intel

Intel® Data Streaming Accelerator
User Guide

Ref#: 353216-002US
January 2023

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD),
https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in
compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document. No
rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsid-
iaries. Other names and brands may be claimed as the property of others.

Ref#:353216.002US i

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

REVISION HISTORY

Date Revision Description
November 2022 001 Initial release of document
Reference to GitHub added (Section 3.2.3)
January 2023 002 Replaced section of incorrect code
(Appendix B Example 2)

Ref#:353216.002US

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

1.1 AUDIENCE . ottt e e 1-1
1.2 GLOS S A RY ittt 1-1
1.3 REFERENCES ...ttt e e e e 1-2
14 DOCUMENT ORGANIZATION . .ottt ettt e et e 1-3
CHAPTER 2

PLATFORM CONFIGURATION

2.1 BIOS CONFIGURATION. . ottt ettt e e e e 2-1
2.2 LINUX KERNEL CONFIGURATION . . 4ottt ettt et e aiaas 2-1
2.2.1 INTEI% IOMMU DIiVET v ettt e e 2-1
2.2.2 INTEI% DS A DIV . vttt ettt et s 2-1
CHAPTER 3

INTEL® DSA CONFIGURATION

3.1 INTEL® DSA DEVICE ENUMERATION . ..ottt 3-1
3.1.1 Pl N OrmMation . ..ttt e 3-1
3.1.2 SYSTS DITBCIOMIES . vttt ettt e 3-5
3.2 DEVICE CONFIGURATION AND CONTROLINTERFACES ...\ 3-5
3.2.1 Intel® DSA WQS/ENGINES/GrOUPS . . vttt ettt et e e e e e e e 3-5
3.2.2 LINUX I A0S v vttt 3-6
3.2.3 ACCEI-CONTIG o\t 3-6
324 WQ Device File PEMMISSIONSv ittt 3-7
CHAPTER 4

INTEL® DSA PROGRAMMING

41 SAMPLE LINUX APPLICATION. . .ottt et et 4-1
41.1 DesCriptor Preparation.ov e 4-1
41.2 Descriptor Submission Portal Mappingovviriiii i 4-2
413 Descriptor SUDMISSION e s 4-2
414 Completion Pollingot 4-3
415 Partial Completion Handlingovvviriii e 4-4
4.2 PROGRAMMING CONSIDERATIONS . .ottt ettt et e 4-5
421 Ordering/FeNCING . .« v vttt ettt et et e e 4-5
422 Destination Address in Persistent Memoryovvviviii i 4-5
43 LIBRARY SUPPORT FOR INTEL® DSA .ttt ettt ittt 4-5
CHAPTER 5

INTEL® DSA PERFORMANCE MICROS (DSA_PERF_MICROS)

5.1 DEFINITION AND REFERENCES.ttt ettt e 5-1
CHAPTER 6

INTEL® DSA PERFORMANCE COUNTERS

6.1 PERFORMANCE COUNTER REFERENCES. vttt et 6-1
APPENDIX A

ACCEL-CONFIG EXAMPLES

A ST P S . ittt e A-1
APPENDIX B

C FUNCTIONS FOR GCC VERSIONS WITHOUT

MOVDIRB64/ENQCMD/UMWAIT/UMONITOR SUPPORT
B.1 ABOU T L B-1

Ref#:353216.001US

TABLE OF CONTENTS

APPENDIX C
SAMPLE C PROGRAM

C1 STEPS.

APPENDIX D
ACTIONS FOR CONTINUATION AFTER PAGE FAULT

D.1 DESCRIPTION AND TABLE

APPENDIX E
DEDICATED AND SHARED WQ COMPARISON

€1 DESCRIPTION AND TABLEo

APPENDIX F
DEBUG AIDS FOR CONFIGURATION ERRORS

F.1 LISTOFDEBUGAIDS ...

Ref#:353216.001US

TABLES

Table 1-1.
Table 1-2.
Table 2-1.
Table 4-1.
Table 5-1.
Table D-1.
Table E-1.

REVISION HISTOIY . . vt e e i-iii
Acronym Definition e 1-1
B S =T =T o= 1-2
Linux Operating System Vendor Intel DSA driver supportccoovvvvnnn. 2-2
Libraries with Support for Intel®DSAo 4-5
dsa_perf-micros LiNKSt 5-1
SW Actions for Continuation After Page Fault.................ccoveviiiienns. D-1
Dedicated and Shared WQ COmMPariSon.vvvviviriiiinieieiiineinenenn E-1

Ref#:353216.001US

FIGURES

Figure 2-1. Linux Kernel Configuration Options for Intel® IOMMU driver 2-1
Figure 2-2. Linux Kernel Configuration Options for Intel® DSA driver........................ 2-1
Figure 2-3. IDXD driver initialization MEeSSAGES v vt vttt 2-2
Figure 3-1. Intel® DSA Logical Organization...........vveviiiiii e 3-1
Figure 3-2. Listing all Intel® DSA dBVICESo vt 3-2
Figure 3-3. Ispci output for an Intel® DSAdeVICE. v v 3-4
Figure 3-4. SVM Capabilities and Status.oovvi e 3-4
Figure 3-5. Systs SVM Capability.vvv e 3-5
Figure 3-6. Intel® DSA sysfs DIreCtoriesvvvvv i 3-5
Figure 3-7. Intel® DSA Device/Group/Engine/WQ configuration and control sysfs entries. 3-6
Figure 3-8. Profiles included inaccel-configooovi i 3-6
Figure 3-9. Accel-config command line with WQ configurationfile 3-7
Figure 3-10. Using accel-config to verify device configuration........................coeees 3-7
Figure 3-11. WO eVICE fileS. ..ottt 3-7
Figure 4-1. Descriptor Processing SEqQUENCE. vvvvir it 4-1
Figure F-1. Linux kernel ACPI subsystem messages when VT-disenabled F-1

Ref#:353216.001US

EXAMPLES

Example 4-1. Descriptor Initialization 4-2

Example 4-2. Descriptor Submission 4-3

Example 4-3. Descriptor Completion Check 4-3

Example 4-4. Descriptor Completion Check with Pause 4-3

Example 4-5. UMONITOR/UMWAIT sequence to reduce power consumption while polling 4-4
Example B-1. MOVDIR64B B-1

Example B-2. ENQCMD B-1

Example B-3. UMWAIT B-1

Example B-4. UMONITOR B-2

Example C-1- Intel® DSA Shared WQ Sample Application C-1

Ref#:353216.001US

INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 AUDIENCE

Intel® DSA is a high-performance data copy and transformation accelerator integrated into Intel®
processors starting with 4™ Generation Intel® Xeon® processors. It is targeted for optimizing streaming
data movement and transformation operations common with applications for high-performance storage,
networking, persistent memory, and various data processing applications.

This document’s intended audience includes system administrators who may need to configure Intel DSA
devices and developers who want to enable Intel DSA support in applications and use libraries that
provide interfaces to Intel DSA. It should be read in conjunction with the Intel® DSA Architecture Speci-
fication and documentation for SW utilities and libraries that support Intel DSA, such as accel-
config/libaccel-config, Libfabric, and Intel® MPI.

1.2 GLOSSARY

Table 1-1. Acronym Definition

Acronym Term Definition
BIOS Basic Input Output Service
. N P
ATS Address Translation Service A protocol defined by the P_CI Express speuflcatlon
to support address translations by a device.
IOMMU I/0 Memory A DMA Remapping Hardware Unit as defined by
Management Unit Intel® Virtualization Technology for Directed 1/0.
A local computer bus for interconnecting peripheral
PCl Peripheral Component Inter- devices with the processor/memory subsystems. PCl
connect Express is a serial computer bus expansion standard
designed to replace the PCl.
When an endpoint determines that it requires access
PRS Page Request Service toa page for which the ATS translation is unavgll-
able, it sends a Page Request message requesting
that the page be mapped into system memory.
Process Address Space A value used in memory transactions to convey the
PASID s P address space on the host of an address used by the
Identifier .
device.
Allocates hardware resources (e.g., processor cores,
0sS Operating System memory, devices) to ensure optimal usage by multi-
ple concurrent applications.
An ability for an accelerator I/0 device to operate in
the same virtual memory space of applications on
SVM Shared Virtual Memory host processors. It also implies the ability to operate
from pageable memory, avoiding functional require-
ments to pin memory for DMA operations.
. . The ability of a system to provide predictable
Qo5 Quality of Service latency and bandwidth.

| Ref#:353216.002US

1-1

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

INTRODUCTION

Table 1-1. Acronym Definition (Contd.)

Acronym Term Definition
SKU Stock-Keeping Unit Th(_e part number or product number that identifies
an item.
wQ Work queue A queue in the device used to store descriptors.
1.3 REFERENCES
Table 1-2. References
Description URL

Intel® DSA Architecture Specification

https://software.intel.com/en-us/download/intel-data-streaming-
accelerator-preliminary-architecture-specification

Intel® DSA Perf Micros

https://github.com/intel/dsa-perf-micros

Intel® DSA Perfmon Support

https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon

Intel® Architecture Instruction Set Extensions
Programming Reference

https://software.intel.com/content/www/us/en/develop/down-
load/intel-architecture-instruction-set
extensions-programming-reference.html

Intel® Data Movement Library

https://intel.github.io/DML

PCl Express* Base Specification 4.0

http://www.pcisig.com/specifications/pciexpress

Intel® Virtualization Technology for Directed I/0
(Intel® VT-d or Intel® IOMMU)

https://www.intel.com/content/www/us/en/virtualization/virtualiza-
tion-technology/intel-virtualization-technology.html

Intel® MPI

https://www.intel.com/content/www/us/en/devel-
oper/tools/oneapi/mpi-library.html

DPDK IDXD DMADEV driver

https://doc.dpdk.org/guides/dmadevs/idxd.html

SPDK IDXD driver

https://spdk.io/doc/idxd.html

accel-config and libaccel-config

https://github.com/intel/idxd-config

accel-config (01.org)

https://01.org/blogs/2020/pedal-metal-accelerator-configuration-
and-control-open-source

Libfabric

Libfabric Intel DSA support will be in the Libfab-
ric SHM provider in libfabric version 1.17.0, tar-
geted for release in Nov 2022.

https://github.com/ofiwg/libfabric/blob/main/man/fi_shm.7.md

Ref#:353216.002US

1-2

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://github.com/intel/dsa-perf-micros
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-setextensions-programming-reference.html
http://www.pcisig.com/specifications/pciexpress
/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://doc.dpdk.org/guides/dmadevs/idxd.html
https://spdk.io/doc/idxd.html
https://github.com/intel/idxd-config
https://01.org/blogs/2020/pedal-metal-accelerator-configuration-and-control-open-source
https://github.com/ofiwg/libfabric/blob/main/man/fi_shm.7.md)*

INTRODUCTION

1.4 DOCUMENT ORGANIZATION

This document has two general sections. The first describes Intel DSA setup/configuration, and the
second describes the sample code for Intel DSA.

Configuration mechanisms and settings specific to domain-specific software stacks like DPDK, SPDK,
etc., are not included in this document. Please refer to the appropriate documentation for additional

information.

Ref#:353216.002US 1-3

PLATFORM CONFIGURATION

CHAPTER 2
PLATFORM CONFIGURATION

2.1 BIOS CONFIGURATION

This document describes Intel® DSA usage with user space memory, requiring Intel® Virtualization Tech-
nology for Directed I/0O (VT-d) be enabled.

2.2 LINUX KERNEL CONFIGURATION

2.2.1 Intel® IOMMU Driver

The Intel® IOMMU driver with scalable mode support (CONFIG_INTEL_IOMMU_SVM) must be enabled in
the kernel configuration, as shown in Figure 2-1. If either the CONFIG_INTEL_IOMMU_DEFAULT_ON or
the CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON options are not enabled, then
“intel_iommu=o0n,sm_on" must be added to the kernel boot parameters.

CONFIG INTEL IOMMU=y
CONFIG INTEL IOMMU SVM=y
CONFIG INTEL IOMMU DEFAULT ON=y

CONFIG_INTEL IOMMU SCALABLE MODE DEFAULT ON=y

Figure 2-1. Linux Kernel Configuration Options for Intel® IOMMU driver

2.2.2 Intel® DSA Driver

When building/installing the Linux kernel, enable the kernel configuration options shown in Figure 2-2.

CONFIG_INTEL IDXD=m

CONFIG INTEL IDXD SVM=y

CONFIG INTEL IDXD PERFMON=y

Figure 2-2. Linux Kernel Configuration Options for Intel® DSA driver

Work queues (WQs) are on-device storage to contain descriptors submitted to the device and can be
configured to run in either of two modes Dedicated (DWQ) or Shared (SWQ). A SWQ allows multiple
clients to submit descriptors simultaneously without the software overhead of synchronization needed to
track WQ occupancy. SWQ is the preferred WQ mode since it offers better device utilization versus hard
partitioning with DWQs which may result in under utilization. The Intel® DSA Driver (IDXD) with DWQ
support was introduced in kernel version 5.6. The IDXD driver with SWQ support is available in Linux
upstream Kernel versions 5.18 and beyond.

Ref#:353216.002US 2-1

PLATFORM CONFIGURATION

IDXD driver initialization can be checked using the dmesg command to print the kernel message buffer,
as shown in Figure 2-3.

$ dmesg | grep "idxd "

idxd 0000:6a2:01.0: enabling device (0144 -> 0146)
idxd 0000:6a:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:62:02.0: enabling device (0140 -> 0142)
idxd 0000:6a:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:6f:01.0: enabling device (0144 -> 0146)
idxd 0000:6f:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:6f:02.0: enabling device (0140 -> 0142)
idxd 0000:61:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:74:01.0: enabling device (0144 -> 0146)
idxd 0000:74:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:74:02.0: enabling device (0140 -> 0142)
idxd 0000:74:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:79:01.0: enabling device (0144 -> 0146)
idxd 0000:79:01.0: Intel(R) Accelerator Device (v100)
idxd ©000:79:02.0: enabling device (0140 -> 0142)
idxd 0000:79:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:e7:01.0: enabling device (0144 -> 0146)
idxd 0000:e7:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:e7:02.0: enabling device (0140 -> 0142)
idxd 0000:e7:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:ec:01.0: enabling device (0144 -> 0146)
idxd 0000:ec:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:ec:02.0: enabling device (0140 -> 0142)
idxd 0000:ec:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:f1:01.0: enabling device (0144 -> 0146)
idxd 0000:11:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:f1:02.0: enabling device (0140 -> 0142)
idxd 0000:f1:02.0: Intel(R) Accelerator Device (v100)
idxd 0000:f6:01.0: enabling device (0144 -> 0146)
idxd 0000:f6:01.0: Intel(R) Accelerator Device (v100)
idxd 0000:f6:02.0: enabling device (0140 -> 0142)
idxd 0000:f6:02.0: Intel(R) Accelerator Device (v100)

Figure 2-3. IDXD driver initialization messages

Distribution kernel versions with complete IDXD driver support are shown in Table 2-1. Please refer to
vendor documentation for the latest information.

Table 2-1. Linux Operating System Vendor Intel DSA driver support

SUSE Linux Enterprise Server SLES 15 SP4

Ref#:353216.002US 2-2

INTEL® DSA CONFIGURATION

CHAPTER 3
INTEL® DSA CONFIGURATION

This section describes how Intel® DSA devices and WQs can be configured and enabled by a superuser
before running an application that uses Intel DSA. Before describing the configuration process, Linux OS
structures for Intel DSA are described to help debug configuration issues.

3.1 INTEL® DSA DEVICE ENUMERATION

3.1.1 PCl Information

Figure 3-1 shows the logical organization of an Intel DSA and cores on a fourth-generation Xeon® server
processor. Depending on the processor SKU, there are one, two, or four Intel DSA devices per socket. A
system with two sockets can have up to eight Intel DSA devices.

Core(s)

Atoway

|0 Interface (Root Complex)
[IOMMU J

Device TLB] \

)

eues Groups

-
-

L ' ')

-

DSA Device

[l

Engines

!
fo)

Dwa
S5WQ
DW0Q

4
N

Figure 3-1. Intel® DSA Logical Organization

Ref#:353216.002US 3-1

https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon

INTEL® DSA CONFIGURATION

Intel DSA PCI device ID is 0x0b25. The following command lists the Intel DSA devices on the system:

$ lspci | grep @b25

62:01.0 System peripheral: Intel Corporation Device ©@b25
6f:01.0 System peripheral: Intel Corporation Device 0b25
74:01.0 System peripheral: Intel Corporation Device 0b25
79:01.0 System peripheral: Intel Corporation Device 0b25
e7:01.0 System peripheral: Intel Corporation Device 0b25
ec:01.0 System peripheral: Intel Corporation Device 0b25
f1:01.0 System peripheral: Intel Corporation Device ©b25
f6:01.0 System peripheral: Intel Corporation Device 0b25

Figure 3-2. Listing all Intel® DSA devices

The complete Ispci output for an Intel DSA device can be obtained, as shown in Figure 3-3. If the Kernel
driver in use field within the Ispci output is blank, use the modprobe idxd command to load the driver.

$ lspci -vvv -s 6a:01.0
6a:01.0 System peripheral: Intel Corporation Device 0b25
Subsystem: Intel Corporation Device 0000

Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr+ Stepping- SERR+
FastB2B- DisINTx-

Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort-
>SERR- <PERR- INTx-

Latency: ©
NUMA node: ©
Region @: Memory at 206ffff60000 (64-bit, prefetchable) [size=64K]
Region 2: Memory at 206ffff00000 (64-bit, prefetchable) [size=128K]
Capabilities: [40] Express (v2) Root Complex Integrated Endpoint, MSI 0@
DevCap: MaxPayload 512 bytes, PhantFunc ©
ExtTag+ RBE+ FLReset+
DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReq-
R1xdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+ FLReset-
MaxPayload 128 bytes, MaxReadReq 4096 bytes
DevSta: CorrErr- NonFatalErr- FatalErr- UnsupReq- AuxPwr- TransPend-
DevCap2: Completion Timeout: Not Supported, TimeoutDis+, NROPrPrP-, LTR+
10BitTagComp+, 10BitTagReqg+, OBFF Not Supported, ExtFmt+, EETLPPrefix+, MaxEETLPPrefixes 1
EmergencyPowerReduction Not Supported, EmergencyPowerReductionInit-
FRS-
AtomicOpsCap: 32bit- 64bit- 128bitCAS-
DevCtl2: Completion Timeout: 50us to 50ms, TimeoutDis-, LTR-, OBFF Disabled
AtomicOpsCtl: ReqEn-

Ref#:353216.002US 3-2

INTEL® DSA CONFIGURATION

/* 2 of 3 */
Capabilities: [80] MSI-X: Enable+ Count=9 Masked-
Vector table: BAR=0 offset=00002000
PBA: BAR=0 offset=00003000
Capabilities: [90] Power Management version 3
Flags: PMEClk- DSI- D1- D2- AuxCurrent=@mA PME(De@-,D1-,D2-,D3hot-,D3cold-)
Status: D@ NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
Capabilities: [100 v2] Advanced Error Reporting
UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC-
UnsupReq- ACSViol-
UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC-
UnsupReq+ ACSViol-
UESvrt: DLP- SDES- TLP+ FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP+ ECRC-
UnsupReq- ACSViol-
CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-
CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-
AERCap: First Error Pointer: 00, ECRCGenCap- ECRCGenEn- ECRCChkCap- ECRCChKEn-
MultHdrRecCap- MultHdrRecEn- TLPPfxPres- HdrLogCap-
HeaderlLog: 00000000 00000000 000VVVO 000
Capabilities: [150 v1] Latency Tolerance Reporting
Max snoop latency: @ns
Max no snoop latency: @ns
Capabilities: [160 v1] Transaction Processing Hints
Device specific mode supported
Steering table in TPH capability structure
Capabilities: [170 v1] Virtual Channel
Caps: LPEVC=1 RefClk=100ns PATEntryBits=1
Arb: Fixed+ WRR32- WRR64- WRR128-
Ctrl: ArbSelect=Fixed
Status: InProgress-
vceo: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-
Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-
Ctrl: Enable+ ID=0 ArbSelect=Fixed TC/VC=fd
Status: NegoPending- InProgress-
VCl: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-
Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-
Ctrl: Enable+ ID=1 ArbSelect=Fixed TC/VC=02

Ref#:353216.002US 3-3

INTEL® DSA CONFIGURATION

/* 3 of 3 */

Status: NegoPending- InProgress-
Capabilities: [200 v1] Designated Vendor-Specific <?>
Capabilities: [220 v1] Address Translation Service (ATS)
ATSCap: Invalidate Queue Depth: 00
ATSCtl: Enable+, Smallest Translation Unit: 00
Capabilities: [230 v1] Process Address Space ID (PASID)
PASIDCap: Exec- Priv+, Max PASID Width: 14
PASIDCtl: Enable+ Exec- Priv+
Capabilities: [240 v1] Page Request Interface (PRI)
PRICtl: Enable+ Reset-
PRISta: RF- UPRGI- Stopped+
Page Request Capacity: 00000200, Page Request Allocation: 00000020
Kernel driver in use: idxd

Kernel modules: idxd

Figure 3-3. Ispci output for an Intel® DSA device

Shared Virtual Memory (SVM) is a usage where a device operates in the CPU virtual address space of the
application accessing the device. Devices supporting SVM do not require pages that are accessed by the
device to be pinned. Instead, they use the PCI Express Address Translation Services (ATS) and Page
Request Services (PRS) capabilities to implement recoverable device page faults. Devices supporting
SVM use PASIDs to distinguish different application virtual address spaces.

PClIe capabilities and status related to SVM - ATSCtl, PASIDCtl, and PRICtI are enabled, as shown in
Figure 3-4. Refer to the Address Translation section within the Intel® DSA Architecture Specification for
further details on how Intel DSA utilizes the PASID, PCle, ATS, and PRS capabilities to support SVM.

Capabilities: [220 v1] Address Translation Service (ATS)
ATSCap: Invalidate Queue Depth: 00
<VATSCt1: Enablef} Smallest Translation Unit: @0
Capabilities: [230 v1] Process Address Space ID (PASID)
PASIDCap: Exec- Priv+, Max PASID Width: 14
(_ PASIDCt1: Enable+)Exec- Priv+
Capabilities: [240 v1] Page Request Interface (PRI)
CVPRICtl: Enablef)Reset—
PRISta: RF- UPRGI- Stopped+
Page Request Capacity: 00000200, Page Request Allocation: 00000020

Figure 3-4. SVM Capabilities and Status

| Ref#:353216.002US 3-4

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

INTEL® DSA CONFIGURATION

SVM capability is also available in sysfs as follows:

$ cat /sys/bus/dsa/devices/dsa@/pasid_enabled
1

Figure 3-5. sysfs SVM Capability

3.1.2 Sysfs Directories

The Linux sysfs file system is a pseudo-file system that provides an interface to kernel data structures.
The files under sysfs provide information about devices, kernel modules, file systems, and other kernel
components.

The Linux driver generates the sysfs directories shown in Figure 3-6 for an example dual-socket system
with a total of eight Intel DSA devices with four devices per processor. The Intel DSA and Intel® IAA
devices are both managed by the IDXD device driver. The numbering of Intel DSA and Intel IAA devices
depends on the number of each device in the CPU SKU. In the dual-socket example below, four Intel In-
Memory Analytics Accelerator (IAA) devices are present per socket. They are named
iax{1,3,5,7,9,11,13,15%}. Correspondingly, the Intel DSA devices are named dsa{0,2,4,6,8,10,12,14%}.

$ 1s -df /sys/bus/dsa/devices/dsa*

/sys/bus/dsa/devices/dsa® /sys/bus/dsa/devices/dsa2
/sys/bus/dsa/devices/dsal® /sys/bus/dsa/devices/dsasd
/sys/bus/dsa/devices/dsal2 /sys/bus/dsa/devices/dsa6
/sys/bus/dsa/devices/dsald /sys/bus/dsa/devices/dsa8

Figure 3-6. Intel® DSA sysfs Directories

3.2 DEVICE CONFIGURATION AND CONTROL INTERFACES

The Intel DSA device is configured through entries in the sysfs filesystem. After configuration, the device
and WQ can be enabled. The driver creates a /dev/dsa/wqgD.Q device file for every enabled WQ, where D
is the Intel DSA ID, and Q is the WQ ID. Usage of the WQ device file by the application to submit work to the
hardware is described in Section 4.1.

3.2.1 Intel® DSA WQs/Engines/Groups

Software specifies work for the device by constructing descriptors in memory and submits the descriptor
to the WQ. Shared WQs allow multiple clients to submit descriptors concurrently and are, therefore,
recommended for application use.

Dedicated WQs require SW to manage flow control by keeping track of descriptors submitted and
completed to ensure the WQ capacity is not overrun. Hence, they are helpful in cases where a single OS-
level process uses the WQ.

An engine is an operational unit within an Intel DSA device. A group is a logical organization of a set of
WQs and engines to achieve a specific QoS objective. Multiple groups can provide performance isolation
between applications sharing the device. Refer to the Work Queues and Engines and Groups sections in
the Intel® DSA Architecture Specification for more details on Intel DSA WQ/Engine/Group capabilities
and controls.

Ref#:353216.002US 3-5

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

INTEL® DSA CONFIGURATION

3.2.2 Linux Interfaces

Intel DSA Groups/Engines/WQs are configured using sysfs entries created by the IDXD driver.

Figure 3-7 shows the configuration and control sysfs entries for the dsa0 device. WQs are configured by
a super-user and must be configured with at least a size and type. A group must be configured with at
least one constituent WQ and one Engine. The configuration using the accel-config utility is described in
Section 3.2.3. An Intel DSA device and associated WQs may only be enabled after configuring the

corresponding Group/WQ/Engine(s).

$ 1s /sys/bus/dsa/devices/dsa@

cdev_major group®.0 max_work_queues uevent
clients group@.1 max_work_queues_size version
cmd_status group@.2 numa_node wqge.o
configurable group9.3 op_cap wge.1
engine0.0 max_batch_size pasid_enabled wqgoe.2
engine@.1 max_engines power wge.3
engine0.2 max_groups read_buffer_limit wgoe.4
engine0.3 max_read_buffers state wge.5
errors max_tokens subsystem wge.6
gen_cap max_transfer_size token_limit wqe.7

Figure 3-7. Intel® DSA Device/Group/Engine/WQ configuration and control sysfs entries

3.23 accel-config

accel-config is a Linux application that provides a command line interface for Intel DSA configuration.
The accel-config application and library can be installed from https://github.com/intel/idxd-config or your distribu-
tion's package manager. It links to a shared library (libaccel-config.so) that applications can use to query
and modify Intel DSA configuration. A detailed description is available on the 01.org website:
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator.

accel-config can be used with text-based configuration files. Recommended configurations for a few use
cases are included in the accel-config installation.

$ cd idxd-config/contrib/configs/ && 1ls *.conf
app_profile.conf net_profile.conf os_profile.conf storage_profile.conf

Figure 3-8. Profiles included in accel-config

app_profile.conf is a configuration intended for user space applications and provides two groups with
one SWQ and one engine each. The WQs are configured so that applications desiring to use Intel DSA for
operations with a relatively small memory footprint can submit descriptors to the WQ with a smaller

value of maximum transfer size configured for that WQ. This avoids head-of-line blocking, i.e., prevents

Ref#:353216.002US 3-6

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://github.com/intel/idxd-config

INTEL® DSA CONFIGURATION

these operations from queuing. Figure 3-9 shows how to configure and enable WQs using app_pro-
file.conf. A super-user must execute this command since only a super-user can modify sysfs entries.

$ accel-config load-config -c contrib/configs/app_profile.conf -e
Enabling device dsa®@

Enabling wq wge.1

Enabling wq wqe.o

Figure 3-9. Accel-config command line with WQ configuration file

A command line example for enabling an Intel DSA WQ with a custom configuration and saving the
configuration to a file is shown in Appendix A.

accel-config can be show the current configuration using the list command, as shown in Figure 3-10.

$ accel-config list

Figure 3-10. Using accel-config to verify device configuration

3.24 WQ Device File Permissions

The accel-config command line creates WQ device files as seen in Figure 3-11.

$ 1s -la /dev/dsa/wg0.0 /dev/dsa/wgo.1l
CrW------- 1 root root 240, 1 Oct 5 11:58 /dev/dsa/wg0.0
CrwW------- 1 root root 240, © Oct 5 11:58 /dev/dsa/wgoe.1

Figure 3-11. WQ device files

The super-user must grant read-write permissions to the device file to the user/group under which the
process runs.

| Ref#:353216.002US 3-7

INTEL® DSA PROGRAMMING

CHAPTER 4
INTEL® DSA PROGRAMMING

A user can start an application that uses Intel® DSA once the superuser has configured an Intel DSA
device and at least one associated WQ and enabled the user’s access to the WQ character device file (as
described in section Section 3.2). The commands used to configure the device and a shared WQ are
provided in Appendix A.

In this section, we walk through C program snippets to illustrate the steps needed to use Intel DSA.
Complete source code listing for a C program that uses Intel DSA is provided in Appendix C.

4.1 SAMPLE LINUX APPLICATION

Figure 4-1 shows the steps from descriptor preparation to descriptor completion. Each step is discussed
in further detail within respective sub-sections.

Prepare Descriptor

Map WQ Descriptor Submission
Portal

Submit Descriptor

Reset
Com pletion Chedt for Completion
Status &
Update
Descriptor

Partial Completon?

Figure 4-1. Descriptor Processing Sequence

4.1.1 Descriptor Preparation

Sample code to prepare a Memory Move descriptor (as described in the Memory Move section within the
Intel® DSA Architecture Specification) is shown in Example 4-1. Since the Block On Fault flag is zero, if a

Ref#:353216.002US 41

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

INTEL® DSA PROGRAMMING

descriptor incurs a page fault on either source or destination addresses, the operation status code indi-
cates that the operation has completed with a page fault. The number of bytes transferred for the
memmove operation is provided in the completion record. Please refer to Section 4.1.5 for details on the
Block on Fault flag.

Example 4-1. Descriptor Initialization

struct dsa completion record comp attribute ((aligned(32)));

struct dsa hw desc desc = { };

desc.opcode = DSA OPCODE MEMMOVE;

/*
* Request a completion - since we poll on status, this flag
* must be 1 for status to be updated on successful
* completion
*/

desc.flags = IDXD OP_FLAG_RCR;

/* CRAV should be 1 since RCR = 1 */
desc.flags |= IDXD OP FLAG CRAV;

/* Hint to direct data writes to CPU cache */
desc.flags |= IDXD OP FLAG CC;

desc.xfer size = BLEN;

desc.src_addr = (uintptr t)src;

desc.dst addr = (uintptr t)dst;
comp.status = 0;

desc.completion addr = (uintptr t)∁

4.1.2 Descriptor Submission Portal Mapping

Before submitting a descriptor to the device, an application must open a WQ device file that was previ-
ously configured (e.g., /dev/dsa/wqg0.0) and map into its address space, the work submission portal
on that WQ. The portal may now be used to submit descriptors to the device.

A shared WQ device file can be opened by multiple processes concurrently, whereas a single process can
only open a dedicated WQ device file at any given time. The map_wq() function in Appendix C shows the use
of accel-config library functions to enumerate WQs, select an enabled WQ of the desired type, and map
the work submission portal.

4.1.3 Descriptor Submission

Depending on the WQ type, the software may use either the ENQCMD or MOVDIR64B instruction for
descriptor submission. The Shared Work Queue section within the Intel® DSA Architecture Specification
describes ENQCMD returning a non-zero value if the descriptor is not accepted into the device. gccl0
(https://gcc.gnu.org/gcc-10/changes.html) supports the _engemd () and _movdir64b () intrinsics for
ENQCMD and MOVDIR64B respectively via the -mengemd and -mmovdir64b switches; for older
compiler versions, equivalent code is shown in Appendix B.

Ref#:353216.002US 42

https://gcc.gnu.org/gcc-10/changes.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

INTEL® DSA PROGRAMMING

Since MOVDIR64B and ENQCMD are not ordered relative to older stores to WB or WC memory, SW must
ensure appropriate ordering (when required) by executing a fencing instruction such as SFENCE, prefer-
ably using a single fence for multiple updates to reduce the fencing instruction overhead.

Example 4-2. Descriptor Submission

#include <x86gprintrin.h>
~mm_sfence () ;

if (dedicated)
_movdir64b (wg portal, é&desc);
else {
retry = 0;
while (_engcmd (wg_portal, &desc) && retry++ < ENQ RETRY MAX);

4.1.4 Completion Polling

The Intel DSA hardware updates the status field of the completion record when it is done processing the
descriptor. The completion check is shown in Example 4-3.

Example 4-3. Descriptor Completion Check

retry = 0;
while (comp.status == 0 && retry++ < COMP RETRY MAX) ;
if (comp.status == DSA COMP SUCCESS) {

/* Successful completion */
} else {
/* Descriptor failed or timed out
* See the “Error Codes” section of the Intel® DSA Architecture Specification for
* error code descriptions

*/

A pause instruction should be added to the spin loop to reduce the power consumed by a processor.

Example 4-4. Descriptor Completion Check with Pause

#include <x86gprintrin.h>

retry = 0;
while (comp.status == 0 && retry++ < COMP_RETRY MAX)

__mm pause () ;

Further power reduction can be achieved using the UMONITOR/UMWAIT instruction sequence.
UMONITOR provides an address, informing that the currently running application is interested in any

Ref#:353216.002US 43

INTEL® DSA PROGRAMMING

writes to a range of memory (the range that the monitoring hardware checks for store operations can be
determined by using the CPUID monitor leaf function, EAX=05H).

UMWAIT instructs the processor to enter an implementation-dependent optimized state while moni-
toring a range of addresses. The optimized state may be either a light-weight power/performance opti-
mized state or an improved power/performance optimized state. The selection between the two states is
governed by the explicit input register bit[0] source operand.

Example 4-5. UMONITOR/UMWAIT sequence to reduce power consumption while polling

#include <x86gprintrin.h>

/‘k

* C0.2 Improves performance of the other SMT thread(s)
* on the same core, and has larger power savings

* but has a longer wakeup time.

*/

#define UMWAIT STATE CO 2 O
#define UMWAIT STATE CO 1 1

retry = 0;
while (comp.status == 0 && retry++ < MAX COMP RETRY) {

_umonitor (&comp) ;

if (comp.status == 0) {
uint64 t delay = rdtsc() + UMWAIT DELAY;

_umwait (UMWAIT STATE CO 1, delay);

4.1.5 Partial Completion Handling

Intel DSA supports the PCI Express Address Translation Service (ATS) and Page Request Service (PRS)
capabilities and uses ATS requests to the IOMMU to translate virtual addresses in descriptors to host
physical addresses. These translation requests can return faults due to not-present translations or a
mismatch between access permissions and the access type.

The device may encounter a page fault on:

® A Completion Record address

® The Descriptor List address in a Batch descriptor
® Readback address in a Drain descriptor

® Source buffer or destination buffer address

For the first three cases, the device blocks until the page fault is resolved if PRS is enabled; else, it is
reported as an error. For the fourth case, the device can either block until the page fault is resolved or
prematurely complete the descriptor and return a partial completion to the client, as specified by the
Block On Fault flag in the descriptor.

The Block On Fault in the descriptor is set to zero in the descriptor preparation sample code in Example
4-1. Therefore, any page fault on the source or destination addresses would cause the operation to

Ref#:353216.002US 44

INTEL® DSA PROGRAMMING

partially complete. The completion record reports the faulting address and the number of bytes
processed completely. The application can choose between completing the operation in software and
resubmitting the operation to Intel DSA after modifying the descriptor as necessary, e.g., for a memmove
descriptor, SW can touch the faulting address reported in the completion record and resubmit the opera-
tion after updating the source address, destination address and transfer size fields in the descriptor.
Please refer to Appendix D for further information on resubmitting descriptors for other operations.

To maximize the utilization of the device, provide equitable BW allocation when configured as a shared
device, and provide comparatively better execution predictability, it is recommended to configure the WQ
with Block On Fault disabled.

4.2 PROGRAMMING CONSIDERATIONS

4.2.1 Ordering/Fencing

Applications may need to guarantee ordering in descriptor execution. Please refer to the Ordering and

Fencing section within the Intel® DSA Architecture Specification for details on conditions under which
ordering is guaranteed and the utility of the fence flag in descriptors within a batch.

422 Destination Address in Persistent Memory

The Persistent Memory Support section of the Intel® DSA Architecture Specification describes how
descriptors flags must be programmed to guarantee data persistence at the time of descriptor comple-
tion.

4.3 LIBRARY SUPPORT FOR INTEL® DSA

Table 4-1. Libraries with Support for Intel® DSA

Intel has also developed an open source library Intel Data Movement Library (DML) providing both a
low-level C and high-level C++ API for data processing using Intel DSA and software path in case Intel
Intel® DML DSA is not available. The DML also includes sample applications that can help quickly enable support
for Intel DSA in applications.

https://intel.github.io/DML/

Libfabric will include support for Intel DSA within its shared memory provider in the libfabric version
Libfabric 1.17.0, targeted for release in Nov 2022; this enables Intel DSA usage in HPC applications that use
the Intel MPI, MPICH, OpenMPI, and MVAPICH libraries.

Intel MPI includes support for Intel DSA since version 2021.7; instructions for enabling Intel DSA for

Intel” MPI the shm transport used for intra-node communication are available in the Intel MPI documentation.
The Storage Performance Development Kit (SPDK) provides a set of tools and libraries for writing
SPDK high-performance, scalable, user-mode storage applications.

SPDK support for Intel DSA is described at:
https://spdk.io/doc/idxd.html.

DPDK is the Data Plane Development Kit with libraries to accelerate packet processing workloads
DPDK running on various CPU architectures. DPDK support for Intel DSA is described at
http://doc.dpdk.org/quides/dmadevs/idxd.nhtml.

Ref#:353216.002US 45

https://spdk.io/doc/idxd.html
http://doc.dpdk.org/guides/dmadevs/idxd.html
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://intel.github.io/DML/

INTEL® DSA PERFORMANCE MICROS (DSA_PERF_MICROS)

CHAPTER 5
INTEL® DSA PERFORMANCE MICROS (dsa_perf_micros)

5.1 DEFINITION AND REFERENCES

The Intel® Data-Streaming Accelerator Performance Micros (Intel® DSA Performance Micros) utility
allows software developers to characterize latency and bandwidth for Intel DSA operations and deter-
mine the device configuration and programming parameters that would work best for their application.

Table 5-1. dsa_perf-micros Links

Description URL
Download command (S git clone) https://github.com/intel/dsa-perf-micros
Build instructions https://github.com/intel/dsa-perf-micros/blob/main/doc/build.rst
Sample command lines https://github.com/intel/dsa-perf-micros/blob/main/doc/options.rst
Ref#:353216.002US 5-1

https://github.com/intel/dsa-perf-micros

INTEL® DSA PERFORMANCE COUNTERS

CHAPTER 6
INTEL® DSA PERFORMANCE COUNTERS

6.1 PERFORMANCE COUNTER REFERENCES

Intel® DSA supports performance counters to aid with the collection of information about key events
occurring in different parts of the Intel DSA hardware. These counters may be useful for debug and
performance tuning. The Performance Monitoring Events appendix of the Inte/® DSA Architecture Spec-
ification describes events defined for different categories —WQs, Engines, Address Translation, etc.

Intel DSA performance counters can be setup and read using the Linux perf command
(https://perf.wiki.kernel.org/index.php/Main_Page). The -e option of the perf stat command
(https://man7.org/linux/man-pages/manl/perf-stat.1.html) can be used to program performance
counters to count events.

Parameters that can be specified for Intel DSA are listed in sysfs.

$ 1s /sys/bus/event_source/devices/dsa@/format
event event_category filter_eng filter_pgsz filter_sz filter_tc filter_wq

A single event can be read every 1s with the -I flag using the command syntax below.

$ perf stat -e dsa@/event_category=0x1,event=0x2/ -1 1000

Multiple events can be read using a comma-separated list.

$ perf stat -e dsa@/event_category=0x1,event=0x2/,dsad/event_category=0x1,event=0x4/ -1 1000

Multiple events can be configured for a counter and each event can be constrained by a set of filters.
Examples of filters are WQ, Engine, Traffic Class, Transfer Size. Below is a command line with multiple
events configured for a single counter and filtered by 4KB < transfer size < 16KB.

$ perf stat -e dsa@/event_category=0x1,event=0x6,filter_sz=0x8/ -I 1000

Additional information on the usage of the perf command is available at https://github.com/intel/dsa-perf-
micros/wiki/DSA-Perfmon

Ref#:353216.002US 6-1

https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://perf.wiki.kernel.org/index.php/Main_Page).
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

ACCEL-CONFIG EXAMPLES

APPENDIX A
ACCEL-CONFIG EXAMPLES

A.1 STEPS

1. Configure Device

$ accel-config config-device dsa®@

N

Configure Group by configuring Engine and WQ

$ accel-config config-engine dsa@/engined.2 --group-id=0

$ accel-config config-wq dsa@/wge.0 --group-id=0 --wq-size=32 --priority=1 --block-on-fault=0
--threshold=4 --type=user --name=swq --mode=shared --max-batch-size=32 --max-transfer-
size=2097152

3. Enable Device and WQ

$ accel-config enable-device dsa®@

$ accel-config enable-wq dsa®/wgo.0

4. Save Configuration to the config file

$ accel-config save-config -s save_config.conf

Ref#:353216.002US A-1

https://www.mankier.com/1/accel-config-config-engine#--group-id

C FUNCTIONS FOR GCC VERSIONS WITHOUT MOVDIRB64/ENQCMD/UMWAIT/UMONITOR SUPPORT

APPENDIX B
C FUNCTIONS FOR GCC VERSIONS WITHOUT
MOVDIRB64/ENQCMD/UMWAIT/UMONITOR SUPPORT

B.1 ABOUT

GCC supports the ENQCMD and MOVDIR64B since the gcc10 release with the -mengcmd and
-movdir64b switches, respectively. UMONITOR and UMWAIT instructions have been supported since the
gcc9 release with -mwaitpkg switch.

Example B-1. MOVDIR64B

static inline void
movdiré4b(void *dst, const void *src)
{
asm volatile(".byte Ox66, 0x0f, 0x38, Oxf8, 0x02\t\n"
: @ "a" (dst), "d" (src));

Example B-2. ENQCMD

static inline unsigned int

enqcmd(void *dst, const void *src)

{
uint8_t retry;
asm volatile(“.byte oxf2, oxof, ox38, oxf8, 0x02\t\n”

“setz %0\t\n”
| : “=r”(retry) : “a@” (dst), “d” (src));

return (unsigned int)retry;

}

Example B-3. UMWAIT

static inline unsigned char
umwait(unsigned int state, unsigned long long timeout)

{
uint8_t r;
uint32_t timeout_low = (uint32_t)timeout;
uint32_t timeout_high = (uint32_t)(timeout >> 32);
asm volatile(".byte Oxf2, 0x48, 0xo0f, Oxae, Oxfl\t\n"
"setc %0\t\n" :
"=r"(r) :
"c"(state), "a"(timeout_low), "d"(timeout_high));
return r;
}

| Ref#:353216.002US B-1

C FUNCTIONS FOR GCC VERSIONS WITHOUT MOVDIRB64/ENQCMD/UMWAIT/UMONITOR SUPPORT

Example B-4. UMONITOR

static inline void
umonitor(void *addr)

{
asm volatile(".byte Oxf3, 0x48, 0x0f, Oxae, Oxfo" : : "a"(addr));

| Ref#:353216.002US B-2

SAMPLE C PROGRAM

APPENDIX C
SAMPLE C PROGRAM

C.1 STEPS

® Install the accel-config library from https://github.com/intel/idxd-config or your distribution’s

package manager.

® Configure Shared WQ using the example in Appendix A. Assuming the source file is intel_dsa_sample.c.

Use the command below to compile.

$ make intel _dsa_sample LDLIBS=-laccel-config

Example C-1-Intel® DSA Shared WQ Sample Application

/* Page 1/4 */

#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <linux/idxd.h>
#include <accel-config/libaccel_config.h>
#include <x86intrin.h>

#tdefine BLEN 4096
#define WQ_PORTAL_SIZE 4096

static inline unsigned int
enqgcmd(void *dst, const void *src)

{
uint8_t retry;
asm volatile(“.byte oxf2, oxof, 0x38, Oxf8, 0x02\t\n”
“setz %0\t\n”
: “=r”(retry) : “a@” (reg), “d” (desc));
return (unsigned int)retry;
}

static uint8_t
op_status(uint8_t status)

{
return status & DSA_COMP_STATUS_MASK;
}
Ref#:353216.002US C-1

https://github.com/intel/idxd-config

SAMPLE C PROGRAM

/* Page 2/4 */

static void *
map_wqg(void)
{
void *wq_portal;
struct accfg_ctx *ctx;
struct accfg_wqg *wq;
struct accfg_device *device;
char path[PATH_MAX];
int fd;
int wg_found;

accfg_new(&ctx);
accfg_device_foreach(ctx, device) {

/* Use accfg_device_(*) functions to select enabled device
* based on name, numa node

*/

accfg_wqg_foreach(device, wq) {

if (accfg_wqg_get_user_dev_path(wqg, path, sizeof(path)))
continue;

/* Use accfg_wqg_(*) functions select WQ of type
* ACCFG_WQT_USER and desired mode
*/
wg_found = accfg_wq_get_type(wq) == ACCFG_WQT_USER &&
accfg_wqg_get_mode(wq) == ACCFG_WQ_SHARED;

if (wg_found)

break;

if (wg_found)
break;
accfg_unref(ctx);

if (!'wg_found)
return MAP_FAILED;

fd = open(path, O_RDWR);
if (fd < @)
return MAP_FAILED;

wq_portal = mmap(NULL, WQ PORTAL_SIZE, PROT_WRITE, MAP_SHARED | MAP_POPULATE, fd, ©);
close(fd);

return wqg_portal;

| Ref#:353216.002US C-2

SAMPLE C PROGRAM

/* Page 3/4 */

#define ENQ_RETRY_MAX 1000
#define POLL_RETRY_MAX 10000

int main(int argc, char *argv[])

{
void *wq_portal;
struct dsa_hw_desc desc = { };
char src[BLEN];
char dst[BLEN];
struct dsa_completion_record comp __ attribute__((aligned(32)));
int rc;
int poll_retry, eng_retry;
wg_portal = map_wq();
if (wg_portal == MAP_FAILED)
return EXIT_FAILURE;
memset(src, Oxaa, BLEN);
desc.opcode = DSA_OPCODE_MEMMOVE ;
/*
* Request a completion - since we poll on status, this flag
* must be 1 for status to be updated on successful
* completion
*/
desc.flags = IDXD_OP_FLAG_RCR;
/* CRAV should be 1 since RCR =1 */
desc.flags |= IDXD_OP_FLAG_CRAV;
/* Hint to direct data writes to CPU cache */
desc.flags |= IDXD_OP_FLAG_CC;
desc.xfer_size = BLEN;
desc.src_addr = (uintptr_t)src;
desc.dst_addr = (uintptr_t)dst;
desc.completion_addr = (uintptr_t)∁
Ref#:353216.002US 3

SAMPLE C PROGRAM

/* Page 4/4 */

retry:
comp.status = 0;

/* Ensure previous writes are ordered with respect to ENQCMD */
_mm_sfence();

enqg_retry = 0;
while (enqcmd(wq_portal, &desc) && eng_retry++ < ENQ_RETRY_MAX) ;
if (eng_retry == ENQ_RETRY_MAX) {

printf("ENQCMD retry limit exceeded\n");

rc = EXIT_FAILURE;

goto done;

poll retry = 0;
while (comp.status == © && poll_retry++ < POLL_RETRY_MAX)
_mm_pause();

if (poll_retry == POLL_RETRY_MAX) {
printf("Completion status poll retry limit exceeded\n");
rc = EXIT_FAILURE;
goto done;

if (comp.status != DSA_COMP_SUCCESS) {
if (op_status(comp.status) == DSA_COMP_PAGE_FAULT_NOBOF) {
int wr = comp.status & DSA_COMP_STATUS_WRITE;
volatile char *t;

t = (char *)comp.fault_addr;
wr ? ¥t o= ¥t oo ¥t

desc.src_addr += comp.bytes_completed;
desc.dst_addr += comp.bytes_completed;
desc.xfer_size -= comp.bytes_completed;
goto retry;

} else {
printf("desc failed status %u\n", comp.status);
rc = EXIT_FAILURE;

}

} else {
printf("desc successful\n");
rc = memcmp(src, dst, BLEN);

rc ? printf("memmove failed\n") : printf("memmove successful\n");
rc = rc ? EXIT_FAILURE : EXIT_SUCCESS;

done:
munmap (wg_portal, WQ_PORTAL_SIZE);
return rc;

Ref#:353216.002US C-4

ACTIONS FOR CONTINUATION AFTER PAGE FAULT

APPENDIX D
ACTIONS FOR CONTINUATION AFTER PAGE FAULT

D.1 DESCRIPTION AND TABLE

This table describes the changes software may make to a faulting descriptor to create a continuation
descriptor after resolving the fault and clearing the Status field of the completion record. These steps
apply to descriptors that completed with status 0x03, 0x04, 0x06, Ox1a, or Ox1f. When encountering
“increase” or “decrease” in this table without a quantity, use the Bytes Completed.

Table D-1. SW Actions for Continuation After Page Fault

Operation Recommended adjustment after partial completion

Nop No change. The descriptor may be resubmitted as-is.

Increase Descriptor List Address by Descriptors Completed x 64 and decrease Descriptor Count
by Descriptors Completed.
If any operations before the fault completed with status # success, and any descriptor after the

Batch fault has the Fence flag set, decrease the Descriptor Count not to execute the descriptor with
the Fence.
If the Descriptor Count is 1, submit the descriptor as a single descriptor rather than a batch.
Drain No change. The descriptor may be resubmitted as-is.
Copy If Result = 0, increase source and destination addresses and decrease transfer size.

If Result = 1, decrease transfer size. (No change to source and destination addresses.)

Increase source addresses and decrease transfer size by Bytes Completed.

Increase Delta Record Address and decrease Maximum Delta Record Size by Delta Record Size.
If the remaining Maximum Delta Record Size < 80, don't resubmit the descriptor; instead, treat it
as completed with Result = 2.

Create Delta Record | The result must be saved and combined with the Result from the subsequent completion
record.

Delta Record Size must be saved and combined with the Delta Record Size from the subsequent
completion record.

Offsets in deltas created by the continuation descriptor will be incorrect.

Increase Delta Record Address and decrease Delta Record Size.

Apply Delta Record (No change to Destination Address or Transfer Size.)
Dualcast Increase source and destination addresses and decrease transfer size.
CRC Increase source address and decrease transfer size.
Fill in CRC Seed with CRC Value.
CRC with Co Increase source and destination addresses and decrease transfer size.
Py Fillin CRC Seed with CRC Value.
DIF Check Increase source address and decrease transfer size.

Fill in Reference and Application Tag Seeds with the values from the complete record.

Increase source address and decrease transfer size by Bytes Completed.
DIF Insert Increase destination address by Bytes Completed + (Bytes Completed / Block Size) x 8.
Fill in Tag Seeds with the values from the completion record.

Increase source address and decrease transfer size by Bytes Completed.
DIF Strip Increase destination address by Bytes Completed - (Bytes Completed / Block Size) x 8.
Fill in Tag Seeds with the values from the completion record.

Ref#:353216.002US D-1

ACTIONS FOR CONTINUATION AFTER PAGE FAULT

Table D-1. SW Actions for Continuation After Page Fault (Contd.)

Recommended adjustment after partial completion

Operation
DIF Update Increase source and destination addresses and decrease transfer size.
Fillin Tag Seeds with values from the completion record.
Cache Flush Increase destination address and decrease transfer size.
Ref#:353216.002US

D-2

DEDICATED AND SHARED WQ COMPARISON

APPENDIX €
DEDICATED AND SHARED WQ COMPARISON

E.1 DESCRIPTION AND TABLE

Table E-1. Dedicated and Shared WQ Comparison

Dedicated WQ Shared WQ

Can scale to a large number of clients (e.g., process, VM,
container) with simultaneous SW-lock-free work submitted
A limited number of DWQs intended only | to the same WQ.

for specific vertical uses (e.g.,
networking, storage infrastructure). This is the preferred interface for all work submissions,
especially when sharing the device across multiple
clients/users.

Client
Scaling

Single client per DWQ and SW tracks the | SW does not need to keep track of outstanding submissions
WQ Sharing | number of outstanding submissions to and can use the ENQCMD ISA result to identify successful vs.

ensure no queue overflow. unsuccessful submissions.
Submission The software can stream descriptors to | Rate of descriptor submission limited by ENQCMD round-trip
Rate the device at a very high rate using latency (approx. 200-250ns on 4t Generation Intel®
MOVDIR64B ISA with low latency. Xeon®),

| Ref#:353216.002US E-1

DEBUG AIDS FOR CONFIGURATION ERRORS

APPENDIX F
DEBUG AIDS FOR CONFIGURATION ERRORS

F.1 LIST OF DEBUG AIDS

Suggestions to aid troubleshooting and debugging for commonly encountered error situations are

provided below.

® Verify that VT-d is enabled in the BIOS. Run dmesg | grep -i ACPI | DMAR. The output should be similar
to the following messages:

$ dmesg -t | grep ACPI | grep DMAR
ACPI: DMAR 0x000000007738F000 000550 (vOl INTEL INTEL ID 00000001 INTL 20091013)
ACPI: Reserving DMAR table memory at [mem ©x7738f000-0x7738f54f]

Figure F-1. Linux kernel ACPI subsystem messages when VT-d is enabled

* Verify that the Linux Kernel configuration options mentioned in Section 2.2 are enabled.

® Use Ispci to ensure the expected DSA devices exist, and the Ispci output indicates that the “Kernel
driver in use:” is set to idxd.

® Rundmesg | grep -i dmar to ensure there are DMAR (DMA remapping reporting) devices enumerated
by the kernel. If VT-d is enabled in the BIOS and no DMAR devices are reported, then the IOMMU driver
may not be enabled by default, reboot with “intel_iommu=on,sm_on"” added to the kernel command
line to enable VT-d scalable mode.

® Rundmesg | grep -i idxd if you see “Unable to turn on SVA feature”, VT-d scalable mode may not be
enabled by default, reboot with “intel_iommu=on,sm_on"” added to the kernel command line to enable
VT-d scalable mode.

® On certain platforms, VT-d 5-level paging capability is disabled by the BIOS, you will see "SVM
disabled, incompatible paging mode” in dmesg output. In this case, pass no5lvl on the kernel
command line. This boot-time parameter disables the 5-level paging mode and forces the kernel to
use 4-level paging mode.

Ref#:353216.002US F-1

	Chapter 1 Introduction
	1.1 Audience
	1.2 Glossary
	Acronym
	Term
	Definition

	1.3 References
	Description
	URL

	1.4 Document Organization

	Chapter 2 Platform Configuration
	2.1 BIOS Configuration
	2.2 Linux Kernel Configuration
	2.2.1 Intel® IOMMU Driver
	2.2.2 Intel® DSA Driver

	Chapter 3 Intel® DSA Configuration
	3.1 Intel® DSA Device Enumeration
	3.1.1 PCI Information
	3.1.2 Sysfs Directories

	3.2 Device Configuration and Control interfaces
	3.2.1 Intel® DSA WQs/Engines/Groups
	3.2.2 Linux Interfaces
	3.2.3 accel-config
	3.2.4 WQ Device File Permissions

	Chapter 4 Intel® DSA Programming
	4.1 Sample Linux Application
	4.1.1 Descriptor Preparation
	4.1.2 Descriptor Submission Portal Mapping
	4.1.3 Descriptor Submission
	4.1.4 Completion Polling
	4.1.5 Partial Completion Handling

	4.2 Programming Considerations
	4.2.1 Ordering/Fencing
	4.2.2 Destination Address in Persistent Memory

	4.3 Library Support for Intel® DSA

	Chapter 5 Intel® DSA performance Micros (dsa_perf_micros)
	5.1 Definition and References
	Description
	URL

	Chapter 6 Intel® DSA Performance Counters
	6.1 Performance Counter references

	Appendix A accel-config Examples
	A.1 Steps

	Appendix B C functions for GCC versions without MOVDIRB64/ENQCMD/UMWAIT/umonitor support
	B.1 About

	Appendix C Sample C program
	C.1 Steps

	Appendix D Actions for Continuation after Page Fault
	D.1 Description and Table
	Operation
	Recommended adjustment after partial completion

	Appendix E Dedicated and Shared WQ Comparison
	E.1 Description and Table
	Dedicated WQ
	Shared WQ

	Appendix F Debug Aids for Configuration errors
	F.1 List of debug aids

