(intel°

Control-flow Enforcement
Technology Specification

May 2019

Revision 3.0

Document Number: 334525-003

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current characterized
errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies
depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
http://intel.com/.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2016-2019, Intel Corporation. All Rights Reserved.

2 Document Number: 334525-003, Revision 3.0

Revision History

Document Revision
Number Number

Description

Date

334525-001 1.0

Initial release of the document.

June 2016

334525-002 2.0

Numerous updates across chapters include:

1. Added CRO.WP and CR4.CET interaction, CET state save
area description, and separate CPUID bits for SS and IBT.

2. Clarified that WRUSS makes the shadow stack store with
user-access intent.

3. Updated the definition of the SSS bit in EPT and corre-
sponding fault check.

4. Updated SYSCALL/SYSENTER to clear SSP instead of set-
ting it to IA32_PLO_SSP.

5. Updated SAVESSP/RSTORSSP to close a timing window
and renamed SAVESSP to SAVEPREVSSP.

6. Clarified that SETSSBSY causes a #CP exception on token
check failure, and uses IA32_PLO_SSP as an implicit oper-
and.

7. Clarified that CLRSSBSY clears SSP on completion and
sets CF to indicate invalid token.

8. Updated INCSSP to accept a register source operand.

9. Updated CET MSR description to clarify that writes are al-
ways checked for machine canonicality on parts that sup-
port 64-bit mode and that bits 1:0 are reserved.

June 2017

334525-003 3.0

1

2.

N

. Numerous pseudocode updates across instructions and
various updates across chapters, marked by change bars.
Added new sections on constraining speculation with CET
enabled

. Update to section 3.5 “"INT3 Treatment”.

. Added new chapter 9, “Shadow Stack, Paging and EPT".

. Added Intel® SGX support for CET.

May 2019

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Table of Contents
1 110 o 18 Tol 1 o] o IR PP PP PTPR 10
1.1 S To [T = Tod ST PP OUP RPN 10
1.2 INAIreCt BranCh TIACKING.......oiueiiii ittt e e sttt e e s et e e e s s nb e e s e nbbeee s enees 11
2 SNAAOW STACKS ...ttt e ettt e e et e e s ke e e e s bbbt e e s bb et e e aanb e e e e s bbne e e annreee s 12
2.1 Shadow Stack Pointer and its Operand and Address Size AttribUteS..........cccciiiiiiii e, 12
A = 4111107] (o | OSSP PP PUPPPRPPI 12
23 Near CALL and RET Behavior with Shadow Stacks Enabled...............ccoceiiiiiiiiii e 13
24 Far CALL AN RET ..ottt oottt e e e e e o e ab bbbt e e e e e e e s e abbbe e e e e e e e e sanbnbeeeeaaeeeaannee 13
24.1 SUupervisor SNAdOW SEACK TOKENuuiiiiieeiiiiieiie e r e e e e s s s e e e e e e s s e e e e e e e sasnnnreeeeaaeeesnnnnnes 14
25 Stack Switching on Call to Interrupt/Exception Handlers in 64-bit MOdeceeeeiiiiiiiiiiieee i 15
2.6 Shadow Stack Usage 0N Task SWILCH ... e e e e e e 15
2.7 SWILCING SNAAOW STACKScoiiiiiiiie ittt e e st e e s sabr e e e e sabneeeea 16
2.8 Constraining Execution at TargetS Of RETcooiiiiiiiiiiie ettt sebae e s 17
3 TalolTr=Tot i =] =T oot o N I = o3 (1T PP 18
3.1 No-track Prefix for Near INdireCt Call/ImMooio i 19
I = 40 11T To] (o | O S PSSP P PP PUPPPOPI 19
3.3 CONrOl TraNSTEN TIACKING ... eeeeiiitiiee ettt ettt e e et e e e rabe e e e s sab e e e e e sabee e e e sabeeeeesanneeeea 20
3.3.1 Control Transfers between CPL 3 @nd CPL < 3 ... ittt 21
3.3.2 Control Transfers within CPL 3 0F CPL < 3 ... ettt aee e 21
3.4 Indirect Branch Tracking State MaChiNeoioiiiiiiiiiii e e 22
3.5 LN IS B I (= 1 01 o PO PPPTPPRPPRPPIO 23
3.6 Legacy Compatibility TreatmENT.........coo it e e s e e e e s e e e enees 23
3.6.1 Legacy Code Page Bitmap FOIMMALc.eeiiiiiiiiiiiiee ettt e s e e 24
3.7 101 =T A 0] 4 15]To [T 2= 110 1 S SO PO T PP OPPPPTOPIP 24
3.7.1 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactionsc.ccocvevvvvevevvseennne 24
3.7.2 #CP(ENDBRANCH) Priority W.r.t #NM and #UDccoooiiiiiiiiiee e 24
3.7.3 #CP(ENDBRANCH) PriOrity W.r.t #BP ... 25
3.8 Constraining Speculation after MisSing ENDBRANCHccoiiiiiiiiiii e e e 25
4 Changes to Control Transfer INStructions REEIENCEccooiiiiiiiiiii e 26
4.1 CALL— Call PrOCEUUIEc.eeieiitiie ittt ettt sttt e bt esa e e be e e s b et e st e e e sbbe e s sbe e e b e e e snbe e e snneennneens 26
4.2 INT n/INTO/INT3 — Call to INterrupt PrOCEAUIEuviiiieee et e s e e e s e e e e e e e s e enneees 45
4 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.3 B 1 o o 61
4.4 RET—REUM frOM PrOCEUUIEcoiiiiiieeiie ettt ettt e e sn e s e e n e s e e nnneennne e 71
4.5 SYSCALL—FASE SYSLEM Call......eeeiiiiiiiiieiiiiiee ettt e st e e sb e e e s sab e e e e s sarneee e 86
4.6 SYSENTER—FASt SYStEM Callcciiiiiiiiiiiiie ettt sb e e sabre e e e sbaeee e 89
4.7 SYSEXIT—Fast Return from Fast SyStem Callc..oooiiiiiiiiiii et 93
4.8 SYSRET—Return From Fast SYStem Callooiiiiiiiiiiiiie et 96
4.9 IRET/IRETD—INTEITUPE RETUIN ..ottt ettt e e st e e e s e b e e e e e b e e e e ennes 99

5 Task Management INteractions With CEToooiiiiiiiiii et 110
51 32-bit Task-State SEOMENT (TSS)ueiiiiiiiiiiiiiii et e e e e e e e e e e s b b be e e e e e e e e sanbsaeeeeeas 110
5.2 TASK SWILCRING. ...eeeiiiiiiieie ettt e e oo e o bbbttt e e e e e e s ab b be e et e e e e e s abbbe e e e e e e e e annberneeeaas 110

6 Shadow Stack Management INSTIUCTIONSooiiiiiriiiiie et e e e e e e s reebeeeeaaeeeaan 116
6.1 INCSSP—Increment Shadow Stack POINTETcviiiiiiiiiiiee e 117
6.2 RDSSP—Read Shadow STACK POINLETcviiiiiiiieiiei i 119
6.3 SAVEPREVSSP —Save Previous Shadow Stack POINLETc..cioiiiiiiiiiiiiiiieec e 121
6.4 RSTORSSP — Restore saved Shadow Stack POINLETc.eviiiiiiiiiiii e 124
6.5 WRSS — WIrte t0 SNAUOW STACKciiiiiiiiiiiiiii et 127
6.6 WRUSS — Write to User SNAOW STACKciiiiiiiiiiiiiiie ittt e e 130
6.7 SETSSBSY — Mark SNadoW STACK BUSYccciuuiiiiiiiiieiiiiiie ettt 132
6.8 CLRSSBSY — Clear Shadow Stack BUSY Flagc..uiiiiiiiiiiiiiiiee et 134

7 Control Transfer Terminating INSTIUCTIONSoiiiiiiiiiiiie et e e e e e e eeeeaeeeaan 136
7.1 ENDBR64 — Terminate an Indirect Branch in 64-bit MOGE...........ccveiiiiiiiiiiiiic e 136
7.2 ENDBR32 — Terminate an Indirect Branch in 32-bit and Compatibility Modecccooiiiiiiiiinnee. 137

8 Control Protection Exception, Enumeration, Enables and Extended State Management...................... 138
8.1 (Ofe] gl (o]l =d (o) (=Toi 1o o I bt (oT=] o] (o] o PSP 138
8.2 FEAUIE ENUMEIALIONeiiiiiiiit ettt b e e a e s bt e sh e e s an e e be e e snr e e e aneeennne e 138
8.3 Y= S (=T = o = o PRSPPI 138
8.4 L8 I € 138
8.5 CET Extended State Mana@QEMENT.........cooiuiiiiiiiiiie ittt ettt et e ettt e e sbee e e e sbbe e e e sbeeeeesnbeeeesneeeas 139

9 Shadow Stack, Paging a@nd EPTooi ittt e e e e sne e e e e snneeas 141
9.1 Shadow-Stack Pages as Defined DY Paging........cuuiiiiiiiiiiii et 141
9.2 Shadow-Stack Access Rights as Enforced by Paging (Outside an Enclave)ccccoccoeiviiiiiniiineenee 141
9.3 Shadow-Stack ACCESSES IN AN ENCIAVEoooiiiiiiiiiiiie et 142
9.4 Basic EPT Control of Shadow-Stack ACCESSEScceiiiiiiiiiiiieeiiiit ettt 142
9.5 Supervisor ShadoW-Stack CONIOL...........iciiiiiiiiiie e e e e e e e e e s ss bbb e e e e e e e snnrraeeeeeas 142
9.5.1 Supervisor Shadow-Stack Pages as Defined by EPT........ooviiiiiiiiiiiii e 143
9.5.2 Supervisor Shadow-Stack Access Rights as Enforced by EPTcoviviiiiiiiii e 143

OV b 141 (=T = Tox o PR U R UR PP PR PRRPPRTR 145

Document Number: 334525-003, Revision 3.0 5

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

10.1 VMCS GUESE State Area EXIENSIONSeiiiiiiiieiiiiie ettt ettt et e et e e s et et e s anb e e e s abbe e e s abbeeeeenneas 145
10.2 VMCS HOSt State Area EXIENSIONSoiiiiiiiiieiiiiie ittt sttt e et e e st b e e s sbbe e e s e nbeas 145
10.3 VMCS VM-EXit CONLIOIS EXIENSIONS.eeiiiiiiiiiiiiiie ettt ettt sttt sttt s b e s be e e s snbb e e s snbbe e e s enreas 146
10.4 VMCS VM-ENtry CONtrolS EXIENSIONScouuiiiiiiiiieeiiitte ettt ettt et e ettt e st e s annbe e e s ansbe e e s snbe e e e enneas 146
O R e i I 146
O G I | PP OTPPPRRR 146
FO.7 VM BN Y e 147
10.8 1A3B2_ VMX_EPT VPID _CAP.....eeoeeeeeeeeeeeeeeeee et e et et e et e e e et ettt e e et et ee e s e et et et s e e eneean 148
(RS V1V I [g1 (=T =T 1 o OSSO U PSPPI PTIR 149
11.1 SMRAM SEAE SAVE IMBP. ... uuuuuuuiuniiiiiiii e aaaeaeasasas e s ssnnsannassnnsnnnnnsnssnsssssssnnsnsnsnsnnnnnnnnnnnnnnnnns 149
11.2 SMI Handler EXeCution ENVIFONMENTccuiiiiiiiiie it enee s 149
B T o 149
D I I 1] =] = ot 1o L SO PPOTII 150
R B 1€ Q[01 (=T = Tox 110 L S SO PP 151
13.1 CET N ENCIAVES MOUEIottt ettt e et e e s bt e e s bt e e e e s nb e e e e s nnneas 151
13.2 Operations Not Supported on Shadow Stack PAgESc..eeiiiiiiiiiiiiiiiii e 152
13.3 Indirect Branch Tracking — Legacy Compatibility Treatment...........ccoociiieiiiiiie e 152
14 Enclave Access Control and Data SITUCTUIES..........ueeiiiiiieeiitieee ettt e s e e e e s snreee e 153
14.1 Overview of Enclave EXeCution ENVIFONMENT...........oiiuiiiiiiiiiii ittt 153
I =14 01T o] (oo Y PR UUPTPPRTT 153
14.3 ACCESS-CONIIOI REQUITEIMENTS. ... uiiiiiiieee i i ittt e e e s e st e e e e s e s eeae e et e san b e e eeeaeeesasantaaeeaseessaansnbaseeeaeesanns 153
14.4 Segment-based ACCESS CONIIOL.........cciii i e e e e s e e e e e e e e s e san e a e e e aeeesasnnbaneeaaeesans 154
14.5 Page-based ACCESS CONMIOL.........uuiiiiiei ittt e e s e e e e e s e s e e e e e e s e st eeeeeeeesssastaaeeaseessassnraseeeaeessans 154
145.1 Access-control for Accesses that Originate from noN-SGX INStrUCIONScueeeeiviiiieiiiiiee e 154
14.5.2 Memory Accesses that Split aCroSS ELRANGEccooiiiiiiiiiiie e 154
14.5.3 IMPICIt VS. EXPICIE ACCESSESeeieiiitiiie ittt ettt ettt ettt e e ettt e e e st et e e e sabe e e e e snbaeeeesnbeeeesanbeeeeeane 155
14.6 INtel® SGX Data StrUCIUIES OVEIVIEWcouuiiiiiiiiiiie ittt ettt ettt ettt e e st e e s e e s ab e e e s anb e e e s anbe e e e enneas 156
14.7 SGX ENnclave Control STIUCIUIE (SECS)......uuiiiiiiiiiieiiiiee ettt e e snbe e e s nneas 157
TA.7. 1 AT T RIBUTES .. e 158
14.7.2 SECS.MISCSELECT FIEI ...ttt ettt e e e e et b e e e e e e e e sanbereeeeens 159
14.7.3 SECS.CET_ATTRIBUTES FIEld ...ttt a e 159
14.8 Thread Control SITUCIUIE (TCS) ..uuuiiiiiii i iiiiiieeie e e e e e et e e e e e s e e e e e e s e st eeeaeeesasanbareeeaeessassnnbaneeeaeasaans 160
TA.8.1 TCS.FLAGS ...ttt e oo oottt e e e oo oo b et et e e e e e R h e e e e e e e e e e e b abe e e e e e e e e s b e rr e e e e e e e s 161
14.8.2 State Save Area OffSEL (OSSA) ..ooii it e e e s e st e e e e e e s e st a b e e e e e e e e s saatrraeeeaaeaaan 161

6 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

14.8.3 Current State Save Area Frame (CSSA) ... e e st r e e e s sr e e e e e s s st e e e e e e e s snnrnreeeees 161
14.8.4 Number of State Save Area Frames (NSSA) ...t e e e e rnaee e s 161
14.9 State SAve Area (SSA) FIaIMEttt e ettt e e s bt et e e s bt e e e nneeas 161
e B R €1 o £ { € Q2 (= To (o] PO R P UP RPN 162
e B Y [IS O o L= o [o] o H PP PEP PR 164
14.10 CET State SAVe Ara FIraME........oiuiiiiiiiie ittt e e r e e e e e s 166
14.11 Page INformation (PAGEINFO)oiiiiiiiiiiiiie ettt e e 166
14.12 Security INformation (SECINFO)ouuiiiiiiiie ettt e e e e 166
14.12.1 SECINFO.FLAGS ...ttt ettt ettt ettt ettt ettt ettt ettt eeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 167
14.12.2 PAGE_TYPE Field DEefiNItIONcoiiiiiiiiiiiiiiie ettt e e e e e e s 167
14.13 Paging Crypto MetaData (PCIMD)uuiiiiiiiiiie ittt e e e et e e e e e e s e aabbbeeeeaaeeeaan 168
14.14 Enclave Signature Structure (SIGSTRUCT) ...cciiiciiiiieiie et e s sterre e e e e et s sntrae e e e e e s sennnreneeaaeeeanns 168
14.15 EINIT Token Structure (EINITTOKEN)......uuiiiiiiiiiiiiiieie e s cieee e e e s s st eee e e e e e s e snnbaae e e e e e s sennnnreneeeaeeeanns 170
0 L T = Y Yo Ty (1= =] = &) TSRO 171
14.16.1 RE P O R T D AT A 172
14.17 Report Target INfo (TARGETINFO)ccoiuiiiiiiiiiiee ittt sba e e bba e e s eneeas 172
14.18 Key Request (KEYREQUEST)ooiiiiieeeeieeeeieeeeseeseesesesse s seseensss s s ssseses s sanes s sessensnessenssnessenens 172
14.18.1 KEY REQUEST KEYNAMES ... 173
14.18.2 Key REQUESE POIICY SITUCTUIEiiiiiieii ittt e e s e 174
L1419 VEISION ATAY (VA - ittt e oottt e e e 44 s s b bbb et eee e e s e aaa b b e et e e ae e e s e anbbbeeeeeaeeesannbabeneaaaeeeanns 174
14.20 Enclave Page Cache Map (EPCM) ... ittt e e ettt e e e e e e s ibb e eeeaaeaeaan 174
14.21 Read INFO (RDINFO)eiiiiiiiiiiiieiie ettt e e e e e s e et e e e e e e e s s bbbt e e et e e e s e aanbbeeeeaaeeesaaabnbeneeaaeaeaans 175
14.21.1 RDINFO SEAtUS SIUCTUIEeiiiiiiiiiiiieee ettt e e e s e e s e e e s enre e e e 176
14.21.2 RDINFO FIAQS SIIUCIUIE ...oceeiiiiiiieiie e e e e ettt e e e s et e e e e e e e s ettt e e e e e e ssata e e e e e e e e e sanntsaeeeeeeesesnnnrens 176
15 ENCIAVE EXITING EVENLSoviiiii ittt e e e e e s e st e e e e e e e s e s aaa e e e e aeessaatnbaeeeeeeessanntnraneeens 177
15.1 Compatible Switch to the EXiting Stack Of AEX.........oiiiiiiiiiiiiiee e 177
15.2 State SAVING DY AEX ...ttt ettt e et e e s bt e e bt e e e b b et e e e hb e et e e bbb e e e anba e e e nneeas 178
15.3 Synthetic State on ASyNchronous ENCIAVE EXIt..........c.eiiiiiiiiiiiiiiie e 179
15.3.1 Processor Synthetic State on Asynchronous Enclave EXitccccoiiiiiiiinie e 179
15.3.2 Synthetic State for EXtended FEAUIES........coouiii it 179
15.3.3 Synthetic State fOr MISC FEATUIESouuiii ettt et 180
T A Q[0 PP UPPT T OUPPPPRRRT 180
15.4.1 AEX Operational DELaAIL.............uuiiiiiieiiiiie ettt a e e e e e e e e e eea s 181
16 SGX INSLrUCHON REFEIENCESo.veiiiiie ittt et re e sneeennne e 185
16.1 Intel® SGX Instruction Syntax and OPEratiONc.uvuiiiiieei i et e e e s et e e e s s e e e e e e s s sraraereaaeaean 185
16.1.1 ENCLS Register USAgE SUIMIMAIYcccuuuiiiieeeeeiiiitteereeeeessisttsteeseeasessaststeseeeasssssstsseseeesssssnssssseseees 185
16.1.2 ENCLU Register USAge SUMMIAIYccuvuiiiiieeeeeiiieieeeeeeessssststeeseeaesssnnsssseseseaesssnssssnseseessssnnsssseseeees 186

Document Number: 334525-003, Revision 3.0 7

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

16.1.3 ENCLV RegiSter USAgE SUMIMAIYccoiuiiieiiiiieeaiiieeeeiteeeeesiteeeeesibeeeessabaeeesssbeeeesanbaeeessbeeeessbeeeessnes 186
16.1.4 INfOrmation @nd EFTOr COUESccoiiiiiiiiiiiiee ittt ettt e ettt e st e e s st et e e s saba e e e s sabaeeeesabaeeeeaae 187
T T] (= 1 F= U O] = €1 PP PTPPRTOTPRR 188
16.1.6 Concurrent Operation RESIIICTONSiuiiiiiiiiiee ittt e e e b e e s sbreeesaaes 189
16.2 INtel® SGX INSLrUCHON REFEIENCEt e e sbb e e 194
16.3 Intel® SGX System Leaf FUNCLION REEIENCEcoiiiiiiiiii e e 204
16.4 Intel® SGX User Leaf FUNCHON RETEIENCEocueiiiiiiiiie ettt 289
16.5 Intel® SGX VIRTUALIZATION Leaf FUNCHION REFEIENCEcocoiiiiiiiiieie e 345

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Figures

Figure 1 Supervisor Shadow Stack with a Supervisor Shadow Stack TOKENccceeeeiiiiiiiciiiiecceeeee e, 14
Figure 2 Interrupt Shadow Stack Table ..o e e e e e e et e e e e e e e e annrraeees 15
Figure 3 RSTORSSP t0 switch to NeW ShadOW STACKeiiiiiiiii i e e 16
Figure 4 SAVEPREVSSP 10 SQVE @ rESTOrE POINT ...uuuuiiiiiiiiiiiiiiiiiiiiiitiiiiia s aaaanan 17
Figure 5 Priority of Control Protection Exception on Missing Endbranch.............cccccooiieciieee e, 19
Figure 6 Exit Stack Just After Interrupt with Stack SWItChcoociiiiiiiii e 177
FIUIE 7 THE SSA STACK .. eei ittt e e et e e e e te e e e e tte e e e eateeeeebtaeeeesbeeeeenstaeaeensaeeeansseeesassneeeansrns 178
Figure 8 Relationships Between SECS, SIGSTRUCT and EINITTOKENcccoiiiiiiiiiiie et eeiee e siee e sieee e e 240

Document Number: 334525-003, Revision 3.0 9

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

1 Introduction

Return-oriented Programming (ROP), and similarly call/jmp-oriented programming (COP/JOP), have been
the prevalent attack methodology for stealth exploit writers targeting vulnerabilities in programs. These
attack methodology have the common elements:

e A code module with execution privilege and contain small snippets of code sequence with the charac-
teristic: at least one instruction in the sequence being a control transfer instruction that depends on
data either in the return stack or in a register for the target address,

e Diverting the control flow instruction (e.g., RET, CALL, JMP) from its original target address to a new
target (via modification in the data stack or in the register).

Control-flow Enforcement Technology (CET) provides the following capabilities to defend against ROP/JOP
style control-flow subversion attacks:

e Shadow Stack - return address protection to defend against Return Oriented Programming,
e Indirect branch tracking - free branch protection to defend against Jump/Call Oriented Programming.

The rest of this document is organized as follows:

After an overview of Shadow Stack and Indirect Branch Tracking in the rest of this section. Sections 2 and
3 describe the programming environment of Shadow Stack and Indirect Branch Tracking. Sections 4 and 5
describe changes to traditional control flow instructions and task switching behaviors when these new ca-
pabilities are enabled. Both Shadow Stack and Indirect Branch Tracking introduce new instruction set ex-
tensions, and are described in Sections 6 and 7.

Control-flow Enforcement Technology introduces a new exception class (#CP) with interrupt vector 21. Sec-
tion 8 covers enumeration, configuration and new exception class. Sections 9 through 17 cover interactions
between CET and other IA system enhancement technology, including paging, VMX, SMX, SGX.

NOTE

In sections 4 and 5, text in this color is used to illustrate the extensions to the control transfer instructions
and flows for CET.

1.1 Shadow Stack

A shadow stack is a second expand down stack for the program that is used exclusively for control transfer
operations. This stack is separate from the data stack and can be enabled for operation individually in user
mode or supervisor mode. When shadow stacks are enabled, the CALL instruction pushes the return address
on both the data and shadow stack. The RET instruction pops the return address from both stacks and
compares them. If the return addresses from the two stacks do not match, the processor signals a control
protection exception (#CP). Note that the shadow stack only holds the return addresses and not parameters
passed to the call instruction.

The shadow stack is protected from tamper through the page table protections such that regular store
instructions cannot modify the contents of the shadow stack. To provide this protection the page table
protections are extended to support an additional attribute for pages to mark them as “Shadow Stack”
pages. When shadow stacks are enabled, control transfer instructions/flows like near call, far call, call to
interrupt/exception handlers, etc. store return addresses to the shadow stack and the access will fault if the
underlying page is not marked as a “Shadow Stack” page. However stores from instructions like MOV,
XSAVE, etc. will not be allowed. Likewise control transfer instructions like near ret, far ret, iret, etc. when
they attempt to read from the shadow stack the access will fault if the underlying page is not marked as a
“Shadow Stack” page. This paging protection detects and prevents conditions that cause an overflow or
underflow of the shadow stack when the shadow stack is delimited by non-shadow stack guard pages, or
any malicious attempts to redirect the processor to consume data from addresses that are not shadow stack
addresses.

10 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

1.2Indirect Branch Tracking

The ENDBRANCH (see Section 73 for details) is a new instruction that is used to mark valid jump target
addresses of indirect calls and jumps in the program. This instruction opcode is selected to be one that is a
NOP on legacy machines such that programs compiled with ENDBRANCH new instruction continue to function
on old machines without the CET enforcement. On processors that support CET the ENDBRANCH is still a
NOP and is primarily used as a marker instruction by the processor pipeline to detect control flow violations.
The CPU implements a state machine that tracks indirect jmp and call instructions. When one of these
instructions is seen, the state machine moves from IDLE to WAIT_FOR_ENDBRANCH state. In
WAIT_FOR_ENDBRANCH state the next instruction in the program stream must be an ENDBRANCH. If an
ENDBRANCH is not seen the processor causes a control protection exception (#CP), else the state machine
moves back to IDLE state.

Document Number: 334525-003, Revision 3.0 11

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

2 Shadow Stacks

A shadow stack is a second expand down stack used exclusively for control transfer operations. This stack
is separate from the data stack. The shadow stack is not used to store data and hence is not explicitly
writeable by software. Writes to the shadow stack are restricted to control transfer instructions and shadow
stack management instructions. The shadow stack feature can be enabled separately in user mode (CPL ==
3) or supervisor mode (CPL < 3).

Shadow stacks operate only in protected mode with paging enabled. Shadow stacks cannot be enabled in
virtual 8086 mode.

2.1Shadow Stack Pointer and its Operand and Address Size Attributes

When CET is enabled the processor supports a new architectural register, shadow stack pointer (SSP), when
the processor supports the shadow stack feature. The SSP cannot be directly encoded as a source, destina-
tion or memory operand in instructions. The SSP points to the current top of the shadow stack.

The width of the shadow stack is 32-bit in 32-bit/compatibility mode and is 64-bit in 64-bit mode. The
address-size attribute of the shadow stack is likewise 32-bit in 32-bit/compatibility mode and 64-bit in 64-
bit mode.

2.2 Terminology

When shadow stacks are enabled, certain control transfer instructions/flows and shadow stack management
instructions do loads/stores to the shadow stack. Such load/stores from control transfer instructions and
shadow stack management instructions are termed as shadow_stack_load and shadow_stack_store to dis-
tinguish them from a load/store performed by other instructions like MOV, XSAVES, etc.

The pseudocode for the instruction operations use the notation ShadowStackEnabled(CPL) as a test of
whether shadow stacks are enabled at the CPL. This term returns a TRUE or FALSE indication as follows:

ShadowStackEnabled(CPL):

IF CR4.CET = 1 AND CRO.PE =1 AND EFLAGS.VM =0
IFCPL=3
THEN
(* Obtain the shadow stack enable from IA32_U_CET MSR (MSR address 6A0H) used to enable
feature for CPL = 3 *)
SHADOW_STACK_ENABLED = 1A32_U_CET.SH_STK_EN;
ELSE
(* Obtain the shadow stack enable from IA32_S_CET MSR (MSR address 6A2H) used to enable
feature for CPL < 3 %)
SHADOW_STACK_ENABLED = 1A32_S_CET.SH_STK_EN;

Fl;
IF SHADOW_STACK_ENABLED = 1
THEN
return TRUE;
ELSE
return FALSE;
Fl;

ELSE
(* Shadow stacks not enabled in real mode and virtual-8086 mode or if the master CET feature

12 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

enable in CR4 is disabled *)
return FALSE;
ENDIF

Additionally, the following terms are used:

e ShadowStackPush4B - decrements the shadow stack pointer (SSP) by 4 bytes and copies the 4 byte
source operand to the top of the shadow stack.

e ShadowStackPush8B - decrements the shadow stack pointer (SSP) by 8 bytes and copies the 8 byte
source operand to the top of the shadow stack.

e ShadowStackPop4B - copies 4 bytes at the current top of stack (indicated by the SSP register) to the
location specified with the destination operand. It then increments the SSP register by 4 bytes to point
to the new top of stack.

e ShadowStackPop8B - copies 8 bytes at the current top of stack (indicated by the SSP register) to the
location specified with the destination operand. It then increments the SSP register by 8 bytes to point
to the new top of stack.

2.3 Near CALL and RET Behavior with Shadow Stacks Enabled

When shadow stack is enabled, near CALL, except for calls with a displacement value equal to zero, pushes
the return address on both the data stack and the shadow stack. Near RET, when shadow stack is enabled,
pops the return address from both the shadow stack and data stack. The data stack pointer (ESP/RSP) is
further incremented optionally by ‘n’ bytes if an optional ‘n’ operand was specified. However, the shadow
stack pointer (SSP) does not increment. If the return addresses popped from the two stacks are not the
same, then the processor causes a control protection exception (#CP) (NEAR-RET) exception.

2.4Far CALL and RET

The CALL instruction can be used to call a procedure located in a different segment than the current code
segment or to a segment at a different privilege level.

On a far CALL to the same privilege level, the processor pushes the CS, LIP (linear address of the return
address) and the SSP on the shadow stack and on a far RET pops the SSP, LIP and the CS from the shadow
stack. If the CS and LIP do not match the return address as determined by popping the CS and EIP from
the data stack, the processor causes a #CP(FAR-RET/IRET) exception.

On a far CALL to a higher privilege level (inter-privilege level call), shadow stack behavior is as follows.

e When the far CALL originates at CPL3, the return addresses are not pushed onto the supervisor
shadow stack. Likewise, a far RET to CPL3 from supervisor privilege level (CPL < 3) does not do any
verification of the return addresses. On a CPL3 -> CPL<3 transition, the user space SSP is saved to an
MSR (IA32_PL3_SSP) and on a CPL<3 -> CPL3 transition is restored from this MSR.

e On an inter-privilege-level call, the call instruction performs a stack switch. The data stack for the su-
pervisor program is located from the current TSS. Likewise, the shadow stack is switched on such
transfers. The SSP for the supervisor program is obtained from one of following MSRs depending on
the target privilege level.

- IA32_PL2_SSP if transitioning to ring 2.
- IA32_PL1_SSP if transitioning to ring 1.
- IA32_PLO_SSP if transitioning to ring 0.

e A far call from ring 2 to ring 1, ring 2 to ring 0, or from ring 1 to ring 0 is considered a “same privilege
class” transfer for shadow stacks. Thus such far calls, subsequent to locating the SSP for the new priv-
ilege level, push the CS, LIP and SSP of the calling procedure onto the shadow stack of the called pro-
cedure. Likewise, the far RET will verify the CS and LIP from the shadow stack matches the return ad-
dress as determined by the CS and EIP obtained from the data stack.

Document Number: 334525-003, Revision 3.0 13

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

241 Supervisor Shadow Stack Token

On an inter-privilege far CALL, CET verifies a supervisor shadow stack token that is setup by the super-
visor when creating shadow stacks intended to be used on these transfers. The supervisor shadow stack
token is a 64-bit value formulated as follows.

e Bit 63:3 - Bits 63:3 of the linear address of the supervisor shadow stack token.
e Bit 2 - Reserved. Must be zero.
e Bit 1 -Reserved. Must be zero.

e Bit 0 - Busy bit. If 0, indicates this shadow stack is not active on any logical processor. If 1, indicates
this shadow stack is currently active on one of the logical processors.

The following figure illustrates a supervisor shadow stack with a supervisor shadow stack token located at its base.

<Next push saves here>

\ 4

OxFF8 | busy

IA32_PLx_SSP = OxFF8

Figure 1 Supervisor Shadow Stack with a Supervisor Shadow Stack Token

The address specified in the IA32_PLx_SSP MSR is required to be 8 byte aligned. The processor does the
following checks prior to switching to a supervisor shadow stack programmed into the IA32_PLx_SSP MSR.
These steps are performed atomically.

1. Load the supervisor shadow stack token from the address specified in the IA32_PLx_SSP MSR using a
shadow_stack_load.

2. Check if the busy bit in the token is 0; reserved bits must be 0.

3. Check if the address programmed in the MSR matches the address in the supervisor shadow stack token;
reserved bits must be 0.

4. If checks 2 and 3 are successful, then set the busy bit in the token using a shadow_stack_store and
switch the SSP to the value specified in the IA32_PLx_SSP MSR.

5. If checks 2 or 3 fail, then the busy bit is not set and a #GP(0) exception is raised.

On a far RET, the instruction clears the busy bit in the shadow stack token as follows. These steps are also
performed atomically.

1. Load the supervisor shadow stack token from the SSP using a shadow_stack_load.
2. Check if the busy bit in the token is 1; reserved bits must be Oand reserved bits must be 0.

14 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

3. Check if the address programmed in supervisor shadow stack token matches SSP; reserved bits must be
0.

4. If checks 2 and 3 are successful, then clear the busy bit in the token using a shadow_stack_store; else
continue without modifying the contents of the shadow stack pointed to by SSP.

The operations described here are also applicable to a far transfer performed when calling an interrupt or
exception handler through an interrupt/trap gate in the IDT. Likewise, the IRET instruction behaves similar
to the Far RET instruction.

2.5Stack Switching on Call to Interrupt/Exception Handlers in 64-bit Mode

The 64-bit mode operation provides a stack-switching mechanism called Interrupt Stack Table (IST) wherein
the 64-bit IDT descriptor can be used to specify one of seven data stack pointers in the 64-bit TSS. If the
IST index specified is 0 and there is no privilege change involved then a stack switch occurs to the same
stack.

To support this stack-switching mechanism, the shadow stack feature provides an MSR, IA32_INTER-
RUPT_SSP_TABLE, to program the linear address of a table of seven shadow stack pointers. When a non-
zero IST value is specified, the MSR points to a 64 byte table in memory that is indexed using the IST index.

IST7 SSP Offset 7
IST6 SSP Offset 6
IST5 SSP Offset 5
IST4 SSP Offset 4
IST3 SSP Offset 3
IST2 SSP Offset 2
IST1 SSP Offset 1
> Not used. available Offset 0

IA32_INTER-
RUPT_SSP_TABLE

Figure 2 Interrupt Shadow Stack Table

2.6 Shadow Stack Usage on Task Switch
A task switch (see Section 5 “Task Management Interactions with CET”) may be invoked by:
e JMP or CALL instruction to a TSS descriptor in the GDT.
e JMP or CALL instruction to a task-gate descriptor in the GDT or the current LDT.
e An interrupt or exception vector points to a task-gate descriptor in the IDT.

With shadow stack enabled, the new task must be associated with a 32-bit TSS and must not be in virtual-
8086 mode. The 32-bit SSP for the new task is located at offset 104 in the 32-bit TSS. Thus the TSS of the
new task must be at least 108 bytes. This SSP is required to be 8 byte aligned, and required to point to a
“supervisor shadow stack” token (though the task may be at CPL3).

On a task switch initiated by a CALL instruction, an interrupt, or exception, the SSP of the old task is pushed
onto the shadow stack of the new task along with the CS and LIP of the old task. This is true even for a
nested task switch initiated by a CALL instruction. Likewise, on a task switch initiated by IRET, the SSP of
the new task is restored from the shadow stack of old task. The CS and LIP on the shadow stack of the old
task are matched against the return address determined by the CS and EIP of the new task. If the match
fails, a #CP(FAR-RET/IRET) exception is reported.

Document Number: 334525-003, Revision 3.0 15

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

2.7 Switching Shadow Stacks

The architecture provides a mechanism to switch shadow stacks using a pair of instructions; RSTORSSP and
SAVEPREVSSP. The RSTORSSP instruction verifies a “shadow stack restore” token located at the top of the
new shadow stack and referenced by the memory operand of this instruction. After RSTORSSP determines
the validity of the restore point on the new shadow stack, it switches the SSP to point to the token. The
“shadow stack restore” token is a 64-bit value formatted as follows.

e Bit 63:2 - Value of shadow stack pointer when this restore point was created.
e Bit 1 - Reserved. Must be zero.

e Bit 0 - Mode bit. If 0, the token is a compatibility/legacy mode “shadow stack restore” token. If 1, then
this shadow stack restore token can be used with a RSTORSSP instruction in 64-bit mode.

The “shadow stack restore” token is created by the SAVEPREVSSP instruction. The operating system may
also create a restore point on a shadow stack by creating a “shadow stack restore” token.

Once the shadow stack has been switched to a new shadow stack by the RSTORSSP instruction, software
can create a restore point on the old shadow stack by executing the SAFEPREVSSP instruction. In order to
allow the SAVEPREVSSP instruction to determine the address where to save the “shadow stack restore”
token, the RSTORSSP instruction replaces the “shadow stack restore” token with a “previous ssp” token that
holds the value of the SSP at the time the RSTORSSP instruction was invoked. The “previous ssp” token is
formatted as follows.

e Bit 63:2 - Shadow stack pointer when the RSTORSSP instruction was invoked, i.e., the SSP of the old
shadow stack.

e Bitl-Settol.

e Bit 0 - Mode bit. If 0, then this “previous ssp” token can be used with a SAVEPREVSSP instruction in
compatibility/legacy mode. If 1, then this “previous ssp” token can be used with a SAVEPREVSSP in-
struction in 64-bit mode.

The following figure illustrates the RSTORSSP instruction operation during a shadow stack switching se-
quence.

0x000 0 M 0x1000 1 M

Figure 3 RSTORSSP to switch to new shadow stack

In this example, the initial SSP is 0x1000 and the “shadow stack restore” token is on a new shadow stack
at address 0x3FF8. The token at address Ox3FF8 holds the SSP when this restore point was created; in this
example it is 0x4000.

In order to switch to the new shadow stack, the RSTORSSP instruction is invoked with the memory operand
pointing set to Ox3FF8. When the RSTORSSP instruction completes, the SSP is set to 0x3FF8 and the
“shadow stack restore” token at O0x3FF8 is replaced by a “previous ssp” token that holds the address 0x1000,
i.e., old SSP.

16 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

The following figure illustrates the SAVEPREVSSP instruction operation during a shadow stack switching
sequence.

New Shadow Previous New Shadow
Stack Shadow Stack Stack
SSP—p 0x1000 1 M Ox3FF8 0x1000 0o M 0x1000 1 M| Ox3FF8
0x4000 SSP—> 0x4000
Current active shadow stack “shadow stack restore” token Current active shadow stack
with a “previous SSP” token pushed on previous shadow with a “previous SSP” token
stack following SAVEPREVSSP popped off

Figure 4 SAVEPREVSSP to save a restore point

To allow switching back to this old shadow stack, a SAVEPREVSSP instruction is now invoked. The SAVE-
PREVSSP instruction does not take any memory operand and expects to find a “previous ssp” token at the
top of the shadow stack, i.e., at address Ox3FF8. The SAVEPREVSSP instruction then saves a “shadow stack
restore” token on the old shadow stack at address 0xFF8, and the token itself holds the address 0x1000
which is the address recorded in the “previous ssp” token. The SAVEPREVSSP instruction also pops the
“previous ssp” token off the current shadow stack and thus the SSP following SAVEPREVSSP is 0x4000.

Subsequently to switch back to the old shadow stack, a RSTORSSP instruction may be invoked with memory
operand set to OxFF8.

If, following a switch to a new shadow stack, it is not required to create a restore point on the old shadow
stack, then the “previous ssp” token created by the RSTORSSP instruction can be popped off the shadow
stack by using the INCSSP instruction.

See the SAVEPREVSSP and RSTORSSP instruction operations for the detailed algorithm.

2.8 Constraining Execution at Targets of RET
Instructions at the target of a RET instruction will not execute, even speculatively, if the RET addresses (either
from normal stack or shadow stack) are speculative-only or do not match, unless the target of the RET is also
predicted (e.g., by a Return Stack Buffer prediction), when CET shadow stack is enabled. A RET address would
be speculative-only if it was modified by an older speculative-only store, or was an older value than the most
recent value stored to that address on the logical processor.

Document Number: 334525-003, Revision 3.0 17

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

3 Indirect Branch Tracking

When the indirect branch tracking feature is active, the indirect JMP/CALL instruction behavior changes as

follows.

e JMP - If the next instruction retired after an indirect JMP is not an ENDBR32 instruction in legacy and
compatibility mode, or ENDBR64 instruction in 64-bit mode, then a #CP fault is generated. Below JMP
instructions are tracked to enforce an endbranch. Note that Jcc, RIP relative, and far direct JMP are not
included as these have an offset encoded into the instruction and are not exploitable to create unin-
tended control transfers.

- JMPr/m16, JMP r/m32, JMP r/m64
- JMP m16:16, JMP m16:32, JMP m16:64

e CALL - If the next instruction retired after an indirect CALL is not an ENDBR32 instruction in legacy and
compatibility mode, or ENDBR64 in 64-bit mode, then a #CP fault is generated. Below CALL instructions
are tracked to enforce an endbranch. Note that relative and zero displacement forms of CALL instructions
are not included as these have an offset encoded into the instruction and are not exploitable to create
unintended control transfers.

- CALL r/m16, CALL r/m32, CALL r/m64
- CALL m16:16, CALL m16:32, CALL m16:64

The ENDBR32 and ENDBR64 instructions will have the same effect as the NOP instruction on Intel 64 pro-
cessors that do not support CET. On processors supporting CET, these instructions do not change register
or flag state. This allows CET instrumented programs to execute on processors that do not support CET.
Even when CET is supported and enabled, these NOP-like instructions do not affect the execution state of
the program, do not cause any additional register pressure, and are minimally intrusive from power and
performance perspectives.

The processor implements two dual-state machines to track indirect CALL/IJMP for terminations. One state
machine is maintained for user mode and one for supervisor mode. At reset the user and supervisor mode
state machines are in IDLE state.

On instructions other than indirect CALL/IJMP, the state machine stays in the IDLE state.

On an indirect CALL or JMP instruction, the state machine transitions to the WAIT_FOR_ENDBRANCH
state.

In the WAIT_FOR_ENDBRANCH state, the indirect branch tracking state machine verifies the next instruction
is an ENDBR32 instruction in legacy and compatibility mode, or ENDBR64 instruction in 64-bit mode, and
either:

e Causes a #CP fault, or

e Allows the next instruction if legacy compatibility configuration allows (see section 3.6).

18 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

The priority of the #CP(ENDBRANCH) exception relative to other events is as follows.

#CP Fault

Indirect CALL/JMP,
RET

larget
Instruction

ode [aults)

NM

)/#

Figure 5 Priority of Control Protection Exception on Missing Endbranch

Higher priority faults/traps/events that occur at the end of an indirect CALL/IJMP are delivered ahead of any
#CP(ENDBRANCH) fault. The CET state machine at the privilege level where the higher priority
fault/trap/event occurred retains its state when the control transfers to the fault/trap/event handler. The
instruction pointer pushed on the stack for a #CP(ENDBRANCH) fault is the address of the instruction at the
target of the indirect CALL/JMP that caused the fault.

3.1No-track Prefix for Near Indirect Call/Jmp
CET allows software to designate certain indirect CALL and JMP instructions as “non-tracked indirect control
transfer instructions”. When enabled by setting the NO_TRACK_EN control in the IA32_U_CET/IA32_S_CET
MSR, near indirect CALL and JMP instructions when prefixed with 3EH do not modify the CET indirect branch
tracker. Far CALL and JMP instructions are always tracked and ignore the 3EH prefix. When this control is
0, near indirect CALL and JMP instructions are always tracked irrespective of the presence of the 3EH prefix.

In 64-bit mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix if there isn't a
64H/65H prefix on the instruction.

In legacy/compatibility mode, the 3EH prefix on an indirect CALL or JMP is recognized as a no-track prefix
when it is the last group 2 prefix on the instruction.

3.2 Terminology

The pseudocode for the instruction operations use a notation EndbranchEnabled(CPL) as a test of whether
indirect branch tracking is enabled at the CPL. This term returns a TRUE or FALSE indication as follows.

EndbranchEnabled(CPL):

IF CR4.CET = 1 AND CRO.PE = 1 AND EFLAGS.VM =0
IFCPL=3
THEN
(* Obtain the endbranch enable from MSR used to enable feature for CPL = 3 *)
ENDBR_ENABLED =1A32_U_CET.ENDBR_EN;
ELSE
(* Obtain the endbranch enable from MSR used to enable feature for CPL < 3 *)
ENDBR_ENABLED =1A32_S_CET.ENDBR_EN;
Fl;
IF ENDBR_ENABLED =1
THEN
return TRUE;

Document Number: 334525-003, Revision 3.0 19

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ELSE
return FALSE;

FI;
ELSE

(* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature

enable in CR4 is disabled *)

return FALSE;

ENDIF

Likewise the notation EndbranchEnabledAndNotSuppressed is defined as follows:
EndbranchEnabledAndNotSuppressed(CPL):
IF CR4.CET = 1 AND CRO.PE =1 AND EFLAGS.VM =0
IFCPL=3
THEN

(* Obtain the endbranch enable from MSR used to enable feature for CPL = 3 *)
ENDBR_ENABLED =1A32_U_CET.ENDBR_EN;

SUPPRESSED = 1A32_U_CET.SUPPRESS;
ELSE

(* Obtain the endbranch enable from MSR used to enable feature for CPL <3 *)
ENDBR_ENABLED = IA32_S_CET.ENDBR_EN;
SUPPRESSED =1A32_S_CET.SUPPRESS;

Fl;
IF ENDBR_ENABLED = 1 AND SUPPRESSED =0
THEN
return TRUE;
ELSE
return FALSE;
Fl;

ELSE

(* Indirect branch tracking is not enabled in real mode and virtual-8086 mode or if the master CET feature
enable in CR4 is disabled *)

return FALSE;
ENDIF

3.3 Control Transfer Tracking

The hardware implements two CET indirect branch tracker state machines, one for user mode (CPL == 3)
and one for supervisor mode (CPL < 3). At any time, which of the CET indirect branch trackers is in the
active state depends on the CPL of the machine. When a user space program is executing, the CPL 3 CET
indirect branch tracker is active. When supervisor mode software is executing, the CPL < 3 tracker is active.
This section describes the various control transfer conditions and the tracker state on those transfers.

20 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION
3.3.1 Control Transfers between CPL 3 and CPL <3

Some events and instructions can cause control transfer to occur from CPL 3 to CPL < 3, and vice versa. As
part of the CPL change the hardware also switches the active CET indirect branch tracker. For example,
when an interrupt occurs during execution of a user mode (CPL == 3) program and it causes the CPL to
switch to supervisor mode (CPL < 3) then, as part of the CPL change, the user mode CET indirect branch
tracker becomes inactive and the supervisor mode CET indirect branch tracker becomes active. A subse-
quent iret is used by the interrupt handler to return to the interrupted user mode program. This iret causes
the processor to switch the CPL to user mode (CPL ==3) and, as part of the CPL change, the supervisor
mode CET indirect branch tracker becomes inactive and the user mode CET indirect branch tracker becomes
active.

The CPL where the event or instruction that caused the control transfer occurs is termed the source CPL,
and the CET indirect branch tracker state at that CPL is referred here as the source CET indirect branch
tracker state. The CPL reached at the end of the control transfer is termed the destination CPL, and the CET
indirect branch tracker state at that CPL is referred to as the destination CET indirect branch tracker state.

This section describes various cases of control transfers that occur between user mode (CPL 3) and super-
visor mode (CPL < 3).

In all these cases the source CET indirect branch tracker state becomes not active and retains its state
(IDLE, WAIT_FOR_ENDBRANCH), and the target CET indirect branch tracker state becomes active if there
was no fault during the transfer.
e Case 1: FAR call/jmp, SYSCALL/SYSENTER
- Ifindirect branch tracking is enabled, the target indirect branch tracker state becomes active and is
unsuppressed and goes to WAIT_FOR_ENDBRANCH. This enforces that the subroutine invoked by a
far call/jmp must begin with an endbranch.
e Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks
- If indirect branch tracking is enabled, the target indirect branch tracker state becomes active and is
unsuppressed and goes to WAIT_FOR_ENDBRANCH.
e Case 3: IRET

- If indirect branch tracking enabled, the target indirect branch tracker becomes active and keeps its
state. If the user mode was interrupted by a higher priority event, like an interrupt at the end of
the indirect call/jmp, then when an iret is used to return to the interrupted user mode program, the
user mode indirect branch tracker retains its state and a #CP fault will occur if the next instruction
decoded is not an endbr32/64 according to mode of machine.

3.3.2 Control Transfers within CPL 3 or CPL < 3

Some events and instructions can cause control transfer to occur within CPL 3 or CPL < 3. For such transfers
since the CPL class does not change, the same indirect branch tracker is used at the beginning and end of
the control transfer.
e Case 1: FAR CALL/IMP, Near indirect call/jmp
- FAR CALL/IMP: If indirect branch tracking is enabled, active indirect branch tracker is unsuppressed
and goes to WAIT_FOR_ENDBRANCH.
- Near indirect call/jmp: If indirect branch tracking is enabled and not suppressed, active indirect
branch tracker goes to WAIT_FOR_ENDBRANCH.
e Case 2: Hardware interrupt/trap/exception/NMI/Software interrupt/Machine Checks
- If indirect branch tracking is enabled, the active indirect branch tracker is unsuppressed and goes
to WAIT_FOR_ENDBRANCH.
e Case 3: IRET
- If indirect branch tracking is enabled, the active indirect branch tracker keeps its state.

Document Number: 334525-003, Revision 3.0 21

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

3.4Indirect Branch Tracking State Machine
The state machine is described by following table.

Current State

Trigger

Next state

TRACKER=IDLE, SUPPRESS=0,
ENDBR_EN=1

Instructions other than
indirect call/jmp or 3EH
prefixed near indirect
call/jmp and
NO_TRACK_EN=1

TRACKER=IDLE, SUPPRESS=0,
ENDBR_EN=1

Indirect call/jmp without
3EH prefix

Indirect call/jmp with
3EH prefix and
NO_TRACK_EN=0

Far call/jmp

TRACKER=WAIT_FOR_ENDBRANCH,
SUPPRESS=0, ENDBR_EN=1

TRACKER= WAIT_FOR_ENDBRANCH,
SUPPRESS=0, ENDBR_EN=1

INT3/INT1

TRACKER= WAIT_FOR_ENDBRANCH,
SUPPRESS=0, ENDBR_EN=1

Endbranch instruction

TRACKER=IDLE, SUPPRESS=0,
ENDBR_EN=1

Successful ENCLU[ERE-
SUME]

TRACKER=IDLE, SUPPRESS=0,
ENDBR_EN=1

Instructions other than
endbranch, successful
ENCLU[ERESUME] or
int3 orint1

If legacy compatibility treatment is

not enabled or if not allowed by leg-

acy code page bitmap:

¢ No state change and deliver #CP
(ENDBRANCH)

If legacy compatibility treatment is

enabled and transfer allowed by leg-

acy code page bitmap:

e TRACKER=IDLE, SUPRESS=!SUP-
PRESS_DIS, ENDBR_EN=1

TRACKER=x, SUPPRESS=x,
ENDBR_EN=0

All instructions

TRACKER=x, SUPPRESS=x,
ENDBR_EN=0

TRACKER=IDLE, SUPPRESS=1,
ENDBR_EN=1

FAR CALL/JMP,
INTn/INT3/INTO

TRACKER=WAIT_FOR_ENDBRANCH,
SUPPRESS=0, ENDBR_EN=1

Endbranch instruction
Successful ENCLU[ERE-
SUME]

TRACKER=IDLE, SUPPRESS=0,
ENDBR_EN=1

All other instructions in-
cluding indirect call/jmp

TRACKER=IDLE, SUPPRESS=1,
ENDBR_EN=1

TRACKER=1, SUPPRESS=1,
ENDBR_EN=1

(This state cannot be reached by
hardware and is disallowed as a valid
state by WRMSR/XRSTORS/VM en-
try/VM exit)

N/A

N/A

22

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

3.5INT3 Treatment
INT3 are treated special in the WAIT_FOR_ENDBRANCH state. Occurrence of INT3 do not move the tracker
to IDLE but instead the #BP trap from the INT3 instructions respectively is delivered as a higher priority
event than the #CP exception due to missing endbranch.

Inside an enclave, INT3 delivers a fault-class exception and thus does not require the CPL to be less than DPL in
the IDT gate 3. Following opt-out entry, the instruction delivers #UD. Following opt-in entry, INT3 delivers #BP.
The special treatment of INT3 in WAIT_FOR_ENDBRANCH state does not apply in enclave mode following opt-
out entry.
3.6 Legacy Compatibility Treatment
Endbranch Legacy compatibility treatment allows a CET enabled program to be used with legacy software
that was not compiled / instrumented with endbranch. A CET enabled program enters legacy compatibility
treatment when all of the below conditions are met.
1. Legacy compatibility configuration is enabled in this CPL class by setting the LEG_IW_EN bit in
IA32_U_CET/IA32_S_CET.
2. Control transfer is performed using an indirect call/jmp without no-track prefix to a non-endbranch
instruction.
3. The legacy code page bitmap is setup to indicate that the target of the control transfer is a legacy code

page.

The legacy code page bitmap is a data structure in program memory that is used by the hardware to
determine if the code page to which a legacy transfer is being performed is allowed.

When a matching endbranch instruction is not decoded at the target of an indirect call/jmp when required,
the processor performs the below actions.

CET indirect branch tracking state machine violation event handler:
If LEG_IW_EN ==
LA = LIP;
IF ENCLAVE_MODE ==
LA = LA - SECS.BASEADDR,;

ENDIF
IF (EFERLMA & CS.L) ==
BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[31:15]]
ELSE
IF CR4.LA57 ==
BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[56:15]]
ELSE
BITMAP_BYTE = load.Asize_syslinaddr. Osize8(BITMAP_BASE + LA[47:15]]
FI;
IF BITMAP_BYTE & (1 << LA[14:12]) == O then Deliver #CP(ENDBRANCH) fault
IFCPL=3

IA32_U_CET.TRACKER = IDLE
IA32_U_CET.SUPPRESS = 1A32_U_CET.SUPPRESS DIS==071:0
ELSE
IA32_S_CET.TRACKER = IDLE
IA32_S _CET.SUPPRESS = 1A32_S_CET.SUPPRESS DIS==071:0
ENDIF
Restart the instruction (handle all arch. consistency around MOV SS state machines, STl etc.)
without opening up interrupt/trap window
ELSE
Deliver #CP(ENDBRANCH) Fault
ENDIF

Document Number: 334525-003, Revision 3.0 23

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Faults/traps in pseudocode are delivered normally (e.g. #PF, EPT violation). On fault, active tracker holds
last value (WAIT_FOR_ENDBRANCH) and address saved on stack is current IP (instruction that wasn't the
ENDBRANCH).

The CET indirect branch tracking state machine is suppressed in legacy compatibility mode if the SUP-
PRESS_DIS control bit is 0.

Once the CET indirect branch tracking state machine has been suppressed, subsequent indirect call/jmp are
not tracked for termination instruction.

Once CET indirect branch tracking has been suppressed, subsequent execution of endbranch instructions
will do the following (see section 7 for details).

IF EndbranchEnabled(CPL) ==

NOP
ELSE
SUPPRESS =0
TRACKER = IDLE
ENDIF

3.6.1 Legacy Code Page Bitmap Format

The legacy code page bitmap is a flat bitmap whose linear address is pointed to by the EB_LEG_BIT-
MAP_BASE. Each bit in the bitmap represents a 4K page in linear memory. If the bit is 1 it indicates that
the corresponding code page is a legacy code page; else it is a CET-enabled code page.
The processor uses the linear address of the instruction to which legacy transfer was attempted to lookup
the bitmap. Bits of the linear address used as index in the bitmap are as follows.
e In legacy and compatibility mode - Bits 31:12
e In 64-bit mode (EFER.LMA=1 and CS.L=1)

- If CR4.LA57 = 1, then Bits 56:12

- If CR4.LA57 = 0, then Bits 47:12

3.7 Other Considerations

3.71 Intel® Transactional Synchronization Extensions (Intel® TSX) Interactions
The XBEGIN instruction encodes the relative offset to the abort handler and hence the fallback to the
abort handler can be considered as a “direct” branch and the abort handler does not need to have an
ENDBRANCH.

CET continues to enforce indirect call/jmp tracking within a transaction. Legacy compatibility treatment
inside a transaction functions normally. If a transaction abort occurs then the processor sets the state of the
indirect branch tracker to IDLE and not-suppressed.

3.7.2 #CP(ENDBRANCH) Priority w.r.t #NM and #UD
#NM, #UD and #CP(ENDBRANCH) are in the same priority class. Both #NM and #UD are opcode based

faults. The #CP(endbranch) is prioritized higher than #NM and #UD as CET architecturally requires an
ENDBRANCH at target of indirect call/jmp.

24 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

3.7.3 #CP(ENDBRANCH) Priority w.r.t #BP

Debug Exceptions priority is as follows.

e Traps delivered before any #CP(ENDBRANCH) fault: data breakpoint trap, I0 breakpoint trap single step
trap, task switch trap.

e Code Breakpoint fault detected before instruction decode and delivered before #CP(endbranch).

e GD condition fault - lower priority than #CP(endbranch).

e On IRET back from #DB/#BP the source indirect branch tracker becomes active if enabled and not
suppressed.

INT3 does not cause #CP(endbranch) to support debugger usage of replacing bytes of ENDBRANCH with
INT3 to set breakpoints. INT3 at target of a CALL-JMP(indirect) cause #BP(INT3) instead of #CP(endbranch),
#CP(endbranch) fault is delayed. #BP caused by INT3 treated like other events that are higher priority than
CET fault. On IRET back from #BP the source indirect tracker becomes active if enabled and not suppressed.

3.8 Constraining Speculation after Missing ENDBRANCH
When the CET tracker is in the WAIT_FOR_ENDBRANCH state, instruction execution will be limited or blocked,
even speculatively, if the next instruction is not an ENDBRANCH.

This means that when indirect branch tracking is enabled and not suppressed, the instructions at the target of a
near indirect JMP/CALL without the no-track prefix will only speculatively execute if there is an ENDBRANCH at
the target. Early implementations of CET may limit the speculative execution to a small nhumber of instructions
(less than 8, with no more than 5 loads) past a missing ENDBRANCH, while later implementations will com-
pletely block the speculative execution of instructions after a missing ENDBRANCH.

This mechanism also limits or blocks speculation of the next sequential instructions after an indirect JMP or
CALL, presuming the JMP/CALL puts the CET tracker into the WAIT_FOR_ENDBRANCH state and the next se-
quential instruction is not an ENDBRANCH.

Document Number: 334525-003, Revision 3.0 25

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4 Changes to Control Transfer Instructions Reference
When CET is enabled, the changes in operation of traditional control transfer instructions are described in this
section.

4.1 CALL— Call Procedure

Opcode Instruction Op/ 64-bit Compat/ Description
En Mode Leg
Mode
E8 cw CALL rel16 M N.S. Valid Call near, relative, displacement

relative to next instruction.

E8 cd CALL rel32 M Valid Valid Call near, relative, displacement
relative to next instruction. 32-bit
displacement sign extended to
64-bits in 64-bit mode.

FF /2 CALL r/m16 M N.E. Valid Call near, absolute indirect,
address given in r/m16.

FF /2 CALL r/m32 M N.E. Valid Call near, absolute indirect,
address given in r/m32.

FF /2 CALL r/m64 M Valid N.E. Call near, absolute indirect,
address given in r/m64.

9A cd CALL ptr16:16 D Invalid Valid Call far, absolute, address given
in operand.

9A cp CALL ptr16:32 D Invalid Valid Call far, absolute, address given
in operand.

FF /3 CALL m16:16 M Valid Valid Call far, absolute indirect address

given in m16:16.

In 32-bit mode: if selector points
to a gate, then RIP = 32-bit zero
extended displacement taken
from gate; else RIP = zero
extended 16-bit offset from far
pointer referenced in the
instruction.

FF /3 CALL m16:32 M Valid Valid In 64-bit mode: If selector points
to a gate, then RIP = 64-bit
displacement taken from gate;
else RIP = zero extended 32-bit
offset from far pointer referenced
in the instruction.

REX.W CALL m16:64 M Valid N.E. In 64-bit mode: If selector points

+FF /3 to a gate, then RIP = 64-bit
displacement taken from gate;
else RIP = 64-bit offset from far

26 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

pointer referenced in the

instruction.
Instruction Operand Encoding
/(I)Ef: Operand 1 Operand 2 Operand 3 Operand 4
D Offset NA NA NA
M ModRM:r/m (r) NA NA NA
Description

Saves procedure linking information on the stack and branches to the called procedure specified using the
target operand. The target operand specifies the address of the first instruction in the called procedure. The
operand can be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls.

®* Near Call — A call to a procedure in the current code segment (the segment currently pointed to by the
CS register), sometimes referred to as an intra-segment call.

® Far Call — A call to a procedure located in a different segment than the current code segment, some-
times referred to as an inter-segment call.

* Inter-privilege-level far call — A far call to a procedure in a segment at a different privilege level
than that of the currently executing program or procedure.

®* Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in protected mode.
See “Calling Procedures Using Call and RET” in Chapter 6 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for additional -information on near, far, and inter-privilege-level calls. See
Chapter 7, “"Task Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, for information on performing task switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register (which contains the
offset of the instruction following the CALL instruction) on the stack (for use later as a return-instruction
pointer). The processor then branches to the address in the current code segment specified by the target
operand. The target operand specifies either an absolute offset in the code segment (an offset from the
base of the code segment) or a relative offset (a signed displacement relative to the current value of the
instruction pointer in the EIP register; this value points to the instruction following the CALL instruction).
The CS register is not changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose register or a memory
location (r/m16, r/m32, or r/mé64). The operand-size attribute determines the size of the target operand
(16, 32 or 64 bits). When in 64-bit mode, the operand size for near call (and all near branches) is forced to
64-bits. Absolute offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is 16,
the upper two bytes of the EIP register are cleared, resulting in @ maximum instruction pointer size of 16
bits. When accessing an absolute offset indirectly using the stack pointer [ESP] as the base register, the
base value used is the value of the ESP before the instruction executes.

A relative offset (rel16 or rel32) is generally specified as a label in assembly code. But at the machine code
level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the
EIP(RIP) register. In 64-bit mode the relative offset is always a 32-bit immediate value which is sign ex-
tended to 64-bits before it is added to the value in the RIP register for the target calculation. As with absolute

Document Number: 334525-003, Revision 3.0 27

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

offsets, the operand-size attribute determines the size of the target operand (16, 32, or 64 bits). In 64-bit
mode the target operand will always be 64-bits because the operand size is forced to 64-bits for near
branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real- address or virtual-8086
mode, the processor pushes the current value of both the CS and EIP registers on the stack for use as a
return-instruction pointer. The processor then performs a “far branch” to the code segment and offset spec-
ified with the target operand for the called procedure. The target operand specifies an absolute far address
either directly with a pointer (ptr16:16 or ptri6:32) or indirectly with a memory location (m16:16 or
m16:32). With the pointer method, the segment and offset of the called procedure is encoded in the in-
struction using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit operand
size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines the size of the
offset (16 or 32 bits) in the far address. The far address is loaded directly into the CS and EIP registers. If
the operand-size attribute is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL instruction can be
used to perform the following types of far calls.

® Far call to the same privilege level.
® Far call to a different privilege level (inter-privilege level call).

® Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to access the
corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or
TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-
conforming, a general-protection exception is generated.) A far call to the same privilege level in protected
mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory
location (m16:16 or m16:32). The operand- size attribute determines the size of the offset (16 or 32 bits)
in the far address. The new code segment selector and its descriptor are loaded into CS register; the offset
from the instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to a code segment at
the same privilege level. Using this mechanism provides an extra level of indirection and is the preferred
method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be
accessed through a call gate. The segment selector specified by the target operand identifies the call gate.
The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16 or
ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment
selector for the new code segment and the new instruction pointer (offset) from the call gate descriptor.
(The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-
dure. The segment selector for the new stack segment is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when using a call gate to
perform a far call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, an optional set
of parameters from the calling procedures stack, and the segment selector and instruction pointer for the
calling procedure’s code segment. (A value in the call gate descriptor determines how many parameters to
copy to the new stack.) Finally, the processor branches to the address of the procedure being called within
the new code segment.

28 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Executing a task switch with the CALL instruction is similar to executing a call through a call gate. The target
operand specifies the segment selector of the task gate for the new task activated by the switch (the offset
in the target operand is ignored). The task gate in turn points to the TSS for the new task, which contains
the segment selectors for the task’s code and stack segments. Note that the TSS also contains the EIP value
for the next instruction that was to be executed before the calling task was suspended. This instruction
pointer value is loaded into the EIP register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which eliminates the indirec-
tion of the task gate. See Chapter 7, “Task Management,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is set in the EFLAGS
register and the new TSS'’s previous task link field is loaded with the old task’s TSS selector. Code is expected
to suspend this nested task by executing an IRET instruction which, because the NT flag is set, automatically
uses the previous task link to return to the calling task. (See “Task Linking” in Chapter 7 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information on nested tasks.) Switch-
ing tasks with the CALL instruction differs in this regard from JMP instruction. JMP does not set the NT flag
and therefore does not expect an IRET instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code segments, use a call
gate. If the far call is from a 32-bit code segment to a 16-bit code segment, the call should be made from
the first 64 KBytes of the 32-bit code segment. This is because the operand-size attribute of the instruction
is set to 16, so only a 16-bit return address offset can be saved. Also, the call should be made using a 16-
bit call gate so that 16-bit values can be pushed on the stack. See Chapter 21, “"Mixing 16-Bit and 32-Bit
Code,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more infor-
mation.

Far Calls in Compatibility Mode. When the processor is operating in compatibility mode, the CALL instruction
can be used to perform the following types of far calls.

® Far call to the same privilege level, remaining in compatibility mode.
® Far call to the same privilege level, transitioning to 64-bit mode.

® Far call to a different privilege level (inter-privilege level call), transitioning to 64-bit mode.

Note that a CALL instruction cannot be used to cause a task switch in compatibility mode since task switches
are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far address to access the
corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights
determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-
conforming, a general-protection exception is generated.) A far call to the same privilege level in compati-
bility mode is very similar to one carried out in protected mode. The target operand specifies an absolute
far address either directly with a pointer (ptr16:16 or ptri6:32) or indirectly with a memory location
(m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits) in the far
address. The new code segment selector and its descriptor are loaded into CS register and the offset from
the instruction is loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a
code segment at the same privilege level. However, using this mechanism requires that the target code
segment descriptor have the L bit set, causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be
accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call
gate. The target operand can specify the call gate segment selector either directly with a pointer (ptr16:16
or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The processor obtains the segment
selector for the new code segment and the new instruction pointer (offset) from the 16-byte call gate de-
scriptor. (The offset from the target operand is ignored when a call gate is used.)

Document Number: 334525-003, Revision 3.0 29

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-
dure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in
the TSS for the currently running task. The branch to the new code segment occurs after the stack switch.
(Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit
stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment
accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. The full value
of RSP is used for the offset, of which the upper 32-bits are undefined.) On the new stack, the processor
pushes the segment selector and stack pointer for the calling procedure’s stack and the segment selector
and instruction pointer for the calling procedure’s code segment. (Parameter copy is not supported in IA-
32e mode.) Finally, the processor branches to the address of the procedure being called within the new code
segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the CALL instruction can be
used to perform the following types of far calls

® Far call to the same privilege level, transitioning to compatibility mode.
® Far call to the same privilege level, remaining in 64-bit mode.

® Far call to a different privilege level (inter-privilege level call), remaining in 64-bit mode.

Note that in this mode the CALL instruction cannot be used to cause a task switch in 64-bit mode since task
switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far address to access the cor-
responding descriptor in the GDT or LDT. The descriptor type (code segment, call gate) and access rights
determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-
conforming, a general-protection exception is generated.) A far call to the same privilege level in 64-bit
mode is very similar to one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form of CALL with a direct
specification of absolute far address is not defined in 64-bit mode. The operand-size attribute determines
the size of the offset (16, 32, or 64 bits) in the far address. The new code segment selector and its descriptor
are loaded into the CS register; the offset from the instruction is loaded into the EIP register. The new code
segment may specify entry either into compatibility or 64-bit mode, based on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far call to a code segment
at the same privilege level. However, using this mechanism requires that the target code segment descriptor
have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure being called must be
accessed through a 64-bit call gate. The segment selector specified by the target operand identifies the call
gate. The target operand can only specify the call gate segment selector indirectly with a memory location
(m16:16, m16:32 or m16:64). The processor obtains the segment selector for the new code segment and
the new instruction pointer (offset) from the 16-byte call gate descriptor. (The offset from the target operand
is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege level of the called proce-
dure. The segment selector for the new stack segment is set to NULL. The new stack pointer is specified in
the TSS for the currently running task. The branch to the new code segment occurs after the stack switch.

Note that when using a call gate to perform a far call to a segment at the same privilege level, an implicit
stack switch occurs as a result of entering 64-bit mode. The SS selector is unchanged, but stack segment
accesses use a segment base of 0x0, the limit is ignored, and the default stack size is 64-bits. (The full
value of RSP is used for the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction pointer for the calling
procedure’s code segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

30 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Operation

IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN

tempDEST < SignExtend(DEST); (* DEST is rel32 *)

tempRIP < RIP + tempDEST;

IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;

Push(RIP);
IF ShadowStackEnabled(CPL) AND DEST =0

ShadowStackPush8B(RIP);

Fl;
RIP & tempRIP;
Fl;
IF OperandSize = 32
THEN
tempEIP €< EIP + DEST; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); Fl;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL) AND DEST =0
ShadowStackPush4B(EIP);
Fl;
EIP & tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP < (EIP + DEST) AND OOOOFFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); Fl;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL) AND DEST =0
(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);
Fl;
EIP & tempEIP;
Fl;

ELSE (* Near absolute call *)
IF OperandSize = 64
THEN

tempRIP <& DEST; (* DEST is r/m64 *)

IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;

Push(RIP);
IF ShadowStackEnabled(CPL)

ShadowStackPush8B(RIP);

Document Number: 334525-003, Revision 3.0

31

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Fl;
RIP & tempRIP;
Fl;
IF OperandSize = 32
THEN
tempEIP < DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); Fl;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
IF ShadowStackEnabled(CPL)
ShadowStackPush4B(EIP);
Fl;
EIP < tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP < DEST AND OOOOFFFFH; (* DEST is r/m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); Fl;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
IF ShadowStackEnabled(CPL)
(* IP is zero extended and pushed as a 32 bit value on shadow stack *)
ShadowStackPush4B(IP);
Fl;
EIP & tempEIP;
Fl;
Fl; rel/abs
IF (Call near indirect, absolute indirect)
IF EndbranchEnabledAndNotSuppressed(CPL)

IFCPL=3
THEN
IF (no 3EH prefix ORIA32_U_CET.NO_TRACK EN==0)
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI
ELSE
IF (no 3EH prefix ORIA32_S CET.NO_TRACK_ EN==0)
THEN
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
FI
Fl;
Fl;
Fl;
Fl; near

32 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS < DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP < DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);
Push(IP);
CS < DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP < DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
FI;
Fl;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); Fl;
Read type and access rights of selected segment descriptor;
IFIA32_EFER.LMA =0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); Fl;
FI;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IF L bit=1andD bit=1and IA32_EFER.LMA =1
THEN GP(new code segment selector); Fl;
IF DPL > CPL

Document Number: 334525-003, Revision 3.0 33

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN #GP(new code segment selector); Fl;
IF segment not present

THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address

THEN #SS(0); FI;
tempEIP <DEST(Offset);
IF OperandSize = 16

THEN

tempEIP < tempEIP AND OOOOFFFFH,; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0O or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)

THEN #GP(0); FI;
IF tempEIP is non-canonical

THEN #GP(0); FI;

IF ShadowStackEnabled(CPL)
IF OperandSize = 32
THEN
tempPushLIP = CSBASE + EIP;
ELSE
IF OperandSize = 16
THEN
tempPushLIP = CSBASE + IPEIP;
ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;
Fl;
FI;
tempPushCS = CS;
FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS < DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) € CPL;
EIP & tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS € DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) € CPL;
EIP < tempEIP;
ELSE (* OperandSize = 64 *)

34 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS € DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) €« CPL;
RIP €& tempEIP;
Fl;
Fl;
IF ShadowStackEnabled(CPL)
IF (EFER.LMA and DEST(CodeSegmentSelector).L) =0
(* If target is legacy or compatibility mode then the SSP must be in low 4G *)
IF (SSP & OxFFFFFFFFOO000000 != 0)
THEN #GP(0); FI;
Fl;
(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of O to (SSP - 4)
SSP = SSP & OxFFFFFFFFFFFFFFF8H

ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(tempPushLIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);
Fl;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S CET.SUPPRESS =0
Fl;
Fl;
END;

NONCONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); Fl;
IF (RPL > CPL) or (DPL = CPL)
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP & DEST(Offset);
IF OperandSize = 16
THEN tempEIP < tempEIP AND OO0OFFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;

Document Number: 334525-003, Revision 3.0 35

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF ShadowStackEnabled(CPL)
IF OperandSize = 32

THEN
tempPushLIP = CSBASE + EIP;
ELSE
IF OperandSize = 16
THEN
tempPushLIP = CSBASE + EIP;
ELSE (* OperandSize = 64 *)
tempPushLIP = RIP;
Fl;
Fl;
tempPushCS = CS;
Fl;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS < DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) € CPL;
EIP < tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS < DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) € CPL;
EIP < tempEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS < DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) € CPL;
RIP & tempEIP;
Fl;
Fl;

IF ShadowStackEnabled(CPL)
IF (EFER.LMA and DEST(CodeSegmentSelector).L) =0
(* If target is legacy or compatibility mode then the SSP must be in low 4G *)
IF (SSP & OxFFFFFFFFOO000000 != 0)
THEN #GP(0); Fl;
Fl;

36 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(* align to 8 byte boundary if not already aligned *)
tempSSP = SSP;

Shadow_stack_store 4 bytes of O to (SSP - 4)
SSP = SSP & OxFFFFFFFFFFFFFFF8H
ShadowStackPush8B(tempPushCS); (* Padded with 48 high-order O bits *)
ShadowStackPush8B(tempPushLIP); (* Padded 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S CET.SUPPRESS =0
Fl;
Fl;
END;
CALL-GATE:

IF call gate (DPL < CPL) or (RPL > DPL)
THEN #GP(call-gate selector); Fl;
IF call gate not present
THEN #NP(call-gate selector); FI;
IF call-gate code-segment selector is NULL
THEN #GP(0); FI;
IF call-gate code-segment selector index is outside descriptor table limits
THEN #GP(call-gate code-segment selector); Fl;
Read call-gate code-segment descriptor;
IF call-gate code-segment descriptor does not indicate a code segment
or call-gate code-segment descriptor DPL > CPL
THEN #GP(call-gate code-segment selector); Fl;
IF IA32_EFER.LMA = 1 AND (call-gate code-segment descriptor is
not a 64-bit code segment or call-gate code-segment descriptor has both L-bit and D-bit set)
THEN #GP(call-gate code-segment selector); Fl;
IF call-gate code segment not present
THEN #NP(call-gate code-segment selector); Fl;
IF call-gate code segment is non-conforming and DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
Fl;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit
THEN
TSSstackAddress < (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 5) > current TSS limit
THEN #TS(current TSS selector); Fl;
NewSS € 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP < 4 bytes loaded from (TSS base + TSSstackAddress);

Document Number: 334525-003, Revision 3.0 37

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ELSE
IF current TSS is 16-bit
THEN
TSSstackAddress < (new code-segment DPL * 4) + 2
IF (TSSstackAddress + 3) > current TSS limit
THEN #TS(current TSS selector); Fl;
NewSS € 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP € 2 bytes loaded from (TSS base + TSSstackAddress);
ELSE (* current TSS is 64-bit *)
TSSstackAddress € (new code-segment DPL * 8) + 4;
IF (TSSstackAddress + 7) > current TSS limit
THEN #TS(current TSS selector); Fl;
NewSS € new code-segment DPL; (* NULL selector with RPL = new CPL *)
NewRSP < 8 bytes loaded from (current TSS base + TSSstackAddress);
FI;
Fl;
IF IA32_EFER.LMA = 0 and NewSS is NULL
THEN #TS(NewSS); FI;
Read new code-segment descriptor and new stack-segment descriptor;
IF IA32_EFER.LMA = 0 and (NewSS RPL = new code-segment DPL
or new stack-segment DPL != new code-segment DPL or new stack segment is not a
writable data segment)
THEN #TS(NewSS); FI
IF IA32_EFER.LMA = 0 and new stack segment not present
THEN #SS(NewSS); FI;
IF CallGateSize = 32
THEN
IF new stack does not have room for parameters plus 16 bytes
THEN #SS(NewsSS); FI;
IF CallGate(InstructionPointer) not within new code-segment limit
THEN #GP(0); FI;
SS € newsSs; (* Segment descriptor information also loaded *)
ESP < newESP;
CS:EIP < CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp < parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
IF CallGateSize = 16
THEN
IF new stack does not have room for parameters plus 8 bytes
THEN #SS(NewsSS); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in new code-segment limit
THEN #GP(0); FI;
SS € newsSs; (* Segment descriptor information also loaded *)

38 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ESP < newESP;
CS:IP € CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp < parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack would use a non-canonical address
THEN #SS(NewSS); Fl;
IF (CallGate(InstructionPointer) is non-canonical)
THEN #GP(0); FI;
SS & NewsSS; (* NewSS is NULL)
RSP < NewESP;
CS:IP < CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)

Fl;
Fl;
IF ShadowStackEnabled(CPL)
THEN
IFCPL=3
THEN IA32_PL3_SSP <SSP; Fl;
Fl;

CPL ¢« CodeSegment(DPL)
CS(RPL) €« CPL
IF ShadowStackEnabled(CPL)
oldSSP <« SSP
SSP € IA32_PLi_SSP; (* where i is the CPL *)
IF SSP & 0x07 '=0 (* if SSP not aligned to 8 bytes then #GP *)
THEN #GP(0); FI;
Fault=0
Atomic Start
SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP
IF (SSPToken AND 0x01)
THEN fault €< 1; Fl;
IF (EFER.LMA and CS.L) = 0 AND SSPToken[63:32] = 0)
THEN fault €< 1; Fl;
IF (SSPToken AND OxFFFFFFFFFFFFFFFE) != SSP)
THEN fault < 1; Fl;
IF fault =0
THEN SSPToken = SSPToken OR 0x01; Fl;
Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;
Atomic End
If fault = 1
THEN #GP(0); FI;
IF oldSS.DPL =3
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE+oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(oldSSP);

Document Number: 334525-003, Revision 3.0 39

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Fl;
Fl
IF EndbranchEnabled (CPL)
IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S CET.SUPPRESS =0
Fl;
END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN

IF stack does not have room for 8 bytes
THEN #SS(0); FI;

IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;

CS:EIP € CallGate(CS:EIP) (* Segment descriptor information also loaded *)

Push(oldCS:oldEIP); (* Return address to calling procedure *)

ELSE
If CallGateSize = 16
THEN

IF stack does not have room for 4 bytes
THEN #SS(0); Fl;

IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;

CS:IP € CallGate(CS:instruction pointer);

(* Segment descriptor information also loaded *)

Push(oldCS:oldIP); (* Return address to calling procedure *)

ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(0); FI;
IF RIP non-canonical
THEN #GP(0); FI;
CS:RIP € CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldRIP); (* Return address to calling procedure *) Fl;
Fl;

CS(RPL) €« CPL
IF ShadowStackEnabled(CPL)
(* Align to next 8 byte boundary *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of O to (SSP - 4)
SSP = SSP & OxFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)

40 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled (CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH,;
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S CET.SUPPRESS =0
Fl;
FI;
END;
TASK-GATE:

IF task gate DPL < CPL or RPL
THEN #GP(task gate selector); Fl;
IF task gate not present
THEN #NP(task gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
THEN #GP(TSS selector); Fl;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); Fl;
IF TSS not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); Fl;
IF TSS is not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If the target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.

Document Number: 334525-003, Revision 3.0 41

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

limit.

If the code segment selector in the gate is NULL.
If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

If the DS, ES, FS, or GS register is used to access memory and it contains a NULL

segment selector.

#GP(selector)

#S5(0)

#SS(selector)

#NP(selector)
present.

#TS(selector)

42

If target mode is compatibility mode and SSP is not in low 4G.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor Shadow Stack” token on new shadow stack is marked busy.

If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor
shadow stack” token is beyond 4G.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

If a code segment or gate or TSS selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the destination oper-
and is not for a conforming-code segment, nonconforming-code segment, call gate,
task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or the RPL for
the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL
or than the RPL of the call-gate, task-gate, or TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate does not indicate it
is a code segment.

If the segment selector from a call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a call gate is greater than the CPL.
If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.

If pushing the return address, parameters, or stack segment pointer onto the stack
exceeds the bounds of the stack segment, when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.

If pushing the return address, parameters, or stack segment pointer onto the stack
exceeds the bounds of the stack segment, when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and the segment pointed to
is marked not present.

If stack segment does not have room for the return address, parameters, or stack
segment pointer, when stack switch occurs.

If a code segment, data segment, stack segment, call gate, task gate, or TSS is not

If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector is NULL.

If the RPL of the new stack segment selector in the TSS is not equal to the DPL of the
code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not equal to the
DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

Document Number: 334525-003, Revision 3.0

#PF(fault-code)
#AC(0)

#UD

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If the target offset is beyond the code segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If the target offset is beyond the code segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

#GP(selector)
#GP(0)

If a memory address accessed by the selector is in non-canonical space.
If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

If target mode is compatibility mode and SSP is not in low 4G.

If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

If “supervisor Shadow Stack” token on new shadow stack is marked busy.

If destination mode is 32-bit mode or compatibility mode, but SSP address in “super-
visor shadow” stack token is beyond 4G.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

If code segment or 64-bit call gate is outside descriptor table limits.
If code segment or 64-bit call gate overlaps non-canonical space.

If the segment descriptor pointed to by the segment selector in the destination oper-
and is not for a conforming-code segment, nonconforming-code segment, or 64-bit
call gate.

If the segment descriptor pointed to by the segment selector in the destination oper-
and is a code segment and has both the D-bit and the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for
the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit
call-gate.

If the upper type field of a 64-bit call gate is not 0xO0.

Document Number: 334525-003, Revision 3.0 43

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is greater than the
CPL.

If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't
have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate does not
indicate it is a code segment.

#SS(0) If pushing the return offset or CS selector onto the stack exceeds the bounds of the
stack segment when no stack switch occurs.

If a memory operand effective address is outside the SS segment limit.
If the stack address is in a non-canonical form.

#SS(selector) If pushing the old values of SS selector, stack pointer, EFLAGS, CS selector, offset, or
error code onto the stack violates the canonical boundary when a stack switch occurs.

#NP(selector) If a code segment or 64-bit call gate is not present.

#TS(selector) If the load of the new RSP exceeds the limit of the TSS.

#UD (64-bit mode only) If a far call is direct to an absolute address in memory.

If the LOCK prefix is used.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

44 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.2INT n/INTO/INT3 - Call to Interrupt Procedure

Opcode Instruction Op/ En 64-Bit Compat/ Description
Mode Leg Mode
CcC INT3 NP Valid Valid Interrupt 3 —trap to
debugger.
CDib INT imm8 Valid Valid Interrupt vector specified by

immediate byte.

CE INTO NP Invalid Valid Interrupt 4 - if overflow flag
is 1.

Instruction Operand Encoding

OEE/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA

| Imm8 NA NA NA
Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination
operand (see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1). The destination operand specifies a vector from 0 to
255, encoded as an 8-bit unsigned intermediate value. Each vector provides an index to a gate descriptor
in the IDT. The first 32 vectors are reserved by Intel for system use. Some of these vectors are used for
internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt han-
dler. The INTO instruction is a special mnemonic for calling overflow exception (#OF), exception 4. The
overflow interrupt checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the
OF flag is set to 1. (The INTO instruction cannot be used in 64-bit mode.)

The INT 3 instruction generates a special one byte opcode (CC) that is intended for calling the debug ex-
ception handler. (This one byte form is valuable because it can be used to replace the first byte of any in-
struction with a breakpoint, including other one byte instructions, without over-writing other code). To fur-
ther support its function as a debug breakpoint, the interrupt generated with the CC opcode also differs
from the regular software interrupts as follows.

e Interrupt redirection does not happen when in VME mode; the interrupt is handled by a protected-mode
handler.

e The virtual-8086 mode IOPL checks do not occur. The interrupt is taken without faulting at any IOPL
level.

Note that the “normal” 2-byte opcode for INT 3 (CD03) does not have these special features. Intel and
Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this opcode can be cre-
ated by direct numeric code definition or by self-modifying code.

The action of the INT n instruction (including the INTO and INT 3 instructions) is similar to that of a far
call made with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS
register is pushed onto the stack before the return address. (The return address is a far address consisting
of the current values of the CS and EIP registers.) Returns from interrupt procedures are handled with the
IRET instruction, which pops the EFLAGS information and return address from the stack.

Document Number: 334525-003, Revision 3.0 45

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index
into the IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception han-
dler procedure. In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an
interrupt gate, trap gate, or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-
byte code segment selector and a 2-byte instruction pointer), each of which point directly to a procedure
in the selected segment. (Note that in real-address mode, the IDT is called the interrupt vector table, and
its pointers are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken given the con-
ditions in the upper portion of the table. Each Y in the lower section of the decision table represents a pro-
cedure defined in the “Operation” section for this instruction (except #GP).

Decision Table

PE 1 1 1 1 1 1 1
VM - - - - 0 1 1
IOPL - - - - - <3 <3
DPL/CPL RELATIONSHIP DP - DP DP DP - -
L< L> = L<
CP CpP CP CP
L L L L
or &
C NC
INTERRUPT TYPE S/ - - - - - -
W
GATE TYPE - T Tr Tr Tr Tr Tr
a ap ap ap ap ap
5 or or or or or
k In- In- In- In- In-
ter ter ter ter ter
ru ru ru ru ru
pt pt pt pt pt
REAL-ADDRESS-MODE Y
PROTECTED-MODE Y Y Y Y Y Y Y
INTER-PRIVILEGE-LEVEL-IN- Y
TERRUPT
INTRA-PRIVILEGE-LEVEL-IN- Y
TERRUPT
INTERRUPT-FROM-VIRTUAL- Y
8086-MODE
TASK-GATE Y
#GP Y Y Y
NOTES:
- Don't Care

Y Yes, Action taken
Blank Action not taken

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n in-
struction. If the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3,
the processor executes a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be
set to 3 and the target CPL of the interrupt handler procedure must be 0 to execute the protected mode
interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The
initial base address value of the IDTR after the processor is powered up or reset is 0.

46 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Operation

The following operational description applies not only to the INT n and INTO instructions, but also to ex-
ternal interrupts, nonmaskable interrupts (NMls), and exceptions. Some of these events push onto the
stack an error code.

The operational description specifies numerous checks whose failure may result in delivery of a nested ex-
ception. In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the
error code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values.
The pseudofunction produces an error code as follows: (1) if idt is 0, the error code is (num & FCH) | ext;
(2) ifidt is 1, the error code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT de-
pends on the nature of the event whose delivery encountered a nested exception: if that event is a soft-
ware interrupt, EXT is 0; otherwise, EXT is 1.

IFPE=0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE(*PE=17%)
IF(VM =1and IOPL <3 AND INT n)
THEN
#GP(0); (* Bit O of error code is 0 because INT n *)
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;
Fl;
Fl;
Fl;
REAL-ADDRESS-MODE:
IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;
IF stack not large enough for a 6-byte return information
THEN #SS; FI;
Push (EFLAGS[15:0]);
IF < O; (* Clear interrupt flag *)
TF « O; (* Clear trap flag *)
AC « 0; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS « IDT(Descriptor (vector_number « 2), selector));
EIP < IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND OOOOFFFFH *)
END;
PROTECTED-MODE:
IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP(error_code(vector_number,1,EXT)); FI;
(* idt operand to error_code set because vector is used *)
IF software interrupt (* Generated by INT n, INT3, or INTO *)

Document Number: 334525-003, Revision 3.0 47

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); Fl;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is O because INT n, INT3, or INTO?*)
Fl;
IF gate not present
THEN #NP(error_code(vector_number,1,EXT)); Fl;
(* idt operand to error_code set because vector is used *)
IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)
Fl;
END;
IA-32e-MODE:
IF INTO and CS.L = 1 (64-bit mode)
THEN #UD;
Fl;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type
THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

Fl;
IF software interrupt (* Generated by INT n, INT 3, or INTO *)
THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is O because INT n, INT3, or INTO*)

Fl;

Fl;

IF gate not present
THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)
Fl;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)
END;
TASK-GATE: (* PE = 1, task gate *)
Read TSS selector in task gate (IDT descriptor);
IF local/global bit is set to local or index not within GDT limits
THEN #GP(error_code(TSS selector,0,EXT)); Fl;
(* idt operand to error_code is 0 because selector is used *)
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF TSS not present
THEN #NP(TSS selector,0,EXT)); FI;

48 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(* idt operand to error_code is O because selector is used *)
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of error code
THEN #SS(EXT); FI;
Push(error code);
Fl;
IF EIP not within code segment limit
THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:
Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits
THEN #GP(error_code(new code-segment selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL
THEN #GP(error_code(new code-segment selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF new code segment is non-conforming with DPL < CPL

THEN
IFVM=0
THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1,VM =0, interrupt or trap gate, nonconforming code segment,
DPL < CPL*)
ELSE (*VM =1%)
IF new code-segment DPL I= 0
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; Fl;
(* PE = 1, interrupt or trap gate, DPL < CPL,VM =1 %)
Fl;
ELSE (* PE = 1, interrupt or trap gate, DPL = CPL *)
IFVM =1

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL

THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;

ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)
#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)

Fl;

Fl;

Document Number: 334525-003, Revision 3.0 49

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:
(* PE = 1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
(* Identify stack-segment selector for new privilege level in current TSS *)
IF current TSS is 32-bit
THEN
TSSstackAddress « (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewSS « 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP < 4 bytes loaded from (TSS base + TSSstackAddress);
ELSE (* current TSS is 16-bit *)
TSSstackAddress « (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is 0 because selector is used *)
NewSS « 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP < 2 bytes loaded from (TSS base + TSSstackAddress);
Fl;
IF NewSS is NULL
THEN #TS(EXT); FI;
IF NewSS index is not within its descriptor-table limits
or NewSS RPL != new code-segment DPL
THEN #TS(error_code(NewSS,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL != new code-segment DPL
or new stack-segment Type does not indicate writable data segment
THEN #TS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF NewsSS is not present
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewSSP < IA32_PLi_SSP (* where i = new code-segment DPL *)
ELSE (* IA-32e mode *)
IF IDT-gate IST =0
THEN TSSstackAddress € (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress < (IDT gate IST « 3) + 28;
Fl;
IF (TSSstackAddress + 7) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT); Fl;
(* idt operand to error_code is O because selector is used *)
NewRSP < 8 bytes loaded from (current TSS base + TSSstackAddress);
NewSS € new code-segment DPL; (* NULL selector with RPL = new CPL *)
IFIDT-gate IST =0

50 Document Number

: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN
NewSSP € IA32_PLi_SSP (* where i = new code-segment DPL *)
ELSE
NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT-gate IST « 3)
(* Check if shadow stacks are enabled at CPL O *)
IF ShadowStackEnabled(CPL 0)
THEN NewSSP < 8 bytes loaded from NewSSPAddress; Fl;

Fl;
Fl;
IF IDT gate is 32-bit
THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Fl
ELSE
IF IDT gate is 16-bit
THEN
IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical
THEN #SS(EXT); FI; (* Error code contains NULL selector *)
Fl;
Fl;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
IF instruction pointer from IDT gate is not within new code-segment limits
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ESP « NewESP;
SS < NewsSS; (* Segment descriptor information also loaded *)
ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP < NewRSP & FFFFFFFFFFFFFFFOH;
SS <« NewSS;
Fl;
IF IDT gate is 32-bit
THEN
CS:EIP « Gate(CS:EIP); (* Segment descriptor information also loaded *)
ELSE
IF IDT gate 16-bit
THEN

CS:IP « Gate(CS:IP);
(* Segment descriptor information also loaded *)
ELSE (* 64-bit IDT gate *)
CS:RIP « Gate(CS:RIP);
(* Segment descriptor information also loaded *)
Fl;

Document Number: 334525-003, Revision 3.0 51

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Fl;
IF IDT gate is 32-bit
THEN
Push(far pointer to old stack);
(* Old SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* Old CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)
ELSE
IF IDT gate 16-bit
THEN
Push(far pointer to old stack);
(* Old SS and SP, 2 words *)
Push(EFLAGS(15-0]);
Push(far pointer to return instruction);
(*Old CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)
ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)
Fl;
Fl;
IF ShadowStackEnabled(CPL)
THEN
IFCPL=3
THEN IA32_PL3_SSP <SSP; Fl;
Fl;

CPL < new code-segment DPL;
CS(RPL) « CPL;
IF ShadowStackEnabled(CPL)
oldSSP <« SSP
SSP & NewSSP
IF SSP & 0x07 =0
THEN #GP(0); FI;
Fault=0
Atomic Start
SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP
IF (SSPToken AND 0x01)
THEN fault < 1; Fl;
IF (EFER.LMA and CS.L) = 0 AND SSPToken[63:32] = 0)
THEN fault < 1; Fl;
IF (SSPToken AND OxFFFFFFFFFFFFFFFE) != SSP)

52 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN fault € 1; FI;
IF fault=0
THEN SSPToken = SSPToken OR 0x01; Fl;
Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;
Atomic End
If fault = 1
THEN #GP(0); FI;
IF oldSS.DPL!=3
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of O *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(oldSSP);
Fl;
FI
IF EndbranchEnabled (CPL)
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS =0
Fl;

IF IDT gate is interrupt gate
THEN IF « O (* Interrupt flag set to O, interrupts disabled *); Fl;
TF < 0;
VM « 0;
RF « O;
NT « 0;
END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Identify stack-segment selector for privilege level O in current TSS *)
IF current TSS is 32-bit
THEN
IF TSS limit <9
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (current TSS base + 8);
NewESP <« 4 bytes loaded from (current TSS base + 4);
ELSE (* current TSS is 16-bit *)
IF TSS limit < 5
THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (current TSS base + 4);
NewESP <« 2 bytes loaded from (current TSS base + 2);
Fl;
IF NewSS is NULL
THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewsSS index is not within its descriptor table limits
or NewSS RPL!=0
THEN #TS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL != 0 or stack segment does not indicate writable data segment
THEN #TS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)

Document Number: 334525-003, Revision 3.0 53

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF new stack segment not present
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewSSP < IA32_PLi_SSP (* where i = new code-segment DPL *)
IF IDT gate is 32-bit
THEN
IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)
THEN #SS(error_code(NewSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Fl;
IF instruction pointer from IDT gate is not within new code-segment limits
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
tempEFLAGS « EFLAGS;
VM « 0;
TF « 0;
RF « O;
NT « O;
IF service through interrupt gate
THEN IF = O; FI;
TempSS « SS;
TempESP « ESP;
SS <« NewsSS;
ESP < NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS « 0; (* Segment registers made NULL, invalid for use in protected mode *)
FS < 0O;
DS « 0;
ES < O;
CS:IP « Gate(CS); (* Segment descriptor information also loaded *)
IF OperandSize = 32
THEN
EIP « Gate(instruction pointer);

54 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ELSE (* OperandSize is 16 *)
EIP « Gate(instruction pointer) AND OOOOFFFFH;
Fl;
IF ShadowStackEnabled(CPL)
oldSSP <« SSP
SSP € NewSSP
IF SSP & 0x07 =0
THEN #GP(0); FI;
Fault=0
Atomic Start
SSPToken = 8 bytes locked loaded with shadow stack semantics from SSP
IF (SSPToken AND 0x01)
THEN fault €< 1; Fl;
IF (EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)
THEN fault €< 1; Fl;
IF ((SSPToken AND OxFFFFFFFFFFFFFFFE) |= SSP)
THEN fault < 1; Fl;
IF fault =0
THEN SSPToken = SSPToken OR 0x01; Fl;
Store 8 bytes of SSPToken and unlock with shadow stack semantics to SSP;
Atomic End
If fault = 1
THEN #GP(0); FI;
IF oldSS.DPL I=3
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of 0 *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(oldSSP);
Fl;
Fl
IF EndbranchEnabled (CPL)
IA32_S _CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S CET.SUPPRESS =0
Fl;
(* Start execution of new routine in Protected Mode *)
END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:
NewSSP = SSP;
CHECK_SS_TOKEN =0
(* PE =1, DPL = CPL or conforming segment *)
IF IA32_EFER.LMA =1 (* IA-32e mode *)
IF IDT-descriptor IST 1= 0
THEN
TSSstackAddress « (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
NewRSP « 8 bytes loaded from (current TSS base + TSSstackAddress);
If ShadowStackEnabled(CPL)
THEN
NewSSPAddress = IA32_INTERRUPT_SSP_TABLE_ADDR + (IDT gate IST « 3)
NewSSP < 8 bytes loaded from NewSSPAddress

Document Number: 334525-003, Revision 3.0 55

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

CHECK_SS_TOKEN = 1

Fl;
Fl;
IF 32-bit gate (* implies IA32_EFER.LMA = 0 *)
THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)
THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA =0 *)
IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)
THEN #SS(EXT); FI; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)
Fl;
Fl;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
IF instruction pointer from IDT gate is not within new code-segment limit
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE
IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP « NewRSP & FFFFFFFFFFFFFFFOH;
Fl;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA =0 *)
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP « Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)
ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)
THEN

Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP « Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)

ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* Old SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* Old CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CS:RIP « GATE(CS:RIP);

56 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(* Segment descriptor information also loaded *)
Fl;
Fl;
CS(RPL) « CPL;
IF ShadowStackEnabled(CPL)
IF CHECK_SS_TOKEN ==1
THEN
IF NewSSP & 0x07 != 0
THEN #GP(0); FI;
Fault=0
Atomic Start
SSPToken = 8 bytes loaded with shadow stack semantics from NewSSP
IF (SSPToken AND 0x01)
THEN fault €< 1; Fl;
IF (EFER.LMA and CS.L) = 0 AND SSPToken[63:32] I=0)
THEN fault < 1; FI;
IF (SSPToken AND OxFFFFFFFFFFFFFFFE) != NewSSP)
THEN fault € 1; Fl;
IF fault=0
THEN SSPToken = SSPToken OR 0x01; FI;
Store 8 bytes of SSPToken with shadow stack semantics to NewSSP;
Atomic End
If fault = 1
THEN #GP(0); FI;
Fl;
(* Align to next 8 byte boundary *)
tempSSP = SSP;
Shadow_stack_store 4 bytes of O to (SSPnewSSP - 4)
SSP = newSSP & OxFFFFFFFFFFFFFFF8H;
(* push cs:lip:ssp on shadow stack *)
ShadowStackPush8B(oldCS); (* Padded with 48 high-order bits of O *)
ShadowStackPush8B(oldCSBASE + oldRIP); (* Padded with 32 high-order bits of O for 32 bit LIP*)
ShadowStackPush8B(tempSSP);

Fl;
IF EndbranchEnabled (CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS =0
Fl;
Fl;

IF IDT gate is interrupt gate
THEN IF « O; FI; (* Interrupt flag set to O; interrupts disabled *)
TF < 0;
NT « O;
VM « O;
RF « O;

Document Number: 334525-003, Revision 3.0 57

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, de-
pending on the mode of operation of the processor when the INT instruction is executed (see the “Opera-
tion” section). If the interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS
image in the new task’s TSS.

Protected Mode Exceptions

#GP(error_code) If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond
the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is NULL.

If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is
outside its descriptor table limits.

If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n, INT 3, or INTO instruction and the DPL of an
interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment de-
scriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.

If “supervisor Shadow Stack” token on new shadow stack is marked busy.

If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor
shadow stack” token is beyond 4G.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

#SS(error_code) If pushing the return address, flags, or error code onto the stack exceeds the bounds
of the stack segment and no stack switch occurs.

If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, or stack segment pointer exceeds the
bounds of the new stack segment when a stack switch occurs.

#NP(error_code) If code segment, interrupt-, trap-, or task gate, or TSS is not present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment selector in the
TSS is not equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.
#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

58 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Real-Address Mode Exceptions

#GP
limit.

#SS

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment

If the interrupt vector number is outside the IDT limits.
If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds
of the stack segment.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(error_code)

#SS(error_code)

#NP(error_code)
#TS(error_code)

#PF(fault-code)
#BP

#OF

#UD

#AC(EXT)

(For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the
interrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate is beyond
the code segment limits.

If the segment selector in the interrupt-, trap-, or task gate is NULL.

If an interrupt-, trap-, or task gate, code segment, or TSS segment selector index is
outside its descriptor table limits.

If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of an interrupt-,
trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a segment de-
scriptor for a code segment.

If the segment selector for a TSS has its local/global bit set for local.
If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, stack segment pointer, or data seg-
ments exceeds the bounds of the stack segment.

If code segment, interrupt-, trap-, or task gate, or TSS is not present.

If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code
segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the
DPL of the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits.

If a page fault occurs.

If the INT 3 instruction is executed.

If the INTO instruction is executed and the OF flag is set.

If the LOCK prefix is used.

If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

Document Number: 334525-003, Revision 3.0 59

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

64-Bit Mode Exceptions

#GP(error_code) If the instruction pointer in the 64-bit interrupt gate or 64-bit trap gate is non-canoni-
cal.

If the segment selector in the 64-bit interrupt or trap gate is NULL.
If the vector selects a descriptor outside the IDT limits.
If the vector points to a gate which is in non-canonical space.

If the vector points to a descriptor which is not a 64-bit interrupt gate or 64-bit trap
gate.

If the descriptor pointed to by the gate selector is outside the descriptor table limit.
If the descriptor pointed to by the gate selector is in non-canonical space.
If the descriptor pointed to by the gate selector is not a code segment.

If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both
the L-bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.
If SSP in IA32_PLi_SSP (where i is the new CPL) is not 8 byte aligned.
If “supervisor shadow stack” token on new shadow stack is marked busy.

If destination mode is 32-bit or compatibility mode, but SSP address in “supervisor
shadow stack” token is beyond 4G.

If SSP address in “supervisor shadow stack” token does not match SSP address in
IA32_PLi_SSP (where i is the new CPL).

#SS(error_code) If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space
with no stack switch.

If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in
non-canonical space on a stack switch (either CPL change or no-CPL with IST).

#NP(error_code) If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.

#TS(error_code) If an attempt to load RSP from the TSS causes an access to non-canonical space.
If the RSP from the TSS is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

60 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.3JMP — Jump

Opcode Instruction Op/ 64- Compat/ Description
En Bit Leg
Mode Mode
EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit
displacement sign extended
to 64-bits.
E9 cw JMP rel16 D N.S. Valid Jump near, relative,

displacement relative to next
instruction. Not supported in
64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP
+ 32-bit displacement sign
extended to 64-bits.

FF /4 JMP r/m1i16 M N.S. Valid Jump near, absolute indirect,
address = zero-extended
r/m16. Not supported in 64-
bit mode.

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect,
address given in r/m32. Not
supported in 64-bit mode.

FF /4 JMP r/m64 M Valid N.E. Jump near, absolute indirect,
RIP = 64-Bit offset from
register or memory.

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address
given in operand.

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address
given in operand.

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect,
address given in m16:76.

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect,
address given in m16:32.

REX.W + FF JMP m16:64 D Valid N.E. Jump far, absolute indirect,

/5 address given in m16:64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
D Offset NA NA NA
M MOdF({:)":r/ m NA NA NA

Document Number: 334525-003, Revision 3.0 61

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Description

Transfers program control to a different point in the instruction stream without recording return information.
The destination (target) operand specifies the address of the instruction being jumped to. This operand can
be an immediate value, a general-purpose register, or a memory location.

This instruction can be used to execute four different types of jumps:

® Near jump—A jump to an instruction within the current code segment (the segment currently pointed to
by the CS register), sometimes referred to as an intrasegment jump.

® Short jump—A near jump where the jump range is limited to -128 to +127 from the current EIP value.

® Far jump—A jump to an instruction located in a different segment than the current code segment but at
the same privilege level, sometimes referred to as an intersegment jump.

® Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 7, in the Inte/® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, for information on performing task switches with the JMP
instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address (within the current
code segment) that is specified with the target operand. The target operand specifies either an absolute
offset (that is an offset from the base of the code segment) or a relative offset (a signed displacement
relative to the current value of the instruction pointer in the EIP register). A near jump to a relative offset
of 8-bits (rel8) is referred to as a short jump. The CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location (r/mi16 or
r/m32). The operand-size attribute determines the size of the target operand (16 or 32 bits). Absolute
offsets are loaded directly into the EIP register. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared, resulting in a maximum instruction pointer size of 16 bits.

A relative offset (rel8, rel16, or rel32) is generally specified as a label in assembly code, but at the machine
code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value is added to the value in
the EIP register. (Here, the EIP register contains the address of the instruction following the JMP instruction).
When using relative offsets, the opcode (for short vs. near jumps) and the operand-size attribute (for near
relative jumps) determines the size of the target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-address or virtual-8086
mode, the processor jumps to the code segment and offset specified with the target operand. Here the
target operand specifies an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (m16:16 or m16:32). With the pointer method, the segment and address
of the called procedure is encoded in the instruction, using a 4-byte (16-bit operand size) or 6-byte (32-bit
operand size) far address immediate. With the indirect method, the target operand specifies a memory
location that contains a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two
bytes of the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP instruction can be
used to perform the following three types of far jumps.

® A far jump to a conforming or non-conforming code segment.
® A far jump through a call gate.

® A task switch.
(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

62 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

In protected mode, the processor always uses the segment selector part of the far address to access the
corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call gate, task gate, or
TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privilege level is
performed. (If the selected code segment is at a different privilege level and the code segment is non-
conforming, a general-protection exception is generated.) A far jump to the same privilege level in protected
mode is very similar to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory
location (m16:16 or m16:32). The operand-size attribute determines the size of the offset (16 or 32 bits)
in the far address. The new code segment selector and its descriptor are loaded into CS register, and the
offset from the instruction is loaded into the EIP register. Note that a call gate (described in the next para-
graph) can also be used to perform far call to a code segment at the same privilege level. Using this mech-
anism provides an extra level of indirection and is the preferred method of making jumps between 16-bit
and 32-bit code segments.

When executing a far jump through a call gate, the segment selector specified by the target operand iden-
tifies the call gate. (The offset part of the target operand is ignored.) The processor then jumps to the code
segment specified in the call gate descriptor and begins executing the instruction at the offset specified in
the call gate. No stack switch occurs. Here again, the target operand can specify the far address of the call
gate either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or
m16:32).

Executing a task switch with the JMP instruction is somewhat similar to executing a jump through a call
gate. Here the target operand specifies the segment selector of the task gate for the task being switched to
(and the offset part of the target operand is ignored). The task gate in turn points to the TSS for the task,
which contains the segment selectors for the task’s code and stack segments. The TSS also contains the
EIP value for the next instruction that was to be executed before the task was suspended. This instruction
pointer value is loaded into the EIP register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates the indirection
of the task gate. See Chapter 7 in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A, for detailed information on the mechanics of a task switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is not set in the
EFLAGS register and the new TSS’s previous task link field is not loaded with the old task’s TSS selector. A
return to the previous task can thus not be carried out by executing the IRET instruction. Switching tasks
with the JMP instruction differs in this regard from the CALL instruction which does set the NT flag and save
the previous task link information, allowing a return to the calling task with an IRET instruction.

In 64-Bit Mode — The instruction’s operation size is fixed at 64 bits. If a selector points to a gate, then
RIP equals the 64-bit displacement taken from gate; else RIP equals the zero-extended offset from the far
pointer referenced in the instruction.

See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF near jump
IF 64-bit Mode
THEN
IF near relative jump
THEN
tempRIP < RIP + DEST; (* RIP is instruction following JMP instruction?*)
ELSE (* Near absolute jump *)
tempRIP < DEST;
Fl;
ELSE
IF near relative jump
THEN
tempEIP < EIP + DEST; (* EIP is instruction following JMP instruction*)

Document Number: 334525-003, Revision 3.0 63

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ELSE (* Near absolute jump *)
tempEIP < DEST;
Fl;
Fl;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)
and tempEIP outside code segment limit
THEN #GP(0); FI
IF 64-bit mode and tempRIP is not canonical
THEN #GP(0);
Fl;
IF OperandSize = 32
THEN
EIP €& tempEIP;
ELSE
IF OperandSize = 16
THEN (* OperandSize = 16 *)
EIP €< tempEIP AND OOOOFFFFH;
ELSE (* OperandSize = 64)
RIP < tempRIP;
Fl;
FI;
IF (JMP near indirect, absolute indirect)
IF EndbranchEnabledAndNotSuppressed(CPL)

IFCPL=3
THEN
IF (no 3EH prefix ORIA32_U_CET.NO_TRACK_EN ==0)
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
Fl
ELSE
IF (no 3EH prefix ORIA32_S CET.NO_TRACK EN==0)
THEN
IA32 S CET.TRACKER = WAIT_FOR_ENDBRANCH
Fl
FI;
Fl;
Fl;
Fl;
IF far jump and (PE = 0 or (PE = 1 AND VM = 1)) (* Real-address or virtual-8086 mode *)
THEN

tempEIP < DEST(Offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit
THEN #GP(0); FI;
CS < DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN

64 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

EIP & tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP € tempEIP AND O0O00FFFFH; (* Clear upper 16 bits *)
FI;
Fl;
IF far jump and (PE = 1 and VM = 0)
(* IA-32e mode or protected mode, not virtual-8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
or segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new selector); FI;
Read type and access rights of segment descriptor;
IF (EFER.LMA = 0)
THEN
IF segment type is not a conforming or nonconforming code
segment, call gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment
call gate
THEN #GP(segment selector); Fl;
FI;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
ELSE
#GP(segment selector);
Fl;
CONFORMING-CODE-SEGMENT:
IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); Fl;
IF DPL > CPL
THEN #GP(segment selector); Fl;
IF segment not present
THEN #NP(segment selector); Fl;
tempEIP & DEST(Offset);
IF OperandSize = 16
THEN tempEIP < tempEIP AND OOOOFFFFH;
Fl;
IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode) and
tempEIP outside code segment limit
THEN #GP(0); FI
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)

Document Number: 334525-003, Revision 3.0 65

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF (EFER.LMA and DEST(segment selector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4G *)
IF (SSP & OxFFFFFFFFOO000000 != 0)
THEN #GP(0); FI;
Fl;
Fl;
CS < DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) €« CPL
EIP < tempEIP;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS =0
Fl;
FI;
END;
NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); Fl;
IF (RPL > CPL) OR (DPL != CPL)
THEN #GP(code segment selector); Fl;
IF segment not present
THEN #NP(segment selector); Fl;
tempEIP & DEST(Offset);
IF OperandSize = 16
THEN tempEIP < tempEIP AND O000FFFFH; FI;

IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode)
and tempEIP outside code segment limit
THEN #GP(0); FI
IF tempEIP is non-canonical THEN #GP(0); FI;
IF ShadowStackEnabled(CPL)
IF (EFER.LMA and DEST(segment selector).L) = 0
(* If target is legacy or compatibility mode then the SSP must be in low 4G *)
IF (SSP & OxFFFFFFFFOO000000 != 0)
THEN #GP(0); FI;
Fl;
Fl;
CS < DEST[segment selector]; (* Segment descriptor information also loaded *)
CS(RPL) < CPL;
EIP & tempEIP;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN

66 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH

IA32_U_CET.SUPPRESS =0
ELSE

IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH

IA32_S_CET.SUPPRESS =0
Fl;
Fl;
END;

CALL-GATE:
IF call gate DPL < CPL
or call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); Fl;
IF call gate not present
THEN #NP(call gate selector); Fl;
IF call gate code-segment selector is NULL
THEN #GP(0); FI;
IF call gate code-segment selector index outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor is conforming and DPL > CPL
or code-segment segment descriptor is non-conforming and DPL != CPL
THEN #GP(code segment selector); Fl;
IF IA32_EFER.LMA = 1 and (code-segment descriptor is not a 64-bit code segment
or code-segment segment descriptor has both L-Bit and D-bit set)
THEN #GP(code segment selector); Fl;
IF code segment is not present
THEN #NP(code-segment selector); Fl;
IF instruction pointer is not within code-segment limit
THEN #GP(0); FI;
tempEIP < DEST(Offset);
IF GateSize = 16
THEN tempEIP < tempEIP AND OOOOFFFFH; FI;
IF (IA32_EFER.LMA = 0 OR target mode = Compatibility mode) AND tempEIP
outside code segment limit
THEN #GP(0); FI
CS < DEST[SegmentSelector); (* Segment descriptor information also loaded *)
CS(RPL) € CPL;
EIP & tempEIP;
IF EndbranchEnabled(CPL)
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S CET.TRACKER = WAIT_FOR_ENDBRANCH;
IA32_S_CET.SUPPRESS =0
Fl;
Fl;
END;

Document Number: 334525-003, Revision 3.0 67

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

TASK-GATE:
IF task gate DPL < CPL
or task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); Fl;
IF task gate not present
THEN #NP(gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
or TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;
TASK-STATE-SEGMENT:
IFTSSDPL <CPL
or TSSDPL < TSS segment-selector RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

Flags Affected
All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions
#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment limits.

If the segment selector in the destination operand, call gate, task gate, or TSS is
NULL.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL
segment selector.
If target mode is compatibility mode and SSP is not in low 4G.

#GP(selector) If the segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the -destination oper-
and is not for a conforming-code segment, nonconforming-code segment, call gate,
task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

68 Document Number: 334525-003, Revision 3.0

#SS(0)
#NP (selector)

#PF(fault-code)
#AC(0)

#UD

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(When not using a call gate.) If the RPL for the segment’s segment selector is greater
than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less than the CPL
or than the RPL of the call-gate, task-gate, or TSS’s segment selector.

If the segment descriptor for selector in a call gate does not indicate it is a code seg-
ment.

If the segment descriptor for the segment selector in a task gate does not indicate an
available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.
If a memory operand effective address is outside the SS segment limit.

If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3. (Only occurs when fetching target from memory.)

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If a memory operand effective address is outside the SS segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

#UD

If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made. (Only
occurs when fetching target from memory.)

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

If a memory address is non-canonical.

If target offset in destination operand is non-canonical.

If target offset in destination operand is beyond the new code segment limit.
If the segment selector in the destination operand is NULL.

If the code segment selector in the 64-bit gate is NULL.

If transitioning to compatibility mode and the SSP is beyond 4G.

If the code segment or 64-bit call gate is outside descriptor table limits.

If the code segment or 64-bit call gate overlaps non-canonical space.

Document Number: 334525-003, Revision 3.0 69

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

If the segment descriptor from a 64-bit call gate is in non-canonical space.

If the segment descriptor pointed to by the segment selector in the -destination oper-
and is not for a conforming-code segment, nonconforming-code segment, 64-bit call
gate.

If the segment descriptor pointed to by the segment selector in the -destination oper-
and is a code segment, and has both the D-bit and the L-bit set.

If the DPL for a nonconforming-code segment is not equal to the CPL, or the RPL for
the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-
gate.

If the upper type field of a 64-bit call gate is not 0xO0.
If the segment selector from a 64-bit call gate is beyond the descriptor table limits.

If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't
have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit call gate does not
indicate it is a code segment.

If the code segment is non-confirming and CPL != DPL.
If the code segment is confirming and CPL < DPL.

#NP(selector) If a code segment or 64-bit call gate is not present.

#UD (64-bit mode only) If a far jump is direct to an absolute address in memory.
If the LOCK prefix is used.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while
the current privilege level is 3.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

70 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.4 RET—Return from Procedure

Opcode* Instruction Op/ 64- Compat/ Description
En Bit Leg
Mode Mode
C3 RET NP Valid Valid Near return to calling
procedure.
CB RET NP Valid Valid Far return to calling procedure.
C2iw RET imm16 | Valid Valid Near return to calling

procedure and pop imm16
bytes from stack.

CA iw RET imm16 | Valid Valid Far return to calling procedure
and pop imm16 bytes from
stack.

Instruction Operand Encoding

(;f:/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
I imm16 NA NA NA
Description

Transfers program control to a return address located on the top of the stack. The address is usually placed
on the stack by a CALL instruction, and the return is made to the instruction that follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return address is
popped; the default is none. This operand can be used to release parameters from the stack that were
passed to the called procedure and are no longer needed. It must be used when the CALL instruction used
to switch to a new procedure uses a call gate with a non-zero word count to access the new procedure.
Here, the source operand for the RET instruction must specify the same number of bytes as is specified in
the word count field of the call gate.

The RET instruction can be used to execute three different types of returns.

®* Near return — A return to a calling procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment return.

®* Far return — A return to a calling procedure located in a different segment than the current code segment,
sometimes referred to as an intersegment return.

* Inter-privilege-level far return — A far return to a different privilege level than that of the currently
executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section titled “Calling
Procedures Using Call and RET” in Chapter 6 of the Inte/l® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for detailed information on near, far, and inter-privilege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the top of the
stack into the EIP register and begins program execution at the new instruction pointer. The CS register is
unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the stack into
the EIP register, then pops the segment selector from the top of the stack into the CS register. The processor
then begins program execution in the new code segment at the new instruction pointer.

Document Number: 334525-003, Revision 3.0 71

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except that the
processor examines the privilege levels and access rights of the code and stack segments being returned to
determine if the control transfer is allowed to be made. The DS, ES, FS, and GS segment registers are
cleared by the RET instruction during an inter-privilege-level return if they refer to segments that are not
allowed to be accessed at the new privilege level. Since a stack switch also occurs on an inter-privilege level
return, the ESP and SS registers are loaded from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional source
operand must be used with the RET instruction to release the parameters on the return. Here, the parame-
ters are released both from the called procedure’s stack and the calling procedure’s stack (that is, the stack
being returned to).

In 64-bit mode, the default operation size of this instruction is the stack-address size, i.e. 64 bits. This
applies to near returns, not far returns; the default operation size of far returns is 32 bits.

Operation

(* Near return *)
IF instruction = near return
THEN;
IF OperandSize = 32
THEN
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP €< Pop();
IF ShadowStackEnabled(CPL)
tempSsEIP = PopShadowStack4B();
IF EIP != TempSsEIP
THEN #CP(NEAR_RET); FI;
Fl;
ELSE
IF OperandSize = 64
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI;
RIP & Pop();
IF ShadowStackEnabled(CPL)
tempSsEIP = PopShadowStack8B();
IF RIP != tempSsEIP
THEN #CP(NEAR_RET): FI:
Fl;
ELSE (* OperandSize = 16 *)
IF top 2 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP € Pop();
tempEIP < tempEIP AND O00OOFFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP & tempEIP;
IF ShadowStackEnabled(CPL)
tempSsEip = PopShadowStack4B();

72 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF EIP != tempSsEIP
THEN #CP(NEAR_RET); FI;
Fl;
Fl;
Fl;

IF instruction has immediate operand
THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP € ESP + SRC;
ELSE
IF StackAddressSize = 64
THEN
RSP € RSP + SRC;
ELSE (* StackAddressSize = 16 *)
SP &SP+ SRC;
FI;

Fl;
Fl;
Fl;

(* Real-address mode or virtual-8086 mode *)
IF ((PE = 0) or (PE = 1 AND VM = 1)) and instruction = far return
THEN
IF OperandSize = 32
THEN
IF top 8 bytes of stack not within stack limits
THEN #SS(0); FI;
EIP €< Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 4 bytes of stack not within stack limits
THEN #SS(0); FI;
tempEIP < Pop();
tempEIP < tempEIP AND O000FFFFH;
IF tempEIP not within code segment limits
THEN #GP(0); FI;
EIP & tempEIP;
CS € Pop(); (* 16-bit pop *)
Fl;
IF instruction has immediate operand
THEN (* Release parameters from stack *)
SP &SP + (SRC AND FFFFH);
Fl;
Fl;

(* Protected mode, not virtual-8086 mode *)

IF (PE =1 and VM = 0 and IA32_EFER.LMA = 0) and instruction = far return
THEN

IF OperandSize = 32

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits
THEN #SS(0); FI;

FI;
IF return code segment selector is NULL

THEN #GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN #GP(selector); FI;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment

THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL

THEN #GP(selector); Fl;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); Fl;
IF return code segment descriptor is non-conforming and return code
segment DPL " return code segment selector RPL

THEN #GP(selector); Fl;
IF return code segment descriptor is not present

THEN #NP(selector); FI:
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;

ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL;
Fl;

Fl;

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP €< Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
EIP €< Pop();
EIP < EIP AND OOOOFFFFH;
CS € Pop(); (* 16-bit pop *) Fl;
IF instruction has immediate operand
THEN (* Release parameters from stack *)
IF StackAddressSize = 32
THEN
ESP €< ESP + SRC;
ELSE (* StackAddressSize = 16 *)

74 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

SP &SP +SRC;
FI;
FI;
IF ShadowStackEnabled(CPL)

(* SSP must be 8 byte aligned *)
IF SSP AND 0x7 =0

THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
prevSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;
(* do a 64 bit-compare to check if any bits beyond bit 15 are set *)
tempCS = CS; (* zero pad to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); FI;
(* do a 64 bit-compare; pad CSBASE+RIP with O for 32 bit LIP*)
IF CSBASE + RIP != tempSsLIP

THEN #CP(FAR-RET/IRET); FI;
(* prevSSP must be 4 byte aligned *)
IF prevSSP AND 0x3 =0

THEN #CP(FAR-RET/IRET); FI;
(* If returning to compatibility mode then SSP must be in low 4G *)

IF (EFER.LMA and CS.L) = 0 AND prevSSP[63:32] |= 0)
THEN #GP(0); FI;
SSP & prevSSP
FI;
END;

RETURN-OUTER-PRIVILEGE-LEVEL:
IFtop (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
ortop (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
Read return segment selector;
IF stack segment selector is NULL
THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL I= RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL != RPL of the return code segment selector
THEN #GP(selector); Fl;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP € Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
CS(RPL) € CPL;

Document Number: 334525-003, Revision 3.0 75

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32
THEN
ESP €« ESP + SRC;
ELSE (* StackAddressSize = 16 *)
SP &SP +SRC;
Fl;
Fl;
tempESP < Pop();
tempSS € Pop(); (* 32-bit pop, high-order 16 bits discarded; seg. descriptor loaded *)
ELSE (* OperandSize = 16 *)
EIP € Pop();
EIP €< EIP AND OOOOFFFFH;
CS < Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) €« CPL;
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)
IF StackAddressSize = 32
THEN
ESP €< ESP + SRC;
ELSE (* StackAddressSize = 16 *)
SP &SP +SRC;
FI;
Fl;
tempESP < Pop();
tempSS € Pop(); (* 16-bit pop; segment descriptor loaded *)
Fl;
IF ShadowStackEnabled(CPL)
(* check if 8 byte aligned *)
IF SSP AND Ox7 =0
THEN #CP(FAR-RET/IRET); FI;
IF ReturnCodeSegmentSelector(RPL) =3
THEN
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero extended to 64 bit *)
IF tempCS != tempSsCS
THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with O for 32 bit LA *)
IF CSBASE + RIP != tempSsLIP
THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)

IF tempSSP AND 0x3 =0
76 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN #CP(FAR-RET/IRET); FI;
Fl;
Fl;

tempOLldCPL = CPL;
CPL € ReturnCodeSegmentSelector(RPL);
(* update SS:ESP after CPL broadcast complete *)
ESP < tempESP;
SS € tempSS;
tempOLldSSP = SSP;
IF ShadowStackEnabled(CPL)
IFCPL=3
THEN tempSSP < |IA32_PL3_SSP; FI;
IF (EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] !=0)
THEN #GP(0); FI;
SSP & tempSSP
Fl;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
*and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOIldCPL)
Atomic Start
SSPToken < Load 8 bytes with shadow stack semantics and supervisor override from tempOLldSSP
invalidToken € O
IF ((SSPToken AND 0x01) = 0O) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; Fl;
IF (SSPToken AND OxFFFFFFFFFFFFFFFE) != tempOLldSSP) (* If current SSP does not match token *)
THEN invalidToken < 1; Fl;
(* Valid token found; clear its busy bit *)
IF invalidToken = 0
THEN SSPToken € SSPToken XOR 0x01;
Store 8 bytes of SSPToken with shadow stack semantics and supervisor override to tempOldSSP;
Atomic End
Fl;

FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector € O; (* Segment selector invalid *)
Fl;
OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)
IF StackAddressSize = 32
THEN
ESP < ESP + SRC;
ELSE (* StackAddressSize = 16 *)
SP &SP+ SRC;
Fl;
Fl;

Document Number: 334525-003, Revision 3.0 77

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

END;

(* 1A-32e Mode *)

IF (PE =1 and VM = 0 and IA32_EFER.LMA = 1) and instruction = far return
THEN

IF OperandSize =32
THEN
IF second doubleword on stack is not within stack limits
THEN #SS(0); FI;
IF first or second doubleword on stack is not in canonical space
THEN #SS(0); FI;
ELSE
IF OperandSize = 16
THEN
IF second word on stack is not within stack limits
THEN #SS(0); FI;
IF first or second word on stack is not in canonical space
THEN #SS(0); FI;
ELSE (* OperandSize = 64 *)
IF first or second quadword on stack is not in canonical space
THEN #SS(0); FI;
FI
Fl;
IF return code segment selector is NULL
THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit
THEN GP(selector); FI;
IF return code segment selector addresses descriptor in non-canonical space
THEN GP(selector); Fl;
Obtain descriptor to which return code segment selector points from descriptor table;
IF return code segment descriptor is not a code segment
THEN #GP(selector); FI;
IF return code segment descriptor has L-bit = 1 and D-bit = 1
THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL
THEN #GP(selector); Fl;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is non-conforming
and return code segment DPL " return code segment selector RPL
THEN #GP(selector); Fl;
IF return code segment descriptor is not present
THEN #NP(selector); Fl:
IF return code segment selector RPL > CPL
THEN GOTO |IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL;

78 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

ELSE GOTO IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL;
Fl;
Fl;

IA-32E-MODE-RETURN-SAME-PRIVILEGE-LEVEL:

IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI;

IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;

IF OperandSize = 32

THEN
EIP € Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE
IF OperandSize = 16
THEN
EIP < Pop();
EIP < EIP AND OOOOFFFFH;
CS € Pop(); (* 16-bit pop *)
ELSE (* OperandSize = 64 *)
RIP & Pop();
CS € Pop(); (* 64-bit pop, high-order 48 bits discarded *)
Fl;

Fl;
IF instruction has immediate operand
THEN (* Release parameters from stack *)
IF StackAddressSize = 32

THEN
ESP < ESP + SRC;
ELSE
IF StackAddressSize = 16
THEN
SP &SP+ SRC;
ELSE (* StackAddressSize = 64 *)
RSP € RSP + SRC;
Fl;

Fl;
Fl;
IF ShadowStackEnabled(CPL)
IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)
THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)
THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare;
THEN #CP(FAR-RET/IRET); FI;
IF tempSSP AND 0x3 = 0 (* check if aligned to 4 bytes *)

Document Number: 334525-003, Revision 3.0 79

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

THEN #CP(FAR-RET/IRET); FI;
IF (EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] |= 0)
THEN #GP(0); FI;
SSP < tempSSP
Fl;
END;

IA-32E-MODE-RETURN-OUTER-PRIVILEGE-LEVEL:
IFtop (16 + SRC) bytes of stack are not within stack limits (OperandSize = 32)
ortop (8 + SRC) bytes of stack are not within stack limits (OperandSize = 16)
THEN #SS(0); FI;
IFtop (16 + SRC) bytes of stack are not in canonical address space (OperandSize =32)

ortop (8 + SRC) bytes of stack are not in canonical address space (OperandSize =16)
or top (32 + SRC) bytes of stack are not in canonical address space (OperandSize = 64)
THEN #SS(0); FI;
Read return stack segment selector;
IF stack segment selector is NULL
THEN
IF new CS descriptor L-bit = 0
THEN #GP(selector);
IF stack segment selector RPL = 3
THEN #GP(selector);
Fl;
IF return stack segment descriptor is not within descriptor table limits
THEN #GP(selector); Fl;
IF return stack segment descriptor is in non-canonical address space
THEN #GP(selector); Fl;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL |= RPL of the return code segment selector
or stack segment is not a writable data segment
or stack segment descriptor DPL != RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present
THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit
THEN #GP(0); FI:
IF the return instruction pointer is not within canonical address space
THEN #GP(0); FI;

IF OperandSize = 32
THEN
EIP € Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
CS(RPL) € CPL;
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)

80 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF StackAddressSize = 32

THEN
ESP < ESP + SRC;
ELSE
IF StackAddressSize = 16
THEN
SP &SP+ SRC;
ELSE (* StackAddressSize = 64 *)
RSP €< RSP+ SRC;
Fl;

Fl;
Fl;
tempESP < Pop();
tempSS € Pop(); (* 32-bit pop, high-order 16 bits discarded, segment descriptor loaded *)
ELSE
IF OperandSize = 16
THEN
EIP & Pop();
EIP < EIP AND OOOOFFFFH;
CS € Pop(); (* 16-bit pop; segment descriptor loaded *)
CS(RPL) € CPL;
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)

IF StackAddressSize = 32

THEN
ESP €< ESP + SRC;
ELSE
IF StackAddressSize = 16
THEN
SP &SP+ SRC;
ELSE (* StackAddressSize = 64 *)
RSP € RSP+ SRC;
Fl;

Fl;
Fl;
tempESP < Pop();
tempSS € Pop(); (* 16-bit pop; segment descriptor loaded *)
ELSE (* OperandSize = 64 *)
RIP & Pop();
CS € Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. descriptor loaded *)
CS(RPL) € CPL;
IF instruction has immediate operand
THEN (* Release parameters from called procedure’s stack *)
RSP € RSP + SRC;
Fl;
tempESP < Pop();
tempSS <Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
Fl;
Fl;
IF ShadowStackEnabled(CPL)
(* check if 8 byte aligned *)

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF SSP AND Ox7 =0
THEN #CP(FAR-RET/IRET); FI;
IF ReturnCodeSegmentSelector(RPL) =3
THEN
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;
(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS
THEN #CP(FAR-RET/IRET); FI;
(* Do 64 bit compare; pad CSBASE+RIP with O for 32 bit LIP *)
IF CSBASE + RIP = tempSsLIP
THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0
THEN #CP(FAR-RET/IRET); FI;
FI;
Fl;

tempOIldCPL = CPL;
CPL € ReturnCodeSegmentSelector(RPL);
(* update SS:ESP after CPL broadcast complete *)
ESP < tempESP;
SS € tempSS;
tempOLldSSP = SSP;
IF ShadowStackEnabled(CPL)
IFCPL=3
THEN tempSSP € IA32_PL3_SSP; Fi;
IF (EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] |=0)
THEN #GP(0); FI;
SSP & tempSSP
Fl;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
* and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOLldCPL)
Atomic Start
SSPToken < Load 8 bytes with shadow stack semantics and supervisor override from tempOIldSSP
invalidToken €< 0O
IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; Fl;
IF (SSPToken AND OxFFFFFFFFFFFFFFFE) != tempOLldSSP) (* If current SSP does not match token *)
THEN invalidToken < 1; FI;
(* Valid token found; clear its busy bit *)
IF invalidToken = 0
THEN SSPToken € SSPToken XOR 0x01;

82 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Store 8 bytes of SSPToken with shadow stack semantics and supervisor override to tempOldSSP;
Atomic End
FI;
FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)
THEN SegmentSelector € O; (* SegmentSelector invalid *)
Fl;
OD;

IF instruction has immediate operand
THEN (* Release parameters from calling procedure’s stack *)
IF StackAddressSize = 32

THEN
ESP < ESP + SRC;
ELSE
IF StackAddressSize = 16
THEN
SP &SP +SRC;
ELSE (* StackAddressSize = 64 *)
RSP €< RSP+ SRC;
Fl;
Fl;
Fl;
END;
Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector NULL.
If the return instruction pointer is not within the return code segment limit.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack
(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.
#GP(selector) If the RPL of the return code segment selector is less than the CPL.
If the return code or stack segment selector index is not within its descriptor table
limits.
If the return code segment descriptor does not indicate a code segment.

If the return code segment is non-conforming and the segment selector’s DPL is not
equal to the RPL of the code segment’s segment selector.

If the return code segment is conforming and the segment selector’s DPL greater than
the RPL of the code segment’s segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code segment
selector.

If the stack segment descriptor DPL is not equal to the RPL of the return code seg-
ment selector.

#SS(0) If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

Document Number: 334525-003, Revision 3.0 83

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

#NP(selector)

#PF(fault-code)

#AC(0)
enabled.

If the return code segment is not present.
If a page fault occurs.
If an unaligned memory access occurs when the CPL is 3 and alignment checking is

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from

IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.
If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions

#GP
#SS

If the return instruction pointer is not within the return code segment limit.
If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)

#AC(0)

If the return instruction pointer is not within the return code segment limit.
If the top bytes of stack are not within stack limits.

If a page fault occurs.

If an unaligned memory access occurs when alignment checking is enabled.

Compatibility Mode Exceptions
Same as 64-bit mode exceptions.

64-Bit Mode Exceptions

#GP(0)

bit mode.

#GP(selector)

84

If the return instruction pointer is non-canonical.

If the return instruction pointer is not within the return code segment limit.

If the stack segment selector is NULL going back to compatibility mode.

If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-

If the return code segment selector is NULL.
If returning to 32-bit or compatibility mode and the previous SSP from shadow stack
(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

If the proposed segment descriptor for a code segment does not indicate it is a code
segment.

If the proposed new code segment descriptor has both the D-bit and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-
ment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code segment se-
lector RPL.

If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is non-canonical.
If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of the return code seg-
ment selector.

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be refer-
enced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is made while

the current privilege level is 3.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from
IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

If return instruction pointer from stack and shadow stack do not match.

Document Number: 334525-003, Revision 3.0 85

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.5 SYSCALL—Fast System Call

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode Leg Mode
OF 05 SYSCALL NP Valid Invalid Fast call to privilege level O
system procedures.

Instruction Operand Encoding

(;f:/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

SYSCALL invokes an OS system-call handler at privilege level 0. It does so by loading RIP from the
IA32_LSTAR MSR (after saving the address of the instruction following SYSCALL into RCX). (The WRMSR
instruction ensures that the IA32_LSTAR MSR always contain a canonical address.)

SYSCALL also saves RFLAGS into R11 and then masks RFLAGS using the IA32_FMASK MSR (MSR address
C0000084H); specifically, the processor clears in RFLAGS every bit corresponding to a bit that is set in the
IA32_FMASK MSR.

SYSCALL loads the CS and SS selectors with values derived from bits 47:32 of the IA32_STAR MSR. How-
ever, the CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by
those selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for
details. It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by
those selector values correspond to the fixed values loaded into the descriptor caches; the SYSCALL instruc-
tion does not ensure this correspondence.

The SYSCALL instruction does not save the stack pointer (RSP). If the OS system-call handler will change
the stack pointer, it is the responsibility of software to save the previous value of the stack pointer. This
might be done prior to executing SYSCALL, with software restoring the stack pointer with the instruction
following SYSCALL (which will be executed after SYSRET). Alternatively, the OS system-call handler may
save the stack pointer and restore it before executing SYSRET.

When shadow stacks are enabled at a privilege level where the SYSCALL instruction is invoked, the SSP is
saved to the IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with
0.

Operation

IF(CS.L!=1)or (IA32_EFER.LMA 1=1) or (IA32_EFER.SCE 1=1)

(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD;

Fl;

RCX < RIP; (* Will contain address of next instruction *)
RIP €< IA32_LSTAR;

R11 € RFLAGS;

RFLAGS €< RFLAGS AND NOT(IA32_FMASK);

CS.Selector €< IA32_STAR[47:32] AND FFFCH (* Operating system provides CS; RPL forced to O *)
86 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(* Set rest of CS to a fixed value *)

CS.Base € 0; (* Flat segment *)

CS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type € 11; (* Execute/read code, accessed *)

CSS < 1;

CS.DPL € 0;

CS.P ¢« 1;

CSL<T; (* Entry is to 64-bit mode *)

CS.D € 0; (* Required if CS.L = 1 *)

CS.G € 1; (* 4-KByte granularity *)

IF ShadowStackEnabled(CPL)
IA32_PL3_SSP < SSP; (* With shadow stacks enabled the system call is supported from Ring 3 to Ring O *)
(* OS supporting Ring 0 to Ring 0 system calls or Ring 1/2 to ring O system call *)
(* Must preserve the contents of IA32_PL3_SSP to avoid losing ring 3 state *)
FI;

CPL < 0;

IF ShadowStackEnabled(CPL)
SSP < 0;
Fl;
IF EndbranchEnabled(CPL)
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S CET.SUPPRESS =0

Fl;

SS.Selector € IA32_STAR[47:32] +8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base € 0; (* Flat segment *)

SS.Limit < FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type € 3; (* Read/write data, accessed *)
SSS € 1;

SS.DPL € 0

SSP & 1;

SSB < 1; (* 32-bit stack segment *)

SS.G € 1; (* 4-KByte granularity *)

Flags Affected

All.

Protected Mode Exceptions
#UD The SYSCALL instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSCALL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSCALL instruction is not recognized in virtual-8086 mode.

Document Number: 334525-003, Revision 3.0 87

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Compatibility Mode Exceptions

#UD

The SYSCALL instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD

88

If IA32_EFER.SCE = 0.
If the LOCK prefix is used.

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.6 SYSENTER—Fast System Call

Opcode Instruction Op/ 64- Compat/ Description
En Bit Leg
Mode Mode
OF 34 SYSENTER NP Valid Valid Fast call to privilege level O system
procedures.

Instruction Operand Encoding

OEE/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Executes a fast call to a level 0 system procedure or routine. SYSENTER is a companion instruction to
SYSEXIT. The instruction is optimized to provide the maximum performance for system calls from user code
running at privilege level 3 to operating system or executive procedures running at privilege level 0.

When executed in IA-32e mode, the SYSENTER instruction transitions the logical processor to 64-bit mode;
otherwise, the logical processor remains in protected mode.

Prior to executing the SYSENTER instruction, software must specify the privilege level 0 code segment and
code entry point, and the privilege level 0 stack segment and stack pointer by writing values to the following
MSRs:

®* IA32_SYSENTER_CS (MSR address 174H) — The lower 16 bits of this MSR are the segment selector for
the privilege level 0 code segment. This value is also used to determine the segment selector of the
privilege level 0 stack segment (see the Operation section). This value cannot indicate a null selector.

®* IA32_SYSENTER_EIP (MSR address 176H) — The value of this MSR is loaded into RIP (thus, this value
references the first instruction of the selected operating procedure or routine). In protected mode, only
bits 31:0 are loaded.

®* IA32_SYSENTER_ESP (MSR address 175H) — The value of this MSR is loaded into RSP (thus, this value
contains the stack pointer for the privilege level 0 stack). This value cannot represent a non-canonical
address. In protected mode, only bits 31:0 are loaded.

These MSRs can be read from and written to using RDMSR/WRMSR. The WRMSR instruction ensures that
the IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs always contain canonical addresses.

While SYSENTER loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those
selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.
It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those
selector values correspond to the fixed values loaded into the descriptor caches; the SYSENTER instruction
does not ensure this correspondence.

The SYSENTER instruction can be invoked from all operating modes except real-address mode.

The SYSENTER and SYSEXIT instructions are companion instructions, but they do not constitute a call/return
pair. When executing a SYSENTER instruction, the processor does not save state information for the user
code (e.g., the instruction pointer), and neither the SYSENTER nor the SYSEXIT instruction supports passing
parameters on the stack.

To use the SYSENTER and SYSEXIT instructions as companion instructions for transitions between privilege
level 3 code and privilege level 0 operating system procedures, the following conventions must be followed.

Document Number: 334525-003, Revision 3.0 89

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

®* The segment descriptors for the privilege level 0 code and stack segments and for the privilege level 3
code and stack segments must be contiguous in a descriptor table. This convention allows the processor
to compute the segment selectors from the value entered in the SYSENTER_CS_MSR MSR.

® The fast system call “stub” routines executed by user code (typically in shared libraries or DLLs) must
save the required return IP and processor state information if a return to the calling procedure is required.
Likewise, the operating system or executive procedures called with SYSENTER instructions must have
access to and use this saved return and state information when returning to the user code.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II
processor. The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT
present (SEP) feature flag returned to the EDX register by the CPUID instruction. An operating system that
qualifies the SEP flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; Fl;
Fl;
When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns the
SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

When shadow stacks are enabled at privilege level where SYSENTER instruction is invoked, the SSP is saved
to the IA32_PL3_SSP MSR. If shadow stacks are enabled at privilege level 0, the SSP is loaded with 0.

Operation
IF CRO.PE = 0 ORIA32_SYSENTER_CS[15:2] = 0 THEN #GP(0); FI;

RFLAGS.VM < 0; (* Ensures protected mode execution *)
RFLAGS.IF € 0; (* Mask interrupts *)
IF in IA-32e mode

THEN

RSP < IA32_SYSENTER_ESP;
RIP < IA32_SYSENTER_EIP;
ELSE
ESP < IA32_SYSENTER_ESP[31:0];
EIP < |A32_SYSENTER_EIP[31:0];
Fl;

CS.Selector € IA32_SYSENTER_CS[15:0] AND FFFCH;
(* Operating system provides CS; RPL forced to O *)
(* Set rest of CS to a fixed value *)

CS.Base € 0; (* Flat segment *)

CS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type € 11; (* Execute/read code, accessed *)

CSS € 1;

90 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

CS.DPL € 0;
CS.P ¢ 1,
IF in IA-32e mode
THEN
CSL< 1, (* Entry is to 64-bit mode *)
CS.D € 0; (* Required if CS.L = 1 %)
ELSE
CS.L <O
CS.D €« 1, (* 32-bit code segment*)
Fl;
CS.G < T (* 4-KByte granularity *)

IF ShadowStackEnabled(CPL)
IA32_PL3_SSP < SSP;
Fl;

CPL € 0;

IF ShadowStackEnabled(CPL)
SSP < 0;
Fl;
IF EndbranchEnabled(CPL)
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS =0

Fl;

SS.Selector & CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base € 0; (* Flat segment *)

SS.Limit < FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type € 3; (* Read/write data, accessed *)
SSS < 1;

SS.DPL € 0;

SSP<&1;

SSB < 1; (* 32-bit stack segment*)
SS.G € 1; (* 4-KByte granularity *)
Flags Affected

VM, IF (see Operation above)

Protected Mode Exceptions
#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSENTER instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Document Number: 334525-003, Revision 3.0

91

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

92

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.7 SYSEXIT—Fast Return from Fast System Call

Opcode Instruction Op/ 64- Compat/ Description
En Bit Leg
Mode Mode
OF 35 SYSEXIT NP Valid Valid Fast return to privilege level 3
user code.
REX.W + OF 35 SYSEXIT NP Valid Valid Fast return to 64-bit mode
privilege level 3 user code.

Instruction Operand Encoding

(I)Ei/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Executes a fast return to privilege level 3 user code. SYSEXIT is a companion instruction to the SYSENTER
instruction. The instruction is optimized to provide the maximum performance for returns from system
procedures executing at protections levels 0 to user procedures executing at protection level 3. It must be
executed from code executing at privilege level 0.

With a 64-bit operand size, SYSEXIT remains in 64-bit mode; otherwise, it either enters compatibility mode
(if the logical processor is in IA-32e mode) or remains in protected mode (if it is not).

Prior to executing SYSEXIT, software must specify the privilege level 3 code segment and code entry point,
and the privilege level 3 stack segment and stack pointer by writing values into the following MSR and
general-purpose registers:

®* IA32_SYSENTER_CS (MSR address 174H) — Contains a 32-bit value that is used to determine the seg-
ment selectors for the privilege level 3 code and stack segments (see the Operation section)

®* RDX — The canonical address in this register is loaded into RIP (thus, this value references the first
instruction to be executed in the user code). If the return is not to 64-bit mode, only bits 31:0 are loaded.

® ECX — The canonical address in this register is loaded into RSP (thus, this value contains the stack pointer
for the privilege level 3 stack). If the return is not to 64-bit mode, only bits 31:0 are loaded.

The IA32_SYSENTER_CS MSR can be read from and written to using RDMSR and WRMSR.

While SYSEXIT loads the CS and SS selectors with values derived from the IA32_SYSENTER_CS MSR, the
CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those
selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.
It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those
selector values correspond to the fixed values loaded into the descriptor caches; the SYSEXIT instruction
does not ensure this correspondence.

The SYSEXIT instruction can be invoked from all operating modes except real-address mode and virtual-
8086 mode.

The SYSENTER and SYSEXIT instructions were introduced into the IA-32 architecture in the Pentium II
processor. The availability of these instructions on a processor is indicated with the SYSENTER/SYSEXIT
present (SEP) feature flag returned to the EDX register by the CPUID instruction. An operating system that
qualifies the SEP flag must also qualify the processor family and model to ensure that the
SYSENTER/SYSEXIT instructions are actually present. For example:

Document Number: 334525-003, Revision 3.0 93

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF CPUID SEP bit is set
THEN IF (Family = 6) and (Model < 3) and (Stepping < 3)
THEN
SYSENTER/SYSEXIT_Not_Supported; Fl;
ELSE
SYSENTER/SYSEXIT_Supported; Fl;
Fl;
When the CPUID instruction is executed on the Pentium Pro processor (model 1), the processor returns the
SEP flag as set, but does not support the SYSENTER/SYSEXIT instructions.

When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP
MSR.

Operation

IFIA32_SYSENTER_CS[15:2] = 0 OR CRO.PE = 0 OR CPL != 0 THEN #GP(0); FI;

IF operand size is 64-bit

THEN (* Return to 64-bit mode *)
RSP €« RCX;
RIP € RDX;
ELSE (* Return to protected mode or compatibility mode *)
RSP < ECX;
RIP €< EDX;
Fl;
IF operand size is 64-bit (* Operating system provides CS; RPL forced to 3 *)
THEN CS.Selector € IA32_SYSENTER_CS[15:0] + 32;
ELSE CS.Selector € IA32_SYSENTER_CS[15:0] + 16;
Fl;
CS.Selector € CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base € 0; (* Flat segment *)
CS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type € 11; (* Execute/read code, accessed *)
CSS ¢« 1;
CS.DPL € 3;
CS.P < 1;
IF operand size is 64-bit
THEN (* return to 64-bit mode *)
CSL< 1, (* 64-bit code segment *)
CS.D € ; (* Required if CS.L =1 %)
ELSE (* return to protected mode or compatibility mode *)
CS.L € 0;
CS.D ¢« 1, (* 32-bit code segment*)
Fl;
CS.G < 1 (* 4-KByte granularity *)
CPL € 3;

94 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF ShadowStackEnabled(CPL)
SSP ¢ IA32_PL3_SSP;

FI;SS.Selector €< CS.Selector + 8; (* SS just above CS *)

(* Set rest of SS to a fixed value *)

SS.Base < 0O; (* Flat segment *)

SS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type € 3; (* Read/write data, accessed *)
SSS < 1;

SS.DPL € 3;

SSP <& 1;

SSB < 1; (* 32-bit stack segment*)

SS.G < T; (* 4-KByte granularity *)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If IA32_SYSENTER_CS[15:2] = 0.
If CPL != 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#GP The SYSEXIT instruction is not recognized in real-address mode.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) The SYSEXIT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If IA32_SYSENTER_CS = 0.

If CPL != 0.

If RCX or RDX contains a non-canonical address.
#UD If the LOCK prefix is used.

Document Number: 334525-003, Revision 3.0 95

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.8 SYSRET—Return From Fast System Call

Opcode Instruction Op/ 64- Compat/ Description
En Bit Leg Mode
Mode
OF 07 SYSRET NP Valid Invalid Return to compatibility

mode from fast system call.

REX.W + OF 07 SYSRET NP Valid Invalid Return to 64-bit mode from
fast system call.

Instruction Operand Encoding

OEF;/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

SYSRET is a companion instruction to the SYSCALL instruction. It returns from an OS system-call handler
to user code at privilege level 3. It does so by loading RIP from RCX and loading RFLAGS from R11.! With
a 64-bit operand size, SYSRET remains in 64-bit mode; otherwise, it enters compatibility mode and only the
low 32 bits of the registers are loaded.

SYSRET loads the CS and SS selectors with values derived from bits 63:48 of the IA32_STAR MSR. However,
the CS and SS descriptor caches are not loaded from the descriptors (in GDT or LDT) referenced by those
selectors. Instead, the descriptor caches are loaded with fixed values. See the Operation section for details.
It is the responsibility of OS software to ensure that the descriptors (in GDT or LDT) referenced by those
selector values correspond to the fixed values loaded into the descriptor caches; the SYSRET instruction
does not ensure this correspondence.

The SYSRET instruction does not modify the stack pointer (ESP or RSP). For that reason, it is necessary for
software to switch to the user stack. The OS may load the user stack pointer (if it was saved after SYSCALL)
before executing SYSRET; alternatively, user code may load the stack pointer (if it was saved before
SYSCALL) after receiving control from SYSRET.

If the OS loads the stack pointer before executing SYSRET, it must ensure that the handler of any interrupt
or exception delivered between restoring the stack pointer and successful execution of SYSRET is not in-
voked with the user stack. It can do so using approaches such as the following.

® External interrupts. The OS can prevent an external interrupt from being delivered by clearing EFLAGS.IF
before loading the user stack pointer.

®* Nonmaskable interrupts (NMIs). The OS can ensure that the NMI handler is invoked with the correct stack
by using the interrupt stack table (IST) mechanism for gate 2 (NMI) in the IDT (see Section 6.14.5,
“Interrupt Stack Table,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

TRegardless of the value of R11, the RF and VM flags are always 0 in RFLAGS after execution of SYSRET. In addition, all re-
served bits in RFLAGS retain the fixed values.

96 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

® General-protection exceptions (#GP). The SYSRET instruction generates #GP(0) if the value of RCX is not
canonical. The OS can address this possibility using one or more of the following approaches.

— Confirming that the value of RCX is canonical before executing SYSRET.
— Using paging to ensure that the SYSCALL instruction will never save a non-canonical value into RCX.
— Using the IST mechanism for gate 13 (#GP) in the IDT.

When shadow stacks are enabled at privilege level 3 the instruction loads SSP with value from IA32_PL3_SSP
MSR.

Operation

IF(CS.L'=1)or(IA32_EFER.LMA = 1) or (IA32_EFER.SCE !=1)
(* Not in 64-Bit Mode or SYSCALL/SYSRET not enabled in IA32_EFER *)
THEN #UD; FI;

IF (CPL !'= 0) OR (RCX is not canonical) THEN #GP(0); FI;

IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)
RIP €& RCX;
ELSE (* Return to Compatibility Mode *)
RIP €« ECX;
Fl;
RFLAGS < (R11 & 3C7FD7H) | 2; (* Clear RF, VM, reserved bits; set bit 2 *)

IF (operand size is 64-bit)
THEN CS.Selector €< 1A32_STAR[63:48]+16;
ELSE CS.Selector < 1A32_STAR[63:48];
Fl;
CS.Selector € CS.Selector OR 3; (* RPL forced to 3 *)
(* Set rest of CS to a fixed value *)
CS.Base € 0; (* Flat segment *)
CS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
CS.Type € 11; (* Execute/read code, accessed *)
CSS € 1;
CS.DPL € 3;
CSP < 1;
IF (operand size is 64-bit)
THEN (* Return to 64-Bit Mode *)

CSL&T; (* 64-bit code segment *)
CS.D €0 (* Required if CS.L = 1 *)
ELSE (* Return to Compatibility Mode *)
CS.L € 0; (* Compatibility mode *)
CSD < 1, (* 32-bit code segment *)
Fl;
CS.G < T (* 4-KByte granularity *)
CPL < 3;

IF ShadowStackEnabled(CPL)
SSP ¢ IA32_PL3_SSP;

Fl;

SS.Selector € (IA32_STAR[63:48]+8) OR 3; (* RPL forced to 3 *)
(* Set rest of SS to a fixed value *)

SS.Base € 0; (* Flat segment *)

Document Number: 334525-003, Revision 3.0 97

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

SS.Limit € FFFFFH; (* With 4-KByte granularity, implies a 4-GByte limit *)
SS.Type € 3; (* Read/write data, accessed *)

SSS € 1;

SS.DPL € 3;

SS.P €« 1;

SSB < 1; (* 32-bit stack segment*)

SS.G € 1; (* 4-KByte granularity *)

Flags Affected
All.

Protected Mode Exceptions
#UD The SYSRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SYSRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SYSRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The SYSRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#UD If IA32_EFER.SCE = 0.
If the LOCK prefix is used.
#GP(0) If CPL !=0.

If RCX contains a non-canonical address.

98 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

4.91RET/IRETD—Interrupt Return

Opcode Instruction Op/ 64- Compat/ Description
En Bit Leg
Mode Mode

CF IRET NP Valid Valid Interrupt return (16-bit
operand size).

CF IRETD NP Valid Valid Interrupt return (32-bit
operand size).

REX.W + IRETQ NP Valid N.E. Interrupt return (64-bit

CF operand size).

Instruction Operand Encoding

(EE/ Operand 1 Operand 2 Operand 3 Operand 4
NP NA NA NA NA
Description

Returns program control from an exception or interrupt handler to a program or procedure that was inter-
rupted by an exception, an external interrupt, or a software-generated interrupt. These instructions are also
used to perform a return from a nested task. (A nested task is created when a CALL instruction is used to
initiate a task switch or when an interrupt or exception causes a task switch to an interrupt or exception
handler.) See the section titled “Task Linking” in Chapter 7 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return double) is
intended for use when returning from an interrupt when using the 32-bit operand size; however, most
assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or procedure.
During this operation, the processor pops the return instruction pointer, return code segment selector, and
EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes execu-
tion of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested task) and
VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on the current stack. Depending
on the setting of these flags, the processor performs the following types of interrupt returns.

® Return from virtual-8086 mode.
® Return to virtual-8086 mode.

® Intra-privilege level return.

® Inter-privilege level return.

® Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the interrupt
procedure, without a task switch. The code segment being returned to must be equally or less privileged
than the interrupt handler routine (as indicated by the RPL field of the code segment selector popped from
the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return instruction pointer, return
code segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers, respectively,
and then resumes execution of the interrupted program or procedure. If the return is to another privilege

Document Number: 334525-003, Revision 3.0 99

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

level, the IRET instruction also pops the stack pointer and SS from the stack, before resuming program
execution. If the return is to virtual-8086 mode, the processor also pops the data segment registers from
the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a task called
with a CALL instruction, an interrupt, or an exception) back to the calling or interrupted task. The updated
state of the task executing the IRET instruction is saved in its TSS. If the task is re-entered later, the code
that follows the IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a general protection
exception.

If nonmaskable interrupts (NMIs) are blocked (see Section 6.7.1, “*Handling Multiple NMIs” in the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A), execution of the IRET instruction un-
blocks NMIs. This unblocking occurs even if the instruction causes a fault. In such a case, NMIs are unmasked
before the exception handler is invoked.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W prefix promotes opera-
tion to 64 bits (IRETQ). See the summary chart at the beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 25 of the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this
instruction in VMX non-root operation.

Operation

IFPE=0
THEN GOTO REAL-ADDRESS-MODE;
ELSIF (IA32_EFER.LMA = 0)
THEN
IF (EFLAGS.VM = 1)
THEN GOTO RETURN-FROM-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE;
Fl;
ELSE GOTO IA-32e-MODE;
Fl;

REAL-ADDRESS-MODE;
IF OperandSize = 32
THEN
EIP € Pop();
CS < Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS € Pop();
EFLAGS € (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1AO000H);
ELSE (* OperandSize = 16 *)
EIP €< Pop(); (* 16-bit pop; clear upper 16 bits *)
CS € Pop(); (* 16-bit pop *)
EFLAGS[15:0] € Pop();
Fl;
END;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

100 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

IF IOPL = 3 (* Virtual mode: PE=1,VM = 1,I0PL = 3 %)
THEN IF OperandSize = 32
THEN
EIP < Pop();
CS € Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS < Pop();
(* VM, IOPL, VIP and VIF EFLAG bits not modified by pop *)
IF EIP not within CS limit
THEN #GP(0); FI;
ELSE (* OperandSize = 16 *)
EIP € Pop(); (* 16-bit pop; clear upper 16 bits *)
CS € Pop(); (* 16-bit pop *)
EFLAGS[15:0] € Pop(); (* IOPL in EFLAGS not modified by pop *)
IF EIP not within CS limit
THEN #GP(0); FI;

FI;
ELSE
#GP(0); (* Trap to virtual-8086 monitor: PE = 1,VM = 1,IOPL <3*%)
Fl;
END;

PROTECTED-MODE:
IFNT =1
THEN GOTO TASK-RETURN; (*PE=1,VM =0,NT =1%)
FI;
IF OperandSize = 32
THEN
EIP < Pop();
CS < Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS € Pop();
ELSE (* OperandSize = 16 *)
EIP € Pop(); (* 16-bit pop; clear upper bits *)
CS € Pop(); (* 16-bit pop *)
tempEFLAGS < Pop(); (* 16-bit pop; clear upper bits *)
Fl;
IF tempEFLAGS(VM) = 1and CPL=0
THEN GOTO RETURN-TO-VIRTUAL-8086-MODE;
ELSE GOTO PROTECTED-MODE-RETURN;
FI;

TASK-RETURN: (*PE=1,VM = Q,NT = 1%
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within CS limit
THEN #GP(0); FI,
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)

Document Number: 334525-003, Revision 3.0 101

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

(* If shadow stack or indirect branch tracking at CPL3 then #GP(0) *)
IF CR4.CET AND (IA32_U_CET.ENDBR_EN OR IA32_U_CET.SHSTK_EN)
THEN #GP(0); FI;
shadowStackEnabled = ShadowStackEnabled(CPL)
EFLAGS < tempEFLAGS;
ESP < Pop();
SS € Pop(); (* Pop 2 words; throw away high-order word *)
ES < Pop(); (* Pop 2 words; throw away high-order word *)
DS < Pop(); (* Pop 2 words; throw away high-order word *)
FS < Pop(); (* Pop 2 words; throw away high-order word *)
GS € Pop(); (* Pop 2 words; throw away high-order word *)
IF shadowStackEnabled
(* check if 8 byte aligned *)
IF SSP AND 0x7 !=0
THEN #CP(FAR-RET/IRET); FI;
FI;

CPL € 3;
(* Resume execution in Virtual-8086 mode *)
tempOLldSSP = SSP;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
*and using a supervisor override as old CPL was a supervisor privilege level *)
IF shadowStackEnabled
Atomic Start
SSPToken € Load 8 bytes with shadow stack semantics with supervisor override from tempOLldSSP
invalidToken € 0O
IF ((SSPToken AND 0x01) = 0O) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; FI;
IF ((SSPToken AND OxFFFFFFFFFFFFFFFE) != tempOLldSSP) (* If current SSP does not match token *)
THEN invalidToken <1; FI;
(* Valid token found; clear its busy bit *)
IF invalidToken = 0
THEN SSPToken €< SSPToken XOR 0x01;
Store 8 bytes of SSPToken with shadow stack semantics with supervisor override to tempOLldSSP;
Atomic End
Fl;

END;

PROTECTED-MODE-RETURN: (* PE = 1 %)
IF CS(RPL) > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:

102 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) € tempEFLAGS;
IF OperandSize = 32
THEN EFLAGS(RF, AC, ID) € tempEFLAGS,; FI;
IF CPL <= I0OPL
THEN EFLAGS(IF) € tempEFLAGS; FI;
IFCPL=0
THEN
EFLAGS(IOPL) € tempEFLAGS;
IF OperandSize = 32
THEN EFLAGS(VM, VIF, VIP) & tempEFLAGS,; Fl;
IF OperandSize = 64
THEN EFLAGS(VIF, VIP) € tempEFLAGS; Fl;
Fl;
IF OperandSize = 32
THEN
tempESP € Pop();
tempSS € Pop(); (* 32-bit pop, high-order 16 bits discarded; segment descriptor loaded *)
ELSE
IF OperandSize = 16
THEN
tempESP < Pop();
tempSS € Pop(); (* 16-bit pop; segment descriptor loaded *)
ELSE (* OperandSize = 64 *)
tempRSP € Pop();
tempSS <Pop(); (* 64-bit pop; high-order 48 bits discarded; seg. desc. loaded *)
Fl;
Fl;

IF ShadowStackEnabled(CPL)
(* check if 8 byte aligned *)
IF SSP AND Ox7 !=0
THEN #CP(FAR-RET/IRET); FI;
IF CS(RPL) I=3
THEN

tempSsCS = shadow_stack_load 8 bytes from SSP+16;

tempSsLIP = shadow_stack_load 8 bytes from SSP+8;

tempSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;

(* Do 64 bit compare to detect bits beyond 15 being set *)
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS

THEN #CP(FAR-RET/IRET); Fl;
(* Do 64 bit compare; pad CSBASE+RIP with O for 32 bit LIP *)
IF CSBASE + RIP |= tempSsEIP
THEN #CP(FAR-RET/IRET); FI;
(* check if 4 byte aligned *)
IF tempSSP AND 0x3 != 0
THEN #CP(FAR-RET/IRET); Fl;
Fl;
FI;

Document Number: 334525-003, Revision 3.0 103

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

tempOLldCPL = CPL;
CPL < CS(RPL);
(* update SS and RSP after CPL broadcast *)
IF OperandSize = 64
THEN
RSP < tempRSP;
SS € tempSS;
ELSE
ESP < tempESP;
SS <& tempSS;
Fl;
IF new mode != 64-Bit Mode
THEN
IF EIP is not within CS limit
THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)
IF RIP is non-canonical
THEN #GP(0); FI;
Fl;
tempOLldSSP = SSP;

IF ShadowStackEnabled(CPL)
IFCPL=3
THEN tempSSP < |IA32_PL3_SSP; Fl;
IF (EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] |= 0)
THEN #GP(0); FI;
SSP & tempSSP
Fl;
(* Now past all faulting points; safe to free the token. The token free is done using the old SSP
*and using a supervisor override as old CPL was a supervisor privilege level *)
IF ShadowStackEnabled(tempOLldCPL)
Atomic Start
SSPToken < Load 8 bytes with shadow stack semantics with supervisor override from tempOLldSSP
invalidToken € 0O
IF ((SSPToken AND 0x01) = 0O) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; FI;
IF ((SSPToken AND OxFFFFFFFFFFFFFFFE) != tempOLldSSP) (* If current SSP does not match token *)
THEN invalidToken <1; Fl;
(* Valid token found; clear its busy bit *)
IF invalidToken =0
THEN SSPToken €< SSPToken XOR 0x01;
Store 8 bytes of SSPToken with shadow stack semantics with supervisor override to tempOLldSSP;
Atomic End
Fl;

FOR each SegReg in (ES, FS, GS, and DS)
DO

104 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

tempDesc € descriptor cache for SegReg (* hidden part of segment register *)
IF tempDesc(DPL) < CPL AND tempDesc(Type) is data or non-conforming code
THEN (* Segment register invalid *)
SegReg < NULL;
Fl;
OD;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)

IF new mode != 64-Bit Mode
THEN
IF EIP is not within CS limit
THEN #GP(0); FI;
ELSE (* new mode = 64-bit mode *)
IF RIP is non-canonical
THEN #GP(0); FI;
Fl;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) € tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
THEN EFLAGS(RF, AC, ID) € tempEFLAGS; FI;
IF CPL <= 10PL
THEN EFLAGS(IF) € tempEFLAGS; FI;
IFCPL=0
THEN (* VM =0 in flags image *)
EFLAGS(IOPL) €< tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64
THEN EFLAGS(VIF, VIP) € tempEFLAGS; FI;
Fl;
IF ShadowStackEnabled(CPL)
IF SSP AND 0x7 != 0 (* check if aligned to 8 bytes *)
THEN #CP(FAR-RET/IRET); FI;
tempSsCS = shadow_stack_load 8 bytes from SSP+16;
tempSsLIP = shadow_stack_load 8 bytes from SSP+8;
tempSSP = shadow_stack_load 8 bytes from SSP;
SSP =SSP + 24;
tempCS = CS; (* zero padded to 64 bit *)
IF tempCS != tempSsCS (* 64 bit compare; CS zero padded to 64 bits *)
THEN #CP(FAR-RET/IRET); FI;
IF CSBASE + RIP != tempSsLIP (* 64 bit compare; CSBASE+RIP zero padded to 64 bit for 32 bit LIP *)
THEN #CP(FAR-RET/IRET); Fl;
IF tempSSP AND 0x3 != 0 (* check if aligned to 4 bytes *)
THEN #CP(FAR-RET/IRET); FI;
IF (EFER.LMA AND CS.L) = 0 AND tempSSP[63:32] = 0)

THEN #GP(0); FI;
Fl;

IF ShadowStackEnabled(CPL)
IF IA32_EFER.LMA =1
(* In IA-32e-mode the IRET may be switching stacks if the interrupt/exception was delivered
* through an IDT with a non-zero IST *)

Document Number: 334525-003, Revision 3.0 105

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

Atomic Start
SSPToken € Load 8 bytes with shadow stack semantics from SSP
invalidToken < O
IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; FI;
IF ((SSPToken AND OXFFFFFFFFFFFFFFFE) != SSP) (* If current SSP does not match token *)
THEN invalidToken < 1; Fl;
(* In 1A-32e mode for same CPL IRET there is always a stack switch. The below check verifies
If the stack switch was to self stack and if so we don't try to free the token on this shadow
stack. If the tempSSP was not to same stack then there was a stack switch so do attempt
to free the token *)
If tempSSP == SSP
THEN invalidToken < 1; FI;
(* Valid token found; clear its busy bit *)
IF invalidToken = 0
THEN SSPToken € SSPToken XOR 0x01;
Store 8 bytes of SSPToken with shadow stack semantics to SSP;
Atomic End
Fl;
SSP & tempSSP
Fl;
FOR each of segment register (ES, FS, GS, and DS)
DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* DPL in hidden part of segment register *)
THEN SegmentSelector € O; (* Segment selector invalid *)
Fl;
OD;
END;

I1A-32e-MODE:
IFNT =1
THEN #GP(0);
ELSE IF OperandSize = 32
THEN
EIP € Pop();
CS €« Pop();
tempEFLAGS < Pop();
ELSE IF OperandSize = 16
THEN
EIP € Pop(); (* 16-bit pop; clear upper bits *)
CS € Pop(); (* 16-bit pop *)
tempEFLAGS € Pop(); (* 16-bit pop; clear upper bits *)
Fl;
ELSE (* OperandSize = 64 *)
THEN
RIP < Pop();

106 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

CS € Pop(); (* 64-bit pop, high-order 48 bits discarded *)
tempRFLAGS < Pop();
FI;
IF tempCS.RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL,;

ELSE
IF instruction began in 64-Bit Mode
THEN
IF OperandSize = 32
THEN
ESP < Pop();
SS € Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE IF OperandSize = 16
THEN
ESP < Pop(); (* 16-bit pop; clear upper bits *)
SS € Pop(); (* 16-bit pop *)
ELSE (* OperandSize = 64 *)
RSP < Pop();
SS € Pop(); (* 64-bit pop, high-order 48 bits discarded *)
Fl;
Fl;
GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;
END;
Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode of operation
of the processor. If performing a return from a nested task to a previous task, the EFLAGS register will be

modified according to the EFLAGS image stored in the previous task’s TSS.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#NP(selector)

If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code segment limit.
If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is less than the CPL.

If the DPL of a conforming-code segment is greater than the return code segment se-
lector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-
ment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return code seg-
ment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code segment
selector.

If the segment descriptor for a code segment does not indicate it is a code segment.
If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is not busy.

If a TSS segment descriptor specifies that the TSS is not available.

If the top bytes of stack are not within stack limits.

If the return code or stack segment is not present.

Document Number: 334525-003, Revision 3.0 107

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is
enabled.
#UD If the LOCK prefix is used.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from
IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

If returning to 32-bit or compatibility mode and the previous SSP from shadow stack
(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

If return instruction pointer from stack and shadow stack do not match.

Real-Address Mode Exceptions
#GP If the return instruction pointer is not within the return code segment limit.
#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.
IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.
#AC(0) If an unaligned memory reference occurs and alignment checking is enabled.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#GP(0) If EFLAGS.NT[bit 14] = 1.
Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.
If the return code segment selector is NULL.
If the stack segment selector is NULL going back to compatibility mode.
If the stack segment selector is NULL going back to CPL3 64-bit mode.

If a NULL stack segment selector RPL is not equal to CPL going back to non-CPL3 64-
bit mode.

If the return instruction pointer is not within the return code segment limit.
If the return instruction pointer is non-canonical.
#GP(Selector) If a segment selector index is outside its descriptor table limits.
If a segment descriptor memory address is hon-canonical.
If the segment descriptor for a code segment does not indicate it is a code segment.
If the proposed new code segment descriptor has both the D-bit and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the RPL of the code seg-
ment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the return code segment se-
lector RPL.

If the stack segment is not a writable data segment.
108 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

If the stack segment descriptor DPL is not equal to the RPL of the return code seg-
ment selector.

If the stack segment selector RPL is not equal to the RPL of the return code segment

selector.
#SS(0) If an attempt to pop a value off the stack violates the SS limit.
If an attempt to pop a value off the stack causes a non-canonical address to be refer-
enced.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.
#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment checking is
enabled.
#UD If the LOCK prefix is used.

#CP(FAR-RET/IRET) If the previous SSP from shadow stack (when returning to CPL <3) or from
IA32_PL3_SSP (returning to CPL 3) is not 4 byte aligned.

If returning to 32-bit or compatibility mode and the previous SSP from shadow stack
(when returning to CPL <3) or from IA32_PL3_SSP (returning to CPL 3) is beyond 4G.

If return instruction pointer from stack and shadow stack do not match.

Document Number: 334525-003, Revision 3.0 109

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

5 Task Management Interactions with CET
5.132-bit Task-State Segment (TSS)

When shadow stack is enabled, the SSP to be established when the task is dispatched is contained in the
TSS.

If shadow stack is enabled, then the 4 bytes SSP of the task is located at offset 104 in the 32 bit TSS and
is used by the processor to establish the TSS when a task switch occurs to task associated with this TSS.
Note that the processor does not write the SSP of the task initiating the task switch to the TSS of that task,
and the SSP of the previous task is pushed on to the shadow stack of the new task.

The SSP of the task should have a token formatted like the supervisor shadow stack token at the address
pointed to by the task SSP. This token will be verified and made busy when switching to that shadow stack
using a CALL/IMP instruction, and made free when switching out of that task using an IRET.

5.2 Task Switching

The processor transfers execution to another task in one of four cases.

®* The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the
GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in
the GDT or the current LDT.

®* An interrupt or exception vector points to a task-gate descriptor in the IDT.

®* The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state
of the NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task.

1. Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from
a task gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

2. Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply
to JMP and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for
the new task must be less than or equal to the DPL of the TSS descriptor or task gate being referenced.
Exceptions, interrupts (except for interrupts generated by the INT n instruction), and the IRET instruction
are permitted to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or
equal to 67H). If task switch was initiated by IRET and shadow stacks are enabled at the current CPL,
then the SSP must be aligned to 8 bytes else a #TS(current task TSS) fault is generated. If CR4.CET is
1 then the TSS must be a 32 bit TSS and the limit of the new task’s TSS must be greater than or equal
to 107 bytes, else a #TS(new task TSS) fault is generated.

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are
paged into system memory.

6. Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address
of the current TSS in the task register and then copies the states of the following registers into the
current TSS: all the general-purpose registers, segment selectors from the segment registers, the tem-
porarily saved image of the EFLAGS register, and the instruction pointer register (EIP).

110 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

7. Loads the task register with the segment selector and descriptor for the new task's TSS.

8. The processor performs following shadow stack actions:
Read CS of new task from new task TSS
Read EFLAGS of new task from new task TSS
IF EFLAGS.VM =1
THEN
new task CPL = 3;
ELSE
new task CPL = CS.RPL;
Fl;
pushCsLipSsp =0
If task switch was initiated by CALL instruction, exception or interrupt
If shadow stack enabled at current CPL
If new task CPL < CPL and current task CPL =3
THEN
IA32_PL3_SSP =SSP (* user -> supervisor *)
ELSE
pushCsLipSsp = 1 (* no privilege change; supv->supv; supv->user *)
tempSSP = SSP
tempSsLIP =CSBASE + EIP
tempSsCS = CS
Fl;
FI
FI
verifyCsLIP =0
If task switch was initiated by IRET
IF shadow stacks enabled at current CPL
IF (CPL of new Task = CPL of current Task) OR
(CPL of new Task < 3 AND CPL of current Task < 3) OR
(CPL or new Task < 3 AND CPL of current task = 3)
(* no privilege change or supervisor -> supervisor or user -> supervisor IRET *)
tempSsCS = ShadowStackPop8B()
tempSsLIP = ShadowStackPop8B()
tempSSP = ShadowStackPop8B()
verifyCsLIP =1
FI
// Clear busy flag on current shadow stack
Atomic Start
SSPToken < Load 8 bytes with shadow stack semantics from SSP
invalidToken € O
IF ((SSPToken AND 0x01) = 0) (* If busy bit not set then invalid token*)
THEN invalidToken < 1; Fl;
IF SSP & 0x07 != 0 (* if SSP not aligned to 8 bytes then invalid token *)
THEN invalidToken < 1; Fl;

IF ((SSPToken AND OxFFFFFFFFFFFFFFFE) I= SSP) (* If current SSP does not match token *)

THEN invalidToken € 1; Fl;
(* Valid token found; clear its busy bit *)
IF invalidToken = 0
THEN SSPToken € SSPToken XOR 0x01; Fl;
Store 8 bytes of SSPToken with shadow stack semantics to SSP;
Atomic End
SSP=0
FI
Fl

Document Number: 334525-003, Revision 3.0

111

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

9. The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register
CR3), the EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors.
A fault during the load of this state may corrupt architectural state. (If paging is not enabled, a PDBR
value is read from the new task’s TSS, but it is not loaded into CR3.).

10.If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in
the current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an inter-
rupt: the busy (B) flag is left set.

11.If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a tempo-
rarily saved image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or
an interrupt, the NT flag is left unchanged in the saved EFLAGS image.

12.If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will
set the NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP
instruction, the NT flag will reflect the state of NT in the EFLAGS loaded from the new task.

13.If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt,
the processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruc-
tion, the busy (B) flag is left set.

14.The descriptors associated with the segment selectors are loaded and qualified. Any errors associated
with this loading and qualification occur in the context of the new task and may corrupt architectural
state.

15. The processor performs following shadow stack actions:

IF shadow stack enabled at current CPL OR indirect branch tracking at current CPL
THEN
IF EFLAGS.VM =1
THEN #TSS(new-Task-TSS);Fl;
Fl;
IF shadow stack enabled at current CPL
IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception (* switch stack *)
new_SSP := Load the 4 byte from offset 104 in the TSS
// Verify new SSP to be legal
IF new_SSP & 0x07 I= 0
THEN #TSS(New-Task-TSS); Fl;
Fault=0
Atomic Start
SSPToken = 8 bytes loaded with shadow stack semantics from new_SSP
IF (SSPToken AND 0x01)
THEN fault € 1; Fl;
IF (EFER.LMA and CS.L) = 0 AND SSPToken[63:32] != 0)
THEN fault € 1; Fl;
IF ((SSPToken AND OxFFFFFFFFFFFFFFFE) = new_SSP)
THEN fault €< 1; Fl;
IF fault =0
THEN SSPToken = SSPToken OR 0x01; Fl;
Store 8 bytes of SSPToken with shadow stack semantics to new_SSP;
Atomic End
IF fault = 1
THEN GP(O#TSS(New-Task-TSS); Fl;
SSP = new_SSP
IF pushCsLipSsp = 1 (* call, int, exception from user->user or supervisor->supervisor or supv -> user *)
Push tempSsCS, tempSsLip, tempSsSSP on shadow stack using 8B pushes

112 Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

FI
Fl
Fl
IF task switch initiated by IRET
IF verifyCsLIP = 1
(* do 64 bit comparisons; CS zero padded to 64 bit; CSBASE+EIP zero padded to 64 bit *)
If tempSsCS and tempSsLIP do not match CS and CSBASE+EIP
THEN #CP(FAR-RET/IRET); FI;
FI
IF ShadowStackEnabled(CPL)
THEN
IF (verifyCsLIP == 0) tempSSP = IA32_PL3_SSP;
IF tempSSP & 0x03 != 0 THEN #CP(FAR-RET/IRET) // verify aligned to 4 bytes
IF tempSSP[63:32] = 0 THEN # CP(FAR-RET/IRET)
SSP = tempSSP
Fl
FI
IF EndbranchEnabled(CPL)
IF task switch initiated by CALL instruction, JMP instruction, interrupt or exception
IFCPL=3
THEN
IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_U_CET.SUPPRESS =0
ELSE
IA32_S_CET.TRACKER = WAIT_FOR_ENDBRANCH
IA32_S_CET.SUPPRESS =0
FI;
Fl;
FI;

16. Begins executing the new task. (To an exception handler, the first instruction of the new task appears
not to have been executed.)

NOTES

If all checks and saves have been carried out successfully, the processor commits to the task switch. If an
unrecoverable error occurs in steps 1 through 8, the processor does not complete the task switch and insures
that the processor is returned to its state prior to the execution of the instruction that initiated the task
switch.

If an unrecoverable error occurs in step 9, architectural state may be corrupted, but an attempt will be
made to handle the error in the prior execution environment. If an unrecoverable error occurs after the
commit point (in step 13), the processor completes the task switch (without performing additional access
and segment availability checks) and generates the appropriate exception prior to beginning execution of
the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself before
allowing the processor to begin executing the new task. See Chapter 6, “Interrupt 10—Invalid TSS Exception
(#TS),” for more information about the effect of exceptions on a task when they occur after the commit
point of a task switch.

The state of the currently executing task is always saved when a successful task switch occurs. If the task
is resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are
restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the sus-
pended task. The new task begins executing at the privilege level specified in the CPL field of the CS register,
which is loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and

Document Number: 334525-003, Revision 3.0 113

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

because privilege rules control access to a TSS, software does not need to perform explicit privilege checks
on a task switch.

The following table, Table 1 Exception Conditions Checked During a Task Switch shows the exception con-
ditions that the processor checks for when switching tasks. It also shows the exception that is generated for
each check if an error is detected and the segment that the error code references. (The order of the checks
in the table is the order used in the P6 family processors. The exact order is model specific and may be
different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be sub-
ject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause
of the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 1 Exception Conditions Checked During a Task Switch

Condition Checked Exception’ Error Code
Reference?

Segment selector for a TSS descriptor references #GP New Task’s

the GDT and is within the limits of the table. #TS (for IRET) TSS

TSS descriptor is present in memory. H#NP New Task’s
TSS

TSS descriptor is not busy (for task switch initiated by a call, #GP (for JMP, Task’s back-

interrupt, or exception). CALL, INT) link TSS

TSS descriptor is not busy (for task switch initiated by an IRET #TS (for IRET) New Task'’s

instruction). TSS

TSS segment limit greater than or equal to 104 (for 32-bit TSS) or 44 #TS New Task'’s

(for 16-bit TSS). TSS

TSS segment limit greater than or equal to 108 (for 32-bit TSS) if #TS New Task's

CR4.CET =1. TSS

If shadow stack enabled and SSP not aligned to 8 bytes (for task #TS Current task

switch initiated by an IRET instruction). TSS

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid 3. #TS New Task’s
LDT

Code segment DPL matches segment selector RPL. #TS New Code
Segment

SS segment selector is valid 2. #TS New Stack
Segment

Stack segment is present in memory. #SS New Stack
Segment

Stack segment DPL matches CPL. #TS New stack
segment

114

Document Number: 334525-003, Revision 3.0

CONTROL-FLOW ENFORCEMENT TECHNOLOGY SPECIFICATION

LDT of new task is present in memory. #TS New Task's
LDT

CS segment selector is valid 2. #TS New Code
Segment

Code segment is present in memory. #NP New Code
Segment

Stack segment DPL matches selector RPL. #TS New Stack
Segment

DS, ES, FS, and GS segment selectors are valid 3. #TS New Data
Segment

DS, ES, FS, and GS segments are readable. #TS New Data
Segment

DS, ES, FS, and GS segments are present in memory. #NP New Data
Segment

DS, ES, FS, and GS segment DPL greater than or equal to CPL (unless #TS New Data

these are conforming segments). Segment

Shadow Stack Pointer in of task not aligned to 8 bytes (for task #TS New Task's

switch initiated by a call, interrupt, or exception). TSS

If EFLAGS.VM=1 and shadow stacks are enabled. #TS New Task'’s
TSS

Shadow Stack Token verification failures (for task switch initiated by #TS New Task’s

a call, interrupt, jump, or exception): TSS

- Busy bit already set.

- L bitin token does not match (EFER.LMA & CS.L), i.e. not O.

- Address in Shadow stack token does not match