
Intel® Architecture
Instruction Set Extensions
and Future Features
Programming Reference

December 2022

319433-047

Notices & Disclaimers

This document contains information on products in the design phase of development. The information here is
subject to change without notice. Do not finalize a design with this information.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.
ii Ref. # 319433-047

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Revision History

Revision Description Date

-025

• Removed instructions that now reside in the Intel® 64 and IA-32
Architectures Software Developer’s Manual.

• Minor updates to chapter 1.
• Updates to Table 2-1, Table 2-2 and Table 2-8 (leaf 07H) to indicate

support for AVX512_4VNNIW and AVX512_4FMAPS.
• Minor update to Table 2-8 (leaf 15H) regarding ECX definition.
• Minor updates to Section 4.6.2 and Section 4.6.3 to clarify the effects of

“suppress all exceptions”.
• Footnote addition to CLWB instruction indicating operand encoding

requirement.
• Removed PCOMMIT.

September 2016

-026
• Removed CLWB instruction; it now resides in the Intel® 64 and IA-32

Architectures Software Developer’s Manual.
• Added additional 512-bit instruction extensions in chapter 6.

October 2016

-027
• Added TLB CPUID leaf in chapter 2.
• Added VPOPCNTD/Q instruction in chapter 6,and CPUID details in

chapter 2.
December 2016

-028 • Updated intrinsics for VPOPCNTD/Q instruction in chapter 6. December 2016

-029

• Corrected typo in CPUID leaf 18H.
• Updated operand encoding table format; extracted tuple information

from operand encoding.
• Added VPERMB back into chapter 5; inadvertently removed.
• Moved all instructions from chapter 6 to chapter 5.
• Updated operation section of VPMULTISHIFTQB.

April 2017

-030

• Removed unnecessary information from document (chapters 2, 3 and 4).
• Added table listing recent instruction set extensions introduction in Intel

64 and IA-32 Processors.
• Updated CPUID instruction with additional details.
• Added the following instructions: GF2P8AFFINEINVQB, GF2P8AFFINEQB,

GF2P8MULB, VAESDEC, VAESDECLAST, VAESENC, VAESENCLAST,
VPCLMULQDQ, VPCOMPRESS, VPDPBUSD, VPDPBUSDS, VPDPWSSD,
VPDPWSSDS, VPEXPAND, VPOPCNT, VPSHLD, VPSHLDV, VPSHRD,
VPSHRDV, VPSHUFBITQMB.

• Removed the following instructions: VPMADD52HUQ, VPMADD52LUQ,
VPERMB, VPERMI2B, VPERMT2B, and VPMULTISHIFTQB. They can be
found in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volumes 2A, 2B, 2C & 2D.

• Moved instructions unique to processors based on the Knights Mill
microarchitecture to chapter 3.

• Added chapter 4: EPT-Based Sub-Page Permissions.
• Added chapter 5: Intel® Processor Trace: VMX Improvements.

October 2017
Ref. # 319433-047 iii

-031

• Updated change log to correct typo in changes from previous release.
• Updated instructions with imm8 operand missing in operand encoding

table.
• Replaced “VLMAX” with “MAXVL” to align terminology used across

documentation.
• Added back information on detection of Intel AVX-512 instructions.
• Added Intel® Memory Encryption Technologies instructions PCONFIG and

WBNOINVD. These instructions are also added to Table 1-1 “Recent
Instruction Set Extensions Introduction in Intel 64 and IA-32 Processors”.
Added Section 1.5 “Detection of Intel® Memory Encryption Technologies
(Intel® MKTME) Instructions”.

• CPUID instruction updated with PCONFIG and WBNOINVD details.
• CPUID instruction updated with additional details on leaf 07H: Intel®

Xeon Phi™ only features identified and listed.
• CPUID instruction updated with new Intel® SGX features in leaf 12H.
• CPUID instruction updated with new PCONFIG information sub-leaf 1BH.
• Updated short descriptions in the following instructions: VPDPBUSD,

VPDPBUSDS, VPDPWSSD and VPDPWSSDS.
• Corrections and clarifications in Chapter 4 “EPT-Based Sub-Page

Permissions”.
• Corrections and clarifications in Chapter 5 “Intel® Processor Trace: VMX

Improvements”.

January 2018

-032

• Corrected PCONFIG CPUID feature flag on instruction page.
• Minor updates to PCONFIG instruction pages: Changed Table 2-2 to use

Hex notation; changed “RSVD, MBZ” to “Reserved, must be zero” in two
places in Table 2-3.

• Minor typo correction in WBNOINVD instruction description.

January 2018

-033

• Updated Table 1-2 “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors” .

• Added Section 1.4, “Detection of Future Instructions and Features”.
• Added CLDEMOTE, MOVDIRI, MOVDIR64B, TPAUSE, UMONITOR and

UMWAIT instructions.
• Updated the CPUID instruction with details on new instructions/features

added, as well as new power management details and information on
hardware feedback interface ISA extensions.

• Corrections to PCONFIG instruction.
• Moved instructions unique to processors based on the Knights Mill

microarchitecture to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

• Added Chapter 5 “Hardware Feedback Interface ISA Extensions”.
• Added Chapter 6 “AC Split Lock Detection”.

March 2018

-034

• Added clarification to leaf 07H in the CPUID instruction.
• Added MSR index for IA32_UMWAIT_CONTROL MSR.
• Updated registers in TPAUSE and UMWAIT instructions.
• Updated TPAUSE and UMWAIT intrinsics.

May 2018

Revision Description Date
iv Ref. # 319433-047

-035

• Updated Table 1-2 “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors” to list the AVX512_VNNI
instruction set architecture on a separate line due to presence on future
processors available sooner than previously listed.

• Updated CPUID instruction in various places.
• Removal of NDD/DDS/NDS terms from instructions. Note: Previously, the

terms NDS, NDD and DDS were used in instructions with an EVEX (or
VEX) prefix. These terms indicated that the vvvv field was valid for
encoding, and specified register usage. These terms are no longer
necessary and are redundant with the instruction operand encoding
tables provided with each instruction. The instruction operand encoding
tables give explicit details on all operands, indicating where every
operand is stored and if they are read or written. If vvvv is not listed as
an operand in the instruction operand encoding table, then EVEX (or
VEX) vvvv must be 0b1111.

• Added additional #GP exception condition to TPAUSE and UMWAIT.
• Updated Chapter 5 “Hardware Feedback Interface ISA Extensions” as

follows: changed scheduler/software to operating system or OS, changed
LP0 Scheduler Feedback to LP0 Capability Values, various description
updates, clarified that capability updates are independent, and added an
update to clarify that bits 0 and 1 will always be set together in Section
5.1.4.

• Added IA32_CORE_CAPABILITY MSR to Chapter 6 “AC Split Lock
Detection”.

October 2018

-036

• Added AVX512_BF16 instructions in chapter 2; related CPUID
information updated in chapter 1.

• Added new section to chapter 1 describing bfloat16 format.
• CPUID leaf updates to align with the Intel® 64 and IA-32 Architectures

Software Developer’s Manual.
• Removed CLDEMOTE, TPAUSE, UMONITOR, and UMWAIT instructions;

they now reside in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

• Changes now marked by green change bars and green font in order to
view changes at a text level.

April 2019

-037

• Removed chapter 3, “EPT-Based Sub-Page Permissions”, chapter 4,
“Intel® Processor Trace: VMX Improvements”, and chapter 6, “Split Lock
Detection”; this information is in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual.

• Removed MOVDIRI and MOVDIR64B instructions; they now reside in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual.

• Updated Table 1-2 with new features in future processors.
• Updated Table 1-3 with support for AVX512_VP2INTERSECT.
• Updated Table 1-5 with support for ENQCMD: Enqueue Stores.
• Added ENQCMD/ENQCMDS and VP2INTERSECTD/VP2INTERSECTQ

instructions, and updated CPUID accordingly.
• Added new chapter: Chapter 4, Non-Write-Back Lock Disable

Architecture.

May 2019

Revision Description Date
Ref. # 319433-047 v

-038

• Removed instruction extensions/features from Table 1-2 “Recent
Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32
Processors” that are available in processors covered in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual. This information can
be found in Chapter 5 “Instruction Set Summary”, of Volume 1.

• In Section 1.7, “Detection of Future Instructions”, removed instructions
from Table 1-5 “Future Instructions” that are available in processors
covered in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

• Removed instructions with the following CPUID feature flags:
AVX512_VNNI, VAES, GFNI (AVX/AVX512), AVX512_VBMI2,
VPCLMULQDQ, AVX512_BITALG; they now reside in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

• CPUID instruction updated with Hybrid information sub-leaf 1AH,
SERIALIZE and TSXLDTRK support, updates to the L3 Cache Intel RDT
Monitoring Capability Enumeration Sub-leaf, and updates to the Memory
Bandwidth Allocation Enumeration Sub-leaf.

• Replaced ← with := notation in operation sections of instructions. These
changes are not marked with change bars.

• Added the following instructions: SERIALIZE, XRESLDTRK, XSUSLDTRK.
• Update to the VDPBF16PS instruction.
• Updates to Chapter 4, “Hardware Feedback Interface ISA Extensions”.
• Added Chapter 5, “TSX Suspend Load Address Tracking”.
• Added Chapter 6, “Hypervisor-managed Linear Address Translation”.
• Added Chapter 7, “Architectural Last Branch Records (LBRs)”.
• Added Chapter 8, “Non-Write-Back Lock Disable Architecture”.
• Added Chapter 9, “Intel® Resource Director Technology Feature

Updates”.

March 2020

-039

• Updated Section 1.1 “About this Document” to reflect chapter changes in
this release.

• Added Section 1.2 “DisplayFamily and DisplayModel for Future
Processors”.

• Updated Table 1-2 “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors”.

• CPUID instruction updated.
• Removed Chapter 4 “Hardware Feedback Interface”. This information is

now in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual.

• Updated Figure 5-1 “Example HLAT Software Usage”.
• Added Table 6-5 “Encodings for 64-Bit Guest-State Fields

(0010_10xx_xxxx_xxxAb)” to Chapter 6.
• Added Chapter 8 “Bus Lock and VM Notify”.

June 2020

-040

• Updated Section 1.1 “About this Document” to reflect chapter changes in
this release.

• Updated Table 1-2 “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors”.

• CPUID instruction updated.
• Added notation updates to the beginning of Chapter 2. Updated ENQCMD

and ENQCMDS instructions to use this notation.
• Added Chapter 3, “Intel® AMX Instruction Set Reference, A-Z”.
• Minor updates to Chapter 6, “Hypervisor-managed Linear Address

Translation”.

June 2020

Revision Description Date
vi Ref. # 319433-047

-041

• Updated Section 1.1 “About this Document” to reflect chapter changes in
this release.

• Updated Table 1-2 “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors”.

• CPUID instruction updated for enumeration of several new features.
• PCONFIG instruction updated.
• Added CLUI, HRESET, SENDUIPI, STUI, TESTUI, UIRET, VPDPBUSD,

VPDPBUSDS, VPDPWSSD, and VPDPWSSDS instructions to Chapter 2.
• Updated Figure 3-2, “The TMUL Unit”.
• Update to pseudocode of TILELOADD/TILELOADDT1 instruction.
• Addition to Section 6.2, “VMCS Changes”.
• Update to Section 7.1.2.4, “Call-Stack Mode”.
• Update to Section 9.1 “Bus Lock Debug Exception”.
• Added Chapter 11, “User Interrupts”.
• Added Chapter 12, “Performance Monitoring Updates”.
• Added Chapter 13, “Enhanced Hardware Feedback Interface”.

October 2020

-042

• CPUID instruction updated.
• Removed the following instructions: VCVTNE2PS2BF16,

VCVTNEPS2BF16, VDPBF16PS, VP2INTERSECTD/VP2INTERSECTQ, and
WBNOINVD. They can be found in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2C.

• Updated bit positions in Section 6.12, “Changes to VMX Capability
Reporting”.

• Typo correction in Chapter 8, “Non-Write-Back Lock Disable
Architecture”.

• Several updates to Chapter 13, “Enhanced Hardware Feedback Interface
(EHFI)”.

• Added Chapter 14, “Linear Address Masking (LAM)”.
• Added Chapter 15, “Error Codes for Processors Based on Sapphire Rapids

Microarchitecture”.

December 2020

-043

• Updated CPUID instruction.
• Typo correction in Table 8-2, “TEST_CTRL MSR”.
• Typo corrections in Section 14.1, “Enumeration, Enabling, and

Configuration”.

February 2021

-044

• Updated Table 1-2, “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors”.

• Updated CPUID instruction.
• Updates to the ENQCMD and ENQCMDS instructions.
• Removed the PCONFIG instruction; it can be found in the Intel® 64 and

IA-32 Architectures Software Developer’s Manual, Volume 2B.
• Corrected typo in the VPDPBUSD instruction.
• Updates to Table 3-1, “Intel® AMX Exception Classes “.
• Change in terminology updates in Chapter 7, “Architectural Last Branch

Records (LBRs)”.
• Updated Chapter 6 to introduce the official technology name: Intel®

Virtualization Technology - Redirect Protection.
• Added Chapter 16, “IPI Virtualization”.

May 2021

Revision Description Date
Ref. # 319433-047 vii

-045

• Chapter 1: Updated the CPUID instruction.
• Chapter 2: Updated ENQCMD and ENQCMDS to remove statements that

these instructions ignore unused bits; this is incorrect. Removed HRESET,
SERIALIZE, VPDPBUSD, VPDPBUSDS, VPDPWSSD, and VPDPWSSDS
instructions; these instructions can be found in the Intel 64 and IA-32
Architectures Software Developer’s Manual. Updates to SENDUIPI
instruction operand encoding and 64-bit mode exceptions. Update to
UIRET pseudocode.

• Chapter 3: Updated Section 3.3., “Recommendations for System
Software”.

• Removed Chapter 6, “Intel® Virtualization Technology: Redirect
Protection”; this information can be found in the Intel 64 and IA-32
Architectures Software Developer’s Manual.

• Removed Chapter 7, “Architectural Last Branch Records (LBRs)”; this
information can be found in the Intel 64 and IA-32 Architectures
Software Developer’s Manual.

• Removed Chapter 12, “Performance Monitoring Updates”; this
information can be found in the Intel 64 and IA-32 Architectures
Software Developer’s Manual.

• Removed Chapter 13, “Enhanced Hardware Feedback Interface (EHFI)”;
this information can be found in the Intel 64 and IA-32 Architectures
Software Developer’s Manual.

• Updated Section 7.1.1, “Bus Lock VM Exit” to provide additional clarity
and details.

• Updated Chapter 8, “Intel® Resource Director Technology Feature
Updates” to update MBA 3.0 information.

• Update to Section 9.5.1, “User-Interrupt Notification Identification”.
• Minor updates to Chapter 10, “Linear Address Masking (LAM)”, to provide

additional clarity.
• Corrected two typos in the current Table 11-1, “Intel IMC MC Error Codes

for IA32_MCi_STATUS (i= 13-20).”
• Added Chapter 13, “Asynchronous Enclave Exit Notify and the EDECCSSA

User Leaf Function.”

June 2022

-046

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction.

• Chapter 2: Added the following instructions: AADD, AAND, AOR, AXOR,
CMPccXADD, RDMSRLIST, VBCSTNEBF162PS, VBCSTNESH2PS,
VCVTNEEBF162PS, VCVTNEEPH2PS, VCVTNEOBF162PS,
VCVTNEOPH2PS, VCVTNEPS2BF16, VPDPB[SU,UU,SS]D[,S],
VPMADD52HUQ, VPMADD52LUQ, WRMSRLIST, and WRMSRNS.

• Chapter 3: Added section 3.4, “Operand Restrictions,” and added the
TDPFP16PS instruction.

• Added Chapter 14, “Code Prefetch Instruction Updates.”
• Added Chapter 15, “Next Generation Performance Monitoring Unit

(PMU).”

September 2022

Revision Description Date
viii Ref. # 319433-047

-047

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction.

• Chapter 3: Notes added and naming updates as necessary.
• Removed the following chapters: Chapter 4, “Enqueue Stores and

Process Address Space Identifiers (PASIDs),” Chapter 5, “Intel® TSX
Suspend Load Address Tracking,” Chapter 9, “User Interrupts,” Chapter
11, “Error Codes for Processors Based on Sapphire Rapids
Microarchitecture,” and Chapter 12, “IPI Virtualization.” This information
can be found in the Intel 64 and IA-32 Architectures Software
Developer’s Manuals.

• Removed the following instructions: CLUI, ENQCMD, ENQCMDS,
LDTILECFG, SENDUIPI, STTILECFG, STUI, TDPBF16PS,
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD, TESTUI,
TILELOADD/TILELOADDT1, TILERELEASE, TILESTORED, TILEZERO,
UIRET, XRESLDTRK, and XSUSLDTRK. These instructions can be found in
the Intel 64 and IA-32 Architectures Software Developer’s Manuals.

• Chapter 4: Updates to MSR name and description of bits.
• Chapter 6: Updates to information, including naming changes and typo

corrections as necessary.
• Chapter 10: Update to the description of the Retire Latency field given in

Section 10.3.1, “Timed Processor Event Based Sampling.”
• Added Chapter 11, “Linear Address Space Separation (LASS).”
• Added Chapter 12, “Virtualization of the IA32_SPEC_CTRL MSR.”
• Added Chapter 13, “Remote Atomic Operations in Intel Architecture.”

December 2022

Revision Description Date
Ref. # 319433-047 ix

x Ref. # 319433-047

REVISION HISTORY

CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.1 About This Document. 1-1
1.2 DisplayFamily and DisplayModel for Future Processors . 1-1
1.3 Instruction Set Extensions and Feature Introduction in Intel® 64 and IA-32 Processors . 1-2
1.4 Detection of Future Instructions and Features . 1-3
1.5 CPUID Instruction. 1-3

CPUID—CPU Identification. .1-3
1.6 Compressed Displacement (disp8*N) Support in EVEX . 1-49
1.7 bfloat16 Floating-Point Format. 1-50

CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z
2.1 Instruction Set Reference. 2-1

AADD—Atomically Add. .2-2
AAND—Atomically AND .2-4
AOR—Atomically OR .2-6
AXOR—Atomically XOR .2-8
CMPccXADD—Compare and Add if Condition is Met . 2-10
RDMSRLIST—Read List of Model Specific Registers . 2-15
VBCSTNEBF162PS—Load BF16 Element and Convert to FP32 Element With Broadcast . 2-18
VBCSTNESH2PS—Load FP16 Element and Convert to FP32 Element with Broadcast. 2-19
VCVTNEEBF162PS—Convert Even Elements of Packed BF16 Values to FP32 Values . 2-20
VCVTNEEPH2PS—Convert Even Elements of Packed FP16 Values to FP32 Values . 2-21
VCVTNEOBF162PS—Convert Odd Elements of Packed BF16 Values to FP32 Values . 2-22
VCVTNEOPH2PS—Convert Odd Elements of Packed FP16 Values to FP32 Values. 2-23
VCVTNEPS2BF16—Convert Packed Single-Precision Floating-Point Values to BF16 Values . 2-24
VPDPB[SU,UU,SS]D[,S]—Multiply and Add Unsigned and Signed Bytes With and Without Saturation 2-26
VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the High 52-Bit Products to Qword
Accumulators . 2-29
VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the Low 52-Bit Products to Qword
Accumulators . 2-30
WRMSRLIST—Write List of Model Specific Registers . 2-31
WRMSRNS—Non-Serializing Write to Model Specific Register. 2-34

CHAPTER 3
INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.1 Introduction . 3-1
3.1.1 Tile Architecture Details .3-3
3.1.2 TMUL Architecture Details .3-4
3.1.3 Handling of Tile Row and Column Limits .3-5
3.1.4 Exceptions and Interrupts. .3-5
3.2 Operand Restrictions . 3-5
3.3 Implementation Parameters. 3-5
3.4 Helper Functions . 3-6
3.5 Notation . 3-7
3.6 Exception Classes . 3-7
3.7 Instruction Set Reference. 3-9

TDPFP16PS—Dot Product of FP16 Tiles Accumulated into Packed Single Precision Tile . 3-10

CHAPTER 4
NON-WRITE-BACK LOCK DISABLE ARCHITECTURE
4.1 Enumeration . 4-1
4.2 Enabling . 4-1
4.3 Interaction with Intel® Software Guard Extensions (Intel® SGX) . 4-2
Ref. # 319433-047 xi

4.4 Interaction with VMX Architecture. 4-2
4.5 Expected Software Behavior . 4-2
4.6 Bus Locks . 4-3

CHAPTER 5
BUS LOCK AND VM NOTIFY
5.1 Bus Lock Debug Exception . 5-1
5.1.1 Bus Lock VM Exit . 5-1
5.2 Notify VM Exit . 5-1

CHAPTER 6
INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
6.1 Intel® RDT Feature Changes . 6-1
6.1.1 Intel® RDT on the 3rd generation Intel® Xeon® Scalable Processor Family. 6-1
6.1.2 Intel® RDT on Intel Atom® Processors, Including the P5000 Series . 6-1
6.1.3 Intel® RDT in Future Processors Based on Sapphire Rapids Server Microarchitecture . 6-1
6.1.4 Intel® RDT in Processors Based on Emerald Rapids Server Microarchitecture . 6-2
6.1.5 Future Intel® RDT . 6-2
6.2 Enumerable Memory Bandwidth Monitoring Counter Width. 6-2
6.2.1 Memory Bandwidth Monitoring (MBM) Enabling . 6-2
6.2.2 Augmented MBM Enumeration and MSR Interfaces for Extensible Counter Width . 6-2
6.3 Second Generation Memory Bandwidth Allocation . 6-3
6.3.1 Second Generation MBA Advantages . 6-3
6.3.2 Second Generation MBA Software-Visible Changes . 6-4
6.4 Third Generation Memory Bandwidth Allocation . 6-5
6.4.1 Third Generation MBA Hardware Changes. 6-5
6.4.2 Third Generation MBA Software-Visible Changes . 6-5
6.5 Future MBA Enhancements. 6-5

CHAPTER 7
LINEAR ADDRESS MASKING (LAM)
7.1 Enumeration, Enabling, and Configuration . 7-1
7.2 Treatment of Data Accesses with LAM Active for User Pointers. 7-1
7.3 Treatment of Data Accesses with LAM Active for Supervisor Pointers . 7-3
7.4 Canonicality Checking for Data Addresses Written to Control Registers and MSRs . 7-4
7.5 Paging Interactions . 7-4
7.6 VMX Interactions . 7-4
7.6.1 Guest Linear Address . 7-4
7.6.2 VM-Entry Checking of Values of CR3 and CR4 . 7-5
7.6.3 CR3-Target Values. 7-5
7.6.4 Hypervisor-Managed Linear Address Translation (HLAT) . 7-5
7.7 Debug and Tracing Interactions. 7-5
7.7.1 Debug Registers . 7-5
7.7.2 Intel® Processor Trace . 7-5
7.8 Intel® SGX Interactions . 7-5
7.9 System Management Mode (SMM) Interactions . 7-6

CHAPTER 8
ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
8.1 Introduction . 8-1
8.2 Enumeration and Enabling. 8-2
8.3 Changes to Enclave Data Structures . 8-2
8.3.1 TCS.FLAGS Changes. 8-2
8.3.2 SSA.GPRSGX Changes . 8-2
8.3.3 ATTRIBUTES Changes. 8-2
8.4 Changes to Intel® SGX User Leaf Functions . 8-2
8.5 New Intel® SGX User Leaf Function: EDECCSSA . 8-3

EDECCSSA—Decrements TCS.CSSA . 8-3
xii Ref. # 319433-047

8.6 Implications for Enclave Code Debug and Profiling . 8-6
8.7 Interaction with Intel® CET . 8-6
8.8 Changes to Intel® SGX User Leaf Function Operation . 8-6
8.8.1 Changes to EENTER Operation . 8-7
8.8.2 Changes to ERESUME Operation . 8-14

CHAPTER 9
CODE PREFETCH INSTRUCTION UPDATES

PREFETCHh—Prefetch Data or Code Into Caches . 9-1

CHAPTER 10
NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
10.1 New Enumeration Architecture . 10-1
10.1.1 CPUID Sub-Leafing . 10-1
10.1.2 Reporting of Hybrid Resources . 10-2
10.1.3 General-Purpose Counters Bitmap . 10-2
10.1.4 Fixed-Function Counters Hybrid Bitmap. 10-2
10.1.5 Architectural Performance Monitoring Events Bitmap. 10-2
10.1.6 Non-Architectural Performance Capabilities . 10-2
10.2 New Architectural Events . 10-3
10.2.1 Topdown Microarchitecture Analysis Level 1 . 10-3
10.2.1.1 Topdown Backend Bound-Event Select A4H, Umask 02H . 10-3
10.2.1.2 Topdown Bad Speculation-Event Select 73H, Umask 00H. 10-4
10.2.1.3 Topdown Frontend Bound-Event Select 9CH, Umask 01H. 10-4
10.2.1.4 Topdown Retiring-Event Select C2H, Umask 02H. 10-4
10.3 Processor Event Based Sampling (PEBS) Enhancements. 10-4
10.3.1 Timed Processor Event Based Sampling. 10-4

CHAPTER 11
LINEAR ADDRESS SPACE SEPARATION (LASS)
11.1 Introduction . 11-1
11.2 Enumeration and Enabling. 11-1
11.3 Operation of Linear-Address Space Separation . 11-1
11.3.1 Data Accesses . 11-2
11.3.2 Instruction Fetches . 11-2

CHAPTER 12
VIRTUALIZATION OF THE IA32_SPEC_CTRL MSR
12.1 Introduction . 12-1
12.2 VMCS Changes. 12-1
12.2.1 New VMX Control. 12-1
12.2.2 New VMCS Fields . 12-1
12.3 Changes to VMX Non-Root Operation . 12-1

CHAPTER 13
REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
13.1 Introduction . 13-1
13.2 Instructions . 13-1
13.3 Alignment Requirements . 13-1
13.4 Memory Ordering . 13-2
13.5 Memory Type . 13-2
13.6 Write Combining Behavior . 13-2
13.7 Performance Expectations . 13-2
13.7.1 Interaction Between RAO and Other Accesses . 13-3
13.7.2 Updates of Contended Data . 13-3
13.7.3 Updates of Uncontended Data. 13-3
13.8 Examples. 13-4
Ref. # 319433-047 xiii

13.8.1 Histogram . 13-4
13.8.2 Interrupt/Event Handler . 13-4
xiv Ref. # 319433-047

TABLES
PAGE
1-1 CPUID Signature Values of DisplayFamily_DisplayModel. 1-1
1-2 Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors. 1-2
1-3 Information Returned by CPUID Instruction . 1-4
1-4 Processor Type Field. 1-28
1-5 Feature Information Returned in the ECX Register . 1-30
1-6 More on Feature Information Returned in the EDX Register. 1-32
1-7 Encoding of Cache and TLB Descriptors . 1-34
1-8 Processor Brand String Returned with Pentium 4 Processor . 1-40
1-9 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings . 1-42
1-10 Compressed Displacement (DISP8*N) Affected by Embedded Broadcast . 1-49
1-11 EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast . 1-49
2-1 Type 14 Class Exception Conditions . 2-14
3-1 Intel® AMX Treatment of Denormal Inputs and Outputs . 3-5
3-2 Intel® AMX Exception Classes . 3-8
4-1 IA32_CORE_CAPABILITIES MSR. 4-1
4-2 MEMORY_CTRL MSR . 4-2
4-3 Bus Locks from Non-WB Operation . 4-3
6-1 MBA_CFG MSR Definition. 6-5
8-1 Base Concurrency Restrictions of EDECCSSA . 8-3
8-2 Additional Concurrency Restrictions of EDECCSSA . 8-3
10-2 New Architectural Performance Monitoring Events . 10-3
10-1 IA32_PERF_CAPABILITIES Hybrid Enumeration. 10-3
10-3 Basic Info Group . 10-4
13-1 RAO Instructions . 13-1
Ref. # 319433-047 xv

Ref. # 319433-047 xvi

FIGURES
PAGE
Figure 1-1. Version Information Returned by CPUID in EAX. 1-28
Figure 1-2. Feature Information Returned in the ECX Register . 1-30
Figure 1-3. Feature Information Returned in the EDX Register . 1-32
Figure 1-4. Determination of Support for the Processor Brand String . 1-40
Figure 1-5. Algorithm for Extracting Maximum Processor Frequency . 1-41
Figure 1-6. Comparison of BF16 to FP16 and FP32 . 1-50
Figure 3-1. Intel® AMX Architecture . 3-2
Figure 3-2. The TMUL Unit . 3-3
Figure 3-3. Matrix Multiply C+= A*B. 3-4
Figure 6-1. Second Generation MBA, Including a Fast-Responding Hardware Controller . 6-4
Figure 7-1. Canonicality Check When LAM48 is Enabled for User Pointers . 7-2
Figure 7-2. Canonicality Check When LAM57 is Enabled for User Pointers with 5-Level Paging . 7-2
Figure 7-3. Canonicality Check When LAM57 is Enabled for User Pointers with 4-Level Paging . 7-3
Figure 7-4. Canonicality Check When LAM57 is Enabled for Supervisor Pointers with 5-Level Paging . 7-3
Figure 7-5. Canonicality Check When LAM48 is Enabled for Supervisor Pointers with 4-Level Paging . 7-4
Ref. # 319433-047 xvii

xviii Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND

FEATURES

1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of Intel® architecture instruction extensions and
features which may be included in future Intel processor generations. Intel does not guarantee the availability of
these interfaces and features in any future product.
The instruction set extensions cover a diverse range of application domains and programming usages. The 512-bit
SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instruc-
tions, deliver comprehensive set of functionality and higher performance than Intel® Advanced Vector Extensions
(Intel® AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) instructions. Intel AVX, Intel AVX2 and many
Intel AVX-512 instructions are covered in Intel® 64 and IA-32 Architectures Software Developer’s Manual. The
reader can refer to them for basic and more background information related to various features referenced in this
document.
The base of the 512-bit SIMD instruction extensions are referred to as Intel AVX-512 Foundation instructions. They
include extensions of the Intel AVX and Intel AVX2 family of SIMD instructions but are encoded using a new
encoding scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and condi-
tional processing using opmask registers.
Chapter 2 is an instruction set reference, providing details on new instructions.
Chapter 3 describes the Intel® Advanced Matrix Extensions (Intel® AMX).
Chapter 4 describes non-write-back lock disable architecture.
Chapter 5 describes bus lock and VM notify features.
Chapter 6 describes Intel® Resource Director Technology feature updates.
Chapter 7 describes Linear Address Masking (LAM).
Chapter 8 describes Asynchronous Enclave Exit Notify, an extension to Intel® SGX; and EDECCSSA, a new Intel
SGX user leaf function.
Chapter 9 describes updates to the code prefetch instructions available in future processors.
Chapter 10 describes the next generation Performance Monitoring Unit enhancements available in future proces-
sors.
Chapter 11 describes Linear Address Space Separation (LASS).
Chapter 12 describes the virtualization of the IA32_SPEC_CTRL MSR.
Chapter 13 describes Remote Atomic Operations (RAO) in Intel architecture.

1.2 DISPLAYFAMILY AND DISPLAYMODEL FOR FUTURE PROCESSORS
Table 1-1 lists the signature values of DisplayFamily and DisplayModel for future processor families discussed in
this document.

Table 1-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_8FH Future processors based on Sapphire Rapids Server microarchitecture

06_AAH, 06_ACH Future processors based on Meteor Lake microarchitecture

06_B6H Future processors based on Grand Ridge microarchitecture

06_B7H Future processors based on Raptor Lake microarchitecture

06_ADH, 06_AEH Future processors based on Granite Rapids microarchitecture
Ref. # 319433-047 1-1

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.3 INSTRUCTION SET EXTENSIONS AND FEATURE INTRODUCTION IN INTEL®
64 AND IA-32 PROCESSORS

Recent instruction set extensions and features are listed in Table 1-2. Within these groups, most instructions and
features are collected into functional subgroups.

06_AFH Future processors based on Sierra Forest microarchitecture

06_CFH Future processors based on Emerald Rapids Server microarchitecture

Table 1-2. Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors1

Instruction Set Architecture / Feature Introduction

Direct stores: MOVDIRI, MOVDIR64B Tremont, Tiger Lake, Sapphire Rapids

AVX512_BF16 Cooper Lake, Sapphire Rapids

CET: Control-flow Enforcement Technology Tiger Lake, Sapphire Rapids

AVX512_VP2INTERSECT Tiger Lake (not currently supported in any other processors)

Enqueue Stores: ENQCMD and ENQCMDS Sapphire Rapids

CLDEMOTE Tremont, Alder Lake, Sapphire Rapids

PTWRITE Goldmont Plus, Alder Lake, Sapphire Rapids

User Wait: TPAUSE, UMONITOR, UMWAIT Tremont, Alder Lake, Sapphire Rapids

Architectural LBRs Alder Lake, Sapphire Rapids

HLAT Alder Lake, Sapphire Rapids

SERIALIZE Alder Lake, Sapphire Rapids

Intel® TSX Suspend Load Address Tracking (TSXLDTRK) Sapphire Rapids

Intel® Advanced Matrix Extensions (Intel® AMX)

Includes CPUID Leaf 1EH, “TMUL Information Main Leaf”, and
CPUID bits AMX-BF16, AMX-TILE, and AMX-INT8.

Sapphire Rapids

AVX-VNNI Alder Lake2, Sapphire Rapids

User Interrupts (UINTR) Sapphire Rapids

Intel® Trust Domain Extensions (Intel® TDX)3 Future Processors

Supervisor Memory Protection Keys (PKS)4 Sapphire Rapids

Linear Address Masking (LAM) Future Processors

IPI Virtualization Sapphire Rapids

RAO-INT Grand Ridge

PREFETCHIT0/1 Granite Rapids

AMX-FP16 Granite Rapids

CMPCCXADD Sierra Forest, Grand Ridge

AVX-IFMA Sierra Forest, Grand Ridge

AVX-NE-CONVERT Sierra Forest, Grand Ridge

AVX-VNNI-INT8 Sierra Forest, Grand Ridge

RDMSRLIST/WRMSRLIST Sierra Forest, Grand Ridge

Table 1-1. CPUID Signature(Continued)Values of DisplayFamily_DisplayModel (Continued)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
1-2 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.4 DETECTION OF FUTURE INSTRUCTIONS AND FEATURES
Future instructions and features are enumerated by a CPUID feature flag; details can be found in Table 1-3.

1.5 CPUID INSTRUCTION

CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 1-3 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)

WRMSRNS Sierra Forest, Grand Ridge

Linear Address Space Separation (LASS) Sierra Forest

Virtualization of the IA32_SPEC_CTRL MSR Sapphire Rapids

NOTES:

1. Visit Intel Ark for Intel® product specifications, features and compatibility quick reference guide, and code name decoder.
2. Alder Lake Intel Hybrid Technology will not support Intel® AVX-512. ISA features such as Intel® AVX, AVX-VNNI, Intel® AVX2, and

UMONITOR/UMWAIT/TPAUSE are supported.
3. Details on Intel® Trust Domain Extensions can be found here: https://software.intel.com/content/www/us/en/develop/articles/intel-

trust-domain-extensions.html.
4. Details on Supervisor Memory Protection Keys (PKS) can be found in the Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3A.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F A2 CPUID Valid Valid Returns processor identification and feature information to the EAX, EBX, ECX, and
EDX registers, as determined by input entered in EAX (in some cases, ECX as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Table 1-2. Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors1(Continued)

Instruction Set Architecture / Feature Introduction
Ref. # 319433-047 1-3

https://ark.intel.com/content/www/us/en/ark.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/intel-trust-domain-extensions.html

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)1
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 9, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.
"Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

1. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH before using
leaf 0BH.

Table 1-3. Information Returned by CPUID Instruction

Initial EAX
Value

Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information
“Genu”
“ntel”
“ineI”

01H EAX

EBX

ECX
EDX

Version Information: Type, Family, Model, and Stepping ID (see Figure 1-1)

Bits 7-0: Brand Index
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID**

Feature Information (see Figure 1-2 and Table 1-5)
Feature Information (see Figure 1-3 and Table 1-6)
NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of
unique initial APIC IDs reserved for addressing different logical processors in a physical package.
**The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH
and Leaf 1FH.

02H EAX
EBX
ECX
EDX

Cache and TLB Information (see Table 1-7)
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

03H EAX Reserved

EBX Reserved

ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)
1-4 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).

Deterministic Cache Parameters Leaf

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level” on page 1-36.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate

0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.

Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.

Bits 31-03: Reserved = 0

NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique

initial APIC IDs reserved for addressing different logical processors sharing this cache.
*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of

unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-5

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
MONITOR/MWAIT Leaf

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity)
Bits 31-16: Reserved = 0

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported

Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled

Bits 31-02: Reserved

EDX Bits 03-00: Number of C0* sub C-states supported using MWAIT
Bits 07-04: Number of C1* sub C-states supported using MWAIT
Bits 11-08: Number of C2* sub C-states supported using MWAIT
Bits 15-12: Number of C3* sub C-states supported using MWAIT
Bits 19-16: Number of C4* sub C-states supported using MWAIT
Bits 23-20: Number of C5* sub C-states supported using MWAIT
Bits 27-24: Number of C6* sub C-states supported using MWAIT
Bits 31-28: Number of C7* sub C-states supported using MWAIT
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not

ACPI C-states.

Thermal and Power Management Leaf

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel® Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs
are supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set.
Bit 18: Fast access mode for the IA32_HWP_REQUEST MSR is supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR, IA32_HW_FEEDBACK_CONFIG, IA32_PACK-
AGE_THERM_STATUS bit 26 and IA32_PACKAGE_THERM_INTERRUPT bit 25 are supported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bits 22-21: Reserved.
Bit 23: Intel® Thread Director supported if set. IA32_HW_FEEDBACK_CHAR and IA32_HW_FEED-
BACK_THREAD_CONFIG MSRs are supported if set.
Bit 24: IA32_THERM_INTERRUPT MSR bit 25 is supported if set.
Bits 31-25: Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-6 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31-04: Reserved.

ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the count-
ers), as a percentage of the expected processor performance when running at the TSC frequency.
Bits 02-01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3]
is set, and it also implies the presence of the IA32_ENERGY_PERF_BIAS MSR (MSR address 1B0H).
Bits 07 -04: Reserved = 0.
Bits 15-08: Number of Intel® Thread Director classes supported by the processor. Information for
that many classes is written into the Intel Thread Director Table by the hardware.
Bits 31-16: Reserved = 0.

EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved

Bits 11-08: Enumerates the size of the hardware feedback interface structure in number of 4 KB
pages; add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor’s row in the hardware feedback interface
structure. Note that on some parts the index may be same for multiple logical processors. On some
parts the indices may not be contiguous, i.e., there may be unused rows in the hardware feedback
interface structure.
NOTE:
Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Leaf (Output depends on ECX input value)

07H NOTES:
Leaf 07H main leaf (ECX = 0).
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX.

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX
Bit 03: BMI1
Bit 04: HLE
Bit 05: AVX2. Supports Intel® Advanced Vector Extensions 2 (Intel® AVX2) if 1.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: BMI2
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID
Bit 11: RTM
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Intel® Memory Protection Extensions
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F
Bit 17: AVX512DQ
Bit 18: RDSEED
Bit 19: ADX

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-7

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Bit 20: SMAP
Bit 21: AVX512_IFMA
Bit 22: Reserved
Bit 23: CLFLUSHOPT
Bit 24: CLWB
Bit 25: Intel Processor Trace
Bit 26: AVX512PF (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD
Bit 29: SHA
Bit 30: AVX512BW
Bit 31: AVX512VL

ECX Bit 00: PREFETCHWT1 (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG
Bit 06: AVX512_VBMI2
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0
of the IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: IA32_INTER-
RUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
Bit 08: GFNI
Bit 09: VAES
Bit 10: VPCLMULQDQ
Bit 11: AVX512_VNNI
Bit 12: AVX512_BITALG
Bit 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTI-
VATE, IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
Bit 14: AVX512_VPOPCNTDQ
Bit 15: Reserved
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: BUS_LOCK_DETECT. If 1, indicates support for bus lock debug exceptions.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: ENQCMD: Supports Enqueue Stores if 1.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

EDX Bit 00: Reserved.
Bit 01: SGX-KEYS. If 1, Attestation Services for Intel® SGX is supported.
Bit 02: AVX512_4VNNIW (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV
Bit 05: UINTR. If 1, the processor supports user interrupts.
Bits 07-06: Reserved
Bit 08: AVX512_VP2INTERSECT

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-8 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Bit 09: SRBDS_CTRL. If 1, enumerates support for the IA32_MCU_OPT_CTRL MSR and indicates that
its bit 0 (RNGDS_MITG_DIS) is also supported.
Bit 10: MD_CLEAR supported.
Bit 11: RTM_ALWAYS_ABORT. If set, any execution of XBEGIN immediately aborts and transitions to
the specified fallback address.
Bit 12: Reserved
Bit 13: If 1, RTM_FORCE_ABORT supported. Processors that set this bit support the
TSX_FORCE_ABORT MSR. They allow software to set TSX_FORCE_ABORT[0] (RTM_FORCE_ABORT).
Bit 14: SERIALIZE
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part. If CPUID.0.MAXLEAF ≥ 1AH and
CPUID.1A.EAX ≠ 0, then the Native Model ID Enumeration Leaf 1AH exists.
Bit 16: TSXLDTRK. If 1, the processor supports Intel TSX suspend/resume of load address tracking.
Bit 17: Reserved
Bit 18: PCONFIG
Bit 19: Architectural LBRs. If 1, indicates support for architectural LBRs.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit
define bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bit 21: Reserved
Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
Bit 23: AVX512_FP16
Bit 24: AMX-TILE. If 1, the processor supports tile architecture.
Bit 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch
predictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and
IA32_PRED_CMD[0] (IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set
this bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the
IA32_FLUSH_CMD MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.

IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. In gen-
eral, a bit being set in this MSR indicates that a model-specific feature is supported; software should
consult CPUID family/model/stepping to determine the behavior of these enumerated features, as
that behavior may differ on different processor models. Some bits in the MSR enumerate features
with behavior that is consistent across processor models (and for which consultation of CPUID fam-
ily/model/stepping is not necessary); such bits are identified explicitly in the documentation of the
IA32_CORE_CAPABILITIES MSR.

Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit
support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-9

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 02-00: Reserved.
Bit 03: RAO-INT. If 1, supports the RAO-INT instructions.
Bit 04: AVX-VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting bfloat16 inputs and conver-
sion instructions from IEEE single precision.
Bit 06: LASS. If 1, supports Linear Address Space Separation.
Bit 07: CMPCCXADD. If 1, supports the CMPccXADD instruction.
Bit 08: ArchPerfmonExt. If 1, supports ArchPerfmonExt. When set, indicates that the Architectural
Performance Monitoring Extended Leaf (EAX = 23H) is valid.
Bit 09: Reserved.
Bit 10: If 1, supports fast zero-length MOVSB.
Bit 11: If 1, supports fast short STOSB.
Bit 12: If 1, supports fast short CMPSB, SCASB.
Bits 18-13: Reserved.
Bit 19: WRMSRNS. If 1, supports the WRMSRNS instruction.
Bit 20: Reserved.
Bit 21: AMX-FP16. If 1, the processor supports tile computational operations on FP16 numbers.
Bit 22: HRESET. If 1, supports history reset and the IA32_HRESET_ENABLE MSR. When set, indicates
that the Processor History Reset Leaf (EAX = 20H) is valid.
Bit 23: AVX-IFMA. If 1, supports the AVX-IFMA instructions.
Bits 25-24: Reserved.
Bit 26: LAM. If 1, supports Linear Address Masking.
Bit 27: MSRLIST. If 1, supports the RDMSRLIST and WRMSRLIST instructions and the IA32_BARRIER
MSR.
Bits 31-28: Reserved.

EBX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.
Bit 00: Enumerates the presence of the IA32_PPIN and IA32_PPIN_CTL MSRs. If 1, these MSRs are
supported.
Bits 31-01: Reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 03-00: Reserved.
Bit 04: AVX-VNNI-INT8. If 1, supports the AVX-VNNI-INT8 instructions.
Bit 05: AVX-NE-CONVERT. If 1, supports the AVX-NE-CONVERT instructions.
Bits 13-06: Reserved.
Bit 14: PREFETCHI. If 1, supports the PREFETCHIT0/1 instructions.
Bits 17-15: Reserved
Bit 18: CET_SSS. If 1, indicates that an operating system can enable supervisor shadow stacks as
long as it ensures that certain supervisor shadow-stack pushes will not cause page faults (see Sec-
tion 17.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1). When
emulating the CPUID instruction, a virtual-machine monitor should return this bit as 0 if those pushes
can cause VM exits.
Bits 31-19: Reserved.

Structured Extended Feature Enumeration Sub-leaf (EAX = 07H, ECX = 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-10 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, 2, is invalid.
Bit 00: PSFD. If 1, indicates bit 7 of the IA32_SPEC_CTRL MSR is supported. Bit 7 of this MSR disables
Fast Store Forwarding Predictor without disabling Speculative Store Bypass.
Bit 01: IPRED_CTRL. If 1, indicates bits 3 and 4 of the IA32_SPEC_CTRL MSR are supported. Bit 3 of
this MSR enables IPRED_DIS control for CPL3. Bit 4 of this MSR enables IPRED_DIS control for
CPL0/1/2.
Bit 02: RRSBA_CTRL. If 1, indicates bits 5 and 6 of the IA32_SPEC_CTRL MSR are supported. Bit 5 of
this MSR disables RRSBA behavior for CPL3. Bit 6 of this MSR disables RRSBA behavior for CPL0/1/2.
Bit 03: DDPD_U. If 1, indicates bit 8 of the IA32_SPEC_CTRL MSR is supported. Bit 8 of this MSR dis-
ables Data Dependent Prefetcher.
Bit 04: BHI_CTRL. If 1, indicates bit 10 of the IA32_SPEC_CTRL MSR is supported. Bit 10 of this MSR
enables BHI_DIS_S behavior.
Bit 05: MCDT_NO. Processors that enumerate this bit as 1 do not exhibit MXCSR Configuration
Dependent Timing (MCDT) behavior and do not need to be mitigated to avoid data-dependent behav-
ior for certain instructions.
Bits 31-06: Reserved.

Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX = n, n > 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

Direct Cache Access Information Leaf

09H EAX
EBX
ECX
EDX

Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
Reserved
Reserved
Reserved

Architectural Performance Monitoring Leaf

0AH EAX Bits 07-00: Version ID of architectural performance monitoring.
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23-16: Bit width of general-purpose, performance monitoring counter.
Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events.
Architectural event x is supported if EBX[x]=0 && EAX[31:24] > x.

EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24] < 1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24] < 2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24] < 3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24] < 4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24] < 5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24] < 6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24] < 7.
Bit 07: Top-down slots event not available if 1 or if EAX[31:24] < 8.
Bits 31-08: Reserved = 0.

ECX Bits 31-00: Supported fixed counters. If bit 'i' is set, it implies that Fixed Counter 'i' is supported.
Software is recommended to use the following logic to check if a Fixed Counter is supported on a
given processor: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-11

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 04-00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID
> 1).
Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14-13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31-16: Reserved = 0.

Extended Topology Enumeration Leaf

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the exis-
tence of Leaf 1FH before using leaf 0BH.
Most of Leaf 0BH output depends on the initial value in ECX.
The EDX output of leaf 0BH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
For sub-leaves that returns an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.
If an input value N in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with
ECX > N also return 0 in ECX[15:8]

EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level
type*. All logical processors with the same next level ID share current level.
Bits 31-05: Reserved.

EBX Bits 15-00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31-16: Reserved.

ECX Bits 07-00: Level number. Same value in ECX input.
Bits 15-08: Level type***.
Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-12 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Processor Extended State Enumeration Main Leaf (EAX = 0DH, ECX = 0)

0DH NOTES:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: x87 state.
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04-03: MPX state
Bit 07-05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 16-10: Used for IA32_XSS.
Bit 17: TILECFG state.
Bit 18: TILEDATA state.
Bits 31-19: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of the XCR0 register. If a bit is 0, the cor-
responding bit field in XCR0 is reserved

Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bit 04: Supports Extended Feature Disable (XFD) if set.
Bits 31-05: Reserved.

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
NOTES:
If EAX[3] is enumerated as 0 and EAX[1] is enumerated as 1, EBX enumerates the size of the XSAVE
area containing all states enabled by XCRO. If EAX[1] and EAX[3] are both enumerated as 0, EBX
enumerates zero.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can
be set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: PASID state.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.

Bit 14: UINTR state.
Bits 15: LBR state (only for the architectural LBR feature).
Bit 16: HWP state.
Bits 18-17: Used for XCR0.
Bits 31-19: Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-13

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32]
can be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved

Processor Extended State Enumeration Sub-leaves (EAX = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in
either the XCR0 register or the IA32_XSS MSR.
* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is

invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤
63) is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended
state feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is
invalid*.

EBX Bits 31-00: The offset in bytes of this extended state component’s save area from the beginning of
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register*.

ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is
clear if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is
located immediately following the preceding state component).
Bit 2 is set to indicate support for XFD faulting.
Bits 31-03 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid*.

EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.

Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Sub-leaf (EAX = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31-02: Reserved

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-14 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
L3 Cache Intel RDT Monitoring Capability Enumeration Sub-leaf (EAX = 0FH, ECX = 1)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.

EAX No bits set: 24-bit counters.
Bits 07 - 00: Encode counter width offset from 24b:

0x0 = 24-bit counters.
0x1 = 25-bit counters.
0x25 = 61-bit counters.

Bit 08: Indicates that bit 61 in IA32_QM_CTR MSR is an overflow bit.
Bits 31 - 09: Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and
Memory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31-03: Reserved

Intel Resource Director Technology (Intel RDT) Allocation Enumeration Sub-leaf (EAX = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bits 31-04: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =1)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31-05: Reserved

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: Updates of COS should be infrequent if 1.
Bit 02: Code and Data Prioritization Technology supported if 1.
Bits 31-03: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-15

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
L2 Cache Allocation Technology Enumeration Sub-leaf (EAX = 10H, ECX = ResID =2)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID using minus-one notation.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 31-00: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (EAX = 10H, ECX = ResID =3)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 11-00: Reports the maximum MBA throttling value supported for the corresponding ResID using
minus-one notation.
Bits 31-12: Reserved.

EBX Bits 31-00: Reserved.

ECX Bit 00: Per-thread MBA controls are supported.
Bit 01: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31-03: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

Intel® Software Guard Extensions (Intel® SGX) Capability Enumeration Leaf, sub-leaf 0 (EAX = 12H, ECX = 0)

12H NOTES:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 00: SGX1. If 1, indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04-02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD,
and ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and
ELDUC.
Bits 10-07: Reserved.
Bit 11: If 1, indicates Intel SGX supports ENCLU instruction leaf EDECCSSA.
Bits 31-12: Reserved.

EBX Bits 31-00: MISCSELECT. Bit vector of supported extended Intel SGX features.

ECX Bits 31-00: Reserved.

EDX Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2^(EDX[7:0]).
Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is
2^(EDX[15:8]).
Bits 31-16: Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-16 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Intel SGX Attributes Enumeration Leaf, sub-leaf 1 (EAX = 12H, ECX = 1)

12H NOTES:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

EBX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel SGX EPC Enumeration Leaf, sub-leaves (EAX = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf
type listed below.

EAX Bit 03-00: Sub-leaf Type
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on
the Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.

EDX:ECX:EBX:EAX return 0.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows.

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If EAX[3:0] 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If EAX[3:0] 0001b, then this section has confidentiality and integrity protection.
If EAX[3:0] 0010b, then this section has confidentiality protection only.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor
Reserved Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor
Reserved Memory.
EDX[31:20]: Reserved.

Intel Processor Trace Enumeration Main Leaf (EAX = 14H, ECX = 0)

14H NOTES:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-17

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs
across warm reset.
Bits 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_R-
TIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56]
(InjectPsbPmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to
Intel PT disable. Writes can also set PendToPAPMI and PendPSB.
Bit 07: If 1, writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace packet generation.
Bit 08: If 1, writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet generation.
Bits 31-09: Reserved

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bits 02: If 1, indicates support of Single-Range Output scheme.
Bits 03: If 1, indicates support of output to Trace Transport subsystem.
Bit 30-04: Reserved
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base
component.

EDX Bits 31-00: Reserved

Intel Processor Trace Enumeration Sub-leaf (EAX = 14H, ECX = 1)

14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 15-03: Reserved
Bit 31-16: Bitmap of supported MTC period encodings

EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings
Bit 31-16: Bitmap of supported Configurable PSB frequency encodings

ECX Bits 31-00: Reserved

EDX Bits 31-00: Reserved

Time Stamp Counter and Core Crystal Clock Information Leaf

15H NOTES:
If EBX[31:0] is 0, the TSC and ”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock fre-
quency.
If ECX is 0, the core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.
The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31-00: Reserved = 0.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-18 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Processor Frequency Information Leaf

16H EAX

EBX

ECX

EDX

Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0
Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0
Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0
Reserved
NOTES:
* Data is returned from this interface in accordance with the processor's specification and does not
reflect actual values. Suitable use of this data includes the display of processor information in like
manner to the processor brand string and for determining the appropriate range to use when
displaying processor information e.g. frequency history graphs. The returned information should not
be used for any other purpose as the returned information does not accurately correlate to
information / counters returned by other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a value
of zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (EAX = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard
enumeration scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

System-On-Chip Vendor Attribute Enumeration Sub-leaf (EAX = 17H, ECX = 1..3)

17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-19

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
System-On-Chip Vendor Attribute Enumeration Sub-leaves (EAX = 17H, ECX > MaxSOCID_Index)

17H NOTES:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31-00: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (EAX = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translations structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0]
returns 0. Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf
may be in a higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or
lower-level structure.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction
fetches. Others will require separate entries (e.g., one loaded on data read/write and another
loaded on an instruction fetch). See the Intel® 64 and IA-32 Architectures Optimization Reference
Manual for details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache.**
Bits 31-26: Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-20 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Deterministic Address Translation Parameters Sub-leaf (EAX = 18H, ECX ≥ 1)

18H NOTES:
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0]
returns 0. Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf
may be in a higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or
lower-level structure.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction
fetches. Others will require separate entries (e.g., one loaded on data read/write and another
loaded on an instruction fetch). See the Intel® 64 and IA-32 Architectures Optimization Reference
Manual for details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31-00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache**
Bits 31-26: Reserved.

Key Locker Leaf (EAX = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs and backing up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: Reserved.

EDX Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-21

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Native Model ID Enumeration Leaf (EAX = 1AH, ECX = 0)

1AH NOTES:
This leaf exists on all hybrid parts, however this leaf is not only available on hybrid parts. The fol-
lowing algorithm is used for detection of this leaf:
If CPUID.0.MAXLEAF ≥ 1AH and CPUID.1A.EAX ≠ 0, then the leaf exists.

EAX Enumerates the native model ID and core type.
Bits 31-24: Core type

10H: Reserved
20H: Intel Atom®
30H: Reserved
40H: Intel® Core™

Bits 23-0: Native model ID of the core. The core-type and native model ID can be used to uniquely
identify the microarchitecture of the core. This native model ID is not unique across core types, and
not related to the model ID reported in CPUID leaf 01H, and does not identify the SOC.

EBX Reserved.

ECX Reserved.

EDX Reserved.

PCONFIG Information Sub-leaf (EAX = 1BH, ECX ≥ 0)

1BH NOTES:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.
For sub-leaves of 1BH, the definition of EDX, ECX, EBX, EAX depends on the sub-leaf type listed
below.
* Currently MKTME is the only defined target and is indicated by identifier 1. An identifier of 0
indicates an invalid target. If MKTME is a supported target, the MKTME_KEY_PROGRAM leaf of
PCONFIG is available.

EAX Bits 11-00: Sub-leaf type
0: Invalid sub-leaf. On an invalid sub-leaf type returned, subsequent sub-leaves are also invalid.
EBX, ECX and EDX all return 0 for this case.
1: Target Identifier. This sub-leaf enumerates PCONFIG targets supported on the platform.
Software must scan until an invalid sub-leaf type is returned. EBX, ECX and EDX are defined below
for this case.

Bits 31-12: 0

EBX * Identifier of target 3n+1 (where n is the sub-leaf number, the initial value of ECX).

ECX * Identifier of target 3n+2.

EDX * Identifier of target 3n+3.

Last Branch Records Information Leaf (EAX = 1CH, ECX = 0)

1CH NOTES:
This leaf pertains to the architectural feature.
For leaf 01CH, CPUID will ignore the ECX value.

EAX Bits 07 - 00: Supported LBR Depth Values. For each bit n set in this field, the
IA32_LBR_DEPTH.DEPTH value 8*(n+1) is supported.
Bits 29 - 08: Reserved.
Bit 30: Deep C-state Reset. If set, indicates that LBRs may be cleared on an MWAIT that requests a C-
state numerically greater than C1.
Bit 31: IP Values Contain LIP. If set, LBR IP values contain LIP. If clear, IP values contain Effective IP.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-22 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: CPL Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[2:1] to non-
zero value.
Bit 01: Branch Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[22:16] to
non-zero value.
Bit 02: Call-stack Mode Supported. If set, the processor supports setting IA32_LBR_CTL[3] to 1.
Bits 31 - 03: Reserved.

ECX Bit 00: Mispredict Bit Supported. IA32_LBR_x_INFO[63] holds indication of branch misprediction
(MISPRED).
Bit 01: Timed LBRs Supported. IA32_LBR_x_INFO[15:0] holds CPU cycles since last LBR entry
(CYC_CNT), and IA32_LBR_x_INFO[60] holds an indication of whether the value held there is valid
(CYC_CNT_VALID).
Bit 02: Branch Type Field Supported. IA32_LBR_INFO_x[59:56] holds indication of the recorded
operation's branch type (BR_TYPE).
Bits 31 - 03: Reserved.

EDX Bits 31 - 00: Reserved.

Tile Information Main Leaf (EAX = 1DH, ECX = 0)

1DH NOTES:
For sub-leaves of 1DH, they are indexed by the palette id.
Leaf 1DH sub-leaves 2 and above are reserved.

EAX Bits 31-00: max_palette. Highest numbered palette sub-leaf. Value = 1.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Tile Palette 1 Sub-leaf (EAX = 1DH, ECX = 1)

1DH EAX Bits 15-00: Palette 1 total_tile_bytes. Value = 8192.
Bits 31-16: Palette 1 bytes_per_tile. Value = 1024.

EBX Bits 15-00: Palette 1 bytes_per_row. Value = 64.
Bits 31-16: Palette 1 max_names (number of tile registers). Value = 8.

ECX Bits 15-00: Palette 1 max_rows. Value = 16.
Bits 31-16: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

TMUL Information Main Leaf (EAX = 1EH, ECX = 0)

1EH NOTE:
Leaf 1EH sub-leaf 1 and above are reserved.

EAX Bits 31-00: Reserved = 0.

EBX Bits 07-00: tmul_maxk (rows or columns). Value = 16.
Bits 23-08: tmul_maxn (column bytes). Value = 64.
Bits 31-24: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-23

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
V2 Extended Topology Enumeration Leaf

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the exis-
tence of Leaf 1FH and using this if available.
Most of Leaf 1FH output depends on the initial value in ECX.
The EDX output of leaf 1FH is always valid and does not vary with input value in ECX.
Output value in ECX[7:0] always equals input value in ECX[7:0].
Sub-leaf index 0 enumerates SMT level. Each subsequent higher sub-leaf index enumerates a
higher-level topological entity in hierarchical order.
For sub-leaves that return an invalid level-type of 0 in ECX[15:8]; EAX and EBX will return 0.

 If an input value n in ECX returns the invalid level-type of 0 in ECX[15:8], other input values with
ECX > n also return 0 in ECX[15:8].

EAX Bits 04 - 00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level
type*. All logical processors with the same next level ID share current level.
Bits 31 - 05: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input.
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

EDX Bits 31- 00: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.

** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:
0: Invalid.
1: SMT.
2: Core.
3: Module.
4: Tile.
5: Die.
6-255: Reserved.

Processor History Reset Sub-leaf (EAX = 20H, ECX = 0)

20H EAX Reports the maximum number of sub-leaves that are supported in leaf 20H.

EBX Indicates which bits may be set in the IA32_HRESET_ENABLE MSR to enable enhanced hardware
feedback interface history.
Bit 00: Indicates support for both HRESET’s EAX[0] parameter, and IA32_HRESET_ENABLE[0] set by
the OS to enable reset of EHFI history.
Bits 31-01: Reserved for other history reset capabilities.

ECX Reserved.

EDX Reserved.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-24 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Architectural Performance Monitoring Extended Leaf (Output depends on ECX input value)

23H NOTES:
Leaf 23H main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid sub-leaves that are supported in leaf 23H.

EBX Bits 31-00: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (EAX = 23H, ECX = 1)

23H EAX Bits 31-00: General counters bitmap. For each bit n set in this field, the processor supports general-
purpose performance monitoring counter n.

EBX Bits 31-00: Fixed counters bitmap. For each bit m set in this field, the processor supports fixed-
function performance monitoring counter m.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (EAX = 23H, ECX = 3)

23H Architectural Performance Monitoring Events Bitmap. For each bit n set in this field, the processor
supports Architectural Performance Monitoring Event of index n.

EAX Bit 00: Core cycles.
Bit 01: Instructions retired.
Bit 02: Reference cycles.
Bit 03: Last level cache references.
Bit 04: Last level cache misses.
Bit 05: Branch instructions retired.
Bit 06: Branch mispredicts retired.
Bit 07: Topdown slots.
Bit 08: Topdown backend bound.
Bit 09: Topdown bad speculation.
Bit 10: Topdown frontend bound.
Bit 11: Topdown retiring.
Bits 31-12: Reserved.

EBX Bits 31-00: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Unimplemented CPUID Leaf Functions

21H Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is 21H. If the value returned by CPUID.0:EAX (the maximum input value for basic
CPUID information) is at least 21H, 0 is returned in the registers EAX, EBX, ECX, and EDX. Otherwise,
the data for the highest basic information leaf is returned.

40000000H
-

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is in the range 40000000H to 4FFFFFFFH.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-25

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX
ECX
EDX

Reserved
Reserved
Reserved

80000001H EAX
EBX
ECX

Extended Processor Signature and Feature Bits.
Reserved
Bit 00: LAHF/SAHF available in 64-bit mode
Bits 04-01: Reserved
Bit 05: LZCNT available
Bits 07-06: Reserved
Bit 08: PREFETCHW
Bits 31-09: Reserved

EDX Bits 10-00: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 25-21: Reserved = 0
Bit 26: 1-GByte pages are available if 1
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1
Bits 28: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0

80000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

80000005H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Reserved = 0

80000006H EAX
EBX

Reserved = 0
Reserved = 0

ECX

EDX

Bits 07-00: Cache Line size in bytes
Bits 11-08: Reserved
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
Reserved = 0

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
1-26 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0H: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0H, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
ineIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low 4 bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low 4 bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 0H, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register and is processor specific.

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped) 09H - Reserved
02H - 2 ways 0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2** 0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-
leaf 2

80000007H EAX
EBX
ECX
EDX

Reserved = 0
Reserved = 0
Reserved = 0
Bits 07-00: Reserved = 0
Bit 08: Invariant TSC available if 1
Bits 31-09: Reserved = 0

80000008H EAX Virtual/Physical Address size
Bits 07-00: #Physical Address Bits*
Bits 15-08: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX

ECX
EDX

Bits 08-00: Reserved = 0
Bit 09: WBNOINVD is available if 1
Bits 31-10: Reserved = 0
Reserved = 0
Reserved = 0

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported

should come from this field.

Table 1-3. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor
Ref. # 319433-047 1-27

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 11 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 1-1). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 1-4 for available processor type values. Stepping IDs are provided as needed.

NOTE
See "Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 16 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

Figure 1-1. Version Information Returned by CPUID in EAX

Table 1-4. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
1-28 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand

strings for IA-32 processors. More information about this field is provided later in this section.
• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line

flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.
• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the

processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 1-2 and Table 1-5 show encodings for ECX.
• Figure 1-3 and Table 1-6 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.
Ref. # 319433-047 1-29

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Figure 1-2. Feature Information Returned in the ECX Register

Table 1-5. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Intel® Streaming SIMD Extensions 3 (Intel® SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 7, “Safer Mode Extensions Reference.”

7 EST Enhanced Intel SpeedStep® Technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
1-30 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or
shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability. A value of 1 indicates the processor supports the performance and
debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.

25 AES A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return 0.

Table 1-5. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description
Ref. # 319433-047 1-31

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES

Figure 1-3. Feature Information Returned in the EDX Register

Table 1-6. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and
PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
1-32 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of
4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is
implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check
feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB entries
that are common to different processes and need not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported
with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are
encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR and
may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 24, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined duty
cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and
restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

Table 1-6. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
Ref. # 319433-047 1-33

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:
• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction

must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs.
The first member of the family of Pentium 4 processors will return a 01H.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. Table 1-7 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop of
its own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor in
the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates the
value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this package) is
valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the
stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 1-7. Encoding of Cache and TLB Descriptors
Descriptor Value Cache or TLB Description

00H Null descriptor

01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

0CH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

Table 1-6. More on Feature Information Returned in the EDX Register(Continued)

Bit # Mnemonic Description
1-34 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH, Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLB0: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLB0: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-μop, 8-way set associative

71H Trace cache: 16 K-μop, 8-way set associative

72H Trace cache: 32 K-μop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

Table 1-7. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
Ref. # 319433-047 1-35

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Example 1-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed

once with an input value of 2 to retrieve complete information about caches and TLBs.
• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register

contains valid 1-byte descriptors.
• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 1-3.

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

B0H Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

F0H 64-Byte prefetching

F1H 128-Byte prefetching

Table 1-7. Encoding of Cache and TLB Descriptors (Continued)
Descriptor Value Cache or TLB Description
1-36 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter
9, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 1-3.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 1-3.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0H, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 1-3.

When CPUID executes with EAX set to 07H and ECX = n (n ≥ 1 and less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= 0H).EAX), the processor returns information about extended feature flags. See Table
1-3. In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended
feature flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 1-3.

INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 1-3) is greater than Pn 0. See Table 1-3.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 18, “Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT)
Features,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH
before using leaf 0BH.
When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 1-3.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0H, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 1-3.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
Ref. # 319433-047 1-37

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
See Table 1-3. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 1-3.

When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 1-3.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 1-3.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 1-3.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 1-3.

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 1-3.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 1-3.
1-38 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 1-3.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 1-3.

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 1-3.

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table
1-3.

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. See
Table 1-3.

INPUT EAX = 1CH: Returns Last Branch Record Information

When CPUID executes with EAX set to 1CH, the processor returns information about LBRs (the architectural
feature). See Table 1-3.

INPUT EAX = 1DH: Returns Tile Information

When CPUID executes with EAX set to 1DH and ECX = 0H, the processor returns information about tile
architecture. See Table 1-3.

When CPUID executes with EAX set to 1DH and ECX = 1H, the processor returns information about tile palette 1.
See Table 1-3.

INPUT EAX = 1EH: Returns TMUL Information

When CPUID executes with EAX set to 1EH and ECX = 0H, the processor returns information about TMUL
capabilities. See Table 1-3.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 1-3.

INPUT EAX = 20H: Returns Processor History Reset Information

When CPUID executes with EAX set to 20H, the processor returns information about processor history reset. See
Table 1-3.

INPUT EAX = 23H: Returns Architectural Performance Monitoring Extended Information

When CPUID executes with EAX set to 23H, the processor returns architectural performance monitoring extended
information. See Table 1-3.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency
Ref. # 319433-047 1-39

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 16 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 1-4 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 1-8 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 1-4. Determination of Support for the Processor Brand String

Table 1-8. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
 = 0x80000004)

CPUID
Function

Supported

True =
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
1-40 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Extracting the Maximum Processor Frequency from Brand Strings

Figure 1-5 provides an algorithm which software can use to extract the maximum processor operating frequency
from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

Figure 1-5. Algorithm for Extracting Maximum Processor Frequency

Table 1-8. Processor Brand String Returned with Pentium 4 Processor (Continued)

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
Ref. # 319433-047 1-41

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software
can then use this index to locate the brand identification string for the processor in the brand identification table.
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do
not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H,
brand index method is no longer supported. Use brand string method instead.

Table 1-9 shows brand indices that have identification strings associated with them.

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Table 1-9. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III
1-42 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID;
EAX[7:4] := Model;
EAX[11:8] := Family;
EAX[13:12] := Processor type;
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 1-2. *)
EDX := Feature flags; (* See Figure 1-3. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information;
 EBX := Cache and TLB information;
 ECX := Cache and TLB information;

EDX := Cache and TLB information;
BREAK;
EAX = 3H:

EAX := Reserved;
 EBX := Reserved;
 ECX := ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 1-3. *)
EBX := Deterministic Cache Parameters Leaf;

 ECX := Deterministic Cache Parameters Leaf;
EDX := Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 1-3. *)
 EBX := MONITOR/MWAIT Leaf;
 ECX := MONITOR/MWAIT Leaf;

EDX := MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX := Thermal and Power Management Leaf; (* See Table 1-3. *)
Ref. # 319433-047 1-43

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 EBX := Thermal and Power Management Leaf;
 ECX := Thermal and Power Management Leaf;

EDX := Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Leaf; (* See Table 1-3. *);
 EBX := Structured Extended Feature Leaf;
 ECX := Structured Extended Feature Leaf;

EDX := Structured Extended Feature Leaf;
BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 1-3. *)
 EBX := Direct Cache Access Information Leaf;
 ECX := Direct Cache Access Information Leaf;

EDX := Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 1-3. *)
 EBX := Architectural Performance Monitoring Leaf;
 ECX := Architectural Performance Monitoring Leaf;

EDX := Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := Extended Topology Enumeration Leaf;

 ECX := Extended Topology Enumeration Leaf;
EDX := Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Extended State Enumeration Leaf;
 ECX := Processor Extended State Enumeration Leaf;

EDX := Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = FH:

EAX := Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 1-3. *)
1-44 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 EBX := Platform Quality of Service Monitoring Enumeration Leaf;
 ECX := Platform Quality of Service Monitoring Enumeration Leaf;

EDX := Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX := Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 1-3. *)
 EBX := Platform Quality of Service Enforcement Enumeration Leaf;
 ECX := Platform Quality of Service Enforcement Enumeration Leaf;

EDX := Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel SGX Enumeration Leaf;
 ECX := Intel SGX Enumeration Leaf;

EDX := Intel SGX Enumeration Leaf;
BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel Processor Trace Enumeration Leaf;
 ECX := Intel Processor Trace Enumeration Leaf;

EDX := Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Core Crystal Clock Information Leaf; (* See Table 1-3. *)
 EBX := Time Stamp Counter and Core Crystal Clock Information Leaf;
 ECX := Time Stamp Counter and Core Crystal Clock Information Leaf;

EDX := Time Stamp Counter and Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Frequency Information Enumeration Leaf;
 ECX := Processor Frequency Information Enumeration Leaf;

EDX := Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 1-3. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf;
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf;

EDX := System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 1-3. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf;
 ECX :=Deterministic Address Translation Parameters Enumeration Leaf;

EDX := Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 1-3. *)
 EBX := Key Locker Enumeration Leaf;
 ECX := Key Locker Enumeration Leaf;

EDX := Key Locker Enumeration Leaf;
BREAK;
EAX = 1AH:

EAX := Hybrid Information Enumeration Leaf; (* See Table 1-3. *)
Ref. # 319433-047 1-45

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 EBX := Hybrid Information Enumeration Leaf;
 ECX := Hybrid Information Enumeration Leaf;

EDX := Hybrid Information Enumeration Leaf;
BREAK;
EAX = 1BH:

EAX := PCONFIG Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := PCONFIG Information Enumeration Leaf;
 ECX := PCONFIG Information Enumeration Leaf;

EDX := PCONFIG Information Enumeration Leaf;
BREAK;
EAX = 1CH:

EAX := Last Branch Record Information Enumeration Leaf; (* See Table 1-3. *)
EBX := Last Branch Record Information Enumeration Leaf;

 ECX := Last Branch Record Information Enumeration Leaf;
EDX := Last Branch Record Information Enumeration Leaf;

BREAK;
EAX = 1DH:

EAX := Tile Information Enumeration Leaf; (* See Table 1-3. *)
EBX := Tile Information Enumeration Leaf;

 ECX := Tile Information Enumeration Leaf;
EDX := Tile Information Enumeration Leaf;

BREAK;
EAX = 1EH:

EAX := TMUL Information Enumeration Leaf; (* See Table 1-3. *)
EBX := TMUL Information Enumeration Leaf;

 ECX := TMUL Information Enumeration Leaf;
EDX := TMUL Information Enumeration Leaf;

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := V2 Extended Topology Enumeration Leaf;

 ECX := V2 Extended Topology Enumeration Leaf;
EDX := V2 Extended Topology Enumeration Leaf;

BREAK;
EAX = 20H:

EAX := Processor History Reset Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor History Reset Enumeration Leaf;
 ECX := Processor History Reset Enumeration Leaf;

EDX := Processor History Reset Enumeration Leaf;
BREAK;
EAX = 23H:

EAX := Architectural Performance Monitoring Extended Leaf; (* See Table 1-3. *)
 EBX := Architectural Performance Monitoring Extended Leaf;
 ECX := Architectural Performance Monitoring Extended Leaf;

EDX := Architectural Performance Monitoring Extended Leaf;
BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved;
ECX := Reserved;
EDX := Reserved;

BREAK;
EAX = 80000001H:

EAX := Reserved;
1-46 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX := Reserved;
ECX := Extended Feature Bits (* See Table 1-3.*);
EDX := Extended Feature Bits (* See Table 1-3. *);

BREAK;
EAX = 80000002H:

EAX := Processor Brand String;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX = 80000006H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Cache information;
EDX := Reserved = 0;

BREAK;
EAX = 80000007H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX = 80000008H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;
Ref. # 319433-047 1-47

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an
invalid opcode (#UD) exception being generated.§
1-48 Ref. # 319433-047

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.6 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 1-10 and Table 1-11 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 1-10 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword.
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 1-11. Table 1-11
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 1-11. Instruc-
tion classified in Table 1-11 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 1-10. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64

Load+Op (Full Vector
Dword/Qword)

1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32

Load+Op (Half Vector)
1 32bit 0 {1tox} 4 4 4

Table 1-11. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1

1Tuple
16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple1_4X 32bit 0 161 N/A 16 4FMA(PS)

Tuple2
32bit 0 8 8 8

Broadcast (2 elements)
64bit 1 NA 16 16

Tuple4
32bit 0 NA 16 16

Broadcast (4 elements)
64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)
Ref. # 319433-047 1-49

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.7 BFLOAT16 FLOATING-POINT FORMAT
Intel® Deep Learning Boost (Intel® DL Boost) uses bfloat16 format (BF16). Figure 1-6 illustrates
BF16 versus FP16 and FP32.

BF16 has several advantages over FP16:

• It can be seen as a short version of FP32, skipping the least significant 16 bits of mantissa.

• There is no need to support denormals; FP32, and therefore also BF16, offer more than enough range
for deep learning training tasks.

• FP32 accumulation after the multiply is essential to achieve sufficient numerical behavior on an
application level.

• Hardware exception handling is not needed as this is a performance optimization; industry is designing
algorithms around checking inf/NaN.

Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

NOTES:

1. Scalar

Figure 1-6. Comparison of BF16 to FP16 and FP32

Table 1-11. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast(Continued)

TupleType InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

BFP10001

FP32

10 bit mantissa5 bit exps

23 bit mantissa8 bit exps

FP16

7 bit mantissa8 bit expsBF16
1-50 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z

Instructions described in this document follow the general documentation convention established in Intel® 64 and
IA-32 Architectures Software Developer’s Manual Volume 2A. Additionally, some instructions use notation conven-
tions as described below.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

• If for example only the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as
mm:101:bbb.

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the
MODRM.MOD and MODRM.RM fields in the encoding boxes.

2.1 INSTRUCTION SET REFERENCE
Ref. # 319433-047 2-1

INSTRUCTION SET REFERENCE, A-Z
AADD—Atomically Add

Instruction Operand Encoding

Description

This instruction atomically adds the destination operand (first operand) and the source operand (second operand),
and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruction’s
default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-
R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AADD if a stronger ordering is required. However, note that AADD is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AADD instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AADD dest, src

dest := dest + src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

NP 0F38 FC !(11):rrr:bbb

AADD my, ry

A V/V RAO-INT Atomically add my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
2-2 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Ref. # 319433-047 2-3

INSTRUCTION SET REFERENCE, A-Z
AAND—Atomically AND

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise AND operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruction’s
default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-
R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AAND if a stronger ordering is required. However, note that AAND is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AAND instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AAND dest, src

dest := dest AND src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

66 0F38 FC !(11):rrr:bbb

AAND my, ry

A V/V RAO-INT Atomically AND my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
2-4 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Ref. # 319433-047 2-5

INSTRUCTION SET REFERENCE, A-Z
AOR—Atomically OR

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise OR operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruction’s
default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-
R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AOR if a stronger ordering is required. However, note that AOR is not ordered with respect to a younger LFENCE, as
this instruction is not loading data from memory into the processor.
Any attempt to execute the AOR instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AOR dest, src

dest := dest OR src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

F2 0F38 FC !(11):rrr:bbb

AOR my, ry

A V/V RAO-INT Atomically OR my with ry and store the result in my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
2-6 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Ref. # 319433-047 2-7

INSTRUCTION SET REFERENCE, A-Z
AXOR—Atomically XOR

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise XOR operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruction’s
default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers (R8-
R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AXOR if a stronger ordering is required. However, note that AXOR is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AXOR instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AXOR dest, src

dest := dest XOR src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

F3 0F38 FC !(11):rrr:bbb

AXOR my, ry

A V/V RAO-INT Atomically XOR my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
2-8 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Ref. # 319433-047 2-9

INSTRUCTION SET REFERENCE, A-Z
CMPccXADD—Compare and Add if Condition is Met
Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 E6 !(11):rrr:bbb
CMPBEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If below or equal (CF=1 or ZF=1),
add value from r32 (third operand) to m32 and
write new value in m32. The second operand is
always updated with the original value from
m32.

VEX.128.66.0F38.W1 E6 !(11):rrr:bbb
CMPBEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If below or equal (CF=1 or ZF=1),
add value from r64 (third operand) to m64 and
write new value in m64. The second operand is
always updated with the original value from
m64.

VEX.128.66.0F38.W0 E2 !(11):rrr:bbb
CMPBXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If below (CF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E2 !(11):rrr:bbb
CMPBXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If below (CF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 EE !(11):rrr:bbb
CMPLEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If less or equal (ZF=1 or SF≠OF),
add value from r32 (third operand) to m32 and
write new value in m32. The second operand is
always updated with the original value from
m32.

VEX.128.66.0F38.W1 EE !(11):rrr:bbb
CMPLEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If less or equal (ZF=1 or SF≠OF),
add value from r64 (third operand) to m64 and
write new value in m64. The second operand is
always updated with the original value from
m64.

VEX.128.66.0F38.W0 EC !(11):rrr:bbb
CMPLXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If less (SF≠OF), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EC !(11):rrr:bbb
CMPLXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If less (SF≠OF), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E7 !(11):rrr:bbb
CMPNBEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not below or equal (CF=0 and
ZF=0), add value from r32 (third operand) to
m32 and write new value in m32. The second
operand is always updated with the original
value from m32.
2-10 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
VEX.128.66.0F38.W1 E7 !(11):rrr:bbb
CMPNBEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not below or equal (CF=0 and
ZF=0), add value from r64 (third operand) to
m64 and write new value in m64. The second
operand is always updated with the original
value from m64.

VEX.128.66.0F38.W0 E3 !(11):rrr:bbb
CMPNBXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not below (CF=0), add value
from r32 (third operand) to m32 and write new
value in m32. The second operand is always
updated with the original value from m32.

VEX.128.66.0F38.W1 E3 !(11):rrr:bbb
CMPNBXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not below (CF=0), add value
from r64 (third operand) to m64 and write new
value in m64. The second operand is always
updated with the original value from m64.

VEX.128.66.0F38.W0 EF !(11):rrr:bbb
CMPNLEXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not less or equal (ZF=0 and
SF=OF), add value from r32 (third operand) to
m32 and write new value in m32. The second
operand is always updated with the original
value from m32.

VEX.128.66.0F38.W1 EF !(11):rrr:bbb
CMPNLEXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not less or equal (ZF=0 and
SF=OF), add value from r64 (third operand) to
m64 and write new value in m64. The second
operand is always updated with the original
value from m64.

VEX.128.66.0F38.W0 ED !(11):rrr:bbb
CMPNLXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not less (SF=OF), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 ED !(11):rrr:bbb
CMPNLXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not less (SF=OF), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E1 !(11):rrr:bbb
CMPNOXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not overflow (OF=0), add value
from r32 (third operand) to m32 and write new
value in m32. The second operand is always
updated with the original value from m32.

VEX.128.66.0F38.W1 E1 !(11):rrr:bbb
CMPNOXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not overflow (OF=0), add value
from r64 (third operand) to m64 and write new
value in m64. The second operand is always
updated with the original value from m64.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description
Ref. # 319433-047 2-11

INSTRUCTION SET REFERENCE, A-Z
VEX.128.66.0F38.W0 EB !(11):rrr:bbb
CMPNPXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not parity (PF=0), add value
from r32 (third operand) to m32 and write new
value in m32. The second operand is always
updated with the original value from m32.

VEX.128.66.0F38.W1 EB !(11):rrr:bbb
CMPNPXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not parity (PF=0), add value
from r64 (third operand) to m64 and write new
value in m64. The second operand is always
updated with the original value from m64.

VEX.128.66.0F38.W0 E9 !(11):rrr:bbb
CMPNSXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not sign (SF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E9 !(11):rrr:bbb
CMPNSXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not sign (SF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E5 !(11):rrr:bbb
CMPNZXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If not zero (ZF=0), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E5 !(11):rrr:bbb
CMPNZXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If not zero (ZF=0), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E0 !(11):rrr:bbb
CMPOXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If overflow (OF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E0 !(11):rrr:bbb
CMPOXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If overflow (OF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 EA !(11):rrr:bbb
CMPPXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If parity (PF=1), add value from
r32 (third operand) to m32 and write new value
in m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 EA !(11):rrr:bbb
CMPPXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If parity (PF=1), add value from
r64 (third operand) to m64 and write new value
in m64. The second operand is always updated
with the original value from m64.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description
2-12 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding

Description

This instruction compares the value from memory with the value of the second operand. If the specified condition
is met, then the processor will add the third operand to the memory operand and write it into memory, else the
memory is unchanged by this instruction.
This instruction must have MODRM.MOD equal to 0, 1, or 2. The value 3 for MODRM.MOD is reserved and will cause
an invalid opcode exception (#UD).
The second operand is always updated with the original value of the memory operand. The EFLAGS conditions are
updated from the results of the comparison.The instruction uses an implicit lock. This instruction does not permit
the use of an explicit lock prefix.

Operation

CMPCCXADD srcdest1, srcdest2, src3
tmp1 := load lock srcdest1
tmp2 := tmp1 + src3
EFLAGS.CS,OF,SF,ZF,AF,PF := CMP tmp1, srcdest2
IF <condition>:

srcdest1 := store unlock tmp2
ELSE

srcdest1 := store unlock tmp1
srcdest2 :=tmp1

Flags Affected

The EFLAGS conditions are updated from the results of the comparison.

VEX.128.66.0F38.W0 E8 !(11):rrr:bbb
CMPSXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If sign (SF=1), add value from r32
(third operand) to m32 and write new value in
m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E8 !(11):rrr:bbb
CMPSXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If sign (SF=1), add value from r64
(third operand) to m64 and write new value in
m64. The second operand is always updated
with the original value from m64.

VEX.128.66.0F38.W0 E4 !(11):rrr:bbb
CMPZXADD m32, r32, r32

A V/N.E. CMPCCXADD Compare value in r32 (second operand) with
value in m32. If zero (ZF=1), add value from r32
(third operand) to m32 and write new value in
m32. The second operand is always updated
with the original value from m32.

VEX.128.66.0F38.W1 E4 !(11):rrr:bbb
CMPZXADD m64, r64, r64

A V/N.E. CMPCCXADD Compare value in r64 (second operand) with
value in m64. If zero (ZF=1), add value from r64
(third operand) to m64 and write new value in
m64. The second operand is always updated
with the original value from m64.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r, w) ModRM:reg (r, w) VEX.vvvv (r) N/A

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description
Ref. # 319433-047 2-13

INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions

None.

Exceptions
Exceptions Type 14. See Table 2-1, “Type 14 Class Exception Conditions”.

Table 2-1. Type 14 Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X Only supported in 64-bit mode.

X If any LOCK, REX, F2, F3, or 66 prefixes precede a VEX prefix.

X If any corresponding CPUID feature flag is ‘0’.

Stack, #SS(0) X If a memory address referencing the SS segment is in a non-canonical form.

General Protec-
tion, #GP(0)

X If not naturally aligned (4/8 bytes).

X If the memory address is in a non-canonical form.

Page Fault
#PF(fault-code)

X If a page fault occurs.
2-14 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
RDMSRLIST—Read List of Model Specific Registers

Instruction Operand Encoding

Description

This instruction reads a software-provided list of up to 64 MSRs and stores their values in memory.
RDMSRLIST takes three implied input operands:
• RSI: Linear address of a table of MSR addresses (8 bytes per address).
• RDI: Linear address of a table into which MSR data is stored (8 bytes per MSR).
• RCX: 64-bit bitmask of valid bits for the MSRs. Bit 0 is the valid bit for entry 0 in each table, etc.
For each RCX bit [n] from 0 to 63, if RCX[n] is 1, RDMSRLIST will read the MSR specified at entry [n] in the RSI
table and write it out to memory at the entry [n] in the RDI table.
This implies a maximum of 64 MSRs that can be processed by this instruction. The processor will clear RCX[n] after
it finishes handling that MSR. Similar to repeated string operations, RDMSRLIST supports partial completion for
interrupts, exceptions, and traps. In these situations, the RIP register saved will point to the RDMSRLIST instruc-
tion while the RCX register will have cleared bits corresponding to all completed iterations.
This instruction must be executed at privilege level 0; otherwise, a general protection exception #GP(0) is gener-
ated. This instruction performs MSR specific checks and respects the VMX MSR VM-execution controls in the same
manner as RDMSR.
Although RDMSRLIST accesses the entries in the two tables in order, the actual reads of the MSRs may be
performed out of order: for table entries m < n, the processor may read the MSR for entry n before reading the
MSR for entry m. (This may be true also for a sequence of executions of RDMSR.) Ordering is guaranteed if the
address of the IA32_BARRIER MSR (2FH) appears in the table of MSR addresses. Specifically, if IA32_BARRIER
appears at entry m, then the MSR read for any entry n with n > m will not occur until (1) all instructions prior to
RDMSRLIST have completed locally; and (2) MSRs have been read for all table entries before entry m.
The processor is allowed to (but not required to) “load ahead” in the list. Examples:
• Use old memory type or TLB translation for loads/stores to list memory despite an MSR written by a previous

iteration changing MTRR or invalidating TLBs.
• Cause a page fault or EPT violation for a memory access to an entry > “n” in MSR address or data tables,

despite the processor only having read or written “n” MSRs.1

Virtualization Behavior−VM Exit Causes

Like RDMSR, the RDMSRLIST instruction executed in VMX non-root operation causes a VM exit if any of the
following are true:
• The “use MSR bitmaps” VM-execution control is 0.
• The value of MSR address is not in the ranges 00000000H–00001FFFH and C0000000H–C0001FFFH.
• The value of MSR address is in the range 00000000H–00001FFFH and bit n in read bitmap for low MSRs is 1,

where n is the value of the MSR address.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature Flag Description

F2 0F 01 C6

RDMSRLIST

ZO V/N.E. MSRLIST Read the requested list of MSRs, and store
the read values to memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1. For example, the processor may take a page fault due to a linear address for the 10th entry in the MSR address table despite only
having completed the MSR writes up to entry 5.
Ref. # 319433-047 2-15

INSTRUCTION SET REFERENCE, A-Z
• The value of ECX is in the range C0000000H–C0001FFFH and bit n in read bitmap for high MSRs is 1, where n
is the value of the MSR address & 00001FFFH.

A VM exit for the above reasons for the RDMSRLIST instruction will specify exit reason 78 (decimal). The exit qual-
ification is set to the MSR address causing the VM exit if “use MSR bitmaps” VM-execution control is 1. If “use MSR
bitmaps” VM-execution control is 0, then the VM-exit qualification will be 0.
If software wants to emulate a single iteration of RDMSRLIST after a VM exit, it can use the exit qualification to
identify the MSR. Such software will need to write to the table of data. It can calculate the guest-linear address of
the table entry to write by using the values of RDI (the guest-linear address of the table) and RCX (the lowest bit
set in RCX identifies the specific table entry.

Virtualization Behavior−Changed Behavior in Non-Root Operation

The previous section identifies when executions of the RDMSRLIST instruction cause VM exits. Under the following
situations, a #UD will occur instead of a VM exit or a fault due to CPL 0:
• The “Enable MSRLIST Instructions” VM-execution control is 0.
• The “Activate tertiary controls” VM-execution control is 0.
If that does not occur and there is no fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified
for certain values of MSR address in the same manner as RDMSR for a read of the same MSR.

Operation

WHILE (RCX != 0) {

MSR_index = TZCNT(RCX)

MSR_address = mem[RSI + (MSR_index * 8)]

VM exit if specified by VM-execution controls (for specified MSR_address)

#GP(0) if MSR_address[61:32] !=0

#GP(0) if MSR_address is not accessible for RDMSR

mem[RDI + (MSR_index * 8)]) = RDMSR (MSR_address)

Clear RCX [MSR_index]

Take any pending interrupts/traps

}

Flags Affected

None.

Protected Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The RDMSRLIST instruction is not recognized in compatibility mode.
2-16 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If RSI [2:0] ≠ 0 OR RDI [2:0] ≠ 0.
If an execution of RDMSR from a specified MSR would generate a general protection exception
#GP(0).

#UD If the LOCK prefix is used.
If not in 64-bit mode.
If CPUID.(EAX=07H, ECX=01H):EAX.MSRLIST[bit 27] = 0.
Ref. # 319433-047 2-17

INSTRUCTION SET REFERENCE, A-Z
VBCSTNEBF162PS—Load BF16 Element and Convert to FP32 Element With Broadcast

Instruction Operand Encoding

Description

This instruction loads one BF16 element from memory, converts it to FP32, and broadcasts it to a SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Denormal BF16 input operands are treated as zeros (DAZ). Since any BF16 number can be represented in FP32,
the conversion result is exact and no rounding is needed.

Operation

VBCSTNEBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
tmp.dword[i].word[0] = src.word[0] // reads 16b from memory

FOR i in range(0, KL):
dest.dword[i] = make_fp32(TMP.dword[i].word[0])

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 5.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 B1 !(11):rrr:bbb
VBCSTNEBF162PS xmm1, m16

A V/V AVX-NE-CONVERT Load one BF16 floating-point element from
m16, convert to FP32 and store result in
xmm1.

VEX.256.F3.0F38.W0 B1 !(11):rrr:bbb
VBCSTNEBF162PS ymm1, m16

A V/V AVX-NE-CONVERT Load one BF16 floating-point element from
m16, convert to FP32 and store result in
ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
2-18 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
VBCSTNESH2PS—Load FP16 Element and Convert to FP32 Element with Broadcast

Instruction Operand Encoding

Description

This instruction loads one FP16 element from memory, converts it to FP32, and broadcasts it to a SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation

VBCSTNESH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
tmp.dword[i].word[0] = src.word[0] // read 16b from memory

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(tmp.dword[i].word[0]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exception Type 5.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 B1 !(11):rrr:bbb
VBCSTNESH2PS xmm1, m16

A V/V AVX-NE-CONVERT Load one FP16 element from m16, convert to
FP32, and store result in xmm1.

VEX.256.66.0F38.W0 B1 !(11):rrr:bbb
VBCSTNESH2PS ymm1, m16

A V/V AVX-NE-CONVERT Load one FP16 element from m16, convert to
FP32, and store result in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Ref. # 319433-047 2-19

INSTRUCTION SET REFERENCE, A-Z
VCVTNEEBF162PS—Convert Even Elements of Packed BF16 Values to FP32 Values

Instruction Operand Encoding

Description

This instruction loads packed BF16 elements from memory, converts the even elements to FP32, and writes the
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Denormal BF16 input operands are treated as zeros (DAZ). Since any BF16 number can be represented in FP32,
the conversion result is exact and no rounding is needed.

Operation

VCVTNEEBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = make_fp32(src.dword[i].word[0])

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exception Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 B0 !(11):rrr:bbb
VCVTNEEBF162PS xmm1, m128

A V/V AVX-NE-CONVERT Convert even elements of packed BF16 values
from m128 to FP32 values and store in xmm1.

VEX.256.F3.0F38.W0 B0 !(11):rrr:bbb
VCVTNEEBF162PS ymm1, m256

A V/V AVX-NE-CONVERT Convert even elements of packed BF16 values
from m256 to FP32 values and store in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
2-20 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
VCVTNEEPH2PS—Convert Even Elements of Packed FP16 Values to FP32 Values

Instruction Operand Encoding

Description

This instruction loads packed FP16 elements from memory, converts the even elements to FP32, and writes the
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation

VCVTNEEPH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(src.dword[i].word[0]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exception Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 B0 !(11):rrr:bbb
VCVTNEEPH2PS xmm1, m128

A V/V AVX-NE-CONVERT Convert even elements of packed FP16 values
from m128 to FP32 values and store in xmm1.

VEX.256.66.0F38.W0 B0 !(11):rrr:bbb
VCVTNEEPH2PS ymm1, m256

A V/V AVX-NE-CONVERT Convert even elements of packed FP16 values
from m256 to FP32 values and store in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Ref. # 319433-047 2-21

INSTRUCTION SET REFERENCE, A-Z
VCVTNEOBF162PS—Convert Odd Elements of Packed BF16 Values to FP32 Values

Instruction Operand Encoding

Description

This instruction loads packed BF16 elements from memory, converts the odd elements to FP32, and writes the
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Denormal BF16 input operands are treated as zeros (DAZ). Since any BF16 number can be represented in FP32,
the conversion result is exact and no rounding is needed.

Operation

VCVTNEOBF162PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = make_fp32(src.dword[i].word[1])

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exception Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 B0 !(11):rrr:bbb
VCVTNEOBF162PS xmm1, m128

A V/V AVX-NE-CONVERT Convert odd elements of packed BF16 values
from m128 to FP32 values and store in xmm1.

VEX.256.F2.0F38.W0 B0 !(11):rrr:bbb
VCVTNEOBF162PS ymm1, m256

A V/V AVX-NE-CONVERT Convert odd elements of packed BF16 values
from m256 to FP32 values and store in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
2-22 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
VCVTNEOPH2PS—Convert Odd Elements of Packed FP16 Values to FP32 Values

Instruction Operand Encoding

Description

This instruction loads packed FP16 elements from memory, converts the odd elements to FP32, and writes the
result to the destination SIMD register.
This instruction does not generate floating-point exceptions and does not consult or update MXCSR.
Input FP16 denormals are converted to normal FP32 numbers and not treated as zero. Since any FP16 number can
be represented in FP32, the conversion result is exact and no rounding is needed.

Operation

VCVTNEOPH2PS dest, src (VEX encoded version)
VL = (128, 256)
KL = VL/32

FOR i in range(0, KL):
dest.dword[i] = convert_fp16_to_fp32(src.dword[i].word[1]) //SAE

DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exception Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.0F38.W0 B0 !(11):rrr:bbb
VCVTNEOPH2PS xmm1, m128

A V/V AVX-NE-CONVERT Convert odd elements of packed FP16 values
from m128 to FP32 values and store in xmm1.

VEX.256.NP.0F38.W0 B0 !(11):rrr:bbb
VCVTNEOPH2PS ymm1, m256

A V/V AVX-NE-CONVERT Convert odd elements of packed FP16 values
from m256 to FP32 values and store in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Ref. # 319433-047 2-23

INSTRUCTION SET REFERENCE, A-Z
VCVTNEPS2BF16—Convert Packed Single-Precision Floating-Point Values to BF16 Values

Instruction Operand Encoding

Description

This instruction loads packed FP32 elements from a SIMD register or memory, converts the elements to BF16, and
writes the result to the destination SIMD register.
The upper bits of the destination register beyond the down-converted BF16 elements are zeroed.
This instruction uses “Round to nearest (even)” rounding mode. Output denormals are always flushed to zero and
input denormals are always treated as zero. MXCSR is not consulted nor updated.

Operation

define convert_fp32_to_bfloat16(x):
IF x is zero or denormal:

dest[15] := x[31] // sign preserving zero (denormal go to zero)
dest[14:0] := 0

ELSE IF x is infinity:
dest[15:0] := x[31:16]

ELSE IF x is nan:
dest[15:0] := x[31:16] // truncate and set msb of the mantisa force qnan
dest[6] := 1

ELSE // normal number
lsb := x[16]
rounding_bias := 0x00007FFF + lsb
temp[31:0] := x[31:0] + rounding_bias // integer add
dest[15:0] := temp[31:16]

return dest

VCVTNEPS2BF16 dest, src (VEX encoded version)
VL = (128,256)
KL = VL/16

FOR i := 0 to KL/2-1:
t := src.fp32[i]
dest.word[i] := convert_fp32_to_bfloat16(t)

DEST[MAXVL-1:VL/2] := 0

Flags Affected

None.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1, xmm2/m128

A V/V AVX-NE-CONVERT Convert packed single-precision floating-point
values from xmm2/m128 to packed BF16
values and store in xmm1.

VEX.256.F3.0F38.W0 72 /r
VCVTNEPS2BF16 xmm1, ymm2/m256

A V/V AVX-NE-CONVERT Convert packed single-precision floating-point
values from ymm2/m256 to packed BF16
values and store in xmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
2-24 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
Ref. # 319433-047 2-25

INSTRUCTION SET REFERENCE, A-Z
VPDPB[SU,UU,SS]D[,S]—Multiply and Add Unsigned and Signed Bytes With and Without
Saturation

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 50 /r
VPDPBSSD xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
xmm3/m128 with corresponding signed bytes
of xmm2, summing those products and adding
them to the doubleword result in xmm1.

VEX.256.F2.0F38.W0 50 /r
VPDPBSSD ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
ymm3/m256 with corresponding signed bytes
of ymm2, summing those products and adding
them to the doubleword result in ymm1.

VEX.128.F2.0F38.W0 51 /r
VPDPBSSDS xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
xmm3/m128 with corresponding signed bytes
of xmm2, summing those products and adding
them to the doubleword result, with signed
saturation in xmm1.

VEX.256.F2.0F38.W0 51 /r
VPDPBSSDS ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
ymm3/m256 with corresponding signed bytes
of ymm2, summing those products and adding
them to the doubleword result, with signed
saturation in ymm1.

VEX.128.F3.0F38.W0 50 /r
VPDPBSUD xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
xmm3/m128 with corresponding unsigned
bytes of xmm2, summing those products and
adding them to doubleword result in xmm1.

VEX.256.F3.0F38.W0 50 /r
VPDPBSUD ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
ymm3/m256 with corresponding unsigned
bytes of ymm2, summing those products and
adding them to doubleword result in ymm1.

VEX.128.F3.0F38.W0 51 /r
VPDPBSUDS xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
xmm3/m128 with corresponding unsigned
bytes of xmm2, summing those products and
adding them to doubleword result, with signed
saturation in xmm1.

VEX.256.F3.0F38.W0 51 /r
VPDPBSUDS ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of signed bytes in
ymm3/m256 with corresponding unsigned
bytes of ymm2, summing those products and
adding them to doubleword result, with signed
saturation in ymm1.

VEX.128.NP.0F38.W0 50 /r
VPDPBUUD xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in
xmm3/m128 with corresponding unsigned
bytes of xmm2, summing those products and
adding them to doubleword result in xmm1.
2-26 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Instruction Operand Encoding

Description

Multiplies the individual bytes of the first source operand by the corresponding bytes of the second source operand,
producing intermediate word results. The word results are then summed and accumulated in the destination dword
element size operand.
For unsigned saturation, when an individual result value is beyond the range of an unsigned doubleword (that is,
greater than FFFFF_FFFFH), the saturated unsigned doubleword integer value of FFFF_FFFFH is stored in the
doubleword destination.
For signed saturation, when an individual result is beyond the range of a signed doubleword integer (that is,
greater than 7FFF_FFFFH or less than 8000_0000H), the saturated value of 7FFF_FFFFH or 8000_0000H, respec-
tively, is written to the destination operand.

VEX.256.NP.0F38.W0 50 /r
VPDPBUUD ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in
ymm3/m256 with corresponding unsigned
bytes of ymm2, summing those products and
adding them to doubleword result in ymm1.

VEX.128.NP.0F38.W0 51 /r
VPDPBUUDS xmm1, xmm2,
xmm3/m128

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in
xmm3/m128 with corresponding unsigned
bytes of xmm2, summing those products and
adding them to the doubleword result, with
unsigned saturation in xmm1.

VEX.256.NP.0F38.W0 51 /r
VPDPBUUDS ymm1, ymm2,
ymm3/m256

A V/V AVX-VNNI-INT8 Multiply groups of 4 pairs of unsigned bytes in
ymm3/m256 with corresponding unsigned
bytes of ymm2, summing those products and
adding them to the doubleword result, with
unsigned saturation in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description
Ref. # 319433-047 2-27

INSTRUCTION SET REFERENCE, A-Z
Operation

VPDPB[SU,UU,SS]D[,S] dest, src1, src2 (VEX encoded version)
VL = (128, 256)
KL = VL/32

ORIGDEST := DEST
FOR i := 0 TO KL-1:

IF *src1 is signed*:
src1extend := SIGN_EXTEND // SU, SS

ELSE:
src1extend := ZERO_EXTEND // UU

IF *src2 is signed*:
src2extend := SIGN_EXTEND // SS

ELSE:
src2extend := ZERO_EXTEND // UU, SU

p1word := src1extend(SRC1.byte[4*i+0]) * src2extend(SRC2.byte[4*i+0])
p2word := src1extend(SRC1.byte[4*i+1]) * src2extend(SRC2.byte[4*i+1])
p3word := src1extend(SRC1.byte[4*i+2]) * src2extend(SRC2.byte[4*i+2])
p4word := src1extend(SRC1.byte[4*i+3]) * src2extend(SRC2.byte[4*i+3])

IF *saturating*:
IF *UU instruction version*:

DEST.dword[i] := UNSIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)
ELSE:

DEST.dword[i] := SIGNED_DWORD_SATURATE(ORIGDEST.dword[i] + p1word + p2word + p3word + p4word)
ELSE:

DEST.dword[i] := ORIGDEST.dword[i] + p1word + p2word + p3word + p4word

DEST[MAXVL-1:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.
2-28 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the High 52-Bit
Products to Qword Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second operand)
with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the third
operand) to form packed 104-bit intermediate results. The high 52-bit, unsigned integer of each 104-bit product is
added to the corresponding qword unsigned integer of the destination operand (the first operand).

Operation

VPMADDHUQ srcdest, src1, src2 (VEX version)
VL = (128,256)
KL = VL/64

FOR i in 0 .. KL-1:
temp128 := zeroextend64(src1.qword[i][51:0]) *zeroextend64(src2.qword[i][51:0])
srcdest.qword[i] := srcdest.qword[i] +zeroextend64(temp128[103:52])

srcdest[MAXVL:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W1 B5 /r
VPMADD52HUQ xmm1, xmm2,
xmm3/m128

A V/V AVX-IFMA Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the high 52 bits of the
104-bit product to the qword unsigned
integers in xmm1.

VEX.256.66.0F38.W1 B5 /r
VPMADD52HUQ ymm1, ymm2,
ymm3/m256

A V/V AVX-IFMA Multiply unsigned 52-bit integers in ymm2 and
ymm3/m256 and add the high 52 bits of the
104-bit product to the qword unsigned
integers in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
Ref. # 319433-047 2-29

INSTRUCTION SET REFERENCE, A-Z
VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the Low 52-Bit Products
to Qword Accumulators

Instruction Operand Encoding

Description

Multiplies packed unsigned 52-bit integers in each qword element of the first source operand (the second operand)
with the packed unsigned 52-bit integers in the corresponding elements of the second source operand (the third
operand) to form packed 104-bit intermediate results. The low 52-bit, unsigned integer of each 104-bit product is
added to the corresponding qword unsigned integer of the destination operand (the first operand).

Operation

VPMADDLUQ srcdest, src1, src2 (VEX version)
VL = (128,256)
KL = VL/64

FOR i in 0 .. KL-1:
temp128 := zeroextend64(src1.qword[i][51:0]) *zeroextend64(src2.qword[i][51:0])
srcdest.qword[i] := srcdest.qword[i] +zeroextend64(temp128[51:0])

srcdest[MAXVL:VL] := 0

SIMD Floating-Point Exceptions

None.

Other Exceptions

See Exceptions Type 4.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W1 B4 /r
VPMADD52LUQ xmm1, xmm2,
xmm3/m128

A V/V AVX-IFMA Multiply unsigned 52-bit integers in xmm2 and
xmm3/m128 and add the low 52 bits of the
104-bit product to the qword unsigned
integers in xmm1.

VEX.256.66.0F38.W1 B4 /r
VPMADD52LUQ ymm1, ymm2,
ymm3/m256

A V/V AVX-IFMA Multiply unsigned 52-bit integers in ymm2 and
ymm3/m256 and add the low 52 bits of the
104-bit product to the qword unsigned
integers in ymm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) N/A
2-30 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
WRMSRLIST—Write List of Model Specific Registers

Instruction Operand Encoding

Description

This instruction writes a software provided list of up to 64 MSRs with values loaded from memory.

WRMSRLIST takes three implied input operands:
• RSI: Linear address of a table of MSR addresses (8 bytes per address).
• RDI: Linear address of a table from which MSR data is loaded (8 bytes per MSR).
• RCX: 64-bit bitmask of valid bits for the MSRs. Bit 0 is the valid bit for entry 0 in each table, etc.

For each RCX bit [n] from 0 to 63, if RCX[n] is 1, WRMSRLIST will write the MSR specified at entry [n] in the RSI
table with the value read from memory at the entry [n] in the RDI table.

This implies a maximum of 64 MSRs that can be processed by this instruction. The processor will clear RCX[n] after
it finishes handling that MSR. Similar to repeated string operations, WRMSRLIST supports partial completion for
interrupts, exceptions, and traps. In these situations, the RIP register saved will point to the MSRLIST instruction
while the RCX register will have cleared bits corresponding to all completed iterations.

This instruction must be executed at privilege level 0; otherwise, a general protection exception #GP(0) is gener-
ated. This instruction performs MSR specific checks and respects the VMX MSR VM-execution controls in the same
manner as WRMSR.
Like WRMSRNS (and unlike WRMSR), WRMSRLIST is not defined as a serializing instruction (see “Serializing
Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This
means that software should not rely on WRMSRLIST to drain all buffered writes to memory before the next instruc-
tion is fetched and executed. For implementation reasons, some processors may serialize when writing certain
MSRs, even though that is not guaranteed.
Like WRMSR and WRMSRNS, WRMSRLIST will ensure that all operations before the WRMSRLIST do not use the new
MSR value and that all operations after the WRMSRLIST do use the new value. An exception to this rule is certain
store-related performance monitor events that only count when those stores are drained to memory. Since
WRMSRLIST is not a serializing instruction, if software is using WRMSRLIST to change the controls for such perfor-
mance monitor events, then stores before the WRMSRLIST may be counted with new MSR values written by
WRMSRLIST. Software can insert the SERIALIZE instruction before the WRMSRLIST if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same
TLB invalidation when written by WRMSRLIST.
In places where WRMSR is being used as a proxy for a serializing instruction, a different serializing instruction can
be used (e.g., SERIALIZE).
WRMSRLIST writes MSRs in order, which means the processor will ensure that an MSR in iteration “n” will be
written only after previous iterations (“n-1”). If the older MSR writes had a side effect that affects the behavior of
the next MSR, the processor will ensure that side effect is honored.
The processor is allowed to (but not required to) “load ahead” in the list. Examples:
• Use old memory type or TLB translation for loads from list memory despite an MSR written by a previous

iteration changing MTRR or invalidating TLBs.
• Cause a page fault or EPT violation for a memory access to an entry > “n” in MSR address or data tables,

despite the processor only having read or written “n” MSRs.1

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature Flag Description

F3 0F 01 C6

WRMSRLIST

ZO V/N.E. MSRLIST Write requested list of MSRs with the values
specified in memory.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
Ref. # 319433-047 2-31

INSTRUCTION SET REFERENCE, A-Z
Virtualization Behavior−VM Exit Causes

Like WRMSR, the WRMSRLIST instruction executed in VMX non-root operation causes a VM exit if any of the
following are true:
• The “use MSR bitmaps” VM-execution control is 0.
• The value of MSR address is not in the ranges 00000000H–00001FFFH and C0000000H–C0001FFFH.
• The value of MSR address is in the range 00000000H–00001FFFH and bit n in read bitmap for low MSRs is 1,

where n is the value of the MSR address.
• The value of ECX is in the range C0000000H–C0001FFFH and bit n in read bitmap for high MSRs is 1, where n

is the value of the MSR address & 00001FFFH.
A VM exit for the above reasons for the WRMSRLIST instruction will specify exit reason 79 (decimal). The exit qual-
ification is set to the MSR address causing the VM exit if “use MSR bitmaps” VM-execution control is 1. If “use MSR
bitmaps” VM-execution control is 0, then the VM-exit qualification will be 0.
If software wants to emulate a single iteration of WRMSRLIST after a VM exit, it can use the exit qualification to
identify the MSR. Such software will need to read from the table of data. It can calculate the guest-linear address
of the table entry to read by using the values of RDI (the guest-linear address of the table) and RCX (the lowest bit
set in RCX identifies the specific table entry).

Virtualization Behavior−Changed Behavior in Non-Root Operation

The previous section identifies when executions of the WRMSRLIST instruction cause VM exits. Under the following
situations, a #UD will occur instead of a VM exit or a fault due to CPL 0:
• The “Enable MSRLIST Instructions” VM-execution control is 0.
• The “Activate tertiary controls” VM-execution control is 0.
If that does not occur and there is no fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified
for certain values of MSR address in the same manner as WRMSR for a read of the same MSR.

Operation

WHILE (RCX != 0) {

MSR_index = TZCNT(RCX)

MSR_address = mem[RSI + (MSR_index * 8)]

MSR_data = mem[RDI + (MSR_index * 8)]

VM exit if specified by VM-execution controls (for specified MSR_address)

#GP(0) if MSR_address[61:32] !=0

#GP(0) if MSR_address is not accessible for WRMSR

#GP(0) if MSR_data has reserved bits set for MSR

#GP(0) for any other MSR_address specific checks

WRMSRNS (MSR_address) = MSR_data

Clear RCX [MSR_index]

Take any pending interrupts/traps

}

Flags Affected

None.

1. For example, the processor may take a page fault due to a linear address for the 10th entry in the MSR address table despite only
having completed the MSR writes up to entry 5.
2-32 Ref. # 319433-047

INSTRUCTION SET REFERENCE, A-Z
Protected Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in protected mode.

Real-Address Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The WRMSRLIST instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If RSI [2:0] ≠ 0 OR RDI [2:0] ≠ 0.
If an execution of WRMSR to a specified MSR with a specified value would generate a general-
protection exception (#GP(0)).

#UD If the LOCK prefix is used.
If not in 64-bit mode.
If CPUID.(EAX=07H, ECX=01H):EAX.MSRLIST[bit 27] = 0.
Ref. # 319433-047 2-33

INSTRUCTION SET REFERENCE, A-Z
WRMSRNS—Non-Serializing Write to Model Specific Register

Instruction Operand Encoding

Description

WRMSNRS is an instruction that behaves exactly like WRMSR, with the only difference being that it is not a serial-
izing instruction by default.
Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified in the ECX register.
The contents of the EDX register are copied to the high-order 32 bits of the selected MSR and the contents of the
EAX register are copied to the low-order 32 bits of the MSR. The high-order 32 bits of RAX, RCX, and RDX are
ignored.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) is generated.
Unlike WRMSR, WRMSRNS is not defined as a serializing instruction (see “Serializing Instructions” in Chapter 9 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This means that software should
not rely on it to drain all buffered writes to memory before the next instruction is fetched and executed. For imple-
mentation reasons, some processors may serialize when writing certain MSRs, even though that is not guaranteed.
Like WRMSR, WRMSRNS will ensure that all operations before it do not use the new MSR value and that all opera-
tions after the WRMSRNS do use the new value. An exception to this rule is certain store related performance
monitor events that only count when those stores are drained to memory. Since WRMSRNS is not a serializing
instruction, if software is using WRMSRNS to change the controls for such performance monitor events, then stores
before the WRMSRMS may be counted with new MSR values written by WRMSRNS. Software can insert the SERI-
ALIZE instruction before the WRMSRNS if so desired.
Those MSRs that cause a TLB invalidation when they are written via WRMSR (e.g., MTRRs) will also cause the same
TLB invalidation when written by WRMSRNS.
In order to improve performance, software may replace WRMSR with WRMSRNS. In places where WRMSR is being
used as a proxy for a serializing instruction, a different serializing instruction can be used (e.g., SERIALIZE).

Operation

MSR[ECX] := EDX:EAX;

Flags Affected

None.

Opcode/
Instruction

Op/
En

64/32 Bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C6

WRMSRNS

ZO V/V WRMSRNS Write the value in EDX:EAX to MSR specified by
ECX.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
2-34 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
CHAPTER 3
INTEL® AMX INSTRUCTION SET REFERENCE, A-Z

NOTES
The following Intel® AMX instructions have moved to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual: LDTILECFG, STTILECFG, TDPBF16PS,
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD, TILELOADD/TILELOADDT1, TILERELEASE,
TILESTORED, and TILEZERO.
The Intel Advanced Matrix Extensions introductory material and helper functions will be maintained
here, as well as in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, for the
reader’s convenience. For information on Intel AMX and the XSAVE feature set, and recommenda-
tions for system software, see the latest version of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

3.1 INTRODUCTION
Intel® Advanced Matrix Extensions (Intel® AMX) is a new 64-bit programming paradigm consisting of two compo-
nents: a set of 2-dimensional registers (tiles) representing sub-arrays from a larger 2-dimensional memory image,
and an accelerator able to operate on tiles, the first implementation is called TMUL (tile matrix multiply unit).
An Intel AMX implementation enumerates to the programmer how the tiles can be programmed by providing a
palette of options. Two palettes are supported; palette 0 represents the initialized state, and palette 1 consists of
8 KB of storage spread across 8 tile registers named TMM0..TMM7. Each tile has a maximum size of 16 rows x 64
bytes, (1 KB), however the programmer can configure each tile to smaller dimensions appropriate to their algo-
rithm. The tile dimensions supplied by the programmer (rows and bytes_per_row, i.e., colsb) are metadata that
drives the execution of tile and accelerator instructions. In this way, a single instruction can launch autonomous
multi-cycle execution in the tile and accelerator hardware. The palette value (palette_id) and metadata are held
internally in a tile related control register (TILECFG). The TILECFG contents will be commensurate with that
reported in the palette_table (see “CPUID—CPU Identification” in Chapter 1 for a description of the available
parameters).
Intel AMX is an extensible architecture. New accelerators can be added, or the TMUL accelerator may be enhanced
to provide higher performance. In these cases, the state (TILEDATA) provided by tiles may need to be made larger,
either in one of the metadata dimensions (more rows or colsb) and/or by supporting more tile registers (names).
The extensibility is carried out by adding new palette entries describing the additional state. Since execution is
driven through metadata, an existing Intel AMX binary could take advantage of larger storage sizes and higher
performance TMUL units by selecting the most powerful palette indicated by CPUID and adjusting loop and pointer
updates accordingly.
Figure 3-1 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algo-
rithm, the memory blocking, loop indices and pointer arithmetic. Tile loads and stores and accelerator commands
are sent to multi-cycle execution units. Status, if required, is reported back. Intel AMX instructions are synchro-
nous in the Intel architecture instruction stream and the memory loaded and stored by the tile instructions is
coherent with respect to the host’s memory accesses. There are no restrictions on interleaving of Intel architecture
and Intel AMX code or restrictions on the resources the host can use in parallel with Intel AMX (e.g., Intel AVX-
512). There is also no architectural requirement on the Intel architecture compute capability of the Intel architec-
ture host other than it supports 64-bit mode.
Ref. # 319433-047 3-1

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Intel AMX instructions use new registers and inherit basic behavior from Intel architecture in the same manner that
Intel SSE and Intel AVX did. Tile instructions include loads and stores using the traditional Intel architecture
register set as pointers. The TMUL instruction set (defined to be CPUID bits AMX-BF16 and AMX-INT8) only
supports reg-reg operations.
TILECFG is programmed using the LDTILECFG instruction. The selected palette defines the available storage and
general configuration while the rest of the memory data specifies the number of rows and column bytes for each
tile. Consistency checks are performed to ensure the TILECFG matches the restrictions of the palette. A General
Protection fault (#GP) is reported if the LDTILECFG fails consistency checks. A successful load of
TILECFG with a palette_id other than 0 is represented in this document with TILES_CONFIGURED = 1. When the
TILECFG is initialized (palette_id = 0), it is represented in the document as TILES_CONFIGURED = 0. Nearly all
Intel AMX instructions will generate a #UD exception if TILES_CONFIGURED is not equal to 1; the exceptions are
those that do TILECFG maintenance: LDTILECFG, STTILECFG and TILERELEASE.
If a tile is configured to contain M rows by N column bytes, LDTILECFG will ensure that the metadata values are
appropriate to the palette (e.g., that M ≤ 16 and N ≤ 64 for palette 1). The four M and N values can all be different
as long as they adhere to the restrictions of the palette. Further dynamic checks are done in the tile and the TMUL
instruction set to deal with cases where a legally configured tile may be inappropriate for the instruction operation.
Tile registers can be set to ‘invalid’ by configuring the rows and colsb to ‘0’.
Tile loads and stores are strided accesses from the application memory to packed rows of data. Algorithms are
expressed assuming row major data layout. Column major users should translate the terms according to their
orientation.
TILELOAD* and TILESTORE* instructions are restartable and can handle (up to) 2*rows page faults per instruction.
Restartability is provided by a start_row parameter in the TILECFG register.
The TMUL unit is conceptually a grid of fused multiply-add units able to read and write tiles. The dimensions of the
TMUL unit (tmul_maxk and tmul_maxn) are enumerated similar to the maximum dimensions of the tiles (see
“CPUID—CPU Identification” in Chapter 1 for details).
The matrix multiplications in the TMUL instruction set compute C[M][N] += A[M][K] * B[K][N]. The M, N, and K
values will cause the TMUL instruction set to generate a #UD exception if the dimensions do not match for matrix
multiply or do not match the palette.
In Figure 3-2, the number of rows in tile B matches the K dimension in the matrix multiplication pseudocode. K
dimensions smaller than that enumerated in the TMUL grid are also possible and any additional computation the
TMUL unit can support will not affect the result.

Figure 3-1. Intel® AMX Architecture

IA Host

Coherent Memory
Interface

Accelerator 1 (TMUL)

tmm0 += tmm1*tmm2

Accelerator 2

Tiles and
Accelerator
Commands

TILECFG

tmm0

tmm1

tmm[n-1]
...

New state to be managed by the OS.

Commands and status delivered synchronously via tile/accelerator instructions.

Dataflow; accelerators communicate to host through memory.
3-2 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
The number of elements specified by colsb of the B matrix is also less than or equal to tmul_maxn. Any remaining
values beyond that specified by the metadata will be set to zero.

The XSAVE feature sets supports context management of the new state defined for Intel AMX. This support is
described in Section 3.2.

3.1.1 Tile Architecture Details
The supported parameters for the tile architecture are reported via CPUID; this includes information about how the
number of tile registers (max_names) can be configured (the palette). Configuring the tile architecture is intended
to be done once when entering a region of tile code using the LDTILECFG instruction specifying the selected palette
and describing in detail the configuration for each tile. Incorrect assignments will result in a General Protection fault
(#GP). Successful LDTILECFG initializes (zeroes) TILEDATA.
Exiting a tile region is done with the TILERELEASE instruction. It takes no parameters and invalidates all tiles (indi-
cating that the data no longer needs any saving or restoring). Essentially, it is an optimization of LDTILECFG with
an implicit palette of 0.
For applications that execute consecutive Intel AMX regions with differing configurations, TILERELEASE is not
required between them since the second LDTILECFG will clear all the data while loading the new configuration.
There is no instruction set support for automatic nesting of tile regions, though with sufficient effort software can
accomplish this by saving and restoring TILEDATA and TILECFG either through the XSAVE architecture or the Intel
AMX instructions.
The tile architecture boots in its INIT state, with TILECFG and TILEDATA set to zero. A successfully executing LDTI-
LECFG instruction to a non-zero palette sets the TILES_CONFIGURED=1, indicating the TILECFG is not in the INIT
state. The TILERELEASE instruction sets TILES_CONFIGURED = 0 and initializes (zeroes) TILEDATA.

Figure 3-2. The TMUL Unit

C[M][N]

B[K][N]

. . . .

FMA.0.N-1

. . . .
FMA.1.N-1

FMA.K-1.N-1

A[M][K]

FMA.0.0

. . . .

FMA.1.0

FMA.K-1.0

FMA.0.1

. . . .

FMA.1.1

FMA.K-1.1

A[m-1][1]

A[m][0]

. . . .

. . . .

A[m-K+1][K-1]

C[m][n-1]

C[m-K+1][n-1]

C[m][1]

C[m-K+1][1]

C[m][0]

C[m-K+1][0]

B[0][:N]

B[1][:N]

B[K-1][:N]

for m < M: // time steps
 for k < K: // grid height
 for n < N: // SIMD dimension
 C[m][n] += VNNI_MUL(A[m][k], B[k][n])
Ref. # 319433-047 3-3

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
To facilitate handling of tile configuration data, there is a STTILECFG instruction. If the tile configuration is in the
INIT state (TILES_CONFIGURED == 0), then STTILECFG will write 64 bytes of zeros. Otherwise STTILECFG will
store the TILECFG to memory in the format used by LDTILECFG.

3.1.2 TMUL Architecture Details
The supported parameters for the TMUL architecture are reported via CPUID; see “CPUID—CPU Identification” in
Chapter 1, page 1-23, for details. These parameters include a maximum height (tmul_maxk) and a maximum
SIMD dimension (tmul_maxn). The metadata that accompanies the srcdest, src1 and src2 tiles to the TMUL unit
will be dynamically checked to see that they match the TMUL unit support for the data type and match the require-
ments of a meaningful matrix multiplication.
Figure 3-3 shows an example of the inner loop of an algorithm of using the TMUL architecture to compute a matrix
multiplication. In this example, we use two result tiles, tmm0 and tmm1, from matrix C to accumulate the interme-
diate results. One tile from the A matrix (tmm2) is re-used twice as we multiply it by two tiles from the B matrix.
The algorithm then advances pointers to load a new A tile and two new B tiles from the directions indicated by the
arrows. An outer loop, not shown, adjusts the pointers for the C tiles.

Figure 3-3. Matrix Multiply C+= A*B

 LDTILECFG [rax]
// assume some outer loops driving the cache tiling (not shown)
{
 TILELOADD tmm0, [rsi+rdi] // srcdst, RSI points to C, RDI is strided value
 TILELOADD tmm1, [rsi+rdi+N] // second tile of C, unrolling in SIMD dimension N
 MOV r14, 0
LOOP:
 TILELOADD tmm2, [r8+r9] // src2 is strided load of A, reused for 2 TMUL instr.
 TILELOADD tmm3, [r10+r11] // src1 is strided load of B
 TDPBUSD tmm0, tmm2, tmm3 // update left tile of C
 TILELOADD tmm3, [r10+r11+N] // src1 loaded with B from next rightmost tile
 TDPBUSD tmm1, tmm2, tmm3 // update right tile of C
 ADD r8, K // update pointers by constants known outside of loop
 ADD r10, K*r11
 ADD r14, K
 CMP r14, LIMIT
 JNE LOOP

 TILESTORED [rsi+rdi], tmm0 // update the C matrix in memory
 TILESTORED [rsi+rdi+M], tmm1
 } // end of outer loop

 TILERELEASE // return tiles to INIT state

C BA
3-4 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.1.3 Handling of Tile Row and Column Limits
Intel AMX operations will zero any rows and any columns beyond the dimensions specified by TILECFG. Tile opera-
tions will zero the data beyond the configured number of column bytes as each row is written. For example, with
64-byte rows and a tile configured with 10 rows and 48 columns, an operation writing dword elements would write
each of the first 10 rows with 48 bytes of output/result data and zero the remaining 16 bytes in each row. Tile oper-
ations also fully zero any rows after the first 10 configured rows. When using a 1 KByte tile with 64-byte rows,
there would be 16 rows, so in this example, the last 6 rows would also be zeroed.
Intel AMX instructions will always obey the metadata on reads and the zeroing rules on writes, and so a subsequent
XSAVE would see zeros in the appropriate locations. Tiles that are not written by Intel AMX instructions between
XRSTOR and XSAVE will write back with the same image they were loaded with regardless of the value of TILECFG.

3.1.4 Exceptions and Interrupts
Tile instructions are restartable so that operations that access strided memory can restart after page faults. To
support restarting instructions after these events, the instructions store information in the TILECFG.start_row
register. TILECFG.start_row indicates the row that should be used for restart; i.e., it indicates next row after the
rows that have already been successfully loaded (on a TILELOAD) or written to memory (on a TILESTORE) and
prevents repeating work that was successfully done.
The TMUL instruction set is not sensitive to the TILECFG.start_row value; this is due to there not being TMUL
instructions with memory operands or any restartable faults.

3.2 OPERAND RESTRICTIONS
Floating-point exceptions, denormal handling, and floating-point rounding: some of the Intel AMX instructions
operate on floating-point values. These instructions all function as if floating-point exceptions are masked, and use
the round-to-nearest-even (RNE) rounding mode. They also do not set any of the floating-point exception flags in
MXCSR. Table 3-1 describes the treatment of denormal inputs and outputs for Intel AMX operations.

3.3 IMPLEMENTATION PARAMETERS
The parameters are reported via CPUID leaf 1DH. Index 0 reports all zeros for all fields.

Table 3-1. Intel® AMX Treatment of Denormal Inputs and Outputs

Data Type Denormal Input Denormal Output

FP16 Allowed N/A

FP32 Treated as zero Flushed to zero

BF16 Treated as zero N/A

define palette_table[id]:
uint16_t total_tile_bytes
uint16_t bytes_per_tile
uint16_t bytes_per_row
uint16_t max_names
uint16_t max_rows
Ref. # 319433-047 3-5

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
The tile parameters are set by LDTILECFG or XRSTOR* of TILECFG:

3.4 HELPER FUNCTIONS
The helper functions used in Intel AMX instructions are defined below.

define tile[tid]:
byte rows
word colsb // bytes_per_row
bool valid

define write_row_and_zero(treg, r, data, nbytes):
for j in 0 ... nbytes-1:

treg.row[r].byte[j] := data.byte[j]

// zero the rest of the row
for j in nbytes ... palette_table[tilecfg.palette_id].bytes_per_row-1:

treg.row[r].byte[j] := 0

define zero_upper_rows(treg, r):
for i in r ... palette_table[tilecfg.palette_id].max_rows-1:

for j in 0 ... palette_table[tilecfg.palette_id].bytes_per_row-1:
treg.row[i].byte[j] := 0

define zero_tilecfg_start():
tilecfg.start_row := 0

define zero_all_tile_data():
if XCR0[TILEDATA]:

b := CPUID(0xD,TILEDATA).EAX // size of feature
for j in 0 ... b:

TILEDATA.byte[j] := 0
3-6 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.5 NOTATION
Instructions described in this chapter follow the general documentation convention established in Intel® 64 and IA-
32 Architectures Software Developer’s Manual Volume 2A. Additionally, Intel® Advanced Matrix Extensions use
notation conventions as described below.
In the instruction encoding boxes, sibmem is used to denote an encoding where a MODRM byte and SIB byte are
used to indicate a memory operation where the base and displacement are used to point to memory, and the index
register (if present) is used to denote a stride between memory rows. The index register is scaled by the sib.scale
field as usual. The base register is added to the displacement, if present.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

• If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb.

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the
MODRM.MOD and MODRM.RM fields in the encoding boxes.

3.6 EXCEPTION CLASSES
Alignment exceptions: The Intel AMX instructions that access memory will never generate #AC exceptions.

define xcr0_supports_palette(palette_id):
if palette_id == 0:

return 1
elif palette_id == 1:

if XCR0[TILECFG] and XCR0[TILEDATA]:
return 1

return 0
Ref. # 319433-047 3-7

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Table 3-2. Intel® AMX Exception Classes

Class Description

AMX-E1

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP based on palette and configuration checks (see pseudocode).
• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E2

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E3

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if not using SIB addressing.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc or tdest are not valid tiles.
• #UD if tsrc/tdest are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if tsrc.colbytes mod 4 ≠ 0 OR tdest.colbytes mod 4 ≠ 0.
• #UD if tilecfg.start_row ≥ tsrc.rows OR tilecfg.start_row ≥ tdest.rows.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if any memory operand causes a page fault.

• #NM if XFD[18] == 1.
3-8 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.7 INSTRUCTION SET REFERENCE

AMX-E4

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if srcdest == src1 OR src1 == src2 OR srcdest == src2.
• #UD if TILES_CONFIGURED == 0.
• #UD if srcdest.colbytes mod 4 ≠ 0.
• #UD if src1.colbytes mod 4 ≠ 0.
• #UD if src2.colbytes mod 4 ≠ 0.
• #UD if srcdest/src1/src2 are not valid tiles.
• #UD if srcdest/src1/src2 are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if srcdest.colbytes ≠ src2.colbytes.
• #UD if srcdest.rows ≠ src1.rows.
• #UD if src1.colbytes / 4 ≠ src2.rows.
• #UD if srcdest.colbytes > tmul_maxn.
• #UD if src2.colbytes > tmul_maxn.
• #UD if src1.colbytes/4 > tmul_maxk.
• #UD if src2.rows > tmul_maxk.

• #NM if XFD[18] == 1.

AMX-E5

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if TILES_CONFIGURED == 0.
• #UD if tdest is not a valid tile.
• #UD if tdest is ≥ palette_table[tilecfg.palette_id].max_names.

• #NM if XFD[18] == 1.

AMX-E6

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

Table 3-2. Intel® AMX Exception Classes (Continued)

Class Description
Ref. # 319433-047 3-9

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TDPFP16PS—Dot Product of FP16 Tiles Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs a set of SIMD dot-products of two FP16 elements and accumulates the results into a
packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is interpreted as a FP16 pair. For
each possible combination of (row of tmm2, column of tmm3), the instruction performs a set of SIMD dot-products
on all corresponding FP16 pairs (one pair from tmm2 and one pair from tmm3), adds the results of those dot-prod-
ucts, and then accumulates the result into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the Fused Multiply-Add (FMA).
Output FP32 denormals are always flushed to zero. Input FP16 denormals are always handled and not treated as
zero.
MXCSR is not consulted nor updated.
Any attempt to execute the TDPFP16PS instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

TDPFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

src1 and src2 elements are pairs of fp16
elements_src1 := tsrc1.colsb / 4
elements_src2 := tsrc2.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

// For this operation:
// Handle FP16 denorms. Not forcing input FP16 denorms to 0.
// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] += cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+0]) *cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])
temp1.fp32[2*n+1] += cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+1]) *cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 5C 11:rrr:bbb
TDPFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP16 Matrix multiply FP16 elements from tmm2 and
tmm3, and accumulate the packed single precision
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
3-10 Ref. # 319433-047

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)
zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.6, “Exception Classes” for details.
Ref. # 319433-047 3-11

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3-12 Ref. # 319433-047

NON-WRITE-BACK LOCK DISABLE ARCHITECTURE
CHAPTER 4
NON-WRITE-BACK LOCK DISABLE ARCHITECTURE

Locked read-modify-write (RMW) to a memory operation is used explicitly by several Intel architecture set instruc-
tions, such as ADD with a lock prefix, and implicitly by other instructions and flows, such as updating a segment
access bit or page tables access/dirty bits.
Locked RMW access is usually handled through processor cache in the lower hierarchies, and it only impacts soft-
ware running on same logical processors that share this cache.
If the memory type of this locked RMW is not write-back, the processor can’t handle it within the internal cache and
will issue a bus lock operation. This operation will block all logical processors and devices from accessing memory
until the operation has completed.
Having a burst of bus locks by one of the logical processors may cause starvation to the rest of the logical proces-
sors and devices.
This architecture will allow software to disable non-WB lock operation. Once the feature is enabled, performing a
non-WB lock operation by software will generate a general protection fault (#GP).

4.1 ENUMERATION
The non-write-back lock disable capability will be enumerated through a model-specific bit (bit 4) in the
IA32_CORE_CAPABILITIES MSR.

4.2 ENABLING
This model-specific feature will add an MSR control bit (bit 28) in MSR_MEMORY_CTRL (MSR address 33H) in order
to generate a general protection fault (#GP) each time a non-WB load lock is detected.

Table 4-1. IA32_CORE_CAPABILITIES MSR

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

CFH 207 IA32_CORE_CAPABILITIES IA32 Core Capability Register

3:0 Reserved

4 UC_LOCK_DISABLE_SUPPORTED

If 1, software can set bit 28 of MSR_MEMORY_CTRL (MSR
address 33H) to cause a #GP when a locked access to UC
memory would occur.

This behavior is consistent across processor models.

5 SPLIT_LOCK_DISABLE_SUPPORTED

If 1, software can set bit 29 of MSR_MEMORY_CTRL to cause
an #AC when a locked access that includes multiple cache lines
would occur.

This behavior is consistent across processor models.

63:6 Reserved
Ref. # 319433-047 4-1

NON-WRITE-BACK LOCK DISABLE ARCHITECTURE
4.3 INTERACTION WITH INTEL® SOFTWARE GUARD EXTENSIONS (INTEL® SGX)
Processor Reserved Memory (PRM) used for Intel® SGX can run with non-WB memory accesses by following the
steps below.

1. Configure the Memory Type field (bits 2:0) of MSR_PRMRR_BASE_0 (MSR address 2A0H) to be non-WB.

2. Set the cache disable (bit 30) of CR0.
When the processor is configured in this manner, the processor will not generate #GP(0) as a result of locked
accesses to non-WB memory when EPT is enabled, even if the non-WB lock disable (bit 28) of MSR_MEMORY_CTRL
is set to 1.

4.4 INTERACTION WITH VMX ARCHITECTURE
There are two cases where a locked cycle can be issued on a VMM configuration with non-WB memory type.

1. VMM enabled EPT and EPT A/D and configured EPT memory type to non-WB. In this case, EPT A/D assist will
issue a locked load to non-WB memory.

2. VMM set “process posted interrupts” VM-execution control, posted-interrupt descriptor mapped to non-WB
memory type. Posted interrupt processing will update the descriptor with locked load to non-WB memory.

When the processor is configured in this manner, the processor will not generate #GP(0) as a result of a locked
access to non-WB memory when EPT is enabled even if the non-WB lock disable (bit 28) of MSR_MEMORY_CTRL is
set to 1.

4.5 EXPECTED SOFTWARE BEHAVIOR
Software can ensure that bus locks as a result of non-WB locked access are never taken, or at least a general
protection fault is signaled, by performing the following operations:

• Set Non-WB Lock Disable (bit 28) of MSR_MEMORY_CTRL.

• Do not set Cache Disable (bit 30) of CR0.

• Configure MSR_PRMRR_BASE_0 Memory Type field (bits 2:0) to WB memory type only.

• For a VMM that enabled EPT and EPT A/D, bits must configure EPT paging structures to WB memory
type.

• For a VMM that enabled posted-interrupt via the “process posted interrupts” VM-execution control,
ensure the posted-interrupt descriptor is mapped to WB memory type.

Table 4-2. MEMORY_CTRL MSR

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

33H 51 MSR_MEMORY_CTRL Memory Control Register

27:0 Reserved

28 Enable #GP(0) exception for non-write-back locked accesses.

29 Enable #AC(0) exception for split locked accesses.

31:30 Reserved
4-2 Ref. # 319433-047

NON-WRITE-BACK LOCK DISABLE ARCHITECTURE
4.6 BUS LOCKS
Cases for bus locks than can come from non-WB Lock operation are shown in Table 4-3.

Table 4-3. Bus Locks from Non-WB Operation

Category Instructions/Flows Conditions

Arithmetic LOCK + {ADD, SUB, AND, OR, XOR, ADC, SBB, INC,
DEC, NOT, NEG}

Compare/Test LOCK + {BTC, BTR, BTS}

Exchange XCHG, LOCK XADD/CMPXCHG/XCHG

Segmentation LSL, LAR, VERR, VERW

LDS, LES, LFS, LGS, LSS

MOV DS, MOV ES, MOV FS, MOV GS, MOV SS

POP DS, POP ES, POP FS, POP GS, POP SS

Setting segment accessed bit in descriptor in
non-WB memory.

Call / Interrupt / Exception Far call, Far JMP

Far RET, IRET

INTn, INT3, INT0, INT1

Call through interrupt/trap gate

Setting segment accessed bit in descriptor in
non-WB memory.

Tasking LTR, Task Switch Setting/Clearing TSS busy when TSS in non-
WB memory.

Setting segment accessed bit in descriptor in
non-WB memory.

Paging Code fetch (A bit update),

All instructions that have memory operands (A/D
bits update)

Page tables in non-WB memory.

Enclave ENCLU, ENCLS, AEX

Posted Interrupts Updating the posted interrupt descriptor uses
locked RMW for atomic operations.

Posted interrupt descriptor in non-WB
memory.
Ref. # 319433-047 4-3

NON-WRITE-BACK LOCK DISABLE ARCHITECTURE
4-4 Ref. # 319433-047

BUS LOCK AND VM NOTIFY
CHAPTER 5
BUS LOCK AND VM NOTIFY

5.1 BUS LOCK DEBUG EXCEPTION
A logical processor can be configured to generate a debug exception (#DB) as a trap delivered in the instruction
boundary following acquisition of a bus lock if the processor is at privilege level > 0 on this instruction boundary.
Software enables these debug exceptions by setting bit 2 of the IA32_DEBUGCTL MSR. The CPU enumerates
support for the 1-setting of this bit using CPUID.(EAX=7, ECX=0).ECX[24].
A debug exception due to acquisition of a bus lock is reported as a trap following execution of the instruction
acquiring the bus lock if the privilege level is > 0. The processor identifies such debug exceptions using bit 11 of
DR6. Because DR6[11] has formerly always been 1, delivery of a bus-lock #DB clears DR6[11]. All other debug
exceptions leave bit 11 unmodified. To avoid confusion in identifying debug exceptions, software debug-exception
handlers should set bit 11 to 1 before returning to the interrupted task.
A VM exit sets bit 11 of the pending debug exception field in the guest-state area of the VMCS to indicate that a bus
lock debug exception was pending but not delivered. A VM exit that sets this bit also sets bit 12 of that field. (VM
exits also sets bit 12 to indicate that at least one data or I/O breakpoint was met and was enabled in DR7, or that
a debug exception related to advanced debugging of RTM transactional regions occurred.)

5.1.1 Bus Lock VM Exit
A new VM-execution control, “bus-lock detection,” can be used to cause VM exits on bus locks acquired in VMX non-
root operation.
If the “bus-lock detection” VM-execution control is 1, there will be a VM exit following any operation that causes a
bus lock. (The VM exit is thus trap-like and does not prevent the bus lock from occurring.) The VM exit uses basic
exit reason 74, storing this value in bits 15:0 of the exit-reason field in the VMCS.
An operation may cause a bus lock and then incur a VM exit for some other reason. If this happens, the other VM
exit is delivered normally and no bus-lock VM exit (with basic exit reason 74) occurs.
In either case, any VM exit following an operation that caused a bus lock will also set bit 26 of the exit-reason field
to indicate that a bus lock had occurred. (The bit is set only if the “bus-lock detection” VM-execution control is 1.)
“Bus-lock detection” is secondary processor-based execution control bit 30. A processor enumerates support for
the 1-setting of this control by setting bit 62 of the IA32_VMX_PROCBASED_CTLS2 MSR.

5.2 NOTIFY VM EXIT
A VMM can enable notification VM exits to occur if no interrupt windows occur in VMX non-root operation for a
specified amount of time (notify window). These VM exits are enabled by setting bit 31 of the secondary
processor-based execution control. A processor enumerates support for the 1-setting of this control by setting bit
63 of the IA32_VMX_PROCBASED_CTLS2 MSR. The VMM configures the notify window in units of crystal clock
cycles in a new 32-bit VM-execution control field in the VMCS (notify window) that can be accessed with the
VMREAD and VMWRITE instructions using encoding 00004024H.
A notification VM exit reports basic exit reason 75 and exit qualification determined as follows:
• Bit 0 - VM context invalid.
• Bits 11:1 are reserved.
• Bit 12 - if set the VM exit was incident to an execution of IRET that unblocked NMIs.
• All other bits are reserved.
If the VMM-notify VM exit occurred incident to delivery of a vectored event, then IDT vectoring information and
applicable error code are recorded in the VMCS.
Ref. # 319433-047 5-1

BUS LOCK AND VM NOTIFY
5-2 Ref. # 319433-047

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
CHAPTER 6
INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES

Intel® Resource Director Technology (Intel® RDT) provides a number of monitoring and control capabilities for
shared resources in multiprocessor systems. This chapter covers updates to the feature that will be available in
future Intel processors, starting with brief descriptions followed by technical details.

6.1 INTEL® RDT FEATURE CHANGES

6.1.1 Intel® RDT on the 3rd generation Intel® Xeon® Scalable Processor Family
The 3rd generation Intel® Xeon® Scalable Processor Family based on Ice Lake Server microarchitecture adds the
following Intel RDT enhancements:
• 32-bit MBM counters (vs. 24-bit in prior generations), and new CPUID enumeration capabilities for counter

width.
• Second generation Memory Bandwidth Allocation (MBA): Introduces an advanced hardware feedback controller

that operates at microsecond timescales, and software-selectable min/max throttling value resolution capabil-
ities. Baseline descriptions of the MBA “throttling values” applied to the threads running on a core are described
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.
Second generation MBA capabilities also add a work-conserving feature in which applications that frequently
access the L3 cache may be throttled by a lesser amount until they exceed the user-specified memory
bandwidth usage threshold, enhancing system throughput and efficiency, in addition to adding more precise
calibration and controls. Certain BIOS implementations may further aid flexibility by providing selectable
calibration profiles for various usages.

• 15 MBA / L3 CAT CLOS: Improved feature consistency and interface flexibility. The previous generation of
processors supported 16 L3 CAT Class of Service tags (CLOS), but only 8 MBA CLOS. The changes in
enumerated CLOS counts per-feature are enumerated in the processor as before, via CPUID.

6.1.2 Intel® RDT on Intel Atom® Processors, Including the P5000 Series
Intel Atom® processors, such as the P5000 series, based on Tremont microarchitecture add the following Intel RDT
enhancements:
• L2 CAT/CDP: L2 CAT/CDP and L3 CAT/CDP may be enabled simultaneously on supported processors. As these

are existing features defined in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, no new software enabling should be required.

• Supported processors match the capabilities of the 3rd generation Intel Xeon Scalable Processor Family based
on Ice Lake Server microarchitecture, including traditional Intel RDT uncore features: L3 CAT/CDP, CMT, MBM,
and second-generation MBA. As these features are architectural, no new software enabling is required. Related
enhancements in Intel Xeon processors also carry forward to supported Intel Atom processors, with consistent
software enabling. These features include 32-bit MBM counters, second generation MBA, and 15 MBA/L3 CAT
CLOS.

6.1.3 Intel® RDT in Future Processors Based on Sapphire Rapids Server Microarchitecture
Processors based on Sapphire Rapids Server microarchitecture add the following Intel RDT enhancements:
• STLB QoS: Capability to manage the second-level translation lookaside buffer structure within the core (STLB)

in a manner quite similar to CAT (CLOS-based, with capacity masks). This may enable software that is sensitive
to TLB performance to achieve better determinism. This is a model-specific feature due to the microarchitec-
tural nature of the STLB structure. The code regions of interest should be manually accessed.
Ref. # 319433-047 6-1

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
6.1.4 Intel® RDT in Processors Based on Emerald Rapids Server Microarchitecture
Processors based on Emerald Rapids Server microarchitecture add the following Intel RDT enhancements:
• L2 CAT and CDP: Includes control over the L2 cache and the ability to partition the L2 cache into separate code

and data virtual caches. No new software enabling is required; this is the same architectural feature described
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

6.1.5 Future Intel® RDT
Future processors add the following Intel RDT enhancements:
• Third generation Memory Bandwidth Allocation (MBA): New per-logical-processor capability for bandwidth

control (rather than the more coarse-grained core-level throttling value resolution in prior generations). This
capability enables more precise bandwidth shaping and noisy neighbor control. Some portions of the control
infrastructure now operate at core frequencies for controls that are responsive at the nanosecond level.

6.2 ENUMERABLE MEMORY BANDWIDTH MONITORING COUNTER WIDTH
Memory Bandwidth Monitoring (MBM) is an Intel RDT feature that tracks total and local bandwidth generated that
misses the L3 cache.
The original Memory Bandwidth Monitoring (MBM) architectural definition defines counters of up to 62 bits in the
IA32_QM_CTR MSR, and the first-generation MBM implementation provided 24-bit counters. Software is required
to poll at ≥ 1Hz to ensure that data is retrieved before a counter rollover occurs more than once. This ≥ 1Hz
sampling ensures that under worst-case conditions rollover between samples occurs at most once, but under
typical conditions rollover often requires multiple seconds to occur.
As bandwidths scale, extensions to more elegantly handle high-bandwidth future systems are desirable. One of
these extensions, detailed in this section, includes an enumerable MBM counter width. The 3rd generation Intel
Xeon Scalable Processor Family, and corresponding Intel Atom processors, utilize this definition to implement 32-
bit MBM counters, and future growth should be anticipated.

6.2.1 Memory Bandwidth Monitoring (MBM) Enabling
Memory Bandwidth Monitoring, like other Intel RDT features, uses CPUID for enumeration, and MSRs for assigning
RMIDs and retrieving counter data. For CPUID enumeration details, see the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A. For additional MBM details, see Chapter 18 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3B.

6.2.2 Augmented MBM Enumeration and MSR Interfaces for Extensible Counter Width
A field is added to CPUID to enumerate the MBM counter width in platforms that support the extensible MBM
counter width feature.
Before this point, CPUID.0F.[ECX=1]:EAX was reserved. This CPUID output register (EAX) is redefined to provide
two new fields:

• Encode counter width as offset from 24b in bits[7:0].

• Enumeration of the presence of an overflow bit in the IA32_QM_CTR MSR via EAX bit[8].
See “CPUID—CPU Identification” in Chapter 1 for details.
In EAX bits 7:0, the counter width is encoded as an offset from 24b. A value of zero in this field means 24-bit
counters are supported. A value of 8 indicates that 32-bit counters are supported, as in the 3rd generation Intel
Xeon Scalable Processor Family.
With the addition of this enumerable counter width, the requirement that software poll at ≥ 1Hz is removed. Soft-
ware may poll at a varying rate with reduced risk of rollover, and under typical conditions rollover is likely to require
hundreds of seconds (though this value is not explicitly specified and may vary and decrease in future processor
6-2 Ref. # 319433-047

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
generations as memory bandwidths increase). If software seeks to ensure that rollover does not occur more than
once between samples, then sampling at ≥ 1Hz while consuming the enumerated counter widths' worth of data will
provide this guarantee, for a specific platform and counter width, under all conditions.
Software that uses the MBM event retrieval MSR interface should be updated to comprehend this new format,
which enables up to 62-bit MBM counters to be provided by future platforms. Higher-level software that consumes
the resulting bandwidth values is not expected to be affected.
An overflow bit is defined in the IA32_QM_CTR MSR, bit 61, if CPUID.0F.[ECX=1]:EAX[bit 8] is set. This rollover bit
will be set on overflow of the MBM counters and reset upon read. Current processors do not support this capability.

6.3 SECOND GENERATION MEMORY BANDWIDTH ALLOCATION
The second generation of Memory Bandwidth Allocation (MBA) is implemented in the 3rd generation Intel Xeon
Scalable Processor Family, and related Intel Atom processors such as the P5000 Series. This enhanced MBA capa-
bility provides improved efficiency and accuracy in throttling, along with providing increased system throughput.
Rather than a strict bandwidth control mechanism, a dynamic hardware controller is implemented, which can react
to changing bandwidth conditions at the microsecond level.

Before using the second generation MBA feature, the MBA hardware controller requires a BIOS-assisted calibration
process that may include inputs such as the number of memory channels populated and other system parameters;
this is a change from the first generation of MBA. Intel BIOS reference code includes a default configuration that is
recommended for general usage, and BIOS profiles may be created with alternate tuning values to optimize for
certain usages (such as stricter throttling).
Second generation MBA moves from static throttling at the core/uncore interface, to a more dynamic control
method based on a hardware controller that tracks actual DRAM bandwidth. This allows software that uses
primarily the L3 cache to observe increased throughput for a given throttling level, or fine-grained throughput
benefits for software that exhibits L3-bound phases. Due to the closer consideration of memory bandwidth loading,
this enhancement may lead to an increase in system efficiency when using second generation MBA relative to prior
implementations of the feature. Backward compatibility of the software interfaces is preserved, and second gener-
ation MBA changes manifest as enhancements atop the MBA feature baseline.
As with the prior generation feature, second generation MBA uses CPUID for enumeration, and throttling is
performed using a mapping created from software thread-to-CLOS (in the IA32_PQR_ASSOC MSR), which is then
mapped per-CLOS to delay values via the IA32_L2_QoS_Ext_BW_Thrtl_n MSRs. A privileged operating system or
virtual machine manager software may specify a per-CLOS delay value, 0-90% bandwidth throttling for instance,
though the max and granularity values are platform dependent and enumerated in CPUID.

6.3.1 Second Generation MBA Advantages
Additional features added over first generation MBA are described below.

1. Previously, only the maximum delay value across two CLOS on a physical core could be selected in MBA.
Second generation MBA allows a minimum delay value to be selected instead, which may enhance usage with
Intel® Hyper-Threading Technology.

2. Only a single preprogrammed calibration table was possible in first generation MBA, meaning different memory
configurations had the potential for different linearity and percent delay value error values depending on the
configuration. This is addressed by the BIOS support in the second generation of MBA, and certain BIOS imple-
mentations may program a different calibration table per memory configuration, for instance.

3. The second generation MBA controller provides the ability to more closely monitor the memory bandwidth
loading and deliver more optimal results.

4. The new MBA hardware controller reduces the need for a fine-grained software controller to manage
application phases for optimal efficiency. Note that a software controller may still be valuable to translate MBA
throttling values to bandwidths in GB/s or application Service Level Objectives (SLOs), such as performance
targets.
Ref. # 319433-047 6-3

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
The second generation MBA implementation is shown in Figure 6-1. The feature now operates through the use of
an advanced new hardware controller and feedback mechanism, which allows automated hardware monitoring and
control around the user-provided delay value set point. This set point and associated throttling value infrastructure
remains unchanged from prior generation MBA, preserving software compatibility.
MBA enhancements, in addition to the new hardware controller, include:

1. Configurable delay selection across threads.

• MBA 1.0 implementation statically picks the max MBA Throttling Level (MBAThrotLvl) across the threads
running on a core (by calculating value = max(MBAThrotLvl(CLOS[thread0]),
MBAThrotLvl(CLOS[thread1]))).

• Software may have the option to pick either maximum or minimum delay to be resolved and applied
across the threads; maximum value remains the default.

2. Increasing CLOSIDs from 8 to 15.

• Previous generations of microarchitecture provided 8 CLOS tags for MBA.

• The 3rd generation Intel Xeon Scalable Processor Family and related Intel Atom processors, such as the
P5000 Series, increase this value to 15 (also consistent with L3 CAT).

6.3.2 Second Generation MBA Software-Visible Changes
A new model-specific MSR is introduced with second generation MBA to allow software to select from the maximum
(default) or minimum of resolved throttling values (see formula above). This capability is controlled via a bit in the
new MBA_CFG MSR, shown in Table 6-1.

Figure 6-1. Second Generation MBA, Including a Fast-Responding Hardware Controller
6-4 Ref. # 319433-047

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
Note that bit[0] for min/max configuration is supported in second generation MBA, but is removed in third genera-
tion MBA when the controller logic becomes capable of managing throttling values on a per-logical-processor basis.
The transient nature of this enhancement is why the min/max control remains model-specific.
To enumerate and manage support for the model-specific min/max feature, software may use processor
family/model/stepping to match supported products, then CPUID to later detect enhanced third generation MBA
support.

6.4 THIRD GENERATION MEMORY BANDWIDTH ALLOCATION
The third generation MBA feature on future processors based on Granite Rapids microarchitecture further enhances
the feature with per-logical-processor control and a further improved controller design. Total memory bandwidth
(all LLC miss traffic) is now managed by MBA 3.0.
This implementation follows the past MBA precedent of delivering significant enhancements without a major soft-
ware overhaul, and while preserving backward compatibility.

6.4.1 Third Generation MBA Hardware Changes
The third generation of MBA builds upon the hardware controller introduced in the previous generation, which
enabled significant system-level benefits, by providing the capability to independently throttle logical processors,
rather than more coarse-grained per-core throttling in prior generations. Throttling values are no longer selected
as the “min” or “max” of the two throttling values for the threads running on the core; instead throttling values are
independently and directly applied to each logical processor.
While this enhancement means that more direct throttling of threads is possible, future usage guidance may be
necessary to help explain the effects of Intel® Hyper-Threading Technology contention vs. cache and memory
contention, and how these effects may be understood by software.

6.4.2 Third Generation MBA Software-Visible Changes
In order to allow software to change its tuning behavior and detect that per-logical-processor throttling is
supported on a particular product generation, a new CPUID bit is added to the MBA CPUID leaf to indicate support.
See “CPUID—CPU Identification” in Chapter 1 for details.
Despite another significant improvement of the hardware controller infrastructure architecture and improved capa-
bilities, controller responsiveness, new internal microarchitecture, and transient-arresting capabilities, no new
software interface changes are required to make use of the third generation of MBA relative to prior generations.
Software previously using the second generation MBA min/max selection capability should discontinue use of the
MBA_CFG MSR. MBA 3.0 is the default mode of operation on the future Granite Rapids Server microarchitecture.

6.5 FUTURE MBA ENHANCEMENTS
Further model-specific enhancements to MBA may be introduced on the Granite Rapids Server microarchitecture to
support specific usages; contact your Intel representative for details.

Table 6-1. MBA_CFG MSR Definition

Register Address
Architectural MSR Name / Bit Fields Description

Hex Decimal

C84H 3204 MBA_CFG MBA Configuration Register

0 Min (1) or max (0) of per-thread MBA delays.

63:1 Reserved. Attempts to write to reserved bits result in a #GP(0).
Ref. # 319433-047 6-5

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
6-6 Ref. # 319433-047

LINEAR ADDRESS MASKING (LAM)
CHAPTER 7
LINEAR ADDRESS MASKING (LAM)

This chapter describes a new feature called linear-address masking (LAM). LAM modifies the checking that is
applied to 64-bit linear addresses, allowing software to use of the untranslated address bits for metadata.
In 64-bit mode, linear address have 64 bits and are translated either with 4-level paging, which translates the low
48 bits of each linear address, or with 5-level paging, which translates 57 bits. The upper linear-address bits are
reserved through the concept of canonicality. A linear address is 48-bit canonical if bits 63:47 of the address are
identical; it is 57-bit canonical if bits 63:56 are identical. (Clearly, any linear address that is 48-bit canonical is also
57-bit canonical.) When 4-level paging is active, the processor requires all linear addresses used to access memory
to be 48-bit canonical; similarly, 5-level paging ensures that all linear addresses are 57-bit canonical.
Software usages that associate metadata with a pointer might benefit from being able to place metadata in the
upper (untranslated) bits of the pointer itself. However, the canonicality enforcement mentioned earlier implies
that software would have to mask the metadata bits in a pointer (making it canonical) before using it as a linear
address to access memory. LAM allows software to use pointers with metadata without having to mask the meta-
data bits. With LAM enabled, the processor masks the metadata bits in a pointer before using it as a linear address
to access memory.
LAM is supported only in 64-bit mode and applies only addresses used for data accesses. LAM doe not apply to
addresses used for instruction fetches or to those that specify the targets of jump and call instructions.

7.1 ENUMERATION, ENABLING, AND CONFIGURATION
LAM support by the processor is enumerated by the CPUID feature flag CPUID.(EAX=07H, ECX=01H):EAX.LAM[bit
26]. Enabling and configuration of LAM is controlled by the following new bits in control registers: CR3[62]
(LAM_U48), CR3[61] (LAM_U57), and CR4[28] (LAM_SUP). The use of these control bit is explained below.
LAM supports configurations that differ regarding which pointer bits are masked and can be used for metadata.
With LAM48, pointer bits in positions 62:48 are masked (resulting in a LAM width of 15); with LAM57, pointer
bits in positions 62:57 are masked (a LAM width of 6). The LAM width may be configured differently for user and
supervisor pointers. LAM identifies pointer as a user pointer if bit 63 of the pointer is 0 and as a supervisor pointer
if bit 63 of the pointer is 1.
CR3.LAM_U48 and CR3.LAM_U57 enable and configure LAM for user pointers:
• If CR3.LAM_U48 = CR3.LAM_U57 = 0, LAM is not enabled for user pointers.
• If CR3.LAM_U48 = 1 and CR3.LAM_U57 = 0, LAM48 is enabled for user pointers (a LAM width of 15).
• If CR3.LAM_U57 = 1, LAM57 applies to user pointers (a LAM width of 6; CR3.LAM_U48 is ignored).
CR4.LAM_SUP enables and configures LAM for supervisor pointers:
• If CR3.LAM_SUP = 0, LAM is not enabled for supervisor pointers.
• If CR3.LAM_SUP = 1, LAM is enabled for supervisor pointers with a width determined by the paging mode:

— If 4-level paging is enabled, LAM48 is enabled for supervisor pointers (a LAM width of 15).

— If 5-level paging is enabled, LAM57 is enabled for supervisor pointers (a LAM width of 6).
Note that the LAM identification of a pointer as user or supervisor is based solely on the value of pointer bit 63 and
does not, for the purposes of LAM, depend on the CPL.

7.2 TREATMENT OF DATA ACCESSES WITH LAM ACTIVE FOR USER POINTERS
Recall that, without LAM, canonicality checks are defined so that 4-level paging requires bits 63:47 of each pointer
to be identical, while 5-level paging requires bits 63:56 to be identical. LAM allows some of these bits to be used as
metadata by modifying canonicality checking.
Ref. # 319433-047 7-1

LINEAR ADDRESS MASKING (LAM)
When LAM48 is enabled for user pointers (see Section 7.1), the processor allows bits 62:48 of a user pointer to be
used as metadata. Regardless of the paging mode, the processor performs a modified canonicality check that
enforces that bit 47 of the pointer matches bit 63. As illustrated in Figure 7-1, bits 62:48 are not checked and are
thus available for software metadata. After this modified canonicality check is performed, bits 62:48 are masked by
sign-extending the value of bit 47 (0), and the resulting (48-bit canonical) address is then passed on for translation
by paging.
(Note also that, without LAM, canonicality checking with 5-level paging does not apply to bit 47 of a user pointer;
when LAM48 is enabled for user pointers, bit 47 of a user pointer must be 0. Note also that linear-address
bits 56:47 are translated by 5-level paging. When LAM48 is enabled for user pointers, these bits are always 0 in
any linear address derived from a user pointer: bits 56:48 of the pointer contained metadata, while bit 47 is
required to be 0.)

When LAM57 is enabled for user pointers, the processor allows bits 62:57 of a user pointer to be used as metadata.
With 5-level paging, the processor performs a modified canonicality check that enforces only that bit 56 of the
pointer matches bit 63. As illustrated in Figure 7-2, bits 62:57 are not checked and are thus available for software
metadata. After this modified canonicality check is performed, bits 62:57 are masked by sign-extending the value
of bit 56 (0), and the resulting (57-bit canonical) address is then passed on for translation by 5-level paging.

When LAM57 is enabled for user pointers with 4-level paging, the processor performs a modified canonicality check
that enforces only that bits 56:47 of a user pointer match bit 63. As illustrated in Figure 7-3, bits 62:57 are not
checked and are thus available for software metadata. After this modified canonicality check is performed, bits
62:57 are masked by sign-extending the value of bit 56 (0), and the resulting (48-bit canonical) address is then
passed on for translation by 4-level paging.

Figure 7-1. Canonicality Check When LAM48 is Enabled for User Pointers

Figure 7-2. Canonicality Check When LAM57 is Enabled for User Pointers with 5-Level Paging

063 62 48 47 46

SW Metadata0 0

==

063 62 57 56 55

SW Metadata0 0

==
7-2 Ref. # 319433-047

LINEAR ADDRESS MASKING (LAM)
7.3 TREATMENT OF DATA ACCESSES WITH LAM ACTIVE FOR SUPERVISOR
POINTERS

As with user pointers (Section 7.2), LAM can be configured to modify canonicality checking to allow use of meta-
data in supervisor pointers. For supervisor pointers, the number of metadata bits (the LAM width) available
depends on the paging mode active: with 5-level paging, enabling LAM for supervisor pointers results in LAM57;
with 4-level paging, it results in LAM48 (see Section 7.1).
When LAM57 is enabled for supervisor pointers (5-level paging), the processor performs a modified canonicality
check that enforces only that bit 56 of a supervisor pointer matches bit 63. As illustrated in Figure 7-4, bits 62:57
are not checked and are thus available for software metadata. After this modified canonicality check is performed,
bits 62:57 are masked by sign-extending the value of bit 56 (1), and the resulting (57-bit canonical) address is
then passed on for translation by 5-level paging.

When LAM48 is enabled for supervisor pointers (4-level paging), the processor performs a modified canonicality
check that enforces only that bit 47 of a supervisor pointer matches bit 63. As illustrated in Figure 7-5, bits 62:48
are not checked and are thus available for software metadata. After this modified canonicality check is performed,
bits 62:48 are masked by sign-extending the value of bit 47 (1), and the resulting (48-bit canonical) address is
then passed on for translation by 4-level paging.

Figure 7-3. Canonicality Check When LAM57 is Enabled for User Pointers with 4-Level Paging

Figure 7-4. Canonicality Check When LAM57 is Enabled for Supervisor Pointers with 5-Level Paging

063 62 57 56 47 46

SW Metadata0 0

==

063 62 57 56 55

SW Metadata1 1

==
Ref. # 319433-047 7-3

LINEAR ADDRESS MASKING (LAM)
7.4 CANONICALITY CHECKING FOR DATA ADDRESSES WRITTEN TO CONTROL
REGISTERS AND MSRS

Processors that support LAM continue to require the addresses written to control registers or MSRs be 57-bit
canonical if the processor supports 5-level paging or 48-bit canonical if it supports only 4-level paging; LAM
masking is not performed on these writes. When the contents of such registers are used as pointers to access
memory, the processor performs canonicality checking and masking based on paging mode and LAM mode config-
uration active at the time of access.

7.5 PAGING INTERACTIONS
As explained in Section 7.2 and Section 7.3, LAM masks certain bits in a pointer by sign-extension, resulting in a
linear address to be translated by paging.
In most cases, the address bits in the masked positions are not used by address translation. However, if 5-level
paging is active and LAM48 is enabled for user pointers, bit 47 of a user pointer must be zero and is extended over
bits 62:48 to form a linear address — even though bits 56:48 are used by 5-level paging. This implies that, when
LAM48 is enabled for user pointers, bits 56:47 are 0 in any linear address translated for a user pointer.
Page faults report the faulting linear address in CR2. Because LAM masking (by sign-extension) applies before
paging, the faulting linear address recorded in CR2 does not contain the masked metadata.
The INVLPG instruction is used to invalidate any translation lookaside buffer (TLB) entries for a memory address
specified with the source operand. LAM does not apply to the specified memory address. Thus, in 64-bit mode, if
the memory address specified is in non-canonical form then the INVLPG is the same as a NOP.
The INVPCID instruction invalidates mappings in the TLB and paging structure caches based on the processor
context identifier (PCID). The INVPCID descriptor provides the memory address to invalidate when the descriptor
is of type 0 (individual-address invalidation). LAM does not apply to the specified memory address, and in 64-bit
mode if this memory address is in non-canonical form then the processor generates a #GP(0) exception.

7.6 VMX INTERACTIONS

7.6.1 Guest Linear Address
Certain VM exits save in a VMCS field the guest linear address pertaining to the VM exit. Because such a linear
address results from masking the original pointer, the processor does not report the masked metadata in the
VMCS. The guest linear address saved is always the result of the sign-extension described in Section 7.2 and
Section 7.3.

Figure 7-5. Canonicality Check When LAM48 is Enabled for Supervisor Pointers with 4-Level Paging

063 62 48 47 46

SW Metadata1 1

==
7-4 Ref. # 319433-047

LINEAR ADDRESS MASKING (LAM)
7.6.2 VM-Entry Checking of Values of CR3 and CR4
VM entry checks the values of the CR3 and CR4 fields in the guest-area and host-state area of the VMCS. In partic-
ular, the bits in these fields that correspond to bits reserved in the corresponding register are checked and must be
0.
On processors that enumerate support for LAM (Section 7.1), VM entry allows bits 62:61 to be set in either CR3
field and allows bit 28 to be set in either CR4 field.

7.6.3 CR3-Target Values
If the “CR3-load exiting” VM-execution control is 1, execution of MOV to CR3 in VMX non-root operation causes a
VM exit unless the value of the instruction’s source operand is equal to one of the CR3-target values specified in the
VMCS.
Processor support for LAM does not change this behavior. The comparison of the instruction source operand to each
of the CR3-target values considers all 64 bits, including the two new bits that determine LAM enabling for user
pointers (see Section 7.1).

7.6.4 Hypervisor-Managed Linear Address Translation (HLAT)
Hypervisor-managed linear-address translation (HLAT) is enabled when the “enable HLAT” tertiary processor-
based VM-execution control is 1. See Chapter 4, “Non-Write-Back Lock Disable Architecture”, for additional details.
When HLAT is enabled for a guest, the processor translates a linear address using HLAT paging structures (instead
of guest paging structures) if the address matches the Protected Linear Range (PLR). When LAM is active, it is the
linear address (derived from a pointer by masking) that is checked for a PLR match.
The hierarchy of HLAT paging structures is located using a guest-physical address in the VMCS (instead of the
guest-physical address in CR3). Nevertheless, LAM enabling and configuration for user pointers is based on the
value of CR3[62:61] (see Section 7.1) even when the guest-physical address in CR3 is not used for translating the
linear addresses derived from user pointers.

7.7 DEBUG AND TRACING INTERACTIONS

7.7.1 Debug Registers
Debug registers DR0-DR3 can be programmed with linear addresses that are matched against memory accesses
for data breakpoints or instruction breakpoints. When LAM is active, it is the linear address (derived from a pointer
by masking) that is checked for matching the contents of the debug registers.

7.7.2 Intel® Processor Trace
Intel Processor Trace supports a CR3-filtering mechanism by which generation of packets containing architectural
states can be enabled or disabled based on the value of CR3 matching the contents of the IA32_RTIT_CR3_MATCH
MSR. On processors that support LAM, bits 62:61 of the CR3 (see Section 7.1) must also match bits 62:61 of this
MSR to enable tracing.

7.8 INTEL® SGX INTERACTIONS
Memory operands of ENCLS, ENCLU, and ENCLV that are data pointers follow the LAM architecture and mask suit-
ably. Code pointers continue to not mask metadata bits. ECREATE does not mask BASEADDR specified in SECS,
and the unmasked BASEADDR must be canonical.
Two new SECS attribute bits are defined for LAM support in enclave mode:
Ref. # 319433-047 7-5

LINEAR ADDRESS MASKING (LAM)
• ATTRIBUTE.LAM_U48 (bit 9) - Activate LAM for user data pointers and use of bits 62:48 as masked metadata in
enclave mode. This bit can be set if CPUID.(EAX=12H, ECX=01H):EAX[9] is 1.

• ATTRIBUTE.LAM_U57 (bit 8) - Activate LAM for user data pointers and use of bits 62:57 as masked metadata in
enclave mode. This bit can be set if CPUID.(EAX=12H, ECX=01H):EAX[8] is 1.

ECREATE causes #GP(0) if ATTRIBUTE.LAM_U48 bit is 1 and CPUID.(EAX=12H, ECX=01H):EAX[9] is 0, or if
ATTRIBUTE.LAM_U57 bit is 1 and CPUID.(EAX=12H, ECX=01H):EAX[8] is 0.
If SECS.ATTRIBUTES.LAM_U57 is 1, then LAM57 is enabled for user pointers during execution of an enclave
controlled by the SECS (regardless of the value of CR3). If SECS.ATTRIBUTES.LAM_U57 is 0 and SECS.ATTRI-
BUTES.LAM_U48 is 1, then LAM48 is enabled for user pointers during execution of an enclave controlled by the
SECS (regardless of the value of CR3).
When in enclave mode, supervisor data pointers are not subject to any masking.
The following ENCLU leaf functions check for linear addresses to be within the ELRANGE. When LAM is active, this
check is performed on the linear addresses that result from masking metadata bits in user pointers used by the leaf
functions.
• EACCEPT
• EACCEPTCOPY
• EGETKEY
• EMODPE
• EREPORT
The following linear address fields in the Intel SGX data structures hold linear addresses that are either loaded into
the EPCM or are written out from the EPCM and do not contain any metadata.
• SECS.BASEADDR
• PAGEINFO.LINADDR

7.9 SYSTEM MANAGEMENT MODE (SMM) INTERACTIONS
On processors that enumerate support for LAM (Section 7.1), RSM allows restoring CR3 with a value that sets
either or both bit 62 and bit 61 and restoring a value of CR4 with a value that sets bit 28.
7-6 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
CHAPTER 8
ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER

LEAF FUNCTION

8.1 INTRODUCTION
Asynchronous Enclave Exit Notify (AEX-Notify) is an extension to Intel® SGX that allows Intel SGX enclaves to be
notified after an asynchronous enclave exit (AEX) has occurred. EDECCSSA is a new Intel SGX user leaf function
(ENCLU[EDECCSSA]) that can facilitate AEX notification handling, as well as software exception handling. This
chapter provides information about changes to the Intel SGX architecture that support AEX-Notify and
ENCLU[EDECCSSA].
The following list summarizes the additions to existing Intel SGX data structures to support AEX-Notify (further
details are provided in Section 8.3):
• SECS.ATTRIBUTES.AEXNOTIFY: This enclave supports AEX-Notify.
• TCS.FLAGS.AEXNOTIFY: This enclave thread may receive AEX notifications.
• SSA.GPRSGX.AEXNOTIFY: Enclave-writable byte that allows enclave software to dynamically enable/disable

AEX notifications.
An AEX notification is delivered by ENCLU[ERESUME] when the following conditions are met:

1. TCS.FLAGS.AEXNOTIFY is set.

2. TCS.CSSA (the current slot index of an SSA frame) is greater than zero.

3. TCS.SSA[TCS.CSSA-1].GPRSGX.AEXNOTIFY[0] is set.
Note that AEX increments TCS.CSSA, and ENCLU[ERESUME] decrements TCS.CSSA, except when an AEX notifica-
tion is delivered. Instead of decrementing TCS.CSSA and restoring state from the SSA, ENCLU[ERESUME] delivers
an AEX notification by behaving as ENCLU[EENTER]. Implications of this behavior include:
• The enclave thread is resumed at EnclaveBase + TCS.OENTRY.
• EAX contains the (non-decremented) value of TCS.CSSA.
• RCX contains the address of the IP following ENCLU[ERESUME].
• The architectural state saved by the most recent AEX is preserved in TCS.SSA[TCS.CSSA-1].
The enclave thread can return to the previous SSA context by invoking ENCLU[EDECCSSA], which decrements
TCS.CSSA.

NOTE
A thread can only enter an enclave if SECS.ATTRIBUTES.AEXNOTIFY is equal to
TCS.FLAGS.AEXNOTIFY, unless TCS.FLAGS.DBGOPTIN is set to 1.
Ref. # 319433-047 8-1

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
8.2 ENUMERATION AND ENABLING
Processor support for ENCLU[EDECCSSA] is enumerated by the Intel SGX Capability Enumeration Leaf. If
CPUID.(EAX=12H, ECX=0):EAX[11] is set to 1, then a user thread executing in enclave mode can invoke the
EDECCSSA user leaf function.
Processor support for AEX-Notify is enumerated by the Intel SGX Attributes Enumeration Leaf. If CPUID.(EAX=12H,
ECX=1):EAX[10] is set to 1, then software can set the SECS.ATTRIBUTES.AEXNOTIFY bit (see Section 8.3.3) with
ENCLS[ECREATE].
Enclave threads can choose to receive AEX notifications only if the enclave has set the AEXNOTIFY attribute bit to
1. Furthermore, an enclave thread can choose to receive AEX notifications only if it enters the enclave through a
TCS with TCS.FLAGS.AEXNOTIFY set to 1. An enclave thread can choose to receive AEX notifications by setting
TCS.SSA.GPRSGX.AEXNOTIFY[0] to 1 for each SSA context in which the thread should receive AEX notifications.

NOTE
On some platforms, AEX-Notify and the EDECCSSA user leaf function may be enumerated by CPUID
following a microcode update.

8.3 CHANGES TO ENCLAVE DATA STRUCTURES

8.3.1 TCS.FLAGS Changes
A new flag, AEXNOTIFY, is defined. The bit position is 1. A thread that enters the enclave cannot receive AEX noti-
fications unless this flag is set to 1.

8.3.2 SSA.GPRSGX Changes
A new byte, AEXNOTIFY, is defined. The byte position is 167.
A new bit is defined within SSA.GPRSGX.AEXNOTIFY at bit position 0. This bit, SSA.GPRSGX.AEXNOTIFY[0], allows
enclave software to dynamically enable/disable AEX notifications. All other bits are reserved.

8.3.3 ATTRIBUTES Changes
A new bit, AEXNOTIFY, is defined. The bit position is 10. The bit indicates that threads within the enclave may
receive AEX notifications. Note that this bit also has a corresponding bit in ATTRIBUTEMASK, in the same bit posi-
tion.

8.4 CHANGES TO INTEL® SGX USER LEAF FUNCTIONS
When a thread enters an enclave through a given TCS, ENCLU[EENTER] and ENCLU[ERESUME] will cause a general
protection fault (#GP) if SECS.ATTRIBUTES.AEXNOTIFY is not equal to TCS.FLAGS.AEXNOTIFY.
If the EPCM checks succeed for all pages within TCS.SSA[TCS.CSSA-1], then ENCLU[ERESUME] checks the
TCS.SSA[TCS.CSSA-1].GPRSGX.AEXNOTIFY[0] bit (see Section 8.3.2). If this bit is set, then ENCLU[ERESUME] will
behave as ENCLU[EENTER]. The implications of this behavior are discussed in Section 8.1.
The operational changes to ENCLU[EENTER] and ENCLU[ERESUME] are detailed in Section 8.8.
8-2 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
8.5 NEW INTEL® SGX USER LEAF FUNCTION: EDECCSSA

EDECCSSA—Decrements TCS.CSSA

Instruction Operand Encoding

Description

This leaf function switches the current SSA frame by decrementing TCS.CSSA for the current enclave thread. This
instruction leaf can only be executed inside an enclave.

EDECCSSA Memory Parameter Semantics

The instruction faults if any of the following occurs:

EDECCSSA Faulting Conditions

Concurrency Restrictions

Opcode/
Instruction

Op/En 64/32
bit Mode
Support

CPUID
Feature
Flag

Description

EAX = 09H
ENCLU[EDECCSSA]

IR V/V EDECCSSA This leaf function decrements TCS.CSSA.

Op/En EAX

IR EDECCSSA (In)

TCS

Read/Write access by Enclave

TCS.CSSA is 0. TCS is not valid or available or locked.

The SSA frame is not valid or in use.

Table 8-1. Base Concurrency Restrictions of EDECCSSA

Leaf Parameter
Base Concurrency Restrictions

Access On Conflict SGX_CONFLICT VM Exit Qualification

EDECCSSA TCS [CR_TCS_PA] Shared GP

Table 8-2. Additional Concurrency Restrictions of EDECCSSA

Leaf Parameter

Additional Concurrency Restrictions

vs. EACCEPT, EACCEPTCOPY,
EMODPE, EMODPR, EMODT

vs. EADD, EEXTEND, EINIT vs. ETRACK, ETRACKC

Access On Conflict Access On Conflict Access On Conflict

EDECCSSA TCS [CR_TCS_PA] Concurrent Concurrent Concurrent
Ref. # 319433-047 8-3

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
Operation

Temp Variables in EDECCSSA Operational Flow

IF (CR_TCS_PA.CSSA = 0)
THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := CR_TCS_PA.OSSA + CR_ACTIVE_SECS.BASEADDR + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE * (CR_TCS_PA.CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(CR_ACTIVE_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
TMP_XSAVE_PAGE_PA_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * CR_ACTIVE_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;

Name Type Size (bits) Description

TMP_SSA Effective
Address

32/64 Address of current SSA frame.

TMP_XSIZE Integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective
Address

32/64 Pointer used to iterate over the SSA pages in the target frame.

TMP_GPR Effective
Address

32/64 Address of the GPR area within the target SSA frame.

TMP_XSAVE_PAGE_PA_n Physical
Address

32/64 Physical address of the nth page within the target SSA frame.

TMP_CET_SAVE_AREA Effective
Address

32/64 Address of the current CET save area.

TMP_CET_SAVE_PAGE Effective
Address

32/64 Address of the current CET save area page.
8-4 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or
(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (sizeof(GPRSGX_AREA) -1) is not in DS segment)
THEN #GP(0); FI;

FI;

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

IF ((CR_ACTIVE_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR (CR_ACTIVE_SECS.CET_ATTRIBUTES.ENDBR_EN == 1))
THEN

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA := CR_TCS_PA.OCETSSA + CR_ACTIVE_SECS.BASEADDR + (CR_TCS_PA.CSSA - 1) * 16;
TMP_CET_SAVE_PAGE := TMP_CET_SAVE_AREA & ~0xFFF;
Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
(EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(CR_TCS_PA).ENCLAVESECS))

THEN #PF(DS:TMP_CET_SAVE_PAGE); FI;
FI;

FI;

(* At this point, the instruction is guaranteed to complete *)
CR_TCS_PA.CSSA := CR_TCS_PA.CSSA - 1;

CR_GPR_PA := Physical_Address(DS:TMP_GPR);

FOR EACH TMP_XSAVE_PAGE_n
CR_XSAVE_PAGE_n := TMP_XSAVE_PAGE_PA_n;

ENDFOR

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN
Ref. # 319433-047 8-5

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF ((TMP_SECS.CET_ATTRIBUTES.SH_STK_EN == 1) OR
(TMP_SECS.CET_ATTRIBUTES.ENDBR_EN == 1))

THEN
CR_CET_SAVE_AREA_PA := Physical_Address(DS:TMP_CET_SAVE_AREA);

FI;
FI;

Flags Affected

None

Protected Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or
does not resolve to a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If executed outside an enclave.
If CR_TCS_PA.CSSA = 0.

#PF(error code) If a page fault occurs in accessing memory.
If one or more pages of the target SSA frame are not readable/writable, or do not resolve to a
valid PT_REG EPC page.
If CET is enabled for the enclave and the target CET SSA frame is not readable/writable, or
does not resolve to a valid PT_REG EPC page.

8.6 IMPLICATIONS FOR ENCLAVE CODE DEBUG AND PROFILING
Whenever an opt-in enclave entry is used to perform enclave code debugging or profiling, the debugger or profiling
tool may clear TCS.FLAGS.AEXNOTIFY to prevent AEX notifications from being delivered whenever an AEX occurs.

8.7 INTERACTION WITH INTEL® CET
Because the current CET SSA frame is indicated by TCS.CSSA, ENCLU[EDECCSSA] changes the current CET SSA
frame as well as the current SSA frame.

8.8 CHANGES TO INTEL® SGX USER LEAF FUNCTION OPERATION
All changes to existing operation are highlighted in green.
8-6 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
8.8.1 Changes to EENTER Operation
EENTER is a serializing instruction. The instruction faults if any of the following occurs:

Operation
TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1)))

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is CPU-canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not CPU-canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use. Either of TCS-specified FS and GS segment is not a subsets of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

If SECS.ATTRIBUTES.AEXNOTIFY ≠
TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.
Ref. # 319433-047 8-7

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Ensure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

(* make sure the logical processor's operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))

THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUES.XFRM) THEN #GP(0); FI;

FI;

IF ((DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * (DS:RBX).CSSA;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
8-8 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;

IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

(* Validate TCS.OENTRY *)
TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
IF (TMP_MODE64 = 1)

THEN
IF (TMP_TARGET is not CPU-canonical) THEN #GP(0); FI;

ELSE
IF (TMP_TARGET > CS limit) THEN #GP(0); FI;

FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
Ref. # 319433-047 8-9

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
ELSE

TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
IF ((TMP_FSBASE is not CPU-canonical) or (TMP_GSBASE is not CPU-canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE)

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
TMP_SSP : = 0

IF CPUID.(EAX=12H, ECX=1):EAX[6] = 1
THEN

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail EENTER *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16
8-10 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
If fault occurs release locks, abort and deliver fault

(* Read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR

 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)

IF TMP_IA32_U_CET.SH_STK_EN = 1
THEN

TMP_SSP = TCS.PREVSSP;
FI;

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMPSECS.BASEADDR, TMP_SECS.SIZE);

(* Save state for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;
Ref. # 319433-047 8-11

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
RCX := RIP;
RIP := TMP_TARGET;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP;
DS:TMP_SSA.U_RBP := RBP;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress_all_code_breakpoints_that_are_outside_ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress_all_code_breakpoints_that_overlap_with_ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress_monitor_trap_flag for the source of the execution of the enclave;
Suppress any pending debug exceptions;
Suppress any pending MTF VM exit;

ELSE
IF RFLAGS.TF = 1

THEN pend a single-step #DB at the end of EENTER; FI;
IF the “monitor trap flag” VM-execution control is set

THEN pend an MTF VM exit at the end of EENTER; FI;
FI;
8-12 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7H, ECX=0):ECX[CET_SS] = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP
SSP := TMP_SSP

FI;

IA32_U_CET := TMP_IA32_U_CET;

FI;

Flush_linear_context;
Allow_front_end_to_begin_fetch_at_new_RIP;

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1 and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment or not prop-
erly aligned.
If the target address is not CPU-canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.
Ref. # 319433-047 8-13

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.

8.8.2 Changes to ERESUME Operation
The instruction faults if any of the following occurs:

Operation

Temp Variables in ERESUME Operational Flow

TMP_MODE64 := ((IA32_EFER.LMA = 1) && (CS.L = 1));

(* Make sure DS is usable, expand up *)
IF (TMP_MODE64 = 0 and (DS not usable or ((DS[S] = 1) and (DS[bit 11] = 0) and DS[bit 10] = 1))))

THEN #GP(0); FI;

(* Check that CS, SS, DS, ES.base is 0 *)
IF (TMP_MODE64 = 0)

Address in RBX is not properly aligned. Any TCS.FLAGS’s must-be-zero bit is not zero.

TCS pointed to by RBX is not valid or available or
locked.

Current 32/64 mode does not match the enclave mode in
SECS.ATTRIBUTES.MODE64.

The SECS is in use by another enclave. Either of TCS-specified FS and GS segment is not a subset of the current DS
segment.

Any one of DS, ES, CS, SS is not zero. If XSAVE available, CR4.OSXSAVE = 0, but SECS.ATTRIBUTES.XFRM ≠ 3.

CR4.OSFXSR ≠ 1. If CR4.OSXSAVE = 1, SECS.ATTRIBUTES.XFRM is not a subset of XCR0.

Offsets 520-535 of the XSAVE area not 0. The bit vector stored at offset 512 of the XSAVE area must be a subset of
SECS.ATTRIBUTES.XFRM.

The SSA frame is not valid or in use. If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and
TCS.FLAGS.DBGOPTIN = 0.

Name Type Size Description

TMP_FSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_GSBASE Effective Address 32/64 Proposed base address for FS segment.

TMP_FSLIMIT Effective Address 32/64 Highest legal address in proposed FS segment.

TMP_GSLIMIT Effective Address 32/64 Highest legal address in proposed GS segment.

TMP_TARGET Effective Address 32/64 Address of first instruction inside enclave at which execution is to resume.

TMP_SECS Effective Address 32/64 Physical address of SECS for this enclave.

TMP_SSA Effective Address 32/64 Address of current SSA frame.

TMP_XSIZE integer 64 Size of XSAVE area based on SECS.ATTRIBUTES.XFRM.

TMP_SSA_PAGE Effective Address 32/64 Pointer used to iterate over the SSA pages in the current frame.

TMP_GPR Effective Address 32/64 Address of the GPR area within the current SSA frame.

TMP_BRANCH_RECORD LBR Record From/to addresses to be pushed onto the LBR stack.

TMP_NOTIFY Boolean 1 When set to 1, deliver an AEX notification.
8-14 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
THEN
IF(CS.base ≠ 0 or DS.base ≠ 0) #GP(0); FI;
IF(ES usable and ES.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.base ≠ 0) #GP(0); FI;
IF(SS usable and SS.B = 0) #GP(0); FI;

FI;

IF (DS:RBX is not 4KByte Aligned)
THEN #GP(0); FI;

IF (DS:RBX does not resolve within an EPC)
THEN #PF(DS:RBX); FI;

(* Check AEP is CPU-canonical*)
IF (TMP_MODE64 = 1 and (CS:RCX is not CPU-canonical))

THEN #GP(0); FI;

(* Check concurrency of TCS operation*)
IF (Other Intel SGX instructions are operating on TCS)

THEN #GP(0); FI;

(* TCS verification *)
IF (EPCM(DS:RBX).VALID = 0)

THEN #PF(DS:RBX); FI;

IF (EPCM(DS:RBX).BLOCKED = 1)
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).PENDING = 1) or (EPCM(DS:RBX).MODIFIED = 1))
THEN #PF(DS:RBX); FI;

IF ((EPCM(DS:RBX).ENCLAVEADDRESS ≠ DS:RBX) or (EPCM(DS:RBX).PT ≠ PT_TCS))
THEN #PF(DS:RBX); FI;

IF ((DS:RBX).OSSA is not 4KByte Aligned)
THEN #GP(0); FI;

(* Check proposed FS and GS *)
IF (((DS:RBX).OFSBASE is not 4KByte Aligned) or ((DS:RBX).OGSBASE is not 4KByte Aligned))

THEN #GP(0); FI;

(* Get the SECS for the enclave in which the TCS resides *)
TMP_SECS := Address of SECS for TCS;

(* Make sure that the FLAGS field in the TCS does not have any reserved bits set *)
IF (((DS:RBX).FLAGS & FFFFFFFFFFFFFFFCH) ≠ 0)

THEN #GP(0); FI;

(* SECS must exist and enclave must have previously been EINITted *)
IF (the enclave is not already initialized)

THEN #GP(0); FI;

(* make sure the logical processor's operating mode matches the enclave *)
IF ((TMP_MODE64 ≠ TMP_SECS.ATTRIBUTES.MODE64BIT))
Ref. # 319433-047 8-15

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
THEN #GP(0); FI;

IF (CR4.OSFXSR = 0)
THEN #GP(0); FI;

(* Check for legal values of SECS.ATTRIBUTES.XFRM *)
IF (CR4.OSXSAVE = 0)

THEN
IF (TMP_SECS.ATTRIBUTES.XFRM ≠ 03H) THEN #GP(0); FI;

ELSE
IF ((TMP_SECS.ATTRIBUTES.XFRM & XCR0) ≠ TMP_SECS.ATTRIBUTES.XFRM) THEN #GP(0); FI;

FI;

IF ((DS:RBX).CSSA.FLAGS.DBGOPTIN = 0) and (DS:RBX).CSSA.FLAGS.AEXNOTIFY ≠ TMP_SECS.ATTRIBUTES.AEXNOTIFY))
THEN #GP(0); FI;

(* Make sure the SSA contains at least one active frame *)
IF ((DS:RBX).CSSA = 0)

THEN #GP(0); FI;

(* Compute linear address of SSA frame *)
TMP_SSA := (DS:RBX).OSSA + TMP_SECS.BASEADDR + 4096 * TMP_SECS.SSAFRAMESIZE * ((DS:RBX).CSSA - 1);
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_SSA_PAGE does not resolve to EPC page)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or (EPCM(DS:TMP_SSA_PAGE_.MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMPSSA_PAGE) or (EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or

(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))
THEN #PF(DS:TMP_SSA_PAGE); FI;

CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);
ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;
IF (DS:TMP_GPR does not resolve to EPC page)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).VALID = 0)

THEN #PF(DS:TMP_GPR); FI;
IF (EPCM(DS:TMP_GPR).BLOCKED = 1)

THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
8-16 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
THEN #PF(DS:TMP_GPR); FI;
IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or (EPCM(DS:TMP_GPR).PT ≠ PT_REG) or

(EPCM(DS:TMP_GPR).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))
THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

IF ((DS:RBX).FLAGS.AEXNOTIFY = 1) and (DS:TMP_GPR.AEXNOTIFY[0] = 1))
THEN

TMP_NOTIFY := 1;
ELSE

TMP_NOTIFY := 0;
FI;

IF (TMP_NOTIFY = 1)
THEN

(* Make sure the SSA contains at least one more frame *)
IF ((DS:RBX).CSSA ≥ (DS:RBX).NSSA)

THEN #GP(0); FI;

TMP_SSA := TMP_SSA + 4096 * TMP_SECS.SSAFRAMESIZE;
TMP_XSIZE := compute_XSAVE_frame_size(TMP_SECS.ATTRIBUTES.XFRM);

FOR EACH TMP_SSA_PAGE = TMP_SSA to TMP_SSA + TMP_XSIZE
(* Check page is read/write accessible *)
Check that DS:TMP_SSA_PAGE is read/write accessible;
If a fault occurs, release locks, abort and deliver that fault;

IF (DS:TMP_SSA_PAGE does not resolve to EPC page)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).VALID = 0)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF (EPCM(DS:TMP_SSA_PAGE).BLOCKED = 1)
THEN #PF(DS:TMP_SSA_PAGE); FI;

IF ((EPCM(DS:TMP_SSA_PAGE).PENDING = 1) or
(EPCM(DS:TMP_SSA_PAGE).MODIFIED = 1))

THEN #PF(DS:TMP_SSA_PAGE); FI;
IF ((EPCM(DS:TMP_SSA_PAGE).ENCLAVEADDRESS ≠ DS:TMP_SSA_PAGE) or
(EPCM(DS:TMP_SSA_PAGE).PT ≠ PT_REG) or
(EPCM(DS:TMP_SSA_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_SSA_PAGE).R = 0) or (EPCM(DS:TMP_SSA_PAGE).W = 0))

THEN #PF(DS:TMP_SSA_PAGE); FI;
CR_XSAVE_PAGE_n := Physical_Address(DS:TMP_SSA_PAGE);

ENDFOR

(* Compute address of GPR area*)
TMP_GPR := TMP_SSA + 4096 * DS:TMP_SECS.SSAFRAMESIZE - sizeof(GPRSGX_AREA);
If a fault occurs; release locks, abort and deliver that fault;
Ref. # 319433-047 8-17

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF (DS:TMP_GPR does not resolve to EPC page)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).VALID = 0)
THEN #PF(DS:TMP_GPR); FI;

IF (EPCM(DS:TMP_GPR).BLOCKED = 1)
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).PENDING = 1) or (EPCM(DS:TMP_GPR).MODIFIED = 1))
THEN #PF(DS:TMP_GPR); FI;

IF ((EPCM(DS:TMP_GPR).ENCLAVEADDRESS ≠ DS:TMP_GPR) or
(EPCM(DS:TMP_GPR).PT ≠ PT_REG) or
(EPCM(DS:TMP_GPR).ENCLAVESECS EPCM(DS:RBX).ENCLAVESECS) or
(EPCM(DS:TMP_GPR).R = 0) or (EPCM(DS:TMP_GPR).W = 0))

THEN #PF(DS:TMP_GPR); FI;

IF (TMP_MODE64 = 0)
THEN

IF (TMP_GPR + (GPR_SIZE -1) is not in DS segment) THEN #GP(0); FI;
FI;

CR_GPR_PA := Physical_Address (DS: TMP_GPR);

TMP_TARGET := (DS:RBX).OENTRY + TMP_SECS.BASEADDR;
ELSE

TMP_TARGET := (DS:TMP_GPR).RIP;
FI;

IF (TMP_MODE64 = 1)
THEN

IF (TMP_TARGET is not CPU-canonical) THEN #GP(0); FI;
ELSE

IF (TMP_TARGET > CS limit) THEN #GP(0); FI;
FI;

(* Check proposed FS/GS segments fall within DS *)
IF (TMP_MODE64 = 0)

THEN
TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_FSLIMIT := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR + (DS:RBX).FSLIMIT;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;
TMP_GSLIMIT := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR + (DS:RBX).GSLIMIT;
(* if FS wrap-around, make sure DS has no holes*)
IF (TMP_FSLIMIT < TMP_FSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_FSLIMIT > DS.limit) THEN #GP(0); FI;

FI;
(* if GS wrap-around, make sure DS has no holes*)
IF (TMP_GSLIMIT < TMP_GSBASE)

THEN
IF (DS.limit < 4GB) THEN #GP(0); FI;

ELSE
IF (TMP_GSLIMIT > DS.limit) THEN #GP(0); FI;
8-18 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
FI;
ELSE

IF (TMP_NOTIFY = 1)
THEN

TMP_FSBASE := (DS:RBX).OFSBASE + TMP_SECS.BASEADDR;
TMP_GSBASE := (DS:RBX).OGSBASE + TMP_SECS.BASEADDR;

ELSE
 TMP_FSBASE := DS:TMP_GPR.FSBASE;
 TMP_GSBASE := DS:TMP_GPR.GSBASE;

FI;
IF ((TMP_FSBASE is not CPU-canonical) or (TMP_GSBASE is not CPU-canonical))

THEN #GP(0); FI;
FI;

(* Ensure the enclave is not already active and this thread is the only one using the TCS*)
IF (DS:RBX.STATE = ACTIVE))

THEN #GP(0); FI;

TMP_IA32_U_CET := 0
TMP_SSP := 0

IF (CPUID.(EAX=12H, ECX=1):EAX[6] = 1)
THEN

IF (CR4.CET = 0)
THEN

(* If part does not support CET or CET has not been enabled and enclave requires CET then fail *)
IF (TMP_SECS.CET_ATTRIBUTES ≠ 0 OR TMP_SECS.CET_LEG_BITMAP_OFFSET ≠ 0) #GP(0); FI;

FI;
(* If indirect branch tracking or shadow stacks enabled but CET state save area is not 16B aligned then fail ERESUME *)
IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN = 1 OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN = 1)

THEN
IF (DS:RBX.OCETSSA is not 16B aligned) #GP(0); FI;

FI;

IF (TMP_SECS.CET_ATTRIBUTES.SH_STK_EN OR TMP_SECS.CET_ATTRIBUTES.ENDBR_EN)
THEN

(* Setup CET state from SECS, note tracker goes to IDLE *)
TMP_IA32_U_CET = TMP_SECS.CET_ATTRIBUTES;
IF (TMP_IA32_U_CET.LEG_IW_EN = 1 AND TMP_IA32_U_CET.ENDBR_EN = 1)

THEN
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.BASEADDR;
TMP_IA32_U_CET := TMP_IA32_U_CET + TMP_SECS.CET_LEG_BITMAP_BASE;

FI;

(* Compute linear address of what will become new CET state save area and cache its PA *)
IF (TMP_NOTIFY = 1)

THEN
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA) * 16;

ELSE
TMP_CET_SAVE_AREA = DS:RBX.OCETSSA + TMP_SECS.BASEADDR + (DS:RBX.CSSA - 1) * 16;

FI;
TMP_CET_SAVE_PAGE = TMP_CET_SAVE_AREA & ~0xFFF;

Check the TMP_CET_SAVE_PAGE page is read/write accessible
Ref. # 319433-047 8-19

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
If fault occurs release locks, abort and deliver fault

(* read the EPCM VALID, PENDING, MODIFIED, BLOCKED and PT fields atomically *)
IF ((DS:TMP_CET_SAVE_PAGE Does NOT RESOLVE TO EPC PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).VALID = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PENDING = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).MODIFIED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).BLOCKED = 1) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).R = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).W = 0) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVEADDRESS ≠ DS:TMP_CET_SAVE_PAGE) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).PT ≠ PT_SS_REST) OR
 (EPCM(DS:TMP_CET_SAVE_PAGE).ENCLAVESECS ≠ EPCM(DS:RBX).ENCLAVESECS))

THEN
#PF(DS:TMP_CET_SAVE_PAGE);

FI;

CR_CET_SAVE_AREA_PA := Physical address(DS:TMP_CET_SAVE_AREA)
IF (TMP_NOTIFY = 1)

THEN
IF TMP_IA32_U_CET.SH_STK_EN = 1

THEN TMP_SSP = TCS.PREVSSP; FI;
ELSE

TMP_SSP = CR_CET_SAVE_AREA_PA.SSP
TMP_IA32_U_CET.TRACKER = CR_CET_SAVE_AREA_PA.TRACKER;
TMP_IA32_U_CET.SUPPRESS = CR_CET_SAVE_AREA_PA.SUPPRESS;
IF ((TMP_MODE64 = 1 AND TMP_SSP is not CPU-canonical) OR

 (TMP_MODE64 = 0 AND (TMP_SSP & 0xFFFFFFFF00000000) ≠ 0) OR
(TMP_SSP is not 4 byte aligned) OR
(TMP_IA32_U_CET.TRACKER = WAIT_FOR_ENDBRANCH AND TMP_IA32_U_CET.SUPPRESS = 1) OR
(CR_CET_SAVE_AREA_PA.Reserved ≠ 0)) #GP(0); FI;

FI;
FI;

FI;

IF (TMP_NOTIFY = 0)
THEN

(* SECS.ATTRIBUTES.XFRM selects the features to be saved. *)
(* CR_XSAVE_PAGE_n: A list of 1 or more physical address of pages that contain the XSAVE area. *)
XRSTOR(TMP_MODE64, SECS.ATTRIBUTES.XFRM, CR_XSAVE_PAGE_n);

IF (XRSTOR failed with #GP)
THEN

DS:RBX.STATE := INACTIVE;
#GP(0);

FI;
FI;

CR_ENCLAVE_MODE := 1;
CR_ACTIVE_SECS := TMP_SECS;
CR_ELRANGE := (TMP_SECS.BASEADDR, TMP_SECS.SIZE);

(* Save sate for possible AEXs *)
CR_TCS_PA := Physical_Address (DS:RBX);
8-20 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
CR_TCS_LA := RBX;
CR_TCS_LA.AEP := RCX;

(* Save the hidden portions of FS and GS *)
CR_SAVE_FS_selector := FS.selector;
CR_SAVE_FS_base := FS.base;
CR_SAVE_FS_limit := FS.limit;
CR_SAVE_FS_access_rights := FS.access_rights;
CR_SAVE_GS_selector := GS.selector;
CR_SAVE_GS_base := GS.base;
CR_SAVE_GS_limit := GS.limit;
CR_SAVE_GS_access_rights := GS.access_rights;

IF (TMP_NOTIFY = 1)
THEN

(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;
FI;

RIP := TMP_TARGET;

IF (TMP_NOTIFY = 1)
THEN

RCX := RIP;
RAX := (DS:RBX).CSSA;
(* Save the outside RSP and RBP so they can be restored on interrupt or EEXIT *)
DS:TMP_SSA.U_RSP := RSP;
DS:TMP_SSA.U_RBP := RBP;

ELSE
Restore_GPRs from DS:TMP_GPR;

(*Restore the RFLAGS values from SSA*)
RFLAGS.CF := DS:TMP_GPR.RFLAGS.CF;
RFLAGS.PF := DS:TMP_GPR.RFLAGS.PF;
RFLAGS.AF := DS:TMP_GPR.RFLAGS.AF;
RFLAGS.ZF := DS:TMP_GPR.RFLAGS.ZF;
RFLAGS.SF := DS:TMP_GPR.RFLAGS.SF;
RFLAGS.DF := DS:TMP_GPR.RFLAGS.DF;
RFLAGS.OF := DS:TMP_GPR.RFLAGS.OF;
RFLAGS.NT := DS:TMP_GPR.RFLAGS.NT;
RFLAGS.AC := DS:TMP_GPR.RFLAGS.AC;
RFLAGS.ID := DS:TMP_GPR.RFLAGS.ID;
RFLAGS.RF := DS:TMP_GPR.RFLAGS.RF;
RFLAGS.VM := 0;
IF (RFLAGS.IOPL = 3)

THEN RFLAGS.IF := DS:TMP_GPR.RFLAGS.IF; FI;

IF (TCS.FLAGS.OPTIN = 0)
THEN RFLAGS.TF := 0; FI;
Ref. # 319433-047 8-21

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
(* If XSAVE is enabled, save XCR0 and replace it with SECS.ATTRIBUTES.XFRM*)
IF (CR4.OSXSAVE = 1)

THEN
CR_SAVE_XCR0 := XCR0;
XCR0 := TMP_SECS.ATTRIBUTES.XFRM;

FI;

(* Pop the SSA stack*)
(DS:RBX).CSSA := (DS:RBX).CSSA -1;

FI;

(* Do the FS/GS swap *)
FS.base := TMP_FSBASE;
FS.limit := DS:RBX.FSLIMIT;
FS.type := 0001b;
FS.W := DS.W;
FS.S := 1;
FS.DPL := DS.DPL;
FS.G := 1;
FS.B := 1;
FS.P := 1;
FS.AVL := DS.AVL;
FS.L := DS.L;
FS.unusable := 0;
FS.selector := 0BH;

GS.base := TMP_GSBASE;
GS.limit := DS:RBX.GSLIMIT;
GS.type := 0001b;
GS.W := DS.W;
GS.S := 1;
GS.DPL := DS.DPL;
GS.G := 1;
GS.B := 1;
GS.P := 1;
GS.AVL := DS.AVL;
GS.L := DS.L;
GS.unusable := 0;
GS.selector := 0BH;

CR_DBGOPTIN := TCS.FLAGS.DBGOPTIN;
Suppress all code breakpoints that are outside ELRANGE;

IF (CR_DBGOPTIN = 0)
THEN

Suppress all code breakpoints that overlap with ELRANGE;
CR_SAVE_TF := RFLAGS.TF;
RFLAGS.TF := 0;
Suppress any MTF VM exits during execution of the enclave;
Clear all pending debug exceptions;
Clear any pending MTF VM exit;

ELSE
IF (TMP_NOTIFY = 1)

THEN
8-22 Ref. # 319433-047

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
IF RFLAGS.TF = 1
THEN pend a single-step #DB at the end of EENTER; FI;

IF the “monitor trap flag” VM-execution control is set
THEN pend an MTF VM exit at the end of EENTER; FI;

ELSE
Clear all pending debug exceptions;
Clear pending MTF VM exits;

FI;
FI;

IF ((CPUID.(EAX=7H, ECX=0):EDX[CET_IBT] = 1) OR (CPUID.(EAX=7, ECX=0):ECX[CET_SS] = 1)
THEN

(* Save enclosing application CET state into save registers *)
CR_SAVE_IA32_U_CET := IA32_U_CET
(* Setup enclave CET state *)
IF CPUID.(EAX=07H, ECX=00h):ECX[CET_SS] = 1

THEN
CR_SAVE_SSP := SSP
SSP := TMP_SSP;

FI;
IA32_U_CET := TMP_IA32_U_CET;

FI;

(* Assure consistent translations *)
Flush_linear_context;
Clear_Monitor_FSM;
Allow_front_end_to_begin_fetch_at_new_RIP;

Flags Affected

RFLAGS.TF is cleared on opt-out entry

Protected Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not within the CS segment.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.
Ref. # 319433-047 8-23

ASYNCHRONOUS ENCLAVE EXIT NOTIFY AND THE EDECCSSA USER LEAF FUNCTION
64-Bit Mode Exceptions

#GP(0) If DS:RBX is not page aligned.
If the enclave is not initialized.
If the thread is not in the INACTIVE state.
If CS, DS, ES or SS bases are not all zero.
If executed in enclave mode.
If part or all of the FS or GS segment specified by TCS is outside the DS segment.
If any reserved field in the TCS FLAG is set.
If the target address is not CPU-canonical.
If CR4.OSFXSR = 0.
If CR4.OSXSAVE = 0 and SECS.ATTRIBUTES.XFRM ≠ 3.
If CR4.OSXSAVE = 1and SECS.ATTRIBUTES.XFRM is not a subset of XCR0.
If SECS.ATTRIBUTES.AEXNOTIFY ≠ TCS.FLAGS.AEXNOTIFY and TCS.FLAGS.DBGOPTIN = 0.

#PF(error code) If a page fault occurs in accessing memory operands.
If DS:RBX does not point to a valid TCS.
If one or more pages of the current SSA frame are not readable/writable, or do not resolve to
a valid PT_REG EPC page.
8-24 Ref. # 319433-047

CODE PREFETCH INSTRUCTION UPDATES
CHAPTER 9
CODE PREFETCH INSTRUCTION UPDATES

All changes to existing operation are highlighted in green.

PREFETCHh—Prefetch Data or Code Into Caches

Instruction Operand Encoding

Description

Fetches the line of data or code (instructions’ bytes) from memory that contains the byte specified with the source
operand to a location in the cache hierarchy specified by a locality hint:
• T0 (temporal data)—prefetch data into all levels of the cache hierarchy.
• T1 (temporal data with respect to first level cache misses)—prefetch data into level 2 cache and higher.
• T2 (temporal data with respect to second level cache misses)—prefetch data into level 3 cache and higher, or

an implementation-specific choice.
• NTA (non-temporal data with respect to all cache levels)—prefetch data into non-temporal cache structure and

into a location close to the processor, minimizing cache pollution.
• IT0 (temporal code)—prefetch code into all levels of the cache hierarchy.
• IT1 (temporal code with respect to first level cache misses)—prefetch code into all but the first-level of the

cache hierarchy.

The source operand is a byte memory location. (The locality hints are encoded into the machine level instruction
using bits 3 through 5 of the ModR/M byte.) Some locality hints may prefetch only for RIP-relative memory
addresses; see additional details below. The address to prefetch is NextRIP + 32-bit displacement, where NextRIP
is the first byte of the instruction that follows the prefetch instruction itself.

If the line selected is already present in the cache hierarchy at a level closer to the processor, no data movement
occurs. Prefetches from uncacheable or WC memory are ignored.

Opcode/
Instruction

Op/
En

64/32 Bit
Mode
Support

Description

0F 18 /1

PREFETCHT0 m8

M V/V Move data from m8 closer to the processor using T0 hint.

0F 18 /2

PREFETCHT1 m8

M V/V Move data from m8 closer to the processor using T1 hint.

0F 18 /3

PREFETCHT2 m8

M V/V Move data from m8 closer to the processor using T2 hint.

0F 18 /0

PREFETCHNTA m8

M V/V Move data from m8 closer to the processor using NTA hint.

0F 18 /7

PREFETCHIT0 m8

M V/I Move code from relative address closer to the processor using IT0 hint.

0F 18 /6

PREFETCHIT1 m8

M V/I Move code from relative address closer to the processor using IT1 hint.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

M ModRM:r/m (r) N/A N/A N/A
Ref. # 319433-047 9-1

CODE PREFETCH INSTRUCTION UPDATES
The PREFETCHh instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use.

The implementation of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data or code lines prefetched is also processor implementation-depen-
dent. It will, however, be a minimum of 32 bytes. Additional details of the implementation-dependent locality hints
are described in Section 7.4 of Intel® 64 and IA-32 Architectures Optimization Reference Manual.

It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHh instruction is considered a hint to this speculative behavior. Because this speculative fetching can occur
at any time and is not tied to instruction execution, a PREFETCHh instruction is not ordered with respect to the
fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHh instruction is also
unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHh instructions, or any other
general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.
PREFETCHIT0/1 apply when in 64-bit mode with RIP-relative addressing; they stay NOPs otherwise. For optimal
performance, the addresses used with these instructions should be the starting byte of a real instruction.
PREFETCHIT0/1 instructions are enumerated by CPUID.(EAX=07H, ECX=01H).EDX.PREFETCHI[bit 14].The encod-
ings stay NOPs in processors that do not enumerate these instructions.

Operation

FETCH (m8);

Intel C/C++ Compiler Intrinsic Equivalent

void _mm_prefetch(char *p, int i)

The argument “*p” gives the address of the byte (and corresponding cache line) to be prefetched. The value “i”
gives a constant (_MM_HINT_T0, _MM_HINT_T1, _MM_HINT_T2, or _MM_HINT_NTA, _MM_HINT_IT0,
_MM_HINT_IT1) that specifies the type of prefetch operation to be performed.

Numeric Exceptions

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
9-2 Ref. # 319433-047

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
CHAPTER 10
NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)

The next generation Performance Monitoring Unit (PMU)1 offers additional enhancements beyond what is available
in both the 12th generation Intel® Core™ processor based on Alder Lake performance hybrid architecture and the
13th generation Intel® Core™ processor:
• Timed PEBS
• New (Hybrid) Enumeration Architecture

— General-Purpose Counters

— Fixed-Function Counters

— Architectural Performance Monitoring Events

• Topdown Microarchitecture Analysis (TMA) Level 1 Architectural Performance Monitoring Events

— Non-Architectural Capabilities

10.1 NEW ENUMERATION ARCHITECTURE
A new Architectural Performance Monitoring Extended Leaf 23H is added to the CPUID instruction for enhanced
enumeration of PMU architectural features; see Chapter 1, “Architectural Performance Monitoring Extended Leaf
(Output depends on ECX input value)” on page 25 for details.

NOTE
CPUID leaf 0AH continues to report useful attributes, such as architectural performance monitoring
version ID and counter width (# bits).

CPUID leaf 23H enhances previous enumeration of PMU capabilities:
• Employs CPUID sub-leafing to accommodate future PMU extensions.
• Exposes hybrid resources per core-type.
• Introduces a bitmap enumeration of general-purpose counters availability.
• A bitmap enumeration of fixed-function counters availability.
• A bitmap enumeration of architectural performance monitoring events.
Processors that support this enhancement set CPUID.(EAX=07H, ECX=01H):EAX.ArchPerfmonExt[bit 8].
Additionally, the IA32_PERF_CAPABILITIES MSR enhances enumeration for PMU non-architectural features (see
Section 10.1.6).

10.1.1 CPUID Sub-Leafing
CPUID leaf 23H contains additional architectural PMU capabilities. This leaf supports sub-leafing, providing each
distinct PMU feature with an individual sub-leaf for enumerating its details.
The availability of sub-leaves is enumerated via CPUID.(EAX=23H, ECX=0H):EAX. For each bit n set in this field,
sub-leaf n under CPUID leaf 23H is supported.

1. The next generation PMU incorporates PEBS_FMT=5h as described in Section 19.6.2.4.2 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B.
Ref. # 319433-047 10-1

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
10.1.2 Reporting of Hybrid Resources
CPUID leaf 23H provides a true-view of per core-type PMU capabilities. For hybrid processors, those that set
CPUID.(EAX=07H, ECX=0H):EDX.Hybrid[bit 15], the new leaf reports the actual support of the individual core-
type the CPUID instruction was executed on. This implies that values returned by this leaf may vary based on the
core-type. This applies to all sub-leaves and registers.
Conversely, CPUID leaf 0AH provides a maximum common set of capabilities across core types when a feature is
not supported by all core types.

NOTE
Locating a PMU feature under CPUID leaf 023H alerts software that the features may be not
supported uniformly across all core types.

10.1.3 General-Purpose Counters Bitmap
CPUID.(EAX=23H, ECX=01H):EAX reports a bitmap for available general-purpose counters. (CPUID leaf 0AH
reports only the total number of general-purpose counters).
This capability enables a virtual-machine monitor to reserve lower-index counters for its own use, while exposing
higher-index counters to guest software. This is especially important should the general-purpose counters not be
fully homogeneous.
Software should utilize the new bitmap reporting, including for detecting the number of available general-purpose
counters. To facilitate this transition, the number of general-purpose counters in CPUID leaf 0AH will not go beyond
eight, even if the processor has support for more than eight general-purpose counters.

10.1.4 Fixed-Function Counters Hybrid Bitmap
CPUID.(EAX=23H, ECX=01H):EBX reports a bitmap for available fixed-function counters. (CPUID leaf 0AH reports
the common number of contiguous fixed-function counters in addition to a common bitmap of fixed-function
counters availability.)
This capability enables privileged software to expose per core-type enumeration of fixed-function counters. This is
especially important should the fixed-function counters not be available on all logical processors.

10.1.5 Architectural Performance Monitoring Events Bitmap
CPUID.(EAX=23H, ECX=03H):EAX provides a true-view of per core-type available architectural performance moni-
toring events. For each bit n set in this field, the processor supports Architectural Performance Monitoring Event of
index n (positive polarity).
Conversely, CPUID leaf 0AH provides a maximum common set of architectural performance monitoring events
supported by all core types, where if bit n is set, it denotes the processor does not necessarily support Architectural
Performance Monitoring Event of index n on all logical processors (negative polarity).

10.1.6 Non-Architectural Performance Capabilities
The IA32_PERF_CAPABILITIES MSR provides enumeration of non-architectural PMU features. Some fields in the
MSR are of type “common,” meaning that they report the same value on all cores in a hybrid part. Other fields have
type “hybrid” and report values that may differ across cores (the value reported on each core pertains only to that
core). Table 10-1 enumerates the fields in the MSR and indicates the type of each.
10-2 Ref. # 319433-047

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
10.2 NEW ARCHITECTURAL EVENTS
Next generation PMU introduces additional architectural performance monitoring events with details summarized
in Table 10-2. Descriptions are provided in the sub-sections that follow.

10.2.1 Topdown Microarchitecture Analysis Level 1

10.2.1.1 Topdown Backend Bound−Event Select A4H, Umask 02H
This event counts a subset of the Topdown Slots event that was not consumed by the back-end pipeline due to lack
of back-end resources, as a result of memory subsystem delays, execution unit limitations, or other conditions.
The count may be distributed among unhalted logical processors who share the same physical core, in processors
that support Intel® Hyper-Threading Technology.
Software can use this event as the numerator for the Backend Bound metric (or top-level category) of the Topdown
Microarchitecture Analysis method.

Table 10-1. IA32_PERF_CAPABILITIES Hybrid Enumeration

Field Name Bits1 Type

LBR FMT 5:0 Common

PEBS Trap 6 Common

PEBS Arch Regs 7 Common

PEBS FMT 11:8 Common

Freeze while SMM 12 Common

Full Write 13 Common

PEBS Baseline 14 Common

Perf Metrics Available 15 Hybrid

PEBS Output PT Available 16 Hybrid

PEBS Timing Info 17 Common

NOTES:

1. For more information on bit 17, see Section 10.3.1. For information on other bits, see Section 19.8 in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 10-2. New Architectural Performance Monitoring Events

Bit Position in
CPUID.0AH.EBX and

CPUID.023H.03H.EAX

Event Name Event Select UMask

8 Topdown Backend Bound A4H 02H

9 Topdown Bad Speculation 73H 00H

10 Topdown Frontend Bound 9CH 01H

11 Topdown Retiring C2H 02H
Ref. # 319433-047 10-3

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
10.2.1.2 Topdown Bad Speculation−Event Select 73H, Umask 00H
This event counts a subset of the Topdown Slots event that was wasted due to incorrect speculation as a result of
incorrect control-flow or data speculation. Common examples include branch mispredictions and memory ordering
clears.
The count may be distributed among impacted logical processors who share the same physical core, for some
processors that support Intel Hyper-Threading Technology.
Software can use this event as the numerator for the Bad Speculation metric (or top-level category) of the Topdown
Microarchitecture Analysis method.

10.2.1.3 Topdown Frontend Bound−Event Select 9CH, Umask 01H
This event counts a subset of the Topdown Slots event that had no operation delivered to the back-end pipeline due
to instruction fetch limitations when the back-end could have accepted more operations. Common examples
include instruction cache misses and x86 instruction decode limitations.
The count may be distributed among unhalted logical processors who share the same physical core, in processors
that support Intel Hyper-Threading Technology.
Software can use this event as the numerator for the Frontend Bound metric (or top-level category) of the Topdown
Microarchitecture Analysis method.

10.2.1.4 Topdown Retiring−Event Select C2H, Umask 02H
This event counts a subset of the Topdown Slots event that is utilized by operations that eventually get retired
(committed) by the processor pipeline. Usually, this event positively correlates with higher performance as
measured by the instructions-per-cycle metric.
Software can use this event as the numerator for the Retiring metric (or top-level category) of the Topdown
Microarchitecture Analysis method.

10.3 PROCESSOR EVENT BASED SAMPLING (PEBS) ENHANCEMENTS

10.3.1 Timed Processor Event Based Sampling
Timed Processor Event Based Sampling (Timed PEBS) enables recording of time in every PEBS record. It extends
all PEBS records with timing information in a new “Retire Latency” field that is placed in the Basic Info group of the
PEBS record as shown in Table 10-3.

The Retire Latency field reports the number of unhalted core clocks between the retirement of the current instruc-
tion (as indicated by the Instruction Pointer field of the PEBS record) and the retirement of the prior instruction. All
ones are reported when the number exceeds 16 bits.

Table 10-3. Basic Info Group

Offset Field Name Bits

0x0

Record Format [31:0]

Retire Latency [47:32]

Record Size [63:48]

0x8 Instruction Pointer [63:0]

0x10 Applicable Counters [63:0]

0x18 TSC [63:0]
10-4 Ref. # 319433-047

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
Processors that support this enhancement set a new bit: IA32_PERF_CAPABILITIES.PEBS_TIMING_INFO[bit 17].
Ref. # 319433-047 10-5

NEXT GENERATION PERFORMANCE MONITORING UNIT (PMU)
10-6 Ref. # 319433-047

LINEAR ADDRESS SPACE SEPARATION (LASS)
CHAPTER 11
LINEAR ADDRESS SPACE SEPARATION (LASS)

This chapter describes a new feature called linear address space separation (LASS).

11.1 INTRODUCTION
Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A describes paging,
which is the process of translating linear addresses to physical addresses and determining, for each translation, the
linear address’s access rights; these determine what accesses to a linear address are allowed.
Every access to a linear address is either a supervisor-mode access or a user-mode access. A linear address’s
access rights include an indication of whether address is a supervisor-mode address or a user-mode address.
Paging prevents user-mode accesses to supervisor-mode addresses; in addition, there are features that can
prevent supervisor-mode accesses to user-mode addresses. (These features are supervisor-mode execution
prevention — SMEP — and supervisor-mode access prevention — SMAP.) In most cases, the blocked accesses
cause page-fault exceptions (#PF); for some cases (e.g., speculative accesses), the accesses are dropped without
fault.
With these mode-based protections, paging can prevent malicious software from directly reading or writing
memory inappropriately. To enforce these protections, the processor must traverse the hierarchy of paging struc-
tures in memory. Unprivileged software can use timing information resulting from this traversal to determine
details about the paging structures, and these details may be used to determine the layout of supervisor memory.
Linear-address space separation (LASS) is an independent mechanism that enforces the same mode-based protec-
tions as paging but without traversing the paging structures. Because the protections enforced by LASS are applied
before paging, “probes” by malicious software will provide no paging-based timing information.
LASS is based on a linear-address organization established by many operating systems: all linear addresses whose
most significant bit is 0 (“low” or “positive” addresses) are user-mode addresses, while all linear addresses whose
most significant bit is 1 (“high” or “negative” addresses) are supervisor-mode addresses. An operating system
should enable LASS only if it uses this organization of linear addresses.

11.2 ENUMERATION AND ENABLING
Support for LASS is enumerated with CPUID.(EAX=07H.ECX=1):EAX.LASS[bit 6].
If a processor enumerates CPUID.(EAX=07H.ECX=1):EAX.LASS[bit 6] as 1, software can set CR4.LASS[bit 27].
Setting CR4.LASS to 1 enables LASS in IA-32e mode (when IA32_EFER.LMA = 1). LASS is not used in legacy mode,
even if CR4.LASS = 1.

11.3 OPERATION OF LINEAR-ADDRESS SPACE SEPARATION
This section describes the operation of linear-address space separation (LASS). The discussion in this section
applies only if IA32_EFER.LMA = CR4.LASS = 1. (If either of those control bits is zero, LASS does not apply.)
As indicated in Section 11.1, LASS enforces mode-based protections similar to those enforced by paging. Violations
of these protections are called LASS violations. The processor will consult neither the paging structures nor the
TLBs for an access that causes a LASS violation.
Like paging, LASS violations typically result in faults. Instead of page faults (#PF), an access causing a LASS viola-
tion results in the same fault that would occur if the access used an address that was not canonical relative to the
current paging mode. In most cases, this is a general protection exception (#GP); for stack accesses (those due to
stack-oriented instructions, as well as accesses that implicitly or explicitly use the SS segment register), it would
be a stack fault (#SS).
Ref. # 319433-047 11-1

LINEAR ADDRESS SPACE SEPARATION (LASS)
Some accesses do not cause faults when they would violate the mode-based protections established by paging.
These include prefetches (e.g., those resulting from execution of one of the PREFETCHh instructions), executions
of the CLDEMOTE instruction, and accesses resulting from the speculative fetch or execution of an instruction. Such
an access may cause a LASS violation; if it does, the access is not performed but no fault occurs. (When such an
access would violate the mode-based protections of paging, the access is not performed but no page fault occurs.)
In 64-bit mode, LASS violations have priority just below that of canonicality violations; in compatibility mode, they
have priority just below that of segment-limit violations.
The remainder of this section describes how LASS applies to different types of accesses to linear addresses.
Chapter 4, “Paging,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A provides full
definitions of these access types. The sections below discuss specific LASS violations based on bit 63 of a linear
address. For a linear address with only 32 bits (or 16 bits), the processor treats bit 63 as if it were 0.

11.3.1 Data Accesses
A linear-address access is a data access if it is not for the fetch of an instruction. Such an access is a user-mode
access if CPL = 3 and the access is not one that implicitly accesses a system data structure (e.g., the global
descriptor table); it is a supervisor-mode access if CPL < 3 or if it implicitly accesses a system data structure.1

A user-mode data access causes a LASS violation if it would access a linear address of which bit 63 is 1. It is
expected that the operating system will configure paging so that any such address is a supervisor-mode address.
A supervisor-mode data access may cause a LASS violation if it would access a linear address of which bit 63 is 0.
It is expected that the operating system will configure paging so that any such address is a user-mode address.
A supervisor-mode data access causes a LASS violation only if supervisor-mode access protection is enabled
(because CR4.SMAP = 1) and either RFLAGS.AC = 0 or the access implicitly accesses a system data structure.

11.3.2 Instruction Fetches
Instruction fetches are always performed with linear addresses. An instruction fetch is user-mode if CPL = 3 and
is supervisor mode if CPL < 3.
A user-mode instruction fetch causes a LASS violation if it would fetch an instruction using a linear address of which
bit 63 is 1.
A supervisor-mode instruction fetch causes a LASS violation if it would accesses a linear address of which bit 63
is 0.
(Paging blocks supervisor-mode instruction fetches from user-mode linear addresses only if supervisor-mode
execution protection has been enabled by setting CR4.SMEP to 1. Such instructions fetches cause LASS violations
regardless of the setting of CR4.SMEP.)
It was noted earlier that LASS violations produce the same faults as canonicality violations and with a similar
priority. LASS violations differ from canonicality violations in particular way as regards instruction flow. An instruc-
tion that loads RIP (a branch instruction) causes a general-protection exception (#GP) as a fault if it would load RIP
with a value that is not canonical relative to the current paging mode; RIP is not updated, and the fault is reported
on the branch instruction. In contrast, branch instructions do not check the target RIP for LASS violations, and thus
LASS does not prevent branch instructions from completing. Fetch of the next instruction (at the target RIP) may
cause a LASS violation and a #GP. In that case, the fault is reported on the branch target, not the branch instruc-
tion.

1. The WRUSS instruction is an exception; although it can be executed only if CPL = 0, the processor treats its shadow-stack accesses
as user accesses.
11-2 Ref. # 319433-047

VIRTUALIZATION OF THE IA32_SPEC_CTRL MSR
CHAPTER 12
VIRTUALIZATION OF THE IA32_SPEC_CTRL MSR

12.1 INTRODUCTION
This chapter describes the VMX extension that supports virtualization of the IA32_SPEC_CTRL MSR. This feature
allows a virtual-machine monitor (VMM) to specify that certain bits of the MSR cannot be modified by guest soft-
ware.

12.2 VMCS CHANGES
Section 12.2.1 identifies the new VM-execution control that enables the feature, and Section 12.2.2 enumerates
the new VMCS fields that support the feature.

12.2.1 New VMX Control
Bit 7 of the tertiary processor-based VM-execution controls is defined as “virtualize IA32_SPEC_CTRL.” This control
allows software in VMX non-root operation to access the IA32_SPEC_CTRL MSR under control of a VMM. Section
12.3 provides more details.

12.2.2 New VMCS Fields
Two new VM-execution control fields are defined:
• The IA32_SPEC_CTRL mask (encoding pair 204AH/204BH). Setting a bit in this field prevents guest software

from modifying the corresponding bit in the IA32_SPEC_CTRL MSR.
• The IA32_SPEC_CTRL shadow (encoding pair 204CH/204DH). This field contains the value that guest software

expects to be in the IA32_SPEC_CTRL MSR.
See Section 12.3 for a discussion of how these fields are used in VMX non-root operation. These fields exist on any
processor that supports the 1-setting of the “virtualize IA32_SPEC_CTRL” VM-execution control.

12.3 CHANGES TO VMX NON-ROOT OPERATION
If the “virtualize IA32_SPEC_CTRL” VM-execution control is 1, the operation of reads and writes to the
IA32_SPEC_CTRL MSR is modified:
• Any read from the IA32_SPEC_CTRL MSR (e.g., by RDMSR) that does not cause a fault or a VM exit returns the

value of the IA32_SPEC_CTRL shadow (see Section 2.2).
• Any write to the IA32_SPEC_CTRL MSR (e.g., by WRMSR) operates as follows:

— If the instruction would fault due to CPL, such a fault occurs.

— If the instruction would cause a VM exit, such a VM exit occurs.

— The instruction will attempt to write the IA32_SPEC_CTRL MSR using the instruction’s source operand, but
it will attempt to modify only those bits in positions corresponding to bits cleared in the IA32_SPEC_CTRL
mask.

Specifically, the instruction attempts to write the MSR with the following value: (MSR_VAL & ISC_MASK) OR
(SRC & NOT ISC_MASK), where MSR_VAL is the original value of the MSR, ISC_MASK is the
IA32_SPEC_CTRL mask, and SRC is the instruction’s source operand.

Any fault that would result from writing that value to the MSR (e.g., due to a reserved-bit violation) occurs
normally. Otherwise, the value is written to the MSR.
Ref. # 319433-047 12-1

VIRTUALIZATION OF THE IA32_SPEC_CTRL MSR
Such a write to the MSR will have any side effects that would occur normally had the MSR been written with
the value indicated above (including any side effects that may result from writing unchanged values to the
masked bits).

— The source operand is written to the IA32_SPEC_CTRL shadow.
12-2 Ref. # 319433-047

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
CHAPTER 13
REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE

13.1 INTRODUCTION
Remote Atomic Operations (RAO) are a set of instructions to improve synchronization performance. RAO is espe-
cially useful in multiprocessor applications that have a set of characteristics commonly found together:
• A need to update, i.e., read and modify, one or more variables atomically, e.g., because multiple processors

may attempt to update the same variable simultaneously.
• Updates are not expected to be interleaved with other reads or writes of the variables.
• The order in which the updates happen is unimportant.
One example of this scenario is a multiprocessor histogram computation, where multiple processors cooperate to
compute a shared histogram, which is then used in the next phase of computation. This is described in more detail
in Section 13.8.1.
RAO instructions aim to provide high performance in this scenario by:
• Atomically updating memory without returning any information to the processor itself.
• Relaxing the ordering of RAO instructions with respect to other updates or writes to the variables.
RAO instructions are defined such that, unlike conventional atomics (e.g., LOCK ADD), their operations may be
performed closer to memory, such as at a shared cache or memory controller. Performing operations closer to
memory reduces or even eliminates movement of data between memory and the processor executing the instruc-
tion. They also have weaker ordering guarantees than conventional atomics. This facilitates execution closer to
memory, and can also lead to reduced stalls in the processor pipeline. These properties mean that using RAO
instead of conventional atomics may provide a significant performance boost for the scenario outlined above.

13.2 INSTRUCTIONS
The current set of RAO instructions can be found in Chapter 2, “Instruction Set Reference, A-Z.” These instructions
include integer addition and bitwise AND, OR, and XOR. These operations may be performed on 32-bit (double-
word) or 64-bit (quadword) data elements. The destination, which is also one of the inputs, is always a location in
memory. The other input is a general-purpose register, ry, in Table 13-1. The instructions do not change any regis-
ters or flags.

13.3 ALIGNMENT REQUIREMENTS
The memory location updated by an RAO instruction must be naturally aligned. That is, a doubleword update must
be four-byte aligned and a quadword update must be eight-byte aligned. This facilitates implementations closer to
memory; otherwise, a single update may straddle a cache line boundary.

Table 13-1. RAO Instructions
Instruction Operation Function Data Types

AADD Atomic addition mem = mem + ry Doubleword, quadword

AAND Atomic bitwise AND mem = mem AND ry Doubleword, quadword

AOR Atomic bitwise OR mem = mem OR ry Doubleword, quadword

AXOR Atomic bitwise XOR mem = mem XOR ry Doubleword, quadword
Ref. # 319433-047 13-1

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
13.4 MEMORY ORDERING
RAO instructions have weaker memory ordering guarantees than conventional atomic instructions. Thus, other
instructions are not ordered with respect to RAO instructions as they are with conventional atomics.
More specifically, the memory operations from RAO instructions follow the Write Combining (WC) memory protocol.
From software's point of view, they behave similarly to non-temporal stores. Unlike non-temporal stores, RAO
instructions update a memory location, i.e., use the value in that location as an input, rather than overwrite the
current contents. Another critical difference is that with RAO, the memory location may be cached upon completion
of the instruction.
RAO instructions are not reordered with other memory accesses to the same memory location. That is, reads,
writes, and RAO instructions to the same location by the same processor will execute in program order.
However, RAO instructions may be reordered with certain memory accesses to other memory locations. In partic-
ular, RAO instructions may be reordered with writes or RAO instructions to other memory locations. This means, for
example, that if a processor executes a set of RAO instructions to a set of distinct addresses, those instructions
may appear to update memory in any order.
If a stronger ordering is required, software should use a fencing operation such as those implemented by the
LFENCE, SFENCE, and MFENCE instructions. However, note that RAO instructions are not ordered with respect to
younger LFENCE instructions since they do not load data from memory into the processor.

13.5 MEMORY TYPE
RAO instructions are restricted to operating on Write Back (WB) memory. Other memory types place restrictions on
the writing of and/or cacheability of data, which conflicts with RAO instructions' ability to cache data. Use of an RAO
instruction to access non-WB memory results in a general-protection exception (#GP).

13.6 WRITE COMBINING BEHAVIOR
RAO implementations that execute updates closer to memory require interconnect traffic between a processor and
the memory subsystem. To reduce such traffic, and increase the throughput of RAO operations, implementations
may combine multiple RAO memory operations before execution. This is similar to how multiple writes via a WC
protocol may combine before going to memory.
Implementations that combine RAO instructions take advantage of spatial locality, i.e., that a cache line contains
multiple data elements, and that separate instructions may update distinct elements in a given cache line. For
example, a first RAO instruction may update the first element in a cache line, and a second RAO instruction may
update the third element.
Implementations may have restrictions on combining operations. For example, they may only be able to combine
operations doing the same type of update (e.g., addition) and/or the same data element size.
Operations to the same cache line that are not combined must be serialized, and this could hurt performance. For
example, an operation to a given cache line may need to complete before a second operation to that cache line may
begin; otherwise, the memory system could have multiple concurrent accesses from the same processor to the
same cache line, and some implementations do not support this.

13.7 PERFORMANCE EXPECTATIONS
RAO instructions are expected to provide higher performance than conventional atomics under certain conditions.
The actual performance depends on both the implementation and the data access pattern for the memory location
(at the cache line granularity) updated with RAO instructions.
13-2 Ref. # 319433-047

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
13.7.1 Interaction Between RAO and Other Accesses
As discussed in Section 13.4, weak ordering allows RAO instructions to be reordered with respect to other memory
operations. This is a key difference from conventional atomics, which follow strong memory ordering, and can allow
a processor to execute RAO instructions with higher throughput. However, only certain reordering is allowed. If a
fence is used to enforce stronger ordering, or if a processor interleaves RAO updates with reads of the same
memory location, for example, this may result in serialized accesses, and hurt performance. If software performs
an RAO update to a memory location, and soon after reads that memory location, then the read needs to wait for
the update to complete. If the RAO is done close to memory, then the cache closest to the processor may not hold
a copy of the cache line after the RAO instruction executes, and the read may need to access a cache farther away
from the processor, or even go all the way to memory.
Mixing of RAO updates to a given memory location from one or more processors with non-RAO accesses to the
same memory location can also reduce the benefits of RAO. Implementations that perform RAO updates close to
memory can reduce data movement between a series of RAO updates to the same location. However, a non-RAO
access may cause a processor to cache the data close to itself; a subsequent RAO instruction from another
processor may require the line to be moved to a lower level of the cache hierarchy. Therefore, interleaving RAO and
non-RAO accesses to a given memory location can reduce or eliminate the data movement and/or performance
benefits of RAO.

13.7.2 Updates of Contended Data
Contended data is defined as data for which the memory system has memory accesses from multiple processors
in-flight simultaneously. That is, for contended data, the memory system is at some point in time handling at least
two accesses from different processors. Contended read-only data does not present a fundamental performance
problem, but if at least one of the contending processors attempts to write the data, e.g., perform an update on it,
the writer needs exclusive access to the data. Gaining exclusive access can be costly, in terms of latency and
traffic; in a system with caches, hardware must invalidate all other copies of the data to provide a processor exclu-
sive access.
For software performing a set of contended updates to a memory location with conventional atomic instructions,
data may “ping-pong” between processors. As each processor executes its update, it will obtain exclusive access to
the data, perform its update, and then have to send its new version of the data to the next processor wanting to
update it. The time to pass data from one processor to another, and the time that a processor takes to perform its
atomic update, limits the throughput in this scenario.
In contrast, if software uses RAO for such contended updates, and if the implementation performs the updates in
a central location such as a shared cache or at the memory controller, then this bottleneck is alleviated. In such a
scenario, each update will not have to fetch the current contents of the memory location or invalidate any other
copies of the data because the only valid copy is already at the hardware performing the update. The only funda-
mental limit to the throughput in this case is the time taken for each update. Therefore, we may expect that for
updates to contended lines, throughput is much higher with RAO. Further, reducing data movement means
reducing traffic between processors and memory. This may improve the performance of other memory accesses.

13.7.3 Updates of Uncontended Data
In contrast to contended data, uncontended data is data that is accessed by only a single processor or by multiple
processors, but far enough apart in time that at most a single memory access is executed at a time.
For uncontended data accessed by multiple processors, most of the above discussion about contended data still
applies. However, the frequency of updates is by definition lower for uncontended data. Therefore, the perfor-
mance benefits of RAO are expected to be lower in this situation.
For data accessed by only a single processor, data movement between processors is not an issue, and conventional
atomics can take advantage of the processor's caches. Performance may still be impacted by the strong ordering
of conventional atomics; memory accesses to other memory locations may not be reordered with these instruc-
tions. If software uses RAO instructions instead, the weaker ordering may provide some performance benefits.
However, if an implementation performs RAO updates closer to memory, it may not take advantage of all of the
processor's caches, and may even require removing the data from some of those caches. This could lead to an
increase in data movement, and potentially lower performance. Of course, if software is aware that only a single
processor will access the data, then it does not need to use atomic updates, but it may not always be so aware.
Ref. # 319433-047 13-3

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
13.8 EXAMPLES

13.8.1 Histogram
Histogram is a common computational pattern, including in multiprocessor programming, but achieving an efficient
parallel implementation can be tricky. In a conventional histogram computation, software sweeps over a set of
input values; it maps each input value to a histogram bin, and increments that bin.
Common multiprocessor histogram implementations partition the inputs across the processors, so each processor
works on a subset of the inputs. Straightforward implementations have each processor directly update the shared
histogram. To ensure correctness, since multiple processors may attempt updates to the same histogram bin
simultaneously, the updates must use atomics. As described above, using conventional atomics can be expensive,
especially when we have highly contended cache lines in the histogram. That may occur for small histograms or for
histograms where many inputs map to a small number of histogram bins.
A common alternative approach uses a technique called privatization, where each processor gets its own “local”
histogram; as each processor works on its subset of the inputs, it updates its local histogram. As a final “extra”
step, software must accumulate the local histograms into the globally shared histogram, a step called a reduction.
This reduction step is where processors synchronize and communicate; using it allows the computation of local
histograms to be embarrassingly parallel and require no atomics or inter-processor communication, and can often
lead to good performance. However, privatization has downsides:
• The reduction step can take a lot of time if the histogram has many bins.
• The time for a reduction is relatively constant regardless of the number of processors. As the number of

processors grows, therefore, the fraction of time spent on the reduction tends to grow.
• The local histograms require extra memory, and that memory footprint grows with the number of processors.
• The reduction is an “extra” step that complicates the software.
With RAO, software can use the simpler multiprocessor algorithm and achieve reliably good performance. The
following pseudo-code lists a RAO-based histogram implementation.

int *histogram; // “histogram” is a global histogram array

// in each processor:
double *data; // “data” is a per-processor array, holding a subset of all inputs
data = get_data(); // populate “data” values

for (size_t i = 0; i < data_size; ++i) {
int bin = map(data[i]); // map data[i] to a histogram bin
_aadd(&histogram[bin], 1); // RAO AADD instruction

}

The above code can provide good performance under various scenarios, i.e., sizes of histograms and biases in
which histogram bins are updated. RAO avoids data “ping-ponging” between processors, even under high conten-
tion. Further, the weak ordering of RAO allows a series of AADD instructions to overlap with each other in the pipe-
line, and thus provide for instruction level parallelism.
In addition to the performance benefits, the RAO code is simple and is thus easier to maintain.
While we specifically show and discuss histogram above, this computation pattern is very common, e.g., software
packet processing workloads exhibit this in how they track statistics of the packets. Other algorithms exhibiting this
pattern should similarly see benefits from RAO.

13.8.2 Interrupt/Event Handler
An interrupt/event handler, running either in a dedicated thread or preemptively in a specific processor, notifies a
set of receivers (e.g., all processors or threads in a waiting list) of the occurrence of an event by atomically setting
flags in the receivers' specific data fields. The example below shows how this may be done with RAO instructions.
13-4 Ref. # 319433-047

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
// One processor sets event bits to notify other processors:
01: void handle_event(event_t *e) {
02: uint32_t event_bits = process_event(e);
03: for (int i = 0; i < num_of_receivers; ++i) {
04: core_t *core = receivers[i];
05: _aor(&core->flags, event_bits); // RAO AOR instruction
06: if (some_condition) {
07: _aor(&core->extra_flags, event_bits); // combining of RAO could occur
08: } // if “extra_flags” and “flags” are in the same cache line
09: }
10: _mm_sfence(); // ensure event_bits are visible before leaving the handler
11: }

// In other processors:
12: if (my_core->flags & SOME_EVENT) {
13: …… // react to the occurrence of SOME_EVENT
14: clear_bits(&my_core->flags, SOME_EVENT);
15: }

With conventional atomics (e.g., LOCK OR), a significant portion of execution time of handle_event would be spent
accessing core->flags (line 5) and core->extra_flags (line 7). It is likely that when handle_event begins, the two
fields are in another processor's cache, e.g., if that processor updated some bits in the fields. Therefore, the data
would need to migrate to the cache of the processor executing handle_event.
In contrast, for the above code example, for RAO implementations that perform updates close to memory, the RAO
AOR instruction should reduce data movement of core->flags and core->extra_flags and thus result in a lower
execution latency. Further, when other processors later access these fields (lines 12-15), they will also benefit from
a lower latency due to reduced data movement, since they may get the data from a more central location.
Also note that since the order of notifications does not matter in this case, the function further takes advantage of
RAO's weak ordering, allowing multiple RAO AOR instructions to be executed concurrently. It does, however,
include a memory fence at the end (line 10), to ensure that all updates are visible to all processors before leaving
the handler.
Ref. # 319433-047 13-5

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
13-6 Ref. # 319433-047

	Revision History
	Chapter 1 Future Intel® Architecture Instruction Extensions and Features
	1.1 About This Document
	1.2 DisplayFamily and DisplayModel for Future Processors
	1.3 Instruction Set Extensions and Feature Introduction in Intel® 64 and IA-32 Processors
	1.4 Detection of Future Instructions and Features
	1.5 CPUID Instruction
	CPUID—CPU Identification

	1.6 Compressed Displacement (disp8*N) Support in EVEX
	1.7 bfloat16 Floating-Point Format

	Chapter 2 Instruction Set Reference, A-Z
	2.1 Instruction Set Reference
	AADD—Atomically Add
	AAND—Atomically AND
	AOR—Atomically OR
	AXOR—Atomically XOR
	CMPccXADD—Compare and Add if Condition is Met
	RDMSRLIST—Read List of Model Specific Registers
	VBCSTNEBF162PS—Load BF16 Element and Convert to FP32 Element With Broadcast
	VBCSTNESH2PS—Load FP16 Element and Convert to FP32 Element with Broadcast
	VCVTNEEBF162PS—Convert Even Elements of Packed BF16 Values to FP32 Values
	VCVTNEEPH2PS—Convert Even Elements of Packed FP16 Values to FP32 Values
	VCVTNEOBF162PS—Convert Odd Elements of Packed BF16 Values to FP32 Values
	VCVTNEOPH2PS—Convert Odd Elements of Packed FP16 Values to FP32 Values
	VCVTNEPS2BF16—Convert Packed Single-Precision Floating-Point Values to BF16 Values
	VPDPB[SU,UU,SS]D[,S]—Multiply and Add Unsigned and Signed Bytes With and Without Saturation
	VPMADD52HUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the High 52-Bit Products to Qword Accumulators
	VPMADD52LUQ—Packed Multiply of Unsigned 52-Bit Integers and Add the Low 52-Bit Products to Qword Accumulators
	WRMSRLIST—Write List of Model Specific Registers
	WRMSRNS—Non-Serializing Write to Model Specific Register

	Chapter 3 Intel® AMX Instruction Set Reference, A-Z
	3.1 Introduction
	3.1.1 Tile Architecture Details
	3.1.2 TMUL Architecture Details
	3.1.3 Handling of Tile Row and Column Limits
	3.1.4 Exceptions and Interrupts

	3.2 Operand Restrictions
	3.3 Implementation Parameters
	3.4 Helper Functions
	3.5 Notation
	3.6 Exception Classes
	3.7 Instruction Set Reference
	TDPFP16PS—Dot Product of FP16 Tiles Accumulated into Packed Single Precision Tile

	Chapter 4 Non-Write-Back Lock Disable Architecture
	4.1 Enumeration
	4.2 Enabling
	4.3 Interaction with Intel® Software Guard Extensions (Intel® SGX)
	4.4 Interaction with VMX Architecture
	4.5 Expected Software Behavior
	4.6 Bus Locks

	Chapter 5 Bus Lock and VM Notify
	5.1 Bus Lock Debug Exception
	5.1.1 Bus Lock VM Exit

	5.2 Notify VM Exit

	Chapter 6 Intel® Resource Director Technology Feature Updates
	6.1 Intel® RDT Feature Changes
	6.1.1 Intel® RDT on the 3rd generation Intel® Xeon® Scalable Processor Family
	6.1.2 Intel® RDT on Intel Atom® Processors, Including the P5000 Series
	6.1.3 Intel® RDT in Future Processors Based on Sapphire Rapids Server Microarchitecture
	6.1.4 Intel® RDT in Processors Based on Emerald Rapids Server Microarchitecture
	6.1.5 Future Intel® RDT

	6.2 Enumerable Memory Bandwidth Monitoring Counter Width
	6.2.1 Memory Bandwidth Monitoring (MBM) Enabling
	6.2.2 Augmented MBM Enumeration and MSR Interfaces for Extensible Counter Width

	6.3 Second Generation Memory Bandwidth Allocation
	6.3.1 Second Generation MBA Advantages
	6.3.2 Second Generation MBA Software-Visible Changes

	6.4 Third Generation Memory Bandwidth Allocation
	6.4.1 Third Generation MBA Hardware Changes
	6.4.2 Third Generation MBA Software-Visible Changes

	6.5 Future MBA Enhancements

	Chapter 7 Linear Address Masking (LAM)
	7.1 Enumeration, Enabling, and Configuration
	7.2 Treatment of Data Accesses with LAM Active for User Pointers
	7.3 Treatment of Data Accesses with LAM Active for Supervisor Pointers
	7.4 Canonicality Checking for Data Addresses Written to Control Registers and MSRs
	7.5 Paging Interactions
	7.6 VMX Interactions
	7.6.1 Guest Linear Address
	7.6.2 VM-Entry Checking of Values of CR3 and CR4
	7.6.3 CR3-Target Values
	7.6.4 Hypervisor-Managed Linear Address Translation (HLAT)

	7.7 Debug and Tracing Interactions
	7.7.1 Debug Registers
	7.7.2 Intel® Processor Trace

	7.8 Intel® SGX Interactions
	7.9 System Management Mode (SMM) Interactions

	Chapter 8 Asynchronous Enclave Exit Notify and the EDECCSSA User Leaf Function
	8.1 Introduction
	8.2 Enumeration and Enabling
	8.3 Changes to Enclave Data Structures
	8.3.1 TCS.FLAGS Changes
	8.3.2 SSA.GPRSGX Changes
	8.3.3 ATTRIBUTES Changes

	8.4 Changes to Intel® SGX User Leaf Functions
	8.5 New Intel® SGX User Leaf Function: EDECCSSA
	EDECCSSA—Decrements TCS.CSSA

	8.6 Implications for Enclave Code Debug and Profiling
	8.7 Interaction with Intel® CET
	8.8 Changes to Intel® SGX User Leaf Function Operation
	8.8.1 Changes to EENTER Operation
	8.8.2 Changes to ERESUME Operation

	Chapter 9 Code Prefetch Instruction Updates
	PREFETCHh—Prefetch Data or Code Into Caches

	Chapter 10 Next Generation Performance Monitoring Unit (PMU)
	10.1 New Enumeration Architecture
	10.1.1 CPUID Sub-Leafing
	10.1.2 Reporting of Hybrid Resources
	10.1.3 General-Purpose Counters Bitmap
	10.1.4 Fixed-Function Counters Hybrid Bitmap
	10.1.5 Architectural Performance Monitoring Events Bitmap
	10.1.6 Non-Architectural Performance Capabilities

	10.2 New Architectural Events
	10.2.1 Topdown Microarchitecture Analysis Level 1
	10.2.1.1 Topdown Backend Bound-Event Select A4H, Umask 02H
	10.2.1.2 Topdown Bad Speculation-Event Select 73H, Umask 00H
	10.2.1.3 Topdown Frontend Bound-Event Select 9CH, Umask 01H
	10.2.1.4 Topdown Retiring-Event Select C2H, Umask 02H

	10.3 Processor Event Based Sampling (PEBS) Enhancements
	10.3.1 Timed Processor Event Based Sampling

	Chapter 11 Linear Address Space Separation (LASS)
	11.1 Introduction
	11.2 Enumeration and Enabling
	11.3 Operation of Linear-Address Space Separation
	11.3.1 Data Accesses
	11.3.2 Instruction Fetches

	Chapter 12 Virtualization of the IA32_SPEC_CTRL MSR
	12.1 Introduction
	12.2 VMCS Changes
	12.2.1 New VMX Control
	12.2.2 New VMCS Fields

	12.3 Changes to VMX Non-Root Operation

	Chapter 13 Remote Atomic Operations in Intel Architecture
	13.1 Introduction
	13.2 Instructions
	13.3 Alignment Requirements
	13.4 Memory Ordering
	13.5 Memory Type
	13.6 Write Combining Behavior
	13.7 Performance Expectations
	13.7.1 Interaction Between RAO and Other Accesses
	13.7.2 Updates of Contended Data
	13.7.3 Updates of Uncontended Data

	13.8 Examples
	13.8.1 Histogram
	13.8.2 Interrupt/Event Handler

