intel.

INTEL® IN-MEMORY ANALYTICS
ACCELERATOR
ARCHITECTURE SPECIFICATION

Document Number: 350295-003US
Revision: 1.2
April 2022

Intel® In-Memory Analytics Accelerator Architecture Specification

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD),
https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in
compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document.
No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Revision: 1.2 Document Number: 350295-003US Page 2

https://opensource.org/licenses/0BSD

Intel® In-Memory Analytics Accelerator Architecture Specification

Table of Contents

FLINN 11 o [Tt o o 00O 9
Tl AUGIENCE sttt 8RS R8RSR 9
T2 RETEIENCES oottt SRS R0 10

LA © V= oV =PSSO 11
2.1 Data ANQLYTICS FEATUIES oottt seseest st sss sttt ss s sttt 11

3 Intel Analytics ACCElerator ArCHITECIUIE ... et eeseessssssse s ces s sessssss s s s ess s sessans 13
3.1 OPEIATIONS OVEIVIEW..ceoreeerreeieeseeessssesssssssssssssssssssssssssssasssssssssssassssssssssssssssssssssesssssesssssssssssassssssssssssssssnssss 13
3.2 Analytics Engine Configuration and STATE ..ceenereeeeeeseseesssssssssssssssssssssssssssssssssssssssons 13
IS 0GR I T a0 0 0] 01 <377] o DTSSR 14
3.3.1 VEIITICATION wovttttttrereereressessisssss s 14
3.3.2 INAEX GENEIATION ..t eeesisse st 15
B G0 T g1] 117110 OO 15
3.4.1 STAtISTICS MOAE OULPUL oottt s s sttt 15
3.4.2 Compression QUEPUL OVEITLOW ...cieieesssons 16
343 COMPIESSION INAEXING....vorerieisres st ssissssssss st sssssss st s sss s st s sss s sss st ssssss 16
3.5 ChecKSUM CalCULBTIONS ccoovvvierrrisiisseerresisieesssessssee s ssssss s 16
3.0 FIlEEI FUNCUIONS cooeeeiereeiitiesesisiessesisse s 16
3.6.1 = YT OSSO 17
3.6.2 PACKEA ATTAY wottreettereetteeeetssre st sesss st st s s8R 8 888858 17
3.6.3 PATQUET RLE ..ottt ss st s st 17
3.6.4 OULPUL MOAIfICALION sttt ss sttt 17
3.6.5 Modification When Output is Normally @ Bit VECTON ..vreceiseeceessssseseeeessssseeeeees 18
3.6.6 Modification When Output is NOrmally @n ArTay ... ssssesssssseeses 18
3.6.7 F] < = - LU (0] o OO 18
3.7 ZEI0 COMIPIESSION wteetteeereeetseeesseeesseeesseeessseesssseesssseeesseeess et sss e eees 48818845858 E bbb enss e 19
3.7 DWORD Zero Compression FOMMAt ... eeeeeeeesneeesseeeesessssssesssesssssssssssssssssssssssssssens 19
3.7.2 WORD Zero ComMpPression FOMMNAt. . eeeeeeeeesseeesseessssessssssssssssssssssssssssssssssssseeees 19
3.8 OPEIATION TYPES cooereerreeerreeetseeessseessseeessseessseesssseessssesess st et sesss 5884588888858ttt 19
3.8.1 DT (0 0]] =17 19
3.8.2 COMDIESS wretereereeeereeeeseeseseeesss e ess e ss s e 8888888258585 8 858 RR Rttt 20
3.83 CRC=B4 ..ot 20
3.84 Zdecompress32 and ZAECOMPIESSTO .. ssssssssssssssssssssssssssssses 27
3.85 Z2compress32 anNd ZCOMPIESSTO .. ssess 21
3.8.6 SCAMN ottt eeess e sess e 21
3.8.7 SEE MEMDEISNID sttt 22

Revision: 1.2 Document Number: 350295-003US Page 3

Intel® In-Memory Analytics Accelerator Architecture Specification

3.8.8 Q1= T OSSO 22
3.89 SEUIBCT ettt ettt et 8RR R SRR 22
3.8.10 RLE BUIST oot essssss s sssss st st 23
3.8.11 FINA UNIGQUE ottt sttt st sss st sss st st sttt sss s 24
3.8.12 EXIDANG ottt 24
4 ETOT HANAUNG eeeeeetrreeeeeeasseeeeeesassseeesesssees e ssssss s ses e sssss s8R R84 £EERR AR R 25
4.1 DESCIIPTON CRECKS .ottt ettt ess sttt 25
4.2 Descriptor Reserved Field CheCKING ..t sesessisssseessssesssssssse st sssssssssssssssssssnnes 25
4.3 AECS CRECKS oottt sessiss s s ssss s R 28
4.3.1 CoMPIeSS AECS CRECKS .ottt ssss s st st sss st sssssss 28
432 Decompress/Filter AECS ChECKS .. eieessssssssiissssssssssssssssss s sssssssssssssssssssssssses 28
A4 ETON COUBS ittreetteeeettse ettt ssss st s 888855858588 28
4.4 OPEration StAtUS COAES .t st sss s sss st ssssss 28
4.4.2 EFTOT COAE ittt 29
S0 T T L N el L= ot (1] =TT 33
5.1 INtel® QUErY ProCeSSING LIDIANY ...ttt sssssss s sss s sss s sssssssssssees 33
B STTUCTUIE FOMMALS covouieeeseeeeessseeesssseeessseeesssseeeesssessssssessssssessessssessssss e ssass e e eS8 e 35
6.1 Y 1 0 (] OO OO 35
6.1.1 TEUSTEA FIBLAS .ottt ettt es st et 35
6.1.2 OPEIATION .t R SRR R bbbt 36
6.1.3 OPEIATION FLAGS .evorreeerrereeesreeeeeesseeesssseeessssssesssseseesss s sssssssessss e sss st sss s sss st sssssssssssssssnas 36
6.1.4 DECOMPIESSION FLAGS ...ttt eeeeessseeees s eesesssseesssssssessssssesss st sss s sss s ssessss s ssssssssses 40
6.1.5 COMPIESSION FLAES .vvorevetee ettt sss sttt st ss sttt 41
6.1.6 FILEET FLAES oreeeeeeeeetre ettt sst st st 8RR 42
6.1.7 Completion RECOIA AQAIESS. ..t ss s sssssssssesens 43
6.1.8 SOUICE T AGAIESS ottt sssst st st ss s ss sttt 44
6.1.9 DEStINALION AGAIESS. ..ottt sttt sttt 44
6.1.10 SOUMCE T TIANSTEE SIZE oottt st sttt 44
6.1.11 Completion INTErrUPt HANALE ...t sss st esssss s sssssens 44
6.1.12 SOUIMCE 2 AGATESS .ooorrrreviiseesseesissssessssesssse s ssss s 45
©.1.13 MaximUuM DESTINATION SIZE ... ssssssessssssess s sssssssssssssses 45
6.1.14 SOUMCE 2 TIANSTEE SIZE oottt st st ss st 45
6.1.15 NUMBEr Of INPUL ELEMENTS ..ottt sssssss s sssssss st sss st sssssns 45
0.2 COMPLETION RECOIT ..ottt ettt sttt ss st st RS s s 47
6.2.7) € L OO OO 47
6.2.2 EFTON COAE ettt ettt s8R 47
6.2.3 BYTES COMPLETEA .ottt ss st s ss st sttt 47
6.2.4 FAULE AQAIESS oottt ssssis s 48

Revision: 1.2 Document Number: 350295-003US Page 4

Intel® In-Memory Analytics Accelerator Architecture Specification

6.2.5 INVALIA FLAES covvvvve vttt sss st sttt sttt 48
6.2.6 OULPUL SIZE ottt et eeess e eees e ss st st et ss s8R 8 8888888 48
6.2.7 OULPUL BILS ottt s st s sss bbb bbb 48
6.2.8 XOR CRECKSUIM oottt sssssss s ssss s 48
6.2.9 CREC st 49
6.2.10 AAGEIEEATES .ottt 49
6.3 CRC-64 Descriptor and Completion RECOMM ... rcereeieeeenseesssssssssssssssssssssssssesssssssssssssons 50
6.3.1 CRO FLAES rveeumreeeesmeeeessseseesssseeeessssessessssssessssses st ssssssesssss s st et 588288588 50
6.3.2 CRC POIYNOMIL.iittiriiiriiresesessssessnsssssnsses 51
6.4 Analytics Engine Configuration and STAte .. iiesssssssssssesssssss st ssssssssssens 52
6.4.1 AECS Format for Decompress and Filter... s ssssnns 52
6.4.2 AECS FOrmat fOr COMPIESS s sssssssssssssssss s ssssssssssss st ssssssssnssssnns 55
7 Summary of Differences from INTELT DSA... s sssssssss s sssssssssssssssssssssssssssssssassssases 57
7.1 GENEIAL DI EIENCES. ..ottt sttt 57
7.2 Configuration and Control Register Differ€nCes ... ssesesssssssesens 58
7.2.1 General Capabilities RegiSter (GENCAP)... . eeeeeeeesssssesesssssssssssssssssssssssssssssssssssees 58
7.3 PCl Express Configuration Register DifferEnCes.....ceeissississsssssssssssssssssssssssssssssnns 58
7.3.1 DEVICE D (DID) rrrvvveveeemssssssseseeeesesssssssssssssssesesssns 58
7.3.2 Outstanding Page Request Capacity (PRSREQCAP)ccorereimmeeeeeiisssnessessssssnnsssenens 59

Revision: 1.2 Document Number: 350295-003US Page 5

Intel® In-Memory Analytics Accelerator Architecture Specification

List of Figures

Figure 2-71: INtel ANALYtiCS ACCELETATON ittt sttt sss st s sss st 11
FIGUIE B-T: DESCIIDTON FOIMMNAT ettt st st seess sttt s sttt 35
Figure 6-2: Completion RECOIA FOIMAT. .. eireeeseeeeseeessssssessssssesssssssssssessssssssssssssssssssssesssssssssssssssnees 47
Figure 6-3: CRC-64 DeSCriPTOr FOMNALt .. eceeeeeeeeeeceesseeeessssseessssssesssssssesssssssssssssassssssssssssssssssssssessssssssssssssnees 50
Figure 6-4 : CRC-64 Completion RECOId FOIMAL. ..o reeeeeeeineeessssesessssssessssssssssssssssssssssssssssssssssnees 50
Figure 6-5: AECS Format for Decompress and FIlLEr ... ieeessssssssssssssssssssssesssssssssssss 52
Figure 6-6 AECS FOrMat fOr COMPIESS . irieeeeietsreeessssseseessssssessssessssssssssssssssssssss s st ssssssssssssssesssssssesssssssnees 55

Revision: 1.2 Document Number: 350295-003US Page 6

Intel® In-Memory Analytics Accelerator Architecture Specification

List of tables

TADLE T2 REFEIENCES ..ottt s s S RS RsREs 10
Table 3-1 : AECS Sizes fOr Various OPeratiONs. ... eeereeeeeessnssssssssssssssssssssssssssssssesssssssssssssssssssssons 14
Table 3-2 : Examples Of CRCB4 PAramETErS ... ssens 27
Table 3-3 : Example of RLE Burst Operation With Two Equivalent Primary INputs......cocccomeeernnnn. 24
Table 4-1: Operation-Specific Flags and AlLOWEd FIELAScrreeeeireeeeisssssseessssssssssssssssssssssssssssseeees 27
Table 4-2: Conditional Reserved Field ChECKING ... eseesssssisssssssi st ssssssssssssssss s sssons 27
Table 4-3 : Operation Types with Required (Must De 1) FLAES ...vvvveeeumrerreeereeeeisssssssssseeeeesseseessssssssssse 27
Table 4-4; OPeration STAtUS CORS sttt 29
TADLE 4-5: ErTOI COARS ..ottt sessissee s ssss s s 31
Table 6-T: DescCriptor TrUSTEA FIELAS ..t sss s st st sssssssssssssas 35
TaADLE B-2: OPEIATION TYPES oot ist ettt st st s SR s RS s e 36
TADLE B-3: DESCIIPTION FLAES et eeesseeeeet ettt sest sttt s 39
Table 6-4: DECOMPIrESSION FLAGS v rreeeireeeireeeeessreeeeeisseeesssssseesss s sssss s sssss st s sss s sss st s ss s sss s sssssnas 47
Table 6-5: COMPIESSION FLAES ..crrreeereeeeeseeeeesreeeeesssseseesssseesssssssesssssesssssssssssssssssssss st ssssssssssssssssssssssssssssnssssssnns 42
TADLE B6: FIlLOI FLAES.ovviierrveeiereeseseese it sss st st sss st s8R 43
Table 6-7: Completion record Status fIELA ...t ssessss st ssss s sssns 47
Table 6-8: Completion record AEregates fIEldS ...t sssesss st esssssssssssssons 49
Table 6-9: AECS fields for DecompPress and Filter ... ssssesssesesssens 53
Table 6-10 Decompress/Analytics INTEINAl STATE ... 53
Table 6-T7 ALU Field DEfINITIONS vt sssans 54
Table 6-12 AECS FIields fOr COMPIESS. ... isisseessesssssssssssssons 56

Revision: 1.2 Document Number: 350295-003US Page 7

Intel® In-Memory Analytics Accelerator Architecture Specification

Glossary

Acronym Term Description

AECS Analytics Engine A data structure used to pass configuration data that did not
Configuration and State | fit into the descriptor to the accelerator, and to pass state
information between descriptor executions when a job
consists of multiple descriptors.

DSA Intel® Data Streaming Intel Accelerator design to accelerate streaming operations
Accelerator such as memory copy and others.

QPL Intel® Query Processing Intel library to interface between applications and the
Library hardware.

Revision: 1.2 Document Number: 350295-003US Page 8

Intel® In-Memory Analytics Accelerator Architecture Specification

1 Introduction

The Intel® In-Memory Analytics Accelerator (Intel® IAA) is a hardware accelerator that provides very high
throughput compression and decompression combined with primitive analytic functions.

The Intel® Data Streaming Accelerator (Intel® DSA) is a data mover and transformation accelerator. Intel IAA
and Intel DSA share the same hardware/software and programming interface. This document describes the
Intel IAA specific functionality and the minor differences in interface from the base Intel DSA specification.
One should refer to the Intel Data Streaming Accelerator Architecture specification for details on the
common elements.

1.7 Audience

The intended audience for this specification includes hardware engineers and SoC architects to build the
hardware implementation, device driver software developers to program the device, virtualization software
providers to efficiently enable sharing and virtualization of the device, and application or library developers
utilizing accelerator operations.

It is assumed that the reader is already familiar with the Intel Data Streaming Accelerator (Intel DSA)
architecture.

Revision: 1.2 Document Number: 350295-003US Page 9

Intel® In-Memory Analytics Accelerator Architecture Specification

1.2 References

Description

Intel® Data Streaming Accelerator Architecture Specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-

specification

Intel® 64 and IA-32 Architectures Software Developer's Manuals
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html

Intel® Architecture Instruction Set Extensions Programming Reference
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-
extensions-programming-reference.ntml

Intel® Query Processing Library
https://github.com/intel/gpl

PCl Express* Base Specification 4.0
http://www.pcisig.com/specifications/pciexpress

Intel® Virtualization Technology for Directed I/O Specification
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-
directed-io-architecture-specification.html

Intel® Scalable /O Virtualization Technical Specification
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-
technical-specification.html

Intel® I/O Acceleration Technology
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html

ITU-T recommendation V.42
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.42-200203-!IPDF-E&type=items

RFC 1951, DEFLATE Compressed Data Format Specification
http://www.ietf.org/rfc/rfc1957.txt

RFC 3720, Internet Small Computer Systems Interface
http://www.ietf.org/rfc/rfc3720.txt

Table 1-1: References

Revision: 1.2 Document Number: 350295-003US Page 10

https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/en-us/download/intel-data-streaming-accelerator-preliminary-architecture-specification
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://github.com/intel/qpl
http://www.pcisig.com/specifications/pciexpress
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-technical-specification.html
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.42-200203-I!!PDF-E&type=items
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc3720.txt

Intel® In-Memory Analytics Accelerator Architecture Specification

2 Overview

The Intel In-Memory Analytics Accelerator (Intel IAA) is a hardware accelerator that provides very high
throughput compression and decompression combined with analytic primitive functions. The analytic
functions are commonly used for filtering data during analytic query processing. It primarily targets
applications such as big-data and in-memory analytic databases, as well as application-transparent usages
such as memory page compression. Other operations such as data integrity functions (e.g., CRC64) are also
supported. The device supports light-weight compression schemes such as zero-compression as well as
heavier formats such as Huffman encoding and Deflate. For the Deflate format, it supports indexing the
compressed stream for efficient random access.

2.7 Data Analytics Features

The accelerator contains two main functional blocks: Compression and Analytics. The Analytics pipe
contains two sub-blocks: Decompress and Filter. These functions are tied together, so that each analytics
operation can perform decompress-only, filter-only, or decompress-and-filter processing, as illustrated in
Figure 2-1. Alternatively, one can compress the input.

The accelerator allows storing columnar databases in compressed form, decreasing memory footprint. In
addition to increased effective memory capacity, this also reduces memory bandwidth by performing the
filter function used for database queries “on the fly”, thereby avoiding use of memory bandwidth for
uncompressed raw data transfer.

Decompress
Bypass

SQL Filter Decompress
Bypass Output

. .

SQL Filter Functions

Sourcel DEFLATE
Decompressor

Decompress SQL Filter SQL Filter

Config/State Main Input Output Analytics
Source2 Compress Filter Optional Engine Output

Config/State Second Input

DEFLATE

\/

Compressor

Analytics Engine

Figure 2-1: Intel Analytics Accelerator

Revision: 1.2 Document Number: 350295-003US Page 11

Intel® In-Memory Analytics Accelerator Architecture Specification

The device supports decompression compatible with the Deflate compression standard described in RFC
1951. The uncompressed data may be written directly to memory or passed to the input of the filter
function. Decompression is supported for Deflate streams where the size of the history buffer is no more
than 4096.

It also supports Deflate compression, along with the calculation of arbitrary CRCs and two varieties of zero
compression/decompression.

The SQL filter function block takes one or two input streams, a primary input, and an optional secondary
input. The primary input may be read from memory or received from the decompression block. The
secondary input, if used, is always read from memory. The data streams logically contain an array of
unsigned values, but they may be formatted in any of several ways, e.g., as a packed array. If the bit-width
of the values is 1, the stream will be referenced as a “bit-vector”, otherwise it will be referenced as an “array”.

The output of the filter function may be either an array or a bit vector depending on the function.

In addition to generating output data, the device computes a 32-bit CRC of the uncompressed data (either
the result of decompression or the direct input to the filter function), the XOR checksum of this data, and
several "aggregates” of the output data. The CRC, XOR checksum, and aggregates are written to the
completion record.

8

Revision: 1.2 Document Number: 350295-003US Page 12

Intel® In-Memory Analytics Accelerator Architecture Specification

3 Intel Analytics Accelerator Architecture

3.7 Operations Overview

The following data operations are supported by the accelerator. The following sections give more details
on these operations.

Type Operation Description

Decompress Decompress Decompress input data.

Compress Compress Compress input data.

Filter Scan Compute a bit-mask of which entries satisfy a condition.

Set Membership

Compute a bit-mask of which entries belong to a specified set.

Extract

Return entries as specified by a range of entry indices.

Select Return entries as specified by a bit-mask.
RLE Burst Expand entries that have been RLE-encoded.
Find Unique Return a bit-mask indicating which values are present in the
input.
Expand Insert zeros as specified by a bit-mask.
Zero Compress | Zcompress16 Compress by removing 16-bit words containing zeros.
Zcompress32 Compress by removing 32-bit words containing zeros.
Zdecompress16 Decompress data that was compressed by Zcompress16.
Zdecompress3?2 Decompress data that was compressed by Zcompress32.
CRC CRC-64 Compute an arbitrary CRC up to 64-bits in size.

3.2 Analytics Engine Configuration and State

The analytics engine configuration and state structure (AECS) contain configuration information that is used
to control the behavior of the decompressor and the filter functions. Details of this structure are in section
6.4. In addition to configuration information, the AECS may contain internal state of the analytics engine.
The state information can be used to initialize the engine to a known state and to propagate state
information from one operation to another. For each operation, the AECS may be read or written or both,
depending on flags in the descriptor, as described in section 6.1.3.

When Source 2 Address and Source 2 Size are being used to read and/or write the AECS, then the actual
memory being referenced will be twice the specified size. The read will occur from one half of the area, and
the write will occur to the other half. In this way, the input data will not get overwritten by the output data,
so that in the event of an error, the request can be retried by software. The AECS R/W Toggle Selector bit
in the Operations Flags field of the descriptor indicates which half supplies the read data, and which half
receives the write data.

In particular, if the AECS address (i.e., Source 2 Address) is “A", and the AECS size (i.e., Source 2 Transfer
Size) is “S", then in one case the AECS is read from (A) and written to (A+S), and in the other case it is read
from (A+S) and written to (A). Note that the total amount of memory accessed would be in general (29).

Note that in some cases the AECS may be read but not written or written but not read. In either of these
cases, the address used for the read or the write is the same as if there was both a read and a write

Revision: 1.2 Document Number: 350295-003US Page 13

Intel® In-Memory Analytics Accelerator Architecture Specification

happening. For example, if the AECS was being read but not written, and the AECS R/W Toggle Selector was
1, then the AECS would be read from (A+S) and nothing would be written to (A).

Depending on the operation, some portions of the nominal AECS may not be relevant and do not need to
be read/written. Since the AECS is always read starting at the beginning, the only portion that can be omitted
is at the end. This implies that the size specified for the AECS (i.e., the Source 2 Transfer Size) will vary
depending on the operation. In general, this value will be the size of the relevant data (starting at offset 0)
rounded up to the next multiple of 32. So typical values would be:

Operation AECS Size
Filter 32
Decompress 5376
Compress (With Huffman Table) 1568

Table 3-1 : AECS Sizes for Various Operations

3.3 Decompression

Intel IAA supports decompression compatible with the Deflate compression standard described in RFC
19517. The decompression block reads a compressed stream and an optional AECS and generates the corre-
sponding uncompressed data. The uncompressed data may be written directly to memory or passed to the
input of the filter function.

Decompression can be performed on a single buffer, where the entire stream is contained in a single buffer,
or on multiple buffers, and the stream spans more than one buffer. In the latter case, a separate descriptor
is submitted for each buffer. This is called a job. That is, a job is a series of descriptors that operate on one
logical stream. The descriptors in a job are tied together by the use of a common AECS. The AECS written
by each descriptor in the job is read by the next descriptor. The AECS stream contains data used to connect
the individual descriptors used to process one logical stream. It is typically read on all but the initial
descriptor of a job, and it is written on all but the final descriptor.

For operations that write the output of decompression to memory, the output buffer size specified in the
descriptor should be large enough to hold the output of the operation. If the output does not fit into the
specified output buffer, the decompression operation terminates and reports the amount of the input that
was consumed. An additional descriptor must be submitted to process the remaining input data into a new
output buffer.

Decompression is supported for Deflate streams where the size of the history buffer is no more than 4 KB.
(The default size for Deflate is 32 KB.) Using an input stream with a larger history size results in an error.

3.3.7 Verification

The decompression operation can be used by software to verify that the output generated by compression
is correct, i.e, that it can be decompressed back to the original input. This could be done as a normal
decompression job, with the output going into a buffer that is then compared against the original input.

A more efficient approach is to suppress the output of the decompressor. In this case, the hardware would
write no output data, but it would still calculate the CRC of the decompressed data. This can then be
compared against the CRC computed from the input to the compressor.

Revision: 1.2 Document Number: 350295-003US Page 14

Intel® In-Memory Analytics Accelerator Architecture Specification

This avoids the need to have a temporary buffer in which to write the decompressed data, the overhead of
the compare operation, and the bandwidth needed to write and read that data.

3.3.2 Index Generation

The generation of indices for the compressed data (cf. Section 3.4.3) is done by the decompressor while it
is operating for verification. In this case, the normal decompressed output has to be suppressed. Then when
indexing is enabled, the index data is written to the output buffer. Note that the compression must have
been done with indexing enabled.

The flush flag cannot be used when indexing is being used, except for a last job (i.e., when Write_ AECS is
“never”).

3.4 Compression

Intel IAA supports compression compatible with the Deflate compression standard described in RFC 1951.
The compression unit can operate in two modes: Huffman-mode or Statistics-mode.

In Huffman-mode, it will read a stream of input bytes, generate a stream of literals and matches, encode
them using a Huffman table read from the AECS, and write those Huffman codes into the output buffer.

In Statistics-mode, rather than writing the Huffman Tokens to the output buffer, it will instead compute a
histogram of how many times each Huffman code appears. At the end of processing, the histogram table is
written to the output buffer.

To generate a dynamic Deflate block, the software should do one pass in statistics mode, use the statistics
to generate a set of Huffman Tables optimized for those statistics, and then do a second pass (with the
same input data) in Huffman-mode.

The hardware will optionally add an EOB (End of Block) token to the output or add an EOB and a zero-
length Stored Block to the output. The block header, however, should be added to the output accumulator
in the AECS by software before submitting the descriptor.

3.4.1 Statistics Mode Output

The format of the histogram table output in Statistics Mode is as a table of 318 32-bit words:

Byte Offset | Description

0 LitLen[0] count
1140 LitLen[285] count
1144 Reserved

1148 Reserved

1152 Distance[0] count
1268 Distance[29] count

These give the number of times each of 286 Literal/Length Tokens appeared, and the number of times the
30 Distance Tokens appeared. Note that while each count occupies a 32-bit field, the actual counts are 19-
bits wide. If 27° or more of a given token appears, the count saturates at (2°-1).

Revision: 1.2 Document Number: 350295-003US Page 15

Intel® In-Memory Analytics Accelerator Architecture Specification

3.4.2 Compression Output Overflow
For compression, “output overflow” is a non-recoverable error, and the AECS is not written.

The output buffer should be sized slightly larger than the input buffer, such that the input buffer could be
encoded as a Deflate stored-block, written to the output buffer, and fit. In that case, if the compression
operation actually results in data expansion such that the compressed data would not fit into the output
buffer, the software (library or application) should ignore any partial results that the compressor generated
and add the current input to the output stream as a stored block. This would result in a better compression
ratio than keeping the “compressed” data.

3.4.3 Compression Indexing

The compression logic also supports “Indexing”. When this is enabled, it also defines a “mini-block size”.
The meaning of this is that no match will cross a mini-block boundary, and no match will reference data in
a different mini-block. This will allow a decompressor to start decompression at a mini-block boundary at
the cost of a slightly reduced compression ratio.

If Compression Indexing is enabled, then the input buffer must be a multiple of the mini-block size, except
for the last descriptor of a job.

For indexing to work properly, the application must know the block structure of the output. This means that
either the compressed output must fit within the provided output buffer (i.e.,, no “output overflow”) or the
input buffer must be smaller than 64kB, so that it will fit into a single stored block.

3.5 Checksum Calculations

The accelerator generates a 32-bit CRC of the uncompressed data (either the result of decompression or
the direct input to the filter function). More particularly, the checksums in the Analytics pipe are computed
on the data after any Decompress and before any Filter. For Compress functions, the checksums are
computed on the input.

The user can select either 32-bit CRC as defined in ITU-T recommendation V.42 and in RFC 3720. It also
computes the XOR checksum of the uncompressed data, treated as 16-bit words. If there are an odd
number of bytes, the final byte is zero-extended to 16 bits.

The initial values of the CRC and XOR checksum are read from the AECS, for operations where the AECS is
read; otherwise, initial values of O are used. The final values of the checksums are written to the completion
record. They are also written to the AECS, for any operation where the AECS is written. The latter allows the
values to be linked across the descriptors in a job, while the former allows the software to get the values
even when the AECS is not written.

3.6 Filter Functions

The filter functions take one or two inputs, a primary input, and an optional secondary input. The primary
input may be read from memaory or received from the output of decompression. The primary input is parsed
as described in 3.6.1. The output of the parser is an array of unsigned integers.

If the secondary input is used, depending on the operation type, it may be a bit vector or an array of packed
unsigned integers. It can be packed in either little-endian format (starting at bit O of each byte) or big-endian

Revision: 1.2 Document Number: 350295-003US Page 16

Intel® In-Memory Analytics Accelerator Architecture Specification

format (starting at bit 7). When the secondary input is used, the operation cannot also use the AECS. Thus,
any operation that uses the secondary input uses default values for any configuration information that
would have been read from the AECS.

The output of the filter function may be either an array or a bit vector depending on the function.

For filter operations, the output buffer size specified in the descriptor must be large enough to hold the
entire output of the operation. If the output does not fit into the specified output buffer, the operation fails
with an unknown amount of the input processed. In this case, the software needs to resubmit the descriptor
with a larger output buffer.

3.6.1 Parser

One of the following parsers may be selected to process the primary input to the filter function. The parser
reads a byte stream and outputs a series of unsigned integers.

3.6.2 Packed Array

This is the standard parser. The input is a packed array of unsigned integers with a specified bit width. (The
bit width need not be a multiple of the size of a byte.) The data can be packed in little-endian format (starting
at bit O of each byte) or big-endian format (starting at bit 7).

3.6.3 Parquet RLE

The input is in the Parquet RLE format. The first byte of the data stream gives the bit width. This is followed
by the encoded data. The bit-width cannot exceed 32-bits.

The format is:
parquet-rle: <bit-width> <encoded-data>
bit-width := bit-width of data stored as one byte
encoded-data := <run>*
run := <bit-packed-run> | <rle-run>
bit-packed-run := <bit-packed-header> <bit-packed-values>
bit-packed-header := varint-encode(<bit-pack-count> << 1| 1)
// we always bit-pack a multiple of 8 values at a time, so we only store the number of values / 8
bit-pack-count := (humber of values in this run) / 8
bit-packed-values := data stored as a packed array of bit-width values
rle-run := <rle-header> <repeated-value>
rle-header := varint-encode((humber of times repeated) << 1)
repeated-value := value that is repeated, using a fixed-width of round-up-to-next-byte(bit-width)

3.6.4 Output Modification

Output Maodification is an SQL filter feature that allows optionally generating an alternative representation
of the result of the query being performed. In general, a SQL filter function results in two forms of outputs:
1) a bit vector (where the output bit-width is 1) or 2) an array of elements (where the output bit-width is
greater than 1). For example, functions that perform a set-membership query, i.e,, “is an element a member
of a given set?”, generate a bit vector, where each bit represents membership in the set. Functions that

Revision: 1.2 Document Number: 350295-003US Page 17

Intel® In-Memory Analytics Accelerator Architecture Specification

extract elements from an input array result in an output that could be either a bit-vector or an array
depending on the bit-width of the input.

3.6.5 Modification When Output is Normally a Bit Vector
If the output of that function is normally a bit vector, the output can be modified in the following ways.
First, the bit vector can be optionally inverted (i.e., each bit is flipped).

Secondly, the output can be modified to consist of an array, where the array elements are the indices of the
“1" bits of the bit vector. This can be used when the output bit vector is expected to be sparse in nature.
The index of the first element (bit O of the bit vector) can be set to an arbitrary value instead of the default
start index of O. If any element is too large for the specified output width, the operation stops and reports
an error.

3.6.6 Modification When Output is Normally an Array

If the output of a function is normally an array of elements, then the bit width of the output elements is
normally the same as the input bit width; i.e., the output is packed. When the output modification feature is
enabled, output bit width can be adjusted to 8, 16, or 32 (with the high order bits padded with zeroes). This
unpacks the output array into a desired word size. Using this feature makes the output array larger, but it
makes it easier for software to process the data. The specified output bit width must be no smaller than the
input bit width.

If the output bit width is 1, the output is treated as a bit vector, and the output modifications described in
section 3.6.5 apply.

3.6.7 Aggregation

In addition to generating the output data, the accelerator also computes several “aggregates” of the data.
The type of aggregation depends on the type of output. In particular, it depends on the nominal, pre-
modified output width: whether it is 1-bit wide or wider.

If the “pre-modification” output is a bit vector or an array output whose bit width is 1, then the following
data are accumulated:

e Population count (the number of 1 bits)

e First (the index of the first 1 bit)

e Last (the index of the last 1 bit)

This data can be used to determine the sparsity of the output. If the output is sparse, software can use it to
determine where to start and end processing, so that it doesn't need to process the 0 bits at the start or
end of the vector.

If the “pre-modification” output is an array whose bit-width is greater than 1, then the following data are
accumulated:

e Sum (the sum mod 23?2 of the output values)

e Minimum value

e Maximum value

Note that the population count is actually a special case of “sum”.

Revision: 1.2 Document Number: 350295-003US Page 18

Intel® In-Memory Analytics Accelerator Architecture Specification

3.7 Zero Compression

The accelerator also supports a lightweight compression scheme called “zero-compression”. This can
operate on 32-bit words or on 16-bit words. For DWORD compression/decompression, the input must be
an integral number of DWORDs. For word compression/decompression, the input must be an integral
number of words.

Conceptually, the zero-compress operation is equivalent to doing a “scan neq zero” followed by a “select”,
except that the tags and data are interleaved. Similarly, the zero-decompress operation is equivalent to
doing an “expand”, except with interleaved tags and data

3.7.1 DWORD Zero Compression Format

The data is compressed 32-DWORDs at a time. The output consists of a 32-bit tag DWORD, followed by O
through 32 data DWORDs. The bits in the tag DWORD (starting at little-endian bit 0) indicate whether the
corresponding DWORD in the uncompressed data was zero or not. A tag bit of “0” indicates that the original
data DWORD was zero, and a “1” indicates that it was non-zero.

The tag DWORD is followed in the compressed data stream by one data DWORD for each 1-bit in the tag
(starting at bit-0). So, the number of data DWORDs following each tag DWORD is the number of 1-bits in
the tag.

The exception to this is the final record. DWORDs that would appear after the end of the actual data are
represented by 1-bits in the tag and no corresponding data DWORDs. For example, if the last tag had the
value OxFFFFFFF9, and it was followed by 3 DWORDS (A, B, and C), then the decompressed output would
be: A 0, 0, B, C, and then the output stream would end.

3.7.2 WORD Zero Compression Format

This is similar to the DWORD format, except that it operates on 16-bit words. The data is compressed 64-
words at a time, so the tag consists of 64-bits or 4 words. Word-0 contains tag bits 15-0, word-1 contains
tag bits 31-16, etc.

3.8 Operation Types

The operations No-op and Drain are the same as in Intel DSA.

3.8.1 Decompress

The Decompress operation decompresses the input and writes the decompressed data to memory. The
Source 1 Address and Source 1 Transfer Size specify the location of the compressed input data. The Desti-
nation Address and Maximum Destination Size specify the location of the decompressed output data. The
Source 2 Address and Source 2 Transfer Size optionally specify the AECS. The Read Source 2 and Write
Source 2 fields indicate the usage of the AECS (read, written, neither, or both). Decompression Flags controls
aspects of the decompression operation. The Filter Flags field is reserved. The “Enable Decompression” flag
must be set.

If the Status of the operation is Output buffer overflow, the decompression job can be resumed by submit-
ting a follow-on descriptor with a new buffer to contain the remaining decompressed output. The Write

Revision: 1.2 Document Number: 350295-003US Page 19

Intel® In-Memory Analytics Accelerator Architecture Specification

Source 2 flag should be 2 for the final (or only) descriptor in a decompression job, to ensure that the state
of the decompressor can be saved in the AECS in case of output buffer overflow. The Write Source 2 flag
should be 1 for descriptors before the final descriptor in a multiple-descriptor job. The Read Source 2 flag
should be 1 for all but the first descriptor in a multiple-descriptor job.

The output may be suppressed (for verification purposes) or replaced with index output (see Section 3.3.2).
If the Enable Indexing flag is set, then the Suppress Output flag must also be set.

3.8.2 Compress

The Compress operation compresses the input and writes the compressed data to memory. The Source 1
Address and Source 1 Transfer Size specify the location of the input data. The Destination Address and
Maximum Destination Size specify the location of the compressed output data. The Source 2 Address and
Source 2 Transfer Size optionally specify the AECS. The Read Source 2 and Write Source 2 fields indicate
the usage of the AECS (read, written, neither, or both). The Compression/Decompression Flags control
aspects of the compression operation. The Filter Flags field is reserved.

If the compressed output does not fit into the output buffer, the operation fails with an error.

In one usage, if the user wants to ensure that the input can be compressed into a legal Deflate stream, they
can size the output buffer to be slightly larger than the input buffer, in particular large enough to contain
the uncompressed input as a Deflate “stored block” Then if the compressed output does not fit, the
hardware will return an error, and the software (e.g., Intel QPL library) can throw away the partial results
generated by the hardware and write a stored block into the output buffer.

In another usage, the application may want to store the data in a compressed form if that form is smaller
than the uncompressed data, or store the data uncompressed if the compressed form is larger. In this case,
the application could provide an output buffer the same size as the input buffer. Then if the hardware
returns an error that the compressed data does not fit, the application can store the data uncompressed.

3.8.3 CRC-64

The CRC-64 operation computes an arbitrary CRC up to 64-bits in width.
The CRC operation uses a modified descriptor, which is described in Section 6.3.

The CRC Bit Order flag indicates whether bit-0 in each data byte is the least-significant or the most-sig-
nificant bit. Having bit-0 be least-significant corresponds to the “normal form” of the data, whereas having
bit-0 be most-significant corresponds to the “bit-reversed form” of the data. This field also impacts the byte
order of the CRC output. If bit-0 is least-significant, then the least significant bit of the CRC is bit-O of byte-
0. If bit-0 is most significant, then the least significant bit of the CRC is bit-7 of byte-7, or bit 63 of the CRC.

The CRC is essentially the residue (remainder) after polynomial division. The “initial value” of the CRC is
essentially a constant that is XORed with the initial data bytes. This constant has the same size in bits as the
polynomial. In some CRCs, this initial value is zero. In others, it is all 1's. This is determined by the “invert
CRC" flag bit. If this flag bit is O, then the initial value is O. If the flag bit is set, then the initial value is the
“bitwise inverse of 0" or all 1's. As described below, this feature can be used to compute the CRC for
polynomials smaller than 64-bits. Because of this, when the “invert CRC" flag is set, the initial value will only
have 1-bits from the least-significant 1-bit in the polynomial to the most significant bit. E.g., if the polynomial
represents a 32-bit CRC, the initial value will only have 32 1-bits.

Revision: 1.2 Document Number: 350295-003US Page 20

Intel® In-Memory Analytics Accelerator Architecture Specification

Additionally, if the invert CRC flag is set, the final residue is XORed with the initial value before being
returned.

The CRC Polynomial field defines the CRC polynomial in normal (not bit-reversed) form, regardless of the
state of the CRC Bit Order flag. In the polynomial definition, bit-63 is always most significant.

Although this operation is designed to generate 64-bit CRCs, it can also be used to generate smaller
arbitrary CRCs. In that case, the polynomial is placed in the most-significant portion of the CRC Polynomial
field (i.e,, starting at bit 63), and the results are found in the most-significant portion of the CRC64 field in
the completion record, whose location does depend on the value of the CRC Bit Order flag.

Here are some well-known CRCs and the programming needed to generate them:

CRC Polynomial Bit Order | Invert CRC | Output

CRC32 (gzip) 04C11DB700000000 1 1 OO0000000XXXXXXXX
CRC32 (wimax) | 04C11DB700000000 0 1 XXXXXXXX00000000
CRC32 (iSCsl) | TEDC6F4100000000 1 1 O000000OXXXXXXXX
T10DIF 8BB7000000000000 0 0 XXXX000000000000
CRC-16-CCITT | 1021000000000000 1 1 000000000000XXXX

Table 3-2 : Examples of CRC64 Parameters

3.8.4 Zdecompress32 and Zdecompress16

These operations decompress data that has been zero-compressed (using DWORDs or words). See Section
3.7 for a description of Zero Compression.

The Source 1 Address and Source 1 Transfer Size specify the location of the input data. The Destination
Address and Maximum Destination Size specify the location of the decompressed output.

The following fields of the descriptor are reserved: Source 2 Address, Source 2 Transfer Size,
Decompression Flags, and Filter Flags.

For these operations, the CRC and checksum are computed on the output.

3.8.5 Zcompress32 and Zcompress16

These operations zero-compress the DWORDs or words of the input and write the compressed data to
memory. See Section 3.7 for a description of Zero Compression.

The Source 1 Address and Source 1 Transfer Size specify the location of the input data. The Destination
Address and Maximum Destination Size specify the location of the compressed output.

The following fields of the descriptor are reserved: Source 2 Address, Source 2 Transfer Size,
Decompression Flags, and Filter Flags.

For these operations, the CRC and checksum are calculated on the input.

3.8.6 Scan

The Scan operation determines whether each element in the input data stream is in the inclusive range
defined by the configuration variables Low Filter Param and High Filter Param (i.e,, if (Low Filter Param <

Revision: 1.2 Document Number: 350295-003US Page 21

Intel® In-Memory Analytics Accelerator Architecture Specification

element value < High Filter Param)). The output is a bit vector where each 1 indicates that the corresponding
input elementis in the range.

The output may be modified by inverting each bit and/or by converting to an array of indices.

By selecting suitable values for the parameters and the Invert Output Bits flag, any of the following filter
functions may be realized: =, #, <, <, 2, >, within a range, and outside a range.

3.8.7 Set Membership

The Set Membership operation determines whether each element in the primary input is contained in the
set specified by the secondary input. The output is a bit vector where each 1 indicates that the corre-
sponding input element is a member of the set.

Some bits of each input element may be ignored by setting the Drop Low Bits and Drop High Bits options.
The N bits that remain comprise the value to be tested. N is the bit width of the source data minus the
number of dropped low and/or high bits.

The set is specified by the secondary input as a bit vector of length 2N bits. For each bit i in the bit vector,
the value 1 indicates that the value i is a member of the set.

The maximum supported value of N is dependent on the Enable Decompression flag. If Enable
Decompression is 1, the maximum value of N is given by the Maximum Decompression Set Size field in
GENCAP. If Enable Decompression is O, the maximum value is given by the Maximum Set Size field in
GENCAP.

The output may be modified by inverting each bit and/or by converting to an array of indices.

3.8.8 Extract

The Extract operation returns the elements in the input data stream whose indices fall within the range
defined by the configuration variables Low Filter Param and High Filter Param. The indices of the input
values are assigned sequentially starting with 0. The output is an array of the input values whose indices fall
within the range.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.6.4.

If Low Filter Param is O and High Filter Param is at least the number of elements in the input, then all
elements are extracted. With output modification, this can be used to unpack a packed array to a desired
word size (byte, word, or DWORD).

3.89 Select

The Select operation returns the elements in the primary input whose indices correspond to 1-bits in the
secondary input. The indices of the input values are assigned sequentially starting with 0. The output is an
array of the input values selected by the bit vector.

The secondary input is a bit vector with at least as many bits as the number of elements in the input.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.6.4.

Revision: 1.2 Document Number: 350295-003US Page 22

Intel® In-Memory Analytics Accelerator Architecture Specification

3.8.10 RLE Burst

The RLE Burst operation replicates each element in the secondary input a number of times based on the
corresponding element in the primary input.

The bit width of the primary input must be 8, 16, or 32. The behavior of the operation depends on the bit
width of the primary input, as described below.

The secondary input is a packed array of unsigned integers of any width from 1 to 32 bits. If the bit width
of the primary input is 8 or 16 bits, the secondary input has the same number of elements as the primary
input. If the bit width of the primary input is 32 bits, the secondary input has one fewer elements than the
primary input.

By default, the output bit width is the same as the secondary input bit width. The output may be modified
by zero-extending each output value to 8, 16, or 32 bits.

If the bit width of the primary input is 8 or 16, each element specifies the number of times to replicate the
corresponding element in the secondary input. If the value is 0, the corresponding element is dropped.

If the bit width of the primary inputis 32, each element of the primary input specifies the cumulative number
of elements in the output to that point. Thus, the repetition count for each element s the difference between
the element and the next. In this case, the first element should always be 0. The number of times each bit
is replicated is limited to the range 0-65,535 inclusive. For example, with the first element equal to O and
the second element equal to 3, the first element of the secondary input is replicated three times in the
output. As another example, the two primary inputs shown in Table 3-3 are equivalent.

Revision: 1.2 Document Number: 350295-003US Page 23

Intel® In-Memory Analytics Accelerator Architecture Specification

Secondary Primary input Output
Input Length Cumulative Length
(1 bit) (8 bits) (32 bits)
1 2 0 11
0 4 2 110000
1 3 6 110000111
0 3 9 110000111000
1 2 12 11000011100011
14

Table 3-3 : Example of RLE Burst Operation With Two Equivalent Primary Inputs

3.8.11 Find Unique

The Find Unique operation generates a bit vector where each 1 value indicates that the corresponding value
was present in the input.

Some bits of each input element may be ignored by setting the Drop Low Bits and Drop High Bits options.
The N bits that remain comprise the value to be tested. N is the bit width of the source data minus the
number of dropped low and/or high bits.

The output is a bit vector of length 2N bits. For each bit i in the bit vector, the value 1 indicates that the value
i was present in the input.

The maximum supported value of N is dependent on the Enable Decompression flag. If Enable Decom-
pression is 1, the maximum value of N is given by the Maximum Decompression Set Size field in GENCAP. If
Enable Decompression is 0, the maximum value is given by the Maximum Set Size field in GENCAP.

The output may be modified by inverting each bit and/or by converting to an array. If the output is modified
to an array, the values in the array comprise a list of the unique values in the input, zero-extended to 8, 16,
or 32 bits.

3.8.12 Expand

The Expand operation generates an array in which the elements in the primary input are placed according
to 1 bits in the secondary input. The secondary input is a bit vector. The number of elements in the output
is the same as the length of the secondary input. For each bit in the secondary input that is 1, the corre-
sponding value in the output is the next sequential value taken from the primary input. For each bit in the
secondary input that is O, the corresponding value in the output is O.

For this operation, the descriptor field named Number of Input Elements contains the number of bits in the
secondary input, rather than the primary input. The number of elements in the primary input is the same as
the number of 1 bits in the secondary input.

By default, the output bit width is the same as the input bit width. The output may be modified as described
in Section 3.6.4.

8

Revision: 1.2 Document Number: 350295-003US Page 24

Intel® In-Memory Analytics Accelerator Architecture Specification

4 Error Handling
4.1 Descriptor Checks

For the set of features and operations common to both Intel IAA and Intel DSA, the device performs the
checks on each descriptor as described in the Intel DSA Architecture specification. Some additional
checks/clarification on checks are that an error will be generated when any of the following are violated:

e No unsupported flags in any of the flag fields are set. This includes flags that are reserved for use
with certain operations or that are disabled in the configuration. Flags fields include Operation
Flags, Decompression Flags, Compression Flags, and Filter Flags. See Table 4-1 and Table 4-2 for
details.

e Required flags in the Flags field are set. For example, the Request Completion Record flag must be
1 in a descriptor for any operation other than No-op and Drain. See Table 4-3 for details.

e The Source 1 Transfer Size, Source 2 Transfer Size, and Maximum Destination Size (if applicable for
the descriptor type) are not greater than the value specified by the WQ Maximum Transfer Size field
in the WQ Config register and are non-zero if required by the operation.

e The destination buffer does not overlap the source 1 buffer.

e |f Read Source 2 or Write Source 2 is non-zero, the source 2 buffer does not overlap the source 1
buffer or the destination buffer.

4.2 Descriptor Reserved Field Checking

Reserved fields in descriptors fall into three categories: fields that are always reserved; fields that are
reserved under some conditions (e.g., based on a capability, configuration field, how the descriptor was
submitted, or values of other fields in the descriptor itself); and fields that are reserved based on the
operation type. For additional details on descriptor formats, see chapter 6.

Table 4-1 lists the flags and fields that are allowed for each operation type. Flag bits 23:22, 7:6, and O are
reserved for all operation types. Table 4-2 and Table 4-3 list the differences from Intel DSA for additional
conditions under which certain flags and fields are reserved or required. Additional operation-specific
reserved fields and flags are described with the respective descriptor details in chapter 6.

| o 2
n| - <
p 22 e |2 o
0w | V| ‘vl = Q S
Ul = =| 4 4 o
Sl w ol 2 u| o [= %l .8
o o gl €l £| = | c
EL# ol o Q| + S ©
Q| ol ©l o O O + Dl ¢
OSOE'UUEECEEUCQ-C\'U
| 'w| @ O 0| 9| o o] @ »| | 2| w| 2| &
O| | 9| o| x| ©| ©| O| O O v| X| @©| 2| .E| x
ZI000OINININN AW W h|lee| in] w
| | o| o o o | | 6| 0| o | o o o

Block On Fault
Comp Rec Addr Valid ol

w0

éDReqCOmpRecord o| o| o o| o| o 0| 06| ©o| o 0| ©o| ©o| ©| @ | @

S'Req(:ompmterrupt o| o| o o| o| ©o| 0| | o ©o| o ©o| o ©o| @ @
Completion Record TC

Selector

]
Revision: 1.2 Document Number: 350295-003US Page 25

Intel® In-Memory Analytics Accelerator Architecture Specification

| o 2
2 2 | © @
a 3 ol o @)
8 17, | = @ & o) | o
s 8l leleldy |E. |22
8| § 2588l g3 85a2s
ol © 8 g Clol 2 ololal«lsl2lwBla
Z|6| 0|00 R RININ| A S| &S| & |] &
Completion Record
. [] [] [] L] [] [] [] L] [] [] [] L] [] [] L]
Steering Tag Selector
Source 1 TC Selector qe|ole ojelo oo o oo o
Dest TC Selector g ool ejejoieooie o e
Dest Steering Tag
Selector L[] L] [] L[] L] [] [] L[] L] [] [] L[] L]
Cache Control o| o o| o| o| 0| o| 0| 0| 0| 0| 0| @
Str‘ictordering ol o o| o| o| 06| 0| 0| 06| 0| 0| 0| @
Dest Readback ol o o/ o| o| o 0| 06| 06| 0| 0| 0| @
Read Source 2 o o e o| ool oo
Write Source 2 o e
Source 2 TC Selector ol o o/ o e[o oo e
Source 2 Steering Tag ol o
Selector
CRCSeIeCt L] L] L] L] L] [] L] L] L] [] L] L] L]
Enable Decompression o oo/ o| ol e|e|e
Flush Output . o/ o|o| 0| o|e| e
EP Stop on EOB . o| o] o] o] 0| o e
; Check for EOB . ol o/ o/ ol o] e|e
ag_ Select Bfinal EOB . o| ol o e 0| 0|0
g Decompress Bit Order . ol o/ e| ol e|e|e
3 Ignore End Bits . ol o/ o| ol o] o]
Suppress Output . o | o] o] e|e| | e
Enable Indexing o
Stats Mode o
(%)
& | Flush Output .
[N
a End Processing .
(O]
g. Generate All Literals .
8 | Compress Bit Order .
Enable Indexing .
O &l Invert CRC .
5
“ | CRC Bit Order .
@ Source 1 Parser ol o[o/ e|e|e|e
& | Source 1 Width ol o/ o| o o] o e
£ | Source 2 Width .
“ | Source 2 Bit Order o o o .
Revision: 1.2 Document Number: 350295-003US Page 26

Intel® In-Memory Analytics Accelerator Architecture Specification

INIRC) 2
2 A | © 5
o ol 3| @l o @)
V| »n | S| &l & Ko
“lwn Q Q ol © "; 9'
29 4 glgl S5 |5lslgE
Sl ol 2S5 88 ElE <288l
ol &l o| 5| 2| 3| 3| 8| 8| 8| 3| &|w|yl gl g
ZI00|OO|N|N|N|[N|A|lwvn vl c|lic|d
Output Width ol o|o| 0| 0| e e
Output Bit Order o o o o o o
Invert Output o/ ol e/ oo e|e
Drop Low Bits . .
Drop High Bits . o
16-23| Source 1 Address o/ ol e| o ole|e|o|e|le|o|e|le|e
24-31| Destination Address ol o e/ o/ e/ ool o|e|efle|e|e

32-35| Source 1 Size

& [38-39| Misc Flags o| of o ol o| o| 0| o| o] e
8 40-47 | Source 2 Address o o o| o| o| 0| 0| | e
48-51 | Destination Size ol o o/ o/ e/ oo e|o|ofle|e e
52-55| Source 2 Size ol o e/ o o] o o| o] e
56-63 | Filter/CRC-64 . ol o o] o ofele

Table 4-1: Operation-Specific Flags and Allowed Fields

Reserved Field

Conditions under which field is reserved

Source 2 Address

Read Source 2 = 0 and Write Source 2 = 0.

Source 2 Size

Read Source 2 = 0 and Write Source 2 = 0.

Source 2 TC Selector

Read Source 2 = 0 and Write Source 2 = 0.

Source 2 Steering Tag Selector Read Source 2 = 0 and Write Source 2 =0 or

TPH Requester Control Register ST Mode Select = 0.

Table 4-2: Conditional Reserved Field Checking

Table 4-3 gives the list of Intel IAA-specific operation types that require certain flags to be set to 1.

Operation

Required Flags (must be 1)

All operations other than
No-op and Drain.

Completion Record Address Valid and Request Completion Record flags
must be 1.

Decompress Suppress Output must be set if Enable Indexing is non-zero.
Decompress Enable Decompression must be 1.
Table 4-3 : Operation Types with Required (must be 1) Flags
Revision: 1.2 Document Number: 350295-003US Page 27

Intel® In-Memory Analytics Accelerator Architecture Specification

4.3 AECS Checks

When Source-2 is read as AECS (cf. Section 6.4), a number of checks are performed on the data. If any of

these are violated, then the operation terminates with an error with no further processing.

The checks performed depend on whether the operation is Compress or Decompress/Filter.

4.3.17 Compress AECS Checks

If any of the following constraints is violated, processing halts with an error:

e Number of Output Accumulator Bits Valid < 64 x 32.

4.3.2 Decompress/Filter AECS Checks

If any of the following constraints is violated, processing halts with an error:

e Input Accumulator Size QW < 64.

o If (Input Accumulator Size QWT[i] = 0) then Input Accumulator Size QWI[i+1] must be 0.

o If ((Decompress State & OxD) = 2) (i.e,, looking at Stored Block), then Stored Block Bytes Remaining

must be non-zero.

e The Output Bits Valid must be a multiple of 8.

e If Indexing is enabled, then (History Buffer Write Pointer{2:0}) must be the same as (Output Bits

Valid{5:3}).

e If the History Buffer Write Pointer is non-zero, then either none or all of the valid History Buffer

must be read.

4.4 Error Codes

441 Operation Status Codes

The operation status code for a descriptor is written to the Status field of the completion record for the
descriptor if the Completion Record Address Valid flag in the descriptor is 1. If the operation status is Ox1a,
Ox1b, or Ox1d, or if the Completion Record Address Valid Flag is O and the operation status is not equal to

0x01, then the operation status code is written to the SWERROR register instead.

The operation status codes are the same as for Intel DSA, with the exception of those listed in Table 4-4.

0x02 Unused.
0x05-0x09 | Unused.
Ox0a Analytics error. A more specific code is in the Error Code field.
0x0b Output buffer overflow. AECS is written if the Write Source 2 flag is non-zero.
Ox11 Invalid flags. One or more flags in the descriptor Operations Flags field contain an
unsupported or reserved value.
0x12 Non-zero reserved field (other than a flag in the Operations Flags field).
Revision: 1.2 Document Number: 350295-003US Page 28

Intel® In-Memory Analytics Accelerator Architecture Specification

0x13 Invalid value for Source 1 Transfer Size, Source 2 Transfer Size, or Maximum Destination
Size.

0x14-0x15 | Unused.

0x17-0x18 | Unused.

Ox1b Completion Record Address is not 64-byte aligned.

Ox1c Misaligned Address: The AECS address or size (as specified for Source 2) was not a
multiple of 32 bytes.

Ox23 Timeout waiting for response to a Page Request. The error is also recorded in SWERROR.

Ox24 Watchdog timer expired without the device making progress.

0x30 Invalid Decompression/Compression/CRC Flags. A field in
Decompression/Compression/CRC Flags contains an unsupported or reserved value.

0x31 Invalid Filter Flags. A field in Filter Flags contains an unsupported or reserved value.

0x32 Invalid Input Size. The input size for a Zcompress16, Zcompress32, Zdecompress16, or
Zdecompress32 operation is not a multiple of the appropriate base size.

0x33 Invalid Number of Elements: Number of Elements is O for a filter operation.

0x34 Invalid Source-1 Width: For a Set-Membership or Find-Unique operation, the Source-1 Bit

Width minus the Drop High Bits and Drop Low Bits was too large or too small. For RLE-
Burst, the Source-1 Bit Width is not (logically) 8, 16, or 32.

0x35 Invalid Invert Output: The Invert Output flag was used when the output was not a bit-
vector.

Table 4-4: Operation status codes

442 Error Code

When the Operation Status Code has the value 0x0a, the Error Code (byte 1 of the Completion Record)
contains an error code that provides more detail on the type of error. The error codes are listed in Table
4-5,

Error Code Detected Error Description

0x01 Header too large to save/restore | Reached the end of the input stream before decoding
header and header is too large to fit in input buffer.

0x02 Undefined CL code Bad Code Length code, CL CAM is not hit, or code
length of O.

0x03 First code in LL treeis 16

0x04 First code in D treeis 16

0x05 No valid LL code All of the codes are specified with O length.

0x06 Wrong number of LL codes After parsing LL code lengths, total codes != expected

value. Last CL code gave arepeat count that pushed the
total above the expected value.

0x07 Wrong number of DIST codes After parsing DIST code lengths, total codes !=
expected value. Last CL code gave a repeat count that
pushed the total above the expected value.

0x08 Bad CL code lengths First code of length N is greater than 2N-1 or last code
is greater than 27.
0x09 Bad LL code lengths First code of length N is greater than 2N-1 or last code

is greater than 2.

Revision: 1.2 Document Number: 350295-003US Page 29

Intel® In-Memory Analytics Accelerator Architecture Specification

Error Code

Detected Error

Description

Ox0A

Bad DIST code lengths

First code of length N is greater than 2N-1 or last code
is greater than 2°.

Ox0B Bad LL Codes Bad Literal/Length Code neither ALUs nor EB CAM have
hit, or O code length.

0x0C Bad D Code Bad Distance Code D CAM not hit, or O code length.

0x0D Invalid Block Type Block Type Ox3 detected.

OxOE Invalid Stored Length Length of stored block doesn't match inverse length.

OxOF Bad End of File End of file flag was set but last token was not EOB.

0x10 Bad Length Decode Decoded Length is O or greater than 258.

Ox11 Bad Distance Decode Decoded Distance is O or greater than History Buffer
Size,

Ox12 Distance before Start of File Distance of reference is before start of file.

0x13 Timeout Engine has input data and room in the output buffer
but is not making forward progress.

Ox14 PRLE Format Error PRLE record contains an error or is truncated.

0x15 Filter Function Word Overflow Filter Function processing resulted in an output
element that was too wide to fit into the specified
output bit-width.

Ox16 AECS Error AECS contains an invalid value.

Ox17 Source 1 Too Small Source 1 contained fewer than expected elements.

0x18 Source 2 Too Small Source 2 contained fewer than expected elements.

0x19 Unrecoverable Output Overflow | Output buffer was too small for generated output and
the operation was not Decompress.

Ox1TA Distance Spans Mini-blocks During index generation as part of decompress, a
match referenced data in a different mini-block.

Ox1B Length Spans Mini-blocks During index generation as part of decompress, a
match had a length extending into the next mini-block.

Ox1C Invalid Block Size During index generation as part of decompress, a block
header occurred that was not on a multiple of the mini-
block size.

Ox1D Zcompress Verify Failure The verify logic for Zcompress detected incorrect
output.

Ox1E Invalid Huffman Code A compression job tried to use a Huffman code with
zero size.

Ox1F PRLE bit-width too large The bit-width specified in the first byte of a PRLE
stream was greater than 32.

0x20 Too Few Elements Processed The input stream ended before specified Number of
Input Element was seen.

Ox21 Invalid RLE Count For an RLE Burst operation with cumulative counts, the
counts were seen to decrease.

Ox22 Invalid Z-Decompress Header During a Z-Decompress Operation, the input data
ended in the middle of a record header.

0x23 Too Many LL Codes The number of LL codes specified in the Deflate header
exceeded 286.

Ox24 Too Many D Codes The number of D codes specified in the Deflate header
exceeds 30.

Revision: 1.2 Document Number: 350295-003US Page 30

Intel® In-Memory Analytics Accelerator Architecture Specification

Error Code Detected Error Description
0x25 Administrative Timeout This operation was terminated because it exceeded a

temporary timeout limit imposed by an administrative
command. Resubmitting the descriptor s
recommended.

Table 4-5: Error Codes

|
Revision: 1.2 Document Number: 350295-003US Page 31

Intel® In-Memory Analytics Accelerator Architecture Specification

Revision: 1.2 Document Number: 350295-003US Page 32

Intel® In-Memory Analytics Accelerator Architecture Specification

5 Software Architecture

5.7 Intel® Query Processing Library

The Intel Query Processing Library (QPL) provides user-mode access to the device, making its functions
available to applications in a more user-friendly manner. The library provides functions for each operation
type and provides both blocking and non-blocking modes of operation.

The library interfaces with the kernel-mode driver to request access to the hardware on behalf of the
application. It normally services application requests using ENQCMD to a limited portal. If the ENQCMD fails
due to congestion, the library may use a kernel-mode driver service to proxy the request to ensure forward
progress. Additionally, the library can service application requests using MOVDIR64B to a dedicated work
queue portal.

The library has two main purposes. One is to map from a user-friendly API to the device-centric data
structures (e.g., Descriptors, Completion Records, etc.). The other is to provide necessary functionality that
is not provided by the hardware. This includes such things as computing Huffman Tables and Deflate
headers, and creating stored blocks when compressed data actually expands. It also orchestrates the flow
to the hardware when multiple hardware invocations are needed for a single task. For example, dynamic
compression with verify requires that the hardware be invoked three times: once to generate the statistics,
once to do the compression, and once to perform the verification.

Revision: 1.2 Document Number: 350295-003US Page 33

Intel® In-Memory Analytics Accelerator Architecture Specification

Revision: 1.2 Document Number: 350295-003US Page 34

Intel® In-Memory Analytics Accelerator Architecture Specification

6 Structure Formats

6.7 Descriptor

An Intel IAA descriptor is a 64-byte structure that is submitted to a WQ portal to initiate an operation. The
format of a descriptor is shown in Figure 6-1.

Byte 7 Byte 6 | Byte 5 | Byte 4 Byte 3 | Byte 2 | Byte 1 Byte 0 bytes
Operation Operation Flags Priv Ignored | PASID 0
Completion Record Address 8
Source 1 Address 16
Destination Address 24
(De)compression Flags Completion Interrupt Handle Source 1 Transfer Size 32
Source 2 Address 40
Source 2 Transfer Size Maximum Destination Size 48
Number of Input Elements Filter Flags 56

Figure 6-1: Descriptor Format

The (De)compression Flags contain Decompression Flags if the Operation is Decompress or one of the Filter
Operations (Scan ... Expand). It contains Compression Flags if the Operation is Compress. It is reserved for
other operations.

6.1.1 Trusted Fields

Offset: 0; Size: 4 bytes (32 bits)

When a descriptor is submitted to an SWQ, these fields carry the Privilege and PASID of the software entity
that submitted the descriptor. When a descriptor is submitted to a DWQ, these fields in the descriptor are
ignored; the device uses the WQ Privand WQ PASID fields of the WQCFG register.

On Intel CPUs, when software submits a descriptor to an SWQ using ENQCMD, these fields in the source
descriptor are reserved. The value of IA32_PASID MSR is placed in the PASID field and the Priv field is set
to O before the descriptor is sent to the device. When software uses ENQCMDS, these fields in the source
descriptor must be initialized appropriately by software. If the Privileged Mode Enable field of the PCI
Express PASID capability is O, the Priv field must be 0.

Bits Description

31 Priv (User/Supervisor)

0: The descriptor is a user-mode descriptor submitted directly by a user-mode client or
submitted by the kernel on behalf of a user-mode client.

1: The descriptor is a kernel-mode descriptor submitted by kernel-mode software.

30:20 Reserved

19:0 PASID

This field contains the Process Address Space ID of the requesting process.

Table 6-1: Descriptor Trusted Fields

R ———
Revision: 1.2 Document Number: 350295-003US Page 35

Intel® In-Memory Analytics Accelerator Architecture Specification

©.1.2 Operation

Offset: 7; Size: 1 byte (8 bits)
This field specifies the operation to be executed.

0x00 No-op

0x01 Unused

0x02 Drain
0x03-0x3f Unused

0x40 Reserved

Ox41 Reserved

Ox42 Decompress
0x43 Compress

Ox44 CRC-64
0x45-0x47 Reserved

0x48 Zdecompress32
0x49 Zdecompress16
Ox4a-0x4b Reserved

Ox4c Zcompress32
0x4d Zcompress16
Ox4e-0x4f Reserved

0x50 Scan

0x51 Set Membership
0x52 Extract

0x53 Select

0x54 RLE Burst

0x55 Find Unique
Ox56 Expand

Table 6-2: Operation types

6.1.3 Operation Flags
Offset; 4; Size: 3 bytes (24 bits)

Operation Flags

Bits | Description

23 Reserved: Must be 0.

22 AECS R/W Toggle Selector

as AECS or being written:

0: Reads are done from (A) and writes are done to (A+S).

1: Reads are done from (A+S) and writes are done to (A).

If Read Source 2 # 1 and Write Source 2 = O, then this field is reserved.

Let A be the Source 2 Address and S be the Source 2 Transfer Size. Then if source 2 is being read

21 CRC Select

1: Use the CRC polynomial Ox11edc6f41, following RFC 3720.
This field is reserved for No-op, Drain, and CRC-64.

0: Use the CRC polynomial 0x104c11db7, following ITU-T Recommendation V.42.

Revision: 1.2 Document Number: 350295-003US

Intel® In-Memory Analytics Accelerator Architecture Specification

Operation Flags
Bits Description
20 Source 2 Steering Tag Selector

Selects a steering tag entry from the TPH ST Table in the TPH Requester Capability to be used for

writes to Source 2 Address. The meaning of the steering tags is platform dependent, but is

expected to be programmed as follows:

0: Writes to the destination are not identified as writes to durable memory.

1: Writes to the destination are identified on the fabric as writes to durable memory.

This field is reserved if the ST Mode Select field in the TPH Requester Control Register is O.

This field is reserved when Write Source 2 is 0.

19:18 | Write Source 2

0: Source 2 is not written.

1: AECS written at completion of operation.

2: AECS written only if output overflow occurs.

3: Reserved.

This field is reserved for operation types other than Decompress and Compress. A value of 2 is

only allowed for Decompress.

This field is reserved if Read Source 2 has a value of 2.

This field is reserved if the operation is Compress and bit-0 of the Compression Flags (stats-mode)

is set.

17:16 | Read Source 2

0: Source 2 is not read.

1: Source 2 is read as AECS.

2: Source 2 is read as secondary input to filter function.

3: Reserved.

This field is reserved for No-op, Drain, Zcompress32, Zcompress16, Zdecompress32,

Zdecompress16, and CRC-64.

The value 2 is required for Set Membership, Select, RLE Burst, and Expand. The value 2 is reserved

for all other operation types.

This field is reserved if the operation is Compress and bit-0 of the Compression Flags (stats-mode)

is 1.

The value 1 is required for Compress if bit-O of the Compression Flags (stats-mode) is O.

15 Destination Steering Tag Selector

Selects a steering tag entry from the TPH ST Table in the TPH Requester Capability to be used for

writes to Destination Address. The meaning of the steering tags is platform dependent, but is

expected to be programmed as follows:

0: Writes to the destination are not identified as writes to durable memory.

1: Writes to the destination are identified on the fabric as writes to durable memory.

This field is reserved if the ST Mode Select field in the TPH Requester Control Register is O.

This field is reserved for operation types that do not write to memory: No-op, Drain, and CRC-64.

14 Destination Readback

0: No readback is performed.

1: After all writes to the destination have been issued by the device, a read of the final
destination address is performed before the operation is completed. The readback is
performed only if the descriptor is completed successfully.

This field is reserved if the Destination Readback Support field in GENCAP is O.

This field is reserved for No-op and Drain.

Revision: 1.2 Document Number: 350295-003US Page 37

Intel® In-Memory Analytics Accelerator Architecture Specification

Operation Flags
Bits Description
13 Strict Ordering
0: Default behavior: writes to the destination can become globally observable out of order. The
completion record write has strict ordering, so it always completes after all writes to the
destination are globally observable.
1: Forces strict ordering of all memory writes produced by the device and ensures that they
become globally observable in that order.
This field is reserved for operation types that do not write to memory: No-op, Drain, and CRC-64.
Note that this flag has nothing to do with the order in which descriptors are executed. It only
affects ordering of the writes generated by this descriptor.
12 Completion Record TC Selector
This field selects the Traffic Class value used for writing the completion record. It selects one of
the two TC values in the Group Configuration Register corresponding to the WQ that the
descriptor was submitted to. See the Intel DSA architecture specification for information on the
use of Traffic Classes.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Completion Record Address Valid is O.
11 Source 2 TC Selector
This field selects the TC value used for reads and writes to Source 2 Address. It selects one of the
two TC values in the Group Configuration Register corresponding to the WQ that the descriptor
was submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Read Source 2 and Write Source 2 are both 0 and for operation types
that do not use Source 2: No-op, Drain, Zcompress32, Zcompress16, Zdecompress32,
Zdecompress16, and CRC-64.
10 Destination TC Selector
This field selects the TC value used for writes to Destination Address. It selects one of the two TC
values in the Group Configuration Register corresponding to the WQ that the descriptor was
submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for writes to Destination Address.
For Drain, this field selects the TC value used for readback from Readback Address 2 and is
referred to as the Address 2 TC selector.
This field is reserved for operation types that do not use Destination Address: No-op, and CRC-
64.
9 Source 1 TC Selector
This field selects the TC value used for reads from Source 1 Address. It selects one of the two TC
values in the Group Configuration Register corresponding to the WQ that the descriptor was
submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for reads from Source Address.
For Drain, this field selects the TC value used for readback from Readback Address 1 and is
referred to as the Address 1 TC selector.
This field is reserved for operation types that do not use Source 1: No-op and Drain.

Revision: 1.2 Document Number: 350295-003US Page 38

Intel® In-Memory Analytics Accelerator Architecture Specification

Operation Flags
Bits Description

8 Cache Control
0: Hint to direct data writes to memory.
1: Hint to direct data writes to CPU cache.
This hint does not affect writing to the completion record, which is always directed to cache.
If the Cache Control Support (Memory) field in GENCAP is O, this field is reserved.
This field is reserved for No-op, Drain, and CRC64.

7:6 Reserved. Must be 0.

5 Completion Record Steering Tag Selector
Selects a steering tag entry from the TPH ST Table in the TPH Requester Capability to be used for
writing the completion record. The meaning of the steering tags is platform dependent, but is
expected to be programmed as follows:
0: Writes to the destination are not identified as writes to durable memory.
1: Writes to the destination are identified on the fabric as writes to durable memory.
This field is reserved if the ST Mode Select field in the TPH Requester Control Register is O or if
Completion Record Address Valid is O.

4 Request Completion Interrupt
0: No interrupt is generated when the operation completes.
1: An interrupt is generated when the operation completes.
If both a completion record and a completion interrupt are generated, the interrupt is always
generated after the completion record is written.
See the Intel DSA architecture specification for information regarding the interrupt to be
generated.
This field is reserved if User-mode Interrupts Enable is O and Priv is O (indicating a user-mode
descriptor). If WQ PASID Enable control is O, this field is not-reserved, independent of the setting
of the User-mode Interrupts Enable control.

3 Request Completion Record
0: A completion record is written only if the operation status is not equal to OxO1.
1: A completion record is always written at the completion of the operation.
This flag must be 1 for any operation other than No-op and Drain.
This flag must be O if Completion Record Address Valid is O.

2 Completion Record Address Valid
0: The completion record address is not valid.
1: The completion record address is valid.
This flag must be 1 for any operation other than No-op and Drain.

1 Block On Fault
0: Page faults cause partial completion of the descriptor.
1: The device waits for page faults to be resolved and then continues the operation.
This flag does not affect the handling of page faults on Completion Record Address or Drain
Readback Address, all of which always block on fault.
This field is reserved if the Block on Fault Enable field in WQCFG is O.
This field is reserved for certain operation types: No-op and Drain.

0 Reserved. Must be 0.

Table 6-3: Descriptor Flags

Revision: 1.2 Document Number: 350295-003US Page 39

Intel® In-Memory Analytics Accelerator Architecture Specification

6.1.4 Decompression Flags
Offset: 38; Size: 2 bytes (16 bits)

All of these fields are reserved for the following operations: No-op, Drain, Zcompress32, Zcompress16,
Zdecompress32, and Zdecompress16.

For the operation Compression, this contains the fields described in Section 6.1.5.

Decompression Flags

Bits

Description

15:13

Reserved. Must be 0.

12:10

Enable Indexing

: Indexing is not enabled.

: Enable indexing with a mini-block size of 512 bytes.
: Enable indexing with a mini-block size of T1kB.

: Enable indexing with a mini-block size of 2kB.

: Enable indexing with a mini-block size of 4kB.

: Enable indexing with a mini-block size of 8kB.

: Enable indexing with a mini-block size of 16kB.

7: Enable indexing with a mini-block size of 32kB.

If this field is not 0, then Suppress Output must be set.
This field is reserved for operations other than Decompress.

oOouhhwWN-=2O0

Suppress Output

0: Decompressed / filter data is written to the output stream.

1: Decompressed / filter data is not written to the output stream.

This field is reserved for operations other than Decompress, Scan, Set Membership, Extract, Select,
RLE Burst, Find Unique, and Expand.

8:6

lgnore End Bits

Specifies the number of bits to ignore at the end of the compressed input stream. A value of O
means that the entire last byte is processed, while a value of 7 means only one bit of the last
input byte is processed.

Decompress Bit Order

Specifies the bit order of the decompression input.

0: Bit O of each 16-bit word is the least significant bit. (Little-endian. This is the normal format for
a Deflate stream.)

1: Bit O of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big
endian.)

Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

Check for EOB

0: Do not check whether the last token is an appropriate EOB.

1: If the last token processed is not an appropriate EOB, Status is set to Analytics error and Error
Code is set to Bad End of File.

Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

Revision: 1.2 Document Number: 350295-003US Page 40

Intel® In-Memory Analytics Accelerator Architecture Specification

Decompression Flags

Bits Description

1 Flush Output
0O: A partial output word is saved in the AECS. This value should be used for a Decompress
descriptor that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, it
is saved in the AECS, so that the job can be completed by a subsequent descriptor. This value
should be used for a Decompress descriptor that is the last (or only) descriptor in a job. For filter
operations, output flushing is automatic and this flag is ignored.
This flag must be O if Enable Indexing is non-zero and Write Source 2 is non-zero.

0 Enable Decompression

0: Pass Source 1 directly to the filter function.

1: Decompress Source 1 and pass the decompressed output to the filter function.

If this field is O, all other decompression flags except for Flush Output and Suppress Output are
reserved.

If Operation is Decompress, this field must be 1.

Table 6-4: Decompression Flags

6.1.5 Compression Flags

Offset: 38; Size: 2 bytes (16 bits)

For operations other than compress, these bits are interpreted according to Section 6.1.4.

Compression Flags

Bits

Description

15:9

Reserved. Must be 0.

8:6

Enable Indexing

: No Indexing.

: Index every 512 bytes.

:Index every 1KB.

:Index every 2KB.

:Index every 4KB.

: Index every 8KB.

: Index every 16KB.

:Index every 32KB.

When indexing is enabled, the input buffer size must be a multiple of the indexing size, unless
Flush Output is 1 or Stats Mode is 1.

No o wnN=O0O

Compress Bit Order

Specifies the bit order of the decompression input.

0: Bit O of each 16-bit word is the least significant bit. (Little-endian. This is the normal format for
a Deflate stream.)

1: Bit O of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big-
endian.)

Generate All Literals
O: Generate literals and matches.
1: Generate only literals. This results in only doing Huffman Compression.

Revision: 1.2 Document Number: 350295-003US Page 41

Intel® In-Memory Analytics Accelerator Architecture Specification

Compression Flags

Bits Description
32 End Processing
0: Append nothing after final output token.
1: Append EOB after final token.
2: Append EOB and non-bFinal Stored Block after final token.
3: Append EOB and bFinal Stored Block after final token.
1 Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Compress
descriptor that is part of a multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. This value should be used for a
Compress descriptor that is the last (or only) descriptor in a job.
0 Stats Mode

0: Generate Huffman output.
1: Generate Statistics output.

Table 6-5: Compression Flags

©.1.6 Filter Flags
Offset; 56; Size: 4 bytes (32 bits)

All of these fields are reserved for the following operations: No-op, Drain, Decompress, Compress,
Zcompress32, Zcompress16, Zdecompress32, and Zdecompress16.

Filter Flags

Bits

Description

31:27

Reserved: Must be 0.

26:22

Drop High Bits

For the Set Membership and Find Unique operations, this field specifies the number of most
significant bits of the input to discard.

This field is reserved for other operation types.

21:17

Drop Low Bits

For the Set Membership and Find Unique operations, this field specifies the number of least
significant bits of the input to discard.

This field is reserved for other operation types.

16

Invert Output

0: The bits of the output are not inverted.

1: For operations whose output is a bit vector, each bit of the output is inverted.

This field is reserved for operation types whose output is an array with width greater than 1.

15

Output Bit Order
0: Bit O of each output byte is the LSB. (Little-endian.)
1: Bit 7 of each output byte is the LSB. (Big-endian.)

R ———
Revision: 1.2 Document Number: 350295-003US Page 42

Intel® In-Memory Analytics Accelerator Architecture Specification

Filter Flags

Bits Description

14:13 | Output Width

0: The output of the filter is unmodified; depending on the operation, the output is either a bit
vector or an array whose elements have the same width as the input.

1: The output elements are 8 bits.

2: Output elements are 16 bits.

3: Output elements are 32 bits.

If this field is non-zero and the default filter output is an array, each element of the array is zero-
extended to the specified width. The specified width must be greater than or equal to the width
of the primary input.

If this field is non-zero and the default filter output is a bit vector, the output is modified to an
array of indices of the 1 bits in the bit vector. Each index has the specified width, which must be
sufficient to represent the maximum index value.

12 Source 2 Bit Order

0: Bit O of each Source 2 byte is the LSB. (Little-endian.)

1: Bit 7 of each Source 2 byte is the LSB. (Big-endian.)

This field is used only when Read Source 2 is 2; otherwise, it is reserved.

11:7 | Source 2 Width

This field indicates the size in bits of the data elements in the secondary input stream. The
element width is the value in this field plus 1.

This field is used for RLE Burst. It is reserved for all other operation types, where the secondary
input stream is a bit vector.

6:2 Source 1 Width

This field indicates the size in bits of the data elements in the primary input stream. The element
width is the value in this field plus 1.

The specified element width must be greater than the sum of Drop Low Bits and Drop High Bits.
If Source 1 Parser is Parquet RLE, this field is reserved, because the field width is specified in the
header of the input stream.

1:0 Source 1 Parser

0: The input consists of a packed array of values in little-endian format with the bit width given
by Source 1 Width.

1: The input consists of a packed array of values in big-endian format with the bit width given by
Source 1 Width.

2: The inputis in the Parquet RLE format, as described in 3.6.3.

3: Reserved.

Table 6-6: Filter Flags

6.1.7 Completion Record Address

Offset 8; Size 8 bytes (64 bits)
This field specifies the address of the completion record. The completion record is 64 bytes and must be
aligned on a 64-byte boundary. If the Completion Record Address Valid flag is 0, this field is reserved.

If the Request Completion Record flag is 1, a completion record is written to this address at the completion
of the operation. If Request Completion Record flag is 0, a completion record is written only if there is an
error.

Revision: 1.2 Document Number: 350295-003US Page 43

Intel® In-Memory Analytics Accelerator Architecture Specification

The Completion Record Address Valid and Request Completion Record flags must both be 1 and the
Completion Record Address must be valid for any operation other than No-op and Drain.

6.1.8 Source 1 Address

Offset: 16; Size: 8 bytes (64 bits)

This field specifies the address of the primary source data. This field is reserved for No-op. The value of this
field is ignored if Source 1 Transfer Size is zero. If the Source Address and Transfer Size are not both aligned
to a multiple of 64 bytes, an implementation may read more source data than required by the descriptor.
For example, source data may be read in aligned 32-byte chunks. The excess data is discarded.

6.1.9 Destination Address

Offset: 24; Size: 8 bytes (64 bits)
This field specifies the address of the destination buffer.

The destination buffer must not overlap the source 1 buffer. It must not overlap the source 2 buffer if either
the Read Source 2 or Write Source 2 flag is non-zero. For the purpose of this check, the destination buffer
size is Maximum Destination Size.

This field is reserved for No-op, and CRC-64.

This field is ignored if Maximum Destination Size is zero.

6.1.10 Source 1 Transfer Size

Offset: 32; Size: 4 bytes (32 bits)
This field indicates the number of bytes to be read from the source 1 address to perform the operation.
This field is reserved for No-op and Drain.

The maximum allowed transfer size is dependent on the WQ the descriptor was submitted to. It is specified
by the WQ Maximum Transfer Size field for the WQ in the WQ Configuration Table (which is, in turn, limited
by the Maximum Supported Transfer Size field in the General Capabilities Register).

For the operations Zcompress16 and Zdecompress16, the size must be a multiple of 2.
For the operations Zcompress32 and Zdecompress32, the size must be a multiple of 4.

For the operation Compress, if Enable Indexing is not O, the size must be a multiple of specified mini-block
size, unless Flush Output or Stats Mode is set.

If the operation is other than No-op or Drain, then one of Source 1 Transfer Size and Maximum Destination
Size must be non-zero.

©.1.171 Completion Interrupt Handle

Offset: 36; Size: 2 bytes (16 bits)
This field specifies the interrupt table entry to be used to generate a completion interrupt. See the Intel DSA
architecture specification for details.

This field is reserved if the Request Completion Interrupt flag is O.

Revision: 1.2 Document Number: 350295-003US Page 44

Intel® In-Memory Analytics Accelerator Architecture Specification

6.1.12 Source 2 Address

Offset: 40; Size: 8 bytes (64 bits)

This field specifies the address of either the AECS or the secondary input to the filter function, depending
on the values of the Read Source 2 and Write Source 2 flags. If this field specifies the address of the AECS,
it may be read or written or both (despite the field name). If this field specifies the address of the AECS, then
its value (the address) must be 32-byte aligned.

If the Write Source 2 flag is non-zero, the source 2 buffer must not overlap the source 1 buffer.

This field is reserved if the operation type is No-op, Drain, CRC-64, Zcompress32, Zcompress16,
Zdecompress32, or Zdecompress16, or if Read Source 2 and Write Source 2 are both 0.

This value is ignored if Source 2 Transfer Size is zero.

6.1.13 Maximum Destination Size

Offset: 48; Size: 4 bytes (32 bits)
This field indicates the maximum size of the output buffer. The maximum allowed size is specified by the
WQ Maximum Transfer Size field for the WQ in the WQ Configuration Table.

This field is reserved if the operation type is No-op, Drain, or CRC-64.

If the operation is other than No-op or Drain, then one of Source 1 Transfer Size and Maximum Destination
Size must be non-zero.

6.1.14 Source 2 Transfer Size

Offset: 52; Size: 4 bytes (32 bits)
This field indicates the size of the source 2 buffer. The maximum allowed size is specified by the WQ
Maximum Transfer Size field for the WQ in the WQ Configuration Table.

If Source 2 is an AECS, then the transfer size must be a non-zero multiple of 32-bytes. If Source? is Filter
Input Data, then the transfer size must be non-zero.

This field is reserved if the operation type is No-op, Drain, CRC-64, Zcompress32, Zcompress16,
Zdecompress32, or Zdecompress16 or if Read Source 2 and Write Source 2 are both 0.

If the operation is Compress and bit-O of the Compression Flags (stats-mode) is O, then the source-2
transfer size must be 1,568 bytes.

If the operation is Compress and Write Source 2 is not 0, then the amount of data written is 64 bytes.

6.1.15 Number of Input Elements

Offset; 60; Size: 4 bytes (32 bits)

This field is used to determine the end of the input stream for filter operations. Since the input elements
are packed and may be smaller than 1 byte, the number of elements cannot always be determined from
the number of bytes of input. This field indicates the number of elements in the primary input stream (after
decompression, if applicable), except for the Expand operation, where it specifies the number of bits in the
secondary input stream.

Revision: 1.2 Document Number: 350295-003US Page 45

Intel® In-Memory Analytics Accelerator Architecture Specification

For the operations where this field is not reserved, it must have a non-zero value.

For the operation RLE-BURST, if the source1-width is logically 32 (i.e., the source1-width field in the Filter
Flags is 31), then the Number of Input Elements must be at least 2.

This field is reserved for the following operation types: No-op, Drain, Decompress, Compress, Zcompress32,
Zcompress16, Zdecompress32, or Zdecompress16.

]
Revision: 1.2 Document Number: 350295-003US Page 46

Intel® In-Memory Analytics Accelerator Architecture Specification

6.2 Completion Record

The completion record is a 64-byte structure in memory that the device writes when an operation is
complete or encounters an error. A completion record address is in each descriptor. The completion record
address must be 64-byte aligned. Software should not depend on the value of unused fields (including
fields that are unused for specific operation types).

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes
Bytes Completed Unused Error code Status 0
Fault Address 8
Unused Invalid Flags 16
XOR Checksum Unused Output Bits Output Size 24
Min / First CRC 32
Sum / Population count Max / Last 40
Unused ®
56

Figure 6-2: Completion Record Format

6.2.1 Status

Offset: O; Size: 1 byte (8 bits)

This field reports the completion status of the descriptor. Hardware never writes O to this field. Software
should initialize this field to O so it can detect when the completion record has been written. See section
4.4.1 for a list of the operation status codes and their meanings.

Bits Description
7 R/W (Not used unless Operation Status indicates a translation fault — code 0x03, 0x04, or Ox1f).
0: The faulting access was a read.
1: The faulting access was a write.
6 Unused.
5:0 Operation Status
See section 4.4.1 for the meaning of the value in this field.

Table 6-7: Completion record Status field

6.2.2 Error Code

Offset: 1; Size: 1 byte (8 bits)

When the Status field is equal to Ox0A, this field indicates the type of error. If Status has any other value,
this field is unused. Software should not depend on the value of this field for operation types where it is
unused. See section 4.4.2 for a listing of the error codes.

6.2.3 Bytes Completed

Offset: 4; Size: 4 bytes (32 bits)
This field can be used in some cases to continue a partially executed operation. In particular:
e Ifa Decompress operation terminates with an Output Buffer Overflow status, this field contains the
number of bytes that were consumed from Source-1.

Revision: 1.2 Document Number: 350295-003US Page 47

Intel® In-Memory Analytics Accelerator Architecture Specification

e If the operation fully completed with success, this field contains O.
e Otherwise (e.g, if the operation terminated due to some other error), this field is undefined.

The only partially processed operation that can be successfully continued from where it left off is a
Decompress operation that resulted in an Output Buffer Overflow.

6.2.4 Fault Address

Offset; 8; Size: 8 bytes (64 bits)

If the operation terminated due to a page fault, this field contains the address that caused the fault. Bits
11:0 may be reported as 0. Page faults are indicated by Operation Status codes 0x03, 0x04, and Ox1f,
described in Table 4-4. For other errors, this field is undefined

6.2.5 Invalid Flags

Offset: 16; Size: 4 bytes (32 bits)

If the Operation Status is Invalid Operation Flags, Invalid Decompression Flags, Invalid Compression Flags,
Invalid CRC Flags, or Invalid Filter Flags, this field contains a bitmask of the flags field that was found to be
invalid, to aid in debugging. If a bit in this field is 1, it indicates that the flag at the corresponding bit position
in the flags field of the descriptor was invalid. The implementation is not obligated to indicate every invalid
flag that may be presentin the descriptor, but it must indicate at least one anytime it reports an invalid flags
error code.

If the operation status is anything other than Invalid Operation Flags, Invalid Decompression Flags, Invalid
Compression Flags, Invalid CRC Flags, or Invalid Filter Flags, this field is unused.

6.2.6 Output Size

Offset; 24; Size: 4 bytes (32 bits)
This field contains the number of bytes written to the destination buffer. This field is not used for the
following operation types: No-op or Drain.

6.2.7 Output Bits

Offset: 28; Size: 1 byte (8 bits)

This field contains the number of bits written to the last byte of the destination. If this field is O, all bits were
written. This value should be used to determine the number of output elements generated when the output
width is less than 8. This field is not used for the following operation types: No-op or Drain.

6.2.8 XOR Checksum

Offset: 30; Size: 2 bytes (16 bits)

This field contains the XOR checksum computed on the uncompressed data (either the output of the
decompressor, or the primary input when the Enable Decompression flag is 0). For the purpose of
computing this checksum, the data is treated as 16-bit words. If there are an odd number of bytes, the final
byte is zero-extended to 16 bits. This field is not used for the following operation types: No-op, Drain, CRC-
64.

Revision: 1.2 Document Number: 350295-003US Page 48

Intel® In-Memory Analytics Accelerator Architecture Specification

6.2.9 CRC

Offset: 32; Size: 4 bytes (32 bits)

This field contains the CRC computed on the uncompressed data (either the output of the decompressor,
or the primary input when the Enable Decompression flag is 0). This field is not used for the following
operation types: No-op, Drain, CRC-64.

0.2.10 Aggregates

Offset; 36; Size: 12 bytes (3 x 32 bits)
These fields contain information about the output, as follows:

Field Byte | Value when outputis an Value when output is a bit
Offset | array vector

Min / First 32 Minimum value in output. Index of first 1 bit in output.

Max / Last 36 Maximum value in output. Index of last 1 bit in output.

Sum / Population count 40 Sum of all output values. Number of 1 bits in output.

Table 6-8: Completion record Aggregates fields

These fields are not used for the following operation types: No-op, Drain, Compress, Decompress,
Zcompress16, Zcompress32, Zdecompress16, Zdecompress32.

Revision: 1.2 Document Number: 350295-003US Page 49

Intel® In-Memory Analytics Accelerator Architecture Specification

6.3 CRC-64 Descriptor and Completion Record

The CRC-64 operation, 0x44, uses a modified descriptor. The format is shown in Figure 6-3.

Byte 7 Byte 6 | Byte 5 | Byte 4 Byte 3 | Byte 2 | Byte 1 Byte 0 bytes
Operation Operation Flags Priv| Reserved | PASID 0
Completion Record Address 8
Source 1 Address 16
Reserved 24
CRC Flags Completion Interrupt Handle Source 1 Transfer Size 32
40
Reserved 5
CRC Polynomial 56

Figure 6-3: CRC-64 Descriptor Format

All except for the CRC Flags and CRC Polynomial are the same as for the normal descriptor. Usage of these
fields is described in Section 3.8.3.

The CRC Flags and CRC Polynomial are described in Sections 6.3.1 and 6.3.2.

The CRC-64 operation uses a modified Completion record. The format is shown in Figure 6-4.

Byte 7

| Byte 6 | Byte 5 | Byte 4 Byte 3 | Byte 2 Byte 1 Byte 0 bytes

Bytes Completed Unused Error code Status 0

Fault Address 8

Invalid Flags 16
24
32

Unused

CRC-64 40

48
56

Unused

Figure 6-4 : CRC-64 Completion Record Format

All of the fields other than CRC-64 is the same as in the normal Completion Record.

The CRC-64 field contains the CRC result, in the most-significant part of the field, as defined by the CRC Bit
Order flag. See Section 3.8.3 for details.

6.3.1 CRC Flags
Offset: 38; Size: 2 bytes (16 bits)
CRC Flags
Bits | Description
15 CRC Bit Order
Specifies the bit order of the CRC input.
0: Bit O of each byte is the least significant bit.
1: Bit O of each byte is the most significant bit.
14 Invert CRC
If this value is O, then the initial value of the CRC is 0, and the residue is returned. If this value is T,
then the initial value of the CRC is all 1's, and the inverse of the residue is returned.

R ———
Revision: 1.2 Document Number: 350295-003US Page 50

Intel® In-Memory Analytics Accelerator Architecture Specification

CRC Flags

Bits Description

13:0 | Reserved. Must be O.

6.3.2 CRC Polynomial

Offset; 56; Size: 8 bytes (64 bits)

This field defines the polynomial for the CRC, as described in Section 3.8.3. The polynomial is described in
its normal (not bit-reversed) form, without the leading 1-bit, in the high order end of this field, so that bit-
63 is the most significant bit.

For example, a 64-bit CRC would use all of the bits. A 32-bit CRC would place the polynomial in bits 63:32
of the field, and bits 371:0 would be O.

The size of the polynomial is defined by the least significant 1-bit in this field. If all of the bits are O, then the
results are undefined.

Revision: 1.2 Document Number: 350295-003US Page 51

Intel® In-Memory Analytics Accelerator Architecture Specification

6.4 Analytics Engine Configuration and State

The AECS structure contains parameters and internal state of the analytics engine. See section 3.2 for more
information. The AECS has one of two different formats: one for decompression, and filter opcodes, and
one for the compression opcode.

6.4.1 AECS Format for Decompress and Filter

The format of the AECS for decompress and filter is shown in Figure 6-5.

Byte 3 | Byte 2 ‘ Byte 1 | Byte 0 Byte Offset | Category
CRC 0x0
Reserved ‘ XOR Checksum 0x4
Low Filter Parameter 0x8 .
Filter
High Filter Parameter 0xC
Output Modifier Index 0x10
Reserved Drop Initial Decompress Out Bytes 0x14
0x18
Reserved X Reserved
0xA4
OxA8
Output Accumulator Data X
OxAC
Reserved Output Bits Valid 0xBO
Bit Offset for Indexing 0xB4
0xB8
input Accumulator Data X Decompress
Ox1B4
SizeQW 3 | Size QW 2 Size QW 1 Size QW 0 0x1B8
Size QW 31 | Size QW 30 | Size QW 29 Size QW 28 0x1D4
. 0x1D8
Decompression State
Ox14E4

Figure 6-5: AECS Format for Decompress and Filter

CRC On input, this field contains the CRC seed. On output, it is the CRC value.
Note that these values are inverted as is specified by the relevant CRC
standards.

XOR Checksum Initial (on input) or final (on output) XOR Checksum value.

Low Filter Parameter Low Parameter value of filter functions.

High Filter Parameter High Parameter value of filter functions.

Output Modifier Index Base index associated with first output bit. When the output is a bit-vector

that is being modified, this value offsets the indices written to the output
and the values aggregated.
Drop Initial Decompress | The number of initial bytes in the decompressed output that should be

Out Bytes dropped before starting the filter operation.
Output Accumulator The output accumulator is 8 bytes in size.
Data

]
Revision: 1.2 Document Number: 350295-003US Page 52

Intel® In-Memory Analytics Accelerator Architecture Specification

Output Accumulator Bits | Number of valid data bits in output accumulator max 63.
Valid

Bit Offset for Indexing Total number of consumed bits on input.
Input Accumulator Data | The input accumulator is 256 bytes in size.
Size QWn The number of bytes valid in the corresponding Quadword in the Input

Accumulator. Valid values are 0-64.
Analytics Internal State Contains internal state of the Analytics hardware required to link together
multiple segments that belong to one logical file.

Table 6-9: AECS fields for Decompress and Filter

6.4.1.1 Decompress Internal State

The Decompress/Analytics Internal State is shown in Table 6-10.

Field Byte Offset

EOB CAM Entry 0x1D8
Reserved 0x1DC

ALU First Table Index Ox1E0-0x1FO
ALU Num Codes O0x1F4-0x204
ALU First Code 0x208-0x218
ALU First Len Code 0x21C-0x22C
LL CAM Entries 0x230-0x280
Reserved 0x284

LL CAM Total Lengths 0x288-0x294
Distance CAM Entries 0x298-0x30C
Distance CAM Total Lengths 0x310-0x320
Min Length-Code Length 0x324

LL Mapping Table 0x328-0x430
Decompress State 0x434

Stored Block Bytes Remaining | 0x438
Reserved 0x43C-0x4EQ0
History Buffer Write Pointer Ox4E4
History Buffer Ox4E8-0x14E4

Table 6-10 Decompress/Analytics Internal State

The format of the CAM entries is the following: Bits 14:0 give the code value, in non-bit-reversed form, in
the high-order bits of the field. Bit 15 is a valid bit, which should be set only for valid entries. Bits 30:16 give
a bit-mask, where the 1-bits correspond to the valid bits in the code. If the size of the code is N, then the
high-order N bits of the bit-mask should be 1, and the remaining bits should be O.

The 5 DWORDs for each ALU field define 15 values, one for each of 15 ALUs, where each ALU is looking for
codes of a particular width. E.g,, ALU-1 is looking for codes that are 1-bit wide, and ALU-5 is looking for
codes that are 5-bits wide. The way that these 15 fields are spread throughout the 5 DWORDS is shown in
Table 6-11. The value in each field is stored towards the least-significant end.

Revision: 1.2 Document Number: 350295-003US Page 53

Intel® In-Memory Analytics Accelerator Architecture Specification

ALU | DWORD | Bits
1 0 1:0
2 0 4:2
3 0 8:5
4 0 13:9
5 0 19:14
6 0 26:20
7 1 7:0
8 1 16:8
9 1 26:17
10 2 10:0
11 2 22:11
12 3 12:0
13 3 26:13
14 4 14:0
15 4 30:15

Table 6-11 ALU Field Definitions

The basic idea behind each ALU is that (in the non-bit-reversed space) all of the codes of a given length
sequential values. So, these can be represented as a first code and a number of codes. There is a mapping
table that maps to actual literal values. All of the literal values in that mapping table that correspond to
codes of a given length are found in sequential locations. The ALU needs to know where in the mapping
table corresponds to the first code. For example, ALU-4 might contain 3 codes starting with 0x8, and with
a first table index of 10. This means that the valid length-4 codes are 0x8, 0x9, and OxA. And these
correspond to the literals in the mapping table entries 10, 11, and 12.

The actual fields are:

EOB CAM Entry

Huffman code for EOB token.

ALU First Table Index

Index into mapping table for first code for this ALU.

ALU Num Codes

Number of codes for this ALU.

ALU First Code

First code value for this ALU.

ALU First Len Code

First LL code value that is a length.

LL CAM Entries

These 21 CAM entries contain the codes for LL tokens 265-285.

Reserved

LL CAM Total Lengths

These contain the total lengths (code length plus number of extra bits)
for LL tokens 265-285. There are six lengths per DWORD, in bits: 4:0,
9:5, 14:10, 20:16, 25:21, and 30:26. The last DWORD only contains
three lengths.

Distance CAM Entries

This CAM contains the Huffman codes for the 30 Distance tokens.

Distance CAM Total Lengths

This contains the total lengths for the distance tokens in the same
format as for the LL CAM Total Lengths.

Min Length-Code Length

This contains the total length (code length plus number of extra bits)
of the shortest Length Code. If there are no length codes, the value is
15.

Revision: 1.2

Document Number: 350295-003US Page 54

Intel® In-Memory Analytics Accelerator Architecture Specification

LL Mapping Table

Each byte entry contains the value as indexed by the ALUs. For literals,
the value is the literal value. For lengths, the value is the length — 3.

History Buffer Write Pointer

Bits 14:0 contain the write pointer into the history buffer. Bit 15 is set
when the write pointer becomes greater or equal to the size of the
history buffer.

Stored Block Bytes Remaining

Bits 14:0 indicate the number of remaining bytes in a stored block that
has been partially processed. A value of O means that the parsing is
not in the middle of a stored block.

Decompress State

Bits 3:0 indicate the state of the decompress parser. The possible
values are:

0000: Looking at an LL token in a non-final block.

0100: Look at an LL token in a final block.

0010: Looking at a stored block byte in a non-final block.

07110: Looking at a stored block byte in a final block.

OXX1: Looking at the start of a block header.

1XXX: Processing terminated due to EOB.

Bits 31:16 give the number of bits since the last token processed to
the end of the input accumulator.

History Buffer

History buffer.

©6.4.2 AECS Format for Compress

The format of the AECS for compress is shown in Figure 6-6.

Byte
Byte 3 Byte2 | Bytel Byte 0 Of¥set Category
CRC 0x0 Checksums
Reserved ‘ XOR Checksum 0x4
Reserved 0x8
Reserved 0x18
Reserved ‘ Num Acc Bits Valid 0x1C
0x20 Output
Output Accumulator Data Accumulator
0x11C
Huffman Literal Code 0 0x120
Huffman Literal Code 285 0x594
Reserved 0x598 Huffman
Reserved 0x59C Tables
Huffman Distance Code 0 0x5A0
Huffman Distance Code 29 0x614

Figure 6-6 AECS Format for Compress

CRC

On input, this field contains the CRC seed. On output, it is the CRC value.

XOR Checksum

Initial (on input) or final (on output) XOR Checksum value.

Output Accumulator Data

On input, this field can contain up to 2,048 bits. On output, it will contain
fewer than 64. This can be used by software to insert a Deflate block
header.

Revision: 1.2

Document Number: 350295-003US Page 55

Intel® In-Memory Analytics Accelerator Architecture Specification

Num Acc Bits Valid Number of bits that are valid in Output Accumulator Data.

Huffman Codes Bits 14:0: Non-bit-reversed Huffman code stored in low-order bits of field.
Bits 18:15: Length of code word in bits.

Bits 31:19: Reserved.

Table 6-12 AECS Fields for Compress

Revision: 1.2 Document Number: 350295-003US Page 56

Intel® In-Memory Analytics Accelerator Architecture Specification

7 Summary of Differences from Intel® DSA

7.1 General Differences
The following lists some of the key aspects of Intel IAA that are different from Intel DSA:

o Partial descriptor completion: In general, Intel IAA completes the entire operation or returns an
error. In case of an error, the entire operation needs to be re-executed. The exception to this is the
decompress operation. In the case of decompression where the output buffer is not large enough,
the operation would result in a recoverable “output overflow”. In this case, the operation is partially
completed, the accelerator finishes in a clean state, and the job can be continued (in a new
descriptor) where it left off.

e Batch processing: Intel IAA does not support batch processing or the Fence operation flag.

e Stateless device: There is no state information stored within the accelerator between operations.
Any state information that needs to be passed between operations is written to the AECS by the
first operation and then read from the AECS by the second operation.

e Read Buffer Allocation: Intel IAA does not support Read Buffer allocation control.

e Completion Records: The Intel IAA Completion Record is 64 bytes in length and must be aligned
on a 64-byte boundary.

e Overlapping Buffers: None of the Source 1, Source 2, and Destination buffers (which are present
for a given operation) may overlap.

e Performance Monitoring Events:
o Intel IAA does not support the Operations events or Batch-related events.
o InIntel IAA, the EV_CL_WRITE event measures total data written, in units of 512 bytes
rather than units of 32 bytes.

e QOperations: The operations supported by Intel IAA are different from those supported by Intel DSA.
See section 6.1.2 for a list of the operations supported. The OPCAP register allows runtime
detection of supported operations.

e CRC Operation: The CRC64 operation in Intel IAA is different from the CRC operation in Intel DSA.
In particular, CRC64 supports an arbitrary polynomial up to degree 64. In general, implementations
for fixed CRCs may be faster than implementations for arbitrary polynomials.

o Completion Record: Byte 1 has a different meaning. In Intel DSA, it is an operation-specific result,
for Intel IAA, it is either not used or is an error code.

Revision: 1.2 Document Number: 350295-003US Page 57

Intel® In-Memory Analytics Accelerator Architecture Specification

7.2 Configuration and Control Register Differences

Note that bits that are the same between Intel IAA and Intel DSA are not listed here. That is, any bit not
listed here is the same as for Intel DSA.

7.2.1 General Capabilities Register (GENCAP)

GENCAP
Base: BARO Offset: 0x10 Size: 8 bytes (64 bits)
Bit Attr Size Description

63:52 RO 12 bits | Unused.

51:47 RO 5 bits | Maximum Set Size
The maximum logical source-1 bit-width for the set-membership and find-
unique operations is the value of this field plus 1. The logical source-1 bit-
width is the actual source-1 bit-width minus the values of the Drop Low
Bits and Drop High Bits fields in the Filter Flags.
46:42 RO 5 bits | Maximum Decompress Set Size
The maximum logical source-1 bit-width for the set-membership and find-
unigue operations when source-1 is being decompressed is the value of
this field plus 1. The logical source-1 bit-width is the actual source-1 bit-
width minus the values of the Drop Low Bits and Drop High Bits fields in
the Filter Flags.
41 RO 1bit | Indexing Support
0: Indexing (for compress / decompress) is not supported.
1: Indexing is supported.
40 RO 1 bit | Decompress Support
0: Decompression is not supported
1: Decompression is supported.

7.3 PCl Express Configuration Register Differences

7.3.1 Device ID (DID)

DEVICE ID (DID)
Identifies the particular device.

Base: Rootbus CFG Offset: 0x2 Size: 2 bytes (16 bits)
Default Value: OxOCFE
Bits Attr Size Default Val Description
15:0 ROS 16 OXOCFE Device ID (DID)
Allocated by the vendor.

Revision: 1.2 Document Number: 350295-003US Page 58

Intel® In-Memory Analytics Accelerator Architecture Specification

7.3.2 Outstanding Page Request Capacity (PRSREQCAP)

OUTSTANDING PAGE REQUEST CAPACITY (PRSREQCAP)
Maximum Number of Outstanding Page Requests

Base: Rootbus CFG Offset: 0x248 Size: 4 bytes (32 bits)
Default Value: 0x00000100
Bits Attr Size Default Val Description
31:0 RO 32 0x100 Capacity (CAP)
How many Page Requests can the function issue.

Revision: 1.2 Document Number: 350295-003US Page 59

	1 Introduction
	1.1 Audience
	1.2 References

	2 Overview
	2.1 Data Analytics Features

	3 Intel Analytics Accelerator Architecture
	3.1 Operations Overview
	3.2 Analytics Engine Configuration and State
	3.3 Decompression
	3.3.1 Verification
	3.3.2 Index Generation

	3.4 Compression
	3.4.1 Statistics Mode Output
	3.4.2 Compression Output Overflow
	3.4.3 Compression Indexing

	3.5 Checksum Calculations
	3.6 Filter Functions
	3.6.1 Parser
	3.6.2 Packed Array
	3.6.3 Parquet RLE
	3.6.4 Output Modification
	3.6.5 Modification When Output is Normally a Bit Vector
	3.6.6 Modification When Output is Normally an Array
	3.6.7 Aggregation

	3.7 Zero Compression
	3.7.1 DWORD Zero Compression Format
	3.7.2 WORD Zero Compression Format

	3.8 Operation Types
	3.8.1 Decompress
	3.8.2 Compress
	3.8.3 CRC-64
	3.8.4 Zdecompress32 and Zdecompress16
	3.8.5 Zcompress32 and Zcompress16
	3.8.6 Scan
	3.8.7 Set Membership
	3.8.8 Extract
	3.8.9 Select
	3.8.10 RLE Burst
	3.8.11 Find Unique
	3.8.12 Expand

	4 Error Handling
	4.1 Descriptor Checks
	4.2 Descriptor Reserved Field Checking
	4.3 AECS Checks
	4.3.1 Compress AECS Checks
	4.3.2 Decompress/Filter AECS Checks

	4.4 Error Codes
	4.4.1 Operation Status Codes
	4.4.2 Error Code

	5 Software Architecture
	5.1 Intel® Query Processing Library

	6 Structure Formats
	6.1 Descriptor
	6.1.1 Trusted Fields
	6.1.2 Operation
	6.1.3 Operation Flags
	6.1.4 Decompression Flags
	6.1.5 Compression Flags
	6.1.6 Filter Flags
	6.1.7 Completion Record Address
	6.1.8 Source 1 Address
	6.1.9 Destination Address
	6.1.10 Source 1 Transfer Size
	6.1.11 Completion Interrupt Handle
	6.1.12 Source 2 Address
	6.1.13 Maximum Destination Size
	6.1.14 Source 2 Transfer Size
	6.1.15 Number of Input Elements

	6.2 Completion Record
	6.2.1 Status
	6.2.2 Error Code
	6.2.3 Bytes Completed
	6.2.4 Fault Address
	6.2.5 Invalid Flags
	6.2.6 Output Size
	6.2.7 Output Bits
	6.2.8 XOR Checksum
	6.2.9 CRC
	6.2.10 Aggregates

	6.3 CRC-64 Descriptor and Completion Record
	6.3.1 CRC Flags
	6.3.2 CRC Polynomial

	6.4 Analytics Engine Configuration and State
	6.4.1 AECS Format for Decompress and Filter
	6.4.1.1 Decompress Internal State

	6.4.2 AECS Format for Compress

	7 Summary of Differences from Intel® DSA
	7.1 General Differences
	7.2 Configuration and Control Register Differences
	7.2.1 General Capabilities Register (GENCAP)

	7.3 PCI Express Configuration Register Differences
	7.3.1 Device ID (DID)
	7.3.2 Outstanding Page Request Capacity (PRSREQCAP)

