

Because a PML5E is identified using bits 56:48 of the linear address, it controls 
access to a 256-TByte region of the linear-address space. The format of a PML5E is 
given in Table 2-1.

Table 2-1. Format of a PML5 Entry (PML5E) that References a PML4 Table

Bit Position(s) Contents

0 (P) Present; must be 1 to reference a PML4 table.

1 (R/W) Read/write; if 0, writes may not be allowed to the 256-TByte region controlled by this entry.

2 (U/S) User/supervisor; if 0, user-mode accesses are not allowed to the 256-TByte region 
controlled by this entry.

3 (PWT) Page-level write-through; indirectly determines the memory type used to access the PML4 
table referenced by this entry.
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• The next step of the translation process identifies a 4-KByte naturally aligned PML4 
table. It is located at the physical address specified in bits 51:12 of the PML5E (see 
Table 2-1). A PML4 table comprises 512 64-bit entries (PML4Es). A PML4E is 
selected using the physical address defined as follows.

— Bits 51:12 are from the PML5E.
— Bits 11:3 are bits 47:39 of the linear address.
— Bits 2:0 are all 0.

As is normally the case when accessing a paging-structure entry, the memory type 
used to access the PML4E is based in part on the PCD and PWT bits in the PML5E.

Because a PML4E is identified using bits 56:39 of the linear address, it controls 
access to a 512-GByte region of the linear-address space.

Once the PML4E is identified, bits 38:0 of the linear address determine the remainder 
of the translation process exactly as is done for 4-level paging. As suggested in 
Table 2-1, the values of bit 1, bit 2, and bit 63 of the PML5E are used normally (in 
combination with the corresponding bits in other paging-structure entries) to determine 
access rights. The accessed flag (bit 5) in the PML5E is updated as is done for other 
paging-structure entries.

The operation of 5-level paging is illustrated in Figure 2-1.

2.5 Linear-Address Registers and Canonicality
Intel 64 architecture includes numerous registers that are defined to hold linear 
addresses. These registers may be loaded using a variety of instructions. As noted in 
Section 1.1, each of these instructions typically causes a general-protection exception 
(#GP) if an attempt is made to load a linear-address register with a value that is not 
canonical.

As noted in Section 2.3, processors that support 5-level paging use two definitions of 
canonicality: 48-bit canonicality and 57-bit canonicality. This section describes how 
such a processor checks the canonicality of the values being loaded into the linear-
address registers. One approach is used for operations that load RIP (the instruction 
pointer; see Section 2.5.1) and another is used for those that load other registers (see 
Section 2.5.2).

4 (PCD) Page-level cache disable; indirectly determines the memory type used to access the PML4 
table referenced by this entry.

5 (A) Accessed; indicates whether this entry has been used for linear-address translation.

6 Ignored.

7 (PS) Reserved (must be 0).

11:8 Ignored.

M–1:12 Physical address of 4-KByte aligned PML4 table referenced by this entry.

51:M Reserved (must be 0).

62:52 Ignored.

63 If IA32_EFER.NXE = 1, execute-disable (if 1, instruction fetches are not allowed from the 
256-TByte region controlled by this entry); otherwise, reserved (must be 0).

Table 2-1. Format of a PML5 Entry (PML5E) that References a PML4 Table (Continued)

Bit Position(s) Contents
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2.5.1 Canonicality Checking on RIP Loads
The RIP register contains the offset of the current instruction pointer within the CS 
segment. Because the processor treats the CS base address as zero in 64-bit mode, the 
value of the RIP register in that mode is the linear address of the instruction pointer.

Operations that load RIP (including both instructions such as JMP as well as control 
transfers through the IDT) check first whether the value to be loaded is canonical 
relative to the current paging mode. If the processor determines that the address is not 
canonical, the RIP load is not performed and a general-protection exception (#GP) 
occurs.

Note: An instruction that would load RIP with a non-canonical address faults, meaning that 
the return instruction pointer of the fault handler is the address of the faulting 
instruction and not the non-canonical address whose load was attempted.

The canonicality checking performed by these operations uses 48-bit canonicality when 
4-level paging is active. When 5-level paging is active, the checking is relaxed to 
require only 57-bit canonicality.

The SYSCALL and SYSENTER instructions load RIP from the IA32_LSTAR and 
IA32_SYSENTER_EIP MSRs, respectively. On processors that support only 4-level 
paging, these instructions do not check that the values being loaded are canonical 
because the WRMSR instruction ensures that each of these MSRs contains a value that 
is 48-bit canonical. On processors that support 5-level paging, the checking by WRMSR 
is relaxed to 57-bit canonicality (see Section 2.5.2). On such processors, an execution 

Figure 2-1. Linear-Address Translation Using 5-Level Paging
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of SYSCALL or SYSENTER with 4-level paging checks that the value being loaded into 
RIP is 48-bit canonical.1

The normal advancing of the instruction pointer to the next instruction boundary may 
result in the RIP register holding a non-canonical address. The fetch of the next 
instruction from that non-canonical address will result in a general-protection exception 
as indicated in Section 2.3. In this case, the return instruction pointer of the fault 
handler will be that non-canonical address.

2.5.2 Canonicality Checking on Other Loads
In addition to RIP, the CPU maintains numerous other registers that hold linear 
addresses:

• GDTR and IDTR (in their base-address portions).

• LDTR, TR, FS, and GS (in the base-address portions of their hidden descriptor 
caches).

• The debug-address registers (DR0 through DR3), which hold the linear addresses 
of breakpoints.

• The following MSRs: IA32_BNDCFGS, IA32_DS_AREA, IA32_KERNEL_GS_BASE, 
IA32_LSTAR, IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, 
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, 
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_SYSENTER_EIP, and 
IA32_SYSENTER_ESP.

• The x87 FPU instruction pointer (FIP).

• The user-mode configuration register BNDCFGU, used by Intel® MPX.

With a few exceptions, the processor ensures that the addresses in these registers are 
always canonical in the following ways.

• Some instructions fault on attempts to load a linear-address register with a non-
canonical address:

— An execution of the LGDT or LIDT instruction causes a general-protection 
exception (#GP) if the base address specified in the instruction’s memory 
operand is not canonical.

— An execution of the LLDT or LTR instruction causes a #GP if the base address to 
be loaded from the GDT is not canonical.

— An execution of WRMSR, WRFSBASE, or WRGSBASE causes a #GP if it would 
load the base address of either FS or GS with a non-canonical address.

— An execution of WRMSR causes a #GP if it would load any of the following MSRs 
with a non-canonical address: IA32_BNDCFGS, IA32_DS_AREA, 
IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_LSTAR, 
IA32_RTIT_ADDR0_A, IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, 
IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, 
IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_SYSENTER_EIP, or 
IA32_SYSENTER_ESP.2

1. The SYSRET and SYSEXIT instructions, which complement SYSCALL and SYSENTER, load RIP 
from RCX and RDX, respectively. Even before 5-level paging, these instructions checked the 
canonicality of the value to be loaded into RIP. As with other instructions that load RIP, this 
checking will be based on the current paging mode.

2. Such canonicality checking may apply also when the WRMSR instruction is used to load some 
non-architectural MSRs (not listed here) that hold a linear address.
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— An execution of XRSTORS causes a #GP if it would load any of the following 
MSRs with a non-canonical address: IA32_RTIT_ADDR0_A, 
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, 
IA32_RTIT_ADDR2_A, IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, and 
IA32_RTIT_ADDR3_B.

This enforcement always uses the enumerated maximum linear-address width and 
is independent of the current paging mode. Thus, a processor that supports 5-level 
paging will allow the instructions mentioned above to load these registers with 
addresses that are 57-bit canonical but not 48-bit canonical — even if 4-level 
paging is active. (As a result, instructions that store these values — SGDT, SIDT, 
SLDT, STR, RDFSBASE, RDGSBASE, RDMSR, XSAVE, XSAVEC, XSAVEOPT, and 
XSAVES — may save addresses that are 57-bit canonical but not 48-bit canonical, 
even if 4-level paging is active.)

• The FXRSTOR, XRSTOR, and XRSTORS instructions ignore attempts to load some of 
these registers with non-canonical addresses:

— Loads of FIP ignore any bits in the memory image beyond the enumerated 
maximum linear-address width. The processor sign-extends to most significant 
bit (e.g., bit 56 on processors that support 5-level paging) to ensure that FIP is 
always canonical.

— Loads of BNDCFGU (by XRSTOR or XRSTORS) ignore any bits in the memory 
image beyond the enumerated maximum linear-address width. The processor 
sign-extends to most significant bit (e.g., bit 56 on processors that support 5-
level paging) to ensure that BNDCFGU is always canonical.

• Every non-control x87 instruction loads FIP. The value loaded is always canonical 
relative to the current paging mode: 48-bit canonical if 4-level paging is active, and 
57-bit canonical if 5-level paging is active.

DR0 through DR3 can be loaded with the MOV to DR instruction. The instruction allows 
those registers to be loaded with non-canonical addresses. The MOV from DR 
instruction will return the value last loaded with the MOV to DR instruction, even if the 
address is not canonical. Breakpoint address matching is supported only for canonical 
linear addresses.

2.6 Interactions with TLB-Invalidation Instructions
Intel 64 architecture includes three instructions that may invalidate TLB entries for the 
linear address of an instruction operand: INVLPG, INVPCID, and INVVPID. The following 
items describe how they are affected by linear-address width.

• The INVLPG instruction takes a memory operand. It invalidates any TLB entries 
that the logical processor is caching for the linear address of that operand for the 
current linear address space. The instruction does not fault if that address is not 
canonical relative to the current paging mode (e.g., is not 48-bit canonical when 4-
level paging is active). However, no invalidation is performed because the processor 
does not cache TLB entries for addresses that are not canonical relative to the 
current paging mode.

• The INVPCID instruction takes a register operand (INVPCID type) and a memory 
operand (INVPCID descriptor). If the INVPCID type is 0, the instruction invalidates 
any TLB entries that the logical processor is caching for the linear address and PCID 
specified in the INVPCID descriptor. If the linear address is not canonical relative 
the linear-address width supported by the processor, the instruction causes a 
general-protection exception (#GP). If the processor supports 5-level paging, the 
instruction will not cause such a #GP for an address that is 57-bit canonical, 
regardless of paging mode, even if 4-level paging is active and the address is not 
48-bit canonical.
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• The INVVPID instruction takes a register operand (INVVPID type) and a memory 
operand (INVVPID descriptor). If the INVPCID type is 0, the instruction invalidates 
any TLB entries that the logical processor is caching for the linear address and VPID 
specified in the INVVPID descriptor. If the linear address is not canonical relative 
the linear-address width supported by the processor, the instruction fails.1 If the 
processor supports 5-level paging, the instruction will not fail for an address that is 
57-bit canonical, regardless of paging mode, even if 4-level paging is active and the 
address is not 48-bit canonical.

2.7 Interactions with Intel® MPX
The Intel® Memory Protection Extensions (Intel® MPX) define a set of 4 bound 
registers, each of which software can associate with a specific pointer in memory. 
Intel MPX includes two instructions — BNDLDX and BNDSTX — that allow software to 
load from or store into memory the bounds associated with a particular pointer in 
memory.

The BNDLDX and BNDSTX instructions each take a bound register and a memory 
operand (the associated pointer). Each of these parses the linear address of the 
memory operand to traverse a hierarchical data structure in memory. In 64-bit mode, 
these instructions do not necessarily use all the bits in the supplied 64-bit addresses. 
The number of bits used is 48 plus a value called the MPX address-width adjust 
(MAWA).

The value of MAWA depends on CPL; the current paging mode (4-level paging or 5-level 
paging); and, if 5-level paging is active, the value of a new MSR. Processors that 
support both Intel MPX and 5-level paging support the IA32_MPX_LAX MSR (MSR index 
1000H). Only bit 0 of the MSR is defined.

If CPL < 3, the supervisor MAWA (MAWAS) is used. The value of MAWAS is determined 
by the setting of CR4.LA57. If CR4.LA57 = 0 (4-level paging is active; recall that MAWA 
is relevant only in 64-bit mode), the value of MAWAS is 0. If CR4.LA57 = 1 (5-level 
paging is active), the value of MAWAS is 9. The value of MAWAS is not enumerated by 
the CPUID instruction.

If CPL = 3, the user MAWA (MAWAU) is used. The value of MAWAU is determined as 
follows. If CR4.LA57 = 0 or IA32_MPX_LAX[bit 0] = 0, the value of MAWAU is 0. If 
CR4.LA57 = 1 and IA32_MPX_LAX[bit 0] = 1, the value of MAWAU is 9. The current 
value of MAWAU is enumerated in 
CPUID.(EAX=07H,ECX=0H):ECX.MAWAU[bits 21:17].

The following items specify how an execution of the BNDLDX and BNDSTX instructions 
in 64-bit mode parses a linear address to traverse a hierarchical data structure.

• A bound directory is located at the 4-KByte aligned linear address specified in 
bits 63:12 of BNDCFGx.2 A BDE is selected using the LAp (linear address of pointer 
to a buffer) to construct a 64-bit offset as follows:

— bits 63:31+MAWA are 0;
— bits 30+MAWA:3 are LAp[bits 47+MAWA:20]; and
— bits 2:0 are 0.

1. INVVPID is a VMX instruction. In response to certain conditions, execution of a VMX may fail, 
meaning that it does not complete its normal operation. When a VMX instruction fails, control 
passes to the next instruction (rather than to a fault handler) and a flag is set to report the 
failure.

2. If CPL < 3, BNDCFGS is used; if CPL = 3, BNDCFGU is used.
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The address of the BDE is the sum of the bound-directory base address (from 
BNDCFGx) plus this 64-bit offset.

If either BNDLDX or BNDSTX is executed inside an enclave, the instruction operates 
as if MAWAU = 0 (regardless of the values of CR4.LA57 and IA32_MPX_LAX[bit 0]).

• The processor uses bits 63:3 of the BDE as the 8-byte aligned address of a bound 
table (BT). A BTE is selected using the LAp (linear address of pointer to a buffer) to 
construct a 64-bit offset as follows:

— bits 63:22 are 0;
— bits 21:5 are LAp[bits 19:3]; and
— bits 4:0 are 0.

The address of the BTE is the sum of the bound-table base address (from the BDE) 
plus this 64-bit offset.

A bound directory comprises 228+MAWA 64-bit entries (BDEs);1 thus, the size of a 
bound directory in 64-bit mode is 21+MAWA GBytes. A bound table comprises 217 32-
byte entries (BTEs); thus, the size of a bound table in 64-bit mode is 4 MBytes 
(independent of MAWA).

2.8 Interactions with Intel® SGX
Intel® Software Guard Extensions (Intel® SGX) define new processor functionality that 
is implemented as SGX leaf functions within the ENCLS (supervisor) and ENCLU (user) 
instructions.

The SGX leaf functions include memory accesses using linear addresses normally. 
When executed in 64-bit mode, the linear address are 64 bits in width and are subject 
to the normal treatment of accesses to memory with 64-bit linear addresses (see 
Section 2.3). In addition, some of the leaf functions apply specific architectural checks 
related to linear-address width. The following items detail these checks and how they 
are defined for processors that support 5-level paging.

• The ECREATE leaf function of ENCLS creates a new enclave by creating a new SGX 
enclave control structure (SECS). For a 64-bit enclave, the processor checks 
whether the enclave base linear address (specified in the SECS) is canonical, 
generating a general-protection exception (#GP) if it is not. On processors that 
support 5-level paging, this check is for 57-bit canonicality, regardless of the 
current paging mode.

In addition to checking the canonicality of the enclave base linear address, 
ECREATE confirms that the enclave size (specified in the SECS) is not greater than 
the maximum size supported by the processor (if the enclave size is too large, 
ECREATE generates a #GP). As noted in Section 2.2.1, older processors supported 
64-bit enclaves with sizes up to 247 bytes; processors that support 5-level paging 
are expected to support enclaves with sizes up to 256 bytes.

If bits 4:3 of the enclave’s XSAVE feature request mask (XFRM) are set (indicating 
that Intel MPX will be enabled during execution of the enclave), ECREATE generates 
a #GP if the enclave’s size is greater than 248 bytes, even if the processor 
enumerates support for larger enclaves.

• The EENTER and ERESUME leaf functions of ENCLU transfer control flow to an entry 
point within a specified enclave. For entry to a 64-bit enclave, the processor checks 

1. A bound directory used in a 64-bit enclave always comprises 228 64-bit BDEs and thus has a size 
of 2 GBytes.
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whether certain linear addresses are canonical, generating a general-protection 
exception (#GP) if any one is not. The following items detail these checks.

— The linear address of the specified entry point must be canonical. If 4-level 
paging is active, it must be 48-bit canonical; if 5-level paging is active, it must 
be 57-bit canonical.

— The linear address of the asynchronous exit point (AEP — the address to which 
the processor transfers control on an asynchronous enclave exit) must be 
canonical. If 4-level paging is active, it must be 48-bit canonical; if 5-level 
paging is active, it must be 57-bit canonical.

— The enclave values for the base addresses of the FS and GS segments must be 
canonical. On processors that supports 5-level paging, these checks are for 57-
bit canonicality, regardless of the current paging mode.

• The EEXIT leaf function exits the currently executing enclave and branches to a 
specified address. For an exit from a 64-bit enclave, the processor checks whether 
that target linear address is canonical, generating a general-protection exception 
(#GP) if it is not. If 4-level paging is active, it must be 48-bit canonical; if 5-level 
paging is active, it need only be 57-bit canonical.

As noted in Section 2.7, executions of BNDLDX and BNDSTX in a 64-bit enclave always 
operate as if MAWAU = 0.
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3 Linear-Address Expansion and 
VMX Transitions

As noted in Section 1.2, VM entries and VM exits manipulate numerous processor 
registers that contain linear addresses. The transitions respect the processor’s linear-
address width in a manner based on canonicality.

As discussed in Chapter 2, processors that support 5-level paging expand the linear-
address width from 48 bits to 57 bits. That expansion changes the operation of VMX 
transitions. Changes to VM entries are detailed in Section 3.1, while changes to 
VM exits are given in Section 3.2.

3.1 Linear-Address Expansion and VM Entries
Certain fields in the VMCS correspond to registers that contain linear addresses. 
VM entries confirm those fields contain values that are canonical. This checking is 
based on the linear-address width supported by the processor (e.g., is based on 57-bit 
canonicality if the processor supports 5-level paging). The following are the fields to 
which this applies.

• In the host-state area:

— The fields for the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs.
— The base-address fields for FS, GS, TR, GDTR, and IDTR.

• In the guest-state area:

— The fields for the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs.
— The base-address fields for FS, GS, TR, GDTR, and IDTR.
— The base-address field for LDTR (if LDTR will be usable).
— The field for the IA32_BNDCFGS MSR (if VM entry is loading that MSR).

A VM entry to 64-bit mode also performs a check on the RIP field in the guest-state 
area of the current VMCS. If the VM entry would result in 4-level paging, it checks that 
bits 63:48 of the guest RIP field are identical; if it would result in 5-level paging, that 
check is on bits 63:57.1

3.2 Linear-Address Expansion and VM Exits
VM exits save the state of certain registers into the guest-state area of the VMCS. 
Some of these registers contain linear addresses. As discussed in Section 1.1, the CPU 
generally ensures that the values in these registers respect the CPU’s linear-address 
width. As a result, the values the VM exits save for these registers will do the same.

1. Note that these checks do not confirm that the guest RIP field is canonical relative to the paging 
mode being entered. For example, bits 63:47 are identical in a 48-bit canonical address. However, 
VM entry to 4-level paging may load RIP with a value in which bit 47 differs from that of 
bits 63:48.
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There is a special case for LDTR base address. If LDTR was not usable at the time of a 
VM exit, the value saved for the base address is undefined. However, this undefined 
value is always 48-bit canonical on processors that do not support 5-level paging and is 
always 57-bit canonical on processors that do support 5-level paging.

VM exits load the state of certain registers from the host-state area of the VMCS. Some 
of these registers contain linear addresses. Each VM exit ensures that the value of each 
of the following registers is canonical: the IA32_SYSENTER_EIP and 
IA32_SYSENTER_ESP MSRs; and the base addresses for FS, GS, TR, GDTR, and IDTR. 
How this is done depends on whether the processor supports 5-level paging.

• If the processor does not support 5-level paging, bits 47:0 of the register are 
loaded from the field in the host-state area; the value of bit 47 is then sign-
extended into bits 63:48 of the register.

• If the processor does support 5-level paging, bits 56:0 of the register are loaded 
from the field in the host-state area; the value of bit 56 is then sign-extended into 
bits 63:57 of the register.

Again, there is a special case for LDTR. LDTR is always unusable after a VM exit. Its 
base address may be loaded with an undefined value. This undefined value is always 
48-bit canonical on processors that do not support 5-level paging and is always 57-bit 
canonical on processors that do support 5-level paging.
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4 5-Level EPT

5-level EPT is a new mode for EPT. As its name suggests, it will translate guest-
physical addresses by traversing a 5-level hierarchy of EPT paging structures. Because 
the process is otherwise unmodified, 5-level paging extends the processor’s guest-
physical-address width to 57 bits. (The additional 9 bits are used to select an entry 
from the fifth level of the hierarchy.) For clarity, the original EPT mode will now be 
called 4-level EPT.

The remainder of this chapter specifies architectural changes to 4-level EPT as well as 
those that define and are entailed by 5-level EPT. Section 4.1 describes how the 
expansion of the guest-physical-address width affects 4-level EPT. Section 4.2 specifies 
how the CPU enumerates 5-level EPT and how the feature is enabled by software. 
Section 4.3 details how 5-level EPT translates guest-physical addresses.

4.1 4-Level EPT: Guest-Physical-Address Limit
As explained in Section 1.3, 4-level EPT is limited to translating 48-bit guest-physical 
addresses.

This is not a problem on existing processors, because they limit the physical-address 
width to 46 bits (see Section 1.1). A processor’s physical-address width also limits 
guest-physical addresses. That means that, on existing processors, any attempt to use 
a guest-physical address that sets a bit above the low 48 bits will cause a page-fault 
exception (#PF).

Processors that support 5-level paging are expected to support 52 physical-address 
bits. Such processors allow use of a guest-physical address that sets bits in the range 
51:48; no #PF is generated.

A guest-physical address that sets bits in the range 51:48 cannot be translated by 4-
level EPT. An attempt to access such an address when 4-level EPT is active causes an 
EPT violation (see Section 1.3).

EPT violations generate information about the exception in a value called the exit 
qualification. In general, EPT violations caused by attempts to access a guest-physical 
address that is too wide establish the exit qualification as is currently done for other 
EPT violations. Exceptions are made for bits 6:3 of the exit qualification, which report 
the access rights for the guest-physical address. The new EPT violations always clear 
these bits.

4.2 5-Level EPT: Enumeration and Enabling
This section describes how processors enumerate to software support for 5-level EPT 
and how software enables the processor to use that support.

4.2.1 Enumeration
Processors supporting EPT enumerate details related to EPT in the 
IA32_VMX_EPT_VPID_CAP MSR (index 48CH). Currently, 
IA32_VMX_EPT_VPID_CAP[bit 6] enumerates support for 4-level EPT. Processors that 
also support 5-level EPT will enumerate that fact by also setting 
IA32_VMX_EPT_VPID_CAP[bit 7].
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The guest-physical-address width supported by a processor is not enumerated using 
the IA32_VMX_EPT_VPID_CAP MSR. This is because that width is always the same as 
the processor’s maximum physical-address width as enumerated by 
CPUID.80000008H:EAX[bits 7:0].

4.2.2 Enabling by Software
A VMM enables EPT by setting the “enable EPT” VM-execution control in the current 
VMCS before using the VMCS for VM entry.

Specific details of EPT operation are determined by the extended-page-table pointer 
field (EPTP) in the VMCS. In particular, EPTP[bits 5:3] contain a value that is 1 less than 
the number of levels used by the EPT. On existing processors, this value must be 3, 
indicating 4-level EPT. (VM entry fails if a different value is used.) Processors that also 
support 5-level EPT will also allow the value 4 (indicating 5-level EPT).

In summary, VM entry on a processor that supports 5-level check EPTP[bits 5:3]. If the 
value is 3, the VM entry activates 4-level EPT. If the value is 4, the VM entry activates 
5-level EPT. With any other value, VM entry fails.

4.3 5-Level EPT: Guest-Physical-Address Translation
Like 4-level EPT, 5-level EPT translates guest-physical addresses using a hierarchy of 
in-memory paging structures. Because 5-level EPT increases the guest-physical-
address width to 57 bits (from the 48 bits supported by 4-level EPT), 5-level EPT allows 
up to 128 PBytes of guest-physical-address space to be accessed at any given time.

The following items describe in more detail the changes that 5-level EPT makes to the 
translation process.

• Translation begins by identifying a 4-KByte naturally aligned EPT PML5 table. It is 
located at the physical address specified in bits 51:12 of EPTP. An EPT PML5 table 
comprises 512 64-bit entries (EPT PML5Es). An EPT PML5E is selected using the 
physical address defined as follows.

— Bits 63:52 are all 0.
— Bits 51:12 are from EPTP.
— Bits 11:3 are bits 56:48 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PML5E is identified using bits 56:48 of the guest-physical address, it 
controls access to a 256-TByte region of the linear-address space. The format of an EPT 
PML5E is given in Table 4-1.

Table 4-1. Format of an EPT PML5 Entry (EPT PML5E)

Bit Position(s) Contents

0 Read access; indicates whether reads are allowed from the 256-TByte region controlled by 
this entry.

1 Write access; indicates whether writes are allowed from the 256-TByte region controlled by 
this entry.

2 If the “mode-based execute control for EPT” VM-execution control is 0, execute access; 
indicates whether instruction fetches are allowed from the 256-TByte region controlled by 
this entry.
If that control is 1, execute access for supervisor-mode linear addresses; indicates whether 
instruction fetches are allowed from supervisor-mode linear addresses in the 256-TByte 
region controlled by this entry.



Document Number: 335252-001, Revision: 1.0 21

• The next step of the translation process identifies a 4-KByte naturally aligned EPT 
PML4 table. It is located at the physical address specified in bits 51:12 of the EPT 
PML5E (see Table 4-1). An EPT PML4 table comprises 512 64-bit entries (EPT 
PML4Es). An EPT PML4E is selected using the physical address defined as follows.

— Bits 51:12 are from the EPT PML5E.
— Bits 11:3 are bits 47:39 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PML4E is identified using bits 56:39 of the guest-physical address, 
it controls access to a 512-GByte region of the guest-physical-address space.

Once the EPT PML4E is identified, bits 38:0 of the guest-physical address determine the 
remainder of the translation process exactly as is done for 4-level EPT. As suggested in 
Table 4-1, the values of bits 2:0 and bit 10 of the EPT PML5E are used normally (in 
combination with the corresponding bits in other EPT paging-structure entries) to 
determine whether EPT violations occur. The accessed flag (bit 8) in the EPT PML5E is 
updated as is done for other EPT paging-structure entries.

4.4 5-Level EPT and EPTP Switching
The value of EPTP may be modified in VMX non-root operation by invoking 
VM function 0 (EPTP switching). This is done by executing the VMFUNC instruction with 
value 0 in the EAX register. Invocation of VM function 0 loads EPTP with a value 
selected from a data structure in memory.

Before loading EPTP in this way, the processor first confirms that the value to be loaded 
is valid. The definition of a valid EPTP value depends on whether the processor supports 
5-level EPT.

• If the processor does not support 5-level EPT, an EPTP value in memory is 
considered valid if it would not cause VM entry to fail (e.g., it does not set any 
reserved bits).

• If the processor does support 5-level EPT, an EPTP value in memory is considered 
valid only if it would not cause VM entry to fail (as above) and if its value in 
bits 5:3 (which controls the number of EPT levels) is the same as that of the 
current value of EPTP.

The implication is that an invocation of VM function 0 cannot change the EPT mode 
between 4-level EPT and 5-level EPT.

7:3 Reserved (must be 0).

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 
256-TByte region controlled by this entry. Ignored if bit 6 of EPTP is 0.

9 Ignored.

10 Execute access for user-mode linear addresses. If the “mode-based execute control for 
EPT” VM-execution control is 1, indicates whether instruction fetches are allowed from user-
mode linear addresses in the 256-TByte region controlled by this entry. If that control is 0, 
this bit is ignored.

11 Ignored.

M–1:12 Physical address of 4-KByte aligned EPT PML4 table referenced by this entry.

51:M Reserved (must be 0).

63:52 Ignored.

Table 4-1. Format of an EPT PML5 Entry (EPT PML5E) (Continued)

Bit Position(s) Contents
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5 Intel® Virtualization 
Technology for Directed I/O

Intel® Virtualization Technology for Directed I/O includes a feature called DMA 
remapping.

DMA remapping provides hardware support for isolation of device accesses to memory. 
When a device attempts to access system memory, DMA-remapping hardware 
intercepts the access and utilizes paging structures to determine whether the access 
can be permitted; it also determines the actual location to access.

The DMA-remapping hardware may support two levels of address translation. One level 
may translate a linear address to a guest-physical address, while a second level may 
remap the guest-physical address to physical address.

The first-level translation uses paging structures with the same format as those used 
for ordinary paging. The second-level translation uses paging structures with the same 
format as those used for EPT.

It is expected that, on platforms that support wider linear and guest-physical addresses 
(using 5-level paging and 5-level EPT, respectively), the DMA-remapping hardware will 
be similarly enhanced to support those wider addresses with 5-level translation 
processes.

This enhanced support for DMA remapping will be detailed in a future revision of the 
Intel® Virtualization Technology for Directed I/O Architecture Specification.
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