intel.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-003US
June 2024

Intel® Data Streaming Accelerator User Guide

Notices & Disclaimers

Intel technologies may require enabled hardware, software, or service activation. No product or component can be
absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, non-infringement, and any warranty arising from the course of
performance, the course of dealing, or usage in trade.

Intel uses code names to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and are not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this document
is licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You
may create software implementations based on this document and in compliance with the preceding that are
intended to execute on the Intel product(s) referenced in this document. No rights are granted to create modifications
or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

Ref#: 353216-003US 1

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Intel® Data Streaming Accelerator User Guide

Revision History

Date Revision Description
November 2022 001 The initial release of the document.
e Reference to GitHub added
(Section 3.2.3).
January 2023 002 e Replaced section of incorrect code
(Appendix B Example 2).
e Added Section 3.2.2 Intel® DSA
Read Buffer Controls.
lune 2024 003 e Updated Figure 3-2.

e Changed appendices into
chapters.
e Updated Code in Chapter 8.

Ref#: 353216-003US

Intel® Data Streaming Accelerator User Guide

Table of Contents

%pter O 14 Yo o [T o 4 o T PR 9
; Audience

1.2 RETEIEINCES ...ttt ettt et e st et e st e s ae et e s bt e st e st e e ae et e s ae e st e st e s e e s e e at e eeeae e st e be e Rt e teeaeenteeae et e beeneenteeatentenaeentanee 10

1.3 DOCUMENT OFZANIZATION c..eviiiiiiiiieiiie ettt ettt e bt e s bt e s bt e st e et e e sabe st e e eab e eab e e abbeesbeesbeeembeenbeesabesabeenane 11
Chapter 2 Platform Configuration.....ccccciieeeiiiieeiiiieeiieiienierteeneerrenseeteenseessenssesssenssesssnsssesssnssesssnnssesaes 12

2.1 BIOS Configurationc..cccceeveveeceeneenne

2.2 LINUX Kernel Configuration

2.2.1 Intel® IOMMU Driver
2.2.2 INTEI® DSA DIIVET w.etiutteeiieetee st eetee et eteesete et estte e teesaeeebeesaeeesseesaeeenteesssesaseesaeenseanseeanseeseaesaseenseeenteesssesaseesaesnseenseennes
Chapter 3 INtel® DSA CoNFiUIatioN ...c.....iiiiiiieeeeeiiieeiitteeennnieeeeteeeeannsssseeesereennnsssssssssesssnnnssssssesessssnnnnnes 14
3.1 Intel® DSA Device Enumeration
3.1.1 PClI Information.....................
3.1.2 L3 2T R =Y e =TS

3.2 Device Configuration and Control Interfaces

3.2.1 INTEI® DSA WS/ ENGINES/GIOUPSveeivveireeeirieiteeieeeiseestteeiteestseaseesssesssesssesseesssesssesssesseesssesseessessseesssesseessessssesnns
3.2.2 INtel® DSA REAM BUFFEI CONTIOIS ..euviieiecieecie ettt ettt ee st e et e et e e s ta e e te e aeesateesssesaseensaessseenseesnseessaesnsennns
3.2.3 Intel® DSA Traffic Class Configuration...

3.2.4 Linux Interfaces

3.2.5 accel-config.....ccvevveeevieeneeniieeiiianns .

3.2.6 WQ DEVICE File PEIMISSIONS. .. ccutiiitiieiiesieeieesitesteesttesaeesbeeste e bt esate s teesaseeabeebaessbeesaessseesbeesasesnseesssesnsaansseanbeesaesssessseesnsesnsens
Chapter 4 Intel® DSA Programmingccccceveeisssisssnns

4.1 Sample LINUX Application............

41.1 Descriptor Preparation

4.1.2 Descriptor Submission Portal Mapping

B0 ettt h ekt a e bt b€ E bR e Rt b e e bt bR e e R e e R e ek e R e R oo R e e bt e R e R b e e e R e e bt e bt ne et et et be e b e e b e R et e st ne e e 22

4.13 Partial Completion HANAINGoouiiiiiiiieieeeese ettt sttt et st s e st e e bt e sas e e beesanesbeesmneeseenanenane
4.2 PROGRAMMING CONSIDERATIONS ...ttt ettt ettt et e st e e ettt e e sase e e ss e e e e sas e e e e seeesanseeeeneeeenseeeeaneeesanseeesanneeeanseeeannneenn

421 Ordering/Fencingccceeevveeveecreeeeeeireeereeenne

4.2.2 Destination Address in Persistent Memory

4.2.3 Traffic Class Configurationcceceevueenneen.

4.3 Library SUPPOIE fOr INTEI® DSA......cceiiieeeereeeetesee e e et e te st e tesseeseestesse e sesseessesesssesseeseensaaseensensesssentesseenseasesssansesssensesseensnnen
Chapter 5 Intel® DSA Performance MICrOS........coiciiiiueeeiiiiiniiiiiinereisisessssssssees s sssssasssss s s e s sssssssssnens
Chapter 6 Intel® DSA Performance Counter References.........ccciiiiiieeeeencciiiiiieeeeenieeisseneeennssseesssseseennnnes 27
Chapter 7 Steps for Using ACCEL-CONFIG: EXamPIES......cccceuuueeiirirreemmnnceiereneeennensesesseseennnsssssssssessnnnnns 28
Chapter 7 C Functions for GCC Versions Without MOVDIRB64, ENQCMD, UMWAIT, or

1Y 10T\ 10T 20T T o « o o N
Chapter 8 Sample CProgrami.......ccciiiiiiiiiieieieeiiiniiesreee et sass e s s s s asss e e s e s s s s s s ssannnes

8.1 K] (=] o OO PO OO PP PORUPPRRRUPPPRRIOY

8.2 THE PrOBIaM ...ttt ettt ettt sttt sa et e s bt et e b e s h e et e s bt e st e bt e as e b e sh e et e s bt e a e e b e ebeea b e sheeaee b e eat e s b e b e eabe b e saeenbenneen s e senanennens
Chapter 9 Actions for Continuation After a Page Fault....

Chapter 10 Dedicated and Shared WQ Comparison Descriptions......cccccceeiieiimeemnnniiiiiniineessssiiiniimeessssssas 37
Chapter 11 Debug Aids for Configuration EFFOrsccoiiiieeueiiiiiniiiiennmiiiiiiiiieesmsiiiiessssssses 38

Ref#: 353216-002US 3

Rao, Nikhil
Chapter number for Platform Configuration is 6 later on

Versaggi, Jana
Ooh that changed. I’ll fix it.

Intel® Data Streaming Accelerator User Guide

TABLES

I o1 L Vol o T2 174 T =T T V1 T o S 9
TADIE 1-2 REFEIENCESveiutieeiieieerte ettt sttt e et e st e st e e s tee st e e naeesateesteesaseenseesateanseesaseenseeseteenbeesseeenseenaseenseessaesnseenaeeenseesnsesnseennnn 10
Table 2-1 Linux Operating System Vendors SUPPOrting INtel® DSA DIIVELSiiicuieiriiieeeiiieeeiieeseieeesireeeebeeessteeessaseeessvaeessnbaaesssneens 14
Table 9-1 Libraries With SUPPOIt fOr INTEI® DSAuiiiiiiieiiee ettt ettt e et e e e te e e e tae e e s abeeesbbeeeastseeesbeeessbaeeassbeaessbeeesssaeeassneanns 24
Table 10-1 SW Actions for Continuation After @ Page FAUI.......c.coiiiiiiiiiieieeeieee ettt ettt sttt e e s b e saaesaneeae 35
Table 11-1 Dedicated and Shared WQ COMPATISONceeiveeruierieereeeiteesteeseeessteesseessaesseessseasseesssssseesssesssesssesaseesseesssesssessnseessesssseenns 37
Table 12-1 Linux Kernel ACPI Subsystem Messages When VT-d is Enabledccooouiiiiiiiiiiiii it et 38
FIGURES

Figure 3-1 Logical Organization of an Intel® DSA and Cores on a Fourth-Generation Xeon® Server Processorccoeeeervereeruennenns 14
Figure 3-2 DSA BW Range & REad BUFfEr CONTIOIS........ceiiiieiieiiecieestie et stt e ettt e s te et esteesaeessaeebeesaeeenteessaeenseesseessseesneesnsnessnesnseanes 19
Figure 3-4 Intel® DSA Device/Group/Engine/WQ Configuration and Control sysfs Entries.. . .20
Figure 4-1 Descriptor PrOCESSING SEQUENCEciiiiieiiiieeeeeieiittreeeeseeitrteeeeessettaaeeesesesastaaeeeesassstsaeeessaassssaaeesessasssaseesesassssseeesssnssssseneesenses 20
EXAMPLES

Example 2-1 Linux Kernel Configuration Options for the INtel® IOMMU DFIVETcoerieriinieiienieeieseetesie sttt st s nnes 12
Example 2-2 Linux Kernel Configuration Options for the INteI® DSA DIiVEI........c.ccceeieerieeeeeereeseesteeseeseeeseessaeesseessseenseesnseenseesseeens 12
Example 2-3 IDXD Driver INitialiZation IMESSAZESuviiiuiiieiiee et e ctteeeete e et e e e ettt eeeteeeesttee e sbbeeesabaeeassaeeesssaeesnsasesaseeeensaeesasseeeansaeaans
EXampPle 3-1 LiStiNg All INTEI® DSA DEVICESeeicuviieiiiie ittt eeitteeeiteeestteesstteeessbeeeesabeeesstaeaassseaessseeeasssaeaassseessseesassssassseessssesesssseesnssenenns
Example 3-2 Ispci Output for an Intel® DSA Device..

Example 3-3 SVM Capabilities and Status

Example 3-4 sysfs SVM Capability

Example 3-5 Intel® DSA sysfs Directories

Example 3-6 Profiles Included in accel-configcccceeviviiiiiiieecciiecenen.

Example 3-7 accel-config Command Line with WQ Configuration File

Example 3-8 Using accel-config to Verify Device CONfiIgUratioNoccuiecuieiieicie ettt st e te e e e e saeesnaeenneenns
EXAMPIE 3-9 WU DBVICE FIlES ...eeineieieeiiie ittt ettt e e e et e e e te e e e tb e e e eabaee e steeeasteeeeabeeaassaaeansseeesaseeesseseeassseeesbeeeansaseasseaens
EXample 4-1 DesCriptor INitialiZation........ccuiiiiiiiicciiee ettt e et e e et b e e e ate e e e sbaeeesabeeessbbaeasbeeesabaaeesteeaassaeesasbeeessaeeasseaenns
EXample 4-2 DeSCIIPTOr SUDMISSIONeiiviiiieiiiietieitee sttt ettt sttt et e sttt e e bt e et e s bt e sab e e bt e sase e beesaseenbeesasesabeeaneeeateenasesaseenneesaneenneeanne
Example 4-3 Descriptor COMPIETION CRECKiecuieiiieeecieet et e sttt te st e st e et e et esree et e e saeeeteessaeeaseesneeenseesseeanseenseessseenseesneeenseesnseanes
Example 4-4 Descriptor Completion ChECK With PAUSE..........c.eiiiiiiiiiiieccee ettt e te et e s te et e s e te e ssaeebeesseeeeeesnseenseessnesnseanns
Example 4-5 UMONITOR/UMWAIT Sequence to Reduce Power Consumption While POIINGcceeeveeeiiiieeiieccieceeccree e 23
EXAMPIE 8-1 IMIOVDIRBABoeiiiiiiieiiiee ettt ettt e ettt e e ettt e et e e e e beeesbbeeeasbaeeasbeeeasbaeeassaeeaassaeeassseeaansaeeassseeeasbeaeansaeeanssneessbeesastaeasnsseenns 29
EXQMPIE 8-2 ENQCIVIDvvieiiiieeeiiee ettt e stiee sttt e e ettt e e sabte e satteeeabaeesabteesastaeaassbeeesbeeeasseaeansbeeeaasbee s seeeaansaeeessbeeeansaeeansseeesabbeesassaesnnssaennns 29
EXQMPIE 8-3 UIMWAIT ..ceeiieteestie et ettt et e st e et e e s et e s te e teeesseeseesseeeaseeaseeenseessseaaseesseeenseesseanseesseesnseanneeasseensaeanseenseesssaenseesnseensnesasennennnen 29
EXQMPIE 8-4 UIMIONITORccuteeiieiieeitieeiieestte et esttesteesttesateenteesateebeesuteenseesasesaseesaeeenteeasseemseessaesaseenaeeenteesseesnseenseesnteenseesaseenseesasesnneennes 29
Example 8-1 Intel® DSA Shared WQ Sample APPICAtION ...ccc.uiiiiiiiiiiie ettt e e stae e et e e s b e e e sbaeeesataeeebbeeesabaeasnsaeaans 30

Ref#: 353216-002US 4

Intel® Data Streaming Accelerator User Guide

CHAPTER 1
INTRODUCTION

1.1 Audience

Intel® DSA is a high-performance data copy and transformation accelerator integrated into Intel® processors, starting
with 4t" Generation Intel” Xeon® processors. It is targeted for optimizing streaming data movement and transformation
operations common with applications for high-performance storage, networking, persistent memory, and various data

processing applications.

This document’s intended audience includes system administrators who may need to configure Intel DSA devices and
developers who want to enable Intel DSA support in applications and use libraries that provide interfaces to Intel
DSA. It should be read with the Intel® DSA Architecture Specification and documentation for SW utilities and
libraries that support Intel DSA, such as accel- config/libaccel-config, Libfabric, and Intel® MPI.

Table 1-1 Acronym Definition

Acronym Term Definition
BIOS Basic Input Output System
ATS Address Translation Service | A protocol defined by the PCl Express* specification to
support address translations by a device.
IOMMU I/0 Memory Management A DMA Remapping Hardware Unit defined by Intel®
Unit Virtualization Technology for Directed /0.
) A local computer bus for interconnecting peripheral
PCl Peripheral Component devices with the processor/memory subsystems. PCI
Interconnect Express is a serial computer bus expansion standard
designed to replace the PCI.
When an endpoint determines that it requires access
PRS Page Request Service to a page for which the ATS translation is unavailable,
it sends a Page Request message requesting that the
page be mapped into system memory.
Process Address Space A value used in memory transactions to convey the
PASID Identifier address space on the host of an address used by the
device.
) Allocates hardware resources (e.g., processor cores,
0s Operating System memory, devices) to ensure optimal usage by multiple
concurrent applications.
An ability for an accelerator 1/O device to operate in
) the same virtual memory space of applications on
SVM Shared Virtual Memory host processors. It also implies the ability to operate
from pageable memory, avoiding functional
requirements to pin memory for DMA operations.
QoS Quality of Service The ability of a system to provide predictable latency

and bandwidth.

Ref#: 353216-002US

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Acronym Term Definition
SKU Stock-Keeping Unit The part number or product number that identifies an
item.
wa Work queue A queue in the device used to store descriptors.
1.2 References
Table 1-2 References
Description URL

Intel® DSA Architecture Specification

https://cdrdv2.intel.com/v1/dl/getContent/671116

Intel® DSA Perf Micros

https://github.com/intel/dsa-perf-micros

Intel® DSA Perfmon Support

https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon

Intel® Architecture Instruction Set
Extensions Programming Reference

https://cdrdv2.intel.com/v1/dl/getContent/671368

Intel® Data Movement Library

https://intel.github.io/DML

PCI Express* Base Specification 4.0

http://www.pcisig.com/specifications/pciexpress

Intel® Virtualization Technology for
Directed I/0 (Intel® VT-d or Intel®
I0MMU)

https://www.intel.com/content/www/us/en/virtualization/virtualization-
technology/intel-virtualization-technology.html

Intel® MPI

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html

DPDK IDXD DMADEYV driver

https://doc.dpdk.org/guides/dmadevs/idxd.html

SPDK IDXD driver

https://spdk.io/doc/idxd.html

accel-config and libaccel-config

https://github.com/intel/idxd-config

accel-config (01.org)

https://01.org/blogs/2020/pedal-metal-accelerator-configuration- and-
control-open-source.html

Libfabric

https://github.com/ofiwg/libfabric/blob/main/man/fi shm.7.md

Ref#: 353216-002US

10

https://cdrdv2.intel.com/v1/dl/getContent/671116
https://github.com/intel/dsa-perf-micros
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://cdrdv2.intel.com/v1/dl/getContent/671368
http://www.pcisig.com/specifications/pciexpress
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html?wapkw=Intel%20MPI
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html?wapkw=Intel%20MPI
https://doc.dpdk.org/guides/dmadevs/idxd.html
https://spdk.io/doc/idxd.html
https://github.com/intel/idxd-config
https://01.org/blogs/2020/pedal-metal-accelerator-configuration-and-control-open-source
https://01.org/blogs/2020/pedal-metal-accelerator-configuration-and-control-open-source
Rao, Nikhil
hi Nirav, any update on when you would be able to make any updates?�

Intel® Data Streaming Accelerator User Guide

1.3 Document Organization
This document has two general sections. The first describes the Intel DSA setup/configuration, and the second describes the sample
code for Intel DSA.

This document does not include configuration mechanisms and settings specific to domain-specific software stacks
like DPDK, SPDK, etc. Please refer to the appropriate documentation for additional information.

Ref#: 353216-002US

11

Intel® Data Streaming Accelerator User Guide

CHAPTER 2
PLATFORM CONFIGURATION

2.1 BIOS Configuration

This document describes Intel® DSA usage with user space memory, requiring Intel” Virtualization Technology or Directed 1/0
(VT-d) to be enabled.

2.2 LINUX Kernel Configuration

2.2.1 Intel® IOMMVU Driver

The Intel’IOMMU driver with scalable mode support (CONFIG_INTEL_IOMMU_SVM) must be enabled in the kernel
configuration, as shown in Example 2-1. If either the CONFIG_INTEL_IOMMU_DEFAULT_ON or the
CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON options are not enabled, then “intel_iommu=on,sm_on" must be
added to the kernel boot parameters.

CONFIG_INTEL_IOMMU=y CONFIG_INTEL_IOMMU_SVM=y
CONFIG_INTEL_IOMMU_DEFAULT_ON=y
CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON=y

Example 2-1 Linux Kernel Configuration Options for the Intel® IOMMU Driver

2.2.2 Intel® DSA Driver

When building/installing the Linux kernel, enable the kernel configuration options shown in Example 2-2.

CONFIG_INTEL_IDXD=m
CONFIG_INTEL_IDXD_SVM=y

CONFIG_INTEL_IDXD_PERFMON=y

Example 2-2 Linux Kernel Configuration Options for the Intel® DSA Driver

Work queues (WQs) are on-device storage to contain descriptors submitted to the device and can be configured to run in
either of two modes:

e Dedicated (DWQ), or
e Shared (SWQ).

A SWQ allows multiple clients to submit descriptors simultaneously without the software overhead of synchronization needed
to track WQ occupancy. SWQ s the preferred WQ mode since it offers better device utilization versus hard partitioning with
DWQs, which may result in underutilization. The Intel® DSA Driver (IDXD) with DWQ support was introduced in kernel
version 5.6. The IDXD driver with SWQ support is available in Linux upstream Kernel versions 5.18 and beyond.

IDXD driver initialization can be checked using the dmesg command to print the kernel message buffer, as shown in
Example 2-3.

Ref#: 353216-002US 12

Intel® Data Streaming Accelerator User Guide

$ dmesg | grep "idxd "

idxd 0000:6a:01.0: enabling device (0144 ->

0146) idxd 0000:6a2:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:6a:02.0: enabling device (0140
0142) idxd 0000:6a:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:67:01.0: enabling device (0144
0146) idxd 0000:6f:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:61:02.0: enabling device (0140
0142) idxd 0000:61:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:74:01.0: enabling device (0144
0146) idxd 0000:74:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:74:02.0: enabling device (0140
0142) idxd 0000:74:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:79:01.0: enabling device (0144
0146) idxd 0000:79:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:79:02.0: enabling device (0140
0142) idxd 0000:79:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:e7:01.0: enabling device (0144
0146) idxd 0000:e7:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:e7:02.0: enabling device (0140
0142) idxd 0000:e7:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:ec:01.0: enabling device (0144
0146) idxd 0000:ec:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:ec:02.0: enabling device (0140
0142) idxd 0000:ec:02.0: Intel(R)
Accelerator Device (v100) idxd
0000:11:01.0: enabling device (0144
0146) idxd 0000:f1:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:11:02.0: enabling device (0140
0142) idxd 0000:f1:02.0: Intel(R)

->

->

->

->

->

->

Ref#: 353216-002US

13

Intel® Data Streaming Accelerator User Guide

Accelerator Device (v100) idxd
0000:f6:01.0: enabling device (0144 ->
0146) idxd 0000:f6:01.0: Intel(R)
Accelerator Device (v100) idxd
0000:16:02.0: enabling device (0140 ->
0142) idxd 0000:f6:02.0: Intel(R)
Accelerator Device (v100)

Example 2-3 IDXD Driver Initialization Messages

Distribution kernel versions with complete IDXD driver support are shown in Table 2-1. Please refer to vendor
documentation for the latest information.

Table 2-1 Linux Operating System Vendors Supporting Intel® DSA Drivers

Vendor Intel® DSA Driver
SUSE Linux Enterprise Server SLES 15 SP4
Redhat Enterprise Linux RHEL 8.7 & 9.1
Ubuntu Ubuntu 22.10

Ref#: 353216-002US 14

Intel® Data Streaming Accelerator User Guide

CHAPTER 3
INTEL® DSA CONFIGURATION

This section describes how Intel” DSA devices and WQs can be configured and enabled by a superuser before running
an application that uses Intel DSA. Before describing the configuration process, Linux OS structures for Intel DSA are

described to help debug configuration issues.

3.1 Intel® DSA Device Enumeration

3.1.1 PCl Information

Figure 3-1 shows the logical organization of an Intel DSA and cores on a fourth-generation Xeon® server processor.
Depending on the processor SKU, one, two, or four Intel DSA devices exist per socket. A system with two sockets can

have up to eight Intel DSA devices.

Core(s)

Alowsy

IO Interface (Root Complex)
[IOMMU J

/ r Device TLB 1 \

DSA Device Work Queues Groups Engines

-
B
\< : 4

Figure 3-1 Logical Organization of an Intel® DSA and Cores on a 4*'-Generation Xeon® Server Processor

DwWQ
SW0
11

4
N

Ref#: 353216-002US 14

https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon

Intel® Data Streaming Accelerator User Guide

Intel DSA PCl device ID is 0x0b25. The following command lists the Intel DSA devices on the system:

Example 3-1 Listing All Intel® DSA Devices

SlIspci | grep 0b25

6a:01.0 System peripheral: Intel Corporation Device 0b25
6f:01.0 System peripheral: Intel Corporation Device 0b25
74:01.0 System peripheral: Intel Corporation Device 0b25
79:01.0 System peripheral: Intel Corporation Device 0b25
€7:01.0 System peripheral: Intel Corporation Device 0b25
ec:01.0 System peripheral: Intel Corporation Device 0b25
f1:01.0 System peripheral: Intel Corporation Device 0b25

f6:01.0 System peripheral: Intel Corporation Device 0b25

The complete Ispci output for an Intel DSA device can be obtained, as shown in Figure 3-3. If the Kernel driver in use field

within the Ispci output is blank, use the modprobe idxd command to load the driver.

Example 3-2 Ispci Output for an Intel® DSA Device

/*1 of 2%/
Ispci -vvv -s 6a:01.0
6a:01.0 System peripheral: Intel Corporation Device 0b25
Subsystem: Intel Corporation Device 0000
Control: I/0- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr+ Stepping-
SERR+
FastB2B- DisINTx-
Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort-

<MAbort-
>SERR- <PERR- INTx-
Latency: ©

NUMA node: ©
Region ©: Memory at 206ffff60000 (64-bit, prefetchable) [size=64K]
Region 2: Memory at 206ffff00000 (64-bit, prefetchable) [size=128K]
Capabilities: [4@] Express (v2) Root Complex Integrated Endpoint, MSI 00
DevCap: MaxPayload 512 bytes, PhantFunc ©
ExtTag+ RBE+ FLReset+
DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReq-
R1xdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+ FLReset-
MaxPayload 128 bytes, MaxReadReq 4096 bytes
DevSta: CorrErr- NonFatalErr- FatalErr- UnsupReq- AuxPwr-
TransPend-
DevCap2: Completion Timeout: Not Supported, TimeoutDis+, NROPrPrP-, LTR+
10BitTagComp+, 10BitTagReq+, OBFF Not Supported, ExtFmt+, EETLPPrefix+,
MaxEETLPPrefixes 1 EmergencyPowerReduction Not Supported,
EmergencyPowerReductionInit-
Capabilities: [80] MSI-X: Enable+ Count=9 Masked-
Vector table: BAR=0 offset=00002000
PBA: BAR=0 offset=00003000
Capabilities: [90@] Power Management version 3
Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D@-,D1-,D2-,D3hot-
,D3cold-)
Status: DO NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
Capabilities: [100 v2] Advanced Error Reporting

Ref#: 353216-002US

15

Intel® Data Streaming Accelerator User Guide

Status: DO NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
Capabilities: [100 v2] Advanced Error Reporting

UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RXOF-
MalfTLP- ECRC- UnsupReq- ACSViol-

UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF-
MalfTLP- ECRC- UnsupReqg+ ACSViol-

UESvrt: DLP- SDES- TLP+ FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF-
MalfTLP+ ECRC- UnsupReq- ACSViol-
/*¥2 of 2%/

CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-
CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-
AERCap: First Error Pointer: 00, ECRCGenCap- ECRCGenEn-
ECRCChkCap- ECRCChkEn- MultHdrRecCap- MultHdrRecEn- TLPPfxPres-
HdrLogCap-
HeaderlLog: 00000000 00000000 ©000VVVO 00000000

Capabilities: [150 v1] Latency Tolerance Reporting
Max snoop latency: @ns
Max no snoop latency: @ns

Capabilities: [160 v1] Transaction Processing Hints
Device-specific mode supported
Steering table in TPH capability structure

Capabilities: [170 v1] Virtual Channel
Caps: LPEVC=1 RefClk=100ns PATEntryBits=1

Arb: Fixed+ WRR32- WRR64- WRR128-

Ctrl: ArbSelect=Fixed Status: InProgress-

VCo: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-
Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-

Ctrl: Enable+ ID=0 ArbSelect=Fixed TC/VC=fd
Status: NegoPending- InProgress-
VC1l: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-
Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-
Ctrl: Enable+ ID=1 ArbSelect=Fixed TC/VC=02
Status: NegoPending- InProgress-
Capabilities: [200 v1] Designated Vendor-Specific <?>
Capabilities: [220 v1] Address Translation Service (ATS)
ATSCap: Invalidate Queue Depth: 00
ATSCtl: Enable+, Smallest Translation Unit: 00
Capabilities: [230 v1] Process Address Space ID (PASID)
PASIDCap: Exec- Priv+, Max PASID Width: 14
PASIDCtl: Enable+ Exec- Priv+
Capabilities: [240 v1] Page Request Interface (PRI)
PRICtl: Enable+ Reset-
PRISta: RF- UPRGI- Stopped+
Page Request Capacity: 00000200, Page Request Allocation: 00000020 Kernel driver in
use: idxd
Kernel modules: idxd

Shared Virtual Memory (SVM) is a usage where a device operates in the CPU virtual address space of the application
accessing the device. Devices supporting SVM do not require pages accessed by the device to be pinned. Instead, they
use the PCl Express Address Translation Services (ATS) and Page Request Services (PRS) capabilities to implement
recoverable device page faults. Devices supporting SVM use PASIDs to distinguish different application virtual address
spaces.

Ref#: 353216-002US 16

Intel® Data Streaming Accelerator User Guide

PCle capabilities and status related to SVM — ATSCtl, PASIDCtl, and PRICtl are enabled, as shown in Example 3-3. Refer
to the Address Translation section within the Intel” DSA Architecture Specification for further details on how Intel DSA
utilizes the PASID, PCle, ATS, and PRS capabilities to support SVM.

Example 3-3 SVM Capabilities and Status
Capabilities: [220 v1] Address Translation Service (ATS)

ATSCap: Invalidate Queue Depth: 00
ATSCtl: Enable+, Smallest Translation Unit: 00

Capabilities: [230 v1] Process Address Space ID (PASID)
PASIDCap: Exec- Priv+, Max PASID Width: 14
PASIDCtl: Enable+ Exec- Priv+

Capabilities: [240 v1] Page Request Interface (PRI)

PRICtl: Enable+ Reset-
PRISta: RF- UPRGI- Stopped+

Page Request Capacity: 00000200, Page Request Allocation: 00000020

SVM capability is also available in sysfs.

Example 3-4 sysfs SVM Capability

$ cat
sys/bus/dsa/devices/dsa@/pasid_enabled

1

3.1.2 sysfs Directories

The Linux sysfs file system is a pseudo-file system that provides an interface to kernel data structures. The files under
sysfs provide information about devices, kernel modules, file systems, and other kernel components.

The Linux driver generates the sysfs directories shown in Example 3-5 for an example dual-socket system with a total
of eight Intel DSA devices with four devices per processor. The Intel DSA and Intel® In-Memory Analytics Accelerator
Intel® IAA devices are both managed by the IDXD device driver. The numbering of Intel DSA and Intel IAA devices
depends on the number of each device in the CPU SKU. In the dual-socket example below, four Intel IAA devices are
present per socket. They are named iax{1,3,5,7,9,11,13,15}. Correspondingly, the Intel DSA devices are named
dsa{0,2,4,6,8,10,12,14}.

Example 3-5 Intel® DSA sysfs Directories
$ 1s -df /sys/bus/dsa/devices/dsa*

/sys/bus/dsa/devices/dsa@ /sys/bus/dsa/devices/dsa2

/sys/bus/dsa/devices/dsal® /sys/bus/dsa/devices/dsas
/sys/bus/dsa/devices/dsal2 /sys/bus/dsa/devices/dsa6
/sys/bus/dsa/devices/dsald /sys/bus/dsa/devices/dsa8

Ref#: 353216-002US 17

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

3.2 Device Configuration and Control Interfaces

The Intel DSA device is configured through entries in the sysfs filesystem. After configuration, the device and WQ can be
enabled. The driver creates a /dev/dsa/wqD.Q device file for every enabled WQ, where D is the Intel DSA ID, and Q is the
WQ ID. The application uses the WQ device file to submit work to the hardware, asdescribedin Section 4.1.

3.2.1 Intel® DSA WQs/Engines/Groups

Software specifies work for the device by constructing descriptors in memory and submitting them to the WQ. Shared
WQs allow multiple clients to submit descriptors concurrently and are recommended for application use.

Dedicated WQs require SW to manage flow control by keeping track of descriptors submitted and completed to
ensure the WQ capacity is not overrun. Hence, they are helpful in cases where a single OS-level process uses the WQ.

An engine is an operational unit within an Intel DSA device. A group is a logical organization of a set of WQs and engines
to achieve a specific QoS objective. Multiple groups can provide performance isolation between applications sharing the
device. Refer to the Work Queues, Engines, and Groups sections in the Intel” DSA Architecture Specification for more
details on Intel DSA WQ/Engine/Group capabilities and controls.

3.2.2 Intel® DSA Read Buffer Controls

DSA uses read buffers to hide memory read latency. Administrative software may utilize the read buffer controls to achieve an

approximate range of read bandwidth numbers (min ax) for a group. %

DSA per-group configuration provides two fields to control Read Buffers available to a group.

e Read Buffers Allowed: n-zero value for the Read Buffers Allowed fieldates the maximum number of
Read Buffers that may beh use at one time by all engines in the group. T eld can limit the read bandwidth
achievable on an idle system.

o Read Buffers Reserved: A non-zero value for the Read Buffers Reserved field ensures a minimum number of read
buffers available to the engines in the group and allows a guaranteed read bandwidth irrespective of system Ioad.@

The magnitude of memory read latency that a single read buffer can hide may vary depending on the system load. As a result,
when Read Buffers Allowed equals Read Buffers Reserved for a given group, the achievable read bandwidth falls within a range of
values, as shown in Figure 3-2. Under system idle conditions, a group can reach peak bandwidth with 48 or more read buffers
available.

Ref#: 353216-002US 18

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
Rao, Nikhil
Resolve the 2 highlighted statements to a single statement (please update the doc v/s adding to the comment thread)�

Shah, Nirav N
done�

Rao, Nikhil
Delete?�

Shah, Nirav N
deleted�

Rao, Nikhil
Limit read bandwidth?�

Shah, Nirav N
done�

Narayan.Ranganathan
Update to match spec wording

Rao, Nikhil
Don’t know if this was changed – if it was, please mark it resolved

Rao, Nikhil
@Shah, Nirav N Please mark as resolved if update matches spec wording

Shah, Nirav N
modified the statement similar to spec.. The statement in the spec says, "The Read Buffers Allowed field indicates the maximum number of Read Buffers that may be in use at one time by all engines in the group"�

Rao, Nikhil
don’t get the cause and effect relationship being described here?

Shah, Nirav N
cause: restricting the read buffers�
effect: read bandwidth getting restricted.

Rao, Nikhil
OK, I don’t think you need to use “maximum”

Shah, Nirav N
Removed�

Rao, Nikhil
@Shah, Nirav N Resolve the 2 highlighted statements to a single statement (please update the doc v/s adding to the comment thread)

Shah, Nirav N
removed the first statement and moved another.�

Rao, Nikhil
Ok thanks

Narayan.Ranganathan
As shown in Figure xxx, measurements under system idle conditions show that a group can reach peak throughput when it has 48 or more read buffers available.

Shah, Nirav N
Made the statement change.�

Narayan.Ranganathan
For the chart below, we dont need to show so many different values on 'x' axis.. we can limit to just a few (8/16/32/48/64). Also instead of 2 charts (for min vs max), let's combine into a single chart and show it as a range for the set of token sizes as above.�

Shah, Nirav N
Added a new third chart. The first two charts will be removed.��

Rao, Nikhil
Is it removed? If so, mark it resolved�

Shah, Nirav N
Removed.�

Intel® Data Streaming Accelerator User Guide

Achievable DSA BW range using Read Buffers Controls
35
30
25
L 20
[an]
&)
2 15
) !
5 !
0
8 16 32 a8 64
of Read Buffers Allowed = Read Buffers Reserved

Figure 3-2 DSA BW Range & Read Buffer Controls

e refer to section 4.3 of the DSA specification for restrictions on programming Read Buffers Allowed and Read Buffers
rved controls.

3.23 Intel® DSA Traffic Class Configuration

First generation Intel® Data Streaming Accelerator (DSA) devices on 4th Gen and 5th Gen Intel® Xeon® Scalable Processors are
limited to using a single virtual channel for DMA traffic that is different from the virtual channel used for descriptor submissions to
the device (VCO0). Software should avoid using Traffic Class 0 (TCO) for DMA traffic by programming TC-A (Bits 2:0) and TC-B (Bits
5:3) fields in the device Group Configuration Table (GRPFLAGS Register, BAR + 328h, 368h, 3A8h, or 3E8h) register to a non-zero TC
value which is mapped to Virtual Channel 1 (VC1). Sharing a single virtual channel for DMA traffic to both high-bandwidth and low-
bandwidth memory targets may impact the throughput of some operations.

The Linux driver default Traffic class configuration follows the |zkove-mentioned guidelines for the respective device versions.

3.24 Linux Interfaces

Intel DSA Groups/Engines/WQs are configured using sysfs entries created by the IDXD driver.

Example 3-2 shows the configuration and control sysfs entries for the dsa0 device. WQs are configured by a superuser
and must be configured with a size and type at a minimum. A group must have at least one constituent WQ and one
Engine. The configuration using the accel-config utility is described in Section 3.2. An Intel DSA device and associated
WQs may only be enabled after configuring the corresponding Group/WQ/Engine(s).

Ref#: 353216-002US 19

Rao, Nikhil
@Shah, Nirav N "The figure xx" .. Statement seems to be hard to understand, reading it now, I can't figure out what it is trying to say, can you please elaborate?

Shah, Nirav N
Ok, we could rephrase it to "The figure xx above shows minimum BW observed on a WQ - without any other WQs (blue bars) and with other WQs running at max possible BW (orange bars)."�

Rao, Nikhil
@Shah, Nirav N Can you make the change inline along with the caption for Figure 3-3, I have a question on your suggestion, but its easier to open a new thread for that.

Shah, Nirav N
update the statement inline. �

Rao, Nikhil
What is the significance of “previous”?

Ranganathan, Narayan
maybe you meant "above-mentioned" instead of previous?.. I dont recall adding that line. In any case, perhaps it can be reworded to something like: The default Traffic class configuration in the Linux driver follows the above-mentioned guidelines for the respective device versions.

Rao, Nikhil
Ok will change to above-mentioned

Intel® Data Streaming Accelerator User Guide

S Is /sys/bus/dsa/devices/dsa0

cdev_major group0.0 max_work_queues uevent
clients group0.1 max_work_queues_size version
cmd_status group0.2 numa_node wq0.0
configurable group0.3 op_cap wq0.1
engine0.0 max_batch_size pasid_enabled wq0.2
engine0.1 max_engines power wq0.3
engine0.2 max_groups read_buffer_limit wq0.4
engine0.3 max_read_buffers state wq0.5
errors max_tokens subsystem wq0.6
gen_cap max_transfer_size token_limit wq0.7

Figure 3-3 Intel® DSA Device/Group/Engine/WQ Configuration and Control sysfs Entries
3.25 accel-config

accel-config is a Linux application that provides a command line interface for Intel DSA configuration. It links to a
shared library (libaccel-config.so) that applications can use to query and modify Intel DSA configuration.

accel-config can be used with text-based configuration files. Recommended configurations for a few use cases are
included in the accel-config installation.

Example 3-6 Profiles Included in accel-config

$ cd idxd-config/contrib/configs/ && 1ls *.conf
app_profile.conf net_profile.conf os_profile.conf storage_profile.conf

app_profile.conf is a configuration intended for user space applications and provides two groups with one SWQ and
one engine each. The WQs are configured so that applications desiring to use Intel DSA for operations with a relatively
small memory footprint can submit descriptors to the WQ with a smaller value of maximum transfer size configured
for that WQ. This avoids head-of-line blocking, i.e., prevents these operations from queuing. Example 3-7 shows how
to configure and enable WQs using app_pro- file.conf. A super-user must execute this command since only a super-
user can modify sysfs entries.

Example 3-7 accel-config Command Line with WQ Configuration File

$ accel-config load-config -c contrib/configs/app_profile.conf -e
Enabling device dsa@

Enabling wq wgoe.1

Enabling wq wgq0.0

Chapter 7 shows a command-line example for enabling an Intel DSA WQ with a custom configuration and saving the
configuration to a file.

accel-config can be shown the current configuration using the list command, as shown in Example 3-8.

Example 3-8 Using accel-config to Verify Device Configuration

$ accel-config list

Ref#: 353216-002US 20

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator

Intel® Data Streaming Accelerator User Guide

3.2.6 WQ Device File Permissions

The accel-config command line creates WQ device files, as seen in Example 3-9.

Example 3-9 WQ Device Files

S s -la /dev/dsa/wq0.0 /dev/dsa/wq0.1
Crw--——-- 1 root root 240, 1 Oct 5 11:58 /dev/dsa/wq0.0
CrwW---—-——- 1 root root 240, 0 Oct 5 11:58 /dev/dsa/wq0.1

The super-user must grant read-write permissions to the device file to the user/group under which the process runs.

Ref#: 353216-002US

21

Intel® Data Streaming Accelerator User Guide

CHAPTER 4
INTEL® DSA PROGRAMMING

A user can start an application that uses Intel® DSA once the superuser has configured an Intel DSA device and at least
one associated WQ and enabled the user’s access to the WQ character device file (see Section 3.2). The commands used
to configure the device and a shared WQ are provided in Appendix A.

This section provides walk-through C program snippets to illustrate the steps needed to use Intel DSA. A complete
source code listing for a C program that uses Intel DSA is provided in Appendix C.

4.1 Sample LINUX Application

Figure 4-1 shows the steps from descriptor preparation to descriptor completion. Each step is discussed in further detail
within respective sub-sections.

Prepare Descrip tor

Map WQ Descriptor Submission
Portal

Submit Descrip tor

Reset

Completion Chedt for Completion
Status &
Update

Descriptor

Partial Completion?

Figure 4-1 Descriptor Processing Sequence

Intel® Data Streaming Accelerator User Guide

4.1.1 Descriptor Preparation

Sample code to prepare a Memory Move descriptor (as described in the Memory Move section within the Intel” DSA
Architecture Specification) is shown in Example 4-1. Since the Block On Fault flag is zero, if a descriptor incurs a page fault
on either source or destination addresses, the operation status code indicates that the operation has completed with a
page fault. The number of bytes transferred for the memmove operationis provided in the completion record. Please
refer to Section 4.1.5 for details on the Block on Fault flag.

Example 4-1 Descriptor Initialization

struct dsa completion record comp

___attribute ((aligned(32))); struct dsa hw desc desc = { };

desc.opcode = DSA OPCODE MEMMOVE;

/*

* Request a completion - since we poll on status, this flag
* must be 1 for status to be updated on successful

* completion

*/

desc.flags = IDXD OP FLAG RCR;

/* CRAV should be 1 since RCR =1
*/ desc.flags |=
IDXD OP FLAG CRAV;

/* Hint to direct data writes to CPU cache */
desc.flags |= IDXD OP FLAG CC;

desc.xfer size = BLEN;
desc.src_addr =

(uintptr t)src;

desc.dst _addr =

(uintptr t)dst; comp.status
= 0;

desc.completion addr = (uintptr t)∁

4.1.2 Descriptor Submission Portal Mapping

Before submitting a descriptor to the device, an application must open a previously configured WQ device file (e.g.,
/dev/dsa/wq0.0) and map into its address space (the work submission portal on that WQ). The portal may now be
used to submit descriptors to the device.

A shared WQ device file can be opened by multiple processes concurrently, whereas only a single process can open a
dedicated WQ device file at any given time. The map_wq() function in Chapter 9 shows the use of accel-config library
functions to enumerate WQs and select an enabled WQ of the desired type.

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
Rao, Nikhil
whereas only a single process can open a dedicated WQ device file at any given time.

Intel® Data Streaming Accelerator User Guide

As a mitigation for a potential security vulnerability in some Intel® Data Streaming Accelerator (Intel® DSA) and Intel®
Analytics Accelerator (Intel® IAA) V1.0 for some Intel® 4th or 5th generation Xeon® processors may allow denial of
service. Intel is releasing prescriptive guidance and software updates to mitigate this potential vulnerability; the OS
may disallow an unprivileged process from mapping the work submission portal into its address space?. Specifically,
Linux divides superuser privileges into “capabilities” that can be independently controlled. Only a process with the
CAP_SYS_RAW._IO capability can map the work submission portal into its address space.

For unprivileged applications, the Linux device driver provides the write system call to submit descriptors. The security
issue also requires the write system call to disallow batch descriptor submission. The sample program in Chapter 9
also shows how to check for the presence of WQ mmap support in the driver and how to use the write system call.

4.1.3 Descriptor Submission

Depending on the WQ type, the software may use the ENQCMD or MOVDIR64B instruction for descriptor submission.
The Shared Work Queue section within the Intel® DSA Architecture Specification describes ENQCMD returning a non-
zero value if the descriptor is not accepted into the device. gcc10 supports the engemd() and _movdir64b()intrinsics
for ENQCMD and MOVDIR64B, respectively, via the -mengcmd and -mmovdir64b switches; for older compiler
versions, equivalent code is shown in Appendix B.

Since MOVDIR64B and ENQCMD are not ordered relative to older stores in WB or WC memory, SW must ensure
appropriate ordering (when required) by executing a fencing instruction such as SFENCE, preferably using a single
fence for multiple updates to reduce the fencing instruction overhead.

Example 4-2 Descriptor Submission

#include <x86gprintrin.h>

_mm_sfence();

if (dedicated)

_movdiré4b(wg_portal, &desc);

else {

retry = 0;

while (_enqcmd(wg_portal, &desc) && retry++ < ENQ _RETRY_MAX);

Completion Polling

The Intel DSA hardware updates the status field of the completion record when it is done processing the descriptor. The
completion check is shown in Example 4-3.

Example 4-3 Descriptor Completion Check

retry = 0;
while (comp.status == 0 && retry++ < COMP_RETRY_MAX);

if (comp.status == DSA_ COMP_SUCCESS) {

/* Successful completion */

} else {

/* Descriptor failed or timed out

* See the “Error Codes” section of the Intel® DSA Architecture Specification
for

* error code descriptions

1 Please see the Intel® DSA and Intel® IAA Advisory in the Intel Security Center:
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01084.html.

https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01084.html

Intel® Data Streaming Accelerator User Guide

A pause instruction should be added to the spin loop to reduce the power a processor consumes.

Example 4-4 Descriptor Completion Check with Pause

#include <x86gprintrin.h>

retry = 0;
while (comp.status == 0 && retry++ < COMP_RETRY_MAX)
__mm_pause();

Further power reduction can be achieved using the UMONITOR/UMWAIT instruction sequence.

UMONITOR provides an address, informing that the currently running application is interested in any writes to a
range of memory (the range that the monitoring hardware checks for store operations can be determined using the
CPUID monitor leaf function, EAX=05H).

UMWAIT instructs the processor to enter an implementation-dependent optimized state while monitoring a range of
addresses. The optimized state may be either a lightweight power/performance optimized state or an improved
power/performance optimized state. The selection between the two states is governed by the explicit input register
bit[0] source operand.

Example 4-5 UMONITOR/UMWAIT Sequence to Reduce Power Consumption While Polling

#include <x86gprintrin.h>

/*

C0.2 Improves performance of the other SMT thread(s)
on the same core and has larger power savings

but has a longer wakeup time.

*/

#define UMWAIT_STATE_CO 2 ©
#define UMWAIT_STATE_CO_1 1

retry = 0;
while (comp.status == 0 && retry++ < MAX_COMP_RETRY) {
_umonitor(&comp);

if (comp.status == 0) {
uint64_t delay = _ rdtsc() + UMWAIT_DELAY;

_umwait(UMWAIT STATE_CO_ 1, delay);
}
}

4.1.3 Partial Completion Handling

Intel DSA supports the PCl Express Address Translation Service (ATS) and Page Request Service (PRS) capabilities and
uses ATS requests to the IOMMU to translate virtual addresses in descriptors to host physical addresses. These
translation requests can return faults due to not-present translations or a mismatch between access permissions and
the access type.

The device may encounter a page fault on:

e ACompletion Record address

e The Descriptor List address in a Batch descriptor
e Readback address in a Drain descriptor

e Source buffer or destination buffer address

For the first three cases, the device blocks until the page fault is resolved if PRS is enabled; otherwise, it is reported as
an error. For the fourth case, the device can either block until the page fault is resolved or prematurely complete the
descriptor and return a partial completion to the client, as specified by the Block On Fault flag in the descriptor.

Intel® Data Streaming Accelerator User Guide

The Block On Fault in the descriptor is set to zero in the descriptor preparation sample code in Example 4-1.
Therefore, any page fault on the source or destination addresses would cause the operation to complete partially. The
completion record reports the faulting address and the number of bytes processed completely. The application can
choose between completing the operation in software and resubmitting the operation to Intel DSA after modifying
the descriptor as necessary; for example, for a memmove descriptor, SW can touch the faulting address reported in
the completion record and resubmit the operation after updating the source address, the destination address, and
transfer size fields in the descriptor. Please refer to Appendix D for further information on resubmitting descriptors for
other operations.

To maximize the utilization of the device, provide equitable BW allocation when configured as a shared device, and
provide comparatively better execution predictability, it is recommended to configure the WQ with Block On Fault
disabled.

4.2 PROGRAMMING CONSIDERATIONS

4.2.1 Ordering/Fencing

Applications may need to guarantee ordering in descriptor execution. Please refer to the Ordering and Fencing section
within the Intel® DSA Architecture Specification for details on conditions under which ordering is guaranteed and the
utility of the fence flag in descriptors within a batch.

4.2.2 Destination Address in Persistent Memory

The Persistent Memory Support section of the Intel® DSA Architecture Specification describes how descriptor flags
must be programmed to guarantee data persistence at descriptor completion.

4.2.3 Traffic Class Configuration

First generation Intel® Data Streaming Accelerator (DSA) devices on 4th Gen and 5th Gen Intel® Xeon® Scalable Processors are
limited to using a single virtual channel for DMA traffic that is different from the virtual channel used for descriptor submissions to
the device (VCO). Software should avoid using Traffic Class 0 (TCO) for DMA traffic by programming TC-A (Bits 2:0) and TC-B (Bits
5:3) fields in the device Group Configuration Table (GRPFLAGS Register, BAR + 328h, 368h, 3A8h, or 3E8h) register to a non-zero TC
value which is mapped to Virtual Channel 1 (VC1). Sharing a single virtual channel for DMA traffic to both high-bandwidth and low-
bandwidth memory targets may impact the throughput of some operations.

4.3 Erary Support for Intel® DSA

Table 9-1 Libraries with Support for Intel® DSA

Library Description

Intel has also developed an open-source library, Intel Data Movement
Library (DML), which provides a low-level C and high-level C++ API for
Intel® DML data processing using Intel DSA and a software path in case Intel DSA is
unavailable. The DML also includes sample applications that can help
quickly enable support for Intel DSA in applications.?

Libfabric includes support for Intel DSA within its shared memory
provider since libfabric version 1.17.0; this enables Intel DSA usage in
HPC applications that use the Intel MPI, MPICH, OpenMPI, and

Libfabric

2 https://intel.github.io/DML/

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://intel.github.io/DML/
Rao, Nikhil
Do we need to add DTO after DML? Or is it OK to add it to the end of the list

Ranganathan, Narayan
End of the list seems ok to me

Versaggi, Jana
They seem rather random. Is there some esoteric ordering? Should we make them alphabetical?

Intel® Data Streaming Accelerator User Guide

Library Description

MVAPICH ‘igaries. 3

Intel MPI includes support for Intel DSA since version 2021.7;
Intel® MPI instructions for enabling Intel DSA for the shm transport used for intra-
node communication are available in the Intel MPI documentation.

The Storage Performance Development Kit (SPDK) provides tools
SPDK and libraries for writing high-performance, scalable, user-mode
storage applications.?

DPDK DPDK is the Data Plane Development Kit with libraries to accelerate
packet processing workloads running on various CPU architectures.®

Intel DSA Transparent Offload (DTO) library is a Linux user-level library
that allows applications to use Intel DSA transparently (i.e., without
Intel® DTO modification). DTO library links with the applications to intercept certain
API calls (memcpy, memset, memcmp, and memmove) and uses Intel
DSA to perform these operations.®

3 SHM provider for libfabric is described at: https://ofiwg.github.io/libfabric/v1.19.0/man/fi_shm.7.html.
4 SPDK support for Intel® DSA is described at: https://spdk.io/doc/idxd.html.

5 DPDK support for Intel® DSA is described at: http://doc.dpdk.org/guides/dmadevs/idxd.html.

6 https://github.com/intel/DTO

https://ofiwg.github.io/libfabric/v1.19.0/man/fi_shm.7.html
https://spdk.io/doc/idxd.html
http://doc.dpdk.org/guides/dmadevs/idxd.html
https://github.com/intel/DTO
Rao, Nikhil
New line after "libraries"

SHM provider for libfabric is described at https://ofiwg.github.io/libfabric/v1.19.0/man/fi_shm.7.html

Rao, Nikhil
Ideally the link should take us to the latest version of documentation, Libfabric doesn’t have a way to link to the latest.

Intel® Data Streaming Accelerator User Guide

CHAPTER 5
INTEL® DSA PERFORMANCE MICROS

The Intel® Data-Streaming Accelerator Performance Micros (Intel® DSA Performance Micros) utility allows software
developers to characterize latency and bandwidth for Intel DSA operations and determine the device configuration and
programming parameters that would work best for their application.

Table 5-1. Intel® Data-Streaming Accelerator Performance Micro (dsa_perf-micros) Links

Description URL

Download command (S git clone) https://github.com/intel/dsa-perf-micros

Build instructions https://github.com/intel/dsa-perf-icros/blob/main/doc/build.rst
Sample command lines https://github.com/intel/dsa-perf-micros/blob/main/doc/options.rst

Intel® Data Streaming Accelerator User Guide

CHAPTER 6
INTEL® DSA PERFORMANCE COUNTER REFERENCES

Intel helps collect information about key events occurring in different parts of the Intel® DSA hardware. These
counters may be useful for debugging and performance tuning. The Performance Monitoring Events appendix of the
Intel® DSA Architecture Specification describes events defined for different categories:

e WQs

e Engines

e Address Translation
e etc.

Intel DSA performance counters can be set up and read using the Linux perf command.” The -e option of the perf stat
command can be used to program performance counters to count events.2.

Parameters that can be specified for Intel DSA are listed in sysfs.

$ 1s /sys/bus/event_source/devices/dsa@/format

event event_category filter_eng filter pgsz filter_sz filter_tc filter_wq

Assingle event can be read every 1s with the -1 flag using the command syntax below.

$ perf stat -e dsa@/event_category=0x1,event=0x2/ -1 1000

Multiple events can be read using a comma-separated list.

$ perf stat -e dsa®/event_category=0x1,event=0x2/,dsad/event_category=0x1,event=0x4/
-I 1000

Multiple events can be configured for a counter, and a set of filters can constrain each event. Examples of filters are
WQ, Engine, Traffic Class, and Transfer Size. A command line with multiple events configured for a single counter and
filtered by 4KB < transfer size < 16KB follows.®

$ perf stat -e dsa@/event_category=0x1,event=0x6,filter_sz=0x8/ -I 1000

7 See https://perf.wiki.kernel.org/index.php/Main Page.

8 See https://man7.org/linux/man-pages/manl/perf-stat.1.html.

9 Additional information on the usage of the perf command is available on the DSA Perf Micros GitHub repository.
Ref#: 353216-002US 27

https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://github.com/intel/dsa-perf-%20micros/wiki/DSA-Perfmon
Rao, Nikhil
DSA Perfmon GitHub repository.

In the footer should be replaced by DSA Perf Micros Github repository

Versaggi, Jana
Again, one section, no need for breakdown.

Intel® Data Streaming Accelerator User Guide

CHAPTER 7
STEPS FOR USING ACCEL-CONFIG: EXAMPLES

Configure the device.

$ accel-config config-device dsa@

$ accel-config config-engine dsa@/engined.2 --group-id=0

$ accel-config config-wq dsa®/wg@.0 --group-id=0 --wqg-size=32 --priority=1 --block-

on-fault=0
--threshold=4 --type=user --name=swq --mode=shared --max-batch-size=32
transfer- size=2097152

--maXx-

Configure the group by configuring the engine and WQ.

Enable the device and WQ.

$ accel-config enable-device dsa®

$ accel-config enable-wq dsad/wgo.0

Save the configuration to the config file.

$ accel-config save-config -s save_config.conf

Ref#: 353216-002US

28

https://www.mankier.com/1/accel-config-config-engine#--group-id

Intel® Data Streaming Accelerator User Guide

CHAPTER 7
C FUNCTIONS FOR GCC VERSIONS WITHOUT MOVDIRB64,
ENQCMD, UMWAIT, OR UMONITOR SUPPORT

GCC supports the ENQCMD and MOVDIR64B since the gcc10 release with the -menqcmd and -movdir64b switches,
respectively. The UMONITOR and UMWAIT instructions have been supported since the gcc9 release with the -mwaitpkg
switch.

Example 8-1 MOVDIR64B

static inline void

movdir64b(void *dst, const void *src)

{

asm volatile(".byte Ox66, Ox0f, Ox38, Oxf8, Ox02\t\n"
"a" (dst), "d" (src));

}
Example 8-2 ENQCMD
static inline unsigned int enqcmd(void *dst, const void *src)

{
uint8_t retry;
asm volatile(“.byte oxf2, oxof, 0x38, Oxf8, o@x02\t\n”
“setz %@\t\n”
: “=r”(retry) : “a” (reg), “d” (desc));
return (unsigned int)retry;

}
Example 8-3 UMWAIT

static inline unsigned char

umwait(unsigned int state, unsigned long long timeout)
{

uint8_t r;

uint32_t timeout_low = (uint32_t)timeout; uint32_t
timeout_high = (uint32_t)(timeout >> 32);

le(".byte Oxf2, 0x48, ox0f, Oxae, Oxfli\t\n" "setc %0\t\n" :
"opt(r)
"c"(state), "a"(timeout_low), "d"(timeout_high));

return r;

}

Example 8-4 UMONITOR

static inline void umonitor(void *addr)

{

asm volatile(".byte Oxf3, 0x48, ox0f, Oxae, OxfO" : : "a"(addr));
}

Ref#: 353216-002US 29

Versaggi, Jana
If there is only one section, we don’t need to add a subsection.

Intel® Data Streaming Accelerator User Guide

CHAPTER 8
SAMPLE C PROGRAM

8.1 Steps

5. Install the accel-config library from https://github.com/intel/idxd-config or your distribution’s package manager.

6. Configure Shared WQ using the example in Chapter 7. Assuming the source file is intel_dsa_sample.c. Use the
following command to compile.

$ make intel_dsa_sample LDLIBS=-laccel-config

8.2 The Program

Example 8-1 Intel® DSA Shared WQ Sample Application
/¥ 1 of 5 */

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <fcntl.h>

#include <string.h>

#include <sys/mman.h>

#include <sys/types.h>

#include <linux/idxd.h>

#include <xmmintrin.h>

#include <accel-config/libaccel config.h>

#tdefine NOP_RETRY 10000
#define BLEN 4096

struct wg_info {
bool wq_mapped;
void *wg_portal;
int wqg_fd;

}s

static inline int enqcmd(volatile void *reg, struct dsa_hw_desc *desc)

{
uint8_t retry;

asm volatile (".byte oxf2, oxof, 0x38, oxf8, 0x02\t\n"
"setz %0\t\n":"=r" (retry):"a"(reg), "d"(desc));
return (int)retry;

}

static inline void submit desc(void *wq_portal, struct dsa_hw_desc *hw)

{
}

while (engcmd(wg_portal, hw)) _mm_pause();

static uint8 t op_status(uint8_t status)
{

Ref#: 353216-002US 30

https://github.com/intel/idxd-config

Intel® Data Streaming Accelerator User Guide

return status & DSA_COMP_STATUS_MASK;

static bool is_write_syscall success(int fd)

struct dsa_hw_desc desc = {0};
struct dsa_completion_record comp __attribute__ ((aligned(32)));

desc.opcode = DSA_OPCODE_NOOP;
desc.flags = IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR;

desc.completion_addr = (unsigned long)∁

rc = write(fd, &desc, sizeof(desc));

if (rc == sizeof(desc)) {
while (comp.status == @ && retry++ < NOP_RETRY)

_mm_pause();

if (comp.status == DSA_ COMP_SUCCESS)

return true;

/* 2 of 5 */

}

{
int retry = 0;
int rc;
comp.status = 0;
}
return false;

}

static int map_wq(struct wg_info *wqg_info)

{

void *wqg_portal;

struct accfg_ctx *ctx;
struct accfg_wq *wq;

struct accfg_device *device;
char path[PATH_MAX];

int fd;

int wq_found;

wqg_portal = MAP_FAILED;

accfg_new(&ctx);

accfg device foreach(ctx, device) {

/* Use accfg_device (*) functions to select enabled device
* based on name, numa node
*/

accfg_wq_foreach(device, wq) {

if (accfg_wqg_get_user_dev_path(wq, path, sizeof(path)))
continue;

/* Use accfg_wqg_(*) functions select WQ of type
* ACCFG_WQT_USER and desired mode

Ref#: 353216-002US

31

Intel® Data Streaming Accelerator User Guide

/* 3 of 5 */
*/
wg_found = accfg_wq_get type(wq) == ACCFG_WQT_USER &&
accfg_wqg_get_mode(wq) == ACCFG_WQ_SHARED;
if (wg_found)
break;

}

if (wg_found)
break;

}

accfg_unref(ctx);

if (!wg_found)
return -ENODEV;

fd = open(path, O_RDWR);
if (fd >= 0) {

wg_portal =
mmap (NULL, ©x1000, PROT_WRITE, MAP_SHARED | MAP_POPULATE,
fd, @);
}
if (wg_portal == MAP_FAILED) {

/*
* EPERM means the driver doesn't support mmap but
* can support write syscall. So fallback to write syscall
*/
if (errno == EPERM && is _write syscall success(fd)) {

wqg_info->wq_mapped = false;
wqg_info->wq_fd = fd;

return 0;

return -errno;

wg_info->wqg_portal = wqg_portal;
wg_info->wqg_mapped = true;
wqg_info->wq_fd = -1;

return 0;

}

int main(int argc, char *argv[])
{
int fd;
struct dsa_hw_desc desc = { };
char src[BLEN];
char dst[BLEN];
struct dsa_completion_record comp _ attribute__ ((aligned(32)));
uint32_t tlen;

Ref#: 353216-002US

32

Rao, Nikhil
@Versaggi, Jana shift left one indentation level

Intel® Data Streaming Accelerator User Guide

/* 4 of 5 */
int rc;
struct wg_info wg_info;
rc = map_wq(&wg_info);
if (rc)

return EXIT_FAILURE;
memset(src, ©xaa, BLEN);
desc.opcode = DSA_OPCODE_MEMMOVE;

/*
* Request a completion a€“ since we poll on status, this flag
* needs to be 1 for status to be updated on successful
* completion
*/
desc.flags |= IDXD_OP_FLAG_RCR;

/* CRAV should be 1 since RCR =1 */
desc.flags |= IDXD_OP_FLAG_CRAV;

/* Hint to direct data writes to CPU cache */
desc.flags |= IDXD OP_FLAG CC;

desc.xfer_size = BLEN;

desc.src_addr = (uintptr_t) src;
desc.dst_addr = (uintptr_t) dst;
desc.completion_addr = (uintptr_t)∁

retry:
if (wg_info.wqg_mapped) {
submit_desc(wq_info.wq_portal, &desc);
} else {
int rc = write(wg_info.wq_fd, &desc, sizeof(desc));

if (rc != sizeof(desc))
return EXIT_FAILURE;
}
while (comp.status == @) _mm_pause();

if (comp.status != DSA_COMP_SUCCESS) {

if (op_status(comp.status) == DSA COMP_PAGE_FAULT_NOBOF) {
int wr = comp.status & DSA_COMP_STATUS_WRITE;
volatile char *t;

t = (char *)comp.fault_addr;
wr ? ¥t o= ¥t o okt
desc.src_addr += comp.bytes_completed;
desc.dst_addr += comp.bytes_completed;
desc.xfer_size -= comp.bytes_completed;
goto retry;

} else {
printf("desc failed status %u\n", comp.status);
rc = EXIT_FAILURE;

Ref#: 353216-002US 33

Rao, Nikhil
@Versaggi, Jana align with memset() below

Rao, Nikhil
@Versaggi, Jana align with while() below

Intel® Data Streaming Accelerator User Guide

/* 5 0f 5 */
}
} else {
printf("desc successful\n");
rc = memcmp(src, dst, BLEN);
rc ? printf("memmove failed\n") :
printf("memmove successful\n");
rc = rc ? EXIT_FAILURE : EXIT_SUCCESS;
}

return EXIT_SUCCESS;

Ref#: 353216-002US

34

Intel® Data Streaming Accelerator User Guide

CHAPTER 9
ACTIONS FOR CONTINUATION AFTER A PAGE FAULT

This table describes the changes software may make to a faulting descriptor to create a continuation descriptor after
resolving the fault and clearing the Status field of the completion record. These steps apply to descriptors that complete
with status 0x03, 0x04, 0x06, Ox1a, or Ox1f. When encountering “increase” or “decrease” in this table without a
quantity, use the Bytes Completed.

Table 10-1 SW Actions for Continuation After a Page Fault

Operation Recommended adjustment after partial completion
Nop No change. The descriptor may be resubmitted as-is.
Increase Descriptor List Address by Descriptors Completed x 64 and decrease Descriptor
Count by Descriptors Completed.
e Ifany operations before the fault are completed with status # success, and any
Batch descriptor after the fault has the Fence flag set, decrease the Descriptor Count not to
execute the descriptor with the Fence.
e [fthe Descriptor Count is 1, submit the descriptor as a single descriptor rather than a
batch.
Drain No change. The descriptor may be resubmitted as-is.
C If Result =0, increase source and destination addresses and decrease transfer size.
opy If Result = 1, decrease transfer size. (No change to source and destination addresses.)
e Increase source addresses and decrease transfer size by Bytes Completed.
e Increase Delta Record Address and decrease Maximum Delta Record Size by Delta
Record Size.
o Ifthe remaining Maximum Delta Record Size < 80, don’t resubmit the descriptor;
Create Delta instead, treat it as completed with Result = 2.
Record e The result must be saved and combined with the Result from the subsequent
completion record.
e Delta Record Size must be saved and combined with the Delta Record Size from the
subsequent completion record.
e Offsets in deltas created by the continuation descriptor will be incorrect.
Apply Delta Increase Delta Record Address and decrease Delta Record Size. (No change to Destination
Record Address or Transfer Size.)
Dualcast Increase source and destination addresses and decrease transfer size.
CRC Increase source address and decrease transfer size. Fill in CRC Seed with CRC Value.
CRC with C e Increase source and destination addresses and decrease transfer size.
with Lopy e Fillin CRC Seed with CRC Value.

Ref#: 353216-002US 35

Intel® Data Streaming Accelerator User Guide

Operation Recommended adjustment after partial completion
DIF Check e Increase source address and decrease transfer size.
ec e Fillin Reference and Application Tag Seeds with the values from the complete record.
e Increase source address and decrease transfer size by Bytes Completed.
DIF Insert e Increase destination address by Bytes Completed + (Bytes Completed / Block Size) x 8.
Fill in Tag Seeds with the values from the completion record.
) e Increase source address and decrease transfer size by Bytes Completed.
DIF Strip e Increase destination address by Bytes Completed - (Bytes Completed / Block Size) x 8.
Fill in Tag Seeds with the values from the completion record.
DIF Update Increase source and destination addresses and decrease transfer size. Fill in Tag Seeds with
values from the completion record.
Cache Flush Increase destination address and decrease transfer size.

Ref#: 353216-002US 36

Intel® Data Streaming Accelerator User Guide

CHAPTER 10
DEDICATED AND SHARED WQ COMPARISON DESCRIPTIONS

Table 11-1 Dedicated and Shared WQ Comparison

Dedicated WQ

Shared WQ

A limited number of DWQs intended
only for specific vertical uses (e.g.,

Can scale to a large number of clients (e.g.,
process, VM, container) with simultaneous SW-
lock-free work submitted to the same WQ.

Client Scaling networking and storage This is the preferred interface for all work
infrastructure). submissions, especially when sharing the device
across multiple clients/users.
Single client per DWQ and SW tracks | SW does not need to keep track of outstanding
. the number of outstanding submissions and can use the ENQCMD ISA result
WQ Sharing to identify successful vs. unsuccessful

submissions to ensure no queue
overflow.

submissions.

Submission Rate

The software can stream descriptors
to the device at a very high rate using
MOVDIR64B ISA with low latency.

Rate of descriptor submission limited by
ENQCMD round-trip latency (approx. 200-250ns
on 4th Generation Intel® Xeon®).

Ref#: 353216-002US

37

Intel® Data Streaming Accelerator User Guide

CHAPTER 11
DEBUG AIDS FOR CONFIGURATION ERRORS

Suggestions for troubleshooting and debugging for commonly encountered error situations are provided below.

e Verify that VT-d is enabled in the BIOS.
e Rundmesg | grep -i ACPI | DMAR. The output should be similar to the messages in
o Verify that the Linux Kernel configuration options mentioned in Section 2.2 are enabled.

Table 12-1 Linux Kernel ACPI Subsystem Messages When VT-d is Enabled

$ dmesg -t | grep ACPI | grep DMAR
ACPI: DMAR 0x000000007738F000 000550 (vO1 INTEL INTEL ID 00000001 INTL 20091013)
ACPI: Reserving DMAR table memory at [mem ©x7738f000-0x7738f54f]

e Use Ispci to ensure the expected Intel DSA devices exist, and the Ispci output indicates that the “Kernel driver in
use:” is set to idxd.
e Rundmesg | grep -i dmar to ensure the kernel enumerates DMAR (DMA remapping reporting) devices.
o IfVT-dis enabled in the BIOS and no DMAR devices are reported, then the IOMMU driver may not be
enabled by default.
o Reboot with “intel_iommu=0on,sm_on” added to the kernel command line to enable VT-d scalable mode.
e Run dmesg | grep -i idxd if you see “Unable to turn on SVA feature,” VT-d scalable mode may not be enabled by
default.
o Reboot with “intel_iommu=on,sm_on” added to the kernel command line to enable VT-d scalable mode.
e On certain platforms, VT-d 5-level paging capability is disabled by the BIOS; you will see “SVM disabled,
incompatible paging mode” in the dmesg output.
o Inthis case, pass no5lvl on the kernel command line. This boot-time parameter disables the 5-level paging
mode and forces the kernel to use the 4-level paging mode.

Ref#: 353216-002US 38

	Notices & Disclaimers
	Revision History
	Table of Contents
	TABLES
	FIGURES
	EXAMPLES
	Chapter 1 Introduction
	1.1 Audience
	1.2 References
	1.3 Document Organization

	Chapter 2 Platform Configuration
	2.1 BIOS Configuration
	2.2 LINUX Kernel Configuration
	2.2.1 Intel® IOMMU Driver
	2.2.2 Intel® DSA Driver

	Chapter 3 Intel® DSA Configuration
	3.1 Intel® DSA Device Enumeration
	3.1.1 PCI Information
	3.1.2 sysfs Directories

	3.2 Device Configuration and Control Interfaces
	3.2.1 Intel® DSA WQs/Engines/Groups
	3.2.2 Intel® DSA Read Buffer Controls
	3.2.3 Intel® DSA Traffic Class Configuration

	3.2.4 Linux Interfaces
	3.2.5 accel-config
	3.2.6 WQ Device File Permissions

	Chapter 4 Intel® DSA Programming
	4.1 Sample LINUX Application
	4.1.1 Descriptor Preparation
	4.1.2 Descriptor Submission Portal Mapping
	Completion Polling

	4.1.3 Partial Completion Handling

	4.2 PROGRAMMING CONSIDERATIONS
	4.2.1 Ordering/Fencing
	4.2.2 Destination Address in Persistent Memory
	4.2.3 Traffic Class Configuration

	4.3 Library Support for Intel® DSA

	Chapter 5 Intel® DSA Performance Micros
	Chapter 6 Intel® DSA Performance Counter References
	Parameters that can be specified for Intel DSA are listed in sysfs.

	Chapter 7 Steps for Using ACCEL-CONFIG: Examples
	Chapter 7 C Functions for GCC Versions Without MOVDIRB64, ENQCMD, UMWAIT, or UMONITOR Support
	Chapter 8 Sample C Program
	8.1 Steps
	8.2 The Program

	Chapter 9 Actions for Continuation After a Page Fault
	Chapter 10 Dedicated and Shared WQ Comparison Descriptions
	Chapter 11 Debug Aids for Configuration Errors

