

AP-485

APPLICATION
NOTE

Intel Processor Identification
With the CPUID Instruction

December 1995

Order Number: 241618-004

AP-485

ii

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641
or call 1-800-879-4683

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever,
including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and
Conditions of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer products may
have minor variations to this specification, known as errata.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Since publication of documents referenced in this document, registration of the Pentium and iCOMP trademarks has been
issued to Intel Corporation.

* Other brands and names are the property of their respective owners.

Copyright © 1993 -1995, Intel Corporation. All rights reserved.

CG/042193.

Revision Revision His tory Date

-001 Original Issue. 05/93

-002 Modified Table 2. Intel486 and Pentium® Processor Signatures 10/93

-003 Updated to accommodate new processor versions. Program
examples modified for ease of use, section added discussing
BIOS recognition for OverDrive® processors, and feature flag
information updated.

09/94

-004 Updated with Pentium Pro and OverDrive processors information.
Modified Tables1, 3 and 5. Inserted Tables 6, 7 and 8. Inserted
Section 3.4. and 3.5.

12/95

iii

CONTENTS

AP-485

PAGE PAGE

1.0 INTRODUCTION ..1

1.1 Update Support1

2.0 DETECTING THE CPUID INSTRUCTION1

3.0 OUTPUTS OF THE CPUID INSTRUCTION...1

3.1 Vendor-ID String2
3.2 Processor Signature3
3.3 Feature Flags ..5
3.4 Cache Size and Format Information.......7
3.5 Example..8

4.0 USAGE GUIDELINES8

5.0 BIOS RECOGNITION FOR INTEL
OVERDRIVE® PROCESSORS9

6.0 PROPER IDENTIFICATION SEQUENCE....11

Examples

Example 1. Processor Identification Extraction
Procedure12

Example 2. Processor Identification Procedure
in Assembly Language18

Example 3. Processor Identification Procedure
in the C Language28

Figures

Figure 1. CPUID Instruction Outputs2

Figure 2. Processor Signature Format on
Intel386 Processors5

Figure 3. Flow of Processor get_cpu_type
Procedure ..10

Figure 4. Flow of Processor Identification Extrac-
tion Procedures11

Tables

Table 1. Effects of EAX Contents on CPUID
Instruction Output3

Table 2. Processor Type3

Table 3. Intel486 Pentium® Processor, and
Pentium Pro Processor Signatures........4

Table 4. Intel386 Processor Signatures5

Table 5. Feature Flag Values...............................6

Table 6. Descriptor Formats.................................7

Table 7. Descriptor Decode Values7

Table 8. Pentium Pro CPUID Return Values8

AP-485

1

1.0 INTRODUCTION

As the Intel Architecture evolves, with the
addition of new generations and models of pro-
cessors (8086, 8088, Intel 286, Intel386,
Intel486, Pentium® processors, and Pentium
Pro processors), it is essential for Intel to pro-
vide increasingly sophisticated means for soft-
ware to identify the features available on each
processor. This identification mechanism has
evolved in conjunction with the Intel Architec-
ture as follows:

• Originally, Intel published code sequences
that could detect minor implementation dif-
ferences to identify processor generations.

• Later, with the advent of the Intel386 pro-
cessor, Intel implemented processor signa-
ture identification, which provided the
processor family, model, and stepping num-
bers to software at reset.

• As the Intel Architecture evolved, Intel
extended the processor signature identifica-
t ion in to the CPUID instruct ion. The
CPUID instruction not only provides the
processor signature, but also provides
information about the features supported by
and implemented on the Intel processor.

The evolution of processor identification was
necessary because as the Intel Architecture pro-
liferates, the computing market must be able to
tune processor functionality across processor
generations and models that have differing sets
of features. Anticipating that this trend will
continue with future processor generations, the
Intel Architecture implementat ion of the
CPUID instruction is extensible.

This Application Note explains how to use the
CPUID instruction in software applications,
BIOS implementations, and tools. By taking
advantage of the CPUID instruction, software
developers can create software applications and
tools that can execute compatibly across the
widest range of Intel processor generations and
models, past, present, and future.

1.1 Update Support

You can obtain new Intel processor signature
and feature bits information from the user’s
manual, programmer’s reference manual or
appropriate documentation for a processor. In
addition, you can receive updated versions of
the programming examples included in this
application note; contact your Intel representa-
tive for more information.

2.0 DETECTING THE CPUID
INSTRUCTION

Intel provides a straightforward method for
detecting whether the CPUID instruction is
available. This method uses the ID flag in bit
21 of the EFLAGS register. If software can
change the value of th is f lag, the CPUID
instruction is available. The program examples
at the end of this Application Note show how
you use the PUSHFD instruction to read and
the POPFD instruction to change the value of
the ID flag.

3.0 OUTPUTS OF THE CPUID
INSTRUCTION

Figure 1 summarizes the outputs of the CPUID
instruction.

The CPUID instruction can be executed multi-
ple times, and each execution can have a differ-
ent parameter value in the EAX register. The
output depends on the value in the EAX regis-
ter, as specified in Table 1. If you want the
CPUID instruction to determine the highest
acceptable value in the EAX register, the pro-
gram should set the EAX register parameter
value to 0. Always use a parameter value that is
less than or equal to this highest returned value.

AP-485

2

3.1 Vendor-ID String

If the EAX register contains a value of 0, the
CPUID instruction returns the vendor identifi-
cation string in the EBX, EDX, and ECX regis-
ters. These registers contain the ASCII string
GenuineIntel .

While any imitator of the Intel Architecture can
provide the CPUID instruction, no imitator can
legitimately claim that its part is a genuine Intel
part. So the presence of the GenuineIntel
string is an assurance that the CPUID instruc-
tion and the processor signature are imple-
mented as described in this document.

RESET

FAMILY

MODEL

STEPPING

PROCESSOR

VENDOR ID

FEATURE FLAGS

EDX
EAX

G (47)n (6E)u (75)

i (69)n (6E)e (65)I (49)

n (6E)t (74)e (65)l (6C)

e (65)EBX

EDX

ECX

EDX*

0

0

31

31

23 15 7

BIT ARRAY (Refer to Table 5)

OUTPUT IF EAX = 1

OUTPUT IF EAX = 0

HIGH VALUE EAX

031

 ASCII STRING (WITH HEXADECIMAL ENCODING)

INTEGER

031 11 7 3

INTEL RESERVED (DO NOT USE)

Figure 1. CPUID Instruction Outputs

SIGNATURE

13

*EBX and ECX are Intel reserved. Do not use.

PROCESSOR TYPE

AP-485

3

Table 1. Effects of EAX Contents on CPUID Instruction Output

Parameter Outputs of CPUID

EAX = 0 EAX ← Highest value recognized

EBX:EDX:ECX ← Vendor identification string

EAX = 1 EAX ← Processor signature

EDX ← Feature flags

EBX:ECX ← Intel reserved (Do not use.)

EAX = 2 EAX:EBX:ECX:EDX ← Processor configuration parameters

3 ≤ EAX ≤ highest value Intel reserved

EAX > highest value EAX:EBX:ECX:EDX ← Undefined (Do not use.)

Table 2. Processor Type (Bit Pos itions 13 and 12)

Value Description

00 Original OEM processor

01 OverDrive® Processor

10 Dual processor

11 Intel reserved. (Do not use.)

3.2 Processor Signature

Beginning with the Intel386 processor family,
the processor can return a signature at reset.
Processors that implement the CPUID instruc-
tion return the processor signature when they
either run the CPUID instruction or at reset.
Figure 1 shows the format of the signature for
the Intel486 and Pentium processor families.
Table 3 shows the values currently defined for
these processors. (The high-order 18 bits are
undefined and reserved.)

The processor type, specified in bit positions 12
and 13, indicates whether the processor is an
original OEM processor, an OverDrive proces-
sor, or a dual processor (capable of being used
in a dual processor system). Table 2 shows the
processor type values returned in bits 12 and 13
of the EAX register.

The family values, specified in bit positions 8
through 11, indicates whether the processor
belongs to the Intel386, Intel486, Pentium or
Pentium Pro family of processors.

The model number, specified in bits 4 though
7, indicates the processor’s family model num-
ber, whi le the stepping number in bi ts 0
through 3 indicates the revision number of that
model.

Older versions of Intel486 SX, Intel486 DX
and IntelDX2 processors do not support the
CPUID instruction, so they can only return the
processor signature at reset. Refer to Table 3 to
determine which processors support the CPUID
instruction.

Figure 2 shows the format of the processor sig-
nature for Intel386 processors. Table 4 shows
the values currently defined for Intel386 pro-
cessors.

AP-485

4

1. Intel releases information about minor stepping numbers as needed.
2. This processor does not implement the CPUID instruction.

3. Refer to the Pentium Processor Specifications Update (Order number: 242480), or the Pentium Pro Specifications
Update (Order number: 242689) for the latest list of stepping numbers.

Table 3. Intel486, Pentium Processor, and Pentium Pro Processor Signatures

Type Family Model Stepping Description

00 0100 0000 and 0001 xxxx1 Intel486 DX Processors2

00 0100 0010 xxxx1 Intel486 SX Processors2

00 0100 0011 xxxx1 Intel487 Processors2

00 0100 0011 xxxx1 IntelDX2 Processors2

00 0100 0011 xxxx1 IntelDX2 OverDrive Processors

00 0100 0100 xxxx1 Intel486 SL Processor2

00 0100 0101 xxxx1 IntelSX2 Processors

00 0100 0111 xxxx1 Write-Back Enhanced IntelDX2 Processors

00 0100 1000 xxxx1 IntelDX4 Processors

00, 01 0100 1000 xxxx1 IntelDX4 OverDrive Processors

00 0101 0001 xxxx3 Pentium Processors (510\60, 567\66)

00 0101 0010 xxxx3 Pentium Processors (735\90, 815\100, 1110\133)

01 0101 0010 xxxx3 Pentium OverDrive Processor for Pentium Processor
(510\60, 567\66)

01 0101 0010 xxxx3 Pentium OverDrive Processor for Pentium Processor
(680\75, 735\90, 815\100, 1000\120, 1100\133)

01 0101 0011 xxxx3 Pentium OverDrive Processors for Intel486
CPU-based systems

01 0101 0100 xxxx3 Reserved for a future OverDrive processor for
Pentium Processor (680\75, 735\90, 815\100,
1000\120, 1110\133)

01 0101 0101 xxxx3 Pentium OverDrive Processor for IntelDX4
Processor

00 0110 0001 xxxx3 Pentium Pro Processor

01 0110 0011 xxxx Reserved for a future OverDrive Processor for
Pentium Pro Processor

AP-485

5

RESET EDX

15

FAMILY
MODEL

MAJOR STEPPING

031 11 7 3

RESERVED AND UNDEFINED

MINOR STEPPING

Figure 2. Processor Signature Format on Intel386 Processors

1. Intel releases information about minor stepping numbers as needed.

Table 4. Intel386 Processor Signatures

Model Family
Major
Stepping

Minor
Stepping 1 Description

0000 0011 0000 xxxx Intel386 DX Processor

0010 0011 0000 xxxx Intel386 SX Processor

0010 0011 0000 xxxx Intel386 CX Processor

0010 0011 0000 xxxx Intel386 EX Processor

0100 0011 0000 and 0001 xxxx Intel386 SL Processor

0000 0011 0100 xxxx RapidCAD® Coprocessor

3.3 Feature Flags

When the EAX register contains a value of 1,
the CPUID instruction loads the EDX register
with the feature flags. The feature flags indi-
cate which features the processor supports.
However, in future feature flags, a value of one
may indicate a feature is not present. Table 5
lists the currently defined feature flag values.
For future processors, refer to the program-

mer’s reference manual, user’s manual, or the
appropriate documentation for the latest feature
flag values.

Use the feature flags in your applications to
determine which processor features are sup-
ported. By using the CPUID feature flags to
predetermine processor features, your software
can detect and avoid incompatibilities.

AP-485

6

Table 5. Feature Flag Values

1. Processor specific features are outside the scope of this Application Note and are not detailed here. This
information is available in the respective processor developer guides, or is available with the appropriate
non-disclosure agreement in place. Contact Intel Corporation for details.

Bit Name Description When Flag = 1 Comments

0 FPU Floating-point unit on-chip The processor contains an FPU that supports
the Intel 387 floating-point instruction set.

1 VME Virtual Mode Extension The processor supports extensions to
virtual-8086 mode.

2 DE Debugging Extension The processor supports I/O breakpoints, includ-
ing the CR4.DE bit for enabling debug exten-
sions and optional trapping of access to the
DR4 and DR5 registers.

3 PSE Page Size Extension The processor supports 4-Mbyte pages.

4 TSC Time Stamp Counter The RDTSC instruction is supported including
the CR4.TSD bit for access/privilege control.

5 MSR Model Specific Registers Model Specific Registers are implemented with
the RDMSR, WRMSR instructions.

6 PAE Physical Address Extension Physical addresses greater than 32 bits are
supported.

7 MCE Machine Check Exception Machine Check Exception, Exception 18, and
the CR4.MCE enable bit are supported.

8 CX8 CMPXCHG8 Instruction
Supported

The compare and exchange 8 bytes instruction
is supported.

9 APIC Local APIC Supported The processor contains a local APIC.

10-11 Reserved (see note)1

12 MTRR Memory Type Range
Registers

The Processor supports the Memory Type
Range Registers specifically the MTRR_CAP
register.

13 PGE Page Global Enable The global bit in the PDE’s and PTE’s and the
CR4.PGE enable bit are supported.

14 MCA Machine Check Architecture The Machine Check Architecture is supported,
specifically the MCG_CAP register.

15 CMOV Conditional Move Instruction
Supported

The processor supports CMOVcc, and if the
FPU feature flag (bit 0) is also set, supports the
FCMOVcc and FCOMI instructions.

16–31 Reserved (see note)1

AP-485

7

3.4 Processor Configuration
Information

When the EAX register contains a value of 2,
the CPUID instruction loads the EAX, EBX,
ECX and EDX registers with descriptors that
indicate the processor’s cache characteristics.
The lower 8 bits of the EAX register (AL) con-
tain 1. Other values of AL are reserved for
future use.

The remainder of the EAX register, and the
EBX, ECX, and EDX registers, contain valid 8
bit descriptors. Table 6 shows that valid 8 bit
descriptors may be identified as such because
their MSB is set to 0. To decode descriptors,
move sequentially from the most significant
byte of the register down through the least sig-
nificant byte of the register. Table 7 lists the
current descriptor values and their respective
cache characteristics. This list will be extended
in the future as necessary.

Table 6. Descriptor Formats

Register MSB Descriptor Type Description

1 Reserved Reserved for future use.

0 8 bit descriptors Descriptors point to a
parameter table to identify
cache characteristics. The
descriptor is null if it has a 0
value.

Table 7. Descriptor Decode Values

Descriptor Value Cache Description

0x00 null

0x01 instruction TLB, 4K pages, 4-way set associative, 64 entries

0x02 instruction TLB, 4M pages, 4-way set associative, 4 entries

0x03 data TLB, 4K pages, 4-way set associative, 64 entries

0x04 data TLB, 4M pages, 4-way set associative, 8 entries

0x06 instruction cache, 8K, 44-way set associative, 32 byte line size

0x0A data cache, 8K, 2-way set associative, 32 byte line size

0x41 unified cache, 32 byte cache line, 4-way set associative,128K

0x42 unified cache, 32 byte cache line, 4-way set associative, 256K

0x43 unified cache, 32 byte cache line, 4-way set associative, 512K

AP-485

8

3.5 Output Example

The initial member of the Pentium Pro proces-
sor family returns the values shown in Table 8.

As the value of AL = 1, it is valid to interpret the
remainder of the registers according to Table 7.
Table 8 also shows that the MSB of the EAX reg-
ister is 0. This indicates that the upper 8 bits con-
stitute an 8 bit descriptor. The remaining register
values in Table 8 show that the Pentium Pro
processor has the following cache characteris-
tics:

• A data TLB that maps 4K pages, is 4 way set
associative, and has 64 entries.

• An instruction TLB that maps 4M pages, is 4
way set associative, and has 4 entries.

• An instruction TLB that maps 4K pages, is 4
way set associative, and has 64 entries.

• An instruction cache that is 8K, is 4 way set
associative, and has a 32 byte line size.

• A data TLB that maps 4M pages, is 4 way set
associative, and has 8 entries.

• A data cache that is 8K, is 2 way set
associative, and has a 32 byte line size.

• A unified cache that is 256K, is 4 way set
associative, and has a 32 byte line size.

4.0 USAGE GUIDELINES

This document presents Intel-recommended
feature-detection methods. Software should not
try to identify features by exploiting program-
ming tricks, undocumented features, or other-
wise deviating from the guidelines presented in
this application note.

The following guidelines are intended to help
programmers maintain the widest range of
compatibility for their software.

• Do not depend on the absence of an invalid
opcode trap on the CPUID opcode to detect
the CPUID instruction. Do not depend on the
absence of an invalid opcode trap on the
PUSHFD opcode to detect a 32-bit processor.
Test the ID flag, as described in Section 2.0
and shown in Section 5.0 .

• Do not assume that a given family or model
has any specific feature. For example, do not
assume the family value 5 (Pentium
processor) means there is a floating-point unit
on-chip. Use the feature flags for this
determination.

• Do not assume processors with higher family
or model numbers have all the features of a
processor with a lower family or model
number. For example, a processor with a
family value of 6 (Pentium Pro processor)
does not necessarily have all the features of a
processor with a family value of 5.

Table 8. Pentium Pro Processor CPUID (EAX=2) Return Values

Register 31 23 15 7 0

EAX 03 02 01 01

EBX 0 0 0 0

ECX 0 0 0 0

EDX 06 04 0A 42

AP-485

9

• Do not assume that the features in the
OverDrive processors are the same as those in
the OEM version of the processor. Internal
caches and instruction execution might vary.

• Do not use undocumented features of a
processor to identify steppings or features.
For example, the Intel386 processor A-step
had bit instructions that were withdrawn with
B-step. Some software attempted to execute
these instructions and depended on the
invalid-opcode exception as a signal that it
was not running on the A-step part. The
software failed to work correctly when the
Intel486 processor used the same opcodes for
different instructions. The software should
have used the stepping information in the
processor signature.

• Do not assume a value of 1 in a feature flag
indicates that a given feature is present. For
future feature flags, a value of 1 may indicate
that the specific feature is not present.

• Test feature flags individually and do not
make assumptions about undefined bits. For
example, it would be a mistake to test the
FPU bit by comparing the feature register to a
binary 1 with a compare instruction.

• Do not assume the clock of a given family or
model runs at a specific frequency, and do not
write clock-dependent code, such as timing
loops. For instance, an OverDrive Processor
could operate at a higher internal frequency
and still report the same family and/or model.
Instead, use the system’s timers to measure
elapsed time. For processors that support the
TSC (Time Stamp Counter) functionality,
system timers can more directly calibrate the
processor core block.

• Processor model-specific registers may differ
among processors, including in various
models of the Pentium processor. Do not use

these registers unless identified for the
installed processor. This is particularly
important for systems upgradeable with an
OverDrive processor. The model specific
registers in the OverDrive processor are likely
to differ from those in the OEM processor. In
general, if an OverDrive processor is
detected, model specific registers should not
be used.

5.0 PROPER IDENTIFICATION
SEQUENCE

The cpuid3a.asm program example demon-
strates the correct use of the CPUID instruc-
tion. (See Example 1.) It also shows how to
identify earlier processor generations that do
not implement the processor signature or
CPUID instruction. (See Figure 3.) This pro-
gram example contains the following two pro-
cedures:

• get_cpu_type identifies the processor
type. Figure 4 illustrates the flow of this
procedure.

• get_fpu_type determines the type of
floating-point unit (FPU) or math coprocessor
(MCP).

This procedure has been tested with 8086,
80286, Intel386, Intel486, Pentium, and Pen-
tium Pro processors. This program example is
written in assembly language and is suitable for
inclusion in a run-time library, or as system
calls in operating systems.

AP-485

10

cpu_type=0

Is the
CPUID

instruction
supported

Does the
vendor ID =

“GenuineIntel”
?

?

Is it
an 8086

processor?

Is it
an 80286

processor?

Is it
an 80386

processor?

No

No

No

Yes

cpu_type=2

cpu_type=3

cpu_type>=4

Yes

Yes

Yes

No

cpuid_flag = 1; indicates
CPUID instruction present.

Execute CPUID with input of 0
to get vendor ID string and

input values for EAX.

If highest input value is at least 1,
execute CPUID with input of 1 in
EAX to obtain model, stepping,

family, and features.
Save in cpu_type, stepping,

model, and feature_flags.

Yes

No

end_get_cpu_type

. Figure 3. Flow of Pro cessor get_cpu_type Procedure

AP-485

11

6.0 USAGE PROGRAM EXAMPLE

The cpuid3b.asm and cpuid3b.c program
examples demonstrate applications that call
get_cpu_type and get_fpu_type proce-
dures and interpret the returned information.
This code is shown in Example 2 and Example
3. The results, which are displayed on the mon-
itor, identify the installed processor and fea-

tures. The cpuid3b.asm example is written in
assembly language and demonstrates an appli-
cation that displays the returned information in
the DOS environment. The cpuid3b.c exam-
ple is written in the C language (See examples
2 and 3.) Figure 4 presents an overview of the
relationship between the three program exam-
ples.

AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

Main

Figure 4. Flow of Processor Identification Extraction Procedures

get_cpu_type*

get_fpu_type

Print

End

Part of
cpuid3a.asm

Part of
cpuid3b.c andcpu
cpuid3b.asm

AP-485

12

Example 1. Processor Identification Extraction Procedure

; Filename: cpuid3a.asm
; Copyright 1993, 1994, 1995 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer’s processor mis-identifies itself as being
; “GenuineIntel” when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this program, including
; liability for infringement of any proprietary rights,
; and including the warranties of merchantability and fitness
; for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this program
; nor any responsibility to update it.
;
; This code contains two procedures:
; _get_cpu_type: Identifies processor type in _cpu_type:
; 0=8086/8088 processor
; 2=Intel 286 processor
; 3=Intel386(TM) family processor
; 4=Intel486(TM) family processor
; 5=Pentium(R) family processor
; 6=Pentium(R) Pro family processor
;
; _get_fpu_type: Identifies FPU type in _fpu_type:
; 0=FPU not present
; 1=FPU present
; 2=287 present (only if _cpu_type=3)
; 3=387 present (only if _cpu_type=3)
;
; This program has been tested with the MASM assembler.
; This code correctly detects the current Intel 8086/8088,
; 80286, 80386, 80486, Pentium(R), and Pentium(R) Pro
; processors in the real-address mode.
;
; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

TITLE cpuid3
DOSSEG
.model small

CPU_ID MACRO

AP-485

13

db 0fh ; Hardcoded CPUID instruction
db 0a2h

ENDM

.data
public _cpu_type
public _fpu_type
public _v86_flag
public _cpuid_flag
public _intel_CPU
public _vendor_id
public _cpu_signature
public _features_ecx
public _features_edx
public _features_ebx

_cpu_type db 0
_fpu_type db 0
_v86_flag db 0
_cpuid_flag db 0
_intel_CPU db 0
_vendor_id db “------------”
intel_id db “GenuineIntel”
_cpu_signature dd 0
_features_ecx dd 0
_features_edx dd 0
_features_ebx dd 0
fp_status dw 0

.code

.8086

;***

public _get_cpu_type
_get_cpu_typeproc

; This procedure determines the type of processor in a system
; and sets the _cpu_type variable with the appropriate
; value. If the CPUID instruction is available, it is used
; to determine more specific details about the processor.
; All registers are used by this procedure, none are preserved.
; To avoid AC faults, the AM bit in CR0 must not be set.

; Intel 8086 processor check
; Bits 12-15 of the FLAGS register are always set on the
; 8086 processor.

check_8086:
pushf ; push original FLAGS
pop ax ; get original FLAGS

AP-485

14

mov cx, ax ; save original FLAGS
and ax, 0fffh ; clear bits 12-15 in FLAGS
push ax ; save new FLAGS value on stack
popf ; replace current FLAGS value
pushf ; get new FLAGS
pop ax ; store new FLAGS in AX
and ax, 0f000h ; if bits 12-15 are set, then
cmp ax, 0f000h ; processor is an 8086/8088
mov _cpu_type, 0 ; turn on 8086/8088 flag
jne check_80286 ; go check for 80286
push sp ; double check with push sp
pop dx ; if value pushed was different
cmp dx, sp ; means it’s really not an 8086
jne end_cpu_type ; jump if processor is 8086/8088
mov _cpu_type, 10h ; indicate unknown processor
jmp end_cpu_type

; Intel 286 processor check
; Bits 12-15 of the FLAGS register are always clear on the
; Intel 286 processor in real-address mode.

.286
check_80286:

smsw ax ; save machine status word
and ax, 1 ; isolate PE bit of MSW
mov _v86_flag, al ; save PE bit to indicate V86

or cx, 0f000h ; try to set bits 12-15
push cx ; save new FLAGS value on stack
popf ; replace current FLAGS value
pushf ; get new FLAGS
pop ax ; store new FLAGS in AX
and ax, 0f000h ; if bits 12-15 are clear
mov _cpu_type, 2 ; processor=80286, turn on 80286 flag
jz end_cpu_type ; jump if processor is 80286

; Intel386 processor check
; The AC bit, bit #18, is a new bit introduced in the EFLAGS
; register on the Intel486 processor to generate alignment
; faults.
; This bit cannot be set on the Intel386 processor.

.386 ; it is safe to use 386 instructions
check_80386:

pushfd ; push original EFLAGS
pop eax ; get original EFLAGS
mov ecx, eax ; save original EFLAGS
xor eax, 40000h ; flip AC bit in EFLAGS
push eax ; save new EFLAGS value on stack
popfd ; replace current EFLAGS value

AP-485

15

pushfd ; get new EFLAGS
pop eax ; store new EFLAGS in EAX
xor eax, ecx ; can’t toggle AC bit, processor=80386
mov _cpu_type, 3 ; turn on 80386 processor flag
jz end_cpu_type ; jump if 80386 processor

push ecx
popfd ; restore AC bit in EFLAGS first

; Intel486 processor check
; Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
; which indicates the presence of a processor with the CPUID
; instruction.

.486
check_80486:

mov _cpu_type, 4 ; turn on 80486 processor flag
mov eax, ecx ; get original EFLAGS
xor eax, 200000h ; flip ID bit in EFLAGS
push eax ; save new EFLAGS value on stack
popfd ; replace current EFLAGS value
pushfd ; get new EFLAGS
pop eax ; store new EFLAGS in EAX
xor eax, ecx ; can’t toggle ID bit,
je end_cpu_type ; processor=80486

; Execute CPUID instruction to determine vendor, family,
; model, stepping and features. For the purpose of this
; code, only the initial set of CPUID information is saved.

mov _cpuid_flag, 1 ; flag indicating use of CPUID inst.
push ebx ; save registers
push esi
push edi
mov eax, 0 ; set up for CPUID instruction
CPU_ID ; get and save vendor ID

mov dword ptr _vendor_id, ebx
mov dword ptr _vendor_id[+4], edx
mov dword ptr _vendor_id[+8], ecx

cmp dword ptr intel_id, ebx
jne end_cpuid_type
cmp dword ptr intel_id[+4], edx
jne end_cpuid_type
cmp dword ptr intel_id[+8], ecx
jne end_cpuid_type ; if not equal, not an Intel processor

mov _intel_CPU, 1 ; indicate an Intel processor
cmp eax, 1 ; make sure 1 is valid input for CPUID

AP-485

16

jl end_cpuid_type ; if not, jump to end
mov eax, 1
CPU_ID ; get family/model/stepping/features
mov _cpu_signature, eax
mov _features_ebx, ebx
mov _features_edx, edx
mov _features_ecx, ecx

shr eax, 8 ; isolate family
and eax, 0fh
mov _cpu_type, al; set _cpu_type with family

end_cpuid_type:
pop edi ; restore registers
pop esi
pop ebx

.8086
end_cpu_type:

ret
_get_cpu_type endp

;***

public _get_fpu_type
_get_fpu_typeproc

; This procedure determines the type of FPU in a system
; and sets the _fpu_type variable with the appropriate value.
; All registers are used by this procedure, none are preserved.

; Coprocessor check
; The algorithm is to determine whether the floating-point
; status and control words are present. If not, no
; coprocessor exists. If the status and control words can
; be saved, the correct coprocessor is then determined
; depending on the processor type. The Intel386 processor can
; work with either an Intel287 NDP or an Intel387 NDP.
; The infinity of the coprocessor must be checked to determine
; the correct coprocessor type.

fninit ; reset FP status word
mov fp_status, 5a5ah ; initialize temp word to non-zero
fnstsw fp_status ; save FP status word
mov ax, fp_status ; check FP status word
cmp al, 0 ; was correct status written
mov _fpu_type, 0 ; no FPU present
jne end_fpu_type

check_control_word:

AP-485

17

fnstcw fp_status ; save FP control word
mov ax, fp_status ; check FP control word
and ax, 103fh ; selected parts to examine
cmp ax, 3fh ; was control word correct
mov _fpu_type, 0
jne end_fpu_type ; incorrect control word, no FPU
mov _fpu_type, 1

; 80287/80387 check for the Intel386 processor

check_infinity:
cmp _cpu_type, 3
jne end_fpu_type
fld1 ; must use default control from FNINIT
fldz ; form infinity
fdiv ; 8087/Intel287 NDP say +inf = -inf
fld st ; form negative infinity
fchs ; Intel387 NDP says +inf <> -inf
fcompp ; see if they are the same
fstsw fp_status ; look at status from FCOMPP
mov ax, fp_status
mov _fpu_type, 2 ; store Intel287 NDP for FPU type
sahf ; see if infinities matched
jz end_fpu_type ; jump if 8087 or Intel287 is present
mov _fpu_type, 3 ; store Intel387 NDP for FPU type

end_fpu_type:
ret

_get_fpu_type endp

end

AP-485

18

Example 2. Processor Identification Procedure in Asse mbly La nguage

; Filename: cpuid3b.asm
; Copyright 1993, 1994 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer’s processor mis-identifies itself as being
; “GenuineIntel” when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and
; other indirect damages, for the use of this program,
; including liability for infringement of any proprietary
; rights, and including the warranties of merchantability and
; fitness for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this
; program nor any responsibility to update it.
;
; This program contains three parts:
; Part 1: Identifies processor type in the variable
; _cpu_type:
;
; Part 2: Identifies FPU type in the variable _fpu_type:
;
; Part 3: Prints out the appropriate message. This part is
; specific to the DOS environment and uses the DOS
; system calls to print out the messages.
;
; This program has been tested with the MASM assembler. If
; this code is assembled with no options specified and linked
; with the cpuid3a module, it correctly identifies the current
; Intel 8086/8088, 80286, 80386, 80486, Pentium(R) and
; Pentium(R) Pro processors in the real-address mode.
;
; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

TITLE cpuid3b
DOSSEG
.model small
.stack 100h

.data
extrn _cpu_type: byte
extrn _fpu_type: byte
extrn _cpuid_flag: byte
extrn _intel_CPU: byte
extrn _vendor_id: byte

AP-485

19

extrn _cpu_signature: dword
extrn _features_ecx: dword
extrn _features_edx: dword
extrn _features_ebx: dword

; The purpose of this code is to identify the processor and
; coprocessor that is currently in the system. The program
; first determines the processor type. Then it determines
; whether a coprocessor exists in the system. If a
; coprocessor or integrated coprocessor exists, the program
; identifies the coprocessor type. The program then prints
; the processor and floating point processors present and

type.

.code

.8086
start: mov ax, @data

mov ds, ax ; set segment register
mov es, ax ; set segment register
and sp, not 3 ; align stack to avoid AC fault
call _get_cpu_type ; determine processor type
call _get_fpu_type
call print
mov ax, 4c00h ; terminate program
int 21h

;***

extrn _get_cpu_type: proc

;***

extrn _get_fpu_type: proc

;***

FPU_FLAG equ 0001h
VME_FLAG equ 0002h
DE_FLAG equ 0004h
PSE_FLAG equ 0008h
TSC_FLAG equ 0010h
MSR_FLAG equ 0020h
PAE_FLAG equ 0040h
MCE_FLAG equ 0080h
CX8_FLAG equ 0100h
APIC_FLAG equ 0200h
MTRR_FLAG equ 1000h
PGE_FLAG equ 2000h
MCA_FLAG equ 4000h
CMOV_FLAG equ 8000h

AP-485

20

.data
id_msg db “This system has a$”
cp_error db “n unknown processor$”
cp_8086 db “n 8086/8088 processor$”
cp_286 db “n 80286 processor$”
cp_386 db “n 80386 processor$”

cp_486 db “n 80486DX, 80486DX2 processor or”
db “ 80487SX math coprocessor$”

cp_486sx db “n 80486SX processor$”

fp_8087 db “ and an 8087 math coprocessor$”
fp_287 db “ and an 80287 math coprocessor$”
fp_387 db “ and an 80387 math coprocessor$”

intel486_msg db “ Genuine Intel486(TM) processor$”
intel486dx_msg db “ Genuine Intel486(TM) DX processor$”
intel486sx_msg db “ Genuine Intel486(TM) SX processor$”
inteldx2_msg db “ Genuine IntelDX2(TM) processor$”
intelsx2_msg db “ Genuine IntelSX2(TM) processor$”
inteldx4_msg db “ Genuine IntelDX4(TM) processor$”
inteldx2wb_msg db “ Genuine Write-Back Enhanced”

db “ IntelDX2(TM) processor$”
pentium_msg db “ Genuine Intel Pentium(R) processor$”
pentiumpro_msg db “ Genuine Intel Pentium(R) Pro processor$”
unknown_msg db “n unknown Genuine Intel processor$”

; The following 16 entries must stay intact as an array
intel_486_0 dw offset intel486dx_msg
intel_486_1 dw offset intel486dx_msg
intel_486_2 dw offset intel486sx_msg
intel_486_3 dw offset inteldx2_msg
intel_486_4 dw offset intel486_msg
intel_486_5 dw offset intelsx2_msg
intel_486_6 dw offset intel486_msg
intel_486_7 dw offset inteldx2wb_msg
intel_486_8 dw offset inteldx4_msg
intel_486_9 dw offset intel486_msg
intel_486_a dw offset intel486_msg
intel_486_b dw offset intel486_msg
intel_486_c dw offset intel486_msg
intel_486_d dw offset intel486_msg
intel_486_e dw offset intel486_msg
intel_486_f dw offset intel486_msg
; end of array

family_msg db 13,10,”Processor Family: $”
model_msg db 13,10,”Model: $”
stepping_msg db 13,10,”Stepping: “
cr_lf db 13,10,”$”

AP-485

21

turbo_msg db 13,10,”The processor is an OverDrive(R)”
db “ upgrade processor$”

dp_msg db 13,10,”The processor is the upgrade”
db “processor in a dual processor system$”

fpu_msg db 13,10,”The processor contains an on-chip”
db “FPU$”

vme_msg db 13,10,”The processor supports Virtual”
db “Mode Extensions$”

de_msg db 13,10,”The processor supports Debugging”
db “ Extensions$”

pse_msg db 13,10,”The processor supports Page Size”
db “ Extensions$”

tsc_msg db 13,10,”The processor supports Time Stamp”
db “ Counter$”

msr_msg db 13,10,”The processor supports Model”
db “Specific Registers$”

pae_msg db 13,10,”The processor supports Physical”
db “Address Extensions$”

mce_msg db 13,10,”The processor supports Machine”
db “Check Exceptions$”

cx8_msg db 13,10,”The processor supports the”
db “CMPXCHG8B instruction$”

apic_msg db 13,10,”The processor contains an on-chip”
db “ APIC$”

mtrr_msg db 13,10,”The processor supports Memory Type”
db “ Range Registers$”

pge_msg db 13,10,”The processor supports Page Global”
db “ Enable$”

mca_msg db 13,10,”The processor supports Machine”
db “Check Architecture$”

cmov_msg db 13,10,”The processor supports Conditional”
db “Move Instruction$”

not_intel db “t least an 80486 processor.”
db 13,10,”It does not contain a Genuine”
db “Intel part and as a result,”
db “the”,13,10,”CPUID”
db “ detection information cannot be”
db “determined at this time.$”

ASC_MSG MACRO msg
LOCAL ascii_done ; local label
add al, 30h
cmp al, 39h ; is it 0-9?
jle ascii_done
add al, 07h

ascii_done:
mov byte ptr msg[20], al
mov dx, offset msg
mov ah, 9h

AP-485

22

int 21h
ENDM

.code

.8086
print proc

; This procedure prints the appropriate cpuid string and
; numeric processor presence status. If the CPUID instruction
; was used, this procedure prints out the CPUID info.
; All registers are used by this procedure, none are
; preserved.

mov dx, offset id_msg; print initial message
mov ah, 9h
int 21h

cmp _cpuid_flag, 1 ; if set to 1, processor
; supports CPUID instruction

je print_cpuid_data ; print detailed CPUID info

print_86:
cmp _cpu_type, 0
jne print_286
mov dx, offset cp_8086
mov ah, 9h
int 21h
cmp _fpu_type, 0
je end_print
mov dx, offset fp_8087
mov ah, 9h
int 21h
jmp end_print

print_286:
cmp _cpu_type, 2
jne print_386
mov dx, offset cp_286
mov ah, 9h
int 21h
cmp _fpu_type, 0
je end_print

print_287:
mov dx, offset fp_287
mov ah, 9h
int 21h
jmp end_print

print_386:
cmp _cpu_type, 3

AP-485

23

jne print_486
mov dx, offset cp_386
mov ah, 9h
int 21h
cmp _fpu_type, 0
je end_print
cmp _fpu_type, 2
je print_287
mov dx, offset fp_387
mov ah, 9h
int 21h
jmp end_print

print_486:
cmp _cpu_type, 4
jne print_unknown ; Intel processors will have
mov dx, offset cp_486sx; CPUID instruction
cmp _fpu_type, 0
je print_486sx
mov dx, offset cp_486

print_486sx:
mov ah, 9h
int 21h
jmp end_print

print_unknown:
mov dx, offset cp_error
jmp print_486sx

print_cpuid_data:
.486
cmp _intel_CPU, 1 ; check for genuine Intel
jne not_GenuineIntel ; processor

print_486_type:
cmp _cpu_type, 4 ; if 4, print 80486 processor
jne print_pentium_type
mov ax, word ptr _cpu_signature
shr ax, 4
and eax, 0fh ; isolate model
mov dx, intel_486_0[eax*2]
jmp print_common

print_pentium_type:
cmp _cpu_type, 5 ; if 5, print Pentium processor
jne print_pentiumpro_type
mov dx, offset pentium_msg
jmp print_common

print_pentiumpro_type:
cmp _cpu_type, 6 ; if 6, print Pentium Pro processor
jne print_unknown_type

AP-485

24

mov dx, offset pentiumpro_msg
jmp print_common

print_unknown_type:
mov dx, offset unknown_msg; if neither, print unknown

print_common:
mov ah, 9h
int 21h

; print family, model, and stepping

print_family:
mov al, _cpu_type
ASC_MSG family_msg ; print family msg

print_model:
mov ax, word ptr _cpu_signature
shr ax, 4
and al, 0fh
ASC_MSG model_msg ; print model msg

print_stepping:
mov ax, word ptr _cpu_signature
and al, 0fh
ASC_MSG stepping_msg ; print stepping msg

print_upgrade:
mov ax, word ptr _cpu_signature
test ax, 1000h ; check for turbo upgrade
jz check_dp
mov dx, offset turbo_msg
mov ah, 9h
int 21h
jmp print_features

check_dp:
test ax, 2000h ; check for dual processor
jz print_features
mov dx, offset dp_msg
mov ah, 9h
int 21h

print_features:
mov ax, word ptr _features_edx
and ax, FPU_FLAG ; check for FPU
jz check_VME
mov dx, offset fpu_msg
mov ah, 9h
int 21h

AP-485

25

check_VME:
mov ax, word ptr _features_edx
and ax, VME_FLAG ; check for VME
jz check_DE
mov dx, offset vme_msg
mov ah, 9h
int 21h

check_DE:
mov ax, word ptr _features_edx
and ax, DE_FLAG ; check for DE
jz check_PSE
mov dx, offset de_msg
mov ah, 9h
int 21h

check_PSE:
mov ax, word ptr _features_edx
and ax, PSE_FLAG ; check for PSE
jz check_TSC
mov dx, offset pse_msg
mov ah, 9h
int 21h

check_TSC:
mov ax, word ptr _features_edx
and ax, TSC_FLAG ; check for TSC
jz check_MSR
mov dx, offset tsc_msg
mov ah, 9h
int 21h

check_MSR:
mov ax, word ptr _features_edx
and ax, MSR_FLAG ; check for MSR
jz check_PAE
mov dx, offset msr_msg
mov ah, 9h
int 21h

check_PAE:
mov ax, word ptr _features_edx
and ax, PAE_FLAG ; check for PAE
jz check_MCE
mov dx, offset pae_msg
mov ah, 9h
int 21h

AP-485

26

check_MCE:
mov ax, word ptr _features_edx
and ax, MCE_FLAG ; check for MCE
jz check_CX8
mov dx, offset mce_msg
mov ah, 9h
int 21h

check_CX8:
mov ax, word ptr _features_edx
and ax, CX8_FLAG ; check for CMPXCHG8B
jz check_APIC
mov dx, offset cx8_msg
mov ah, 9h
int 21h

check_APIC:
mov ax, word ptr _features_edx
and ax, APIC_FLAG ; check for APIC
jz check_MTRR
mov dx, offset apic_msg
mov ah, 9h
int 21h

check_MTRR:
mov ax, word ptr _features_edx
and ax, MTRR_FLAG ; check for MTRR
jz check_PGE
mov dx, offset mtrr_msg
mov ah, 9h
int 21h

check_PGE:
mov ax, word ptr _features_edx
and ax, PGE_FLAG ; check for PGE
jz check_MCA
mov dx, offset pge_msg
mov ah, 9h
int 21h

check_MCA:
mov ax, word ptr _features_edx
and ax, MCA_FLAG ; check for MCA
jz check_CMOV
mov dx, offset mca_msg
mov ah, 9h
int 21h

AP-485

27

check_CMOV:
mov ax, word ptr _features_edx
and ax, CMOV_FLAG ; check for CMOV
jz end_print
mov dx, offset cmov_msg
mov ah, 9h
int 21h

jmp end_print

not_GenuineIntel:
mov dx, offset not_intel
mov ah, 9h
int 21h

end_print:
mov dx, offset cr_lf
mov ah, 9h
int 21h
ret

print endp

end start

AP-485

28

Example 3. Processor Identification Procedure in the C Language

/* Filename: cpuid3b.c */
/* Copyright 1994 by Intel Corp. */
/* */
/* This program has been developed by Intel Corporation. Intel has */
/* various intellectual property rights which it may assert under */
/* certain circumstances, such as if another manufacturer’s */
/* processor mis-identifies itself as being “GenuineIntel” when */
/* the CPUID instruction is executed. */
/* */
/* Intel specifically disclaims all warranties, express or implied, */
/* and all liability, including consequential and other indirect */
/* damages, for the use of this program, including liability for */
/* infringement of any proprietary rights, and including the */
/* warranties of merchantability and fitness for a particular */
/* purpose. Intel does not assume any responsibility for any */
/* errors which may appear in this program nor any responsibility */
/* to update it. */
/* */
/* */
/* This program contains three parts: */
/* Part 1: Identifies CPU type in the variable _cpu_type: */
/* */
/* Part 2: Identifies FPU type in the variable _fpu_type: */
/* */
/* Part 3: Prints out the appropriate message. */
/* */
/* This program has been tested with the Microsoft C compiler. */
/* If this code is compiled with no options specified and linked */
/* with the cpuid3a module, it correctly identifies the current */
/* Intel 8086/8088, 80286, 80386, 80486, Pentium(R), and */
/* Pentium(R) Pro processors in the real-address mode. */

#define FPU_FLAG 0x0001
#define VME_FLAG 0x0002
#define DE_FLAG 0x0004
#define PSE_FLAG 0x0008
#define TSC_FLAG 0x0010
#define MSR_FLAG 0x0020
#define PAE_FLAG 0x0040
#define MCE_FLAG 0x0080
#define CX8_FLAG 0x0100
#define APIC_FLAG 0x0200
#define MTRR_FLAG 0x1000
#define PGE_FLAG 0x2000
#define MCA_FLAG 0x4000
#define CMOV_FLAG 0x8000

AP-485

29

extern char cpu_type;
extern char fpu_type;
extern char cpuid_flag;
extern char intel_CPU;
extern char vendor_id[12];
extern long cpu_signature;
extern long features_ecx;
extern long features_edx;
extern long features_ebx;

main() {
 get_cpu_type();
 get_fpu_type();
 print();
}

print() {
 printf(“This system has a”);
 if (cpuid_flag == 0) {

switch (cpu_type) {
case 0:
 printf(“n 8086/8088 processor”);
 if (fpu_type) printf(“ and an 8087 math coprocessor”);
 break;
case 2:
 printf(“n 80286 processor”);
 if (fpu_type) printf(“ and an 80287 math coprocessor”);
 break;
case 3:
 printf(“n 80386 processor”);
 if (fpu_type == 2)

printf(“ and an 80287 math coprocessor”);
 else if (fpu_type)

printf(“ and an 80387 math coprocessor”);
 break;
case 4:
 if (fpu_type) printf(“n 80486DX, 80486DX2 processor or \

80487SX math coprocessor”);
 else printf(“n 80486SX processor”);
 break;
default:
 printf(“n unknown processor”);
}

 } else {
/* using cpuid instruction */
if (intel_CPU) {
 if (cpu_type == 4) {

switch ((cpu_signature>>4)&0xf) {
case 0:
case 1:

AP-485

30

 printf(“ Genuine Intel486(TM) DX processor”);
 break;
case 2:
 printf(“ Genuine Intel486(TM) SX processor”);
 break;
case 3:
 printf(“ Genuine IntelDX2(TM) processor”);
 break;
case 4:
 printf(“ Genuine Intel486(TM) processor”);
 break;
case 5:
 printf(“ Genuine IntelSX2(TM) processor”);
 break;
case 7:
 printf(“ Genuine Write-Back Enhanced \

IntelDX2(TM) processor”);
 break;
case 8:
 printf(“ Genuine IntelDX4(TM) processor”);
 break;
default:
 printf(“ Genuine Intel486(TM) processor”);
}

 } else if (cpu_type == 5)
printf(“ Genuine Intel Pentium(R) processor”);

 else if (cpu_type == 6)
printf(“Genuine Intel Pentium(R) Pro processor”);

 else
printf(“n unknown Genuine Intel processor”);

 printf(“\nProcessor Family: %X”, cpu_type);
 printf(“\nModel: %X”, (cpu_signature>>4)&0xf);
 printf(“\nStepping: %X\n”, cpu_signature&0xf);
 if (cpu_signature & 0x1000)

printf(“\nThe processor is an OverDrive(R)upgrade \
processor”);

 else if (cpu_signature & 0x2000)
printf(“\nThe processor is the upgrade processor \

in a dual processor system”);
 if (features_edx & FPU_FLAG)

printf(“\nThe processor contains an on-chip FPU”);
 if (features_edx & VME_FLAG)

printf(“\nThe processor supports Virtual Mode \
Extensions”);

if (features_edx & DE_FLAG)
printf(“\nThe processor supports the Debugging\

Extensions”);
 if (features_edx & PSE_FLAG)

printf(“\nThe processor supports Page Size \
Extensions”);

AP-485

31

 if (features_edx & TSC_FLAG)
printf(“\nThe processor supports Time Stamp \

Counter”);
 if (features_edx & MSR_FLAG)

printf(“\nThe processor supports Model Specific \
Registers”);

 if (features_edx & PAE_FLAG)
printf(“\nThe processor supports Physical Address \

Extension”);
 if (features_edx & MCE_FLAG)

printf(“\nThe processor supports Machine Check \
Exceptions”);

 if (features_edx & CX8_FLAG)
printf(“\nThe processor supports the CMPXCHG8B \

instruction”);
 if (features_edx & APIC_FLAG)

printf(“\nThe processor contains an on-chip APIC”);
 if (features_edx & MTRR_FLAG)

printf(“\nThe processor supports the Memory Type \
Range Registers”);

 if (features_edx & PGE_FLAG)
printf(“\nThe processor supports Page Global

Enable”);
 if (features_edx & MCA_FLAG)
 printf(“\nThe processor supports the Machine Check \

Architecture”);
 if (features_edx & CMOV_FLAG)

printf(“\nThe processor supports the Conditional \
Move Instruction”);

} else {
 printf(“t least an 80486 processor.\nIt does not \

contain a Genuine Intel part and as a result, the\nCPUID detection \
information cannot be determined at this time.”);

}
 }
 printf(“\n”);
}

	Intel Processor Identification With the CPUID Instruction
	Contents
	1.0 Introduction
	1.1 Update Support

	2.0 Detecting the CPUID Instruction
	3.0 Outputs of the CPUID Instruction
	3.1 Vendor-ID String
	3.2 Processor Signature
	3.3 Feature Flags
	3.4 Processor Configuration Information
	3.5 Output Example

	4.0 Usage Guidelines
	5.0 Proper Identification Sequence
	6.0 Usage Program Example

