
Intel® Architecture
Instruction Set Extensions and Future Features

Programming Reference

319433-035
OCTOBER 2018

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting
from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject
matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifica-
tions. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is subject to change
without notice. Intel does not guarantee the availability of these interfaces in any future product. Contact your Intel representative to obtain the
latest Intel product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2018, Intel Corporation. All Rights Reserved.
ii Ref. # 319433-035

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Revision History

Revision Description Date

-025

• Removed instructions that now reside in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

• Minor updates to chapter 1.
• Updates to Table 2-1, Table 2-2 and Table 2-8 (leaf 07H) to

indicate support for AVX512_4VNNIW and AVX512_4FMAPS.
• Minor update to Table 2-8 (leaf 15H) regarding ECX

definition.
• Minor updates to Section 4.6.2 and Section 4.6.3 to clarify

the effects of “suppress all exceptions”.
• Footnote addition to CLWB instruction indicating operand

encoding requirement.
• Removed PCOMMIT.

September 2016

-026
• Removed CLWB instruction; it now resides in the Intel® 64

and IA-32 Architectures Software Developer’s Manual.
• Added additional 512-bit instruction extensions in chapter 6.

October 2016

-027
• Added TLB CPUID leaf in chapter 2.
• Added VPOPCNTD/Q instruction in chapter 6,and CPUID

details in chapter 2.
December 2016

-028 • Updated intrinsics for VPOPCNTD/Q instruction in chapter 6. December 2016

-029

• Corrected typo in CPUID leaf 18H.
• Updated operand encoding table format; extracted tuple

information from operand encoding.
• Added VPERMB back into chapter 5; inadvertently removed.
• Moved all instructions from chapter 6 to chapter 5.
• Updated operation section of VPMULTISHIFTQB.

April 2017

-030

• Removed unnecessary information from document (chapters
2, 3 and 4).

• Added table listing recent instruction set extensions
introduction in Intel 64 and IA-32 Processors.

• Updated CPUID instruction with additional details.
• Added the following instructions: GF2P8AFFINEINVQB,

GF2P8AFFINEQB, GF2P8MULB, VAESDEC, VAESDECLAST,
VAESENC, VAESENCLAST, VPCLMULQDQ, VPCOMPRESS,
VPDPBUSD, VPDPBUSDS, VPDPWSSD, VPDPWSSDS,
VPEXPAND, VPOPCNT, VPSHLD, VPSHLDV, VPSHRD,
VPSHRDV, VPSHUFBITQMB.

• Removed the following instructions: VPMADD52HUQ,
VPMADD52LUQ, VPERMB, VPERMI2B, VPERMT2B, and
VPMULTISHIFTQB. They can be found in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes
2A, 2B, 2C & 2D.

• Moved instructions unique to processors based on the
Knights Mill microarchitecture to chapter 3.

• Added chapter 4: EPT-Based Sub-Page Permissions.
• Added chapter 5: Intel® Processor Trace: VMX

Improvements.

October 2017
Ref. # 319433-035 iii

-031

• Updated change log to correct typo in changes from previous
release.

• Updated instructions with imm8 operand missing in operand
encoding table.

• Replaced "VLMAX" with "MAXVL" to align terminology used
across documentation.

• Added back information on detection of Intel AVX-512
instructions.

• Added Intel® Memory Encryption Technologies instructions
PCONFIG and WBNOINVD. These instructions are also added
to Table 1-1 "Recent Instruction Set Extensions Introduction
in Intel 64 and IA-32 Processors". Added Section 1.5
"Detection of Intel® Memory Encryption Technologies (Intel®
MKTME) Instructions".

• CPUID instruction updated with PCONFIG and WBNOINVD
details.

• CPUID instruction updated with additional details on leaf
07H: Intel® Xeon Phi™ only features identified and listed.

• CPUID instruction updated with new Intel® SGX features in
leaf 12H.

• CPUID instruction updated with new PCONFIG information
sub-leaf 1BH.

• Updated short descriptions in the following instructions:
VPDPBUSD, VPDPBUSDS, VPDPWSSD and VPDPWSSDS.

• Corrections and clarifications in Chapter 4 "EPT-Based Sub-
Page Permissions".

• Corrections and clarifications in Chapter 5 "Intel® Processor
Trace: VMX Improvements ".

January 2018

-032

• Corrected PCONFIG CPUID feature flag on instruction page.
• Minor updates to PCONFIG instruction pages: Changed Table

2-2 to use Hex notation; changed "RSVD, MBZ" to
"Reserved, must be zero" in two places in Table 2-3.

• Minor typo correction in WBNOINVD instruction description.

January 2018

-033

• Updated Table 1-1 “Recent Instruction Set Extensions /
Features Introduction in Intel 64 and IA-32 Processors” .

• Added Section 1.6, “Detection of Future Instructions”.
• Added CLDEMOTE, MOVDIRI, MOVDIR64B, TPAUSE,

UMONITOR and UMWAIT instructions.
• Updated the CPUID instruction with details on new

instructions/features added, as well as new power
management details and information on hardware feedback
interface ISA extensions.

• Corrections to PCONFIG instruction.
• Moved instructions unique to processors based on the

Knights Mill microarchitecture to the Intel® 64 and IA-32
Architectures Software Developer’s Manual.

• Added Chapter 5 "Hardware Feedback Interface ISA
Extensions".

• Added Chapter 6 "AC Split Lock Detection".

March 2018

-034

• Added clarification to leaf 07H in the CPUID instruction.
• Added MSR index for IA32_UMWAIT_CONTROL MSR.
• Updated registers in TPAUSE and UMWAIT instructions.
• Updated TPAUSE and UMWAIT intrinsics.

May 2018

Revision Description Date
iv Ref. # 319433-035

-035

• Updated Table 1-1 “Recent Instruction Set Extensions /
Features Introduction in Intel 64 and IA-32 Processors” to list
the AVX512_VNNI instruction set architecture on a separate
line due to presence on future processors available sooner
than previously listed.

• Updated CPUID instruction in various places.
• Removal of NDD/DDS/NDS terms from instructions. Note:

Previously, the terms NDS, NDD and DDS were used in
instructions with an EVEX (or VEX) prefix. These terms
indicated that the vvvv field was valid for encoding, and
specified register usage. These terms are no longer
necessary and are redundant with the instruction operand
encoding tables provided with each instruction. The
instruction operand encoding tables give explicit details on all
operands, indicating where every operand is stored and if
they are read or written. If vvvv is not listed as an operand in
the instruction operand encoding table, then EVEX (or VEX)
vvvv must be 0b1111.

• Added additional #GP exception condition to TPAUSE and
UMWAIT.

• Updated Chapter 5 "Hardware Feedback Interface ISA
Extensions" as follows: changed scheduler/software to
operating system or OS, changed LP0 Scheduler Feedback to
LP0 Capability Values, various description updates, clarified
that capability updates are independent, and added an
update to clarify that bits 0 and 1 will always be set together
in Section 5.1.4.

• Added IA32_CORE_CAPABILITY MSR to Chapter 6 "AC Split
Lock Detection".

October 2018

Revision Description Date
Ref. # 319433-035 v

vi Ref. # 319433-035

REVISION HISTORY

CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.1 About This Document. 1-1
1.2 Instruction Set Extensions and Feature Introduction in Intel 64 and IA-32 Processors . 1-1
1.3 Detection of AVX-512 Foundation Instructions . 1-4
1.4 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family. 1-5
1.5 Detection of Intel® Memory Encryption Technologies (Intel® MKTME) Instructions . 1-6
1.6 Detection of Future Instructions . 1-6
1.7 CPUID Instruction. 1-7

CPUID—CPU Identification. .1-7
1.8 Compressed Displacement (disp8*N) Support in EVEX . 1-43

CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z
2.1 Instruction SET Reference . 2-1

CLDEMOTE—Cache Line Demote. .2-2
GF2P8AFFINEINVQB — Galois Field Affine Transformation Inverse .2-4
GF2P8AFFINEQB — Galois Field Affine Transformation .2-7
GF2P8MULB — Galois Field Multiply Bytes . 2-10
MOVDIRI—Move Doubleword as Direct Store . 2-12
MOVDIR64B—Move 64 Bytes as Direct Store . 2-14
PCONFIG — Platform Configuration . 2-16
TPAUSE—Timed PAUSE. 2-23
UMONITOR—User Level Set Up Monitor Address . 2-25
UMWAIT—User Level Monitor Wait . 2-27
VAESDEC — Perform One Round of an AES Decryption Flow . 2-29
VAESDECLAST — Perform Last Round of an AES Decryption Flow. 2-31
VAESENC — Perform One Round of an AES Encryption Flow . 2-33
VAESENCLAST — Perform Last Round of an AES Encryption Flow. 2-35
VPCLMULQDQ — Carry-Less Multiplication Quadword. 2-37
VPCOMPRESS — Store Sparse Packed Byte/Word Integer Values into Dense Memory/Register . 2-40
VPDPBUSD — Multiply and Add Unsigned and Signed Bytes . 2-43
VPDPBUSDS — Multiply and Add Unsigned and Signed Bytes with Saturation . 2-45
VPDPWSSD — Multiply and Add Signed Word Integers . 2-47
VPDPWSSDS — Multiply and Add Word Integers with Saturation . 2-49
VPEXPAND — Expand Byte/Word Values . 2-51
VPOPCNT — Return the Count of Number of Bits Set to 1 in BYTE/WORD/DWORD/QWORD. 2-54
VPSHLD — Concatenate and Shift Packed Data Left Logical . 2-57
VPSHLDV — Concatenate and Variable Shift Packed Data Left Logical . 2-60
VPSHRD — Concatenate and Shift Packed Data Right Logical . 2-63
VPSHRDV — Concatenate and Variable Shift Packed Data Right Logical . 2-66
VPSHUFBITQMB — Shuffle Bits from Quadword Elements Using Byte Indexes into Mask . 2-69
WBNOINVD—Write Back and Do Not Invalidate Cache. 2-70

CHAPTER 3
EPT-BASED SUB-PAGE PERMISSIONS
3.1 Introduction . 3-1
3.2 VMCS Changes . 3-1
3.3 Changes to EPT Paging-Structure Entries . 3-1
3.4 Changes to Guest-Physical Accesses. 3-1
3.5 Sub-Page Permission Table . 3-2
3.5.1 SPPT Overview. .3-2
3.5.2 Operation of SPPT-based Write-Permission .3-2
3.5.3 SPP-Induced VM Exits .3-4
3.5.3.1 Sub-Page Permissions and EPT Violations. .3-4
3.5.4 Invalidating Cached SPP Permissions .3-5
Ref. # 319433-035 vii

3.5.5 Sub-Page Permission Interaction with Intel® TSX . 3-5
3.5.6 Sub-Page Permission Interaction with Intel® SGX . 3-5
3.5.7 Memory Type Used for Accessing SPPT . 3-6
3.6 Changes to VM Entries . 3-6
3.7 Changes to VMX Capability Reporting . 3-6

CHAPTER 4
INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS
4.1 Introduction . 4-1
4.2 Architecture Details. 4-1
4.2.1 IA32_RTIT_CTL in VMCS Guest State . 4-1
4.2.2 Supporting EPT for Trace Output . 4-1
4.2.2.1 VM Exits Due to Intel PT Output . 4-2

Exit Qualification . 4-2
Preserving Pending Events . 4-2
Additional VM Exits . 4-2

4.2.2.2 Trace Data Management with Output Events. 4-3
4.2.2.3 Intel PT Output Errors . 4-3
4.2.3 New VM-Entry Consistency Checks . 4-4
4.2.3.1 Special Treatment for SMM VM Exits . 4-4
4.3 Enumeration. 4-4

CHAPTER 5
HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS
5.1 Hardware Feedback Interface . 4-1
5.1.1 Hardware Feedback Interface Pointer . 4-2
5.1.2 Hardware Feedback Interface Configuration . 4-2
5.1.3 Hardware Feedback Interface Notifications . 4-2
5.1.4 Hardware Feedback Interface Enumeration . 4-3

CHAPTER 6
SPLIT LOCK DETECTION
viii Ref. # 319433-035

TABLES
PAGE
1-1 Recent Instruction Set Extensions / Features Introduction in Intel 64 and IA-32 Processors . 1-1
1-2 512-bit Instruction Groups in the Intel AVX-512 Family. 1-5
1-3 Intel® Memory Encryption Technologies Instructions . 1-6
1-4 Future Instructions . 1-6
1-5 Information Returned by CPUID Instruction . 1-8
1-6 Highest CPUID Source Operand for Intel 64 and IA-32 Processors . 1-23
1-7 Processor Type Field. 1-25
1-8 Feature Information Returned in the ECX Register . 1-26
1-9 More on Feature Information Returned in the EDX Register. 1-28
1-10 Encoding of Cache and TLB Descriptors . 1-30
1-11 Structured Extended Feature Leaf, Function 0, EBX Register . 1-33
1-12 Processor Brand String Returned with Pentium 4 Processor . 1-36
1-13 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings . 1-38
1-14 Compressed Displacement (DISP8*N) Affected by Embedded Broadcast . 1-43
1-15 EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast . 1-43
2-1 Inverse Byte Listings . 2-5
2-2 PCONFIG Leaf Encodings . 2-16
2-3 MKTME_KEY_PROGRAM_STRUCT Format . 2-16
2-4 Supported Key Programming Commands . 2-17
2-5 Supported Key Programming Commands . 2-17
2-6 PCONFIG Operation Variables. 2-18
2-7 TPAUSE Input Register Bit Definitions . 2-23
2-8 UMWAIT Input Register Bit Definitions . 2-27
2-9 PCLMULQDQ Quadword Selection of Immediate Byte . 2-37
2-10 Pseudo-Op and PCLMULQDQ Implementation. 2-38
3-1 Format of SPPTP . 3-2
3-2 Format of the SPPT L4E . 3-3
3-3 Exit Qualification for SPPT-Induced VM Exits . 3-4
3-4 Fault Behavior Summary . 3-5
4-1 VMCS Controls for IA32_RTIT_CTL MSR. 4-1
4-2 VMCS Control for Intel PT Output to Guest Physical Addresses . 4-1
4-3 New Asynchronous Exit Qualification Bit . 4-2
5-1 Hardware Feedback Interface Structure . 4-1
5-2 Hardware Feedback Interface Global Header Structure . 4-1
5-3 Hardware Feedback Interface Logical Processor Entry Structure . 4-2
6-1 TEST_CTL MSR Details . 4-1
Ref. # 319433-035 ix

x Ref. # 319433-035

FIGURES
PAGE
Figure 1-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions. 1-4
Figure 1-2. Procedural Flow of Application Detection of 512-bit Instruction Groups . 1-5
Figure 1-3. Version Information Returned by CPUID in EAX. 1-24
Figure 1-4. Feature Information Returned in the ECX Register . 1-26
Figure 1-5. Feature Information Returned in the EDX Register . 1-28
Figure 1-6. Determination of Support for the Processor Brand String . 1-36
Figure 1-7. Algorithm for Extracting Maximum Processor Frequency . 1-37
Ref. # 319433-035 xi

xii Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND

FEATURES

1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of Intel® architecture instruction extensions and
features which may be included in future Intel processor generations. Intel does not guarantee the availability
of these interfaces and features in any future product.
The instruction set extensions cover a diverse range of application domains and programming usages. The 512-
bit SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) in-
structions, deliver comprehensive set of functionality and higher performance than Intel® AVX and Intel® AVX2
instructions. Intel AVX, Intel AVX2 and many Intel AVX-512 instructions are covered in Intel® 64 and IA-32 Ar-
chitectures Software Developer’s Manual sets. The reader can refer to them for basic and more background in-
formation related to various features referenced in this document.
The base of the 512-bit SIMD instruction extensions are referred to as Intel AVX-512 Foundation instructions.
They include extensions of the AVX and AVX2 family of SIMD instructions but are encoded using a new encoding
scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and conditional pro-
cessing using opmask registers.

Chapter 2 is devoted to additional 512-bit instruction extensions in the Intel AVX-512 family targeting broad ap-
plication domains, and instruction set extensions encoded using the EVEX prefix encoding scheme to operate at
vector lengths smaller than 512-bits.
Chapter 3 describes EPT-Based Sub-Page Permissions.

Chapter 4 describes Intel® Processor Trace: VMX Improvements.
Chapter 5 describes Hardware Feedback Interface ISA Extensions.
Chapter 6 describes Split Lock Detection.

1.2 INSTRUCTION SET EXTENSIONS AND FEATURE INTRODUCTION IN INTEL
64 AND IA-32 PROCESSORS

Recent instruction set extensions and features are listed in Table 1-1. Within these groups, most instructions and
features are collected into functional subgroups.

Table 1-1. Recent Instruction Set Extensions / Features Introduction in Intel 64 and IA-32 Processors

Instruction Set
Architecture

Processor Generation Introduction Supported in Microarchitecture

SSE4.1 Extensions Intel® Xeon® processor 3100, 3300, 5200, 5400, 7400,
7500 series, Intel® Core™ 2 Extreme processors QX9000
series, Intel® Core™ 2 Quad processor Q9000 series, Intel®
Core™ 2 Duo processors 8000 series, T9000 series.

Legacy and later

Intel® Atom™ processor. Silvermont and later

SSE4.2 Extensions, CRC32,
POPCNT

Intel® Core™ i7 965 processor, Intel® Xeon® processors
X3400, X3500, X5500, X6500, X7500 series.

Legacy and later

Intel® Atom™ processor. Silvermont and later
Ref. # 319433-035 1-1

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
AESNI, PCLMULQDQ Intel® Xeon® processor E7 series, Intel® Xeon® processors
X3600, X5600, Intel® Core™ i7 980X processor.

Use CPUID to verify presence of AESNI and PCLMULQDQ
across Intel® Core™ processor families.

Westmere and later

Intel® Atom™ processor. Silvermont and later

Intel AVX Intel® Xeon® processor E3 and E5 families.

2nd Generation Intel® Core™ i7, i5, i3 processor 2xxx families.

Sandy Bridge and later

F16C 3rd Generation Intel® Core™ processors, Intel® Xeon®
processor E3-1200 v2 product family, Next Generation Intel®
Xeon® processors, Intel® Xeon® processor E5 v2 and E7 v2
families.

Ivy Bridge and later

RDRAND 3rd Generation Intel® Core™ processors, Intel® Xeon®
processor E3-1200 v2 product family, Next Generation Intel®
Xeon® processors, Intel® Xeon® processor E5 v2 and E7 v2
families.

Ivy Bridge and later

Intel® Atom™ processor. Silvermont and later

FS/GS base access 3rd Generation Intel® Core™ processors, Intel® Xeon®
processor E3-1200 v2 product family, Next Generation Intel®
Xeon® processors, Intel® Xeon® processor E5 v2 and E7 v2
families.

Ivy Bridge and later

Intel® Atom™ processor. Goldmont and later

FMA, AVX2, BMI1, BMI2,
INVPCID, LZCNT, TSX

Intel® Xeon® processor E3/E5/E7 v3 product families.

4th Generation Intel® Core™ processor family.

Haswell and later

MOVBE Intel® Xeon® processor E3/E5/E7 v3 product families.

4th Generation Intel® Core™ processor family.

Haswell and later

Intel® Atom™ processor. Silvermont and later

PREFETCHW Intel® Core™ M processor family; 5th Generation Intel® Core™
processor family.

Broadwell and later

Intel® Atom™ processor. Silvermont and later

ADX Intel® Core™ M processor family; 5th Generation Intel® Core™
processor family.

Broadwell and later

CLAC, STAC Intel® Core™ M processor family; 5th Generation Intel® Core™
processor family.

Broadwell and later

Intel® Atom™ processor. Goldmont and later

RDSEED Intel® Core™ M processor family; 5th Generation Intel® Core™
processor family.

Broadwell and later

Intel® Atom™ processor. Goldmont and later

AVX512ER, AVX512PF,
PREFETCHWT1

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series. Knights Landing

AVX512F, AVX512CD Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series. Knights Landing

Intel® Xeon® Processor Scalable Family. Skylake Server and later

TBD Cannon Lake and later

Table 1-1. Recent Instruction Set Extensions / Features Introduction in Intel 64 and IA-32 Processors(Continued)

Instruction Set
Architecture

Processor Generation Introduction Supported in Microarchitecture
1-2 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CLFLUSHOPT, XSAVEC,
XSAVES, MPX

Intel® Xeon® Processor Scalable Family. Skylake Server and later

6th Generation Intel® Core™ processor family. Skylake and later

Intel® Atom™ processor. Goldmont and later

SGX1 6th Generation Intel® Core™ processor family. Skylake and later

Intel® Atom™ processor. Goldmont Plus and later

AVX512DQ, AVX512BW,
AVX512VL

Intel® Xeon® Processor Scalable Family. Skylake Server and later

TBD Cannon Lake and later

CLWB Intel® Xeon® Processor Scalable Family. Skylake Server and later

TBD Ice Lake and later

TBD Future Tremont and later

PKU Intel® Xeon® Processor Scalable Family. Skylake Server and later

AVX512_IFMA,
AVX512_VBMI

TBD Cannon Lake and later

SHA-NI TBD Cannon Lake and later

Intel® Atom™ processor. Goldmont and later

UMIP TBD Cannon Lake and later

Intel® Atom™ processor. Goldmont Plus and later

PTWRITE Intel® Atom™ processor. Goldmont Plus and later

RDPID TBD Ice Lake and later

Intel® Atom™ processor. Goldmont Plus and later

AVX512_4FMAPS,
AVX512_4VNNIW

Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series. Knights Mill

AVX512_VNNI Future versions of Intel® Xeon® Processor Scalable Family. Cascade Lake and later

AVX512_VPOPCNTDQ Intel® Xeon Phi™ Processor 7215, 7285, 7295 Series. Knights Mill

TBD Ice Lake and later

Fast Short REP MOV TBD Ice Lake and later

VAES, GFNI (AVX/AVX512),
AVX512_VBMI2,
VPCLMULQDQ,
AVX512_BITALG

TBD Ice Lake and later

GFNI(SSE) TBD Ice Lake and later

TBD Future Tremont and later

PCONFIG, WBNOINVD TBD Ice Lake Server and later

ENCLV TBD Ice Lake Server and later

TBD Future Tremont and later

Split Lock Detection TBD Ice Lake and later

TBD Future Tremont and later

CLDEMOTE TBD Future Tremont and later

Direct stores: MOVDIRI,
MOVDIR64B

TBD Future Tremont and later

Table 1-1. Recent Instruction Set Extensions / Features Introduction in Intel 64 and IA-32 Processors(Continued)

Instruction Set
Architecture

Processor Generation Introduction Supported in Microarchitecture
Ref. # 319433-035 1-3

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.3 DETECTION OF AVX-512 FOUNDATION INSTRUCTIONS
The majority of AVX-512 Foundation instructions are encoded using the EVEX encoding scheme. EVEX-encoded
instructions can operate on the 512-bit ZMM register state plus 8 opmask registers. The opmask instructions in
AVX-512 Foundation instructions operate only on opmask registers or with a general purpose register.
Processor support of AVX-512 Foundation instructions is indicated by CPUID.(EAX=07H, ECX=0):EBX.AVX512F[bit
16] = 1. Detection of AVX-512 Foundation instructions operating on ZMM states and opmask registers need to
follow the general procedural flow in Figure 1-1.

Prior to using AVX-512 Foundation instructions, the application must identify that the operating system supports
the XGETBV instruction, the ZMM register state, in addition to processor’s support for ZMM state management
using XSAVE/XRSTOR and AVX-512 Foundation instructions. The following simplified sequence accomplishes both
and is strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1).
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Detect CPUID.0x7.0:EBX.AVX512F[bit 16] = 1.

User wait: TPAUSE,
UMONITOR, UMWAIT

TBD Future Tremont and later

Figure 1-1. Procedural Flow of Application Detection of AVX-512 Foundation Instructions

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, processor extended
state bit vector XCR0 register. Thus an application may streamline the checking of CPUID feature flags for XSAVE and OSXSAVE.
XSETBV is a privileged instruction.

Table 1-1. Recent Instruction Set Extensions / Features Introduction in Intel 64 and IA-32 Processors(Continued)

Instruction Set
Architecture

Processor Generation Introduction Supported in Microarchitecture

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check AVX512F flag

Check feature flag

CPUID.1H:ECX.OSXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,
1-4 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.4 DETECTION OF 512-BIT INSTRUCTION GROUPS OF INTEL® AVX-512
FAMILY

In addition to the Intel AVX-512 Foundation instructions, Intel AVX-512 family provides several additional 512-bit
extensions in groups of instructions, each group is enumerated by a CPUID leaf 7 feature flag and can be encoded
via EVEX.L’L field to support operation at vector lengths smaller than 512 bits. These instruction groups are listed
in Table 1-2.

Software must follow the detection procedure for the 512-bit AVX-512 Foundation instructions as described in
Section 1.3.
Detection of other 512-bit sibling instruction groups listed in Table 1-2 (excluding AVX512F) follows the procedure
described in Figure 1-2.

Table 1-2. 512-bit Instruction Groups in the Intel AVX-512 Family

CPUID Leaf 7 Feature Flag Bit Feature Flag abbreviation of 512-bit Instruction Group SW Detection Flow

CPUID.(EAX=07H, ECX=0):EBX[bit 16] AVX512F: AVX-512 Foundation instructions. Figure 1-1

CPUID.(EAX=07H, ECX=0):ECX[bit 06]
AVX512_VBMI2: Additional byte, word, dword and qword
capabilities, an addition to AVX512.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 08]
GFNI: Galois Field New Instructions; this bit is concatenated by
software with either AVX512, AVX, or SSE to indicate the
different supported instructions.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 09]
VAES: Vector AES instructions; this bit is concatenated by
software with AVX512 or AVX to indicate the different
supported instructions.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 10]
VPCLMULQDQ: Vector PCLMULQDQ instructions; this bit is
concatenated by software with AVX512 or AVX to indicate the
different supported instructions.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 11]
AVX512_VNNI: Vector Neural Network Instructions, an addition
to AVX512.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 12]
AVX512_BITALG: Support for VPOPCNT[B,W] and
VPSHUFBITQMB.

Figure 1-2

CPUID.(EAX=07H, ECX=0):ECX[bit 14] AVX512_VPOPCNTDQ: Support for VPOPCNT[D,Q]. Figure 1-2

Figure 1-2. Procedural Flow of Application Detection of 512-bit Instruction Groups

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check AVX512F and

a sibling 512-bit flag

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

States ok to use

XSAVE, XRSTOR, XGETBV, XCR0

enabled Instructions

Yes

YMM,ZMM
Opmask,
Ref. # 319433-035 1-5

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
To illustrated the detection procedure for 512-bit instructions enumerated by AVX512CD, the following sequence is
strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use).
2) Execute XGETBV and verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
ZMM16-ZMM31 state are enabled by OS) and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by
OS).
3) Verify both CPUID.0x7.0:EBX.AVX512F[bit 16] = 1, CPUID.0x7.0:EBX.AVX512CD[bit 28] = 1.
Similarly, the detection procedure for enumerating 512-bit instructions reported by AVX512DW follows the same
flow.

1.5 DETECTION OF INTEL® MEMORY ENCRYPTION TECHNOLOGIES (INTEL®
MKTME) INSTRUCTIONS

Intel® Memory Encryption Technologies instructions are enumerated by a CPUID feature flag; details are listed in
Table 1-3.

1.6 DETECTION OF FUTURE INSTRUCTIONS
Future instructions are enumerated by a CPUID feature flag; details are listed in Table 1-4.

Table 1-3. Intel® Memory Encryption Technologies Instructions

CPUID Leaf Feature Flag Bit Feature Flag Abbreviation of Intel® MKTME Instructions

CPUID.(EAX=07H, ECX=0):EDX[bit 18] PCONFIG: Platform configuration

CPUID.(EAX=80000008H, ECX=0):EBX[bit 9] WBNOINVD: Write back and do not invalidate cache

Table 1-4. Future Instructions

CPUID Leaf Feature Flag Bit Feature Flag Abbreviation

CPUID.(EAX=07H, ECX=0):ECX[bit 25] CLDEMOTE: Cache Line Demote

CPUID.(EAX=07H, ECX=0):EDX[bit 4] Fast Short REP MOV

CPUID.(EAX=07H, ECX=0):ECX[bit 27] MOVDIRI: Direct Stores

CPUID.(EAX=07H, ECX=0):ECX[bit 28] MOVDIR64B: Direct Stores

CPUID.(EAX=07H, ECX=0):ECX[bit 5] WAITPKG: Wait and Pause Enhancements
1-6 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.7 CPUID INSTRUCTION

CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 1-5 shows information returned, depending on the initial value loaded into the EAX register. Table 1-6 shows
the maximum CPUID input value recognized for each family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A

"Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction 64-Bit Mode
Compat/
Leg Mode

Description

0F A2 CPUID Valid Valid Returns processor identification and feature information to the EAX,
EBX, ECX, and EDX registers, as determined by input entered in EAX
(in some cases, ECX as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
Ref. # 319433-035 1-7

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Table 1-5. Information Returned by CPUID Instruction

Initial EAX
Value

Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 1-6)
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 1-3)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID

Feature Information (see Figure 1-4 and Table 1-8)
Feature Information (see Figure 1-5 and Table 1-9)
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of
unique initial APIC IDs reserved for addressing different logical processors in a physical package.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 1-10)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX Reserved

EBX Reserved

ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level” on page 1-32.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved
1-8 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate

0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.

Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique

initial APIC IDs reserved for addressing different logical processors sharing this cache.
*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of

unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31-02: Reserved

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-9

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 03-00: Number of C0* sub C-states supported using MWait
Bits 07-04: Number of C1* sub C-states supported using MWAIT
Bits 11-08: Number of C2* sub C-states supported using MWAIT
Bits 15-12: Number of C3* sub C-states supported using MWAIT
Bits 19-16: Number of C4* sub C-states supported using MWAIT
Bits 23-20: Number of C5* sub C-states supported using MWAIT
Bits 27-24: Number of C6* sub C-states supported using MWAIT
Bits 31-28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not

ACPI C-states.

Thermal and Power Management Leaf

06H EAX Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs
are supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set.
Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR, IA32_HW_FEEDBACK_CONFIG,
IA32_PACKAGE_THERM_STATUS bit 26 and IA32_PACKAGE_THERM_INTERRUPT bit 25 are sup-
ported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bits 31 - 21: Reserved.

EBX Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31-04: Reserved

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the coun-
ters), as a percentage of the expected processor performance when running at the TSC frequency.
Bits 02-01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 31-04: Reserved = 0

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-10 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-8: Enumerates the size of the hardware feedback interface structure in number of 4 KB
pages using minus-one notation.
Bits 31-16: Index (starting at 0) of this logical processor’s row in the hardware feedback interface
structure. Note that the index may be same for multiple logical processors on some parts. On some
parts the indices may not be contiguous, i.e., there may be unused rows in the table.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H NOTES:
Leaf 07H main leaf (ECX = 0).
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0.

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 06: Reserved
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID
Bit 11: RTM
Bit 12: Supports Platform Quality of Service Monitoring (PQM) capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Intel Memory Protection Extensions
Bit 15: Supports Platform Quality of Service Enforcement (PQE) capability if 1.
Bit 16: AVX512F
Bit 17: AVX512DQ
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP
Bit 21: AVX512_IFMA
Bit 22: Reserved
Bit 23: CLFLUSHOPT
Bit 24: CLWB
Bit 25: Intel Processor Trace
Bit 26: AVX512PF (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD
Bit 29: SHA
Bit 30: AVX512BW
Bit 31: AVX512VL

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-11

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bit 00: PREFETCHWT1 (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG
Bit 06: AVX512_VBMI2
Bit 07: Reserved
Bit 08: GFNI
Bit 09: VAES
Bit 10: VPCLMULQDQ
Bit 11: AVX512_VNNI
Bit 12: AVX512_BITALG
Bit 13: Reserved
Bit 14: AVX512_VPOPCNTDQ (Intel® Xeon Phi™ only.)
Bits 16 -15: Reserved
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bits 24 - 23: Reserved
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: Reserved
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: Reserved

EDX Bits 01-00: Reserved
Bit 02: AVX512_4VNNIW (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV
Bits 17-05: Reserved
Bit 18: PCONFIG
Bits 25-19: Reserved
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch
predictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and
IA32_PRED_CMD[0] (IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set
this bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Reserved
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Reserved
Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit
support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n

exceeds the value that sub-leaf 0 returns in EAX.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-12 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX = n, n ≥ 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Direct Cache Access Information Leaf

09H EAX
EBX
ECX
EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
Reserved
Reserved
Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07-00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23-16: Bit width of general-purpose, performance monitoring counter
Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31-07: Reserved = 0

ECX
EDX

Reserved = 0
Bits 04-00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1)
Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that returns an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.
If an input value N in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with
ECX > N also return 0 in ECX[15:8]

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level
type*. All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15-00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31-16: Reserved.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-13

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bits 07-00: Level number. Same value in ECX input.
Bits 15-08: Level type***.
Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX
Bits 04-03: MPX state
Bit 07-05: AVX-512 state
Bit 08: Used for IA32_XSS
Bit 09: PKRU state
Bits 12-10: Reserved.
Bit 13: Used for IA32_XSS.
Bits 31-14: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of the XCR0 register. If a bit is 0, the cor-
responding bit field in XCR0 is reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set
Bit 02: Supports XGETBV with ECX = 1 if set
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set
Bits 31-04: Reserved

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-14 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can
be set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0
Bit 08: PT state
Bit 09: Used for XCR0
Bits 12-10: Reserved.
Bit 13: HWP state.
Bits 31-14: Reserved.

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32]
can be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in
either the XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is

invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤
63) is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended
state feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is
invalid*.

EBX Bits 31-00: The offset in bytes of this extended state component’s save area from the beginning of
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is
clear if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is
located immediately following the preceding state component).
Bits 31-02 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Platform QoS Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Monitoring if 1.
Bits 31-02: Reserved

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-15

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
L3 Cache QoS Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes).

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bits 31-01: Reserved

Platform QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache QoS Enforcement if 1.
Bits 31-02: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache QoS Enforcement Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID.
Bits 31-05: Reserved

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31-03: Reserved

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved

Intel® Software Guard Extensions (Intel® SGX) Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04-02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD,
and ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and
ELDUC.
Bits 31-02: Reserved.

EBX Bits 31-00: MISCSELECT. Bit vector of supported extended Intel SGX features.

ECX Bits 31-00: Reserved.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-16 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2^(EDX[7:0]).
Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is
2^(EDX[15:8]).
Bits 31-16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf
type listed below.

EAX Bit 03-00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on
the Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.

EDX:ECX:EBX:EAX return 0.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor
Reserved Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor
Reserved Memory.
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-17

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that
IA32_RTIT_CR3_MATCH MSR can be accessed.
Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs
across warm reset.
Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.
Bits 31-04: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bits 02: If 1, Indicates support of Single-Range Output scheme.
Bits 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30-04: Reserved
Bit 31: If 1, Generated packets which contain IP payloads have LIP values, which include the CS base
component.

EDX Bits 31-00: Reserved

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31-16: Bitmap of supported MTC period encodings

EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings
Bit 31-16: Bitmap of supported Configurable PSB frequency encodings

ECX Bits 31-00: Reserved

EDX Bits 31-00: Reserved

Time Stamp Counter and Core Crystal Clock Information Leaf

15H NOTES:
If EBX[31:0] is 0, the TSC and ”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock fre-
quency.
If ECX is 0, the core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31-00: Reserved = 0.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-18 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Processor Frequency Information Leaf

16H EAX

EBX

ECX

EDX

Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0
Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0
Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not
reflect actual values. Suitable use of this data includes the display of processor information in like
manner to the processor brand string and for determining the appropriate range to use when
displaying processor information e.g. frequency history graphs. The returned information should not
be used for any other purpose as the returned information does not accurately correlate to
information / counters returned by other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value
of zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard
enumeration scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-19

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31-00: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translations structure. Valid sub-leaves do not need
to be contiguous or in any particular order. A valid sub-leaf may be in a higher input ECX value than
an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX.
* Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache*
Bits 31-26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX.
* Add one to the return value to get the result.

EAX Bits 31-00: Reserved.

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-20 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache*
Bits 31-26: Reserved.

PCONFIG Information Sub-leaf (EAX = 1BH, ECX ≥ 0)

1BH NOTES:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.
For sub-leaves of 1BH, the definition of EDX, ECX, EBX, EAX depends on the sub-leaf type listed
below.
* Currently MKTME is the only defined target and is indicated by identifier 1. An identifier of 0
indicates an invalid target. If MKTME is a supported target, the MKTME_KEY_PROGRAM leaf of
PCONFIG is available.

EAX Bits 11-00: Sub-leaf type
0: Invalid sub-leaf. On an invalid sub-leaf type returned, subsequent sub-leaves are also invalid.
EBX, ECX and EDX all return 0 for this case.
1: Target Identifier. This sub-leaf enumerates PCONFIG targets supported on the platform.
Software must scan until an invalid sub-leaf type is returned. EBX, ECX and EDX are defined below
for this case.

Bits 31-12: 0

EBX * Identifier of target 3n+1 (where n is the sub-leaf number, the initial value of ECX).

ECX * Identifier of target 3n+2.

EDX * Identifier of target 3n+3.

Unimplemented CPUID Leaf Functions

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information (see Table 1-6).

EBX
ECX
EDX

Reserved
Reserved
Reserved

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-21

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
80000001H EAX
EBX
ECX

Extended Processor Signature and Feature Bits.
Reserved
Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01: Reserved
Bit 05: LZCNT available
Bits 07-06: Reserved
Bit 08: PREFETCHW
Bits 31-09: Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:

00H - Disabled
01H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
0FH - Fully associative

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-22 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0H: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0H, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 1-6) and is processor
specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genuin-
eIntel” and is expressed:

EBX ← 756e6547h (* "Genu", with G in the low 4 bits of BL *)
EDX ← 49656e69h (* "ineI", with i in the low 4 bits of DL *)
ECX ← 6c65746eh (* "ntel", with n in the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 0H, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register (see Table 1-6) and is
processor specific.

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Virtual/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-08: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX

ECX
EDX

Bits 08-00: Reserved = 0
Bit 09: WBNOINVD is available if 1
Bits 31-10: Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported

should come from this field.

Table 1-6. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and Pentium
Processors

01H Not Implemented

Pentium Pro and Pentium II Processors,
Intel® Celeron® Processors

02H Not Implemented

Pentium III Processors 03H Not Implemented

Pentium 4 Processors 02H 80000004H

Table 1-5. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-035 1-23

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 10 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 1-3). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 1-7 for available processor type values. Stepping IDs are provided as needed.

Intel Xeon Processors 02H 80000004H

Pentium M Processor 02H 80000004H

Pentium 4 Processor supporting Hyper-
Threading Technology

05H 80000008H

Pentium D Processor (8xx) 05H 80000008H

Pentium D Processor (9xx) 06H 80000008H

Intel Core Duo Processor 0AH 80000008H

Intel Core 2 Duo Processor 0AH 80000008H

Intel Xeon Processor 3000, 5100, 5300
Series

0AH 80000008H

Intel Xeon Processor 3000, 5100, 5200,
5300, 5400 Series

0AH 80000008H

Intel Core 2 Duo Processor 8000 Series 0DH 80000008H

Intel Xeon Processor 5200, 5400 Series 0AH 80000008H

Figure 1-3. Version Information Returned by CPUID in EAX

Table 1-6. Highest CPUID Source Operand for Intel 64 and IA-32 Processors (Continued)

Intel 64 or IA-32 Processors
Highest Value in EAX

Basic Information Extended Function Information

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
1-24 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
NOTE
See "Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 16 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 1-4 and Table 1-8 show encodings for ECX.
• Figure 1-5 and Table 1-9 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Table 1-7. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B
Ref. # 319433-035 1-25

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Figure 1-4. Feature Information Returned in the ECX Register

Table 1-8. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.

1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 6, “Safer Mode Extensions Reference”.

7 EST Enhanced Intel SpeedStep® Technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
1-26 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or
shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability. A value of 1 indicates the processor supports the performance and
debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.

25 AES A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return 0.

Table 1-8. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description
Ref. # 319433-035 1-27

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES

Figure 1-5. Feature Information Returned in the EDX Register

Table 1-9. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
1-28 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is
implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check
feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported
with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are
encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and
may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

Table 1-9. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
Ref. # 319433-035 1-29

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:
• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction

must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs.
The first member of the family of Pentium 4 processors will return a 01H.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. Table 1-10 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of
its own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 1-10. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

Table 1-9. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
1-30 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

Table 1-10. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
Ref. # 319433-035 1-31

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Example 1-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed

once with an input value of 2 to retrieve complete information about caches and TLBs.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 1-5.

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 1-10. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
1-32 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter
8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 1-5.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 1-5.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0H, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 1-5.

When CPUID executes with EAX set to 07H and ECX = n (n > 1and less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= 0H).EAX, the processor returns information about extended feature flags. See Table
1-5. In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended
feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 1-5.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 1-5) is greater than Pn 0. See Table 1-5.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = 0BH: Returns Extended Topology Information

When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 1-5.

Table 1-11. Structured Extended Feature Leaf, Function 0, EBX Register

Bit # Mnemonic Description

0 RWFSGSBASE A value of 1 indicates the processor supports RD/WR FSGSBASE instructions

1-31 Reserved Reserved
Ref. # 319433-035 1-33

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0H, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 1-5.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 1-5. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Platform Quality of Service (PQoS) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 1-5.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Platform Quality of Service (PQoS) Enforcement Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 1-5.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 1-5.

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 1-5.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 1-5.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 1-5.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 1-5.

INPUT EAX = 15H: Returns Time Stamp Counter and Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
1-34 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Counter and Core Crystal Clock. See Table 1-5.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 1-5.

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 1-5.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 1-5.

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. See
Table 1-3.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 1-6 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.
Ref. # 319433-035 1-35

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 1-12 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 1-6. Determination of Support for the Processor Brand String

Table 1-12. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
 = 0x80000004)

CPUID
Function

Supported

True =
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
1-36 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Extracting the Maximum Processor Frequency from Brand Strings

Figure 1-7 provides an algorithm which software can use to extract the maximum processor operating frequency
from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software
can then use this index to locate the brand identification string for the processor in the brand identification table.
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do
not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H,
brand index method is no longer supported. Use brand string method instead.

Figure 1-7. Algorithm for Extracting Maximum Processor Frequency

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
Ref. # 319433-035 1-37

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Table 1-13 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR ← Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX ← Highest basic function input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;

Table 1-13. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III
1-38 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] ← Initial APIC ID;
ECX ← Feature flags; (* See Figure 1-4. *)
EDX ← Feature flags; (* See Figure 1-5. *)

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
 EBX ← Cache and TLB information;
 ECX ← Cache and TLB information;

EDX ← Cache and TLB information;
BREAK;
EAX = 3H:

EAX ← Reserved;
 EBX ← Reserved;
 ECX ← ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX ← ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX ← Deterministic Cache Parameters Leaf; (* See Table 1-5. *)
EBX ← Deterministic Cache Parameters Leaf;

 ECX ← Deterministic Cache Parameters Leaf;
EDX ← Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX ← MONITOR/MWAIT Leaf; (* See Table 1-5. *)
 EBX ← MONITOR/MWAIT Leaf;
 ECX ← MONITOR/MWAIT Leaf;

EDX ← MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX ← Thermal and Power Management Leaf; (* See Table 1-5. *)
 EBX ← Thermal and Power Management Leaf;
 ECX ← Thermal and Power Management Leaf;

EDX ← Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX ← Structured Extended Feature Leaf; (* See Table 1-5. *);
 EBX ← Structured Extended Feature Leaf;
 ECX ← Structured Extended Feature Leaf;

EDX ← Structured Extended Feature Leaf;
BREAK;
EAX = 8H:

EAX ← Reserved = 0;
Ref. # 319433-035 1-39

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = 9H:

EAX ← Direct Cache Access Information Leaf; (* See Table 1-5. *)
 EBX ← Direct Cache Access Information Leaf;
 ECX ← Direct Cache Access Information Leaf;

EDX ← Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX ← Architectural Performance Monitoring Leaf; (* See Table 1-5. *)
 EBX ← Architectural Performance Monitoring Leaf;
 ECX ← Architectural Performance Monitoring Leaf;

EDX ← Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX ← Extended Topology Enumeration Leaf; (* See Table 1-5. *)
EBX ← Extended Topology Enumeration Leaf;

 ECX ← Extended Topology Enumeration Leaf;
EDX ← Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = DH:

EAX ← Processor Extended State Enumeration Leaf; (* See Table 1-5. *)
 EBX ← Processor Extended State Enumeration Leaf;
 ECX ← Processor Extended State Enumeration Leaf;

EDX ← Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX ← Reserved = 0;
 EBX ← Reserved = 0;
 ECX ← Reserved = 0;

EDX ← Reserved = 0;
BREAK;
EAX = FH:

EAX ← Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 1-5. *)
 EBX ← Platform Quality of Service Monitoring Enumeration Leaf;
 ECX ← Platform Quality of Service Monitoring Enumeration Leaf;

EDX ← Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX ← Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 1-5. *)
 EBX ← Platform Quality of Service Enforcement Enumeration Leaf;
 ECX ← Platform Quality of Service Enforcement Enumeration Leaf;

EDX ← Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 14H:

EAX ← Intel Processor Trace Enumeration Leaf; (* See Table 1-5. *)
1-40 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 EBX ← Intel Processor Trace Enumeration Leaf;
 ECX ← Intel Processor Trace Enumeration Leaf;

EDX ← Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:

EAX ← Time Stamp Counter and Core Crystal Clock Information Leaf; (* See Table 1-5. *)
 EBX ← Time Stamp Counter and Core Crystal Clock Information Leaf;
 ECX ← Time Stamp Counter and Core Crystal Clock Information Leaf;

EDX ← Time Stamp Counter and Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX ← Processor Frequency Information Enumeration Leaf; (* See Table 1-5. *)
 EBX ← Processor Frequency Information Enumeration Leaf;
 ECX ← Processor Frequency Information Enumeration Leaf;

EDX ← Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:

EAX ← System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 1-5. *)
 EBX ← System-On-Chip Vendor Attribute Enumeration Leaf;
 ECX ← System-On-Chip Vendor Attribute Enumeration Leaf;

EDX ← System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:

EAX ← Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 1-5. *)
 EBX ← Deterministic Address Translation Parameters Enumeration Leaf;
 ECX ←Deterministic Address Translation Parameters Enumeration Leaf;

EDX ← Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 1BH:

EAX ← PCONFIG Information Enumeration Leaf; (* See Table 1-5. *)
 EBX ← PCONFIG Information Enumeration Leaf;
 ECX ←PCONFIG Information Enumeration Leaf;

EDX ← PCONFIG Information Enumeration Leaf;
BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Reserved;
EBX ← Reserved;
ECX ← Extended Feature Bits (* See Table 1-5.*);
EDX ← Extended Feature Bits (* See Table 1-5. *);

BREAK;
EAX = 80000002H:

EAX ← Processor Brand String;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX ← Processor Brand String, continued;
Ref. # 319433-035 1-41

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX ← Processor Brand String, continued;
EBX ← Processor Brand String, continued;
ECX ← Processor Brand String, continued;
EDX ← Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000006H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Cache information;
EDX ← Reserved = 0;

BREAK;
EAX = 80000007H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
EAX = 80000008H:

EAX ← Reserved = 0;
EBX ← Reserved = 0;
ECX ← Reserved = 0;
EDX ← Reserved = 0;

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX ← Reserved; (* Information returned for highest basic information leaf. *)
EBX ← Reserved; (* Information returned for highest basic information leaf. *)
ECX ← Reserved; (* Information returned for highest basic information leaf. *)
EDX ← Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an
invalid opcode (#UD) exception being generated.§
1-42 Ref. # 319433-035

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.8 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 1-14 and Table 1-15 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 1-14 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword.
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 1-15. Table 1-15
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 1-15. Instruc-
tion classified in Table 1-15 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 1-14. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 1-15. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple1_4X 32bit 0 161 N/A 16 4FMA(PS)

Tuple2
32bit 0 8 8 8

Broadcast (2 elements)
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements)
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)
Ref. # 319433-035 1-43

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

NOTES:

1. Scalar

Table 1-15. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast(Continued)

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment
1-44 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z

Instructions described in this document follow the general documentation convention established in Intel 64 and
IA-32 Architectures Software Developer’s Manual Volume 2A.

2.1 INSTRUCTION SET REFERENCE
Ref. # 319433-035 2-1

INSTRUCTION SET REFERENCE, A-Z
CLDEMOTE—Cache Line Demote

Instruction Operand Encoding1

Description

Hints to hardware that the cache line that contains the linear address specified with the memory operand should be
moved (“demoted”) from the cache(s) closest to the processor core to a level more distant from the processor core.
This may accelerate subsequent accesses to the line by other cores in the same coherence domain, especially if the
line was written by the core that demotes the line. Moving the line in such a manner is a performance optimization,
i.e., it is a hint which does not modify architectural state. Hardware may choose which level in the cache hierarchy
to retain the line (e.g., L3 in typical server designs). The source operand is a byte memory location.
The availability of the CLDEMOTE instruction is indicated by the presence of the CPUID feature flag CLDEMOTE (bit
25 of the ECX register in sub-leaf 07H, see “CPUID—CPU Identification” in Chapter 1). On processors which do not
support the CLDEMOTE instruction (including legacy hardware) the instruction will be treated as a NOP.
A CLDEMOTE instruction is ordered with respect to stores to the same cache line, but unordered with respect to
other instructions including memory fences, CLDEMOTE, CLWB or CLFLUSHOPT instructions to a different cache
line. Since CLDEMOTE will retire in order with respect to stores to the same cache line, software should ensure that
after issuing CLDEMOTE the line is not accessed again immediately by the same core to avoid cache data move-
ment penalties.
The effective memory type of the page containing the affected line determines the effect; cacheable types are likely
to generate a data movement operation, while uncacheable types may cause the instruction to be ignored.
Speculative fetching can occur at any time and is not tied to instruction execution. The CLDEMOTE instruction is not
ordered with respect to PREFETCHh instructions or any of the speculative fetching mechanisms. That is, data can
be speculatively loaded into a cache line just before, during, or after the execution of a CLDEMOTE instruction that
references the cache line.
Unlike CLFLUSH, CLFLUSHOPT and CLWB instructions, CLDEMOTE is not guaranteed to write back modified data to
memory.
The CLDEMOTE instruction may be ignored by hardware in certain cases and is not a guarantee.
The CLDEMOTE instruction can be used at all privilege levels. In certain processor implementations the CLDEMOTE
instruction may set the A bit but not the D bit in the page tables.
If the line is not found in the cache, the instruction will be treated as a NOP.
In some implementations, the CLDEMOTE instruction may always cause a transactional abort with Transactional
Synchronization Extensions (TSX). However, programmers must not rely on CLDEMOTE instruction to force a trans-
actional abort.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

NP 0F 1C /0
CLDEMOTE m8

A V/V CLDEMOTE Hint to hardware to move the cache line containing m8 to a
more distant level of the cache without writing back to mem-
ory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (w) NA NA NA

1. ModRM.MOD != 011B
2-2 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation
Cache_Line_Demote(m8);

Flags Affected

None.

C/C++ Compiler Intrinsic Equivalent

CLDEMOTE void _cldemote(const void*);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
Ref. # 319433-035 2-3

INSTRUCTION SET REFERENCE, A-Z
GF2P8AFFINEINVQB — Galois Field Affine Transformation Inverse

Instruction Operand Encoding

Description

The AFFINEINVB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine
transformation is defined by A * inv(x) + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. The
inverse of the bytes in x is defined with respect to the reduction polynomial x8 + x4 + x3 + x + 1.
One SIMD register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register
or memory operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x”
values in the first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of
the instruction require 16B alignment on their memory operations.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F3A CF /r /ib
GF2P8AFFINEINVQB xmm1,
xmm2/m128, imm8

A V/V GFNI Computes inverse affine transformation in the
finite field GF(2^8).

VEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1, xmm2,
xmm3/m128, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

VEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1, ymm2,
ymm3/m256, imm8

B V/V AVX
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.128.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB xmm1{k1}{z},
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.256.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB ymm1{k1}{z},
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

EVEX.512.66.0F3A.W1 CF /r /ib
VGF2P8AFFINEINVQB zmm1{k1}{z},
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes inverse affine transformation in the
finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
2-4 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
The inverse of each byte is given by the following table. The upper nibble is on the vertical axis and the lower nibble
is on the horizontal axis. For example, the inverse of 0x95 is 0x8A.

Operation

define affine_inverse_byte(tsrc2qw, src1byte, imm):
FOR i ← 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
* inverse(x) is defined in the table above *
retbyte.bit[i] ← parity(tsrc2qw.byte[7-i] AND inverse(src1byte)) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEINVQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 ← SRC2.qword[0]

ELSE:
tsrc2 ← SRC2.qword[j]

FOR b ← 0 to 7:
IF k1[j*8+b] OR *no writemask*:

FOR i ← 0 to 7:
DEST.qword[j].byte[b] ← affine_inverse_byte(tsrc2, SRC1.qword[j].byte[b], imm8)

ELSE IF *zeroing*:
DEST.qword[j].byte[b] ← 0

ELSE DEST.qword[j].byte[b] remains unchanged
DEST[MAX_VL-1:VL] ← 0

Table 2-1. Inverse Byte Listings

- 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7

1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2

2 3A 6E 5A F1 55 4D A8 C9 C1 A 98 15 30 44 A2 C2

3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19

4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 9

5 ED 5C 5 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17

6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B

7 79 B7 97 85 10 B5 BA 3C B6 70 D0 6 A1 FA 81 82

8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 2 B9 A4

9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A

A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62

B C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57

C B 28 2F A3 DA D4 E4 F A9 27 53 4 1B FC AC E6

D 7A 7 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B

E B1 D D6 EB C6 E CF AD 8 4E D7 E3 5D 50 1E B3

F 5B 23 38 34 68 46 3 8C DD 9C 7D A0 CD 1A 41 1C
Ref. # 319433-035 2-5

INSTRUCTION SET REFERENCE, A-Z
VGF2P8AFFINEINVQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j ← 0 TO KL-1:

FOR b ← 0 to 7:
DEST.qword[j].byte[b] ← affine_inverse_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] ← 0

GF2P8AFFINEINVQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j ← 0 TO 1:

FOR b ← 0 to 7:
SRCDEST.qword[j].byte[b] ← affine_inverse_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

GF2P8AFFINEINVQB __m128i _mm_gf2p8affineinv_epi64_epi8(__m128i, __m128i, int);
GF2P8AFFINEINVQB __m128i _mm_mask_gf2p8affineinv_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
GF2P8AFFINEINVQB __m128i _mm_maskz_gf2p8affineinv_epi64_epi8(__mmask16, __m128i, __m128i, int);
GF2P8AFFINEINVQB __m256i _mm256_gf2p8affineinv_epi64_epi8(__m256i, __m256i, int);
GF2P8AFFINEINVQB __m256i _mm256_mask_gf2p8affineinv_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
GF2P8AFFINEINVQB __m256i _mm256_maskz_gf2p8affineinv_epi64_epi8(__mmask32, __m256i, __m256i, int);
GF2P8AFFINEINVQB __m512i _mm512_gf2p8affineinv_epi64_epi8(__m512i, __m512i, int);
GF2P8AFFINEINVQB __m512i _mm512_mask_gf2p8affineinv_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
GF2P8AFFINEINVQB __m512i _mm512_maskz_gf2p8affineinv_epi64_epi8(__mmask64, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
2-6 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
GF2P8AFFINEQB — Galois Field Affine Transformation

Instruction Operand Encoding

Description

The AFFINEB instruction computes an affine transformation in the Galois Field 28. For this instruction, an affine
transformation is defined by A * x + b where “A” is an 8 by 8 bit matrix, and “x” and “b” are 8-bit vectors. One SIMD
register (operand 1) holds “x” as either 16, 32 or 64 8-bit vectors. A second SIMD (operand 2) register or memory
operand contains 2, 4, or 8 “A” values, which are operated upon by the correspondingly aligned 8 “x” values in the
first register. The “b” vector is constant for all calculations and contained in the immediate byte.
The EVEX encoded form of this instruction does not support memory fault suppression. The SSE encoded forms of
the instruction require16B alignment on their memory operations.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F3A CE /r /ib
GF2P8AFFINEQB xmm1,
xmm2/m128, imm8

A V/V GFNI Computes affine transformation in the finite
field GF(2^8).

VEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1, xmm2,
xmm3/m128, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite
field GF(2^8).

VEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1, ymm2,
ymm3/m256, imm8

B V/V AVX
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.128.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB xmm1{k1}{z},
xmm2, xmm3/m128/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.256.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB ymm1{k1}{z},
ymm2, ymm3/m256/m64bcst, imm8

C V/V AVX512VL
GFNI

Computes affine transformation in the finite
field GF(2^8).

EVEX.512.66.0F3A.W1 CE /r /ib
VGF2P8AFFINEQB zmm1{k1}{z},
zmm2, zmm3/m512/m64bcst, imm8

C V/V AVX512F
GFNI

Computes affine transformation in the finite
field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) imm8 (r) NA

B NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

C Full ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)
Ref. # 319433-035 2-7

INSTRUCTION SET REFERENCE, A-Z
Operation

define parity(x):
t ← 0 // single bit
FOR i ← 0 to 7:

t = t xor x.bit[i]
return t

define affine_byte(tsrc2qw, src1byte, imm):
FOR i ← 0 to 7:

* parity(x) = 1 if x has an odd number of 1s in it, and 0 otherwise.*
retbyte.bit[i] ← parity(tsrc2qw.byte[7-i] AND src1byte) XOR imm8.bit[i]

return retbyte

VGF2P8AFFINEQB dest, src1, src2, imm8 (EVEX encoded version)
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC2 is memory and EVEX.b==1:
tsrc2 ← SRC2.qword[0]

ELSE:
tsrc2 ← SRC2.qword[j]

FOR b ← 0 to 7:
IF k1[j*8+b] OR *no writemask*:

DEST.qword[j].byte[b] ← affine_byte(tsrc2, SRC1.qword[j].byte[b], imm8)
ELSE IF *zeroing*:

DEST.qword[j].byte[b] ← 0
ELSE DEST.qword[j].byte[b] remains unchanged

DEST[MAX_VL-1:VL] ← 0

VGF2P8AFFINEQB dest, src1, src2, imm8 (128b and 256b VEX encoded versions)
(KL, VL) = (2, 128), (4, 256)
FOR j ← 0 TO KL-1:

FOR b ← 0 to 7:
DEST.qword[j].byte[b] ← affine_byte(SRC2.qword[j], SRC1.qword[j].byte[b], imm8)

DEST[MAX_VL-1:VL] ← 0

GF2P8AFFINEQB srcdest, src1, imm8 (128b SSE encoded version)
FOR j ← 0 TO 1:

FOR b ← 0 to 7:
SRCDEST.qword[j].byte[b] ← affine_byte(SRC1.qword[j], SRCDEST.qword[j].byte[b], imm8)

Intel C/C++ Compiler Intrinsic Equivalent

GF2P8AFFINEQB __m128i _mm_gf2p8affine_epi64_epi8(__m128i, __m128i, int);
GF2P8AFFINEQB __m128i _mm_mask_gf2p8affine_epi64_epi8(__m128i, __mmask16, __m128i, __m128i, int);
GF2P8AFFINEQB __m128i _mm_maskz_gf2p8affine_epi64_epi8(__mmask16, __m128i, __m128i, int);
GF2P8AFFINEQB __m256i _mm256_gf2p8affine_epi64_epi8(__m256i, __m256i, int);
GF2P8AFFINEQB __m256i _mm256_mask_gf2p8affine_epi64_epi8(__m256i, __mmask32, __m256i, __m256i, int);
GF2P8AFFINEQB __m256i _mm256_maskz_gf2p8affine_epi64_epi8(__mmask32, __m256i, __m256i, int);
GF2P8AFFINEQB __m512i _mm512_gf2p8affine_epi64_epi8(__m512i, __m512i, int);
GF2P8AFFINEQB __m512i _mm512_mask_gf2p8affine_epi64_epi8(__m512i, __mmask64, __m512i, __m512i, int);
GF2P8AFFINEQB __m512i _mm512_maskz_gf2p8affine_epi64_epi8(__mmask64, __m512i, __m512i, int);
2-8 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
Ref. # 319433-035 2-9

INSTRUCTION SET REFERENCE, A-Z
GF2P8MULB — Galois Field Multiply Bytes

Instruction Operand Encoding

Description

The instruction multiplies elements in the finite field GF(28), operating on a byte (field element) in the first source
operand and the corresponding byte in a second source operand. The field GF(28) is represented in polynomial
representation with the reduction polynomial x8 + x4 + x3 + x + 1.
This instruction does not support broadcasting.
The EVEX encoded form of this instruction supports memory fault suppression. The SSE encoded forms of the
instruction require16B alignment on their memory operations.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F38 CF /r
GF2P8MULB xmm1, xmm2/m128

A V/V GFNI Multiplies elements in the finite field GF(2^8).

VEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1, xmm2,
xmm3/m128

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

VEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1, ymm2,
ymm3/m256

B V/V AVX
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.128.66.0F38.W0 CF /r
VGF2P8MULB xmm1{k1}{z}, xmm2,
xmm3/m128

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.256.66.0F38.W0 CF /r
VGF2P8MULB ymm1{k1}{z}, ymm2,
ymm3/m256

C V/V AVX512VL
GFNI

Multiplies elements in the finite field GF(2^8).

EVEX.512.66.0F38.W0 CF /r
VGF2P8MULB zmm1{k1}{z}, zmm2,
zmm3/m512

C V/V AVX512F
GFNI

Multiplies elements in the finite field GF(2^8).

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

C Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
2-10 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation

define gf2p8mul_byte(src1byte, src2byte):
tword ← 0
FOR i ← 0 to 7:

IF src2byte.bit[i]:
tword ← tword XOR (src1byte<< i)

* carry out polynomial reduction by the characteristic polynomial p*
FOR i ← 14 downto 8:

p ← 0x11B << (i-8) *0x11B = 0000_0001_0001_1011 in binary*
IF tword.bit[i]:

tword ← tword XOR p
return tword.byte[0]

VGF2P8MULB dest, src1, src2 (EVEX encoded version)
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] ← gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])

ELSE iF *zeroing*:
DEST.byte[j] ← 0

* ELSE DEST.byte[j] remains unchanged*
DEST[MAX_VL-1:VL] ← 0

VGF2P8MULB dest, src1, src2 (128b and 256b VEX encoded versions)
(KL, VL) = (16, 128), (32, 256)
FOR j ← 0 TO KL-1:

DEST.byte[j] ← gf2p8mul_byte(SRC1.byte[j], SRC2.byte[j])
DEST[MAX_VL-1:VL] ← 0

GF2P8MULB srcdest, src1 (128b SSE encoded version)
FOR j ← 0 TO 15:

SRCDEST.byte[j] ← gf2p8mul_byte(SRCDEST.byte[j], SRC1.byte[j])

Intel C/C++ Compiler Intrinsic Equivalent

VGF2P8MULB __m128i _mm_gf2p8mul_epi8(__m128i, __m128i);
VGF2P8MULB __m128i _mm_mask_gf2p8mul_epi8(__m128i, __mmask16, __m128i, __m128i);
VGF2P8MULB __m128i _mm_maskz_gf2p8mul_epi8(__mmask16, __m128i, __m128i);
VGF2P8MULB __m256i _mm256_gf2p8mul_epi8(__m256i, __m256i);
VGF2P8MULB __m256i _mm256_mask_gf2p8mul_epi8(__m256i, __mmask32, __m256i, __m256i);
VGF2P8MULB __m256i _mm256_maskz_gf2p8mul_epi8(__mmask32, __m256i, __m256i);
VGF2P8MULB __m512i _mm512_gf2p8mul_epi8(__m512i, __m512i);
VGF2P8MULB __m512i _mm512_mask_gf2p8mul_epi8(__m512i, __mmask64, __m512i, __m512i);
VGF2P8MULB __m512i _mm512_maskz_gf2p8mul_epi8(__mmask64, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

Legacy-encoded and VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
Ref. # 319433-035 2-11

INSTRUCTION SET REFERENCE, A-Z
MOVDIRI—Move Doubleword as Direct Store

Instruction Operand Encoding

Description

Moves the doubleword integer in the source operand (second operand) to the destination operand (first operand)
using a direct-store operation. The source operand is a general purpose register. The destination operand is a 32-
bit memory location (MODRM.MOD != 0b11). In 64-bit mode, the instruction’s default operation size is 32 bits. Use
of the REX.R prefix permits access to additional registers (R8-R15). Use of the REX.W prefix promotes operation to
64 bits. See summary chart at the beginning of this section for encoding data and limits.

The direct-store is implemented by using write combining (WC) memory type protocol for writing data. Using this
protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache
line from memory into the cache hierarchy. If the destination address is cached, the line is written-back (if modi-
fied) and invalidated from the cache, before the direct-store. Unlike stores with non-temporal hint that allow
uncached (UC) and write-protected (WP) memory-type for the destination to override the non-temporal hint,
direct-stores always follow WC memory type protocol irrespective of the destination address memory type
(including UC and WP types).

Unlike WC stores and stores with non-temporal hint, direct-stores are eligible for immediate eviction from the
write-combining buffer, and thus not combined with younger stores (including direct-stores) to the same address.
Older WC and non-temporal stores held in the write-combing buffer may be combined with younger direct stores to
the same address. Because WC protocol used by direct-stores follows a weakly-ordered memory consistency
model, a fencing operation using SFENCE or MFENCE should follow the MOVDIRI instruction to enforce ordering
when needed.

Direct-stores issued by MOVDIRI to a destination aligned to a 4-byte boundary (8-byte boundary if used with
REX.W prefix) guarantee 4-byte (8-byte with REX.W prefix) write-completion atomicity. This means that the data
arrives at the destination in a single undivided 4-byte (or 8-byte) write transaction. If the destination is not aligned
for the write size, the direct-stores issued by MOVDIRI are split and arrive at the destination in two parts. Each part
of such split direct-store will not merge with younger stores but can arrive at the destination in either order. Avail-
ability of the MOVDIRI instruction is indicated by the presence of the CPUID feature flag MOVDIRI (bit 27 of the ECX
register in leaf 07H, see “CPUID — CPU Identification” in Chapter 1).

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVDIRI void _directstoreu_u32(void *dst, uint32_t val)
MOVDIRI void _directstoreu_u64(void *dst, uint64_t val)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

NP 0F 38 F9 /r

MOVDIRI m32, r32

A V/V MOVDIRI Move doubleword from r32 to m32 using direct store.

NP REX.W + 0F 38 F9 /r

MOVDIRI m64, r64

A V/N.E. MOVDIRI Move quadword from r64 to m64 using direct store.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (w) ModRM:reg (r) NA NA
2-12 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.
#AC If alignment checking is enabled and an unaligned memory reference made while in current

privilege level 3.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF (fault-code) For a page fault.
#AC If alignment checking is enabled and an unaligned memory reference made while in current

privilege level 3.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIRI[bit 27] = 0.

If LOCK prefix or operand-size (66H) prefix is used.
#AC If alignment checking is enabled and an unaligned memory reference made while in current

privilege level 3.
Ref. # 319433-035 2-13

INSTRUCTION SET REFERENCE, A-Z
MOVDIR64B—Move 64 Bytes as Direct Store

Instruction Operand Encoding

Description

Moves 64-bytes as direct-store with 64-byte write atomicity from source memory address to destination memory
address. The source operand is a normal memory operand (MODRM.MOD != 0b11). The destination operand is a
memory location specified in a general-purpose register. The register content is interpreted as an offset into ES
segment without any segment override. In 64-bit mode, the register operand width is 64-bits (32-bits with 67H
prefix). Outside of 64-bit mode, the register width is 32-bits when CS.D=1 (16-bits with 67H prefix), and 16-bits
when CS.D=0 (32-bits with 67H prefix). MOVDIR64B requires the destination address to be 64-byte aligned. No
alignment restriction is enforced for source operand.

MOVDIR64B reads 64-bytes from the source memory address and performs a 64-byte direct-store operation to the
destination address. The load operation follows normal read ordering based on source address memory-type. The
direct-store is implemented by using the write combining (WC) memory type protocol for writing data. Using this
protocol, the processor does not write the data into the cache hierarchy, nor does it fetch the corresponding cache
line from memory into the cache hierarchy. If the destination address is cached, the line is written-back (if modi-
fied) and invalidated from the cache, before the direct-store.

Unlike stores with non-temporal hint which allow UC/WP memory-type for destination to override the non-temporal
hint, direct-stores always follow WC memory type protocol irrespective of destination address memory type
(including UC/WP types). Unlike WC stores and stores with non-temporal hint, direct-stores are eligible for imme-
diate eviction from the write-combining buffer, and thus not combined with younger stores (including direct-stores)
to the same address. Older WC and non-temporal stores held in the write-combing buffer may be combined with
younger direct stores to the same address. Because WC protocol used by direct-stores follow weakly-ordered
memory consistency model, fencing operation using SFENCE or MFENCE should follow the MOVDIR64B instruction
to enforce ordering when needed.

There is no atomicity guarantee provided for the 64-byte load operation from source address, and processor imple-
mentations may use multiple load operations to read the 64-bytes. The 64-byte direct-store issued by MOVDIR64B
guarantees 64-byte write-completion atomicity. This means that the data arrives at the destination in a single undi-
vided 64-byte write transaction.
Availability of the MOVDIR64B instruction is indicated by the presence of the CPUID feature flag MOVDIR64B (bit
28 of the ECX register in leaf 07H, see “CPUID — CPU Identification” in Chapter 1).

Operation

DEST ← SRC;

Intel C/C++ Compiler Intrinsic Equivalent

MOVDIR64B void _movdir64b(void *dst, const void* src)

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F 38 F8 /r

MOVDIR64B r16/r32/r64, m512

A V/V MOVDIR64B Move 64-bytes as direct-store with guaranteed 64-
byte write atomicity from the source memory operand
address to destination memory address specified as
offset to ES segment in the register operand.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA
2-14 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#SS(0) For an illegal address in the SS segment.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.

Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF (fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If address in destination (register) operand is not aligned to a 64-byte boundary.
#PF (fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.MOVDIR64B[bit 28] = 0.

If LOCK prefix is used.
Ref. # 319433-035 2-15

INSTRUCTION SET REFERENCE, A-Z
PCONFIG — Platform Configuration

Instruction Operand Encoding

Description

PCONFIG allows software to configure certain platform features. PCONFIG supports multiple leaf functions, with a
leaf function identified by the value in EAX. The registers RBX, RCX, and RDX have leaf-specific purposes.
Each PCONFIG leaf function applies to a specific hardware block called a PCONFIG target, and each PCONFIG target
is associated with a numerical identifier. The identifiers of the PCONFIG targets supported by the CPU (which imply
the supported leaf functions) are enumerated in the sub-leaves of the PCONFIG-information leaf of CPUID (EAX =
1BH). An attempt to execute an undefined leaf function results in a general-protection exception (#GP).
Addresses and operands are 32 bits outside 64-bit mode (IA32_EFER.LMA = 0 || CS.L = 0) and are 64 bits in 64-
bit mode (IA32_EFER.LMA = 1 && CS.L = 1). The value of CS.D has no effect on address calculation.
Table 2-2 shows the leaf encodings for PCONFIG.

The MKTME_KEY_PROGRAM leaf of PCONFIG pertains to the MKTME target, which has target identifier 1. It is used
by software to manage the key associated with a KeyID. The leaf function is invoked by setting the leaf value of 0
in EAX and the address of MKTME_KEY_PROGRAM_STRUCT in RBX. Successful execution of the leaf clears RAX (set
to zero) and ZF, CF, PF, AF, OF, and SF are cleared. In case of failure, the failure reason is indicated in RAX with ZF
set to 1 and CF, PF, AF, OF, and SF are cleared. The MKTME_KEY_PROGRAM leaf uses the
MKTME_KEY_PROGRAM_STRUCT in memory shown in Table 2-3.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C5
PCONFIG

A V/V PCONFIG This instruction is used to execute functions
for configuring platform features.
EAX: Leaf function to be invoked.
RBX/RCX/RDX: Leaf-specific purpose.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA NA

Table 2-2. PCONFIG Leaf Encodings

Leaf Encoding Description

MKTME_KEY_PROGRAM 00000000H This leaf is used to program the key and encryption mode associated
with a KeyID.

RESERVED 00000001H - FFFFFFFFH Reserved for future use (#GP(0) if used).

Table 2-3. MKTME_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) Size (bytes) Comments

KEYID 0 2 Key Identifier.

KEYID_CTRL 2 4 KeyID control:
• Bits [7:0]: COMMAND.
• Bits [23:8]: ENC_ALG.
• Bits [31:24]: Reserved, must be zero.

RESERVED 6 58 Reserved, must be zero.

KEY_FIELD_1 64 64 Software supplied KeyID data key or entropy for KeyID data key.

KEY_FIELD_2 128 64 Software supplied KeyID tweak key or entropy for KeyID tweak key.
2-16 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
• KEYID: Key Identifier being programmed to the MKTME engine.
• KEYID_CTRL: The KEYID_CTRL field carries two sub-fields used by software to control the behavior of a

KeyID: Command and KeyID encryption algorithm.

The command used controls the encryption mode for a KeyID. Table 2-4 provides a summary of the
commands supported.

The encryption algorithm field (ENC_ALG) allows software to select one of the activated encryption algorithms
for the KeyID. The BIOS can activate a set of algorithms to allow for use when programming keys using the
IA32_TME_ACTIVATE MSR (does not apply to KeyID 0 which uses TME policy). The ISA checks to ensure that
the algorithm selected by software is one of the algorithms that has been activated by the BIOS.

• KEY_FIELD_1: This field carries the software supplied data key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated
random data key. It is software's responsibility to ensure that the key supplied for the direct programming
option or the entropy supplied for the random programming option does not result in weak keys. There are no
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are
treated as reserved and must be zeroed out by software before executing the instruction.

• KEY_FIELD_2: This field carries the software supplied tweak key to be used for the KeyID if the direct key
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated
random tweak key. It is software's responsibility to ensure that the key supplied for the direct programming
option or the entropy supplied for the random programming option does not result in weak keys. There are no
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are
treated as reserved and must be zeroed out by software before executing the instruction.

All KeyIDs use the TME key on MKTME activation. Software can at any point decide to change the key for a
KeyID using the PCONFIG instruction. Change of keys for a KeyID does NOT change the state of the TLB
caches or memory pipeline. It is software's responsibility to take appropriate actions to ensure correct
behavior.
Table 2-5 shows the return values associated with the MKTME_KEY_PROGRAM leaf of PCONFIG. On
instruction execution, RAX is populated with the return value.

Table 2-4. Supported Key Programming Commands

Command Encoding Description

KEYID_SET_KEY_DIRECT 0 Software uses this mode to directly program a key for use with KeyID.

KEYID_SET_KEY_RANDOM 1 CPU generates and assigns an ephemeral key for use with a KeyID. Each time the
instruction is executed, the CPU generates a new key using a hardware random
number generator and the keys are discarded on reset.

KEYID_CLEAR_KEY 2 Clear the (software programmed) key associated with the KeyID. On execution of this
command, the KeyID gets TME behavior (encrypt with platform TME key).

KEYID_NO_ENCRYPT 3 Do not encrypt memory when this KeyID is in use.

Table 2-5. Supported Key Programming Commands

Return Value Encoding Description

PROG_SUCCESS 0 KeyID was successfully programmed.

INVALID_PROG_CMD 1 Invalid KeyID programming command.

ENTROPY_ERROR 2 Insufficient entropy.

INVALID_KEYID 3 KeyID not valid.

INVALID_ENC_ALG 4 Invalid encryption algorithm chosen (not supported).

DEVICE_BUSY 5 Failure to access key table.
Ref. # 319433-035 2-17

INSTRUCTION SET REFERENCE, A-Z
PCONFIG Virtualization

Software in VMX root mode can control the execution of PCONFIG in VMX non-root mode using the following execu-
tion controls introduced for PCONFIG:
• PCONFIG_ENABLE: This control is a single bit control and enables the PCONFIG instruction in VMX non-root

mode. If 0, the execution of PCONFIG in VMX non-root mode causes #UD. Otherwise, execution of PCONFIG
works according to PCONFIG_EXITING.

• PCONFIG_EXITING: This is a 64b control and allows VMX root mode to cause a VM-exit for various leaf
functions of PCONFIG. This control does not have any effect if the PCONFIG_ENABLE control is clear.

PCONFIG Concurrency

In a scenario, where the MKTME_KEY_PROGRAM leaf of PCONFIG is executed concurrently on multiple logical
processors, only one logical processor will succeed in updating the key table. PCONFIG execution will return with an
error code (DEVICE_BUSY) on other logical processors and software must retry. In cases where the instruction
execution fails with a DEVICE_BUSY error code, the key table is not updated, thereby ensuring that either the key
table is updated in its entirety with the information for a KeyID, or it is not updated at all. In order to accomplish
this, the MKTME_KEY_PROGRAM leaf of PCONFIG maintains a writer lock for updating the key table. This lock is
referred to as the Key table lock and denoted in the instruction flows as KEY_TABLE_LOCK. The lock can either be
unlocked, when no logical processor is holding the lock (also the initial state of the lock) or be in an exclusive state
where a logical processor is trying to update the key table. There can be only one logical processor holding the lock
in exclusive state. The lock, being exclusive, can only be acquired when the lock is in unlocked state.
PCONFIG uses the following syntax to acquire KEY_TABLE_LOCK in exclusive mode and release the lock:
• KEY_TABLE_LOCK.ACQUIRE(WRITE)
• KEY_TABLE_LOCK.RELEASE()

Operation

(* #UD if PCONFIG is not enumerated or CPL>0 *)
if (CPUID.7.0:EDX[18] == 0 OR CPL > 0) #UD;

if (in VMX non-root mode)
{

if (VMCS.PCONFIG_ENABLE == 1)
{

if ((EAX > 62 AND VMCS.PCONFIG_EXITING[63] ==1) OR
 (EAX < 63 AND VMCS.PCONFIG_EXITING[EAX] == 1))

{
Set VMCS.EXIT_REASON = PCONFIG; //No Exit qualification
Deliver VMEXIT;

}
}
else
{

#UD

Table 2-6. PCONFIG Operation Variables

Variable Name Type Size
(Bytes)

Description

TMP_KEY_PROGRAM_STRUCT MKTME_KEY_PROGRAM_STRUCT 192 Structure holding the key programming structure.

TMP_RND_DATA_KEY UINT128 16 Random data key generated for random key
programming option.

TMP_RND_TWEAK_KEY UINT128 16 Random tweak key generated for random key
programming option.
2-18 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
}
}

(* #GP(0) for an unsupported leaf *)
if(EAX != 0) #GP(0)

(* KEY_PROGRAM leaf flow *)
if (EAX == 0)
{

(* #GP(0) if TME_ACTIVATE MSR is not locked or does not enable TME or multiple keys are not enabled *)
if (IA32_TME_ACTIVATE.LOCK != 1 OR IA32_TME_ACTIVATE.ENABLE != 1 OR IA32_TME_ACTIVATE.MK_TME_KEYID_BITS == 0)

#GP(0)

(* Check MKTME_KEY_PROGRAM_STRUCT is 256B aligned *)
if(DS:RBX is not 256B aligned) #GP(0);

(* Check that MKTME_KEY_PROGRAM_STRUCT is read accessible *)
<<DS: RBX should be read accessible>>

(* Copy MKTME_KEY_PROGRAM_STRUCT to a temporary variable *)
TMP_KEY_PROGRAM_STRUCT = DS:RBX.*;

(* RSVD field check *)
if(TMP_KEY_PROGRAM_STRUCT.RSVD != 0) #GP(0);

if(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.RSVD !=0) #GP(0);

if(TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[63:16] != 0) #GP(0);

if(TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[63:16] != 0) #GP(0);

(* Check for a valid command *)
if(TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND is not a valid command)
{

RFLAGS.ZF = 1;
RAX = INVALID_PROG_CMD;
goto EXIT;

}
(* Check that the KEYID being operated upon is a valid KEYID *)
if(TMP_KEY_PROGRAM_STRUCT.KEYID >

2^IA32_TME_ACTIVATE.MK_TME_KEYID_BITS - 1
OR TMP_KEY_PROGRAM_STRUCT.KEYID >

IA32_TME_CAPABILITY.MK_TME_MAX_KEYS
OR TMP_KEY_PROGRAM_STRUCT.KEYID == 0)

{
RFLAGS.ZF = 1;
RAX = INVALID_KEYID;
goto EXIT;

}

(* Check that only one algorithm is requested for the KeyID and it is one of the activated algorithms *)
if(NUM_BITS(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG) != 1 ||

(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG &
IA32_TME_ACTIVATE. MK_TME_CRYPTO_ALGS == 0))
Ref. # 319433-035 2-19

INSTRUCTION SET REFERENCE, A-Z
{
RFLAGS.ZF = 1;
RAX = INVALID_ENC_ALG;
goto EXIT;

}
(* Try to acquire exclusive lock *)
if (NOT KEY_TABLE_LOCK.ACQUIRE(WRITE))
{

//PCONFIG failure
RFLAGS.ZF = 1;
RAX = DEVICE_BUSY;
goto EXIT;

}

(* Lock is acquired and key table will be updated as per the command
Before this point no changes to the key table are made *)

switch(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND)
{
case KEYID_SET_KEY_DIRECT:

<<Write
DATA_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1,
TWEAK_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME Key table at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
break;

case KEYID_SET_KEY_RANDOM:
TMP_RND_DATA_KEY = <<Generate a random key using hardware RNG>>
if (NOT ENOUGH ENTROPY)
{

RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;

}
TMP_RND_TWEAK_KEY = <<Generate a random key using hardware RNG>>
if (NOT ENOUGH ENTROPY)
{

RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;

}
(* Mix user supplied entropy to the data key and tweak key *)
TMP_RND_DATA_KEY = TMP_RND_KEY XOR

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[15:0];
TMP_RND_TWEAK_KEY = TMP_RND_TWEAK_KEY XOR

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[15:0];

<<Write
DATA_KEY=TMP_RND_DATA_KEY,
TWEAK_KEY=TMP_RND_TWEAK_KEY,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
2-20 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
>>
break;

case KEYID_CLEAR_KEY:
<<Write
DATA_KEY='0,
TWEAK_KEY='0,
ENCRYPTION_MODE = ENCRYPT_WITH_TME_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>

break;
case KD_NO_ENCRYPT:

<<Write
ENCRYPTION_MODE=NO_ENCRYPTION,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>
break;

}

RAX = 0;
RFLAGS.ZF = 0;

//Release Lock
KEY_TABLE_LOCK(RELEASE);

EXIT:
RFLAGS.CF=0;
RFLAGS.PF=0;
RFLAGS.AF=0;
RFLAGS.OF=0;
RFLAGS.SF=0;

}

end_of_flow

Intel C/C++ Compiler Intrinsic Equivalent

TBD

Protected Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability are not enabled in IA32_TME_ACTIVATE MSR.
If the memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand effective address is outside the DS segment limit.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.

If current privilege level is not 0.
If CPUID.7.0:EDX[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.
Ref. # 319433-035 2-21

INSTRUCTION SET REFERENCE, A-Z
Real Address Mode Exceptions
#GP If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.

#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Virtual 8086 Mode Exceptions
#UD PCONFIG instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand is non-canonical form.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.

If the current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0.
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.
2-22 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
TPAUSE—Timed PAUSE

Instruction Operand Encoding

Description

TPAUSE instructs the processor to enter an implementation-dependent optimized state. There are two such opti-
mized states to choose from: light-weight power/performance optimized state, and improved power/performance
optimized state. The selection between the two is governed by the explicit input register bit[0] source operand.

TPAUSE is available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. TPAUSE may be executed at any
privilege level. This instruction’s operation is the same in non-64-bit modes and in 64-bit mode.

Unlike PAUSE, the TPAUSE instruction will not cause an abort when used inside a transactional region, described in
the chapter “Programming with Intel Transactional Synchronization Extensions” of the Intel 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 1.
The input register contains information such as the preferred optimized state the processor should enter as
described in the following table. Bits other than bit 0 are reserved and will result in #GP if non-zero.

The instruction execution wakes up when the time-stamp counter reaches or exceeds the implicit EDX:EAX 64-bit
input value.

Prior to executing the TPAUSE instruction, an operating system may specify the maximum delay it allows the
processor to suspend its operation. It can do so by writing TSC-quanta value to the following 32-bit MSR
(IA32_UMWAIT_CONTROL at MSR index E1H):
• IA32_UMWAIT_CONTROL[31:2] — Determines the maximum time in TSC-quanta that the processor can reside

in either C0.1 or C0.2. A zero value indicates no maximum time. The maximum time value is a 32-bit value
where the upper 30 bits come from this field and the lower two bits are zero.

• IA32_UMWAIT_CONTROL[1] — Reserved.
• IA32_UMWAIT_CONTROL[0] — C0.2 is not allowed by the OS. Value of “1” means all C0.2 requests revert to

C0.1.
If the processor that executed a TPAUSE instruction wakes due to the expiration of the operating system time-limit,
the instructions sets RFLAGS.CF; otherwise, that flag is cleared.
The following additional events cause the processor to exit the implementation-dependent optimized state: a store
to the read-set range within the transactional region, an NMI or SMI, a debug exception, a machine check excep-
tion, the BINIT# signal, the INIT# signal, and the RESET# signal.
Other implementation-dependent events may cause the processor to exit the implementation-dependent opti-
mized state proceeding to the instruction following TPAUSE. In addition, an external interrupt causes the processor
to exit the implementation-dependent optimized state regardless of whether maskable-interrupts are inhibited

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

66 0F AE /6

TPAUSE r32, <edx>, <eax>

A V/V WAITPKG Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (r) NA NA NA

Table 2-7. TPAUSE Input Register Bit Definitions

Bit Value State Name Wakeup Time Power Savings Other Benefits

bit[0] = 0 C0.2 Slower Larger Improves performance of the other SMT thread(s).

bit[0] = 1 C0.1 Faster Smaller NA

bits[31:1] NA NA NA Reserved
Ref. # 319433-035 2-23

INSTRUCTION SET REFERENCE, A-Z
(EFLAGS.IF =0). It should be noted that if maskable-interrupts are inhibited execution will proceed to the instruc-
tion following TPAUSE.
MODRM.MOD must be 0b11 for this instruction.

Operation

os_deadline TSC+(IA32_MWAIT_CONTROL[31:2]<<2)

instr_deadline UINT64(EDX:EAX)

IF os_deadline < instr_deadline:

deadline os_deadline

using_os_deadline 1

ELSE:

deadline instr_deadline

using_os_deadline 0

WHILE TSC < deadline:

implementation_dependent_optimized_state(Source register, deadline, IA32_UMWAIT_CONTROL[0])

IF using_os_deadline AND TSC > deadline:

RFLAGS.CF 1

ELSE:

RFLAGS.CF 0

RFLAGS.AF,PF,SF,ZF,OF 0

Intel C/C++ Compiler Intrinsic Equivalent

TPAUSE uint8_t _tpause(uint32_t control, uint64_t counter);

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#GP(0) If src[31:1] != 0.

If CR4.TSD = 1 and CPL != 0.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If MODRM.MOD != 0b11.
2-24 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
UMONITOR—User Level Set Up Monitor Address

Instruction Operand Encoding

Description

The UMONITOR instruction arms address monitoring hardware using an address specified in the source register
(the address range that the monitoring hardware checks for store operations can be determined by using the
CPUID monitor leaf function, EAX=05H). A store to an address within the specified address range triggers the
monitoring hardware. The state of monitor hardware is used by UMWAIT.

The content of the source register is an effective address. By default, the DS segment is used to create a linear
address that is monitored. Segment overrides can be used. The address range must use memory of the write-back
type. Only write-back memory is guaranteed to correctly trigger the monitoring hardware. Additional information
on determining what address range to use in order to prevent false wake-ups is described in Chapter 8, “Multiple-
Processor Management” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

The UMONITOR instruction is ordered as a load operation with respect to other memory transactions. The instruc-
tion is subject to the permission checking and faults associated with a byte load. Like a load, UMONITOR sets the
A-bit but not the D-bit in page tables.

UMONITOR and UMWAIT are available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. UMONITOR and
UMWAIT may be executed at any privilege level. Except for the width of the source register, the instruction’s oper-
ation is the same in non-64-bit modes and in 64-bit mode.

UMONITOR does not interoperate with the legacy MWAIT instruction. If UMONITOR was executed prior to executing
MWAIT and following the most recent execution of the legacy MONITOR instruction, MWAIT will not enter an opti-
mized state. Execution will continue to the instruction following MWAIT.

The UMONITOR instruction causes a transactional abort when used inside a transactional region.
The width of the source register (16b, 32b or 64b) is determined by the effective addressing width, which is
affected in the standard way by the machine mode settings and 67 prefix.

Operation

UMONITOR sets up an address range for the monitor hardware using the content of source register as an effective
address and puts the monitor hardware in armed state. A store to the specified address range will trigger the
monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

UMONITOR void _umonitor(void *address);

Numeric Exceptions

None

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F AE /6

UMONITOR r16/r32/r64

A V/V WAITPKG Sets up a linear address range to be
monitored by hardware and activates the
monitor. The address range should be a write-
back memory caching type. The address is
contained in r16/r32/r64.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (r) NA NA NA
Ref. # 319433-035 2-25

INSTRUCTION SET REFERENCE, A-Z
Protected Mode Exceptions
#GP(0) If the specified segment is not SS and the source register is outside the specified segment

limit.
If the specified segment register contains a NULL segment selector.

#SS(0) If the specified segment is SS and the source register is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If MODRM.MOD != 0b11.

Real Address Mode Exceptions
#GP If the specified segment is not SS and the source register is outside of the effective address

space from 0 to FFFFH.
#SS If the specified segment is SS and the source register is outside of the effective address space

from 0 to FFFFH.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

Virtual 8086 Mode Exceptions

Same exceptions as in real address mode; additionally:
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the specified segment is not SS and the linear address is in non-canonical form.
#SS(0) If the specified segment is SS and the source register is in non-canonical form.
#PF(fault-code) For a page fault.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If MODRM.MOD != 0b11.
2-26 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
UMWAIT—User Level Monitor Wait

Instruction Operand Encoding

Description

UMWAIT instructs the processor to enter an implementation-dependent optimized state while monitoring a range
of addresses. The optimized state may be either a light-weight power/performance optimized state or an improved
power/performance optimized state. The selection between the two states is governed by the explicit input register
bit[0] source operand.
UMWAIT is available when CPUID.7.0:ECX.WAITPKG[bit 5] is enumerated as 1. UMWAIT may be executed at any
privilege level. This instruction’s operation is the same in non-64-bit modes and in 64-bit mode.
The input register contains information such as the preferred optimized state the processor should enter as
described in the following table. Bits other than bit 0 are reserved and will result in #GP if nonzero.

The instruction wakes up when the time-stamp counter reaches or exceeds the implicit EDX:EAX 64-bit input value
(if the monitoring hardware did not trigger beforehand).
Prior to executing the UMWAIT instruction, an operating system may specify the maximum delay it allows the
processor to suspend its operation. It can do so by writing TSC-quanta value to the following 32bit MSR
(IA32_UMWAIT_CONTROL at MSR index E1H):
• IA32_UMWAIT_CONTROL[31:2] — Determines the maximum time in TSC-quanta that the processor can reside

in either C0.1 or C0.2. A zero value indicates no maximum time. The maximum time value is a 32-bit value
where the upper 30 bits come from this field and the lower two bits are zero.

• IA32_UMWAIT_CONTROL[1] — Reserved.
• IA32_UMWAIT_CONTROL[0] — C0.2 is not allowed by the OS. Value of “1” means all C0.2 requests revert to

C0.1.
If the processor that executed a UMWAIT instruction wakes due to the expiration of the operating system time-
limit, the instructions sets RFLAGS.CF; otherwise, that flag is cleared.
The UMWAIT instruction causes a transactional abort when used inside a transactional region.
The UMWAIT instruction operates with the UMONITOR instruction. The two instructions allow the definition of an
address at which to wait (UMONITOR) and an implementation-dependent optimized operation to perform while
waiting (UMWAIT). The execution of UMWAIT is a hint to the processor that it can enter an implementation-depen-
dent-optimized state while waiting for an event or a store operation to the address range armed by UMONITOR.
The following additional events cause the processor to exit the implementation-dependent optimized state: a store
to the address range armed by the UMONITOR instruction, an NMI or SMI, a debug exception, a machine check

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F AE /6

UMWAIT r32, <edx>, <eax>

A V/V WAITPKG A hint that allows the processor to stop
instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (r) NA NA NA

Table 2-8. UMWAIT Input Register Bit Definitions

Bit Value State Name Wakeup Time Power Savings Other Benefits

bit[0] = 0 C0.2 Slower Larger Improves performance of the other SMT thread(s) on the same core.

bit[0] = 1 C0.1 Faster Smaller NA

bits[31:1] NA NA NA Reserved
Ref. # 319433-035 2-27

INSTRUCTION SET REFERENCE, A-Z
exception, the BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events
may also cause the processor to exit the implementation-dependent optimized state.
In addition, an external interrupt causes the processor to exit the implementation-dependent optimized state
regardless of whether maskable-interrupts are inhibited (EFLAGS.IF =0).
Following exit from the implementation-dependent-optimized state, control passes to the instruction after the
UMWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before
execution of that instruction.
Unlike the HLT instruction, the UMWAIT instruction does not restart at the UMWAIT instruction following the
handling of an SMI.
If the preceding UMONITOR instruction did not successfully arm an address range or if UMONITOR was not
executed prior to executing UMWAIT and following the most recent execution of the legacy MONITOR instruction
(UMWAIT does not interoperate with MONITOR), then the processor will not enter an optimized state. Execution will
continue to the instruction following UMWAIT.
A store to the address range armed by the UMONITOR instruction will cause the processor to exit UMWAIT if either
the store was originated by other processor agents or the store was originated by a non-processor agent.
MODRM.MOD must be 0b11 for this instruction.

Operation
os_deadline TSC+(IA32_MWAIT_CONTROL[31:2]<<2)
instr_deadline UINT64(EDX:EAX)

IF os_deadline < instr_deadline:
deadline os_deadline
using_os_deadline 1

ELSE:
deadline instr_deadline
using_os_deadline 0

WHILE monitor hardware armed AND TSC < deadline:
implementation_dependent_optimized_state(Source register, deadline, IA32_UMWAIT_CONTROL[0])

IF using_os_deadline AND TSC > deadline:
RFLAGS.CF 1

ELSE:
RFLAGS.CF 0

RFLAGS.AF,PF,SF,ZF,OF 0

Intel C/C++ Compiler Intrinsic Equivalent

UMWAIT uint8_t _umwait(uint32_t control, uint64_t counter);

Numeric Exceptions

None

Exceptions (All Operating Modes)
#GP(0) If src[31:1] != 0.

If CR4.TSD = 1 and CPL != 0.
#UD If CPUID.7.0:ECX.WAITPKG[bit 5]=0.

If MODRM.MOD != 0b11.
2-28 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VAESDEC — Perform One Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of the AES decryption flow using the Equivalent Inverse Cipher, with the
round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and
store the result in the destination operand.
Use the AESDEC instruction for all but the last decryption round. For the last decryption round, use the AESDEC-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation

AESDEC
STATE ← SRC1
RoundKey ← SRC2
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
STATE ← InvMixColumns(STATE)
DEST[127:0] ← STATE XOR RoundKey
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2,
ymm3/m256

A V/V VAES Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from ymm2 with a
128-bit round key from ymm3/m256; store the
result in ymm1.

EVEX.128.66.0F38.WIG DE /r
VAESDEC xmm1, xmm2,
xmm3/m128

B V/V AVX512VL
VAES

Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from xmm2 with a
128-bit round key from xmm3/m128; store the
result in xmm1.

EVEX.256.66.0F38.WIG DE /r
VAESDEC ymm1, ymm2,
ymm3/m256

B V/V AVX512VL
VAES

Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from ymm2 with a
128-bit round key from ymm3/m256; store the
result in ymm1.

EVEX.512.66.0F38.WIG DE /r
VAESDEC zmm1, zmm2,
zmm3/m512

B V/V AVX512F
VAES

Perform one round of an AES decryption flow,
using the Equivalent Inverse Cipher, operating
on a 128-bit data (state) from zmm2 with a
128-bit round key from zmm3/m512; store the
result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-29

INSTRUCTION SET REFERENCE, A-Z
VAESDEC (128b and 256b VEX encoded versions)
(KL,V) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
STATE ← InvMixColumns(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

VAESDEC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
STATE ← InvMixColumns(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VAESDEC __m256i _mm256_aesdec_epi128(__m256i, __m256i);
VAESDEC __m512i _mm512_aesdec_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
2-30 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VAESDECLAST — Perform Last Round of an AES Decryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of the AES decryption flow using the Equivalent Inverse Cipher, with the
round key from the second source operand, operating on a 128-bit data (state) from the first source operand, and
store the result in the destination operand.
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation

AESDECLAST
STATE ← SRC1
RoundKey ← SRC2
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
DEST[127:0] ← STATE XOR RoundKey
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2,
ymm3/m256

A V/V VAES Perform the last round of an AES decryption
flow, using the Equivalent Inverse Cipher,
operating on a 128-bit data (state) from ymm2
with a 128-bit round key from ymm3/m256;
store the result in ymm1.

EVEX.128.66.0F38.WIG DF /r
VAESDECLAST xmm1, xmm2,
xmm3/m128

B V/V AVX512VL
VAES

Perform the last round of an AES decryption
flow, using the Equivalent Inverse Cipher, oper-
ating on a 128-bit data (state) from xmm2 with
a 128-bit round key from xmm3/m128; store
the result in xmm1.

EVEX.256.66.0F38.WIG DF /r
VAESDECLAST ymm1, ymm2,
ymm3/m256

B V/V AVX512VL
VAES

Perform the last round of an AES decryption
flow, using the Equivalent Inverse Cipher,
operating on a 128-bit data (state) from ymm2
with a 128-bit round key from ymm3/m256;
store the result in ymm1.

EVEX.512.66.0F38.WIG DF /r
VAESDECLAST zmm1, zmm2,
zmm3/m512

B V/V AVX512F
VAES

Perform the last round of an AES decryption
flow, using the Equivalent Inverse Cipher,
operating on a 128-bit data (state) from zmm2
with a 128-bit round key from zmm3/m512;
store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-31

INSTRUCTION SET REFERENCE, A-Z
VAESDECLAST (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i = 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

VAESDECLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← InvShiftRows(STATE)
STATE ← InvSubBytes(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VAESDECLAST __m256i _mm256_aesdeclast_epi128(__m256i, __m256i);
VAESDECLAST __m512i _mm512_aesdeclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
2-32 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VAESENC — Perform One Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs a single round of an AES encryption flow using a round key from the second source
operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination
operand.
Use the AESENC instruction for all but the last encryption rounds. For the last encryption round, use the AESENC-
CLAST instruction.
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation

AESENC
STATE ← SRC1
RoundKey ← SRC2
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
STATE ← MixColumns(STATE)
DEST[127:0] ← STATE XOR RoundKey
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2,
ymm3/m256

A V/V VAES Perform one round of an AES encryption flow,
operating on a 128-bit data (state) from ymm2
with a 128-bit round key from the
ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DC /r
VAESENC xmm1, xmm2,
xmm3/m128

B V/V AVX512VL
VAES

Perform one round of an AES encryption flow,
operating on a 128-bit data (state) from xmm2
with a 128-bit round key from the
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DC /r
VAESENC ymm1, ymm2,
ymm3/m256

B V/V AVX512VL
VAES

Perform one round of an AES encryption flow,
operating on a 128-bit data (state) from ymm2
with a 128-bit round key from the
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DC /r
VAESENC zmm1, zmm2,
zmm3/m512

B V/V AVX512F
VAES

Perform one round of an AES encryption flow,
operating on a 128-bit data (state) from zmm2
with a 128-bit round key from the
zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-33

INSTRUCTION SET REFERENCE, A-Z
VAESENC (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR I ← 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
STATE ← MixColumns(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

VAESENC (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i ← 0 to KL-1:

STATE ← SRC1.xmm[i] // xmm[i] is the i’th xmm word in the SIMD register
RoundKey ← SRC2.xmm[i]
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
STATE ← MixColumns(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VAESENC __m256i _mm256_aesenc_epi128(__m256i, __m256i);
VAESENC __m512i _mm512_aesenc_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
2-34 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VAESENCLAST — Perform Last Round of an AES Encryption Flow

Instruction Operand Encoding

Description

This instruction performs the last round of an AES encryption flow using a round key from the second source
operand, operating on 128-bit data (state) from the first source operand, and store the result in the destination
operand.
VEX and EVEX encoded versions of the instruction allows 3-operand (non-destructive) operation. The legacy
encoded versions of the instruction require that the first source operand and the destination operand are the same
and must be an XMM register.
The EVEX encoded form of this instruction does not support memory fault suppression.

Operation

AESENCLAST
STATE ← SRC1
RoundKey ← SRC2
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
DEST[127:0] ← STATE XOR RoundKey
DEST[MAXVL-1:128] (Unmodified)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2,
ymm3/m256

A V/V VAES Perform the last round of an AES encryption
flow, operating on a 128-bit data (state) from
ymm2 with a 128 bit round key from
ymm3/m256; store the result in ymm1.

EVEX.128.66.0F38.WIG DD /r
VAESENCLAST xmm1, xmm2,
xmm3/m128

B V/V AVX512VL
VAES

Perform the last round of an AES encryption
flow, operating on a 128-bit data (state) from
xmm2 with a 128 bit round key from
xmm3/m128; store the result in xmm1.

EVEX.256.66.0F38.WIG DD /r
VAESENCLAST ymm1, ymm2,
ymm3/m256

B V/V AVX512VL
VAES

Perform the last round of an AES encryption
flow, operating on a 128-bit data (state) from
ymm2 with a 128 bit round key from
ymm3/m256; store the result in ymm1.

EVEX.512.66.0F38.WIG DD /r
VAESENCLAST zmm1, zmm2,
zmm3/m512

B V/V AVX512F
VAES

Perform the last round of an AES encryption
flow, operating on a 128-bit data (state) from
zmm2 with a 128 bit round key from
zmm3/m512; store the result in zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-35

INSTRUCTION SET REFERENCE, A-Z
VAESENCLAST (128b and 256b VEX encoded versions)
(KL, VL) = (1,128), (2,256)
FOR I=0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
DEST.xmm[i]← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

VAESENCLAST (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

STATE ← SRC1.xmm[i]
RoundKey ← SRC2.xmm[i]
STATE ← ShiftRows(STATE)
STATE ← SubBytes(STATE)
DEST.xmm[i] ← STATE XOR RoundKey

DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VAESENCLAST __m256i _mm256_aesenclast_epi128(__m256i, __m256i);
VAESENCLAST __m512i _mm512_aesenclast_epi128(__m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
2-36 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPCLMULQDQ — Carry-Less Multiplication Quadword

Instruction Operand Encoding

Description

Performs a carry-less multiplication of two quadwords, selected from the first source and second source operand
according to the value of the immediate byte. Bits 4 and 0 are used to select which 64-bit half of each operand to
use according to the table below, other bits of the immediate byte are ignored.
The EVEX encoded form of this instruction does not support memory fault suppression.

NOTES:
SRC2 denotes the second source operand, which can be a register or memory; SRC1 denotes the first source and
destination operand.

The first source operand and the destination operand are the same and must be a ZMM/YMM/XMM register. The
second source operand can be a ZMM/YMM/XMM register or a 512/256/128-bit memory location. Bits (VL_MAX-
1:128) of the corresponding YMM destination register remain unchanged.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2,
ymm3/m256, imm8

A V/V VPCLMULQDQ Carry-less multiplication of one quadword of
ymm2 by one quadword of ymm3/m256, stores
the 128-bit result in ymm1. The immediate is
used to determine which quadwords of ymm2
and ymm3/m256 should be used.

EVEX.128.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ xmm1, xmm2,
xmm3/m128, imm8

B V/V AVX512VL
VPCLMULQDQ

Carry-less multiplication of one quadword of
xmm2 by one quadword of xmm3/m128, stores
the 128-bit result in xmm1. The immediate is
used to determine which quadwords of xmm2
and xmm3/m128 should be used.

EVEX.256.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ ymm1, ymm2,
ymm3/m256, imm8

B V/V AVX512VL
VPCLMULQDQ

Carry-less multiplication of one quadword of
ymm2 by one quadword of ymm3/m256, stores
the 128-bit result in ymm1. The immediate is
used to determine which quadwords of ymm2
and ymm3/m256 should be used.

EVEX.512.66.0F3A.WIG 44 /r /ib
VPCLMULQDQ zmm1, zmm2,
zmm3/m512, imm8

B V/V AVX512F
VPCLMULQDQ

Carry-less multiplication of one quadword of
zmm2 by one quadword of zmm3/m512, stores
the 128-bit result in zmm1. The immediate is
used to determine which quadwords of zmm2
and zmm3/m512 should be used.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

B Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) imm8 (r)

Table 2-9. PCLMULQDQ Quadword Selection of Immediate Byte

imm[4] imm[0] PCLMULQDQ Operation

0 0 CL_MUL(SRC2[63:0], SRC1[63:0])

0 1 CL_MUL(SRC2[63:0], SRC1[127:64])

1 0 CL_MUL(SRC2[127:64], SRC1[63:0])

1 1 CL_MUL(SRC2[127:64], SRC1[127:64])
Ref. # 319433-035 2-37

INSTRUCTION SET REFERENCE, A-Z
Compilers and assemblers may implement the following pseudo-op syntax to simply programming and emit the
required encoding for imm8.

Operation

define PCLMUL128(X,Y): // helper function
FOR i ← 0 to 63:

TMP [i] ← X[0] and Y[i]
FOR j ← 1 to i:

TMP [i] ← TMP [i] xor (X[j] and Y[i - j])
DEST[i] ← TMP[i]

FOR i ← 64 to 126:
TMP [i] ← 0
FOR j ← i - 63 to 63:

TMP [i] ← TMP [i] xor (X[j] and Y[i - j])
DEST[i] ← TMP[i]

DEST[127] ← 0;
RETURN DEST // 128b vector

PCLMULQDQ (SSE version)
IF Imm8[0] = 0:

TEMP1 ← SRC1.qword[0]
ELSE:

TEMP1 ← SRC1.qword[1]
IF Imm8[4] = 0:

TEMP2 ← SRC2.qword[0]
ELSE:

TEMP2 ← SRC2.qword[1]
DEST[127:0] ← PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:128] (Unmodified)

VPCLMULQDQ (128b and 256b VEX encoded versions)
(KL,VL) = (1,128), (2,256)
FOR i= 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 ← SRC1.xmm[i].qword[0]

ELSE:
TEMP1 ← SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 ← SRC2.xmm[i].qword[0]

ELSE:
TEMP2 ← SRC2.xmm[i].qword[1]

DEST.xmm[i] ← PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] ← 0

Table 2-10. Pseudo-Op and PCLMULQDQ Implementation

Pseudo-Op Imm8 Encoding

PCLMULLQLQDQ xmm1, xmm2 0000_0000B

PCLMULHQLQDQ xmm1, xmm2 0000_0001B

PCLMULLQHQDQ xmm1, xmm2 0001_0000B

PCLMULHQHQDQ xmm1, xmm2 0001_0001B
2-38 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPCLMULQDQ (EVEX encoded version)
(KL,VL) = (1,128), (2,256), (4,512)
FOR i = 0 to KL-1:

IF Imm8[0] = 0:
TEMP1 ← SRC1.xmm[i].qword[0]

ELSE:
TEMP1 ← SRC1.xmm[i].qword[1]

IF Imm8[4] = 0:
TEMP2 ← SRC2.xmm[i].qword[0]

ELSE:
TEMP2 ← SRC2.xmm[i].qword[1]

DEST.xmm[i] ← PCLMUL128(TEMP1, TEMP2)
DEST[MAXVL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VPCLMULQDQ __m256i _mm256_clmulepi64_epi128(__m256i, __m256i, const int);
VPCLMULQDQ __m512i _mm512_clmulepi64_epi128(__m512i, __m512i, const int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

VEX-encoded: Exceptions Type 4.
EVEX-encoded: See Exceptions Type E4NF.
Ref. # 319433-035 2-39

INSTRUCTION SET REFERENCE, A-Z
VPCOMPRESS — Store Sparse Packed Byte/Word Integer Values into Dense Memory/Register

Instruction Operand Encoding

Description

Compress (stores) up to 64 byte values or 32 word values from the source operand (second operand) to the desti-
nation operand (first operand), based on the active elements determined by the writemask operand. Note:
EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Moves up to 512 bits of packed byte values from the source operand (second operand) to the destination operand
(first operand). This instruction is used to store partial contents of a vector register into a byte vector or single
memory location using the active elements in operand writemask.
Memory destination version: Only the contiguous vector is written to the destination memory location. EVEX.z
must be zero.
Register destination version: If the vector length of the contiguous vector is less than that of the input vector in the
source operand, the upper bits of the destination register are unmodified if EVEX.z is not set, otherwise the upper
bits are zeroed.
This instruction supports memory fault suppression.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 63 /r
VPCOMPRESSB m128{k1}, xmm1

A V/V AVX512_VBMI2
AVX512VL

Compress up to 128 bits of packed byte values
from xmm1 to m128 with writemask k1.

EVEX.128.66.0F38.W0 63 /r
VPCOMPRESSB xmm1{k1}{z}, xmm2

B V/V AVX512_VBMI2
AVX512VL

Compress up to 128 bits of packed byte values
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W0 63 /r
VPCOMPRESSB m256{k1}, ymm1

A V/V AVX512_VBMI2
AVX512VL

Compress up to 256 bits of packed byte values
from ymm1 to m256 with writemask k1.

EVEX.256.66.0F38.W0 63 /r
VPCOMPRESSB ymm1{k1}{z}, ymm2

B V/V AVX512_VBMI2
AVX512VL

Compress up to 256 bits of packed byte values
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W0 63 /r
VPCOMPRESSB m512{k1}, zmm1

A V/V AVX512_VBMI2 Compress up to 512 bits of packed byte values
from zmm1 to m512 with writemask k1.

EVEX.512.66.0F38.W0 63 /r
VPCOMPRESSB zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 Compress up to 512 bits of packed byte values
from zmm2 to zmm1 with writemask k1.

EVEX.128.66.0F38.W1 63 /r
VPCOMPRESSW m128{k1}, xmm1

A V/V AVX512_VBMI2
AVX512VL

Compress up to 128 bits of packed word values
from xmm1 to m128 with writemask k1.

EVEX.128.66.0F38.W1 63 /r
VPCOMPRESSW xmm1{k1}{z}, xmm2

B V/V AVX512_VBMI2
AVX512VL

Compress up to 128 bits of packed word values
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W1 63 /r
VPCOMPRESSW m256{k1}, ymm1

A V/V AVX512_VBMI2
AVX512VL

Compress up to 256 bits of packed word values
from ymm1 to m256 with writemask k1.

EVEX.256.66.0F38.W1 63 /r
VPCOMPRESSW ymm1{k1}{z}, ymm2

B V/V AVX512_VBMI2
AVX512VL

Compress up to 256 bits of packed word values
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W1 63 /r
VPCOMPRESSW m512{k1}, zmm1

A V/V AVX512_VBMI2 Compress up to 512 bits of packed word values
from zmm1 to m512 with writemask k1.

EVEX.512.66.0F38.W1 63 /r
VPCOMPRESSW zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 Compress up to 512 bits of packed word values
from zmm2 to zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:r/m (w) ModRM:reg (r) NA NA

B NA ModRM:r/m (w) ModRM:reg (r) NA NA
2-40 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation

VPCOMPRESSB store form
(KL, VL) = (16, 128), (32, 256), (64, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[k] ← SRC.byte[j]
k ← k +1

VPCOMPRESSB reg-reg form
(KL, VL) = (16, 128), (32, 256), (64, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[k] ← SRC.byte[j]
k ← k + 1

IF *merging-masking*:
*DEST[VL-1:k*8] remains unchanged*
ELSE DEST[VL-1:k*8] ← 0

DEST[MAX_VL-1:VL] ← 0

VPCOMPRESSW store form
(KL, VL) = (8, 128), (16, 256), (32, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[k] ← SRC.word[j]
k ← k + 1

VPCOMPRESSW reg-reg form
(KL, VL) = (8, 128), (16, 256), (32, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[k] ← SRC.word[j]
k ← k + 1

IF *merging-masking*:
*DEST[VL-1:k*16] remains unchanged*
ELSE DEST[VL-1:k*16] ← 0

DEST[MAX_VL-1:VL] ← 0
Ref. # 319433-035 2-41

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPCOMPRESSB __m128i _mm_mask_compress_epi8(__m128i, __mmask16, __m128i);
VPCOMPRESSB __m128i _mm_maskz_compress_epi8(__mmask16, __m128i);
VPCOMPRESSB __m256i _mm256_mask_compress_epi8(__m256i, __mmask32, __m256i);
VPCOMPRESSB __m256i _mm256_maskz_compress_epi8(__mmask32, __m256i);
VPCOMPRESSB __m512i _mm512_mask_compress_epi8(__m512i, __mmask64, __m512i);
VPCOMPRESSB __m512i _mm512_maskz_compress_epi8(__mmask64, __m512i);
VPCOMPRESSB void _mm_mask_compressstoreu_epi8(void*, __mmask16, __m128i);
VPCOMPRESSB void _mm256_mask_compressstoreu_epi8(void*, __mmask32, __m256i);
VPCOMPRESSB void _mm512_mask_compressstoreu_epi8(void*, __mmask64, __m512i);
VPCOMPRESSW __m128i _mm_mask_compress_epi16(__m128i, __mmask8, __m128i);
VPCOMPRESSW __m128i _mm_maskz_compress_epi16(__mmask8, __m128i);
VPCOMPRESSW __m256i _mm256_mask_compress_epi16(__m256i, __mmask16, __m256i);
VPCOMPRESSW __m256i _mm256_maskz_compress_epi16(__mmask16, __m256i);
VPCOMPRESSW __m512i _mm512_mask_compress_epi16(__m512i, __mmask32, __m512i);
VPCOMPRESSW __m512i _mm512_maskz_compress_epi16(__mmask32, __m512i);
VPCOMPRESSW void _mm_mask_compressstoreu_epi16(void*, __mmask8, __m128i);
VPCOMPRESSW void _mm256_mask_compressstoreu_epi16(void*, __mmask16, __m256i);
VPCOMPRESSW void _mm512_mask_compressstoreu_epi16(void*, __mmask32, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
2-42 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPDPBUSD — Multiply and Add Unsigned and Signed Bytes

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second
source operand, producing intermediate signed word results. The word results are then summed and accumulated
in the destination dword element size operand.
This instruction supports memory fault suppression.

Operation

VPDPBUSD dest, src1, src2
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST ← DEST
FOR i ← 0 TO KL-1:

IF k1[i] or *no writemask*:
// Byte elements of SRC1 are zero-extended to 16b and
// byte elements of SRC2 are sign extended to 16b before multiplication.
IF SRC2 is memory and EVEX.b == 1:

t ← SRC2.dword[0]
ELSE:

t ← SRC2.dword[i]
p1word ← ZERO_EXTEND(SRC1.byte[4*i]) * SIGN_EXTEND(t.byte[0])
p2word ← ZERO_EXTEND(SRC1.byte[4*i+1]) * SIGN_EXTEND(t.byte[1])
p3word ← ZERO_EXTEND(SRC1.byte[4*i+2]) * SIGN_EXTEND(t.byte[2])
p4word ← ZERO_EXTEND(SRC1.byte[4*i+3]) * SIGN_EXTEND(t.byte[3])
DEST.dword[i] ← ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

ELSE IF *zeroing*:
DEST.dword[i] ← 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] ← ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] ← 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 50 /r
VPDPBUSD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 4 pairs of signed bytes in
xmm3/m128/m32bcst with corresponding
unsigned bytes of xmm2, summing those
products and adding them to doubleword result
in xmm1 under writemask k1.

EVEX.256.66.0F38.W0 50 /r
VPDPBUSD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 4 pairs of signed bytes in
ymm3/m256/m32bcst with corresponding
unsigned bytes of ymm2, summing those
products and adding them to doubleword result
in ymm1 under writemask k1.

EVEX.512.66.0F38.W0 50 /r
VPDPBUSD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

A V/V AVX512_VNNI Multiply groups of 4 pairs of signed bytes in
zmm3/m512/m32bcst with corresponding
unsigned bytes of zmm2, summing those
products and adding them to doubleword result
in zmm1 under writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-43

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPDPBUSD __m128i _mm_dpbusd_epi32(__m128i, __m128i, __m128i);
VPDPBUSD __m128i _mm_mask_dpbusd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPBUSD __m128i _mm_maskz_dpbusd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPBUSD __m256i _mm256_dpbusd_epi32(__m256i, __m256i, __m256i);
VPDPBUSD __m256i _mm256_mask_dpbusd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPBUSD __m256i _mm256_maskz_dpbusd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPBUSD __m512i _mm512_dpbusd_epi32(__m512i, __m512i, __m512i);
VPDPBUSD __m512i _mm512_mask_dpbusd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPBUSD __m512i _mm512_maskz_dpbusd_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
2-44 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPDPBUSDS — Multiply and Add Unsigned and Signed Bytes with Saturation

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second
source operand, producing intermediate signed word results. The word results are then summed and accumulated
in the destination dword element size operand. If the intermediate sum overflows a 32b signed number the result
is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Operation

VPDPBUSDS dest, src1, src2
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST ← DEST
FOR i ← 0 TO KL-1:

IF k1[i] or *no writemask*:
// Byte elements of SRC1 are zero-extended to 16b and
// byte elements of SRC2 are sign extended to 16b before multiplication.
IF SRC2 is memory and EVEX.b == 1:

t ← SRC2.dword[0]
ELSE:

t ← SRC2.dword[i]
p1word ← ZERO_EXTEND(SRC1.byte[4*i]) * SIGN_EXTEND(t.byte[0])
p2word ← ZERO_EXTEND(SRC1.byte[4*i+1]) * SIGN_EXTEND(t.byte[1])
p3word ← ZERO_EXTEND(SRC1.byte[4*i+2]) * SIGN_EXTEND(t.byte[2])
p4word ← ZERO_EXTEND(SRC1.byte[4*i+3]) *SIGN_EXTEND(t.byte[3])
DEST.dword[i] ← SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 51 /r
VPDPBUSDS xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 4 pairs signed bytes in
xmm3/m128/m32bcst with corresponding
unsigned bytes of xmm2, summing those
products and adding them to doubleword
result, with signed saturation in xmm1, under
writemask k1.

EVEX.256.66.0F38.W0 51 /r
VPDPBUSDS ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 4 pairs signed bytes in
ymm3/m256/m32bcst with corresponding
unsigned bytes of ymm2, summing those
products and adding them to doubleword
result, with signed saturation in ymm1, under
writemask k1.

EVEX.512.66.0F38.W0 51 /r
VPDPBUSDS zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

A V/V AVX512_VNNI Multiply groups of 4 pairs signed bytes in
zmm3/m512/m32bcst with corresponding
unsigned bytes of zmm2, summing those
products and adding them to doubleword
result, with signed saturation in zmm1, under
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-45

INSTRUCTION SET REFERENCE, A-Z
ELSE IF *zeroing*:
DEST.dword[i] ← 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] ← ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VPDPBUSDS __m128i _mm_dpbusds_epi32(__m128i, __m128i, __m128i);
VPDPBUSDS __m128i _mm_mask_dpbusds_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPBUSDS __m128i _mm_maskz_dpbusds_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPBUSDS __m256i _mm256_dpbusds_epi32(__m256i, __m256i, __m256i);
VPDPBUSDS __m256i _mm256_mask_dpbusds_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPBUSDS __m256i _mm256_maskz_dpbusds_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPBUSDS __m512i _mm512_dpbusds_epi32(__m512i, __m512i, __m512i);
VPDPBUSDS __m512i _mm512_mask_dpbusds_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPBUSDS __m512i _mm512_maskz_dpbusds_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
2-46 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPDPWSSD — Multiply and Add Signed Word Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then
summed and accumulated in the destination operand.
This instruction supports memory fault suppression.

Operation

VPDPWSSD dest, src1, src2
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST ← DEST
FOR i ← 0 TO KL-1:

IF k1[i] or *no writemask*:
IF SRC2 is memory and EVEX.b == 1:

t ← SRC2.dword[0]
ELSE:

t ← SRC2.dword[i]
p1dword ← SRC1.word[2*i] * t.word[0]
p2dword ← SRC1.word[2*i+1] * t.word[1]
DEST.dword[i] ← ORIGDEST.dword[i] + p1dword + p2dword

ELSE IF *zeroing*:
DEST.dword[i] ← 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] ← ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] ← 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 52 /r
VPDPWSSD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 2 pairs signed words in
xmm3/m128/m32bcst with corresponding
signed words of xmm2, summing those
products and adding them to doubleword result
in xmm1, under writemask k1.

EVEX.256.66.0F38.W0 52 /r
VPDPWSSD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 2 pairs signed words in
ymm3/m256/m32bcst with corresponding
signed words of ymm2, summing those
products and adding them to doubleword result
in ymm1, under writemask k1.

EVEX.512.66.0F38.W0 52 /r
VPDPWSSD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

A V/V AVX512_VNNI Multiply groups of 2 pairs signed words in
zmm3/m512/m32bcst with corresponding
signed words of zmm2, summing those
products and adding them to doubleword result
in zmm1, under writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-47

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPDPWSSD __m128i _mm_dpwssd_epi32(__m128i, __m128i, __m128i);
VPDPWSSD __m128i _mm_mask_dpwssd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPWSSD __m128i _mm_maskz_dpwssd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPWSSD __m256i _mm256_dpwssd_epi32(__m256i, __m256i, __m256i);
VPDPWSSD __m256i _mm256_mask_dpwssd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPWSSD __m256i _mm256_maskz_dpwssd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPWSSD __m512i _mm512_dpwssd_epi32(__m512i, __m512i, __m512i);
VPDPWSSD __m512i _mm512_mask_dpwssd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPWSSD __m512i _mm512_maskz_dpwssd_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
2-48 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPDPWSSDS — Multiply and Add Word Integers with Saturation

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then
summed and accumulated in the destination operand. If the intermediate sum overflows a 32b signed number, the
result is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Operation

VPDPWSSDS dest, src1, src2
(KL,VL)=(4,128), (8,256), (16,512)
ORIGDEST ← DEST
FOR i ← 0 TO KL-1:

IF k1[i] or *no writemask*:
IF SRC2 is memory and EVEX.b == 1:

t ← SRC2.dword[0]
ELSE:

t ← SRC2.dword[i]
p1dword ← SRC1.word[2*i] * t.word[0]
p2dword ← SRC1.word[2*i+1] * t.word[1]
DEST.dword[i] ← SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)

ELSE IF *zeroing*:
DEST.dword[i] ← 0

ELSE: // Merge masking, dest element unchanged
DEST.dword[i] ← ORIGDEST.dword[i]

DEST[MAX_VL-1:VL] ← 0

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 53 /r
VPDPWSSDS xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 2 pairs of signed words in
xmm3/m128/m32bcst with corresponding
signed words of xmm2, summing those
products and adding them to doubleword result
in xmm1, with signed saturation, under
writemask k1.

EVEX.256.66.0F38.W0 53 /r
VPDPWSSDS ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

A V/V AVX512_VNNI
AVX512VL

Multiply groups of 2 pairs of signed words in
ymm3/m256/m32bcst with corresponding
signed words of ymm2, summing those
products and adding them to doubleword result
in ymm1, with signed saturation, under
writemask k1.

EVEX.512.66.0F38.W0 53 /r
VPDPWSSDS zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

A V/V AVX512_VNNI Multiply groups of 2 pairs of signed words in
zmm3/m512/m32bcst with corresponding
signed words of zmm2, summing those
products and adding them to doubleword result
in zmm1, with signed saturation, under
writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA
Ref. # 319433-035 2-49

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPDPWSSDS __m128i _mm_dpwssds_epi32(__m128i, __m128i, __m128i);
VPDPWSSDS __m128i _mm_mask_dpwssd_epi32(__m128i, __mmask8, __m128i, __m128i);
VPDPWSSDS __m128i _mm_maskz_dpwssd_epi32(__mmask8, __m128i, __m128i, __m128i);
VPDPWSSDS __m256i _mm256_dpwssd_epi32(__m256i, __m256i, __m256i);
VPDPWSSDS __m256i _mm256_mask_dpwssd_epi32(__m256i, __mmask8, __m256i, __m256i);
VPDPWSSDS __m256i _mm256_maskz_dpwssd_epi32(__mmask8, __m256i, __m256i, __m256i);
VPDPWSSDS __m512i _mm512_dpwssd_epi32(__m512i, __m512i, __m512i);
VPDPWSSDS __m512i _mm512_mask_dpwssd_epi32(__m512i, __mmask16, __m512i, __m512i);
VPDPWSSDS __m512i _mm512_maskz_dpwssd_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
2-50 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPEXPAND — Expand Byte/Word Values

Instruction Operand Encoding

Description

Expands (loads) up to 64 byte integer values or 32 word integer values from the source operand (memory
operand) to the destination operand (register operand), based on the active elements determined by the
writemask operand.
Note: EVEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 62 /r
VPEXPANDB xmm1{k1}{z}, m128

A V/V AVX512_VBMI2
AVX512VL

Expands up to 128 bits of packed byte values
from m128 to xmm1 with writemask k1.

EVEX.128.66.0F38.W0 62 /r
VPEXPANDB xmm1{k1}{z}, xmm2

B V/V AVX512_VBMI2
AVX512VL

Expands up to 128 bits of packed byte values
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W0 62 /r
VPEXPANDB ymm1{k1}{z}, m256

A V/V AVX512_VBMI2
AVX512VL

Expands up to 256 bits of packed byte values
from m256 to ymm1 with writemask k1.

EVEX.256.66.0F38.W0 62 /r
VPEXPANDB ymm1{k1}{z}, ymm2

B V/V AVX512_VBMI2
AVX512VL

Expands up to 256 bits of packed byte values
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W0 62 /r
VPEXPANDB zmm1{k1}{z}, m512

A V/V AVX512_VBMI2 Expands up to 512 bits of packed byte values
from m512 to zmm1 with writemask k1.

EVEX.512.66.0F38.W0 62 /r
VPEXPANDB zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 Expands up to 512 bits of packed byte values
from zmm2 to zmm1 with writemask k1.

EVEX.128.66.0F38.W1 62 /r
VPEXPANDW xmm1{k1}{z}, m128

A V/V AVX512_VBMI2
AVX512VL

Expands up to 128 bits of packed word values
from m128 to xmm1 with writemask k1.

EVEX.128.66.0F38.W1 62 /r
VPEXPANDW xmm1{k1}{z}, xmm2

B V/V AVX512_VBMI2
AVX512VL

Expands up to 128 bits of packed word values
from xmm2 to xmm1 with writemask k1.

EVEX.256.66.0F38.W1 62 /r
VPEXPANDW ymm1{k1}{z}, m256

A V/V AVX512_VBMI2
AVX512VL

Expands up to 256 bits of packed word values
from m256 to ymm1 with writemask k1.

EVEX.256.66.0F38.W1 62 /r
VPEXPANDW ymm1{k1}{z}, ymm2

B V/V AVX512_VBMI2
AVX512VL

Expands up to 256 bits of packed word values
from ymm2 to ymm1 with writemask k1.

EVEX.512.66.0F38.W1 62 /r
VPEXPANDW zmm1{k1}{z}, m512

A V/V AVX512_VBMI2 Expands up to 512 bits of packed word values
from m512 to zmm1 with writemask k1.

EVEX.512.66.0F38.W1 62 /r
VPEXPANDW zmm1{k1}{z}, zmm2

B V/V AVX512_VBMI2 Expands up to 512 bits of packed byte integer
values from zmm2 to zmm1 with writemask
k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Tuple1 Scalar ModRM:reg (w) ModRM:r/m (r) NA NA

B NA ModRM:reg (w) ModRM:r/m (r) NA NA
Ref. # 319433-035 2-51

INSTRUCTION SET REFERENCE, A-Z
Moves 128, 256 or 512 bits of packed byte integer values from the source operand (memory operand) to the desti-
nation operand (register operand). This instruction is used to load from an int8 vector register or memory location
while inserting the data into sparse elements of destination vector register using the active elements pointed out
by the operand writemask.
This instruction supports memory fault suppression.
Note that the compressed displacement assumes a pre-scaling (N) corresponding to the size of one single element
instead of the size of the full vector.

Operation

VPEXPANDB
(KL, VL) = (16, 128), (32, 256), (64, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.byte[j] ← SRC.byte[k];
k ← k + 1
ELSE:

IF *merging-masking*:
DEST.byte[j] remains unchanged
ELSE: ; zeroing-masking

DEST.byte[j] ← 0
DEST[MAX_VL-1:VL] ← 0

VPEXPANDW
(KL, VL) = (8,128), (16,256), (32, 512)
k ← 0
FOR j ← 0 TO KL-1:

IF k1[j] OR *no writemask*:
DEST.word[j] ← SRC.word[k];
k ← k + 1
ELSE:

IF *merging-masking*:
DEST.word[j] remains unchanged
ELSE: ; zeroing-masking

DEST.word[j] ← 0
DEST[MAX_VL-1:VL] ← 0
2-52 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPEXPAND __m128i _mm_mask_expand_epi8(__m128i, __mmask16, __m128i);
VPEXPAND __m128i _mm_maskz_expand_epi8(__mmask16, __m128i);
VPEXPAND __m128i _mm_mask_expandloadu_epi8(__m128i, __mmask16, const void*);
VPEXPAND __m128i _mm_maskz_expandloadu_epi8(__mmask16, const void*);
VPEXPAND __m256i _mm256_mask_expand_epi8(__m256i, __mmask32, __m256i);
VPEXPAND __m256i _mm256_maskz_expand_epi8(__mmask32, __m256i);
VPEXPAND __m256i _mm256_mask_expandloadu_epi8(__m256i, __mmask32, const void*);
VPEXPAND __m256i _mm256_maskz_expandloadu_epi8(__mmask32, const void*);
VPEXPAND __m512i _mm512_mask_expand_epi8(__m512i, __mmask64, __m512i);
VPEXPAND __m512i _mm512_maskz_expand_epi8(__mmask64, __m512i);
VPEXPAND __m512i _mm512_mask_expandloadu_epi8(__m512i, __mmask64, const void*);
VPEXPAND __m512i _mm512_maskz_expandloadu_epi8(__mmask64, const void*);
VPEXPANDW __m128i _mm_mask_expand_epi16(__m128i, __mmask8, __m128i);
VPEXPANDW __m128i _mm_maskz_expand_epi16(__mmask8, __m128i);
VPEXPANDW __m128i _mm_mask_expandloadu_epi16(__m128i, __mmask8, const void*);
VPEXPANDW __m128i _mm_maskz_expandloadu_epi16(__mmask8, const void *);
VPEXPANDW __m256i _mm256_mask_expand_epi16(__m256i, __mmask16, __m256i);
VPEXPANDW __m256i _mm256_maskz_expand_epi16(__mmask16, __m256i);
VPEXPANDW __m256i _mm256_mask_expandloadu_epi16(__m256i, __mmask16, const void*);
VPEXPANDW __m256i _mm256_maskz_expandloadu_epi16(__mmask16, const void*);
VPEXPANDW __m512i _mm512_mask_expand_epi16(__m512i, __mmask32, __m512i);
VPEXPANDW __m512i _mm512_maskz_expand_epi16(__mmask32, __m512i);
VPEXPANDW __m512i _mm512_mask_expandloadu_epi16(__m512i, __mmask32, const void*);
VPEXPANDW __m512i _mm512_maskz_expandloadu_epi16(__mmask32, const void*);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type E4.
Ref. # 319433-035 2-53

INSTRUCTION SET REFERENCE, A-Z
VPOPCNT — Return the Count of Number of Bits Set to 1 in BYTE/WORD/DWORD/QWORD

Instruction Operand Encoding

Description

This instruction counts the number of bits set to one in each byte, word, dword or qword element of its source (e.g.,
zmm2 or memory) and places the results in the destination register (zmm1). This instruction supports memory
fault suppression.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature Flag Description

EVEX.128.66.0F38.W0 54 /r
VPOPCNTB xmm1{k1}{z},
xmm2/m128

A V/V AVX512_BITALG
AVX512VL

Counts the number of bits set to one in
xmm2/m128 and puts the result in xmm1 with
writemask k1.

EVEX.256.66.0F38.W0 54 /r
VPOPCNTB ymm1{k1}{z},
ymm2/m256

A V/V AVX512_BITALG
AVX512VL

Counts the number of bits set to one in
ymm2/m256 and puts the result in ymm1 with
writemask k1.

EVEX.512.66.0F38.W0 54 /r
VPOPCNTB zmm1{k1}{z},
zmm2/m512

A V/V AVX512_BITALG Counts the number of bits set to one in
zmm2/m512 and puts the result in zmm1 with
writemask k1.

EVEX.128.66.0F38.W1 54 /r
VPOPCNTW xmm1{k1}{z},
xmm2/m128

A V/V AVX512_BITALG
AVX512VL

Counts the number of bits set to one in
xmm2/m128 and puts the result in xmm1 with
writemask k1.

EVEX.256.66.0F38.W1 54 /r
VPOPCNTW ymm1{k1}{z},
ymm2/m256

A V/V AVX512_BITALG
AVX512VL

Counts the number of bits set to one in
ymm2/m256 and puts the result in ymm1 with
writemask k1.

EVEX.512.66.0F38.W1 54 /r
VPOPCNTW zmm1{k1}{z},
zmm2/m512

A V/V AVX512_BITALG Counts the number of bits set to one in
zmm2/m512 and puts the result in zmm1 with
writemask k1.

EVEX.128.66.0F38.W0 55 /r
VPOPCNTD xmm1{k1}{z},
xmm2/m128/m32bcst

B V/V AVX512_VPOPCNTDQ
AVX512VL

Counts the number of bits set to one in
xmm2/m128/m32bcst and puts the result in
xmm1 with writemask k1.

EVEX.256.66.0F38.W0 55 /r
VPOPCNTD ymm1{k1}{z},
ymm2/m256/m32bcst

B V/V AVX512_VPOPCNTDQ
AVX512VL

Counts the number of bits set to one in
ymm2/m256/m32bcst and puts the result in
ymm1 with writemask k1.

EVEX.512.66.0F38.W0 55 /r
VPOPCNTD zmm1{k1}{z},
zmm2/m512/m32bcst

B V/V AVX512_VPOPCNTDQ Counts the number of bits set to one in
zmm2/m512/m32bcst and puts the result in
zmm1 with writemask k1.

EVEX.128.66.0F38.W1 55 /r
VPOPCNTQ xmm1{k1}{z},
xmm2/m128/m64bcst

B V/V AVX512_VPOPCNTDQ
AVX512VL

Counts the number of bits set to one in
xmm2/m128/m32bcst and puts the result in
xmm1 with writemask k1.

EVEX.256.66.0F38.W1 55 /r
VPOPCNTQ ymm1{k1}{z},
ymm2/m256/m64bcst

B V/V AVX512_VPOPCNTDQ
AVX512VL

Counts the number of bits set to one in
ymm2/m256/m32bcst and puts the result in
ymm1 with writemask k1.

EVEX.512.66.0F38.W1 55 /r
VPOPCNTQ zmm1{k1}{z},
zmm2/m512/m64bcst

B V/V AVX512_VPOPCNTDQ Counts the number of bits set to one in
zmm2/m512/m64bcst and puts the result in
zmm1 with writemask k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) ModRM:r/m (r) NA NA

B Full ModRM:reg (w) ModRM:r/m (r) NA NA
2-54 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation

VPOPCNTB
(KL, VL) = (16, 128), (32, 256), (64, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.byte[j] ← POPCNT(SRC.byte[j])

ELSE IF *merging-masking*:
DEST.byte[j] remains unchanged

ELSE:
DEST.byte[j] ← 0

DEST[MAX_VL-1:VL] ← 0

VPOPCNTW
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] ← POPCNT(SRC.word[j])

ELSE IF *merging-masking*:
DEST.word[j] remains unchanged

ELSE:
DEST.word[j] ← 0

DEST[MAX_VL-1:VL] ← 0

VPOPCNTD
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
IF SRC is broadcast memop:

t ← SRC.dword[0]
ELSE:

t ← SRC.dword[j]
DEST.dword[j] ← POPCNT(t)

ELSE IF *merging-masking*:
DEST..dword[j] remains unchanged

ELSE:
DEST..dword[j] ← 0

DEST[MAX_VL-1:VL] ← 0

VPOPCNTQ
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
IF SRC is broadcast memop:

t ← SRC.qword[0]
ELSE:

t ← SRC.qword[j]
DEST.qword[j] ← POPCNT(t)

ELSE IF *merging-masking*:
DEST..qword[j] remains unchanged

ELSE:
DEST..qword[j] ← 0

DEST[MAX_VL-1:VL] ← 0
Ref. # 319433-035 2-55

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPOPCNTW __m128i _mm_popcnt_epi16(__m128i);
VPOPCNTW __m128i _mm_mask_popcnt_epi16(__m128i, __mmask8, __m128i);
VPOPCNTW __m128i _mm_maskz_popcnt_epi16(__mmask8, __m128i);
VPOPCNTW __m256i _mm256_popcnt_epi16(__m256i);
VPOPCNTW __m256i _mm256_mask_popcnt_epi16(__m256i, __mmask16, __m256i);
VPOPCNTW __m256i _mm256_maskz_popcnt_epi16(__mmask16, __m256i);
VPOPCNTW __m512i _mm512_popcnt_epi16(__m512i);
VPOPCNTW __m512i _mm512_mask_popcnt_epi16(__m512i, __mmask32, __m512i);
VPOPCNTW __m512i _mm512_maskz_popcnt_epi16(__mmask32, __m512i);
VPOPCNTQ __m128i _mm_popcnt_epi64(__m128i);
VPOPCNTQ __m128i _mm_mask_popcnt_epi64(__m128i, __mmask8, __m128i);
VPOPCNTQ __m128i _mm_maskz_popcnt_epi64(__mmask8, __m128i);
VPOPCNTQ __m256i _mm256_popcnt_epi64(__m256i);
VPOPCNTQ __m256i _mm256_mask_popcnt_epi64(__m256i, __mmask8, __m256i);
VPOPCNTQ __m256i _mm256_maskz_popcnt_epi64(__mmask8, __m256i);
VPOPCNTQ __m512i _mm512_popcnt_epi64(__m512i);
VPOPCNTQ __m512i _mm512_mask_popcnt_epi64(__m512i, __mmask8, __m512i);
VPOPCNTQ __m512i _mm512_maskz_popcnt_epi64(__mmask8, __m512i);
VPOPCNTD __m128i _mm_popcnt_epi32(__m128i);
VPOPCNTD __m128i _mm_mask_popcnt_epi32(__m128i, __mmask8, __m128i);
VPOPCNTD __m128i _mm_maskz_popcnt_epi32(__mmask8, __m128i);
VPOPCNTD __m256i _mm256_popcnt_epi32(__m256i);
VPOPCNTD __m256i _mm256_mask_popcnt_epi32(__m256i, __mmask8, __m256i);
VPOPCNTD __m256i _mm256_maskz_popcnt_epi32(__mmask8, __m256i);
VPOPCNTD __m512i _mm512_popcnt_epi32(__m512i);
VPOPCNTD __m512i _mm512_mask_popcnt_epi32(__m512i, __mmask16, __m512i);
VPOPCNTD __m512i _mm512_maskz_popcnt_epi32(__mmask16, __m512i);
VPOPCNTB __m128i _mm_popcnt_epi8(__m128i);
VPOPCNTB __m128i _mm_mask_popcnt_epi8(__m128i, __mmask16, __m128i);
VPOPCNTB __m128i _mm_maskz_popcnt_epi8(__mmask16, __m128i);
VPOPCNTB __m256i _mm256_popcnt_epi8(__m256i);
VPOPCNTB __m256i _mm256_mask_popcnt_epi8(__m256i, __mmask32, __m256i);
VPOPCNTB __m256i _mm256_maskz_popcnt_epi8(__mmask32, __m256i);
VPOPCNTB __m512i _mm512_popcnt_epi8(__m512i);
VPOPCNTB __m512i _mm512_mask_popcnt_epi8(__m512i, __mmask64, __m512i);
VPOPCNTB __m512i _mm512_maskz_popcnt_epi8(__mmask64, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4.
2-56 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPSHLD — Concatenate and Shift Packed Data Left Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the left by constant value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F3A.W1 70 /r /ib
VPSHLDW xmm1{k1}{z}, xmm2,
xmm3/m128, imm8

A V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 70 /r /ib
VPSHLDW ymm1{k1}{z}, ymm2,
ymm3/m256, imm8

A V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 70 /r /ib
VPSHLDW zmm1{k1}{z}, zmm2,
zmm3/m512, imm8

A V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into zmm1.

EVEX.128.66.0F3A.W0 71 /r /ib
VPSHLDD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W0 71 /r /ib
VPSHLDD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W0 71 /r /ib
VPSHLDD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8

B V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into zmm1.

EVEX.128.66.0F3A.W1 71 /r /ib
VPSHLDQ xmm1{k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 71 /r /ib
VPSHLDQ ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 71 /r /ib
VPSHLDQ zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8

B V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the left by constant
value in imm8 into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) imm8 (r)

B Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) imm8 (r)
Ref. # 319433-035 2-57

INSTRUCTION SET REFERENCE, A-Z
Operation

VPSHLDW DEST, SRC2, SRC3, imm8
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
tmp ← concat(SRC2.word[j], SRC3.word[j]) << (imm8 & 15)
DEST.word[j] ← tmp.word[1]

ELSE IF *zeroing*:
DEST.word[j] ← 0

ELSE DEST.word[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHLDD DEST, SRC2, SRC3, imm8
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.dword[0]

ELSE:
tsrc3 ← SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
tmp ← concat(SRC2.dword[j], tsrc3) << (imm8 & 31)
DEST.dword[j] ← tmp.dword[1]

ELSE IF *zeroing*:
DEST.dword[j] ← 0

ELSE DEST.dword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHLDQ DEST, SRC2, SRC3, imm8
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.qword[0]

ELSE:
tsrc3 ← SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
tmp ← concat(SRC2.qword[j], tsrc3) << (imm8 & 63)
DEST.qword[j] ← tmp.qword[1]

ELSE IF *zeroing*:
DEST.qword[j] ← 0

ELSE DEST.qword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0
2-58 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPSHLDD __m128i _mm_shldi_epi32(__m128i, __m128i, int);
VPSHLDD __m128i _mm_mask_shldi_epi32(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDD __m128i _mm_maskz_shldi_epi32(__mmask8, __m128i, __m128i, int);
VPSHLDD __m256i _mm256_shldi_epi32(__m256i, __m256i, int);
VPSHLDD __m256i _mm256_mask_shldi_epi32(__m256i, __mmask8, __m256i, __m256i, int);
VPSHLDD __m256i _mm256_maskz_shldi_epi32(__mmask8, __m256i, __m256i, int);
VPSHLDD __m512i _mm512_shldi_epi32(__m512i, __m512i, int);
VPSHLDD __m512i _mm512_mask_shldi_epi32(__m512i, __mmask16, __m512i, __m512i, int);
VPSHLDD __m512i _mm512_maskz_shldi_epi32(__mmask16, __m512i, __m512i, int);
VPSHLDQ __m128i _mm_shldi_epi64(__m128i, __m128i, int);
VPSHLDQ __m128i _mm_mask_shldi_epi64(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDQ __m128i _mm_maskz_shldi_epi64(__mmask8, __m128i, __m128i, int);
VPSHLDQ __m256i _mm256_shldi_epi64(__m256i, __m256i, int);
VPSHLDQ __m256i _mm256_mask_shldi_epi64(__m256i, __mmask8, __m256i, __m256i, int);
VPSHLDQ __m256i _mm256_maskz_shldi_epi64(__mmask8, __m256i, __m256i, int);
VPSHLDQ __m512i _mm512_shldi_epi64(__m512i, __m512i, int);
VPSHLDQ __m512i _mm512_mask_shldi_epi64(__m512i, __mmask8, __m512i, __m512i, int);
VPSHLDQ __m512i _mm512_maskz_shldi_epi64(__mmask8, __m512i, __m512i, int);
VPSHLDW __m128i _mm_shldi_epi16(__m128i, __m128i, int);
VPSHLDW __m128i _mm_mask_shldi_epi16(__m128i, __mmask8, __m128i, __m128i, int);
VPSHLDW __m128i _mm_maskz_shldi_epi16(__mmask8, __m128i, __m128i, int);
VPSHLDW __m256i _mm256_shldi_epi16(__m256i, __m256i, int);
VPSHLDW __m256i _mm256_mask_shldi_epi16(__m256i, __mmask16, __m256i, __m256i, int);
VPSHLDW __m256i _mm256_maskz_shldi_epi16(__mmask16, __m256i, __m256i, int);
VPSHLDW __m512i _mm512_shldi_epi16(__m512i, __m512i, int);
VPSHLDW __m512i _mm512_mask_shldi_epi16(__m512i, __mmask32, __m512i, __m512i, int);
VPSHLDW __m512i _mm512_maskz_shldi_epi16(__mmask32, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4.
Ref. # 319433-035 2-59

INSTRUCTION SET REFERENCE, A-Z
VPSHLDV — Concatenate and Variable Shift Packed Data Left Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the left by variable value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W1 70 /r
VPSHLDVW xmm1{k1}{z}, xmm2,
xmm3/m128

A V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the left by value in xmm3/m128 into
xmm1.

EVEX.256.66.0F38.W1 70 /r
VPSHLDVW ymm1{k1}{z}, ymm2,
ymm3/m256

A V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the left by value in xmm3/m256 into
ymm1.

EVEX.512.66.0F38.W1 70 /r
VPSHLDVW zmm1{k1}{z}, zmm2,
zmm3/m512

A V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the left by value in zmm3/m512 into
zmm1.

EVEX.128.66.0F38.W0 71 /r
VPSHLDVD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the left by value in xmm3/m128 into
xmm1.

EVEX.256.66.0F38.W0 71 /r
VPSHLDVD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the left by value in xmm3/m256 into
ymm1.

EVEX.512.66.0F38.W0 71 /r
VPSHLDVD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

B V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the left by value in zmm3/m512 into
zmm1.

EVEX.128.66.0F38.W1 71 /r
VPSHLDVQ xmm1{k1}{z}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the left by value in xmm3/m128 into
xmm1.

EVEX.256.66.0F38.W1 71 /r
VPSHLDVQ ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the left by value in xmm3/m256 into
ymm1.

EVEX.512.66.0F38.W1 71 /r
VPSHLDVQ zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst

B V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the left by value in zmm3/m512 into
zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA

B Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA
2-60 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation

FUNCTION concat(a,b):
IF words:

d.word[1] ← a
d.word[0] ← b
return d

ELSE IF dwords:
q.dword[1] ← a
q.dword[0] ← b
return q

ELSE IF qwords:
o.qword[1] ← a
o.qword[0] ← b
return o

VPSHLDVW DEST, SRC2, SRC3
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
tmp ← concat(DEST.word[j], SRC2.word[j]) << (SRC3.word[j] & 15)
DEST.word[j] ← tmp.word[1]

ELSE IF *zeroing*:
DEST.word[j] ← 0

ELSE DEST.word[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHLDVD DEST, SRC2, SRC3
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.dword[0]

ELSE:
tsrc3 ← SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
tmp ← concat(DEST.dword[j], SRC2.dword[j]) << (tsrc3 & 31)
DEST.dword[j] ← tmp.dword[1]

ELSE IF *zeroing*:
DEST.dword[j] ← 0

ELSE DEST.dword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0
Ref. # 319433-035 2-61

INSTRUCTION SET REFERENCE, A-Z
VPSHLDVQ DEST, SRC2, SRC3
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.qword[0]

ELSE:
tsrc3 ← SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
tmp ← concat(DEST.qword[j], SRC2.qword[j]) << (tsrc3 & 63)
DEST.qword[j] ← tmp.qword[1]

ELSE IF *zeroing*:
DEST.qword[j] ← 0

ELSE DEST.qword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VPSHLDVW __m128i _mm_shldv_epi16(__m128i, __m128i, __m128i);
VPSHLDVW __m128i _mm_mask_shldv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVW __m128i _mm_maskz_shldv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVW __m256i _mm256_shldv_epi16(__m256i, __m256i, __m256i);
VPSHLDVW __m256i _mm256_mask_shldv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHLDVW __m256i _mm256_maskz_shldv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHLDVQ __m512i _mm512_shldv_epi64(__m512i, __m512i, __m512i);
VPSHLDVQ __m512i _mm512_mask_shldv_epi64(__m512i, __mmask8, __m512i, __m512i);
VPSHLDVQ __m512i _mm512_maskz_shldv_epi64(__mmask8, __m512i, __m512i, __m512i);
VPSHLDVW __m128i _mm_shldv_epi16(__m128i, __m128i, __m128i);
VPSHLDVW __m128i _mm_mask_shldv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVW __m128i _mm_maskz_shldv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVW __m256i _mm256_shldv_epi16(__m256i, __m256i, __m256i);
VPSHLDVW __m256i _mm256_mask_shldv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHLDVW __m256i _mm256_maskz_shldv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHLDVW __m512i _mm512_shldv_epi16(__m512i, __m512i, __m512i);
VPSHLDVW __m512i _mm512_mask_shldv_epi16(__m512i, __mmask32, __m512i, __m512i);
VPSHLDVW __m512i _mm512_maskz_shldv_epi16(__mmask32, __m512i, __m512i, __m512i);
VPSHLDVD __m128i _mm_shldv_epi32(__m128i, __m128i, __m128i);
VPSHLDVD __m128i _mm_mask_shldv_epi32(__m128i, __mmask8, __m128i, __m128i);
VPSHLDVD __m128i _mm_maskz_shldv_epi32(__mmask8, __m128i, __m128i, __m128i);
VPSHLDVD __m256i _mm256_shldv_epi32(__m256i, __m256i, __m256i);
VPSHLDVD __m256i _mm256_mask_shldv_epi32(__m256i, __mmask8, __m256i, __m256i);
VPSHLDVD __m256i _mm256_maskz_shldv_epi32(__mmask8, __m256i, __m256i, __m256i);
VPSHLDVD __m512i _mm512_shldv_epi32(__m512i, __m512i, __m512i);
VPSHLDVD __m512i _mm512_mask_shldv_epi32(__m512i, __mmask16, __m512i, __m512i);
VPSHLDVD __m512i _mm512_maskz_shldv_epi32(__mmask16, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4.
2-62 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPSHRD — Concatenate and Shift Packed Data Right Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the right by constant value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F3A.W1 72 /r /ib
VPSHRDW xmm1{k1}{z}, xmm2,
xmm3/m128, imm8

A V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 72 /r /ib
VPSHRDW ymm1{k1}{z}, ymm2,
ymm3/m256, imm8

A V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 72 /r /ib
VPSHRDW zmm1{k1}{z}, zmm2,
zmm3/m512, imm8

A V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into zmm1.

EVEX.128.66.0F3A.W0 73 /r /ib
VPSHRDD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W0 73 /r /ib
VPSHRDD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W0 73 /r /ib
VPSHRDD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst, imm8

B V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into zmm1.

EVEX.128.66.0F3A.W1 73 /r /ib
VPSHRDQ xmm1{k1}{z}, xmm2,
xmm3/m128/m64bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into xmm1.

EVEX.256.66.0F3A.W1 73 /r /ib
VPSHRDQ ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst, imm8

B V/V AVX512_VBMI2
AVX512VL

Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into ymm1.

EVEX.512.66.0F3A.W1 73 /r /ib
VPSHRDQ zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst, imm8

B V/V AVX512_VBMI2 Concatenate destination and source operands,
extract result shifted to the right by constant
value in imm8 into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) imm8 (r)

B Full ModRM:reg (w) EVEX.vvvv ModRM:r/m (r) imm8 (r)
Ref. # 319433-035 2-63

INSTRUCTION SET REFERENCE, A-Z
Operation

VPSHRDW DEST, SRC2, SRC3, imm8
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] ← concat(SRC3.word[j], SRC2.word[j]) >> (imm8 & 15)

ELSE IF *zeroing*:
DEST.word[j] ← 0

ELSE DEST.word[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHRDD DEST, SRC2, SRC3, imm8
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.dword[0]

ELSE:
tsrc3 ← SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
DEST.dword[j] ← concat(tsrc3, SRC2.dword[j]) >> (imm8 & 31)

ELSE IF *zeroing*:
DEST.dword[j] ← 0

ELSE DEST.dword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHRDQ DEST, SRC2, SRC3, imm8
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.qword[0]

ELSE:
tsrc3 ← SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
DEST.qword[j] ← concat(tsrc3, SRC2.qword[j]) >> (imm8 & 63)

ELSE IF *zeroing*:
DEST.qword[j] ← 0

ELSE DEST.qword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0
2-64 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPSHRDQ __m128i _mm_shrdi_epi64(__m128i, __m128i, int);
VPSHRDQ __m128i _mm_mask_shrdi_epi64(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDQ __m128i _mm_maskz_shrdi_epi64(__mmask8, __m128i, __m128i, int);
VPSHRDQ __m256i _mm256_shrdi_epi64(__m256i, __m256i, int);
VPSHRDQ __m256i _mm256_mask_shrdi_epi64(__m256i, __mmask8, __m256i, __m256i, int);
VPSHRDQ __m256i _mm256_maskz_shrdi_epi64(__mmask8, __m256i, __m256i, int);
VPSHRDQ __m512i _mm512_shrdi_epi64(__m512i, __m512i, int);
VPSHRDQ __m512i _mm512_mask_shrdi_epi64(__m512i, __mmask8, __m512i, __m512i, int);
VPSHRDQ __m512i _mm512_maskz_shrdi_epi64(__mmask8, __m512i, __m512i, int);
VPSHRDD __m128i _mm_shrdi_epi32(__m128i, __m128i, int);
VPSHRDD __m128i _mm_mask_shrdi_epi32(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDD __m128i _mm_maskz_shrdi_epi32(__mmask8, __m128i, __m128i, int);
VPSHRDD __m256i _mm256_shrdi_epi32(__m256i, __m256i, int);
VPSHRDD __m256i _mm256_mask_shrdi_epi32(__m256i, __mmask8, __m256i, __m256i, int);
VPSHRDD __m256i _mm256_maskz_shrdi_epi32(__mmask8, __m256i, __m256i, int);
VPSHRDD __m512i _mm512_shrdi_epi32(__m512i, __m512i, int);
VPSHRDD __m512i _mm512_mask_shrdi_epi32(__m512i, __mmask16, __m512i, __m512i, int);
VPSHRDD __m512i _mm512_maskz_shrdi_epi32(__mmask16, __m512i, __m512i, int);
VPSHRDW __m128i _mm_shrdi_epi16(__m128i, __m128i, int);
VPSHRDW __m128i _mm_mask_shrdi_epi16(__m128i, __mmask8, __m128i, __m128i, int);
VPSHRDW __m128i _mm_maskz_shrdi_epi16(__mmask8, __m128i, __m128i, int);
VPSHRDW __m256i _mm256_shrdi_epi16(__m256i, __m256i, int);
VPSHRDW __m256i _mm256_mask_shrdi_epi16(__m256i, __mmask16, __m256i, __m256i, int);
VPSHRDW __m256i _mm256_maskz_shrdi_epi16(__mmask16, __m256i, __m256i, int);
VPSHRDW __m512i _mm512_shrdi_epi16(__m512i, __m512i, int);
VPSHRDW __m512i _mm512_mask_shrdi_epi16(__m512i, __mmask32, __m512i, __m512i, int);
VPSHRDW __m512i _mm512_maskz_shrdi_epi16(__mmask32, __m512i, __m512i, int);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4.
Ref. # 319433-035 2-65

INSTRUCTION SET REFERENCE, A-Z
VPSHRDV — Concatenate and Variable Shift Packed Data Right Logical

Instruction Operand Encoding

Description

Concatenate packed data, extract result shifted to the right by variable value.
This instruction supports memory fault suppression.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W1 72 /r
VPSHRDVW xmm1{k1}{z}, xmm2,
xmm3/m128

A V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the right by value in xmm3/m128
into xmm1.

EVEX.256.66.0F38.W1 72 /r
VPSHRDVW ymm1{k1}{z}, ymm2,
ymm3/m256

A V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the right by value in xmm3/m256
into ymm1.

EVEX.512.66.0F38.W1 72 /r
VPSHRDVW zmm1{k1}{z}, zmm2,
zmm3/m512

A V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the right by value in zmm3/m512
into zmm1.

EVEX.128.66.0F38.W0 73 /r
VPSHRDVD xmm1{k1}{z}, xmm2,
xmm3/m128/m32bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the right by value in xmm3/m128
into xmm1.

EVEX.256.66.0F38.W0 73 /r
VPSHRDVD ymm1{k1}{z}, ymm2,
ymm3/m256/m32bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the right by value in xmm3/m256
into ymm1.

EVEX.512.66.0F38.W0 73 /r
VPSHRDVD zmm1{k1}{z}, zmm2,
zmm3/m512/m32bcst

B V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the right by value in zmm3/m512
into zmm1.

EVEX.128.66.0F38.W1 73 /r
VPSHRDVQ xmm1{k1}{z}, xmm2,
xmm3/m128/m64bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate xmm1 and xmm2, extract result
shifted to the right by value in xmm3/m128
into xmm1.

EVEX.256.66.0F38.W1 73 /r
VPSHRDVQ ymm1{k1}{z}, ymm2,
ymm3/m256/m64bcst

B V/V AVX512_VBMI2
AVX512VL

Concatenate ymm1 and ymm2, extract result
shifted to the right by value in xmm3/m256
into ymm1.

EVEX.512.66.0F38.W1 73 /r
VPSHRDVQ zmm1{k1}{z}, zmm2,
zmm3/m512/m64bcst

B V/V AVX512_VBMI2 Concatenate zmm1 and zmm2, extract result
shifted to the right by value in zmm3/m512
into zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA

B Full ModRM:reg (r, w) EVEX.vvvv ModRM:r/m (r) NA
2-66 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Operation

VPSHRDVW DEST, SRC2, SRC3
(KL, VL) = (8, 128), (16, 256), (32, 512)
FOR j ← 0 TO KL-1:

IF MaskBit(j) OR *no writemask*:
DEST.word[j] ← concat(SRC2.word[j], DEST.word[j]) >> (SRC3.word[j] & 15)

ELSE IF *zeroing*:
DEST.word[j] ← 0

ELSE DEST.word[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHRDVD DEST, SRC2, SRC3
(KL, VL) = (4, 128), (8, 256), (16, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.dword[0]

ELSE:
tsrc3 ← SRC3.dword[j]

IF MaskBit(j) OR *no writemask*:
DEST.dword[j] ← concat(SRC2.dword[j], DEST.dword[j]) >> (tsrc3 & 31)

ELSE IF *zeroing*:
DEST.dword[j] ← 0

ELSE DEST.dword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0

VPSHRDVQ DEST, SRC2, SRC3
(KL, VL) = (2, 128), (4, 256), (8, 512)
FOR j ← 0 TO KL-1:

IF SRC3 is broadcast memop:
tsrc3 ← SRC3.qword[0]

ELSE:
tsrc3 ← SRC3.qword[j]

IF MaskBit(j) OR *no writemask*:
DEST.qword[j] ← concat(SRC2.qword[j], DEST.qword[j]) >> (tsrc3 & 63)

ELSE IF *zeroing*:
DEST.qword[j] ← 0

ELSE DEST.qword[j] remains unchanged
DEST[MAX_VL-1:VL] ← 0
Ref. # 319433-035 2-67

INSTRUCTION SET REFERENCE, A-Z
Intel C/C++ Compiler Intrinsic Equivalent

VPSHRDVQ __m128i _mm_shrdv_epi64(__m128i, __m128i, __m128i);
VPSHRDVQ __m128i _mm_mask_shrdv_epi64(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVQ __m128i _mm_maskz_shrdv_epi64(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVQ __m256i _mm256_shrdv_epi64(__m256i, __m256i, __m256i);
VPSHRDVQ __m256i _mm256_mask_shrdv_epi64(__m256i, __mmask8, __m256i, __m256i);
VPSHRDVQ __m256i _mm256_maskz_shrdv_epi64(__mmask8, __m256i, __m256i, __m256i);
VPSHRDVQ __m512i _mm512_shrdv_epi64(__m512i, __m512i, __m512i);
VPSHRDVQ __m512i _mm512_mask_shrdv_epi64(__m512i, __mmask8, __m512i, __m512i);
VPSHRDVQ __m512i _mm512_maskz_shrdv_epi64(__mmask8, __m512i, __m512i, __m512i);
VPSHRDVD __m128i _mm_shrdv_epi32(__m128i, __m128i, __m128i);
VPSHRDVD __m128i _mm_mask_shrdv_epi32(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVD __m128i _mm_maskz_shrdv_epi32(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVD __m256i _mm256_shrdv_epi32(__m256i, __m256i, __m256i);
VPSHRDVD __m256i _mm256_mask_shrdv_epi32(__m256i, __mmask8, __m256i, __m256i);
VPSHRDVD __m256i _mm256_maskz_shrdv_epi32(__mmask8, __m256i, __m256i, __m256i);
VPSHRDVD __m512i _mm512_shrdv_epi32(__m512i, __m512i, __m512i);
VPSHRDVD __m512i _mm512_mask_shrdv_epi32(__m512i, __mmask16, __m512i, __m512i);
VPSHRDVD __m512i _mm512_maskz_shrdv_epi32(__mmask16, __m512i, __m512i, __m512i);
VPSHRDVW __m128i _mm_shrdv_epi16(__m128i, __m128i, __m128i);
VPSHRDVW __m128i _mm_mask_shrdv_epi16(__m128i, __mmask8, __m128i, __m128i);
VPSHRDVW __m128i _mm_maskz_shrdv_epi16(__mmask8, __m128i, __m128i, __m128i);
VPSHRDVW __m256i _mm256_shrdv_epi16(__m256i, __m256i, __m256i);
VPSHRDVW __m256i _mm256_mask_shrdv_epi16(__m256i, __mmask16, __m256i, __m256i);
VPSHRDVW __m256i _mm256_maskz_shrdv_epi16(__mmask16, __m256i, __m256i, __m256i);
VPSHRDVW __m512i _mm512_shrdv_epi16(__m512i, __m512i, __m512i);
VPSHRDVW __m512i _mm512_mask_shrdv_epi16(__m512i, __mmask32, __m512i, __m512i);
VPSHRDVW __m512i _mm512_maskz_shrdv_epi16(__mmask32, __m512i, __m512i, __m512i);

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Type E4.
2-68 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
VPSHUFBITQMB — Shuffle Bits from Quadword Elements Using Byte Indexes into Mask

Instruction Operand Encoding

Description

The VPSHUFBITQMB instruction performs a bit gather select using second source as control and first source as
data. Each bit uses 6 control bits (2nd source operand) to select which data bit is going to be gathered (first source
operand). A given bit can only access 64 different bits of data (first 64 destination bits can access first 64 data bits,
second 64 destination bits can access second 64 data bits, etc.).
Control data for each output bit is stored in 8 bit elements of SRC2, but only the 6 least significant bits of each
element are used.
This instruction uses write masking (zeroing only). This instruction supports memory fault suppression.
The first source operand is a ZMM register. The second source operand is a ZMM register or a memory location. The
destination operand is a mask register.

Operation

VPSHUFBITQMB DEST, SRC1, SRC2
(KL, VL) = (16,128), (32,256), (64, 512)
FOR i ← 0 TO KL/8-1: //Qword

FOR j ← 0 to 7: // Byte
IF k2[i*8+j] or *no writemask*:

m ← SRC2.qword[i].byte[j] & 0x3F
k1[i*8+j] ← SRC1.qword[i].bit[m]

ELSE:
k1[i*8+j] ← 0

k1[MAX_KL-1:KL] ← 0

Intel C/C++ Compiler Intrinsic Equivalent

VPSHUFBITQMB __mmask16 _mm_bitshuffle_epi64_mask(__m128i, __m128i);
VPSHUFBITQMB __mmask16 _mm_mask_bitshuffle_epi64_mask(__mmask16, __m128i, __m128i);
VPSHUFBITQMB __mmask32 _mm256_bitshuffle_epi64_mask(__m256i, __m256i);
VPSHUFBITQMB __mmask32 _mm256_mask_bitshuffle_epi64_mask(__mmask32, __m256i, __m256i);
VPSHUFBITQMB __mmask64 _mm512_bitshuffle_epi64_mask(__m512i, __m512i);
VPSHUFBITQMB __mmask64 _mm512_mask_bitshuffle_epi64_mask(__mmask64, __m512i, __m512i);

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

EVEX.128.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, xmm2,
xmm3/m128

A V/V AVX512_BITALG
AVX512VL

Extract values in xmm2 using control bits of
xmm3/m128 with writemask k2 and leave the
result in mask register k1.

EVEX.256.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, ymm2,
ymm3/m256

A V/V AVX512_BITALG
AVX512VL

Extract values in ymm2 using control bits of
ymm3/m256 with writemask k2 and leave the
result in mask register k1.

EVEX.512.66.0F38.W0 8F /r
VPSHUFBITQMB k1{k2}, zmm2,
zmm3/m512

A V/V AVX512_BITALG Extract values in zmm2 using control bits of
zmm3/m512 with writemask k2 and leave the
result in mask register k1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A Full Mem ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) NA
Ref. # 319433-035 2-69

INSTRUCTION SET REFERENCE, A-Z
WBNOINVD—Write Back and Do Not Invalidate Cache

Instruction Operand Encoding

Description

The WBNOINVD instruction writes back all modified cache lines in the processor’s internal cache to main memory
but does not invalidate (flush) the internal caches.

After executing this instruction, the processor does not wait for the external caches to complete their write-back
operation before proceeding with instruction execution. It is the responsibility of hardware to respond to the cache
write-back signal. The amount of time or cycles for WBNOINVD to complete will vary due to size and other factors
of different cache hierarchies. As a consequence, the use of the WBNOINVD instruction can have an impact on
logical processor interrupt/event response time.

The WBNOINVD instruction is a privileged instruction. When the processor is running in protected mode, the CPL of
a program or procedure must be 0 to execute this instruction. This instruction is also a serializing instruction (see
“Serializing Instructions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

In situations where cache coherency with main memory is not a concern, software can use the INVD instruction.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The WBNOINVD instruction is implementation dependent, and its function may be implemented differently on
future Intel 64 and IA-32 processors.

Operation

WriteBack(InternalCaches);
Continue; (* Continue execution *)

Intel C/C++ Compiler Intrinsic Equivalent

WBNOINVD void _wbnoinvd(void);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F3 0F 09

WBNOINVD

A V/V WBNOINVD Write back and do not flush internal caches;
initiate writing-back without flushing of external
caches.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA NA
2-70 Ref. # 319433-035

INSTRUCTION SET REFERENCE, A-Z
Virtual-8086 Mode Exceptions
#GP(0) WBNOINVD cannot be executed at the virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
Ref. # 319433-035 2-71

INSTRUCTION SET REFERENCE, A-Z
2-72 Ref. # 319433-035

EPT-BASED SUB-PAGE PERMISSIONS
CHAPTER 3
EPT-BASED SUB-PAGE PERMISSIONS

3.1 INTRODUCTION
This chapter describes an EPT-based sub-page permissions capability to allow Virtual Machine Monitors (VMM) to
specify write-permission for guest physical memory at a sub-page (128 byte) granularity. When this capability is
utilized, the CPU establishes write-access permissions for sub-page regions of 4-KByte pages as specified by the
VMM. EPT-based sub-page permissions is intended to enable fine-grained memory write enforcement by a VMM for
security (guest OS monitoring).

3.2 VMCS CHANGES
A new secondary processor-based VM-execution control is defined as “sub-page write permission”. The bit position
of this control is 23.
If bit 31 of the primary processor-based VM-execution controls is 0, the logical processor operates as if the sub-
page write permission VM-execution control is 0.
A new 64-bit control field is defined as “sub-page permission table pointer” (SPPTP). The encodings for this field
are 00002030H (all 64 bits in 64-bit mode; low 32 bits in legacy mode) and 00002031H (high 32 bits).

3.3 CHANGES TO EPT PAGING-STRUCTURE ENTRIES
Bit 61 of an EPT PTE is defined as a “Sub-Page Permission” (SPP bit). Setting this bit allows write permissions for
the mapped page to be enforced on a sub-page basis (see Section 6.4). The processor ignores this bit in all other
EPT paging-structure entries (as it does if the “sub-page write permission” VM-execution control is 0).

3.4 CHANGES TO GUEST-PHYSICAL ACCESSES
If the logical processor is in VMX non-root operation with EPT enabled, and if the sub-page write permission VM-
execution control (see Section 3.2) is 0, an EPT violation occurs if a memory store uses a guest-physical address
and the write-access bit (bit 1) is clear in any of the EPT paging-structure entries used to translate the guest phys-
ical address. (This is same as legacy behavior.)
If the sub-page write permission VM-execution control is 1, treatment of write accesses to guest-physical accesses
depends on the state of the accumulated write-access bit (position 1) and sub-page permission bit (position 61) in
the leaf EPT paging-structure used to translate guest-physical addresses.
If EPT translates a guest-physical address using a 4-KByte page, the accumulated write-access bit is 0, and the SPP
bit set to 1 in the EPT PTE, the processor uses the guest-physical address to select from a VMM-managed Sub-Page
Permission Table (SPPT) a write permission bit for the 128-byte sub-page region being accessed within the 4-KByte
page. If the sub-page region write permission bit is set, the write is allowed; otherwise the write is disallowed and
results in an EPT violation normally.
In other cases, the processor does not consult the SPPT. Guest-physical pages mapped via leaf EPT-paging-struc-
tures for which the accumulated write-access bit and the SPP bits are both clear (0) generate EPT violations on
memory writes accesses. Guest-physical pages mapped via EPT-paging-structure for which the accumulated write-
access bit is set (1) allow writes, effectively ignoring the SPP bit on the leaf EPT-paging structure.
Ref. # 319433-035 3-1

EPT-BASED SUB-PAGE PERMISSIONS
3.5 SUB-PAGE PERMISSION TABLE
The sub-page permission table is referenced via a 64-bit control field called Sub-Page Permission Table Pointer
(SPPTP) which contains a 4K-aligned physical address. The SPPT allows specification of write-permissions for 32
128 byte sub-page regions for 4KB guest-physical memory pages accessed via the EPT. The format of SPPTP is
shown in Table 3-1 below.

The memory type used for SPPT accesses will be the memory type reported in IA32_VMX_BASIC MSR.
When SPPT is in use, write accesses to any guest-physical addresses produced via a mapping for a 4KB page in the
EPT can be controlled at a 128 byte granularity sub-page region within the 4KB guest-physical page. Note that
reads and instruction fetches are not affected by the SPPT.

3.5.1 SPPT Overview
SPPT is active when the sub-page write permission VM-execution control is 1. SPPT looks up the guest-physical
addresses to derive a 64 bit sub-page permission value containing sub-page region write permissions. The lookup
from guest-physical addresses to the sub-page region permissions is determined by a set of SPPT paging struc-
tures. Section 3.5.2 gives the details of the SPPT structures.
When the sub-page write permission VM-execution control is 1, the SPPT is used to look up write permission bits
for the 128 byte sub-page regions contained in the 4KB guest-physical page. EPT specifies the 4KB page-level priv-
ileges that software is allowed when accessing the guest-physical address, whereas SPPT defines the write permis-
sions for software at the 128 byte granularity regions within a 4KB page. Similar to EPT, a logical processor uses
SPPT to look up sub-page region write permissions for guest-physical addresses only when those addresses are
used to access memory.

3.5.2 Operation of SPPT-based Write-Permission
The SPPT translation mechanism uses only bits 47:7 of a guest-physical address. The SPPT is a 4-level paging
structure. Four SPPT paging structures are accessed to look up a sub-page region write permission bit for a guest-
physical address. The 48 bits are partitioned by the logical processor to traverse the SPPT paging structures as
follows.

— A 4KB naturally aligned SPPT L4 table is located at the physical address specified in bits 51:12 of the SPPTP.
An SPPT L4 table comprises 512 64-bit entries (SPPT L4Es). An SPPT L4E is selected at the physical address
defined as follows.

• Bits 63:52 are all 0.

• Bits 51:12 are from the SPPTP.

• Bits 11:3 are bits 47:39 of the guest-physical address.

• Bits 2:0 are all 0.

The format of a SPPT L4E is given in Table 4-2.

Table 3-1. Format of SPPTP

Bit Position Contents

11:0 Reserved.

M-1:12 Bits M-1:12 of the physical address of the 4-KByte aligned SPPT L4 table.1

NOTES:

1. M is the physical-address width supported by the processor.

63:M Reserved (must be 0).
3-2 Ref. # 319433-035

EPT-BASED SUB-PAGE PERMISSIONS
— A 4KB naturally aligned SPPT L3 table is located at the physical address specified in bits 51:12 of the SPPT
L4E. An SPPT L3 table comprises 512 64-bit entries (SPPT L3Es). An SPPT L3E is selected at the physical
address defined as follows.

• Bits 63:52 are all 0.

• Bits 51:12 are from the SPPT L4E.

• Bits 11:3 are bits 38:30 of the guest-physical address.

• Bits 2:0 are all 0.

The format of the SPPT L3E is the same as that given in Table 3-2 for for SPPT L4Es. The SPPT L3E
references a 4KB naturally aligned SPPT L2 Table.

— A 4KB naturally aligned SPPT L2 table is located at the physical address specified in bits 51:12 of the SPPT
L3E. An SPPT L2 table comprises 512 64-bit entries (SPPT L2Es). An SPPT L2E is selected at the physical
address defined as follows.

• Bits 63:52 are all 0.

• Bits 51:12 are from the SPPT L3E.

• Bits 11:3 are bits 29:21 of the guest-physical address.

• Bits 2:0 are all 0.

The format of a SPPT L2E is the same as that given in Table 3-2 for SPPT L4Es. The SPPT L2E references a
4KB naturally aligned SPPT L1 Table.

— A 4KB naturally aligned SPPT L1 table is located at the physical address specified in bits 51:12 of the SPPT
L2E. An SPPT L1 table comprises 512 64-bit entries (SPPT L1Es). An SPPT L1E is selected at the physical
address defined as follows.

• Bits 63:52 are all 0.

• Bits 51:12 are from the SPPT L2E.

• Bits 11:3 are bits 20:12 of the guest-physical address.

• Bits 2:0 are all 0.

The processor then consults bit 2i of the SPPT L1E, where i is the value of bits 11:7 of the guest-physical
address; a write access to the guest-physical address is allowed if the bit is 1. (The odd bits in the SPPT L1E
are reserved and must be 0.)

Table 3-2. Format of the SPPT L4E

Bit Position Contents

0 Valid entry when set; indicates whether the entry is present.

11:1 Reserved (must be 0).

M-1:12 Physical address of 4KB naturally aligned SPPT L3 table referenced by this entry.1

NOTES:

1. M is the physical-address width supported by the processor. Software can determine a processor's physical-
address width by executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0
of EAX.

63:M Reserved (must be 0).
Ref. # 319433-035 3-3

EPT-BASED SUB-PAGE PERMISSIONS
3.5.3 SPP-Induced VM Exits
Accesses using guest-physical addresses may cause SPP-induced VM exits due to an SPPT misconfiguration or an
SPPT miss. The basic VM exit reason reported for SPP-induced VM exits is 66.
An SPPT misconfiguration VM exit occurs when, in the course of an SPPT lookup, an SPPT paging-structure entry is
encountered that sets a reserved bit. See Section 3.5.3.1 for which bits are reserved in SPPT paging-structure
entries.
An SPPT miss VM exit occurs when, in the course of an SPPT lookup, an SPPT paging-structure entry is encountered
in which the valid bit is clear.
SPPT misconfigurations and SPPT misses can occur only due to an attempt to write memory with a guest-physical
address.
SPP-induced VM exits save an exit qualification with the format given in Table 3-3. These VM exits also save a
guest-linear address and a guest-physical address.

Guest Linear Address: In addition to the existing cases for which this field is reported, for a VM exit due to an
SPPT misconfiguration or SPPT miss, this field receives a linear address that caused the SPPT misconfiguration or
SPPT miss VM exit.
Guest Physical Address: In addition to the existing cases for which this field is reported, for a VM exit due to an
SPPT misconfiguration or SPPT miss, this field receives the guest-physical address that caused the SPPT misconfig-
uration or SPPT miss VM exit.

3.5.3.1 Sub-Page Permissions and EPT Violations
Memory writes that consult but are not permitted by the SPPT cause EPT violations normally.
For memory writes that access memory across sub-page regions on the same 4K page, the processor will check
writeability of both sub-pages and will generate an EPT violation if either of the accessed sub-page regions is not
writeable.
For memory writes that access adjoining 4-KByte pages, the processor may ignores the SPP bit in either of the EPT
PTEs that map those pages (operating as if it were 0).
Sub-page write permissions are intended principally for simple instructions (such as AND, MOV, OR, TEST, XCHG,
INC, XOR, etc.). Execution of an instruction that normally performs multiple memory-writes may or may not ignore
the sub-page permissions and cause EPT violations unconditionally if an accessed page is mapped with an EPT PTE
in which the W bit is 0.
Accesses to any guest-physical address that translates to an address on the APIC-access page that also is specified
by the VMM to have sub-page permissions associated with it may operate as if the virtualize APIC accesses VM-
execution control is 0.
Processor writes to guest paging structures (to set accessed and dirty flags) ignore sub-page permissions and
always cause EPT violations when attempting to write to guest-physical addresses to which EPT does not allow
writes. The same is true for processor reads of guest paging structures (during linear-address translation) if
accessed and dirty flags for EPT are enabled. (This is because, when accessed and dirty flags for EPT are enabled,
processor reads of guest paging structures are treated as writes).

Table 3-3. Exit Qualification for SPPT-Induced VM Exits

Bit Position Contents

10:0 Not used.

11 SPPT VM exit type. Set for SPPT miss; cleared for SPPT misconfiguration VM exit.

12 NMI unblocking due to IRET.

63:13 Not used.
3-4 Ref. # 319433-035

EPT-BASED SUB-PAGE PERMISSIONS
3.5.4 Invalidating Cached SPP Permissions
Sub-page permissions may be cached by the CPU. Any modification to the sub-page permissions specified in SPPT
entries must be invalidated using INVEPT. The EPTP switching VM function may flush any information cached about
sub-page permissions, as well as intermediate EPT and SPPT caches.

3.5.5 Sub-Page Permission Interaction with Intel® TSX
Instructions that begin or execute within a transactional region may attempt to write to guest-physical addresses
to which EPT does not allow writes. Such cases result in transactional aborts.
This behavior is retained even with sub-page permissions. A write by an instruction that begins or executes within
a transactional region ignores sub-page permissions and causes a transactional abort if EPT does not allow writes
to the guest-physical address.

3.5.6 Sub-Page Permission Interaction with Intel® SGX
A VMM cannot access memory in the enclave page cache (EPC) and cannot easily determine how to protect those
pages selectively with SPP.
The checking of sub-page permissions takes priority over EPC-specific access control. Memory writes by an enclave
to addresses within the enclave's ELRANGE ignore sub-page permissions and will cause EPT violations when made
to guest-physical addresses to which EPT does not allow writes. The same is true for writes to the EPC by Intel SGX
instructions. Memory writes by an enclaves to addresses outside its ELRANGE are treated normally and may be
allowed based on sub-page permissions.
The fault behavior summarized in Table 3-4 below.

Table 3-4. Fault Behavior Summary

ID Enclave Access APIC Access In EPC EPTE.W EPTE.SPP Comments

1 0 0 NA X X See notes1.

NOTES:

1. Fault behavior as per SPP architecture described in this chapter.

2 0 1 NA X 0 See notes2.

2. Fault behavior as per the APIC virtualization architecture.

3 0 1 NA 1 1 See notes3.

3. (SPP is ignored since EPT is writeable)
 If violation of EPT permissions then EPT violation
 Else If Implementation_supports_vAPIC_AND_SPP_Together
 Then APIC redirection or exit
 Else Access Allowed

4 0 1 NA 0 1 See notes4.

4. If violation of EPT permissions then EPT violation exit
Else If Implementation_supports_vAPIC_AND_SPP_Together

 If write access then EPT violation
 Else APIC redirection or exit

Else If write access - fault behavior per SPP architecture in this specification
 Else If read/execute access - access allowed

5 1 X X X 0 See notes5.

6 1 X X X 1 See notes6.
Ref. # 319433-035 3-5

EPT-BASED SUB-PAGE PERMISSIONS
3.5.7 Memory Type Used for Accessing SPPT
The memory type used for any such reference will be the memory type reported in IA32_VMX_BASIC MSR. Bits
53:50 of the IA32_VMX_BASIC MSR report the memory type that the processor uses to access the VMCS and data
structures referenced by pointers in the VMCS. Software should ensure that the VMCS and referenced data struc-
tures are located at physical addresses that are mapped to WB memory type by the MTRRs.

3.6 CHANGES TO VM ENTRIES
If the activate secondary controls and sub-page write permission VM-execution controls are both 1, VM entries
ensure that the enable EPT VM-execution control is 1. Additionally, the sub-page permission table control field is
checked for consistency per Section 3.5. VM entry fails if these checks fail. When such a failure occurs, control is
passed to the next instruction, RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is
loaded with value 7, indicating “VM entry with invalid control field(s)”. This check may be performed in any order
with respect to other checks on VMX controls and the host-state area. Different processors may thus give different
error numbers for the same VMCS.

3.7 CHANGES TO VMX CAPABILITY REPORTING
Section 3.2 specified that secondary processor-based VM-execution control 23 is defined as “sub-page write
permission”. A processor that supports the 1-setting of the control sets bit 55 of the
IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH). RDMSR of that MSR returns 1 in bit 23 of EDX.

5. If violation of EPT permissions then EPT violation
 Else If PA not in EPC then #PF
 Else If PA matches APIC access page then #PF
 Else If violation of EPCM permissions then #PF
 Else Access Allowed

6. If violation of EPT permissions – EPT violation
 Else EPT violation (SPP on enclave access)
3-6 Ref. # 319433-035

INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS
CHAPTER 4
INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS

4.1 INTRODUCTION
Intel® Processor Trace (Intel® PT) is an extension of Intel® Architecture that captures information about software
execution using dedicated hardware facilities that cause only minimal performance perturbation to the software
being traced. Details on the Intel PT infrastructure and trace capabilities can be found in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3C.
This chapter describes the architecture for VMX support improvements made for Intel PT. The suite of architecture
changes described below serve to simplify the process of virtualizing Intel PT for use by a guest software. There are
two primary elements to this new architecture support.
1. Addition of a new guest IA32_RTIT_CTL value field to the VMCS. — This serves to speed and simplify

the process of disabling trace on VM exit, and restoring it on VM entry.
2. Enabling use of EPT to redirect PT output. — This enables the VMM to elect to virtualize the PT output

buffer using EPT. In this mode, the CPU will treat PT output addresses as Guest Physical Addresses (GPAs)
and translate them using EPT. This means that output reads (of the ToPA table), output writes (of trace out-
put), and other output events can cause EPT violations.

4.2 ARCHITECTURE DETAILS

4.2.1 IA32_RTIT_CTL in VMCS Guest State
A new 64-bit field will be added to the VMCS Guest State, to hold the value of IA32_RTIT_CTL. This field will use
encodings 2814H and 2815H. On VM exit, the MSR value will be written to this field unconditionally. Additionally,
there are two new controls to govern use of this field; see Table 4-1 below.

4.2.2 Supporting EPT for Trace Output
In order to enable use of EPT to redirect PT trace output, a new secondary processor-based VM-execution control
is added; see Table 4-2 below.

Table 4-1. VMCS Controls for IA32_RTIT_CTL MSR

Name Position Description

Clear IA32_RTIT_CTL on exit. Exit control 25. When set, the IA32_RTIT_CTL MSR will be cleared on VM exit, after it has
been saved. This disables PT before entering the VMX host.

Load IA32_RTIT_CTL on entry. Entry control 18. When set, the IA32_RTIT_CTL MSR will be written with the value of the
associated Guest State field of the VMCS on VM entry. This restores PT
before entering the guest.
VM entry fails if the value to be loaded sets reserved bits or a reserved
values in an encoded field.

Table 4-2. VMCS Control for Intel PT Output to Guest Physical Addresses

Name Position Description

Guest PT uses Guest Physical
Addresses.

Execution control 24. When set, all PT output addresses, including those in the
IA32_RTIT_OUTPUT_BASE MSR and in ToPA tables, will be treated as guest
physical addresses (GPAs) and translated with EPT.
Ref. # 319433-035 4-1

INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS
Setting this new VM-execution control to 1 requires also setting the VM-exit and VM-entry controls described above
in Table 4-1. This ensures that PT is disabled before entering root operation, where EPT does not apply. See details
on new consistency checks in Section 4.2.3.

4.2.2.1 VM Exits Due to Intel PT Output
Treating PT output addresses as guest-physical addresses introduces the possibility of taking events on PT output
reads and writes. Event possibilities include EPT violations, EPT misconfigurations, PML log-full VM exits, and APIC
access VM exits.

Exit Qualification

Intel PT output reads and writes are asynchronous to instruction execution, as a result of the internal buffering of
trace data. Trace packets are output some unpredictable number of cycles after the completion of the instructions
or events that generated them. For this reason, any VM exit caused by Intel PT output will set the following new exit
qualification bit.

There is no guest linear address relevant for EPT violations resulting from Intel PT output reads and writes. For this
reason, these VM exits clear bit 7 of the exit qualification, which is set only if the guest linear-address is valid.

Preserving Pending Events

A VM entry that enables Intel PT can cause an immediate VM exit, if PT output is configured to use GPA addressing
and the access to the page causes a VM exit (e.g., EPT violation). This VM exit will be taken after the completion of
the VM entry, but before other events which may be pending or injected by the VM entry. To ensure that no events
are lost, VM exits caused by PT output will take the following measures.

• The guest pending debug exceptions field in the VMCS is not cleared, and the value saved will match the
behavior of existing VM exits (e.g., INIT) that do not clear the field.

• The VMCS VM-entry interrupt information field is saved to the VMCS IDT-vectoring information field.
This serves to simplify the process of re-injecting the event on the next VM entry. Note that this
introduces a scenario where Pending MTF VM exit can be set in the IDT-vectoring information field.

Additional VM Exits

EPT violations caused by Intel PT output will always cause VM exits; virtualization exceptions (#VEs) are not
supported.
Intel PT output accesses to the APIC-access page cause VM exits unconditionally, with no virtualization by the
processor. This is consistent with other guest-physical accesses to the APIC-access page.
If the “Guest PT uses Guest Physical Addresses” VM-execution control is 1 and IA32_RTIT_CTL.TraceEn = 1, any
invocation of the VM function 0 (EPTP switching) causes a VM exit. The VM exit gives a VMM the opportunity to
disable tracing (if desired for certain EPT contexts) and ensures that the processor does not retain a PT-specific
EPT-based translation across a change of EPTP. Reporting is the same as any VM exit caused by a VM function,
setting the basic exit reason to 59 (indicating “VMFUNC”) and saving the length of the VMFUNC instruction into the
VM-exit instruction-length field.

Table 4-3. New Asynchronous Exit Qualification Bit

Name Position Description

Asynchronous to Instruction
Execution.

Exit qualification bit
16 for EPT
violations, PML log-
full VM exits, and
APIC-access VM
exits due to guest-
physical accesses.

This VM exit results neither from the instruction referenced by the RIP
saved into the VMCS, nor from any event delivery recorded in the VMCS
IDT-vectoring fields.
4-2 Ref. # 319433-035

INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS
4.2.2.2 Trace Data Management with Output Events
Because PT packet data is buffered within the CPU before being written out through the memory subsystem or
other trace transport mechanism, the CPU takes measures to ensure that buffered trace data is not lost on the PT
disable during VM exit. This requires ensuring that there is sufficient space left in the current output page to write
out the buffer. Without such care, buffered trace data could be lost, and the resulting trace corrupted.
The CPU will employ an early page lookup mechanism in order to avoid trace corruption. It will try to cache the
physical addresses (PAs) of the current PT output block and the next PT output block, in order to ensure no event
is needed when transitioning from the current block to the next. An output block is defined as the smaller of the EPT
page and the PT output buffer segment, which is either a ToPA output region or the single-range output buffer.
Using this scheme, the CPU will always lookup the translation for the next block when it begins writing the current
block, so that any events needed in order to translate the next block base address can be taken long before writes
to that next block commence.
When PT is enabled, the CPU will lookup the first 2 output block translations, and cache the resulting PAs internally.
PT enable flows include WRMSR (as well as loads from the MSR-load areas by VMX transitions), XRSTORS, VM
entry, and RSM.
If either EPT lookup requires a VM exit, the exit will be taken before tracing begins. However, the value of
IA32_RTIT_CTL saved into the new VMCS field will have the new value, with TraceEn set. This ensures that the
subsequent VM entry will try again to enable PT.
These VM exits resulting from the use of Intel PT are taken after the completion of the current instruction or oper-
ation. On VM entry, any Intel PT-induced VM exit will be taken after transition to the guest completes, but before
any event injection or guest instructions execute.
Once the PAs for the first two output blocks are cached (this could require multiple events, and hence multiple VM
exits/VM entries), tracing will commence. Henceforth, anytime an output block is filled with trace data, output will
transition to the next (cached) output block, and the CPU will lookup the EPT translation for the output block that
follows the new current block. Here again, an event may need to be taken, which would result in a VM exit. If the
lookup encounters a ToPA entry with the STOP bit set, it will cease to lookup further entries beyond that entry.
This early page lookup mechanism serves to reduce the likelihood that the trace could fill all available, translated
output blocks. The CPU should typically have the current and next block cached and ready for output. In cases
where trace data nonetheless has to be dropped, which could happen if an EPT violation VM exit for the next page
translation is not taken for an extended period of time, the CPU will signal an internal buffer overflow and drop
packets until the new translation can be cached.

4.2.2.3 Intel PT Output Errors
Improper configuration of Intel PT output can result in operation errors that cause tracing to be disabled. See the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, Section 35.3.9, “Operational Errors”
for details.
When Intel PT output is redirected using EPT, all address-based checks continue to be executed using the guest
physical address specified in the ToPA table or MSR, with one exception. Checks against restricted memory (see the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, Section 35.2.6.4, “Restricted Memory
Access” for details) are done using the translated, platform physical address to which output will be written.
Ref. # 319433-035 4-3

INTEL® PROCESSOR TRACE: VMX IMPROVEMENTS
4.2.3 New VM-Entry Consistency Checks
The following consistency checks will cause the VM entry to fall through to the next sequential instruction, and
RFLAGS.ZF to be set, if failed.

• If the “Guest PT uses Guest Physical Addresses” execution control is 1, the “Clear IA32_RTIT_CTL on
exit” exit control and the “Load IA32_RTIT_CTL on entry” entry control must also be 1. This ensures
that the processor will not switch from treating Intel PT output addresses as GPAs to treating them as
PPAs.

• If the “Guest PT uses Guest Physical Addresses” execution control is 1, the "enable EPT" execution
control must also be 1.

If the following consistency check fails, VM entry fails by loading processor state from the guest-state area of the
VMCS.

• If the “Load IA32_RTIT_CTL on entry” is 1, IA32_RTIT_CTL.TraceEn must be zero.
The lower 16 bits of the exit reason VMCS field will hold value 33, indicating failure due to invalid guest state.

4.2.3.1 Special Treatment for SMM VM Exits
The consistency checks above do not ensure that an SMM VM exit that occurs with the 1-setting of the “Guest PT
uses Guest Physical Addresses” VM-execution control will find the “Clear IA32_RTIT_CTL on exit” VM-exit control
set to 1. For this reason, such VM exits always clear the IA32_RTIT_CTL MSR, regardless of the setting of the VM-
exit control.

4.3 ENUMERATION
Section 5.2 identified three new controls in the VMCS. The following paragraphs provide details of how processors
enumerate for support of those controls:
• “Guest PT uses Guest Physical Addresses” is a new secondary processor-based VM-execution control, located

at bit position 24. Processors supporting the 1-setting of this control enumerate that support by setting bit 56
of the IA32_VMX_PROCBASED_CTLS2 MSR (index 48BH).

• “Clear IA32_RTIT_CTL on exit” is a new VM-exit control, located at bit position 25. Processors supporting the 1-
settings of this control enumerate that support by setting bit 57 in both the IA32_VMX_EXIT_CTLS MSR (index
483H) and the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH).

• “Load IA32_RTIT_CTL on entry” is a new VM-entry control, located at bit position 18. Processors supporting the
1-settings of this control enumerate that support by setting bit 50 in both the IA32_VMX_ENTRY_CTLS MSR
(index 484H) and the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H).
4-4 Ref. # 319433-035

HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS
CHAPTER 5
HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS

5.1 HARDWARE FEEDBACK INTERFACE
Hardware provides guidance to the Operating System (OS) scheduler to perform optimal workload scheduling
through a hardware feedback interface structure in memory. This structure has a global header that is 16 byte in
size. Following this global header, there is one 8 byte entry per logical processor in the socket. The structure is
designed as follows.

The global header is structured as follows.

The per logical processor scheduler feedback entry is structured as follows.

Table 5-1. Hardware Feedback Interface Structure

Byte Offset Size (Bytes) Description

0 16 Global Header

16 8 LP0 Capability Values

24 8 LP1 Capability Values

...

16 + n*8 8 LPn Capability Values

Table 5-2. Hardware Feedback Interface Global Header Structure

Byte Offset Size (Bytes) Field Name Description

0 8 Timestamp Timestamp of when the table was last updated by hardware. This is a
timestamp in crystal clock units.
Initialized by OS to 0.

8 1 Performance
Capability Changed

If set to 1, indicates the performance capability field for one or more logical
processors was updated in the table.
Initialized by OS to 0.

9 1 Energy Efficiency
Capability Changed

If set to 1, indicates the energy efficiency capability field for one or more
logical processors was updated in the table.
Initialized by OS to 0.

10 6 Reserved Initialized by OS to 0.
Ref. # 319433-035 5-1

HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS
5.1.1 Hardware Feedback Interface Pointer
The physical address of the hardware feedback interface structure is programmed by the OS into a package scoped
MSR named IA32_HW_FEEDBACK_PTR. The MSR is structured as follows:
• Bits 63:MAXPHYADDR1 - Reserved.
• Bits MAXPHYADDR-1:12 - ADDR. This is the physical address of the page frame of the first page of this

structure.
• Bits 11:1 - Reserved.
• Bit 0 - Valid. When set to 1, indicates a valid pointer is programmed into the MSR.
The address of this MSR is 17D0H.
See Section 5.1.4 for details on how the OS detects the size of memory to allocate for this structure. This MSR is
cleared on reset to its default value of 0. The MSR retains its state on INIT.

5.1.2 Hardware Feedback Interface Configuration
The operating system enables the hardware feedback interface using a package scoped MSR named
IA32_HW_FEEDBACK_CONFIG (address 17D1H).
The MSR is structured as follows:
• Bits 63:1 - Reserved.
• Bit 0 - Enable. When set to 1, enables the hardware feedback interface.
This MSR is cleared on reset to its default value of 0. The MSR retains its state on INIT.
When the Enable bit transitions from 1 to 0, hardware sets the IA32_PACKAGE_THERM_STATUS bit 26 to 1 to
acknowledge disabling of the interface. The OS should wait for this bit to be set to 1 after disabling the interface
before reclaiming the memory allocated for this structure. When this bit is set to 1, it is safe to reclaim the memory
as it is guaranteed that there are no writes in progress to this structure by hardware.
SENTER clears the enable bit to 0 on all sockets.

5.1.3 Hardware Feedback Interface Notifications
The IA32_PACKAGE_THERM_STATUS MSR is extended with a new bit, hardware feedback interface structure
change status (bit 26, R/WC0), to indicate that the hardware has updated the hardware feedback interface struc-
ture. This is a sticky bit and once set, indicates that the OS should read the structure to determine the change and
adjust its scheduling decisions. Once set, the hardware will not generate any further updates to this structure until

Table 5-3. Hardware Feedback Interface Logical Processor Entry Structure

Byte Offset Size (Bytes) Field Name Description

0 1 Performance
Capability

Performance capability is an 8-bit value (0 ... 255) specifying the relative
performance level of a logical processor. Higher values indicate higher
performance; the lowest performance level of 0 indicates a recommendation to
the OS to not schedule any software threads on it for performance reasons.
Initialized by OS to 0.

1 1 Energy
Efficiency
Capability

Energy Efficiency capability is an 8-bit value (0 ... 255) specifying the relative
energy efficiency level of a logical processor. Higher values indicate higher energy
efficiency; the lowest energy efficiency capability of 0 indicates a recommendation
to the OS to not schedule any software threads on it for efficiency reasons.
Initialized by OS to 0.

2 6 Reserved Initialized by OS to 0.

1. MAXPHYADDR is reported in CPUID.80000008H:EAX[7:0].
5-2 Ref. # 319433-035

HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS
the OS clears this bit by writing 0. The hardware guarantees that all writes to the hardware feedback interface
structure are globally observed.
The OS can enable interrupt-based notifications when the structure is updated by hardware through a new enable
bit, hardware feedback interrupt enable (bit 25, R/W), in the IA32_PACKAGE_THERM_INTERRUPT MSR. When this
bit is set to 1, it enables the generation of an interrupt when the hardware feedback interface structure is updated
by hardware.

5.1.4 Hardware Feedback Interface Enumeration
CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] enumerates support for this feature. When this bit is enumerated to 1,
the following MSR (or bits in the MSR) are supported by the hardware:
• IA32_HW_FEEDBACK_PTR (address 17D0H)
• IA32_HW_FEEDBACK_CONFIG (address 17D1H)
• IA32_PACKAGE_THERM_STATUS bit 26
• IA32_PACKAGE_THERM_INTERRUPT bit 25

When CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] = 1, then CPUID.06H.0H:EDX reports the following:
• EDX[7:0] - Bitmap of supported hardware feedback interface capabilities.

Bit 0: When set to 1, indicates support for performance capability reporting.
Bit 1: When set to 1, indicates support for energy efficiency capability reporting.
Bits 0 and 1 will always be set together. Other bits are reserved.

• EDX[11:8] - Enumerates the size of the hardware feedback interface structure in number of 4 KB pages using
minus-one notation.

• EDX[31:16] - Index (starting at 0) of this logical processor’s row in the hardware feedback interface structure.
Note that the index may be same for multiple logical processors on some parts. On some parts the indices may
not be contiguous, i.e., there may be unused rows in the table.
Ref. # 319433-035 5-3

HARDWARE FEEDBACK INTERFACE ISA EXTENSIONS
5-4 Ref. # 319433-035

SPLIT LOCK DETECTION
CHAPTER 6
SPLIT LOCK DETECTION

A new control bit (bit 29) in the TEST_CTRL MSR will be introduced in future processors based on Tremont and Ice
Lake microarchitectures to enable detection of split locks.
When bit 29 of the TEST_CTRL MSR is set, the processor causes an #AC(0) exception for split locked accesses at
all CPL irrespective of CR0.AM or EFLAGS.AC. A previous control bit (bit 31) in this MSR causes the processor to
disable LOCK# assertion for split locked accesses when set. When bits 29 and 31 are both set, bit 29 takes prece-
dence.

NOTE
The IA32_CORE_CAPABILITY MSR that reports the capability of enabling detection of split locks is
supported on future processors based on Tremont microarchitecture and later.

Table 6-1. TEST_CTL MSR Details

Register
Address Register Name / Bit Fields Bit Description

 Hex Dec

33H 51 TEST_CTL Test Control Register

28:0 Reserved

29 Enable #AC(0) exception for split locked accesses:

Cause #AC(0) exception for split locked access at all CPL irrespective of
CR0.AM or EFLAGS.AC. If bits 29 and 31 are both set, bit 29 takes
precedence.

30 Reserved

31 Disable LOCK# assertion for split locked access.

CFH 207 IA32_CORE_CAPABILITY IA32 Core Capability Register

4:0 Reserved

5 #AC(0) exception for split locked accesses supported.

31:6 Reserved
Ref. # 319433-035 6-1

SPLIT LOCK DETECTION
6-2 Ref. # 319433-035

INDEX

B
Brand information 1-35

processor brand index 1-37
processor brand string 1-35

C
Cache and TLB information 1-30
Cache Inclusiveness 1-9
CLFLUSH instruction

CPUID flag 1-29
CMOVcc flag 1-29
CMOVcc instructions

CPUID flag 1-29
CMPXCHG16B instruction

CPUID bit 1-27
CMPXCHG8B instruction

CPUID flag 1-29
CPUID instruction 1-7, 1-29

36-bit page size extension 1-29
APIC on-chip 1-29
basic CPUID information 1-8
cache and TLB characteristics 1-8, 1-30
CLFLUSH flag 1-29
CLFLUSH instruction cache line size 1-25
CMPXCHG16B flag 1-27
CMPXCHG8B flag 1-29
CPL qualified debug store 1-26
debug extensions, CR4.DE 1-28
debug store supported 1-29
deterministic cache parameters leaf 1-8, 1-11, 1-13, 1-14, 1-15, 1-16, 1-17, 1-18
extended function information 1-21
feature information 1-28
FPU on-chip 1-28
FSAVE flag 1-29
FXRSTOR flag 1-29
IA-32e mode available 1-22
input limits for EAX 1-23
L1 Context ID 1-27
local APIC physical ID 1-25
machine check architecture 1-29
machine check exception 1-29
memory type range registers 1-29
MONITOR feature information 1-33
MONITOR/MWAIT flag 1-26
MONITOR/MWAIT leaf 1-9, 1-10, 1-11, 1-13, 1-19
MWAIT feature information 1-33
page attribute table 1-29
page size extension 1-28
performance monitoring features 1-33
physical address bits 1-23
physical address extension 1-29
power management 1-33, 1-34, 1-35
processor brand index 1-25, 1-35
processor brand string 1-22, 1-35
processor serial number 1-29
processor type field 1-25
RDMSR flag 1-28
returned in EBX 1-25
returned in ECX & EDX 1-25
self snoop 1-30
SpeedStep technology 1-26
SS2 extensions flag 1-30
Ref. # 319433-035 I

SSE extensions flag 1-30
SSE3 extensions flag 1-26
SSSE3 extensions flag 1-26
SYSENTER flag 1-29
SYSEXIT flag 1-29
thermal management 1-33, 1-34, 1-35
thermal monitor 1-26, 1-29, 1-30
time stamp counter 1-28
using CPUID 1-7
vendor ID string 1-23
version information 1-8, 1-32
virtual 8086 Mode flag 1-28
virtual address bits 1-23
WRMSR flag 1-28

F
Feature information, processor 1-7
FXRSTOR instruction

CPUID flag 1-29
FXSAVE instruction

CPUID flag 1-29

I
IA-32e mode

CPUID flag 1-22
Instruction set

grouped by processor 1-1

L
L1 Context ID 1-27

M
Machine check architecture

CPUID flag 1-29
description 1-29

MMX instructions
CPUID flag for technology 1-29

Model & family information 1-32
MONITOR instruction

CPUID flag 1-26
feature data 1-33

MOV instruction (control registers) 2-12, 2-14
MWAIT instruction

CPUID flag 1-26
feature data 1-33

P
Pending break enable 1-30
Performance-monitoring counters

CPUID inquiry for 1-33

R
RDMSR instruction

CPUID flag 1-28

S
Self Snoop 1-30
SpeedStep technology 1-26
SSE extensions

CPUID flag 1-30
SSE2 extensions

CPUID flag 1-30
II Ref. # 319433-035

SSE3
CPUID flag 1-26

SSE3 extensions
CPUID flag 1-26

SSSE3 extensions
CPUID flag 1-26

Stepping information 1-32
SYSENTER instruction

CPUID flag 1-29
SYSEXIT instruction

CPUID flag 1-29

T
Thermal Monitor

CPUID flag 1-30
Thermal Monitor 2 1-26

CPUID flag 1-26
Time Stamp Counter 1-28

V
Version information, processor 1-7
VPMULTISHIFTQB – Select Packed Unaligned Bytes from Quadword Source 2-45

W
WBINVD instruction 2-70
WBINVD/INVD bit 1-9
WRMSR instruction

CPUID flag 1-28

X
XFEATURE_ENALBED_MASK 1-4
XRSTOR 1-4, 1-34
XSAVE 1-4, 1-27, 1-34
Ref. # 319433-035 III

	Revision History
	Chapter 1 Future Intel® Architecture Instruction Extensions and Features
	1.1 About This Document
	1.2 Instruction Set Extensions and Feature Introduction in Intel 64 and IA-32 Processors
	1.3 Detection of AVX-512 Foundation Instructions
	1.4 Detection of 512-bit Instruction Groups of Intel® AVX-512 Family
	1.5 Detection of Intel® Memory Encryption Technologies (Intel® MKTME) Instructions
	1.6 Detection of Future Instructions
	1.7 CPUID Instruction
	CPUID—CPU Identification

	1.8 Compressed Displacement (disp8*N) Support in EVEX

	Chapter 2 Instruction Set Reference, A-Z
	2.1 Instruction SET Reference
	CLDEMOTE—Cache Line Demote
	GF2P8AFFINEINVQB — Galois Field Affine Transformation Inverse
	GF2P8AFFINEQB — Galois Field Affine Transformation
	GF2P8MULB — Galois Field Multiply Bytes
	MOVDIRI—Move Doubleword as Direct Store
	MOVDIR64B—Move 64 Bytes as Direct Store
	PCONFIG — Platform Configuration
	TPAUSE—Timed PAUSE
	UMONITOR—User Level Set Up Monitor Address
	UMWAIT—User Level Monitor Wait
	VAESDEC — Perform One Round of an AES Decryption Flow
	VAESDECLAST — Perform Last Round of an AES Decryption Flow
	VAESENC — Perform One Round of an AES Encryption Flow
	VAESENCLAST — Perform Last Round of an AES Encryption Flow
	VPCLMULQDQ — Carry-Less Multiplication Quadword
	VPCOMPRESS — Store Sparse Packed Byte/Word Integer Values into Dense Memory/Register
	VPDPBUSD — Multiply and Add Unsigned and Signed Bytes
	VPDPBUSDS — Multiply and Add Unsigned and Signed Bytes with Saturation
	VPDPWSSD — Multiply and Add Signed Word Integers
	VPDPWSSDS — Multiply and Add Word Integers with Saturation
	VPEXPAND — Expand Byte/Word Values
	VPOPCNT — Return the Count of Number of Bits Set to 1 in BYTE/WORD/DWORD/QWORD
	VPSHLD — Concatenate and Shift Packed Data Left Logical
	VPSHLDV — Concatenate and Variable Shift Packed Data Left Logical
	VPSHRD — Concatenate and Shift Packed Data Right Logical
	VPSHRDV — Concatenate and Variable Shift Packed Data Right Logical
	VPSHUFBITQMB — Shuffle Bits from Quadword Elements Using Byte Indexes into Mask
	WBNOINVD—Write Back and Do Not Invalidate Cache

	Chapter 3 EPT-Based Sub-Page Permissions
	3.1 Introduction
	3.2 VMCS Changes
	3.3 Changes to EPT Paging-Structure Entries
	3.4 Changes to Guest-Physical Accesses
	3.5 Sub-Page Permission Table
	3.5.1 SPPT Overview
	3.5.2 Operation of SPPT-based Write-Permission
	3.5.3 SPP-Induced VM Exits
	3.5.3.1 Sub-Page Permissions and EPT Violations

	3.5.4 Invalidating Cached SPP Permissions
	3.5.5 Sub-Page Permission Interaction with Intel® TSX
	3.5.6 Sub-Page Permission Interaction with Intel® SGX
	3.5.7 Memory Type Used for Accessing SPPT

	3.6 Changes to VM Entries
	3.7 Changes to VMX Capability Reporting

	Chapter 4 Intel® Processor Trace: VMX Improvements
	4.1 Introduction
	4.2 Architecture Details
	4.2.1 IA32_RTIT_CTL in VMCS Guest State
	4.2.2 Supporting EPT for Trace Output
	4.2.2.1 VM Exits Due to Intel PT Output
	Exit Qualification
	Preserving Pending Events
	Additional VM Exits

	4.2.2.2 Trace Data Management with Output Events
	4.2.2.3 Intel PT Output Errors

	4.2.3 New VM-Entry Consistency Checks
	4.2.3.1 Special Treatment for SMM VM Exits

	4.3 Enumeration

	Chapter 5 Hardware Feedback Interface ISA Extensions
	5.1 Hardware Feedback Interface
	5.1.1 Hardware Feedback Interface Pointer
	5.1.2 Hardware Feedback Interface Configuration
	5.1.3 Hardware Feedback Interface Notifications
	5.1.4 Hardware Feedback Interface Enumeration

	Chapter 6 Split Lock Detection

