

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US
December 2025

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 2

Notices & Disclaimers

Intel technologies may require enabled hardware, software, or service activation. No product or component can be
absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including, without limitation, the implied warranties of
merchantability, fitness for a particular purpose, non-infringement, and any warranty arising from the course of
performance, the course of dealing, or usage in trade.

Intel uses code names to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and are not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD),
https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in
compliance with the preceding intended to execute on the Intel product(s) referenced in this document. No rights
are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 3

Table of Contents
Table of Contents .. 3
Tables ... 4
Figures ... 4
Examples ... 4
Revision History ... 5
Chapter 1 Introduction ... 7

1.1 Definitions ... 7
1.2 References ... 9

Chapter 2 Platform Configuration .. 10
2.1 BIOS Configuration ... 10
2.2 Linux Kernel Configuration ... 10

2.2.1 Intel® IOMMU Driver .. 10
2.2.2 Intel® DSA Driver .. 10
2.2.3 Generic Drivers (vfio-pci and uio_pci_generic)... 12

Chapter 3 Intel® DSA Configuration ... 14
3.1 Intel® DSA Device Enumeration... 14

3.1.1 PCI Information .. 14
3.1.2 sysfs Directories .. 17

3.2 Device Configuration and Control Interfaces ... 18
3.2.1 WQs, Engines, and Groups ... 18
3.2.2 Bandwidth Control ... 19
3.2.3 Read Buffer Controls .. 19
3.2.4 Traffic Class Configuration .. 20
3.2.5 Linux Interfaces .. 21
3.2.6 accel-config... 21
3.2.7 WQ Device File Permissions ... 22

Chapter 4 Intel® DSA Programming .. 22
4.1 Sample Linux Application.. 23

4.1.1 Descriptor Preparation ... 24
4.1.2 Descriptor Submission Portal Mapping .. 24
4.1.3 Descriptor Submission .. 25
4.1.4 Completion Polling ... 25
4.1.5 Partial Completion Handling ... 26

4.2 Programming Considerations ... 28
4.2.1 Ordering/Fencing.. 28
4.2.2 Caching and Persistent Memory Controls .. 28

4.3 Library Support for Intel® DSA .. 30
Chapter 5 Intel® DSA Performance Micros ... 31
Chapter 6 Intel® DSA Performance Counter References .. 32
Chapter 7 Helper Functions for Legacy GCC Versions ... 33
Chapter 8 Sample C Program.. 35

8.1 Steps .. 35
8.2 The Program .. 35

Chapter 9 Debug Aids for Configuration Errors .. 40

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 4

Tables
Table 1-1 Acronym Definition ... 7
Table 1-2 References .. 9
Table 2-1 Linux Operating System Vendors Supporting Intel® DSA Drivers .. 12
Table 3-1 Dedicated and Shared WQ Comparison .. 18
Table 4-1 Software Actions for Continuation After a Page Fault .. 27
Table 4-2 Libraries with Support for Intel® DSA .. 30
Table 5-1 Intel® DSA Performance Micro (dsa-perf-micros) Links .. 31

Figures
Figure 3-1 Logical Organization of an Intel® DSA and Cores on an Intel® Xeon® Server Processor ... 14
Figure 3-2 Example Intel® DSA BW Range & Read Buffer Controls ... 19
Figure 3-3 Intel® DSA Device/Group/Engine/WQ Configuration and Control sysfs Entries .. 21
Figure 4-1 Descriptor Processing Sequence .. 23

Examples
Example 2-1 Linux Kernel Configuration Options for the Intel® IOMMU Driver ... 10
Example 2-2 Linux Kernel Configuration Options for the Intel® DSA Driver ... 10
Example 2-3 IDXD Driver Initialization Messages.. 11
Example 3-1 Listing All Intel® DSA Devices ... 15
Example 3-2 lspci Output for an Intel® DSA Device .. 15
Example 3-3 SVM Capabilities and Status ... 17
Example 3-4 sysfs SVM Capability ... 17
Example 3-5 Intel® DSA sysfs Directories .. 17
Example 3-6 Profiles Included in accel-config ... 21
Example 3-7 accel-config Command Line with WQ Configuration File ... 21
Example 3-8 Using accel-config to Verify Device Configuration ... 22
Example 3-9 Using accel-config to create a custom configuration ... 22
Example 3-10 Using accel-config to load a configuration ... 22
Example 3-11 WQ Device Files.. 22
Example 4-1 Descriptor Initialization .. 24
Example 4-2 Descriptor Submission.. 25
Example 4-3 Descriptor Completion Check... 25
Example 4-4 Descriptor Completion Check with Pause .. 25
Example 4-5 UMONITOR/UMWAIT Sequence to Reduce Power Consumption While Polling ... 26
Example 7-1 MOVDIR64B ... 33
Example 7-2 ENQCMD .. 33
Example 7-3 UMWAIT ... 34
Example 7-4 UMONITOR ... 34
Example 8-1 Intel® DSA Shared WQ Sample Application .. 35
Example 9-1 Linux Kernel ACPI Subsystem Messages When VT-d is Enabled ... 40

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 5

Revision History

Date Revision Description

November 2022 001 The initial release of the document.

January 2023 002

• Reference to GitHub added
(Section 3.2.3).

• Replaced section of incorrect code
(Appendix B Example 2).

July 2024 003

• Added Section 3.2.2 Intel® DSA
Read Buffer Controls.

• Updated Figure 3-2.

• Changed appendices into chapters.

• Updated Code in Chapter 8.

December 2025 004

• Added information about DSA
Gen 3 features.

• Added information about using
generic drivers (section 2.2.3).

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 6

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 7

CHAPTER 1
INTRODUCTION

Intel® DSA is a high-performance data copy and transformation accelerator integrated into Intel® processors,
starting with 4th Generation and later Intel® Xeon® processors. It is targeted for optimizing streaming data movement
and transformation operations common with applications for high-performance storage, networking, persistent
memory, and various data processing applications.

This document is for system administrators who may need to configure Intel DSA devices and developers who want
to enable Intel DSA support in applications and use libraries that provide interfaces to Intel DSA. It should be read
alongside the Intel® DSA Architecture Specification and documentation for software utilities and libraries that
support Intel DSA, such as accel-config/libaccel-config, Libfabric, and Intel® MPI.

This document describes Intel DSA setup and configuration and includes sample code for Intel DSA. It does not
include configuration mechanisms and settings specific to domain-specific software stacks such as DPDK and SPDK.
For additional information, please refer to the appropriate documentation.

1.1 Definitions

Table 1-1 Acronym Definition

Acronym Term Definition

BIOS Basic Input Output System

ATS Address Translation Service
A protocol defined by the PCI Express* specification to
support address translations by a device.

IDPT Inter-Domain Permissions Table Table to control inter-domain operations.

IDPTE
Inter-Domain Permissions Table

Entry
An entry in the IDPT.

IOMMU I/O Memory Management Unit
A DMA Remapping Hardware Unit defined by Intel®
Virtualization Technology for Directed I/O.

PCI
Peripheral Component

Interconnect

A local computer bus for interconnecting peripheral
devices with the processor/memory subsystems. PCI
Express is a serial computer bus expansion standard
designed to replace the PCI.

PRS Page Request Service

When an endpoint determines that it requires access to a
page for which the ATS translation is unavailable, it sends a
Page Request message requesting that the page be
mapped into system memory.

PASID Process Address Space Identifier
A value used in memory transactions to convey the address
space on the host of an address used by the device.

OS Operating System
Allocates hardware resources (for example, processor
cores, memory, and devices) to ensure optimal usage by
multiple concurrent applications.

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 8

Acronym Term Definition

SVM Shared Virtual Memory

An ability for an accelerator I/O device to operate in the
same virtual memory space of applications on host
processors. It also implies the ability to operate from
pageable memory, avoiding functional requirements to pin
memory for DMA operations.

QoS Quality of Service
The ability of a system to provide predictable latency and
bandwidth.

SKU Stock-Keeping Unit The part number or product number that identifies an item.

SR-IOV Single-Root I/O Virtualization
A PCI Express standard for virtualizing PCI Express endpoint
device interfaces.

WQ Work queue A queue in the device used to store descriptors.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 9

1.2 References

Table 1-2 References

Description URL

Intel® DSA Architecture
Specification

https://software.intel.com/content/www/us/en/develop/articles/intel-
data-streaming-accelerator-architecture-specification.html

Intel® DSA Perf Micros https://github.com/intel/dsa-perf-micros

Intel® DSA Perfmon Support https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon

Intel® Data Movement Library https://intel.github.io/DML

PCI Express* Base Specification 4.0 http://www.pcisig.com/specifications/pciexpress

Intel® Virtualization Technology
for Directed I/O (Intel® VT-d or
Intel® IOMMU)

https://software.intel.com/content/www/us/en/develop/download/intel-
virtualization-technology-for-directed-io-architecture-specification.html

Intel® MPI
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-
library.html

DPDK IDXD DMADEV driver https://doc.dpdk.org/guides/dmadevs/idxd.html

SPDK IDXD driver https://spdk.io/doc/idxd.html

accel-config and libaccel-config https://github.com/intel/idxd-config

Libfabric https://github.com/ofiwg/libfabric/blob/main/man/fi_shm.7.md

https://github.com/intel/dsa-perf-micros
https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
http://www.pcisig.com/specifications/pciexpress
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html?wapkw=Intel%20MPI
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html?wapkw=Intel%20MPI
https://doc.dpdk.org/guides/dmadevs/idxd.html
https://spdk.io/doc/idxd.html
https://github.com/intel/idxd-config

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 10

CHAPTER 2
PLATFORM CONFIGURATION

2.1 BIOS Configuration

This document primarily focuses on Intel® DSA usage with user space memory, requiring Intel® Virtualization
Technology for Directed I/O (VT-d) to be enabled. As described in the Address Translation section in the Intel® DSA
Architecture Specification, DSA may also be used with physical or other virtual addresses (for example, I/O virtual
address, IOVA). While a detailed discussion of this is beyond the scope of this document, Section 2.2.3 provides a
brief description and some related pointers.

2.2 Linux Kernel Configuration

2.2.1 Intel® IOMMU Driver

The Intel® IOMMU driver with scalable mode support (CONFIG_INTEL_IOMMU_SVM) must be enabled in the kernel
configuration, as shown in Example 2-1. If either the CONFIG_INTEL_IOMMU_DEFAULT_ON or the
CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON options are not enabled, then “intel_iommu=on,sm_on"
must be added to the kernel boot parameters.

Example 2-1 Linux Kernel Configuration Options for the Intel® IOMMU Driver

CONFIG_INTEL_IOMMU=y CONFIG_INTEL_IOMMU_SVM=y

CONFIG_INTEL_IOMMU_DEFAULT_ON=y

CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON=y

2.2.2 Intel® DSA Driver

When building/installing the Linux kernel, enable the kernel configuration options shown in Example 2-2.

Example 2-2 Linux Kernel Configuration Options for the Intel® DSA Driver

CONFIG_INTEL_IDXD=m

CONFIG_INTEL_IDXD_SVM=y

CONFIG_INTEL_IDXD_PERFMON=y

Work queues (WQs) are on-device storage to contain descriptors submitted to the device and can be configured to
run in either of two modes:

• Dedicated (DWQ), or

• Shared (SWQ).

A SWQ allows multiple clients to submit descriptors simultaneously without the software overhead of
synchronization needed to track WQ occupancy. SWQ is the preferred WQ mode since it offers better device

utilization versus hard partitioning with DWQs, which may result in underutilization. The Intel® DSA Driver (IDXD)
with DWQ support was introduced in kernel version 5.6. The IDXD driver with SWQ support is available in Linux
upstream Kernel versions 5.18 and beyond.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 11

IDXD driver initialization can be checked using the dmesg command, which prints the kernel message buffer, as
shown in Example 2-3.

Example 2-3 IDXD Driver Initialization Messages

$ dmesg -t | grep "idxd"

idxd 0000:6a:01.0: enabling device (0144 -> 0146)

idxd 0000:6a:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:6a:02.0: enabling device (0140 -> 0142)

idxd 0000:6a:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:6f:01.0: enabling device (0144 -> 0146)

idxd 0000:6f:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:6f:02.0: enabling device (0140 -> 0142)

idxd 0000:6f:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:74:01.0: enabling device (0144 -> 0146)

idxd 0000:74:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:74:02.0: enabling device (0140 -> 0142)

idxd 0000:74:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:79:01.0: enabling device (0144 -> 0146)

idxd 0000:79:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:79:02.0: enabling device (0140 -> 0142)

idxd 0000:79:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:e7:01.0: enabling device (0144 -> 0146)

idxd 0000:e7:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:e7:02.0: enabling device (0140 -> 0142)

idxd 0000:e7:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:ec:01.0: enabling device (0144 -> 0146)

idxd 0000:ec:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:ec:02.0: enabling device (0140 -> 0142)

idxd 0000:ec:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:f1:01.0: enabling device (0144 -> 0146)

idxd 0000:f1:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:f1:02.0: enabling device (0140 -> 0142)

idxd 0000:f1:02.0: Intel(R) Accelerator Device (v100)

idxd 0000:f6:01.0: enabling device (0144 -> 0146)

idxd 0000:f6:01.0: Intel(R) Accelerator Device (v100)

idxd 0000:f6:02.0: enabling device (0140 -> 0142)

idxd 0000:f6:02.0: Intel(R) Accelerator Device (v100)

Table 2-1 shows the distribution kernel versions with complete IDXD driver support. For the latest information,
please refer to vendor documentation.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 12

Table 2-1 Linux Operating System Vendors Supporting Intel® DSA Drivers

Vendor Intel® DSA Driver

SUSE Linux Enterprise Server SLES 15 SP4

Red Hat Enterprise Linux RHEL 8.7 & 9.1

Ubuntu Ubuntu 22.10

2.2.3 Generic Drivers (vfio-pci and uio_pci_generic)

Intel DSA can be configured for use with a generic driver such as vfio-pci or uio_pci_generic. This allows using Intel
DSA without SVM.

When operating in this mode, it is the application's responsibility to use appropriate driver APIs to register and pin
memory regions before initiating any DMA operations. Details of the APIs are beyond the scope of this document.
The documentation for DPDK and SPDK contain examples of such uses.

To configure DSA for use with vfio or uio_pci_generic, use the following steps:

1. The DSA device must be detached from the idxd driver. To do this, either boot the system with the
command line parameter “modprobe.blacklist=idxd” or use the command
rmmod idxd

2. For uio_pci_generic: Boot the system with the command line parameter “intel_iommu=off”.

3. List the DSA devices to get their pci addresses. The list may look like this:

$ lspci | grep 0b25
6a:01.0 System peripheral: Intel Corporation Device 0b25
6f:01.0 System peripheral: Intel Corporation Device 0b25
74:01.0 System peripheral: Intel Corporation Device 0b25
79:01.0 System peripheral: Intel Corporation Device 0b25
e7:01.0 System peripheral: Intel Corporation Device 0b25
ec:01.0 System peripheral: Intel Corporation Device 0b25
f1:01.0 System peripheral: Intel Corporation Device 0b25
f6:01.0 System peripheral: Intel Corporation Device 0b25

4. Install the driver you want to use with one of these commands:*
modprobe vfio-pci
modprobe uio_pci_generic

5. Attach the DSA devices to the desired driver with one of these commands:
echo "8086 0b25" >  /sys/bus/pci/drivers/vfio-pci/new_id
echo "8086 0b25" >  /sys/bus/pci/drivers/uio_pci_generic/new_id

6. Now DSA is ready to be used with the selected driver. Check that the devices are attached to the desired
driver with the following command, using any of the PCI device ids from step 3. The devices will not be
listed under /dev/dsa.
$ ls -l /sys/bus/pci/devices/*/driver | grep 6a:01

7. Install librte_eal, which comes with DPDK.

* Some versions of Intel DSA must not be used with untrusted software. In this case, the DSA device appears in the
the vfio-pci driver denylist to prevent assignment of the Intel DSA device to the vfio-pci driver. If you intend to run
trusted software, you can use the parameter ‘disable_denylist=1’ on the modprobe command for vfio-pci.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 13

8. To use the DSA Performance Micros, export the following variable. Change the librte_eal version in this
command to match the one present in your system.
$ export DSA_PERF_MICROS_EAL_PATH=/usr/lib64/librte_eal.so.23

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 14

CHAPTER 3
INTEL® DSA CONFIGURATION

This section describes how Intel® DSA devices and WQs can be configured and enabled by a superuser before
running an application that uses Intel DSA. Before describing the configuration process, Linux OS structures for Intel
DSA are described to help debug configuration issues.

3.1 Intel® DSA Device Enumeration

3.1.1 PCI Information

Figure 3-1 shows the logical organization of an Intel DSA on Intel® Xeon® server processor. Depending on the
processor SKU, between one and four Intel DSA devices exist per socket. A system with two sockets can have up to
eight Intel DSA devices.

Figure 3-1 Logical Organization of an Intel® DSA and Cores on an
Intel® Xeon® Server Processor

https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon
https://en.wikipedia.org/wiki/Xeon

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 15

Intel DSA PCI device ID is 0x0b25 or 0x1212. The following command lists the Intel DSA devices on the system:

Example 3-1 Listing All Intel® DSA Devices

$ lspci | egrep '0b25|1212'

6a:01.0 System peripheral: Intel Corporation Device 0b25

6f:01.0 System peripheral: Intel Corporation Device 0b25

74:01.0 System peripheral: Intel Corporation Device 0b25

79:01.0 System peripheral: Intel Corporation Device 0b25

e7:01.0 System peripheral: Intel Corporation Device 0b25

ec:01.0 System peripheral: Intel Corporation Device 0b25

f1:01.0 System peripheral: Intel Corporation Device 0b25

f6:01.0 System peripheral: Intel Corporation Device 0b25

The complete lspci output for an Intel DSA device can be obtained, as shown in Example 3-2. If the Kernel driver in
use field within the lspci output is blank, use the modprobe idxd command to load the driver.

Example 3-2 lspci Output for an Intel® DSA Device

lspci -vvv -s 6a:01.0
6a:01.0 System peripheral: Intel Corporation Device 0b25

Subsystem: Intel Corporation Device 0000
Control: I/O- Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr+ Stepping- SERR+

FastB2B- DisINTx-
Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort-

>SERR- <PERR- INTx-
Latency: 0
NUMA node: 0
Region 0: Memory at 206ffff60000 (64-bit, prefetchable) [size=64K]
Region 2: Memory at 206ffff00000 (64-bit, prefetchable) [size=128K]
Capabilities: [40] Express (v2) Root Complex Integrated Endpoint, MSI 00

DevCap: MaxPayload 512 bytes, PhantFunc 0
ExtTag+ RBE+ FLReset+

DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReq-
RlxdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+ FLReset-
MaxPayload 128 bytes, MaxReadReq 4096 bytes

DevSta: CorrErr- NonFatalErr- FatalErr- UnsupReq- AuxPwr- TransPend-
DevCap2: Completion Timeout: Not Supported, TimeoutDis+, NROPrPrP-, LTR+

10BitTagComp+, 10BitTagReq+, OBFF Not Supported, ExtFmt+,
EETLPPrefix+, MaxEETLPPrefixes 1 EmergencyPowerReduction Not
Supported, EmergencyPowerReductionInit-

Capabilities: [80] MSI-X: Enable+ Count=9 Masked-
Vector table: BAR=0 offset=00002000
PBA: BAR=0 offset=00003000

Capabilities: [90] Power Management version 3
Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1-,D2-,D3hot-,D3cold-)
Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-

Capabilities: [100 v2] Advanced Error Reporting
UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF-

MalfTLP- ECRC- UnsupReq- ACSViol-
UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF-

MalfTLP- ECRC- UnsupReq+ ACSViol-
UESvrt: DLP- SDES- TLP+ FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF-

MalfTLP+ ECRC- UnsupReq- ACSViol-
CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-
CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- AdvNonFatalErr-

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 16

AERCap: First Error Pointer: 00, ECRCGenCap- ECRCGenEn- ECRCChkCap-
ECRCChkEn- MultHdrRecCap- MultHdrRecEn- TLPPfxPres- HdrLogCap-
HeaderLog: 00000000 00000000 00000000 00000000

Capabilities: [150 v1] Latency Tolerance Reporting
Max snoop latency: 0ns
Max no snoop latency: 0ns

Capabilities: [160 v1] Transaction Processing Hints
Device-specific mode supported
Steering table in TPH capability structure

Capabilities: [170 v1] Virtual Channel
Caps: LPEVC=1 RefClk=100ns PATEntryBits=1
Arb: Fixed+ WRR32- WRR64- WRR128-
Ctrl: ArbSelect=Fixed Status: InProgress-
VC0: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-

Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-
Ctrl: Enable+ ID=0 ArbSelect=Fixed TC/VC=fd
Status: NegoPending- InProgress-

VC1: Caps: PATOffset=00 MaxTimeSlots=1 RejSnoopTrans-
Arb: Fixed- WRR32- WRR64- WRR128- TWRR128- WRR256-
Ctrl: Enable+ ID=1 ArbSelect=Fixed TC/VC=02
Status: NegoPending- InProgress-

Capabilities: [200 v1] Designated Vendor-Specific <?>
Capabilities: [220 v1] Address Translation Service (ATS)

ATSCap: Invalidate Queue Depth: 00
ATSCtl: Enable+, Smallest Translation Unit: 00

Capabilities: [230 v1] Process Address Space ID (PASID)
PASIDCap: Exec- Priv+, Max PASID Width: 14
PASIDCtl: Enable+ Exec- Priv+

Capabilities: [240 v1] Page Request Interface (PRI)
PRICtl: Enable+ Reset-
PRISta: RF- UPRGI- Stopped+
Page Request Capacity: 00000200, Page Request Allocation: 00000020

Kernel driver in use: idxd
 Kernel modules: idxd

Shared Virtual Memory (SVM) is a usage where a device operates in the CPU virtual address space of the application
accessing the device. Devices supporting SVM do not require pages accessed by the device to be pinned. Instead,
they use the PCI Express Address Translation Services (ATS) and Page Request Services (PRS) capabilities to
implement recoverable device page faults. Devices supporting SVM use PASIDs to distinguish different application
virtual address spaces.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 17

PCIe capabilities and status related to SVM – ATSCtl, PASIDCtl, and PRICtl are enabled, as shown in Example 3-3.

Refer to the Address Translation section in the Intel® DSA Architecture Specification for further details on how Intel
DSA utilizes the PASID, PCIe, ATS, and PRS capabilities to support SVM.

Example 3-3 SVM Capabilities and Status

Capabilities: [220 v1] Address Translation Service (ATS)

ATSCap: Invalidate Queue Depth: 00

ATSCtl: Enable+, Smallest Translation Unit: 00

Capabilities: [230 v1] Process Address Space ID (PASID)

PASIDCap: Exec- Priv+, Max PASID Width: 14

PASIDCtl: Enable+ Exec- Priv+

Capabilities: [240 v1] Page Request Interface (PRI)

PRICtl: Enable+ Reset-

PRISta: RF- UPRGI- Stopped+

Page Request Capacity: 00000200, Page Request Allocation:
00000020

SVM capability is also available in sysfs.

Example 3-4 sysfs SVM Capability

$ cat /sys/bus/dsa/devices/dsa0/pasid_enabled

1

3.1.2 sysfs Directories

The Linux sysfs file system is a pseudo-file system that provides an interface to kernel data structures. The files
under sysfs provide information about devices, kernel modules, file systems, and other kernel components.

The Linux driver generates the sysfs directories shown in Example 3-5 for an example dual-socket system with
eight total Intel DSA devices (four devices per processor). The Intel DSA and Intel® In-Memory Analytics Accelerator
(Intel® IAA) devices are both managed by the IDXD device driver. The numbering of Intel DSA and Intel IAA devices
depends on the number of each device in the CPU SKU. In the dual-socket example below, four Intel IAA devices
are present per socket. They are named iax{1,3,5,7,9,11,13,15}. Correspondingly, the Intel DSA devices are named
dsa{0,2,4,6,8,10,12,14}.

Example 3-5 Intel® DSA sysfs Directories

$ ls -df /sys/bus/dsa/devices/dsa*

/sys/bus/dsa/devices/dsa0 /sys/bus/dsa/devices/dsa2

/sys/bus/dsa/devices/dsa10 /sys/bus/dsa/devices/dsa4

/sys/bus/dsa/devices/dsa12 /sys/bus/dsa/devices/dsa6

/sys/bus/dsa/devices/dsa14 /sys/bus/dsa/devices/dsa8

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 18

3.2 Device Configuration and Control Interfaces
The Intel DSA device is configured through entries in the sysfs filesystem. After configuration, the device and WQ can
be enabled. The driver creates a /dev/dsa/wqD.Q device file for every enabled WQ, where D is the Intel DSA ID, and Q
is the WQ ID. The application uses the WQ device file to submit work to the hardware, as described in Section 4.1.

3.2.1 WQs, Engines, and Groups

Software specifies work for the device by constructing descriptors in memory and submitting them to the WQ.
Shared WQs allow multiple clients to submit descriptors concurrently and are recommended for application use.

All descriptors submitted to a DWQ use a single address space, so a DWQ can be used when a single OS-level
process uses the WQ. Dedicated WQs require SW to manage flow control by keeping track of descriptors
submitted and completed to ensure the WQ capacity is not overrun.

An engine is an operational unit within an Intel DSA device. A group is a logical organization of a set of WQs and
engines to achieve a specific QoS objective. Multiple groups can provide performance isolation between applications

sharing the device. Refer to sections 3.3 and 3.4 in the Intel® DSA Architecture Specification for more details on Intel
DSA WQ, Engine, and Group capabilities and controls.

With current implementations, the memory bandwidth achievable by a given Intel DSA instance for data sizes of
4KB or larger may be realized with only a single engine within the device. In such cases, provisioning additional
engines in the same Intel DSA instance may not offer additional performance benefits. However, using additional
engines may be useful to improve the quality of service (QoS) within the Intel DSA instance. A user may achieve
higher aggregate performance as compared to a single Intel DSA instance using multiple Intel DSA instances.

Table 3-1 Dedicated and Shared WQ Comparison

 Shared WQ Dedicated WQ

Client Scaling

Can scale to a large number of clients (e.g.,
process, VM, container) with simultaneous
SW-lock-free work submitted to the same
WQ.

This is the preferred interface for all work
submissions, especially when sharing the
device across multiple clients/users.

A limited number of DWQs intended only
for specific vertical uses (e.g., networking
and storage infrastructure).

WQ Sharing

Software does not need to keep track of
outstanding descriptors. SW can use the
ENQCMD result to identify successful vs.
unsuccessful descriptor submissions.

Each DWQ uses a single address space. SW
must track the number of outstanding
descriptors to avoid queue overflow.

Submission Rate
Rate of descriptor submission limited by
ENQCMD round-trip latency (approx. 200-
250 ns on 4th Generation Intel® Xeon®).

Software can stream descriptors to the
device at a high rate using MOVDIR64B. If
descriptor ordering is not a requirement,
SW can use different portal addresses to
avoid serializing writes to the same address.
Refer to the Ordering and Fencing section in
the Intel® DSA Architecture Specification.

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://cdrdv2.intel.com/v1/dl/getContent/671116

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 19

3.2.2 Bandwidth Control

Some Intel® DSA implementations provide software controls to limit the maximum read and write bandwidth per
group. When supported, the Read Bandwidth Limit and Write Bandwidth Limit fields in GRPFLAGS limit the maximum
read and write bandwidth for that group. The limits are expressed as a fraction of the maximum value supported by
the device implementation. Hardware throttles an engine when the bandwidth utilization of the group equals or
exceeds the configured maximum.

This can be used by system software to ensure that applications or guests submitting work to that group don’t use
more bandwidth than has been allocated to them.

3.2.3 Read Buffer Controls

Intel DSA uses read buffers to manage memory read latency. For implementations that do not implement
Bandwidth Control (section 3.2.2), system software may utilize the read buffer controls to limit read bandwidth.
Read buffer controls can also be used to reserve a minimum amount of read bandwidth for a group.

The group configuration registers in the device provide two fields to control the number of Read Buffers that are
available to be used by each group.

• Read Buffers Allowed: The value in this field indicates the maximum number of Read Buffers that may be in
use at one time by all engines in the group. The default value is the total number of read buffers, meaning that
there is no limitation. A smaller value in this field can limit the read bandwidth usable by this group and also
by the device as a whole.

Figure 3-2 Example Intel® DSA BW Range & Read Buffer Controls

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 20

• Read Buffers Reserved: A non-zero value for the Read Buffers Reserved field ensures a minimum number of
read buffers available to the engines in the group and allows a guaranteed read bandwidth, but it may restrict
the bandwidth usable by other groups, even when the engines in this group are idle. The default value for this
field is 0.

The amount of memory read latency associated with each read buffer varies depending on the system load. As a
result, the read bandwidth achieved with specific values of Read Buffers Allowed and Read Buffers Reserved falls
within a range of values. An example with equal values for Read Buffers Reserved and Read Buffers Allowed for a
first generation Intel DSA implementation is shown in Figure 3-2.

See Section 4.3 in the Intel® DSA Architecture Specification for more information on programming Read Buffers
Allowed and Read Buffers Reserved controls.

3.2.4 Traffic Class Configuration

Traffic classes are designed to segregate traffic with different QoS characteristics. For example, data being written
to memory with lower bandwidth and/or higher latency should be segregated from data being written to main
memory, to prevent the higher performance data from being blocked behind the lower performance data. Sharing
a single virtual channel for DMA traffic to both high-bandwidth and low-bandwidth memory targets may impact
throughput.

Intel® DSA devices support two Virtual Channels, VC0 and VC1, and eight Traffic Classes, 0 through 7. Traffic Class 0
is always mapped to VC0. The other traffic classes can be mapped to either VC0 or VC1. The mapping of TCs to VCs
is controlled by system software by programming the TC/VC Map field in the PCIe Virtual Channel capability.

System software controls the TC values available in a group by programming the TC-A (Bits 2:0) and TC-B (Bits 5:3)
fields in the device Group Configuration Table GRPFLAGS register. Application software selects which of the two
TCs to use by setting flags in the descriptor.

First-generation Intel® DSA devices on 4th and 5th Generation Intel® Xeon® Scalable Processors are limited to
using a single virtual channel for DMA traffic. For these implementations, DMA traffic should always use Virtual
Channel 1 (VC1), because VC0 is used for descriptor submissions to the device. System software should program
both the TC-A and TC-B fields to non-zero TC values that are mapped to VC1. Intel® DSA devices later than the first
generation do not have this restriction, so software can use Traffic Classes mapped to either Virtual Channel 0 or
Virtual Channel 1 as described above.

The Linux driver by default follows the guidelines above for the respective device versions. This default behavior
can be overridden by passing the tc_override parameter to the driver, and the user can customize traffic class
configuration via the traffic_class_a and traffic_class_b entries within the per-group sysfs directory.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 21

3.2.5 Linux Interfaces

Intel DSA Groups, Engines, and WQs are configured using sysfs entries created by the IDXD driver.

Figure 3-3 shows the configuration and control sysfs entries for the dsa0 device. The DSA device is configured by a
superuser. An active group must have at least one WQ and one Engine assigned to it. (A group is inactive if it is
assigned no WQs or Engines.) The configuration using the accel-config utility is described in Section 3.2.6. An Intel
DSA device and associated WQs may only be enabled after configuring the Groups, Engines, and at least the size of
the WQs.

$ ls /sys/bus/dsa/devices/dsa0

cdev_major group0.0 max_work_queues uevent

clients group0.1 max_work_queues_size version

cmd_status group0.2 numa_node wq0.0

configurable group0.3 op_cap wq0.1

engine0.0 max_batch_size pasid_enabled wq0.2

engine0.1 max_engines power wq0.3

engine0.2 max_groups read_buffer_limit wq0.4

engine0.3 max_read_buffers state wq0.5

errors max_tokens subsystem wq0.6

gen_cap max_transfer_size token_limit wq0.7

Figure 3-3 Intel® DSA Device/Group/Engine/WQ Configuration and Control sysfs Entries

3.2.6 accel-config

The program accel-config is a Linux application that provides a command line interface for Intel DSA configuration.
The program comes with a shared library (libaccel-config.so) that applications can use to query and modify Intel
DSA configuration. accel-config can be used with text-based configuration files. Recommended configurations for a
few use cases are included in the accel-config installation. app_profile.conf is a configuration intended for user
space applications and provides two groups with one SWQ and one engine each.

Example 3-6 Profiles Included in accel-config

$ cd idxd-config/contrib/configs/ && ls *.conf

app_profile.conf net_profile.conf os_profile.conf storage_profile.conf

The WQs are configured so that applications desiring to use Intel DSA for operations with a relatively small
memory footprint can submit descriptors to the WQ with a smaller value of maximum transfer size configured for
that WQ. This avoids head-of-line blocking, i.e., prevents these operations from queuing. Example 3-7 shows how
to configure and enable WQs using app_profile.conf. A super-user must execute this command since only a super-
user can modify sysfs entries.

Example 3-7 accel-config Command Line with WQ Configuration File

$ accel-config load-config -c contrib/configs/app_profile.conf -e

Enabling device dsa0

Enabling wq wq0.1

Enabling wq wq0.0

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 22

accel-config can show the current configuration using the list command, as shown in Example 3-8.

Example 3-8 Using accel-config to Verify Device Configuration

$ accel-config list

Example 3-9 Using accel-config to create a custom configuration

This example shows using accel-config with command-line parameters to enable Intel DSA with a custom
configuration and save the configuration to a file. The configuration values used are examples and may vary
depending on device and/or driver capabilities.

1. Configure the attributes of the device. This example sets all attributes to default values.

$ accel-config config-device dsa0

2. Configure a group by configuring an engine and WQ.

$ accel-config config-engine dsa0/engine0.0 --group-id=0

$ accel-config config-wq dsa0/wq0.0 --group-id=0 --wq-size=32 --priority=1 \
--block-on-fault=0 --threshold=4 --type=user --name=swq --mode=shared \
--max-batch-size=32 --max-transfer-size=2097152

3. Enable the device and WQ.

$ accel-config enable-device dsa0

$ accel-config enable-wq dsa0/wq0.0

4. Save the configuration to a file. This saves the configuration of all device instances in the system.

$ accel-config save-config -s save_config.conf

Example 3-10 Using accel-config to load a configuration

$ accel-config load-config -c save_config.conf

3.2.7 WQ Device File Permissions

The idxd driver creates WQ device files, as seen in Example 3-11.

Example 3-11 WQ Device Files

$ ls -la /dev/dsa/wq0.0 /dev/dsa/wq0.1

crw------- 1 root root 240, 1 Oct 5 11:58 /dev/dsa/wq0.0

crw------- 1 root root 240, 0 Oct 5 11:58 /dev/dsa/wq0.1

The super-user must grant read-write permissions to the device file to the user/group under which the process runs.

CHAPTER 4
INTEL® DSA PROGRAMMING

A user can initiate an application that uses Intel® DSA, but only after the superuser configures an Intel DSA device

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 23

with at least one associated WQ. Additionally, the superuser must enable the user’s access to the WQ character
device file. The commands to configure the device and a shared WQ are described in Section 3.2.

This section provides walk-through C program snippets illustrating the steps needed to use Intel DSA. Chapter 8
provides a complete source code listing for a C program that uses Intel DSA.

4.1 Sample Linux Application

Figure 4-1 shows the steps from descriptor preparation to descriptor completion. Each step is discussed in further
detail within respective sub-sections.

Figure 4-1 Descriptor Processing Sequence

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 24

4.1.1 Descriptor Preparation

Sample code to prepare a Memory Move descriptor is shown in Example 4-1. Since the Block On Fault flag is zero, if
a descriptor incurs a page fault on either source or destination addresses, the operation status code indicates that
the operation has completed with a page fault. The number of bytes transferred for the memmove operation is
provided in the completion record. For details on the Block on Fault flag, please refer to Section 4.1.5 .

Example 4-1 Descriptor Initialization

struct dsa_completion_record comp __attribute__((aligned(32)));

struct dsa_hw_desc desc = { };

desc.opcode = DSA_OPCODE_MEMMOVE;

/*

* Request a completion – since we poll on status, this flag

* must be 1 for status to be updated on successful

* completion

 */

desc.flags = IDXD_OP_FLAG_RCR; /* Request Completion Record */

/* CRAV should be 1 since RCR = 1 */

desc.flags |= IDXD_OP_FLAG_CRAV; /* Completion Record Address Valid */

/* Hint to direct data writes to CPU cache */

desc.flags |= IDXD_OP_FLAG_CC; /* Cache Control 1 */

desc.xfer_size = BLEN; /* Buffer length */

desc.src_addr = (uintptr_t)src;

desc.dst_addr = (uintptr_t)dst;

comp.status = 0;

desc.completion_addr = (uintptr_t)∁

4.1.2 Descriptor Submission Portal Mapping

Before submitting a descriptor to the device, an application must open a previously configured WQ device file (for
example, /dev/dsa/wq0.0) and map into its address space (the work submission portal on that WQ). The portal
may now be used to submit descriptors to the device.

A shared WQ device file can be opened by multiple processes concurrently, whereas only a single process can open
a dedicated WQ device file at any given time. The map_wq() function in Chapter 8 shows the use of accel-config
library functions to enumerate WQs and select an enabled WQ of the desired type.

As a mitigation for a potential security vulnerability in Intel® Data Streaming Accelerator (Intel® DSA) and Intel®
Analytics Accelerator (Intel® IAA) in some Intel® Xeon® processors, Intel has published guidance and software
updates.1 The OS may disallow an unprivileged process from mapping the work submission portal into its address
space. Specifically, Linux divides superuser privileges into “capabilities” that can be independently controlled. Only
a process with the CAP_SYS_RAW_IO capability can map the work submission portal into its address space.

For unprivileged applications, the Linux device driver provides the write system call to submit descriptors. The
security issue also requires the write system call to disallow batch descriptor submission. The sample program in

1 Please see the Intel® DSA and Intel® IAA Advisory https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01084.html.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-01084.html

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 25

Chapter 8 also shows how to check for the presence of WQ mmap support in the driver and how to use the write

system call.

4.1.3 Descriptor Submission

Depending on the WQ type, the software may use the ENQCMD or MOVDIR64B instruction for descriptor

submission. The Shared Work Queue section in the Intel® DSA Architecture Specification describes ENQCMD
returning a non-zero value if the descriptor is not accepted into the device. gcc10 supports the enqcmd() and
_movdir64b() intrinsics for ENQCMD and MOVDIR64B, respectively, via the -menqcmd and -mmovdir64b
switches; for older compiler versions, equivalent code is shown in Chapter 7.

Since MOVDIR64B and ENQCMD are not ordered relative to older stores in WB or WC memory, SW must ensure
appropriate ordering (when required) by executing a fencing instruction such as SFENCE, preferably using a single
fence for multiple updates to reduce the fencing instruction overhead.

Example 4-2 Descriptor Submission

#include <x86gprintrin.h>

_mm_sfence();

if (dedicated)

_movdir64b(wq_portal, &desc);

else {

retry = 0;

while (_enqcmd(wq_portal, &desc) && retry++ < ENQ_RETRY_MAX);

}

4.1.4 Completion Polling

The Intel DSA hardware updates the status field of the completion record when it is done processing the descriptor.
The completion check is shown in Example 4-3.

Example 4-3 Descriptor Completion Check

retry = 0;

while (comp.status == 0 && retry++ < COMP_RETRY_MAX);

if (comp.status == DSA_COMP_SUCCESS) {

/* Successful completion */

} else {

/* Descriptor failed or timed out
* See the “Error Codes” section of the Intel® DSA Architecture Specification
* for error code descriptions
*/

}

A pause instruction should be added to the spin loop to reduce the power a processor consumes.

Example 4-4 Descriptor Completion Check with Pause

#include <x86gprintrin.h>

retry = 0;

while (comp.status == 0 && retry++ < COMP_RETRY_MAX)

https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/671116/intel-data-streaming-accelerator-architecture-specification.html
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 26

__mm_pause();

Further power reduction can be achieved using the UMONITOR/UMWAIT instruction sequence.

UMONITOR provides an address, informing that the currently running application is interested in any writes to a
range of memory (the range that the monitoring hardware checks for store operations can be determined using
the CPUID monitor leaf function, EAX=05H).

UMWAIT instructs the processor to enter an implementation-dependent optimized state while monitoring a range
of addresses. The optimized state may be either a lightweight power/performance optimized state or an improved
power/performance optimized state. The selection between the two states is governed by the explicit input
register bit[0] source operand.

Example 4-5 UMONITOR/UMWAIT Sequence to Reduce Power Consumption While Polling

#include <x86gprintrin.h>

/*
* C0.2 Improves performance of the other SMT thread(s)
* on the same core and has larger power savings
* but has a longer wake-up time.
*/

#define UMWAIT_STATE_C0_2 0

#define UMWAIT_STATE_C0_1 1

retry = 0;

while (comp.status == 0 && retry++ < MAX_COMP_RETRY) {

_umonitor(&comp);

if (comp.status == 0) {

uint64_t delay = __rdtsc() + UMWAIT_DELAY;

_umwait(UMWAIT_STATE_C0_1, delay);

}

}

4.1.5 Partial Completion Handling

Intel DSA supports the PCI Express Address Translation Service (ATS) and Page Request Service (PRS) capabilities and
uses ATS requests to the IOMMU to translate virtual addresses in descriptors to host physical addresses. These
translation requests can return faults due to not-present translations or a mismatch between access permissions
and the access type.

The device may encounter a page fault on:

• A Completion Record address

• The Descriptor List address in a Batch descriptor

• Readback address in a Drain descriptor

• Source buffer or destination buffer address

For the first three cases, the device blocks until the page fault is resolved if PRS is enabled; otherwise, it is reported
as an error. For the fourth case, the device can either block until the page fault is resolved or prematurely

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 27

complete the descriptor and return a partial completion to the client, as specified by the Block On Fault flag in the
descriptor.

The Block On Fault flag in the descriptor is set to zero in the descriptor preparation sample code in Example 4-1.
Therefore, any page fault on the source or destination addresses would cause the operation to partially complete.
The completion record reports the faulting address and the number of bytes processed completely. The
application can choose between completing the operation in software and resubmitting the operation to Intel DSA
after modifying the descriptor as necessary; for example, for a memmove descriptor, SW can touch the faulting
address reported in the completion record and resubmit the operation after updating the source address, the
destination address, and transfer size fields in the descriptor.

To maximize the utilization of the device, provide equitable BW allocation when configured as a shared device, and
provide comparatively better execution predictability, it is recommended to configure the WQ with Block On Fault
disabled.

Actions for Continuation After a Page Fault

Table 4-1 describes the changes software may make to a faulting descriptor to create a continuation descriptor after
resolving the fault and clearing the Status field of the completion record. These steps apply to descriptors that
complete with a page fault (status code 0x03, 0x04, 0x06, or 0x1f). When encountering “increase” or “decrease” in
this table without a quantity, use Bytes Completed.

Table 4-1 Software Actions for Continuation After a Page Fault

Operation Recommended adjustment after partial completion

Batch

• Increase Descriptor List Address by Descriptors Completed × 64 and decrease
Descriptor Count by Descriptors Completed.

• If Batch Continuation Support is 1, copy bit 0 of the Result field in the completion
record into the Batch Error flag of the continuation descriptor.

• If Batch Continuation Support is 0 and any operations before the fault are completed
with Status ≠ Success and any descriptor after the fault has the Fence flag set, decrease
the Descriptor Count not to execute the descriptor with the Fence.

• If Batch1 Support is 0 and Descriptor Count is 1, submit the descriptor as a single
descriptor rather than a batch.

Drain No change. The descriptor may be resubmitted as-is.

Memory Move
If Result = 0, increase source and destination addresses and decrease transfer size.
If Result = 1, decrease transfer size. (No change to source and destination addresses.)

Create Delta
Record

• Increase source addresses and decrease transfer size by Bytes Completed.

• Increase Delta Record Address and decrease Maximum Delta Record Size by Delta
Record Size.

• If the remaining Maximum Delta Record Size < 80, don’t resubmit the descriptor;
instead, treat it as completed with Result = 2.

• The result must be saved and combined with the Result from the subsequent
completion record.

• Delta Record Size must be saved and combined with the Delta Record Size from the
subsequent completion record.

• Offsets in deltas created by the continuation descriptor will be incorrect.

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 28

Operation Recommended adjustment after partial completion

Apply Delta
Record

Increase Delta Record Address and decrease Delta Record Size. (No change to Destination
Address or Transfer Size.)

Dualcast Increase source and destination addresses and decrease transfer size.

CRC Increase source address and decrease transfer size. Fill in CRC Seed with CRC Value.

CRC with Copy
• Increase source and destination addresses and decrease transfer size.

• Fill in CRC Seed with CRC Value.

DIF Check
• Increase source address and decrease transfer size.

• Fill in Reference and Application Tag Seeds with the values from the complete record.

DIF Insert
• Increase source address and decrease transfer size by Bytes Completed.

• Increase destination address by Bytes Completed + (Bytes Completed / Block Size) × 8.
Fill in Tag Seeds with the values from the completion record.

DIF Strip
• Increase source address and decrease transfer size by Bytes Completed.

• Increase destination address by Bytes Completed - (Bytes Completed / Block Size) × 8.
Fill in Tag Seeds with the values from the completion record.

DIF Update
Increase source and destination addresses and decrease transfer size. Fill in Tag Seeds with
values from the completion record.

Cache Flush Increase destination address and decrease transfer size.

4.2 Programming Considerations

4.2.1 Ordering/Fencing

Applications may need to guarantee ordering in descriptor execution. Please refer to the Ordering and Fencing
section in the Intel® DSA Architecture Specification for details on conditions under which ordering is guaranteed
and the utility of the fence flag in descriptors within a batch.

4.2.2 Caching and Persistent Memory Controls

DSA provides descriptor flags that indicate whether memory writes should be directed to cache, dynamic memory,
persistent memory, or a peer device. There are three cache control flags, called Cache Control 1, Cache Control 2,
and Cache Control 3. (Cache Control 3 was introduced in DSA Gen 3. Cache Control 2 was previously named
Destination Readback.)

When Cache Control 1 is 0, DSA write operations are directed to memory. If the destination address is present in
any cache, it may be evicted. When Cache Control 1 is 1, writes are directed to the cache. If the destination is
present in a cache, it will be updated. If it is not present, a new cache entry may be allocated. Both of these values
are hints.

When Cache Control 2 is 1, DSA performs a readback after performing the write operation. This is intended for use
with memory writes that target a peer device, to ensure that the data has reached the peer device before the

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 29

descriptor completes. (This is not necessary for writes that target memory addresses, because DSA always ensures
that such writes are visible before completing the descriptor.)

When Cache Control 3 is 1, DSA treats the writes as writes to durable memory. This feature is available if the
Durable Write Support capability in GENCAP is 1. For implementations where Durable Write Support is 0, software
may indicate writes to durable memory by setting Cache Control 1 to 0 and Cache Control 2 to 1. The destination
readback ensures that the data has reached persistent memory.

Some combinations of the cache control flags are reserved. Sections 3.10 Cache Control, 3.11 Persistent Memory
Support, and 8.1.3.1 Cache Control Hints in the Intel® DSA Architecture Specification provide more information on
cache controls.

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 30

4.3 Library Support for Intel® DSA

Table 4-2 Libraries with Support for Intel® DSA

Library Description

Intel® DML

Intel has developed an open-source library, Intel Data Movement
Library (DML), which provides a low-level C and high-level C++ API for
data processing using Intel DSA and a software path in case Intel DSA is
unavailable. The DML also includes sample applications that can help
quickly enable support for Intel DSA in applications.
https://intel.github.io/DML

Libfabric

Libfabric includes support for Intel DSA within its shared memory
provider since libfabric version 1.17.0; this enables Intel DSA usage in
HPC applications that use the Intel MPI, MPICH, OpenMPI, and
MVAPICH libraries. The SHM provider for libfabric is described at
https://ofiwg.github.io/libfabric/v1.19.0/man/fi_shm.7.html.

Intel® MPI

Intel MPI includes support for Intel DSA since version 2021.7.
Instructions for enabling Intel DSA for the shm transport used for
intranodal communication are available in the Intel MPI
documentation.

SPDK

The Storage Performance Development Kit (SPDK) provides tools and
libraries for writing high-performance, scalable, user-mode storage
applications. SPDK support for Intel® DSA is described at
https://spdk.io/doc/idxd.html.

DPDK

DPDK is the Data Plane Development Kit with libraries to accelerate
packet processing workloads running on various CPU architectures.
DPDK support for Intel® DSA is described at
http://doc.dpdk.org/guides/dmadevs/idxd.html.

Intel® DTO

Intel DSA Transparent Offload (DTO) library is a Linux user-level library
that allows applications to use Intel DSA transparently (i.e., without
modification). DTO library links with the applications to intercept
certain API calls (memcpy, memset, memcmp, and memmove) and uses
Intel DSA to perform these operations.
https://github.com/intel/DTO

https://intel.github.io/DML
https://ofiwg.github.io/libfabric/v1.19.0/man/fi_shm.7.html
https://spdk.io/doc/idxd.html
http://doc.dpdk.org/guides/dmadevs/idxd.html
https://github.com/intel/DTO

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 31

CHAPTER 5
INTEL® DSA PERFORMANCE MICROS

The Intel® Data-Streaming Accelerator Performance Micros (Intel® DSA Performance Micros) utility allows software
developers to characterize latency and bandwidth for Intel DSA operations and determine the device configuration
and programming parameters that would work best for their application.

Table 5-1 Intel® DSA Performance Micro (dsa-perf-micros) Links

Description URL

Download command ($ git clone) https://github.com/intel/dsa-perf-micros

Build instructions https://github.com/intel/dsa-perf-micros/blob/main/doc/build.rst

Sample command lines https://github.com/intel/dsa-perf-micros/blob/main/doc/options.rst

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 32

CHAPTER 6
INTEL® DSA PERFORMANCE COUNTER REFERENCES

Intel helps collect information about key events occurring in different parts of the Intel® DSA hardware. These
counters may be useful for debugging and performance tuning. The Performance Monitoring Events appendix in
the Intel® DSA Architecture Specification describes events defined for different categories:

• WQs

• Engines

• Address Translation

• etc.

Intel DSA performance counters can be set up and read using the Linux perf command.2 The -e option of the perf
stat command can be used to program performance counters to count events.3

Parameters that can be specified for Intel DSA are listed in sysfs:

A single event can be read every 1 s with the -I flag using the command syntax below.

Multiple events can be read using a comma-separated list.

Multiple events can be configured for a counter, and a set of filters can constrain each event. Examples of filters are
WQ, Engine, Traffic Class, and Transfer Size. A command line with multiple events configured for a single counter and
filtered by 4KB ≤ transfer size < 16KB follows.

Additional information on the usage of the perf command is available in the DSA Perfmon GitHub repository.

2 See https://perf.wiki.kernel.org/index.php/Main_Page.
3 See https://man7.org/linux/man-pages/man1/perf-stat.1.html.

$ ls /sys/bus/event_source/devices/dsa0/format

event event_category filter_eng filter_pgsz filter_sz filter_tc filter_wq

$ perf stat -e dsa0/event_category=0x1,event=0x2/ -I 1000

$ perf stat -e dsa0/event_category=0x1,event=0x2/,dsa0/event_category=0x1,event=0x4/
-I 1000

$ perf stat -e dsa0/event_category=0x1,event=0x6,filter_sz=0x8/ -I 1000

https://github.com/intel/dsa-perf-micros/wiki/DSA-Perfmon
https://perf.wiki.kernel.org/index.php/Main_Page
https://man7.org/linux/man-pages/man1/perf-stat.1.html

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 33

CHAPTER 7
HELPER FUNCTIONS FOR LEGACY GCC VERSIONS

GCC supports the ENQCMD and MOVDIR64B instructions since the gcc10 release with the -menqcmd and -movdir64b
switches, respectively. The UMONITOR and UMWAIT instructions have been supported since the gcc9 release with
the -mwaitpkg switch.

For earlier versions of gcc, the following function definitions can be used.

Example 7-1 MOVDIR64B

static inline void

movdir64b(void *dst, const void *src)

{

asm volatile(".byte 0x66, 0x0f, 0x38, 0xf8, 0x02\t\n"

: : "a" (dst), "d" (src));

}

Example 7-2 ENQCMD

static inline unsigned int

enqcmd(void *dst, const void *src)

{

uint8_t retry;

asm volatile(“.byte 0xf2, 0x0f, 0x38, 0xf8, 0x02\t\n”

“setz %0\t\n”

: “=r”(retry) : “a” (reg), “d” (desc));

return (unsigned int)retry;

}

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 34

Example 7-3 UMWAIT

static inline unsigned char

umwait(unsigned int state, unsigned long long timeout)

{

uint8_t r;

uint32_t timeout_low = (uint32_t)timeout;

uint32_t timeout_high = (uint32_t)(timeout >> 32);

asm volatile(".byte 0xf2, 0x48, 0x0f, 0xae, 0xf1\t\n"

"setc %0\t\n" :

"=r"(r) :

"c"(state), "a"(timeout_low), "d"(timeout_high));

return r;

}

Example 7-4 UMONITOR

static inline void

umonitor(void *addr)

{

asm volatile(".byte 0xf3, 0x48, 0x0f, 0xae, 0xf0" : : "a"(addr));

}

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 35

CHAPTER 8
SAMPLE C PROGRAM

8.1 Steps

1. Install the accel-config library from https://github.com/intel/idxd-config or your distribution’s package
manager.

2. Configure Shared WQ following Example 3-9 in Section 3.2.6. Assuming the source file is intel_dsa_sample.c.
Use the following command to compile.

8.2 The Program

Example 8-1 Intel® DSA Shared WQ Sample Application

/* Intel DSA Shared WQ Sample Application */
/* Page 1 of 5 */

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <linux/idxd.h>
#include <xmmintrin.h>
#include <accel-config/libaccel_config.h>

#define NOP_RETRY 10000
#define BLEN 4096

struct wq_info {
 bool wq_mapped;
 void *wq_portal;
 int wq_fd;
};

static inline int enqcmd(volatile void *reg, struct dsa_hw_desc *desc)
{
 uint8_t retry;

 asm volatile (".byte 0xf2, 0x0f, 0x38, 0xf8, 0x02\t\n"
 "setz %0\t\n":"=r" (retry):"a"(reg), "d"(desc));
 return (int)retry;
}

static inline void submit_desc(void *wq_portal, struct dsa_hw_desc *hw)
{
 while (enqcmd(wq_portal, hw)) _mm_pause();
}

$ make intel_dsa_sample LDLIBS=-laccel-config

https://github.com/intel/idxd-config

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 36

/* Page 2 of 5 */

static uint8_t op_status(uint8_t status)
{
 return status & DSA_COMP_STATUS_MASK;
}

static bool is_write_syscall_success(int fd)
{
 struct dsa_hw_desc desc = {0};
 struct dsa_completion_record comp __attribute__((aligned(32)));
 int retry = 0;
 int rc;

 desc.opcode = DSA_OPCODE_NOOP;
 desc.flags = IDXD_OP_FLAG_CRAV | IDXD_OP_FLAG_RCR;
 comp.status = 0;

 desc.completion_addr = (unsigned long)∁

 rc = write(fd, &desc, sizeof(desc));

 if (rc == sizeof(desc)) {
 while (comp.status == 0 && retry++ < NOP_RETRY)
 _mm_pause();

 if (comp.status == DSA_COMP_SUCCESS)
 return true;
 }

 return false;
}

static int map_wq(struct wq_info *wq_info)
{
 void *wq_portal;
 struct accfg_ctx *ctx;
 struct accfg_wq *wq;
 struct accfg_device *device;
 char path[PATH_MAX];
 int fd;
 int wq_found;

 wq_portal = MAP_FAILED;

 accfg_new(&ctx);

 accfg_device_foreach(ctx, device) {

 /*
 * Use accfg_device_(*) functions to select enabled device
 * based on name, numa node
 */
 accfg_wq_foreach(device, wq) {

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 37

 if (accfg_wq_get_user_dev_path(wq, path, sizeof(path)))
 continue;

/* Page 3 of 5 */
 /*
 * Use accfg_wq_(*) functions select WQ of type
 * ACCFG_WQT_USER and desired mode
 */
 wq_found = accfg_wq_get_type(wq) == ACCFG_WQT_USER &&
 accfg_wq_get_mode(wq) == ACCFG_WQ_SHARED;

 if (wq_found)
 break;
 }

 if (wq_found)
 break;
 }

 accfg_unref(ctx);

 if (!wq_found)
 return -ENODEV;

 fd = open(path, O_RDWR);
 if (fd >= 0) {
 wq_portal =
 mmap(NULL, 0x1000, PROT_WRITE, MAP_SHARED | MAP_POPULATE,
 fd, 0);
 }

 if (wq_portal == MAP_FAILED) {
 /*
 * EPERM means the driver doesn't support mmap but
 * can support write syscall. So fallback to write syscall
 */
 if (errno == EPERM && is_write_syscall_success(fd)) {
 wq_info->wq_mapped = false;
 wq_info->wq_fd = fd;
 return 0;
 }

 return -errno;
 }

 wq_info->wq_portal = wq_portal;
 wq_info->wq_mapped = true;
 wq_info->wq_fd = -1;

 return 0;
}

int main(int argc, char *argv[])
{
 int fd;

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 38

 struct dsa_hw_desc desc = { };
 char src[BLEN];
 char dst[BLEN];
 struct dsa_completion_record comp __attribute__((aligned(32)));
 uint32_t tlen;
 int rc;
/* Page 4 of 5 */
 struct wq_info wq_info;

 rc = map_wq(&wq_info);
 if (rc)
 return EXIT_FAILURE;

 memset(src, 0xaa, BLEN);

 desc.opcode = DSA_OPCODE_MEMMOVE;

 /*
 * Request a completion – since we poll on status, this flag
 * needs to be 1 for status to be updated on successful
 * completion
 */
 desc.flags |= IDXD_OP_FLAG_RCR;

 /* CRAV should be 1 since RCR = 1 */
 desc.flags |= IDXD_OP_FLAG_CRAV;

 /* Hint to direct data writes to CPU cache */
 desc.flags |= IDXD_OP_FLAG_CC;
 desc.xfer_size = BLEN;
 desc.src_addr = (uintptr_t) src;
 desc.dst_addr = (uintptr_t) dst;
 desc.completion_addr = (uintptr_t)∁

 retry:
 if (wq_info.wq_mapped) {
 submit_desc(wq_info.wq_portal, &desc);
 } else {
 int rc = write(wq_info.wq_fd, &desc, sizeof(desc));

 if (rc != sizeof(desc))
 return EXIT_FAILURE;
 }

 while (comp.status == 0) _mm_pause();

 if (comp.status != DSA_COMP_SUCCESS) {
 if (op_status(comp.status) == DSA_COMP_PAGE_FAULT_NOBOF) {
 int wr = comp.status & DSA_COMP_STATUS_WRITE;
 volatile char *t;

 t = (char *)comp.fault_addr;
 wr ? *t = *t : *t;
 desc.src_addr += comp.bytes_completed;
 desc.dst_addr += comp.bytes_completed;
 desc.xfer_size -= comp.bytes_completed;

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 39

 goto retry;
 } else {
 printf("desc failed status %u\n", comp.status);
 rc = EXIT_FAILURE;
 }
 } else {
 printf("desc successful\n");

/* Page 5 of 5 */
 rc = memcmp(src, dst, BLEN);

 rc ? printf("memmove failed\n") :
 printf("memmove successful\n");
 rc = rc ? EXIT_FAILURE : EXIT_SUCCESS;
 }

 return EXIT_SUCCESS;
}

Intel® Data Streaming Accelerator User Guide

Ref#: 353216-004US 40

CHAPTER 9
DEBUG AIDS FOR CONFIGURATION ERRORS

Suggestions for troubleshooting and debugging for commonly encountered error situations are provided below.

• Verify that VT-d is enabled in the BIOS.

• Verify that the Linux Kernel configuration options mentioned in Section 2.2 are enabled.

• Run dmesg | grep ACPI | grep DMAR. The output should be similar to the messages in Example 9-1.

Example 9-1 Linux Kernel ACPI Subsystem Messages When VT-d is Enabled

$ dmesg -t | grep ACPI | grep DMAR
ACPI: DMAR 0x000000007738F000 000550 (v01 INTEL INTEL ID 00000001 INTL 20091013)
ACPI: Reserving DMAR table memory at [mem 0x7738f000-0x7738f54f]

• Use lspci to ensure the expected Intel DSA devices exist, and the lspci output indicates that the “Kernel driver
in use:” is set to idxd.

• Run dmesg | grep -i dmar to ensure the kernel enumerates DMAR (DMA remapping reporting) devices.
o If VT-d is enabled in the BIOS and no DMAR devices are reported, then the IOMMU driver may not be

enabled by default.
o Reboot with “intel_iommu=on,sm_on” added to the kernel command line to enable VT-d scalable mode.

• Run dmesg | grep -i idxd if you see “Unable to turn on SVA feature,” VT-d scalable mode may not be enabled
by default.
o Reboot with “intel_iommu=on,sm_on” added to the kernel command line to enable VT-d scalable mode.

• On certain platforms, VT-d 5-level paging capability is disabled by the Basic Input/Output System (BIOS); you
will see “SVM disabled, incompatible paging mode” in the dmesg output.
o In this case, pass no5lvl on the kernel command line. This boot-time parameter disables the 5-level paging

mode and forces the kernel to use the 4-level paging mode.

	Table of Contents
	Tables
	Figures
	Examples
	Revision History
	Chapter 1 Introduction
	1.1 Definitions
	1.2 References

	Chapter 2 Platform Configuration
	2.1 BIOS Configuration
	2.2 Linux Kernel Configuration
	2.2.1 Intel® IOMMU Driver
	2.2.2 Intel® DSA Driver
	2.2.3 Generic Drivers (vfio-pci and uio_pci_generic)

	Chapter 3 Intel® DSA Configuration
	3.1 Intel® DSA Device Enumeration
	3.1.1 PCI Information
	3.1.2 sysfs Directories

	3.2 Device Configuration and Control Interfaces
	3.2.1 WQs, Engines, and Groups
	3.2.2 Bandwidth Control
	3.2.3 Read Buffer Controls
	3.2.4 Traffic Class Configuration
	3.2.5 Linux Interfaces
	3.2.6 accel-config
	3.2.7 WQ Device File Permissions

	Chapter 4 Intel® DSA Programming
	4.1 Sample Linux Application
	4.1.1 Descriptor Preparation
	4.1.2 Descriptor Submission Portal Mapping
	4.1.3 Descriptor Submission
	4.1.4 Completion Polling
	4.1.5 Partial Completion Handling

	4.2 Programming Considerations
	4.2.1 Ordering/Fencing
	4.2.2 Caching and Persistent Memory Controls

	4.3 Library Support for Intel® DSA

	Chapter 5 Intel® DSA Performance Micros
	Chapter 6 Intel® DSA Performance Counter References
	Chapter 7 Helper Functions for Legacy GCC Versions
	Chapter 8 Sample C Program
	8.1 Steps
	8.2 The Program

	Chapter 9 Debug Aids for Configuration Errors

