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1 Introduction

This document is a work in progress and is subject to change based on customer 
feedback and internal analysis. This document does not imply any product commitment 
from Intel to anything in terms of features and/or behaviors.

This document is a specification of the architecture of a new feature called flexible 
return and event delivery (FRED).

The FRED architecture defines simple new transitions that change privilege level (ring 
transitions). The FRED architecture was designed with the following goals:

• Improve overall performance and response time by replacing event delivery 
through the interrupt descriptor table (IDT event delivery) and event return by 
the IRET instruction with lower latency transitions.

• Improve software robustness by ensuring that event delivery establishes the full 
supervisor context and that event return establishes the full user context.

The new transitions defined by the FRED architecture are FRED event delivery and, 
for returning from events, two FRED return instructions. FRED event delivery can 
effect a transition from ring 3 to ring 0, but it is also used to deliver events incident to 
ring 0. One FRED instruction (ERETU) effects a return from ring 0 to ring 3, while the 
other (ERETS) returns while remaining in ring 0.

In addition to these transitions, the FRED architecture defines a new instruction (LKGS) 
for managing the state of the GS segment register. The LKGS instruction can be used 
by (and perhaps benefit) operating systems that do not use the new FRED transitions.

The following is the organization of this specification:

• Section 2 describes the existing behavior of ring transitions in the Intel® 64 
architecture.

• Section 3 gives an overview of the FRED architecture.

• Section 4 gives details on enumeration and configuration of FRED, including the 
new state defined for FRED.

• Section 5 explains FRED event delivery.

• Section 6 presents the FRED return instructions.

• Section 7 describes how enabling FRED transitions changes the operation of 
existing instructions (including those used for system call and return).

• Section 8 presents a new instruction (LKGS) for managing the state of the GS 
segment register.

• Section 9 discusses virtualization support (VMX) for the FRED architecture.

• Appendix A presents details of the operation of FRED event delivery and the FRED 
return instructions.

Note: This document uses the term canonical in two different ways. A linear address is 
canonical relative to the processor’s maximum linear-address width if 
bits 63:M–1 of the address are identical, where M is processor’s maximum linear-
address width (as enumerated in CPUID.80000008H:EAX[bits 15:8]. A linear address is 
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canonical relative to the current paging mode if bits 63:M–1 of the address are 
identical, where M is 48 if 4-level paging is enabled and 57 if 5-level paging is enabled.
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2 Ring Transitions and the CS, SS, 
and GS Segments

The Intel® 64 architecture’s protection architecture is based on use of a 2-bit privilege 
level (0–3). Operation at a particular privilege level is informally called a ring; thus, 
ring 0 (the most privileged ring) refers to operation while the current privilege level 
(CPL) is 0, while ring 3 (the least privileged ring) refers to operation while the CPL is 3.

The Intel 64 architecture defines a number of control-flow transitions that change the 
CPL. Known informally as ring transitions, there are two principal types:

• Transitions that increase privilege (by decreasing the CPL). These include 
transitions using interrupt and trap gates in the interrupt descriptor table (IDT), 
executions of the far CALL instruction that access call gates, and executions of the 
SYSCALL and SYSENTER instructions.

• Transitions that decrease privilege (by increasing the CPL). These include 
executions of the instructions IRET, far RET, SYSEXIT, and SYSRET.

In IA-32e mode, the CPL is visible to software in the RPL field (bits 1:0) of the CS 
segment selector. In addition, the DPL field in the descriptor cache for the SS segment 
also contains the CPL, although this is not directly visible to software.

Because the CPL is manifest in the CS and SS segment registers, ring transitions 
always modify the CS and SS segment registers.

GS is another segment that software manages at the time of ring transitions. This is 
because 64-bit operating systems use the GS segment to support thread-local 
storage (TLS): the GS base address identifies the location of the TLS. User and 
supervisor software use the TLS at different addresses, so the base address of the GS 
segment will differ depending on the CPL.

Unlike CS and SS, GS is not modified by existing ring transitions. This means that, after 
a transition to ring 0, the GS base address will still reference the user TLS. For this 
reason, supervisor software must update the GS base address before it can access its 
own TLS. Similarly, it must switch the GS base address back to the user value before 
returning to user software. The SWAPGS instruction supports efficient updates of the 
GS base address.
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3 Overview of the FRED 
Architecture

The following items summarize the principle elements of the FRED architecture:

• FRED event delivery. Any event that would normally cause IDT event delivery 
(e.g., an interrupt or exception) will instead establish the new context without 
accessing any of the existing data structures (e.g., IDT). The SYSCALL and 
SYSENTER instructions will also use FRED event delivery in place of their existing 
operation.

• FRED return instructions. Two new return instructions, ERETS and ERETU, 
support low-latency returns from event handling. ERETS (event return to 
supervisor) is designed to return from events incident to ring 0 and does not 
change CPL; ERETU (event return to user) returns to application software operating 
in ring 3.

• GS segment management. FRED transitions that change the CPL (FRED event 
delivery and ERETU) update the GS base address in a manner similar to the 
SWAPGS instruction. In addition, the LKGS instruction allows system software to 
manage the GS segment more flexibly.

When FRED transitions are enabled, they are the only ring transitions possible. Since 
FRED event delivery is always to ring 0 and ERETU returns only to ring 3, it is not 
possible to enter ring 1 or ring 2 while FRED transitions are enabled.

The FRED architecture is defined for use by a 64-bit operating system. Except where 
noted, changes to processor behavior and new instructions apply only in IA-32e mode 
(if IA32_EFER.LMA = 1) and not to legacy protected mode (or real-address mode). The 
new processor state defined by the FRED architecture is accessible with RDMSR and 
WRMSR regardless of mode.

The FRED architecture introduces the concept of a stack level. The current stack 
level (CSL) is a value in the range 0–3 that the processor tracks when CPL = 0. FRED 
event delivery determines the stack level associated with the event being delivered 
and, if it is greater than the CSL (or if CPL had been 3), loads the stack pointer from a 
new FRED RSP MSR associated with the event’s stack level (see Section 4.3). (If 
supervisor shadow stacks are enabled, the stack level applies also to the shadow-stack 
pointer, SSP, which may be loaded from a FRED SSP MSR.) The FRED return 
instruction ERETS restores the old stack level.

The shadow-stack architecture includes a token-management mechanism to ensure 
shadow-stack integrity when switching shadow stacks. This mechanism uses locked 
read-modify-write operations that may affect worst-case performance adversely. FRED 
transitions use a modified token-management mechanism that avoids locked 
operations for most transitions. This new mechanism is supported by defining new 
verified bits in the FRED SSP MSRs (see Section 4.3).



Document Number: 346446-002US, Revision: 2.0 11

4 Enumeration, Enabling, and 
Configuration

This section describes the enumeration, enabling, and configuration mechanisms for 
the FRED architecture.

4.1 Enumeration
The FRED architecture includes two related but independent elements: the new FRED 
transitions and the LKGS instruction for management of the GS segment register. 
Because operating systems may benefit from the LKGS instruction without using FRED, 
the two elements are enumerated independently.

CPUID.(EAX=7,ECX=1):EAX[bit 17] is a new feature flag that enumerates support for 
the new FRED transitions. It also enumerates support for the new architectural state 
(MSRs) defined by FRED.

CPUID.(EAX=7,ECX=1):EAX[bit 18] is another new CPUID feature flag that enumerates 
support for the LKGS instruction.

Any processor that enumerates support for FRED transitions will also enumerate 
support for LKGS.

4.2 Enabling in CR4
Software enables FRED transitions by setting CR4[32] (henceforth CR4.FRED).1

FRED transitions are enabled for a logical processor when CR4.FRED = 1 and the logical 
processor is in IA-32e mode (IA32_EFER.LMA = 1). Specifically, setting CR4.FRED 
enables FRED event delivery (Section 5) in IA-32e mode. It also enables the FRED 
return instructions (Section 6), but only in 64-bit mode (when IA32_EFER.LMA = 
CS.L = 1).

The value of CR4.FRED does not affect the accessibility of the new MSRs (Section 4.3) 
by RDMSR and WRMSR, nor does it effect the operation of the new LKGS instruction 
(Section 8).

Enabling FRED transitions changes the behavior of various existing instructions. See 
Section 7.

4.3 New MSRs for Configuration of FRED Transitions
FRED transitions are controlled by the following new MSRs:

• IA32_FRED_CONFIG (MSR index 1D4H). This MSR is organized as follows:

— Bits 1:0 of this MSR contain the current stack level (CSL). This 2-bit value is 
manipulated and used by FRED event delivery (Section 5) and the FRED return 

1. Execution of the MOV to CR4 instruction outside 64-bit mode clears CR4[63:32]. For that reason, 
software must first enter 64-bit mode before using MOV to CR4 to set CR4.FRED.
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instructions (Section 6).
Software can modify the CSL with the WRMSR instruction, but this is not an 
expected usage. It is recommended that, when using WRMSR to update 
IA32_FRED_CONFIG, software always write the existing CSL into bits 3:2 of the 
MSR (unless it specifically desires to change the CSL).

— Bit 2 is reserved.
— Bit 3 indicates, if set, that FRED event delivery should decrement the shadow 

stack pointer (SSP) by 8 when not changing stacks.
— Bits 5:4 are reserved.
— Bits 8:6 identify the amount (measured in 64-byte cache lines) by which FRED 

event delivery decrements the regular stack pointer (RSP) when not changing 
stacks.

— Bits 10:9 identify the stack level that is used for maskable interrupts that are 
delivered in ring 0; see Section 5.1.3.

— Bit 11 is reserved.
— Bits 63:12 contain the upper bits of the linear address of a page in memory 

containing event handlers. FRED event delivery will load RIP to refer to an 
entry point on this page (see Section 5.1.1).

WRMSR to this MSR causes a general-protection exception (#GP) if its source 
operand sets any reserved bits or if it is not canonical relative to the processor’s 
maximum linear-address width.

• IA32_FRED_RSP0, IA32_FRED_RSP1, IA32_FRED_RSP2, and IA32_FRED_RSP3 
(MSR indices 1CCH–1CFH). These are the FRED RSP MSRs.

If FRED event delivery causes a transition from ring 3 or a change to the CSL, it 
loads RSP from the FRED RSP MSR corresponding to the new stack level. See 
Section 5.1.3. 

WRMSR to any of these MSRs causes a general-protection exception (#GP) if its 
source operand is not 64-byte aligned (bits 5:0 are not all zero) or if it is not 
canonical relative to the processor’s maximum linear-address width.

Note: The numbers 0–3 in the MSR names refer to the corresponding stack level and not to 
privilege level.

• IA32_FRED_STKLVLS (MSR index 1D0H). This MSR is interpreted as an array of 32 
2-bit values, one for each vector in the range 0–31. For an exception with vector v 
(or for a non-maskable interrupt, which always has vector v = 2) that occurs in 
ring 0, FRED event delivery ensures that the new stack level is at least the value of 
IA32_FRED_STKLVLS[2v+1:2v]. See Section 5.1.3.

• IA32_FRED_SSP1, IA32_FRED_SSP2, and IA32_FRED_SSP3 (MSR indices 1D1H–
1D3H). Together with the existing MSR IA32_PL0_SSP (MSR index 6A4H), these 
are the FRED SSP MSRs. References in this document to “IA32_FRED_SSP0” are 
to the IA32_PL0_SSP MSR.

If supervisor shadow stacks are enabled and FRED event delivery causes a 
transition from ring 3 or a change to the CSL, it loads SSP from the FRED SSP MSR 
corresponding to the new stack level. See Section 5.1.3. 

Each of the FRED SSP MSRs is organized as follows:

— Bit 0 is the MSR’s verified bit. This bit is used by the token management 
performed by FRED event delivery (Section 5.2.2) and by executions of ERETS 
and ERETU (Section 6.1.2 and Section 6.2.2).
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The verified bits exist only in the FRED SSP MSRs and not in SSP itself. FRED 
event delivery does not set SSP[0] even when loading SSP from an MSR in 
which the verified bit is set.

On processors that do not enumerate support for FRED transitions (see Section 
4.1), WRMSR to IA32_PL0_SSP enforces 4-byte alignment and thus treats 
bits 1:0 as reserved bits. On processors that do enumerate support for FRED 
transitions, WRMSR to IA32_PL0_SSP does not cause #GP due to bit 0 being 
set in its source operand. See below for how WRMSR treats bit 0 of this MSR.

— For each of IA32_FRED_SSPi (1 ≤ i ≤ 3), bits 2:1 are reserved. For 
IA32_PL0_SSP, bit 1 is reserved but bit 2 is not.

— Bits 63:3 contain the upper bits of the 8-byte aligned value to be loaded into 
SSP.

WRMSR to any of these MSRs will cause a general-protection exception (#GP) if its 
source operand sets any reserved bits or if it is not canonical relative to the 
processor’s maximum linear-address width. (The same is true for an execution of 
XRSTORS that would load IA32_PL0_SSP.)

WRMSR to any of these MSRs always clears bit 0 of the MSR, regardless of the 
value of the instruction’s source operand. The WRMSR instruction ignores bit 0 of 
its source operand, so attempting to set bit 0 does not cause WRMSR to fault. The 
same behaviors apply to executions of XRSTORS that would load IA32_PL0_SSP.

Note: As with the FRED RSP MSRs, the numbers 0–3 in the MSR names refer to the 
corresponding stack level and not to privilege level.

4.4 FRED Use of Existing MSRs
In addition to the new MSRs identified in Section 4.3, FRED transitions use several 
existing MSRs as specified in the following items:

• IA32_STAR.

— Existing use: this MSR is used by the existing operation of SYSCALL and 
SYSRET.

— FRED use: FRED event delivery loads the CS and SS selectors with values 
derived from IA32_STAR[47:32] (see Section 5.3). ERETU uses the value of 
IA32_STAR[63:48] to determine how to load the CS and SS registers (see 
Section 6.2.1).
It is expected that operating systems will set IA32_STAR[33:32] to 00B and 
IA32_STAR[49:48] to 11B.

• IA32_FMASK.

— Existing use: this MSR is used by the existing operation of SYSCALL.
— FRED use: FRED event delivery clears in RFLAGS any bit corresponding to a bit 

set in IA32_FMASK.
• IA32_KERNEL_GS_BASE.

— Existing use: the SWAPGS instruction exchanges the value of this MSR with the 
base address of the GS segment register.

— FRED use: executions of ERETU perform this same swapping operation, as does 
FRED event delivery of events that arrive in ring 3.

• IA32_PL0_SSP.
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— Existing use: the shadow-stack feature of control-flow enforcement technology 
(CET) typically loads SSP from this MSR when entering ring 0.

— FRED use: FRED transitions use this MSR as IA32_FRED_SSP0 (Section 4.3).
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5 FRED Event Delivery

When FRED transitions are enabled (CR4.FRED = IA32_EFER.LMA = 1), IDT event 
delivery of exceptions and interrupts is replaced with FRED event delivery. In 
addition, the existing operation of SYSCALL and SYSENTER is also replaced with FRED 
event delivery.

These changes do not affect the processor’s handling of exceptions and interrupts prior 
to event delivery. For example, any determination that an event causes a VM exit or is 
converted into a double fault occurs normally. Similarly, page faults and debug 
exceptions update CR2 and DR6, respectively, in the normal way.

The principal functionality of FRED event delivery is to establish a new context, that of 
the event handler in ring 0, while saving the old context for a subsequent return. Some 
parts of the new context have fixed values, while others depend on the old context, the 
nature of the event being delivered, and software configuration. Section 5.1 describes 
how FRED event delivery determines and establishes the new context. Section 5.2 
specifies how FRED event delivery saves elements of the old context on the stack (and, 
when enabled, the shadow stack). Section 5.3 then describes how additional state is 
updated.

Appendix A.1 presents the detailed flow of the operation of FRED event delivery.

5.1 Determining and Establishing the New Context
The context of an event handler invoked by FRED event delivery includes the CS and SS 
segment registers, the instruction pointer (RIP), the flags register (RFLAGS), the stack 
pointer (RSP), and the base address of the GS segment (GS.base). The context also 
includes the shadow-stack pointer (SSP) if supervisor shadow stacks are enabled.

FRED event delivery establishes this context by loading these registers when necessary. 
It determines the values to be loaded into RIP, RFLAGS, RSP, and SSP based on the old 
context, the nature of the event being delivered, and software configuration.

5.1.1 Determining the New RIP Value
FRED event delivery uses two entry points, depending on the CPL at the time the event 
occurred. This allows an event handler to identify the appropriate return instruction 
(ERETU or ERETS).

Specifically, the new RIP value that FRED event delivery establishes is 
IA32_FRED_CONFIG & ~FFFH for events that occur in ring 3 and 
(IA32_FRED_CONFIG & ~FFFH) + 256 for events that occur in ring 0.

5.1.2 Determining the New RFLAGS Value
The new RFLAGS value established by FRED event delivery is the old value with bits 
cleared in positions that are set in the IA32_FMASK MSR as well as positions 8 and 16 
(ensuring that RFLAGS.TF and RFLAGS.RF will each be zero).
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5.1.3 Determining the New Values for Stack Level, RSP, and SSP
FRED transitions support four different stacks for use in ring 0. The CPU identifies the 
stack currently in use with a 2-bit value called the current stack level (CSL).

FRED event delivery first determines the event’s stack level and then uses that to 
determine whether the CSL should change. An event’s stack level is based on the CPL, 
the nature and type of the event, the event’s vector (for some event types), and MSRs 
configured by system software:

• If the event occurred in ring 3, was not a nested exception encountered during 
event delivery, and was not a double fault (#DF), the event’s stack level is 0.

• If the event occurred in ring 0, was a nested exception encountered during event 
delivery, or was a #DF, the following items apply:

— If the event is a maskable interrupt, the event’s stack level is 
IA32_FRED_CONFIG[10:9].

— If the event is an exception or a non-maskable interrupt (NMI), the event’s 
stack level is IA32_FRED_STKLVLS[2v+1:2v], where v is the event’s vector (in 
the range 0–31).

— The stack level of all other events is 0.

If the event occurred in ring 3, the new stack level is the event’s stack level; otherwise, 
the new stack level is the maximum of the CSL and the event’s stack level. (This 
implies that the CSL is always 0 following FRED event delivery of an event that occurred 
in ring 3, unless the event was a nested exception or a #DF.)

After determining the new stack level, FRED event delivery identifies the new RSP value 
as follows:

• If either the CPL or the stack level is changing, the new RSP value will be that of 
the FRED RSP MSR corresponding to the new stack level.

• Otherwise, the new RSP value will be the current RSP value decremented by 
IA32_FRED_CONFIG & 1C0H (the multiple of 64 in bits 8:6 of that MSR) and then 
aligned to a 64-byte boundary (by clearing RSP[5:0]).

If supervisor shadow stacks are enabled, the following items explain how the new SSP 
value is determined:

• If either the CPL or the stack level is changing, the new SSP value will be that of the 
FRED SSP MSR corresponding to the new stack level, subject to the following:

— Because WRMSR and XRSTORS enforce only that the address in the 
IA32_PL0_SSP MSR (IA32_FRED_SSP0) be 4-byte aligned, a general-
protection fault (#GP) occurs if the new stack level is 0 and 
IA32_PL0_SSP[2] = 1.

— Because bit 0 of each FRED SSP MSR is the MSR’s verified bit (see Section 4.3), 
that bit is not loaded into SSP; instead, bit 0 of the new SSP value is always 
zero.

• Otherwise, the new SSP value will be the current SSP value decremented by 
IA32_FRED_CONFIG & 8 (setting bit 3 of that MSR indicates that SSP should be 
decremented by 8).
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5.1.4 Establishing the New Context
After determining the details of the new context, FRED event delivery loads registers to 
establish that context.

For events that occur in ring 3, FRED event delivery updates the CS, SS, and GS 
segments as well as the IA32_KERNEL_GS_BASE MSR:

• CS:

— The selector is set to IA32_STAR[47:32] AND FFFCH (this forces CS.RPL to 0).
— The base address is set to 0. The limit is set to FFFFFH and the G bit is set to 1.
— The type is set to 11 (execute/read accessed code) and the S bit is set to 1.
— The DPL is set to 0, the P and L bits are each set to 1, and the D bit is set to 0.

• SS:

— The selector is set to the new value of the CS selector (above) plus 8 (thus, 
SS.RPL is also 0).

— The base address is set to 0. The limit is set to FFFFFH and the G bit is set to 1.
— The type is set to 3 (read/write accessed data) and the S bit is set to 1.
— The DPL is set to 0, and the P and B bits are each set to 1.

• GS: FRED event delivery swaps the value of the GS base address and that of the 
IA32_KERNEL_GS_BASE MSR.

For events that occur in ring 0, FRED event delivery does not modify CS, SS, or GS.

After updating the segment registers, FRED event delivery loads RIP, RFLAGS, RSP, and 
CSL with the values determined in Section 5.1.1, Section 5.1.2, and Section 5.1.3.

If FRED event delivery incurs a nested exception or VM exit after this point, the 
processor restores the values that were in these registers before FRED event delivery 
commenced and only then delivers the nested exception or VM exit.

Although the new value of SSP has been determined (see Section 5.1.3), SSP is not 
updated until information is to be saved on the new shadow stack (see Section 5.2.2).

5.2 Saving Information About the Event and the Old 
Context
Like IDT event delivery, FRED event delivery saves information about the old context on 
the stack of the event handler. The top 40 bytes of the event handler’s stack will 
contain the context in the same format as that following IDT event delivery.1 FRED 
event delivery also saves information about the event being delivered as well as 
auxiliary information that will guide a subsequent return instruction.

If supervisor shadow stacks are enabled, FRED event delivery also saves information on 
the event handler’s shadow stack.

The memory accesses used to store information on the stacks are performed with 
supervisor privilege.

1. IDT event delivery of some exceptions pushes an error code above the 40 bytes of context. FRED 
event delivery saves the error code differently; see Section 5.2.1.
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5.2.1 Saving Information on the Regular Stack
FRED event delivery saves 64 bytes of information on the new regular stack. The 
following items provide details:

• The first 8 bytes pushed (bytes 63:56 of the 64-byte stack frame) are always zero.

• The next 8 bytes pushed (bytes 55:48) contain event data and are defined as 
follows:

— If the event being delivered is a page fault (#PF), the event data is the faulting 
linear address (this is the same value that the #PF loads into CR2).1

— If the event being delivered is a debug exception (#DB), the event data 
identifies the nature of the debug exception:

• Bits 3:0 are B3–B0. When set, each of these bits indicates that the 
corresponding breakpoint condition was met. Any of these bits may be set 
even if its corresponding enabling bit in DR7 is not set.

• Bits 10:4 are not currently defined and will be zero until they are.
• Bit 11 is BL. When set, this bit indicates that the cause of the debug 

exception was acquisition of a bus lock (because IA32_DEBUGCTL[2] = 1).
• Bit 12 is not currently defined and will be zero until it is.
• Bit 13 is BD. When set, this bit indicates that the cause of the debug 

exception was “debug register access detected.”
• Bit 14 is BS. When set, this bit indicates that the cause of the debug 

exception was the execution of a single instruction (because RFLAGS.TF = 
1).2

• Bit 15 is not currently defined and will be zero until it is.
• Bit 16 is RTM. When set, this bit indicates that a debug exception (#DB) or 

a breakpoint exception (#BP) occurred inside an RTM region while 
advanced debugging of RTM transactional regions was enabled.

• Bits 63:17 are not currently defined and will be zero until they are.
The event data is not exactly the same as that which will be in DR6 following 
delivery of the #DB. The polarity of bit 11 and bit 16 is inverted in DR6; in 
addition, delivery of #DB may leave unmodified DR6 some bits that had been 
set earlier.

— If the event being delivered is a device-not-available exception (#NM) caused 
by extended feature disable, the event data indicates the cause of the 
exception and is the same as that loaded into the IA32_XFD_ERR MSR. If the 
#NM was not caused by extended feature disable, the event data is zero.

— For any other event, the event data is zero.
— The event data is determined differently when FRED event delivery is used for 

an event injected by VM entry. See Section 9.5.4.
• The next 8 bytes pushed (bytes 47:40) contain event information and are 

defined as follows:

— Bits 15:0 contain the error code (defined only for certain exceptions; zero if 
none is defined).

— Bits 31:16 are not currently defined and will be zero until they are.

1. If the #PF occurred during execution of an instruction in enclave mode (but not during delivery of 
an event incident to enclave mode), bits 11:0 of the event data are cleared.

2. If RFLAGS.TF = IA32_DEBUGCTL.BTF = 1, such a debug exception occurs only following a taken 
branch.
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— Bits 39:32 contain the event’s vector. For SYSCALL and SYSENTER (which use 
FRED event delivery but not IDT event delivery), vectors 1 and 2 are used, 
respectively.1

— Bits 47:40 are not currently defined and will be zero until they are.
— Bit 51:48 encode the event type as follows: 0 = external interrupt; 2 = non-

maskable interrupt; 3 = hardware exception (e.g., page fault); 4 = software 
interrupt (INT n); 5 = privileged software exception (INT1); 6 = software 
exception (INT3 or INTO); and 7 = other event (used for SYSCALL and 
SYSENTER). Other values are not used.

— Bits 55:52 are not currently defined and will be zero until they are.
— Bit 56 is set to 1 to indicate that the event was incident to enclave execution. 

Specifically, it is set in any of the following cases:
• The event occurred while the logical processor was in enclave mode.
• The event was injected by VM entry (see Section 9.5.4) and the guest 

interruptibility-state field in the VMCS indicates an “enclave interruption” 
(bit 4 of the field is 1).

• The event was a debug exception that was pending following a VM entry 
for which guest interruptibility indicates an “enclave interruption” (see 
above).

• The event was a debug exception that was pending following an execution 
of RSM for which SMRAM indicates an “enclave interruption.”

• The event was an exception that was encountered during delivery of any 
of the events above.

Otherwise, the bit is cleared to 0.

— Bit 57 is set to 1 if the logical processor had been in 64-bit mode when the 
event occurred. (A value of 0 indicates an event incident to compatibility 
mode.)

— Bits 61:58 contain the length of the instruction causing the event if the event 
type is software interrupt (INT n), privileged software exception (INT1), 
software exception (INT3 or INTO), or other event (when used for SYSCALL or 
SYSENTER). (The length used is determined differently when FRED event 
delivery is used for an event of these types injected by VM entry. See Section 
9.5.4.) For other event types, these bits are cleared to zero.

— Bits 63:62 are not currently defined and will be zero until they are.
• The remaining 40 bytes pushed (bytes 39:0) are the return state and have 

generally the same format as that used by IDT event delivery. The following items 
detail the format of the return state on the stack from bottom (highest address) to 
top:

— SS selector of the interrupted context (low 16 bits of a 64-bit field).
Bits 63:16 of this field are cleared to zero.

— RSP of the interrupted context (64 bits).
— RFLAGS of the interrupted context (64 bits).

Bit 16 of the RFLAGS field (corresponding to the RF bit) is saved as 1 when 
delivering events that do the same for IDT event delivery. These are faults 

1. The event types used by FRED event delivery are the same as those already defined for VMX 
transitions. For SYSCALL or SYSENTER, FRED event delivery reports event type 7 (other event). 
For VM entry, that event type is used with vector 0 to indicate a pending MTF VM exit. For that 
reason, FRED event delivery uses vectors 1 and 2 to indicate SYSCALL and SYSENTER, 
respectively.
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(other than instruction breakpoints) as well as any traps or interrupts delivered 
following partial execution of an instruction (e.g., between iterations of a REP-
prefixed string instruction). Delivery of other events save in bit 16 the value 
that RFLAGS.RF had at the time the event occurred.

— CS selector of the interrupted context (low 16 bits of a 64-bit field).
FRED event delivery saves additional information in the upper portion of this 
field (this information guides the execution of the FRED return instructions):

• Bit 16 is set to 1 if the event being delivered is a non-maskable interrupt 
(NMI) and is otherwise cleared to 0.

• Bit 17 is set to 1 for FRED event delivery of SYSCALL, SYSENTER, or INT n 
(for any value of n), and is otherwise cleared to 0.

• Bit 18 is set to 1 for FRED event delivery of an exception if interrupt 
blocking by STI was in effect at the time the exception occurred1 and is 
otherwise cleared to 0.

• Bits 23:19 are cleared to zero.
• Bits 25:24:

— For delivery of events that occur in ring 0, these bits report the 
current stack level (CSL) at the time the event occurred.

— For delivery of events that occur in ring 3, these bits are cleared to 0.
• Bits 63:26 are cleared to zero.

— RIP of the interrupted context (64 bits).
If the event type is software interrupt (INT n), privileged software exception 
(INT1), software exception (INT3 or INTO), or other event (when used for 
SYSCALL or SYSENTER); the RIP value saved references the instruction after 
the one that caused the event being delivered. (If delivery of such an event 
encounters an exception, the RIP value saved by delivery of the exception will 
reference the instruction that caused the original event.)

5.2.2 Saving Information on the Shadow Stack
This section describes how FRED event delivery updates the shadow stack when 
supervisor shadow stacks are enabled. The remainder of this section does not apply if 
supervisor shadow stacks are not enabled.

How FRED event delivery interacts with the shadow stack depends on whether a new 
value is being loaded into SSP:

• If either the CPL or the stack level is changing, the new SSP value is loaded from 
the FRED SSP MSR corresponding to the new stack level (see Section 5.1.3). In this 
case, FRED event delivery checks the new shadow stack for a token.

This token management differs from what is done for IDT event delivery. FRED 
token management depends on whether the FRED SSP MSR had already been 
verified (indicated by bit 0 of the MSR being set):

— If the MSR had not been verified, FRED event delivery marks the base of the 
new shadow stack with a busy token as follows. It reads 8 bytes from the 
address in SSP (which was just loaded from the MSR), locking the address 
read.

1. Execution of STI with RFLAGS.IF = 0 blocks maskable interrupts on the instruction boundary 
following its execution.
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• If the value read is equal to the SSP value (indicating a valid free token), 
the lock is released and the value is written back but with bit 0 set 
(indicating that the token is now busy). This same value is loaded into the 
MSR. This sets bit 0 of the MSR, indicating that it has been verified.

• Otherwise, the lock is released, the value is written back without change, 
and a general-protection fault (#GP) occurs.

— If the MSR had already been verified, FRED event delivery confirms that the 
base of the new shadow stack has a valid busy token as follows. It reads 8 
bytes from the address in SSP. (This read does not lock the address.) If the 
value read does not equal the SSP value with bit 0 set (indicating a busy 
token), a #GP occurs.

In either case, FRED event delivery then loads SSP with the new value. (If FRED 
event delivery subsequently incurs a nested exception or VM exit, the old SSP value 
is implicitly restored.)

• If neither the CPL nor the stack level is changing, SSP is not loaded from a FRED 
SSP MSR (see Section 5.1.3). Instead, if the current SSP value is not 8-byte 
aligned (it is necessarily 4-byte aligned), FRED event delivery pushes four bytes of 
zeroes on the shadow stack, resulting in an SSP value that is 8-byte aligned.

If the event being delivered occurred in ring 0, the old CS selector, the old linear 
instruction pointer, and the old SSP are pushed onto the shadow stack. (If SSP had 
been loaded from a FRED SSP MSR, these pushes are onto the new shadow stack after 
the token management outlined above; if it had not been, the existing shadow stack is 
used.) Each of these three values is pushed in a separate 8-byte field on the shadow 
stack. 

5.3 Loading Additional State
After saving the old context and other information, FRED event delivery completes 
operation by loading additional registers and updating other processor state.

If the event occurred in ring 3 and user shadow stacks are enabled, the IA32_PL3_SSP 
MSR is loaded with the old value of SSP. (The value loaded into the MSR is adjusted so 
that bits 63:N get the value of bit N–1, where N is the CPU’s maximum linear-address 
width.)

If supervisor indirect branch tracking is enabled, the IA32_S_CET MSR is updated to set 
the TRACKER value to WAIT_FOR_ENDBRANCH and to clear the SUPPRESS bit to 0. 
Software should ensure that the instruction referenced by the new RIP value is 
ENDBR64.

FRED event delivery of a non-maskable interrupt (NMI) blocks NMIs.1

A debug trap (single-step trap or data or I/O breakpoint) may be pending at the time 
another event is delivered. FRED event delivery drops any and all debug traps that may 
have been pending at the time the original event occurred, regardless of the event 
being delivered. In particular, any pending data or I/O breakpoints (or single-step 
traps) are no longer pending after INT n, INT3, INTO, SYSCALL, or SYSENTER is 
delivered using FRED event delivery.

1. For virtual NMIs injected by VM entry, this blocking may apply instead to virtual NMIs. See 
Section 9.5.4.
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6 FRED Return Instructions

FRED defines two new instructions for returning from events delivered by FRED event 
delivery:

• ERETS (Section 6.1) is used to return from events that occur in ring 0; it does not 
modify CS, SS, or GS. ERETS has the opcode F2 0F 01 CA.

• ERETU (Section 6.2) is used to return from events that occur in ring 3; it loads CS 
and SS based on the stack image and also updates the GS base address. ERETU 
has the opcode F3 0F 01 CA.

Neither instruction takes explicit operands.

6.1 ERETS (Event Return to Supervisor)
ERETS returns from an event handler while staying in ring 0, establishing the return 
context that was in effect before FRED event delivery. Because it stays within the 
supervisor context, ERETS does not modify the segment registers CS, SS, or GS.

ERETS begins by loading and checking the return context from the stack (Section 
6.1.1). If supervisor shadow stacks are enabled, it then checks the shadow stack to 
confirm the validity of this control-flow transfer (Section 6.1.2). Finally, ERETS 
establishes the return context by loading the appropriate registers (Section 6.1.3).

Appendix A.2 presents the detailed flow of the operation of ERETS.

6.1.1 Loading and Checking the Return Context
ERETS first pops from the regular stack (referenced by RSP) the return context that 
was saved by FRED event delivery. The context is checked and held by the processor to 
update register state when the instruction completes. The following items detail the 
state fields that are popped, from top (lowest address) to bottom, specifying the checks 
that are performed:

• The RIP of the return context (64 bits).

This field must be canonical relative to the current paging mode; otherwise, a 
general-protection fault (#GP) occurs.

• The CS selector of the return context (low 16 bits of a 64-bit field).

ERETS does not use bits 15:0 to load CS (but it does ensure that the RPL value in 
bits 1:0 is 0).

Bits 18:16 of this field determine how ERETS manages certain events (see Section 
6.1.3).

ERETS will establish the new stack level as the minimum of the CSL and the value 
of bits 25:24 of this field.

Bits 1:0, 23:19 and 63:26 of this field must be zero; otherwise, a #GP occurs.

• The RFLAGS of the return context (64 bits).

Bit 1 of this field must be 1; bit 3, bit 5, bit 15, bit 17 (VM), and bits 63:22 of the 
field must be 0; otherwise, a #GP occurs.
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• The RSP of the return context (64 bits). This field is not checked.

• The SS selector of the interrupted context (low 16 bits of a 64-bit field).

ERETS does not use bits 15:0 to load SS (but it does ensure that the RPL value in 
bits 1:0 is 0). Bits 1:0 and 63:16 of this field must be zero; otherwise, a #GP 
occurs.

6.1.2 Checking the Shadow Stack
If supervisor shadow stacks are enabled, ERETS pops and checks values from the 
shadow stack (referenced by SSP) that were saved by FRED event delivery. The 
following items detail the state that is popped from top (lowest address) to bottom, 
specifying the checks that are performed:

• The SSP of the return context (64 bits).

This value must be 4-byte aligned (bits 1:0 must be zero); otherwise, a control 
protection exception (#CP) occurs.

This value must be canonical relative to the current paging mode; otherwise, a #GP 
occurs. (This #GP has priority below the #CP exceptions specified in the following 
items.)

• The linear instruction pointer of the return context (64 bits).

This value must equal the RIP of the return context that was popped from the 
regular stack; otherwise, a #CP occurs.

• The CS of the return context (64 bits).

This value must equal the current CS selector (bits 63:16 of the value must be 0); 
otherwise, a #CP occurs.

If supervisor shadow stacks are enabled and the stack level is changing (based on the 
new stack level popped from the regular stack; see Section 6.1.1), subsequent 
operation of ERETS depends on the current SSP value and the value of the FRED SSP 
MSR for the CSL (not the new stack level). (That is, if ERETS is executing with CSL = 2 
and is returning to stack level 1, the relevant MSR is IA32_FRED_SSP2.) The following 
items apply:

• If the value of the MSR equals the value of SSP with bit 0 set, the MSR is already 
verified and no other action is performed.

• If the value of the MSR equals that of SSP (implying that MSR bit 0 is clear), ERETS 
reads 8 bytes from the address in SSP. If the value read equals the SSP value with 
bit 0 set to 1 (and thus is a locked token), that value is loaded into the MSR. This 
sets bit 0 of the MSR to 1, indicating that the MSR is now verified. (If any other 
value is read, the MSR is not modified.)

• If the MSR has any other value, ERETS reads 8 bytes from the address in SSP, 
locking the address read.

— If the value read equals the SSP value but with bit 0 set to 1 (indicating a busy 
token), the lock is released and the value of SSP is written back. This clears 
bit 0 in the token, indicating that it is now free. (The token is freed because 
SSP does not match the MSR.)

— If any other value is read, the lock is released and the value read is written 
back without change.

Regardless of the value read, the MSR is not modified in this case.
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6.1.3 Establishing the Return Context
After the stack operations described in Section 6.1.1 and Section 6.1.2, ERETS then 
loads RIP, RFLAGS, RSP, and CSL with the values that were popped earlier from the 
regular stack. If supervisor shadow stacks are enabled, SSP is loaded with the value 
that was popped earlier from the shadow stack.

Additional steps are performed based on the value of the popped CS field:

• If bit 16 of the field (above the selector) is 1, ERETS unblocks NMIs.1

• If bit 17 of the field is 1 and ERETS will result in RFLAGS.TF = 1, a single-step trap 
will be pending upon completion of ERETS.2

• If bit 18 of the field is 1 and ERETS will result in RFLAGS.IF = 1, blocking by STI is 
in effect upon completion of ERETS.3

6.2 ERETU (Event Return to User)
ERETS returns from an event handler while making a transition to ring 3, establishing 
the return context that was in effect before FRED event delivery. The change of 
context includes updates to the segment registers CS, SS, or GS.

ERETU begins by loading and checking the return context from the stack (Section 
6.2.1). If supervisor shadow stacks are enabled, it then checks the shadow stack as 
needed to confirm the validity of this transfer of control flow (Section 6.2.2). Finally, 
ERETU establishes the return context by loading the appropriate registers (Section 
6.2.3).

Appendix A.3 presents the detailed flow of the operation of ERETU.

6.2.1 Loading and Checking the Return Context
ERETU first pops from the regular stack (referenced by RSP) the return context that 
was saved by FRED event delivery. The context is checked and held by the processor to 
update register state when the instruction completes. The following items detail the 
state fields that are popped, from top (lowest address) to bottom, specifying the checks 
that are performed:

• The RIP of the return context (64 bits).

This field is checked once the new CS configuration is determined (see below).

• The CS selector of the return context (low 16 bits of a 64-bit field).

Bits 17:16 of the field determine how ERETU manages events (see below).

Bits 63:18 of this field must be zero; otherwise, a general-protection fault (#GP) 
occurs.

The RFLAGS of the return context (64 bits).

1. If in VMX non-root operation with the 1-setting of the “virtual NMIs” VM-execution control, this 
step unblocks virtual NMIs. See Section 9.

2. If ERETS began execution with RFLAGS.TF = 1, there will always be a single-step debug exception 
pending after ERETS, regardless of the values on the stack for RFLAGS.TF and CS.

3. Execution of STI with RFLAGS.IF = 0 blocks interrupts (maskable and nonmaskable) on the 
instruction boundary following its execution.
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Bit 1 of this field must be 1; bit 3, bit 5, bits 13:12 (IOPL), bit 15, bit 17 (VM), and 
bits 63:22 of the field must be 0; otherwise, a #GP occurs.

Note: Checking IOPL ensures that, when FRED transitions are enabled, IOPL is always 0 when 
CPL = 3.

• The RSP of the return context (64 bits). This field is not checked.

• The SS selector of the interrupted context (low 16 bits of a 64-bit field).

Bits 63:16 of this field must be zero; otherwise, a #GP occurs.

After popping these fields, ERETU determines the configuration of the CS and SS 
segment registers for the return context according to one of these three cases:

1. If the selector popped for CS is IA32_STAR[63:48] + 16 and the selector popped 
for SS is IA32_STAR[63:48] + 8, ERETU will establish CS and SS in a standard 
configuration for ring 3 in 64-bit mode:
— CS:

• The selector is set to IA32_STAR[63:48] + 16.
• The base address is set to 0. The limit is set to FFFFFH and the G bit is set 

to 1.
• The type is set to 11 (execute/read accessed code) and the S bit is set to 

1.
• The DPL is set to 3, the P and L bits are each set to 1, and the D bit is set 

to 0.

— SS:
• The selector is set to IA32_STAR[63:48] + 8.
• The base address is set to 0. The limit is set to FFFFFH and the G bit is set 

to 1.
• The type is set to 3 (read/write accessed data) and the S bit is set to 1.
• The DPL is set to 3, and the P and B bits are each set to 1.

2. If the selector popped for CS is IA32_STAR[63:48] and the selector popped for SS 
is IA32_STAR[63:48] + 8, ERETU will establish CS and SS in a standard 
configuration for ring 3 in compatibility mode:

— CS:
• The selector is set to IA32_STAR[63:48].
• The base address is set to 0. The limit is set to FFFFFH and the G bit is set 

to 1.
• The type is set to 11 (execute/read accessed code) and the S bit is set to 

1.
• The DPL is set to 3, the P bit is set to 1, and the D and L bits are each set 

to 0.

— SS:
• The selector is set to IA32_STAR[63:48] + 8.
• The base address is set to 0. The limit is set to FFFFFH and the G bit is set 

to 1.
• The type is set to 3 (read/write accessed data) and the S bit is set to 1.
• The DPL is set to 3, and the P and B bits are each set to 1.

3. Otherwise, ERETU checks bits 1:0 of the selector popped for CS and causes a #GP 
if those bits do not indicate a return to ring 3. After that check, the selectors 
popped for CS and SS are used to load descriptors from the GDT or the LDT as 
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would be done by an execution of IRET. These descriptor loads may cause ERETU to 
fault as would occur with IRET. In addition, ERETU causes a #GP if the return is to 
compatibility mode and the RIP of the return context would be beyond the new CS 
segment limit. If there is no fault, the CS and SS will be loaded with the popped 
values (for the selectors) and with the descriptors read from memory.

If ERETU is returning to 64-bit mode (either case #1 above, or case #3, where the 
descriptor loaded for CS sets the L bit), a #GP occurs if the RIP of the return context is 
not canonical relative to the current paging mode.

6.2.2 Checking the Shadow Stack
If user shadow stacks are enabled, the SSP of the return context is the value of the 
IA32_PL3_SSP MSR. If the return is to compatibility mode, a #GP occurs if 
IA32_PL3_SSP[63:32] are not all zero; if the return is to 64-bit mode, a #GP occurs if 
the value of IA32_PL3_SSP is not canonical relative to the current paging mode.

If supervisor shadow stacks are enabled, subsequent operation of ERETU depends on 
the values SSP and of the FRED SSP MSR for the CSL (e.g., if ERETU is executing with 
CSL = 2, the relevant MSR is IA32_FRED_SSP2):

• If the value of the MSR equals the value of SSP with bit 0 set, the MSR is already 
verified and no other action is performed.

• If the value of the MSR equals that of SSP (implying that MSR bit 0 is clear), ERETU 
reads 8 bytes from the address in SSP. If the value read equals the SSP value with 
bit 0 set to 1 (and thus is a locked token), that value is loaded into the MSR. This 
sets bit 0 of the MSR to 1, indicating that the MSR is now verified. If any other 
value is read, the MSR is not modified.

• If the MSR has any other value, ERETU reads 8 bytes from the address in SSP, 
locking the address read.

— If the value read equals the SSP value but with bit 0 set to 1 (indicating a busy 
token), the lock is released and the value of SSP is written back. This clears 
bit 0 in the token, indicating that it is now free. (The token is freed because 
SSP does not match the MSR.)

— If any other value is read, the lock is released and the value read is written 
back without change.

Regardless of the value read, the MSR is not modified in this case.

6.2.3 Establishing the Return Context
After the stack operations described earlier, ERETU loads RIP, RFLAGS, RSP, CS, and SS 
with the values identified in Section 6.2.1, and CSL is set to zero. All 64 bits of RIP, 
RFLAGS, and RSP are loaded, even if the return is to compatibility mode. If shadow 
stacks are enabled for the ring being entered, SSP is loaded with the value for the 
return context as identified in Section 6.2.2.

ERETU swaps the value of the GS base address and that of the IA32_KERNEL_GS_BASE 
MSR.
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Additional steps are performed based on the value of the popped CS field:

• If bit 16 of the field (above the selector) is 1, ERETU unblocks NMIs if bit 16 of the 
popped CS field (above the selector) is 1.1

• If bit 17 of the field is 1 and ERETU would result in RFLAGS.TF = 1, a single-step 
trap will be pending upon completion of ERETU.2

Note: Unlike IRET, ERETU does not make any of DS, ES, FS, or GS null if it is found to have 
DPL < 3. It is expected that a FRED-enabled operating system will return to ring 3 (in 
compatibility mode) only when those segments all have DPL = 3.

6.2.4 Interactions Between ERETU and Other Instructions
ERETU provides the same instruction-ordering guarantees as SYSRET. Specifically, 
instructions following an execution of ERETU may be fetched from memory before 
earlier instructions complete execution, but they will not execute (even speculatively) 
until all instructions prior to the ERETU have completed execution (the later instructions 
may execute before data stored by the earlier instructions have become globally 
visible).

Execution of the UMWAIT instruction will not wait (will not enter an implementation-
dependent optimized state) if ERETU was executed before UMWAIT and after the most 
recent execution of the UMONITOR instruction.

1. If in VMX non-root operation with the 1-setting of the “virtual NMIs” VM-execution control, this 
step unblocks virtual NMIs. See Section 9.

2. If ERETU began execution with RFLAGS.TF = 1, there will always be a single-step debug exception 
pending after ERETU, regardless of the values on the stack for RFLAGS.TF and CS.
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7 FRED and Existing Instructions

The Intel® 64 architecture defines numerous instructions that can effect ring 
transitions. This section considers those instructions (and others) and describes how 
enabling FRED transitions affects either their operation or their usage. (Recall that 
FRED transitions are enabled if CR4.FRED = IA32_EFER.LMA = 1.)

• Section 7.1 identifies instructions that cannot be executed when FRED transitions 
are enabled.

• Section 7.2 considers far CALL, far JMP, far RET, and IRET. Enabling FRED 
transitions modifies the operation of these instructions. A FRED-enabled operating 
system cannot use them for ring transitions.

• Section 7.3 discusses software interrupts and related instructions (INT n, INT3, 
INTO INT1). When FRED transitions are enabled, these instructions use FRED event 
delivery.

• Section 7.4 describes changes to the instructions SYSCALL and SYSENTER. When 
FRED transitions are enabled, these instructions use FRED event delivery.

• Section 7.5 describes changes to the WRMSR and XRSTORS instructions.

• Section 7.6 explains that blocking due to MOV to SS or POP SS does not occur 
when FRED transitions are enabled.

7.1 Disallowed Instructions
When FRED transitions are enabled, an execution of any of the following instructions 
causes an invalid-opcode exception: SWAPGS, SYSEXIT, and SYSRET.

7.2 Far CALL, IRET, Far JMP, and Far RET
The far CALL instruction provides a mechanism by which user software can effect a ring 
transition to more privileged software. The IRET and far RET instructions allow returns 
to the calling context, and this can cause a ring transition. The operation of these 
instructions (as well as that of far JMP) is modified when FRED transitions are enabled.

Far CALL can effect a ring transition only if it references a call gate in the GDT or an 
LDT. (Far JMP can also reference a call gate, but an execution that does so cannot effect 
a ring transition.) When FRED transitions are enabled, any execution of far CALL or far 
JMP that references a call gate causes a general-protection exception (#GP).

An execution of IRET or far RET causes a ring transition if the RPL value of the target 
code segment is greater than the CPL. When FRED transitions are enabled, such an 
execution causes #GP.

These restrictions imply that, when they are enabled, FRED transitions are the only ring 
transitions possible and that it is impossible to enter ring 1 or ring 2.
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7.3 Software Interrupts and Related Instructions
The Intel 64 architecture supports the following instructions that software in ring 3 can 
use to invoke the operating system using the IDT:

• INT n (opcode CD followed by an immediate byte). There are 256 such software-
interrupt instructions, one for each value n of the immediate byte (0–255).

• INT3 (opcode CC). This instruction generates a breakpoint exception (#BP) as a 
trap.

• INTO (opcode CE). If RFLAGS.OF = 1, this instruction generates an overflow 
exception (#OF) as a trap. If RFLAGS.OF = 0, this instruction does not generate an 
exception and passes control to the next instruction. While INTO causes an invalid-
opcode exception (#UD) in 64-bit mode, it can be executed in compatibility mode.

• INT1 (opcode F1). This instruction generates a debug exception (#DB) as a trap. 
Hardware vendors may use INT1 for hardware debug.

When FRED transitions are enabled, an execution of any of these instructions results in 
FRED event delivery. Section 5.2.1 describes how the resulting FRED event delivery 
saves event information for these instructions (including the length of the instruction).

Note: IDT event delivery of INT n, INT3, and INTO checks the DPL field of the IDT gate and 
generates a general-protection exception (#GP) if it is less than the CPL. FRED event 
delivery does not use the IDT and thus does not perform this check. The event handlers 
of a FRED-enabled operating system should check the event type and vector to identify 
situations that would have resulted in a fault with IDT event delivery.

7.4 SYSCALL and SYSENTER
The Intel 64 architecture supports two instructions that software in ring 3 can use to 
invoke the operating system without using the IDT: SYSCALL and SYSENTER.

When FRED transitions are enabled, the operation of SYSCALL is modified to use FRED 
event delivery (Section 5) in place of its existing operation.

The following pseudocode describes the operation of SYSCALL on a CPU that supports 
FRED transitions, highlighting the order of certain fault checking:

IF IA32_EFER.LMA = 0 // SYSCALL can be used only by a 64-bit operating system
THEN #UD;

ELSIF CR4.FRED = 0
THEN

IF IA32_EFER.SCE = 0 OR CS.L = 0
THEN #UD;
ELSE existing SYSCALL operation;

FI;
ELSE // FRED does not require enabling in IA32_EFER

// SYSCALL is allowed in compatibility mode
FRED event delivery of SYSCALL; // the instruction’s length will be saved on the stack

FI;
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A FRED-enabled operating system should use ERETU (Section 6.2) instead of SYSRET
to return after handling a system call invoked by an execution of SYSCALL in ring 3.
(Recall that any execution of SYSRET causes #UD when FRED transitions are enabled.)
A FRED-enabled operating system will normally use ERETU to return from any event
that occurred when in ring 3.

(Because the SYSRET instruction always returns to ring 3, use of SYSCALL has
previously been effectively limited to ring 3. When SYSCALL uses FRED event delivery,
that instruction can be used effectively in ring 0. If this is done, a FRED-enabled
operating system would naturally return with ERETS, remaining in ring 0.)

The operation of SYSENTER is also modified to use FRED event delivery when FRED
transitions are enabled. The following pseudocode describes the operation of SYSENTER
on a CPU that supports FRED transitions, highlighting the order of certain fault
checking:

IF CR0.PE = 0 OR ((IA32_EFER.LMA = 0 OR CR4.FRED = 0) AND IA32_SYSENTER_CS[15:2] = 0)
THEN #GP; // IA32_SYSENTER_CS applies only if FRED transitions are not enabled

ELSIF IA32_EFER.LMA = 0 OR CR4.FRED = 0
THEN existing SYSENTER operation;
ELSE FRED event delivery of SYSENTER; // the instruction’s length will be saved on the stack

FI;

A FRED-enabled operating system should use ERETU (Section 6.2) instead of SYSEXIT 
to return after handling a system call invoked by an execution of SYSENTER in ring 3. 
(Recall that any execution of SYSEXIT causes #UD when FRED transitions are enabled.)

7.5 WRMSR and XRSTORS
FRED transitions use the existing IA32_PL0_SSP MSR as IA32_FRED_SSP0. This 
existing MSR can be written with WRMSR and XRSTORS instructions. This section 
describes changes to those instructions (when writing to IA32_PL0_SSP) on processors 
that enumerate support for FRED transitions (by enumerating 
CPUID.(EAX=7,ECX=1):EAX[bit 17] as 1).

To ensure that the address in the IA23_PL0_SSP MSR is 4-byte aligned, WRMSR and 
XRSTORS cause a general-protection fault (#GP) in response to an attempt to set 
either bit 1 or bit 0 of the MSR. Because FRED transitions use bit 0 of the MSR as the 
MSR’s verified bit, executions of WRMSR or XRSTORS on processors that enumerate 
support for FRED transitions do not fault on an attempt to set bit 0 of the 
IA32_PL0_SSP MSR. However, any write to that MSR by either instruction clears bit 0 of 
the MSR, regardless of the value of the source operand.

Note: Note that these changes apply regardless of mode or of the value of CR4.FRED.

7.6 Blocking Due to MOV to SS or POP SS
An execution of MOV to SS or POP SS blocks interrupts (maskable and nonmaskable) 
as well as certain debug exceptions on the following instruction boundary.

If FRED transitions are enabled, this blocking does not occur. An interrupt or a debug 
exception may be delivered on the instruction boundary following an execution of MOV 
to SS or POP SS.
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8 LKGS: Support for Managing GS 

64-bit operating systems and their applications use the GS segment for thread-local 
storage (TLS). Because the operating system and applications use the TLS at different 
addresses, they use different base addresses for that segment.

FRED transitions ensure that an operating system can always operate with its own GS 
base address:

• For events that occur in ring 3, FRED event delivery swaps the GS base address 
with the IA32_KERNEL_GS_BASE MSR.

• ERETU (the FRED transition that returns to ring 3) also swaps the GS base address 
with the IA32_KERNEL_GS_BASE MSR.

An operating system can modify the GS base address of a user thread (e.g., as part of 
a context switch) by updating the IA32_KERNEL_GS_BASE MSR. However, existing 
instructions do not allow an operating system to modify other attributes of the GS 
segment without compromising its ability always to operate with its own GS base 
address. This is because the instructions that update those attributes (by loading them 
from a descriptor table) also update the GS base address.

The FRED architecture addresses this deficiency with a new instruction LKGS 
(abbreviating “load into IA32_KERNEL_GS_BASE”). LKGS behaves like the MOV to GS 
instruction except that it loads the base address into the IA32_KERNEL_GS_BASE MSR 
instead of the GS segment’s descriptor cache.

The following items provide details regarding the LKGS instruction:

• Support for LKGS is enumerated with the feature flag 
CPUID.(EAX=7,ECX=1):EAX[bit 18].

• LKGS has the opcode F2 0F 00 /6.

• Execution of LKGS causes an invalid-opcode exception (#UD) if CPL > 0.

• LKGS takes a single 16-bit operand and uses it to load a descriptor from the GDT or 
the LDT. It is subject to the same faults as would be incurred by the MOV to GS 
instruction. If there is no fault, the operand is loaded into the GS selector.

• The descriptor read by LKGS is loaded into the GS segment’s descriptor cache as is 
done by the MOV to GS instruction except that the base address in the descriptor is 
not loaded into the descriptor cache (the base address in the cache is unmodified) 
but is instead loaded into the IA32_KERNEL_GS_BASE MSR (the upper 32 bits of 
the MSR are cleared).

The LKGS instruction and the nature of FRED transitions (above) remove any need for 
an operating system to use the SWAPGS instruction. As noted in Section 7.1, an 
execution of SWAPGS causes an invalid-opcode exception (#UD) if FRED transitions are 
enabled.
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9 VMX Interactions with FRED 
Transitions

This section describes interactions between FRED transitions and the VMX architecture.

Section 9.1 explains the renaming of certain existing fields in the VMCS. Section 9.2 
introduces a new VMX feature necessary for proper virtualization of FRED event 
delivery. Section 9.3 details additions to the VMCS to support FRED transitions. Section 
9.4 describes the operation of FRED transitions in VMX non-root operation. Section 9.5 
and Section 9.6 discuss interactions with VM entries and VM exits, respectively.

9.1 Renaming of Existing VMCS Fields
The VMCS contains certain fields related to event delivery. These fields are being 
renamed for clarity and consistency with FRED event delivery. The following items 
provide details:

• For events causing VM exits:

— Basic event identification (VMCS encoding 4404H):
• Old name: VM-exit interruption information
• New name: Exiting-event identification

— Error code (VMCS encoding 4406H):
• Old name: VM-exit interruption error code
• New name: Exiting-event error code

• For VM exits occurring during event delivery:

— Basic event identification (VMCS encoding 4408H):
• Old name: IDT-vectoring information
• New name: Original-event identification

— Error code (VMCS encoding 440AH):
• Old name: IDT-vectoring error code
• New name: Original-event error code

• For events injected by VM entry:

— Basic event identification (VMCS encoding 4016H):
• Old name: VM-entry interruption information
• New name: Injected-event identification

— Error code (VMCS encoding 4018H):
• Old name: VM-entry exception error code
• New name: Injected-event error code

For the three basic event identification fields, the sub-field at bits 10:8 are being 
renamed from “interruption type” to “event type.”
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9.2 New VMX Feature: VMX Nested-Exception Support
As noted in Section 5.1.3, the event stack level used by FRED event delivery depends 
on whether the event was a nested exception encountered during delivery of another 
event. For proper virtualization of this detail, processors that support FRED will also 
support a new VMX feature called VMX nested-exception support. A processor 
enumerates VMX nested-exception support by setting bit 58 in the VMX capability MSR 
IA32_VMX_BASIC (index 480H). Any processor that enumerates support for FRED 
transitions (see Section 4.1) will also enumerate VMX nested-exception support.

VMX nested-exception support changes the way in which VM exits establish certain VM-
exit information fields and the way in which VM entries use a related VM-entry control 
field:

• Exiting-event identification. This VM-exit information field is valid for VM exits due 
to events that would have been delivered to guest software (with IDT event 
delivery or FRED event delivery) if they had not caused a VM exit. The field 
provides details about the nature of the event causing the VM exit.

VMX nested-exception support defines bit 13 of this field, which is always saved as 
0 by processors without VMX nested-exception support.

With VMX nested-exception support, a VM exit saves bit 13 of this field as 1 if the 
VM exit is due to a nested exception encountered during delivery of an earlier 
event. This is done even if FRED transitions are not enabled (i.e., even if that 
earlier event was being delivered using IDT event delivery).

Other VM exits for which the field is valid (including VM exit due to #DF) save 
bit 13 as 0.

(The value of this bit is always identical to that of the valid bit of the original-event 
identification field.)

• Original-event identification. This VM-exit information field is valid for VM exits due 
to events encountered during delivery of an earlier event being delivered to guest 
software with IDT event delivery or FRED event delivery (including SYSCALL and 
SYSENTER with FRED event delivery). The field provides details about the nature of 
that earlier event.

VMX nested-exception support defines bit 13 of this field, which is always saved as 
0 by processors without VMX nested-exception support.

With VMX nested-exception support, a VM exit saves bit 13 of this field as 1 if the 
earlier event was itself a nested exception encountered during delivery of another 
event. This feature applies even if FRED is not enabled (i.e., even if that first event 
was being delivered using IDT event delivery).

Other VM exits for which the field is valid (including VM exits due to events 
encountered during delivery of #DF) save bit 13 as 0.

• Injected-event identification. Software establishes a valid value in this VM-entry 
control field to specify an event to be injected at the end of the next VM entry.

VMX nested-exception support defines bit 13 of this field. (For processors without 
VMX nested-exception support, VM entry fails if this bit is 1.)

With VMX nested-exception support, VM entry allows bit 13 to be 1 if the field 
indicates injection of a hardware exception (bits 10:8, the type, should have value 
3). If FRED transitions will be enabled in the guest and thus the injected exception 
will be delivered using FRED event delivery, the event’s stack level is determined as 
if the event had been a nested exception encountered during delivery of another 
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event (see Section 5.1.3). If FRED transitions will not be enabled in the guest, 
bit 13 of the field is ignored.

If the field indicates injection of any other event (bits 10:8 have value other than 
3), VM entry fails if this bit is 1.

9.3 VMCS Changes for FRED Transitions
A VMM (or its hosting operating system) should be able to use FRED transitions as well 
as allowing guest software to do so. For that reason, VMX transitions (VM entries and 
VM exits) must establish context sufficient to support FRED event delivery immediately 
after the transition. In addition, VM exits should be able to save the corresponding 
guest context before loading that for the VMM.

To support this context management, new fields are added to the VMCS that 
correspond to the configuration MSRs identified in Section 4.3:

• Nine (9) MSRs added for FRED transitions: IA32_FRED_CONFIG, IA32_FRED_RSP0, 
IA32_FRED_RSP1, IA32_FRED_RSP2, IA32_FRED_RSP3, IA32_FRED_STKLVLS, 
IA32_FRED_SSP1, IA32_FRED_SSP2, and IA32_FRED_SSP3.

• Four (4) existing MSRs used by FRED transitions: IA32_STAR, IA32_FMASK, 
IA32_KERNEL_GS_BASE, and IA32_PL0_SSP (also known as IA32_FRED_SSP0).

Fields for some of these MSRs are added to both the host-state and guest-state areas 
of the VMCS. Details are provided in Section 9.3.1 and Section 9.3.2. Section 9.3.3 
enumerates the new VMX controls that manage the new MSRs.

As will be explained, VMCS fields are not needed for all of these MSRs. In particular, 
fields are not added for the following MSRs: IA32_FRED_RSP0, IA32_STAR, and 
IA32_KERNEL_GS_BASE. Before VM entry, a virtual-machine monitor should ensure 
that these MSRs contain the values expected by guest software in the virtual machine 
being entered (e.g., with the WRMSR instruction).

As explained in Section 5.2.1, FRED event delivery saves event data that provide 
additional information about certain events (e.g., page faults). To support proper 
handling of event data across VMX transitions two new fields are added to the VMCS. 
These are described in Section 9.3.4.

9.3.1 Host-State Area
As noted earlier, each VM exit must establish the configuration required for FRED 
transitions that might occur immediately after the VM exit.

The CPL is always 0 after any VM exit. For that reason, delivery of an event that arrives 
immediately after a VM exit cannot cause a ring transition; the return from such an 
event will use ERETS, not ERETU. As a result, the following MSRs will not be needed for 
delivery of and return from such an event:

• IA32_FRED_RSP0 and IA32_PL0_SSP (aka IA32_FRED_SSP0). If CPL = 0, FRED 
event delivery loads RSP from a FRED RSP MSR only if the stack level is numerically 
increasing; consequently, such FRED event delivery would not use 
IA32_FRED_RSP0 or IA32_PL0_SSP. Similarly, ERETS uses IA32_FRED_SSPi only 
when returning from stack level i to a numerically lower stack level; as a result, 
ERETS would never use IA32_PL0_SSP. (ERETS does not use the FRED RSP MSRs 
at all.)
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• IA32_STAR. FRED event delivery uses this MSR only when loading CS and SS when 
delivering an event that arrives in ring 3. ERETS does not use this MSR.

• IA32_KERNEL_GS_BASE. FRED event delivery swaps this MSR with the GS base 
address only when delivering an event that arrives in ring 3. ERETS does not do 
this swapping.

Thus, 64-bit fields are added to host-state area of the VMCS for the following MSRs 
(the encoding pair for each field is shown parenthetically):

• IA32_FRED_CONFIG (2C08H/2C09H)

• IA32_FRED_RSP1 (2C0AH/2C0BH)

• IA32_FRED_RSP2 (2C0CH/2C0DH)

• IA32_FRED_RSP3 (2C0EH/2C0FH)

• IA32_FRED_STKLVLS (2C10H/2C11H)

• IA32_FRED_SSP1 (2C12H/2C13H),

• IA32_FRED_SSP2 (2C14H/2C15H)

• IA32_FRED_SSP3 (2C16H/2C17H)

• IA32_FMASK (2C18H/2C19H).

9.3.2 Guest-State Area
Section 9.3.1 identified fields for nine MSRs added to the host-state area of the VMCS. 
Since these MSRs will be loaded by VM exits, it must be possible for their guest values 
to be saved earlier by those VM exits. For that reason, nine corresponding fields are 
added to the guest-state area of the VMCS. In addition, the guest-state area will 
include a field corresponding to the IA32_PL0_SSP MSR (which FRED transitions use as 
IA32_FRED_SSP0).

It is necessary for the guest-state area to include a field for each of the FRED SSP MSRs 
(including IA32_PL0_SSP). This is because bit 0 of each of these MSRs is the MSR’s 
verified bit. As noted in Section 4.3, any execution of WRMSR that loads one of these 
MSRs (or, for IA32_PL0_SSP, of XRSTORS) will clear the MSR’s verified bit. Thus, 
WRMSR and XRSTORS do not suffice for VMM context management as using them 
might lose the value of the verified bit established by guest software. The only way that 
a VMM can fully restore a guest’s context (including the proper setting of the FRED SSP 
MSRs’ verified bits) is by loading those MSRs from the VMCS.

Thus, 64-bit fields are added to guest-state area of the VMCS for the following MSRs 
(the encoding pair for each field is shown parenthetically):

• IA32_FRED_CONFIG (281AH/281BH)

• IA32_FRED_RSP1 (281CH/281DH)

• IA32_FRED_RSP2 (281EH/281FH)

• IA32_FRED_RSP3 (2820H/2821H)

• IA32_FRED_STKLVLS (2822H/2823H)

• IA32_FRED_SSP1 (2824H/2825H)

• IA32_FRED_SSP2 (2826H/2827H)

• IA32_FRED_SSP3 (2828H/2829H)
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• IA32_FMASK (282AH/282BH)

• IA32_PL0_SSP (282CH/282DH)

9.3.3 VMX Controls
The following VMX controls are added to support management of FRED context:

• VM-entry control 23 is “load FRED.” If this control is set, VM entries load the guest 
FRED state identified in Section 9.3.2.

• Secondary VM-exit control 0 is “save FRED.” If this control is set, VM exits save the 
guest FRED state identified in Section 9.3.2.

• Secondary VM-exit control 1 is “load FRED.” If this control is set, VM exits load the 
host FRED state identified in Section 9.3.1.

9.3.4 Event-Data Fields
Two new VMCS fields are defined for the event data saved by FRED event delivery.

The first new field is a 64-bit VMX control field called injected-event data. If VM-entry 
injection of an event uses FRED event delivery, the event data saved on the stack is the 
value of this field (see Section 9.5.4). This field uses the encoding pair 2052H/2053H.

The second new field is a 64-bit exit-information field called original-event data. If a 
VM exit occurs during FRED event delivery, the event data that would have saved on 
the stack is instead stored into this field (see Section 9.6.3). This field uses the 
encoding pair 2404H/2405H.

9.4 FRED Transitions and VMX Non-Root Operation
If FRED transitions are enabled in VMX non-root operation, the architectural changes 
identified in this specification apply to guest execution. Interactions between the 
features are described in this section.

9.4.1 VM Exits Due to Events
A VMM may use existing VMX features to specify that VM exits should occur on the 
occurrence of events that would be delivered with FRED event delivery. These events 
include external interrupts, non-maskable interrupts (NMIs), and exceptions (including 
those generated by INT1, INT3, and INTO). If such an event occurs, any specified 
VM exit occurs regardless of whether FRED transitions are enabled. FRED event 
delivery does not occur. See Section 9.6 for more details.

9.4.2 NMI Blocking
As specified in Section 5.3, FRED event delivery of a non-maskable interrupt (NMI) 
blocks NMIs. That does not change in VMX non-root operation. Note, however, that an 
NMI can be delivered in VMX non-root operation only if the “NMI exiting” VM-execution 
control is 0.

As specified in Section 6.1.3 and Section 6.2.3, ERETS and ERETU each unblocks NMIs 
if bit 16 of the popped CS field is 1. The following items detail how this behavior may be 
changed in VMX non-root operation, depending on the settings of certain VM-execution 
controls:
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• If the “NMI exiting” VM-execution control is 0, this behavior of ERETS and ERETU is 
not modified (they unblock NMIs as indicated above).

• If the “NMI exiting” VM-execution control is 1, ERETS and ERETU do not unblock 
physical NMIs.

• If the “virtual NMIs” VM-execution control is 1 (which implies that the “NMI exiting” 
VM-execution control is also 1), the logical processor tracks virtual-NMI blocking. In 
this case, ERETS and ERETU each unblocks virtual NMIs if bit 16 of the popped CS 
field is 1.

(If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution 
control is 0, ERETS and ERETU ignore bit 16 of the popped CS field.)

9.5 FRED Transitions and VM Entries
This section describes the interactions between VM entries and various aspects of FRED 
transitions.

Some aspects of VM entry are changed if FRED transitions will be enabled following 
VM entry. FRED transitions are enabled following VM entry if both of the following hold:

• The “IA-32e mode guest” VM-entry control is 1.

• Bit 29 (FRED) of the CR4 field in the guest-state area is 1.

9.5.1 Checks on VMX Controls
VM entry performs checks on the various VMX controls, including those related to event 
injection.

If FRED transitions would be enabled following VM entry (see above), the following 
relaxations apply to the checks that are performed on the injected-event identification 
field when the valid bit (bit 31) in that field is set:

• If the field’s “event type” (bits 10:8) is 7 (other event), the field’s vector (bits 7:0) 
may have value 1 (indicating SYSCALL) or value 2 (indicating SYSENTER).

• There are no checks on the field’s “deliver error code” bit (bit 11).

Regardless of whether FRED transitions would be enabled following VM entry, 
processors with VMX nested-exception support (Section 9.2) apply the following 
relaxation to checks on the injected-event field when the valid bit (bit 31) in that field is 
set: if the field’s “event type” (bits 10:8) is 3 (hardware exception), bit 13 of the field 
may have value 1 (indicating a nested exception).

9.5.2 State Checking by VM Entries
Support for FRED transitions impacts VM-entry state checking in three ways:

• The ways in which host FRED state is checked (Section 9.5.2.1).

• The ways in which guest FRED state is checked (Section 9.5.2.2).

• New checks on existing guest state if FRED transitions would be enabled after 
VM entry (Section 9.5.2.3).
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9.5.2.1 State Checking of Host FRED State

If the “load FRED” VM-exit control is 1, VM entries check the host FRED state in the 
VMCS that was identified in Section 9.3.1. If the field for any MSR contains a value that 
is not valid for that MSR (see Section 4.3), VM entry fails as is normally the case when 
checking host state. The following items provide specifics of the properties that must 
hold:

• IA32_FRED_CONFIG: Bit 2, bits 5:4, and bit 11 of the field must be 0. The upper 
bits of the field must be such that the field’s value is canonical relative to the 
processor’s maximum linear-address width.

• IA32_FRED_RSP1–IA32_FRED_RSP3: The value of each of these fields must be 
canonical relative to the processor’s maximum linear-address width, and bits 5:0 of 
each field must be zero.

• IA32_FRED_SSP1–IA32_FRED_SSP3: Bits 2:1 of each of these fields must be 0. 
The upper bits of each field must be such that the field’s value is canonical relative 
to the processor’s maximum linear-address width.

9.5.2.2 State Checking of Guest FRED State

If the “load FRED” VM-entry control is 1, VM entries check the guest FRED state in the 
VMCS that was identified in Section 9.3.2. If the field for any MSR contains a value that 
is not valid for that MSR, VM entry fails as is normally the case when checking guest 
state. The following items provide specifics of the properties that must hold:

• IA32_FRED_CONFIG: Bit 2, bits 5:4, and bit 11 of the field must be 0. The upper 
bits of the field must be such that its value is canonical relative to the processor’s 
maximum linear-address width.

• IA32_FRED_RSP1–IA32_FRED_RSP3: The value of each of these fields must be 
canonical relative to the processor’s maximum linear-address width, and bits 5:0 of 
each field must be zero.

• IA32_FRED_SSP1–IA32_FRED_SSP3: Bits 2:1 of each of these fields must be 0. 
The upper bits of each field must be such that its value is canonical relative to the 
processor’s maximum linear-address width.

• IA32_PL0_SSP: Bit 1 of the field must be 0. The upper bits of the field must be 
such that its value is canonical relative to the processor’s maximum linear-address 
width.

Note that a VMCS field corresponding to a FRED SSP MSR (including IA32_PL0_SSP) is 
not considered invalid due to the field setting bit 0 (corresponding to the MSR’s verified 
bit).

9.5.2.3 State Checking If FRED Transitions Would Be Enabled After VM Entry

As noted elsewhere, software cannot enter ring 1 or ring 2 while FRED transitions are 
enabled; in addition, IOPL must be 0 when CPL is 3. Checks are added to VM entry to 
enforce these limitations.

If FRED transitions would be enabled following VM entry (see above), VM entry 
performs the following checks on guest state in the VMCS:

• The DPL value (bits 6:5) in the SS attributes field must be 0 or 3.1

1. SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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• If the DPL value in the SS attributes field is 3, the IOPL value (bits 13:12) in the 
RFLAGS field must be 0.

9.5.3 State Loading by VM Entries
If the “load FRED” VM-entry control is 1, VM entries load the guest FRED state 
identified in Section 9.3.2 from the VMCS. Unlike the WRMSR and XRSTORS 
instructions, VM entry will set bit 0 of a FRED SSP MSR (the MSR’s verified bit) if bit 0 is 
set in the corresponding field in the guest-state area of the VMCS. This applies also to 
the IA32_PL0_SSP MSR (also known as IA32_FRED_SSP0).

Bit 1 of the interruptibility-state field in the guest-state area of the VMCS indicates 
blocking by MOV SS. Regardless of the value of this bit, there will be no blocking by 
MOV SS after the VM entry completes if FRED transitions will be enabled at that time. 
See Section 7.6.

9.5.4 VM-Entry Event Injection
If the valid bit in the injected-event identification field is 1, VM entry injects an event.

For IDT event delivery, VM entry can be used to inject an external interrupt, non-
maskable interrupt (NMI), exception (including those caused by INT1, INT3, and 
INTO), or software interrupt. If FRED transitions will be enabled after the VM entry (see 
above), injection of any of these events uses FRED event delivery (instead of IDT event 
delivery).

In addition, as noted in Section 9.5.1, VM entry can inject an event for SYSCALL or 
SYSENTER if FRED transitions will be enabled after the VM entry.

If bit 13 of the injected-event identification field is 1 (implying that the event is an 
exception; see Section 9.5.1) and the injected event is delivered using FRED event 
delivery, the event’s stack level is determined as if the event had been encountered 
during delivery of another event (see Section 5.1.3).

Section 5.2.1 specifies the event data that FRED event delivery of certain events saves 
on the stack. When FRED event delivery is used for an event injected by VM entry, the 
event data saved is the value of the injected-event-data field in the VMCS. This value is 
used instead of what is specified in Section 5.2.1 and is done for all injected events 
using FRED event delivery.

Section 5.2.1 specifies an instruction length that FRED event delivery of certain events 
saves as part of event information. When FRED event delivery is used for such an event 
injected by VM entry, the instruction length saved is the value of the VM-entry 
instruction-length field in the VMCS.

The following items describe the existing treatment of RIP by VM-entry event injection:

1. If VM entry successfully injects (with no nested exception) an event with type 
external interrupt, NMI, or hardware exception, the guest RIP (as loaded from the 
VMCS) is pushed on the stack.

2. If VM entry successfully injects (with no nested exception) an event with type 
software interrupt, privileged software exception, or software exception, the guest 
RIP is incremented by the VM-entry instruction length before being pushed on the 
stack.
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3. If VM entry encounters an exception while injecting an event and that exception 
does not cause a VM exit, the guest RIP is pushed on the stack regardless of event 
type or VM-entry instruction length.

4. If VM entry encounters a VM exit while injecting an event (perhaps due to an 
exception), the RIP value saved by the VM exit is the guest RIP loaded from the 
VMCS. If the injected event had type software interrupt, privileged software 
exception, or software exception, the value saved for the VM-exit instruction length 
is the VM-entry instruction length.

Item #2 of this existing treatment will apply also if VM entry is injecting SYSCALL or 
SYSENTER using FRED event delivery. For item #4, the treatment of the instruction 
length is extended to apply also to the injection of SYSCALL and SYSENTER.

If VM entry is injecting an NMI, physical-NMI blocking is not changed, but virtual NMIs 
are blocked if the “virtual NMIs” VM-execution control is 1.

9.6 FRED Transitions and VM Exits
This section describes the interactions between VM exits and various aspects of FRED 
transitions.

9.6.1 State Management by VM Exits
If the “save FRED” VM-exit control is 1, VM exits save the guest FRED state identified in 
Section 9.3.2 into the VMCS.

Bit 1 of the interruptibility-state field in the guest-state area of the VMCS indicates 
blocking by MOV SS. VM exits that occur while FRED transitions are enabled always 
save this bit as 0, even if they occur immediately after execution of MOV to SS or 
POP SS. See Section 7.6.

If the “load FRED” VM-exit control is 1, VM exits load the host FRED state identified in 
Section 9.3.1 from the VMCS. Unlike the WRMSR and XRSTORS instructions, a VM exit 
will set bit 0 of a FRED SSP MSR (the MSR’s verified bit) if bit 0 is set in the 
corresponding field in the host-state area of the VMCS.

9.6.2 VM Exits Caused by Events That Would be Delivered by 
FRED
If an event that would use FRED event delivery instead causes VM exit, information 
about the event is saved into the exiting-event identification and error-code fields of 
the VMCS as would be done if FRED transitions were not enabled, with the following 
exceptions:

• Bit 11 of the exiting-event identification field indicates whether the error code field 
is valid. For VM exits due to events that occur while FRED transitions are enabled, 
this bit is always saved as 1.

• Bit 13 of the exiting-event identification field is set if the VM exit is due to a nested 
exception encountered during delivery of an earlier event. Other VM exits 
(including VM exit due to #DF) clear the bit.

• For events that occur while FRED transitions are enabled, the exiting-event error 
code is always defined. (It receives whatever value the event would have saved for 
an error code as determined by Section 5.2.1; this value is zero when an error code 
was not already defined.)



Document Number: 346446-002US, Revision: 2.0 41

For some events for which event data is defined (see Section 5.2.1), the event data is 
saved in the exit-qualification field. (This is done for #PF and #NM.)

9.6.3 VM Exits During FRED Event Delivery
A VM exit may occur during FRED event delivery, due either to a nested exception 
(configured to cause a VM exit) or to some VMX-specific occurrence (e.g., an EPT 
violation).

The VMX architecture treats such a case in the same way that it would treat a VM exit 
incident to IDT event delivery. Specifically, no register state is updated by the FRED 
event delivery that encountered the VM exit. (The VM exit may occur after there have 
been writes to memory, e.g., to push data on the stack.)

In these cases, information about the event is saved into the original-event 
identification and error-code fields of the VMCS as would be done if FRED transitions 
were not enabled, with the following exceptions:

• Bit 11 of the original-event identification field indicates whether the error code field 
is valid. For VM exits that occur during FRED event delivery, this bit is always saved 
as 1.

• Bit 13 of the original-event identification field is set if the original event was a 
nested exception encountered during delivery of another event. Other VM exits 
(including VM exit due to events encountered during delivery of #DF) clear the bit.

• For VM exits that occur during FRED event delivery, the original-event error code is 
always defined. (It receives whatever value the event would have saved for an 
error code as determined by Section 5.2.1; this value is zero when an error code 
was not already defined.)

In addition, the event data that FRED event delivery would save on the stack (see 
Section 5.2.1) is saved into the original-event-data field in the VMCS. This is done for 
all events, with a value of zero being saved for those events for which event data is not 
defined.1

The existing treatment of VM exits encountered during IDT event delivery of events 
with type software interrupt (INT n), privileged software exception (INT1), or software 
exception (INT3 or INTO) is that the length of the instruction is saved into the VM-exit 
instruction-length field in the VMCS. This treatment will apply also to FRED event 
delivery, including FRED event delivery of SYSCALL or SYSENTER. (See Section 9.5.4 
for the case in which the FRED event delivery resulted from VM-entry event injection.)

In general, for VMX features that have special treatment during IDT event delivery 
(e.g., conversion of EPT violations to virtualization exceptions), that special treatment 
applies as well to FRED event delivery.

9.6.4 VM Exits During FRED Return Instructions
A VM exit may occur during execution of ERETS or ERETU due either to an exception (if 
configured to cause a VM exit) or to some VMX-specific occurrence (e.g., an EPT 
violation).

1. The value of the original-event-data field is undefined following all other VM exits, including those 
that occur during IDT event delivery.



42 Document Number: 346446-002US, Revision: 2.0

The VMX architecture treats this case in the same way that it generally treats VM exits 
incident to other instructions: for fault-like VM exits, no register state is updated.

In particular, an execution of ERETS and ERETU that causes a VM exit does not unblock 
NMIs (or virtual NMIs). Because of this, such a VM exit that results from a fault, EPT 
violation, page-modification log-full event, SPPT misconfiguration, or SPPT miss 
encountered by ERETS or ERETU never sets bit 12 of the exit qualification. (The 
processor sets this bit only for VM exits encountered by an execution of IRET that 
unblocks NMIs.)
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10 Changes to the RSM Instruction

The RSM instruction (Resume from System Management Mode), which can be executed 
only in system-management mode (SMM), effects a return from SMM by restoring 
register state that was saved by the most recent system-management interrupt.

If execution of RSM detects that it would restore invalid state, the logical processor 
enters the shutdown state and generates a special bus cycle to indicate this fact.

On processors that support FRED transitions, execution of RSM leads to shutdown in 
the following situations (in addition to those already defined):

• If FRED transitions would be enabled after RSM (CR4.FRED = IA32_EFER.LMA = 1) 
and CPL would be 1 or 2.

• If FRED transitions would be enabled after RSM, CPL would be 3, and IOPL would 
be non-zero.
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A Detailed Pseudocode

The appendix gives detailed pseudocode for FRED event delivery (Appendix A.1), 
ERETS (Appendix A.2), and ERETU (Appendix A.3). Unless otherwise noted, the 
pseudocode in this appendix should be considered definitive for the FRED transitions. 
(This appendix does not provide all details of interactions with the VMX architecture.)

A.1 Detailed Operation of FRED Event Delivery
The appendix presents detailed pseudocode for the operation of FRED event delivery.

It does not include details of how event information is formatted or how event data is 
determined. These details are in Section 5.2.1.

IF IA32_FRED_CONFIG is not canonical relative to the current paging mode
THEN #GP(0); // will lead eventually to shutdown or VM exit

FI;

// HOLD OLD STATE IN TEMPORARIES
oldRIP ← RIP;
oldCS ← CS; // oldCS is 8 bytes; the upper 6 bytes are defined below
oldCPL ← CPL; // the same as oldCS[1:0]
oldRFLAGS ← RFLAGS;
oldSS ← SS; // oldSS is 8 bytes; upper 6 bytes are zero
oldRSP ← RSP;
oldCSL ← CSL; // represented in IA32_FRED_CONFIG[1:0]
oldGSB ← GS.base;
oldSSP ← SSP; // used only when shadow stacks are enabled
// ERETS and ERETU will restore the oldRFLAGS to RFLAGS
// Before saving, event delivery updates oldRFLAGS to set RF when appropriate
IF the event being delivered is a fault other than an instruction breakpoint OR

the event being delivered is a trap or interrupt between iterations
of a REP-prefixed string instruction
THEN oldRFLAGS[16] ← 1;

FI;
// Update bits above CS selector to hold additional information
// ERETS and ERETU will use these
IF event being delivered is an NMI // includes VM-entry injection of NMI

THEN oldCS[16] ← 1;
FI;
IF event being delivered is either SYSCALL, SYSENTER, or INT n

THEN oldCS[17] ← 1;
FI;
IF STI blocking was in effect when the event occurred

THEN oldCS[18] ← 1;
FI;
oldCS[25:24] ← oldCSL;

// DETERMINE NEW CONTEXT
// determine new RIP
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IF oldCPL = 3
THEN newRIP ← IA32_FRED_CONFIG & ~FFFH;
ELSE newRIP ← IA32_FRED_CONFIG & ~FFFH + 256;

FI;
// determine event’s stack level and then new stack level for event handler
IF oldCPL = 3 AND event is not an exception nested on event delivery AND event is not #DF

THEN eventSL ← 0;
ELSE

IF event type is external interrupt // since this is “ELSE”, oldCPL must be 0
THEN eventSL ← IA32_FRED_CONFIG[10:9];

ELSIF event type is hardware exception, software exception, or NMI
// v = event vector (0–31); includes INT1, INT3, INTO
THEN eventSL ← IA32_FRED_STKLVLS[2v+1:2v];
ELSE // SYSCALL, SYSENTER, INT n with CPL = 0; do not change CSL

eventSL ← 0;
FI;

FI;
newCSL ← MAX{eventSL, oldCSL};
// determine new RSP
IF oldCPL = 3 OR newCSL > oldCSL

THEN newRSP ← IA32_FRED_RSPi, where i = newCSL;
ELSE  // decrement RSP as specified and align to 64 bytes

newRSP ← (RSP – (IA32_FRED_CONFIG & 1C0H)) & ~3FH;
FI;
// determine new RFLAGS; always clear TF = RFLAGS[8] and RF = RFLAGS[16]
newRFLAGS ← oldRFLAGS & ~IA32_FMASK & ~10100H;
// if needed, determine new SSP
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1 AND (oldCPL =3 OR newCSL > oldCSL)

THEN // i = newCSL; do not copy MSR’s verified bit into SSP
newSSP ← IA32_FRED_SSPi & ~1;

ELSE // decrement SSP if specified
newSSP ← SSP – (IA32_FRED_CONFIG & 8);

FI;

// ESTABLISH NEW CONTEXT — OLD STATE WILL BE RESTORED IF THERE IS A SUBSEQUENT FAULT
// update segment registers if event occurred in ring 3
IF oldCPL = 3

THEN
// set CS to standard values used by a 64-bit operating system
CS.selector ← IA32_STAR[47:32] & FFFCH;
CS.base ← 0;
CS.limit ← FFFFFH;
CS.type ← 11;
CS.S ← 1;
CS.DPL ← 0;
CS.P ← 1;
CS.L ← 1;
CS.D ← 0;
CS.G ← 1;
// set SS to standard values used by a 64-bit operating system
SS.selector ← CS.selector + 8;
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SS.base ← 0;
SS.limit ← FFFFFH;
SS.type ← 3;
SS.S ← 1;
SS.DPL ← 0;
SS.P ← 1;
SS.B ← 1;
SS.G ← 1;
// swap in supervisor GS base address
GS.base ← IA32_KERNEL_GS_BASE;
IA32_KERNEL_GS_BASE ← oldGSB;

FI;
// update registers defining context
RIP ← newRIP;
RFLAGS ← newRFLAGS;
RSP ← newRSP; // SSP will be updated later
CSL ← newCSL; // reflected in IA32_FRED_CONFIG[1:0]

// SAVE STATE ON STACKS
// Save return state on new regular stack; memory accesses here have supervisor privilege
push8B 00000000_00000000H; // First 8 bytes pushed are all zero
push8B eventdata as defined in Section 5.2.1;
push8B eventinfo as defined in Section 5.2.1;
push8B oldSS;
push8B oldRSP;
push8B oldRFLAGS;
push8B oldCS;
push8B oldRIP;
// If needed, update new shadow stack and save state
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1

THEN
IF oldCPL = 3 AND newCSL = 0 AND newSSP[2] = 1

// newSSP was loaded from IA32_FRED_SSP0; might not have been 8B aligned
THEN #GP(0);

FI;
IF oldCPL = 3 OR newCSL > oldCSL

THEN // SSP is changing; token management for new shadow stack
// the following are considered supervisor shadow-stack accesses
// i = newCSL; recall newSPP was loaded from IA32_FRED_SSPi
IF IA32_FRED_SSPi[0] = 0 // check MSR verified bit

THEN // MSR not verified
SSPToken ← 8 bytes at newSSP;// under lock
IF SSPToken = newSSP

THEN
// set bit 0 and mark MSR verified
SSPToken ← newSSP | 1;
store SSPToken at newSSP;// unlock
IA32_FRED_SSPi← SSPToken;

ELSE
// write back old value
store SSPToken at newSSP;// unlock
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#GP(0);
FI;

ELSE // MSR already verified
SSPToken ← 8 bytes at newSSP;// no lock
IF SSPToken ≠ newSSP | 1

THEN #GP(0);
FI;

FI;
SSP ← newSSP; // oldSSP restored on a subsequent fault

ELSE
IF SSP & 7 ≠ 0 // SSP not changing; check for 8B alignment

THEN pushSS_4B 00000000H; // aligns SSP to 8B boundary
FI;

FI;
IF oldCPL = 0

THEN
pushSS_8B oldCS & FFFFH; // only push original selector
pushSS_8B oldRIP; // add old CS.base if had been compat. mode
pushSS_8B oldSSP;

FI;
FI;

// UPDATE ADDITIONAL STATE
// update additional CET state as needed (SSP was updated earlier)
IF CR4.CET = 1

THEN
IF oldCPL = 3 AND IA32_U_CET.SH_STK_EN = 1

THEN // adjust so bits 63:N get the value of bit N–1
// N = CPU’s maximum linear-address width

IA32_PL3_SSP ← LA_adjust(oldSSP);
FI;
IF IA32_S_CET.ENDBR_EN = 1

THEN IA32_S_CET[11:10] ← 10b; // WAIT_FOR_ENDBRANCH with SUPPRESS = 0
FI;

FI;
// update event-related state
clear any pending debug traps;
IF event being delivered is an NMI

THEN block NMIs;1

FI;
CPL ← 0;

A.2 Detailed Operation of ERETS
The appendix presents detailed pseudocode for the operation of ERETS:

IF IA32_EFER.LMA = 0 OR CS.L = 0 OR CR4.FRED = 0 OR CPL > 0
THEN #UD;

1. If the NMI was being injected by VM entry, the existing treatment applies: physical-NMI blocking 
is not changed, but virtual NMIs are blocked if the “virtual NMIs” VM-execution control is 1.
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FI;
// pop old context from regular stack and check it
pop8B newRIP;
pop8B newCS;
pop8B newRFLAGS;
pop8B newRSP;
pop8B newSS; // checked but not used
IF newRIP is not canonical relative to the current paging mode OR

newCS[63:26] ≠ 0 OR newCS[23:19] ≠ 0 OR newCS[1:0] ≠ 0
newRFLAGS & FFFFFFFFFFC2802AH ≠ 2 OR newSS[63:16] ≠ 0 OR newSS[1:0] ≠ 0
// the flags check enforces that bit 1 is set and VM bit and all reserved bits are clear

THEN #GP(0);
FI;
NMI_unblock ← newCS[16];
pend_DB ← newCS[17];
STI_block← newCS[18];
// ERETS will not numerically increase stack level
newCSL ← min{CSL,newCS[25:24]};
// If supervisor shadow stacks are enabled, pop and check values from the shadow stack
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1

THEN
IF SSP & 7 ≠ 0 // require 8-byte alignment

THEN #CP(FAR-RET/IRET);
FI;
popSS_8B newSSP;
popSS_8B checkSSLIP;
popSS_8B checkSSCS;
IF checkSSCS ≠ CS // 64-bit compare

OR checkSSLIP ≠ newRIP
OR newSSP & 3H ≠ 0
THEN #CP(FAR-RET/IRET);

FI;
IF newSSP not canonical relative to current paging mode

THEN #GP(0);
FI;

FI;
// If supervisor shadow stacks are enabled, the stack level is changing, and
// the FRED SSP MSR for the old stack level is not verified,
// check token on shadow stack; in this section, i = CSL
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1 AND

newCSL < CSL AND IA32_FRED_SSPi ≠ SSP | 1
THEN

IF IA32_FRED_SSPi = SSP // MSR has right address but isn’t verified
THEN

SSPToken ← 8 bytes at SSP;// no lock
IF SSPToken = SSP | 1 // token busy, re-verify MSR

THEN // set bit 0 in MSR, marking it verified
IA32_FRED_SSP ← SSPToken;

FI;
ELSE // MSR has wrong address
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SSPToken ← 8 bytes at SSP;// under lock
IF SSPToken = SSP | 1

THEN store SSP at SSP; // unlock; clears bit 0, freeing token
ELSE store SSPToken at SSP;// unlock; memory not changed

FI;
FI;

FI;
// update registers for return context
RIP ← newRIP;
RFLAGS ← newRFLAGS; // ERETS can set RFLAGS.RF to 1
RSP ← newRSP;
CSL ← newCSL; // reflect in IA32_FRED_CONFIG[1:0]
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1

THEN SSP ← newSSP;
FI;
// update event-related state
IF NMI_unblock = 1

THEN unblock NMIs;1

FI;
IF pend_DB = 1 AND RFLAGS.TF =1

THEN pend a single-step debug exception (#DB) to be delivered after ERETS;2

FI;
IF STI_unblock = 1

THEN establish STI blocking;
FI;

A.3 Detailed Operation of ERETU
The appendix presents detailed pseudocode for the operation of ERETU:

IF IA32_EFER.LMA = 0 OR CS.L = 0 CR4.FRED = 0 OR CPL > 0
THEN #UD;

FI;
// pop old context from regular stack and check it
pop8B newRIP;
pop8B tempCS;
pop8B newRFLAGS;
pop8B newRSP;
pop8B tempSS;
IF tempCS[63:18] ≠ 0 OR newRFLAGS & FFFFFFFFFFC2B02AH ≠ 2 OR tempSS[63:16] ≠ 0

// the flags check enforces that bit 1 is set and that IOPL, the VM bit and all reserved bits are clear
THEN #GP(0);

FI;
NMI_unblock ← tempCS[16];
pend_DB ← tempCS[17];
IF tempCS[15:0] = IA32_STAR[63:48] + 16 AND tempSS[15:0] = IA32_STAR[63:48] + 8

1. If in VMX non-root operation with the 1-setting of the “virtual NMIs” VM-execution control, this 
step unblocks virtual NMIs. See Section 9.

2. If ERETS began execution with RFLAGS.TF = 1, there will always be a single-step debug exception 
pending after ERETS, regardless of the values on the stack for RFLAGS.TF and CS.
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THEN // Return to ring 3 in standard 64-bit configuration
// set newCS to standard values used ring 3 in 64-bit mode

newCS.selector ← (IA32_STAR[63:48] + 16) | 3;
newCS.base ← 0;
newCS.limit ← FFFFFH;
newCS.type ← 11;
newCS.S ← 1;
newCS.DPL ← 3;
newCS.P ← 1;
newCS.L ← 1;
newCS.D ← 0;
newCS.G ← 1;

// set newSS to standard values for ring 3
newSS.selector ← (IA32_STAR[63:48] + 8) | 3;
newSS.base ← 0;
newSS.limit ← FFFFFH;
newSS.type ← 3;
newSS.S ← 1;
newSS.DPL ← 3;
newSS.P ← 1;
newSS.B ← 1;
newSS.G ← 1;

ELSIF tempCS[15:0] = IA32_STAR[63:48] AND tempSS[15:0] = IA32_STAR[63:48] + 8
THEN

// set newCS to standard values used ring 3 in compatibility mode
newCS.selector ← IA32_STAR[63:48] | 3;
newCS.base ← 0;
newCS.limit ← FFFFFH;
newCS.type ← 11;
newCS.S ← 1;
newCS.DPL ← 3;
newCS.P ← 1;
newCS.L ← 0;
newCS.D ← 1;
newCS.G ← 1;

// set newSS to standard values for ring 3
newSS.selector ← (IA32_STAR[63:48] + 8) | 3;
newSS.base ← 0;
newSS.limit ← FFFFFH;
newSS.type ← 3;
newSS.S ← 1;
newSS.DPL ← 3;
newSS.P ← 1;
newSS.B ← 1;
newSS.G ← 1;

ELSE 
IF tempCS[1:0] ≠ 3 // ERETU only to ring 3

THEN #GP(0);
FI;
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load newCS using tempCS[15:0]; // load each as is done by IRET, including
load newSS using tempSS[15:0]; // checks that may lead to a fault
IF newCS.L = 0 AND newRIP is not within newCS’s limit

THEN #GP(0);
FI;

FI;
IF newCS.L = 1 AND newRIP is not canonical relative to current paging mode

THEN #GP(0);
FI;
// If supervisor shadow stacks are enabled, SSP must be 8-byte aligned
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1 AND SSP & 7 ≠ 0

THEN #CP(FAR-RET/IRET);
FI;
// If user shadow stacks are enabled, check new SSP value
IF CR4.CET = 1 AND IA32_U_CET.SH_STK_EN = 1 AND

(newCS.L = 0 AND IA32_PL3_SSP[63:32] ≠ 0)// return to compatibility mode
OR (newCS.L = 1 AND IA32_PL3_SSP not canonical relative to paging mode)

THEN #GP(0);
FI;
// If supervisor shadow stacks are enabled and the FRED SSP MSR for the CSL is not verified,
// check token on shadow stack; in this section, i = CSL
IF CR4.CET = 1 AND IA32_S_CET.SH_STK_EN = 1 AND IA32_FRED_SSPi ≠ SSP | 1

THEN
IF IA32_FRED_SSPi = SSP // MSR has right address but isn’t verified

THEN
SSPToken ← 8 bytes at SSP;// no lock
IF SSPToken = SSP | 1 // token busy, re-verify MSR

THEN // set bit 0 in MSR, marking it verified
IA32_FRED_SSP ← SSPToken;

FI;
ELSE // MSR has wrong address

SSPToken ← 8 bytes at SSP;// under lock
IF SSPToken = SSP | 1

THEN store SSP at SSP; // unlock; clears bit 0, freeing token
ELSE store SSPToken at SSP;// unlock; memory not changed

FI;
FI;

FI;
// update registers for return context
RIP ← newRIP;
RFLAGS ← newRFLAGS; // ERETU can set RFLAGS.RF to 1
RSP ← newRSP; // load all 64 bits regardless of new mode
CS ← newCS; // selector and descriptor
SS ← newSS; // selector and descriptor
CPL ← 3;
tempGSB ← GS.base; // swap GS.base and IA32_KERNEL_GS_BASE
GS.base ← IA32_KERNEL_GS_BASE;
IA32_KERNEL_GS_BASE ← tempGSB;
CSL ← 0; // reflect in IA32_FRED_CONFIG[1:0]
IF CR4.CET = 1 AND IA32_U_CET.SH_STK_EN = 1
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THEN SSP ← IA32_PL3_SSP;
FI;
// update event-related state
IF NMI_unblock = 1

THEN unblock NMIs;1

FI;
IF pend_DB = 1 AND RFLAGS.TF =1

THEN pend a single-step debug exception (#DB) to be delivered after ERETU;2

FI;

1. If in VMX non-root operation with the 1-setting of the “virtual NMIs” VM-execution control, this 
step unblocks virtual NMIs. See Section 9.

2. If ERETU began execution with RFLAGS.TF = 1, there will always be a single-step debug exception 
pending after ERETU, regardless of the values on the stack for RFLAGS.TF and CS.
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