
' •• : l -

intel. AP-485

APPLICATION
NOTE

3-342

Intel Processor Identification
with the CPUID Instruction

November 1993

Order Number: 241618-001

,,., - > <M "°I' y-,(-, ... I' ,,.. ' l

Intel Processor Identification with the CPUID Instruction

CONTENTS PAGE CONTENTS PAGE

1.0 BACKGROUND . . . , 3-344

2.0 DETECTING THE CPUID
INSTRUCTION 3-344

3.0 OUTPUTS OF THE CPUID
INSTRUCTION 3-344

3.1 String 3-344

3.2 CPU Signature 3-344

3.3 Feature Flags 3-347

4.0 USAGE GUIDELINES 3-347

5.0 PROPER IDENTIFICATION
SEQUENCE 3-347

I

EXAMPLES
Example 1. CPUID Identification

Procedure 3-349

FIGURES
Figure 1. CPUID Instruction

Outputs 3-345

Figure 2. CPU Signature Format on
lntel386™ Processors 3-346

Figure 3. Flow of GET _CPUID
Procedure 3-348

TABLES
Table 1. Effects of EAX Contents on

CPUID 3-345

Table2 . lntel486™ and Pentium™
Processor Signatures 3-346

Table3. lntel386™ CPU
Signatures 3-346

Table4. Feature Flag Values 3-347

3-343

AP-485

1.0 BACKGROUND

As new generations and new models of processors have
been added to the Intel X86 architecture (8086, 8088,
Intel 286, Intel386™, Intel486™, and Pentium™
processors), Intel has provided increasingly sophisticat­
ed methods to software for identifying the features
available on the processor.

• First , Intel started publishing code sequences that
identify processor generation by deteeting minor dif­
ferences of implementation.

• Later, with the advent of the Intel386 processor, In­
tel started providing the CPU signature (family,
model, and stepping numbers) to software at reset.

• Ultimately, Intel has extended the X86 architecture
with the CPUID instruction . The CPUID instruc­
tion not only provides the CPU signature but also
provides information about the features supported
by the processor.

This latest step is necessary because the computing
market is demanding processor models within a given
processor generation that have differing sets of features.
Anticipating that this trend will continue with future
processor generations, Intel has made the CPUID in­
struction extensible.

The purpose of this Application Note is to show how to
use the CPUID instruction in such a way that software
can execute compatibly on the widest possible range of
Intel X86 generations and models, past, present, and
future.

2.0 DETECTING THE CPUID
INSTRUCTION

Intel has provided a straightforward method for detect­
ing whether the CPUID instruction is available. This
method uses the ID flag in bit 21 of the EFLAGS regis­
ter. If software can change the value of this flag, the
CPUID instruction is available. The program example
in Section 5.0 shows how to use the PUSHFD instruc­
tion to read and the POPFD instruction to change the
value of the ID flag.

3.0 OUTPUTS OF THE CPUID
INSTRUCTION

Figure I summarizes the outputs of CPUID .

The CPUID instruction can be executed multiple
times, each time with a different parameter in the EAX
register. The outputs depend on the value of EAX, as

3-344

:,.;.· .. ,

Table 1 specifies. To determine the highest acceptable
value of the EAX parameter, the program should set
EAX to zero. In this case, CPUID returns to EAX the
value of the highest parameter that it recognizes. No
execution of CPUID should use a parameter greater
than this highest value. Although this highest value is I
for the first model of the Pentium processor, it might be
different for future processor models.

3.1 Vendor-ID String

The vendor identification string is stored in the regis­
ters EBX, EDX, and ECX in such a way that, when the
contents of these registers are stored in memory in adjac
cent locations (EBX at the lowest address, ECX at the
highest), the byte string "Genuineintel" appears in
memory.

While any imitator of the X86 architecture can provide
the CPUID instruction, no imitator can legitimately
claim that its part is a genuine Intel part . Therefore, the
presence of the "Genuineintel" string is an assurance
that the CPUID instruction and the CPU signature are
implemented as described in this document.

3.2 CPU Signature

Beginning with the Intel386 processor, the CPU signa­
ture has been available at reset. With processors that
implement the CPU ID instruction, the CPU signature
is made available both by reset and by the CPUID in­
struction . Figure I shows the format of the signature on
the Intel486 processor, Pentium processor, and later
processor generations; Table 2 shows the values that
are currently defined. (The high-order 20 bits are unde­
fined and reserved.)

On Inte1386 processors, the format of the CPU signa­
ture is somewhat different, as Figure 2 shows. Table 3
gives the currently possible values.

Regardless of signature format, the MODEL and
FAMILY fields are significant only in processors that
do not implement the CPUID instruction.

The STEPPING fields help software deal with errata .
Intel releases information about errata and related step­
ping numbers as needed.

AP-485

OUTPUT IF EAX = 0

HIGH VALUE

31 '23 IS

EBX u 75 n 6E e 65 G 47
VENDOR ID EDX I 49 e 65 n 6E 69

ECX I 6C e 65 74 n 6E
STRING (WITH HEX ENCODING)

RESET

OUTPUT IF EAX = 1
EDX

CPU SIGNATURE EAX

FAMILY

MODEL

STEPPING

t 1
FEATUREFLAGS EDX

Figure 1. CPUID Instruction Outputs

Table 1. Effects of EAX Contents on CPUID

Parameter Outputs of CPUID

EAX = 0 EAX +- highest value

EBX:EDX:ECX +- Vendor Identification String

EAX = 1 EAX +- CPU signature

EDX +- Feature flags

1 < EAX highest value Might be defined in future processor models

EAX > highest value Undefined

241618-1

3-345

AP-485

3-346

Table 2. lntel486™ and Pentium™ Processor Signatures

Family Model Stepping& Description

0100 0000 and 0001 xxxx lntel486 DX Processor

0100 0010 xxxx lntel486 SX Processor

0100 0011 xxxx lntel487™ Processor

0100 0011 xxxx lntel486 DX2 Processor

0100 0100 xxxx lntel486 SL Processor

0100 0101 xxxx lntel486 SX2 Processor

0101 0001 xxxx Pentium Processor

a1ntel releases information about stepping numbers as needed .

31 IS 11

RESET------ DX

Model

0000

0010

0011

0100

MODEL __j t FAMILY
MINOR STEPPING

MAJOR STEPPING

Figure 2. CPU. Signature Format on lntel386™ Processors

Table 3. lntel386™ CPU Signatures

Family
Major Minor

Description
Stepping Steppinga·

1

0011 0000 xxxx lntel386 DX Processor

0011 0000 xxxx lntel386 SX Processor

0011 0000 xxxx Intel 376 Processor

0011 0000 xxxx lntel386 SL Processor

r

0100 0011 0001 xxxx lntel386 SL Processor (8-step)

0000 0011 0100 xxxx RapidCAD™ Processor

a1ntel releases information about minor stepping numbers as needed .

241618-2

3.3 Feature Flags

The CPUID instruction sets the feature register, EDX,
to indicate which features the processor supports . Each
set feature flag can indicate either that a feature is pres­
ent or that a feature is not present. Refer to Table 4 for
the meanings of the feature flags that are currently de­
fined. For each future processor generation or model,
refer to the programmer's reference manual , user 's
manual, or equivalent documentation for additional
definitions.

Software executing on a processor that supports the
CPUID instruction should use the feature flags instead
of the model and family to determine what features are
present. Doing so helps make software immune to in­
compatibilities that might arise from the release of an
additional model that has a feature set different than
that of.the model for which the software was designed.

Table 4. Feature Flag Values

Bit Abbrevla-
Position tlon Meaning When Flag = 1

0 FPU Floating-point unit on-chip

1-Ga (see note) (see note)

7 MCE Machine-check exception present

8 cxa CMPXCHG88 instruction present

9-31a (see note) (see note)

asome non-essential information regarding the Pentium
processor is considered Intel confidential and proprietary
and has not been documented in this publication. This in­
formation is provided in the Supplement to the PentiumTM
Processor User 's Manual and is available with the appropri­
ate non-disclosure agreements in place. Contact Intel Cor­
poration for details.

4.0 USAGE GUIDELINES

This docum ent presents straightforward -feature-detec­
tion methods . Software should not try to identify fea­
tures by exploiting programming tricks, "undocument­
ed features," or otherwise deviating from the intent of
this document. The following list gives some tips that
can help programmers maintain the widest range of
compatibility for their software .

• Do not depend on the absence of an invalid opcode
trap on the CPUID opcode to detect CPUID . Do
not depend on the absence of an invalid opcode trap
on the PUSHFD opcode to detect a 32-bit proces­
sor . Test the ID flag, as described in Section 2.0 and
shown in Section 5.0 .

• Do not assume that a given family or model has any
specific feature . For example, do not assume that,
because FAMILY = 5 (-Pentium processor), there
must be a floating -point unit on-chip . Use the fea­
ture flags for this determination .

AP-485

• Do not assume that the existence of the CPUID in­
struction implies a Pentium processor or later gener­
ation CPU. Future versions of the Intel486 micro­
processor may also include the CPUID instruction.

• Do not use undocumented features of a CPU to
identify steppings or features. For example, the In­
tel386 CPU A-step had bit instructions that were
withdrawn with B-step. Some software attempted to
execute these instructions and depended on the in­
valid-opcode exception as a signal that it was not
running on the A-step part. This software failed to
work correctly when the Intel486 CPU used the
same opcodes for different instructions. That soft­
ware should have used the stepping information in
the CPU signature.

• Do not assume that a value of 1 in a feature flag
indicates that a given feature is present, even though
that is the case in the first model of the Pentium
processor . For some feature flags that might be de­
fined in the future, a value of 1 can indicate that the
corresponding feature is not present.

• Programmers should be careful to test feature flags
individually and not make assumptions about irrele­
vant bits. It would be a mistake, for example, to test
the FPU bit by comparing the feature register to I
with a compare instruction.

• Do not assume that the clock of a given family or
model runs at a specific speed. In particular, do not
write clock-dependent code, such as timing loops.
An upgrade processor can run at a faster speed,
while reporting the same family and model. For an
example, refer to the Intel487 and Intel486DX proc­
essors in Table 2. These processors have different
clock speeds, even though they have the same family
and model numbers. Use the systems timers for
measuring time.

5.0 PROPER IDENTIFICATION
SEQUENCE

The following program example concludes this docu­
ment by showing correct usage of the CPUID instruc­
tion. It also shows how to identify earlier processor
generations that implement neither the CPU signature
nor the CPUID instruction. This program contains
three procedures :

I. get_cpuid which identifies the type of CPU. Figure
3 shows the flow of this procedure .

2. check_fpu which determin es what type of floating­
point unit (FPU) or math coprocessor (MCP) is
present.

3. print which uses DOS function calls to display the
results of the other procedures on the monitor of a
PC. This procedure can be omitted or modified to
execute with other operating systems.

This procedure has been tested with 8086, 80286, In­
tel386, Intel486, and Pentium processors .

3-347

AP-485

No

3-348

Yes

Yes

Yes

Yes

cpu_type=O

cpu_type=2

cpu_type=3

id_flag = 1; indicates CPUID
instruction present .

·execute CPUID with input of
Oto get vendor ID string and

input values for EAX.

end_get_cpuid

If highest input value is at least
1, execute CPUID with input of

1 in EAX to obtain model ,
stepping, family, and features.

Save in cpu _type , stepping ,
model , and feature_flags.

Figure 3. Flow of GET.CPUID Procedure

241616-3

.... .. ' .

Filename: cpuid32.msm

This program has been developed by Intel Corporation. You have
Intel's permission to incorporate this source code into your
product royalty free.

Intel specifically disclaims all warranties, express or implied,
and all liability, including consequential and other indirect
damages, for the use of this code, including liability for
infringement of any proprietary rights. Intel does not assume
any responsibility for any errors which may appear in this code
nor any responsibility to update it.

This program contains three parts:
Part 1: Identifies CPU type in the variable cpu_type:

0=8086 processor
2=Intel 286 processor
3=Intel386(TM) processor
4:Intel486(TM) processor
5=Pentium(TM) processor

Part 2: Identifies FPU type in the variable fpu_type:
O=FPU not present
l=FPU present
2=287 present (only if cpu_type=3l
3:387 present (only if cpu_type:3)

Part 3: Prints out the appropriate message. This part can
be removed if this program is not used in a DOS-based
system. Portions affected are at the end of the
data segment and the print procedure in the code
segment.

This program was assembled with Microsoft's Assembler MASM 6.0.
While this program mostly uses 16-bit operands, some 32-bit
operands are required to check the 32-bit EFLAGS register once
it has been determined that the processor is a least an
Intel386 processor. 32-bit operations are invoked by using
the macro OPND32.

TITLE
DOSSEG
.model
.stack
.186

CPU ID

small
lOOh

The OPND32 macro takes either zero or two parameters.
With zero parameters, it generates the 32-bit operand-size prefix.
With two parameters, it generates the 32-bit operand-size prefix,
followed by an opcode and a 32-bit immediate value. These parameters
are used to generate XOR AX,imm32 instructions.

Example 1. CPU Identification Procedure

AP-485

3-349

AP-485

OPND32 MACRO op_code, op_erand
db 66h Force 32-bit operand size

IFNB < op_code >
db op_code Optional opcode

IFNB < op_erand >
dd op_erand Optional 32-bit immediate value

END IF
END IF

ENDM

CPUID MACRO
db Ofh Opcode for CPUID instruction
db Oa2h

ENDM

TRUE equ l
FAMILLMASK equ OfOOh
FAMILLSHIFT equ 8
MODEL_MASK equ Of Oh
MODEL_ SHIFT equ 4
STEPPING_MASK equ Ofh
FPU_FLAG equ lh
MCE_FLAG equ 80h
CMPXCHG8B_FLAG equ lOOh

.data
fp_status dw ?
vendor_id db 12 dup ('?)
cpu_type db 'i'
model db ?
stepping db ?
id_ flag db 0
fpu_type db 0
intel_proc db 0
feature_flags dw 2 dup (0)

Remove the remaining data declarations if not using the DOS-based
print procedure

id_msg
fp_8087
fp_80287
fp_80387
c8086
c286
c386
c486
c486nfp
Intel486_msg

Pentium_msg

modelmsg
steppingmsg

3-350

db "This system has a$"
db • and an 8087 math coprocessor$"
db • and an 80287 math coprocessor$"
db • and an 80387 math coprocessor$"
db •n 8086/8088 processor$"
db •n 80286 processor$"
db •n 80386 processor$"
db •n 80486 DX processor or 80487 SX math coprocessor$"
db •n 80486 SX processor$"
db 13,10,"This system contains a Genuine •
db "Intel486(TM) processor",13,10,"$"
db 13,10,"This system contains a Genuine •
db "Intel Pentium(TM) processor",13,10,"$"
db "Model: $"
db "Stepping: $"

Example 1. CPU Identification Procedure (Continued)

' .

I• n+ -• AP-485 'el®

familymsg db 13,10,"Processor Family: $"
".",13,10,"$" period db

data CR db ?,13,10,"$"
inteLid db "Genuineintel"
fpu_msg db
mce_msg db

db
cmp_msg db

db

13,10,"This processor contains a FPU",13,10,•$•
"This processor supports the •
"Machine Check Exception",13,10,"$"
"This processor supports the •
"CMPXCHG8B instruction",13,10,"$"

not_intel db •t least an 80486 processor.",13,10

start:

db
db
db

"It does not contain a Genuine Intel part and as a •
•result,",13,10,"the CPUID detection information•
"cannot be determined at this time.",13,10,"$"

This code identifies the processor and coprocessor
that are currently in the system. The program first
determines the processor id. When that is accomplished,
the program then determines whether a coprocessor
exists in the system. If a coprocessor or integrated
coprocessor exists, the program identifies
the coprocessor id. The program then prints out
the CPU and floating point presence and type •

• code
mov
mov
mov
pushf
call
call
call
po pf
mov
int

ax, @data
ds, ax
es, ax

get_cpuid
get_fpuid
print

ax, 4cOOh
2lh

set segment register
set segment register
save for restoration at end

terminate program

get_cpuid proc

This procedure determines the type of CPU in a system
and sets the cpu_type variable with the appropriate value.
All registers are used by this procedure, none are preserved.

Intel 8086 CPU check
Bits 12-15 of the FLAGS register are always set on the
8086 processor.

Example 1. CPU Identification Procedure (Continued)

3-351

AP-485

check_8086:
pushf push original FLAGS
pop ax get original FLAGS
mov ex, ax save original FLAGS
and ax, Offfh clear bits 12-15 in FLAGS
push ax save new FLAGS value on stack
po pf replace current FLAGS value
pushf get new FLAGS
pop ax store new FLAGS in AX
and ax, OfOOOh if bits 12-15 are set, then CPU
cmp ax, OfOOOh is an 8086/8088
mov cpu_type, O turn on 8086/8088 flag
je end_get_cpuid jump if CPU is 8086/8088

Intel 286 CPU check
Bits 12-15 of the FLAGS register are always clear on the
Intel 286 processor in real-address mode.

check_80286:
or
push
po pf
pushf
pop
and
mov
jz

ex, OfOOOh
ex

ax
ax, OfOOOh
cpu_type, 2
end_get_cpuid

Intel386 CPU check

try to set bits 12-15
save new FLAGS value on stack
replace current FLAGS value
get new FLAGS
store new FLAGS in AX
if bits 12-15 clear, CPU=80286
turn on 80286 flag
if no bits set, CPU is 80286

The AC bit, bit #18, is a new bit introduced in the EFLAGS
register on the Intel486 DX CPU to generate alignment faults.
This bit cannot be set on the Intel386 CPU.

check_80386:

3-352

It is now safe to use 32-bit opcode/operands
mov bx, sp
and sp, not 3
OPND32
pushf
OPND32
pop ax
OPND32
mov ex, ax
OPND32 35h, 40000h
OPND32
push ax
OPND32
po pf
OPND32
pushf
OPND32
pop ax
OPND32
xor ax, ex
mov cpu_type, 3
mov sp, bx
jz end_get_cpuid
and sp, not 3

save current stack pointer to align
align stack to avoid AC fault

push original EFLAGS

get original EFLAGS

save original EFLAGS
flip (XOR) AC bit in EFLAGS

save new EFLAGS value on stack

replace current EFLAGS value

get new EFLAGS

store new EFLAGS in EAX

can't toggle AC bit, CPU=80386
turn on 80386 CPU flag
restore original stack pointer
jump if 80386 CPU
align stack to avoid AC fault

Example 1. CPU Identification Procedure (Continued)

OPND32
push ex
OPND32
popf restore AC bit in EFLAGS first
mov Sp, bx restore original stack pointer

Intel486 DX CPU, Intel487 SX NDP, and Intel486 SX CPU check
Checking for ability to set/clear ID flag (Bit 21) i _n EFLAGS
which indicates the presence of a processor
with the ability to use the CPUID instruction.

check_80486:
mov cpu_type, 4
OPND32
mov ax, ex
OPND32 35h, 200000h
OPND32
push ax
OPND32
po pf
OPND32
pushf
OPND32
pop ax
OPND32
xor ax, ex
je end_get_cpuid

turn on 80486 CPU flag

get original EFLAGS
flip (XOR) ID bit in EFLAGS

save new EFLAGS value on stack

replace current EFLAGS value

get new EFLAGS

store new EFLAGS in EAX

can't toggle ID bit,
CPU=80486'

Execute CPUID instruction to determine vendor, family,
model and stepping.

check_vendor:

compare:

mov id_flag, 1
OPND32
xor ax, ax
CPU ID
OPND32

set flag indicating use of CPUID inst.

set up input for CPUID instruction
macro for CPUID instruction

mov word ptr vendor_id, bx ; setup to test for vendor id
OPND32
mov word ptr vendor_id[+4], dx
OPND32
mov word ptr vendor_id[+8], ex
mov si, offset vendor_id
mov di, offset intel_id
mov ex, length intel_id

repe
or
jnz

cmpsb
ex, ex
end_get_cpuid

compare vendor id to "Genuineintel"

if not zero, not an Intel CPU,

intel_processor:
mov intel_proc, 1

Example 1. CPU Identification Procedure (Continued)

AP-485

3-353

:Wk "' • .• "'"-••=•

AP-485

cpuid_data:
OPND32
cmp ax, 1

jl end_get_cpuid
OPND32
xor ax, ax
OPND32
inc ax
CPU ID
mov stepping, al

make sure 1 is a valid input
value for CPUID
if not, jump to end

otherwise ', use as input to CPUID

and get stepping, model and family

and stepping, STEPPING_MASK isolate stepping info
and al, MODEL_MASK ; isolate model info
shr al, MODEL_SHIFT
mov model, al

and ax, FAMILY_MASK mask everything but family
shr ax, FAMILY_SHIFT
mov cpu_type, al set cpu_type with family

OPND32
mov feature_flags, save feature flag data

end_get_cpuid:
ret

get_cpuid endp

:**

get_fpuid proc

3-354

This procedure determines the type of FPU in a system
and sets the fpu_type variable with the appropriate value,
All registers are used by this procedure, none are preserved.

Coprocessor check
The algorithm is to determine whether the floating-point
status and control words can be written to. If not, no
coprocessor exists. If the status and control words can be
written to, the correct coprocessor is then determined
depending on the processor id. The Intel386 CPU can
work with either an Intel287 NDP or an Intel387 NDP.
The infinity of the coprocessor must be
checked to determine the correct coprocessor id.

fninit
mov

fnstsw
mov
cmp

mov
jne

fp_status, 5a5ah;

fp_status
ax, fp_status
al, O

fpu_type, 0
end_get_fpuid

reset FP status word
initialize temp word to
non-zero value
save FP status word
check FP status word
see if correct status with
written
no fpu present

Example 1. CPU Identification Procedure (Continued)

check_control_word:
fnstcw fp_status
mov ax, fp_status
and ax, 103fh

cmp ax, 3fh

mov fpu_type, 0
jne end_get_fpuid
mov fpu_type, 1

I

save FP control word
check FP control word
see if selected parts
looks OK
check that l's 8c _o's
correctly read

80287/80387 check for the Intel386 CPU

check_infinity:
cmp
jne
fldl
fl dz
fdiv
fld
fchs
fcompp
fstsw
mov
mov
sahf
jz
mov

end_get_fpuid:
ret

get_fpuid endp

cpu_type, 3
end_get_fpuid

st

fp_status
ax, fp_status
fpu_type, 2

end_get_fpuid
fpu_type, 3

must use default control from FNINIT
form infinity
8087 and Intel287 NDP say +inf = -inf
form negative infinity
Intel387 NDP says +inf < > -inf
see if they are the same and remove them
look at status from FCOMPP

store Intel287 NDP for fpu type
see if infinities matched
jump if 8087 or Intel287 is present
store Intel387 1NDP for fpu type

•*** '
print proc

This procedure prints the appropriate cpuid string and
numeric processor presence status. If the CPUID instruction
was supported, this procedure prints out cpuid info.
All registers are used by this procedure, none are preserved.

cmp id_flag, 1 if set to 1, cpu supports
CPUID instruction

print detailed CPUID information
je print_cpuid_data
mov dx, offset id_msg print initial message
mov ah, 9h
int 2lh

print_86:
cmp cpu_type, 0

Example 1. CPU Identification Procedure (Continued)

3-355

AP-485

jne print_286
mov dx, offset c8086
mov ah, 9h
int 2lh
c,mp fpu_type, 0
je end_print
mov dx, offset fp_8087

,, mov ah, 9h
int 2lh
jmp end_print

print_286:
cmp cpu_type, 2
jne print_386
mov dx, offset c286
mov ah, 9h
int 2lh
cmp fpu_type, 0
je end_print
mov dx, offset fp_80287
mov ah, 9h
int 2lh
jmp end_print

print_386:
cmp cpu_type, 3
jne print_486
mov dx, offset c386
mov ah, 9h
int 2lh
cmp fpu_type, 0
je end_print
cmp fpu_type, 2
jne print_387
mov dx, offset fp_80287
mov ah, 9h
int 2lh
jmp end_print

print_387:
mov dx, offset fp_80387
mov ah, 9h
int 2lh
jmp end_print

print_486:
cmp fpu_type, 0
je print_Intel486sx
mov dx, offset c486
mov ah, 9h
int 2lh
jmp end_print

print_Intel486sx:
mov dx, offset c486nfp
mov ah, 9h
int 2lh
jmp end_print

Example 1. CPU Identification Procedure (Continued)

3-356

- t-' , 1_")! ,,

print_cpuid_data:

cmp_vendor:
cmp
jne

cmp

intel_proc, l
not_Genuineintel

cpu_type, 4

jne check_Pentium
mov dx, offset Intel486_msg
mov ah, 9h
int 2lh
jmp print_family

check_Pentium:
cmp
jne
mov
mov
int

print_family:
mov
mov
int
mov
mov
add
mov
mov
int

print_model:
mov
mov
int
mov
mov
add
mov
mov
int

print_stepping:
mov
mov
int
mov
mov
add
mov
mov
int

print_features:
mov
and

cpu_type, 5
print_features
dx, offset Pentium_msg
ah, 9h
2lh

dx, offset familymsg
ah, 9h
2lh
al, cpu_type
byte ptr dataCR, al
byte ptr dataCR, 30h
dx, offset dataCR
ah, 9h
2lh

dx, offset modelmsg
ah, 9h
2lh
al, model
byte ptr dataCR, al
byte ptr dataCR, 30h
dx, offset dataCR
ah, 9h
2lh

dx, offset steppingmsg
ah, 9h
2lh
al, stepping
byte ptr dataCR , al
byte ptr dataCR, 30h
dx, offset dataCR
ah, 9h
2lh

ax, feature_flags
ax, FPU_FLAG

if cpu_type:4, print
Intel486 CPU message

if cpu_type=5, print
Pentium processor message

print family msg

convert to ASCII
print family info

print model msg

convert to ASCII
print model info

print stepping msg

convert to ASCII
print stepping info

; check for FPU

Example 1. CPU Identification Procedure (Continued)

AP-485

3-357

AP-485

jz check_MCE
mov dx, offset fpu_msg
mov ah, 9h
int 2lh

check_MCE:
mov
and
jz

ax, feature_flags
ax, MCE_FLAG
check_CMPXCHGBB

mov dx, offset mce_msg
mov ah, 9h
int 2lh

check_CMPXCHGBB:
mov
and
jz
mov
mov
int
jmp

ax, feature_flags
ax, CMPXCHGSB_FLAG
end_print
dx, offset cmp_msg
ah, 9h
2lh
end_print

not_Genuinelntel:
mov dx, offset not_Intel
mov ah, 9h
int 2lh

end_print:

ret
print endp

end start

check for MCE

check for CMPXCHGBB

Example 1. CPU Identification Procedure (Continued)

3-358

