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FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND

FEATURES

1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of Intel® architecture instruction extensions and 
features which may be included in future Intel processor generations. Intel does not guarantee the availability of 
these interfaces and features in any future product. 
The instruction set extensions cover a diverse range of application domains and programming usages. The 512-bit 
SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instruc-
tions, deliver comprehensive set of functionality and higher performance than Intel® Advanced Vector Extensions 
(Intel® AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) instructions. Intel AVX, Intel AVX2 and many 
Intel AVX-512 instructions are covered in Intel® 64 and IA-32 Architectures Software Developer’s Manual sets. 
The reader can refer to them for basic and more background information related to various features referenced in 
this document.
The base of the 512-bit SIMD instruction extensions are referred to as Intel AVX-512 Foundation instructions. They 
include extensions of the Intel AVX and Intel AVX2 family of SIMD instructions but are encoded using a new 
encoding scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and condi-
tional processing using opmask registers. 
Chapter 2 is an instruction set reference, providing details on new instructions.
Chapter 3 describes the Intel® Advanced Matrix Extensions (Intel® AMX).
Chapter 4 describes ENQCMD/ENQCMDS instructions and virtualization support. 
Chapter 5 describes Intel® TSX Suspend Load Address Tracking.
Chapter 6 describes Hypervisor-managed Linear Address Translation.
Chapter 7 describes architectural Last Branch Records (LBRs).
Chapter 8 describes non-write-back lock disable architecture.
Chapter 9 describes bus lock and VM notify features.
Chapter 10 describes Intel® Resource Director Technology feature updates.
Chapter 11 describes user interrupts.
Chapter 12 describes performance monitoring updates.
Chapter 13 describes the enhanced hardware feedback interface (EHFI).
Chapter 14 describes Linear Address Masking (LAM).
Chapter 15 describes the machine error codes for processors based on Sapphire Rapids microarchitecture.

1.2 DISPLAYFAMILY AND DISPLAYMODEL FOR FUTURE PROCESSORS
Table 1-1 lists the signature values of DisplayFamily and DisplayModel for future processor families discussed in 
this document.

Table 1-1.  CPUID Signature Values of DisplayFamily_DisplayModel 
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_6AH, 06_6CH Future processors based on Ice Lake Server microarchitecture

06_8FH Future processors based on Sapphire Rapids Server microarchitecture
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FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.3 INSTRUCTION SET EXTENSIONS AND FEATURE INTRODUCTION IN INTEL® 
64 AND IA-32 PROCESSORS

Recent instruction set extensions and features are listed in Table 1-2. Within these groups, most instructions and 
features are collected into functional subgroups.

1.4 DETECTION OF FUTURE INSTRUCTIONS AND FEATURES
Future instructions and features are enumerated by a CPUID feature flag; details can be found in Table 1-3.

Table 1-2.  Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors1

NOTES:

1. Visit Intel Ark for Intel® product specifications, features and compatibility quick reference guide, and code name decoder.

Instruction Set Architecture / Feature Introduction

PCONFIG, WBNOINVD Ice Lake Server

Intel® MKTME Ice Lake Server

ENCLV Tremont, Ice Lake Server

Direct stores: MOVDIRI, MOVDIR64B Tremont, Tiger Lake, Sapphire Rapids

AVX512_BF16 Cooper Lake, Sapphire Rapids

CET: Control-flow Enforcement Technology Tiger Lake, Sapphire Rapids

AVX512_VP2INTERSECT Tiger Lake, Sapphire Rapids

Enqueue Stores: ENQCMD and ENQCMDS Sapphire Rapids

CLDEMOTE Tremont, Alder Lake, Sapphire Rapids

PTWRITE Goldmont Plus, Alder Lake, Sapphire Rapids

User Wait: TPAUSE, UMONITOR, UMWAIT Tremont, Alder Lake, Sapphire Rapids

Architectural LBRs Alder Lake, Sapphire Rapids

HLAT Alder Lake, Sapphire Rapids

SERIALIZE Alder Lake, Sapphire Rapids

Intel® TSX Suspend Load Address Tracking (TSXLDTRK) Sapphire Rapids

Intel® Advanced Matrix Extensions (Intel® AMX)

Includes CPUID Leaf 1EH, “TMUL Information Main Leaf”, and 
CPUID bits AMX-BF16, AMX-TILE, and AMX-INT8.

Sapphire Rapids

Key Locker2

2. Details on Key Locker can be found here: https://software.intel.com/content/www/us/en/develop/download/intel-key-locker-specifi-
cation.html.

Tiger Lake, Alder Lake

AVX-VNNI Alder Lake3, Sapphire Rapids

3. Alder Lake Intel Hybrid Technology will not support Intel® AVX-512. ISA features such as Intel® AVX, AVX-VNNI, Intel® AVX2, and
UMONITOR/UMWAIT/TPAUSE are supported.

Enhanced Hardware Feedback Interface (EHFI) and HRESET Alder Lake

User Interrupts (UINTR) Sapphire Rapids

Intel® Trust Domain Extensions (Intel® TDX)4

4. Details on Intel® Trust Domain Extensions can be found here: https://software.intel.com/content/www/us/en/develop/articles/intel-
trust-domain-extensions.html.

Future Processors
1-2 Ref. # 319433-042
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1.5 CPUID INSTRUCTION 

CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can 
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction 
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The 
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well). 
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value 
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 1-3 shows information returned, depending on the initial value loaded into the EAX register. 

Two types of information are returned: basic and extended function information. If a value is entered for 
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For 
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *) 
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *) 
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)2 
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2 
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence 
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution 
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before 
the next instruction is fetched and executed.

See also: 

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3A.

"Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction 64-Bit Mode
Compat/

Leg Mode
Description

0F A2 CPUID Valid Valid Returns processor identification and feature information to the EAX, 
EBX, ECX, and EDX registers, as determined by input entered in EAX 
(in some cases, ECX as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

2. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH before 
using leaf 0BH.
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Table 1-3.  Information Returned by CPUID Instruction

Initial EAX 
Value

Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 1-1)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*. 
Bits 31-24: Initial APIC ID**

Feature Information (see Figure 1-2 and Table 1-5)
Feature Information (see Figure 1-3 and Table 1-6)
NOTES: 
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of 
unique initial APIC IDs reserved for addressing different logical processors in a physical package.
**The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH 
and Leaf 1FH.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 1-7)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX Reserved

EBX Reserved

ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the 
value in this register is reserved.)

NOTES: 
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature. 

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf 

04H NOTES:
Leaf 04H output depends on the initial value in ECX. 
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level” on page 1-33.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache 
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1) 
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache
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Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, ** 
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical 
package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate

0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads 
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads 
sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.

Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result. 
** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique

initial APIC IDs reserved for addressing different logical processors sharing this cache.
*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of

unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID. 

****The returned value is constant for valid initial values in ECX. Valid ECX values start from 0. 

MONITOR/MWAIT Leaf 

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity) 
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31-02: Reserved 

EDX Bits 03-00: Number of C0* sub C-states supported using MWAIT
Bits 07-04: Number of C1* sub C-states supported using MWAIT
Bits 11-08: Number of C2* sub C-states supported using MWAIT
Bits 15-12: Number of C3* sub C-states supported using MWAIT
Bits 19-16: Number of C4* sub C-states supported using MWAIT
Bits 23-20: Number of C5* sub C-states supported using MWAIT
Bits 27-24: Number of C6* sub C-states supported using MWAIT
Bits 31-28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not

ACPI C-states.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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Thermal and Power Management Leaf 

06H EAX Bit 00: Digital temperature sensor is supported if set
Bit 01: Intel® Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved 
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES, 
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs 
are supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set. 
Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR, IA32_HW_FEEDBACK_CONFIG, IA32_PACK-
AGE_THERM_STATUS bit 26 and IA32_PACKAGE_THERM_INTERRUPT bit 25 are supported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bits 22-21: Reserved.
Bit 23: Enhanced Hardware Feedback Interface supported if set. IA32_HW_FEEDBACK_CHAR and 
IA32_HW_FEEDBACK_THREAD_CONFIG MSRs are supported if set.
Bits 31-24: Reserved.

EBX Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31-04: Reserved 

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The 
capability to provide a measure of delivered processor performance (since last reset of the count-
ers), as a percentage of the expected processor performance when running at the TSC frequency.
Bits 02-01: Reserved = 0
Bit 03: The processor supports performance-energy bias preference if
CPUID.06H:ECX.SETBH[bit 3] is set and it also implies the presence of a
new architectural MSR called IA32_ENERGY_PERF_BIAS (1B0H)
Bits 07 -04: Reserved = 0
Bits 15-08: Enumerates the number of Enhanced Hardware Feedback interface classes supported by 
the processor. Information for that many classes is written into the EHFI structure by the hardware.
Bits 31-16: Reserved = 0

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-8: Enumerates the size of the hardware feedback interface structure in number of 4 KB 
pages; add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor’s row in the hardware feedback interface 
structure. Note that on some parts the index may be same for multiple logical processors. On some 
parts the indices may not be contiguous, i.e., there may be unused rows in the hardware feedback 
interface structure.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H NOTES:
Leaf 07H main leaf (ECX = 0). 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. 

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX
Bit 03: BMI1
Bit 04: HLE
Bit 05: Intel® AVX2
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID
Bit 11: RTM
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Intel® Memory Protection Extensions
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F
Bit 17: AVX512DQ
Bit 18: RDSEED
Bit 19: ADX
Bit 20: SMAP
Bit 21: AVX512_IFMA
Bit 22: Reserved
Bit 23: CLFLUSHOPT
Bit 24: CLWB
Bit 25: Intel Processor Trace
Bit 26: AVX512PF (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD
Bit 29: SHA
Bit 30: AVX512BW
Bit 31: AVX512VL

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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ECX Bit 00: PREFETCHWT1 (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG
Bit 06: AVX512_VBMI2
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0 
of the IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: IA32_INTER-
RUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
Bit 08: GFNI
Bit 09: VAES
Bit 10: VPCLMULQDQ
Bit 11: AVX512_VNNI
Bit 12: AVX512_BITALG
Bit 13: Reserved
Bit 14: AVX512_VPOPCNTDQ
Bit 15: Reserved
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: Reserved
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: ENQCMD: Supports Enqueue Stores if 1.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bits 01-00: Reserved
Bit 02: AVX512_4VNNIW (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV
Bit 05: UINTR. If 1, the processor supports user interrupts.
Bits 07-06: Reserved
Bit 08: AVX512_VP2INTERSECT
Bit 09: Reserved
Bit 10: MD_CLEAR supported.
Bits 13-11: Reserved
Bit 14: SERIALIZE
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part.
Bit 16: TSXLDTRK. If 1, the processor supports Intel TSX suspend load address tracking.
Bit 17: Reserved
Bit 18: PCONFIG
Bit 19: Reserved
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit 
define bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bit 21: Reserved
Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
Bit 23: AVX512_FP16
Bit 24: AMX-TILE. If 1, the processor supports tile architecture.
Bit 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch 
predictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the 
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and 
IA32_PRED_CMD[0] (IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set 
this bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the 
IA32_FLUSH_CMD MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. A bit 
being set in this MSR indicates that a model specific feature is supported; software must still consult 
CPUID family/model/stepping to determine the behavior of the enumerated feature as features enu-
merated in IA32_CORE_CAPABILITIES may have different behavior on different processor models.

Additionally, on hybrid parts (CPUID.07H.0H:EDX[15]=1), software must consult the native model ID 
and core type from the Hybrid Information Enumeration Leaf.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit 
support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

NOTE:
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 

exceeds the value that sub-leaf 0 returns in EAX.

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 03-00: Reserved.
Bit 04: AVX-VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting BFLOAT16 inputs and conver-
sion instructions from IEEE single precision.
Bits 09-06: Reserved.
Bit 10: If 1, supports fast zero-length MOVSB.
Bit 11: If 1, supports fast short STOSB.
Bit 12: If 1, supports fast short CMPSB, SCASB.
Bits 21-13: Reserved.
Bit 22: HRESET. If 1, supports history reset and the IA32_HRESET_ENABLE MSR. When set, indicates 
that the Processor History Reset Leaf (EAX = 20H) is valid.
Bits 25-23: Reserved.
Bit 26: LAM. If 1, supports Linear Address Masking.
Bits 31-27: Reserved.

EBX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX = n, n ≥ 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX. 
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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EBX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Direct Cache Access Information Leaf 

09H EAX
EBX
ECX
EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
Reserved 
Reserved 
Reserved 

Architectural Performance Monitoring Leaf 

0AH EAX Bits 07-00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23-16: Bit width of general-purpose, performance monitoring counter 
Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24]<1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24]<2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24]<3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24]<4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24]<5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24]<6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24]<7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24]<8.
Bits 31-08: Reserved = 0

ECX Bits 31-00: Supported fixed counters. If bit 'i' is set, it implies that Fixed Counter 'i' is supported. 
Software is recommended to use the following logic to check if a Fixed Counter is supported on a 
given processor: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

EDX Bits 04-00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID 
> 1).
Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14-13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31-16: Reserved = 0.

Extended Topology Enumeration Leaf 

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the exis-
tence of Leaf 1FH before using leaf 0BH.
Most of Leaf 0BH output depends on the initial value in ECX. 
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that returns an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.
If an input value N in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with
ECX > N also return 0 in ECX[15:8]

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level 
type*. All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15-00: Number of logical processors at this level type. The number reflects configuration as 
shipped by Intel**.
Bits 31-16: Reserved.
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ECX Bits 07-00: Level number. Same value in ECX input.
Bits 15-08: Level type***.
Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in 
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical 
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” 
values do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0). 

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: Legacy x87.
Bit 01: 128-bit SSE.
Bit 02: 256-bit AVX
Bits 04-03: MPX state
Bit 07-05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 12-10: Reserved.
Bits 14-13: Used for IA32_XSS.
Bits 15: Reserved.
Bit 16: Used for IA32_XSS.
Bit 17: XTILECFG.
Bit 18: XTILEDATA.
Bits 31-19: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by 
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save 
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the 
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit 
fields in XCR0. 

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of the XCR0 register. If a bit is 0, the cor-
responding bit field in XCR0 is reserved 
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Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bit 04: Supports Extended Feature Disable (XFD) if set.
Bits 31-05: Reserved.

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can 
be set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: Reserved.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.
Bit 14: UINTR state.
Bits 15: Reserved.
Bit 16: HWP state.
Bits 31-17: Reserved.

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32] 
can be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX. 
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in 
either the XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is 

invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 
63) is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended 
state feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is 
invalid*.

EBX Bits 31-00: The offset in bytes of this extended state component’s save area from the beginning of 
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is 
clear if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component 
located on the next 64-byte boundary following the preceding state component (otherwise, it is 
located immediately following the preceding state component).
Bit 2 is set to indicate support for XFD faulting.
Bits 31-03 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
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Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31-02: Reserved

L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX. 

EAX No bits set: 24-bit counters.
Bits 07 - 00: Encode counter width offset from 24b:

0x0 = 24-bit counters.
0x1 = 25-bit counters. 
0x25 = 61-bit counters.

Bit 08: Indicates that bit 61 in IA32_QM_CTR MSR is an overflow bit.
Bits 31 - 09: Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and 
Memory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31-03: Reserved

Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31-04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31-05: Reserved
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EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31-03: Reserved

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved

L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 04 - 00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31 - 05: Reserved.

EBX Bits 31 - 00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31 - 00: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX. 

EAX Bits 11 - 00: Reports the maximum MBA throttling value supported for the corresponding ResID 
using minus-one notation.
Bits 31 - 12: Reserved.

EBX Bits 31 - 00: Reserved.

ECX Bit 00: Per-thread MBA controls are supported.
Bit 01: Reserved.
Bit 02: Reports whether the response of the delay values is linear. 
Bits 31 - 03: Reserved.

EDX Bits 15 - 00: Highest COS number supported for this ResID.
Bits 31 - 16: Reserved.

Intel® Software Guard Extensions (Intel® SGX) Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 00: SGX1. If 1, Indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, Indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04-02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD, 
and ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and 
ELDUC.
Bits 31-07: Reserved. 

EBX Bits 31-00: MISCSELECT. Bit vector of supported extended Intel SGX features.

ECX Bits 31-00: Reserved.
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EDX Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is 
2^(EDX[7:0]).
Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is 
2^(EDX[15:8]).
Bits 31-16: Reserved.

Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 

EAX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1. 
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf
type listed below. 

EAX Bit 03-00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid. 
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on 
the Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid. 

EDX:ECX:EBX:EAX return 0.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows. 

EAX[11:04]: Reserved (enumerate 0). 
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section. 

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section. 
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows: 
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
If EAX[3:0] 0010b, then this section has confidentiality protection only.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0). 
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor 
Reserved Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor 
Reserved Memory. 
EDX[31:20]: Reserved.
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Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0). 

EAX Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

EBX Bit 00: If 1, Indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_-
MATCH MSR can be accessed.
Bits 01: If 1, Indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, Indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs 
across warm reset.
Bits 03: If 1, Indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_R-
TIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn), 
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56] 
(InjectPsbPmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or 
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to 
Intel PT disable. Writes can also set PendToPAPMI and PendPSB.
Bits 31-07: Reserved 

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output 
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the 
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bits 02: If 1, Indicates support of Single-Range Output scheme.
Bits 03: If 1, Indicates support of output to Trace Transport subsystem.
Bit 30-04: Reserved
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base 
component.

EDX Bits 31-00: Reserved 

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31-16: Bitmap of supported MTC period encodings

EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings
Bit 31-16: Bitmap of supported Configurable PSB frequency encodings

ECX Bits 31-00: Reserved

EDX Bits 31-00: Reserved

Time Stamp Counter and Core Crystal Clock Information Leaf 

15H NOTES:
If EBX[31:0] is 0, the TSC and ”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock fre-
quency.
If ECX is 0, the core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.
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ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31-00: Reserved = 0.

Processor Frequency Information Leaf 

16H EAX

EBX

ECX

EDX

Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0
Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0
Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0
Reserved 
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not 
reflect actual values. Suitable use of this data includes the display of processor information in like 
manner to the processor brand string and for determining the appropriate range to use when 
displaying processor information e.g. frequency history graphs. The returned information should not 
be used for any other purpose as the returned information does not accurately correlate to 
information / counters returned by other processor interfaces. 

While a processor may support the Processor Frequency Information leaf, fields that return a value 
of zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard 
enumeration scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.
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System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31-00: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translations structure. Valid sub-leaves do not need 
to be contiguous or in any particular order. A valid sub-leaf may be in a higher input ECX value than 
an invalid sub-leaf or than a valid sub-leaf of a higher or lower-level structure. 
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX.
* Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation 
cache*
Bits 31-26: Reserved.
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Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n 
exceeds the value that sub-leaf 0 returns in EAX.
* Add one to the return value to get the result.

EAX Bits 31-00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation 
cache*
Bits 31-26: Reserved.

Key Locker Leaf (EAX = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs and backing up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: Reserved.

EDX Reserved.
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Hybrid Information Sub-leaf (EAX = 1AH, ECX = 0)

1AH EAX Enumerates the native model ID and core type.
Bits 31-24: Core type

10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™

Bits 23-0: Reserved

EBX Reserved.

ECX Reserved.

EDX Reserved.

PCONFIG Information Sub-leaf (EAX = 1BH, ECX ≥ 0)

1BH NOTES:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.
For sub-leaves of 1BH, the definition of EDX, ECX, EBX, EAX depends on the sub-leaf type listed 
below.
* Currently MKTME is the only defined target and is indicated by identifier 1. An identifier of 0 
indicates an invalid target. If MKTME is a supported target, the MKTME_KEY_PROGRAM leaf of 
PCONFIG is available.

EAX Bits 11-00: Sub-leaf type
0: Invalid sub-leaf. On an invalid sub-leaf type returned, subsequent sub-leaves are also invalid. 
EBX, ECX and EDX all return 0 for this case.
1: Target Identifier. This sub-leaf enumerates PCONFIG targets supported on the platform. 
Software must scan until an invalid sub-leaf type is returned. EBX, ECX and EDX are defined below 
for this case.

Bits 31-12: 0

EBX * Identifier of target 3n+1 (where n is the sub-leaf number, the initial value of ECX).

ECX * Identifier of target 3n+2.

EDX * Identifier of target 3n+3.

Tile Information Main Leaf (EAX = 1DH, ECX = 0)

1DH NOTE:
For sub-leaves of 1DH, they are indexed by the palette id.
Leaf 1DH sub-leaves 2 and above are reserved.

EAX Bits 31-00: max_palette. Highest numbered palette sub-leaf. Value = 1.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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Tile Palette 1 Sub-leaf (EAX = 1DH, ECX = 1)

1DH EAX Bits 15-00: Palette 1 total_tile_bytes. Value = 8192. 
Bits 31-16: Palette 1 bytes_per_tile. Value = 1024. 

EBX Bits 15-00: Palette 1 bytes_per_row. Value = 64.
Bits 31-16: Palette 1 max_names (number of tile registers). Value = 8.

ECX Bits 15-00: Palette 1 max_rows. Value = 16.
Bits 31-16: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

TMUL Information Main Leaf (EAX = 1EH, ECX = 0)

1EH NOTE:
Leaf 1EH sub-leaf 1 and above are reserved.

EAX Bits 31-00: Reserved = 0.

EBX Bits 07-00: tmul_maxk (rows or columns). Value = 16.
Bits 23-08: tmul_maxn (column bytes). Value = 64.
Bits 31-24: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

V2 Extended Topology Enumeration Leaf 

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the exis-
tence of Leaf 1FH and using this if available.
Most of Leaf 1FH output depends on the initial value in ECX. 
The EDX output of leaf 1FH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a 
higher-level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with 
ECX > n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level 
type*. All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as 
shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in 
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical 
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations. 

*** The value of the “level type” field is not related to level numbers in any way, higher “level type” 
values do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3: Module.
4: Tile.
5: Die.
6-255: Reserved.

Processor History Reset Sub-leaf (EAX = 20H, ECX = 0)

20H EAX Reports the maximum number of sub-leaves that are supported in leaf 20H.

EBX Indicates which bits may be set in the IA32_HRESET_ENABLE MSR to enable enhanced hardware 
feedback interface history.
Bit 00: Indicates support for both HRESET’s EAX[0] parameter, and IA32_HRESET_ENABLE[0] set by 
the OS to enable reset of EHFI history.
Bits 31-01: Reserved for other history reset capabilities.

ECX Reserved.

EDX Reserved.

Unimplemented CPUID Leaf Functions

40000000H 
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the 
initial EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX
EBX
ECX

Extended Processor Signature and Feature Bits.
Reserved
Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01: Reserved
Bit 05: LZCNT available
Bits 07-06: Reserved
Bit 08: PREFETCHW
Bits 31-09: Reserved

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped)  09H - Reserved
02H - 2 ways  0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** 0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-
leaf 2

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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INPUT EAX = 0H: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification 
String

When CPUID executes with EAX set to 0H, the processor returns the highest value the CPUID recognizes for 
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
ineIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low 4 bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low 4 bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 0H, the processor returns the highest value the processor recognizes for 
returning extended processor information. The value is returned in the EAX register and is processor specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update 
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 10 in 
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. 

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 1-1). For example: 
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 1-4 for available processor type values. Stepping IDs are provided as needed.

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Virtual/Physical Address size 
Bits 07-00: #Physical Address Bits*
Bits 15-08: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX

ECX
EDX

Bits 08-00: Reserved = 0
Bit 09: WBNOINVD is available if 1
Bits 31-10: Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported

should come from this field.

Table 1-3.  Information Returned by CPUID Instruction(Continued)

Initial EAX 
Value

Information Provided about the Processor
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NOTE
See "Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 16 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32 
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display 
using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a 
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register: 

Figure 1-1.  Version Information Returned by CPUID in EAX

Table 1-4.  Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Processor Type 

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model 

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
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• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand 
strings for IA-32 processors. More information about this field is provided later in this section. 

• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line 
flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the 
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 1-2 and Table 1-5 show encodings for ECX.
• Figure 1-3 and Table 1-6 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID 
prior to using the feature. Software should not depend on future offerings retaining all features.

Figure 1-2.  Feature Information Returned in the ECX Register

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST —  Enhanced  Intel  SpeedStep®  Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ  —  Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 —  SSSE3 Extensions

PDCM —  Perf/Debug Capability MSR

VMX — Virtual Machine Extensions 

SSE4_1 —  SSE4.1

OSXSAVE

SSE4_2 —  SSE4.2

DCA —  Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA —  Fused Multiply Add

SSE3  —  SSE3 Extensions

PCID —  Process-context Identifiers

0

DTES64  —  64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
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Table 1-5.  Feature Information Returned in the ECX Register 

Bit # Mnemonic Description

0 SSE3 Intel® Streaming SIMD Extensions 3 (Intel® SSE3). A value of 1 indicates the processor supports this 
technology.

1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature. 

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the 
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See 
Chapter 6, “Safer Mode Extensions Reference”.

7 EST Enhanced Intel SpeedStep® Technology. A value of 1 indicates that the processor supports this 
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology. 

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A 
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or 
shared mode. A value of 0 indicates this feature is not supported. See definition of the 
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update 
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing 
IA32_MISC_ENABLES[bit 23]. 

15 PDCM Perfmon and Debug Capability. A value of 1 indicates the processor supports the performance and 
debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that 
software may set CR4.PCIDE to 1.

18 DCA  A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped 
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1. 

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2. 

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC 
deadline value.

25 AES A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states 
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV 
instructions to access XCR0 and to support processor extended state management using 
XSAVE/XRSTOR.

28 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and 
three-operand encoding of 256-bit and 128-bit SIMD instructions.
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29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return 0.

Figure 1-3.  Feature Information Returned in the EDX Register

Table 1-6.  More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the 
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS 
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional 
trapping of accesses to DR4 and DR5. 

Table 1-5.  Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
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3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the 
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and 
PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are 
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table 
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 
4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is 
implementation specific. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the 
feature. This feature does not define the model-specific implementations of machine-check error logging, 
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor 
version to do model specific processing of the exception, or test for the presence of the Machine Check 
feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly 
locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to 
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some 
processors permit the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe 
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are 
supported. 

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries 
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for 
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The 
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is 
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range 
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear 
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported 
with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are 
encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and 
may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the 
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer. 
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see 
Chapter 23, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 3C).

Table 1-6.  More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
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INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal caches 
and TLBs in the EAX, EBX, ECX, and EDX registers. 

The encoding is as follows:
• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction 

must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs. 
The first member of the family of Pentium 4 processors will return a 01H.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set 
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. Table 1-7 shows the 
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not 
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The 
descriptors may appear in any order.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that 
allow processor temperature to be monitored and processor performance to be modulated in predefined duty 
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and 
restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available for an 
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of 
its own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in 
the package and software should assume only a single APIC ID is reserved.  A value of 1 for HTT indicates the 
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is 
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the 
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the 
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the 
IA32_MISC_ENABLE MSR enables this capability.

Table 1-7.  Encoding of Cache and TLB Descriptors 
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

Table 1-6.  More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
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0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

Table 1-7.  Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
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Example 1-1.  Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs 
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed 

once with an input value of 2 to retrieve complete information about caches and TLBs.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register 

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 1-7.  Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
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INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data 
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid 
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an 
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally 
defined fields reported by deterministic cache parameters are documented in Table 1-3.

The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package. 
This information is constant for all valid index values. Software can query the raw data reported by executing 
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter 
8, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to 
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with 
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 1-3. 

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 1-3. 

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0H, the processor returns information about the maximum 
number of sub-leaves that contain extended feature flags. See Table 1-3. 

When CPUID executes with EAX set to 07H and ECX = n (n ≥ 1 and less than the number of non-zero bits in 
CPUID.(EAX=07H, ECX= 0H).EAX), the processor returns information about extended feature flags. See Table 
1-3. In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended 
feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 1-3. 

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural 
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see 
Table 1-3) is greater than Pn 0. See Table 1-3.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover 
the programming facilities and the architectural performance events available in the processor. The details are 
described in Chapter 17, “Debug, Branch Profile, TSC, and Quality of Service,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH 
before using leaf 0BH.
When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported 
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 1-3.
Ref. # 319433-042 1-33



FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0H, the processor returns information about the bit-vector 
representation of all processor state extensions that are supported in the processor and storage size requirements 
of the XSAVE/XRSTOR area. See Table 1-3. 

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns 
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. 
See Table 1-3. Software can use the forward-extendable technique depicted below to query the valid sub-leaves 
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1 ) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i; 
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector 
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID 
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds 
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the 
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector 
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit 
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or 
ResID) that software must use to query QoS enforcement capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each 
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 1-3. 

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 1-3. 

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX 
Enclave Page Cache. See Table 1-3.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor 
Trace extensions. See Table 1-3. 

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in 
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor 
Trace. See Table 1-3. 

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp 
1-34 Ref. # 319433-042



FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Counter and Core Crystal Clock. See Table 1-3.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 1-3. 

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor 
Attribute Enumeration. See Table 1-3. 

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address 
Translation Parameters. See Table 1-3. 

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 1-3. 

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table 
1-3. 

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. See 
Table 1-3. 

INPUT EAX = 1DH: Returns Tile Information

When CPUID executes with EAX set to 1DH and ECX = 0H, the processor returns information about tile 
architecture. See Table 1-3. 

When CPUID executes with EAX set to 1DH and ECX = 1H, the processor returns information about tile palette 1. 
See Table 1-3. 

INPUT EAX = 1EH: Returns TMUL Information

When CPUID executes with EAX set to 1EH and ECX = 0H, the processor returns information about TMUL 
capabilities. See Table 1-3. 

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported 
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 1-3. 

INPUT EAX = 20H: Returns Processor History Reset Information

When CPUID executes with EAX set to 20H, the processor returns information about processor history reset. See 
Table 1-3. 

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.
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These two methods are discussed in the following sections. For methods that are available in early processors, see 
Section: “Identification of Earlier IA-32 Processors” in Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 1-4 describes the algorithm used for detection of the brand string. Processor brand identification software 
should execute this algorithm on all Intel 64 and IA-32 processors. 

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum 
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input 
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 1-8 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 1-4.  Determination of Support for the Processor Brand String

Table 1-8.  Processor Brand String Returned with Pentium 4 Processor 

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“  ” 

“ ”

“ ”

“nI  ”

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value 
         =  0x80000004)

CPUID 
Function

Supported

True = 
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX= 
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
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Extracting the Maximum Processor Frequency from Brand Strings

Figure 1-5 provides an algorithm which software can use to extract the maximum processor operating frequency 
from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor, 
not the frequency at which the processor is currently running.

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P )R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4 )”

“ UPC”

“0051”

“\0zHM”

Figure 1-5.  Algorithm for Extracting Maximum Processor Frequency

Table 1-8.  Processor Brand String Returned with Pentium 4 Processor (Continued)

IF Substring Matched

"zHM", or 
"zHG", or 

"zHT"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits 
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
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The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand 
identification table that is maintained in memory by system software and is accessible from system- and user-level 
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official 
Intel family and model number of a processor.

When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software 
can then use this index to locate the brand identification string for the processor in the brand identification table. 
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do 
not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H, 
brand index method is no longer supported. Use brand string method instead.

Table 1-9 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the 
Intel486 processor.

Table 1-9.  Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R) 
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III 
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Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID; 
EAX[7:4] := Model; 
EAX[11:8] := Family; 
EAX[13:12] := Processor type; 
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 1-2. *)
EDX := Feature flags; (* See Figure 1-3. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information; 
 EBX := Cache and TLB information; 
 ECX := Cache and TLB information; 

EDX := Cache and TLB information; 
BREAK;
EAX = 3H:

EAX := Reserved; 
 EBX := Reserved; 
 ECX := ProcessorSerialNumber[31:0]; 

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32]; 
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 1-3. *)
EBX := Deterministic Cache Parameters Leaf; 

 ECX := Deterministic Cache Parameters Leaf; 
EDX := Deterministic Cache Parameters Leaf; 

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 1-3. *)
 EBX := MONITOR/MWAIT Leaf; 
 ECX := MONITOR/MWAIT Leaf; 

EDX := MONITOR/MWAIT Leaf; 
BREAK;
EAX = 6H:

EAX := Thermal and Power Management Leaf; (* See Table 1-3. *)
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 EBX := Thermal and Power Management Leaf; 
 ECX := Thermal and Power Management Leaf; 

EDX := Thermal and Power Management Leaf; 
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Leaf; (* See Table 1-3. *);
 EBX := Structured Extended Feature Leaf; 
 ECX := Structured Extended Feature Leaf; 

EDX := Structured Extended Feature Leaf; 
BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 1-3. *)
 EBX := Direct Cache Access Information Leaf; 
 ECX := Direct Cache Access Information Leaf; 

EDX := Direct Cache Access Information Leaf; 
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 1-3. *)
 EBX := Architectural Performance Monitoring Leaf; 
 ECX := Architectural Performance Monitoring Leaf; 

EDX := Architectural Performance Monitoring Leaf; 
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := Extended Topology Enumeration Leaf; 

 ECX := Extended Topology Enumeration Leaf; 
EDX := Extended Topology Enumeration Leaf; 

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Extended State Enumeration Leaf; 
 ECX := Processor Extended State Enumeration Leaf; 

EDX := Processor Extended State Enumeration Leaf; 
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0; 
 ECX := Reserved = 0; 

EDX := Reserved = 0; 
BREAK;
EAX = FH:

EAX := Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 1-3. *)
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 EBX := Platform Quality of Service Monitoring Enumeration Leaf; 
 ECX := Platform Quality of Service Monitoring Enumeration Leaf; 

EDX := Platform Quality of Service Monitoring Enumeration Leaf; 
BREAK;
EAX = 10H:

EAX := Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 1-3. *)
 EBX := Platform Quality of Service Enforcement Enumeration Leaf; 
 ECX := Platform Quality of Service Enforcement Enumeration Leaf; 

EDX := Platform Quality of Service Enforcement Enumeration Leaf; 
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel SGX Enumeration Leaf; 
 ECX := Intel SGX Enumeration Leaf; 

EDX := Intel SGX Enumeration Leaf; 
BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel Processor Trace Enumeration Leaf; 
 ECX := Intel Processor Trace Enumeration Leaf; 

EDX := Intel Processor Trace Enumeration Leaf; 
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Core Crystal Clock Information Leaf; (* See Table 1-3. *)
 EBX := Time Stamp Counter and Core Crystal Clock Information Leaf; 
 ECX := Time Stamp Counter and Core Crystal Clock Information Leaf; 

EDX := Time Stamp Counter and Core Crystal Clock Information Leaf; 
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Frequency Information Enumeration Leaf; 
 ECX := Processor Frequency Information Enumeration Leaf; 

EDX := Processor Frequency Information Enumeration Leaf; 
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 1-3. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf; 
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf; 

EDX := System-On-Chip Vendor Attribute Enumeration Leaf; 
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 1-3. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf; 
 ECX :=Deterministic Address Translation Parameters Enumeration Leaf; 

EDX := Deterministic Address Translation Parameters Enumeration Leaf; 
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 1-3. *)
 EBX := Key Locker Enumeration Leaf; 
 ECX := Key Locker Enumeration Leaf; 

EDX := Key Locker Enumeration Leaf; 
BREAK;
EAX = 1AH:

EAX := Hybrid Information Enumeration Leaf; (* See Table 1-3. *)
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 EBX := Hybrid Information Enumeration Leaf; 
 ECX := Hybrid Information Enumeration Leaf; 

EDX := Hybrid Information Enumeration Leaf; 
BREAK;
EAX = 1BH:

EAX := PCONFIG Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := PCONFIG Information Enumeration Leaf; 
 ECX := PCONFIG Information Enumeration Leaf; 

EDX := PCONFIG Information Enumeration Leaf; 
BREAK;
EAX = 1DH:

EAX := Tile Information Enumeration Leaf; (* See Table 1-3. *)
EBX := Tile Information Enumeration Leaf; 

 ECX := Tile Information Enumeration Leaf; 
EDX := Tile Information Enumeration Leaf; 

BREAK;
EAX = 1EH:

EAX := TMUL Information Enumeration Leaf; (* See Table 1-3. *)
EBX := TMUL Information Enumeration Leaf; 

 ECX := TMUL Information Enumeration Leaf; 
EDX := TMUL Information Enumeration Leaf; 

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := V2 Extended Topology Enumeration Leaf; 

 ECX := V2 Extended Topology Enumeration Leaf; 
EDX := V2 Extended Topology Enumeration Leaf; 

BREAK;
EAX = 20H:

EAX := Processor History Reset Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor History Reset Enumeration Leaf; 
 ECX := Processor History Reset Enumeration Leaf; 

EDX := Processor History Reset Enumeration Leaf; 
BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved; 
ECX := Reserved; 
EDX := Reserved; 

BREAK;
EAX = 80000001H:

EAX := Reserved; 
EBX := Reserved; 
ECX := Extended Feature Bits (* See Table 1-3.*); 
EDX := Extended Feature Bits (* See Table 1-3. *); 

BREAK;
EAX = 80000002H:

EAX := Processor Brand String; 
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued; 

BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued; 
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EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued; 

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued; 
EBX := Processor Brand String, continued; 
ECX := Processor Brand String, continued; 
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000006H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Cache information; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000007H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
EAX = 80000008H:

EAX := Reserved = 0; 
EBX := Reserved = 0; 
ECX := Reserved = 0; 
EDX := Reserved = 0; 

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an 
invalid opcode (#UD) exception being generated.§
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1.6 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement 
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length, 
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor 
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64 
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 1-10 and Table 1-11 below, 
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype 
is listed based on the vector length (VL) and other factors affecting it.
Table 1-10 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of 
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data 
element sizes which are either dword or qword. 
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data 
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 1-11. Table 1-11 
also includes many broadcast instructions which perform broadcast using a subset of data elements without using 
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 1-11. Instruc-
tion classified in Table 1-11 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction, 
providing the cross reference for the scaling factor N to encoding memory addressing operand. 
Note that the disp8*N rules still apply when using 16b addressing.

Table 1-10.  Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector 
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 1-11.  EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by 

EVEX.W64bit N/A 8 8 8

Tuple1_4X 32bit 0 161 N/A 16 4FMA(PS)

Tuple2
32bit 0 8 8 8

Broadcast (2 elements) 
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements) 
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements) 
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1.7 BFLOAT16 FLOATING-POINT FORMAT
Intel® Deep Learning Boost (Intel® DL Boost) uses bfloat16 format (BF16). Figure 1-6 illustrates 
BF16 versus FP16 and FP32.

BF16 has several advantages over FP16:

• It can be seen as a short version of FP32, skipping the least significant 16 bits of mantissa.

• There is no need to support denormals; FP32, and therefore also BF16, offer more than enough range 
for deep learning training tasks.

• FP32 accumulation after the multiply is essential to achieve sufficient numerical behavior on an 
application level.

• Hardware exception handling is not needed as this is a performance optimization; industry is designing 
algorithms around checking inf/NaN.

Half Mem N/A N/A 8 16 32  SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

NOTES:

1. Scalar

Figure 1-6.  Comparison of BF16 to FP16 and FP32

Table 1-11.  EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast(Continued)

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

BFP10001

FP32

10 bit mantissa5 bit exps

23 bit mantissa8 bit exps

FP16

7 bit mantissa8 bit expsBF16
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CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z

Instructions described in this document follow the general documentation convention established in Intel® 64 and 
IA-32 Architectures Software Developer’s Manual Volume 2A. Additionally, some instructions use notation conven-
tions as described below. 
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The 
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all 
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after 
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte 
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is 

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to 
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or 
0b10, then we use the notation !(11). 

• If for example only the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as 
mm:101:bbb. 

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the 
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the 
MODRM.MOD and MODRM.RM fields in the encoding boxes.

2.1 INSTRUCTION SET REFERENCE
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CLUI — Clear User Interrupt Flag

Instruction Operand Encoding

Description

CLUI clears the user interrupt flag (UIF). Its effect takes place immediately: a user interrupt cannot be delivered on 
the instruction boundary following CLUI.
An execution of CLUI inside a transactional region causes a transactional abort; the abort loads EAX as it would 
have had it been caused due to an execution of CLI.

Operation

UIF := 0;

Flags Affected

None.

Protected Mode Exceptions
#UD The CLUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The CLUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The CLUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The CLUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EE
CLUI

ZO V/I UINTR Clear user interrupt flag; user interrupts blocked 
when user interrupt flag cleared.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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ENQCMD — Enqueue Command

Instruction Operand Encoding

Description

The ENQCMD instruction allows software to write commands to enqueue registers, which are special device 
registers accessed using memory-mapped I/O (MMIO).
Enqueue registers expect writes to have the following format:

Bits 19:0 convey the process address space identifier (PASID), a value which system software may assign to indi-
vidual software threads. Bit 31 contains privilege identification (0 = user; 1 = supervisor). Devices implementing 
enqueue registers may use these two values along with a device-specific command in the upper 60 bytes. Chapter 
4 provides more details regarding how ENQCMD uses PASIDs.
The ENQCMD instruction begins by reading 64 bytes of command data from its source memory operand. This is an 
ordinary load with cacheability and memory ordering implied normally by the memory type. The source operand 
need not be aligned, and there is no guarantee that all 64 bytes are loaded atomically.
The instruction then formats those 64 bytes into command data with a format consistent with that given in 
Figure 2-1:
• Command[19:0] get IA32_PASID[19:0].1

• Command[30:20] are zero.
• Command[31] is 0 (indicating user).
• Command[511:32] get bits 511:32 of the source operand that was read from memory.
(The instruction ignores bits 31:0 of the source operand.)
The ENQCMD instruction uses an enqueue store (defined below) to write this command data to the destination 
operand. The address of the destination operand is specified in a general-purpose register as an offset into the ES 
segment (the segment cannot be overridden).2 The destination linear address must be 64-byte aligned. The oper-
ation of an enqueue store disregards the memory type of the destination memory address.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 38 F8 !(11):rrr:bbb
ENQCMD r32/r64, m512

A V/V ENQCMD Atomically enqueue 64-byte user command 
with PASID from source memory operand to 
destination offset in ES segment specified in 
register operand as offset in ES segment.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

Figure 2-1.  64-Byte Data Written to Enqueue Registers

1. It is expected that system software will load the IA32_PASID MSR so that bits 19:0 contain the PASID of the current soft-
ware thread. The MSR’s valid bit, IA32_PASID[31], must be 1. The PASID MSR is discussed in more detail in Section 4.1.

2. In 64-bit mode, the width of the register operand is 64 bits (32 bits with a 67H prefix). Outside 64-bit mode when CS.D = 
1, the width is 32 bits (16 bits with a 67H prefix). Outside 64-bit mode when CS.D=0, the width is 16 bits (32 bits with a 
67H prefix).

RESERVEDPRIV

01920303132511

PASIDDEVICE SPECIFIC COMMAND
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An enqueue store is not ordered relative to older stores to WB or WC memory (including non-temporal stores) or 
to executions of the CLFLUSHOPT or CLWB (when applied to addresses other than that of the enqueue store). Soft-
ware can enforce such ordering by executing a fencing instruction such as SFENCE or MFENCE before the enqueue 
store.
An enqueue store does not write the data into the cache hierarchy, nor does it fetch any data into the cache hier-
archy. An enqueue store’s command data is never combined with that of any other store to the same address.
Unlike other stores, an enqueue store returns a status, which the ENQCMD instruction loads into the ZF flag in the 
RFLAGS register:
• ZF = 0 (success) reports that the 64-byte command data was written atomically to a device’s enqueue register 

and has been accepted by the device. (It does not guarantee that the device has acted on the command; it may 
have queued it for later execution.)

• ZF = 1 (retry) reports that the command data was not accepted. This status is returned if the destination 
address is an enqueue register but the command was not accepted due to capacity or other temporal reasons. 
This status is also returned if the destination address was not an enqueue register (including the case of a 
memory address); in these cases, the store is dropped and is written neither to MMIO nor to memory.

Availability of the ENQCMD instruction is indicated by the presence of the CPUID feature flag ENQCMD 
(CPUID.(EAX=07H, ECX=0H):ECX[bit 29]).

Operation

IF IA32_PASID[31] = 0
THEN #GP;

ELSE
COMMAND := (SRC & ~FFFFFFFFH) | (IA32_PASID & FFFFFH);
DEST := COMMAND;

FI;

Intel C/C++ Compiler Intrinsic Equivalent

ENQCMD int_enqcmd(void *dst, const void *src)

Flags Affected

The ZF flag is set if the enqueue-store completion returns the retry status; otherwise it is cleared. All other flags 
are cleared.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.

#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.
If the LOCK prefix is used.
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Virtual-8086 Mode Exceptions

Same exceptions as in real-address mode. Additionally:
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If destination linear address is not aligned to a 64-byte boundary.
If the PASID Valid field (bit 31) is 0 in IA32_PASID MSR.

#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29].

If the LOCK prefix is used.
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ENQCMDS — Enqueue Command Supervisor

Instruction Operand Encoding

Description

The ENQCMDS instruction allows system software to write commands to enqueue registers, which are special 
device registers accessed using memory-mapped I/O (MMIO).
Enqueue registers expect writes to have the format given in Figure 2-1 and explained in the section on “ENQCMD 
— Enqueue Command.”
The ENQCMDS instruction begins by reading 64 bytes of command data from its source memory operand. This is 
an ordinary load with cacheability and memory ordering implied normally by the memory type. The source operand 
need not be aligned, and there is no guarantee that all 64 bytes are loaded atomically.
ENQCMDS formats its source data differently from ENQCMD. Specifically, it formats them into command data as 
follows:
• Command[19:0] get bits 19:0 of the source operand that was read from memory. These 20 bits communicate 

a process address-space identifier (PASID). Chapter 4 provides more details regarding how ENQCMDS uses 
PASIDs.

• Command[30:20] are zero.
• Command[511:31] get bits 511:31 of the source operand that was read from memory. Bit 31 communicates a 

privilege identification (0 = user; 1 = supervisor).
(The instruction ignores bits 30:20 of the source operand.)
The ENQCMDS instruction then uses an enqueue store (defined below) to write this command data to the desti-
nation operand. The address of the destination operand is specified in a general-purpose register as an offset into 
the ES segment (the segment cannot be overridden).1 The destination linear address must be 64-byte aligned. The 
operation of an enqueue store disregards the memory type of the destination memory address.
An enqueue store is not ordered relative to older stores to WB or WC memory (including non-temporal stores) or 
to executions of the CLFLUSHOPT or CLWB (when applied to addresses other than that of the enqueue store). Soft-
ware can enforce such ordering by executing a fencing instruction such as SFENCE or MFENCE before the enqueue 
store.
An enqueue store does not write the data into the cache hierarchy, nor does it fetch any data into the cache hier-
archy. An enqueue store’s command data is never combined with that of any other store to the same address.
Unlike other stores, an enqueue store returns a status, which the ENQCMDS instruction loads into the ZF flag in the 
RFLAGS register:
• ZF = 0 (success) reports that the 64-byte command data was written atomically to a device’s enqueue register 

and has been accepted by the device. (It does not guarantee that the device has acted on the command; it may 
have queued it for later execution.)

• ZF = 1 (retry) reports that the command data was not accepted. This status is returned if the destination 
address is an enqueue register but the command was not accepted due to capacity or other temporal reasons. 

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 38 F8 !(11):rrr:bbb
ENQCMDS r32/r64, m512

A V/V ENQCMD Atomically enqueue 64-byte command from 
source memory operand to destination offset 
in ES segment specified in register operand as 
offset in ES segment.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA

1. In 64-bit mode, the width of the register operand is 64 bits (32 bits with a 67H prefix). Outside 64-bit mode when CS.D = 
1, the width is 32 bits (16 bits with a 67H prefix). Outside 64-bit mode when CS.D=0, the width is 16 bits (32 bits with a 
67H prefix).
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This status is also returned if the destination address was not an enqueue register (including the case of a 
memory address); in these cases, the store is dropped and is written neither to MMIO nor to memory.

The ENQCMDS instruction may be executed only if CPL = 0. Availability of the ENQCMDS instruction is indicated by 
the presence of the CPUID feature flag ENQCMD (CPUID.(EAX=07H, ECX=0H):ECX[bit 29]).

Operation

DEST := SRC & ~7FF00000H; // clear bits 30:20

Intel C/C++ Compiler Intrinsic Equivalent

ENQCMDS int_enqcmds(void *dst, const void *src)

Flags Affected

The ZF flag is set if the enqueue-store completion returns the retry status; otherwise it is cleared. All other flags 
are cleared.

SIMD Floating-Point Exceptions

None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.
If destination linear address is not aligned to a 64-byte boundary.
If the current privilege level is not 0.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.
If destination linear address is not aligned to a 64-byte boundary.

#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The ENQCMDS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in non-canonical form.
#GP(0) If the memory address is in non-canonical form.

If destination linear address is not aligned to a 64-byte boundary.
If the current privilege level is not 0.

#PF(fault-code) For a page fault.
#UD If CPUID.07H.0H:ECX.ENQCMD[bit 29].

If the LOCK prefix is used.
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HRESET — History Reset

Instruction Operand Encoding

Description

Provides a hint to the processor to selectively reset the prediction history of the current logical processor. HRESET 
operation is controlled by the implicit EAX operand. The value of the explicit imm8 operand is ignored. 
CPUID.07H.01H:EAX.HRESET[bit 22] indicates support of the HRESET instruction. This instruction can only be 
executed at CPL 0.
The HRESET instruction is capable of providing a reset hint for multiple predictions. Prior to the execution of 
HRESET, the system software must take the following steps:

1. Enumerate the HRESET capabilities via CPUID.20H.0H:EBX, which indicates what predictions can be reset.

2. Opt-in to reset a subset of the available capabilities by setting the respective bits in the IA32_HRESET_ENABLE 
MSR. The opt-in bits in the IA32_HRESET_ENABLE MSR are aligned with the HRESET capabilities CPUID bits. 

The implicit EAX operand must contain set bits that are a subset of those set in the IA32_HRESET_ENABLE MSR. 
Otherwise, HRESET generates #GP(0). When EAX=0 this instruction is interpreted as NOP. 

Any attempt to execute the HRESET instruction inside a transactional region will result in a transaction abort.

Operation

IF EAX = 0
    THEN NOP
    ELSE
         FOREACH i such that EAX[i] = 1
             Reset prediction history for feature i
FI

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If CPL > 0 or (EAX AND NOT IA32_HRESET_ENABLE) ≠0.
#UD If CPUID.07H.01H:EAX.HRESET[bit 22] = 0.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
#GP(0) HRESET instruction is not recognized in virtual-8086 mode.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 3A F0 C0 /ib 
HRESET imm8, <EAX> 

A V/V HRESET Processor history reset request. Controlled by the 
EAX implicit operand.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (r) NA NA NA
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Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode. 
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PCONFIG — Platform Configuration

Instruction Operand Encoding

Description

PCONFIG allows software to configure certain platform features. PCONFIG supports multiple leaf functions, with a 
leaf function identified by the value in EAX. The registers RBX, RCX, and RDX may provide input information for 
certain leaves. All leaves write status information to EAX but do not modify RBX, RCX, or RDX.
Each PCONFIG leaf function applies to a specific hardware block called a PCONFIG target, and each PCONFIG target 
is associated with a numerical identifier. The identifiers of the PCONFIG targets supported by the CPU (which imply 
the supported leaf functions) are enumerated in the sub-leaves of the PCONFIG-information leaf of CPUID (EAX = 
1BH). An attempt to execute an undefined leaf function results in a general-protection exception (#GP).
Addresses and operands are 32 bits outside 64-bit mode and are 64 bits in 64-bit mode. The value of CS.D does not 
affect operand size or address size. 
Table 2-1 shows the leaf encodings for PCONFIG.

The MKTME_KEY_PROGRAM leaf of PCONFIG pertains to the MKTME target, which has target identifier 1. It is used 
by software to manage the key associated with a KeyID. The leaf function is invoked by setting the leaf value of 0 
in EAX and the address of MKTME_KEY_PROGRAM_STRUCT in RBX. Successful execution of the leaf clears RAX (set 
to zero) and ZF, CF, PF, AF, OF, and SF are cleared. In case of failure, the failure reason is indicated in RAX with ZF 
set to 1 and CF, PF, AF, OF, and SF are cleared. The MKTME_KEY_PROGRAM leaf uses the MKTME_KEY_PROGRAM_-
STRUCT in memory shown in Table 2-2.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 01 C5
PCONFIG 

A V/V PCONFIG This instruction is used to execute functions for 
configuring platform features.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA NA

Table 2-1.  PCONFIG Leaf Encodings

Leaf Encoding Description

MKTME_KEY_PROGRAM 00000000H This leaf is used to program the key and encryption mode associated 
with a KeyID.

RESERVED 00000001H - FFFFFFFFH Reserved for future use (#GP(0) if used).

Table 2-2.  MKTME_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) Size (bytes) Comments

KEYID 0 2 Key Identifier.

KEYID_CTRL 2 4 KeyID control:
• Bits [7:0]: COMMAND.
• Bits [23:8]: ENC_ALG.
• Bits [31:24]: Reserved, must be zero.

RESERVED 6 58 Reserved, must be zero.

KEY_FIELD_1 64 64 Software supplied KeyID data key or entropy for KeyID data key.

KEY_FIELD_2 128 64 Software supplied KeyID tweak key or entropy for KeyID tweak key.
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A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
• KEYID: Key Identifier being programmed to the MKTME engine.
• KEYID_CTRL: The KEYID_CTRL field carries two sub-fields used by software to control the behavior of a 

KeyID: Command and KeyID encryption algorithm. 

The command used controls the encryption mode for a KeyID. Table 2-3 provides a summary of the 
commands supported.

The encryption algorithm field (ENC_ALG) allows software to select one of the activated encryption algorithms 
for the KeyID. The BIOS can activate a set of algorithms to allow for use when programming keys using the 
IA32_TME_ACTIVATE MSR (does not apply to KeyID 0 which uses TME policy). The processor checks to 
ensure that the algorithm selected by software is one of the algorithms that has been activated by the BIOS.

• KEY_FIELD_1: This field carries the software supplied data key to be used for the KeyID if the direct key 
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used 
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated 
random data key. It is software's responsibility to ensure that the key supplied for the direct programming 
option or the entropy supplied for the random programming option does not result in weak keys. There are no 
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are 
treated as reserved and must be zeroed out by software before executing the instruction.

• KEY_FIELD_2: This field carries the software supplied tweak key to be used for the KeyID if the direct key 
programming option is used (KEYID_SET_KEY_DIRECT). When the random key programming option is used 
(KEYID_SET_KEY_RANDOM), this field carries the software supplied entropy to be mixed in the CPU generated 
random tweak key. It is software's responsibility to ensure that the key supplied for the direct programming 
option or the entropy supplied for the random programming option does not result in weak keys. There are no 
explicit checks in the instruction to detect or prevent weak keys. When AES XTS-128 is used, the upper 48B are 
treated as reserved and must be zeroed out by software before executing the instruction.

All KeyIDs use the TME key on MKTME activation. Software can at any point decide to change the key for a 
KeyID using the PCONFIG instruction. Change of keys for a KeyID does NOT change the state of the TLB 
caches or memory pipeline. It is software's responsibility to take appropriate actions to ensure correct 
behavior.

Table 2-4 shows the return values associated with the MKTME_KEY_PROGRAM leaf of PCONFIG. On 
instruction execution, RAX is populated with the return value.

Table 2-3.  Supported Key Programming Commands

Command Encoding Description

KEYID_SET_KEY_DIRECT 0 Software uses this mode to directly program a key for use with KeyID.

KEYID_SET_KEY_RANDOM 1 CPU generates and assigns an ephemeral key for use with a KeyID. Each time the 
instruction is executed, the CPU generates a new key using a hardware random 
number generator and the keys are discarded on reset.

KEYID_CLEAR_KEY 2 Clear the (software programmed) key associated with the KeyID. On execution of this 
command, the KeyID gets TME behavior (encrypt with platform TME key).

KEYID_NO_ENCRYPT 3 Do not encrypt memory when this KeyID is in use.

Table 2-4.  Supported Key Error Codes

Return Value Encoding Description

PROG_SUCCESS 0 KeyID was successfully programmed.

INVALID_PROG_CMD 1 Invalid KeyID programming command.

ENTROPY_ERROR 2 Insufficient entropy.

INVALID_KEYID 3 KeyID not valid.

INVALID_ENC_ALG 4 Invalid encryption algorithm chosen (not supported).

DEVICE_BUSY 5 Failure to access key table.
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PCONFIG Virtualization

Software in VMX root operation can control the execution of PCONFIG in VMX non-root operation using the 
following VM-execution controls introduced for PCONFIG:
• PCONFIG_ENABLE: This control is a single bit control and enables the PCONFIG instruction in VMX non-root 

operation. If 0, the execution of PCONFIG in VMX non-root operation causes #UD. Otherwise, execution of 
PCONFIG works according to PCONFIG_EXITING.

• PCONFIG_EXITING: This is a 64b control and allows VMX root operation to cause a VM-exit for various leaf 
functions of PCONFIG. This control does not have any effect if the PCONFIG_ENABLE control is clear. It is 
recommended that VMMs intercept execution of any PCONFIG leaves with which they are not familiar and 
convert such executions into #GP(0).

PCONFIG Concurrency

In a scenario where the MKTME_KEY_PROGRAM leaf of PCONFIG is executed concurrently on multiple logical 
processors, only one logical processor will succeed in updating the key table. PCONFIG execution will return with an 
error code (DEVICE_BUSY) on other logical processors and software must retry. In cases where the instruction 
execution fails with a DEVICE_BUSY error code, the key table is not updated, thereby ensuring that either the key 
table is updated in its entirety with the information for a KeyID, or it is not updated at all. In order to accomplish 
this, the MKTME_KEY_PROGRAM leaf of PCONFIG maintains a writer lock for updating the key table. This lock is 
referred to as the Key table lock and denoted in the instruction flows as KEY_TABLE_LOCK. The lock can either be 
unlocked, when no logical processor is holding the lock (also the initial state of the lock) or be in an exclusive state 
where a logical processor is trying to update the key table. There can be only one logical processor holding the lock 
in exclusive state. The lock, being exclusive, can only be acquired when the lock is in unlocked state.
PCONFIG uses the following syntax to acquire KEY_TABLE_LOCK in exclusive mode and release the lock:
• KEY_TABLE_LOCK.ACQUIRE(WRITE)
• KEY_TABLE_LOCK.RELEASE()

Operation

Table 2-5.  PCONFIG Operation Variables

Variable Name Type Size 
(Bytes)

Description

TMP_KEY_PROGRAM_STRUCT MKTME_KEY_PROGRAM_STRUCT 192 Structure holding the key programming structure.

TMP_RND_DATA_KEY UINT128 16 Random data key generated for random key 
programming option.

TMP_RND_TWEAK_KEY UINT128 16 Random tweak key generated for random key 
programming option.
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(* #UD if PCONFIG is not enumerated or CPL>0 *)
IF (CPUID.7.0:EDX[18] == 0 OR CPL > 0) #UD;

IF (in VMX non-root mode)
{

IF (VMCS.PCONFIG_ENABLE == 1)
{

IF ((EAX > 62 AND VMCS.PCONFIG_EXITING[63] ==1) OR 
         (EAX < 63 AND VMCS.PCONFIG_EXITING[EAX] == 1))

{
Set VMCS.EXIT_REASON = PCONFIG; //No Exit qualification
Deliver VMEXIT;

}
}
ELSE
{ 

#UD
}

}

(* #GP(0) for an unsupported leaf *)
IF (EAX != 0) #GP(0)

(* KEY_PROGRAM leaf flow *)
IF (EAX == 0)
{

(* #GP(0) if TME_ACTIVATE MSR is not locked or does not enable TME or multiple keys are not enabled *)
IF (IA32_TME_ACTIVATE.LOCK != 1 OR IA32_TME_ACTIVATE.ENABLE != 1 OR IA32_TME_ACTIVATE.MK_TME_KEYID_BITS == 0) 

#GP(0)

(* Check MKTME_KEY_PROGRAM_STRUCT is 256B aligned *)
IF (DS:RBX is not 256B aligned) #GP(0);

(* Check that MKTME_KEY_PROGRAM_STRUCT is read accessible *)
<<DS: RBX should be read accessible>>

(* Copy MKTME_KEY_PROGRAM_STRUCT to a temporary variable *)
TMP_KEY_PROGRAM_STRUCT = DS:RBX.*;

(* RSVD field check *)
IF (TMP_KEY_PROGRAM_STRUCT.RSVD != 0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.RSVD !=0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[63:16] != 0) #GP(0);

IF (TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[63:16] != 0) #GP(0);

(* Check for a valid command *)
IF (TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND is not a valid command)
{

RFLAGS.ZF = 1;
RAX = INVALID_PROG_CMD;
goto EXIT;
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}
(* Check that the KEYID being operated upon is a valid KEYID *)
IF (TMP_KEY_PROGRAM_STRUCT.KEYID > 

2^IA32_TME_ACTIVATE.MK_TME_KEYID_BITS - 1
OR TMP_KEY_PROGRAM_STRUCT.KEYID > 

IA32_TME_CAPABILITY.MK_TME_MAX_KEYS 
OR TMP_KEY_PROGRAM_STRUCT.KEYID == 0) 

{
RFLAGS.ZF = 1;
RAX = INVALID_KEYID;
goto EXIT;

}

(* Check that only one algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF (NUM_BITS(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG) != 1 || 

(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG & 
IA32_TME_ACTIVATE. MK_TME_CRYPTO_ALGS == 0))

{
RFLAGS.ZF = 1;
RAX = INVALID_ENC_ALG;
goto EXIT;

}
(* Try to acquire exclusive lock *)
IF (NOT KEY_TABLE_LOCK.ACQUIRE(WRITE))
{

//PCONFIG failure
RFLAGS.ZF = 1;
RAX = DEVICE_BUSY;
goto EXIT;

}

(* Lock is acquired and key table will be updated as per the command 
Before this point no changes to the key table are made *)

switch(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND)
{
case KEYID_SET_KEY_DIRECT:

<<Write 
DATA_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1,
TWEAK_KEY=TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME Key table at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
break;

case KEYID_SET_KEY_RANDOM:
TMP_RND_DATA_KEY = <<Generate a random key using hardware RNG>>
IF (NOT ENOUGH ENTROPY)
{

RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;

}
TMP_RND_TWEAK_KEY = <<Generate a random key using hardware RNG>>
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IF (NOT ENOUGH ENTROPY)
{

RFLAGS.ZF = 1;
RAX = ENTROPY_ERROR;
goto EXIT;

}
(* Mix user supplied entropy to the data key and tweak key *)
TMP_RND_DATA_KEY = TMP_RND_KEY XOR 

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1.BYTES[15:0];
TMP_RND_TWEAK_KEY = TMP_RND_TWEAK_KEY XOR 

TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2.BYTES[15:0];

<<Write 
DATA_KEY=TMP_RND_DATA_KEY, 
TWEAK_KEY=TMP_RND_TWEAK_KEY,
ENCRYPTION_MODE=ENCRYPT_WITH_KEYID_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID

>>
break;

case KEYID_CLEAR_KEY:
<<Write
DATA_KEY='0,
TWEAK_KEY='0,
ENCRYPTION_MODE = ENCRYPT_WITH_TME_KEY,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>

break;
case KD_NO_ENCRYPT:

<<Write 
ENCRYPTION_MODE=NO_ENCRYPTION,
to MKTME_KEY_TABLE at index TMP_KEY_PROGRAM_STRUCT.KEYID
>>
break;

}

RAX = 0;
RFLAGS.ZF = 0;

//Release Lock
KEY_TABLE_LOCK(RELEASE);

EXIT:
RFLAGS.CF=0;
RFLAGS.PF=0;
RFLAGS.AF=0;
RFLAGS.OF=0;
RFLAGS.SF=0;

}

end_of_flow
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Protected Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability are not enabled in IA32_TME_ACTIVATE MSR.
If the memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand effective address is outside the DS segment limit.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.

If current privilege level is not 0.
If CPUID.7.0:EDX[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Real-Address Mode Exceptions
#GP If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.

#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.

Virtual-8086 Mode Exceptions
#UD PCONFIG instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf.

If IA32_TME_ACTIVATE MSR is not locked.
If TME and MKTME capability is not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in MKTME_KEY_PROGRAM_STRUCT are set.
If a memory operand is non-canonical form.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/OSIZE/VEX prefixes are used.

If the current privilege level is not 0.
If CPUID.7.0:EDX.PCONFIG[bit 18] = 0.
If in VMX non-root mode and VMCS.PCONFIG_ENABLE = 0.
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SENDUIPI — Send User Interprocessor Interrupts 

Instruction Operand Encoding

Description

The SENDUIPI instruction takes a single register operand. The operand always has 64 bits; operand-size overrides 
(e.g., the prefix 66) are ignored.
Although SENDUIPI may be executed at any privilege level, all of the instruction’s memory accesses are performed 
with supervisor privilege.
Virtualization of the SENDUIPI instruction (in particular, that of the sending of the notification interrupt) is 
discussed in Section 11.9.2.5.
The Operation section refers to the values UITTADDR and UITTSZ. The values are defined in Section 11.3.1. It also 
includes operations on a user posted-interrupt descriptor (UPID). The format of a UPID is defined in Section 11.5.

Operation

IF reg > UITTSZ;
THEN #GP(0);

FI;
read tempUITTE from 16 bytes at UITTADDR+ (reg « 4);
IF tempUITTE.V = 0 or tempUITTE sets any reserved bit (see Section 11.7.1)

THEN #GP(0);
FI;
read tempUPID from 16 bytes at tempUITTE.UPIDADDR;// under lock
IF tempUPID sets any reserved bits or bits that must be zero (see Table 11-1)

THEN #GP(0); // release lock
FI;
tempUPID.PIR[tempUITTE.UV] := 1;
IF tempUPID.SN = tempUPID.ON = 0

THEN
tempUPID.ON := 1;
sendNotify := 1;

ELSE sendNotify := 0;
FI;
write tempUPID to 16 bytes at tempUITTE.UPIDADDR;// release lock
IF sendNotify = 1

THEN
IF local APIC is in x2APIC mode

THEN send ordinary IPI with vector tempUPID.NV
to 32-bit physical APIC ID tempUPID.NDST;

ELSE send ordinary IPI with vector tempUPID.NV
to 8-bit physical APIC ID tempUPID.NDST[15:8];

FI;
FI;

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F C7 /6 
SENDUIPI reg

A V/I UINTR Send interprocessor user interrupt.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) NA NA NA
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Flags Affected

None.

Protected Mode Exceptions
#UD The SENDUIPI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The SENDUIPI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The SENDUIPI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The SENDUIPI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

#PF If a page fault occurs.
#GP If the value of the register operand exceeds UITTSZ.

If the selected UITTE is not valid or sets any reserved bits.
If the selected UPID sets any reserved bits.
If there is an attempt to access memory using a linear address that is not canonical relative to 
the current paging mode.
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SERIALIZE — Serialize Instruction Execution

Instruction Operand Encoding

Description

Serializes instruction execution. Before the next instruction is fetched and executed, the SERIALIZE instruction 
ensures that all modifications to flags, registers, and memory by previous instructions are completed, draining all 
buffered writes to memory. This instruction is also a serializing instruction as defined in the section “Serializing 
Instructions” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.
SERIALIZE does not modify registers, arithmetic flags or memory. 
The availability of the SERIALIZE instruction is indicated by the presence of the CPUID feature flag SERIALIZE, bit 
14 of the EDX register in sub-leaf CPUID:7H.0H.

Operation

Wait_On_Fetch_And_Execution_Of_Next_Instruction_Until(preceding_instructions_complete_and_preceding_stores_globally_visible);

Intel C/C++ Compiler Intrinsic Equivalent

SERIALIZE void _serialize(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

NP 0F 01 E8
SERIALIZE

ZO V/V SERIALIZE Serialize instruction fetch and execution.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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STUI — Set User Interrupt Flag

Instruction Operand Encoding

Description

STUI sets the user interrupt flag (UIF). Its effect takes place immediately; a user interrupt may be delivered on the 
instruction boundary following STUI. (This is in contrast with STI, whose effect is delayed by one instruction).
An execution of STUI inside a transactional region causes a transactional abort; the abort loads EAX as it would 
have had it been due to an execution of STI.

Operation

UIF := 1;

Flags Affected

None.

Protected Mode Exceptions
#UD The STUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The STUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The STUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The STUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EF
STUI

ZO V/I UINTR Set user interrupt flag.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
2-20 Ref. # 319433-042



INSTRUCTION SET REFERENCE, A-Z
TESTUI — Determine User Interrupt Flag

Instruction Operand Encoding

TESTUI copies the current value of the user interrupt flag (UIF) into EFLAGS.CF. This instruction can be executed 
regardless of CPL.
TESTUI may be executed normally inside a transactional region.

Operation

CF := UIF;
ZF := AF := OF := PF := SF := 0;

Flags Affected

The ZF, OF, AF, PF, SF flags are cleared and the CF flags to the value of the user interrupt flag.

Protected Mode Exceptions
#UD The TESTUI instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The TESTUI instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The TESTUI instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The TESTUI instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 ED
TESTUI

ZO V/I UINTR Copies the current value of UIF into EFLAGS.CF.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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UIRET — User-Interrupt Return

Instruction Operand Encoding

Description

UIRET returns from the handling of a user interrupt. It can be executed regardless of CPL.
Execution of UIRET inside a transactional region causes a transactional abort; the abort loads EAX as it would have 
had it been due to an execution of IRET.
UIRET can be tracked by Architectural Last Branch Records (LBRs), Intel Processor Trace (Intel PT), and Perfor-
mance Monitoring. For both Intel PT and LBRs, UIRET is recorded in precisely the same manner as IRET. Hence for 
LBRs, UIRETs fall into the OTHER_BRANCH category, which implies that IA32_LBR_CTL.OTHER_BRANCH[bit 22] 
must be set to record user-interrupt delivery, and that the IA32_LBR_x_INFO.BR_TYPE field will indicate 
OTHER_BRANCH for any recorded user interrupt. For Intel PT, control flow tracing must be enabled by setting 
IA32_RTIT_CTL.BranchEn[bit 13].
UIRET will also increment performance counters for which counting BR_INST_RETIRED.FAR_BRANCH is enabled.

Operation

Pop tempRIP;
Pop tempRFLAGS; // see below for how this is used to load RFLAGS
Pop tempRSP;
IF tempRIP is not canonical in current paging mode

THEN #GP(0);
FI;
IF shadow stack is enabled for CPL = 3

THEN
PopShadowStack SSRIP;
IF SSRIP ≠ tempRIP

THEN #CP (FAR-RET/IRET);
FI;

FI;
RIP := tempRIP;
// update in RFLAGS only CF, PF, AF, ZF, SF, TF, DF, OF, NT, RF, AC, and ID
RFLAGS := (RFLAGS & ~254DD5H) | (tempRFLAGS & 254DD5H);
RSP := tempRSP;
UIF := 1;
Clear any cache-line monitoring established by MONITOR or UMONITOR;

Flags Affected

See Operation section.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F3 0F 01 EC
UIRET 

ZO V/I UINTR Return from handling a user interrupt.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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Protected Mode Exceptions
#UD The UIRET instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The UIRET instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The UIRET instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD The UIRET instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the return instruction pointer is non-canonical.
#SS(0) If an attempt to pop a value off the stack causes a non-canonical address to be referenced.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is made while the 

current privilege level is 3. 
#CP If return instruction pointer from stack and shadow stack do not match.
#UD If the LOCK prefix is used.

If executed inside an enclave.
If CR4.UINTR = 0.
If CPUID.07H.0H:EDX.UINTR[bit 5] = 0.
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VPDPBUSD — Multiply and Add Unsigned and Signed Bytes

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second 
source operand, producing intermediate signed word results. The word results are then summed and accumulated 
in the destination dword element size operand.
This instruction supports memory fault suppression.

Operation

VPDPBUSD dest, src1, src2
VL=(128, 256)
KL=VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

// Extending to 16b 
// src1extend := ZERO_EXTEND
// src2extend := SIGN_EXTEND

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])

DEST.dword[i] := ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

DEST[MAX_VL-1:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 50 /r 
VPDPBUSD xmm1, xmm2, 
xmm3/m128

A V/V AVX_VNNI Multiply groups of 4 pairs of signed bytes in 
xmm3/m128 with corresponding unsigned bytes of 
xmm2, summing those products and adding them 
to doubleword result in xmm1.

VEX.256.66.0F38.W0 50 /r
VPDPBUSD ymm1, ymm2, 
ymm3/m256

A V/V AVX_VNNI Multiply groups of 4 pairs of signed bytes in 
ymm3/m256 with corresponding unsigned bytes of 
ymm2, summing those products and adding them 
to doubleword result in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) EVEX.vvvv (r) ModRM:r/m (r) NA
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VPDPBUSDS — Multiply and Add Unsigned and Signed Bytes with Saturation

Instruction Operand Encoding

Description

Multiplies the individual unsigned bytes of the first source operand by the corresponding signed bytes of the second 
source operand, producing intermediate signed word results. The word results are then summed and accumulated 
in the destination dword element size operand. If the intermediate sum overflows a 32b signed number the result 
is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Operation

VPDPBUSDS dest, src1, src2
VL=(128, 256)
KL=VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

// Extending to 16b 
// src1extend := ZERO_EXTEND
// src2extend := SIGN_EXTEND

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])

DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)

DEST[MAX_VL-1:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 51 /r
VPDPBUSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX_VNNI Multiply groups of 4 pairs signed bytes in 
xmm3/m128 with corresponding unsigned 
bytes of xmm2, summing those products and 
adding them to doubleword result, with signed 
saturation in xmm1.

VEX.256.66.0F38.W0 51 /r
VPDPBUSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX_VNNI Multiply groups of 4 pairs signed bytes in 
ymm3/m256 with corresponding unsigned 
bytes of ymm2, summing those products and 
adding them to doubleword result, with signed 
saturation in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPDPWSSD — Multiply and Add Signed Word Integers

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second 
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then 
summed and accumulated in the destination operand.
This instruction supports memory fault suppression.

Operation

VPDPWSSD dest, src1, src2
VL=(128, 256)
KL=VL/32
ORIGDEST := DEST
FOR i := 0 TO KL-1:

p1dword := SRC1.word[2*i+0] * t.word[2*i+0]
p2dword := SRC1.word[2*i+1] * t.word[2*i+1]
DEST.dword[i] := ORIGDEST.dword[i] + p1dword + p2dword

DEST[MAX_VL-1:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 52 /r 
VPDPWSSD xmm1, xmm2, 
xmm3/m128

A V/V AVX_VNNI Multiply groups of 2 pairs signed words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to doubleword result in xmm1.

VEX.256.66.0F38.W0 52 /r
VPDPWSSD ymm1, ymm2, 
ymm3/m256

A V/V AVX_VNNI Multiply groups of 2 pairs signed words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to doubleword result in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
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VPDPWSSDS — Multiply and Add Signed Word Integers with Saturation

Instruction Operand Encoding

Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second 
source operand, producing intermediate signed, doubleword results. The adjacent doubleword results are then 
summed and accumulated in the destination operand. If the intermediate sum overflows a 32b signed number, the 
result is saturated to either 0x7FFF_FFFF for positive numbers of 0x8000_0000 for negative numbers.
This instruction supports memory fault suppression.

Operation

VPDPWSSDS dest, src1, src2
VL=(128, 256)
KL=VL/32
ORIGDEST := DEST
FOR i := 0 TO KL-1:

p1dword := SRC1.word[2*i+0] * t.word[2*i+0]
p2dword := SRC1.word[2*i+1] * t.word[2*i+1]
DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1dword + p2dword)

DEST[MAX_VL-1:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 53 /r
VPDPWSSDS xmm1, xmm2, 
xmm3/m128

A V/V AVX_VNNI Multiply groups of 2 pairs of signed words in 
xmm3/m128 with corresponding signed words 
of xmm2, summing those products and adding 
them to doubleword result in xmm1, with 
signed saturation,.

VEX.256.66.0F38.W0 53 /r
VPDPWSSDS ymm1, ymm2, 
ymm3/m256

A V/V AVX_VNNI Multiply groups of 2 pairs of signed words in 
ymm3/m256 with corresponding signed words 
of ymm2, summing those products and adding 
them to doubleword result in ymm1, with 
signed saturation.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) VEX.vvvv ModRM:r/m (r) NA
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XRESLDTRK — Resume Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the end of an Intel TSX (RTM) suspend load address tracking region. If the instruction is used 
inside a suspend load address tracking region it will end the suspend region and all following load addresses will be 
added to the transaction read set. If this instruction is used inside an active transaction but not in a suspend region 
it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 5 provides additional information on Intel® TSX Suspend Load Address Tracking.

Operation

XRESLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 1:
SUSLDTRK_ACTIVE := 0

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XRESLDTRK void _xresldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 01 E9
XRESLDTRK

ZO V/V TSXLDTRK Specifies the end of an Intel TSX suspend read 
address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
2-28 Ref. # 319433-042



INSTRUCTION SET REFERENCE, A-Z
XSUSLDTRK— Suspend Tracking Load Addresses

Instruction Operand Encoding

Description

The instruction marks the start of an Intel TSX (RTM) suspend load address tracking region. If the instruction is 
used inside a transactional region, subsequent loads are not added to the read set of the transaction. If the instruc-
tion is used inside a suspend load address tracking region it will cause transaction abort.
If the instruction is used outside of a transactional region it behaves like a NOP.
Chapter 5 provides additional information on Intel® TSX Suspend Load Address Tracking.

Operation

XSUSLDTRK
IF RTM_ACTIVE = 1:

IF SUSLDTRK_ACTIVE = 0:
SUSLDTRK_ACTIVE := 1

ELSE:
RTM_ABORT

ELSE:
NOP

Flags Affected

None.

Intel C/C++ Compiler Intrinsic Equivalent

XSUSLDTRK void _xsusldtrk(void);

SIMD Floating-Point Exceptions

None.

Other Exceptions

#UD If CPUID.(EAX=7, ECX=0):EDX.TSXLDTRK[bit 16] = 0.
If the LOCK prefix is used.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

F2 0F 01 E8
XSUSLDTRK

ZO V/V TSXLDTRK Specifies the start of an Intel TSX suspend 
read address tracking region.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

ZO NA NA NA NA NA
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CHAPTER 3
INTEL® AMX INSTRUCTION SET REFERENCE, A-Z

3.1 INTRODUCTION
Intel® Advanced Matrix Extensions (Intel® AMX) is a new 64-bit programming paradigm consisting of two compo-
nents: a set of 2-dimensional registers (tiles) representing sub-arrays from a larger 2-dimensional memory image, 
and an accelerator able to operate on tiles, the first implementation is called TMUL (tile matrix multiply unit).
An Intel AMX implementation enumerates to the programmer how the tiles can be programmed by providing a 
palette of options. Two palettes are supported; palette 0 represents the initialized state, and palette 1 consists of 
8 KB of storage spread across 8 tile registers named TMM0..TMM7. Each tile has a maximum size of 16 rows x 64 
bytes, (1 KB), however the programmer can configure each tile to smaller dimensions appropriate to their algo-
rithm. The tile dimensions supplied by the programmer (rows and bytes_per_row, i.e., colsb) are metadata that 
drives the execution of tile and accelerator instructions. In this way, a single instruction can launch autonomous 
multi-cycle execution in the tile and accelerator hardware. The palette value (palette_id) and metadata are held 
internally in a tile related control register (TILECFG). The TILECFG contents will be commensurate with that 
reported in the palette_table (see “CPUID—CPU Identification” in Chapter 1 for a description of the available 
parameters).
Intel AMX is an extensible architecture. New accelerators can be added, or the TMUL accelerator may be enhanced 
to provide higher performance. In these cases, the state (TILEDATA) provided by tiles may need to be made larger, 
either in one of the metadata dimensions (more rows or colsb) and/or by supporting more names. The extensibility 
is carried out by adding new palette entries describing the additional state. Since execution is driven through meta-
data, an existing Intel AMX binary could take advantage of larger storage sizes and higher performance TMUL units 
by selecting the most powerful palette indicated by CPUID and adjusting loop and pointer updates accordingly.
Figure 3-1 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algo-
rithm, the memory blocking, loop indices and pointer arithmetic. Tile loads and stores and accelerator commands 
are sent to multi-cycle execution units. Status, if required, is reported back. Intel AMX instructions are synchro-
nous in the Intel architecture instruction stream and the memory loaded and stored by the tile instructions is 
coherent with respect to the host’s memory accesses. There are no restrictions on interleaving of Intel architecture 
and Intel AMX code or restrictions on the resources the host can use in parallel with Intel AMX (e.g., Intel AVX-
512). There is also no architectural requirement on the Intel architecture compute capability of the Intel architec-
ture host other than it supports 64-bit mode.

Figure 3-1.  Intel® AMX Architecture

IA Host

Coherent Memory 
Interface

Accelerator 1 (TMUL)

tmm0 += tmm1*tmm2

Accelerator 2

Tiles and 
Accelerator 
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tmm1

tmm[n-1]
...

New state to be managed by the OS.

Commands and status delivered synchronously via tile/accelerator instructions.

Dataflow; accelerators communicate to host through memory.
Ref. # 319433-042 3-1



INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Intel AMX instructions use new registers and inherit basic behavior from Intel architecture in the same manner that 
Intel SSE and Intel AVX did. Tile instructions include loads and stores using the traditional Intel architecture 
register set as pointers. The TMUL instruction set (defined to be CPUID bits AMX-BF16 and AMX-INT8) only 
supports reg-reg operations.
TILECFG is programmed using the LDTILECFG instruction. The selected palette defines the available storage and 
general configuration while the rest of the memory data specifies the number of rows and column bytes for each 
tile. Consistency checks are performed to ensure the TILECFG matches the restrictions of the palette. A General 
Protection fault (#GP) is reported if the LDTILECFG fails consistency checks. A successful load of 
TILECFG with a palette_id other than 0 is represented in this document with TILES_CONFIGURED = 1. When the 
TILECFG is initialized (palette_id = 0), it is represented in the document as TILES_CONFIGURED = 0. Nearly all 
Intel AMX instructions will generate a #UD exception if TILES_CONFIGURED is not equal to 1; the exceptions are 
those that do TILECFG maintenance: LDTILECFG, STTILECFG and TILERELEASE.
If two tiles are configured to contain M rows by N columns of 4-byte data, and two tiles to contain M rows by N 
columns of 8-byte data, LDTILECFG will ensure that the metadata values are appropriate to the palette (e.g., that 
rows ≤ 16 and N ≤ 64 for palette 1). The four M and N values can all be different as long as they adhere to the 
restrictions of the palette. Further dynamic checks are done in the tile and the TMUL instruction set to deal with 
cases where a legally configured tile may be inappropriate for the instruction operation. Tile registers can be set to 
‘invalid’ by configuring the rows and colsb to ‘0’. 
Tile loads and stores are strided accesses from the application memory to packed rows of data. Algorithms are 
expressed assuming row major data layout. Column major users should translate the terms according to their 
orientation.
TILELOAD* and TILESTORE* instructions are restartable and can handle (up to) 2*rows page faults per instruction. 
Restartability is provided by a start_row parameter in the TILECFG register.
The TMUL unit is conceptually a grid of fused multiply-add units able to read and write tiles. The dimensions of the 
TMUL unit (tmul_maxk and tmul_maxn) are enumerated similar to the maximum dimensions of the tiles (see 
“CPUID—CPU Identification” in Chapter 1 for details). 
The matrix multiplications in the TMUL instruction set compute C[M][N] += A[M][K] * B[K][N]. The M, N and K 
values will cause the TMUL instruction set to generate a #UD exception if the following constraints are not met:
• M : ≤ palette.max_rows
• K : ≤ colsb / element_size (A), ≤ palette.max_rows (B) and ≤ tmul_maxk
• N : ≤ colsb / element_size (C and B), ≤ tmul_maxn
In Figure 3-2, the number of rows in tile B matches the K dimension in the matrix multiplication pseudocode. K 
dimensions smaller than that enumerated in the TMUL grid are also possible and any additional computation the 
TMUL unit can support will not affect the result.
The number of elements specified by colsb of the B matrix is also less than or equal to tmul_maxn. Any remaining 
values beyond that specified by the metadata will be set to zero. 
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The XSAVE feature sets supports context management of the new state defined for Intel AMX. This support is 
described in Section 3.2.

3.1.1 Tile Architecture Details
The supported parameters for the tile architecture are reported via CPUID; this includes information about how the 
number of tile registers (max_names) can be configured (the palette). Configuring the tile architecture is intended 
to be done once when entering a region of tile code using the LDTILECFG instruction specifying the selected palette 
and describing in detail the configuration for each tile. Incorrect assignments will result in a General Protection fault 
(#GP). Successful LDTILECFG initializes (zeroes) TILEDATA.
Exiting a tile region is done with the TILERELEASE instruction. It takes no parameters and invalidates all tiles (indi-
cating that the data no longer needs any saving or restoring). Essentially, it is an optimization of LDTILECFG with 
an implicit palette of 0.
For applications that execute consecutive Intel AMX regions with differing configurations, TILERELEASE is not 
required between them since the second LDTILECFG will clear all the data while loading the new configuration. 
There is no instruction set support for automatic nesting of tile regions, though with sufficient effort software can 
accomplish this by saving and restoring TILEDATA and TILECFG either through the XSAVE architecture or the Intel 
AMX instructions.
The tile architecture boots in its INIT state, with TILECFG and TILEDATA set to zero. A successfully executing LDTI-
LECFG instruction to a non-zero palette sets the TILES_CONFIGURED=1, indicating the TILECFG is not in the INIT 
state. The TILERELEASE instruction sets TILES_CONFIGURED = 0 and initializes (zeroes) TILEDATA.
To facilitate handling of tile configuration data, there is a STTILECFG instruction. If the tile configuration is in the 
INIT state (TILES_CONFIGURED == 0), then STTILECFG will write 64 bytes of zeros. Otherwise STTILECFG will 
store the TILECFG to memory in the format used by LDTILECFG.

Figure 3-2.  The TMUL Unit
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3.1.2 TMUL Architecture Details
The supported parameters for the TMUL architecture are reported via CPUID; see “CPUID—CPU Identification” in 
Chapter 1, page 1-21, for details. These parameters include a maximum height (tmul_maxk) and a maximum 
SIMD dimension (tmul_maxn). The metadata that accompanies the srcdest, src1 and src2 tiles to the TMUL unit 
will be dynamically checked to see that they match the TMUL unit support for the data type and match the require-
ments of a meaningful matrix multiplication.
Figure 3-3 shows an example of the inner loop of an algorithm of using the TMUL architecture to compute a matrix 
multiplication. In this example, we use two result tiles, tmm0 and tmm1, from matrix C to accumulate the interme-
diate results. One tile from the A matrix (tmm2) is re-used twice as we multiply it by two tiles from the B matrix. 
The algorithm then advances pointers to load a new A tile and two new B tiles from the directions indicated by the 
red arrows. An outer loop, not shown, adjusts the pointers for the C tiles.

3.1.3 Handling of Tile Row and Column Limits
Intel AMX operations will zero any rows and any columns beyond the dimensions specified by TILECFG. Tile opera-
tions will zero the data beyond the configured number of columns (factoring in the size of the elements) as each 
row is written. For example, with 64-byte rows and a tile configured with 10 rows and 12 columns, an operation 
writing dword elements would write each of the first 10 rows with 12*4 bytes of output/result data and zero the 
remaining 4*4 bytes in each row. Tile operations also fully zero any rows after the first 10 configured rows. When 

Figure 3-3.  Matrix Multiply C+= A*B

   LDTILECFG [rax]
// assume some outer loops driving the cache tiling (not shown)
{
   TILELOADD tmm0, [rsi+rdi]     // srcdst, RSI points to C, RDI is strided value 
   TILELOADD tmm1, [rsi+rdi+N]   // second tile of C, unrolling in SIMD dimension N
   MOV r14, 0
LOOP:
   TILELOADD tmm2, [r8+r9]       // src2 is strided load of A, reused for 2 TMUL instr.
   TILELOADD tmm3, [r10+r11]     // src1 is strided load of B
   TDPBUSD   tmm0, tmm2, tmm3  // update left tile of C
   TILELOADD tmm3, [r10+r11+N]   // src1 loaded with B from next rightmost tile
   TDPBUSD   tmm1, tmm2, tmm3  // update right tile of C
   ADD r8, K                  // update pointers by constants known outside of loop
   ADD r10, K*r11
   ADD r14, K
   CMP r14, LIMIT
   JNE LOOP

   TILESTORED [rsi+rdi],   tmm0  // update the C matrix in memory
   TILESTORED [rsi+rdi+M], tmm1    
 } // end of outer loop

   TILERELEASE         // return tiles to INIT state

C BA
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using a 1 KByte tile with 64-byte rows, there would be 16 rows, so in this example, the last 6 rows would also be 
zeroed.
Intel AMX instructions will always obey the metadata on reads and the zeroing rules on writes, and so a subsequent 
XSAVE would see zeros in the appropriate locations. Tiles that are not written by Intel AMX instructions between 
XRSTOR and XSAVE will write back with the same image they were loaded with regardless of the value of TILECFG.

3.1.4 Exceptions and Interrupts
Tile instructions are restartable so that operations that access strided memory can restart after page faults. To 
support restarting instructions after these events, the instructions store information in the TILECFG.start_row 
register. TILECFG.start_row indicates the row that should be used for restart; i.e., it indicates next row after the 
rows that have already been successfully loaded (on a TILELOAD) or written to memory (on a TILESTORE) and 
prevents repeating work that was successfully done.
The TMUL instruction set is not sensitive to the TILECFG.start_row value; this is due to there not being TMUL 
instructions with memory operands or any restartable faults.

3.2 INTEL® AMX AND THE XSAVE FEATURE SET
Intel AMX is XSAVE supported, meaning that it defines processor registers that can be saved and restored using 
instructions of the XSAVE feature set. Intel AMX is also XSAVE enabled, meaning that it must be enabled by the 
XSAVE feature set before it can be used.
The XSAVE feature set operates on state components, each of which is a discrete set of processor registers (or 
parts of registers). Intel AMX is associated with two state components, XTILECFG and XTILEDATA. Section 3.2.1 
describes these state components.
Section 3.2.2 describes how existing enumeration for the XSAVE feature set applies to Intel AMX. Section 3.2.3 
explains how software can enable Intel AMX as an XSAVE-enabled feature.
The XTILEDATA state component is very large, and an operating system may prefer not to allocate memory for the 
XTILEDATA state of every user thread. Such an operating system that enables Intel AMX might prefer to prevent 
specific user threads from using the feature. An extension called extended feature disable (XFD) is added to the 
XSAVE feature set to support such a usage. XFD is described in Section 3.2.6.

3.2.1 State Components for Intel® AMX
As noted earlier, the XSAVE feature set supports the saving and restoring of state components, each of which is a 
discrete set of processor registers (or parts of registers). Each state component corresponds to a particular CPU 
feature. (Some XSAVE-supported features use registers in multiple XSAVE-managed state components.)
The XSAVE feature set organizes state components using state-component bitmaps. A state-component bitmap 
comprises 64 bits; each bit in such a bitmap corresponds to a single state component. Intel AMX defines bits 18:17 
for its state components (collectively, these are called AMX state):
• State component 17 is used for the 64-byte TILECFG register (XTILECFG state).
• State component 18 is used for the 8192 bytes of tile data (XTILEDATA state).

These are both user state components, meaning that they can be managed by the entire XSAVE feature set. In 
addition, it implies that setting bits 18:17 of extended control register XCR0 enables Intel AMX. If those bits are 
zero, execution of an Intel AMX instruction results in an invalid-opcode exception (#UD).
With regard to the XSAVE feature set’s init optimization, AMX state is in its initial configuration if the TILECFG 
register is zero and all tile data are zero.
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3.2.2 XSAVE-Related Enumeration for Intel® AMX
A processor enumerates support for the XSAVE feature set and for XSAVE-supported features using the CPUID 
instruction. Specifically, this is done through sub-functions of CPUID function 0DH. (Software selects a specific sub-
function by the value placed in the ECX register.) The following items provide specific details related to Intel AMX:
• CPUID function 0DH, sub-function 0.

EDX:EAX is a bitmap of all the user state components that can be managed using the XSAVE feature set. (A
bit can be set in XCR0 if and only if the corresponding bit is set in this bitmap.) A processor thus enumerates
support for Intel AMX by setting both EAX[17] and EAX[18].

• CPUID function 0DH, sub-function 1.

EAX[4] enumerates general support for extended feature disable (XFD). See Section 3.2.6 for details.
• CPUID function 0DH, sub-function i (i > 1).

This sub-function enumerates details for state component i. ECX[2] enumerates support for XFD support for
this state component.

• CPUID function 0DH, sub-function 17. This sub-function enumerates details for XTILECFG (state component 
17). The following items provide specific details:

— EAX enumerates the size (in bytes) required for XTILECFG, which is 64.

— EBX enumerates the offset (in bytes, from the base of a standard-format XSAVE area) of the section used 
for XTILECFG, which is 2752.

— ECX[0] returns 0, indicating that XTILECFG is a user state component.

— ECX[1] returns 1, indicating that XTILECFG is located on the next 64-byte boundary following the preceding 
state component (in a compacted-format XSAVE area).

— ECX[2] returns 0, indicating no XFD support for XTILECFG.
• CPUID function 0DH, sub-function 18. This sub-function enumerates details for XTILEDATA (state 

component 18). The following items provide specific details:

— EAX enumerates the size required for XTILEDATA, which is 8192.

— EBX enumerates the offset of the section used for XTILEDATA, which is 2816.

— ECX[0] returns 0, indicating that XTILEDATA is a user state component.

— ECX[1] returns 1, indicating that XTILEDATA is located on the next 64-byte boundary following the 
preceding state component.

— ECX[2] returns 1, indicating XFD support for XTILEDATA.

3.2.3 Enabling Intel® AMX As an XSAVE-Enabled Feature
Executing the XSETBV instruction with ECX = 0 writes the 64-bit value in EDX:EAX to XCR0 (EAX is written to 
XCR0[31:0] and EDX to XCR0[63:32]). The following paragraphs provide details relevant to Intel AMX.
XCR0[18:17] are associated with AMX state (see Section 3.2.6). Software can use the XSAVE feature set to 
manage AMX state only if XCR0[18:17] = 11b. In addition, software can execute Intel AMX instructions only if 
XCR0[18:17] = 11b. Otherwise, any execution of an Intel AMX instruction causes an invalid-opcode exception 
(#UD).
XCR0[18:17] have value 00b coming out of RESET. As noted in Section 3.2.2, a processor allows software to set 
XCR0[18:17] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[17:18] = 11b. In addition, executing the 
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[17] ≠ EAX[18] (XTILECFG and 
XTILEDATA must be enabled together). This implies that the value of XCR0[17:18] is always either 00b or 11b.
While Intel AMX instructions can be executed only in 64-bit mode, instructions of the XSAVE feature set can operate 
on XTILECFG and XTILEDATA in any mode. It is recommended that only 64-bit operating systems enable Intel AMX 
by setting XCR0[18:17].
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3.2.4 Loading of XTILECFG and XTILEDATA by XRSTOR and XRSTORS
The LDTILECFG instruction generates a general-protection fault (#GP) if it would load the TILECFG register with an 
unsupported value. An execution of XRSTOR or XRSTORS does not fault in response to an attempt to load the 
TILECFG register with such a value. Instead, such executions initialize the register (resulting in 
TILES_CONFIGURED = 0).
While executions of LDTILECFG initialize TILEDATA, that is not necessarily the case for executions of XRSTOR and 
XRSTORS that load XTILECFG. An execution of XRSTOR or XRSTORS that is not directed to load XTILEDATA leaves 
it unmodified, even if the execution is loading XTILECFG.
The current value of the TILECFG register may limit how TMUL instructions access certain parts of XTILEDATA. 
Such limitations do not apply to XRSTOR and XRSTORS. An execution of either of those instructions loads all 8 
KBytes of XTILEDATA regardless of the value in the TILECFG register (or the value that the instruction may be 
loading into that register).

3.2.5 Saving of XTILEDATA by XSAVE, XSAVEC, XSAVEOPT, and XSAVES
The current value of the TILECFG register may limit how TMUL instructions access certain parts of XTILEDATA. 
Such limitations do not apply to XSAVE, XSAVEC, XSAVEOPT, and XSAVES. An execution of any of those instruc-
tions saves all 8 KBytes of XTILEDATA regardless of the value in the TILECFG register.

3.2.6 Extended Feature Disable (XFD)
An extension called extended feature disable (XFD) is an extension to the XSAVE feature set that allows an 
operating system to enable a feature while preventing specific user threads from using the feature. This section 
describes XFD.
As noted in Section 3.2.2, a processor that supports XFD enumerates CPUID.(EAX=0DH,ECX=1):EAX[4] as 1. 
Such a processor supports two new MSRs: IA32_XFD (MSR address 1C4H) and IA32_XFD_ERR (MSR address 
1C5H). Each of these MSRs contains a state-component bitmap. Bit i of either MSR can be set to 1 only if 
CPUID.(EAX=0DH,ECX=i):ECX[2] is enumerated as 1 (see Section 3.2.2). An execution of WRMSR that attempts 
to set an unsupported bit in either MSR causes a general-protection fault (#GP). The reset values of both of these 
MSRs is zero.
The first processors to implement Intel AMX will support setting only XTILEDATA (bit 18) in these MSRs. 
XFD is enabled for state component i if XCR0[i] = IA32_XFD[i] = 1. (IA32_XFD[i] does not affect processor oper-
ations if XCR0[i] = 0.) When XFD is enabled for a state component, any instruction that would access that state 
component does not execute and instead generates an device-not-available exception (#NM).
Exceptions are made for certain instructions (including those that initialize the state component). The following 
items provide details:
• LDTILECFG and TILERELEASE initialize the XTILEDATA state component. An execution of either of these 

instructions does not generate #NM when XCR0[18] = IA32_XFD[18] = 1; instead, it initializes XTILEDATA 
normally.

• STTILECFG does not use the XTILEDATA state component. An execution of this instruction does not generate 
#NM when XCR0[18] = IA32_XFD[18] = 1.

• If XRSTOR or XRSTORS is loading state component i and bit i of XSTATE_BV field of the XSAVE header is 0, the 
instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it initializes the state 
component normally. (If bit i of XSTATE_BV field of the XSAVE header is 1, the instruction does generate #NM.)

• If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate 
#NM when XCR0[i] = IA32_XFD[i] = 1; instead, it saves bit i of XSTATE_BV field of the XSAVE header as 0 
(indicating that the state component is in its initialized state). With the exception of XSAVE, no data is saved 
for the state component (XSAVE saves the initial value of the state component; for XTILEDATA, this is all 
zeroes).

• Enclave entry instructions (ENCLU[EENTER] and ENCLU[ERESUME]) generate #NM if XCR0[i] = IA32_XFD[i] = 
1 and bit i is set in XFRM field in the attributes of the enclave being entered.
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When XFD causes an instruction to generate #NM, the processor loads the IA32_XFD_ERR MSR to identify the 
disabled state component(s). Specifically, the MSR is loaded with the logical AND of the IA32_XFD MSR and the 
bitmap corresponding to the state components required by the faulting instruction. (Intel AMX instructions require 
XTILECFG state and XTILEDATA state to be enabled.)
Device-not-available exceptions that are not due to XFD — those resulting from setting CR0.TS to 1 — do not 
modify the IA32_XFD_ERR MSR.

3.3 RECOMMENDATIONS FOR SYSTEM SOFTWARE
System software may disable use of Intel AMX by clearing XCR0[18:17], by clearing CR4.OSXSAVE, or by setting 
IA32_XFD[18]. It is recommended that system software initialize AMX state (e.g., by executing TILERELEASE) 
before doing so. This is because maintaining AMX state in a non-initialized state may have negative power and 
performance implications.
System software should not use XFD to implement a “lazy restore” approach to management of the XTILEDATA 
state component. This approach will not operate correctly for a variety of reasons. One is that the LDTILECFG and 
TILERELEASE instructions initialize XTILEDATA and do not cause an #NM exception. Another is that an execution of 
XSAVE by a user thread will save XTILEDATA as initialized instead of the data expected by the user thread.

3.4 IMPLEMENTATION PARAMETERS
The parameters are reported via CPUID leaf 1DH. Index 0 reports all zeros for all fields.

The tile parameters are set by LDTILECFG or XRSTOR* of XTILECFG:

3.5 HELPER FUNCTIONS
Th helper functions used in Intel AMX instructions are defined below.

define palette_table[id]: 
uint16_t total_tile_bytes 
uint16_t bytes_per_tile 
uint16_t bytes_per_row 
uint16_t max_names 
uint16_t max_rows

define tile[tid]: 
byte rows
word colsb // bytes_per_row 
bool valid
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3.6 NOTATION
Instructions described in this chapter follow the general documentation convention established in Intel® 64 and IA-
32 Architectures Software Developer’s Manual Volume 2A. Additionally, Intel® Advanced Matrix Extensions use 
notation conventions as described below. 
In the instruction encoding boxes, sibmem is used to denote an encoding where a MODRM byte and SIB byte are 
used to indicate a memory operation where the base and displacement are used to point to memory, and the index 

define write_row_and_zero(treg, r, data, nbytes): 
for j in 0 ... nbytes-1:

treg.row[r].byte[j] := data.byte[j]

// zero the rest of the row
for j in nbytes ... palette_table[tilecfg.palette_id].bytes_per_row-1:

treg.row[r].byte[j] := 0

define zero_upper_rows(treg, r):
for i in r ... palette_table[tilecfg.palette_id].max_rows-1:

for j in 0 ... palette_table[tilecfg.palette_id].bytes_per_row-1: 
treg.row[i].byte[j] := 0

define zero_tilecfg_start(): 
tilecfg.start_row := 0

define zero_all_tile_data(): 
if XCR0[XTILEDATA]:

b := CPUID(0xD,XTILEDATA).EAX // size of feature 
for j in 0 ... b:

TILEDATA.byte[j] := 0

define xcr0_supports_palette(palette_id): 
if palette_id == 0:

return 1
elif palette_id == 1:

if XCR0[XTILECFG] and XCR0[XTILEDATA]:
return 1

return 0
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register (if present) is used to denote a stride between memory rows. The index register is scaled by the sib.scale 
field as usual. The base register is added to the displacement, if present.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The 
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all 
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after 
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte 
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is 

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to 
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or 
0b10, then we use the notation !(11).

• If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb. 

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the 
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the 
MODRM.MOD and MODRM.RM fields in the encoding boxes.

3.7 EXCEPTION CLASSES
Alignment exceptions: The Intel AMX instructions that access memory will never generate #AC exceptions.

Table 3-1.  Intel® AMX Exception Classes

Class Instructions Description

AMX-E1 LDTILECFG

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #GP based on palette and configuration checks (see pseudocode).
• #SS(0) if the memory address referencing the SS segment is in a non-canonical 

form.
• #GP if the memory address is in a non-canonical form.
• #PF if a page fault occurs.

AMX-E2 STTILECFG

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #SS(0) if the memory address referencing the SS segment is in a non-canonical 

form.
• #GP if the memory address is in a non-canonical form.
• #PF if a page fault occurs.
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3.8 INSTRUCTION SET REFERENCE

AMX-E3
TILELOAD, 
TILELOADDT1,
TILESTORE

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if not using SIB addressing.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc or tdest are not valid tiles.
• #UD if tsrc.colbytes mod 4 ≠ 0 OR tdest.colbytes mod 4 ≠ 0.
• #UD if tilecfg.start_row ≥ tsrc.rows OR tilecfg.start_row ≥ tdest.rows.
• #NM if XFD[18] == 1.
• #SS(0) if the memory address referencing the SS segment is in a non-canonical 

form.
• #GP if the memory address is in a non-canonical form.
• #PF if any memory operand causes a page fault.

AMX-E4
TDPBSSD, TDPBSUD, 
TDPBUSD,TDPBUUD, 
TDPBF16PS

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if srcdest == src1 OR src1 == src2 OR srcdest == src2.
• #UD if TILES_CONFIGURED == 0.
• #UD if srcdest.colbytes mod 4 ≠ 0.
• #UD if src1.colbytes mod 4 ≠ 0.
• #UD if src2.colbytes mod 4 ≠ 0.
• #UD if srcdest/src1/src2 are not valid tiles.
• #UD if srcdest.colbytes ≠ src2.colbytes.
• #UD if srcdest.rows ≠ src1.rows.
• #UD if src1.colbytes / 4 ≠ src2.rows.
• #UD if srcdest.colbytes > tmul_maxn.
• #UD if src2.colbytes > tmul_maxn.
• #UD if src1.colbytes/4 > tmul_maxk.
• #UD if src2.rows > tmul_maxk.
• #NM if XFD[18] == 1.

AMX-E5 TILZERO

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if TILES_CONFIGURED == 0.
• #UD if tdest is not a valid tile.
• #NM if XFD[18] == 1.

AMX-E6 TILERELEASE

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

Table 3-1.  Intel® AMX Exception Classes(Continued)

Class Instructions Description
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LDTILECFG — Load Tile Configuration

Instruction Operand Encoding

Description

The LDTILECFG instruction takes a operand containing a pointer to a 64-byte memory location containing the 
description of the tiles to be supported. In order to configure the tiles, the AMX-TILE bit in CPUID must be set and 
the operating system has to have enabled the tiles architecture.
The memory area first describes the number of tiles selected and then selects from the palette of tile types. 
Requests must be compatible with the restrictions provided by CPUID.
The memory area describes how many tiles are being used and defines each tile in terms of rows and columns; see 
Table 3-1 below. 

If a tile row and column pair is not used to specify tile parameters, they must have the value zero. All enabled tiles 
(based on the palette) must be configured. Specifying tile parameters for more tiles than the implementation limit 
or the palette limit results in a #GP fault. 
If the palette_id is zero, that signifies the INIT state for the both XTILECFG and XTILEDATA. Tiles are zeroed in the 
INIT state. The only legal non-INIT value for palette_id is 1.
Any attempt to execute the LDTILECFG instruction inside an Intel TSX transaction will result in a transaction abort.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 49 !(11):000:bbb
LDTILECFG m512

A V/N.E. AMX-TILE Load tile configuration as specified in m512.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (r) NA NA NA

Table 3-1. Memory Area Layout

Byte(s) Field Name Description

0 palette Palette selects the supported configuration of the tiles that will be used.

1 start_row start_row is used for storing the restart values for interrupted operations.

2-15 reserved, must be zero

16-17 tile0.colsb Tile 0 bytes per row.

18-19 tile1.colsb Tile 1 bytes per row.

20-21 tile2.colsb Tile 2 bytes per row.

... (sequence continues)

30-31 tile7.colsb Tile 7 bytes per row.

32-47 reserved, must be zero

48 tile0.rows Tile 0 rows.

49 tile1.rows Tile 1 rows.

50 tile2.rows Tile 2 rows.

... (sequence continues)

55 tile7.rows Tile 7 rows.

56-63 reserved, must be zero
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Operation

LDTILECFG mem
error := False
buf := read_memory(mem, 64) 
temp_tilecfg.palette_id := buf.byte[0]
if temp_tilecfg.palette_id > max_palette: 

error := True
if not xcr0_supports_palette(temp_tilecfg.palette_id): 

error := True
if temp_tilecfg.palette_id !=0: 

temp_tilecfg.start_row := buf.byte[1] 
if buf.byte[2..15] is nonzero:

error := True
p := 16
# configure columns
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

temp_tilecfg.t[n].colsb:= buf.word[p/2]
p := p + 2
if temp_tilecfg.t[n].colsb > palette_table[temp_tilecfg.palette_id].bytes_per_row:

error := True
if nonzero(buf[p...47]):

error := True

# configure rows
p := 48
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

temp_tilecfg.t[n].rows:= buf.byte[p]
if temp_tilecfg.t[n].rows > palette_table[temp_tilecfg.palette_id].max_rows:

error := True
p := p + 1

if nonzero(buf[p...63]):
error := True

# validate each tile's row & col configs are reasonable
for n in 0 ... palette_table[temp_tilecfg.palette_id].max_names-1:

if temp_tilecfg.t[n].rows !=0 and temp_tilecfg.t[n].colsb != 0:
temp_tilecfg.t[n].valid := 1

elif temp_tilecfg.t[n].rows == 0 and temp_tilecfg.t[n].colsb == 0:
temp_tilecfg.t[n].valid := 0

else:
error := True// one of rows or colsbwas 0 but not both.

if error:
#GP

elif temp_tilecfg.palette_id == 0:
TILES_CONFIGURED := 0// init state
tilecfg := 0// equivalent to 64B of zeros
zero_all_tile_data()

else:
tilecfg := temp_tilecfg
zero_all_tile_data()
TILES_CONFIGURED := 1
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Intel C/C++ Compiler Intrinsic Equivalent

LDTILECFG void _tile_loadconfig(const void *);

Flags Affected

None.

Exceptions

AMX-E1; see Section 3.7, “Exception Classes” for details.
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STTILECFG — Store Tile Configuration

Instruction Operand Encoding

Description

The STTILECFG instruction takes a pointer to a 64-byte memory location (described in Table 3-1) that will, after 
successful execution of this instruction, contain the description of the tiles that were configured. In order to 
configure tiles, the AMX-TILE bit in CPUID must be set and the operating system has to have enabled the tiles 
architecture.
If the tiles are not configured, then STTILECFG stores 64B of zeros to the indicated memory location. 
Any attempt to execute the STTILECFG instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

STTILECFG mem
if TILES_CONFIGURED == 0:

//write 64 bytes of zeros at mem pointer 
buf[0..63] := 0
write_memory(mem, 64, buf) 

else:
buf.byte[0] := tilecfg.palette_id 
buf.byte[1] := tilecfg.start_row 
buf.byte[2..15] := 0

p := 16
for n in 0 ... palette_table[tilecfg.palette_id].max_names-1: 

buf.word[p/2] := tilecfg.t[n].colsb
p := p + 2 

if p < 47:
buf.byte[p..47] := 0

p := 48
for n in 0 ... palette_table[tilecfg.palette_id].max_names-1: 

buf.byte[p++] := tilecfg.t[n].rows
if p < 63:

buf.byte[p..63] := 0

write_memory(mem, 64, buf)

Intel C/C++ Compiler Intrinsic Equivalent

STTILECFG void _tile_storeconfig(void *);

Flags Affected

None.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.66.0F38.W0 49 !(11):000:bbb
STTILECFG m512

A V/N.E. AMX-TILE Store tile configuration in m512.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (w) NA NA NA
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Exceptions

AMX-E2; see Section 3.7, “Exception Classes” for details.
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TDPBF16PS — Dot Product of BF16 Tiles Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs a set of SIMD dot-products of two BF16 elements and accumulates the results into a 
packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is interpreted as a BF16 pair. For 
each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-products 
on all corresponding BF16 pairs (one pair from tmm2 and one pair from tmm3), adds the results of those dot-prod-
ucts, and then accumulates the result into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are 
always flushed to zero and input denormals are always treated as zero. MXCSR is not consulted nor updated. 
Any attempt to execute the TDPBF16PS instruction inside a TSX transaction will result in a transaction abort.

Operation

define make_fp32(x):
// The x parameter is bfloat16. Pack it in to upper 16b of a dword.
// The bit pattern is a legal fp32 value. Return that bit pattern. 
dword: = 0
dword[31:16] := x 
return dword

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 5C 11:rrr:bbb
TDPBF16PS tmm1, tmm2, tmm3

A V/N.E. AMX-BF16 Matrix multiply BF16 elements from tmm2 and 
tmm3, and accumulate the packed single 
precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) NA
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TDPBF16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

# src1 and src2 elements are pairs of bfloat16
elements_src1 := tsrc1.colsb / 4
elements_src2 := tsrc2.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in bfloat16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[ 0 ... elements_temp-1 ] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] += make_fp32(tsrc1.row[m].bfloat16[2*k+0]) * make_fp32(tsrc2.row[k].bfloat16[2*n+0])
temp1.fp32[2*n+1] += make_fp32(tsrc1.row[m].bfloat16[2*k+1]) * make_fp32(tsrc2.row[k].bfloat16[2*n+1])

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
tsrcdest.row[m].fp32[n] := tsrcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TDPBF16PS void _tile_dpbf16ps(__tile dst, __tile src1, __tile src2);

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.7, “Exception Classes” for details.
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TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD — Dot Product of Signed/Unsigned Bytes with Dword 
Accumulation 

Instruction Operand Encoding

Description

For each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-prod-
ucts on all corresponding four byte elements, one from tmm2 and one from tmm3, adds the results of those dot-
products, and then accumulates the result into the corresponding row and column of tmm1. Each dword in input 
tiles tmm2 and tmm3 is interpreted as four byte elements. These may be signed or unsigned. Each letter in the 
two-letter pattern SU, US, SS, UU indicates the signed/unsigned nature of the values in tmm2 and tmm3, respec-
tively.
Any attempt to execute the TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD instructions inside an Intel TSX transaction 
will result in a transaction abort.

Operation

define DPBD(c,x,y):// arguments are dwords 
if *x operand is signed*:

extend_src1 := SIGN_EXTEND 
else:

extend_src1 := ZERO_EXTEND

if *y operand is signed*: 
extend_src2 := SIGN_EXTEND

else:
extend_src2 := ZERO_EXTEND

p0dword := extend_src1(x.byte[0]) * extend_src2(y.byte[0]) 
p1dword := extend_src1(x.byte[1]) * extend_src2(y.byte[1]) 
p2dword := extend_src1(x.byte[2]) * extend_src2(y.byte[2]) 
p3dword := extend_src1(x.byte[3]) * extend_src2(y.byte[3])

c := c + p0dword + p1dword + p2dword + p3dword

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 5E 11:rrr:bbb
TDPBSSD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply signed byte elements from 
tmm2 by signed byte elements from tmm3 and 
accumulate the dword elements in tmm1.

VEX.128.F3.0F38.W0 5E 11:rrr:bbb
TDPBSUD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply signed byte elements from 
tmm2 by unsigned byte elements from tmm3 
and accumulate the dword elements in tmm1.

VEX.128.66.0F38.W0 5E 11:rrr:bbb
TDPBUSD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply unsigned byte elements from 
tmm2 by signed byte elements from tmm3 and 
accumulate the dword elements in tmm1.

VEX.128.NP.0F38.W0 5E 11:rrr:bbb
TDPBUUD tmm1, tmm2, tmm3

A V/N.E. AMX-INT8 Matrix multiply unsigned byte elements from 
tmm2 by unsigned byte elements from tmm3 
and accumulate the dword elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) NA
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TDPBSSD, TDPBSUD, TDPBUSD, TDPBUUD tsrcdest, tsrc1, tsrc2 (Register Only Version)
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

tsrc1_elements_per_row := tsrc1.colsb / 4 
tsrc2_elements_per_row := tsrc2.colsb / 4 
tsrcdest_elements_per_row := tsrcdest.colsb / 4

for m in 0 ... tsrcdest.rows-1: 
tmp := tsrcdest.row[m]
for k in 0 ... tsrc1_elements_per_row-1:

for n in 0 ... tsrcdest_elements_per_row-1: 
DPBD( tmp.dword[n], tsrc1.row[m].dword[k], tsrc2.row[k].dword[n] ) 

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows) 
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TDPBSSD void _tile_dpbssd(__tile dst, __tile src1, __tile src2);
TDPBSUD void _tile_dpbsud(__tile dst, __tile src1, __tile src2);
TDPBUSD void _tile_dpbusd(__tile dst, __tile src1, __tile src2);
TDPBUUD void _tile_dpbuud(__tile dst, __tile src1, __tile src2);

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.7, “Exception Classes” for details.
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TILELOADD/TILELOADDT1 — Load Tile

Instruction Operand Encoding

Description

This instruction is required to use SIB addressing. The index register serves as a stride indicator. If the SIB 
encoding omits an index register, the value zero is assumed for the content of the index register.
This instruction loads a tile destination with rows and columns as specified by the tile configuration. The “T1” 
version provides a hint to the implementation that the data will likely not be reused in the near future and the data 
caching can be optimized accordingly.
The TILECFG.start_row in the XTILECFG data should be initialized to '0' in order to load the entire tile and is set to 
zero on successful completion of the TILELOADD instruction. TILELOADD is a restartable instruction and the 
TILECFG.start_row will be non-zero when restartable events occur during the instruction execution. 
Only memory operands are supported and they can only be accessed using a SIB addressing mode, similar to the 
V[P]GATHER*/V[P]SCATTER* instructions.
Any attempt to execute the TILELOADD/TILELOADDT1 instructions inside an Intel TSX transaction will result in a 
transaction abort.

Operation

TILELOADD[,T1] tdest, tsib 

start := tilecfg.start_row

zero_upper_rows(tdest,start)

membegin := tsib.base + displacement
// if no index register in the SIB encoding, the value zero is used. 
stride := tsib.index << tsib.scale
nbytes := tdest.colsb 
while start < tdest.rows:

memptr := membegin + start * stride 
write_row_and_zero(tdest, start, read_memory(memptr, nbytes), nbytes)
start := start + 1 

zero_tilecfg_start()
// In the case of a memory fault in the middle of an instruction, the tilecfg.start_row := start

Intel C/C++ Compiler Intrinsic Equivalent

TILELOADD void _tile_loadd(__tile dst, const void *base, int stride);
TILELOADDT1 void _tile_stream_loadd(__tile dst, const void *base, int stride);

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 4B !(11):rrr:100
TILELOADD tmm1, sibmem

A V/N.E. AMX-TILE Load data into tmm1 as specified by 
information in sibmem.

VEX.128.66.0F38.W0 4B !(11):rrr:100
TILELOADDT1 tmm1, sibmem

A V/N.E. AMX-TILE Load data into tmm1 as specified by 
information in sibmem with hint to optimize 
data caching.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) ModRM:r/m (r) NA NA
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Flags Affected

None.

Exceptions

AMX-E3; see Section 3.7, “Exception Classes” for details.
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TILERELEASE — Release Tile

Instruction Operand Encoding

Description

This instruction returns TILECFG and TILEDATA to the INIT state.
Any attempt to execute the TILERELEASE instruction inside an Intel TSX transaction will result in a transaction 
abort.

Operation

zero_all_tile_data()
tilecfg := 0// equivalent to 64B of zeros 
TILES_CONFIGURED := 0

Intel C/C++ Compiler Intrinsic Equivalent

TILERELEASE void _tile_release(void);

Flags Affected

None.

Exceptions

AMX-E6; see Section 3.7, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.NP.0F38.W0 49 C0 
TILERELEASE

A V/N.E. AMX-TILE Initialize TILECFG and TILEDATA.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA NA NA NA NA
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TILESTORED — Store Tile

Instruction Operand Encoding

Description

This instruction is required to use SIB addressing. The index register serves as a stride indicator. If the SIB 
encoding omits an index register, the value zero is assumed for the content of the index register.
This instruction stores a tile source of rows and columns as specified by the tile configuration.
The TILECFG.start_row in the XTILECFG data should be initialized to '0' in order to store the entire tile and are set 
to zero on successful completion of the TILESTORED instruction. TILESTORED is a restartable instruction and the 
TILECFG.start_row will be non-zero when restartable events occur during the instruction execution.
Only memory operands are supported and they can only be accessed using a SIB addressing mode, similar to the 
V[P]GATHER*/V[P]SCATTER* instructions. 
Any attempt to execute the TILESTORED instruction inside an Intel TSX transaction will result in a transaction 
abort.

Operation

TILESTORED tsib, tsrc

start := tilecfg.start_row

membegin := tsib.base + displacement
// if no index register in the SIB encoding, the value zero is used. 
stride := tsib.index << tsib.scale

while start < tdest.rows:
memptr := membegin + start * stride 
write_memory(memptr, tsrc.colsb, tsrc.row[start]) 
start := start + 1

zero_tilecfg_start()
// In the case of a memory fault in the middle of an instruction, the tilecfg.start_row := start

Intel C/C++ Compiler Intrinsic Equivalent

TILESTORED void _tile_stored(__tile src, void *base, int stride);

Flags Affected

None.

Exceptions

AMX-E3; see Section 3.7, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F3.0F38.W0 4B !(11):rrr:100
TILESTORED sibmem, tmm1

A V/N.E. AMX-TILE Store a tile in sibmem as specified in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:r/m (w) ModRM:reg (r) NA NA
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TILEZERO — Zero Tile

Instruction Operand Encoding

Description

This instruction zeroes the destination tile.
Any attempt to execute the TILEZERO instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

TILEZERO tdest

nbytes := palette_table[palette_id].bytes_per_row 

for i in 0 ... palette_table[palette_id].max_rows-1:
for j in 0 ... nbytes-1: 

tdest.row[i].byte[j] := 0
zero_tilecfg_start()

Intel C/C++ Compiler Intrinsic Equivalent

TILEZERO void _tile_zero(__tile dst);

Flags Affected

None.

Exceptions

AMX-E5; see Section 3.7, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32 
bit Mode 
Support

CPUID Feature 
Flag

Description

VEX.128.F2.0F38.W0 49 11:rrr:000
TILEZERO tmm1

A V/N.E. AMX-TILE Zero the destination tile.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A NA ModRM:reg (w) NA NA NA
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ENQUEUE STORES AND PROCESS ADDRESS SPACE IDENTIFIERS (PASIDS)
CHAPTER 4
ENQUEUE STORES AND PROCESS ADDRESS SPACE IDENTIFIERS

(PASIDS)

Chapter 2 described the ENQCMD and ENQCMDS instructions. These instructions perform enqueue stores, which 
write command data to special device registers called enqueue registers.
Bits 19:0 of the 64-byte command data written by an enqueue store conveys the process address space identifier 
(PASID) associated with the command. Software can use PASIDs to identify individual software threads. Devices 
supporting enqueue registers may use these PASIDs in responding to commands submitted through those regis-
ters.
As explained in Chapter 2, an execution of ENQCMD formats the command data with the PASID specified in 
bits 19:0 of the IA32_PASID MSR. It is expected that system software will configure that MSR to contain the PASID 
associated with the software thread that is executing.
ENQCMDS can be executed only by system software operating with CPL = 0. It is the responsibility of system soft-
ware executing ENQCMDS to configure the command data with the appropriate PASID.
Section 4.1 provides details of the IA32_PASID MSR. Section 4.2 describes how the XSAVE feature set supports 
that MSR. Section 4.3 presents PASID virtualization, a virtualization feature that allows a virtual-machine monitor 
to control the PASID values produced by enqueue stores executed by software in a virtual machine.

4.1 THE IA32_PASID MSR
This section describes the IA32_PASID MSR used by the ENQCMD instruction. The MSR can be read and written 
with the RDMSR and WRMSR instructions, using MSR index D93H. The MSR has format given in Table 4-1.

An execution of WRMSR causes a general-protection exception (#GP) in response to an attempt to set any bit in 
the ranges 30:20 or 63:32. Executions of RDMSR always return zero for those bits.
Because system software may associate a PASID with a software thread, it may choose to update the IA32_PASID 
MSR on context switches. To facilitate such a usage, the XSAVE feature set is extended to manage the IA32_PASID 
MSR. These extensions are detailed in Section 4.2.

4.2 THE PASID STATE COMPONENT FOR THE XSAVE FEATURE SET
As noted in Section 4.1, system software may choose to update the IA32_PASID MSR on context switches. This 
usage is supported by extensions to the XSAVE feature set.
The XSAVE feature set supports the saving and restoring of state components. These state components are orga-
nized using state-component bitmaps (each bit in such a bitmap corresponds to a state component).
A new state component is introduced called PASID state. PASID state comprises the IA32_PASID MSR. It is 
defined to be state component 10, so PASID state is associated with bit 10 in state component bitmaps. It is a 

Table 4-1.  IA32_PASID MSR

Bit Offset Description

19:0 Process address space identifier (PASID). Specifies the PASID of the currently running software thread.

30:20 Reserved

31 Valid. Execution of ENQCMD causes a #GP if this bit is clear.

63:32 Reserved
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supervisor state component, meaning that it can be managed only by the XSAVES and XRSTORS instructions. 
System software can enable those instructions to manage PASID state by setting bit 10 in the IA32_XSS MSR.
Processor support for this management of PASID state is enumerated by the CPUID instruction as follows:
• CPUID function 0DH, sub-function 1, enumerates in EDX:ECX a bitmap of the supervisor state components. 

ECX[10] will be enumerated as 1 to indicate that PASID state is supported.
• If PASID state is supported, CPUID function 0DH, sub-function 10 enumerates details for state component as 

follows:

— EAX enumerates 8 as the size (in bytes) required for PASID state. (The state component comprises only the 
one MSR.)

— EBX enumerates value 0, as is the case for supervisor state components.

— ECX[0] enumerates 1, indicating that PASID state is a supervisor state component.

— ECX[1] enumerates 0, indicating that state component 10 is located immediately following the preceding 
state component when the compacted format of the extended region of an XSAVE area is used.

— ECX[31:2] and EDX enumerate 0, as is the case for all state components.
Like WRMSR, XRSTORS causes a general-protection exception (#GP) in response to an attempt to set any bit in the 
IA32_PASID MSR in the ranges 30:20 or 63:32. Like RDMSR, XSAVES always saves zero for those bits.
The XSAVES instruction optimizes the amount of data that it writes to memory by not writing data for a state 
component known to be in its initial configuration. PASID state is in its initial configuration if the IA32_PASID MSR 
is 0.

4.3 PASID TRANSLATION
As noted earlier, an operating system (OS) may use PASIDs to identify individual software threads that are allowed 
to access devices supporting enqueue registers.
Intel® Scalable I/O Virtualization (Intel® Scalable IOV) defines an approach to hardware-assisted I/O virtualiza-
tion, extending it to support seamless addition of resources and dynamic provisioning of containers.1 With Intel 
Scalable IOV, a virtual-machine monitor (VMM) needs to control the PASIDs that are used by different virtual 
machines just as the guest OS controls the PASIDs used by software threads.
To allow a VMM to control the PASIDs used by enqueue stores while still allowing efficient use by a guest OS, a new 
virtualization feature is introduced, called PASID translation. PASID translation, if enabled, applies to any 
enqueue store performed by software in a virtual machine: the 20-bit PASID value specified by the guest operating 
system (guest PASID) for ENQCMD or ENQCMDS is translated into a 20-bit value (host PASID) that is used in the 
resulting enqueue store.

4.3.1 PASID Translation Structures
PASID translation is implemented by two hierarchies of data structures (PASID-translation hierarchies) config-
ured by a VMM. Guest PASIDs 00000H to 7FFFFH are translated through the low PASID-translation hierarchy, while 
guest PASIDs 80000 to FFFFFH are translated through the high PASID-translation hierarchy.
Each PASID-translation hierarchy includes a 4-KByte PASID directory. A PASID directory comprises 512 8-byte 
entries, each of which has the following format:
• Bit 0 is the entry’s present bit. The entry is used only if this bit is 1.
• Bits 11:1 are reserved and must be 0.
• Bits M–1:12 specify the 4-KByte aligned address of a PASID table (see below), where M is the physical-address 

width supported by the processor.
• Bits 63:M are reserved and must be 0.

1. See the Intel® Scalable I/O Virtualization Technical Specification for more details.
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A PASID-translation hierarchy also includes up to 512 4-KByte PASID tables; these are referenced by PASID 
directory entries (see above). A PASID table comprises 1024 4-byte entries, each of which has the following 
format:
• Bits 19:0 are the host PASID specified by the entry.
• Bits 30:20 are reserved and must be 0.
• Bits 31 is the entry’s valid bit. The entry is used only if this bit is 1.
Section 4.3.2 explains how the PASID-translation hierarchies are used to translate the PASIDs used for enqueue 
stores.

4.3.2 The PASID Translation Process
Each execution of ENQCMD or ENQCMDS results in an enqueue store with a PASID value. (ENQCMD obtains the 
PASID from the IA32_PASID MSR; ENQCMDS obtains it from the instruction's source operand.) When PASID trans-
lation is enabled, this PASID value is interpreted as a guest PASID. The guest PASID is converted to a host PASID; 
the enqueue store uses the host PASID for bits 19:0 of the command data that it writes.
The PASID translation process is illustrated in Figure 4-1.

The process operates as follows:
• If bit 19 of guest PASID is clear, the low PASID directory is used; otherwise, the high PASID directory is used.

Figure 4-1.  PASID Translation Process
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• Bits 18:10 of the guest PASID select an entry from the PASID directory. A VM exit occurs if the entry’s valid bit 
is clear or if any reserved bit is set. Otherwise, bits M:0 of the entry (with bit 0 cleared) contain the physical 
address of a PASID table, where M is the physical-address width supported by the processor.

• Bits 9:0 of the guest PASID select an entry from the PASID table. A VM exit occurs if the entry’s present bit is 
clear or if any reserved bit is set. Otherwise, bits 19:0 of the entry are the host PASID.

An execution of ENQCMD or ENQCMDS performs PASID translation only after checking for conditions that may 
result in general-protection exception (the check of IA32_PASID.Valid for ENQCMD; the check of CPL for 
ENQCMDS) and after loading the instruction's source operand from memory. PASID translation occurs before the 
actual enqueue store and thus before any faults or VM exits that it may cause (e.g., page faults or EPT violations).

4.3.3 VMX Support
A VMM enables PASID translation by setting secondary processor-based VM-execution control 21. A processor 
enumerates support for the 1-setting of this control in the normal way (by setting bit 53 of the IA32_VMX_PROC-
BASED_CTLS2 MSR). It is expected that any processor that supports the ENQCMD and ENQCMDS instructions will 
also support PASID virtualization and vice versa.
PASID translation uses two new 64-bit VM-execution control fields in the VMCS: the low PASID directory 
address and the high PASID directory address. These are the physical addresses of the low PASID directory 
and the high PASID directory, respectively. Software can access these new VMCS fields using the encoding pairs 
00002038H/00002039H and 0000203AH/0000203BH, respectively.
If the “PASID translation” VM-execution control is 1, VM entry fails if either PASID directory address sets any bit in 
the ranges 11:0 or 63:M, where M is the physical-address width supported by the processor.
Section 4.3.2 identified situations that may cause a VM exit during PASID translation. Such a VM exit uses basic 
exit reason 72 (for ENQCMD PASID translation failure) or 73 (ENQCMDS PASID translation failure). The exit quali-
fication is determined as follows:
• For ENQCMD, it is IA32_PASID & 7FFFFH (bits 63:20 are cleared).
• For ENQCMDS, it is SRC & FFFFFFFFH, where SRC is the instruction’s source operand (only bits 31:0 may be 

set).
4-4 Ref. # 319433-042



INTEL® TSX SUSPEND LOAD ADDRESS TRACKING
CHAPTER 5
INTEL® TSX SUSPEND LOAD ADDRESS TRACKING

Chapter 2 described the XSUSLDTRK and XRESLDTRK instructions.
A processor supports Intel® TSX suspend load address tracking if CPUID.07H.EDX.TSXLDTRK [bit 16] = 1. An 
application must check if the processor supports Intel TSX suspend load address tracking before it uses the Intel 
TSX suspend load address tracking instructions (XSUSLDTRK, XRESLDTRK). These instructions will generate a 
#UD exception when used on a processor that does not support TSX suspend load tracking.
Programmers can choose which memory accesses do not need to be tracked in the TSX read set. A programmer 
who uses the suspend load address tracking feature must ensure that there are no atomicity requirements related 
to the addresses they choose to exclude from the read set as hardware will not detect read-write conflicts for 
those addresses.
To prevent load addresses from being entered into the read set, the programmer should use the XSUSLDTRK and 
XRESLDTRK instructions. The XSUSLDTRK instruction specifies the start of a suspend region (addresses of subse-
quent loads will not be added to the transaction read set), and the XRESLDTRK instruction specifies the end of a 
suspend region (addresses of subsequent loads will be added to the transaction read set). 
The execution of a suspend load address tracking region is very similar to transaction execution with the following 
exceptions:
• The addresses of loads between suspend/resume are not tracked for read-write conflicts if the addresses are 

accessed inside the suspend region only (i.e., they are not added to the transaction read set). The addresses 
are still tracked if they are accessed outside of the suspend region inside the transaction.

• Transaction start/end inside the suspend region is not supported; any execution of XACQUIRE/XBEGIN or 
XRELEASE/XEND will cause the transaction to abort.

• There is no support for suspend region nesting; XSUSLDTRK will cause a transaction abort.
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CHAPTER 6
HYPERVISOR-MANAGED LINEAR ADDRESS TRANSLATION

This chapter provides information about a new VT-x capability called Hypervisor-managed Linear Address Transla-
tion (HLAT). This capability is intended to be used by a Hypervisor/Virtual Machine Monitor (VMM) to enforce guest 
linear translation (to guest physical mappings). When combined with the existing Extended Page Table (EPT) capa-
bility, HLAT enables the VMM to ensure the integrity of combined guest linear translation (mappings and permis-
sions) cached by the processor TLB, via a reduced software TCB managed by the VMM. The VMM-enforced guest 
translations are therefore not subject to tamper by untrusted system software adversaries.

6.1 USAGE
This feature is intended to augment the security functionality for a type of Virtual Machine Monitor (VMM) that may 
use legacy EPT read/write/execute (XWR) permission bits (bits 2:0 of the EPTE) as well as the new User-execute 
(XU) access bit (bit 10 of the EPTE) to ensure the integrity of code/data resident in guest physical memory 
assigned to the guest operating system. EPT permissions are also used in these VMMs to isolate memory; for 
example, to host a Secure Kernel (SK) that can manage security properties for the General Purpose Kernel (GPK). 
For such usages, it is important that the VMM ensure that the guest linear address mappings which are used by the 
General Purpose Kernel to refer to the EPT monitored guest physical pages are access-controlled as well. 
Figure 6-1 below shows an example software setup.

VMMs could enforce the integrity of these specific guest linear to guest physical mappings (paging structures) by 
using legacy EPT permissions to mark the guest physical memory containing the relevant guest paging structures 
as read-only. The intent of marking these guest paging structures as read-only is to ensure an invalid mapping is 
not created by guest software. However, such page-table edit control techniques are known to cause very high 

Figure 6-1.  Example HLAT Software Usage
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overheads due to the requirement that the VMM must monitor all paging contexts created by the (Guest) operating 
system. HLAT enables a VMM to enforce the integrity of guest linear mappings without this high overhead.
This chapter describes a processor mechanism for the type of VMM described above consisting of:
• A Hypervisor-managed Linear Address Translation (HLAT) mechanism which uses an alternate IA paging 

structure managed in guest physical memory (for example, by a Secure Kernel) that contains guest linear to 
guest physical translations that the VMM/Secure Kernel wants to enforce.

• A new EPT control bit called “Paging-Write” specified in EPT leaf entries. The new bit specifies which guest 
physical pages hold HLAT or legacy IA paging structures so that the processor can use the Paging-Write as 
permission to perform A/D bit writes (instead of the software W permission in the EPTE). Typical usage for the 
Paging-Write bit is with the legacy EPT Write bit cleared. In PAE paging, the PDPTE does not have A/D bits, 
instead the 4K page-directory-pointer table page contains 4 PDPTR entries. Hence, in PAE paging, the 
processor ignores the PW bit of leaf entries of CR3 EPT walks. Software note: in this case, the VMM will need to 
monitor the page-directory-pointer table page for writes using EPT write permissions (or alternately the VMM 
can emulate the PDPTR load into the VMCS for the guest on a MOV CR3 by configuring VM Exit on load to CR3 
in PAE paging).

• A new EPT control bit called “Verify Paging-Write” specified in EPT leaf entries (that refer to the final host 
physical page in the translation). The new bit specifies which guest physical pages should only be referenced 
via translation (guest) paging structures that are marked as Paging-writable under EPT.

6.2 VMCS CHANGES
A new 64-bit control field, “tertiary processor-based VM-execution controls”, is defined. The encoding pair for this 
field is 00002034H/00002035H.
A new tertiary processor-based VM-execution control, “Enable HLAT”, is defined. The bit position of this control is 1.
A new tertiary processor-based VM-execution control, “Enable Paging-Write”, is defined. The bit position of this 
control is 2.
A new tertiary processor-based VM-execution control, “Enable Guest Paging Verification”, is defined. The bit posi-
tion of this control is 3.
If bit 17, “Activate tertiary controls”, of the primary processor-based VM-execution controls is 0, the logical 
processor operates as if the “Enable HLAT”, “Enable Paging-Write” and “Enable Guest Paging Verification” VM-
execution controls are 0.
Note that the enable controls for “Enable Paging-Write” and “Enable Guest Paging Verification” are independent of 
the “Enable HLAT” control. If the processor based VM-execution control for “Enable Paging-Write” is clear, the 
processor operates as if the “Enable Guest Paging Verification” control is 0.
A new 64-bit control field, “Hypervisor-managed Linear Address Translation Pointer”, is defined. The encoding pair 
for this field is 00002040H/00002041H. The structure of this field and the in-memory data structure referenced by 
the guest physical address embedded in this field are described in Section 6.6. This field is ignored if the processor-
based VM-execution control “Enable HLAT” is clear.

6.3 CHANGES TO EPT PAGING-STRUCTURE ENTRIES
A control bit, “Paging Write”, in EPT leaf paging-structure entries is defined; the bit position is 58.
A control bit, “Verify Paging-Write”, in EPT leaf paging-structure entries is defined; the bit position is 57.
If the “Enable Paging-Write” VM-execution control (see Section 6.2) is 0, the “Paging Write” bit in the EPT leaf 
paging-structure entries is ignored and remains available to software. If the control is 1, the bit will be defined for 
all leaf EPT paging structures and used as described in Section 6.4.
If the “Enable Guest Paging Verification” VM-execution control (see Section 6.2) is 0, the “Verify Paging-Write” bit 
in the EPT leaf paging-structure entries is ignored and remains available to software. If the control is 1, the bit will 
be defined for all leaf EPT paging-structures that refer to the final host physical page in the translation and used as 
described in Section 6.4.
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The new EPT control bits “Paging-Write” and “Verify Paging-Write” are enabled via tertiary processor-based VM-
execution controls. Note that Verify Paging-Write (VPW) relies on Paging-Write (PW) for its interpretation, hence, 
if PW is disabled, VPW is ignored (and SW available as legacy) and the processor operates as if VPW is disabled, i.e., 
no EPT fault will occur due to VPW violations.

6.3.1 Reservation of a Guest Page Type in EPT Paging Structure Entry for Future Use
If either of the CET “Enable EPT Kernel Shadow Stack Control” EPT control or the HLAT “Enable Paging-Write” is 
disabled, then the control bits in the EPTE for the disabled control remain available to software. (This is same as 
legacy behavior.)
If both the CET “Enable EPT Kernel Shadow Stack Control” EPT control and the “Enable Paging-Write” are enabled 
together, then the encoding in the EPTE for both bits set (11b) may be used in the future for an additional guest 
page type if needed. Defining this encoding (11b) will need an explicit opt-in control in the future. Note that there 
is no special treatment for this encoding in the HLAT architecture.
Four Guest Page Types can be expressed via the CET “Enable EPT Kernel Shadow Stack Control” EPT control and 
the “Enable Paging-Write” EPT control; ordinary guest page (SSS=0b, PW=0b), guest kernel supervisor shadow 
stack (SSS=1b, PW=0b), guest paging structure (SSS=0b,PW=1b), and undefined (SSS=1b, and PW=1b).
It is the responsibility of the VMM (software) to avoid using the undefined (11b) settings of these two control bits, 
noting that, Kernel Shadow Stack is to be used by the VMM for the final EPTE in the EPT translation for Kernel 
shadow stack GPAs, whereas, Paging-Write is used for the final EPTE in the EPT translation of GPAs containing 
guest paging structures (not for the final page referenced through the guest paging structures). For such a config-
uration (11b) for SSS and PW specified by the VMM, the processor will enforce both Kernel Shadow Stack access 
semantics and Paging-write access semantics for those GPAs. See the table below for details.

6.4 CHANGES TO VMX SUPPORT FOR ADDRESS TRANSLATION
If the logical processor is in VMX non-root operation with EPT enabled, and if the “Enable HLAT” VM-execution 
control (see Section 6.1) is 0, the translation from guest linear to host physical address is determined by the guest 
IA paging structures and the EPT paging structures. (This is same as legacy behavior.)
When the HLAT mechanism is enabled, a guest linear address is translated either through the HLAT paging struc-
ture or the “ordinary” paging structure (guest CR3-rooted paging structure). The processor makes this decision 
based on whether the guest linear address matches a Protected Linear Range (PLR); see Section 6.5. A PLR match 
causes the processor to translate the guest linear address through the HLAT paging structure; a mismatch causes 
the processor to translate the guest linear address based on legacy through the ordinary guest CR3-rooted paging 
structure. The PLR match is performed using a prefix-mask that is applied to the canonical form of the guest linear 
address and comparing the masked address against a prefix-match value on the masked canonical guest linear 
address. The Protected Linear Range is described in Section 6.5. Both paging structures are also walked via EPTs 
(EPT usage for address translation is the same as legacy). Based on the PLR match, a mapping for a guest linear 
address to a host physical address is only translated by the processor either through the HLAT IA paging structure 

Table 6-1.  Kernel Shadow Stack and Paging-Write Access Details

Kernel Shadow 
Stack VMCS 
Control

Paging-Write 
VMCS Control Kernel Shadow Stack EPTE Bit Paging-Write EPTE Bit EPT Misconfiguration

0 0 Ignored Ignored NA

0 1 Ignored Paging-Write behavior NA

1 0 Kernel Shadow Stack behavior Ignored NA

1 1 Kernel Shadow Stack behavior Paging-Write behavior NA: This setting may change in 
the future when this encoding is 
utilized for a new guest page 
type, via a new opt-in VMX 
control.
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walk, or the ordinary guest CR3-rooted IA paging structure walk; and never both. It is not necessary for a guest 
linear address translation to be found in the HLAT paging structures (after a PLR match); this allows the VMM to 
enforce sparse guest supervisor linear address translations via HLAT. The VMM may handle the missing translations 
by the use of a control bit called a “restart walk” bit in the HLAT paging structures. When the processor transla-
tion of a guest linear address through the HLAT paging encounters a “restart walk”, the processor aborts the walk 
and performs a legacy walk starting at the ordinary guest CR3-rooted paging structures.
For a PLR match, if the guest linear address translation via the HLAT walk succeeds and a mapping to a guest phys-
ical address is found in the HLAT, then the walk is completed successfully and the TLB is filled appropriately. 
However, an HLAT walk may not complete due to the following reasons:

• A guest linear address translation may be specified as not present in the HLAT paging structures. In this 
case, the walk is terminated and a page fault is reported to software with a Page-Fault Error Code 
indicator to indicate HLAT fault due to page not present.

• A guest linear address translation may encounter reserved bits set in the HLAT paging structures. In 
this case, the walk is terminated and a page fault is reported to software with a Page-Fault Error Code 
indicator to indicate HLAT fault due to reserved bit set.

• A guest linear address translation may be aborted by the processor encountering a “restart walk” 
control bit during the walk. In this case, the walk is restarted from the ordinary guest CR3-rooted 
paging structures. A translation may be found in the ordinary guest CR3-rooted paging structures and 
the processor response to those conditions is the same as legacy address translation through IA and 
EPT paging structures, i.e., either the TLB is filled or a page-fault or EPT violation is generated. If the 
TLB is filled after a restart, the processor ensures that the TLB page size used matches the page size at 
which the HLAT walk was aborted due to restart. Note that a guest linear address translation that starts 
at the HLAT paging structures and encounters a “restart walk” switches to ordinary CR3 address 
translation and cannot architecturally revert back to translation through the HLAT structures.

HLAT relieves the VMM from making guest physical pages that hold the ordinary guest CR3-rooted guest paging 
structures read-only under EPT. However, to meet the security objective for HLAT, the VMM must make the guest 
physical pages that hold the HLAT guest paging structures read-only under EPT; this restriction has no legacy 
compatibility restrictions. Processor page walk A/D bit updates occur as defined, or ordinary paging structures 
during guest linear address translation through HLAT paging structures. Per legacy behavior, these A/D bit writes 
will cause EPT violations if the guest paging structure guest physical pages are read only under EPTs. To avoid this 
performance overhead, a new EPT control bit “Paging-Write” is defined which can be enabled via the new tertiary 
VM execution control called “Enable Paging-Write”. Guest physical pages that have the Paging-Write bit set under 
EPTs allow the processor page walker to perform A/D bit writes without EPT violations (even if the EPT entry Write 
permission is clear, effectively EPTE.W||EPTE.PW is used as the leaf EPTE Write permission by the processor). Soft-
ware writes to guest physical pages are still subject to the EPT Write permission; Paging-Write is ignored for writes 
from software. Note that Paging-Write can be used for HLAT paging structures or ordinary paging structures irre-
spective of whether HLAT is enabled or not. Details of EPT violation behavior for Paging-Write is described in 
Section 6.8, Table 6-9.
Note that by using HLAT and Paging-Write the VMM can enforce guest linear address translation for specific guest 
linear addresses, however, it cannot enforce restricting guest linear address alias translations to guest physical 
addresses. The VMM can restrict the effect of aliases by making guest physical pages non-writable under EPTs. 
However, there may be scenarios where the VMM may wish to restrict aliases to writable guest-physical pages. To 
enable the VMM to restrict aliases, a new EPT control bit “Verify Paging-Write”, is defined which can be enabled via 
the VM execution control called “Enable Guest Paging Verification”. Guest physical pages that have the Verify-
Paging-Write bit set under EPT cause the processor page walker to check that only guest physical pages that have 
the leaf EPT entry attribute Paging-Write were used to translate a guest linear address to that guest physical 
address. Note that Verify-Paging-Write can be used for HLAT paging structures or ordinary paging structures irre-
spective of if HLAT is enabled or not.
Specific conditions may cause an EPT violation with a new Exit Qualification bit described in Section 6.8 when 
“Verify Paging-Write” is enabled.
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6.5 PROTECTED LINEAR RANGE
The Protected Linear Range (PLR) is a range of guest linear address space for which the processor page walker 
performs address translation through the HLAT paging structures when the HLAT mechanism is enabled by the 
VMM. The PLR is specified using the following two control fields:

1. Bits 53:48 (currently reserved) of the IA32_VMX_EPT_VPID_CAP MSR (address 48CH) will enumerate the 
maximum allowed value for the HLAT prefix size. The HLAT prefix size holds a value between 0 and 52 and 
specifies the size of the all 1’s MSB prefix (in number of bits) that the processor applies for testing the GLA for 
a PLR match. For example:

• A value of 0 reported by the processor specifies that the processor will not apply a PLR prefix match (so 
if HLAT is enabled, all GLAs will be subject to HLAT lookup).

• A value of 1 reported by the processor specifies that the processor supports a 1-bit MSB prefix, so GLA 
values of the canonical form with bit 63 set (and higher) will match the PLR (i.e., upper half of the guest 
linear address space), and hence will be subject to HLAT lookup.

• A value of 52 reported by the processor specifies that the processor supports a 52-bit MSB prefix of all 
1s (so if HLAT is enabled, the processor enforces HLAT lookup only for the last 4KB page in the guest 
linear address space).

NOTE
Initial implementations may report a 1-bit prefix width in this capability MSR and will not support 
32-bit mode paging.

2. A new 16-bit VMCS control field is defined called “HLAT PLR Prefix Size”. The VMCS index and encoding for this 
field is 00000006H. VMM software should program this field to specify the GLA MSB prefix to apply to test the 
GLA for a PLR match (to condition HLAT walks).

This 16-bit control field holds a value between 0 and 52 specifying the size of the all 1’s prefix (in number of 
bits) that the processor should apply for matching the GLA to the PLR. A value specified by software higher than 
what the processor enumerates in the HLAT prefix size value will be truncated by the processor, resulting in the 
enforcement of an address prefix of size specified by the capability MSR.

6.6 HYPERVISOR-MANAGED LINEAR ADDRESS TRANSLATION
The HLAT is referenced via a 64-bit control field called “Hypervisor-managed Linear Address Translation Pointer” 
(HLATP) which contains a 4K-aligned guest physical address. The HLAT is populated with translations for guest 

Figure 6-2.  HLAT High Level Representation
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linear addresses to guest physical addresses. The HLAT structure is identical for IA32-e (compatibility and 64-bit) 
modes of VMX-non-root (guest) software. Additionally, VA48 and LA57 are supported via the same HLAT structure 
format. For IA32 PAE and non-PAE modes (CR4.PAE=0) HLAT lookup is not performed even if the “Enable HLAT” 
VM-execution control is 1. Disabling paging when HLAT is enabled disables HLAT; the VMM should restrict such 
guest paging mode changes via CR exiting.
The format of the HLATP is shown in Table 6-2.

Processor access to the HLAT data structures (in guest physical memory) will use the memory type that the MTRRs 
(memory-type range registers) and EPTs specify for the guest physical address of the access.
Software should ensure that the VMCS and referenced data structures are located at physical addresses that are 
mapped to WB memory type by the MTRRs.

6.6.1 HLAT Overview
HLAT is active when the “enable HLAT” VM-execution control is 1. The processor looks up the HLAT if, during a guest 
linear address translation, the guest linear address matches the Protected Linear Range (see Section 6.5). The 
lookup from guest linear addresses to the guest physical address and attributes is determined by a set of HLAT 
paging structures. Section 7.2 gives the details of the HLAT paging structures.
The guest paging structure managed by the guest OS specifies the ordinary translation of a guest linear address to 
the guest physical address and attributes that the guest ring-0 software has programmed, whereas HLAT specifies 
the alternate translation of the guest linear address to guest physical address and attributes that the Secure Kernel 
and VMM seek to enforce. A logical processor uses HLAT to translate guest linear addresses only when those guest 
linear addresses are used to access memory (both for code fetch and data load/store) and the guest linear 
addresses match the PLR programmed by the VMM/Secure Kernel.

6.6.2 Operation of HLAT
The HLAT translation mechanism uses bits 47:0 in PAE and IA32-e paging modes (or 56:0 in LA57 paging mode) of 
the guest linear address based on the paging mode of operation of the guest enforced by the VMM. Correspond-
ingly, the HLAT is a 4-level (or 5-level) hierarchical structure.
HLAT structures are accessed to translate a given guest linear address. 48 (or 57) bits of the guest linear address 
are always used by the logical processor to traverse the HLAT structures as follows:

Table 6-2.  Format of HLATP

Bit Position1

NOTES:

1. N is the physical-address width supported by the processor.

Contents

2:0 Reserved (0)

3 Page-level write-through (PWT); indirectly determines the memory type used to access the HLAT PML4 table 
during linear address translation (see Section “Paging and Memory Typing When the PAT is Supported” in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

4 Page-level cache disable (PCD); indirectly determines the memory type used to access the HLAT PML4 table during 
linear address translation (see Section “Paging and Memory Typing When the PAT is Supported” in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3A).

11:5 Reserved (0)

N-1:12 Guest physical address of 4KB-aligned HLAT PLM4 table used for linear address translation (if LA57 enabled this is 
the guest physical Address of the 4KB-aligned HLAT PML5 table used for linear address translation).

63:N Reserved (0)
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A 4KB naturally aligned HLAT L5 table is located at the guest physical address specified in bits 51:12 of the “Hyper-
visor-managed Linear Address Translation Pointer”, a 64-bit VM-execution control field. An HLAT L5 table 
comprises 512 64-bit entries (HLAT L5Es). An HLAT L5E is selected at the guest physical address defined as 
follows:
• Bits 63:52 are all 0.
• Bits 51:12 are from the HLATP.
• Bits 11:3 are bits 56:48 of the guest linear address.
• Bits 2:0 are all 0.

6.6.3 Format of the HLAT L5E
The format of the HLAT L5E is similar to the format of the ordinary PML5E for the IA paging structure managed by 
the guest OS. The changes/additions are noted below.

A 4KB naturally aligned HLAT L4 table is located at the guest physical address specified in bits N:12 of the HLAT 
L5E. An HLAT L4 table comprises 512 64-bit entries (HLAT L4Es). An HLAT L4E is selected at the guest physical 
address defined as follows:
• Bits 63:52 are all 0.
• Bits 51:12 are from the HLAT L4E.
• Bits 11: 1 3 are bits 47:39 of the guest linear address.
• Bits 2:0 are all 0.

6.6.4 Format of the HLAT L4E
The format of the HLAT L4E is similar to the format of the ordinary PML4E for the IA paging structure managed by 
the guest OS. The changes/additions are noted below.

A 4KB naturally aligned HLAT L3 table is located at the guest physical address specified in bits N:12 of the HLAT 
L4E. An HLAT L3 table comprises 512 64-bit entries (HLAT L3Es). An HLAT L3E is selected at the guest physical 
address defined as follows:

Table 6-3.  Format of HLAT L5E

Bit Position Usage in Ordinary Paging Usage in HLAT Paging Structures

11 Ignored Restart

If entry is present and this bit is 1, specifies that a page-walk hitting this non-leaf 
entry must stop and restart the walk from the guest CR3-rooted ordinary paging 
structure. The Accessed (A) bit is also defined and remaining bits are ignored.

If 0, specifies that the walk should continue (and all bits are treated like ordinary 
paging).

Table 6-4.  Format of HLAT L4E

Bit Position Usage in Ordinary Paging Usage in HLAT Paging Structures

11 Ignored Restart

If entry is present and this bit is 1, specifies that a page-walk hitting this non-leaf 
entry must stop and restart the walk from the guest CR3-rooted ordinary paging 
structure. The Accessed (A) bit is also defined and remaining bits are ignored.

If 0, specifies that the walk should continue and all bits are treated like ordinary 
paging.
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• Bits 63:52 are all 0.
• Bits 51:12 are from the HLAT L4E.
• Bits 11:3 are bits 38:30 of the guest linear address.
• Bits 2:0 are all 0.

6.6.5 Format of the HLAT L3E
The HLAT L3E may contain a mapping to a guest physical address of a 1GB page or may contain a reference to an 
HLAT L2 Table (via a guest physical address of a 4KB naturally aligned address). In either case, the format of the 
HLAT L3E is similar to the format of the ordinary PDPTE for the IA paging structure managed by the guest OS. The 
changes/additions are noted below.

A 4KB naturally aligned HLAT L2 table is located at the guest physical address specified in bits N:12 of the HLAT 
L3E. An HLAT L2 table comprises 512 64-bit entries (HLAT L2Es). An HLAT L2E is selected at the guest physical 
address defined as follows:
• Bits 63:52 are all 0.
• Bits 51:12 are from the HLAT L3E.
• Bits 11:3 are bits 29:21 of the guest linear address.
• Bits 2:0 are all 0.

6.6.6 Format of the HLAT L2E
The HLAT L2E may contain a mapping to a guest physical address of a 2MB page or may contain a reference to an 
HLAT L1 Table (via a guest physical address of a 4KB naturally aligned address). In either case, the format of the 
HLAT L2E is similar to the format of the ordinary PDE for the IA paging structure managed by the guest OS. The 
changes/additions are noted below.

Table 6-5.  Format of HLAT L3E

Bit Position Usage in Ordinary Paging Usage in HLAT Paging Structures

11 Ignored Restart

If entry is present and this bit is 1, specifies that a page-walk hitting this non-leaf 
entry must stop and restart the walk from the guest CR3-rooted ordinary paging 
structure. The Accessed (A) bit is also defined and remaining bits are ignored.

If 0, specifies that the walk should continue and all bits are treated like ordinary 
paging.

Table 6-6.  Format of HLAT L2E

Bit Position Usage in Ordinary Paging Usage in HLAT Paging Structures

11 Ignored Restart

If entry is present and this bit is 1, specifies that a page-walk hitting this non-leaf 
entry must stop and restart the walk from the guest CR3-rooted ordinary paging 
structure. The Accessed (A) bit is also defined and remaining bits are ignored.

If 0, specifies that the walk should continue and all bits are treated like ordinary 
paging.
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A 4KB naturally aligned HLAT L1 table is located at the guest physical address specified in bits N:12 of the HLAT 
L2E. An HLAT L1 table comprises 512 64-bit entries (HLAT L1Es). An HLAT L1E is selected at the guest physical 
address defined as follows:
• Bits 63:52 are all 0.
• Bits 51:12 are from the HLAT L2E.
• Bits 11:3 are bits 20:12 of the guest linear address.
• Bits 2:0 are all 0.

6.6.7 Format of the HLAT L1E
The HLAT L1E contains a mapping to a guest physical address of 4KB pages. The format of the HLAT L1E is similar 
to the format of the ordinary PTE for the IA paging structure managed by the guest OS. The changes/additions are 
noted below.

Table 6-7.  Format of HLAT L1E

Bit Position Usage in Ordinary Paging Usage in HLAT Paging Structures

11 Ignored Restart

If entry is present and this bit is 1, specifies that a page-walk hitting this non-leaf 
entry must stop and restart the walk from the guest CR3-rooted ordinary paging 
structure. The Accessed (A) bit is also defined and remaining bits are ignored.

If 0, specifies that the walk should continue and all bits are treated like ordinary 
paging.
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6.6.8 HLAT Faults
When the “Enable HLAT” VM-execution control is 1, guest linear addresses that match the PLR criteria are trans-
lated through the HLAT to enforce Secure Kernel/VMM-specified translation. HLAT lookup by the processor can 
generate page-faults due to not-present or when the translation does not permit the access. If an HLAT page fault 
does not occur, then the TLB caches the guest linear to host physical combined mapping and permissions derived 
from the page walk to allow the memory access.
If a page fault occurs due to an HLAT mapping not present or a reserved bit violation during an HLAT walk, the 
processor sets the “HLAT Fault” (bit 7) in the PFEC reported for the page fault exception.

Figure 6-3.  New Bit in the IA-32e Paging Structures Recognized During HLAT Walks1

NOTES:

1. This bit remains ignored in ordinary page walks to translate a guest linear address.
2. M is an abbreviation for MAXPHYADDR.
3. Reserved fields must be 0.
4. If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, the XD flag (bit 63) is reserved.
5. If CR4.PKE = 0, the protection key is ignored.
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For HLAT page walks which encounter an HLAT entry with P=R=1, and other reserved bits set, the reserved bit 
check faults are a higher priority than the restart operation and will be reported to software through a page fault 
with PFEC bits set as described below.
The PFEC bit 7 flag is set (1) if, the exception resulted during translation of a guest linear address, and:

1. VM-execution control: “enable HLAT” = 1, and

2. The access caused a page-fault exception (for code or data access) during HLAT lookup implying that the linear 
address matched the PLR criteria.

When this PFEC bit 7 flag is set (1):

• The P flag (bit 0) is cleared (0) implying there is no translation in the HLAT for the linear address 
because the P flag was 0 in one of the HLAT paging structure entries used to translate that linear 
address.

• OR The RSVD flag (bit 3) is 1
AND

• PK flag (bit 5) and SGX flag (bit 15) are 0 for both cases.

• I/D (bit 4), R/W (bit 1), U/S (bit 2) and CET SSS (bit 6) flags should be set appropriately.
Note that no PFEC bit is set for faults generated when the HLAT translation does not permit the access (during 
lookup or from cached HLAT mappings). To differentiate faults due to insufficient permissions in HLAT, the VMM can 
leverage EPT permissions thus causing an EPT violation or using Virtualization Exceptions, the VMM can generate a 
#VE exception for page accesses violating the EPT permissions, thus differentiating permission violations reported 
to the OS from legacy page faults due to a permission violation from ordinary paging (via CR3-rooted paging struc-
tures).

6.6.9 HLAT Operation
This section describes the operation of the HLAT lookup and the fault conditions that may occur.
If at the beginning of a guest linear address translation, the PLR matches:

1. An HLAT entry is read (initially, an HLAT L5 entry). A nested walk of the EPT structures is performed to complete 
this read (memory type is derived from HLAT page walk, and EPT memory type). The EPT walk may lead to an 
EPT violation which aborts the walk. If the HLAT entry is read successfully:

a. If the entry is not present, then the HLAT walk is deemed complete and a page fault is reported with the 
HLAT Fault (bit 7) PFEC bit set.

b. Instead, if the entry is present but its contents are not configured properly (a reserved bit is set), the HLAT 
walk is deemed complete and a page fault is reported with the HLAT Fault (bit 7) PFEC bit set.

c. If the entry is present and the restart (bit 11) is set, the HLAT walk is aborted; the Accessed (A) bit is 
updated and the remaining HLAT PxE bits are ignored; the page walk is restarted from the guest CR3 rooted 
page table structure, with the same (or smaller page) fragmentation page size as where the restart 
occurred; from this point the walk is a legacy nested page table walk. Note that the page size restriction is 
important to enforce that there is no larger page size mappings in ordinary page tables that supersedes a 
smaller page size mapping in the HLAT page table. (See Table 6-8.)

d. If the entry is present and its contents are configured properly, operation depends on whether the entry 
references another HLAT structure:

• If the entry does reference another HLAT structure, an entry from that structure is accessed; step 1 is 
executed for that other entry.

• Otherwise, the entry is used to produce the guest physical address and permissions; step 2 is executed.

2. The guest physical address and attributes are determined from the HLAT entry and the last stage of the nested 
EPT walk is attempted to determine the final host physical page address and effective permissions. If no EPT 
violation occurs then the TLB fill is completed.
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6.6.10 HLAT Interaction with IA and EPT A/D
In ordinary paging, processor implementations cache information from PTE into PxE caches only after updating the 
Accessed (A) bit in the PTE. (This is legacy behavior.)
If an HLAT entry is present (P=1) and is specified with restart (R=1), then in addition to those two bits, the 
Accessed (A) bit is also defined and the remaining HLAT PxE bits are ignored. Similar to ordinary paging, Accessed 
(A) bits in HLAT will be updated for any present PxE (including R=1) before the PxE entry is cached.
In ordinary paging, on a page walk due to a memory write, if the ordinary PTE is present (P=1) and write=0, the 
processor reports a page fault; or, if present (P=1) and write=1 and PTE is a leaf, the processor sets the D bit on 
the leaf entry. (This is legacy behavior.)
In HLAT paging, if an HLAT entry is present (P=1) and not restart (R=0), then the behavior for fault generation and 
D bit setting is the same as in ordinary paging (for both write=0 and write=1). However, in HLAT paging, if the 
entry is present (P=1) and restart (R=1) then the rest of the bits (other than A) are ignored.

• For an HLAT page walk due to a write, where an HLAT PTE higher in the hierarchy specifies cumulative 
write=0, processor fault will be suppressed (since walk is restarted).

• If the HLAT entry is a leaf entry (D bit occurs only at PTE level which is not cached in any PxE structure), 
the processor suppresses the dirty bit assist (A bit will still be set on all PxE structures).

IA A/D updates may occur in the HLAT paging structures and corresponding EPT A/D updates may occur even if 
HLAT paging structures indicate a restart.

6.6.11 Cached HLAT Derived Information
Information derived from page walks may be cached by the processor. Paging structure intermediate information 
may be cached in PxE caches and final combined mappings derived from the guest linear address translation (page 
walks) may be cached in the processor TLBs. Any modification to the information specified in IA paging entries may 
be invalidated using legacy operations such as MOV CR3, INVLPG (from VMX non-root mode), and INVVPID (from 
VMX root mode). (This is legacy behavior.)
From the TLB perspective, legacy behavior is not modified for invalidating information cached that is derived from 
HLAT paging structures. There is no change to information cached in the processor TLBs since HLAT enforces that 
a single mapping is found for a specific guest linear address; either from the HLAT paging structure or from the 
guest CR3 rooted paging structure and not both.

Table 6-8.  HLAT Page Size Mapping

For an address that matches PLR, Page 
Size/Level at which “restart” occurred 
in HLAT paging structure

Page Size at which IA ordinary walk 
completed successfully (after restart at 
size from column 1)

Page size cached in TLB (Note: nested EPT 
page walk may further fragment page 
mapping - EPT cannot coalesce)

512GB 1GB 1GB

2MB 2MB

4KB 4KB

1GB 1GB 1GB

2MB 2MB

4KB 4KB

2MB 1GB 2MB

2MB 2MB

4KB 4KB

4KB 1GB 4KB

2MB 4KB

4KB 4KB
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Similarly, ASID management is not modified due to HLAT. If PCID is enabled by the guest, PCID always derives 
from guest CR3 (not HLAT root) and follows the legacy approach. If HLAT mappings are global they will be treated 
with global ASID; if HLAT mappings are not global, they will map to ASID determined by VPID/EPTP/PCID per 
legacy behavior.
The paging structure caches (PxE caches) on the other hand, hold additional information that modifies the page 
walk, hence the following changes are required to the PxE caches:

1. The restart bit is cached as a new output bit from the PxE cache lookup during page walks. A page walk that 
hits the PxE cache and results in an entry for which the restart bit is cached aborts the walk, and causes the 
walk to restart from the guest CR3 rooted guest physical address (which may hit other entries in the PxE 
cache).

2. An HLAT tag bit is provided as input to the PxE lookup to ensure that the walk is performed in HLAT mode until 
a restart is encountered.

6.7 CHANGES TO GUEST PHYSICAL ACCESSES
EPT permission violations due to accumulated memory read/write/execute permission violations are reported as 
EPT violation VM Exits. If a logical processor is in VMX non-root operation with EPT enabled, and if the “Enable 
Paging-Write” VM-execution control (see Section 6.1) is 0, an EPT violation occurs if a write access using a guest-
physical address and the write-access bit (bit 1) was clear in any of the EPT paging structure entries used to trans-
late the guest-physical address. This is true for software accesses as well as processor page walker accesses when 
performing A/D bit updates during page walks through the IA paging structures. (This is legacy behavior.)
When HLAT is enabled, the guest physical addressed HLAT paging structures must be readable and writable by the 
processor to perform translations when the guest kernel is executing; this requires the guest paging structures to 
be read-write under EPTs. The write accesses include Paging-Write accesses, which are the following:

• Writes by a logical processor to update accessed and dirty flags in a guest paging-structure entry.

• If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), reads by the logical 
processor of a guest paging-structure entry use it to translate a linear address. (This does not apply to 
loads of the PDPTE registers by the MOV to CR instruction for PAE paging; such loads of guest PDPTEs 
are never treated as writes.)

However from a security perspective, HLAT paging structures cannot be made writable under EPTs to protect it 
from software writes from an untrusted guest. Thus, per legacy behavior, A/D bit updates on the HLAT paging 
structures would invoke EPT violations that the VMM would have to emulate. To avoid this performance burden, a 
new access permission bit is proposed in the EPT paging structure leaf entries called “Paging-Write” (PW) access. 
The bit position is bit 58, but would be chosen from among those that are currently ignored by the processor and 
available to software. If the “Enable Paging-Write” VM-execution control is 0, the paging-write bits in the EPT leaf 
paging-structure entries are ignored and remain available to software.
Pages that have EPTE “Paging-Write” set also modify previous architecture with EPT Accessed and Dirty bits, since 
with legacy architecture, when EPT A/D bits are enabled, processor paging accesses are treated as writes, and the 
hypervisor would not be able to make guest paging structure pages non-writable for guest software without 
affecting processor page walks. When “Enable Paging-Write” is set, the hypervisor can make GPAs containing guest 
HLAT paging structures non-writable for software, and allow write accesses by the processor’s paging architecture 
to update A/D bits.
If the “Enable Paging-Write” VM-execution control is 1, a paging-write access using a guest physical address will 
not cause an EPT violation if the write-access bit is 1 in all of the non-leaf entries and the paging-write-access bit 
is 1 in the leaf EPT paging-structure entry used to translate the guest-physical address (in this specific case, the 
write-access bit in the leaf EPT entry may be 0 or 1 since write EPT permission for leaf entry when Paging-Write is 
enabled is W | PW). When EPT leaf entry paging-write-access is 0, other cases that cause EPT violations remain 
unchanged (see table below).
To further illustrate, this table shows the new behavior in bold for writes by a logical processor to update 
accessed/dirty flags in a guest paging-structure entry.
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An EPT misconfiguration will occur if, for the translation of a guest-physical address, the paging-write-access bit is 
1 and the read access bit (EPTE bit 0) is clear (0) in the leaf EPT paging-structure entry used to translate the guest-
physical address.

6.7.1 Paging-Write Interaction with EPT A/D
Software can enable accessed and dirty flags for EPT using bit 6 of the extended page-table pointer (EPTP). If this 
bit is 1, the processor will set the accessed and dirty flags for EPT. Whenever there is a write to a guest-physical 
address, the processor sets the dirty flag (if it is not already set) in the EPT paging-structure entry that identifies 
the final physical address for the guest-physical address (either an EPT PTE or an EPT paging-structure entry in 
which bit 7 is 1). In addition, when accessed and dirty flags for EPT are enabled, processor accesses to guest paging 
structure entries are treated as writes. Thus, such an access will cause the processor to set the dirty flag in the leaf 
EPT paging-structure entry that identifies the final physical address of the guest paging-structure entry. (This is 
legacy behavior.)

Table 6-9.  EPT Violation Behavior

L4 EPT
W

L3 EPT
W

L2 EPT
W

L1 EPT
W

L1 EPT
PW

(Write-access bit is 1 in all of the non-
leaf EPT entries)
and
(the paging-write-access bit is 1 in the 
leaf EPT paging-structure entry)

EPT Violation Behavior

0 X X X X 0 EPT violation

(same as legacy behavior)

X 0 X X X 0 EPT violation

(same as legacy behavior)

X X 0 X X 0 EPT violation

(same as legacy behavior)

1 1 1 0 0 0 EPT violation

(same as legacy behavior)

1 1 1 0 1 1 No EPT violation

(new behavior)

Figure 6-4.  Example of Paging-Write and Verify-Paging-Write EPT Control Bits Used for Guest Paging Structures 
(HLAT or Ordinary Paging)
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When the “Enable Paging-Write” VM-execution control is enabled, and the hypervisor makes guest paging struc-
tures non-writable for OS software writes via EPT permissions, then, for inter-operation with EPT Accessed/Dirty 
bits, the hypervisor must set the Paging-Write access EPT entry control bit (see Section 6.3) to allow the processor 
paging architecture to safely consider guest paging structure accesses as writable for the page walker (while 
continuing to enforce the writability for software based on the legacy EPTE.W bit).

6.7.2 IOMMU Interaction
During IOMMU SVM page walks, A/D bits are updated. During these writes, if VT-d paging structures disallow writes 
on the guest physical addresses that contain the SVM paging structures then an IOMMU page fault is generated. 
(This is legacy behavior.)
Paging-Write does not introduce any change to this legacy behavior. The “Paging-Write” and “Verify Paging-Write” 
bits are ignored by IOMMU (during nested VT-d page walk). An implication of this is that aliases can be created to 
guest physical address via SVM page tables. The VMM should protect such guest physical pages via EPT permis-
sions (read-only or read-execute or execute-only). An attacker cannot create a spurious SVM page table structure 
using HLAT paging structures to cause A/D writes to HLAT paging structures via the IOMMU (since those write 
attempts will fail due to the VMM setting HLAT paging structures as EPTE.W=0, PW=1). For pages that are write-
able under EPTs, an alias via SVM is possible which can be addressed in the future by restricting IOMMU writes to 
guest physical pages marked “Verify Paging-Write” under VT-d.

6.8 ADDITION TO EPT VIOLATION EXIT QUALIFICATION
Guest physical pages that have the “Verify Paging-Write” bit set under EPT cause the processor page walker to 
check that only guest physical pages (containing IA paging structures) that have the leaf EPT entry attribute 
“Paging-Write” were used to translate a guest linear address to that guest physical address.
Note that “Verify Paging-Write” can be used for HLAT paging structures or ordinary paging structures irrespective 
of whether HLAT is enabled or not.
When all the following conditions are met, an EPT violation is reported to the VMM with a new Exit Qualification bit 
(position 15) set to indicate an EPT violation due to “Verify Paging-Write”:

• “Paging-Write” and “Verify Paging-Write” are both enabled in VM execution controls, and the final (leaf) 
guest physical page was specified to be “Verify Paging-write” under EPT.

• At least one of the guest physical pages accessed by the processor page walker for the translation of a 
guest linear address was specified with the “Paging-Write” bit set to 0 under EPT.

• The page walk completed without a page fault. If the page walk was an HLAT page walk, none of the 
paging entries accessed during the HLAT walk had the restart bit set to 1.

Note that other EPT violation qualifications bits (for example due to permission violation) may be set along with bit 
position 15.

6.9 HLAT INTERACTION WITH INTEL® SGX
There are no special requirements for HLAT interaction with Intel® SGX.
HLAT applies to guest linear address translations which match the PLR as specified in this document. Enclave linear 
addresses are asserted to map to the EPCM region by the processor after legacy page walk is completed. Enclave 
linear range covers user mode linear addresses, and any such accesses that fall within the PLR will be subject to 
HLAT lookup as defined in this document. For HLAT page faults occurring during in enclave mode, no additional 
fault information is saved in SSA (same as other fault conditions). For EPT violation VM exits that occur during HLAT 
page walks, the in-enclave interruptibility bit will be set (same as other VM exit conditions).
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6.10 HLAT INTERACTION WITH NESTED VT-X
There are no special requirements for nested VT-x operation for HLAT.
Since the HLAT structures are guest physical addressed when EPTs are enabled, a root hypervisor that exposes 
HLAT to a guest hypervisor must shadow EPT structures and, therefore, encompasses any HLAT structures created 
by the nested guest VMs (of the guest hypervisor). If the root or guest VMM enables interception of #PF with 
PFEC_MASK PFEC.HLAT fault bit 7 set, then the root VMM may have to inject the #PF VMExit for the Guest VMM 
(after handling it for itself if needed).

6.11 CHANGES TO VM ENTRIES
If the “activate tertiary controls” and “Enable HLAT” VM-execution controls are both 1, VM entries ensure that the 
“Enable EPT” VM-execution control is 1. The “HLAT Pointer” control field is checked for consistency per Section 6.4.
If the “activate tertiary controls” and “Enable Paging-Write” VM-execution controls are both 1, VM entries ensure 
that the “Enable EPT” VM-execution control is 1.
If the “activate tertiary controls” and “Enable Guest Paging Verification” VM execution controls are both 1, VM 
entries ensure that the “Enable EPT” VM execution control is 1.
VM entry fails if the above checks fail. When such a failure occurs, control is passed to the next instruction, 
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with value 7, indicating “VM 
entry with invalid control field(s).” This check may be performed in any order with respect to other checks on VMX 
controls and the host-state area. Thus, different processors may give different error numbers for the same VMCS.

6.12 CHANGES TO VMX CAPABILITY REPORTING
Section 6.1 specified that a new bit of the tertiary processor-based VM-execution controls would be defined as 
“Enable HLAT” VM-execution control. A processor that supports the 1-setting of the control sets bit 1 of the 
IA32_VMX_PROCBASED_CTLS3 MSR (address 492H). RDMSR of that MSR returns 1 in bit 1 of EDX.
Section 6.1 specified that a new bit of the tertiary processor-based VM-execution controls would be defined as 
“Enable Paging-Write” VM-execution control. A processor that supports the 1-setting of the control sets bit 2 of the 
IA32_VMX_PROCBASED_CTLS3 MSR (address 492H). RDMSR of that MSR returns 1 in bit 2 of EDX.
Section 6.1 specified that a new bit of the tertiary processor-based VM-execution controls would be defined as 
“Enable Guest Paging Verification” VM-execution control. A processor that supports the 1-setting of the control sets 
bit 3 of the IA32_VMX_PROCBASED_CTLS3 MSR (address 492H). RDMSR of that MSR returns 1 in bit 3 of EDX.
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CHAPTER 7
ARCHITECTURAL LAST BRANCH RECORDS (LBRS)

Architectural Last Branch Records (LBRs) enable recording of software path history by logging taken branches and 
other control flow transfers within processor registers. Each LBR record or entry is comprised of three MSRs:
• IA32_LBR_x_FROM_IP − Holds the source IP of the operation.
• IA32_LBR_x_TO_IP − Holds the destination IP of the operation.
• IA32_LBR_x_INFO − Holds metadata for the operation, including mispredict, TSX, and elapsed cycle time infor-

mation.
The number of LBR records available varies across processor generations, and is specified in CPUID (see Section 
7.4).
LBR records are stored in age order. The most recent LBR entry is stored in IA32_LBR_0_*, the next youngest in 
IA32_LBR_1_*, and so on. When an operation to be recorded completes (retires) with LBRs enabled 
(IA32_LBR_CTL.LBREn=1), older LBR entries are shifted in the LBR array by one entry, then a record of the new 
operation is written into entry 0. See Section 7.1.1 for the list of recorded operations.
The number of LBR entries available for recording operations is dictated by the value in IA32_LBR_DEPTH.DEPTH. 
By default, the DEPTH value matches the maximum number of LBRs supported by the processor, but software may 
opt to use fewer in order to achieve reduced context switch latency. See Section 7.3.1 for more details.
In addition to the LBRs, there is a single Last Event Record (LER). It records the last taken branch preceding the 
last exception, hardware interrupt, or software interrupt. Like LBRs, the LER is comprised of three MSRs 
(IA32_LER_FROM_IP, IA32_LER_TO_IP, IA32_LER_INFO), and is subject to the same dependencies on enabling 
and filtering.
Which operations are recorded in LBRs depends upon a series of factors:
• Branch Type Filtering − Software must opt in to the types of branches to be logged; see Section 7.1.2.3.
• Current Privilege Level (CPL) − LBRs can be filtered based on CPL; see Section 7.1.2.5.
• LBR Freeze − LBR and LER recording can be suspended by setting IA32_PERF_GLOBAL_STATUS.LBR_FRZ to 1. 

See Section 17.4.7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B for 
details on LBR_FRZ.

On some implementations, recording LBRs may require constraining the number of operations that can complete 
in a cycle. As a result, on these implementations, enabling LBRs may have some performance overhead.

7.1 BEHAVIOR

7.1.1 Logged Operations
LBRs can log most control flow transfer operations.
The source IP recorded for a branch instruction is the IP of that instruction. For events which take place between 
instructions, the source IP recorded is the IP of the next sequential instruction.
The destination IP recorded is always the target of the branch or event, the next instruction that will execute.
The full list of operations and the respective IPs recorded is shown in Table 7-1.
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7.1.2 Configuration

7.1.2.1  Enabling and Disabling
LBRs are enabled by setting IA32_LBR_CTL.LBREn to 1.
Some operations, such as entry to a secure mode like SMM or SGX, can cause LBRs to be temporarily disabled. 
Other operations, such as debug exceptions or some SMX operations, disable LBRs and require software to re-
enable them. Details on these interactions can be found in Section 7.1.4.

7.1.2.2  LBR Depth
The number of LBRs used by the processor can be constrained by modifying the IA32_LBR_DEPTH.DEPTH value. 
DEPTH defaults to the maximum number of LBRs supported by the processor. Allowed DEPTH values can be found 
in CPUID.(EAX=01CH, ECX=0):EAX[7:0].
Reducing the LBR depth can result in improved performance, by reducing the number of LBRs that need to be read 
and/or context switched.
On a software write to IA32_LBR_DEPTH, all LBR entries are reset to 0. LERs are not impacted.
A RDMSR or WRMSR to any IA32_LBR_x_* MSRs, such that x ≥ DEPTH, will #GP fault. Note that the XSAVES and 
XRSTORS instructions access only the LBRs associated with entries 0 to DEPTH-1, see Section 7.3.1 for details.
By clearing the LBR entries on writes to IA32_LBR_DEPTH, and forbidding any software writes to LBRs ≥ DEPTH, it 
is thereby guaranteed that any LBR entries equal to or above DEPTH will have value 0.

7.1.2.3  Branch Type Enabling and Filtering
Software must opt in to the types of branches that are desired to be recorded. These elections are made in 
IA32_LBR_CTL; see Section 7.2. Branch type options are listed in Table 7-2; only those enabled will be recorded.

Table 7-1.  LBR IP Values for Various Operations 

Operation FROM_IP TO_IP

Taken Branch1, Exception, INT3, INTn, 
INTO, TSX Abort

Current IP Target IP

Interrupt Next IP Target IP

INIT (BSP) Next IP Reset Vector

INIT (AP) + SIPI Next IP Sipi Vector

EENTER/ERESUME + EEXIT/AEX Current IP Target or Trampoline IP

RSM2 Target IP Target IP

#DB, #SMI, VM exit, VM entry None None

NOTES:

1. Direct CALLs to the next sequential IP, known as zero-length CALLs, are not treated as taken branches by
LBRs.

2. RSM is only recorded in LBRs when IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0.
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These encodings match those in IA32_LBR_x_INFO.BR_TYPE.
Control flow transfers that are not recorded include #DB, VM exit, VM entry, and #SMI.

7.1.2.4  Call-Stack Mode
The LBR array is, by default, treated as a ring buffer that captures control flow transitions. However, the finite 
depth of the LBR array can be limiting when profiling certain high-level languages (e.g., C++), where a transition 
of the execution flow is accompanied by a large number of leaf function calls. These calls to leaf functions, and their 
returns, are likely to displace the main execution context from the LBRs.
When Call-Stack mode is enabled, the LBR array can capture unfiltered call data normally, but as return instruc-
tions are executed the last captured branch (call) record is flushed from the LBRs in a last-in first-out (LIFO) 
manner. Thus, branch information pertaining to completed leaf functions will not be retained, while preserving the 
call stack information of the main line execution path.
Call-Stack mode is enabled by setting IA32_LBR_CTL.CALL_STACK to 1. When enabled, near RET instructions 
receive special treatment. Rather than adding a new record in LBR_0, a near RET will instead “pop” the CALL entry 
at LBR_0 by shifting entries LBR_1..LBR_[DEPTH-1] up to LBR_0..LBR_[DEPTH-2], and clearing LBR_[DEPTH-1] to 
0. Thus, LBR processing software can consume only valid call-stack entries by reading until finding an entry that is 
all zeros.
Call-stack mode should be used with branch type enabling configured to capture only CALLs (NEAR_REL_CALL and 
NEAR_IND_CALL) and RETs (NEAR_RET). When configured in this manner, the LBR array emulates a call stack, 
where CALLs are “pushed” and RETs “pop” them off the stack. If other branch types (JCC, NEAR_*_JMP, or 
OTHER_BRANCH) are enabled for recording with call-stack mode, LBR behavior may be undefined.
It is recommended that call-stack mode be used along with CPL filtering, by setting at most one of the OS and USR 
bits in the IA32_LBR_CTL MSR. LBR call-stack mode does not emulate the stack switch that can occur on CPL tran-
sitions, and hence monitoring all CPLs may result in a corrupted LBR call stack.

Call-Stack Mode and LBR Freeze

When IA32_DEBUGCTL.FREEZE_LBRS_ON_PMI=1, IA32_PERF_GLOBAL_STATUS.LBR_FRZ will be set to 1 when a 
PMI is pended. That will cause LBRs and LERs to cease recording branches until LBR_FRZ is cleared. Because there 
may be some “skid”, or instructions retiring, in between the PMI being pended and the PMI being taken, it is 
possible that some branches may be missing from the LBRs. In the case of call-stack mode, if a CALL or RET is 
missed, that can lead to confusing results where CALL entries fail to get “popped” off the stack, and RETs “pop” the 
wrong CALLs.
An alternative is to clear FREEZE_LBRS_ON_PMI, and instead utilize CPL filtering to limit LBR recording to ring3. 
This will record branches in the “skid”, but avoid recording any branches in the ring0 handler.

7.1.2.5  CPL Filtering
Software must opt in to which CPL(s) will have branches recorded. If IA32_LBR_CTL.OS=1, then branches in 
CPL=0 can be recorded. If IA32_LBR_CTL.USR=1, then branches in CPL>0 can be recorded. For operations which 

Table 7-2.  Branch Type Filtering Details 

Branch Type Operations Recorded

JCC Jcc, J*CXZ, and LOOP*

NEAR_IND_JMP JMP r/m*

NEAR_REL_JMP JMP rel*

NEAR_IND_CALL CALL r/m*

NEAR_REL_CALL CALL rel* (excluding CALLs to the next sequential IP)

NEAR_RET RET (0C3H)

OTHER_BRANCH JMP/CALL ptr*, JMP/CALL m*, RET (0C8H), SYS*, interrupts, exceptions, IRET, INT3, INTn, 
INTO, TSX Abort, EENTER, ERESUME, EEXIT, AEX, INIT, SIPI, RSM, breakpoints
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change the CPL, the operation is recorded in LBRs only if the CPL at the end of the operation is enabled for LBR 
recording. In cases where the CPL transitions from a value that is filtered out to a value that is enabled for LBR 
recording, the FROM_IP address for the recorded CPL transition branch or event will be 0FFFFFFFFFFFFFFFFH.

7.1.3 Record Data

7.1.3.1  IP Fields
The source and destination IP values in IA32_LBR_x_[FROM|TO]_IP and IA32_LER_x_[FROM|TO]_IP may hold 
effective IPs (EIPs) or linear IPs (LIPs), depending on the processor generation. EIP is the offset from the CSbase 
address, while LIP includes the CSbase address. Which IP type is used is indicated in CPUID.(EAX=01CH, 
ECX=0):EAX[bit 31].
The value read from this field will always be canonical. Note that this includes the case where a canonical violation 
(#GP) results from executing sequential code that runs precisely to the end of the lower canonical address space 
(where IP[63:MAXLINADDR-1] is 0, but IP[MAXLINADDR-2:0] is all ones). In this case, the FROM_IP will hold the 
lowest canonical address in the upper canonical space, such that IP[63:MAXLINADDR-1] is all ones, and 
IP[MAXLINADDR-2:0] is 0.
In some cases, due to CPL filtering, the FROM_IP of the recorded operation may be filtered out. In this case 
0FFFFFFFFFFFFFFFFH will be recorded. See Section 7.1.2.5 for details.
Writes of these fields will be forced canonical, such that the processor ignores the value written to the upper bits 
(IP[63:MAXLINADDR-1]).

7.1.3.2  Branch Types
The IA32_LBR_x_INFO.BR_TYPE and IA32_LER_INFO.BR_TYPE fields encode the branch types as shown in Table 
7-3.

For a list of branch operations that fall into the categories above, see Table 7-2. In future generations, BR_TYPE bits 
2:0 may be used to distinguish between differing types of OTHER_BRANCH.

7.1.3.3  Cycle Time
Each time an operation is recorded in an LBR, the value of the LBR cycle timer is recorded in 
IA32_LBR_x_INFO.CYC_CNT. The LBR cycle timer is a saturating counter that counts at the processor clock rate. 
Each time an operation is recorded in an LBR, the counter is reset but continues counting.
There is a LBR cycle time valid bit, IA32_LBR_x_INFO.CYC_CNT_VALID. When set, the CYC_CNT field holds a valid 
value, the number of elapsed cycles since the last operation recorded in an LBR (up to 0FFFFH).

Table 7-3.  IA32_LBR_x_INFO and IA32_LER_INFO Branch Type Encodings

Encoding Branch Type

0000B JCC

0001B NEAR_IND_JMP

0010B NEAR_REL_JMP

0011B NEAR_IND_CALL

0100B NEAR_REL_CALL

0101B NEAR_RET

011xB Reserved

1xxxB OTHER_BRANCH
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Some implementations may opt to reduce the granularity of the CYC_CNT field for larger values. The implication of 
this is that the least significant bits may be forced to 1 in cases where the count has reached some minimum 
threshold. It is guaranteed that this reduced granularity will never result in an inaccuracy of more than 10%.

7.1.3.4  Mispredict Information
IA32_LBR_x_INFO.MISPRED provides an indication of whether the recorded branch was predicted incorrectly by 
the processor. The bit is set if either the taken/not-taken direction of a conditional branch (Jcc) was mispredicted, 
or if the target of an indirect branch was mispredicted.

7.1.3.5  Intel® TSX Information
IA32_LBR_x_INFO.IN_TSX indicates whether the operation recorded retired during a TSX transaction. 
IA32_LBR_x_INFO.TSX_ABORT indicates that the operation is a TSX Abort.

7.1.4 Interaction with Other Processor Features

7.1.4.1  SMM
IA32_LBR_CTL.LBREn is saved and cleared on #SMI, and restored on RSM. As a result of disabling LBRs, the #SMI 
is not recorded. RSM is recorded only if IA32_DEBUGCTL.FREEZE_WHILE_SMM is set to 0, and the FROM_IP will be 
set to the same value as the TO_IP.

SMM Transfer Monitor (STM)

LBREn is not cleared on #SMI when it causes SMM VM exit. Instead, the STM should use the VMCS controls 
described in Section 7.1.4.2 to disable LBRs while in SMM, and to restore them on VM entries that exit SMM.
On VMCALL to configure STM, IA32_LBR_CTL is cleared.

7.1.4.2  VMX
By default, LBR operation persists across VMX transitions. However, VMCS fields have been added to enable 
constraining LBR usage to within non-root operation only. See details in Table 7-4.

To enable “guest-only” LBR use, a VMM should set both the “Load Guest IA32_LBR_CTL” entry control and the 
“Clear IA32_LBR_CTL” exit control. For “system-wide” LBR use, where LBRs remain enabled across host and 
guest(s), a VMM should keep both new VMCS controls clear.
VM-entry checks that, if the “Load Guest IA32_LBR_CTL” entry control is 1, bits reserved in the IA32_LBR_CTL 
MSR must be 0 in the field for that register.

Table 7-4.  LBR VMCS Fields

Name Type Bit Position Behavior

Guest IA32_LBR_CTL Guest State Field NA The guest value of IA32_LBR_CTL is written to this field on all 
VM exits.

Load Guest IA32_LBR_CTL Entry Control 21 When set, VM entry will write the value from the “Guest 
IA32_LBR_CTL” guest state field to IA32_LBR_CTL.

Clear IA32_LBR_CTL Exit Control 26 When set, VM exit will clear IA32_LBR_CTL after the value has 
been saved to the “Guest IA32_LBR_CTL” guest state field.
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Table 7-5 enumerates the 64-bit guest-state fields.

7.1.4.3  Intel® SGX
On entry to an enclave, via EENTER or ERESUME, logging of LBR entries is suspended. On enclave exit, via EEXIT 
or AEX, logging resumes. The cycle counter will continue to run during enclave execution.
An exception to the above is made for opt-in debug enclaves. For such enclaves, LBR logging is not impacted.

7.1.4.4  Debug Breakpoints
On a debug breakpoint event (#DB), IA32_LBR_CTL.LBREn is cleared. As a result, the operation is not recorded.

7.1.4.5  SMX
On GETSEC leaves SENTER or ENTERACCS, IA32_LBR_CTL is cleared. As a result, the operation is not recorded.

7.1.4.6  MWAIT
On an MWAIT that requests a C-state deeper than C1, IA32_LBR_x_* MSRs may be cleared to 0. IA32_LBR_CTL, 
IA32_LBR_DEPTH, and IA32_LER_* MSRs will be preserved.
For an MWAIT that enters a C-state equal to or less deep than C1, and all C-states that enter as a result of Hard-
ware Duty Cycling (HDC), all LBR MSRs are preserved.

7.1.4.7  Precise Event-Based Sampling (PEBS)
PEBS records can be configured to include LBRs, by setting PEBS_DATA_CFG.LBREn[3]=1. The number of LBRs to 
include in the record is also configurable, via PEBS_DATA_CFG.NUM_LBRS[28:24]. For details on PEBS, see 
Section 18.9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
If NUM_LBRS is set to a value greater than LBR_DEPTH, then only LBR_DEPTH entries will be written into the PEBS 
record. Further, the Record Size field will be decreased to match the actual size of the record to be written, and the 
Record Format field will replace the value of NUM_LBRS with the value of LBR_DEPTH. These adjustments ensure 
that software is able to properly interpret the PEBS record.

7.2 MSRS
The MSRs that represent the LBR entries (IA32_LBR_x_[TO|FROM|INFO]) and the LER entry 
(IA32_LER_[TO|FROM|INFO]) do not fault on writes. Any address field written will force sign-extension based on 
the maximum linear address width supported by the processor, and any non-zero value written to undefined bits 
may be ignored such that subsequent reads return 0.
On a warm reset, all LBR MSRs, including IA32_LBR_DEPTH, have their values preserved. However, IA32_L-
BR_CTL.LBREn is cleared to 0, disabling LBRs. If a warm reset is triggered while the processor is in C6, also known 
as warm init, all LBR MSRs will be reset to their initial values.

Table 7-5.  Encodings for 64-Bit Guest-State Fields (0010_10xx_xxxx_xxxAb)

Field Name Index Encoding

Guest IA32_LBR_CTL (full)1

NOTES:

1. This field exists only on processors that support either the 1-setting of the “load IA32_LBR_CTL” VM-entry
control or that of the “clear IA32_LBR_CTL” VM-exit control.

000001011B
00002816H

Guest IA32_LBR_CTL (high)1 00002817H
7-6 Ref. # 319433-042



ARCHITECTURAL LAST BRANCH RECORDS (LBRS)
Table 7-6.  Introduction of New MSRs 

Register 
Address Register Name / Bit Fields Bit Description Reset Value

 Hex Dec

1DD H 477 IA32_LER_FROM_IP Last Event Record Source IP Register (R/W)

63:0 FROM_IP

The source IP of the recorded branch or event, in canonical 
form.

0

1DEH 478 IA32_LER_TO_IP Last Event Record Destination IP Register (R/W)

63:0 TO_IP

The destination IP of the recorded branch or event, in 
canonical form.

0

1E0H 480 IA32_LER_INFO Last Event Record Info Register (R/W)

55:0 Undefined, may be zero or non-zero. Writes of non- zero 
values do not fault, but reads may return a different value.

0

59:56 BR_TYPE

The branch type recorded by this LBR. Encodings match 
those of IA32_LBR_x_INFO.

0

60 Undefined, may be zero or non-zero. Writes of non- zero 
values do not fault, but reads may return a different value.

0

61 TSX_ABORT

This LBR record is a TSX abort. On processors that do not 
support Intel® TSX (CPUID.07H.EBX.HLE[bit 4]=0

and CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.

0

62 IN_TSX

This LBR record records a branch that retired during a TSX 
transaction. On processors that do not support Intel® TSX 
(CPUID.07H.EBX.HLE[bit 4]=0 and

CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.

0

63 MISPRED

The recorded branch taken/not-taken resolution (for JCCs) 
or target (for any indirect branch, including RETs) was 
mispredicted.

0

1200H
-

121FH

4608
-

4639

IA32_LBR_x_INFO Last Branch Record Entry X Info Register (R/W)

An attempt to read or write IA32_LBR_x_INFO such that x 
≥ IA32_LBR_DEPTH.DEPTH will #GP.

15:0 CYC_CNT

The elapsed CPU cycles (saturating) since the last LBR was 
recorded. See Section 7.1.3.3.

0

55:16 Undefined, may be zero or non-zero. Writes of non- zero 
values do not fault, but reads may return a different value.

0
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59:56 BR_TYPE

The branch type recorded by this LBR. Encodings:

0000B: JCC

0001B: JMP Indirect 

0010B: JMP Direct 

0011B: CALL Indirect 

0100B: CALL Direct 0101B: RET

011xB: Reserved 1xxxB: Other Branch

0

60 CYC_CNT_VALID

CYC_CNT value is valid. See Section 7.1.3.3.

0

61 TSX_ABORT

This LBR record is a TSX abort. On processors that do not 
support Intel TSX (CPUID.07H.EBX.HLE[bit 4]=0 and 
CPUID.07H.EBX.RTM[bit 11]=0), this bit is undefined.

0

62 IN_TSX

This LBR record records a branch that retired during a TSX 
transaction. On processors that do not support Intel TSX 
(CPUID.07H.EBX.HLE[bit 4]=0 and CPUID.07H.EBX.RTM[bit 
11]=0), this bit is undefined.

0

63 MISPRED

The recorded branch direction (Jcc) or target (indirect 
branch) was mispredicted.

0

14CEH 5326 IA32_LBR_CTL Last Branch Record Enabling and Configuration Register 
(R/W)

0

0 LBREn

When set, enables LBR recording.

0

1 OS

When set, allows LBR recording when CPL == 0.

0

2 USR

When set, allows LBR recording when CPL != 0.

0

3 CALL_STACK

When set, records branches in call-stack mode. See Section 
7.1.2.4.

0

15:4 Reserved. 0

16 JCC

When set, records taken conditional branches. See Section 
7.1.2.3.

17 NEAR_REL_JMP

When set, records near relative JMPs. See Section 7.1.2.3.

18 NEAR_IND_JMP

When set, records near indirect JMPs. See Section 7.1.2.3.

Table 7-6.  Introduction of New MSRs  (Contd.)

Register 
Address Register Name / Bit Fields Bit Description Reset Value

 Hex Dec
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7.3 CONTEXT SWITCH
On processors whose XSAVE feature set supports XSAVES and XRSTORS, the availability of support for Architec-
tural LBR configuration state save and restore can be determined from CPUID.(EAX=0DH, ECX=1):EDX:ECX[bit 
15]. When available, the Architectural LBR state can be saved using XSAVES and restored by XRSTORS, in conjunc-
tion with the bit field associated with the supervisory state component in IA32_XSS. See Chapter 13, “Managing 
State Using the XSAVE Feature Set” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, 
Volume 1.
The IA32_XSS MSR is zero coming out of RESET. Once IA32_XSS[bit 15] is set, system software operating at 
CPL=0 can use XSAVES/XRSTORS with the appropriate requested- feature bitmap (RFBM) to manage supervisor 
state components in the XSAVE map. The layout of the Architectural LBR component state in the XSAVE area is 
shown in Table 7-7.

19 NEAR_REL_CALL

When set, records near relative CALLs. See Section 7.1.2.3.

20 NEAR_IND_CALL

When set, records near indirect CALLs. See Section 7.1.2.3.

21 NEAR_RET

When set, records near RETs. See Section 7.1.2.3.

22 OTHER_BRANCH

When set, records other branches. See Section 7.1.2.3.

63:23 Reserved.

14CFH 5327 IA32_LBR_DEPTH Last Branch Record Maximum Stack Depth Register (R/W)

N:0 DEPTH

The number of LBRs to be used for recording. Supported 
values are indicated by the bitmap in 
CPUID.(EAX=01CH,ECX=0):EAX[7:0]. The reset value

will match the maximum supported by the CPU. Writes of 
unsupported values will #GP fault.

Varies

63:N+1 Reserved. 0

1500H
-

151FH

5376
-

5407

IA32_LBR_x_FROM_IP Last Branch Record entry X source IP register (R/W). An 
attempt to read or write IA32_LBR_x_FROM_IP such that x 
>= IA32_LBR_DEPTH.DEPTH will #GP.

63:0 FROM_IP

The source IP of the recorded branch or event, in canonical 
form. Writes to bits above MAXLINADDR-1 are ignored.

0

1600H
-

161F H

5632
-

5663

IA32_LBR_x_TO_IP Last Branch Record Entry X Destination IP Register (R/W) 
An attempt to read or write IA32_LBR_x_TO_IP such that x 
>= IA32_LBR_DEPTH.DEPTH will #GP.

63:0 TO_IP

The destination IP of the recorded branch or event, in 
canonical form. Writes to bits above MAXLINADDR-1 are 
ignored.

0

Table 7-6.  Introduction of New MSRs  (Contd.)

Register 
Address Register Name / Bit Fields Bit Description Reset Value

 Hex Dec
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Regardless of the number of LBRs supported by the processor, the size of the LBR state save region is constant.

7.3.1 XSAVE and LBR Depth
The behavior of XSAVES and XRSTORS when IA32_XSS[bit 15] is set depends on the value of 
IA32_LBR_DEPTH.DEPTH. When restoring IA32_LBR_x_* MSRs, only those MSRs associated with entries 0 
through DEPTH-1 are saved or restored. Others are not accessed. For this reason, use of XSAVES and XRSTORS 
with a reduced DEPTH value can result in reduced context switch latency.
IA32_LBR_DEPTH is saved by XSAVES, but it is not written by XRSTORS in any circumstance. Instead, XRSTORS 
reads the saved IA32_LBR_DEPTH value and does the following.
• #GP if the saved value has any reserved bit or reserved value violations.
• Compare the saved value with the IA32_LBR_DEPTH MSR.

— On a mismatch, the IA32_LBR_x_* MSRs are cleared to 0, while the IA32_LBR_CTL and LER MSRs are 
restored.

If there is no reserved bit or reserved value fault, and no depth mismatch, LBR state restore proceeds as normal. 
If any reserved bits in IA32_LBR_CTL are set a #GP will result.
Note that the end of the Architectural LBR State Component memory region may be accessed by XSAVES and 
XRSTORS, even when the DEPTH is reduced. Thus the pages for this memory region should be present and writ-
able.

7.3.2 INIT and MOD Tracking
XSTATE_BV[bit 15] indicates the INIT state for Architectural LBRs. INIT tracking for Architectural LBRs includes all 
LBR MSRs with the exception of IA32_LBR_DEPTH. Any software write to a tracked LBR MSR renders MSRs non-
INIT, with the exception of writes of value 0 to IA32_LBR_CTL.
An XRSTORS with XSTATE_BV[bit 15] set to 0 will clear all LBR MSRs, with the exception of IA32_LBR_DEPTH, to 
0. Such an XRSTORS will not compare the current value of IA32_LBR_DEPTH with the value to be restored, since 
LBRs will not be in use upon completion of the restore. IA32_LBR_DEPTH is not modified by XRSTORS in any 
scenario.
An XSAVES with XINUSE[bit 15] set to 0 will clear XSTATE_BV[bit 15], but otherwise does not write to the Archi-
tectural LBR component state save area.

Table 7-7.  LBR VMCS Fields 

Offset Within Component Area Field

0H IA32_LBR_CTL

8H IA32_LBR_DEPTH

10H IA32_LER_FROM_IP

18H IA32_LER_TO_IP

20H IA32_LER_INFO

28H IA32_LBR_0_FROM_IP

30H IA32_LBR_0_TO_IP

38H IA32_LBR_0_INFO

40H IA32_LBR_1_FROM_IP

... ...

320H IA32_LBR_31_INFO
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Note that this XSAVES behavior implies that the saved value of IA32_LBR_DEPTH could become stale while the rest 
of the LBRs are INIT, since modifications to IA32_LBR_DEPTH do not effect INIT tracking. This will have no impact 
on LBR behavior, as a subsequent XRSTORS that detects a depth mismatch will either ignore the IA32_LBR_DEPTH 
value (if XSTATE_BV[bit15]=0) or will re-initialize the IA32_LBR_x_* MSRs (if XSTATE_BV[bit 15]=1).
On XRSTORS with IA32_LBR_DEPTH mismatch, INIT tracking is not modified.
There is no MOD tracking for Architectural LBRs; they should be treated as modified anytime they are not in INIT 
state.
It is recommended that software initialize the Architectural LBR State Component memory to all zeros, and to clear 
XSTATE_BV[bit 15].

7.3.3 Fast LBR Read Access
XSAVES provides a faster means than RDMSR for software to read all LBRs. When using XSAVES for reading LBRs 
rather than for context switch, software should take care to ensure that XSAVES does not write LBR state to an 
area of memory that has been or will be used by XRSTORS. This could corrupt INIT tracking.

7.3.4 XRSTORS Faulting
If an XRSTORS with IA32_XSS[bit 15] set to 1 faults for any reason, LBR MSRs may retain the pre-XRSTORS 
values, or may hold the newly restored values, or may be left in a state of partial restoration.

7.4 ENUMERATION

7.4.1 CPUID for Architectural LBRs
If CPUID.(EAX=07H, ECX=0):EDX[19] is set to 1, the processor supports Architectural LBRs. In this case, CPUID 
leaf 01CH indicates details of the Architectural LBRs capabilities. The leaf 01CH format is shown in Table 7-8.

Table 7-8.  CPUID Leaf 01CH Enumeration of Architectural LBR Capabilities 

CPUID.(EAX=01CH, ECX=0)
Name DescriptionRegister Bits

EAX

7:0 Supported LBR Depth Values For each bit n set in this field, the IA32_LBR_DEPTH.DEPTH 
value 8*(n+1) is supported.

29:8 Reserved Reserved.

30 Deep C-state Reset If set, indicates that LBRs may be cleared on an MWAIT that 
requests a C-state numerically greater than C1.

31 IP Values Contain LIP If set, LBR IP values contain LIP. If clear, IP values contain 
EIP.

EBX

0 CPL Filtering Supported If set, the processor supports setting IA32_LBR_CTL[2:1] 
to non-zero value.

1 Branch Filtering Supported If set, the processor supports setting IA32_L-
BR_CTL[22:16] to non-zero value.

2 Call-stack Mode Supported If set, the processor supports setting IA32_LBR_CTL[3] to 
1.

31:3 Reserved Reserved.
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For leaf 01CH, CPUID will ignore the ECX value.

7.4.2 CPUID for XSAVE LBR Support
XSAVE support for Architectural LBRs is enumerated in CPUID.(EAX=0DH, ECX=0FH); see details in Table 7-9.

7.4.3 Enumeration for New VMCS Fields
New VMX controls and fields also include new enumeration bits.
• IA32_VMX_TRUE_EXIT_CTLS MSR (address 048FH) and IA32_VMX_EXIT_CTLS MSR (address 0483H) will 

have bit 26 set to 0, indicating allowed 0-setting of “Clear IA32_LBR_CTL” exit control, and bit 58 set to 1, 
indicating allowed 1-setting of “Clear IA32_LBR_CTL” exit control.

• IA32_VMX_TRUE_ENTRY_CTLS MSR (address 0490H) and IA32_VMX_ENTRY_CTLS MSR (address 0484H) will 
have bit 21 set to 0, indicating allowed 0-setting of “Load Guest IA32_LBR_CTL” exit control, and bit 53 set to 
1, indicating allowed 1-setting of “Load Guest IA32_LBR_CTL” exit control.
Bit 53 also indicates support for the “Guest IA32_LBR_CTL” guest state field.

ECX

0 Mispredict Bit Supported IA32_LBR_x_INFO[63] holds indication of branch mispre-
diction (MISPRED)

1 Timed LBRs Supported IA32_LBR_x_INFO[15:0] holds CPU cycles since last LBR 
entry (CYC_CNT), and IA32_LBR_x_INFO[60] holds an 
indication of whether the value held there is valid 
(CYC_CNT_VALID).

2 Branch Type Field Supported IA32_LBR_INFO_x[59:56] holds indication of the recorded 
operation's branch type (BR_TYPE).

31:3 Reserved Reserved.

EDX 31:0 Reserved Reserved.

Table 7-9.  CPUID Leaf 0DH.0FH Enumeration of XSAVE Support for Architectural LBRs 

CPUID.(EAX=0DH, ECX=0FH)
Name DescriptionRegister Bits

EAX 31:0 Size Size, in bytes, of the Arch LBR save area.

EBX 31:0 Offset Offset, in bytes, of the start of the Arch LBR save area 
from the beginning of the XSAVE/XRSTOR area.

ECX 0 Supervisor State Set if bit 15 is supported in the IA32_XSS MSR; it is clear if 
bit 15 is instead supported in XCR0.

1 Aligned Set if, when the compacted format of an XSAVE area is 
used, this extended state component located on the next 
64-byte boundary following the preceding state 
component. Otherwise, it is located immediately following 
the preceding state component.

31:2 Reserved Reserved.

EDX 31:0 Reserved Reserved.

Table 7-8.  CPUID Leaf 01CH Enumeration of Architectural LBR Capabilities  (Contd.)

CPUID.(EAX=01CH, ECX=0)
Name DescriptionRegister Bits
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7.5 OTHER IMPACTS

7.5.1 Branch Trace Store on Intel Atom Processors
Branch Trace Store (BTS) on Intel Atom processors that support Architectural LBRs has dependencies on the LBR 
configuration. BTS will store out the LBR_0 (TOS) record each time a taken branch or event retires. If any filtering 
of LBRs is employed, or if LBRs are disabled, some duplicate entries may be stored by BTS. Like LBRs and LERs, 
BTS is suspended when IA32_PERF_GLOBAL_STATUS.LBR_FRZ is set to 1.
BTS will change to cease issuing branch records for zero-length CALLs (direct near CALLs to the next sequential IP) 
to align with Architectural LBR behavior.

7.5.2 IA32_DEBUGCTL
On processors that do not support model-specific LBRs, IA32_DEBUGCTL[bit 0] has no meaning. It can be written 
to 0 or 1, but reads will always return 0.

7.5.3 IA32_PERF_CAPABILITIES
On processors that do not support model-specific LBRs, IA32_PERF_CAPABILITIES.LBR_FMT will have the value 
03FH.
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CHAPTER 8
NON-WRITE-BACK LOCK DISABLE ARCHITECTURE

Locked read-modify-write (RMW) to a memory operation is used explicitly by several Intel architecture set instruc-
tions, such as ADD with a lock prefix, and implicitly by other instructions and flows, such as updating a segment 
access bit or page tables access/dirty bits.
Locked RMW access is usually handled through processor cache in the lower hierarchies, and it only impacts soft-
ware running on same logical processors that share this cache.
If the memory type of this locked RMW is not write-back, the processor can’t handle it within the internal cache and 
will issue a bus lock operation. This operation will block all logical processors and devices from accessing memory 
until the operation has completed.
Having a burst of bus locks by one of the logical processors may cause starvation to the rest of the logical proces-
sors and devices.
The new architecture will allow software to disable non-WB lock operation. Once the feature is enabled, performing 
a non-WB lock operation by software will generate a general protection fault (#GP).

8.1 ENUMERATION
The non-write-back lock disable capability will be enumerated through a model specific bit (bit 4) in the 
IA32_CORE_CAPABILITIES MSR.

8.2 ENABLING
This model specific feature will add a new MSR control bit (bit 28) in the TEST_CTRL MSR in order to generate a 
general protection fault (#GP) each time a non-WB load lock is detected.

Table 8-1.  IA32_CORE_CAPABILITIES MSR

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

CFH 207 IA32_CORE_CAPABILITIES IA32 Core Capability Register

3:0 Reserved

4 Non-WB Lock disable

#GP(0) exception for non-WB locked accesses supported.

5 Split Lock disable

#AC(0) exception for split locked accesses supported.

63:6 Reserved
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8.3 INTERACTION WITH INTEL® SOFTWARE GUARD EXTENSIONS (INTEL® SGX)
Processor Reserved Memory (PRM) used for Intel® SGX used can run with non-WB memory accesses by following 
the steps below.

1. Configure the Memory Type field (bits 2:0) of MSR_PRMRR_BASE_0 (address 2A0H) to be non-WB.

2. Set the cache disable (bit 30) of CR0.
When the processor is configured in this manner, the processor will not generate #GP(0) as a result of locked 
accesses to non-WB memory when EPT is enabled, even if the non-WB lock disable (bit 28) of TEST_CTRL MSR 
(address 33H) is set to 1.

8.4 INTERACTION WITH VMX ARCHITECTURE
There are two cases where a locked cycle can be issued on a VMM configuration with non-WB memory type.

1. VMM enabled EPT and EPT A/D and configured EPT memory type to non-WB. In this case, EPT A/D assist will 
issue a locked load to non-WB memory.

2. VMM set “process posted interrupts” VM-execution control, posted-interrupt descriptor mapped to non-WB 
memory type. Posted interrupt processing will update the descriptor with locked load to non-WB memory.

When the processor is configured in this manner, the processor will not generate #GP(0) as a result of a locked 
access to non-WB memory when EPT is enabled even if the non-WB lock disable (bit 28) of TEST_CTRL MSR 
(address 33H) is set to 1.

8.5 EXPECTED SOFTWARE BEHAVIOR
Software can ensure that bus locks as a result of non-WB locked access are never taken, or at least a general 
protection fault is signaled, by performing the following operations:

• Set Non-WB Lock Disable (bit 28) of the TEST_CTRL MSR (address 33H).

• Do not set Cache Disable (bit 30) of CR0.

• Configure MSR_PRMRR_BASE_0 (address 2A0H) Memory Type field (bits 2:0) to WB memory type only.

• For a VMM that enabled EPT and EPT A/D, bits must configure EPT paging structures to WB memory 
type.

• For a VMM that enabled posted-interrupt via the “process posted interrupts” VM-execution control, 
ensure the posted-interrupt descriptor is mapped to WB memory type.

Table 8-2.  TEST_CTRL MSR

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

33H 55 TEST_CTRL Test Control Register

27:0 Reserved

28 Enable #GP(0) exception for non-write-back locked accesses.

29 Enable #AC(0) exception for split locked accesses.

31:30 Reserved
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8.6 BUS LOCKS
Cases for bus locks than can come from non-WB Lock operation are shown in Table 8-3.

Table 8-3.  Bus Locks from Non-WB Operation

Category Instructions/Flows Conditions

Arithmetic LOCK + {ADD, SUB, AND, OR, XOR, ADC, SBB, INC, 
DEC, NOT, NEG}

Compare/Test LOCK + {BTC, BTR, BTS}

Exchange XCHG, LOCK XADD/CMPXCHG/XCHG

Segmentation LSL, LAR, VERR, VERW

LDS, LES, LFS, LGS, LSS

MOV DS, MOV ES, MOV FS, MOV GS, MOV SS

POP DS, POP ES, POP FS, POP GS, POP SS

Setting segment accessed bit in descriptor in 
non-WB memory.

Call / Interrupt / Exception Far call, Far JMP

Far RET, IRET

INTn, INT3, INT0, INT1

Call through interrupt/trap gate

Setting segment accessed bit in descriptor in 
non-WB memory.

Tasking LTR, Task Switch Setting/Clearing TSS busy when TSS in non-
WB memory.

Setting segment accessed bit in descriptor in 
non-WB memory.

Paging Code fetch (A bit update),

All instructions that have memory operands (A/D 
bits update)

Page tables in non-WB memory.

Enclave ENCLU, ENCLS, AEX

Posted Interrupts Updating the posted interrupt descriptor uses 
locked RMW for atomic operations

Posted interrupt descriptor in non-WB 
memory.
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CHAPTER 9
BUS LOCK AND VM NOTIFY

9.1 BUS LOCK DEBUG EXCEPTION
A logical processor can be configured to generate a debug exception (#DB) as a trap delivered in the instruction 
boundary following acquisition of a bus lock if the processor is at privilege level > 0 on this instruction boundary. 
Software enables these debug exceptions by setting bit 2 of the IA32_DEBUGCTL MSR. The CPU enumerates 
support for the 1-setting of this bit using CPUID.(EAX=7, ECX=0).ECX[24].
A debug exception due to acquisition of a bus lock is reported as a trap following execution of the instruction 
acquiring the bus lock if the privilege level is > 0. The processor identifies such debug exceptions using bit 11 of 
DR6. Because DR6[11] has formerly always been 1, delivery of a bus-lock #DB clears DR6[11]. All other debug 
exceptions leave bit 11 unmodified. To avoid confusion in identifying debug exceptions, software debug-exception 
handlers should set bit 11 to 1 before returning to the interrupted task.
A VM exit sets bit 11 of the pending debug exception field in the guest-state area of the VMCS to indicate that a bus 
lock debug exception was pending but not delivered. A VM exit that sets this bit also sets bit 12 of that field. (VM 
exits also sets bit 12 to indicate that at least one data or I/O breakpoint was met and was enabled in DR7, or that 
a debug exception related to advanced debugging of RTM transactional regions occurred.)

9.1.1 Bus Lock VM Exit
A VMM can enable VM exit on a bus lock that was acquired in VMX non-root operation by setting secondary 
processor-based execution control bit 30. A processor enumerates support for the 1-setting of this control by 
setting bit 62 of the IA32_VMX_PROCBASED_CTLS2 MSR. When enabled, the processor generates a VM exit with 
exit reason 74 if the processor detected one or more bus locks were caused during execution in VMX non-root oper-
ation. Such a VM exit is trap-like and is delivered following execution of the instruction acquiring the bus lock. If 
delivery of this VM exit was pre-empted by a higher priority VM exit, then bit 26 of the exit-reason field in the VMCS 
is set to 1.

9.2 NOTIFY VM EXIT
A VMM can enable notification VM exits to occur if no interrupt windows occur in VMX non-root operation for a 
specified amount of time (notify window). These VM exits are enabled by setting bit 31 of the secondary 
processor-based execution control. A processor enumerates support for the 1-setting of this control by setting bit 
63 of the IA32_VMX_PROCBASED_CTLS2 MSR. The VMM configures the notify window in units of crystal clock 
cycles in a new 32-bit VM-execution control field in the VMCS (notify window) that can be accessed with the 
VMREAD and VMWRITE instructions using encoding 00004024H. 
A notification VM exit reports basic exit reason 75 and exit qualification determined as follows:
• Bit 0 - VM context invalid.
• Bits 11:1 are reserved.
• Bit 12 - if set the VM exit was incident to an execution of IRET that unblocked NMIs.
• All other bits are reserved.
If the VMM-notify VM exit occurred incident to delivery of a vectored event, then IDT vectoring information and 
applicable error code are recorded in the VMCS.
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CHAPTER 10
INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES

Intel® Resource Director Technology (Intel® RDT) provides a number of monitoring and control capabilities for 
shared resources in multiprocessor systems. This chapter covers updates to the feature that will be available in 
future Intel processors.

10.1 INTEL® RDT FEATURE CHANGES

10.1.1 Intel® RDT on Processors Based on Ice Lake Server Microarchitecture
Processors based on Ice Lake Server microarchitecture add the following Intel RDT enhancements:
• 32-bit MBM counters (vs. 24-bit in prior generations), and new CPUID enumeration capabilities for counter 

width.
• Second Generation Memory Bandwidth Allocation (MBA 2.0): Introduces an advanced hardware feedback 

controller which operates at microsecond timescales, and software-selectable min/max delay value resolution 
capabilities. Note that delay values may be thought of as “throttling values” applied to the threads running on 
a core, as described in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B. MBA 
2.0 also adds a work-conserving feature in which applications that frequently access the L3 cache may be 
throttled by a lesser amount until they exceed the user-specified memory bandwidth usage threshold, 
enhancing system throughput and efficiency, in addition to adding more precise calibration and controls.

• 15 MBA / L3 CAT CLOS: Improved feature consistency and interface flexibility. The previous generation of 
processors supported 16 L3 CAT CLOS, but only 8 MBA 1.0 CLOS. The changes in enumerated CLOS counts per-
feature are already enumerated in the architecture via CPUID.

10.1.2 Intel® RDT on Intel Atom® Processors Based on Tremont Microarchitecture
Intel Atom® processors based on Tremont microarchitecture add the following Intel RDT enhancements:
• L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP enabled simultaneously. As these are legacy features already 

defined, no new software enabling should be required.
• Matches Ice Lake Server microarchitecture support for traditional Intel RDT uncore features: L3 CAT/CDP, CMT, 

MBM, MBA 2.0. As these features are architectural, no new software enabling is required aside from MBA 2.0.
• New features added in Ice Lake Server microarchitecture also carry forward to Tremont microarchitecture, with 

the same software enabling required. These features include 32-bit MBM counters, MBA 2.0, and 15 MBA/L3 
CAT CLOS.

10.1.3 Intel® RDT in Processors Based on Sapphire Rapids Server Microarchitecture
Processors based on Sapphire Rapids Server microarchitecture add the following Intel RDT enhancements:
• L2 CAT and CDP: Includes control over the L2 cache and the ability to partition the L2 cache into separate code 

and data virtual caches. No new software enabling is required; this is the same behavior as described in the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

• Third Generation Memory Bandwidth Allocation (MBA 3.0): New per-thread capability for bandwidth control, 
enabling precise bandwidth shaping and noisy neighbor control. Some portions of the control infrastructure 
now operate at core frequencies for controls which are responsive at the nanosecond level.

• STLB QoS: Capability to manage the second-level translation lookaside buffer structure within the core (STLB) 
in a manner quite similar to CAT (CLOS-based, with capacity masks). This may enable software which is 
sensitive to TLB performance to achieve better determinism. This is a model-specific feature due to the 
microarchitectural nature of the STLB structure. The code regions of interest must be manually accessed.
Ref. # 319433-042 10-1



INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
10.2 ENUMERABLE MEMORY BANDWIDTH MONITORING COUNTER WIDTH
Memory Bandwidth Monitoring (MBM) is an Intel RDT feature which tracks total and local bandwidth generated 
which misses the L3 cache. 
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the 
IA32_QM_CTR MSR, and the first-generation MBM implementation used 24-bit counters. Software is required to 
poll at ≥ 1Hz to ensure that data is retrieved before a counter rollover occurs more than once. This ≥ 1Hz sampling 
ensures that under worst-case conditions rollover between samples occurs at most once, but under more typical 
conditions rollover typically requires multiple seconds to occur. 
As bandwidths scale, extensions to more elegantly handle high-bandwidth future systems are desirable. One of 
these extensions, detailed in this chapter, includes an enumerable MBM counter width. Ice Lake Server microarchi-
tecture utilizes this definition to implement 32-bit MBM counters, but future growth should be anticipated.

10.2.1 Memory Bandwidth Monitoring (MBM) Enabling
Memory Bandwidth Monitoring, like other Intel RDT features, uses CPUID for enumeration, and MSRs for assigning 
RMIDs and retrieving counter data. For CPUID enumeration details, see the Intel® 64 and IA-32 Architectures 
Software Developer’s Manual, Volume 2A. For additional MBM details, see Chapter 17 in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B.

10.2.2 Augmented MBM Enumeration and MSR Interfaces for Extensible Counter Width
A field is added to CPUID to enumerate the MBM counter width in platforms which support the extensible MBM 
counter width feature. 
Prior to this point, CPUID.0F.[ECX=1]:EAX was reserved. This CPUID output register (EAX) is redefined to provide 
two new fields: 

• Encode counter width as offset from 24b in bits[7:0].

• An overflow bit in bit[8].
See “CPUID—CPU Identification” in Chapter 1 for details.
In EAX bits 7:0, the counter width is encoded as an offset from 24b. A value of zero in this field means 24-bit 
counters are supported. A value of 8 indicates that 32-bit counters are supported, as in processors based on Ice 
Lake Server microarchitecture. 
With the addition of this enumerable counter width, the requirement that software poll at ≥ 1Hz is removed. Soft-
ware may poll at a varying rate with reduced risk of rollover, and under typical conditions rollover is likely to require 
hundreds of seconds (though this value is not explicitly specified, and may vary and decrease over time). If soft-
ware seeks to ensure that rollover does not occur more than once between samples, then sampling at ≥ 1Hz while 
consuming the enumerated counter widths' worth of data will provide this guarantee, for a specific platform and 
counter width, under all conditions. 
Software which uses the MBM event retrieval MSR interface should be updated to comprehend this new format, 
which enables up to 62-bit MBM counters to be provided by future platforms. Higher-level software which 
consumes the resulting bandwidth values is not expected to be affected. 

10.3 SECOND GENERATION MEMORY BANDWIDTH ALLOCATION
The second generation of Memory Bandwidth Allocation (MBA 2.0) is implemented in processors based on Ice Lake 
Server microarchitecture, and improves the behavior and accuracy of MBA, along with providing increased 
throughput while using the feature and greater efficiency. Rather than a strict bandwidth control mechanism, a 
more dynamic hardware controller is used internally which can react to changing bandwidth conditions at the 
microsecond level. 

Prior to using the MBA 2.0 feature, the MBA 2.0 hardware controller requires a BIOS-assisted calibration process 
which may include inputs such as the number of memory channels populated and other system parameters; this is 
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a change from MBA 1.0 which did not require this. Intel BIOS reference code includes a default configuration which 
is recommended for general usage.
MBA 2.0 in Ice Lake Server and Tremont microarchitectures moves from static throttling at the core/uncore inter-
face to a more dynamic control scheme based on a hardware controller that tracks actual DRAM bandwidth. This 
allows software which uses primarily the L3 cache to observe increased throughput for a given throttling level, or 
benefits for software which exhibits L3-bound phases. Due to the closer consideration of memory bandwidth 
loading, this enhancement may lead to an increase in system efficiency when using MBA 2.0, relative to MBA 1.0. 
MBA 1.0 is established as a legacy feature. Backward compatibility of the software interfaces is preserved, and 
MBA 2.0 changes manifest as enhancements atop the MBA 1.0 baseline. 
As with the prior generation feature, MBA 2.0 uses CPUID for enumeration, and throttling is performed using a 
mapping created from software thread-to-CLOS (in the IA32_PQR_ASSOC MSR) which is then mapped per-CLOS 
to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n MSRs. User software specifies a per-CLOS delay value, 0-
90% bandwidth throttling for instance, though the max and granularity are platform dependent and enumerated in 
CPUID. 

10.3.1 MBA 2.0 Advantages
MBA 2.0 adds some additional features over MBA 1.0 as described below.

1. Previously, only the maximum delay value across two CLOS on a physical core could be selected in MBA. MBA 
2.0 allows a minimum delay value to also be selected. 

2. Only a single calibration table was possible in MBA 1.0, meaning different memory configurations had different 
linearity / percent delay value error values depending on the configuration. This is addressed by the BIOS 
support in MBA 2.0, and certain BIOS implementations may program a different calibration table per memory 
configuration, for instance.

3. The MBA 2.0 controller provides the ability to more closely monitor the memory bandwidth loading and deliver 
more optimal results. 

4. MBA 2.0 includes a hardware controller, reducing the need for a fine-grained software controller to manage 
application phases. (A software controller is still valuable to translate MBA throttling values to bandwidths in 
GB/s or application SLAs.) 

Figure 10-1.  MBA 2.0 Concept Based Around a Hardware Controller
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MBA 2.0 implementation is shown in Figure 10-1. MBA 2.0 operates through the use of an advanced new hardware 
controller and feedback mechanism which allows automated hardware monitoring and control around the user-
provided delay value set point. This set point and associated delay value infrastructure remains unchanged from 
MBA 1.0, preserving software compatibility. 
MBA 2.0 enhancements over MBA 1.0, in addition to the new hardware controller, include:

1. Configurable delay selection across threads.

• MBA 1.0 implementation statically picks the max MBADelay across the threads running on a core (by 
calculating value = max(delayValue(CLOS[thread0]),delayValue(CLOS[thread1]))). 

• Software may have the option to pick either maximum or minimum delay to be resolved and applied 
across the threads; maximum value remains the default. 

2. Increasing CLOSIDs from 8 to 15.

• Skylake Server microarchitecture has 8 CLOSIDs for MBA 1.0.

• Ice Lake Server microarchitecture increases this value to 15 (also consistent with L3 CAT).

10.3.2 MBA 2.0 Software-Visible Changes
A new MSR is introduced with MBA 2.0 to allow software to select from the maximum (default) or minimum of 
resolved delay values (see formula above). This capability is controlled via a bit in the new MBA_CFG MSR, shown 
below.

Note that bit[0] for min/max configuration is supported in MBA 2.0, but is removed when MBA 3.0 moves the 
controller logic to per-thread capable. This transient feature existence is why the min/max control remains model-
specific. 
To enumerate and manage support for the model-specific min/max feature, software may use processor 
family/model/stepping to match supported products, then CPUID to later detect MBA 3.0 support. 

10.4 THIRD GENERATION MEMORY BANDWIDTH ALLOCATION
The third generation MBA (MBA 3.0) feature on Sapphire Rapids microarchitecture further enhances the feature 
with per-thread control and a further improved controller design. 
MBA 3.0 follows the past MBA precedent of delivering significant enhancements without a major software overhaul, 
and while preserving backward compatibility.

10.4.1 MBA 3.0 Hardware Changes
MBA 3.0 builds upon the hardware controller introduced with MBA 2.0, which enabled significant system-level 
benefits, and removes the per-core throttling limitation. Throttling values are no longer selected as the “min” or 
“max” of the two delay values for the threads running on the core, instead throttling values are directly applied to 
the threads running on the core. 

Table 10-1.  MBA_CFG MSR Definition

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

C84H 3204 MBA_CFG MBA Configuration Register

0 Min (1) or max (0) of per-thread MBA delays.

63:1 Reserved. Attempts to write to reserved bits result in a #GP(0).
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While this means that more direct throttling of threads is possible, future usage guidance may be necessary to help 
explain the effects of Intel® Hyper-Threading Technology contention vs. cache and memory contention, and how 
these effects may be understood by software.

10.4.2 MBA 3.0 Software-Visible Changes
In order to allow software to change its tuning behavior and detect that per-thread throttling is supported on a 
particular product generation, a new CPUID bit is added to the MBA CPUID leaf to indicate this. See “CPUID—CPU 
Identification” in Chapter 1 for details.
Despite another significant improvement of the hardware controller infrastructure architecture and improved capa-
bilities, controller responsiveness, new internal microarchitecture, and transient-arresting capabilities, no new 
software interface changes are required to make use of MBA 3.0 relative to prior generations. Software previously 
using the MBA 2.0 min/max selection capability should discontinue use of the MBA_CFG MSR.
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CHAPTER 11
USER INTERRUPTS

11.1 INTRODUCTION
This chapter details an architectural feature called user interrupts.
This feature defines user interrupts as new events in the architecture. They are delivered to software operating in 
64-bit mode with CPL = 3 without any change to segmentation state. Different user interrupts are distinguished by 
a 6-bit user-interrupt vector, which is pushed on the stack as part of user-interrupt delivery. A new instruction, 
UIRET (user-interrupt return) reverses user-interrupt delivery.
The user-interrupt architecture is configured by new supervisor-managed state. This state includes new MSRs. In 
expected usages, an operating system (OS) will update the content of these MSRs when switch between OS-
managed threads.
One of the MSRs references a data structure called the user posted-interrupt descriptor (UPID). User inter-
rupts for an OS-managed thread can be posted in the UPID associated with that thread. Such user interrupts will 
be delivered after receipt of an ordinary interrupt (also identified in the UPID) called a user-interrupt notifica-
tion.1

System software can define operations to post user interrupts and to send user-interrupt notifications. In addition, 
the user-interrupt architecture defines a new instruction, SENDUIPI, by which application software can send inter-
processor user interrupts (user IPIs). An execution of SENDUIPI posts a user interrupt in a UPID and sends a user-
interrupt notification. 
(Platforms may include mechanisms to process external interrupts as either ordinary interrupts or user interrupts. 
Those processed as user interrupts would be posted in UPIDs may result in user-interrupt notifications. Specifics of 
such mechanisms are outside of the scope of this document.)
Section 11.2 explains how a processor enumerates support for user interrupts and how they are enabled by system 
software. Section 11.3 identifies the new processor state defined for user interrupts. Section 11.4 explains how a 
processor identifies and delivers user interrupts. Section 11.5 describes how a processor identifies and processes 
user-interrupt notifications. Section 11.7 defines new support for user inter-processor interrupts (user IPIs). 
Section 11.8 details how existing instructions support the new processor state and presents instructions to be 
introduced for user interrupts. Section 11.8.2 and Section 11.9 describe how user interrupts are supported by the 
XSAVE feature set and the VMX extensions, respectively.

11.2 ENUMERATION AND ENABLING
Software enables user interrupts by setting bit 25 (UINTR) in control register CR4. Setting CR4.UINTR enables 
user-interrupt delivery (Section 11.4.2), user-interrupt notification identification (Section 11.5.1), and the user-
interrupt instructions (Section 11.6). It does not affect the accessibility of the user-interrupt MSRs (Section 11.3) 
by RDMSR, WRMSR or the XSAVE feature set.
Processor support for user interrupts is enumerated by CPUID.(EAX=7,ECX=0):EDX[5]. If this bit is set, software 
can set CR4.UINTR to 1 and can access the user-interrupt MSRs using RDMSR and WRMSR (see Section 11.3 and 
Section 11.8.1).
The user-interrupt feature is XSAVE-managed (see Section 11.8.2). This implies that aspects of the feature are 
enumerated as part of enumeration of the XSAVE feature set. See Section 11.8.2.2 for details.

1. For clarity, this chapter uses the term ordinary interrupts to refer to those events in the existing interrupt architecture, which are 
typically delivered to system software operating with CPL = 0.
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11.3 USER-INTERRUPT STATE AND USER-INTERRUPT MSRS
The user-interrupt architecture defines the following new state. Some of this state can be accessed via the RDMSR 
and WRMSR instructions (through new user-interrupt MSRs detailed in Section 11.3.2) and some can be accessed 
using new instructions described in Section 11.6.

11.3.1 User-Interrupt State
The following are the elements of the new state (enumerated here independent of how they are accessed):
• UIRR: user-interrupt request register.

This value includes one bit for each of the 64 user-interrupt vectors. If UIRR[i] = 1, a user interrupt with
vector i is requesting service. The notation UIRRV is used to refer to the position of the most significant bit
set in UIRR; if UIRR = 0, UIRRV = 0.

• UIF: user-interrupt flag.
If UIF = 0, user-interrupt delivery is blocked; if UIF = 1, user interrupts may be delivered. User-interrupt
delivery clears UIF, and the new UIRET instruction sets it. Section 11.6 defines other new instructions for
accessing UIF.

• UIHANDLER: user-interrupt handler.
This is the linear address of the user-interrupt handler. User-interrupt delivery loads this address into RIP.

• UISTACKADJUST: user-interrupt stack adjustment.
This value controls adjustment to the stack pointer (RSP) prior to user-interrupt delivery. It can account for
an OS ABI’s “red zone” or be configured to load RSP with an alternate stack pointer.
The value UISTACKADJUST must be canonical. If bit 0 is 1, user-interrupt delivery loads RSP with UISTACK-
ADJUST; otherwise, it subtracts UISTACKADJUST from RSP. Either way, user-interrupt delivery then aligns
RSP to a 16-byte boundary. See Section 11.4.2 for details.

• UINV: user-interrupt notification vector.
This is the vector of those ordinary interrupts that are treated as user-interrupt notifications (Section 11.5.1).
When the logical processor receives user-interrupt notification, it processes the user interrupts in the user
posted-interrupt descriptor (UPID) referenced by UPIDADDR (see below and Section 11.5.2).

• UPIDADDR: user posted-interrupt descriptor address.
This is the linear address of the UPID that the logical processor consults upon receiving an ordinary interrupt
with vector UINV.

• UITTADDR: user-interrupt target table address.
This is the linear address of user-interrupt target table (UITT), which the logical processor consults when
software invokes the SENDUIPI instruction (see Section 11.7).

• UITTSZ: user-interrupt target table size.
This value is the highest index of a valid entry in the UITT (see Section 11.7).

11.3.2 User-Interrupt MSRs
Some of the state elements identified in Section 11.3.1 can be accessed as user-interrupt MSRs using the RDMSR 
and WRMSR instructions:
• IA32_UINTR_RR MSR (MSR address 985H). This MSR is an interface to UIRR (64 bits).
• IA32_UINTR_HANDLER MSR (MSR address 986H). This MSR is an interface to the UIHANDLER address (see 

Section 11.8.1 for canonicality checking).
• IA32_UINTR_STACKADJUST MSR (MSR address 987H). This MSR is an interface to the UISTACKADJUST value 

(see Section 11.8.1 for canonicality checking).
• IA32_UINTR_MISC MSR (MSR address 988H). This MSR is an interface to the UITTSZ and UINV values. The 

MSR has the following format:
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— bits 31:0 are UITTSZ;

— bits 39:32 are UINV; and

— bits 63:40 are reserved (see Section 11.8.1 for reserved-bit checking).
Because this MSR will share an 8-byte portion of the XSAVE area with UIF (see Section 11.8.2), bit 63 of the
MSR will never be used and will always be reserved.

• IA32_UINTR_PD MSR (MSR address 989H). This MSR is an interface to the UPIDADDR address (see Section 
11.8.1 for canonicality and reserved-bit checking).

• IA32_UINTR_TT MSR (MSR address 98AH). This MSR is an interface to the UITTADDR address (in addition, bit 
0 enables SENDUIPI; see Section 11.8.1 for canonicality and reserved-bit checking).

11.4 EVALUATION AND DELIVERY OF USER INTERRUPTS
A processor determines whether there is a user interrupt to deliver based on UIRR. Section 11.4.1 describes this 
recognition of pending user interrupts. Once a logical processor has recognized a pending user interrupt, it will 
deliver it on subsequent instruction boundary by causing a control-flow change asynchronous to software execu-
tion. Section 11.4.2 details this process of user-interrupt delivery.

11.4.1 User-Interrupt Recognition
There is a user interrupt pending whenever UIRR ≠ 0.
Any instruction or operation that modifies UIRR updates the logical processor’s recognition of a pending user inter-
rupt. The following instructions and operations may need to do this:
• WRMSR to the IA32_UINTR_RR MSR (Section 11.8.1).
• XRSTORS of the user-interrupt state component (Section 11.8.2.4).
• User-interrupt delivery (Section 11.4.2).
• User-interrupt notification processing (Section 11.5.2).
• VMX transitions that load the IA32_UINTR_RR MSR (Section 11.9.3.2 and Section 11.9.4.6).
Each of these instructions or operations results in recognition of a pending user interrupt if it completes with 
UIRR ≠ 0; if it completes with UIRR = 0, no pending user interrupt is recognized.
Once recognized, a pending user interrupt may be delivered to software; see Section 11.4.2.

11.4.2 User-Interrupt Delivery
If CR4.UINTR = 1 and a user interrupt has been recognized (see Section 11.4.1), it will be delivered at an instruc-
tion boundary when the following conditions all hold: (1) UIF = 1; (2) there is no blocking by MOV SS or by POP 
SS1; (3) CPL = 3; (4) IA32_EFER.LMA = CS.L = 1 (the logical processor is in 64-bit mode); and (5) software is not 
executing inside an enclave.
User-interrupt delivery has priority just below that of ordinary interrupts. It wakes a logical processor from the 
states entered using the TPAUSE and UMWAIT instructions2; it does not wake a logical processor in the shutdown 
state or in the wait-for-SIPI state.
User-interrupt delivery does not change CPL (it occurs entirely with CPL = 3). The following pseudocode details the 
behavior of user-interrupt delivery:

1. Execution of the STI instruction does not block delivery of user interrupts for one instruction as it does ordinary interrupts. If a user 
interrupt is delivered immediately following execution of a STI instruction, ordinary interrupts are not blocked after delivery of the 
user interrupt.

2. User-interrupt delivery occurs only if CPL = 3. Since the HLT and MWAIT instructions can be executed only if CPL = 0, a user inter-
rupt can never be delivered when a logical processor is an activity state that was entered using one of those instructions.
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IF UIHANDLER is not canonical in current paging mode
THEN #GP(0);

FI;
tempRSP := RSP;
IF UISTACKADJUST[0] = 1

THEN RSP := UISTACKADJUST;
ELSE RSP := RSP – UISTACKADJUST;

FI;
RSP := RSP & ~FH;  // force the stack to be 16-byte aligned
Push tempRSP;
Push RFLAGS;
Push RIP;
Push UIRRV; // 64-bit push; upper 58 bits pushed as 0
IF shadow stack is enabled for CPL = 3

THEN ShadowStackPush RIP;
FI;
IF end-branch is enabled for CPL = 3

THEN IA32_U_CET.TRACKER := WAIT_FOR_ENDBRANCH;
FI;
UIRR[Vector] := 0;
IF UIRR = 0

THEN cease recognition of any pending user interrupt;
FI;
UIF := 0;
RFLAGS.TF := 0;
RFLAGS.RF := 0;
RIP := UIHANDLER;

If UISTACKADJUST[0] = 0, user-interrupt delivery decrements RSP by UISTACKADJUST; otherwise, it loads RSP 
with UISTACKADJUST. In either case, user-interrupt delivery aligns RSP to a 16-byte boundary by clearing 
RSP[3:0].
User-interrupt delivery that occurs during transactional execution causes transactional execution to abort and a 
transition to a non-transactional execution. The transactional abort loads EAX as it would had it been due to an 
ordinary interrupt. User-interrupt delivery occurs after the transactional abort is processed.
The stack accesses performed by user-interrupt delivery may incur faults (page faults, or stack faults due to canon-
icality violations). RSP is restored to its original value before such a fault is delivered (memory locations above the 
top of the stack may have been written). If such a fault produces an error code that uses the EXT bit, that bit will 
be cleared to 0.
If such a fault occurs, UIRR is not updated and UIF is not cleared and, as a result, the logical processor continues 
to recognize that a user interrupt is pending and user-interrupt delivery will normally recur after the fault is 
handled.
If shadow-stack feature of control-flow enforcement technology (CET) is enabled for CPL = 3, user-interrupt 
delivery pushes the return instruction pointer the shadow stack. If indirect-branch-tracking feature of CET is 
enabled, user-interrupt delivery transitions the indirect branch tracker to the WAIT_FOR_ENDBRANCH state; an 
ENDBR64 instruction is expected as first instruction of the user-interrupt handler.
Section 11.9.2.3 discusses VM exits that may occur during user-interrupt delivery.
User-interrupt delivery can be tracked by Architectural Last Branch Records (LBRs), Intel® Processor Trace (Intel® 
PT), and Performance Monitoring. For both Intel PT and LBRs, user-interrupt delivery is recorded in precisely the 
same manner as ordinary interrupt delivery. Hence for LBRs, user interrupts fall into the OTHER_BRANCH category, 
which implies that IA32_LBR_CTL.OTHER_BRANCH[bit 22] must be set to record user-interrupt delivery, and that 
the IA32_LBR_x_INFO.BR_TYPE field will indicate OTHER_BRANCH for any recorded user interrupt. For Intel PT, 
control flow tracing must be enabled by setting IA32_RTIT_CTL.BranchEn[bit 13].
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User-interrupt delivery will also increment performance counters for which counting 
BR_INST_RETIRED.FAR_BRANCH is enabled. Some implementations may have dedicated events for counting 
user-interrupt delivery; see processor-specific event lists at https://download.01.org/perfmon/index/.

11.5 USER-INTERRUPT NOTIFICATION IDENTIFICATION AND PROCESSING
User-interrupt posting is the process by which a platform agent (or software operating on a CPU) records user
interrupts in a user posted-interrupt descriptor (UPID) in memory. The platform agent (or software) may send
an ordinary interrupt (called a user-interrupt notification) to the logical processor on which the target of the
user interrupt is operating.
A UPID has the format given in Table 11-1.

The notation PIR (posted-interrupt requests) refers to the 64 posted-interrupt requests in a UPID.
If an ordinary interrupt arrives while CR4.UINTR = IA32_EFER.LMA = 1, the logical processor determines whether 
the interrupt is a user-interrupt notification. This process is called user-interrupt notification identification 
and is described in Section 11.5.1.
Once a logical processor has identified a user-interrupt notification, it copies user interrupts in the UPID’s PIR into 
UIRR. This process is called user-interrupt notification processing and is described in Section 11.5.2.
A logical processor is not interruptible during either user-interrupt notification identification or user-interrupt noti-
fication processing or between those operations (when they occur in succession).

11.5.1 User-Interrupt Notification Identification
If CR4.UINTR = IA32_EFER.LMA = 1, a logical processor performs user-interrupt notification identification when it 
receives an ordinary interrupt. The following algorithm describes the response by the processor to an ordinary 
interrupt when CR4.UINTR = IA32_EFER.LMA = 11:

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, V.

2. If V = UINV, the logical processor continues to the next step. Otherwise, an interrupt with vector V is delivered 
normally through the IDT; the remainder of this algorithm does not apply and user-interrupt notification 
processing does not occur.

Table 11-1.  Format of User Posted-Interrupt Descriptor — UPID

Bit Position(s) Name Description

0 Outstanding notifi-
cation

If this bit is set, there is a notification outstanding for one or more user interrupts in 
PIR.

1 Suppress notification If this bit is set, agents (including SENDUIPI) should not send notifications when 
posting user interrupts in this descriptor.

15:2 Reserved User-interrupt notification processing ignores these bits; must be zero for 
SENDUIPI.

23:16 Notification vector Used by SENDUIPI.

31:24 Reserved User-interrupt notification processing ignores these bits; must be zero for 
SENDUIPI.

63:32 Notification destination
Target physical APIC ID – used by SENDUIPI.
In xAPIC mode, bits 47:40 are the 8-bit APIC ID.
In x2APIC mode, the entire field forms the 32-bit APIC ID.

127:64 Posted-interrupt 
requests (PIR)

One bit for each user-interrupt vector. There is a user-interrupt request for a vector 
if the corresponding bit is 1.

1. If the interrupt arrives between iterations of a REP-prefixed string instruction, the processor first updates state as follows: RIP is 
loaded to reference the string instruction; RCX, RSI, and RDI are updated as appropriate to reflect the iterations completed; and 
RFLAGS.RF is set to 1.
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3. The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with vector V = UINV 
from the local APIC.

User-interrupt notification identification involves acknowledgment of the local APIC and thus occurs only when 
ordinary interrupts are not masked.
(The behavior described above may be modified in VMX non-root operation; see Section 11.9.2.2 and Section 
11.9.3.3.)
If user-interrupt notification identification completes step #3, the logical processor then performs user-interrupt 
notification processing as described in Section 11.5.2.
An ordinary interrupt that occurs during transactional execution causes the transactional execution to abort and 
transition to a non-transactional execution. This occurs before user-interrupt notification identification.
An ordinary interrupt that occurs while software is executing inside an enclave causes an asynchronous enclave 
exit (AEX). This AEX occurs before user-interrupt notification identification.

11.5.2 User-Interrupt Notification Processing
Once a logical processor has identified a user-interrupt notification, it performs user-interrupt notification 
processing using the UPID at the linear address in the IA32_UINTR_PD MSR.
The following algorithm describes user-interrupt notification processing:

1. The logical processor clears the outstanding-notification bit (bit 0) in the UPID. This is done atomically so as to 
leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

2. The logical processor reads PIR (bits 127:64 of the UPID) into a temporary register and writes all zeros to PIR. 
This is done atomically so as to ensure that each bit cleared is set in the temporary register (e.g., with a locked 
XCHG operation).

3. If any bit is set in the temporary register, the logical processor sets in UIRR each bit corresponding to a bit set 
in the temporary register (e.g., with an OR operation) and recognizes a pending user interrupt (if it has not 
already done so).

The logical processor performs the steps above in an uninterruptible manner. Steps #1 and #2 may be combined 
into a single atomic step. If step #3 leads to recognition of a user interrupt, the processor may deliver that interrupt 
on the following instruction boundary (see Section 11.4.2).
Although user-interrupt notification processing may occur at any privilege level, all of the memory accesses in 
steps #1 and #2 are performed with supervisor privilege.
Step #1 and step #2 each access the UPID using a linear address and may therefore incur faults (page faults, or 
general-protection faults due to canonicality violations). If such a fault produces an error code that uses the EXT 
bit, that bit will be set to 1.
If such a fault occurs, updates to architectural state performed by the earlier user-interrupt notification identifica-
tion (Section 11.5.1) remain committed and are not undone; if such a fault occurs at step #2 (if it is not performed 
atomically with step #1), any update to architectural state performed by step #1 also remains committed. System 
software is advised to prevent such faults (e.g., by ensuring that no page fault occurs and that the linear address 
in the IA32_UINTR_PD MSR is canonical with respect to the paging mode in use).
(System software executing in VMX non-root operation is not normally expected to prevent VM exits due to event 
such as EPT violations. Section 11.9.2.3 discusses the treatment of user-interrupt notification processing when 
such events occur.)
The user-interrupt notification identification that precedes user-interrupt notification processing may occur due to 
an ordinary interrupt (Section 11.5.1), a virtual interrupt (Section 11.9.2.2), or an interrupt injected by VM entry 
(Section 11.9.3.3). The following items specify the activity state of the logical processor for each of these cases of 
user-interrupt notification processing:
• If user-interrupt notification identification was due to an ordinary interrupt or a virtual interrupt and the logical 

processor had been in the HLT state before that interrupt, it returns to the HLT state following user-interrupt 
notification processing.

• If user-interrupt notification identification was due to an interrupt injected by VM entry and the activity-state 
field in the guest-state area of the VMCS indicated the HLT state, the logical processor enters the HLT state 
following user-interrupt notification processing.
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• In all other cases, the logical processor is in the active state following user-interrupt notification processing.
Section 11.9.2.3 discusses VM exits that may occur during user-interrupt notification processing.

11.6 NEW INSTRUCTIONS
The user-interrupt architecture defines new instructions for control-flow transfer and access to new state. UIRET is 
a new instruction to effect a return from a user-interrupt handler. Other new instructions allow access by user code 
to UIF. User IPIs also use a new instruction, SENDUIPI. See Section 2.1, “Instruction Set Reference” for details on 
instructions.

11.7 USER IPIS
Processors support the sending of interprocessor user interrupts (user IPIs) through a user-interrupt target table 
(configured by system software) and the SENDUIPI instruction (executed by application software). Operation of 
SENDUIPI is presented in Section 2.1, “Instruction Set Reference”.
The user-interrupt target table (UITT) is a data structure composed of 16-byte entries. Each UITT entry 
(UITTE) has the following format:
• Bit 0: V, a valid bit.
• Bits 7:1 are reserved and must be 0.
• Bits 15:8: UV, the user-interrupt vector (in the range 0–63, so bits 15:14 must be 0).
• Bits 63:16 are reserved.
• Bits 127:64: UPIDADDR, the linear address of a UPID (64-byte aligned, so bits 69:64 must be 0).
The UITT is located at the linear address UITTADDR; UITTSZ is the highest index of a valid entry in the UITT (thus, 
the number of entries in the UITT is UITTSZ + 1).

11.8 LEGACY INSTRUCTION SUPPORT
Certain instructions support the user-interrupt architecture. The RDMSR and WRMSR instructions support access 
to the user-interrupt MSRs (Section 11.8.1). The architecture is also supported by the XSAVE feature set (Section 
11.8.2).

11.8.1 Support by RDMSR and WRMSR
The RDMSR and WRMSR instructions support normal read and write operations for the user-interrupt MSRs defined 
in Section 11.3. These operations are supported even if CR4.UINTR = 0. The following items identify points that are 
specific to these MSRs:
• IA32_UINTR_RR MSR (MSR address 985H).

— This MSR holds the current value of UIRR.

— Following a WRMSR to this MSR, the logical processor recognizes a pending user interrupt if and only if 
some bit is set in the MSR.

• IA32_UINTR_HANDLER MSR (MSR address 986H).

— This MSR holds the current value of UIHANDLER. This is a linear address that must be canonical relative to 
the maximum linear-address width supported by the processor.1

— WRMSR to this MSR causes a general-protection fault (#GP) if its source operand does not meet this 
requirement.

1. CPUID.80000008H:EAX[15:8] enumerates the maximum linear-address width supported by the processor.
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• IA32_UINTR_STACKADJUST MSR (MSR address 987H).

— This MSR holds the current value of UISTACKADJUST. This value includes a linear address that must be 
canonical relative to the maximum linear-address width supported by the processor.

— WRMSR to this MSR causes a general-protection fault (#GP) if its source operand does not meet this 
requirement.

— Bit 0 of this MSR corresponds to UISTACKADJUST[0], which controls how user-interrupt delivery updates 
the stack pointer. WRMSR may set it to either 0 or 1.

• IA32_UINTR_MISC MSR (MSR address 988H).

— Bits 31:0 of this MSR hold the current value of UITTSZ, while bits 39:32 hold the current value of UINV.

— Bits 63:40 of this MSR are reserved. WRMSR causes a #GP if it would set any of those bits (if 
EDX[31:8] ≠ 000000H).

— Because this MSR shares an 8-byte portion of the XSAVE area with UIF (see Section 11.8.2), bit 63 of the 
MSR will never be used and will always be reserved.

• IA32_UINTR_PD MSR (MSR address 989H).

— This MSR holds the current value of UPIDADDR. This is a linear address that must be canonical relative to 
the maximum linear-address width supported by the processor.

— WRMSR to this MSR causes a general-protection fault (#GP) if its source operand does not meet this 
requirement.

— Bits 5:0 of this MSR are reserved. WRMSR causes a #GP if it would set any of those bits (if 
EAX[5:0] ≠ 000000b).

• IA32_UINTR_TT MSR (MSR address 98AH).

— Bit 63:4 of this MSR holds the current value of UITTADDR. This a linear address that must be canonical 
relative to the maximum linear-address width supported by the processor.

— WRMSR to this MSR causes a general-protection fault (#GP) if its source operand does not meet this 
requirement.

— Bits 3:1 of this MSR are reserved. WRMSR causes a #GP if it would set any of those bits (if 
EAX[3:1] ≠ 000b).

— Bit 0 of this MSR determines whether the SENDUIPI instruction is enabled. WRMSR may set it to either 0 or 
1.

11.8.2 Support by the XSAVE Feature Set
The state identified in Section 11.3 may be specific to an OS-managed user thread, and system software would 
then need to change the values of this state when changing user threads. This context management is facilitated 
by adding support for this state to the XSAVE feature set. This section describes that support.
The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of 
processor registers (or parts of registers). Each such state component corresponds to an XSAVE-supported 
feature. The XSAVE feature set organizes the state components of the XSAVE-supported features using state-
component bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a 
single state component. Some state components are supervisor state components. The XSAVE feature supports 
supervisor state components with only the XSAVES and XRSTORS instructions.
Section 11.8.2.1 defines a new supervisor state component for user interrupts. Section 11.8.2.2 explains XSAVE-
specific enumeration of the user-interrupt state component. Section 11.8.2.3 specifies how XSAVES will manage 
this state component, and Section 11.8.2.4 does the same for XRSTORS.

11.8.2.1  User-Interrupt State Component
The XSAVE feature set will manage the user-interrupt registers with a supervisor user-interrupt state compo-
nent. Bit 14 in the state-component bitmaps is assigned for the user-interrupt state component; this specification 
will refer to that position with the notation “UINTR.” System software enables the processor to manage the user-
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interrupt state component by setting IA32_XSS.UINTR. (This implies that XSETBV will not allow XCR0.UINTR to be 
set.)
The user-interrupt state component comprises 48 bytes in memory with the following layout:
• Bytes 7:0 are for UIHANDLER (the IA32_UINTR_HANDLER MSR).
• Bytes 15:8 are for UISTACKADJUST (the IA32_UINTR_STACKADJUST MSR).
• Bytes 23:16 are for UITTSZ and UINV (from the IA32_UINTR_MISC MSR) and for UIF, organized as follows:

— Byte 19:16 is for UITTSZ (bits 31:0 of the IA32_UINTR_MISC MSR).

— Byte 20 is for UINV (bits 39:32 of the IA32_UINTR_MISC MSR).

— Bytes 22:21 (2 bytes) and bits 6:0 of byte 23 are reserved. (They may be used for bits 62:40 if the 
IA32_UINTR_MISC MSR, if they are defined in the future.)

— Bit 7 of byte 23 is for UIF.
Because bit 7 of byte 23 is for UIF (which is not part of the IA32_UINTR_MISC MSR), software that reads a
value from bytes 23:16 should clear bit 63 of that 64-bit value before attempting to write it to the 
IA32_UINTR_MISC MSR.

• Bytes 31:24 are for UPIDADDR (the IA32_UINTR_PD MSR).
• Bytes 39:32 are for UIRR (the IA32_UINTR_RR MSR).
• Bytes 47:40 are for UITTADDR (the IA32_UINTR_TT MSR, including the bit 0, the valid bit).
The user-interrupt state component is in its initial state if all user-interrupt registers are zero.
Certain portions of a supervisor state component may be identified as master-enable state. XSAVES and 
XRSTORS treat this state specially. UINV is the master-enable state for the user-interrupt state component. See 
Section 11.8.2.3 and Section 11.8.2.4 for the treatment of this state by XSAVES and XRSTORS, respectively.

11.8.2.2  XSAVE-Related Enumeration
The XSAVE feature set includes an architecture to enumerate details about each XSAVE-supported state compo-
nent. The following items provide details of the XSAVE-specific enumeration of the user-interrupt state component:
• CPUID.(EAX=0DH,ECX=1):EBX enumerates the size in bytes of an XSAVE area containing all states currently 

enabled by XCR0 | IA32_XSS. When IA32_XSS.UINTR[bit 14] = 1, this value will includes the 48 bytes required 
for the user-interrupt state component (see Section 11.8.2.1).

• CPUID.(EAX=0DH,ECX=1):ECX.UINTR[bit 14] is enumerated as 1, indicating that the user-interrupt state 
component is a supervisor state component and that IA32_XSS.UINTR can be set to 1.

• CPUID.(EAX=0DH,ECX=14):EAX is enumerated as 48 (30H), the size in bytes of the user-interrupt state 
component.

• CPUID.(EAX=0DH,ECX=14):EBX is enumerated as 0 (this is the case for any supervisor state component).
• CPUID.(EAX=0DH,ECX=14):ECX[0] is enumerated as 1, indicating that the user-interrupt state component is 

a supervisor state component.
• CPUID.(EAX=0DH,ECX=14):ECX[1] is enumerated as 0, indicating that the user-interrupt state component 

need not be aligned on a 64-byte boundary.
• CPUID.(EAX=0DH,ECX=14):ECX[31:2] are reserved and enumerated as 0.
• CPUID.(EAX=0DH,ECX=14):EDX is reserved and enumerated as 0.

11.8.2.3  XSAVES
The management of the user-interrupt state component by XSAVES follows the architecture of the XSAVE feature 
set. The following items identify points that are specific to saving the user-interrupt state component:
• XSAVES writes the user-interrupt registers to the user-interrupt state component using the format specified in 

Section 11.8.2.1.
• XSAVES stores zeros to bits and bytes identified in Section 11.8.2.1 as reserved.
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• The values saved for UIHANDLER, UPIDADDR, and UITTADDR are always canonical relative to the maximum 
linear-address width enumerated by CPUID1.

• After saving the user-interrupt state component, XSAVES clears UINV. (UINV is IA32_UINTR_MISC[39:32]; 
XSAVES does not modify the remainder of that MSR.)

11.8.2.4  XRSTORS
The management of the user-interrupt state component by XRSTORS follows the architecture of the XSAVE feature 
set. The following items identify points that are specific to restoring the user-interrupt state component:
• Before restoring the user-interrupt state component, XRSTORS verifies that UINV is 0. If it is not, XRSTORS 

causes a general-protection fault (#GP) before loading any part of the user-interrupt state component. (UINV 
is IA32_UINTR_MISC[39:32]; XRSTORS does not check the contents of the remainder of that MSR.)

• If the instruction mask and XSAVE area used by XRSTORS indicates that the user-interrupt state component 
should be loaded from the XSAVE area, XRSTORS reads the user-interrupt registers from the XSAVE area using 
the format identified in Section 11.8.2.1. The values read cause a general-protection fault (#GP) in any of the 
following cases:

— If any of the bits and bytes identified as reserved is not zero;

— If the value to be loaded into any one of UIHANDLER, UISTACKADJUST, UPIDADDR, or UITTADDR is not 
canonical relative to the maximum linear-address width enumerated by CPUID; or

— If the value to be loaded into either UPIDADDR or UITTADDR sets any of the bits reserved in that register 
(the reserved bits are bits 5:0 of UPIDADDR and bits 3:1 of UITTADDR; bit 0 of UITTADDR is the valid bit for 
SENDUIPI).

• If XRSTORS causes a fault or a VM exit after loading any part of the user-interrupt state component, XRSTORS 
clears UINV before delivering the fault or VM exit. (Other elements of user-interrupt state, including other parts 
of the IA32_UINTR_MISC MSR, may retain the values that were loaded by XRSTORS.)

• After a non-faulting execution of XRSTORS that loads the user-interrupt state component, the logical processor 
recognizes a pending user interrupt if and only if some bit is set in the new value of UIRR (see Section 11.4.1).

11.9 VMX SUPPORT
The VMX architecture supports virtualization of the instruction set and its system architecture. Certain extensions 
are needed to support virtualization of user interrupts. This section describes these extensions.

11.9.1 VMCS Changes
A new VM-exit control is defined called clear UINV. The control has been assigned position 27.
A new VM-entry control is defined called load UINV. The control has been assigned position 19.
Guest UINV is a new 16-bit field in the guest-state area (encoding to be determined), corresponding to UINV. The 
VMCS-field encoding for the guest UINV is 00000814H.
The guest UINV field exists only on processors that support the 1-setting of either the “clear UINV” VM-exit control 
or the “load UINV” VM-entry control.

11.9.2 Changes to VMX Non-Root Operation
This section describes changes to VMX non-root operation to support user interrupts.

1. They need might not be canonical relative to the current paging mode if it supports only smaller linear addresses.
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11.9.2.1  Treatment of Ordinary Interrupts
Outside of VMX non-root operation, a logical processor with CR4.UINTR = IA32_EFER.LMA = 1 responds to an ordi-
nary interrupt by performing user-interrupt notification identification (Section 11.5.1) and, if it succeeds, user-
interrupt notification processing (see Section 11.5.2).
In VMX non-root operation, the treatment of ordinary interrupts depends on the setting of the “external-interrupt 
exiting” VM-execution control:
• If the control is 0, user-interrupt notification identification and, if it succeeds, user-interrupt notification 

processing occur normally.
• If the control is 1, the logical processor does not perform user-interrupt notification identification (or user-

interrupt notification processing). Instead, legacy behavior applies: a VM exit occurs (unless the interrupt 
causes posted-interrupt processing for interrupt virtualization).

11.9.2.2  Treatment of Virtual Interrupts
If the “virtual-interrupt delivery” VM-execution control is 1, a logical processor in VMX non-root operation may 
deliver virtual interrupts to guest software. This is done by using a virtual interrupt’s vector to select a descriptor 
from the IDT and using that descriptor to deliver the interrupt.
If CR4.UINTR = IA32_EFER.LMA = 1, the delivery of virtual interrupts is modified. Specifically, the logical processor 
first performs a form of user-interrupt notification identification (modified as indicated from the definition in 
Section 11.5.1)1:

1. Instead of acknowledging the local APIC (as specified in Section 11.5.1), the logical processor performs the 
initial steps of virtual-interrupt delivery:
V := RVI;
VISR[V] := 1;
SVI := V;
VPPR := V & F0H;
VIRR[V] := 0;
IF any bit is set in VIRR

THEN RVI := highest index of bit set in VIRR
ELSE RVI := 0;

FI;
cease recognition of any pending virtual interrupt;
(RVI, SVI, VIRR, VISR, and VPPR are defined by the architecture for virtual interrupts.)

2. If V = UINV, the logical processor continues to the next step. Otherwise, a virtual interrupt with vector V is 
delivered normally through the IDT; the remainder of this algorithm does not apply and user-interrupt notifi-
cation processing does not occur.

3. Instead of writing zero to the EOI register in the local APIC (as specified in Section 11.5.1), the logical 
processor performs the initial steps of EOI virtualization:
VISR[V] := 0;
IF any bit is set in VISR

THEN SVI := highest index of bit set in VISR
ELSE SVI := 0;

FI;
perform PPR virtualization;
Unlike EOI virtualization resulting from a guest write to the EOI register (as defined for virtual-interrupt
delivery), the logical processor does not check the EOI-exit bitmap as part of this modified form of user-
interrupt notification identification, and the corresponding VM exits cannot occur.

This modified form of user-interrupt notification identification occurs only when virtual interrupts are not masked 
(e.g., only if RFLAGS.IF = 1).

1. If virtual-interrupt delivery occurs between iterations of a REP-prefixed string instruction, the processor will first update state as 
follows: RIP is loaded to reference the string instruction; RCX, RSI, and RDI are updated as appropriate to reflect the iterations com-
pleted; and RFLAGS.RF is set to 1.
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If this modified form of user-interrupt notification identification completes step #3, the logical processor then 
performs user-interrupt notification processing as specified in Section 11.5.2.
A logical processor is not interruptible during this modified form of user-interrupt notification identification or 
between it and any subsequent user-interrupt notification processing.
A virtual interrupt that occurs during transactional execution causes the transactional execution to abort and tran-
sition to a non-transactional execution. This occurs before this modified form of user-interrupt notification identifi-
cation.
A virtual interrupt that occurs while software is executing inside an enclave normally causes an asynchronous 
enclave exit (AEX). Such an AEX would occur before this modified form of user-interrupt notification identification.

11.9.2.3  VM Exits Incident to New Operations
The user-interrupt architecture introduces user-interrupt delivery (Section 11.4.2) and user-interrupt notification 
processing (Section 11.5.2).
These operations access memory using linear addresses: user-interrupt delivery writes to the stack; user-interrupt 
notification processing read and writes a UPID at the linear address in the IA32_UINTR_PD MSR1. Such memory 
accesses may incur faults (#GP, #PF, etc.) that may cause VM exits (depending on the configuration of the excep-
tion bitmap in the VMCS). In addition, memory accesses in VMX non-root operation may incur APIC-access VM 
exits, EPT violations, EPT misconfigurations, page-modification log-full VM exits, and SPP-induced VM exits2.
In general, such VM exits are treated normally. The following items present special cases:
• An APIC-access VM exit, an EPT violation, a page-modification log-full VM exit, or SPP-induced VM exit that 

occurs during user-interrupt delivery will set bit 16 of the exit qualification to 1, indicating that the VM exit was 
“asynchronous to instruction execution.”

• Any VM exit that occurs during user-interrupt notification processing (including those due to faults) will set the 
IDT-vectoring information field to indicate that the VM exit was incident to an interrupt with the vector UINV (to 
the value 8000000xyH, where xy = UINV). If the logical processor would have entered the HLT state following 
user-interrupt notification processing (see Section 11.5.2), the VM exit saves “HLT” into the activity-state field 
of the guest-state area of the VMCS.

11.9.2.4  Access to the User-Interrupt MSRs
The MSR bitmaps do not affect a logical processor’s ability to read or write the user-interrupt MSRs as part of user-
interrupt recognition, user-interrupt delivery, user-interrupt notification identification, or user-interrupt notification 
processing. The MSR bitmaps control only operation of the RDMSR and WRMSR instructions.

11.9.2.5  Operation of SENDUIPI
As noted in Section 2.1, the operation of SENDUIPI concludes with the following step (executed under certain 
conditions):

IF local APIC is in x2APIC mode
THEN send ordinary IPI with vector tempUPID.NV

to 32-bit physical APIC ID tempUPID.NDST;
ELSE send ordinary IPI with vector tempUPID.NV

to 8-bit physical APIC ID tempUPID.NDST[15:8];
FI;

Outside of VMX non-root operation, the logical processor will send this IPI by writing to the local APIC’s interrupt-
command register (ICR). In VMX non-root operation, behavior depends on the settings of the “use TPR shadow” 
and “virtualize APIC accesses” VM-execution controls:

1. The new UIRET and SENDUIPI instructions also access memory with linear addresses. Because they are instructions, the existing 
VMX architecture fully defines the operation of any resulting VM exits.

2. SPP-induced VM exits include both SPP misses and SPP misconfigurations.
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1. If the “use TPR shadow” VM-execution control is 0, the behavior is not modified: the logical processor sends the 
specified IPI by writing to the local APIC’s ICR as specified above.

2. If the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC accesses” VM-execution control is 0, 
the logical processor virtualizes the sending of an x2APIC-mode IPI by performing the following steps:

a. Writing the 64-bit value Z to offset 300H on the virtual-APIC page (VICR), where Z[7:0] = tempUPID.NV 
(the 8-bit virtual vector), Z[63:32] = tempUPID.NDST (the 32-bit virtual APIC ID) and Z[31:8] = 000000H 
(indicating a physically addressed fixed-mode IPI).

b. Causing an APIC-write VM exit with exit qualification 300H.
APIC-write VM exits are trap-like: the value of CS:RIP saved in the guest-state area of the VMCS references
the instruction after SENDUIPI. The basic exit reason for an APIC-write VM exit is “APIC write” (56). The exit
qualification is the page offset of the write access that led to the VM exit — 300H in this case.

3. If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1, the logical processor 
virtualizes the sending of an xAPIC-mode IPI by performing the following steps:

a. Writing the 32-bit value X to offset 310H on the virtual-APIC page (VICR_HI), where X[31:24] = 
tempUPID.NDST[15:8] (the 8-bit virtual APIC ID) and X[23:0] = 000000H1.

b. Writing the 32-bit value Y to offset 300H on the virtual-APIC page (VICR_LO), where Y[7:0] = 
tempUPID.NV (the 8-bit virtual vector) and Y[31:8] = 000000H (indicating a physically addressed fixed-
mode IPI).

c. Causing an APIC-write VM exit with exit qualification 300H (see above).

11.9.3 Changes to VM Entries
This section describes how the user-interrupt architecture affects the operation of VM entries.

11.9.3.1  Checks on the Guest-State Area
If the “load UINV” VM-entry control is 1, VM entries ensure that bits 15:8 of the guest UINV field are 0. VM entry 
fails if this check fails. Such failures are treated as all VM-entry failures that occur during or after loading guest 
state.

11.9.3.2  Loading MSRs
VM entries may load MSRs from the VM-entry MSR-load area. If a VM entry loads any of the user-interrupt MSRs, 
it does so in a manner consistent with that of WRMSR (see Section 11.8.1).

11.9.3.3  Event Injection
The legacy behavior of VM entry is such that, if the VM-entry interruption-information field has a value of the form 
8000000xyH, VM entry injects an interrupt with vector V = xyH. This is done by using V to select a descriptor from 
the IDT and using that descriptor to deliver the interrupt.
If bit 25 (UINTR) is set to 1 in the CR4 field in the guest-state area of the VMCS and the “IA-32e mode guest” VM-
entry control is 1, VM entry is modified if it is injecting an interrupt. Specifically, the logical processor first performs 
a form of user-interrupt notification identification (modified as indicated from the definition in Section 11.5.1):

1. This step, acknowledging the local APIC, is omitted.

2. If UINV = V (where V is the vector of the interrupt being injected), the logical processor continues to the next 
step2. Otherwise, an interrupt with vector V is delivered normally through the IDT; the remainder of this 
algorithm does not apply and user-interrupt notification processing does not occur.

1. For xAPIC mode (which is virtualized if the “virtualize APIC accesses” VM-execution control is 1), the destination APIC ID is in byte 1 
(not byte 0) of the UPID’s 4-byte NDST field.

2. If VM entry loaded UINV from the VMCS, the checking of UINV is based on the value loaded.
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3. This step, writing zero to the EOI register in the local APIC, is omitted.
Because VM entry allows interrupt injection only when interrupts are not masked in a guest (e.g., when RFLAGS is 
being loaded with a value that sets bit 9, IF), this modified form of user-interrupt notification identification occurs 
only when virtual interrupts are not masked.
If user-interrupt notification identification completes step #2, the logical processor then performs user-interrupt 
notification processing as detailed Section 11.5.2.
A logical processor is not interruptible during this modified form of user-interrupt notification identification or 
between it and any subsequent user-interrupt notification processing.
This change in VM-entry event injection occurs as long as UINTR is set to 1 in the CR4 field in the guest-state area 
of the VMCS and the “IA-32e mode guest” VM-entry control is 1; the settings of the “external-interrupt exiting” and 
“virtual-interrupt delivery” VM-execution controls do not affect this change.

11.9.3.4  User-Interrupt Recognition After VM Entry
A VM entry results in recognition of a pending user interrupt if it completes with UIRR ≠ 0; if it completes with 
UIRR = 0, no pending user interrupt is recognized.

11.9.4 Changes to VM Exits
This section describes how the user-interrupt architecture affects the operation of VM exits.

11.9.4.1  Recording VM-Exit Information
As noted in Section 11.9.2.3, an APIC-access VM exit, an EPT violation, or a page-modification log-full VM exit that 
occurs during user-interrupt delivery sets bit 16 of the exit qualification to 1, indicating that the VM exit was “asyn-
chronous to instruction execution.”
A VM exit that occurs during user-interrupt notification processing sets the IDT-vectoring information field to indi-
cate that the VM exit was incident to an interrupt with the vector UINV (to the value 8000000xyH, where xy = 
UINV).

11.9.4.2  Saving Guest State
If a processor supports user interrupts, every VM exit saves UINV into the guest UINV field in the VMCS (bits 15:8 
of the field are cleared).

11.9.4.3  Saving MSRs
VM exits may save MSRs into the VM-exit MSR-store area. If a VM exit saves any of the user-interrupt MSRs, it does 
so in a manner consistent with that of RDMSR (see Section 11.8.1).

11.9.4.4  Loading Host State
If the “clear UINV” VM-exit control is 1, VM exit clears UINV.

11.9.4.5  Loading MSRs
VM exits may load MSRs from the VM-exit MSR-load area. If a VM exit loads any of the user-interrupt MSRs, it does 
so in a manner consistent with that of WRMSR (see Section 11.8.1).

11.9.4.6  User-Interrupt Recognition After VM Exit
A VM exit results in recognition of a pending user interrupt if it completes with UIRR ≠ 0; if it completes with 
UIRR = 0, no pending user interrupt is recognized.
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11.9.5 Changes to VMX Capability Reporting
Section 11.9.1 identified a new VM-exit control “clear UINV” at bit position 27. Processors supporting the 1-settings 
of this control enumerate that support by setting bit 59 in each of the IA32_VMX_EXIT_CTLS MSR (index 483H) 
and the IA32_VMX_TRUE_EXIT_CTLS MSR (index 48FH).
Section 11.9.1 identified a new VM-entry control “load UINV” at bit position 19. Processors supporting the 1-
settings of this control enumerate that support by setting bit 51 in each of the IA32_VMX_ENTRY_CTLS MSR (index 
484H) and the IA32_VMX_TRUE_ENTRY_CTLS MSR (index 490H).
Section 11.2 defined CR4[25] as CR4.UINTR, a new bit that can be set in CR4. Processors supporting the 1-settings 
of that bit in VMX operation enumerate that support by setting bit 25 in the IA32_VMX_CR4_FIXED1 MSR (index 
489H).
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CHAPTER 12
PERFORMANCE MONITORING UPDATES

This chapter covers performance monitoring updates for processors based on Alder Lake Client microarchitecture 
and processors based on Sapphire Rapids Server microarchitecture.

12.1 PERFORMANCE METRICS
For Alder Lake Client and Sapphire Rapids Server microarchitectures, the core PMU supports the built-in metrics 
that were introduced in the Ice Lake microarchitecture PMU. It also complies with the PERF_METRICS MSR and its 
software interface as described in section 18.3.9, “Next Generation Intel® Core™ Processor Performance Moni-
toring Facility”, in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

This core PMU extends the PERF_METRICS MSR to feature TMA method level 2 metrics, as shown in Figure 12-1.

The lower half of the register is the TMA level 1 metrics (legacy). The upper half is also divided into four 8-bit fields, 
each of which is an integer fraction of 255. Additionally, each of the new level 2 metrics in the upper half is a subset 
of the corresponding level 1 metric in the lower half (that is, its parent node per the TMA hierarchy). This enables 
software to deduce the other four level 2 metrics by subtracting corresponding metrics as shown in Figure 12-2.

The PERF_METRICS MSR and fixed counter 3 of the core PMU for Alder Lake Client and Sapphire Rapids Server 
microarchitectures feature 12 metrics in total that cover all level 1 and level 2 nodes of the TMA hierarchy.

Figure 12-1.  PERF_METRICS MSR Definition for Alder Lake Client and Sapphire Rapids Server Microarchitectures

Figure 12-2.  Deducing Implied Level 2 Metrics in the Core PMU for 
Alder Lake Client and Sapphire Rapids Server Microarchitectures

31 23 15 7 0

Backend Bound Frontend Bound Bad Speculation Retiring

Memory Bound Fetch Latency Branch Mispredicts Heavy Operations

63 55 47 39 32

Light_Operations = Retiring - Heavy_Operations
Machine_Clears = Bad_Speculation - Branch_Mispredicts
Fetch_Bandwidth = Frontend_Bound - Fetch_Latency
Core_Bound = Backend_Bound - Memory_Bound
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12.2 PROCESSOR EVENT BASED SAMPLING (PEBS) FACILITY

12.2.1 Instruction-Accurate PDIR (PDIR++)
Instruction-accurate PDIR (PDIR++) is an enhancement to the Precise Distribution of Instructions Retired (PDIR) 
facility that was introduced in Sandy Bridge microarchitecture as described in Section 18.3.4.4.4 in the Intel® 64 
and IA-32 Architectures Software Developer’s Manual, Volume 3B.
With PDIR++, PEBS is taken on the next instruction after the one that caused the overflow. If the instruction is 
macro-fused, PEBS is taken once the macro-fusion pair of instructions retire. This facility is available only on Fixed 
Counter 0.
For this facility to work, the overflow counter must be initialized with a reload-value < -127, which implies a Sample 
After Value > 127. 

NOTE
Macro-fusion may forbid a particular instruction from obtaining PEBS samples when using a fixed reload-value on a 
tight endless loop. Therefore, it is recommended to “normalize” samples for each basic-block of instructions. This 
implies distributing the total sample counts evenly over all instructions within a basic block.

12.2.2 Precise Distribution (PDist)
On previous microarchitecture, a multi-cycle skid may be noticed on precise events using PEBS. Alder Lake Client 
and Sapphire Rapids Server microarchitectures introduce a new Precise Distribution (PDist) facility that eliminates 
the skid when a precise event is programmed on general (programmable) counter 0. It follows a mechanism similar 
to PDIR++, described in Section 12.2.1, where PEBS is pended on the exact instruction that causes the overflow. 

There is no “+1 legacy PEBS behavior” after overflow as the case is with traditional PEBS (which is still supported 
by general-purpose performance monitoring counters 1-7). 

The following events do not support the PDist behavior:
• INST_RETIRED.*
• MEM_TRANS_RETIRED.LOAD_LATENCY_*

For this facility to work, the overflow counter must be initialized with a reload-value < -127, which implies a Sample 
After Value of > 127. 

NOTE
Precise events on PC0 may tune the reload value differently than general-purpose performance monitoring 
counters 1-7 when attempting to improve accuracy via prime reload values.

12.2.3 Load Latency
Data Source: The encoded value indicates the origin of the data obtained by the load instruction. The encoding is 
shown in Table 12-1. In the descriptions, local memory refers to system memory physically attached to a processor 
package, and remote memory refers to system memory or cache physically attached to another processor package 
(in a server product).

Table 12-1.  Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures) 

Encoding Description

00H Unknown Data Source (the processor could not retrieve the origin of this request).

01H L1 HIT. This request was satisfied by the L1 data cache. (Minimal latency core cache hit.)

02H FB HIT. This request was merged into an outstanding cache miss to same cache-line address.

03H L2 HIT. This request was satisfied by the L2 cache.
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12.2.4 Store Latency
Store latency support is available on processors based on Alder Lake Client and Sapphire Rapids Server microar-
chitectures. Store latency is a PEBS extension that provides a means to profile store memory accesses in the 
system. It complements the load latency extension.
Store latency leverages the PEBS facility where it can provide additional information about sampled stores. The 
additional information includes the data address, memory auxiliary info (e.g., Data Source, STLB miss) and the 
latency of the store access. Normal stores (those preceded with a read-for-ownership) as well as streaming stores 
are supported by store latency.
Memory store operations typically do not limit performance since they update the memory with no operation that 
directly depends on them. Thus, data out of this facility should be carefully used once stores are suspected as a 
performance limiter; for example, once the TMA node of Backend_Bound.Memory_Bound.Store_Bound is 
flagged.1

To enable the store latency facility, software must complete the following steps: 
• Complete the PEBS configuration steps.
• Set the Memory Info bit in the PEBS_DATA_CFG MSR.
• Program the MEM_TRANS_RETIRED.STORE_SAMPLE event on programmable counter 0 

(IA32_PerfEvtSel0[15:0] = 2CDH).
• Set IA32_PEBS_ENABLE[0].

The store latency information is written into a PEBS record as shown in Table 12-2. 
The store latency relies on the PEBS facility, so the PEBS configuration must be completed first. Unlike load latency, 
there is no option to filter on subset of stores that exceed a certain threshold.

04H L3 HIT. This request was satisfied by the L3 cache with no coherency actions performed (snooping).

05H XCORE MISS. This request was satisfied by the L3 cache but involved a coherency check in some sibling core(s).

06H XCORE HIT. This request was satisfied by the L3 cache but involved a coherency check that hit a non-modified copy in 
a sibling core.

07H XCORE FWD. This request was satisfied by a sibling core where either a modified (cross-core HITM) or a non-modified 
(cross-core FWD) cache-line copy was found.

08H Local Far Memory. This request has missed the L3 cache and was serviced by local far memory.

09H Remote Far Memory. This request has missed the L3 cache and was serviced by remote far memory.

0AH Local Near Memory. This request has missed the L3 cache and was serviced by local near memory.

0BH Remote Near Memory. This request has missed the L3 cache and was serviced by remote near memory.

0CH Remote FWD. This request has missed the L3 cache and a non-modified cache-line copy was forwarded from a 
remote cache.

0DH Remote HITM. This request has missed the L3 cache and a modified cache-line was forwarded from a remote cache.

0EH I/O. Request of input/output operation.

0FH UC. The request was to uncacheable memory.

1. For more details about the method, refer to Section B.1, “Top-Down Analysis Method” of the Intel® 64 and IA-32 Architectures Opti-
mization Reference Manual.

Table 12-1.  Data Source Encoding for Memory Accesses (Ice Lake and Later Microarchitectures)  (Contd.)

Encoding Description
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12.3 ADAPTIVE PEBS

12.3.1 Memory Access Info
Table 12-2 describes the updated Memory Access Info group. Each field is 64-bits with the offset specified in bytes 
relative to the start of the Memory Access Info group within the Adaptive PEBS record. See Section 18.9.2.2.2, 
“Memory Access Info”, in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B as a 
reference. New fields in Alder Lake Client and Sapphire Rapids Server microarchitectures are shaded gray.

To determine which fields are supported for certain performance monitoring events, consult the Memory Info attri-
bute in the event list at 01.org.

NOTE
There may be additional block reasons, even if DataBlk and AddressBlk are both clear, e.g., non-optimal instruction 
latency.

Table 12-2.  Memory Access Info Group

Field Name Sub-field Name Bits Description

Access Address 
(offset 0x0)

DLA [63:0] This field reports the data linear address (DLA) of the memory access in 
canonical form. 

A zero value indicates the processor could not retrieve the address of the 
particular access.

Access Info 

(offset 0x8)

Data Src [3:0] An encoded value indicating the memory hierarchy source which satisfied the 
access. These encodings are detailed in Table 12-1.

A zero value indicates the processor could not retrieve the data source of the 
particular access.

STLB-miss [4] A value of 1 indicates the access has missed the Second-level TLB (STLB).

IsLock [5] A value of 1 indicates the access was part of a locked (atomic) memory 
transaction.

Data Blk [6] A value of 1 indicates the load was blocked since its data could not be forwarded 
from a preceding store.

Address Blk [7] A value of 1 indicates the load was blocked due to potential address conflict with 
a preceding store.

Access Latency 

(offset 0x10)

Instruction 
Latency

[15:0] Measured instruction latency in core cycles. 

For loads, the latency starts by the dispatch of the load operation for execution 
and lasts until completion of the instruction it belongs to. 

This field includes the entire latency including time for data-dependency 
resolution or TLB lookups.

Cache Latency [47:32] Measured cache access latency in core cycles. 

For loads, the latency starts by the actual cache access until the data is returned 
by the memory subsystem. 

For stores, the latency starts when the demand write accesses the L1 data-
cache and lasts until the cacheline write is completed in the memory subsystem.

This field does not include non-data-cache latency such as memory ordering 
checks or TLB lookups.

TSX

(offset 0x18)

HLE Info
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12.4 PERFORMANCE MONITORING EVENT LIST

12.4.1 Counter Restrictions Simplification
Alder Lake Client and Sapphire Rapids Server microarchitectures allow identification of performance monitoring 
events with counter restrictions based on event encodings. The general rule is: Event Codes < 0x90 are restricted 
to counters 0-3. Event Codes ≥ 0x90 are likely to have no restrictions. Table 12-3 lists the exceptions to this rule.

Table 12-3.  Special Performance Monitoring Events with Counter Restrictions

Event Encoding1

NOTES:

1. Linux perf rUUEE syntax, where UU is the Unit Mask field and EE is the Event Select (also known as Event
Code) field in the IA32_PERFEVTSELx MSRs.

Event Name Counter Restriction

xx3C CPU_CLK_UNHALTED.*
0-7 (No restriction for all architectural events.)

xx2E LONGEST_LAT_CACHE.*

xxDx MEM_*_RETIRED.* 0-3

01A3, 02A3, 08A3 Some CYCLE_ACTIVITY sub-events 0-3

02CD MEM_TRANS_RETIRED.STORE_SAMPLE 0

04A4 TOPDOWN.BAD_SPEC_SLOTS
0

08A4 TOPDOWN.BR_MISPREDICT_SLOTS

xxCE AMX_OPS_RETIRED 0
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CHAPTER 13
ENHANCED HARDWARE FEEDBACK INTERFACE (EHFI)

Intel processors that enumerate CPUID.06H.0H:EAX.HW_FEEDBACK[bit 19] as 1 support the hardware feedback 
interface (HFI). The hardware feedback interface is described in Section 14.6 “Hardware Feedback Interface” of the 
Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3B.
Intel processors that enumerate CPUID.06H.0H:EAX[bit 23] as 1 support the enhanced hardware feedback inter-
face (EHFI). Hardware provides guidance to the Operating System (OS) scheduler to perform optimal workload 
scheduling through a memory resident table and software thread specific index (Class ID) that points into that 
table and selects which data to use for that software thread. The table structure is shown below. Its size and 
various pointers into it are computed immediately following Table 13-1.
The table contains two types of guiding information: performance related guidance and energy efficiency related 
guidance. It is up to the OS to choose which of the two to refer to when scheduling software threads on logical 
processors. The table is dynamically updated by the hardware. A notification interrupt is delivered to the OS imme-
diately after the table update.

Table 13-1.  EHFI with Thread-Specific Hardware Feedback Structure

Byte Offset Size (Bytes) Description

0 8 Time-stamp of when the table was last updated by hardware. This is a time-stamp in 
crystal clock units. Initialized by OS to 0.

8 1 Class 0 Performance Capability Changed
If set to a non-zero value, indicates the performance capability field for one or more logical 
processors was updated in the table. Initialized by OS to 0.

8 + 1 1 Class 0 Energy Efficiency Capability Changed
If set to a non-zero value, indicates the energy efficiency capability field for one or more 
logical processors was updated in the table. Initialized by OS to 0.

8 + 2 CP - 2 Class 0 Change Indication for Future Capabilities
Unavailable if additional capabilities are not enumerated.

8 + CP 1 Class 1 Performance Capability Changed
If set to a non-zero value, indicates the performance capability field for one or more logical 
processors was updated in the table. Initialized by OS to 0.

8 + CP + 1 1 Class 1 Energy Efficiency Capability Changed
If set to a non-zero value, indicates the energy efficiency capability field for one or more 
logical processors was updated in the table. Initialized by OS to 0.

8 + CP + 2 CP - 2 Class 1 Change Indication for Future Capabilities
Unavailable if additional capabilities are not enumerated.

8 + 2*CP 1 Class 2 Performance Capability Changed
If set to a non-zero value, indicates the performance capability field for one or more logical 
processors was updated in the table. Initialized by OS to 0.

8 + 2*CP + 1 1 Class 2 Energy Efficiency Capability Changed
If set to a non-zero value, indicates the energy efficiency capability field for one or more 
logical processors was updated in the table. Initialized by OS to 0.

8 + 2*CP + 2 CP - 2 Class 2 Change Indication for Future Capabilities
Unavailable if additional capabilities are not enumerated.

8 + 3*CP 1 Class 3 Performance Capability Changed
If set to a non-zero value, indicates the performance capability field for one or more logical 
processors was updated in the table. Initialized by OS to 0.
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N is the number of Logical Processors on the socket.
See “CPUID—CPU Identification” in Chapter 1 for the number of classes (CL) and the number of supported capabil-
ities (CP). Both upper case CL and CP denote total number of classes and capabilities defined for the processor. 
Lower case cl and cp denote one instance of a class or capability. cl and cp are counted starting zero.
R8 is the number of bytes necessary to round up the Capability Change Indication array to whole multiple of 8 
bytes.
Table size: 8 + (N+1)* (CP * CL + R8)
Byte offset of Capabilitycp of Classcl change indication: 8 + CP * cl + cp
Byte offset of LPi entry: 8 + (i+1) * (CP * CL + R8)
Byte offset of capabilitycp of classcl of LPi: 8 + (i+1) * (CP * CL + R8) + CP * cl + cp

13.1 ENHANCED HARDWARE FEEDBACK INTERFACE INTENDED USAGE MODEL
When the OS Scheduler needs to decide which one of multiple free logical processors to assign to a software 
thread that is ready to execute, it can choose one of the following options:

1. The free logical processor with the highest performance value of that software thread class, if the system is 
scheduling for performance.

2. The free logical processor with the highest energy efficiency value of that software thread class, if the system 
is scheduling for energy efficiency.

When the OS Scheduler needs to decide which of two logical processors (i,j) to assign to which of two software 
threads whose Class IDs are k1 and k2, it can compute the two performance ratios: Perfijkx = Perfikx / Perfjkx, or 
two energy efficiency ratios: Energyijkx = Energyikx / Energyjkx between the two logical processors for each of the 
two classes, depending on whether the OS is scheduling for performance or for energy efficiency.
For example, assume that the system is scheduling for performance and that Perfijk1 > Perfijk2. The OS Scheduler 
will assign the software thread whose Class ID is k1 to logical processor i, and the one whose Class ID is k2 to 
logical processor j.

When the two software threads in question belong to the same Class ID, the OS Scheduler can schedule to higher 
performance logical processors within that class when scheduling for performance and to higher energy efficiency 
logical processors within that class when scheduling for energy efficiency.

8 + 3*CP + 1 1 Class 3 Energy Efficiency Capability Changed
If set to a non-zero value, indicates the energy efficiency capability field for one or more 
logical processors was updated in the table. Initialized by OS to 0.

8 + 3*CP + 2 CP - 2 Class 3 Change Indication for Future Capabilities
Unavailable if additional capabilities are not enumerated.

8 + 4*CP CP*(CL-4) + R8 Change Indication for Future Capabilities
Size is rounded up by R8 to the nearest whole multiple of 8 bytes.

8 + CP*CL + R8 CL*CP +R8 LP0 capability values (field size is rounded up by R8 to the nearest whole multiple of 8 
bytes).

8 + 2*(CP*CL + R8) CL*CP +R8 LP1 capability values (field size is rounded up by R8 to the nearest whole multiple of 8 
bytes).

... ... ...

8 + (i+1)*(CP*CL + R8) CL*CP +R8 LPi capability values (field size is rounded up by R8 to the nearest whole multiple of 8 
bytes).

8 + N*(CP*CL + R8) CL*CP +R8 LPN-1 capability values (field size is rounded up by R8 to the nearest whole multiple of 8 
bytes).

Table 13-1.  EHFI with Thread-Specific Hardware Feedback Structure

Byte Offset Size (Bytes) Description
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For the HFI, where all software threads effectively belong to the same class (class 0 in the EHFI), the OS 
Scheduler can use similar logic and schedule to higher performance logical processors when scheduling for 
performance, and to higher energy efficiency logical processors when scheduling for energy efficiency. 
The core ordering of the performance and energy columns may be different between HFI with thread-specific hard-
ware feedback supported classes.

13.2 HARDWARE FEEDBACK INTERFACE POINTER
The physical address of the HFI/EHFI structure is programmed by the OS into a package scope MSR named 
IA32_HW_FEEDBACK_PTR. The MSR is structured as follows:
• Bit 0 – Valid. When set to 1, indicates a valid pointer is programmed into the ADDR field of the MSR.
• Bits 11:1 – Reserved. 
• Bits MAXPHYADDR-1:12 – ADDR. This is the physical address of the page frame of the first page of this 

structure.
• Bits 63:MAXPHYADDR1 – Reserved. 
The address of this MSR is 17D0H. This MSR is cleared on processor reset to its default value of 0. It retains its 
value upon INIT.
CPUID.06H.0H:EDX[11:8] enumerates the size of memory that must be allocated by the OS for this structure. 

13.3 HARDWARE FEEDBACK INTERFACE CONFIGURATION
The operating system enables HFI/EHFI using a package scope MSR named IA32_HW_FEEDBACK_CONFIG 
(address 17D1H). This MSR is cleared on processor reset to its default value of 0. It retains its value upon INIT.
The MSR is structured as follows:
• Bit 0 – Enable. When set to 1, enables HFI.
• Bit 1 – Enable thread-specific hardware feedback (or multi-class support). Both bits 0 and 1 must be set for 

EHFI with thread-specific hardware feedback to be enabled. The extra class columns in the EHFI table are 
updated by hardware immediately following setting those two bits, as well as during run time as necessary.

• Bits 63:2 – Reserved. 
Before enabling HFI, the OS must set a valid HFI structure using the IA32_HW_FEEDBACK_PTR MSR.
When the OS sets bit 0 only, the hardware populates class 0 capabilities only in the HFI structure. When bit 1 is set 
after or together with bit 0, the EHFI multi-class structure is populated. 
When either the HFI structure or the EHFI structure are ready to use by the OS, the hardware sets IA32_PACK-
AGE_THERM_STATUS[bit 26]. An interrupt is generated by the hardware if IA32_PACKAGE_THERM_INTER-
RUPT[bit 25] is set. 
When the OS clears bit 1 but leaves bit 0 set, EHFI is disabled, but HFI is kept operational. IA32_PACKAGE_THER-
M_STATUS[bit 26] is NOT set in this case.
Clearing bit 0 disables both HFI and EHFI, independent of the bit 1 state. Setting bit 1 to '1' while keeping bit 0 at 
'0' is an invalid combination which is quietly ignored.
When the OS clears bit 0, hardware sets the IA32_PACKAGE_THERM_STATUS[bit 26] to 1 to acknowledge 
disabling of the interface. The OS should wait for this bit to be set to 1 to reclaim the memory of the EHFI structure, 
as by setting IA32_PACKAGE_THERM_STATUS[bit 26] hardware guarantees not to write into the EHFI structure 
anymore. 
The OS may clear bit 0 only after receiving an indication from the hardware that the structure initialization is 
complete via the same IA32_PACKAGE_THERM_STATUS[bit 26], following enabling of HFI/EHFI, thus avoiding a 
race condition between OS and hardware. 

1. MAXPHYADDR is reported in CPUID.80000008H:EAX[7:0].
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Bit 1 is valid only if CPUID[6].EAX[bit 23] is set. When setting this bit while support is not enumerated, the hard-
ware generates #GP.
Table 13-2 summarizes the control options described above.
See Section 13.7 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the hard-
ware.

13.4 HARDWARE FEEDBACK INTERFACE NOTIFICATIONS
The IA32_PACKAGE_THERM_STATUS MSR is extended with a new bit, hardware feedback interface structure 
change status (bit 26, R/WC0), to indicate that the hardware has updated the HFI/EHFI structure. This is a sticky 
bit and once set, indicates that the OS should read the structure to determine the change and adjust its scheduling 
decisions. Once set, the hardware will not generate any further updates to this structure until the OS clears this bit 
by writing 0.
The OS can enable interrupt-based notifications when the structure is updated by hardware through a new enable 
bit, hardware feedback interrupt enable (bit 25, R/W), in the IA32_PACKAGE_THERM_INTERRUPT MSR. When this 
bit is set to 1, it enables the generation of an interrupt when the HFI/EHFI structure is updated by hardware. When 

Table 13-2.   IA32_HW_FEEDBACK_CONFIG Control Options

Pre-Bit 1 Pre-Bit 0 Post-Bit 1 Post-Bit 0 Action IA32_PACKAGE_THERM_STATUS [bit 26] and 
Interrupt

0 0 0 0 Reset value. Both Hardware Feedback Interface and 
Enhanced Hardware Feedback Interface are 
disabled, no status bit set, no interrupt is 
generated.

0 0 0 1 Enable HFI structure. Set the status bit and generate interrupt if 
enabled.

0 0 1 0 Invalid option; quietly 
ignored by the hardware.

No action (no update in the table).

0 0 1 1 Enable HFI and EHFI. Set the status bit and generate interrupt if 
enabled.

0 1 0 0 Disable HFI support. Set the status bit and generate interrupt if 
enabled.

0 1 1 0 Disable HFI and EHFI. Set the status bit and generate interrupt if 
enabled.

0 1 1 1 Enable EHFI. Set the status bit and generate interrupt if 
enabled.

1 0 0 0 No action; keeps HFI and 
EHFI disabled.

No action (no update in the table).

1 0 0 1 Enable HFI. Set the status bit and generate interrupt if 
enabled.

1 0 1 1 Enable HFI and EHFI. Set the status bit and generate interrupt if 
enabled.

1 1 0 0 Disable HFI and EHFI. Set the status bit and generate interrupt if 
enabled.

1 1 0 1 Disable EHFI; keep HFI 
enabled.

No action (no update in the table).

1 1 1 0 Disable HFI and EHFI. Set the status bit and generate interrupt if 
enabled.
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the enable bit transitions from 0 to 1, hardware will generate an initial notification, with the IA32_PACKAGE_THER-
M_STATUS bit 26 set to 1, to indicate that the OS should read the current HFI/EHFI structure.

13.5 HARDWARE FEEDBACK INTERFACE STRUCTURE DYNAMIC UPDATE
The HFI/EHFI structure can be updated dynamically during run time. Changes to the structure may occur to one or 
more of its cells. Such changes may occur for one or more logical processors. The hardware sets a non zero value 
in the “capability change” field of the HFI/EHFI structure as an indication for the OS to read that capability for all 
logical processors. A thermal interrupt is delivered to indicate to the OS that the structure has just changed. 
Section 13.4 contains more details on this notification mechanism. The hardware clears all “capability change” 
fields after the OS resets IA32_PACKAGE_THERM_STATUS[bit 26].
Zeroing a performance or energy efficiency cell hints to the OS that it is beneficial not to schedule software threads 
of that class on the associated logical processor for performance or energy efficiency reasons, respectively. If SMT 
is supported, it may be the case that the hardware zeroes one of the core's logical processors only. Zeroing the 
performance and energy efficiency cells of all classes for a logical processor implies that the hardware provides a 
hint to the OS to completely avoid scheduling work on that logical processor. 
A few example reasons for runtime changes in the HGS/HGS+ Table:
• Over clocking run time update that changes the capability values.
• Change in run time physical constraints.
• Run time performance or energy efficiency optimization.
• Change in core frequency, voltage, or power budget.

13.6 LOGICAL PROCESSOR SCOPE ENHANCED HARDWARE FEEDBACK 
INTERFACE CONFIGURATION

The operating system enables EHFI at the logical processor scope using a logical processor scope MSR named 
IA32_HW_FEEDBACK_THREAD_CONFIG (address 17D4H).
The MSR is read/write and is structured as follows:
• Bit 0 – Enables EHFI. When set to 1, logical processor scope enhanced hardware feedback is enabled. Default 

is 0 (disabled).
• Bits 63:1 – Reserved. 

Bit 0 of the logical processor scope configuration MSR can be cleared or set regardless of the state of the 
HFI/EHFI package configuration MSR state. Even when bit 0 of all logical processor configuration MSRs is clear, 
the processor can still update the EHFI structure if it is still enabled in the IA32_HW_FEEDBACK_CONFIG package 
scope MSR. When the operating system clears IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0], hardware clears 
the history accumulated on that logical processor which otherwise drives assigning the Class ID to the software 
thread that executes on that logical processor. As long as IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] is set, 
the Class ID is available for the operating system to read, independent of the state of the package scope 
IA32_HW_FEEDBACK_CONFIG[1:0] bits.

See Section 13.7 for details on scenarios where IA32_HW_FEEDBACK_CONFIG bits are implicitly reset by the 
hardware.

13.7 IMPLICIT RESET OF PACKAGE AND LOGICAL PROCESSOR SCOPE 
CONFIGURATION MSRS

HFI/EHFI enable bits are reset by hardware in the following scenarios:

1. When GetSec[SENTER] is issued:
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a. The processor implicitly resets the HFI/EHFI enable bits in the IA32_HW_FEEDBACK_CONFIG MSR on all 
sockets (packages) in the system.

b. The processor implicitly resets the EHFI enable bit in the IA32_HW_FEEDBACK_THREAD_CONFIG MSR on 
all logical processors in the system across all sockets.

c. The processor implicitly clears the HFI/EHFI table structure pointer in the IA32_HW_FEEDBACK_PTR 
package MSR across all sockets.

2. When GetSec[ENTERACCS] is issued:

a. The processor implicitly resets the HFI/EHFI enable bits in the IA32_HW_FEEDBACK_CONFIG MSR on the 
socket where the GetSec[ENTERACCS] instruction was issued.

b. The processor implicitly resets the EHFI enable bit in the IA32_HW_FEEDBACK_THREAD_CONFIG MSR on 
all logical processors on the socket where the GetSec[ENTERACCS] instruction was issued. 

c. The processor implicitly clears the HFI/EHFI table structure pointer in the IA32_HW_FEEDBACK_PTR 
package MSR on the socket where the GetSec[ENTERACCS] instruction was issued.

3. When INIT or Wait for SIPI signals are processed by a logical processor:

a. The processor implicitly resets the EHFI enable bit in the IA32_HW_FEEDBACK_THREAD_CONFIG MSR on 
that logical processor, whether the signal was in the context of GetSec[ENTERACCS] or not. 

If the OS requires HFI/EHFI to be active after exiting the measured environment or when processing a SIPI event, 
it should re-enable HFI/EHFI.

13.8 LOGICAL PROCESSOR SCOPE ENHANCED HARDWARE FEEDBACK 
INTERFACE RUN TIME CHARACTERISTICS

The processor provides the operating system with run time feedback about the execution characteristics of the 
software thread executing on logical processors whose IA32_HW_FEEDBACK_CONFIG[bit 0] is set. 
The run time feedback is communicated via a read-only MSR named IA32_THREAD_FEEDBACK_CHAR. This is a 
logical processor scope MSR whose address is 17D2H. This MSR is structured as follows: 
• Bits 7:0 – Application Class ID, pointing into the EHFI structure described in Table 13-1.
• Bits 62:8 – Reserved.
• Bit 63 – Valid bit. When set to 1 the OS Scheduler can use the Class ID (in bits 7:0) for its scheduling decisions. 

If this bit is 0, the Class ID field should be ignored. It is recommended that the OS uses the last known Class ID 
of the software thread for its scheduling decisions. 

This MSR is valid only if CPUID.06H:EAX[bit 23] is set. 
The valid bit is cleared by the hardware in the following cases:
• The hardware does not have enough information to provide the operating system with a reliable Class ID.
• The operating system cleared the logical processor’s IA32_HW_FEEDBACK_THREAD_CONFIG[bit 0] bit.
• The HRESET instruction is executed while configured to reset the EHFI history.

13.9 ENHANCED HARDWARE FEEDBACK INTERFACE ENUMERATION
See “CPUID—CPU Identification” in Chapter 1 for enumeration of EHFI. 

13.10 LOGICAL PROCESSOR SCOPE HISTORY
The operating system can reset the EHFI related history accumulated on the current logical processor it is 
executing on by issuing the HRESET instruction. See “CPUID—CPU Identification” in Chapter 1 for enumeration of 
the HRESET instruction and Chapter 2, “HRESET — History Reset” for additional instruction details.
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13.10.1 Enabling Enhanced Hardware Feedback Interface History Reset
The IA32_HRESET_ENABLE MSR is a read/write MSR and is structured as follows:
• Bit 0 – Enable reset of the EHFI history.
• Bits 31:1 – Reserved for other capabilities that can be reset by the HRESET instruction.
• Bits 63:32 – Reserved.
The operating system should set IA32_HRESET_ENABLE[bit 0] to enable EHFI history reset via the HRESET 
instruction. 

13.10.2 Implicit Enhanced Hardware Feedback Interface History Reset
The EHFI history is implicitly reset in the following scenarios:

1. When the processor enters or exits SMM mode and IA32_DEBUGCTL MSR.FREEZE_WHILE_SMM (bit 14) is set, 
the EHFI history is implicitly reset by the processor.

2. When GetSec[SENTER] is issued, the processor resets the EHFI history on all logical processors in the system, 
including logical processors on other sockets (other than the one GetSec(SENTER) is executed).

3. When GetSec[ENTERACCS] is issued, the processor resets the EHFI history on the logical processor it is 
executed on.

4. When INIT or Wait for SIPI signals are processed by a logical processor, the EHFI history is reset whether the 
signal was a result of GetSec[ENTERACCS] or not.

If the operating system requires HFI/EHFI to be active after exiting the measured environment or when processing 
a SIPI event, it should re-enable HFI/EHFI.

13.11 IA32_DEBUGCTL MSR UPDATE
FREEZE_WHILE_SMM (bit 14): If this bit is set, upon the delivery of an SMI, the processor will clear all the enable 
bits of IA32_PERF_GLOBAL_CTRL, save a copy of the content of IA32_DEBUGCTL and disable LBR, BTF, TR, and 
BTS fields of IA32_DEBUGCTL before transferring control to the SMI handler. If the thread-specific EHFI support 
was enabled before transferring control to the SMI handler, then the processor will also reset EHFI history (see 
Section 13.10 for more details about EHFI enable, reset and history reset operations).
Subsequently, the enable bits of IA32_PERF_GLOBAL_CTRL will be set to 1 and the saved copy of IA32_DEBUGCTL 
prior to SMI delivery will be restored, after the SMI handler issues RSM to complete its service. If the thread-
specific EHFI support is enabled when RSM is executed, then the processor resets EHFI history. 
Note that system software must check if the processor supports the IA32_DEBUGCTL.FREEZE_WHILE_SMM 
control bit. IA32_DEBUGCTL.FREEZE_WHILE_SMM is supported if IA32_PERF_CAPABILI-
TIES.FREEZE_WHILE_SMM[Bit 12] is reporting 1.
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CHAPTER 14
LINEAR ADDRESS MASKING (LAM)

This chapter describes a new feature called linear-address masking (LAM). LAM modifies the checking that is 
applied to 64-bit linear addresses, allowing software to use of the untranslated address bits for metadata.
In 64-bit mode, linear address have 64 bits and are translated either with 4-level paging, which translates the low 
48 bits of each linear address, or with 5-level paging, which translates 57 bits. The upper linear-address bits are 
reserved through the concept of canonicality. A linear address is 48-bit canonical if bits 63:47 of the address are 
identical; it is 57-bit canonical if bits 63:56 are identical. (Clearly, any linear address that is 48-bit canonical is also 
57-bit canonical.) When 4-level paging is active, the processor requires all linear addresses used to access memory 
to be 48-bit canonical; similarly, 5-level paging ensures that all linear addresses are 57-bit canonical.
Software usages that associate metadata with a pointer might benefit from being able to place metadata in the 
upper (untranslated) bits of the pointer itself. However, the canonicality enforcement mentioned earlier implies 
that software would have to mask the metadata bits in a pointer (making it canonical) before using it as a linear 
address to access memory. LAM allows software to use pointers with metadata without having to mask the meta-
data bits. With LAM enabled, the processor masks the metadata bits in a pointer before using it as a linear address 
to access memory.
LAM is supported only in 64-bit mode and applies only addresses used for data accesses. LAM doe not apply to 
addresses used for instruction fetches or to those that specify the targets of jump and call instructions.

14.1 ENUMERATION, ENABLING, AND CONFIGURATION
LAM support by the processor is enumerated by the CPUID feature flag CPUID.(EAX=07H, ECX=01H):EAX.LAM[bit 
26]. Enabling and configuration of LAM is controlled by the following new bits in control registers: CR3[61] 
(LAM_U48), CR3[62] (LAM_U57), and CR4[28] (LAM_SUP). The use of these control bit is explained below.
LAM supports configurations that differ regarding which pointer bits are masked and can be used for metadata. 
With LAM48, pointer bits in positions 62:48 are masked (resulting in a LAM width of 15); with LAM57, pointer 
bits in positions 62:57 are masked (a LAM width of 6). The LAM width may be configured differently for user and 
supervisor pointers. LAM identifies pointer as a user pointer if bit 63 of the pointer is 0 and as a supervisor pointer 
if bit 63 of the pointer is 1.
CR3.LAM_U48 and CR3.LAM_U57 enable and configure LAM for user pointers:
• If CR3.LAM_U48 = CR3.LAM_U57 = 0, LAM is not enabled for user pointers.
• If CR3.LAM_U48 = 1 and CR3.LAM_U57 = 0, LAM48 is enabled for user pointers (a LAM width of 15).
• If CR3.LAM_U57 = 1, LAM57 applies to user pointers (a LAM width of 6; CR3.LAM_U48 is ignored).
CR4.LAM_SUP enables and configures LAM for supervisor pointers:
• If CR3.LAM_SUP = 0, LAM is not enabled for supervisor pointers.
• If CR3.LAM_SUP = 1, LAM is enabled for supervisor pointers with a width determined by the paging mode:

— If 4-level paging is enabled, LAM48 is enabled for supervisor pointers (a LAM width of 15).

— If 5-level paging is enabled, LAM47 is enabled for supervisor pointers (a LAM width of 6).
Note that the LAM identification of a pointer as user or supervisor is based solely on the value of pointer bit 63 and 
does not, for the purposes of LAM, depend on the CPL.

14.2 TREATMENT OF DATA ACCESSES WITH LAM ACTIVE FOR USER POINTERS
Recall that, without LAM, canonicality checks are defined so that 4-level paging requires bits 63:47 of each pointer 
to be identical, while 5-level paging requires bits 63:56 to be identical. LAM allows some of these bits to be used as 
metadata by modifying canonicality checking.
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When LAM48 is enabled for user pointers (see Section 14.1), the processor allows bits 62:48 of a user pointer to be 
used as metadata. Regardless of the paging mode, the processor performs a modified canonicality check that 
enforces that bit 47 of the pointer matches bit 63. As illustrated in Figure 14-1, bits 62:48 are not checked and are 
thus available for software metadata. After this modified canonicality check is performed, bits 62:48 are masked by 
sign-extending the value of bit 47 (0), and the resulting (48-bit canonical) address is then passed on for translation 
by paging.
(Note also that, without LAM, canonicality checking with 5-level paging does not apply to bit 47 of a user pointer; 
when LAM48 is enabled for user pointers, bit 47 of a user pointer must be 0. Note also that linear-address 
bits 56:47 are translated by 5-level paging. With LAM_U48, these bits are always 0 in any linear address derived 
from a user pointer: bits 56:48 of the pointer contained metadata, while bit 47 is required to be 0.)

When LAM57 is enabled for user pointers, the processor allows bits 62:57 of a user pointer to be used as metadata. 
With 5-level paging, the processor performs a modified canonicality check that enforces only that bit 56 of the 
pointer matches bit 63. As illustrated in Figure 14-2, bits 62:57 are not checked and are thus available for software 
metadata. After this modified canonicality check is performed, bits 62:57 are masked by sign-extending the value 
of bit 56 (0), and the resulting (57-bit canonical) address is then passed on for translation by 5-level paging.

When LAM57 is enabled for user pointers with 4-level paging, the processor performs a modified canonicality check 
that enforces only that bits 56:47 of a user pointer match bit 63. As illustrated in Figure 14-3, bits 62:57 are not 
checked and are thus available for software metadata. After this modified canonicality check is performed, bits 
62:57 are masked by sign-extending the value of bit 56 (0), and the resulting (48-bit canonical) address is then 
passed on for translation by 4-level paging.

Figure 14-1.  Canonicality Check When LAM48 is Enabled for User Pointers

Figure 14-2.  Canonicality Check When LAM57 is Enabled for User Pointers with 5-Level Paging
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14.3 TREATMENT OF DATA ACCESSES WITH LAM ACTIVE FOR SUPERVISOR 
POINTERS

As with user pointers (Section 14.2), LAM can be configured to modify canonicality checking to allow use of meta-
data in supervisor pointers. For supervisor pointers, the number of metadata bits (the LAM width) available 
depends on the paging mode active: with 5-level paging, enabling LAM for supervisor pointers results in LAM57; 
with 4-level paging, it results in LAM48 (see Section 14.1).
When LAM57 is enabled for supervisor pointers (5-level paging), the processor performs a modified canonicality 
check that enforces only that bit 56 of a supervisor pointer matches bit 63. As illustrated in Figure 14-4, bits 62:57 
are not checked and are thus available for software metadata. After this modified canonicality check is performed, 
bits 62:57 are masked by sign-extending the value of bit 56 (1), and the resulting (57-bit canonical) address is 
then passed on for translation by 5-level paging.

When LAM48 is enabled for supervisor pointers (4-level paging), the processor performs a modified canonicality 
check that enforces only that bit 47 of a supervisor pointer matches bit 63. As illustrated in Figure 14-5, bits 62:48 
are not checked and are thus available for software metadata. After this modified canonicality check is performed, 
bits 62:48 are masked by sign-extending the value of bit 47 (1), and the resulting (48-bit canonical) address is 
then passed on for translation by 4-level paging.

Figure 14-3.  Canonicality Check When LAM57 is Enabled for User Pointers with 4-Level Paging

Figure 14-4.  Canonicality Check When LAM57 is Enabled for Supervisor Pointers with 5-Level Paging
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14.4 CANONICALITY CHECKING FOR DATA ADDRESSES WRITTEN TO CONTROL 
REGISTERS AND MSRS

Processors that support LAM continue to require the addresses written to control registers or MSRs be 57-bit 
canonical if the processor supports 5-level paging or 48-bit canonical if it supports only 4-level paging; LAM 
masking is not performed on these writes. When the contents of such registers are used as pointers to access 
memory, the processor performs canonicality checking and masking based on paging mode and LAM mode config-
uration active at the time of access.

14.5 PAGING INTERACTIONS
As explained in Section 14.2 and Section 14.3, LAM masks certain bits in a pointer by sign-extension, resulting in 
a linear address to be translated by paging.
In most cases, the address bits in the masked positions are not used by address translation. However, if 5-level 
paging and LAM_U48 are both active, bit 47 of a user pointer must be zero and is extended over bits 62:48 to form 
a linear address — even though bits 56:48 are used by 5-level paging. This implies that, when LAM_U48 is active, 
bits 56:47 are 0 in any linear address translated for a user pointer.
Page faults report the faulting linear address in CR2. Because LAM masking (by sign-extension) applies before 
paging, the faulting linear address recorded in CR2 does not contain the masked metadata. 
The INVLPG instruction is used to invalidate any translation lookaside buffer (TLB) entries for a memory address 
specified with the source operand. LAM does not apply to the specified memory address. Thus, in 64-bit mode, if 
the memory address specified is in non-canonical form then the INVLPG is the same as a NOP.
The INVPCID instruction invalidates mappings in the TLB and paging structure caches based on the processor 
context identifier (PCID). The INVPCID descriptor provides the memory address to invalidate when the descriptor 
is of type 0 (individual-address invalidation). LAM does not apply to the specified memory address, and in 64-bit 
mode if this memory address is in non-canonical form then the processor generates a #GP(0) exception.

14.6 VMX INTERACTIONS

14.6.1 Guest Linear Address
Certain VM exits save in a VMCS field the guest linear address pertaining to the VM exit. Because such a linear 
address results from masking the original pointer, the processor does not report the masked metadata in the 
VMCS. The guest linear address saved is always the result of the sign-extension described in Section 14.2 and 
Section 14.3.

Figure 14-5.  Canonicality Check When LAM48 is Enabled for Supervisor Pointers with 4-Level Paging
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14.6.2 VM-Entry Checking of Values of CR3 and CR4
VM entry checks the values of the CR3 and CR4 fields in the guest-area and host-state area of the VMCS. In partic-
ular, the bits in these fields that correspond to bits reserved in the corresponding register are checked and must be 
0.
On processors that enumerate support for LAM (Section 14.1), VM entry allows bits 62:61 to be set in either CR3 
field and allows bit 28 to be set in either CR4 field.

14.6.3 CR3-Target Values
If the “CR3-load exiting” VM-execution control is 1, execution of MOV to CR3 in VMX non-root operation causes a 
VM exit unless the value of the instruction’s source operand is equal to one of the CR3-target values specified in the 
VMCS.
Processor support for LAM does not change this behavior. The comparison of the instruction source operand to each 
of the CR3-target values considers all 64 bits, including the two new bits that determine LAM enabling for user 
pointers (see Section 14.1).

14.6.4 Hypervisor-Managed Linear Address Translation (HLAT)
Hypervisor-managed linear-address translation (HLAT) is enabled when the “enable HLAT” tertiary processor-
based VM-execution control is 1.
When HLAT is enabled for a guest, the processor translates a linear address using HLAT paging structures (instead 
of guest paging structures) if the address matches the Protected Linear Range (PLR). When LAM is active, it is the 
linear address (derived from a pointer by masking) that is checked for a PLR match.
The hierarchy of HLAT paging structures is located using a guest-physical address in the VMCS (instead of the 
guest-physical address in CR3). Nevertheless, LAM enabling and configuration for user pointers is based on the 
value of CR3[62:61] (see Section 14.1) even when the guest-physical address in CR3 is not used for translating the 
linear addresses derived from user pointers.

14.7 DEBUG AND TRACING INTERACTIONS

14.7.1 Debug Registers
Debug registers DR0-DR3 can be programmed with linear addresses that are matched against memory accesses 
for data breakpoints or instruction breakpoints. When LAM is active, it is the linear address (derived from a pointer 
by masking) that is checked for matching the contents of the debug registers.

14.7.2 Intel® Processor Trace
Intel Processor Trace supports a CR3-filtering mechanism by which generation of packets containing architectural 
states can be enabled or disabled based on the value of CR3 matching the contents of the IA32_RTIT_CR3_MATCH 
MSR. On processors that support LAM, bits 62:61 of the CR3 (see Section 14.1) must also match bits 62:61 of this 
MSR to enable tracing.

14.8 INTEL® SGX INTERACTIONS
Memory operands of ENCLS, ENCLU, and ENCLV that are data pointers follow the LAM architecture and mask suit-
ably. Code pointers continue to not mask metadata bits. ECREATE does not mask BASEADDR specified in SECS, 
and the unmasked BASEADDR must be canonical.
Two new SECS attribute bits are defined for LAM support in enclave mode: 
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• ATTRIBUTE.LAM_U48 (bit 9) - Activate LAM for user data pointers and use of bits 62:48 as masked metadata in 
enclave mode. This bit can be set if CPUID.(EAX=12H, ECX=01H):EAX[9] is 1.

• ATTRIBUTE.LAM_U57 (bit 8) - Activate LAM for user data pointers and use of bits 62:57 as masked metadata in 
enclave mode. This bit can be set if CPUID.(EAX=12H, ECX=01H):EAX[8] is 1.

ECREATE causes #GP(0) if ATTRIBUTE.LAM_U48 bit is 1 and CPUID.(EAX=12H, ECX=01H):EAX[9] is 0, or if 
ATTRIBUTE.LAM_U57 bit is 1 and CPUID.(EAX=12H, ECX=01H):EAX[8] is 0.
If SECS.ATTRIBUTES.LAM_U57 is 1, then LAM57 is enabled for user pointers during execution of an enclave 
controlled by the SECS (regardless of the value of CR3). If SECS.ATTRIBUTES.LAM_U57 is 0 and SECS.ATTRI-
BUTES.LAM_U48 is 1, then LAM48 is enabled for user pointers during execution of an enclave controlled by the 
SECS (regardless of the value of CR3).
When in enclave mode, supervisor data pointers are not subject to any masking.
The following ENCLU leaf functions check for linear addresses to be within the ELRANGE. When LAM is active, this 
check is performed on the linear addresses that result from masking metadata bits in user pointers used by the leaf 
functions.
• EACCEPT
• EACCEPTCOPY
• EGETKEY
• EMODPE
• EREPORT
The following linear address fields in the Intel SGX data structures hold linear addresses that are either loaded into 
the EPCM or are written out from the EPCM and do not contain any metadata.
• SECS.BASEADDR
• PAGEINFO.LINADDR

14.9 SYSTEM MANAGEMENT MODE (SMM) INTERACTIONS
On processors that enumerate support for LAM (Section 14.1), RSM allows restoring CR3 with a value that sets 
either or both bit 62 and bit 61 and restoring a value of CR4 with a value that sets bit 28.
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CHAPTER 15
ERROR CODES FOR PROCESSORS BASED ON SAPPHIRE RAPIDS

MICROARCHITECTURE

15.1 INTEGRATED MEMORY CONTROLLER MACHINE CHECK ERRORS
MC error codes associated with integrated memory controllers for future processors based on Sapphire Rapids 
microarchitecture are reported in the MSRs IA32_MC13_STATUS − IA32_MC20_STATUS.

The supported error codes follow the architectural MCACOD definition type 1MMMCCCC (see Chapter 15, “Machine-
Check Architecture” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B). 

Table 15-1.  Intel IMC MC Error Codes for IA32_MCi_STATUS (i= 13-20)

Type Bit No. Bit Function Bit Description

MCA error codes1 15:0 MCACOD Memory Controller error format: 0000 0000 1MMM CCCC

Model specific 
errors

31:16 Reserved except for 
the following

0001H - Address parity error.

0002H - Data parity error.

0003H - Data ECC error.

0004H - Data byte enable parity error.

0007H - Transaction ID parity error.

0008H - Corrected patrol scrub error.

0010H - Uncorrected patrol scrub error.

0020H - Corrected spare error.

0040H - Uncorrected spare error.

0080H - Corrected read error.

00A0H - Uncorrected read error.

00C0H - Uncorrected metadata.

0100H - WDB read parity error.

0106H - DDR_T_DPPP data BE error.

0107H - DDR_T_DPPP data error.

0108H - DDR link failure.

0111H - PCLS CAM error.

0112H - PCLS data error.

0200H - DDR4 command / address parity error.

0220H - HBM command / address parity error.

0221H - HBM data parity error.

0400H - RPQ0 parity (primary) error.

0800H - DDR-T bad request.

0801H - DDR Data response to an invalid entry.

0802H - DDR data response to an entry not expecting data.

0803H - DDR4 completion to an invalid entry.

0804H - DDR-T completion to an invalid entry.

0805H - DDR data/completion FIFO overflow.

0806H - DDR-T ERID correctable parity error.
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0807H - DDR-T ERID uncorrectable error.

0808H - DDR-T interrupt received while outstanding interrupt was not ACKed.

0809H - ERID FIFO overflow.

080AH - DDR-T error on FNV write credits.

080BH - DDR-T error on FNV read credits.

080CH -DDR-T scheduler error.

080DH - DDR-T FNV error event.

080EH - DDR-T FNV thermal event.

080FH - CMI packet while idle.

0810H - DDR_T_RPQ_REQ_PARITY_ERR.

0811H - DDR_T_WPQ_REQ_PARITY_ERR.

0812H - 2LM_NMFILLWR_CAM_ERR.

0813H - CMI_CREDIT_OVERSUB_ERR.

0814H - CMI_CREDIT_TOTAL_ERR.

0815H - CMI_CREDIT_RSVD_POOL_ERR.

0816H - DDR_T_RD_ERROR.

0817H - WDB_FIFO_ERR.

0818H - CMI_REQ_FIFO_OVERFLOW.

0819H - CMI_REQ_FIFO_UNDERFLOW.

081AH - CMI_RSP_FIFO_OVERFLOW.

081BH - CMI_RSP_FIFO_UNDERFLOW.

081CH - CMI_MISC_MC_CRDT_ERRORS.

081DH - CMI_MISC_MC_ARB_ERRORS.

081EH - DDR_T_WR_CMPL_FIFO_OVERFLOW.

081FH - DDR_T_WR_CMPL_FIFO_UNDERFLOW.

0820H - CMI_RD_CPL_FIFO_OVERFLOW.

0821H - CMI_RD_CPL_FIFO_UNDERFLOW.

0822H - TME_KEY_PAR_ERR.

0823H - TME_CMI_MISC_ERR.

0824H - TME_CMI_OVFL_ERR.

0825H - TME_CMI_UFL_ERR.

0826H - TME_TEM_SECURE_ERR.

0827H - TME_UFILL_PAR_ERR.

0829H - INTERNAL_ERR.

082AH - TME_INTEGRITY_ERR.

082BH - TME_TDX_ERR

082CH - TME_UFILL_TEM_SECURE_ERR.

082DH - TME_KEY_POISON_ERR.

082EH - TME_SECURITY_ENGINE_ERR.

1008H - CORR_PATSCRUB_MIRR2ND_ERR.

1010H - UC_PATSCRUB_MIRR2ND_ERR.

1020H - COR_SPARE_MIRR2ND_ERR.

1040H - UC_SPARE_MIRR2ND_ERR.
1080H - HA_RD_MIRR2ND_ERR.
10A0H - HA_UNCORR_RD_MIRR2ND_ERR.

Type Bit No. Bit Function Bit Description
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37:32 Other info Other Info.

56:38 See Chapter 15, “Machine-Check Architecture” in the Intel® 64 and IA-32 
Architectures Software Developer’s Manual, Volume 3B.

Status register 
validity indicators1 

63:57

NOTES:

1. These fields are architecturally defined. Refer to Chapter 15, “Machine-Check Architecture,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B for more information.

Type Bit No. Bit Function Bit Description
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INDEX

B
Brand information 1-35

processor brand index 1-38
processor brand string 1-36

C
Cache and TLB information 1-30
Cache Inclusiveness 1-5
CLFLUSH instruction

CPUID flag 1-29
CMOVcc flag 1-29
CMOVcc instructions

CPUID flag 1-29
CMPXCHG16B instruction

CPUID bit 1-27
CMPXCHG8B instruction

CPUID flag 1-29
CPUID instruction 1-3, 1-29

36-bit page size extension 1-29
APIC on-chip 1-29
basic CPUID information 1-4
cache and TLB characteristics 1-4, 1-30
CLFLUSH flag 1-29
CLFLUSH instruction cache line size 1-26
CMPXCHG16B flag 1-27
CMPXCHG8B flag 1-29
CPL qualified debug store 1-27
debug extensions, CR4.DE 1-28
debug store supported 1-29
deterministic cache parameters leaf 1-4, 1-7, 1-9, 1-10, 1-11, 1-12, 1-13, 1-14, 1-15, 1-16, 1-21
extended function information 1-22
feature information 1-28
FPU on-chip 1-28
FSAVE flag 1-30
FXRSTOR flag 1-30
IA-32e mode available 1-23
input limits for EAX 1-24
L1 Context ID 1-27
local APIC physical ID 1-26
machine check architecture 1-29
machine check exception 1-29
memory type range registers 1-29
MONITOR feature information 1-33
MONITOR/MWAIT flag 1-27
MONITOR/MWAIT leaf 1-5, 1-6, 1-7, 1-10, 1-17, 1-21
MWAIT feature information 1-33
page attribute table 1-29
page size extension 1-29
performance monitoring features 1-33
physical address bits 1-24
physical address extension 1-29
power management 1-33, 1-34, 1-35
processor brand index 1-26, 1-35
processor brand string 1-23, 1-35
processor serial number 1-29
processor type field 1-25
RDMSR flag 1-29
returned in EBX 1-25
returned in ECX & EDX 1-26
self snoop 1-30
SpeedStep technology 1-27
SS2 extensions flag 1-30
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SSE extensions flag 1-30
SSE3 extensions flag 1-27
SSSE3 extensions flag 1-27
SYSENTER flag 1-29
SYSEXIT flag 1-29
thermal management 1-33, 1-34, 1-35
thermal monitor 1-27, 1-30
time stamp counter 1-29
using CPUID 1-3
vendor ID string 1-24
version information 1-4, 1-33
virtual 8086 Mode flag 1-28
virtual address bits 1-24
WRMSR flag 1-29

F
Feature information, processor 1-3
FXRSTOR instruction

CPUID flag 1-30
FXSAVE instruction

CPUID flag 1-30

I
IA-32e mode

CPUID flag 1-23
Instruction set

grouped by processor 1-2

L
L1 Context ID 1-27

M
Machine check architecture

CPUID flag 1-29
description 1-29

MMX instructions
CPUID flag for technology 1-30

Model & family information 1-33
MONITOR instruction

CPUID flag 1-27
feature data 1-33

MWAIT instruction
CPUID flag 1-27
feature data 1-33

P
Pending break enable 1-30
Performance-monitoring counters

CPUID inquiry for 1-33

R
RDMSR instruction

CPUID flag 1-29

S
Self Snoop 1-30
SpeedStep technology 1-27
SSE extensions

CPUID flag 1-30
SSE2 extensions

CPUID flag 1-30
SSE3
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CPUID flag 1-27
SSE3 extensions

CPUID flag 1-27
SSSE3 extensions

CPUID flag 1-27
Stepping information 1-33
SYSENTER instruction

CPUID flag 1-29
SYSEXIT instruction

CPUID flag 1-29

T
Thermal Monitor

CPUID flag 1-30
Thermal Monitor 2 1-27

CPUID flag 1-27
Time Stamp Counter 1-29

V
Version information, processor 1-3

W
WBINVD/INVD bit 1-5
WRMSR instruction

CPUID flag 1-29

X
XRSTOR 1-34
XSAVE 1-27, 1-34
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