
Intel® Architecture
Instruction Set Extensions
and Future Features
Programming Reference

October 2024

319433-055

Notices & Disclaimers

This document contains information on products in the design phase of development. The information here is
subject to change without notice. Do not finalize a design with this information.

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability,
fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with
the sole exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to
the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software
implementations based on this document and in compliance with the foregoing that are intended to execute on the Intel
product(s) referenced in this document. No rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.
Document Number: 319433-055 ii

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Revision History

Revision Description Date

-046

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction.

• Chapter 2: Added the following instructions: AADD, AAND, AOR, AXOR,
CMPccXADD, RDMSRLIST, VBCSTNEBF162PS, VBCSTNESH2PS,
VCVTNEEBF162PS, VCVTNEEPH2PS, VCVTNEOBF162PS,
VCVTNEOPH2PS, VCVTNEPS2BF16, VPDPB[SU,UU,SS]D[,S],
VPMADD52HUQ, VPMADD52LUQ, WRMSRLIST, and WRMSRNS.

• Chapter 3: Added section 3.4, “Operand Restrictions,” and added the
TDPFP16PS instruction.

• Added Chapter 14, “Code Prefetch Instruction Updates.”
• Added Chapter 15, “Next Generation Performance Monitoring Unit

(PMU).”

September 2022

-047

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction.

• Chapter 3: Notes added and naming updates as necessary.
• Removed the following chapters: Chapter 4, “Enqueue Stores and

Process Address Space Identifiers (PASIDs),” Chapter 5, “Intel® TSX
Suspend Load Address Tracking,” Chapter 9, “User Interrupts,” Chapter
11, “Error Codes for Processors Based on Sapphire Rapids
Microarchitecture,” and Chapter 12, “IPI Virtualization.” This information
can be found in the Intel 64 and IA-32 Architectures Software
Developer’s Manuals.

• Removed the following instructions: CLUI, ENQCMD, ENQCMDS,
LDTILECFG, SENDUIPI, STTILECFG, STUI, TDPBF16PS,
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD, TESTUI,
TILELOADD/TILELOADDT1, TILERELEASE, TILESTORED, TILEZERO,
UIRET, XRESLDTRK, and XSUSLDTRK. These instructions can be found in
the Intel 64 and IA-32 Architectures Software Developer’s Manuals.

• Chapter 4: Updates to MSR name and description of bits.
• Chapter 6: Updates to information, including naming changes and typo

corrections as necessary.
• Chapter 10: Update to the description of the Retire Latency field given in

Section 10.3.1, “Timed Processor Event Based Sampling.”
• Added Chapter 11, “Linear Address Space Separation (LASS).”
• Added Chapter 12, “Virtualization of the IA32_SPEC_CTRL MSR.”
• Added Chapter 13, “Remote Atomic Operations in Intel Architecture.”

December 2022
Document Number: 319433-055 iii

-048

• Chapter 1: Updated Table 1-2, “Recent Instruction Set Extensions /
Features Introduction in Intel® 64 and IA-32 Processors.” Updated the
CPUID instruction.

• Chapter 3: Added the TCMMIMFP16PS/TCMMRLFP16PS instructions.
• Chapter 4: The majority of the chapter was updated to describe the UC-

lock disable feature.
• Chapter 8: Significant updates throughout the chapter. Added new

Section 8.3.2, “Counters Snapshotting,” new Section 8.4, “LBR
Enhancements,” and new Section 8.5, “PerfMon MSRs Aliasing.”

• Removal of chapters: Removed previous Chapter 4, “Non-Write-Back
Lock Disable Architecture.” Removed previous Chapter 5, “Bus Lock and
VM Notify.” Removed previous Chapter 8, “Asynchronous Enclave Exit
Notify and the EDECCSSA User Leaf Function.” The information from
these chapters can be found in the Intel 64 and IA-32 Architectures
Software Developer’s Manuals.

March 2023

-049

• Chapter 1: Updated Table 1-1, “Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction with bits enumerating new features.
Updated the CPUID instruction to add the initial EAX value to each main
CPUID leaf name in order to accommodate new bookmarks in the final
PDF that will enable readers to jump to any main CPUID leaf of interest.
Where there are multiple initial EAX values, those values have been
tagged so they will show up underneath the main CPUID leaf name in the
final PDF.

• Chapter 2: Added the PBNDKB, updated PCONFIG,
VPDPW[SU,US,UU]D[,S], VSHA512MSG1, VSHA512MSG2,
VSHA512RNDS2, VSM3MSG1, VSM3MSG2, VSM3RNDS2, VSM4KEY4,
and VSM4RNDS4 instructions.

• Chapter 8: Added notes regarding the availability of the
IA32_PERF_CAPABILITIES.PEBS_FMT of 6.

• Removed previous Chapter 10, “Virtualization of the IA32_SPEC_CTRL
MSR.” This information can be found in the Intel 64 and IA-32
Architectures Software Developer’s Manuals.

• Added new Chapter 11, “Total Storage Encryption in Intel Architecture.”
• Updated text changes and change bars from using the color green to use

the color violet for better accessibility for all readers.

June 2023

-050

• Chapter 1: Updated Table 1-1, “Signature Values of
DisplayFamily_DisplayModel.” Updated Table 1-2, “Recent Instruction Set
Extensions / Features Introduction in Intel® 64 and IA-32 Processors.”
Updated the CPUID instruction with bits enumerating new features.

• Chapter 2: Updated the CPUID feature flag for the PBNDKB instruction.
Updated the VBCSTNEBF162PS, VCVTNEEBF162PS, and
VCVTNEOBF162PS instructions to remove an inaccurate statement from
the descriptions. Updated the RDMSRLIST and WRMSRLIST instructions.
Added the URDMSR and UWRMSR instructions.

• Chapter 5: Information on Cache Bandwidth Allocation added.
• Chapter 8: Future performance monitoring features added, including

Auto Counter Reload (ACR).
• Typo corrections throughout as necessary.

September 2023

Revision Description Date
Document Number: 319433-055 iv

-051

• Chapter 1: Updated Table 1-2, “Recent Instruction Set Extensions /
Features Introduction in Intel® 64 and IA-32 Processors.” Updated the
CPUID instruction with bits enumerating the LKGS instruction and the
FRED, NMI-source reporting, and INVD execution prevention features.
Updated the CPUID instruction to remove “ECX = 0” from the Last
Branch Records Information Leaf (1CH) listing because this leaf does not
support sub-leaves.

• Chapter 2: Updated the RDMSRLIST and WRMSRLIST instructions to
remove an erroneous exception. Updated the WRMSRLIST instruction to
move one line of pseudocode in the Operation section. Updated the
URDMSR and UWRMSR instructions to remove incorrect statement(s)
from the Description section, added information to the Virtualization
Behavior section, and corrected the first exception listed in the 64-Bit
Mode Exceptions section.

• Chapter 6: Typo corrections in Section 6.1, “Enumeration, Enabling, and
Configuration,” and Section 6.8, “Intel® SGX Interactions.” Three
instances of “CR3.LAM_SUP” were changed to “CR4.LAM_SUP.”

• Chapter 8: Added footnotes and a note regarding the RDPMC Metrics
Clear feature to highlight that this feature is in the design phase of
development and the information provided on this feature is subject to
change without notice.

• Various chapters: Typo corrections as needed.

December 2023

-052

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel,” to remove processors that have moved
into the Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Updated Table 1-2, “Recent Instruction Set Extensions / Features
Introduction in Intel® 64 and IA-32 Processors.” Updated the CPUID
instruction with bits enumerating ACR updates, user-timer events,
monitorless MWAIT, Intel® AVX10.1, and Intel® APX.

• Chapter 8: Added fixed-function counter information, removed footnotes
from the RDPMC Metrics Clear feature, removed the ACR
PREVENT_RELOAD feature.

• Added new Chapter 12, “Flexible UIRET.”
• Added new Chapter 13, “User-Timer Events and Interrupts.”
• Added new Chapter 14, “APIC-Timer Virtualization.”
• Added new Chapter 15, “VMX Support for the IA32_SPEC_CTRL MSR.”
• Added new Chapter 16, “Processor Trace Trigger Tracing.”
• Added new Chapter 17, “Monitorless MWAIT.”
• Various chapters: Typo corrections as needed.

March 2024

-053

• Chapter 1: Minor updates/corrections. Updated CPUID Leaf 06H, EAX bit
18, to align with text used in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, Chapter 15. Added the field
name and definition of CPUID Leaf 06H, EAX bit 22. Updated CPUID Leaf
07H, Subleaf 2, to add enumeration for MONITOR_MITG_NO.

• Chapter 2: Minor updates only.
• Chapter 16: Extensive updates to provide additional information and

clarity on this feature.

June 2024

Revision Description Date
Document Number: 319433-055 v

-054

• Removed entries from the Revision History table that were older than
two years.

• Chapter 1: Updated Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel,” to add values for future processors based
on Diamond Rapids microarchitecture. Updated Table 1-2, “Recent
Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32
Processors.” Updated the CPUID instruction with corrections as
necessary; added bits enumerating MOVRS, AMX-FP8, MSR_IMM, AMX-
TRANSPOSE, AMX-TF32, AMX-AVX512, AMX-MOVRS, and Architectural
PEBS; and added CPUID Leaf 23H, Subleaves 4 and 5. Added FP8 format
information.

• Chapter 2: Added the MOVRS and PREFETCHRST2instructions. Added the
EVEX forms of the VSM4KEY4 and VSM4RNDS4 instructions. Updated the
WRMSRNS instruction with the immediate form. Added the RDMSR
instruction and updated it with the immediate form.

• Chapter 3: Added the following Intel AMX instructions:
T2RPNTLVW[Z0,Z1][,T1], T2RPNTLVW[Z0,Z1]RS[T1],
TCONJTCMMIMFP16PS, TCONJTFP16, TCVTROWD2PS,
TCVTROWPS2PBF16[H,L], TCVTROWPS2PH[H,L], TDP[B,H,BH,HB]F8PS,
TILELOADDRS[T1], TILEMOVROW, TMMULTF32PS,
TTCMM[IM,RL]FP16PS, TTDPBF16PS, TTDPFP16PS, TTMMULTF32PS,
TTRANSPOSED. Removed the TDPFP16PS instruction; this can be found
in the Intel 64 and IA-32 Architectures Software Developer’s Manuals.

• Added new Chapter 11, “Architectural PEBS.”
• Added new Chapter 12, “MOVRS Instructions.”
• Removal of chapters: Removed previous Chapter 4, “UC-Lock Disable.”

Removed previous Chapter 6, “Linear Address Masking (LAM).” Removed
previous Chapter 7, “Code Prefetch Instruction Updates.” Removed
previous Chapter 8, “Next Generation Performance Monitoring Unit
(PMU).” Removed previous Chapter 9, “Linear Address Space Separation
(LASS).” Removed previous Chapter 12, “Flexible UIRET.” Removed
previous Chapter 15, “VMX Support for the IA32_SPEC_CTRL MSR.” The
information from these chapters can be found in the Intel 64 and IA-32
Architectures Software Developer’s Manuals.

October 2024

-055

• Removed an incorrect line in the revision history to ensure the document
contents are accurately represented. All change bars in the document
remain to reflect Revision 054 edits.

• Removed an inaccurate value in Table 1-1, “CPUID Signature Values of
DisplayFamily_DisplayModel.”

October 2024

Revision Description Date
Document Number: 319433-055 vi

REVISION HISTORY

CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.1 About This Document. 1-1
1.2 DisplayFamily and DisplayModel for Future Processors . 1-1
1.3 Instruction Set Extensions and Feature Introduction in Intel® 64 and IA-32 Processors. 1-2
1.4 Detection of Future Instructions and Features . 1-4

CPUID—CPU Identification . 1-4
1.5 Compressed Displacement (disp8*N) Support in EVEX . 1-55
1.6 bfloat16 Floating-Point Format . 1-56
1.7 FP8 Format . 1-56
1.7.1 Numeric Definition . 1-57
1.7.2 Floating-Point Rounding, Denormal Handling, NaN/Inf/Overflow Handling, and FP Exceptions . . 1-57

CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z
2.1 Instruction Set Reference . 2-1

AADD—Atomically Add . 2-2
AAND—Atomically AND. 2-4
AOR—Atomically OR. 2-6
AXOR—Atomically XOR . 2-8
MOVRS—Move Read-Shared Value. 2-10
PBNDKB—Platform Bind Key to Binary Large Object . 2-14
PCONFIG—Platform Configuration . 2-18
PREFETCHRST2—Prefetch Data into Caches Using a Read-Shared Hint 2-29
RDMSR—Read From Model Specific Register . 2-30
URDMSR—User Read from Model-Specific Register. 2-32
UWRMSR—User Write to Model-Specific Register . 2-34
VSM4KEY4—Perform Four Rounds of SM4 Key Expansion . 2-36
VSM4RNDS4—Performs Four Rounds of SM4 Encryption . 2-39
WRMSRNS—Non-Serializing Write to Model Specific Register. 2-41

CHAPTER 3
INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.1 Introduction . 3-1
3.1.1 Tile Architecture Details . 3-3
3.1.2 TMUL Architecture Details . 3-4
3.1.3 Handling of Tile Row and Column Limits . 3-5
3.1.4 Exceptions and Interrupts . 3-5
3.2 Operand Restrictions . 3-5
3.3 Implementation Parameters . 3-5
3.4 Helper Functions . 3-6
3.5 Notation . 3-10
3.6 Exception Classes . 3-10
3.7 Instruction Set Reference . 3-14

T2RPNTLVW[Z0,Z1][,T1]—Tile Load to VNNI 16-Bit Format . 3-15
T2RPNTLVW[Z0,Z1]RS[,T1]—Tile Load to VNNI 16-Bit Format Optimized for Read Only Shared
Data. 3-17
TCMMIMFP16PS/TCMMRLFP16PS—Matrix Multiplication of Complex Tiles Accumulated into
Packed Single Precision Tile. 3-19
TCONJTCMMIMFP16PS—Matrix Conjugate Transpose and Multiplication of Complex Tiles
Accumulated into Packed Single Precision Tile . 3-22
TCONJTFP16—Tile Conjugate Transpose FP16-Pair Complex Elements 3-24
TCVTROWD2PS—Tile Move Row and Convert INT32 to Single Precision 3-25
TCVTROWPS2PBF16[H,L]—Tile Move Row and Convert FP32 Elements to BF16 Elements 3-27
TCVTROWPS2PH[H,L]—Tile Move Row and Convert Single Precision to FP16 3-30
TDP[B,H,BH,HB]F8PS—Dot Product of FP8 Tiles Accumulated into Packed Single Precision Tile . 3-33
Document Number: 319433-055 vii

TILELOADDRS[,T1]—Load Tile Format Optimized for Read Only Shared Data 3-36
TILEMOVROW—Tile Move Row . 3-37
TMMULTF32PS—Matrix Multiplication of TF32 Tiles into Packed Single Precision Tile 3-39
TTCMM[IM,RL]FP16PS—Matrix Transpose and Multiplication of Complex Tiles Accumulated into
Packed Single Precision Tile. 3-41
TTDPBF16PS—Dot Product and Transpose of BF16 Tiles Accumulated into Packed Single Precision
Tile. 3-44
TTDPFP16PS—Dot Product and Transpose of FP16 Tiles Accumulated into Packed Single Precision
Tile. 3-46
TTMMULTF32PS—Matrix Transpose and Multiplication of TF32 Tiles into Packed Single Precision
Tile. 3-48
TTRANSPOSED—Matrix Transpose of 32-Bit Elements. 3-50

CHAPTER 4
INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
4.1 Cache Bandwidth Allocation (CBA) . 4-1
4.1.1 Introduction to Cache Bandwidth Allocation. 4-1
4.1.2 Cache Bandwidth Allocation Enumeration . 4-1
4.1.3 Cache Bandwidth Allocation Configuration. 4-3
4.1.4 Cache Bandwidth Allocation Usage Considerations . 4-4

CHAPTER 5
REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
5.1 Introduction . 5-1
5.2 Instructions. 5-1
5.3 Alignment Requirements. 5-1
5.4 Memory Ordering. 5-2
5.5 Memory Type . 5-2
5.6 Write Combining Behavior. 5-2
5.7 Performance Expectations. 5-2
5.7.1 Interaction Between RAO and Other Accesses . 5-3
5.7.2 Updates of Contended Data. 5-3
5.7.3 Updates of Uncontended Data . 5-3
5.8 Examples . 5-4
5.8.1 Histogram . 5-4
5.8.2 Interrupt/Event Handler . 5-4

CHAPTER 6
TOTAL STORAGE ENCRYPTION IN INTEL ARCHITECTURE
6.1 Introduction . 6-1
6.1.1 Key Programming Overview . 6-1
6.1.1.1 Key Wrapping Support: PBNDKB . 6-1
6.1.2 Unwrapping and Hardware Key Programming Support: PCONFIG. 6-1
6.2 Enumeration . 6-1
6.2.1 CPUID Detection . 6-1
6.2.1.1 PCONFIG CPUID Leaf Extended to Support Total Storage Encryption 6-1
6.2.2 Total Storage Encryption Capability MSR. 6-2
6.3 VMX Support . 6-2
6.3.1 Changes to VMCS Fields . 6-2
6.3.2 Changes to VMX Capability MSRs . 6-2
6.3.3 Changes to VM Entry . 6-2
6.4 Instruction Set . 6-2

CHAPTER 7
USER-TIMER EVENTS AND INTERRUPTS
7.1 Enabling and Enumeration . 7-1
7.2 User Deadline . 7-1
viii Document Number: 319433-055

7.3 User Timer: Architectural State . 7-2
7.4 Pending and Processing of User-Timer Events . 7-2
7.5 VMX Support . 7-2
7.5.1 VMCS Changes . 7-3
7.5.2 Changes to VMX Non-Root Operation . 7-3
7.5.2.1 Treatment of Accesses to the IA32_UINTR_TIMER MSR . 7-3
7.5.2.2 Treatment of User-Timer Events . 7-3
7.5.3 Changes to VM Entries . 7-3

CHAPTER 8
APIC-TIMER VIRTUALIZATION
8.1 Guest-Timer Hardware . 8-1
8.1.1 Responding to Guest-Deadline Updates . 8-1
8.1.2 Guest-Timer Events . 8-2
8.2 VMCS Support . 8-2
8.2.1 New VMX Control . 8-2
8.2.2 New VMCS Fields . 8-2
8.3 Changes to VM Entries . 8-2
8.3.1 Checking VMX Controls . 8-2
8.3.2 Loading the Guest Deadline. 8-3
8.4 Changes to VMX Non-Root Operation . 8-3
8.4.1 Accesses to the IA32_TSC_DEADLINE MSR . 8-3
8.4.2 Processing of Guest-Timer Events . 8-3
8.5 Changes to VM Exits . 8-4

CHAPTER 9
PROCESSOR TRACE TRIGGER TRACING
9.1 Processor Trace Trigger Tracing Overview. 9-1
9.1.1 Trigger Unit . 9-1
9.1.2 Trigger Input . 9-1
9.1.3 Trigger Actions . 9-2
9.1.4 Programming Considerations . 9-2
9.1.5 Trigger (TRIG) Packet. 9-2
9.2 MSR Changes . 9-4
9.2.1 IA32_RTIT_TRIGGERx_CFG. 9-4
9.2.2 IA32_PERFEVTSELx MSR Changes . 9-5
9.2.3 DR7 Changes. 9-6
9.2.4 IA32_RTIT_STATUS Changes. 9-6

CHAPTER 10
MONITORLESS MWAIT
10.1 Using Monitorless MWAIT . 10-1
10.2 Enumeration . 10-1
10.3 Enabling . 10-2
10.4 Virtualization. 10-2
10.5 MWAIT Instruction Details. 10-2

MWAIT—Monitor Wait . 10-3

CHAPTER 11
ARCHITECTURAL PEBS
11.1 Enumeration . 11-1
11.1.1 IA32_PERF_CAPABILITIES . 11-1
11.1.2 IA32_MISC_ENABLE. 11-2
11.2 Behavior . 11-2
11.2.1 Counters . 11-2
11.2.2 Record Data . 11-2
11.2.3 Programming PEBS . 11-3
11.2.3.1 Programming Guidelines at Initialization Phase . 11-3
Document Number: 319433-055 ix

11.2.3.2 Programming Guidelines at Runtime (e.g., Inside the PMI Interrupt Service Routine) 11-3
11.3 Model-Specific Registers (MSRs) . 11-5
11.3.1 IA32_PEBS_BASE MSR . 11-6
11.3.2 IA32_PEBS_INDEX MSR . 11-6
11.3.3 IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs . 11-7
11.3.4 Changes from Legacy PEBS. 11-9
11.4 Records and Groups . 11-10
11.4.1 Basic Group. 11-10
11.4.1.1 Instruction Pointer . 11-11
11.4.1.2 Applicable Counter . 11-11
11.4.1.3 Time-Stamp Counter . 11-12
11.4.1.4 Retire Latency . 11-12
11.4.2 Auxiliary Group . 11-12
11.4.2.1 Memory Access Address . 11-13
11.4.3 General-Purpose Register Group . 11-13
11.4.4 XSAVE-Enabled Registers Group . 11-14
11.4.5 Last Branch Record Group. 11-15
11.4.6 Performance Counters Group. 11-16
11.4.7 Fragmented Records. 11-16
11.5 Interactions with Other Processor Features . 11-18
11.5.1 Virtual Machine Extension (VMX) . 11-18
11.5.2 Intel® Secure Guard Extensions (Intel® SGX) . 11-20
11.5.3 Intel® Trust Domain Extensions (Intel® TDX). 11-20
11.5.4 System Management Mode (SMM) . 11-21
11.5.5 SMM-Transfer Monitor (STM) . 11-21

CHAPTER 12
MOVRS INSTRUCTIONS
Document Number: 319433-055 x

TABLES
PAGE
1-1 CPUID Signature Values of DisplayFamily_DisplayModel . 1-1
1-2 Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors . 1-2
1-3 Information Returned by CPUID Instruction . 1-5
1-4 Processor Type Field . 1-34
1-5 Feature Information Returned in the ECX Register . 1-36
1-6 More on Feature Information Returned in the EDX Register . 1-37
1-7 Encoding of CPUID Leaf 2 Descriptors . 1-39
1-8 Processor Brand String Returned with Pentium 4 Processor . 1-47
1-9 Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings 1-49
1-10 Compressed Displacement (DISP8*N) Affected by Embedded Broadcast 1-55
1-11 EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast 1-55
1-12 FP8 Formats Numeric Definitions . 1-57
1-13 FP Numerical Handling of Converts . 1-57
2-1 Type Legacy-MOVRS Class Exception Conditions . 2-13
2-1 Bind Structure Format. 2-14
2-2 MKTME_KEY_PROGRAM_STRUCT Format . 2-18
2-3 TSE_KEY_PROGRAM_STRUCT Format . 2-20
2-4 TSE_KEY_PROGRAM_WRAPPED Control Input . 2-21
2-5 Bind Structure Format. 2-21
2-6 Format of the VM-Exit Instruction Information Field Used for URDMSR and UWRMSR 2-33
2-7 MSRs Writeable by UWRMSR . 2-34
3-1 Intel® AMX Treatment of Denormal Inputs and Outputs . 3-5
3-2 Intel® AMX Exception Classes . 3-11
3-3 Valid Destination Tile Configurations . 3-15
3-4 Destination Tile Configurations. 3-18
4-1 Cache Bandwidth Allocation (CBA) MSRs . 4-3
5-1 RAO Instructions . 5-1
6-1 TSE Capability MSR Fields . 6-2
9-1 Supported Trigger Inputs . 9-1
9-2 Trigger Actions. 9-2
9-3 ICNT on Multiple Trigger Events . 9-3
9-4 TRIG Packet Definition . 9-4
9-5 IA32_RTIT_TRIGGERx_CFG MSR Definition . 9-5
9-6 IA32_RTIT_STATUS MSR Definition . 9-6
10-1 MWAIT Extension Register (ECX) . 10-4
10-2 MWAIT Hints Register (EAX) . 10-4
11-1 Architectural PEBS Configuration Locations . 11-2
11-2 Architectural PEBS MSRs . 11-5
11-3 IA32_PEBS_BASE MSR . 11-6
11-4 IA32_PEBS_INDEX MSR . 11-7
11-5 IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs . 11-8
11-6 Basic Group Fields . 11-10
11-7 Auxiliary Group Fields . 11-12
11-8 General-Purpose Register Group Fields . 11-13
11-9 XSAVE-Enabled Registers (XER) Group Fields and Sizes . 11-14
11-10 Last Branch Record Group Fields . 11-15
11-11 Counter Group Details. 11-16
11-12 PEBS VMCS Fields . 11-18
Document Number: 319433-055 xi

FIGURES
PAGE
Figure 1-1. Version Information Returned by CPUID in EAX . 1-34
Figure 1-2. Feature Information Returned in the ECX Register . 1-35
Figure 1-3. Feature Information Returned in the EDX Register . 1-37
Figure 1-4. Determination of Support for the Processor Brand String . 1-47
Figure 1-5. Algorithm for Extracting Maximum Processor Frequency . 1-48
Figure 1-6. Comparison of BF16 to FP16 and FP32 . 1-56
Figure 3-1. Intel® AMX Architecture . 3-2
Figure 3-2. The TMUL Unit . 3-3
Figure 3-3. Matrix Multiply C+= A*B . 3-4
Figure 4-1. CPUID.(EAS=10H, ECX=5H), CBA Feature Details Identification. 4-2
Figure 4-2. IA32_QoS_Core_BW_Thrtl_n MSR Definition . 4-4
Figure 9-1. Layout of the IA32_PERFEVTSELx MSR . 9-6
Figure 11-1. Example PEBS Record . 11-5
Figure 11-2. PEBS Record Format . 11-10
Figure 11-3. Bit Mapping of Applicable Counters in the PEBS Record . 11-11
Figure 11-4. Example of a Fragmented Record . 11-17
Figure 11-5. EPT Page Boundary Example with Included Padding . 11-18
Figure 11-6. Guest-Only PEBS: Diagram of Interactions Across Entities. 11-19
Figure 11-7. System-Wide PEBS: Diagram of Interactions Across Entities . 11-20
Document Number: 319433-055 xii

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
CHAPTER 1
FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND

FEATURES

1.1 ABOUT THIS DOCUMENT
This document describes the software programming interfaces of Intel® architecture instruction extensions and
features which may be included in future Intel processor generations. Intel does not guarantee the availability of
these interfaces and features in any future product.
The instruction set extensions cover a diverse range of application domains and programming usages. The 512-bit
SIMD vector SIMD extensions, referred to as Intel® Advanced Vector Extensions 512 (Intel® AVX-512) instruc-
tions, deliver comprehensive set of functionality and higher performance than Intel® Advanced Vector Extensions
(Intel® AVX) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) instructions. Intel AVX, Intel AVX2, and many
Intel AVX-512 instructions are covered in the Intel® 64 and IA-32 Architectures Software Developer’s Manual. The
reader can refer to them for basic and more background information related to various features referenced in this
document.
The base of the 512-bit SIMD instruction extensions are referred to as Intel AVX-512 Foundation instructions. They
include extensions of the Intel AVX and Intel AVX2 family of SIMD instructions but are encoded using a new
encoding scheme with support for 512-bit vector registers, up to 32 vector registers in 64-bit mode, and condi-
tional processing using opmask registers.
Chapter 2 is an instruction set reference, providing details on new instructions.
Chapter 3 describes the Intel® Advanced Matrix Extensions (Intel® AMX).
Chapter 4 describes Intel® Resource Director Technology feature updates.
Chapter 5 describes Remote Atomic Operations (RAO) in Intel architecture.
Chapter 6 describes Total Storage Encryption (TSE) in Intel architecture.
Chapter 7 describes an architectural feature called user-timer events.
Chapter 8 describes a VMX extension called APIC-timer virtualization.
Chapter 9 describes the Intel Processor Trace Trigger Tracing feature.
Chapter 10 describes the monitorless MWAIT feature.
Chapter 11 describes Architectural PEBS.
Chapter 12 provides a brief introduction to the MOVRS instructions.

1.2 DISPLAYFAMILY AND DISPLAYMODEL FOR FUTURE PROCESSORS
Table 1-1 lists the signature values of DisplayFamily and DisplayModel for future processor families discussed in
this document.

Table 1-1. CPUID Signature Values of DisplayFamily_DisplayModel
DisplayFamily_DisplayModel Processor Families/Processor Number Series

06_B6H Future processors based on Grand Ridge microarchitecture.

06_ADH, 06_AEH Future processors based on Granite Rapids microarchitecture.

06_AFH Future processors based on Sierra Forest microarchitecture.

06_B5H Future processors supporting Arrow Lake U performance hybrid architecture.

06_C5H, 06_C6H Future processors supporting Arrow Lake performance hybrid architecture.

06_BDH Future processors supporting Lunar Lake performance hybrid architecture.

06_DDH Future processors based on Clearwater Forest microarchitecture.
Document Number: 319433-055 1-1

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.3 INSTRUCTION SET EXTENSIONS AND FEATURE INTRODUCTION IN INTEL®
64 AND IA-32 PROCESSORS

Recent instruction set extensions and features are listed in Table 1-2. Within these groups, most instructions and
features are collected into functional subgroups.

06_CCH Future processors supporting Panther Lake performance hybrid architecture.

13_01H Future processors based on Diamond Rapids Server microarchitecture.

Table 1-2. Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32 Processors1

Instruction Set Architecture / Feature Introduction

AVX512_VP2INTERSECT Tiger Lake (not currently supported in any other processors)

Intel® TSX Suspend Load Address Tracking (TSXLDTRK) Sapphire Rapids

Intel® Advanced Matrix Extensions (Intel® AMX)

Includes CPUID Leaf 1EH, “TMUL Information Main Leaf,” and
CPUID bits AMX-BF16, AMX-TILE, and AMX-INT8.

Sapphire Rapids

User Interrupts (UINTR) Sapphire Rapids, Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake

Intel® Trust Domain Extensions (Intel® TDX)2 Emerald Rapids

Linear Address Masking (LAM) Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

IPI Virtualization Sapphire Rapids, Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake

RAO-INT Future processors

PREFETCHIT0/1 Granite Rapids, Clearwater Forest

AMX-FP16 Granite Rapids

CMPCCXADD Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

AVX-IFMA Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

AVX-NE-CONVERT Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

AVX-VNNI-INT8 Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

RDMSRLIST/WRMSRLIST/WRMSRNS Sierra Forest, Grand Ridge, Panther Lake, Diamond Rapids

Linear Address Space Separation (LASS) Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

Virtualization of guest accesses to IA32_SPEC_CTRL Sapphire Rapids, Sierra Forest, Grand Ridge, Panther Lake, Diamond
Rapids

UC-Lock Disable Causes #AC Sierra Forest, Grand Ridge

LBR Event Logging Sierra Forest, Grand Ridge, Arrow Lake S (06_C6H), Lunar Lake,
Diamond Rapids

AMX-COMPLEX Granite Rapids D (06_AEH), Diamond Rapids

AVX-VNNI-INT16 Arrow Lake S (06_C6H), Lunar Lake, Clearwater Forest, Diamond
Rapids

SHA512 Arrow Lake S (06_C6H), Lunar Lake, Clearwater Forest, Diamond
Rapids

SM3 Arrow Lake S (06_C6H), Lunar Lake, Clearwater Forest, Diamond
Rapids

Table 1-1. CPUID Signature Values of DisplayFamily_DisplayModel (Continued)
DisplayFamily_DisplayModel Processor Families/Processor Number Series
Document Number: 319433-055 1-2

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
SM4 (VEX) Arrow Lake S (06_C6H), Lunar Lake, Clearwater Forest, Diamond
Rapids

SM4 (EVEX) Diamond Rapids

UIRET flexibly updates UIF Sierra Forest, Grand Ridge, Arrow Lake, Lunar Lake, Diamond Rapids

Total Storage Encryption (TSE) and the PBNDKB instruction Future processors

Intel® Advanced Vector Extensions 10 Version 1 (Intel®
AVX10.1)3

Granite Rapids

URDMSR and UWRMSR instructions Clearwater Forest, Diamond Rapids

Flexible Return and Event Delivery (FRED) and the LKGS
instruction4

Panther Lake, Clearwater Forest, Diamond Rapids

NMI-Source Reporting4 Panther Lake, Clearwater Forest, Diamond Rapids

User-Timer Events and Interrupts Clearwater Forest

APIC-Timer Virtualization Clearwater Forest

Management of IA32_SPEC_CTRL by VMX transitions Clearwater Forest, Diamond Rapids

Intel Processor Trace Trigger Tracing Clearwater Forest

Monitorless MWAIT Clearwater Forest

Intel® Advanced Performance Extensions (Intel® APX)5 Diamond Rapids

Intel® Advanced Vector Extensions 10 Version 2 (Intel®
AVX10.2)6

Diamond Rapids

Architectural PEBS Clearwater Forest, Diamond Rapids

Immediate encodings for RDMSR and WRMSRNS Clearwater Forest

MOVRS and the PREFETCHST2 instruction Diamond Rapids

AMX-MOVRS Diamond Rapids

AMX-AVX512 Diamond Rapids

AMX-FP8 Diamond Rapids

AMX-TF32 Diamond Rapids

AMX-TRANSPOSE Diamond Rapids

Intel® RDT Region Aware Memory Bandwidth Allocation7 Diamond Rapids

NOTES:

1. Visit for Intel® product specifications, features and compatibility quick reference guide, and code name decoder, visit:
https://ark.intel.com/content/www/us/en/ark.html.

2. Details on Intel® Trust Domain Extensions can be found here:
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html.

3. Details on Intel® Advanced Vector Extensions 10 Version 1 can be found here: https://cdrdv2.intel.com/v1/dl/getContent/784267.
4. Details on the LKGS (load into IA32_KERNEL_GS_BASE) instruction, NMI-source reporting, and Flexible Return and Event Delivery can

be found here: https://cdrdv2.intel.com/v1/dl/getContent/795033.
5. Details on Intel® Advanced Performance Extensions can be found here: https://cdrdv2.intel.com/v1/dl/getContent/784266
6. Details on Intel® Advanced Vector Extensions 10 Version 2 can be found here: https://cdrdv2.intel.com/v1/dl/getContent/828965.
7. Details on Intel® RDT Region Aware Memory Bandwidth Allocation can be found here:

https://cdrdv2.intel.com/v1/dl/getContent/789566.

Table 1-2. Recent Instruction Set Extensions / Features Introduction in Intel® 64 and IA-32

Instruction Set Architecture / Feature Introduction
Document Number: 319433-055 1-3

https://cdrdv2.intel.com/v1/dl/getContent/828965
https://cdrdv2.intel.com/v1/dl/getContent/789566
https://ark.intel.com/content/www/us/en/ark.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://cdrdv2.intel.com/v1/dl/getContent/784266
https://cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true
https://www.cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/780121?explicitVersion=true

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.4 DETECTION OF FUTURE INSTRUCTIONS AND FEATURES
Future instructions and features are enumerated by a CPUID feature flag; details can be found in Table 1-3.

CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.1 The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

Table 1-3 shows information returned, depending on the initial value loaded into the EAX register.

Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = 05H (* Returns MONITOR/MWAIT leaf. *)
CPUID.EAX = 0AH (* Returns Architectural Performance Monitoring leaf. *)
CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = 0AH. *)2
CPUID.EAX =1FH (* Returns V2 Extended Topology Enumeration leaf. *)2
CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)
CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = 0AH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 9, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A.
"Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A.

Opcode Instruction
64-Bit
Mode

Compat/
Leg Mode Description

0F A2 CPUID Valid Valid Returns processor identification and feature information to the EAX, EBX, ECX,
and EDX registers, as determined by input entered in EAX (in some cases, ECX
as well).

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.
2. CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of CPUID leaf 1FH

before using leaf 0BH.
Document Number: 319433-055 1-4

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Table 1-3. Information Returned by CPUID Instruction

Initial EAX
Value

Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information.
“Genu”
“ntel”
“ineI”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 1-1).

EBX Bits 7-0: Brand Index.
Bits 15-8: CLFLUSH line size (Value ∗ 8 = cache line size in bytes).
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package.*
Bits 31-24: Initial APIC ID.**

ECX Feature Information (see Figure 1-2 and Table 1-5).

EDX Feature Information (see Figure 1-3 and Table 1-6).

NOTES:
* The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of

unique initial APIC IDs reserved for addressing different logical processors in a physical package.
** The 8-bit initial APIC ID in EBX[31:24] is replaced by the 32-bit x2APIC ID, available in Leaf 0BH

and Leaf 1FH.

02H EAX Cache and TLB Information (see Table 1-7).

EBX Cache and TLB Information.

ECX Cache and TLB Information.

EDX Cache and TLB Information.

03H EAX Reserved.

EBX Reserved.

ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium III processor only; otherwise, the
value in this register is reserved.)

NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.

CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default)

Deterministic Cache Parameters Leaf (Initial EAX Value = 04H)

04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level” on page 1-43.

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches.
1 = Data Cache.
2 = Instruction Cache.
3 = Unified Cache.
4-31 = Reserved.

Bits 7-5: Cache Level (starts at 1).
Bits 8: Self Initializing cache level (does not need SW initialization).
Bits 9: Fully Associative cache.
Document Number: 319433-055 1-5

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Bits 13-10: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache.*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical
package.*, ***, ****

EBX Bits 11-00: L = System Coherency Line Size.*
Bits 21-12: P = Physical Line partitions.*
Bits 31-22: W = Ways of associativity.*

ECX Bits 31-00: S = Number of Sets.*

EDX Bit 0: WBINVD/INVD behavior on lower level caches.
Bit 10: Write-Back Invalidate/Invalidate.

0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache.
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.

Bit 1: Cache Inclusiveness.
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bit 2: Complex cache indexing.
0 = Direct mapped cache.
1 = A complex function is used to index the cache, potentially using
all address bits.

Bits 31-03: Reserved = 0.

NOTES:
* Add one to the return value to get the result.
** The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique

initial APIC IDs reserved for addressing different logical processors sharing this cache.
*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of

unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.

**** The returned value is constant for valid initial values in ECX. Valid ECX values start from 0.

MONITOR/MWAIT Leaf (Initial EAX Value = 05H)

05H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31-16: Reserved = 0.

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor's monitor granularity).
Bits 31-16: Reserved = 0.

ECX Bit 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported.
Bit 01: Supports treating interrupts as break-event for MWAIT, even when interrupts are disabled.
Bit 02: Reserved.
Bit 03: MONITORLESS_MWAIT. If 1, monitorless MWAIT is supported.
Bits 31-04: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-6

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 03-00: Number of C0* sub C-states supported using MWAIT.
Bits 07-04: Number of C1* sub C-states supported using MWAIT.
Bits 11-08: Number of C2* sub C-states supported using MWAIT.
Bits 15-12: Number of C3* sub C-states supported using MWAIT.
Bits 19-16: Number of C4* sub C-states supported using MWAIT.
Bits 23-20: Number of C5* sub C-states supported using MWAIT.
Bits 27-24: Number of C6* sub C-states supported using MWAIT.
Bits 31-28: Number of C7* sub C-states supported using MWAIT.
NOTE:
* The definition of C0 through C7 states for MWAIT extension are processor-specific C-states, not

ACPI C-states.

Thermal and Power Management Leaf (Initial EAX Value = 06H)

06H EAX Bit 00: Digital temperature sensor is supported if set.
Bit 01: Intel® Turbo Boost Technology Available (see description of IA32_MISC_ENABLE[38]).
Bit 02: ARAT. APIC-Timer-always-running feature is supported if set.
Bit 03: Reserved.
Bit 04: PLN. Power limit notification controls are supported if set.
Bit 05: ECMD. Clock modulation duty cycle extension is supported if set.
Bit 06: PTM. Package thermal management is supported if set.
Bit 07: HWP. HWP base registers (IA32_PM_ENABLE[bit 0], IA32_HWP_CAPABILITIES,
IA32_HWP_REQUEST, IA32_HWP_STATUS) are supported if set.
Bit 08: HWP_Notification. IA32_HWP_INTERRUPT MSR is supported if set.
Bit 09: HWP_Activity_Window. IA32_HWP_REQUEST[bits 41:32] is supported if set.
Bit 10: HWP_Energy_Performance_Preference. IA32_HWP_REQUEST[bits 31:24] is supported if set.
Bit 11: HWP_Package_Level_Request. IA32_HWP_REQUEST_PKG MSR is supported if set.
Bit 12: Reserved.
Bit 13: HDC. HDC base registers IA32_PKG_HDC_CTL, IA32_PM_CTL1, IA32_THREAD_STALL MSRs
are supported if set.
Bit 14: Intel® Turbo Boost Max Technology 3.0 available.
Bit 15: HWP Capabilities. Highest Performance change is supported if set.
Bit 16: HWP PECI override is supported if set.
Bit 17: Flexible HWP is supported if set.
Bit 18: Fast access mode, low latency, and posted IA32_HWP_REQUEST MSR are supported if set.
Bit 19: HW_FEEDBACK. IA32_HW_FEEDBACK_PTR, IA32_HW_FEEDBACK_CONFIG,
IA32_PACKAGE_THERM_STATUS bit 26 and IA32_PACKAGE_THERM_INTERRUPT bit 25 are sup-
ported if set.
Bit 20: Ignoring Idle Logical Processor HWP request is supported if set.
Bit 21: Reserved.
Bit 22: HWP Control MSR Support. The IA32_HWP_CTL MSR is supported if set.
Bit 23: Intel® Thread Director supported if set. IA32_HW_FEEDBACK_CHAR and IA32_HW_FEED-
BACK_THREAD_CONFIG MSRs are supported if set.
Bit 24: IA32_THERM_INTERRUPT MSR bit 25 is supported if set.
Bits 31-25: Reserved.

EBX Bits 03-00: Number of Interrupt Thresholds in Digital Thermal Sensor.
Bits 31-04: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-7

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bit 00: Hardware Coordination Feedback Capability (Presence of IA32_MPERF and IA32_APERF). The
capability to provide a measure of delivered processor performance (since last reset of the counters),
as a percentage of the expected processor performance when running at the TSC frequency.
Bits 02-01: Reserved = 0.
Bit 03: The processor supports performance-energy bias preference if CPUID.06H:ECX.SETBH[bit 3]
is set, and it also implies the presence of the IA32_ENERGY_PERF_BIAS MSR (MSR address 1B0H).
Bits 07-04: Reserved = 0.
Bits 15-08: Number of Intel® Thread Director classes supported by the processor. Information for
that many classes is written into the Intel Thread Director Table by the hardware.
Bits 31-16: Reserved = 0.

EDX Bits 7-0: Bitmap of supported hardware feedback interface capabilities.
0 = When set to 1, indicates support for performance capability reporting.
1 = When set to 1, indicates support for energy efficiency capability reporting.
2-7 = Reserved.

Bits 11-08: Enumerates the size of the hardware feedback interface structure in number of 4 KB
pages; add one to the return value to get the result.
Bits 31-16: Index (starting at 0) of this logical processor’s row in the hardware feedback interface
structure. Note that on some parts the index may be same for multiple logical processors. On some
parts the indices may not be contiguous, i.e., there may be unused rows in the hardware feedback
interface structure.
NOTE:

Bits 0 and 1 will always be set together.

Structured Extended Feature Flags Enumeration Main Leaf (Initial EAX Value = 07H, ECX = 0)

07H NOTE:
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX.

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 07H.

EBX Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bit 01: IA32_TSC_ADJUST MSR is supported if 1.
Bit 02: SGX.
Bit 03: BMI1.
Bit 04: HLE.
Bit 05: AVX2. Supports Intel® Advanced Vector Extensions 2 (Intel® AVX2) if 1.
Bit 06: FDP_EXCPTN_ONLY. x87 FPU Data Pointer updated only on x87 exceptions if 1.
Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 08: BMI2.
Bit 09: Supports Enhanced REP MOVSB/STOSB if 1.
Bit 10: INVPCID.
Bit 11: RTM.
Bit 12: RDT-M. Supports Intel® Resource Director Technology (Intel® RDT) Monitoring capability if 1.
Bit 13: Deprecates FPU CS and FPU DS values if 1.
Bit 14: Intel® Memory Protection Extensions.
Bit 15: RDT-A. Supports Intel® Resource Director Technology (Intel® RDT) Allocation capability if 1.
Bit 16: AVX512F.
Bit 17: AVX512DQ.
Bit 18: RDSEED.
Bit 19: ADX.
Bit 20: SMAP.
Bit 21: AVX512_IFMA.
Bit 22: Reserved.
Bit 23: CLFLUSHOPT.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-8

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Bit 24: CLWB.
Bit 25: Intel Processor Trace.
Bit 26: AVX512PF. (Intel® Xeon Phi™ only.)
Bit 27: AVX512ER. (Intel® Xeon Phi™ only.)
Bit 28: AVX512CD.
Bit 29: SHA.
Bit 30: AVX512BW.
Bit 31: AVX512VL.

ECX Bit 00: PREFETCHWT1. (Intel® Xeon Phi™ only.)
Bit 01: AVX512_VBMI.
Bit 02: UMIP. Supports user-mode instruction prevention if 1.
Bit 03: PKU. Supports protection keys for user-mode pages if 1.
Bit 04: OSPKE. If 1, OS has set CR4.PKE to enable protection keys (and the RDPKRU/WRPKRU instruc-
tions).
Bit 05: WAITPKG.
Bit 06: AVX512_VBMI2.
Bit 07: CET_SS. Supports CET shadow stack features if 1. Processors that set this bit define bits 1:0
of the IA32_U_CET and IA32_S_CET MSRs. Enumerates support for the following MSRs: IA32_INTER-
RUPT_SPP_TABLE_ADDR, IA32_PL3_SSP, IA32_PL2_SSP, IA32_PL1_SSP, and IA32_PL0_SSP.
Bit 08: GFNI.
Bit 09: VAES.
Bit 10: VPCLMULQDQ.
Bit 11: AVX512_VNNI.
Bit 12: AVX512_BITALG.
Bit 13: TME_EN. If 1, the following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTI-
VATE, IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
Bit 14: AVX512_VPOPCNTDQ.
Bit 15: Reserved.
Bit 16: LA57. Supports 57-bit linear addresses and five-level paging if 1.
Bits 21-17: The value of MAWAU used by the BNDLDX and BNDSTX instructions in 64-bit mode.
Bit 22: RDPID and IA32_TSC_AUX are available if 1.
Bit 23: KL. Supports Key Locker if 1.
Bit 24: BUS_LOCK_DETECT. If 1, indicates support for bus lock debug exceptions.
Bit 25: CLDEMOTE. Supports cache line demote if 1.
Bit 26: Reserved.
Bit 27: MOVDIRI. Supports MOVDIRI if 1.
Bit 28: MOVDIR64B. Supports MOVDIR64B if 1.
Bit 29: ENQCMD: Supports Enqueue Stores if 1.
Bit 30: SGX_LC. Supports SGX Launch Configuration if 1.
Bit 31: PKS. Supports protection keys for supervisor-mode pages if 1.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-9

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bit 00: Reserved.
Bit 01: SGX-KEYS. If 1, Attestation Services for Intel® SGX is supported.
Bit 02: AVX512_4VNNIW. (Intel® Xeon Phi™ only.)
Bit 03: AVX512_4FMAPS. (Intel® Xeon Phi™ only.)
Bit 04: Fast Short REP MOV.
Bit 05: UINTR. If 1, the processor supports user interrupts.
Bits 07-06: Reserved.
Bit 08: AVX512_VP2INTERSECT.
Bit 09: SRBDS_CTRL. If 1, enumerates support for the IA32_MCU_OPT_CTRL MSR and indicates that
its bit 0 (RNGDS_MITG_DIS) is also supported.
Bit 10: MD_CLEAR supported.
Bit 11: RTM_ALWAYS_ABORT. If set, any execution of XBEGIN immediately aborts and transitions to
the specified fallback address.
Bit 12: Reserved.
Bit 13: If 1, RTM_FORCE_ABORT supported. Processors that set this bit support the
TSX_FORCE_ABORT MSR. They allow software to set TSX_FORCE_ABORT[0] (RTM_FORCE_ABORT).
Bit 14: SERIALIZE.
Bit 15: Hybrid. If 1, the processor is identified as a hybrid part. If CPUID.0.MAXLEAF ≥ 1AH and
CPUID.1A.EAX ≠ 0, then the Native Model ID Enumeration Leaf 1AH exists.
Bit 16: TSXLDTRK. If 1, the processor supports Intel TSX suspend/resume of load address tracking.
Bit 17: Reserved.
Bit 18: PCONFIG.

Bit 19: Architectural LBRs. If 1, indicates support for architectural LBRs.
Bit 20: CET_IBT. Supports CET indirect branch tracking features if 1. Processors that set this bit
define bits 5:2 and bits 63:10 of the IA32_U_CET and IA32_S_CET MSRs.
Bit 21: Reserved.
Bit 22: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
Bit 23: AVX512_FP16.
Bit 24: AMX-TILE. If 1, the processor supports tile architecture.
Bit 25: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.
Bit 26: Enumerates support for indirect branch restricted speculation (IBRS) and the indirect branch
predictor barrier (IBPB). Processors that set this bit support the IA32_SPEC_CTRL MSR and the
IA32_PRED_CMD MSR. They allow software to set IA32_SPEC_CTRL[0] (IBRS) and
IA32_PRED_CMD[0] (IBPB).
Bit 27: Enumerates support for single thread indirect branch predictors (STIBP). Processors that set
this bit support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[1] (STIBP).
Bit 28: Enumerates support for L1D_FLUSH. Processors that set this bit support the
IA32_FLUSH_CMD MSR. They allow software to set IA32_FLUSH_CMD[0] (L1D_FLUSH).
Bit 29: Enumerates support for the IA32_ARCH_CAPABILITIES MSR.
Bit 30: Enumerates support for the IA32_CORE_CAPABILITIES MSR.
IA32_CORE_CAPABILITIES is an architectural MSR that enumerates model-specific features. In gen-
eral, a bit being set in this MSR indicates that a model-specific feature is supported; software should
consult CPUID family/model/stepping to determine the behavior of these enumerated features, as
that behavior may differ on different processor models. Some bits in the MSR enumerate features
with behavior that is consistent across processor models (and for which consultation of CPUID fam-
ily/model/stepping is not necessary); such bits are identified explicitly in the documentation of the
IA32_CORE_CAPABILITIES MSR.
Bit 31: Enumerates support for Speculative Store Bypass Disable (SSBD). Processors that set this bit
support the IA32_SPEC_CTRL MSR. They allow software to set IA32_SPEC_CTRL[2] (SSBD).

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 1)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-10

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX This field reports 0 if the sub-leaf index, 1, is invalid.
Bit 00: SHA512. If 1, supports the SHA512 instructions.
Bit 01: SM3. If 1, supports the SM3 instructions.
Bit 02: SM4. If 1, supports the SM4 instructions.
Bit 03: RAO-INT. If 1, supports the RAO-INT instructions.
Bit 04: AVX-VNNI. AVX (VEX-encoded) versions of the Vector Neural Network Instructions.
Bit 05: AVX512_BF16. Vector Neural Network Instructions supporting bfloat16 inputs and conver-
sion instructions from IEEE single precision.
Bit 06: LASS. If 1, supports Linear Address Space Separation.
Bit 07: CMPCCXADD. If 1, supports the CMPccXADD instruction.
Bit 08: ArchPerfmonExt. If 1, supports ArchPerfmonExt. When set, indicates that the Architectural
Performance Monitoring Extended Leaf (EAX = 23H) is valid.
Bit 09: Reserved.
Bit 10: If 1, supports fast zero-length MOVSB.
Bit 11: If 1, supports fast short STOSB.
Bit 12: If 1, supports fast short CMPSB, SCASB.
Bits 16-13: Reserved.
Bit 17: FRED. If 1, supports Flexible Return and Event Delivery and the architectural state (MSRs)
defined by FRED. Any Intel processor that enumerates support for FRED transitions will also enumer-
ate support for LKGS.
Bit 18: LKGS. If 1, supports the LKGS (load into IA32_KERNEL_GS_BASE) instruction.
Bit 19: WRMSRNS. If 1, supports the WRMSRNS instruction.

Bit 20: NMI_SRC. If 1, supports NMI-source reporting.
Bit 21: AMX-FP16. If 1, the processor supports tile computational operations on FP16 numbers.
Bit 22: HRESET. If 1, supports history reset and the IA32_HRESET_ENABLE MSR. When set, indicates
that the Processor History Reset Leaf (EAX = 20H) is valid.
Bit 23: AVX-IFMA. If 1, supports the AVX-IFMA instructions.
Bits 25-24: Reserved.
Bit 26: LAM. If 1, supports Linear Address Masking.
Bit 27: MSRLIST. If 1, supports the RDMSRLIST and WRMSRLIST instructions and the IA32_BARRIER
MSR.
Bits 29-28: Reserved.
Bit 30: INVD_DISABLE_POST_BIOS_DONE. If 1, supports INVD execution prevention after BIOS Done.
Bit 31: MOVRS.

EBX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.
Bit 00: Enumerates the presence of the IA32_PPIN and IA32_PPIN_CTL MSRs. If 1, these MSRs are
supported.
Bit 01: PBNDKB. If 1, supports the PBNDKB instruction and enumerates the existence of the
IA32_TSE_CAPABILITY MSR.
Bits 31-02: Reserved.

ECX This field reports 0 if the sub-leaf index, 1, is invalid; otherwise it is reserved.
Bits 04-00: Reserved.
Bit 05: MSR_IMM. If 1, the immediate forms of the RDMSR and WRMSRNS instructions are supported.
Bits 31-06: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-11

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX This field reports 0 if the sub-leaf index, 1, is invalid.
Bits 03-00: Reserved.
Bit 04: AVX-VNNI-INT8. If 1, supports the AVX-VNNI-INT8 instructions.
Bit 05: AVX-NE-CONVERT. If 1, supports the AVX-NE-CONVERT instructions.
Bits 07-06: Reserved.
Bit 08: AMX-COMPLEX. If 1, supports the AMX-COMPLEX instructions.
Bit 09: Reserved.
Bit 10: AVX-VNNI-INT16. If 1, supports the AVX-VNNI-INT16 instructions.
Bits 12-11: Reserved.
Bit 13: UTMR. If 1, supports user-timer events.
Bit 14: PREFETCHI. If 1, supports the PREFETCHIT0/1 instructions.
Bit 15: USER_MSR. If 1, supports the URDMSR and UWRMSR instructions.
Bits 16: Reserved.
Bit 17: UIRET_UIF. If 1, UIRET sets UIF to the value of bit 1 of the RFLAGS image loaded from the
stack.
Bit 18: CET_SSS. If 1, indicates that an operating system can enable supervisor shadow stacks as
long as it ensures that a supervisor shadow stack cannot become prematurely busy due to page
faults (see Section 17.2.3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1). When emulating the CPUID instruction, a virtual-machine monitor (VMM) should return
this bit as 1 only if it ensures that VM exits cannot cause a guest supervisor shadow stack to appear
to be prematurely busy. Such a VMM could set the “prematurely busy shadow stack” VM-exit control
and use the additional information that it provides.
Bit 19: AVX10. If 1, supports the Intel® AVX10 instructions and indicates the presence of CPUID Leaf
24H, which enumerates version number and supported vector lengths.
Bit 20: Reserved.
Bit 21: APX_F. If 1, the processor provides foundational support for Intel® Advanced Performance
Extensions.
Bit 22: Reserved.
Bit 23: MWAIT. If 1, MWAIT is supported (even if CPUID.01H:ECX.MONITOR[bit 3] is enumerated as 0).
Bits 31-24: Reserved.

Structured Extended Feature Enumeration Sub-leaf (Initial EAX Value = 07H, ECX = 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, 2, is invalid; otherwise it is reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-12

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX This field reports 0 if the sub-leaf index, 2, is invalid.
Bit 00: PSFD. If 1, indicates bit 7 of the IA32_SPEC_CTRL MSR is supported. Bit 7 of this MSR disables
Fast Store Forwarding Predictor without disabling Speculative Store Bypass.
Bit 01: IPRED_CTRL. If 1, indicates bits 3 and 4 of the IA32_SPEC_CTRL MSR are supported. Bit 3 of
this MSR enables IPRED_DIS control for CPL3. Bit 4 of this MSR enables IPRED_DIS control for
CPL0/1/2.
Bit 02: RRSBA_CTRL. If 1, indicates bits 5 and 6 of the IA32_SPEC_CTRL MSR are supported. Bit 5 of
this MSR disables RRSBA behavior for CPL3. Bit 6 of this MSR disables RRSBA behavior for CPL0/1/2.
Bit 03: DDPD_U. If 1, indicates bit 8 of the IA32_SPEC_CTRL MSR is supported. Bit 8 of this MSR dis-
ables Data Dependent Prefetcher.
Bit 04: BHI_CTRL. If 1, indicates bit 10 of the IA32_SPEC_CTRL MSR is supported. Bit 10 of this MSR
enables BHI_DIS_S behavior.
Bit 05: MCDT_NO. Processors that enumerate this bit as 1 do not exhibit MXCSR Configuration
Dependent Timing (MCDT) behavior and do not need to be mitigated to avoid data-dependent behav-
ior for certain instructions.
Bit 06: If 1, supports the UC-lock disable feature.
Bit 07: MONITOR_MITG_NO. If 1, indicates that the MONITOR/UMONITOR instructions are not
affected by performance or power issues due to MONITOR/UMONITOR instructions exceeding the
capacity of an internal monitor tracking table. If 0, then the product may be affected by this issue.
Bits 31-08: Reserved.

Structured Extended Feature Enumeration Sub-leaves (Initial EAX Value = 07H, ECX = n, n > 2)

07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.

EAX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

EBX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

ECX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

EDX This field reports 0 if the sub-leaf index, n, is invalid; otherwise it is reserved.

Direct Cache Access Information Leaf (Initial EAX Value = 09H)

09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H).

EBX Reserved.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Leaf (Initial EAX Value = 0AH)

0AH EAX Bits 07-00: Version ID of architectural performance monitoring.
Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor.
Bits 23-16: Bit width of general-purpose, performance monitoring counter.
Bits 31-24: Length of EBX bit vector to enumerate architectural performance monitoring events.
Architectural event x is supported if EBX[x]=0 && EAX[31:24] > x.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-13

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: Core cycle event not available if 1 or if EAX[31:24] < 1.
Bit 01: Instruction retired event not available if 1 or if EAX[31:24] < 2.
Bit 02: Reference cycles event not available if 1 or if EAX[31:24] < 3.
Bit 03: Last-level cache reference event not available if 1 or if EAX[31:24] < 4.
Bit 04: Last-level cache misses event not available if 1 or if EAX[31:24] < 5.
Bit 05: Branch instruction retired event not available if 1 or if EAX[31:24] < 6.
Bit 06: Branch mispredict retired event not available if 1 or if EAX[31:24] < 7.
Bit 07: Topdown slots event not available if 1 or if EAX[31:24] < 8.
Bit 08: Topdown backend bound not available if 1 or if EAX[31:24] < 9.
Bit 09: Topdown bad speculation not available if 1 or if EAX[31:24] < 10.
Bit 10: Topdown frontend bound not available if 1 or if EAX[31:24] < 11.
Bit 11: Topdown retiring not available if 1 or if EAX[31:24] < 12.
Bit 12: LBR inserts not available if 1 or if EAX[31:24] < 13.
Bits 31-13: Reserved = 0.

ECX Bits 31-00: Supported fixed-function counters. If bit 'i' is set, it implies that Fixed-Function Counter 'i'
is supported.
Software is recommended to use the following logic to check if a Fixed-Function Counter is sup-
ported on a given processor: FxCtr[i]_is_supported := ECX[i] || (EDX[4:0] > i);

EDX Bits 04-00: Number of contiguous fixed-function performance counters starting from 0 (if Version ID
> 1).
Bits 12-05: Bit width of fixed-function performance counters (if Version ID > 1).
Bits 14-13: Reserved = 0.
Bit 15: AnyThread deprecation.
Bits 31-16: Reserved = 0.

Extended Topology Enumeration Leaf (Initial EAX Value = 0BH, ECX ≥ 0)

0BH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the exis-
tence of Leaf 1FH before using leaf 0BH.
The sub-leaves of CPUID leaf 0BH describe an ordered hierarchy of logical processors starting
from the smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain
(sub-leaf index 1) to the largest-scoped domain (the last valid sub-leaf index) that is implicitly sub-
ordinate to the unenumerated highest-scoped domain of the processor package (socket).
The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain
include its type and how all instances of that domain determine the number of logical processors
and x2 APIC ID partitioning at the next higher-scoped domain. The ordering of domains within the
hierarchy is fixed architecturally as shown below. For a given processor, not all domains may be
relevant or enumerated; however, the logical processor and core domains are always enumerated.
For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped
domain with respect to the domain of sub-leaf N for the given processor.
If sub-leaf index “N” returns and invalid domain type in ECX[15:08] (00H), then all sub-leaves with
an index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid
domain always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances
of the next higher-scoped domain. When logical processor is not supported by the processor, the
value of this field at the Logical Processor domain sub-leaf may be returned as either 0 (no allocated
bits in the x2APIC ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.
Bits 31-05: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-14

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bits 15-00: The number of logical processors across all instances of this domain within the next
higher-scoped domain. (For example, in a processor socket/package comprising “M” dies of “N” cores
each, where each core has “L” logical processors, the “die” domain sub-leaf value of this field would
be M*N*L.) This number reflects configuration as shipped by Intel. Note, software must not use this
field to enumerate processor topology*.
Bits 31-16: Reserved.

ECX Bits 07-00: The input ECX sub-leaf index.

Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as
shown below. Although domains are ordered, their assigned identification values are not and
software should not depend on it.

Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
Highest Core 2

(Note that enumeration values of 0 and 3-255 are reserved.)

Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID of the current logical processor.

NOTE:
* Software must not use the value of EBX[15:0] to enumerate processor topology of the system.

The value is only intended for display and diagnostic purposes. The actual number of logical pro-
cessors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

Processor Extended State Enumeration Main Leaf (Initial EAX Value = 0DH, ECX = 0)

0DH NOTE:
Leaf 0DH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is 0, the corresponding bit field in XCR0 is reserved.
Bit 00: x87 state.
Bit 01: SSE state.
Bit 02: AVX state.
Bits 04-03: MPX state
Bit 07-05: AVX-512 state.
Bit 08: Used for IA32_XSS.
Bit 09: PKRU state.
Bits 16-10: Used for IA32_XSS.
Bit 17: TILECFG state.
Bit 18: TILEDATA state.
Bits 31-19: Reserved.

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCR0. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCR0.

EDX Bit 31-00: Reports the valid bit fields of the upper 32 bits of the XCR0 register. If a bit is 0, the cor-
responding bit field in XCR0 is reserved

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-15

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Processor Extended State Enumeration Sub-leaf (Initial EAX Value = 0DH, ECX = 1)

0DH EAX Bit 00: XSAVEOPT is available.
Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
Bit 02: Supports XGETBV with ECX = 1 if set.
Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
Bit 04: Supports Extended Feature Disable (XFD) if set.
Bits 31-05: Reserved.

EBX Bits 31-00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.

NOTE:
If EAX[3] is enumerated as 0 and EAX[1] is enumerated as 1, EBX enumerates the size of the
XSAVE area containing all states enabled by XCRO. If EAX[1] and EAX[3] are both enumerated as
0, EBX enumerates zero.

ECX Bits 31-00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can
be set to 1 only if ECX[n] is 1.
Bits 07-00: Used for XCR0.
Bit 08: PT state.
Bit 09: Used for XCR0.
Bit 10: PASID state.
Bit 11: CET user state.
Bit 12: CET supervisor state.
Bit 13: HDC state.

Bit 14: UINTR state.
Bits 15: LBR state (only for the architectural LBR feature).
Bit 16: HWP state.
Bits 18-17: Used for XCR0.
Bits 31-19: Reserved.

EDX Bits 31-00: Reports the supported bits of the upper 32 bits of the IA32_XSS MSR. IA32_XSS[n+32]
can be set to 1 only if EDX[n] is 1.
Bits 31-00: Reserved.

Processor Extended State Enumeration Sub-leaves (Initial EAX Value = 0DH, ECX = n, n > 1)

0DH NOTES:
Leaf 0DH output depends on the initial value in ECX.
Each sub-leaf index (starting at position 2) is supported if it corresponds to a supported bit in
either the XCR0 register or the IA32_XSS MSR.

* If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf n (0 ≤ n ≤ 31) is
invalid if sub-leaf 0 returns 0 in EAX[n] and sub-leaf 1 returns 0 in ECX[n]. Sub-leaf n (32 ≤ n ≤ 63)
is invalid if sub-leaf 0 returns 0 in EDX[n-32] and sub-leaf 1 returns 0 in EDX[n-32].

EAX Bits 31-00: The size in bytes (from the offset specified in EBX) of the save area for an extended
state feature associated with a valid sub-leaf index, n. This field reports 0 if the sub-leaf index, n, is
invalid.*

EBX Bits 31-00: The offset in bytes of this extended state component’s save area from the beginning of
the XSAVE/XRSTOR area.
This field reports 0 if the sub-leaf index, n, does not map to a valid bit in the XCR0 register.*

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-16

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bit 0 is set if the bit n (corresponding to the sub-leaf index) is supported in the IA32_XSS MSR; it is
clear if bit n is instead supported in XCR0.
Bit 1 is set if, when the compacted format of an XSAVE area is used, this extended state component
located on the next 64-byte boundary following the preceding state component (otherwise, it is
located immediately following the preceding state component).
Bit 2 is set to indicate support for XFD faulting.
Bits 31-03 are reserved.
This field reports 0 if the sub-leaf index, n, is invalid.*

EDX This field reports 0 if the sub-leaf index, n, is invalid;* otherwise it is reserved.

Intel® Resource Director Technology Monitoring Enumeration Sub-leaf (Initial EAX Value = 0FH, ECX = 0)

0FH NOTES:
Leaf 0FH output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource type starting at bit position 1 of EDX.

EAX Reserved.

EBX Bits 31-0: Maximum range (zero-based) of RMID within this physical processor of all types.

ECX Reserved.

EDX Bit 00: Reserved.
Bit 01: Supports L3 Cache Intel RDT Monitoring if 1.
Bits 31-02: Reserved.

L3 Cache Intel® RDT Monitoring Capability Enumeration Sub-leaf (Initial EAX Value = 0FH, ECX = 1)

0FH NOTE:
Leaf 0FH output depends on the initial value in ECX.

EAX No bits set: 24-bit counters.
Bits 07-00: Encode counter width offset from 24b:

0x0 = 24-bit counters.
0x1 = 25-bit counters.
...
0x25 = 61-bit counters.

Bit 08: If 1, indicates the presence of an overflow bit in the IA32_QM_CTR MSR (bit 61).
Bit 09: If 1, indicates the presence of non-CPU agent Intel RDT CMT support.
Bit 10: If 1, indicates the presence of non-CPU agent Intel RDT MBM support.
Bits 31-11: Reserved.

EBX Bits 31-00: Conversion factor from reported IA32_QM_CTR value to occupancy metric (bytes) and
Memory Bandwidth Monitoring (MBM) metrics.

ECX Maximum range (zero-based) of RMID of this resource type.

EDX Bit 00: Supports L3 occupancy monitoring if 1.
Bit 01: Supports L3 Total Bandwidth monitoring if 1.
Bit 02: Supports L3 Local Bandwidth monitoring if 1.
Bits 31-03: Reserved.

Intel® Resource Director Technology Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = 0)

10H NOTES:
Leaf 10H output depends on the initial value in ECX.
Sub-leaf index 0 reports valid resource identification (ResID) starting at bit position 1 of EBX.

EAX Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-17

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: Reserved.
Bit 01: Supports L3 Cache Allocation Technology if 1.
Bit 02: Supports L2 Cache Allocation Technology if 1.
Bit 03: Supports Memory Bandwidth Allocation if 1.
Bit 04: Reserved.
Bit 05: Supports Cache Bandwidth Allocation if 1.
Bits 31-06: Reserved.

ECX Reserved.

EDX Reserved.

L3 Cache Intel® RDT Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID = 1)

10H NOTE:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value
to get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bit 00: Reserved.
Bit 01: If 1, indicates L3 CAT for non-CPU agents is supported.
Bit 02: If 1, indicates L3 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the vari-
ous IA32_L3_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

L2 Cache Intel® RDT Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID = 2)

10H NOTE:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 04-00: Length of the capacity bit mask for the corresponding ResID. Add one to the return value
to get the result.
Bits 31-05: Reserved.

EBX Bits 31-00: Bit-granular map of isolation/contention of allocation units.

ECX Bits 01-00: Reserved.
Bit 02: CDP. If 1, indicates L2 Code and Data Prioritization Technology is supported.
Bit 03: If 1, indicates non-contiguous capacity bitmask is supported. The bits that are set in the vari-
ous IA32_L2_MASK_n registers do not have to be contiguous.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

Memory Bandwidth Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID = 3)

10H NOTE:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 11-00: Reports the maximum MBA throttling value supported for the corresponding ResID. Add
one to the return value to get the result.
Bits 31-12: Reserved.

EBX Bits 31-00: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-18

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bit 00: Per-thread MBA controls are supported.
Bit 01: Reserved.
Bit 02: Reports whether the response of the delay values is linear.
Bits 31-03: Reserved.

EDX Bits 15-00: Highest COS number supported for this ResID.
Bits 31-16: Reserved.

Cache Bandwidth Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = ResID = 5)

10H NOTE:
Leaf 10H output depends on the initial value in ECX.

EAX Bits 07-00: Reports the maximum core throttling level supported for the corresponding ResID. Add
one to the return value to get the number of throttling levels supported.
Bits 11-08: If 1, indicates the logical processor scope of the IA32_QoS_Core_BW_Thrtl_n MSRs.
Other values are reserved.
Bits 31-12: Reserved.

EBX Bits 31-00: Reserved.

ECX Bits 02-00: Reserved.
Bit 03: If 1, the response of the bandwidth control is approximately linear. If 0, the response of the
bandwidth control is non-linear.
Bits 31-04: Reserved.

EDX Bits 15-00: Highest Class of Service (COS) number supported for this ResID.
Bits 31-16: Reserved.

Intel® Software Guard Extensions Capability Enumeration Leaf, Sub-leaf 0 (Initial EAX Value = 12H, ECX = 0)

12H NOTE:
Leaf 12H sub-leaf 0 (ECX = 0) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 00: SGX1. If 1, indicates Intel SGX supports the collection of SGX1 leaf functions.
Bit 01: SGX2. If 1, indicates Intel SGX supports the collection of SGX2 leaf functions.
Bits 04-02: Reserved.
Bit 05: If 1, indicates Intel SGX supports ENCLV instruction leaves EINCVIRTCHILD, EDECVIRTCHILD,
and ESETCONTEXT.
Bit 06: If 1, indicates Intel SGX supports ENCLS instruction leaves ETRACKC, ERDINFO, ELDBC, and
ELDUC.
Bit 07: If 1, indicates Intel SGX supports ENCLU instruction leaf EVERIFYREPORT2.
Bits 09-08: Reserved.
Bit 10: If 1, indicates Intel SGX supports ENCLS instruction leaf EUPDATESVN.
Bit 11: If 1, indicates Intel SGX supports ENCLU instruction leaf EDECCSSA.
Bits 31-12: Reserved.

EBX Bits 31-00: MISCSELECT. Bit vector of supported extended Intel SGX features.

ECX Bits 31-00: Reserved.

EDX Bits 07-00: MaxEnclaveSize_Not64. The maximum supported enclave size in non-64-bit mode is
2^(EDX[7:0]).
Bits 15-08: MaxEnclaveSize_64. The maximum supported enclave size in 64-bit mode is
2^(EDX[15:8]).
Bits 31-16: Reserved.

Intel® SGX Attributes Enumeration Leaf, Sub-leaf 1 (Initial EAX Value = 12H, ECX = 1)

12H NOTE:
Leaf 12H sub-leaf 1 (ECX = 1) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.

EAX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[31:0] that software can set with ECREATE.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-19

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[63:32] that software can set with ECREATE.

ECX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[95:64] that software can set with ECREATE.

EDX Bit 31-00: Reports the valid bits of SECS.ATTRIBUTES[127:96] that software can set with ECREATE.

Intel® SGX EPC Enumeration Leaf, Sub-leaves (Initial EAX Value = 12H, ECX = 2 or higher)

12H NOTES:
Leaf 12H sub-leaf 2 or higher (ECX >= 2) is supported if CPUID.(EAX=07H, ECX=0H):EBX[SGX] = 1.
For sub-leaves (ECX = 2 or higher), definition of EDX,ECX,EBX,EAX[31:4] depends on the sub-leaf
type listed below.

EAX Bit 03-00: Sub-leaf Type.
0000b: Indicates this sub-leaf is invalid.
0001b: This sub-leaf enumerates an EPC section. EBX:EAX and EDX:ECX provide information on
the Enclave Page Cache (EPC) section.
All other type encodings are reserved.

Type 0000b. This sub-leaf is invalid.

EDX:ECX:EBX:EAX return 0.

Type 0001b. This sub-leaf enumerates an EPC sections with EDX:ECX, EBX:EAX defined as follows:

EAX[11:04]: Reserved (enumerate 0).
EAX[31:12]: Bits 31:12 of the physical address of the base of the EPC section.

EBX[19:00]: Bits 51:32 of the physical address of the base of the EPC section.
EBX[31:20]: Reserved.

ECX[03:00]: EPC section property encoding defined as follows:
If ECX[3:0] = 0000b, then all bits of the EDX:ECX pair are enumerated as 0.
If ECX[3:0] = 0001b, then this section has confidentiality, integrity, and replay protection.
If ECX[3:0] = 0010b, then this section has confidentiality protection only.
If ECX[3:0] = 0011b, then this section has confidentiality and integrity protection.
All other encodings are reserved.

ECX[11:04]: Reserved (enumerate 0).
ECX[31:12]: Bits 31:12 of the size of the corresponding EPC section within the Processor
Reserved Memory.

EDX[19:00]: Bits 51:32 of the size of the corresponding EPC section within the Processor
Reserved Memory.
EDX[31:20]: Reserved.

Intel® Processor Trace Enumeration Main Leaf (Initial EAX Value = 14H, ECX = 0)

14H NOTE:
Leaf 14H main leaf (ECX = 0).

EAX Bits 31-00: Reports the maximum sub-leaf supported in leaf 14H.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-20

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bit 00: If 1, indicates that IA32_RTIT_CTL.CR3Filter can be set to 1, and that IA32_RTIT_CR3_MATCH
MSR can be accessed.
Bits 01: If 1, indicates support of Configurable PSB and Cycle-Accurate Mode.
Bits 02: If 1, indicates support of IP Filtering, TraceStop filtering, and preservation of Intel PT MSRs
across warm reset.
Bits 03: If 1, indicates support of MTC timing packet and suppression of COFI-based packets.
Bit 04: If 1, indicates support of PTWRITE. Writes can set IA32_RTIT_CTL[12] (PTWEn) and IA32_R-
TIT_CTL[5] (FUPonPTW), and PTWRITE can generate packets.
Bit 05: If 1, indicates support of Power Event Trace. Writes can set IA32_RTIT_CTL[4] (PwrEvtEn),
enabling Power Event Trace packet generation.
Bit 06: If 1, indicates support for PSB and PMI preservation. Writes can set IA32_RTIT_CTL[56]
(InjectPsbPmiOnEnable), enabling the processor to set IA32_RTIT_STATUS[7] (PendTopaPMI) and/or
IA32_RTIT_STATUS[6] (PendPSB) in order to preserve ToPA PMIs and/or PSBs otherwise lost due to
Intel PT disable. Writes can also set PendToPAPMI and PendPSB.
Bit 07: If 1, writes can set IA32_RTIT_CTL[31] (EventEn), enabling Event Trace packet generation.
Bit 08: If 1, writes can set IA32_RTIT_CTL[55] (DisTNT), disabling TNT packet generation.
Bit 09: If 1, Processor Trace Trigger Tracing (PTTT) is supported.
Bits 31-10: Reserved.

ECX Bit 00: If 1, Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1, hence utilizing the ToPA output
scheme; IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be accessed.
Bit 01: If 1, ToPA tables can hold any number of output entries, up to the maximum allowed by the
MaskOrTableOffset field of IA32_RTIT_OUTPUT_MASK_PTRS.
Bit 02: If 1, indicates support of Single-Range Output scheme.
Bit 03: If 1, indicates support of output to Trace Transport subsystem.
Bits 30-04: Reserved.
Bit 31: If 1, generated packets which contain IP payloads have LIP values, which include the CS base
component.

EDX Bits 31-00: Reserved.

Intel® Processor Trace Enumeration Sub-leaf (Initial EAX Value = 14H, ECX = 1)

14H EAX Bits 02-00: Number of configurable Address Ranges for filtering.
Bits 07-03: Reserved.
Bits 10-8: Number of IA32_RTIT_TRIGGERx_CFG MSRs. The number of triggers supported is 4x this
value.
Bits 15-11: Reserved.
Bits 31-16: Bitmap of supported MTC period encodings.

EBX Bits 15-00: Bitmap of supported Cycle Threshold value encodings.
Bits 31-16: Bitmap of supported Configurable PSB frequency encodings.

ECX Bit 00: If 1, Trigger Action Attribution is supported.
Bit 01: If 1, the trigger actions TRACE_PAUSE and TRACE_RESUME are supported.
Bits 14-02: Reserved.
Bit 15: If 1, trigger input DR match is supported.
Bits 31-16: Reserved.

EDX Bits 31-00: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-21

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Time Stamp Counter and Core Crystal Clock Information Leaf (Initial EAX Value = 15H)

15H NOTES:
If EBX[31:0] is 0, the TSC and ”core crystal clock” ratio is not enumerated.
EBX[31:0]/EAX[31:0] indicates the ratio of the TSC frequency and the core crystal clock fre-
quency.
If ECX is 0, the core crystal clock frequency is not enumerated.
“TSC frequency” = “core crystal clock frequency” * EBX/EAX.

The core crystal clock may differ from the reference clock, bus clock, or core clock frequencies.

EAX Bits 31-00: An unsigned integer which is the denominator of the TSC/”core crystal clock” ratio.

EBX Bits 31-00: An unsigned integer which is the numerator of the TSC/”core crystal clock” ratio.

ECX Bits 31-00: An unsigned integer which is the nominal frequency of the core crystal clock in Hz.

EDX Bits 31-00: Reserved = 0.

Processor Frequency Information Leaf (Initial EAX Value = 16H)

16H EAX Bits 15-00: Processor Base Frequency (in MHz).
Bits 31-16: Reserved =0.

EBX Bits 15-00: Maximum Frequency (in MHz).
Bits 31-16: Reserved = 0.

ECX Bits 15-00: Bus (Reference) Frequency (in MHz).
Bits 31-16: Reserved = 0.

EDX Reserved.

NOTES:
Data is returned from this interface in accordance with the processor's specification and does not
reflect actual values. Suitable use of this data includes the display of processor information in like
manner to the processor brand string and for determining the appropriate range to use when dis-
playing processor information e.g. frequency history graphs. The returned information should not
be used for any other purpose as the returned information does not accurately correlate to infor-
mation / counters returned by other processor interfaces.

While a processor may support the Processor Frequency Information leaf, fields that return a
value of zero are not supported.

System-On-Chip Vendor Attribute Enumeration Main Leaf (Initial EAX Value = 17H, ECX = 0)

17H NOTES:
Leaf 17H main leaf (ECX = 0).
Leaf 17H output depends on the initial value in ECX.
Leaf 17H sub-leaves 1 through 3 reports SOC Vendor Brand String.
Leaf 17H is valid if MaxSOCID_Index >= 3.
Leaf 17H sub-leaves 4 and above are reserved.

EAX Bits 31-00: MaxSOCID_Index. Reports the maximum input value of supported sub-leaf in leaf 17H.

EBX Bits 15-00: SOC Vendor ID.
Bit 16: IsVendorScheme. If 1, the SOC Vendor ID field is assigned via an industry standard
enumeration scheme. Otherwise, the SOC Vendor ID field is assigned by Intel.
Bits 31-17: Reserved = 0.

ECX Bits 31-00: Project ID. A unique number an SOC vendor assigns to its SOC projects.

EDX Bits 31-00: Stepping ID. A unique number within an SOC project that an SOC vendor assigns.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-22

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
System-On-Chip Vendor Attribute Enumeration Sub-leaf (Initial EAX Value = 17H, ECX = 1..3)

17H EAX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EBX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

ECX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

EDX Bit 31-00: SOC Vendor Brand String. UTF-8 encoded string.

NOTES:
Leaf 17H output depends on the initial value in ECX.
SOC Vendor Brand String is a UTF-8 encoded string padded with trailing bytes of 00H.
The complete SOC Vendor Brand String is constructed by concatenating in ascending order of
EAX:EBX:ECX:EDX and from the sub-leaf 1 fragment towards sub-leaf 3.

System-On-Chip Vendor Attribute Enumeration Sub-leaves (Initial EAX Value = 17H, ECX > MaxSOCID_Index)

17H NOTE:
Leaf 17H output depends on the initial value in ECX.

EAX Bits 31-00: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Deterministic Address Translation Parameters Main Leaf (Initial EAX Value = 18H, ECX = 0)

18H NOTES:
Each sub-leaf enumerates a different address translations structure.
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0]
returns 0. Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf
may be in a higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or
lower-level structure.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction
fetches. Others will require separate entries (e.g., one loaded on data read/write and another
loaded on an instruction fetch). See the Intel® 64 and IA-32 Architectures Optimization Reference
Manual for details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31-00: Reports the maximum input value of supported sub-leaf in leaf 18H.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-23

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EDX Bits 04-00: Translation cache type field.
00000b: Null (indicates this sub-leaf is not valid).
00001b: Data TLB.
00010b: Instruction TLB.
00011b: Unified TLB.
00100b: Load Only TLB. Hit on loads; fills on both loads and stores.
00101b: Store Only TLB. Hit on stores; fill on stores.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache.**
Bits 31-26: Reserved.

Deterministic Address Translation Parameters Sub-leaf (Initial EAX Value = 18H, ECX ≥ 1)

18H NOTES:
If ECX contains an invalid sub-leaf index, EAX/EBX/ECX/EDX return 0. Sub-leaf index n is invalid if n
exceeds the value that sub-leaf 0 returns in EAX. A sub-leaf index is also invalid if EDX[4:0]
returns 0. Valid sub-leaves do not need to be contiguous or in any particular order. A valid sub-leaf
may be in a higher input ECX value than an invalid sub-leaf or than a valid sub-leaf of a higher or
lower-level structure.
* Some unified TLBs will allow a single TLB entry to satisfy data read/write and instruction
fetches. Others will require separate entries (e.g., one loaded on data read/write and another
loaded on an instruction fetch). See the Intel® 64 and IA-32 Architectures Optimization Reference
Manual for details of a particular product.
** Add one to the return value to get the result.

EAX Bits 31-00: Reserved.

EBX Bit 00: 4K page size entries supported by this structure.
Bit 01: 2MB page size entries supported by this structure.
Bit 02: 4MB page size entries supported by this structure.
Bit 03: 1 GB page size entries supported by this structure.
Bits 07-04: Reserved.
Bits 10-08: Partitioning (0: Soft partitioning between the logical processors sharing this structure).
Bits 15-11: Reserved.
Bits 31-16: W = Ways of associativity.

ECX Bits 31-00: S = Number of Sets.

EDX Bits 04-00: Translation cache type field.
0000b: Null (indicates this sub-leaf is not valid).
0001b: Data TLB.
0010b: Instruction TLB.
0011b: Unified TLB.
All other encodings are reserved.

Bits 07-05: Translation cache level (starts at 1).
Bit 08: Fully associative structure.
Bits 13-09: Reserved.
Bits 25-14: Maximum number of addressable IDs for logical processors sharing this translation
cache.**
Bits 31-26: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-24

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Key Locker Leaf (Initial EAX Value = 19H)

19H EAX Bit 00: Key Locker restriction of CPL0-only supported.
Bit 01: Key Locker restriction of no-encrypt supported.
Bit 02: Key Locker restriction of no-decrypt supported.
Bits 31-03: Reserved.

EBX Bit 00: AESKLE. If 1, the AES Key Locker instructions are fully enabled.
Bit 01: Reserved.
Bit 02: If 1, the AES wide Key Locker instructions are supported.
Bit 03: Reserved.
Bit 04: If 1, the platform supports the Key Locker MSRs and backing up the internal wrapping key.
Bits 31-05: Reserved.

ECX Bit 00: If 1, the NoBackup parameter to LOADIWKEY is supported.
Bit 01: If 1, KeySource encoding of 1 (randomization of the internal wrapping key) is supported.
Bits 31- 02: Reserved.

EDX Reserved.

Native Model ID Enumeration Leaf (Initial EAX Value = 1AH, ECX = 0)

1AH NOTE:
This leaf exists on all hybrid parts, however this leaf is not only available on hybrid parts. The fol-
lowing algorithm is used for detection of this leaf:
If CPUID.0.MAXLEAF ≥ 1AH and CPUID.1A.EAX ≠ 0, then the leaf exists.

EAX Enumerates the native model ID and core type.*
Bits 31-24: Core type

10H: Reserved.
20H: Intel Atom®.
30H: Reserved.
40H: Intel® Core™.

Bits 23-0: Native model ID of the core. The core-type and native model ID can be used to uniquely
identify the microarchitecture of the core. This native model ID is not unique across core types, and
not related to the model ID reported in CPUID leaf 01H, and does not identify the SOC.

NOTE:
* The core type may only be used as an identification of the microarchitecture for this logical proces-

sor and its numeric value has no significance, neither large nor small. This field neither implies nor
expresses any other attribute to this logical processor and software should not assume any.

EBX Reserved.

ECX Reserved.

EDX Reserved.

PCONFIG Information Sub-leaf (Initial EAX Value = 1BH, ECX ≥ 0)

1BH For details on this sub-leaf, see “INPUT EAX = 1BH: Returns PCONFIG Information” on page 1-45.

NOTE:
Leaf 1BH is supported if CPUID.(EAX=07H, ECX=0H):EDX[18] = 1.

Last Branch Records Information Leaf (Initial EAX Value = 1CH)

1CH NOTES:
This leaf pertains to the architectural feature.
For leaf 01CH, CPUID will ignore the ECX value.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-25

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX Bits 07 - 00: Supported LBR Depth Values. For each bit n set in this field, the
IA32_LBR_DEPTH.DEPTH value 8*(n+1) is supported.
Bits 29 - 08: Reserved.
Bit 30: Deep C-state Reset. If set, indicates that LBRs may be cleared on an MWAIT that requests a
C-state numerically greater than C1.
Bit 31: IP Values Contain LIP. If set, LBR IP values contain LIP. If clear, IP values contain Effective IP.

EBX Bit 00: CPL Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[2:1] to a non-
zero value.
Bit 01: Branch Filtering Supported. If set, the processor supports setting IA32_LBR_CTL[22:16] to a
non-zero value.
Bit 02: Call-stack Mode Supported. If set, the processor supports setting IA32_LBR_CTL[3] to 1.
Bits 31-03: Reserved.

ECX Bit 00: Mispredict Bit Supported. IA32_LBR_x_INFO[63] holds indication of branch misprediction
(MISPRED).
Bit 01: Timed LBRs Supported. IA32_LBR_x_INFO[15:0] holds CPU cycles since last LBR entry
(CYC_CNT), and IA32_LBR_x_INFO[60] holds an indication of whether the value held there is valid
(CYC_CNT_VALID).
Bit 02: Branch Type Field Supported. IA32_LBR_INFO_x[59:56] holds indication of the recorded
operation's branch type (BR_TYPE).
Bits 15-03: Reserved.
Bits 19-16: Event Logging Supported bitmap.
Bits 31-20: Reserved.

EDX Bits 31 - 00: Reserved.

Tile Information Main Leaf (Initial EAX Value = 1DH, ECX = 0)

1DH NOTES:
For sub-leaves of 1DH, they are indexed by the palette id.
Leaf 1DH sub-leaves 2 and above are reserved.

EAX Bits 31-00: max_palette. Highest numbered palette sub-leaf. Value = 1.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

Tile Palette 1 Sub-leaf (Initial EAX Value = 1DH, ECX = 1)

1DH EAX Bits 15-00: Palette 1 total_tile_bytes. Value = 8192.
Bits 31-16: Palette 1 bytes_per_tile. Value = 1024.

EBX Bits 15-00: Palette 1 bytes_per_row. Value = 64.
Bits 31-16: Palette 1 max_names (number of tile registers). Value = 8.

ECX Bits 15-00: Palette 1 max_rows. Value = 16.
Bits 31-16: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

TMUL Information Main Leaf (Initial EAX Value = 1EH, ECX = 0)

1EH NOTE:
Leaf 1EH sub-leaf 2 and above are reserved.

EAX Bits 31-00: Reserved = 0.

EBX Bits 07-00: tmul_maxk (rows or columns). Value = 16.
Bits 23-08: tmul_maxn (column bytes). Value = 64.
Bits 31-24: Reserved = 0.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-26

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

TMUL Information Sub-leaf (Initial EAX Value = 1EH, ECX =1)

1EH NOTE:
Leaf 1EH sub-leaf 2 and above are reserved.

EAX Bit 00: AMX-INT8. If 1, the processor supports tile computational operations on 8-bit integers.
Bit 01: AMX-BF16. If 1, the processor supports tile computational operations on bfloat16 numbers.
Bit 02: AMX-COMPLEX. If 1, supports the AMX-COMPLEX instructions.
Bit 03: AMX-FP16. If 1, the processor supports tile computational operations on FP16 numbers.
Bit 04: AMX-FP8. If 1, supports Intel AMX computations for the FP8 data type.
Bit 05: AMX-TRANSPOSE. If 1, supports the AMX-TRANSPOSE. instructions.
Bit 06: AMX-TF32 (FP19). If 1, supports the AMX-TF32 (FP19) instructions.
Bit 07: AMX-AVX512. If 1, supports the AMX-AVX512 instructions.
Bit 08: AMX-MOVRS. If 1, supports the AMX-MOVRS instructions.
Bits 31-09: Reserved = 0.

EBX Bits 31-00: Reserved = 0.

ECX Bits 31-00: Reserved = 0.

EDX Bits 31-00: Reserved = 0.

V2 Extended Topology Enumeration Leaf (Initial EAX Value = 1FH, ECX ≥ 0)

1FH NOTES:
CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends using leaf 1FH when avail-
able rather than leaf 0BH and ensuring that any leaf 0BH algorithms are updated to support leaf
1FH.
The sub-leaves of CPUID leaf 1FH describe an ordered hierarchy of logical processors starting from
the smallest-scoped domain of a Logical Processor (sub-leaf index 0) to the Core domain (sub-leaf
index 1) to the largest-scoped domain (the last valid sub-leaf index) that is implicitly subordinate
to the unenumerated highest-scoped domain of the processor package (socket).
The details of each valid domain is enumerated by a corresponding sub-leaf. Details for a domain
include its type and how all instances of that domain determine the number of logical processors
and x2 APIC ID partitioning at the next higher-scoped domain. The ordering of domains within the
hierarchy is fixed architecturally as shown below. For a given processor, not all domains may be
relevant or enumerated; however, the logical processor and core domains are always enumerated.
As an example, a processor may report an ordered hierarchy consisting only of “Logical Processor,”
“Core,” and “Die.”
For two valid sub-leaves N and N+1, sub-leaf N+1 represents the next immediate higher-scoped
domain with respect to the domain of sub-leaf N for the given processor.
If sub-leaf index “N” returns an invalid domain type in ECX[15:08] (00H), then all sub-leaves with
an index greater than “N” shall also return an invalid domain type. A sub-leaf returning an invalid
domain always returns 0 in EAX and EBX.

EAX Bits 04-00: The number of bits that the x2APIC ID must be shifted to the right to address instances
of the next higher-scoped domain. When logical processor is not supported by the processor, the
value of this field at the Logical Processor domain sub-leaf may be returned as either 0 (no allocated
bits in the x2APIC ID) or 1 (one allocated bit in the x2APIC ID); software should plan accordingly.
Bits 31-05: Reserved.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-27

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EBX Bits 15-00: The number of logical processors across all instances of this domain within the next
higher-scoped domain relative to this current logical processor. (For example, in a processor
socket/package symmetric topology comprising “M” dies of “N” cores each, where each core has “L”
logical processors, the “die” domain sub-leaf value of this field would be M*N*L. In an asymmetric
topology this would be the summation of the value across the lower domain level instances to
create each upper domain level instance.) This number reflects configuration as shipped by Intel.
Note, software must not use this field to enumerate processor topology*.
Bits 31-16: Reserved.

ECX Bits 07-00: The input ECX sub-leaf index.
Bits 15-08: Domain Type. This field provides an identification value which indicates the domain as
shown below. Although domains are ordered, as also shown below, their assigned identification val-
ues are not and software should not depend on it. (For example, if a new domain between core and
module is specified, it will have an identification value higher than 5.)

Hierarchy Domain Domain Type Identification Value
Lowest Logical Processor 1
... Core 2
... Module 3
... Tile 4
... Die 5
... DieGrp 6
Highest Package/Socket (implied)

(Note that enumeration values of 0 and 7-255 are reserved.)

Bits 31-16: Reserved.

EDX Bits 31-00: x2APIC ID of the current logical processor. It is always valid and does not vary with the
sub-leaf index in ECX.

NOTES:
* Software must not use the value of EBX[15:0] to enumerate processor topology of the system.

The value is only intended for display and diagnostic purposes. The actual number of logical pro-
cessors available to BIOS/OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.

Processor History Reset Sub-leaf (Initial EAX Value = 20H, ECX = 0)

20H EAX Reports the maximum number of sub-leaves that are supported in leaf 20H.

EBX Indicates which bits may be set in the IA32_HRESET_ENABLE MSR to enable enhanced hardware
feedback interface history.
Bit 00: Indicates support for both HRESET’s EAX[0] parameter, and IA32_HRESET_ENABLE[0] set by
the OS to enable reset of EHFI history.
Bits 31-01: Reserved for other history reset capabilities.

ECX Reserved.

EDX Reserved.

Architectural Performance Monitoring Extended Main Leaf (Initial EAX Value = 23H, ECX = 0)

23H NOTE:
Output depends on ECX input value.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-28

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX Bit 00: If 1, CPUID Leaf 23H, Subleaf 00H exists.
Bit 01: If 1, CPUID Leaf 23H, Subleaf 01H exists.
Bit 02: If 1, CPUID Leaf 23H, Subleaf 02H exists.
Bit 03: If 1, CPUID Leaf 23H, Subleaf 03H exists.
Bit 04: If 1, CPUID Leaf 23H, Subleaf 04H exists.
Bit 05: If 1, CPUID Leaf 23H, Subleaf 05H exists. The processor supports Architectural PEBS. The
IA32_PEBS_BASE and IA32_PEBS_INDEX MSRs exist.
Bits 31-06: Reserved.

EBX Bit 00: UnitMask2 Supported. If set, the processor supports the UnitMask2 field in the
IA32_PERFEVTSELx MSRs.
Bit 01: EQ-bit Supported. If set, the processor supports the equal flag in the IA32_PERFEVTSELx
MSRs.
Bits 31-02: Reserved.

ECX Bits 07-00: Number of slots per cycle. This number can be multiplied by the number of cycles (from
CPU_CLK_UNHALTED.THREAD / CPU_CLK_UNHALTED.CORE or IA32_FIXED_CTR1) to determine the
total number of slots.

Bits 31-08: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 1)

23H EAX Bits 31-00: General-purpose counters bitmap. For each bit n set in this field, the processor supports
general-purpose performance monitoring counter n.

EBX Bits 31-00: Fixed-function counters bitmap. For each bit m set in this field, the processor supports
fixed-function performance monitoring counter m.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 2)

23H EAX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general-purpose counters that can be reloaded.
For each bit n set in this field, the processor supports ACR for general-purpose performance
monitoring counter n.

EBX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed-function counters that can be reloaded. For
each bit m set in this field, the processor supports ACR for fixed-function performance monitoring
counter m.

ECX Bits 31-00: Bitmap of Auto Counter Reload (ACR) general-purpose counters that can cause reloads.
For each bit y set in this field, the processor allows general-purpose performance monitoring counter
y to reload all existing general-purpose performance monitoring counters capable of being reloaded.

EDX Bits 31-00: Bitmap of Auto Counter Reload (ACR) fixed-function counters that can cause reloads. For
each bit x set in this field, the processor allows fixed-function performance monitoring counter x to
reload all existing fixed-function performance monitoring counters capable of being reloaded.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 3)

23H NOTE:
Architectural Performance Monitoring Events Bitmap. For each bit n set in this field, the processor
supports Architectural Performance Monitoring Event of index n.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-29

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX Bit 00: Core cycles.
Bit 01: Instructions retired.
Bit 02: Reference cycles.
Bit 03: Last level cache references.
Bit 04: Last level cache misses.
Bit 05: Branch instructions retired.
Bit 06: Branch mispredicts retired.
Bit 07: Topdown slots.
Bit 08: Topdown backend bound.
Bit 09: Topdown bad speculation.

Bit 10: Topdown frontend bound.
Bit 11: Topdown retiring.
Bit 12: LBR inserts.
Bits 31-13: Reserved.

EBX Bits 31-00: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 4)

23H EAX Bits 31-00: Reserved.

EBX Bits 02-00: Reserved.
Bit 03: ALLOW_IN_RECORD. If 1, indicates that the ALLOW_IN_RECORD bit is available in the
IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs.
Bits 07-04: CNTR. Counters group sub-groups general-purpose counters, fixed-function counters,
and performance metrics are available.
Bits 09-08: LBR. LBR group and both bits [41:40] are available.
Bits 15-10: Reserved.
Bits 23-16: XER. XER group bits [50:49] and bits [55:53] are available. See Section 11.4.4, “XSAVE-
Enabled Registers Group,” for XER fields.
Bits 28-24: Reserved.
Bit 29: GPR. If 1, the GPR group is available.
Bit 30: AUX. If 1, the AUX group is available.
Bit 31: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Architectural Performance Monitoring Extended Sub-Leaf (Initial EAX Value = 23H, ECX = 5)

23H EAX Bits 31-00: General-purpose counters support Architectural PEBS. Bit vector of general-purpose
counters for which the Architectural PEBS mechanism is available (bit n == GP counter #n). If EAX[n]
== 1, then the IA32_PMC_GPn_CFG_C MSR is available, and PEBS is supported on that counter; the
PEBS_EN[63] field can be set; and the RELOAD[31:0] field can be set. Note that
CPUID.(EAX=23H, ECX=04H):EBX governs which adaptive group bits can be set.

EBX Bits 31-00: General-purpose counters for which PEBS supports PDIST.

ECX Bits 31-00: Fixed-function counters support Architectural PEBS. Bit vector of fixed-function
counters for which the Architectural PEBS mechanism is available. If ECX[x] == 1, then the
IA32_PMC_FXm_CFG_C MSR is available, and PEBS is supported; the PEBS_EN[63] field can be set;
and the RELOAD[31:0] field can be set. Note that CPUID.(EAX=23H, ECX=04H):EBX governs which
adaptive group bits can be set.

EDX Bits 31-00: Fixed-function counters for which PEBS supports PDIST.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-30

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Converged Vector ISA Main Leaf (Initial EAX Value = 24H, ECX = 0)

24H NOTE:
Output depends on ECX input value.

EAX Bits 31-00: Reports the maximum number sub-leaves that are supported in leaf 24H.

EBX Bits 07-00: Reports the Intel AVX10 Converged Vector ISA version.

Bits 15-08: Reserved.

Bit 16: If 1, indicates that 128-bit vector support is present.

Bit 17: If 1, indicates that 256-bit vector support is present.

Bit 18: If 1, indicates that 512-bit vector support is present.

Bits 31-19: Reserved.

ECX Bits 31-00: Reserved.

EDX Bits 31-00: Reserved.

Unimplemented CPUID Leaf Functions

21H Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is 21H. If the value returned by CPUID.0:EAX (the maximum input value for basic
CPUID information) is at least 21H, 0 is returned in the registers EAX, EBX, ECX, and EDX. Otherwise,
the data for the highest basic information leaf is returned.

40000000H
−

4FFFFFFFH

Invalid. No existing or future CPU will return processor identification or feature information if the
initial EAX value is in the range 40000000H to 4FFFFFFFH.

Extended Function CPUID Information

80000000H EAX Maximum Input Value for Extended Function CPUID Information.

EBX Reserved.

ECX Reserved.

EDX Reserved.

80000001H EAX Extended Processor Signature and Feature Bits.

EBX Reserved.

ECX Bit 00: LAHF/SAHF available in 64-bit mode.
Bits 04-01: Reserved.
Bit 05: LZCNT available.
Bits 07-06: Reserved.
Bit 08: PREFETCHW.
Bits 31-09: Reserved.

EDX Bits 10-00: Reserved.
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode).
Bits 19-12: Reserved = 0.
Bit 20: Execute Disable Bit available.
Bits 25-21: Reserved = 0.
Bit 26: 1-GByte pages are available if 1.
Bit 27: RDTSCP and IA32_TSC_AUX are available if 1.
Bits 28: Reserved = 0.
Bit 29: Intel® 64 Architecture available if 1.
Bits 31-30: Reserved = 0.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-31

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000005H EAX
EBX
ECX
EDX

Reserved = 0.
Reserved = 0.
Reserved = 0.
Reserved = 0.

80000006H EAX Reserved = 0.

EBX Reserved = 0.

ECX Bits 07-00: Cache Line size in bytes.
Bits 11-08: Reserved.
Bits 15-12: L2 Associativity field.*
Bits 31-16: Cache size in 1K units.

EDX Reserved = 0.

NOTES:
* L2 associativity field encodings:
00H - Disabled 08H - 16 ways
01H - 1 way (direct mapped)09H - Reserved
02H - 2 ways 0AH - 32 ways
03H - Reserved 0BH - 48 ways
04H - 4 ways 0CH - 64 ways
05H - Reserved 0DH - 96 ways
06H - 8 ways 0EH - 128 ways
07H - See CPUID leaf 04H, sub-leaf 2**0FH - Fully associative

** CPUID leaf 04H provides details of deterministic cache parameters, including the L2 cache in sub-
leaf 2.

80000007H EAX Reserved = 0.

EBX Reserved = 0.

ECX Reserved = 0.

EDX Bits 07-00: Reserved = 0.
Bit 08: Invariant TSC available if 1.
Bits 31-09: Reserved = 0.

80000008H EAX Virtual/Physical Address Size
Bits 07-00: #Physical Address Bits.*
Bits 15-08: #Virtual Address Bits.
Bits 31-16: Reserved = 0.

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-32

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0H: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification
String

When CPUID executes with EAX set to 0H, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
ineIntel” and is expressed:

EBX := 756e6547h (* “Genu”, with G in the low 4 bits of BL *)
EDX := 49656e69h (* “ineI”, with i in the low 4 bits of DL *)
ECX := 6c65746eh (* “ntel”, with n in the low 4 bits of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 0H, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register and is processor specific.

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The signature is returned in the upper DWORD. For details, see Chapter 11 in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 01H: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 01H, version information is returned in EAX (see Figure 1-1). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:
• Model — 1111B
• Family — 0101B
• Processor Type — 00B

See Table 1-4 for available processor type values. Stepping IDs are provided as needed.

EBX Bits 08-00: Reserved = 0.
Bit 09: WBNOINVD is available if 1.
Bits 31-10: Reserved = 0.

ECX Reserved = 0.

EDX Reserved = 0.

NOTES:
* If CPUID.80000008H:EAX[7:0] is supported, the maximum physical address number supported

should come from this field. If TME-MK is enabled, the number of bits that can be used to address
physical memory is CPUID.80000008H:EAX[7:0] - IA32_TME_ACTIVATE[35:32].

Table 1-3. Information Returned by CPUID Instruction (Continued)

Initial EAX
Value

Information Provided about the Processor
Document Number: 319433-055 1-33

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
NOTE
See "Caching Translation Information" in Chapter 4, “Paging,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 20 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier IA-32
processors.

The Extended Family ID needs to be examined only when the Family ID is 0FH. Integrate the fields into a display
using the following rule:

IF Family_ID ≠ 0FH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;

FI;
(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or 0FH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = 0FH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;
(* Show Display_Model as HEX field. *)

INPUT EAX = 01H: Returns Additional Information in EBX

When CPUID executes with EAX set to 01H, additional information is returned to the EBX register:

Figure 1-1. Version Information Returned by CPUID in EAX

Table 1-4. Processor Type Field
Type Encoding

Original OEM Processor 00B

Intel OverDrive® Processor 01B

Dual processor (not applicable to Intel486 processors) 10B

Intel reserved 11B

Processor Type

034781112131415161920272831

EAX

Family (0FH for the Pentium 4 Processor Family)
Model

Extended
Family ID

Extended
Model ID

Family
ID Model Stepping

ID

Extended Family ID (0)
Extended Model ID (0)

Reserved
Document Number: 319433-055 1-34

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
• Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand
strings for IA-32 processors. More information about this field is provided later in this section.

• CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.

• Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 01H: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 01H, feature information is returned in ECX and EDX.
• Figure 1-2 and Table 1-5 show encodings for ECX.
• Figure 1-3 and Table 1-6 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE
Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

Figure 1-2. Feature Information Returned in the ECX Register

CNXT-ID — L1 Context ID

012345678910111213141516171819202122232425262728293031

ECX

TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology

DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

PCLMULQDQ — Carryless Multiplication

Reserved

CMPXCHG16B

SMX — Safer Mode Extensions

xTPR Update Control

SSSE3 — SSSE3 Extensions

PDCM — Perf/Debug Capability MSR

VMX — Virtual Machine Extensions

SSE4_1 — SSE4.1

OSXSAVE

SSE4_2 — SSE4.2

DCA — Direct Cache Access

x2APIC

POPCNT

XSAVE

AVX

AES

FMA — Fused Multiply Add

SSE3 — SSE3 Extensions

PCID — Process-context Identifiers

0

DTES64 — 64-bit DS Area

MOVBE

TSC-Deadline

F16C
RDRAND

SDBG
Document Number: 319433-055 1-35

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Table 1-5. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Intel® Streaming SIMD Extensions 3 (Intel® SSE3). A value of 1 indicates the processor supports this
technology.

1 PCLMULQDQ A value of 1 indicates the processor supports the PCLMULQDQ instruction.

2 DTES64 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the
Debug Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 7, “Safer Mode Extensions Reference.”

7 EST Enhanced Intel SpeedStep® Technology. A value of 1 indicates that the processor supports this
technology.

8 TM2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A
value of 0 indicates the instruction extensions are not present in the processor.

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or
shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 SDBG A value of 1 indicates the processor supports IA32_DEBUG_INTERFACE MSR for silicon debug.

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update
Control

xTPR Update Control. A value of 1 indicates that the processor supports changing
IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability. A value of 1 indicates the processor supports the performance and
debug feature indication MSR IA32_PERF_CAPABILITIES.

16 Reserved Reserved.

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A value of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.

25 AES A value of 1 indicates that the processor supports the AESNI instruction extensions.

26 XSAVE A value of 1 indicates that the processor supports the XSAVE/XRSTOR processor extended states
feature, the XSETBV/XGETBV instructions, and XCR0.

27 OSXSAVE A value of 1 indicates that the OS has set CR4.OSXSAVE[bit 18] to enable XSETBV/XGETBV
instructions to access XCR0 and to support processor extended state management using
XSAVE/XRSTOR.

28 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.
Document Number: 319433-055 1-36

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return 0.

Figure 1-3. Feature Information Returned in the EDX Register

Table 1-6. More on Feature Information Returned in the EDX Register

Bit # Mnemonic Description

0 FPU Floating-point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling
the feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the
TSS with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for controlling the feature, and
optional trapping of accesses to DR4 and DR5.

Table 1-5. Feature Information Returned in the ECX Register (Continued)

Bit # Mnemonic Description

PBE–Pend. Brk. EN.

012345678910111213141516171819202122232425262728293031

EDX

TM–Therm. Monitor
HTT–Multi-threading
SS–Self Snoop
SSE2–SSE2 Extensions
SSE–SSE Extensions
FXSR–FXSAVE/FXRSTOR
MMX–MMX Technology
ACPI–Thermal Monitor and Clock Ctrl
DS–Debug Store
CLFSH–CFLUSH instruction
PSN–Processor Serial Number
PSE-36 – Page Size Extension
PAT–Page Attribute Table
CMOV–Conditional Move/Compare Instruction
MCA–Machine Check Architecture
PGE–PTE Global Bit
MTRR–Memory Type Range Registers
SEP–SYSENTER and SYSEXIT
APIC–APIC on Chip
CX8–CMPXCHG8B Inst.
MCE–Machine Check Exception
PAE–Physical Address Extensions
MSR–RDMSR and WRMSR Support
TSC–Time Stamp Counter
PSE–Page Size Extensions
DE–Debugging Extensions
VME–Virtual-8086 Mode Enhancement
FPU–x87 FPU on Chip

Reserved
Document Number: 319433-055 1-37

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the
feature, the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs,
and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are
supported. Some of the MSRs are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table
entry formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead
of 4 Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is
implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling
the feature. This feature does not define the model-specific implementations of machine-check error
logging, reporting, and processor shutdowns. Machine Check exception handlers may have to depend on
processor version to do model specific processing of the exception, or test for the presence of the Machine
Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding
to memory mapped commands in the physical address range FFFE0000H to FFFE0FFFH (by default - some
processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that
describe what memory types are supported, how many variable MTRRs are supported, and whether fixed
MTRRs are supported.

13 PGE Page Global Bit. The global bit is supported in paging-structure entries that map a page, indicating TLB
entries that are common to different processes and need not be flushed. The CR4.PGE bit controls this
feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is supported. In addition, if x87
FPU is present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are
supported

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory accessed through a linear
address on a 4KB granularity.

17 PSE-36 36-Bit Page Size Extension. 4-MByte pages addressing physical memory beyond 4 GBytes are supported
with 32-bit paging. This feature indicates that upper bits of the physical address of a 4-MByte page are
encoded in bits 20:13 of the page-directory entry. Such physical addresses are limited by MAXPHYADDR
and may be up to 40 bits in size.

18 PSN Processor Serial Number. The processor supports the 96-bit processor identification number feature and
the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved.

Table 1-6. More on Feature Information Returned in the EDX Register (Continued)

Bit # Mnemonic Description
Document Number: 319433-055 1-38

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 02H: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 02H, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:
• The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction

must be executed with an input value of 02H to get a complete description of the processor’s caches and TLBs.
The first member of the family of Pentium 4 processors will return a 01H.

• The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors. Table 1-7 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.

21 DS Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 24, “Introduction to Virtual-Machine Extensions,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3C).

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that
allow processor temperature to be monitored and processor performance to be modulated in predefined
duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save
and restore of the floating-point context. Presence of this bit also indicates that CR4.OSFXSR is available
for an operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory types by performing a snoop
of its own cache structure for transactions issued to the bus.

28 HTT Max APIC IDs reserved field is Valid. A value of 0 for HTT indicates there is only a single logical processor
in the package and software should assume only a single APIC ID is reserved. A value of 1 for HTT indicates
the value in CPUID.1.EBX[23:16] (the Maximum number of addressable IDs for logical processors in this
package) is valid for the package.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved Reserved.

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in
the stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

Table 1-7. Encoding of CPUID Leaf 2 Descriptors
Descriptor

Value Type Cache or TLB Description

00H General Null descriptor, this byte contains no information.

01H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries.

02H TLB Instruction TLB: 4 MByte pages, fully associative, 2 entries.

03H TLB Data TLB: 4 KByte pages, 4-way set associative, 64 entries.

Table 1-6. More on Feature Information Returned in the EDX Register (Continued)

Bit # Mnemonic Description
Document Number: 319433-055 1-39

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
04H TLB Data TLB: 4 MByte pages, 4-way set associative, 8 entries.

05H TLB Data TLB1: 4 MByte pages, 4-way set associative, 32 entries.

06H Cache 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size.

08H Cache 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size.

09H Cache 1st-level instruction cache: 32KBytes, 4-way set associative, 64 byte line size.

0AH Cache 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size.

0BH TLB Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries.

0CH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size.

0DH Cache 1st-level data cache: 16 KBytes, 4-way set associative, 64 byte line size.

0EH Cache 1st-level data cache: 24 KBytes, 6-way set associative, 64 byte line size.

1DH Cache 2nd-level cache: 128 KBytes, 2-way set associative, 64 byte line size.

21H Cache 2nd-level cache: 256 KBytes, 8-way set associative, 64 byte line size.

22H Cache 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector.

23H Cache 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

24H Cache 2nd-level cache: 1 MBytes, 16-way set associative, 64 byte line size.

25H Cache 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

29H Cache 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector.

2CH Cache 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size.

30H Cache 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size.

40H Cache No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache.

41H Cache 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size.

42H Cache 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size.

43H Cache 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size.

44H Cache 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size.

45H Cache 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size.

46H Cache 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size.

47H Cache 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size.

48H Cache 2nd-level cache: 3MByte, 12-way set associative, 64 byte line size.

49H Cache 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family 0FH,
Model 06H);

2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size.

4AH Cache 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size.

4BH Cache 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size.

4CH Cache 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size.

4DH Cache 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size.

4EH Cache 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size.

4FH TLB Instruction TLB: 4 KByte pages, 32 entries.

50H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries.

51H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries.

52H TLB Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries.

55H TLB Instruction TLB: 2-MByte or 4-MByte pages, fully associative, 7 entries.

Table 1-7. Encoding of CPUID Leaf 2 Descriptors (Continued)
Descriptor

Value Type Cache or TLB Description
Document Number: 319433-055 1-40

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
56H TLB Data TLB0: 4 MByte pages, 4-way set associative, 16 entries.

57H TLB Data TLB0: 4 KByte pages, 4-way associative, 16 entries.

59H TLB Data TLB0: 4 KByte pages, fully associative, 16 entries.

5AH TLB Data TLB0: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries.

5BH TLB Data TLB: 4 KByte and 4 MByte pages, 64 entries.

5CH TLB Data TLB: 4 KByte and 4 MByte pages,128 entries.

5DH TLB Data TLB: 4 KByte and 4 MByte pages,256 entries.

60H Cache 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size.

61H TLB Instruction TLB: 4 KByte pages, fully associative, 48 entries.

63H TLB Data TLB: 2 MByte or 4 MByte pages, 4-way set associative, 32 entries and a separate array with 1
GByte pages, 4-way set associative, 4 entries.

64H TLB Data TLB: 4 KByte pages, 4-way set associative, 512 entries.

66H Cache 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size.

67H Cache 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size.

68H Cache 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size.

6AH Cache uTLB: 4 KByte pages, 8-way set associative, 64 entries.

6BH Cache DTLB: 4 KByte pages, 8-way set associative, 256 entries.

6CH Cache DTLB: 2M/4M pages, 8-way set associative, 128 entries.

6DH Cache DTLB: 1 GByte pages, fully associative, 16 entries.

70H Cache Trace cache: 12 K-μop, 8-way set associative.

71H Cache Trace cache: 16 K-μop, 8-way set associative.

72H Cache Trace cache: 32 K-μop, 8-way set associative.

76H TLB Instruction TLB: 2M/4M pages, fully associative, 8 entries.

78H Cache 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size.

79H Cache 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7AH Cache 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7BH Cache 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7CH Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector.

7DH Cache 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size.

7FH Cache 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size.

80H Cache 2nd-level cache: 512 KByte, 8-way set associative, 64-byte line size.

82H Cache 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size.

83H Cache 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size.

84H Cache 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size.

85H Cache 2nd-level cache: 2 MByte, 8-way set associative, 32 byte line size.

86H Cache 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size.

87H Cache 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size.

A0H DTLB DTLB: 4k pages, fully associative, 32 entries.

B0H TLB Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries.

B1H TLB Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries.

B2H TLB Instruction TLB: 4KByte pages, 4-way set associative, 64 entries.

Table 1-7. Encoding of CPUID Leaf 2 Descriptors (Continued)
Descriptor

Value Type Cache or TLB Description
Document Number: 319433-055 1-41

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Example 1-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX 0H
ECX 0H
EDX 00 7A 70 00H

Which means:

B3H TLB Data TLB: 4 KByte pages, 4-way set associative, 128 entries.

B4H TLB Data TLB1: 4 KByte pages, 4-way associative, 256 entries.

B5H TLB Instruction TLB: 4KByte pages, 8-way set associative, 64 entries.

B6H TLB Instruction TLB: 4KByte pages, 8-way set associative, 128 entries.

BAH TLB Data TLB1: 4 KByte pages, 4-way associative, 64 entries.

C0H TLB Data TLB: 4 KByte and 4 MByte pages, 4-way associative, 8 entries.

C1H STLB Shared 2nd-Level TLB: 4 KByte/2MByte pages, 8-way associative, 1024 entries.

C2H DTLB DTLB: 4 KByte/2 MByte pages, 4-way associative, 16 entries.

C3H STLB Shared 2nd-Level TLB: 4 KByte /2 MByte pages, 6-way associative, 1536 entries. Also 1GBbyte pages,
4-way, 16 entries.

C4H DTLB DTLB: 2M/4M Byte pages, 4-way associative, 32 entries.

CAH STLB Shared 2nd-Level TLB: 4 KByte pages, 4-way associative, 512 entries.

D0H Cache 3rd-level cache: 512 KByte, 4-way set associative, 64 byte line size.

D1H Cache 3rd-level cache: 1 MByte, 4-way set associative, 64 byte line size.

D2H Cache 3rd-level cache: 2 MByte, 4-way set associative, 64 byte line size.

D6H Cache 3rd-level cache: 1 MByte, 8-way set associative, 64 byte line size.

D7H Cache 3rd-level cache: 2 MByte, 8-way set associative, 64 byte line size.

D8H Cache 3rd-level cache: 4 MByte, 8-way set associative, 64 byte line size.

DCH Cache 3rd-level cache: 1.5 MByte, 12-way set associative, 64 byte line size.

DDH Cache 3rd-level cache: 3 MByte, 12-way set associative, 64 byte line size.

DEH Cache 3rd-level cache: 6 MByte, 12-way set associative, 64 byte line size.

E2H Cache 3rd-level cache: 2 MByte, 16-way set associative, 64 byte line size.

E3H Cache 3rd-level cache: 4 MByte, 16-way set associative, 64 byte line size.

E4H Cache 3rd-level cache: 8 MByte, 16-way set associative, 64 byte line size.

EAH Cache 3rd-level cache: 12MByte, 24-way set associative, 64 byte line size.

EBH Cache 3rd-level cache: 18MByte, 24-way set associative, 64 byte line size.

ECH Cache 3rd-level cache: 24MByte, 24-way set associative, 64 byte line size.

F0H Prefetch 64-Byte prefetching.

F1H Prefetch 128-Byte prefetching.

FEH General CPUID leaf 2 does not report TLB descriptor information; use CPUID leaf 18H to query TLB and other
address translation parameters.

FFH General CPUID leaf 2 does not report cache descriptor information, use CPUID leaf 4 to query cache parameters.

Table 1-7. Encoding of CPUID Leaf 2 Descriptors (Continued)
Descriptor

Value Type Cache or TLB Description
Document Number: 319433-055 1-42

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
• The least-significant byte (byte 0) of register EAX is set to 01H. This indicates that CPUID needs to be executed
once with an input value of 2 to retrieve complete information about caches and TLBs.

• The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

• Bytes 1, 2, and 3 of register EAX indicate that the processor has:

— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.

— 5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.
• The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
• Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

— 00H - NULL descriptor.

— 70H - Trace cache: 12 K-μop, 8-way set associative.

— 7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.

— 00H - NULL descriptor.

INPUT EAX = 04H: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 04H and ECX contains an index value, the processor returns encoded data
that describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid
index values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 1-3.

The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=04H and ECX=0H and use it as part of the topology enumeration algorithm described in Chapter
9, “Multiple-Processor Management,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

INPUT EAX = 05H: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 05H, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 1-3.

INPUT EAX = 06H: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 06H, the processor returns information about thermal and power manage-
ment features. See Table 1-3.

INPUT EAX = 07H: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 07H and ECX = 0H, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 1-3.
When CPUID executes with EAX set to 07H and ECX = n (n ≥ 1 and less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= 0H).EAX), the processor returns information about extended feature flags. See Table 1-3.
In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf 0, EBX, ECX & EDX all contain extended feature
flags.

INPUT EAX = 09H: Returns Direct Cache Access Information

When CPUID executes with EAX set to 09H, the processor returns information about Direct Cache Access capabili-
ties. See Table 1-3.
Document Number: 319433-055 1-43

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 0AH: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 0AH, the processor returns information about support for architectural
performance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see
Table 1-3) is greater than Pn 0. See Table 1-3.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 18, “Debug, Branch Profile, TSC, and Intel® Resource Director Technology (Intel® RDT)
Features,” in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 0BH: Returns Extended Topology Information

CPUID leaf 1FH is a preferred superset to leaf 0BH. Intel recommends first checking for the existence of Leaf 1FH
before using leaf 0BH.
When CPUID executes with EAX set to 0BH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 0BH by verifying (a) the highest leaf index supported
by CPUID is >= 0BH, and (b) CPUID.0BH:EBX[15:0] reports a non-zero value. See Table 1-3.

INPUT EAX = 0DH: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 0DH and ECX = 0H, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 1-3.

When CPUID executes with EAX set to 0DH and ECX = n (n > 1, and is a valid sub-leaf index), the processor returns
information about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area.
See Table 1-3. Software can use the forward-extendable technique depicted below to query the valid sub-leaves
and obtain size and offset information for each processor extended state save area:

For i = 2 to 62 // sub-leaf 1 is reserved
IF (CPUID.(EAX=0DH, ECX=0):VECTOR[i] = 1) // VECTOR is the 64-bit value of EDX:EAX

Execute CPUID.(EAX=0DH, ECX = i) to examine size and offset for sub-leaf i;
FI;

INPUT EAX = 0FH: Returns Intel Resource Director Technology (Intel RDT) Monitoring Enumeration Information

When CPUID executes with EAX set to 0FH and ECX = 0, the processor returns information about the bit-vector
representation of QoS monitoring resource types that are supported in the processor and maximum range of RMID
values the processor can use to monitor of any supported resource types. Each bit, starting from bit 1, corresponds
to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or ResID) that soft-
ware must use to query QoS monitoring capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 0FH and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation software can use to program IA32_PQR_ASSOC, IA32_QM_EVTSEL MSRs before reading QoS data from the
IA32_QM_CTR MSR.

INPUT EAX = 10H: Returns Intel Resource Director Technology (Intel RDT) Allocation Enumeration Information

When CPUID executes with EAX set to 10H and ECX = 0, the processor returns information about the bit-vector
representation of QoS Enforcement resource types that are supported in the processor. Each bit, starting from bit
1, corresponds to a specific resource type if the bit is set. The bit position corresponds to the sub-leaf index (or
ResID) that software must use to query QoS enforcement capability available for that type. See Table 1-3.

When CPUID executes with EAX set to 10H and ECX = n (n >= 1, and is a valid ResID), the processor returns infor-
mation about available classes of service and range of QoS mask MSRs that software can use to configure each
class of services using capability bit masks in the QoS Mask registers, IA32_resourceType_Mask_n.

INPUT EAX = 12H: Returns Intel SGX Enumeration Information

When CPUID executes with EAX set to 12H and ECX = 0H, the processor returns information about Intel SGX capa-
bilities. See Table 1-3.
Document Number: 319433-055 1-44

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
When CPUID executes with EAX set to 12H and ECX = 1H, the processor returns information about Intel SGX attri-
butes. See Table 1-3.

When CPUID executes with EAX set to 12H and ECX = n (n > 1), the processor returns information about Intel SGX
Enclave Page Cache. See Table 1-3.

INPUT EAX = 14H: Returns Intel Processor Trace Enumeration Information

When CPUID executes with EAX set to 14H and ECX = 0H, the processor returns information about Intel Processor
Trace extensions. See Table 1-3.

When CPUID executes with EAX set to 14H and ECX = n (n > 0 and less than the number of non-zero bits in
CPUID.(EAX=14H, ECX= 0H).EAX), the processor returns information about packet generation in Intel Processor
Trace. See Table 1-3.

INPUT EAX = 15H: Returns Time Stamp Counter and Nominal Core Crystal Clock Information

When CPUID executes with EAX set to 15H and ECX = 0H, the processor returns information about Time Stamp
Counter and Core Crystal Clock. See Table 1-3.

INPUT EAX = 16H: Returns Processor Frequency Information

When CPUID executes with EAX set to 16H, the processor returns information about Processor Frequency Informa-
tion. See Table 1-3.

INPUT EAX = 17H: Returns System-On-Chip Information

When CPUID executes with EAX set to 17H, the processor returns information about the System-On-Chip Vendor
Attribute Enumeration. See Table 1-3.

INPUT EAX = 18H: Returns Deterministic Address Translation Parameters Information

When CPUID executes with EAX set to 18H, the processor returns information about the Deterministic Address
Translation Parameters. See Table 1-3.

INPUT EAX = 19H: Returns Key Locker Information

When CPUID executes with EAX set to 19H, the processor returns information about Key Locker. See Table 1-3.

INPUT EAX = 1AH: Returns Hybrid Information

When CPUID executes with EAX set to 1AH, the processor returns information about hybrid capabilities. See Table
1-3.

INPUT EAX = 1BH: Returns PCONFIG Information

When CPUID executes with EAX set to 1BH, the processor returns information about PCONFIG capabilities. This
information is enumerated in sub-leaves selected by the value of ECX (starting with 0).
Each sub-leaf of CPUID function 1BH enumerates its sub-leaf type in EAX. If a sub-leaf type is 0, the sub-leaf is
invalid and zero is returned in EBX, ECX, and EDX. In this case, all subsequent sub-leaves (selected by larger input
values of ECX) are also invalid.
The only valid sub-leaf type currently defined is 1, indicating that the sub-leaf enumerates target identifiers for the
PCONFIG instruction. Any non-zero value returned in EBX, ECX, or EDX indicates a valid target identifier of the
PCONFIG instruction (any value of zero should be ignored). Currently, TME-MK and TSE are the only defined
targets. TME-MK is indicated by identifier 1, and TSE is indicated by identifier 2. An identifier of 0 indicates an
invalid target. If TME-MK is a supported target, the MKTME_KEY_PROGRAM leaf of PCONFIG is available. If TSE is
a supported target, the TSE_KEY_PROGRAM and the TSE_KEY_PROGRAM_WRAPPED leaves of PCONFIG are avail-
able. See the “PCONFIG-Platform Configuration” instruction in Chapter 4 of the Intel® 64 and IA 32 Architectures
Software Developer's Manual, Volume 2B, for more information.
Document Number: 319433-055 1-45

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
INPUT EAX = 1CH: Returns Last Branch Record Information

When CPUID executes with EAX set to 1CH, the processor returns information about LBRs (the architectural
feature). See Table 1-3.

INPUT EAX = 1DH: Returns Tile Information

When CPUID executes with EAX set to 1DH and ECX = 0H, the processor returns information about tile
architecture. See Table 1-3.

When CPUID executes with EAX set to 1DH and ECX = 1H, the processor returns information about tile palette 1.
See Table 1-3.

INPUT EAX = 1EH: Returns TMUL Information

When CPUID executes with EAX set to 1EH, the processor returns information about TMUL capabilities. See Table
1-3.

INPUT EAX = 1FH: Returns V2 Extended Topology Information

When CPUID executes with EAX set to 1FH, the processor returns information about extended topology enumera-
tion data. Software must detect the presence of CPUID leaf 1FH by verifying (a) the highest leaf index supported
by CPUID is >= 1FH, and (b) CPUID.1FH:EBX[15:0] reports a non-zero value. See Table 1-3.

INPUT EAX = 20H: Returns Processor History Reset Information

When CPUID executes with EAX set to 20H, the processor returns information about processor history reset. See
Table 1-3.

INPUT EAX = 23H: Returns Architectural Performance Monitoring Extended Information

When CPUID executes with EAX set to 23H, the processor returns architectural performance monitoring extended
information. See Table 1-3.

INPUT EAX = 24H: Returns Intel AVX10 Converged Vector ISA Information

When CPUID executes with EAX set to 24H, the processor returns Intel AVX10 converged vector ISA information.
See Table 1-3.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “Identification of Earlier IA-32 Processors” in Chapter 20 of the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 1-4 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and IA-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.
Document Number: 319433-055 1-46

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-
nated.

Table 1-8 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

Figure 1-4. Determination of Support for the Processor Brand String

Table 1-8. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H

EBX = 20202020H

ECX = 20202020H

EDX = 6E492020H

“ ”

“ ”

“ ”

“nI ”

80000003H EAX = 286C6574H

EBX = 50202952H

ECX = 69746E65H

EDX = 52286D75H

“(let”

“P)R”

“itne”

“R(mu”

80000004H EAX = 20342029H

EBX = 20555043H

ECX = 30303531H

EDX = 007A484DH

“ 4)”

“ UPC”

“0051”

“\0zHM”

IF (EAX & 0x80000000)

CPUID

IF (EAX Return Value
 = 0x80000004)

CPUID
Function

Supported

True =
Extended

EAX Return Value =
Max. Extended CPUID

Function Index

Input: EAX=
0x80000000

Processor Brand
String Not
Supported

False

Processor Brand
String Supported

True
Document Number: 319433-055 1-47

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Extracting the Maximum Processor Frequency from Brand Strings

Figure 1-5 provides an algorithm which software can use to extract the maximum processor operating frequency
from the processor brand string.

NOTE
When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.

The Processor Brand Index Method

The brand index method (introduced with Pentium® III Xeon® processors) provides an entry point into a brand
identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 01H, the processor returns a brand index to the low byte in EBX. Software
can then use this index to locate the brand identification string for the processor in the brand identification table.
The first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do
not support the brand identification feature. Starting with processor signature family ID = 0FH, model = 03H,
brand index method is no longer supported. Use brand string method instead.

Table 1-9 shows brand indices that have identification strings associated with them.

Figure 1-5. Algorithm for Extracting Maximum Processor Frequency

IF Substring Matched

"zHM", or
"zHG", or

"zHT"

True

Determine "Multiplier"

Scan "Brand String" in
Reverse Byte Order

Report Error
False

Scan Digits
Until Blank

Match
Substring

Determine "Freq" Reverse Digits
To Decimal Value

Max. Qualified
Frequency =

"Freq" x "Multiplier" "Freq" = X.YZ if
Digits = "ZY.X"

In Reverse Order

If "zHM"

If "zHG"

If "zHT"
Multiplier = 1 x 1012

Multiplier = 1 x 109

Multiplier = 1 x 106
Document Number: 319433-055 1-48

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32 processor earlier than the
Intel486 processor.

Operation

IA32_BIOS_SIGN_ID MSR := Update with installed microcode revision number;

CASE (EAX) OF
EAX = 0:

EAX := Highest basic function input value understood by CPUID;
EBX := Vendor identification string;
EDX := Vendor identification string;
ECX := Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] := Stepping ID;
EAX[7:4] := Model;

Table 1-9. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) III processor1

03H Intel(R) Pentium(R) III Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor

04H Intel(R) Pentium(R) III processor

06H Mobile Intel(R) Pentium(R) III processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP

0CH Intel(R) Xeon(R) processor MP

0EH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor

0FH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H – 0FFH RESERVED

NOTES:
1.Indicates versions of these processors that were introduced after the Pentium III.
Document Number: 319433-055 1-49

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
EAX[11:8] := Family;
EAX[13:12] := Processor type;
EAX[15:14] := Reserved;
EAX[19:16] := Extended Model;
EAX[27:20] := Extended Family;
EAX[31:28] := Reserved;
EBX[7:0] := Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] := CLFLUSH Line Size;
EBX[16:23] := Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] := Initial APIC ID;
ECX := Feature flags; (* See Figure 1-2. *)
EDX := Feature flags; (* See Figure 1-3. *)

BREAK;
EAX = 2H:

EAX := Cache and TLB information;
 EBX := Cache and TLB information;
 ECX := Cache and TLB information;

EDX := Cache and TLB information;
BREAK;
EAX = 3H:

EAX := Reserved;
 EBX := Reserved;
 ECX := ProcessorSerialNumber[31:0];

(* Pentium III processors only, otherwise reserved. *)
EDX := ProcessorSerialNumber[63:32];
(* Pentium III processors only, otherwise reserved. *

BREAK
EAX = 4H:

EAX := Deterministic Cache Parameters Leaf; (* See Table 1-3. *)
EBX := Deterministic Cache Parameters Leaf;

 ECX := Deterministic Cache Parameters Leaf;
EDX := Deterministic Cache Parameters Leaf;

BREAK;
EAX = 5H:

EAX := MONITOR/MWAIT Leaf; (* See Table 1-3. *)
 EBX := MONITOR/MWAIT Leaf;
 ECX := MONITOR/MWAIT Leaf;

EDX := MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:

EAX := Thermal and Power Management Leaf; (* See Table 1-3. *)
 EBX := Thermal and Power Management Leaf;
 ECX := Thermal and Power Management Leaf;

EDX := Thermal and Power Management Leaf;
BREAK;
EAX = 7H:

EAX := Structured Extended Feature Leaf; (* See Table 1-3. *);
 EBX := Structured Extended Feature Leaf;
 ECX := Structured Extended Feature Leaf;

EDX := Structured Extended Feature Leaf;
BREAK;
EAX = 8H:

EAX := Reserved = 0;
 EBX := Reserved = 0;
Document Number: 319433-055 1-50

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX = 9H:

EAX := Direct Cache Access Information Leaf; (* See Table 1-3. *)
 EBX := Direct Cache Access Information Leaf;
 ECX := Direct Cache Access Information Leaf;

EDX := Direct Cache Access Information Leaf;
BREAK;
EAX = AH:

EAX := Architectural Performance Monitoring Leaf; (* See Table 1-3. *)
 EBX := Architectural Performance Monitoring Leaf;
 ECX := Architectural Performance Monitoring Leaf;

EDX := Architectural Performance Monitoring Leaf;
BREAK

EAX = BH:
EAX := Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := Extended Topology Enumeration Leaf;

 ECX := Extended Topology Enumeration Leaf;
EDX := Extended Topology Enumeration Leaf;

BREAK;
EAX = CH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = DH:

EAX := Processor Extended State Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Extended State Enumeration Leaf;
 ECX := Processor Extended State Enumeration Leaf;

EDX := Processor Extended State Enumeration Leaf;
BREAK;
EAX = EH:

EAX := Reserved = 0;
 EBX := Reserved = 0;
 ECX := Reserved = 0;

EDX := Reserved = 0;
BREAK;
EAX = FH:

EAX := Platform Quality of Service Monitoring Enumeration Leaf; (* See Table 1-3. *)
 EBX := Platform Quality of Service Monitoring Enumeration Leaf;
 ECX := Platform Quality of Service Monitoring Enumeration Leaf;

EDX := Platform Quality of Service Monitoring Enumeration Leaf;
BREAK;
EAX = 10H:

EAX := Platform Quality of Service Enforcement Enumeration Leaf; (* See Table 1-3. *)
 EBX := Platform Quality of Service Enforcement Enumeration Leaf;
 ECX := Platform Quality of Service Enforcement Enumeration Leaf;

EDX := Platform Quality of Service Enforcement Enumeration Leaf;
BREAK;
EAX = 12H:

EAX := Intel SGX Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel SGX Enumeration Leaf;
Document Number: 319433-055 1-51

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 ECX := Intel SGX Enumeration Leaf;
EDX := Intel SGX Enumeration Leaf;

BREAK;
EAX = 14H:

EAX := Intel Processor Trace Enumeration Leaf; (* See Table 1-3. *)
 EBX := Intel Processor Trace Enumeration Leaf;
 ECX := Intel Processor Trace Enumeration Leaf;

EDX := Intel Processor Trace Enumeration Leaf;
BREAK;
EAX = 15H:

EAX := Time Stamp Counter and Core Crystal Clock Information Leaf; (* See Table 1-3. *)
 EBX := Time Stamp Counter and Core Crystal Clock Information Leaf;
 ECX := Time Stamp Counter and Core Crystal Clock Information Leaf;

EDX := Time Stamp Counter and Core Crystal Clock Information Leaf;
BREAK;
EAX = 16H:

EAX := Processor Frequency Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor Frequency Information Enumeration Leaf;
 ECX := Processor Frequency Information Enumeration Leaf;

EDX := Processor Frequency Information Enumeration Leaf;
BREAK;
EAX = 17H:

EAX := System-On-Chip Vendor Attribute Enumeration Leaf; (* See Table 1-3. *)
 EBX := System-On-Chip Vendor Attribute Enumeration Leaf;
 ECX := System-On-Chip Vendor Attribute Enumeration Leaf;

EDX := System-On-Chip Vendor Attribute Enumeration Leaf;
BREAK;
EAX = 18H:

EAX := Deterministic Address Translation Parameters Enumeration Leaf; (* See Table 1-3. *)
 EBX := Deterministic Address Translation Parameters Enumeration Leaf;
 ECX :=Deterministic Address Translation Parameters Enumeration Leaf;

EDX := Deterministic Address Translation Parameters Enumeration Leaf;
BREAK;
EAX = 19H:

EAX := Key Locker Enumeration Leaf; (* See Table 1-3. *)
 EBX := Key Locker Enumeration Leaf;
 ECX := Key Locker Enumeration Leaf;

EDX := Key Locker Enumeration Leaf;
BREAK;
EAX = 1AH:

EAX := Hybrid Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := Hybrid Information Enumeration Leaf;
 ECX := Hybrid Information Enumeration Leaf;

EDX := Hybrid Information Enumeration Leaf;
BREAK;
EAX = 1BH:

EAX := PCONFIG Information Enumeration Leaf; (* See Table 1-3. *)
 EBX := PCONFIG Information Enumeration Leaf;
 ECX := PCONFIG Information Enumeration Leaf;

EDX := PCONFIG Information Enumeration Leaf;
BREAK;
EAX = 1CH:

EAX := Last Branch Record Information Enumeration Leaf; (* See Table 1-3. *)
EBX := Last Branch Record Information Enumeration Leaf;
Document Number: 319433-055 1-52

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
 ECX := Last Branch Record Information Enumeration Leaf;
EDX := Last Branch Record Information Enumeration Leaf;

BREAK;
EAX = 1DH:

EAX := Tile Information Enumeration Leaf; (* See Table 1-3. *)
EBX := Tile Information Enumeration Leaf;

 ECX := Tile Information Enumeration Leaf;
EDX := Tile Information Enumeration Leaf;

BREAK;
EAX = 1EH:

EAX := TMUL Information Enumeration Leaf; (* See Table 1-3. *)
EBX := TMUL Information Enumeration Leaf;

 ECX := TMUL Information Enumeration Leaf;
EDX := TMUL Information Enumeration Leaf;

BREAK;
EAX = 1FH:

EAX := V2 Extended Topology Enumeration Leaf; (* See Table 1-3. *)
EBX := V2 Extended Topology Enumeration Leaf;

 ECX := V2 Extended Topology Enumeration Leaf;
EDX := V2 Extended Topology Enumeration Leaf;

BREAK;
EAX = 20H:

EAX := Processor History Reset Enumeration Leaf; (* See Table 1-3. *)
 EBX := Processor History Reset Enumeration Leaf;
 ECX := Processor History Reset Enumeration Leaf;

EDX := Processor History Reset Enumeration Leaf;
BREAK;
EAX = 23H:

EAX := Architectural Performance Monitoring Extended Leaf; (* See Table 1-3. *)
 EBX := Architectural Performance Monitoring Extended Leaf;
 ECX := Architectural Performance Monitoring Extended Leaf;

EDX := Architectural Performance Monitoring Extended Leaf;
BREAK;
EAX = 24H:

EAX := Intel AVX10 Converged Vector ISA Leaf; (* See Table 1-3. *)
 EBX := Intel AVX10 Converged Vector ISA Leaf;
 ECX := Intel AVX10 Converged Vector ISA Leaf;

EDX := Intel AVX10 Converged Vector ISA Leaf;
BREAK;
EAX = 80000000H:

EAX := Highest extended function input value understood by CPUID;
EBX := Reserved;
ECX := Reserved;
EDX := Reserved;

BREAK;
EAX = 80000001H:

EAX := Reserved;
EBX := Reserved;
ECX := Extended Feature Bits (* See Table 1-3.*);
EDX := Extended Feature Bits (* See Table 1-3. *);

BREAK;
EAX = 80000002H:

EAX := Processor Brand String;
EBX := Processor Brand String, continued;
Document Number: 319433-055 1-53

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000003H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000004H:

EAX := Processor Brand String, continued;
EBX := Processor Brand String, continued;
ECX := Processor Brand String, continued;
EDX := Processor Brand String, continued;

BREAK;
EAX = 80000005H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
EAX = 80000006H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Cache information;
EDX := Reserved = 0;

BREAK;
EAX = 80000007H:

EAX := Reserved = 0;
EBX := Reserved = 0;
ECX := Reserved = 0;
EDX := Reserved = Miscellaneous feature flags;

BREAK;
EAX = 80000008H:

EAX := Address size information;
EBX := Miscellaneous feature flags;
ECX := Reserved = 0;
EDX := Reserved = 0;

BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)

(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX := Reserved; (* Information returned for highest basic information leaf. *)
EBX := Reserved; (* Information returned for highest basic information leaf. *)
ECX := Reserved; (* Information returned for highest basic information leaf. *)
EDX := Reserved; (* Information returned for highest basic information leaf. *)

BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.
Document Number: 319433-055 1-54

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
In earlier IA-32 processors that do not support the CPUID instruction, execution of the instruction results in an
invalid opcode (#UD) exception being generated.§

1.5 COMPRESSED DISPLACEMENT (DISP8*N) SUPPORT IN EVEX
For memory addressing using disp8 form, EVEX-encoded instructions always use a compressed displacement
scheme by multiplying disp8 in conjunction with a scaling factor N that is determined based on the vector length,
the value of EVEX.b bit (embedded broadcast) and the input element size of the instruction. In general, the factor
N corresponds to the number of bytes characterizing the internal memory operation of the input operand (e.g., 64
when the accessing a full 512-bit memory vector). The scale factor N is listed in Table 1-10 and Table 1-11 below,
where EVEX encoded instructions are classified using the tupletype attribute. The scale factor N of each tupletype
is listed based on the vector length (VL) and other factors affecting it.
Table 1-10 covers EVEX-encoded instructions which has a load semantic in conjunction with additional computa-
tional or data element movement operation, operating either on the full vector or half vector (due to conversion of
numerical precision from a wider format to narrower format). EVEX.b is supported for such instructions for data
element sizes which are either dword or qword.
EVEX-encoded instruction that are pure load/store, and “Load+op” instruction semantic that operate on data
element size less then dword do not support broadcasting using EVEX.b. These are listed in Table 1-11. Table 1-11
also includes many broadcast instructions which perform broadcast using a subset of data elements without using
EVEX.b. These instructions and a few data element size conversion instruction are covered in Table 1-11. Instruc-
tion classified in Table 1-11 do not use EVEX.b and EVEX.b must be 0, otherwise #UD will occur.
The tupletype will be referenced in the instruction operand encoding table in the reference page of each instruction,
providing the cross reference for the scaling factor N to encoding memory addressing operand.
Note that the disp8*N rules still apply when using 16b addressing.

Table 1-10. Compressed Displacement (DISP8*N) Affected by Embedded Broadcast

TupleType EVEX.b InputSize EVEX.W Broadcast N (VL=128) N (VL=256) N (VL= 512) Comment

Full

0 32bit 0 none 16 32 64 Load+Op
(Full Vector

Dword/Qword)
1 32bit 0 {1tox} 4 4 4

0 64bit 1 none 16 32 64

1 64bit 1 {1tox} 8 8 8

Half
0 32bit 0 none 8 16 32 Load+Op

(Half Vector)1 32bit 0 {1tox} 4 4 4

Table 1-11. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast

Tuple Type InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

Full Mem N/A N/A 16 32 64 Load/store or subDword full vector

Tuple1 Scalar

8bit N/A 1 1 1 1Tuple

16bit N/A 2 2 2

32bit 0 4 4 4

64bit 1 8 8 8

Tuple1 Fixed
32bit N/A 4 4 4 1 Tuple, memsize not affected by

EVEX.W64bit N/A 8 8 8

Tuple1_4X 32bit 0 161 N/A 16 4FMA(PS)

Tuple2
32bit 0 8 8 8 Broadcast (2 elements)

64bit 1 NA 16 16
Document Number: 319433-055 1-55

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.6 BFLOAT16 FLOATING-POINT FORMAT
Intel® Deep Learning Boost (Intel® DL Boost) uses bfloat16 format (BF16). Figure 1-6 illustrates BF16 versus FP16
and FP32.

BF16 has several advantages over FP16:

• It can be seen as a short version of FP32, skipping the least significant 16 bits of mantissa.

• There is no need to support denormals; FP32, and therefore also BF16, offer more than enough range
for deep learning training tasks.

• FP32 accumulation after the multiply is essential to achieve sufficient numerical behavior on an
application level.

• Hardware exception handling is not needed as this is a performance optimization; industry is designing
algorithms around checking inf/NaN.

1.7 FP8 FORMAT
FP8 are new data types of floating-point numbers consisting of 8 bits. They are aimed to speedup both Training and
Inference AI workloads.

Tuple4
32bit 0 NA 16 16 Broadcast (4 elements)

64bit 1 NA NA 32

Tuple8 32bit 0 NA NA 32 Broadcast (8 elements)

Half Mem N/A N/A 8 16 32 SubQword Conversion

Quarter Mem N/A N/A 4 8 16 SubDword Conversion

Eighth Mem N/A N/A 2 4 8 SubWord Conversion

Mem128 N/A N/A 16 16 16 Shift count from memory

MOVDDUP N/A N/A 8 32 64 VMOVDDUP

NOTES:

1. Scalar.

Figure 1-6. Comparison of BF16 to FP16 and FP32

Table 1-11. EVEX DISP8*N for Instructions Not Affected by Embedded Broadcast (Continued)

Tuple Type InputSize EVEX.W N (VL= 128) N (VL= 256) N (VL= 512) Comment

BFP10001

FP32

10 bit mantissa5 bit exps

23 bit mantissa8 bit exps

FP16

7 bit mantissa8 bit expsBF16
Document Number: 319433-055 1-56

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
1.7.1 Numeric Definition
Intel architecture supports two different FP8 formats. The first supported format is BF8, Brain Float8 (E5M2), which
has one sign bit, five exponent bits, and two mantissa bits. The second supported format is HF8, Hybrid Float8
(E4M3), which has one sign bit, four exponent bits, and three mantissa bits. Due to this new data type's very small
range and precision, both formats are needed to converge and reach the required accuracy across a wide range of
AI topologies. Table 1-12 below describes the numerics of each format. While BF8 follows standard floating point
representations, the HF8 format has a non-standard definition to increase its range, including the same represen-
tation for Infinity and NaN.

1.7.2 Floating-Point Rounding, Denormal Handling, NaN/Inf/Overflow Handling, and FP
Exceptions

Intel architecture supports AMX compute instructions, AVX dot product instructions, and AVX convert instructions.
The convert instructions have two versions, *NE* and *BIAS*, indicating the rounding modes.
• Floating-point rounding: Excluding the *BIAS* convert instructions, all instructions use RNE (“round to nearest

even”) rounding mode. The *BIAS* convert instructions use RNE in case the input is denormal and truncate
(i.e., chop or round towards zero) for normal input.

• Denormal Handling: All instructions function as if floating-point exceptions are masked. For any type of input,
instructions behave as if MXCSR.DAZ is not set. For FP8 output type, instructions behave as if MXCSR.FTZ is
not set. For any other type of output, instructions behave as if MXCSR.FTZ is set.

• Special numbers: Nan/inf/overflow handling: Excluding convert instructions, all instructions behave in their
regular way. Infinity is bypassed, NaN is bypassed as QNaN, and overflow returns infinity. The convert instruc-
tions have saturation and non-saturation versions. Table 1-13 describes the convert instruction behavior in
these cases.

• Floating-point exceptions:

— Instructions do not consult MXCSR.

— Instructions do not raise exceptions.

— Excluding convert instructions, instructions do not update MXCSR.

— All convert instructions update MXCSR.

Table 1-12. FP8 Formats Numeric Definitions

Number BF8 (E5M2) HF8 (E4M3)

Exponent Bias 15 7

Maximum Normal S.11110.11 = 57344.0 (1.75 * 215) S.1111.110 = 448.0 (1.75 * 28)

Minimum Normal S.00001.00 = 6.10e-05 (2-14) S.0001.000 = 1.56e-02 (2-6)

Maximum Denormal S.00000.11 = 4.57e-05 (0.75 * 2-14) S.0000.111 = 1.36e-02 (0.875 * 2-6)

Minimum Denormal S.00000.01 = 1.52e-05 (0.25 * 2-14) S.0000.001 = 1.95e-03 (0.125 * 2-6)

NaNs S.11111.[01, 10, 11] S.1111.111

Infinity S.11111.00 N/A

Table 1-13. FP Numerical Handling of Converts

Version Scenario BF8 (E5M2) HF8 (E4M3)

Regular

NaN at input S.11111.[10, 11] S.1111.111

+/- infinity at input S.11111.00 S.1111.111

Overflow due to conversion /rounding S.11111.00 S.1111.111
Document Number: 319433-055 1-57

FUTURE INTEL® ARCHITECTURE INSTRUCTION EXTENSIONS AND FEATURES
Saturated

NaN at input S.11111.[10, 11] S.1111.111

+/- infinity at input S.11111.00 S.1111.111

Overflow due to conversion /rounding S.11110.11 S.1111.110

Table 1-13. FP Numerical Handling of Converts(Continued)

Version Scenario BF8 (E5M2) HF8 (E4M3)
Document Number: 319433-055 1-58

INSTRUCTION SET REFERENCE, A-Z
CHAPTER 2
INSTRUCTION SET REFERENCE, A-Z

Instructions described in this document follow the general documentation convention established in the Intel® 64
and IA-32 Architectures Software Developer’s Manual Volume 2A. Additionally, some instructions use notation
conventions as described below.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

• If for example only the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as
mm:101:bbb.

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the
MODRM.MOD and MODRM.RM fields in the encoding boxes.

2.1 INSTRUCTION SET REFERENCE
Document Number: 319433-055 2-1

INSTRUCTION SET REFERENCE, A-Z
AADD—Atomically Add

Instruction Operand Encoding

Description

This instruction atomically adds the destination operand (first operand) and the source operand (second operand),
and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruc-
tion’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AADD if a stronger ordering is required. However, note that AADD is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AADD instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AADD dest, src

dest := dest + src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F38 FC !(11):rrr:bbb

AADD my, ry

A V/V RAO-INT Atomically add my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Document Number: 319433-055 2-2

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Document Number: 319433-055 2-3

INSTRUCTION SET REFERENCE, A-Z
AAND—Atomically AND

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise AND operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruc-
tion’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AAND if a stronger ordering is required. However, note that AAND is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AAND instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AAND dest, src

dest := dest AND src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

66 0F38 FC !(11):rrr:bbb

AAND my, ry

A V/V RAO-INT Atomically AND my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Document Number: 319433-055 2-4

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Document Number: 319433-055 2-5

INSTRUCTION SET REFERENCE, A-Z
AOR—Atomically OR

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise OR operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruc-
tion’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AOR if a stronger ordering is required. However, note that AOR is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AOR instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AOR dest, src

dest := dest OR src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

F2 0F38 FC !(11):rrr:bbb

AOR my, ry

A V/V RAO-INT Atomically OR my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Document Number: 319433-055 2-6

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Document Number: 319433-055 2-7

INSTRUCTION SET REFERENCE, A-Z
AXOR—Atomically XOR

Instruction Operand Encoding

Description

This instruction atomically performs a bitwise XOR operation of the destination operand (first operand) and the
source operand (second operand), and then stores the result in the destination operand.

The destination operand is a memory location and the source operand is a register. In 64-bit mode, the instruc-
tion’s default operation size is 32 bits. Using a REX prefix in the form of REX.R permits access to additional registers
(R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bits. The destination operand must be
naturally aligned with respect to the data size, at a 4-byte boundary, or an 8-byte boundary if used with a REX.W
prefix in 64-bit mode.
This instruction requires that the destination operand has a write-back (WB) memory type and it is implemented
using the weakly-ordered memory consistency model of write combining (WC) memory type. Before the operation,
the cache line is written-back (if modified) and invalidated from the processor cache. When the operation
completes, the processor may optimize the cacheability of the destination address by writing the result only to
specific levels of the cache hierarchy. Because this instructions uses a weakly-ordered memory consistency model,
a fencing operation implemented with LFENCE, SFENCE, or MFENCE instruction should be used in conjunction with
AXOR if a stronger ordering is required. However, note that AXOR is not ordered with respect to a younger LFENCE,
as this instruction is not loading data from memory into the processor.
Any attempt to execute the AXOR instruction inside an Intel TSX transaction will result in a transaction abort.

Operation

AXOR dest, src

dest := dest XOR src;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) For an illegal memory operand effective address in the CS, DS, ES, FS or GS segments.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

F3 0F38 FC !(11):rrr:bbb

AXOR my, ry

A V/V RAO-INT Atomically XOR my with ry and store the result in
my.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:r/m (r, w) ModRM:reg (r) N/A N/A
Document Number: 319433-055 2-8

INSTRUCTION SET REFERENCE, A-Z
Real-Address Mode Exceptions
#GP If any part of the operand lies outside the effective address space from 0 to FFFFH.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS For an illegal address in the SS segment.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If the memory address is not naturally aligned to the operand size.
If the memory address memory type is not write-back (WB).

#SS(0) If a memory address referencing the SS segment is in a non-canonical form.
#PF(fault-code) If a page fault occurs.
#UD If the LOCK prefix is used.

If CPUID.(EAX=07H, ECX=01H):EAX.RAO-INT[bit 3] = 0.
Document Number: 319433-055 2-9

INSTRUCTION SET REFERENCE, A-Z
MOVRS—Move Read-Shared Value

Instruction Operand Encoding

Description
Moves data from the source operand (second operand), a memory operand, to the destination operand (first
operand), a register. If the destination is a general-purpose register, then both operands are the same size, which

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag1

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Description

NOREP 0F38 8B !(11):rrr:bbb

MOVRS rv, mv

A V/N.E. MOVRS Move a read-shared word, doubleword, or quadword
from mv to rv.

NOREP 0F38 8A !(11):rrr:bbb

MOVRS r8, m8

A V/N.E. MOVRS Move a read-shared byte from m8 to r8.

EVEX.128.F2.MAP5.W0 6F !(11):rrr:bbb

VMOVRSB xmm1{k1}{z}, m128

B V/N.E. MOVRS AND
AVX10.2

Move read-shared bytes from m128 to xmm1 subject
to writemask k1.

EVEX.256.F2.MAP5.W0 6F !(11):rrr:bbb

VMOVRSB ymm1{k1}{z}, m256

B V/N.E. MOVRS AND
AVX10.2

Move read-shared bytes from m256 to ymm1 subject
to writemask k1.

EVEX.512.F2.MAP5.W0 6F !(11):rrr:bbb

VMOVRSB zmm1{k1}{z}, m512

B V/N.E. MOVRS AND
AVX10.2

Move read-shared bytes from m512 to zmm1 subject
to writemask k1.

EVEX.128.F3.MAP5.W0 6F !(11):rrr:bbb

VMOVRSD xmm1{k1}{z}, m128

B V/N.E. MOVRS AND
AVX10.2

Move read-shared doublewords from m128 to xmm1
subject to writemask k1.

EVEX.256.F3.MAP5.W0 6F !(11):rrr:bbb

VMOVRSD ymm1{k1}{z}, m256

B V/N.E. MOVRS AND
AVX10.2

Move read-shared doublewords from m256 to ymm1
subject to writemask k1.

EVEX.512.F3.MAP5.W0 6F !(11):rrr:bbb

VMOVRSD zmm1{k1}{z}, m512

B V/N.E. MOVRS AND
AVX10.2

Move read-shared doublewords from m512 to zmm1
subject to writemask k1.

EVEX.128.F3.MAP5.W1 6F !(11):rrr:bbb

VMOVRSQ xmm1{k1}{z}, m128

B V/N.E. MOVRS AND
AVX10.2

Move read-shared quadwords from m128 to xmm1
subject to writemask k1.

EVEX.256.F3.MAP5.W1 6F !(11):rrr:bbb

VMOVRSQ ymm1{k1}{z}, m256

B V/N.E. MOVRS AND
AVX10.2

Move read-shared quadwords from m256 to ymm1
subject to writemask k1.

EVEX.512.F3.MAP5.W1 6F !(11):rrr:bbb

VMOVRSQ zmm1{k1}{z}, m512

B V/N.E. MOVRS AND
AVX10.2

Move read-shared quadwords from m512 to zmm1
subject to writemask k1.

EVEX.128.F2.MAP5.W1 6F !(11):rrr:bbb

VMOVRSW xmm1{k1}{z}, m128

B V/N.E. MOVRS AND
AVX10.2

Move read-shared words from m128 to xmm1 subject
to writemask k1.

EVEX.256.F2.MAP5.W1 6F !(11):rrr:bbb

VMOVRSW ymm1{k1}{z}, m256

B V/N.E. MOVRS AND
AVX10.2

Move read-shared words from m256 to ymm1 subject
to writemask k1.

EVEX.512.F2.MAP5.W1 6F !(11):rrr:bbb

VMOVRSW zmm1{k1}{z}, m512

B V/N.E. MOVRS AND
AVX10.2

Move read-shared words from m512 to zmm1 subject
to writemask k1.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

B FULLMEM ModRM:reg (w) ModRM:r/m (r) N/A N/A
Document Number: 319433-055 2-10

INSTRUCTION SET REFERENCE, A-Z
can be a byte, a word, a doubleword, or a quadword. If the destination is an XMM, YMM, or ZMM register, then the
instruction reads data from a 128-bit, 256-bit, or 512-bit memory location; the data may be 16, 32, or 64 bytes;
8, 16, or 32 words; 4, 8, or 16 doublewords; or 2, 4, or 8 quadwords. Additionally, this instruction indicates the
source memory location is likely to become read-shared by multiple processors, i.e., read in the future by at least
one other processor before it is written, assuming it is ever written in the future. Implementations may optimize
the behavior of the caches, especially shared caches, for this data for future reads by multiple processors. A future
write to this data before it becomes read-shared will behave as usual, but its performance may be less optimal than
if the current read were done via a load without a read-shared hint.

Operation

MOVRS DEST, SRC
DEST := SRC

VMOVRSB DEST, SRC (EVEX Encoded Version)
(KL, VL) = (16, 128), (32, 256), (64, 512)

FOR j := 0 TO KL-1
i := j * 8
IF k1[j] OR *no writemask*

THEN DEST[i+7:i] := SRC[i+7:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+7:i] remains unchanged*
ELSE DEST[i+7:i] := 0 ; zeroing-masking

FI;
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVRSW DEST, SRC (EVEX Encoded Version)
(KL, VL) = (8, 128), (16, 256), (32, 512)

FOR j := 0 TO KL-1
i := j * 16
IF k1[j] OR *no writemask*

THEN DEST[i+15:i] := SRC[i+15:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+15:i] remains unchanged*
ELSE DEST[i+15:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0
Document Number: 319433-055 2-11

INSTRUCTION SET REFERENCE, A-Z
VMOVRSD DEST, SRC (EVEX Encoded Version)
(KL, VL) = (4, 128), (8, 256), (16, 512)

FOR j := 0 TO KL-1
i := j * 32
IF k1[j] OR *no writemask*

THEN DEST[i+31:i] := SRC[i+31:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+31:i] remains unchanged*
ELSE DEST[i+31:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

VMOVRSQ DEST, SRC (EVEX Encoded Version)
(KL, VL) = (2, 128), (4, 256), (8, 512)

FOR j := 0 TO KL-1
i := j * 64
IF k1[j] OR *no writemask*

THEN DEST[i+63:i] := SRC[i+63:i]
ELSE

IF *merging-masking* ; merging-masking
THEN *DEST[i+63:i] remains unchanged*
ELSE DEST[i+63:i] := 0 ; zeroing-masking

FI
FI;

ENDFOR
DEST[MAXVL-1:VL] := 0

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Exceptions
Exceptions Type Legacy-MOVRS; see Table 2-1.
EVEX-encoded instruction, see Table 2-49, “Type E4 Class Exception Conditions,” in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.
Document Number: 319433-055 2-12

INSTRUCTION SET REFERENCE, A-Z
Table 2-1. Type Legacy-MOVRS Class Exception Conditions

Exception

R
ea

l

V
ir

tu
al

-8
0

8
6

P
ro

te
ct

ed
 a

nd

Co
m

pa
ti

bi
lit

y

6
4

-b
it

Cause of Exception

Invalid Opcode,
#UD

X X X Only supported in 64-bit mode.
X If preceded by a LOCK prefix (F0H) or REP prefix (F2H, F3H).
X If any corresponding CPUID feature flag is ’0’.

Stack, #SS(0) X
If a memory address referencing the SS segment is in a non-canonical
form.

Alignment Check
#AC(0) X

If alignment checking is enabled and an unaligned memory access
is made while CPL=3.

General Protec-
tion, #GP(0) X

If the memory address is in a non-canonical form.

Page Fault,
#PF(fault-code)

X
For a page fault.
Document Number: 319433-055 2-13

INSTRUCTION SET REFERENCE, A-Z
PBNDKB—Platform Bind Key to Binary Large Object

Instruction Operand Encoding

Description

The PBNDKB instruction allows software to bind information to a platform by encrypting it with a platform-specific
wrapping key. The encrypted data may later be used by the PCONFIG instruction to configure the total storage
encryption (TSE) engine.1

The instruction can be executed only in 64-bit mode. The registers RBX and RCX provide input information to the
instruction. Executions of PBNDKB may fail for platform-specific reasons. An execution reports failure by setting
the ZF flag and loading EAX with a non-zero failure reason; a successful execution clears ZF and EAX.
The instruction operates on 256-byte data structures called bind structures. It reads a bind structure at the linear
address in RBX and writes a modified bind structure to the linear address in RCX. The addresses in RBX and RCX
must be different from each other and must be 256-byte aligned.
The instruction encrypts a portion of the input bind structure and generates a MAC of parts of that structure. The
encrypted data and MAC are written out as part of the output bind structure.
The format of a bind structure is given in Table 2-1.

A description of each of the fields in a bind structure is provided below:
• MAC: A MAC produced by PBNDKB of parts of its input bind structure. This field in the input bind structure is

not used.
• IV: PBNDKB randomly generates a 96-bit initialization vector and uses it as input to an authenticated

encryption function. The generated IV is written to the output bind structure. If there is insufficient entropy for
the random-number generator, PBNDKB will fail and report the failure by loading EAX with value 1 (ENTRO-
PY_ERROR). This field in the input bind structure is not used.

• BTENCDATA: In the input bind structure, the field contains the data to be encrypted. The data consist of two
256-bit keys, a data key and a tweak key. If the value of the KEY_GENERATION_CTRL field of the BTDATA (see
below) is 1, PBNDKB randomizes the values of these keys before encrypting them. (If there is insufficient
entropy for the random-number generator, PBNDKB will fail and report the failure by loading EAX with value 1
(ENTROPY_ERROR).) PBNDKB writes the encrypted data to this field in the output bind structure.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C7

PBNDKB

ZO V/I PBNDKB This instruction is used to bind information to a
platform by encrypting it with a platform-specific
wrapping key.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

1.For details on Total Storage Encryption (TSE), see Chapter 6 of this document.

Table 2-1. Bind Structure Format

Field Offset (bytes) Size (bytes) Comments

MAC 0 16 Output by PBNDKB as a MAC based on the input bind structure

Reserved 16 8 Reserved; must be zero on input, output as zero

IV 24 12 Initialization vector generated and output by PBNDKB

Reserved 36 28 Reserved; must be zero on input, output as zero

BTENCDATA 64 64 Encryption data (plaintext on input; ciphertext on output)

BTDATA 128 128 Additional control and data (modified but not encrypted)
Document Number: 319433-055 2-14

INSTRUCTION SET REFERENCE, A-Z
• BTDATA: This field contains additional control and data that are not encrypted. It has the following format:

— USER_SUPP_CHALLENGE (bytes 31:0): PBNDKB uses this value in the input bind structure to determine
the wrapping key (see below). It writes zero to this field in the output bind structure.

— KEY_GENERATION_CTRL (byte 32): PBNDKB uses this value in the input bind structure to determine
whether to randomize the keys being encrypted. The value must be 0 or 1 (otherwise, a #GP occurs).

— The remaining 95 bytes are reserved and must be zero.
PBNDKB determines a 256-bit wrapping key by computing an HMAC based on SHA-256 using 256-bit platform-
specific key and the USER_SUPP_CHALLENGE in the BTDATA field in the input bind structure.

PBNDKB then uses the wrapping key and an AES GCM authenticated encryption function to encrypt BTENCDATA
and produce a MAC. The encryption function uses the following inputs:
• The 64-byte BTENCDATA to be encrypted (which may have been randomized; see above).
• The 256-bit wrapping key.
• The 96-bit IV randomly generated by PBNDKB.
• 176 bytes of additional authenticated data that are the concatenation of 8 bytes of zeroes, the IV, 28 bytes of

zeroes, and the BTDATA in the input bind structure.
• The length of the additional authenticated data (176).

The encryption function produces a structure with 64 bytes of encrypted data and a 16-byte MAC. PBNDKB saves
these values to the corresponding fields in its output bind structure. Other fields are copied from the input bind
structure or written as zero, except the IV (which receives the randomly generated value) and the
USER_SUPP_CHALLENGE in the BTDATA, which is written as zero.

Operation

(* #UD if PBNDKB is not enumerated, CPL > 0, or not in 64-bit mode*)
IF CPUID.(EAX=07H, ECX=01H):EBX.PBNDKB[bit 1] = 0 OR CPL > 0 OR not in 64-bit mode

THEN #UD; FI;

(* #GP if pointers are not aligned or overlapping *)
IF RBX = RCX OR RBX is not 256-byte aligned OR RCX is not 256-byte aligned

THEN #GP(0); FI;

Load TMP_BIND_STRUCT from 256 bytes at linear address in RBX;

(* Check TMP_BIND_STRUCT for illegal values *)
IF bytes 23:16 and bytes 63:36 of TMP_BIND_STRUCT are not all zero

THEN #GP(0); FI;
IF TMP_BIND_STRUCT.BTDATA.KEY_GENERATION_CTRL > 1

THEN #GP(0); FI;
IF bytes 127:33 of TMP_BIND_STRUCT.BTDATA are not all zero

THEN #GP(0); FI;

(* Randomize input keys if requested *)
IF TMP_BIND_STRUCT.BTDATA.KEY_GENERATION_CONTROL= 1

THEN
Load RNG_DATA_KEY with a random 256-bit value using hardware RNG;
Load RNG_TWEAK_KEY with a random 256-bit value using hardware RNG;
IF there was insufficient entropy

THEN (* PBNDKB failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 1 *)

GOTO EXIT;
FI;
Document Number: 319433-055 2-15

INSTRUCTION SET REFERENCE, A-Z
(* XOR the input keys with the random keys; this does not modify input bind structure in memory *)
TMP_BIND_STRUCT.BTENCDATA.DATA_KEY := RNG_DATA_KEY XOR TMP_BIND_STRUCT.BTENCDATA.DATA_KEY;
TMP_BIND_STRUCT.BTENCDATA.TWEAK_KEY := RNG_TWEAK_KEY XOR TMP_BIND_STRUCT.BTENCDATA.TWEAK_KEY;

FI;

(* Compute wrapping key from platform key and user challenge *)
PLATFORM_KEY := 256-bit platform-specific key;
WRAPPING_KEY := HMAC_SHA256(PLATFORM_KEY, TMP_BIND_STRUCT.BTDATA.USER_SUPP_CHALLENGE);

(* Generate random data for initialization vector *)
Load TMP_IV with a random 96-bit value using hardware RNG;
IF there was insufficient entropy

THEN (* PBNDKB failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 1 *)
GOTO EXIT;

FI;

(* Compose 176 bytes of additional authenticated data for use by authenticated decryption *)
AAD := Concatenation of bytes 63:16 and bytes 255:128 of TMP_BIND_STRUCT;

ENCRYPT_STRUCT := AES256_GCM_ENC(TMP_BIND_STRUCT.BTENCDATA, WRAPPING_KEY, TMP_IV, AAD, 176);

OUT_BIND_STRUCT.MAC := ENCRYPT_STRUCT.MAC;
OUT_BIND_STRUCT[bytes 23:16] := 0;
OUT_BIND_STRUCT.IV := TMP_IV;
OUT_BIND_STRUCT[bytes 63:36] := 0;
OUT_BIND_STRUCT.BTENCDATA := ENCRYPT_STRUCT.ENC_DATA;
OUT_BIND_STRUCT.BTDATA.USER_SUPP_CHALLENGE := 0;
OUT_BIND_STRUCT.BTDATA.KEY_GENERATION_CTRL := IN_BIND_STRUCT.BTDATA.KEY_GENERATION_CTRL;
OUT_BIND_STRUCT.BTDATA[bytes 127:33] := 0;

(* Save OUT_BIND_STRUCT to memory *)
Store OUT_BIND_STRUCT to 256 bytes at linear address in RCX;

(* Indicate successful completion *)
RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;

Protected Mode Exceptions
#UD PBNDKB is not supported in protected mode.

Real-Address Mode Exceptions
#UD PBNDKB is not supported in real-address mode.
Document Number: 319433-055 2-16

INSTRUCTION SET REFERENCE, A-Z
Virtual-8086 Mode Exceptions
#UD PBNDKB is not supported in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the values of RBX and RCX are not both canonical.

If RBX or RCX is not 256B aligned.
If RBX = RCX.
If any of the reserved bytes in the input bind structure are set (including bytes in BTDATA).
If the value of the key-generation control in the BTDATA field of the input bind structure is not
0 or 1.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.

If the current privilege level is not 0.
If CPUID.(EAX=07H, ECX=01H):EBX.PBNDKB[bit 1] = 0.
Document Number: 319433-055 2-17

INSTRUCTION SET REFERENCE, A-Z
PCONFIG—Platform Configuration

Instruction Operand Encoding

Description
The PCONFIG instruction allows software to configure certain platform features. It supports these features with
multiple leaf functions, selecting a leaf function using the value in EAX.

Depending on the leaf function, the registers RBX, RCX, and RDX may be used to provide input information or for
the instruction to report output information. Addresses and operands are 32 bits outside 64-bit mode and are 64
bits in 64-bit mode. The value of CS.D does not affect operand size or address size.

Executions of PCONFIG may fail for platform-specific reasons. An execution reports failure by setting the ZF flag
and loading EAX with a non-zero failure reason; a successful execution clears ZF and EAX.

Each PCONFIG leaf function applies to a specific hardware block called a PCONFIG target. The leaf function is
supported only if the processor supports that target. Each target is associated with a numerical target identifier,
and CPUID leaf 1BH (PCONFIG information) enumerates the identifiers of the supported targets. An attempt to
execute an undefined leaf function, or a leaf function that applies to an unsupported target identifier, results in a
general-protection exception (#GP).

Leaf Function MKTME_KEY_PROGRAM

PCONFIG leaf function 0 (selected by loading EAX with value 0) is used for key programming for total memory
encryption-multi-key (TME-MK).1 This leaf function is called MKTME_KEY_PROGRAM and it pertains to the TME-MK
target, which has target identifier 1. The leaf function uses the EBX (or RBX) register for additional input informa-
tion.

Software uses this leaf function to manage the encryption key associated with a particular key identifier (KeyID).
The leaf function uses a data structure called the TME-MK key programming structure (MKTME_KEY_PRO-
GRAM_STRUCT). Software provides the address of the structure (as an offset in the DS segment) in EBX (or RBX).
The format of the structure is given in Table 2-2.

Opcode/
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C5

PCONFIG

A V/V PCONFIG This instruction is used to execute functions for
configuring platform features.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A N/A N/A N/A N/A

1. Further details on TME-MK can be found here:

https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

Table 2-2. MKTME_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) Size (bytes) Comments

KEYID 0 2 Key Identifier.

KEYID_CTRL 2 4 KeyID control:

• Bits 7:0: key-programming command (COMMAND)
• Bits 23:8: encryption algorithm (ENC_ALG)
• Bits 31:24: Reserved, must be zero (RSVD)

Ignored 6 58 Not used.

KEY_FIELD_1 64 64 Software supplied data key or entropy for data key.

KEY_FIELD_2 128 64 Software supplied tweak key or entropy for tweak key.
Document Number: 319433-055 2-18

https://software.intel.com/sites/default/files/managed/a5/16/Multi-Key-Total-Memory-Encryption-Spec.pdf

INSTRUCTION SET REFERENCE, A-Z
A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
• KEYID: The key identifier (KeyID) being programmed to the MKTME engine. The leaf function causes a

general-protection exception (#GP) if the KeyID is zero. KeyID zero always uses the current behavior
configured for TME (total memory encryption), either to encrypt with platform TME key or to bypass TME
encryption. The leaf function also causes a #GP if the KeyID exceeds the maximum enumerated in IA32_TME_-
CAPABILITY.MK_TME_MAX_KEYS[bits 50:36] or configured by the setting of
IA32_TME_ACTIVATE.MK_TME_KEYID_BITS[bits 35:32].

• KEYID_CTRL: The KEYID_CTRL field comprises two sub-fields used by software to control the encryption
performed for the selected KeyID:

— Key-programming command (COMMAND; bits 7:0). This 8-bit field should contain one of the following
values:

• KEYID_SET_KEY_DIRECT (value 0). With this command, software programs directly the encryption key
to be used for the selected KeyID.

• KEYID_SET_KEY_RANDOM (value 1). With this command, software has the CPU generate and assign an
encryption key to be used for the selected KeyID using a hardware random-number generator.

If this command is used and there is insufficient entropy for the random-number generator, the leaf
function will fail and report the failure by loading EAX with value 2 (ENTROPY_ERROR).

Because the keys programed by this leaf function are discarded on reset and software cannot read the
programmed keys, the keys programmed with this command are ephemeral.

• KEYID_CLEAR_KEY (value 2). With this command, software indicates that the selected KeyID should
use the current behavior configured for TME (see above).

• KEYID_NO_ENCRYPT (value 3). With this command, software indicates that no encryption should be
used for the selected KeyID.

If any other value is used, the leaf function causes a #GP.

— Encryption algorithm (ENC_ALG, bits 23:8). Bits 63:48 of the IA32_TME_ACTIVATE MSR (MSR index 982H)
indicate which encryption algorithms are supported by the platform. The 16-bit ENC_ALG field should
specify one of the algorithms indicated in IA32_TME_ACTIVATE. The leaf function causes a #GP if ENC_ALG
does not set exactly one bit or if it sets a bit whose corresponding bit is not set in IA32_TME_AC-
TIVATE[63:48].

• KEY_FIELD_1: Use of this field depends upon selected key-programming command:

— If the direct key-programming command is used (KEYID_SET_KEY_DIRECT), this field carries the software-
supplied data key to be used for the KeyID.

— If the random key-programming command is used (KEYID_SET_KEY_RANDOM), this field carries the
software-supplied entropy to be mixed in the CPU generated random data key.

— This field is ignored when one of the other key-programming commands is used.
It is software’s responsibility to ensure that the key supplied for the direct key-programming option or the
entropy supplied for the random key-programming option does not result in weak keys. There are no explicit
checks in the instruction to detect or prevent weak keys.

• KEY_FIELD_2: Use of this field depends upon selected key-programming command:

— If the direct key-programming command is used (KEYID_SET_KEY_DIRECT), this field carries the software-
supplied tweak key to be used for the KeyID.

— If the random key-programming command is used (KEYID_SET_KEY_RANDOM), this field carries the
software-supplied entropy to be mixed in the CPU generated random tweak key.

— This field is ignored when one of the other key-programming commands is used.
It is software’s responsibility to ensure that the key supplied for the direct key-programming option or the
entropy supplied for the random key-programming option does not result in weak keys. There are no explicit
checks in the instruction to detect or prevent weak keys.

All KeyIDs default to TME behavior (encrypt with TME key or bypass encryption) on activation of TME-MK. Software
can at any point decide to change the key for a KeyID using this leaf function. Changing the key for a KeyID does
Document Number: 319433-055 2-19

INSTRUCTION SET REFERENCE, A-Z
not change the state of the TLB caches or memory pipeline. Software is responsible for taking appropriate actions
to ensure correct behavior.
The key table used by TME-MK is shared by all logical processors in a platform. For this reason, execution of this
leaf function must gain exclusive access to the key table before updating it. The leaf function does this by acquiring
a lock (implemented in the platform) and retaining that lock until the execution completes. An execution of the leaf
function may fail to acquire the lock if it is already in use. In this situation, the leaf function will load EAX with failure
reason 5 (DEVICE_BUSY). When this happens, the key table is not updated, and software should retry execution of
PCONFIG.

Leaf Function TSE_KEY_PROGRAM

PCONFIG leaf function 1(selected by loading EAX with value 1) is used for direct key programming for total storage
encryption (TSE). This leaf function is called TSE_KEY_PROGRAM and it pertains to the TSE target, which has
target identifier 2. The leaf function can be used only in 64-bit mode. It uses the RBX register for additional input
information.

Software uses this leaf function to manage the encryption key associated with a particular key identifier (KeyID).
The leaf function uses a data structure called the TSE key programming structure (TSE_KEY_PROGRAM_-
STRUCT). Software provides the linear address of the structure in RBX. The format of the structure is given in Table
2-3.

A description of each of the fields in MKTME_KEY_PROGRAM_STRUCT is provided below:
• KEYID: The key identifier (KeyID) being programmed to the TSE engine. The leaf function causes a general-

protection exception (#GP) if the KeyID exceeds the maximum enumerated in the TSE_MAX_KEYS field
(bits 50:36) of the IA32_TSE_CAPABILITY MSR (MSR index 9F1H).

• KEYID_CTRL: The KEYID_CTRL field comprises two sub-fields used by software to control the encryption
performed for the selected KeyID:

— Key-programming command (COMMAND; bits 7:0). This 8-bit field should contain one of the following
values:

• TSE_SET_KEY_DIRECT (value 0). With this command, software programs directly the encryption key to
be used for the selected KeyID.

• TSE_NO_ENCRYPT (value 1). With this command, software indicates that no encryption should be used
for the selected KeyID.

If any other value is used, the leaf function causes a #GP.

— Encryption algorithm (ENC_ALG, bits 23:8). IA32_TSE_CAPABILITY[15:0] indicates which encryption
algorithms are supported by the platform. The 16-bit ENC_ALG field should specify one of the algorithms
indicated in IA32_TSE_CAPABILITY. The leaf function causes a #GP if ENC_ALG does not set exactly one bit
or if it sets a bit whose corresponding bit is not set in IA32_TSE_CAPABILITY.

• KEY_FIELD_1: If the direct key-programming command is used (TSE_SET_KEY_DIRECT), this field carries
the software supplied data key to be used for the KeyID. Otherwise, the field is ignored.

Table 2-3. TSE_KEY_PROGRAM_STRUCT Format

Field Offset (bytes) Size (bytes) Comments

KEYID 0 2 Key Identifier.

KEYID_CTRL 2 4 KeyID control:

• Bits 7:0: key-programming command (COMMAND)
• Bits 23:8: encryption algorithm (ENC_ALG)
• Bits 31:24: Reserved, must be zero (RSVD)

Ignored 6 58 Not used.

KEY_FIELD_1 64 64 Software supplied data key.

KEY_FIELD_2 128 64 Software supplied tweak key.
Document Number: 319433-055 2-20

INSTRUCTION SET REFERENCE, A-Z
• KEY_FIELD_2: If the direct key-programming command is used (TSE_SET_KEY_DIRECT), this field carries
the software supplied tweak key to be used for the KeyID. Otherwise, the field is ignored.

The TSE key table is shared by all logical processors in a platform. For this reason, execution of this leaf function
must gain exclusive access to the key table before updating it. The leaf function does this by acquiring a lock
(implemented in the platform) and retaining that lock until the execution completes. An execution of the leaf func-
tion may fail to acquire the lock if it is already in use. In this situation, the leaf function will load EAX with failure
reason 5 (DEVICE_BUSY). When this happens, the key table is not updated, and software should retry execution of
PCONFIG.

Leaf Function TSE_KEY_PROGRAM_WRAPPED

PCONFIG leaf function 2 (selected by loading EAX with value 2) is used for wrapped key programming for total
storage encryption (TSE). This leaf function is called TSE_KEY_PROGRAM_WRAPPED and it pertains to the TSE
target, which has target identifier 2. The leaf function can be used only in 64-bit mode. It uses the RBX and RCX
registers for additional input information.

Software uses this leaf function to manage the encryption key associated with a particular key identifier (KeyID).
The leaf function uses control input provided in RBX. The format of that input is given in Table 2-4.

A description of each of the fields in the control input is provided below:
• KEYID: The key identifier (KeyID) being programmed to the TSE engine. The leaf function causes a general-

protection exception (#GP) if the KeyID exceeds the maximum enumerated in the TSE_MAX_KEYs field
(bits 50:36) of the IA32_TSE_CAPABILITY MSR (MSR index 9F1H).

• ENC_ALG: The encryption algorithm selected for the KeyID. IA32_TSE_CAPABILITY[15:0] indicates which
encryption algorithms are supported by the platform. The 16-bit ENC_ALG field should specify one of the
algorithms indicated in IA32_TSE_CAPABILITY. The leaf function causes a #GP if ENC_ALG does not set exactly
one bit or if it sets a bit whose corresponding bit is not set in IA32_TSE_CAPABILITY.

The leaf function also uses a 256-byte data structure called the bind structure. This structure should be the
output of the PBNDKB instruction, subsequently modified by software (see below). Software provides the linear
address of the structure in RCX. The format of the structure is given in Table 2-5.

A description of each of the fields in TSE_BIND_STRUCT is provided below:
• MAC: A MAC produced by PBNDKB of its input bind structure. The PCONFIG leaf function will recompute the

MAC and confirm that it matches this value.

Table 2-4. TSE_KEY_PROGRAM_WRAPPED Control Input

Field Bit Positions Comments

KEYID 15:0 Key identifier.

Reserved 23:16 Reserved, must be zero.

ENC_ALG 39:24 Encryption algorithm.

Ignored 63:40 Not used.

Table 2-5. Bind Structure Format

Field Offset (bytes) Size (bytes) Comments

MAC 0 16 MAC produced by PBNDKB of its input bind structure

Reserved 16 8 Reserved, must be zero.

IV 24 12 Initialization vector.

Reserved 36 28 Reserved, must be zero.

BTENCDATA 64 64 Encrypted data (data key and tweak key)

BTDATA 128 128 Additional control and data (not encrypted)
Document Number: 319433-055 2-21

INSTRUCTION SET REFERENCE, A-Z
• IV: The initialization vector that PBNDKB used for encryption. The PCONFIG leaf function will use this in its
decryption of encrypted data and computation of the MAC.

• BTENCDATA: Data which had been encrypted by PBNDKB, containing the data and tweak keys to be used by
TSE.

• BTDATA: Data that was input to PBNDKB that was output without encryption. It has the following format:

— USER_SUPP_CHALLENGE (bytes 31:0): PBNDKB uses a value provided by software in its input bind
structure but writes zero to this field in the output bind structure to be used by PCONFIG. Software should
configure this field with the proper value before executing this PCONFIG leaf function.

— KEY_GENERATION_CTRL (byte 32): PBNDKB uses this value to determine whether to generate random
keys. The PCONFIG leaf function does not use this field.

— The remaining 95 bytes are reserved and must be zero.
The leaf function uses the entire BTDATA field when it computes the MAC.

The leaf function determines a 256-bit wrapping key by computing an HMAC based on SHA-256 using 256-bit
platform-specific key and the USER_SUPP_CHALLENGE in the BTDATA field of the TSE_BIND_STRUCT.

Using the wrapping key, the leaf function uses an AES GCM authenticated decryption function to decrypt BTENC-
DATA and compute a MAC. The decryption function uses the following inputs:
• The 64-byte BTENCDATA from TSE_BIND_STRUCT to be decrypted.
• The 256-bit wrapping key.
• The 96-bit IV from TSE_BIND_STRUCT.
• Additional authenticated data that is the concatenation of bytes 63:16 and bytes 255:128 of the TSE_BIND_-

STRUCT. These 176 bytes will comprise 8 bytes of zeroes, the 12-byte IV, 28 bytes of zeroes, and 128 bytes of
BTDATA of which the upper 95 bytes are zero).

• The length of the additional authenticated data (176).

The decryption function produces a structure with a 64 bytes of decrypted data and a 16-byte MAC. The decrypted
data comprises a 256-bit data key and a 256-bit tweak key.

If the MAC produced by the decryption function differs from that provided in the TSE_BIND_STRUCT, the leaf func-
tion will load EAX with failure reason 7 (UNWRAP_FAILURE). Otherwise, the leaf function will attempt to program
the TSE key table for the selected KeyID with the keys contained in the decrypted data.

The TSE key table is shared by all logical processors in a platform. For this reason, execution of this leaf function
must gain exclusive access to the key table before updating it. The leaf function does this by acquiring a lock
(implemented in the platform) and retaining that lock until the execution completes. An execution of the leaf func-
tion may fail to acquire the lock if it is already in use. In this situation, the leaf function will load EAX with failure
reason 5 (DEVICE_BUSY). When this happens, the key table is not updated, and software should retry execution of
PCONFIG.

Operation

(* #UD if PCONFIG is not enumerated or CPL > 0 *)
IF CPUID.(EAX=07H, ECX=0H):EDX.PCONFIG[bit 18] = 0 OR CPL > 0

THEN #UD; FI;

(* #GP(0) for an unsupported leaf function *)
IF EAX > 2

THEN #GP(0); FI;

CASE (EAX) (* operation based on selected leaf function *)
0 (MKTME_KEY_PROGRAM):
IF CPUID function 1BH does not enumerate support for the TME-MK target (value 1)

THEN #GP(0); FI;
(* Confirm that TME-MK is properly enabled by the IA32_TME_ACTIVATE MSR *)
(* The MSR must be locked, encryption enabled, and a non-zero number of KeyID bits specified *)
IF IA32_TME_ACTIVATE[0] = 0 OR IA32_TME_ACTIVATE[1] = 0 OR IA32_TME_ACTIVATE[35:32] = 0
Document Number: 319433-055 2-22

INSTRUCTION SET REFERENCE, A-Z
THEN #GP(0); FI;

IF DS:RBX is not 256-byte aligned
THEN #GP(0); FI;

Load TMP_KEY_PROGRAM_STRUCT from 192 bytes at linear address DS:RBX;

IF TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL sets any reserved bits
THEN #GP(0); FI;

(* Check for a valid command *)
IF TMP_KEY_PROGRAM_STRUCT. KEYID_CTRL.COMMAND > 3

THEN #GP(0); FI;

(* Check that the KEYID being operated upon is a valid KEYID *)
IF TMP_KEY_PROGRAM_STRUCT.KEYID = 0 OR

TMP_KEY_PROGRAM_STRUCT.KEYID > 2^IA32_TME_ACTIVATE.MK_TME_KEYID_BITS – 1 OR
TMP_KEY_PROGRAM_STRUCT.KEYID > IA32_TME_CAPABILITY.MK_TME_MAX_KEYS

THEN #GP(0); FI;

(* Check that only one encryption algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG does not set exactly one bit OR

(TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG & IA32_TME_ACTIVATE[63:48]) = 0
THEN #GP(0); FI;

Attempt to acquire lock to gain exclusive access to platform key table for TME-MK;
IF attempt is unsuccessful

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := DEVICE_BUSY; (* failure reason 5 *)
GOTO EXIT;

FI;

CASE (TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.COMMAND) OF
0 (KEYID_SET_KEY_DIRECT):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Encrypt with the selected key
Use the encryption algorithm selected by TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1
TWEAK_KEY is TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2

BREAK;

1 (KEYID_SET_KEY_RANDOM):
Load TMP_RND_DATA_KEY with a random key using hardware RNG; (* key size depends on selected encryption algorithm *)
IF there was insufficient entropy

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 2 *)
Release lock on platform key table;
GOTO EXIT;

FI;
Load TMP_RND_TWEAK_KEY with a random key using hardware RNG; (* key size depends on selected encryption algorithm *)
IF there was insufficient entropy
Document Number: 319433-055 2-23

INSTRUCTION SET REFERENCE, A-Z
THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := ENTROPY_ERROR; (* failure reason 2 *)
Release lock on platform key table;
GOTO EXIT;

FI;
(* Combine software-supplied entropy to the data key and tweak key *)
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
TMP_RND_DATA_KEY := TMP_RND_KEY XOR TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_1;
TMP_RND_TWEAK_KEY := TMP_RND_TWEAK_KEY XOR TMP_KEY_PROGRAM_STRUCT.KEY_FIELD_2;

Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:
Encrypt with the selected key
Use the encryption algorithm selected by TMP_KEY_PROGRAM_STRUCT.KEYID_CTRL.ENC_ALG
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is TMP_RND_DATA_KEY
TWEAK_KEY is TMP_RND_TWEAK_KEY

BREAK;

2 (KEYID_CLEAR_KEY):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Encrypt (or not) using the current configuration for TME
The specified encryption algorithm and key values are not used.

BREAK;

3 (KEYID_NO_ENCRYPT):
Update TME-MK table for TMP_KEY_PROGRAM_STRUCT.KEYID as follows:

Do not encrypt
The specified encryption algorithm and key values are not used.

BREAK;
ESAC;
Release lock on platform key table for TME-MK;

1 (TSE_KEY_PROGRAM):
IF CPUID function 1BH does not enumerate support for the TSE target (value 2)

THEN #GP(0); FI;

IF not in 64-bit mode
THEN #GP(0); FI;

IF RBX is not 256-byte aligned
THEN #GP(0); FI;

Load TMP_KEY_STRUCT from 192 bytes at linear address in RBX;

IF TMP_KEY_STRUCT.KEYID_CTRL sets any reserved bits
THEN #GP(0); FI;

(* Check for a valid command *)
IF TMP_KEY_STRUCT. KEYID_CTRL.COMMAND > 1

THEN #GP(0); FI;

(* Check that the KEYID being operated upon is a valid KEYID *)
IF TMP_KEY_STRUCT.KEYID > IA32_TSE_CAPABILITY.TSE_MAX_KEYS
Document Number: 319433-055 2-24

INSTRUCTION SET REFERENCE, A-Z
THEN #GP(0); FI;

(* Check that only one encryption algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF TMP_KEY_STRUCT.KEYID_CTRL.ENC_ALG does not set exactly one bit OR

(TMP_KEY_STRUCT.KEYID_CTRL.ENC_ALG & IA32_TSE_CAPABILITY[15:0]) = 0
THEN #GP(0); FI;

Attempt to acquire lock to gain exclusive access to platform key table for TSE;
IF attempt is unsuccessful

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := DEVICE_BUSY; (* failure reason 5 *)
GOTO EXIT;

FI;

CASE (TMP_KEY_STRUCT.KEYID_CTRL.COMMAND) OF
0 (TSE_SET_KEY_DIRECT):
Update TSE table for TMP_KEY_STRUCT.KEYID as follows:

Encrypt with the selected key
Use the encryption algorithm selected by TMP_KEY_STRUCT.KEYID_CTRL.ENC_ALG
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is TMP_KEY_STRUCT.KEY_FIELD_1
TWEAK_KEY is TMP_KEY_STRUCT.KEY_FIELD_2

BREAK;

1 (TSE_NO_ENCRYPT):
Update TSE table for TMP_KEY_STRUCT.KEYID as follows:

Do not encrypt
The specified encryption algorithm and key values are not used.

BREAK;
ESAC;
Release lock on platform key table for TSE;

2 (TSE_KEY_PROGRAM_WRAPPED):
IF CPUID function 1BH does not enumerate support for the TSE target (value 2)

THEN #GP(0); FI;

IF not in 64-bit mode OR RBX[23:16] != 0 OR RCX is not 256-byte aligned
THEN #GP(0); FI;

(* Check that the KEYID being operated upon is a valid KEYID *)
IF RBX[15:0] > IA32_TSE_CAPABILITY.TSE_MAX_KEYS

THEN #GP(0); FI;

(* Check that only one encryption algorithm is requested for the KeyID and it is one of the activated algorithms *)
IF RBX[39:24] does not set exactly one bit OR (RBX[39:24] & IA32_TSE_CAPABILITY[15:0]) = 0

THEN #GP(0); FI;

Load TMP_BIND_STRUCT from 256 bytes at linear address in RCX;

(* Check TMP_BIND_STRUCT for illegal values *)
IF bytes 23:16 and bytes 63:36 of TMP_BIND_STRUCT are not all zero

THEN #GP(0); FI;
IF TMP_BIND_STRUCT.BTDATA.KEY_GENERATION_CTRL > 1
Document Number: 319433-055 2-25

INSTRUCTION SET REFERENCE, A-Z
THEN #GP(0); FI;
IF bytes 128:33 of TMP_BIND_STRUCT.BTDATA are not all zero

THEN #GP(0); FI;

(* Compute wrapping key *)
PLATFORM_KEY := 256-bit platform-specific key;
WRAPPING_KEY := HMAC_SHA256(PLATFORM_KEY, TMP_BIND_STRUCT.BTDATA.USER_SUPP_CHALLENGE);

(* Compose 176 bytes of additional authenticated data for use by authenticated decryption *)
AAD := Concatenation of bytes 63:16 and bytes 255:128 of TMP_BIND_STRUCT;

DECRYPT_STRUCT := AES256_GCM_DEC(TMP_BIND_STRUCT.BTENCDATA, WRAPPING_KEY, TMP_BIND_STRUCT.IV, AAD, 176);

(* Fail if MAC mismatch *)
IF TMP_BIND_STRUCT.MAC != DECRYPT_STRUCT.MAC

THEN
RFLAGS.ZF := 1;

 RAX := UNWRAP_FAILURE; (* failure reason 7 *)
 GOTO EXIT;

FI;

Attempt to acquire lock to gain exclusive access to platform key table for TSE;
IF attempt is unsuccessful

THEN (* PCONFIG failure *)
RFLAGS.ZF := 1;
RAX := DEVICE_BUSY; (* failure reason 5 *)
GOTO EXIT;

FI;

Update TSE table for RBX[15:0] as follows:
Encrypt with the selected key
Use the encryption algorithm selected by RBX[39:24]
(* The number of bytes used by the next two lines depends on selected encryption algorithm *)
DATA_KEY is DECRYPT_STRUCT.DEC_DATA.KEY_FIELD_1
TWEAK_KEY is DECRYPT_STRUCT.DEC_DATA.KEY_FIELD_2

Release lock on platform key table for TSE;

ESAC;

RAX := 0;
RFLAGS.ZF := 0;

EXIT:
RFLAGS.CF := 0;
RFLAGS.PF := 0;
RFLAGS.AF := 0;
RFLAGS.OF := 0;
RFLAGS.SF := 0;
Document Number: 319433-055 2-26

INSTRUCTION SET REFERENCE, A-Z
Protected Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf function.

If a memory operand effective address is outside the relevant segment limit.
MKTME_KEY_PROGRAM leaf function:
IF CPUID function 1BH does not enumerate support for the TME-MK target (value 1).
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If the memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are
set or that field indicates an unsupported KeyID, key-programming command, or encryption
algorithm.
TSE_KEY_PROGRAM leaf function:
The TSE_KEY_PROGRAM leaf function is not supported in protected mode.
TSE_KEY_PROGRAM_WRAPPED leaf function:
The TSE_KEY_PROGRAM_WRAPPED leaf function is not supported in protected mode.

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.

If current privilege level is not 0.
If CPUID.(EAX=07H, ECX=0H):EDX.PCONFIG[bit 18] = 0

Real-Address Mode Exceptions
#GP If input value in EAX encodes an unsupported leaf function.

MKTME_KEY_PROGRAM leaf function:
IF CPUID function 1BH does not enumerate support for the TME-MK target (value 1).
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are
set or that field indicates an unsupported KeyID, key-programming command, or encryption
algorithm.
TSE_KEY_PROGRAM leaf function:
The TSE_KEY_PROGRAM leaf function is not supported in real-address mode.
TSE_KEY_PROGRAM_WRAPPED leaf function:
The TSE_KEY_PROGRAM_WRAPPED leaf function is not supported in real-address mode.

#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.
If current privilege level is not 0.
If CPUID.(EAX=07H, ECX=0H):EDX.PCONFIG[bit 18] = 0

Virtual-8086 Mode Exceptions
#UD PCONFIG instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.
Document Number: 319433-055 2-27

INSTRUCTION SET REFERENCE, A-Z
64-Bit Mode Exceptions
#GP(0) If input value in EAX encodes an unsupported leaf function.

If a memory operand is non-canonical form.
MKTME_KEY_PROGRAM leaf function:
IF CPUID function 1BH does not enumerate support for the TME-MK target (value 1).
If IA32_TME_ACTIVATE MSR is not locked.
If hardware encryption and TME-MK capability are not enabled in IA32_TME_ACTIVATE MSR.
If a memory operand is not 256B aligned.
If any of the reserved bits in the KEYID_CTRL field of the MKTME_KEY_PROGRAM_STRUCT are
set or that field indicates an unsupported KeyID, key-programming command, or encryption
algorithm.
TSE_KEY_PROGRAM leaf function:
IF CPUID function 1BH does not enumerate support for the TSE target (value 2).
If RBX is not 256-byte aligned.
If any of the reserved bits in the KEYID_CTRL field of the TMP_KEY_STRUCT are set or that
field indicates an unsupported KeyID, key-programming command, or encryption algorithm.
TSE_KEY_PROGRAM_WRAPPED leaf function:
IF CPUID function 1BH does not enumerate support for the TSE target (value 2).
If RCX is not 256-byte aligned.
If any of the reserved bits in RBX are set or that register indicates an unsupported KeyID or
encryption algorithm.
If any of the reserved bytes in the TSE_BIND_STRUCT are set (including bytes in BTDATA).

#PF(fault-code) If a page fault occurs in accessing memory operands.
#UD If any of the LOCK/REP/Operand Size/VEX prefixes are used.

If the current privilege level is not 0.
If CPUID.(EAX=07H, ECX=0H):EDX.PCONFIG[bit 18] = 0.
Document Number: 319433-055 2-28

INSTRUCTION SET REFERENCE, A-Z
PREFETCHRST2—Prefetch Data into Caches Using a Read-Shared Hint

Instruction Operand Encoding

Description
Fetches the line of data from memory that contains the byte specified with the source operand to a location in the
cache hierarchy, in anticipation of this processor and at least one other reading the line before it is written,
assuming it is ever written in the future. Brings data into an implementation-specific choice of cache, optimized for
read sharing through shared cache levels. A future write to this data before it becomes read-shared will behave as
usual, but its performance may be less optimal than if a prefetch or load without a read-shared hint were used for
this access.
The source operand is a byte memory location.
Prefetches from uncacheable or WC memory are ignored.
The PREFETCHRST2 instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor in anticipation of future use. The effect on the caches is implementation-depen-
dent, and can be overloaded or ignored by a processor implementation. The amount of data prefetched is also
processor implementation-dependent. It will, however, be a minimum of 32 bytes.
It should be noted that processors are free to speculatively fetch and cache data from system memory regions that
are assigned a memory-type that permits speculative reads (that is, the WB, WC, and WT memory types). A
PREFETCHRST2 instruction is considered a hint to this speculative behavior. Because this speculative fetching can
occur at any time and is not tied to instruction execution, a PREFETCHRST2 instruction is not ordered with respect
to the fence instructions (MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHRST2 instruc-
tion is also unordered with respect to CLFLUSH and CLFLUSHOPT instructions, other PREFETCHRST2 instructions,
or any other general instruction. It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT,
and MOV CR.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

PREFETCHRST2 m8
FETCH (m8)

Flags Affected

None.

SIMD Floating-Point Exceptions
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature Flag

Description

0F 18 !(11):100:bbb

PREFETCHRST2 m8

A V/V MOVRS Move data from m8 closer to the processor using a
read-shared hint.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:r/m (r) N/A N/A N/A
Document Number: 319433-055 2-29

INSTRUCTION SET REFERENCE, A-Z
RDMSR—Read From Model Specific Register

Instruction Operand Encoding

Description

Reads the contents of a 64-bit model specific register (MSR). RDMSR has an implicit form and an immediate
form.

The implicit form reads the contents of the MSR specified in the ECX register into registers EDX:EAX. (On proces-
sors that support the Intel 64 architecture, the high-order 32 bits of RCX are ignored.) The EDX register is loaded
with the high-order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. (On processors
that support the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.) If fewer than 64
bits are implemented in the MSR being read, the values returned to EDX:EAX in unimplemented bit locations are
undefined.
The immediate form reads the contents of the MSR specified by operand 2 into operand 1. Operand 2 is an imme-
diate, while operand 1 is a general-purpose register. The immediate form can be used only in 64-bit mode; other-
wise, a invalid-opcode exception (#UD) will be generated. The immediate form may provide better performance
than the implicit form.

This instruction must be executed at privilege level 0 or in real-address mode; otherwise, a general protection
exception #GP(0) will be generated. Specifying a reserved or unimplemented MSR address in ECX will also cause a
general protection exception.

The MSRs control functions for testability, execution tracing, performance-monitoring, and machine check errors.
Chapter 2, “Model-Specific Registers (MSRs)” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 4, lists all the MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported (CPUID.01H:EDX[5] = 1) before
using this instruction. The immediate form is supported only if
CPUID.(EAX=07H,ECX=01H):ECX.MSR_IMM[bit 5] = 1.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced into the IA-32 Architecture with
the Pentium processor. Execution of this instruction by an IA-32 processor earlier than the Pentium processor
results in an invalid opcode exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 26 of the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3C, for more information about the behavior of this instruction in
VMX non-root operation.

Opcode / 1
Instruction

NOTES:

1. See the IA-32 Architecture Compatibility section below.

Op/
En

64/32 Bit
Mode
Support

CPUID Feature
Flag

Description

0F 32

RDMSR

ZO V/V Read MSR specified by ECX into EDX:EAX.

VEX.128.F2.MAP7:W0.F6 11:000:bbb

RDMSR r64, imm32

MI V/N.E. MSR_IMM Load into register bbb the value of the MSR with
address in the 32-bit immediate.

EVEX.128.F2.MAP7:W0.F6 11:000:bbb

RDMSR r64, imm32

MI V/N.E. APX_F AND
MSR_IMM

Load into register bbb the value of the MSR with
address in the 32-bit immediate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

MI ModRM:r/m (r) imm32 N/A N/A
Document Number: 319433-055 2-30

INSTRUCTION SET REFERENCE, A-Z
Operation

IF implicit form
THEN

EDX:EAX := MSR[ECX];
ELSE (* immediate form *)

DEST := MSR[SRC];

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
#UD If the LOCK prefix is used.

If the immediate form is used.

Real-Address Mode Exceptions
#GP If the specified MSR address is reserved or unimplemented MSR.
#UD If the LOCK prefix is used.

If the immediate form is used.

Virtual-8086 Mode Exceptions
#GP(0) For the implicit form: the RDMSR instruction is not recognized in virtual-8086 mode.
#UD For the immediate form: the RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
#UD If the LOCK prefix is used.

If the immediate form is used and CPUID.(EAX=07H, ECX=01H):ECX.MSR_IMM[bit 5] = 0.
Document Number: 319433-055 2-31

INSTRUCTION SET REFERENCE, A-Z
URDMSR—User Read from Model-Specific Register

Instruction Operand Encoding

Description
URDMSR reads the contents of a 64-bit MSR specified in operand 2 into operand 1. Operand 1 is a general-purpose
register, while operand 2 may be either a general-purpose register or an immediate. URDMSR reads the indicated
MSR in the same manner as RDMSR.
MSRs readable by RDMSR with CPL = 0 can be read by URDMSR at any privilege level but under OS control. The OS
controls what MSRs can be read by the URDMSR and UWRMSR instructions with a 4-KByte bitmap located at an
aligned linear address in the IA32_USER_MSR_CTL (MSR address 1CH). The URDMSR instruction is enabled only if
bit 0 of this MSR is 1.
The low 2 KBytes of the bitmap control URDMSR (they compose the URDMSR bitmap); the 2 KBytes includes one
bit for each MSR address in the range 0H–3FFFH. URDMSR may read an MSR only if the bit corresponding to the
MSR has value 1; otherwise (or if the MSR address is outside that range) URDMSR causes a general-protection
exception (#GP).
The URDMSR accesses to these bitmaps are implicit supervisor-mode accesses, which means they use supervisor
privilege regardless of CPL. The OS can create an alias to the bitmap in the user address space if it wants the appli-
cation to know which MSRs are permitted. Still, the alias should be mapped read-only to prevent the application
from overwriting the bitmap.

Virtualization Behavior
Like RDMSR, execution of URDMSR in VMX non-root operation causes a VM exit if any of the following are true:
• The “use MSR bitmaps” VM-execution control is 0.
• The value of the MSR address is not in the range 00000000H–00001FFFH.
• The value of the MSR address is in the range 00000000H–00001FFFH, and bit n in the read bitmap for low MSRs

is 1, where n is the value of the MSR address.
Such VM exits have priority below a #GP due to an MSR address outside the bitmap range or whose bit is clear in
the bitmap. In enclave mode, URDMSR will cause a #GP(0) exception instead of a VM exit if any of the above condi-
tions are true.
A VM exit for the above reasons for the URDMSR instruction will specify exit reason 80 (decimal). The exit qualifi-
cation is set to the MSR address causing the VM exit. The VM-exit instruction length and VM-exit instruction infor-
mation fields will be populated for these VM exits; see Table 2-6 for details.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F2 0F 38 F8 11:rrr:bbb

URDMSR r64, r64

MR V/N.E. USER_MSR Load into register bbb the value of the MSR with
address in rrr.

VEX.128.F2.MAP7:W0.F8 11:000:bbb

URDMSR r64, imm32

MI V/N.E. USER_MSR Load into register bbb the value of the MSR with
address in the 32-bit immediate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

MR ModRM:r/m (r) ModRM:reg (r) N/A N/A

MI ModRM:r/m (r) imm32 N/A N/A
Document Number: 319433-055 2-32

INSTRUCTION SET REFERENCE, A-Z
No new VMX execution controls are added for URDMSR; legacy MSR controls suffice. Legacy VMMs should not allow
guests to set IA32_USER_MSR_CTL.ENABLE and thus should not receive these VM exits.

Operation

DEST := MSR[SRC]

Flags Affected

None.

Protected Mode Exceptions
#UD The URDMSR instruction is not recognized outside 64-bit mode.

Real-Address Mode Exceptions
#UD The URDMSR instruction is not recognized outside 64-bit mode.

Virtual-8086 Mode Exceptions
#UD The URDMSR instruction is not recognized outside 64-bit mode.

Compatibility Mode Exceptions
#UD The URDMSR instruction is not recognized outside 64-bit mode.

64-Bit Mode Exceptions
#GP(0) If MSR_address[63:14] is not all zero.

If the MSR address is in the range 0−3FFH and bit n in the URDMSR bitmap is 0, where n is the
MSR address.
If a standalone RDMSR to the specified MSR would result in a #GP(0) exception due to the
MSR not being accessible.
If executed inside an enclave and URDMSR would cause a VM exit as defined in the section
titled “Virtualization Behavior.”

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=1):EDX.USER_MSR[bit 15] = 0.
If IA32_USER_MSR_CTL.ENABLE = 0.

Table 2-6. Format of the VM-Exit Instruction Information Field Used for URDMSR and UWRMSR
Bit Position Content

2:0 Undefined.

6:3 Reg1: (ModR/M field, source / dest data operand)

0 = RAX / 1 = RCX / 2 = RDX / 3 = RBX / 4 = RSP / 5 = RBP / 6 = RSI / 7 = RDI.

8–15 represent R8–R15, respectively.

31:7 Undefined.
Document Number: 319433-055 2-33

INSTRUCTION SET REFERENCE, A-Z
UWRMSR—User Write to Model-Specific Register

Instruction Operand Encoding

Description
UWRMSR writes the contents of operand 2 into the 64-bit MSR specified in operand 1. Operand 2 is a general-
purpose register, while operand 1 may be either a general-purpose register or an immediate. UWRMSR writes the
indicated MSR in the same manner as WRMSR, but it is limited to a specific set of MSRs. Table 2-7 gives the list of
MSRs currently writeable by UWRMSR.

The MSRs enumerated in Table 2-7 can be written by UWRMSR at any privilege level but under OS control. The OS
controls what MSRs can be read by the URDMSR and UWRMSR instructions with a 4-KByte bitmap located at an
aligned linear address in the IA32_USER_MSR_CTL (MSR address 1CH). The UWRMSR instruction is enabled only
if bit 0 of this MSR is 1.
The high 2 KBytes of the bitmap control UWRMSR (they compose the UWRMSR bitmap); the 2 KBytes includes one
bit for each MSR address in the range 0H–3FFFH. UWRMSR may write to an MSR only if the bit corresponding to the
MSR has value 1; otherwise (or if the MSR address is outside that range) UWRMSR causes a general-protection
exception (#GP).
UWRMSR accesses to these bitmaps are implicit supervisor-mode accesses, which means they use supervisor priv-
ilege regardless of CPL. The OS can create an alias to the bitmap in the user address space if it wants the applica-
tion to know which MSRs are permitted. Still, the alias should be mapped read-only to prevent the application from
overwriting the bitmap. UWRMSR behaves like WRMSRNS and is not defined as a serializing instruction (see
“Serializing Instructions” in Chapter 9 of the Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 3A). Refer to the WRMSRNS instruction for a thorough explanation of what this implies.

Virtualization Behavior
Like WRMSR, execution of UWRMSR in VMX non-root operation causes a VM exit if any of the following are true:
• The “use MSR bitmaps” VM-execution control is 0.
• The value of the MSR address is not in the range 00000000H–00001FFFH.
• The value of the MSR address is in the range 00000000H–00001FFFH, and bit n in the write bitmap for low

MSRs is 1, where n is the value of the MSR address.
Such VM exits have priority below a #GP due to an MSR address outside the bitmap range or whose bit is clear in
the bitmap. In enclave mode, UWRMSR will cause a #GP(0) exception instead of a VM exit if any of the above
conditions are true.

Opcode /
Instruction

Op/
En

64/32 bit
Mode
Support

CPUID
Feature
Flag

Description

F30F 38 F8 11:rrr:bbb

UWRMSR r64, r64

RM V/N.E. USER_MSR Load into the MSR with address in rrr the value of
register bbb.

VEX.128.F3.MAP7:W0.F8 11:000:bbb

UWRMSR imm32, r64

IM V/N.E. USER_MSR Load into the MSR with address in the 32-bit
immediate the value of register bbb.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

RM ModRM:reg (r, w) ModRM:r/m (r) N/A N/A

IM imm32 ModRM:r/m (r) N/A N/A

Table 2-7. MSRs Writeable by UWRMSR
MSR Name MSR Address Enumeration

IA32_UINTR_TIMER 1B00H CPUID.07H.1.EDX[bit 13] (Processor supports User Timer feature)

IA32_UARCH_MISC_CTL 1B01H IA32_ARCH_CAPABILITIES[bit 12] (Processor supports DOITM)
Document Number: 319433-055 2-34

INSTRUCTION SET REFERENCE, A-Z
A VM exit for the above reasons for the UWRMSR instruction will specify exit reason 81 (decimal). The exit qualifi-
cation is set to the MSR address causing the VM exit. The VM-exit instruction length and VM-exit instruction infor-
mation fields will be populated for these VM exits. See Table 2-6, found under the URDMSR instruction, for details.
No new VMX execution controls are added for UWRMSR; legacy MSR controls suffice. Legacy VMMs should not
allow guests to set IA32_USER_MSR_CTL.ENABLE and thus should not receive these VM exits.

Operation

MSR[DEST] := SRC

Flags Affected

None.

Protected Mode Exceptions
#UD The UWRMSR instruction is not recognized outside 64-bit mode.

Real-Address Mode Exceptions
#UD The UWRMSR instruction is not recognized outside 64-bit mode.

Virtual-8086 Mode Exceptions
#UD The UWRMSR instruction is not recognized outside 64-bit mode.

Compatibility Mode Exceptions
#UD The UWRMSR instruction is not recognized outside 64-bit mode.

64-Bit Mode Exceptions
#GP(0) If MSR_address[63:14] is not all zero.

If the MSR address is in the range 0−3FFH and bit n in UWRMSR bitmap is 0, where n is the
MSR address.
If the specified MSR is not listed in Table 2-7, “MSRs Writeable by UWRMSR.”
If WRMSR to the specified MSR would result in a #GP(0) exception due to the MSR not being
accessible or attempting to set bits that are reserved.
If executed inside an enclave and UWRMSR would cause a VM exit as defined in the section
titled “Virtualization Behavior.”

#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=1):EDX.USER_MSR[bit 15] = 0.
If IA32_USER_MSR_CTL.ENABLE = 0.
Document Number: 319433-055 2-35

INSTRUCTION SET REFERENCE, A-Z
VSM4KEY4—Perform Four Rounds of SM4 Key Expansion

Instruction Operand Encoding

Description
The VSM4KEY4 instruction performs four rounds of SM4 key expansion. The instruction operates on independent
128-bit lanes.
Additional details can be found at: https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.
Both SM4 instructions use a common sbox table:
BYTE sbox[256] = {
0xD6, 0x90, 0xE9, 0xFE, 0xCC, 0xE1, 0x3D, 0xB7, 0x16, 0xB6, 0x14, 0xC2, 0x28, 0xFB, 0x2C, 0x05,
0x2B, 0x67, 0x9A, 0x76, 0x2A, 0xBE, 0x04, 0xC3, 0xAA, 0x44, 0x13, 0x26, 0x49, 0x86, 0x06, 0x99,
0x9C, 0x42, 0x50, 0xF4, 0x91, 0xEF, 0x98, 0x7A, 0x33, 0x54, 0x0B, 0x43, 0xED, 0xCF, 0xAC, 0x62,
0xE4, 0xB3, 0x1C, 0xA9, 0xC9, 0x08, 0xE8, 0x95, 0x80, 0xDF, 0x94, 0xFA, 0x75, 0x8F, 0x3F, 0xA6,
0x47, 0x07, 0xA7, 0xFC, 0xF3, 0x73, 0x17, 0xBA, 0x83, 0x59, 0x3C, 0x19, 0xE6, 0x85, 0x4F, 0xA8,
0x68, 0x6B, 0x81, 0xB2, 0x71, 0x64, 0xDA, 0x8B, 0xF8, 0xEB, 0x0F, 0x4B, 0x70, 0x56, 0x9D, 0x35,
0x1E, 0x24, 0x0E, 0x5E, 0x63, 0x58, 0xD1, 0xA2, 0x25, 0x22, 0x7C, 0x3B, 0x01, 0x21, 0x78, 0x87,
0xD4, 0x00, 0x46, 0x57, 0x9F, 0xD3, 0x27, 0x52, 0x4C, 0x36, 0x02, 0xE7, 0xA0, 0xC4, 0xC8, 0x9E,
0xEA, 0xBF, 0x8A, 0xD2, 0x40, 0xC7, 0x38, 0xB5, 0xA3, 0xF7, 0xF2, 0xCE, 0xF9, 0x61, 0x15, 0xA1,
0xE0, 0xAE, 0x5D, 0xA4, 0x9B, 0x34, 0x1A, 0x55, 0xAD, 0x93, 0x32, 0x30, 0xF5, 0x8C, 0xB1, 0xE3,
0x1D, 0xF6, 0xE2, 0x2E, 0x82, 0x66, 0xCA, 0x60, 0xC0, 0x29, 0x23, 0xAB, 0x0D, 0x53, 0x4E, 0x6F,
0xD5, 0xDB, 0x37, 0x45, 0xDE, 0xFD, 0x8E, 0x2F, 0x03, 0xFF, 0x6A, 0x72, 0x6D, 0x6C, 0x5B, 0x51,
0x8D, 0x1B, 0xAF, 0x92, 0xBB, 0xDD, 0xBC, 0x7F, 0x11, 0xD9, 0x5C, 0x41, 0x1F, 0x10, 0x5A, 0xD8,
0x0A, 0xC1, 0x31, 0x88, 0xA5, 0xCD, 0x7B, 0xBD, 0x2D, 0x74, 0xD0, 0x12, 0xB8, 0xE5, 0xB4, 0xB0,

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 DA /r

VSM4KEY4 xmm1, xmm2,
xmm3/m128

A V/V AVX

SM4

Performs four rounds of SM4 key expansion.

VEX.256.F3.0F38.W0 DA /r

VSM4KEY4 ymm1, ymm2,
ymm3/m256

A V/V AVX

SM4

Performs four rounds of SM4 key expansion.

EVEX.128.F3.0F38.W0 DA /r

VSM4KEY4 xmm1, xmm2,
xmm3/m128

B V/V AVX10.21

SM4

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Performs four rounds of SM4 key expansion.

EVEX.256.F3.0F38.W0 DA /r

VSM4KEY4 ymm1, ymm2,
ymm3/m256

B V/V AVX10.21

SM4

Performs four rounds of SM4 key expansion.

EVEX.512.F3.0F38.W0 DA /r

VSM4KEY4 zmm1, zmm2,
zmm3/m512

B V/V AVX10.21

SM4

Performs four rounds of SM4 key expansion.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B FULLMEM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Document Number: 319433-055 2-36

https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10

INSTRUCTION SET REFERENCE, A-Z
0x89, 0x69, 0x97, 0x4A, 0x0C, 0x96, 0x77, 0x7E, 0x65, 0xB9, 0xF1, 0x09, 0xC5, 0x6E, 0xC6, 0x84,
0x18, 0xF0, 0x7D, 0xEC, 0x3A, 0xDC, 0x4D, 0x20, 0x79, 0xEE, 0x5F, 0x3E, 0xD7, 0xCB, 0x39, 0x48
}

Operation
define ROL32(dword, n):

count := n % 32
dest := (dword << count) | (dword >> (32-count))
return dest

define SBOX_BYTE(dword, i):
// sbox[] array defined in introduction
return sbox[dword.byte[i]]

define lower_t(dword):
tmp.byte[0] := SBOX_BYTE(dword, 0)
tmp.byte[1] := SBOX_BYTE(dword, 1)
tmp.byte[2] := SBOX_BYTE(dword, 2)
tmp.byte[3] := SBOX_BYTE(dword, 3)
return tmp

define L_KEY(dword):
return dword ^ ROL32(dword, 13) ^ ROL32(dword, 23)

define T_KEY(dword):
return L_KEY(lower_t(dword))

define F_KEY(X0, X1, X2, X3, round_key):
return X0 ^ T_KEY(X1 ^ X2 ^ X3 ^ round_key)

VSM4KEY4 DEST, SRC1, SRC2
VL = (128, 256) // VEX versions
// or
VL = (128,256,512) // EVEX versions
KL := VL/128

for i in 0..KL-1:
P[0] := SRC1.xmm[i].dword[0]
P[1] := SRC1.xmm[i].dword[1]
P[2] := SRC1.xmm[i].dword[2]
P[3] := SRC1.xmm[i].dword[3]

C[0] := F_KEY(P[0], P[1], P[2], P[3], SRC2.xmm[i].dword[0])
C[1] := F_KEY(P[1], P[2], P[3], C[0], SRC2.xmm[i].dword[1])
C[2] := F_KEY(P[2], P[3], C[0], C[1], SRC2.xmm[i].dword[2])
C[3] := F_KEY(P[3], C[0], C[1], C[2], SRC2.xmm[i].dword[3])

DEST.xmm[i].dword[0] := C[0]
DEST.xmm[i].dword[1] := C[1]
DEST.xmm[i].dword[2] := C[2]
DEST.xmm[i].dword[3] := C[3]

DEST[MAXVL-1:VL] := 0
Document Number: 319433-055 2-37

INSTRUCTION SET REFERENCE, A-Z
Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instructions, see Exceptions Type 6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
EVEX-encoded instructions, see Exceptions Type E6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
Document Number: 319433-055 2-38

INSTRUCTION SET REFERENCE, A-Z
VSM4RNDS4—Performs Four Rounds of SM4 Encryption

Instruction Operand Encoding

Description
The SM4RNDS4 instruction performs four rounds of SM4 encryption. The instruction operates on independent 128-
bit lanes.
Additional details can be found at: https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10.
See “VSM4KEY4—Perform Four Rounds of SM4 Key Expansion” for the sbox table.

Operation
// see the VSM4KEY4 instruction for the definition of ROL32, lower_t

define L_RND(dword):
tmp := dword
tmp := tmp ^ ROL32(dword, 2)
tmp := tmp ^ ROL32(dword, 10)
tmp := tmp ^ ROL32(dword, 18)
tmp := tmp ^ ROL32(dword, 24)
return tmp

define T_RND(dword):
return L_RND(lower_t(dword))

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 DA /r

VSM4RNDS4 xmm1, xmm2,
xmm3/m128

A V/V AVX

SM4

Performs four rounds of SM4 encryption.

VEX.256.F2.0F38.W0 DA /r

VSM4RNDS4 ymm1, ymm2,
ymm3/m256

A V/V AVX

SM4

Performs four rounds of SM4 encryption.

EVEX.128.F2.0F38.W0 DA /r

VSM4RNDS4 xmm1, xmm2,
xmm3/m128

B V/V AVX10.21

SM4

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

Performs four rounds of SM4 encryption.

EVEX.256.F2.0F38.W0 DA /r

VSM4RNDS4 ymm1, ymm2,
ymm3/m256

B V/V AVX10.21

SM4

Performs four rounds of SM4 encryption.

EVEX.512.F2.0F38.W0 DA /r

VSM4RNDS4 zmm1, zmm2,
zmm3/m512

B V/V AVX10.21

SM4

Performs four rounds of SM4 encryption.

Op/En Tuple Type Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) VEX.vvvv (r) ModRM:r/m (r) N/A

B FULLMEM ModRM:reg (w) EVEX.vvvv (r) ModRM:r/m (r) N/A
Document Number: 319433-055 2-39

https://tools.ietf.org/html/draft-ribose-cfrg-sm4-10

INSTRUCTION SET REFERENCE, A-Z
define F_RND(X0, X1, X2, X3, round_key):
return X0 ^ T_RND(X1 ^ X2 ^ X3 ^ round_key)

VSM4RNDS4 DEST, SRC1, SRC2
VL = (128, 256) // VEX versions
//or
VL = (128, 256, 512) // EVEX versions
KL := VL/128

for i in 0..KL-1:
P[0] := SRC1.xmm[i].dword[0]
P[1] := SRC1.xmm[i].dword[1]
P[2] := SRC1.xmm[i].dword[2]
P[3] := SRC1.xmm[i].dword[3]

C[0] := F_RND(P[0], P[1], P[2], P[3], SRC2.xmm[i].dword[0])
C[1] := F_RND(P[1], P[2], P[3], C[0], SRC2.xmm[i].dword[1])
C[2] := F_RND(P[2], P[3], C[0], C[1], SRC2.xmm[i].dword[2])
C[3] := F_RND(P[3], C[0], C[1], C[2], SRC2.xmm[i].dword[3])

DEST.xmm[i].dword[0] := C[0]
DEST.xmm[i].dword[1] := C[1]
DEST.xmm[i].dword[2] := C[2]
DEST.xmm[i].dword[3] := C[3]

DEST[MAXVL-1:VL] := 0

Flags Affected
None.

SIMD Floating-Point Exceptions
None.

Other Exceptions
VEX-encoded instructions, see Exceptions Type 6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
EVEX-encoded instructions, see Exceptions Type E6 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A.
Document Number: 319433-055 2-40

INSTRUCTION SET REFERENCE, A-Z
WRMSRNS—Non-Serializing Write to Model Specific Register

Instruction Operand Encoding

Description

WRMSRNS is an instruction that behaves like WRMSR, except that it is not a serializing instruction by default. It can
be executed only at privilege level 0 or in real-address mode; otherwise, a general protection exception #GP(0) is
generated. WRMSRNS has an implicit form and an immediate form.
The implicit form writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR) specified
in the ECX register. The contents of the EDX register are copied to the high-order 32 bits of the selected MSR and
the contents of the EAX register are copied to the low-order 32 bits of the MSR. The high-order 32 bits of RAX, RCX,
and RDX are ignored.
The immediate form writes the contents of operand 2 into the 64-bit MSR specified by operand 1. Operand 2 is a
general-purpose register, while operand 1 is an immediate. The immediate form can be used only in 64-bit mode;
otherwise, a invalid-opcode exception (#UD) will be generated.
Unlike WRMSR, WRMSRNS is not defined as a serializing instruction (see “Serializing Instructions” in Chapter 9 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). This means that software should
not rely on it to drain all buffered writes to memory before the next instruction is fetched and executed. For imple-
mentation reasons, some processors may serialize when writing certain MSRs, even though that is not guaranteed.
Like WRMSR, WRMSRNS will ensure that all operations before it do not use the new MSR value and that all opera-
tions after the WRMSRNS do use the new value. An exception to this rule is certain store related performance
monitor events that only count when those stores are drained to memory. Since WRMSRNS is not a serializing
instruction, if software is using WRMSRNS to change the controls for such performance monitor events, then stores
before the WRMSRMS may be counted with new MSR values written by WRMSRNS. Software can insert the SERI-
ALIZE instruction before the WRMSRNS if so desired.
MSRs that cause a TLB invalidation when written via WRMSR (e.g., MTRRs) will also cause the same TLB invalida-
tion when written by WRMSRNS.
In order to improve performance, software may replace WRMSR with WRMSRNS. In places where WRMSR is being
used as a proxy for a serializing instruction, a different serializing instruction can be used (e.g., SERIALIZE).

Operation

IF implicit form
THEN

MSR[ECX] := EDX:EAX;
ELSE (* immediate form *)

MSR[DEST] := SRC;

Opcode/
Instruction

Op/
En

64/32 Bit
Mode
Support

CPUID Feature
Flag

Description

NP 0F 01 C6

WRMSRNS

ZO V/V WRMSRNS Write the value in EDX:EAX to MSR specified by
ECX.

VEX.128.F3.MAP7:W0.F6 11:000:bbb

WRMSRNS imm32, r64

IM V/N.E. MSR_IMM Write the value of register bbb to the MSR specified
in the 32-bit immediate.

EVEX.128.F3.MAP7:W0.F6 11:000:bbb

WRMSRNS imm32, r64

IM V/N.E. APX_F AND
MSR_IMM

Write the value of register bbb to the MSR specified
in the 32-bit immediate.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A

IM imm32 ModRM:r/m (r) N/A N/A
Document Number: 319433-055 2-41

INSTRUCTION SET REFERENCE, A-Z
Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.
If the immediate form is used.

Real-Address Mode Exceptions
#GP(0) If the specified MSR address is reserved or unimplemented MSR.

If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.

#UD If the LOCK prefix is used.
If the immediate form is used.

Virtual-8086 Mode Exceptions
#GP(0) For the implicit form: the WRMSRNS instruction is not recognized in virtual-8086 mode.
#UD For the immediate form: the WRMSRNS instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not 0.

If the specified MSR address is reserved or unimplemented MSR.
If the source data sets bits that are reserved in the specified MSR.
If the source data contains a non-canonical address and the specified MSR is one of the
following: IA32_BNDCFGS, IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE,
IA32_INTERRUPT_SSP_TABLE_ADDR, IA32_KERNEL_GS_BASE, IA32_LSTAR,
IA32_PL0_SSP, IA32_PL1_SSP, IA32_PL2_SSP, IA32_PL3_SSP, IA32_RTIT_ADDR0_A,
IA32_RTIT_ADDR0_B, IA32_RTIT_ADDR1_A, IA32_RTIT_ADDR1_B, IA32_RTIT_ADDR2_A,
IA32_RTIT_ADDR2_B, IA32_RTIT_ADDR3_A, IA32_RTIT_ADDR3_B, IA32_S_CET,
IA32_SYSENTER_EIP, IA32_SYSENTER_ESP, IA32_UINTR_HANDLER, IA32_UINTR_PD,
IA32_UINTR_STACKADJUST, IA32_U_CET, and IA32_UINTR_TT.
Document Number: 319433-055 2-42

INSTRUCTION SET REFERENCE, A-Z
#UD If the LOCK prefix is used.
If the immediate form is used and CPUID.(EAX=07H, ECX=01H):ECX.MSR_IMM[bit 5] = 0.
Document Number: 319433-055 2-43

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
CHAPTER 3
INTEL® AMX INSTRUCTION SET REFERENCE, A-Z

NOTES
The following Intel® AMX instructions have moved to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual: LDTILECFG, STTILECFG, TDPBF16PS,
TDPBSSD/TDPBSUD/TDPBUSD/TDPBUUD, TDPFP16PS, TILELOADD/TILELOADDT1, TILERELEASE,
TILESTORED, and TILEZERO.
The Intel Advanced Matrix Extensions introductory material and helper functions will be maintained
here, as well as in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, for the
reader’s convenience. For information on Intel AMX and the XSAVE feature set, and recommenda-
tions for system software, see the latest version of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

3.1 INTRODUCTION
Intel® Advanced Matrix Extensions (Intel® AMX) is a new 64-bit programming paradigm consisting of two compo-
nents: a set of 2-dimensional registers (tiles) representing sub-arrays from a larger 2-dimensional memory image,
and an accelerator able to operate on tiles, the first implementation is called TMUL (tile matrix multiply unit).
An Intel AMX implementation enumerates to the programmer how the tiles can be programmed by providing a
palette of options. Two palettes are supported; palette 0 represents the initialized state, and palette 1 consists of
8 KB of storage spread across 8 tile registers named TMM0..TMM7. Each tile has a maximum size of 16 rows x 64
bytes, (1 KB), however the programmer can configure each tile to smaller dimensions appropriate to their algo-
rithm. The tile dimensions supplied by the programmer (rows and bytes_per_row, i.e., colsb) are metadata that
drives the execution of tile and accelerator instructions. In this way, a single instruction can launch autonomous
multi-cycle execution in the tile and accelerator hardware. The palette value (palette_id) and metadata are held
internally in a tile related control register (TILECFG). The TILECFG contents will be commensurate with that
reported in the palette_table (see “CPUID—CPU Identification” in Chapter 1 for a description of the available
parameters).
Intel AMX is an extensible architecture. New accelerators can be added, or the TMUL accelerator may be enhanced
to provide higher performance. In these cases, the state (TILEDATA) provided by tiles may need to be made larger,
either in one of the metadata dimensions (more rows or colsb) and/or by supporting more tile registers (names).
The extensibility is carried out by adding new palette entries describing the additional state. Since execution is
driven through metadata, an existing Intel AMX binary could take advantage of larger storage sizes and higher
performance TMUL units by selecting the most powerful palette indicated by CPUID and adjusting loop and pointer
updates accordingly.
Figure 3-1 shows a conceptual diagram of the Intel AMX architecture. An Intel architecture host drives the algo-
rithm, the memory blocking, loop indices and pointer arithmetic. Tile loads and stores and accelerator commands
are sent to multi-cycle execution units. Status, if required, is reported back. Intel AMX instructions are synchro-
nous in the Intel architecture instruction stream and the memory loaded and stored by the tile instructions is
coherent with respect to the host’s memory accesses. There are no restrictions on interleaving of Intel architecture
and Intel AMX code or restrictions on the resources the host can use in parallel with Intel AMX (e.g., Intel AVX-
512). There is also no architectural requirement on the Intel architecture compute capability of the Intel architec-
ture host other than it supports 64-bit mode.
Document Number: 319433-055 3-1

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Intel AMX instructions use new registers and inherit basic behavior from Intel architecture in the same manner that
Intel SSE and Intel AVX did. Tile instructions include loads and stores using the traditional Intel architecture
register set as pointers. The TMUL instruction set (defined to be CPUID bits AMX-BF16 and AMX-INT8) only
supports reg-reg operations.
TILECFG is programmed using the LDTILECFG instruction. The selected palette defines the available storage and
general configuration while the rest of the memory data specifies the number of rows and column bytes for each
tile. Consistency checks are performed to ensure the TILECFG matches the restrictions of the palette. A General
Protection fault (#GP) is reported if the LDTILECFG fails consistency checks. A successful load of
TILECFG with a palette_id other than 0 is represented in this document with TILES_CONFIGURED = 1. When the
TILECFG is initialized (palette_id = 0), it is represented in the document as TILES_CONFIGURED = 0. Nearly all
Intel AMX instructions will generate a #UD exception if TILES_CONFIGURED is not equal to 1; the exceptions are
those that do TILECFG maintenance: LDTILECFG, STTILECFG and TILERELEASE.
If a tile is configured to contain M rows by N column bytes, LDTILECFG will ensure that the metadata values are
appropriate to the palette (e.g., that M ≤ 16 and N ≤ 64 for palette 1). The four M and N values can all be different
as long as they adhere to the restrictions of the palette. Further dynamic checks are done in the tile and the TMUL
instruction set to deal with cases where a legally configured tile may be inappropriate for the instruction operation.
Tile registers can be set to ‘invalid’ by configuring the rows and colsb to ‘0’.
Tile loads and stores are strided accesses from the application memory to packed rows of data. Algorithms are
expressed assuming row major data layout. Column major users should translate the terms according to their
orientation.
TILELOAD* and TILESTORE* instructions are restartable and can handle (up to) 2*rows page faults per instruction.
Restartability is provided by a start_row parameter in the TILECFG register.
The TMUL unit is conceptually a grid of fused multiply-add units able to read and write tiles. The dimensions of the
TMUL unit (tmul_maxk and tmul_maxn) are enumerated similar to the maximum dimensions of the tiles (see
“CPUID—CPU Identification” in Chapter 1 for details).
The matrix multiplications in the TMUL instruction set compute C[M][N] += A[M][K] * B[K][N]. The M, N, and K
values will cause the TMUL instruction set to generate a #UD exception if the dimensions do not match for matrix
multiply or do not match the palette.
In Figure 3-2, the number of rows in tile B matches the K dimension in the matrix multiplication pseudocode. K
dimensions smaller than that enumerated in the TMUL grid are also possible and any additional computation the
TMUL unit can support will not affect the result.

Figure 3-1. Intel® AMX Architecture

IA Host

Coherent Memory
Interface

Accelerator 1 (TMUL)

tmm0 += tmm1*tmm2

Accelerator 2

Tiles and
Accelerator
Commands

TILECFG

tmm0

tmm1

tmm[n-1]
...

New state to be managed by the OS.

Commands and status delivered synchronously via tile/accelerator instructions.

Dataflow; accelerators communicate to host through memory.
Document Number: 319433-055 3-2

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
The number of elements specified by colsb of the B matrix is also less than or equal to tmul_maxn. Any remaining
values beyond that specified by the metadata will be set to zero.

The XSAVE feature sets supports context management of the new state defined for Intel AMX. This support is
described in Section 3.2.

3.1.1 Tile Architecture Details
The supported parameters for the tile architecture are reported via CPUID; this includes information about how the
number of tile registers (max_names) can be configured (the palette). Configuring the tile architecture is intended
to be done once when entering a region of tile code using the LDTILECFG instruction specifying the selected palette
and describing in detail the configuration for each tile. Incorrect assignments will result in a General Protection fault
(#GP). Successful LDTILECFG initializes (zeroes) TILEDATA.
Exiting a tile region is done with the TILERELEASE instruction. It takes no parameters and invalidates all tiles (indi-
cating that the data no longer needs any saving or restoring). Essentially, it is an optimization of LDTILECFG with
an implicit palette of 0.
For applications that execute consecutive Intel AMX regions with differing configurations, TILERELEASE is not
required between them since the second LDTILECFG will clear all the data while loading the new configuration.
There is no instruction set support for automatic nesting of tile regions, though with sufficient effort software can
accomplish this by saving and restoring TILEDATA and TILECFG either through the XSAVE architecture or the Intel
AMX instructions.
The tile architecture boots in its INIT state, with TILECFG and TILEDATA set to zero. A successfully executing LDTI-
LECFG instruction to a non-zero palette sets the TILES_CONFIGURED=1, indicating the TILECFG is not in the INIT
state. The TILERELEASE instruction sets TILES_CONFIGURED = 0 and initializes (zeroes) TILEDATA.

Figure 3-2. The TMUL Unit

C[M][N]

B[K][N]

. . . .

FMA.0.N-1

. . . .
FMA.1.N-1

FMA.K-1.N-1

A[M][K]

FMA.0.0

. . . .

FMA.1.0

FMA.K-1.0

FMA.0.1

. . . .

FMA.1.1

FMA.K-1.1

A[m-1][1]

A[m][0]

. . . .

. . . .

A[m-K+1][K-1]

C[m][n-1]

C[m-K+1][n-1]

C[m][1]

C[m-K+1][1]

C[m][0]

C[m-K+1][0]

B[0][:N]

B[1][:N]

B[K-1][:N]

for m < M: // time steps
 for k < K: // grid height
 for n < N: // SIMD dimension
 C[m][n] += VNNI_MUL(A[m][k], B[k][n])
Document Number: 319433-055 3-3

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
To facilitate handling of tile configuration data, there is a STTILECFG instruction. If the tile configuration is in the
INIT state (TILES_CONFIGURED == 0), then STTILECFG will write 64 bytes of zeros. Otherwise STTILECFG will
store the TILECFG to memory in the format used by LDTILECFG.

3.1.2 TMUL Architecture Details
The supported parameters for the TMUL architecture are reported via CPUID; see “CPUID—CPU Identification” in
Chapter 1, page 1-26, for details. These parameters include a maximum height (tmul_maxk) and a maximum
SIMD dimension (tmul_maxn). The metadata that accompanies the srcdest, src1 and src2 tiles to the TMUL unit
will be dynamically checked to see that they match the TMUL unit support for the data type and match the require-
ments of a meaningful matrix multiplication.
Figure 3-3 shows an example of the inner loop of an algorithm of using the TMUL architecture to compute a matrix
multiplication. In this example, we use two result tiles, tmm0 and tmm1, from matrix C to accumulate the interme-
diate results. One tile from the A matrix (tmm2) is re-used twice as we multiply it by two tiles from the B matrix.
The algorithm then advances pointers to load a new A tile and two new B tiles from the directions indicated by the
arrows. An outer loop, not shown, adjusts the pointers for the C tiles.

Figure 3-3. Matrix Multiply C+= A*B

 LDTILECFG [rax]
// assume some outer loops driving the cache tiling (not shown)
{
 TILELOADD tmm0, [rsi+rdi] // srcdst, RSI points to C, RDI is strided value
 TILELOADD tmm1, [rsi+rdi+N] // second tile of C, unrolling in SIMD dimension N
 MOV r14, 0
LOOP:
 TILELOADD tmm2, [r8+r9] // src2 is strided load of A, reused for 2 TMUL instr.
 TILELOADD tmm3, [r10+r11] // src1 is strided load of B
 TDPBUSD tmm0, tmm2, tmm3 // update left tile of C
 TILELOADD tmm3, [r10+r11+N] // src1 loaded with B from next rightmost tile
 TDPBUSD tmm1, tmm2, tmm3 // update right tile of C
 ADD r8, K // update pointers by constants known outside of loop
 ADD r10, K*r11
 ADD r14, K
 CMP r14, LIMIT
 JNE LOOP

 TILESTORED [rsi+rdi], tmm0 // update the C matrix in memory
 TILESTORED [rsi+rdi+M], tmm1
 } // end of outer loop

 TILERELEASE // return tiles to INIT state

C BA
Document Number: 319433-055 3-4

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.1.3 Handling of Tile Row and Column Limits
Intel AMX operations will zero any rows and any columns beyond the dimensions specified by TILECFG. Tile opera-
tions will zero the data beyond the configured number of column bytes as each row is written. For example, with
64-byte rows and a tile configured with 10 rows and 48 columns, an operation writing dword elements would write
each of the first 10 rows with 48 bytes of output/result data and zero the remaining 16 bytes in each row. Tile oper-
ations also fully zero any rows after the first 10 configured rows. When using a 1 KByte tile with 64-byte rows,
there would be 16 rows, so in this example, the last 6 rows would also be zeroed.
Intel AMX instructions will always obey the metadata on reads and the zeroing rules on writes, and so a subsequent
XSAVE would see zeros in the appropriate locations. Tiles that are not written by Intel AMX instructions between
XRSTOR and XSAVE will write back with the same image they were loaded with regardless of the value of TILECFG.

3.1.4 Exceptions and Interrupts
Tile instructions are restartable so that operations that access strided memory can restart after page faults. To
support restarting instructions after these events, the instructions store information in the TILECFG.start_row
register. TILECFG.start_row indicates the row that should be used for restart; i.e., it indicates next row after the
rows that have already been successfully loaded (on a TILELOAD) or written to memory (on a TILESTORE) and
prevents repeating work that was successfully done.
The TMUL instruction set is not sensitive to the TILECFG.start_row value; this is due to there not being TMUL
instructions with memory operands or any restartable faults.

3.2 OPERAND RESTRICTIONS
Floating-point exceptions, denormal handling, and floating-point rounding: some of the Intel AMX instructions
operate on floating-point values. These instructions all function as if floating-point exceptions are masked, and use
the round-to-nearest-even (RNE) rounding mode. They also do not set any of the floating-point exception flags in
MXCSR. Table 3-1 describes the treatment of denormal inputs and outputs for Intel AMX operations.

3.3 IMPLEMENTATION PARAMETERS
The parameters are reported via CPUID leaf 1DH. Index 0 reports all zeros for all fields.

Table 3-1. Intel® AMX Treatment of Denormal Inputs and Outputs

Data Type Denormal Input Denormal Output

FP16 Allowed N/A

FP32 Treated as zero Flushed to zero

BF16 Treated as zero N/A

define palette_table[id]:
uint16_t total_tile_bytes
uint16_t bytes_per_tile
uint16_t bytes_per_row
uint16_t max_names
uint16_t max_rows
Document Number: 319433-055 3-5

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
The tile parameters are set by LDTILECFG or XRSTOR* of TILECFG:

3.4 HELPER FUNCTIONS
The helper functions used in Intel AMX instructions are defined below.

define tile[tid]:
byte rows
word colsb // bytes_per_row
bool valid

define write_row_and_zero(treg, r, data, nbytes):
for j in 0 ... nbytes-1:

treg.row[r].byte[j] := data.byte[j]

// zero the rest of the row
for j in nbytes ... palette_table[tilecfg.palette_id].bytes_per_row-1:

treg.row[r].byte[j] := 0

define zero_upper_rows(treg, r):
for i in r ... palette_table[tilecfg.palette_id].max_rows-1:

for j in 0 ... palette_table[tilecfg.palette_id].bytes_per_row-1:
treg.row[i].byte[j] := 0

define zero_tileconfig_start():
tilecfg.start_row := 0

define zero_all_tile_data():
if XCR0[TILEDATA]:

b := CPUID(0xD,TILEDATA).EAX // size of feature
for j in 0 ... b:

TILEDATA.byte[j] := 0
Document Number: 319433-055 3-6

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
define xcr0_supports_palette(palette_id):
if palette_id == 0:

return 1
elif palette_id == 1:

if XCR0[TILECFG] and XCR0[TILEDATA]:
return 1

return 0

define fma32(acc, x, y, daz, ftz, sae, rc):
// sae = suppress all exceptions. if 1= no exceptions
// are raised or denoted in mxcsr
if daz and denormal(x):

x = 0
if daz and denormal(y):

y = 0
if daz and denormal(acc):

acc = 0
// traditional infinite precision fma
// using sae and rounding control from rc
v = (x*y) + acc
if ftz and denormal(v):

v = 0
return v
Document Number: 319433-055 3-7

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
define convert_int128_to_fp32(in, type1, type2):
// int128 is an integer value
// type1 and type2 can be HF8, BF8

if (in == 0):
return 0

sign = in[127]
magnitude[127:0] = sign ? -in : in // get absolute value
Jbit_position = 126
while (magnitude[126]==0):

Jbit_position-- // get Jbit index
magnitude << 1 // normalize in to the left

// Jbit index is 126
// Lbit index is 126-23=103
// Gbit index is then 102
sticky = OR(magnitude[101:0]) // get sticky value
Gbit = magnitude[102] // get Gbit
Lbit = magnitude[103] // get Lbit
RndAdd1 = Gbit & (Lbit | sticky) // RNE parameter

Mantissa[24:0] = magnitude >> 103 // get mantissa[24:0] (Jbit in Mantissa[23])

RndMantissa = Mantissa + RndAdd1

Ovf = RndMantissa >> 24 // check if rounded mantissa overflow

match (type1, type2): // get exponent factor
case [BF8 BF8] : factor=32 // 2*16
case [HF8 HF8] : factor=18 // 2*9
case _ : factor=25 // 16+9

// Destination exponent = BIAS+(Jbit_position+Ovf)-factor
exp = 127 + Jbit_position – factor + Ovf // set destination exponent
frac = RndMantissa & 0x7FFFFF // set destination fraction

res = sign<<31 // set sign in bit[32]
res |= exp << 23 // set exp in bits[30:23]
res |= frac // get frac in bits[22:0]

return res // get fp32 format, RNE
Document Number: 319433-055 3-8

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
define convert_fp8_to_int64(x, type):
// The x parameter is the data,
//the type parameter is the data format indicating bfloat8 or hfloat8.
if *type is bf8*:

return convert_bf8_to_int64(x)
else:

return convert_hf8_to_int64(x)

define convert_fp32_to_bfloat16(x):
IF x is zero or denormal:

dest[15] := x[31] // sign preserving zero (denormal go to zero)
dest[14:0] := 0

ELSE IF x is infinity:
dest[15:0] := x[31:16]

ELSE IF x is nan:
dest[15:0] := x[31:16] // truncate and set msb of the mantisa force qnan
dest[6] := 1

ELSE // normal number
lsb := x[16]
rounding_bias := 0x00007FFF + lsb
temp[31:0] := x[31:0] + rounding_bias // integer add
dest[15:0] := temp[31:16]

return dest

define convert_bf8_to_int64(in):
// BF8 = E5M2
sign = (in & 0x80) >> 7
exp = (in & 0x7C) >> 2
frac = (in & 0x03)
mant = (exp==0) ? frac : (frac | 0x4) // set Jbit
e_count = (exp==0) ? 0 : exp – 1 // set integer alignment shift count

/* convert hf8 number into an integer 64bits number */
magnitude.int64= mant << e_count
res = sign ? -magnitude.int64: magnitude.int64

return res // value is 2^16*in
Document Number: 319433-055 3-9

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.5 NOTATION
Instructions described in this chapter follow the general documentation convention established in Intel® 64 and IA-
32 Architectures Software Developer’s Manual Volume 2A. Additionally, Intel® Advanced Matrix Extensions use
notation conventions as described below.
In the instruction encoding boxes, sibmem is used to denote an encoding where a MODRM byte and SIB byte are
used to indicate a memory operation where the base and displacement are used to point to memory, and the index
register (if present) is used to denote a stride between memory rows. The index register is scaled by the sib.scale
field as usual. The base register is added to the displacement, if present.
In the instruction encoding, the MODRM byte is represented several ways depending on the role it plays. The
MODRM byte has 3 fields: 2-bit MODRM.MOD field, a 3-bit MODRM.REG field and a 3-bit MODRM.RM field. When all
bits of the MODRM byte have fixed values for an instruction, the 2-hex nibble value of that byte is presented after
the opcode in the encoding boxes on the instruction description pages. When only some fields of the MODRM byte
must contain fixed values, those values are specified as follows:
• If only the MODRM.MOD must be 0b11, and MODRM.REG and MODRM.RM fields are unrestricted, this is

denoted as 11:rrr:bbb. The rrr correspond to the 3-bits of the MODRM.REG field and the bbb correspond to
the 3-bits of the MODMR.RM field.

• If the MODRM.MOD field is constrained to be a value other than 0b11, i.e., it must be one of 0b00, 0b01, or
0b10, then we use the notation !(11).

• If the MODRM.REG field had a specific required value, e.g., 0b101, that would be denoted as mm:101:bbb.

NOTE
Historically the Intel® 64 and IA-32 Architectures Software Developer’s Manual only specified the
MODRM.REG field restrictions with the notation /0 ... /7 and did not specify restrictions on the
MODRM.MOD and MODRM.RM fields in the encoding boxes.

3.6 EXCEPTION CLASSES
Alignment exceptions: The Intel AMX instructions that access memory will never generate #AC exceptions.

define convert_hf8_to_int64(in):
sign = (in & 0x80) >> 7
exp = (in & 0x78) >> 3
frac = (in & 0x07)
mant = (exp==0) ? frac : (frac | 0x8) // set Jbit
e_count = (exp=0) ? 0 : exp – 1 // set integer alignment shift count

/* convert hf8 number into an integer 64bits number */
magnitude.int64 = mant << e_count
res = sign ? -magnitude.int64 : magnitude.int64

return res // value is 2^9*in
Document Number: 319433-055 3-10

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Table 3-2. Intel® AMX Exception Classes

Class Description

AMX-E1

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP based on palette and configuration checks (see pseudocode).
• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E1-EVEX

All of AMX-E1 exceptions. Additionally:
• #UD if EVEX.z ≠ 0b0 // P2[7].
• #UD if EVEX.LL’ ≠ 0b00 // P2[6:5].
• #UD if EVEX.b ≠ 0b0 // P2[4].
• #UD if EVEX.aaa ≠ 0b000 // P2[2:0].
• #UD if EVEX.VVVV ≠ 0b1111 // P1[6:3].
• #UD if EVEX.V’ ≠ 0b1 // P2[3].

AMX-E2

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if a page fault occurs.

AMX-E2-EVEX

All of AMX-E2 exceptions. Additionally:
• #UD if EVEX.z ≠ 0b0 // P2[7].
• #UD if EVEX.LL’ ≠ 0b00 // P2[6:5].
• #UD if EVEX.b ≠ 0b0 // P2[4].
• #UD if EVEX.aaa ≠ 0b000 // P2[2:0].
• #UD if EVEX.VVVV ≠ 0b1111 // P1[6:3].
• #UD if EVEX.V’ ≠ 0b1 // P2[3].

AMX-E3

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if not using SIB addressing.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc or tdest are not valid tiles.
• #UD if tsrc/tdest are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if tsrc.colbytes mod 4 ≠ 0 OR tdest.colbytes mod 4 ≠ 0.
• #UD if tilecfg.start_row ≥ tsrc.rows OR tilecfg.start_row ≥ tdest.rows.

• #GP if the memory address is in a non-canonical form.

• #SS(0) if the memory address referencing the SS segment is in a non-canonical form.

• #PF if any memory operand causes a page fault.

• #NM if XFD[18] == 1.
Document Number: 319433-055 3-11

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
AMX-E3-EVEX

All of AMX-E3 exceptions. Additionally:
• #UD if EVEX.z ≠ 0b0 // P2[7].
• #UD if EVEX.LL’ ≠ 0b00 // P2[6:5].
• #UD if EVEX.b ≠ 0b0 // P2[4].
• #UD if EVEX.aaa ≠ 0b000 // P2[2:0].
• #UD if EVEX.VVVV ≠ 0b1111 // P1[6:3].
• #UD if EVEX.V’ ≠ 0b1 // P2[3].

AMX-E4

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if srcdest == src1 OR src1 == src2 OR srcdest == src2.
• #UD if TILES_CONFIGURED == 0.
• #UD if srcdest.colbytes mod 4 ≠ 0.
• #UD if src1.colbytes mod 4 ≠ 0.
• #UD if src2.colbytes mod 4 ≠ 0.
• #UD if srcdest/src1/src2 are not valid tiles.
• #UD if srcdest/src1/src2 are ≥ palette_table[tilecfg.palette_id].max_names.
• #UD if srcdest.colbytes ≠ src2.colbytes.
• #UD if srcdest.rows ≠ src1.rows.
• #UD if src1.colbytes / 4 ≠ src2.rows.
• #UD if srcdest.colbytes > tmul_maxn.
• #UD if src2.colbytes > tmul_maxn.
• #UD if src1.colbytes/4 > tmul_maxk.
• #UD if src2.rows > tmul_maxk.

• #NM if XFD[18] == 1.

AMX-E5

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.
• #UD if TILES_CONFIGURED == 0.
• #UD if tdest is not a valid tile.
• #UD if tdest is ≥ palette_table[tilecfg.palette_id].max_names.

• #NM if XFD[18] == 1.

AMX-E6

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if VVVV ≠ 0b1111.

Table 3-2. Intel® AMX Exception Classes (Continued)

Class Description
Document Number: 319433-055 3-12

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
AMX-E7-EVEX

• #UD if preceded by LOCK, 66h, F2h, F3h or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if XCR0[7:5] ≠ 0b111.
• #UD if XCR0[2:1] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc is not a valid tile (i.e., not configured).
• #UD if tsrc is not a valid tile name for configured palette.
• #UD if tsrc.colsb % 4 != 0.
• #UD if EVEX.z ≠ 0b0 // P2[7].
• #UD if EVEX.LL’ ≠ 0b10 // P2[6:5].
• #UD if EVEX.b ≠ 0b0 // P2[4].
• #UD if EVEX.aaa ≠ 0b000 // P2[2:0].
• #UD if EVEX.u ≠ 0b1 // P1[2].
• #UD if EVEX.V’ ≠ 0b1 // P2[3].
• #UD if EVEX.VVVV ≠ 0b1111 // P1[6:3].

• #NM if CR0[3] == 1 // TS.
• #NM if XFD[18] == 1.

• #GP if imm8&0x3f ≥ tsrc.rows.
• #GP if (imm8»6) * VL.bytes ≥ tsrc.colsb.

AMX-E8-EVEX

• #UD if preceded by LOCK, 66h, F2h, F3h or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if XCR0[7:5] ≠ 0b111.
• #UD if XCR0[2:1] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrc is not a valid tile (i.e., not configured).
• #UD if tsrc is not a valid tile name for configured palette.
• #UD if tsrc.colsb % 4 ≠ 0.
• #UD if EVEX.z ≠ 0b0 // P2[7].
• #UD if EVEX.LL’ ≠ 0b10 // P2[6:5].
• #UD if EVEX.b ≠ 0b0 // P2[4].
• #UD if EVEX.aaa ≠ 0b000 // P2[2:0].
• #UD if EVEX.u ≠ 0b1 // P1[2].
• #UD if EVEX.V’ ≠ 0b1 // P2[3].

• #NM if CR0[3] == 1. // TS
• #NM if XFD[18] == 1.

• #GP if r32&0xffff ≥ tsrc.rows
• #GP if (((r32»16) & 0xffff) * VL.bytes) ≥ tsrc.colsb.

AMX-E9

• #UD if preceded by LOCK, 66H, F2H, F3H or REX prefixes.
• #UD if CR4.OSXSAVE ≠ 1.
• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if palette expresses state not supported by XCR0.
• #UD if TILES_CONFIGURED == 0.
• #UD if VEX.VVVV ≠ 0b1111.
• #UD if src1/tdest is not a valid tile.
• #UD if src1/tdest.colbytes % 4 ≠ 0.
• #UD if tsrc.rows ≠ tdst.colsb/4.
• #UD if tsrc.colsb/4 ≠ tdst.rows.

• #NM if XFD[18] == 1.

Table 3-2. Intel® AMX Exception Classes (Continued)

Class Description
Document Number: 319433-055 3-13

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
3.7 INSTRUCTION SET REFERENCE

AMX-E10

• #UD if XCR0[18:17] ≠ 0b11.
• #UD if IA32_EFER.LMA ≠ 1 OR CS.L ≠ 1.
• #UD if palette expresses state not supported by XCR0 (future expansion).
• #UD if TILES_CONFIGURED == 0.
• #UD if tsrcdest == tsrc1 OR tsrc1 == tsrc2 OR tsrcdest == tsrc2.
• #UD if tsrc2.colbytes % 4 ≠ 0.
• #UD if tsrc1.colbytes % 4 ≠ 0.
• #UD if any of tsrdest, tsrc1, or tsrc2 are not valid tiles (i.e., not configured).
• #UD if any of tsrdest, tsrc1, or tsrc2 are not valid tile names for configured palette.
• #UD if tsrcdest.colbytes ≠ tsrc2.colbytes.
• #UD if tsrcdest.rows ≠ tsrc1.colbytes/4.
• #UD if tsrc1.rows ≠ tsrc2.rows.
• #UD if tsrcdest.colbytes > tmul_maxn.
• #UD if tsrc2.colbytes > tmul_maxn.
• #UD if tsrc1.rows > tmul_maxk.
• #UD if tsrc2.rows > tmul_maxk.

• #NM if XFD[18] == 1.

Table 3-2. Intel® AMX Exception Classes (Continued)

Class Description
Document Number: 319433-055 3-14

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
T2RPNTLVW[Z0,Z1][,T1]—Tile Load to VNNI 16-Bit Format

Instruction Operand Encoding

Description

This instruction loads two tiles from memory, specified via a tsib, merges each pair of adjacent rows in a word-
interleaved manner, and places the results in a pair of destinations specified by tmm1.
The tile configuration for the destination tiles indicates the amount of data to read from memory. The instruction
merges and interleaves pairs of rows, each output row is twice as wide as a row from memory. The instruction
writes to one or two destination tiles based on the tile configuration. In the case of single destination tile the second
tile register must be configured to have zero rows and columns. In the case of two tile register destinations the
instruction places the maximum amount of data per (merged) row it can into the first destination register and
places the remainder into the second destination register. In this case, the number of rows in both destination
registers must be the same.
Since the instruction merges pairs of rows, it requires an even number of rows. The Z0 version of this instruction
will read a number of rows from memory that is twice the number of rows in tmm1. The Z1 version of the instruc-
tion reads one row less than that from memory, and instead uses a virtual row of all zeros for the last row; this
enables reading an odd number of rows from memory, automatically padding the data with a row of zeros.
The size of each row in memory is half the sum of the column bytes of the two destination tiles. For both destination
tiles, the column bytes must be a multiple of eight.
The “T1” version provides a hint to the implementation that the data would be reused but does not need to be resi-
dent in the nearest cache levels.

Table 3-4 describes allowed configurations of the destination tiles, where MAX_BPR is
palette_table[palette_id].bytes_per_row and MAX_ROWS is palette_table[palette_id].max_rows
Any attempt to execute these instructions inside an Intel TSX transaction will result in a transaction abort.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.0F38.W0 6E !(11):rrr:100
T2RPNTLVWZ0 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE Load two tiles of data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem.

VEX.128.NP.0F38.W0 6F !(11):rrr:100
T2RPNTLVWZ0T1 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE Load two tiles of data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with hint to optimize
data caching.

VEX.128.66.0F38.W0 6E !(11):rrr:100
T2RPNTLVWZ1 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE Load two tiles of data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem.

VEX.128.66.0F38.W0 6F !(11):rrr:100
T2RPNTLVWZ1T1 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE Load two tiles of data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with hint to optimize
data caching.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A

Table 3-3. Valid Destination Tile Configurations
Row Size in Memory tiles[tbase+0].rows tiles[tbase+0].colsb tiles[tbase+1].rows tiles[tbase+1].colsb

≤ MAX_BPR/2 1 to MAX_ROWS 8, 16, 24, ..., MAX_BPR 0 0

> MAX_BPR/2 1 to MAX_ROWS MAX_BPR tiles[tbase+0].rows 8, 16, 24, ..., MAX_BPR
Document Number: 319433-055 3-15

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Operation

T2RPNTLVW[Z0,Z1][,T1] tdest1+1, tsib
//tiles[] is the tile register file
tbase := tdest1 & ~1 // pair base. For example, if tdest1==5 then tbase is 4

start := tileconfig.startRow
for n in 0 .. 1:

zero_upper_rows(tiles[tbase+n],(start+1)/2)
if start&1: // odd start values

r := start/2
tmp_row := tiles[tbase+n].row[r]
for d in 0..tiles[tbase+n].colsb/4:

tmp_row.dword[d].word[1] := 0
write_row_and_zero(tiles[tbase+n], r, tmp_row, tiles[tbase+n].colsb)

for n in 0 .. 1:
elements_per_row[n] := tiles[tbase+n].colsb/4

membegin := tsib.base + displacement
stride := tsib.index << tsib.scale

if T2RPNTLVWZ0[,T1]:
pad := 0

else if T2RPNTLVWZ1[,T1]:
pad := 1

while start < 2 * tiles[tbase+0].rows:
r := start / 2
w := start % 2
if start < 2 * tiles[tbase+0].rows – pad:

memptr := membegin + start * stride
tmp := read_memory(memptr, (tiles[tbase].colsb + tiles[tbase+1].colsb)/2)

else:
tmp := 0

for t in 0..1:
if tiles[tbase+t].colsb > 0:

tmp_row := tiles[tbase + t].row[r]
for d in 0..elements_per_row[t]-1:

n := t * elements_per_row[0] + d
tmp_row.dword[d].word[w] := tmp.word[n]

write_row_and_zero(tiles[tbase+t], r, tmp_row,tiles[tbase+t].colsb)
start := start + 1

zero_tileconfig_start()

Flags Affected

None.

Exceptions

VEX-encoded instructions, AMX-E11. See Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-16

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
T2RPNTLVW[Z0,Z1]RS[,T1]—Tile Load to VNNI 16-Bit Format Optimized for Read Only Shared
Data

Instruction Operand Encoding

Description

This instruction loads two tiles from memory, specified via a tsib, merges each pair of adjacent rows in a word-
interleaved manner, and places the results in a pair of destinations specified by tmm1.

The tile configuration for the destination tiles indicates the amount of data to read from memory. The instruction
merges and interleaves pairs of rows, each output row is twice as wide as a row from memory. The instruction
writes to one or two destination tiles based on the tile configuration. In the case of single destination tile the second
tile register must be configured to have zero rows and columns. In the case of two tile register destinations the
instruction places the maximum amount of data per (merged) row it can into the first destination register and
places the remainder into the second destination register. In this case, the number of rows in both destination
registers must be the same.

Since the instruction merges pairs of rows, it requires an even number of rows. The Z0 version of this instruction
will read a number of rows from memory that is twice the number of rows in tmm1. The Z1 version of the instruc-
tion reads one row less than that from memory, and instead uses a virtual row of all zeros for the last row; this
enables reading an odd number of rows from memory, automatically padding the data with a row of zeros.

The size of each row in memory is half the sum of the column bytes of the two destination tiles. For both destination
tiles, the column bytes must be a multiple of eight.

The “T1” version provides a hint to the implementation that the data would be reused but does not need to be resi-
dent in the nearest cache levels.

Table 3-4 describes allowed configurations of the destination tiles, where MAX_BPR is
palette_table[palette_id].bytes_per_row and MAX_ROWS is palette_table[palette_id].max_rows.
Any attempt to execute these instructions inside an Intel TSX transaction will result in a transaction abort.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.MAP5.W0 F8 !(11):rrr:100
T2RPNTLVWZ0RS tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE
AMX-MOVRS

Load two tiles data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with read-shared
indication.

VEX.128.NP.MAP5.W0 F9 !(11):rrr:100
T2RPNTLVWZ0RST1 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE
AMX-MOVRS

Load two tiles data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with read-shared
indication and hint to optimize data caching.

VEX.128.66.MAP5.W0 F8 !(11):rrr:100
T2RPNTLVWZ1RS tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE
AMX-MOVRS

Load two tiles data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with read-shared
indication.

VEX.128.66.MAP5.W0 F9 !(11):rrr:100
T2RPNTLVWZ1RST1 tmm1+1, sibmem

A V/N.E. AMX-TRANSPOSE
AMX-MOVRS

Load two tiles data into a pair of word-
interleaved tiles tmm1 and tmm2 as specified
by information in sibmem with read-shared
indication and hint to optimize data caching.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Document Number: 319433-055 3-17

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Additionally, this instruction indicates the source memory location is likely to become read-shared by multiple
processors, i.e., read in the future by at least one other processor before it is written, assuming it is ever written in
the future. Implementations may optimize the behavior of the caches, especially shared caches, for this data for
future reads by multiple processors. A future write to this data before it becomes read-shared will behave as usual,
but its performance may be less optimal than if the current read were done via a load without a read-shared hint.

Operation

See the “T2RPNTLVW[Z0,Z1][,T1]—Tile Load to VNNI 16-Bit Format” for the operation details.

Flags Affected

None.

Exceptions

VEX-encoded instructions, AMX-E11. See Section 3.6, “Exception Classes” for details.

Table 3-4. Destination Tile Configurations
Row Size in Memory tiles[tbase+0].rows tiles[tbase+0].colsb tiles[tbase+1].rows tiles[tbase+1].colsb

≤ MAX_BPR/2 1 to MAX_ROWS 8, 16, 24, ..., MAX_BPR 0 0

> MAX_BPR/2 1 to MAX_ROWS MAX_BPR tiles[tbase+0].rows 8, 16, 24, ..., MAX_BPR
Document Number: 319433-055 3-18

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCMMIMFP16PS/TCMMRLFP16PS—Matrix Multiplication of Complex Tiles Accumulated into
Packed Single Precision Tile

Instruction Operand Encoding

Description

These instructions perform matrix multiplication of two tiles containing complex elements and accumulate the
results into a packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is interpreted as a
complex number with FP16 real part and FP16 imaginary part.
TCMMRLFP16PS calculates the real part of the result. For each possible combination of (row of tmm2, column of
tmm3), the instruction performs a set of multiplication and accumulations on all corresponding complex numbers
(one from tmm2 and one from tmm3). The real part of the tmm2 element is multiplied with the real part of the
corresponding tmm3 element, and the negated imaginary part of the tmm2 element is multiplied with the imagi-
nary part of the corresponding tmm3 elements. The two accumulated results are added, and then accumulated
into the corresponding row and column of tmm1.
TCMMIMFP16PS calculates the imaginary part of the result. For each possible combination of (row of tmm2, column
of tmm3), the instruction performs a set of multiplication and accumulations on all corresponding complex
numbers (one from tmm2 and one from tmm3). The imaginary part of the tmm2 element is multiplied with the real
part of the corresponding tmm3 element, and the real part of the tmm2 element is multiplied with the imaginary
part of the corresponding tmm3 elements. The two accumulated results are added, and then accumulated into the
corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are
always flushed to zero but FP16 input denormals are not treated as zero.
MXCSR is not consulted nor updated.
Any attempt to execute these instructions inside an Intel TSX transaction will result in a transaction abort.

Operation

TCMMIMFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

src1 and src2 elements are pairs of fp16
elements_src1 := tsrc1.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 6C 11:rrr:bbb
TCMMIMFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-COMPLEX Matrix multiply complex elements from tmm2 and
tmm3, and accumulate the imaginary part into
single precision elements in tmm1.

VEX.128.NP.0F38.W0 6C 11:rrr:bbb
TCMMRLFP16PS tmm1, tmm2,
tmm3

A V/N.E. AMX-COMPLEX Matrix multiply complex elements from tmm2 and
tmm3, and accumulate the real part into single
precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-19

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
s1e = cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+0]) // real
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0]) // real
s1o = cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+1]) // imaginary
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1]) // imaginary

// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1o, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1e, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

TCMMRLFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)

src1 and src2 elements are pairs of fp16
elements_src1 := tsrc1.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:

s1e = cvt_fp16_to_fp32(tsrc1.row[m].fp16[2*k+0]) // real
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0]) // real
s1o = cvt_fp16_to_fp32(-tsrc1.row[m].fp16[2*k+1]) // imaginary: “-” is for imaginary*imaginary
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1]) // imaginary

// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1e, s2e, daz=1, ftz=1, sae=1, rc=RNE) // real
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1o, s2o, daz=1, ftz=1, sae=1, rc=RNE) // imaginary

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
Document Number: 319433-055 3-20

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32
write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-21

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCONJTCMMIMFP16PS—Matrix Conjugate Transpose and Multiplication of Complex Tiles
Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs a matrix conjugate transpose and multiplication of two tiles containing complex elements
and accumulates the results into a packed single precision tile. Each dword element in input tiles tmm2 and tmm3
is interpreted as a complex number with FP16 real part and FP16 imaginary part.
TCONJTCMMIMFP16PS calculates the imaginary part of the result. For each possible combination of (transposed
column of tmm2, column of tmm3), the instruction performs a set of multiplication and accumulations on all corre-
sponding complex numbers (one from tmm2 and one from tmm3). The negated imaginary part of the tmm2
element is multiplied with the real part of the corresponding tmm3 element, and the real part of the tmm2 element
is multiplied with the imaginary part of the corresponding tmm3 elements. The two accumulated results are added,
and then accumulated into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are
always flushed to zero but FP16 input denormals are not treated as zero. MXCSR is not consulted nor updated.
Any attempt to execute the TCONJTCMMIMFP16PS instruction inside an Intel TSX transaction will result in a trans-
action abort.

Operation

TCONJTCMMIMFP16PS tsrcdest, tsrc1, tsrc2
// C = M x N (tsrcdest), A = K x M(tsrc1), B = K x N (tsrc2)
tsrc1 and tsrc2 elements are pairs of fp16
elements_dest:= tsrcdest.colsb/4
elements_temp:= tsrcdest.colsb/2 //count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1.rows-1:

for n in 0 ... elements_dest-1:
s1e = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+0])
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])
s1o = cvt_fp16_to_fp32(-tsrc1.row[k].fp16[2*m+1]) // conjugate
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])
// FP32 FMA with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.
temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1o, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1e, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... elements_dest-1:
// FP32 add with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.0F38.W0 6B 11:rrr:bbb
TCONJTCMMIMFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-COMPLEX

Matrix conjugate transpose and multiply
FP16 complex numbers from tmm2 and
tmm3 and accumulate with packed single
precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-22

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
tmpf32 := temp1.fp32[2*n+0] + temp1.fp32[2*n+1]
tsrcdest.row[m].fp32[n] := tsrcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tsrcdest.row[m], tsrcdest.colsb)
zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E10; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-23

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCONJTFP16—Tile Conjugate Transpose FP16-Pair Complex Elements

Instruction Operand Encoding

Description

This instruction performs a conjugate transpose of an FP16-pair of complex elements from tmm2 and writes the
result to tmm1.
Any attempt to execute the TCONJTFP16 instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

TCONJTFP16 tdest, tsrc
for i in 0 ... tdest.rows-1:

for j in 0 ... tdest.colsb/4-1:
tmp.dword[j].fp16[0] := tsrc.row[j].dword[i].fp16[0]
tmp.dword[j].fp16[1] := -tsrc.row[j].dword[i].fp16[1]

write_row_and_zero(tdest,i,tmp,tdest.colsb)
zero_upper_rows(tdest,tdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E9; see Section 3.6, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 6B 11:rrr:bbb
TCONJTFP16 tmm1, tmm2

A V/N.E. AMX-TRANSPOSE
AMX-COMPLEX

Conjugate transpose FP16-pair complex
elements from tmm2 and write the result
to tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Document Number: 319433-055 3-24

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCVTROWD2PS—Tile Move Row and Convert INT32 to Single Precision

Instruction Operand Encoding

Description

This instruction moves a row from a tile register to a zmm destination register, converting the int32 source
elements to FP32. The row of the tile is selected by an imm8, or a 32-bit general-purpose register. If the row indi-
cated is out of range, a general protection exception #GP(0) is generated.
No SIMD exceptions are generated. Rounding is done as if MXCSR.RC=RNE. Embedded rounding is not supported.
MXCSR is neither consulted nor updated.
Any attempt to execute the TCVTROWD2PS instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

TCVTROWD2PS zdest, tsrc, r32
VL = (512)
VL_bytes := VL >> 3 // bits to bytes
row_index := r32&0xffff
row_chunk := ((r32>>16) & 0xffff) * VL_bytes

for i in 0 ... (VL_bytes/4)-1:
if i + row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(RNE);
zdest.f32[i] := Convert_Integer_To_Single_Precision_Floating_Point(tsrc.row[row_index].dword[row_chunk/4+i]);

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag1, 2

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

2. For instructions with a CPUID feature flag specifying a combination of AVX10 and some form of AVX512, a programmer should avoid
querying AVX512 enumerations when targeting Intel AVX10 systems, especially early E-core only systems, which will not enumerate
AVX512 CPUID Leaves.

Description

EVEX.512.F3.0F38.W0 4A 11:rrr:bbb
TCVTROWD2PS zmm1, tmm2, r32

A V/N.E. AMX-AVX512
AVX10.2

Move a row selected by r32 from tmm2 to
zmm1, converting the int32 source elements
to fp32.

EVEX.512.F3.0F3A.W0 07 11:rrr:bbb /ib
TCVTROWD2PS zmm1, tmm2, imm8

B V/N.E. AMX-AVX512
AVX10.2

Move a row selected by imm8 from tmm2 to
zmm1, converting the int32 source elements
to fp32.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) EVEX.vvvv (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A
Document Number: 319433-055 3-25

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCVTROWD2PS zdest, tsrc, imm8
VL = (512)
VL_bytes = VL >> 3 //bits to bytes
row_index := imm8&0x3f
row_chunk := (imm8>>6) * VL_bytes

for i in 0 ... (VL_bytes/4)-1:
if i+row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(RNE);
zdest.f32[i] := Convert_Integer_To_Single_Precision_Floating_Point(tsrc.row[row_index].dword[row_chunk/4+i]);

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Flags Affected

None.

Exceptions

Instruction Exception Type

TCVTROWD2PS zdest, tsrc, r32 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWD2PS zdest, tsrc, imm8 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-26

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCVTROWPS2PBF16[H,L]—Tile Move Row and Convert FP32 Elements to BF16 Elements

Instruction Operand Encoding

Description

This instruction moves a row from a tile register to a zmm destination register, converting the FP32 source
elements to BF16. The row of the tile is selected by an imm8, or a 32-bit general-purpose register. If the row indi-
cated is out of range, a general protection exception #GP(0) is generated.
TCVTROWPS2PBF16H places the resulting BF16 elements in the high 16 bits within each dword, while
TCVTROWPS2PBF16L places them in the low 16 bits.
No SIMD exceptions are generated. Rounding is done as if MXCSR.RC=RNE. Embedded rounding is not supported.
MXCSR is neither consulted nor updated.
Any attempt to execute the TCVTROWPS2PBF16[H,L] instructions inside an Intel TSX transaction will result in a
transaction abort.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag1, 2

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

2. For instructions with a CPUID feature flag specifying a combination of AVX10 and some form of AVX512, a programmer should avoid
querying AVX512 enumerations when targeting Intel AVX10 systems, especially early E-core only systems, which will not enumerate
AVX512 CPUID Leaves.

Description

EVEX.512.F2.0F38.W0 6D 11:rrr:bbb
TCVTROWPS2PBF16H zmm1, tmm2, r32

A V/N.E. AMX-AVX512
AVX10.2

Move a row selected by r32 from tmm2 to
zmm1, converting the fp32 source
elements to bf16 and place the resulting
bf16 elements in the high 16 bits within
each dword.

EVEX.512.F2.0F3A.W0 07 11:rrr:bbb /ib
TCVTROWPS2PBF16H zmm1, tmm2, imm8

B V/N.E. AMX-AVX512
AVX10.2

Move a row selected by imm8 from tmm2
to zmm1, converting the fp32 source
elements to bf16 and place the resulting
bf16 elements in the high 16 bits within
each dword.

EVEX.512.F3.0F38.W0 6D 11:rrr:bbb
TCVTROWPS2PBF16L zmm1, tmm2, r32

A V/N.E. AMX-AVX512
AVX10.2

Move a row selected by r32 from tmm2 to
zmm1, converting the fp32 source
elements to bf16 and place the resulting
bf16 elements in the low 16 bits within
each dword.

EVEX.512.F3.0F3A.W0 77 11:rrr:bbb /ib
TCVTROWPS2PBF16L zmm1, tmm2, imm8

B V/N.E. AMX-AVX512
AVX10.2

Move a row selected by imm8 from tmm2
to zmm1, converting the fp32 source
elements to bf16 and place the resulting
bf16 elements in the low 16 bits within
each dword.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) EVEX.vvvv (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A
Document Number: 319433-055 3-27

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Operation

TCVTROWPS2PBF16[H,L] zdest, tsrc, imm8
VL = (512)
VL_bytes := VL>>3 // bits to bytes
row_index := imm8&0x3f
row_chunk := (imm8>>6) * VL_bytes

if instruction is TCVTROWPS2PBF16H:
pos := 1
zeropos := 0

else:
pos := 0
zeropos := 1

for i in 0 ... (VL_bytes/4)-1:
if i+row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

zdest.word[2*i+zeropos] := 0
zdest.bf16[2*i+pos] := convert_fp32_to_bfloat16(tsrc.row[row_index].fp32[row_chunk/4+i], RNE)

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

TCVTROWPS2PBF16[H,L] zdest, tsrc, r32
VL = (512)
VL_bytes := VL >> 3 // bits to bytes
row_index := r32&0xffff
row_chunk := ((r32>>16) & 0xffff) * VL_bytes

if instruction is TCVTROWPS2PBF16H:
pos := 1
zeropos := 0

else:
pos := 0
zeropos := 1

for i in 0 ... (VL_bytes/4)-1:
if i+row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

zdest.word[2*i+zeropos] := 0
zdest.bf16[2*i+pos] := convert_fp32_to_bfloat16(tsrc.row[row_index].fp32[row_chunk/4+i], RNE)

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Flags Affected

None.
Document Number: 319433-055 3-28

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Exceptions

Instruction Exception Type

TCVTROWPS2PBF16H zmm1, tmm2, r32 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PBF16H zmm1, tmm2, imm8 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PBF16L zmm1, tmm2, r32 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PBF16L zmm1, tmm2, imm8 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-29

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TCVTROWPS2PH[H,L]—Tile Move Row and Convert Single Precision to FP16

Instruction Operand Encoding

Description

This instruction moves a row from a tile register to a zmm destination register, converting the FP32 source
elements to FP16. The row of the tile is selected by an imm8, or a 32-bit general-purpose register. If the row indi-
cated is out of range, a general protection exception #GP(0) is generated.
TCVTROWPS2PHH places the resulting FP16 elements in the high 16 bits within each dword, while
TCVTROWPS2PHL places them in the low 16 bits.
No SIMD exceptions are generated. Rounding is done as if MXCSR.RC=RNE. Embedded rounding is not supported.
MXCSR is neither consulted nor updated.
Input FP32 denormals become FP16 zeros on outputs. This instruction can produce FP16 denormal outputs.
(MXCSR.FTZ only controls FP32 and FP64 denormal outputs).
Any attempt to execute the TCVTROWPS2PH[H,L] instructions inside an Intel TSX transaction will result in a trans-
action abort.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag1, 2

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

2. For instructions with a CPUID feature flag specifying a combination of AVX10 and some form of AVX512, a programmer should avoid
querying AVX512 enumerations when targeting Intel AVX10 systems, especially early E-core only systems, which will not enumerate
AVX512 CPUID Leaves.

Description

EVEX.512.NP.0F38.W0 6D 11:rrr:bbb
TCVTROWPS2PHH zmm1, tmm2, r32

A V/N.E. AMX-AVX512
AVX10.2

Move a row selected by r32 from tmm2 to
zmm1, converting the fp32 source
elements to fp16 and place the resulting
fp16 elements in the high 16 bits within
each dword.

EVEX.512.NP.0F3A.W0 07 11:rrr:bbb /ib
TCVTROWPS2PHH zmm1, tmm2, imm8

B V/N.E. AMX-AVX512
AVX10.2

Move a row selected by imm8 from tmm2
to zmm1, converting the fp32 source
elements to fp16 and place the resulting
fp16 elements in the high 16 bits within
each dword.

EVEX.512.66.0F38.W0 6D 11:rrr:bbb
TCVTROWPS2PHL zmm1, tmm2, r32

A V/N.E. AMX-AVX512
AVX10.2

Move a row selected by r32 from tmm2 to
zmm1, converting the fp32 source
elements to fp16 and place the resulting
fp16 elements in the low 16 bits within
each dword.

EVEX.512.F2.0F3A.W0 77 11:rrr:bbb /ib
TCVTROWPS2PHL zmm1, tmm2, imm8

B V/N.E. AMX-AVX512
AVX10.2

Move a row selected by imm8 from tmm2
to zmm1, converting the fp32 source
elements to fp16 and place the resulting
fp16 elements in the low 16 bits within
each dword.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) EVEX.vvvv (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A
Document Number: 319433-055 3-30

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Operation

TCVTROWPS2PH[H,L] zdest, tsrc, imm8
VL = (512)
VL_bytes := VL>>3 // bits to bytes
row_index := imm8&0x3f
row_chunk := (imm8>>6) * VL_bytes

if instruction is TCVTROWPS2PHH:
pos := 1
zeropos := 0

else:
pos := 0
zeropos := 1

for i in 0 ... (VL_bytes/4)-1:
if i+row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

zdest.word[2*i+zeropos] := 0
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(RNE);
zdest.f16[2*i+pos] := vCvt_s2h(tsrc.row[row_index].fp32[row_chunk/4+i]);

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

TCVTROWPS2PH[H,L] zdest, tsrc, r32
VL = (512)
VL_bytes := VL>>3 // bits to bytes
row_index := r32&0xffff
row_chunk := ((r32>>16) & 0xffff) * VL_bytes

if instruction is TCVTROWPS2PHH:
pos := 1
zeropos := 0

else:
pos := 0
zeropos := 1

for i in 0 ... (VL_bytes/4)-1:
if i + row_chunk/4 >= tsrc.colsb/4:

zdest.dword[i] := 0
else:

zdest.word[2*i+zeropos] := 0
SET_ROUNDING_MODE_FOR_THIS_INSTRUCTION(RNE);
zdest.f16[2*i+pos] := vCvt_s2h(tsrc.row[row_index].fp32[row_chunk/4+i]);

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Flags Affected

None.
Document Number: 319433-055 3-31

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Exceptions

Instruction Exception Type

TCVTROWPS2PHH zmm1, tmm2, r32 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PHH zmm1, tmm2, imm8 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PHL zmm1, tmm2, r32 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.

TCVTROWPS2PHL zmm1, tmm2, imm8 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-32

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TDP[B,H,BH,HB]F8PS—Dot Product of FP8 Tiles Accumulated into Packed Single Precision Tile

Instruction Operand Encoding

Description

These instructions compute dot product of brain-float8 (BF8) or hybrid-float8 (HF8) accumulating into a single
precision (FP32). The input elements can be BF8 or HF8. These instructions have three tile operands, one
source/dest accumulator operand, and two source operands, src1 and src2. The src1 and src2 operands can be BF8
or HF8 independently, and the source/dest operand is always FP32.
TDPBF8PS is the dot product of a BF8 value (src1) by a BF8 value (src2) accumulating into a Single Precision (FP32)
source/dest.
TDPHF8PS is the dot product of an HF8 value (src1) by an HF8 value (src2) accumulating into a Single Precision
(FP32) source/dest.
TDPBHF8PS is the dot product of a BF8 value (src1) by an HF8 value (src2) accumulating into a Single Precision
(FP32) source/dest.
TDPHBF8PS is the dot product of an HF8 value (src1) by a BF8 value (src2) accumulating into a Single Precision
(FP32) source/dest.
All operations treat the presence of an input NaN value (in src and srcdest) as resulting in an FP32 QNaN_Indefinite
response in the destination of that operation, where a FP32 QNaN indefinite value is 0xFFC0.0000:
• Sign=’1
• Exp[7:0]= 0xFF
• Fraction[22:0]=0x40.0000
The tile registers specified must be distinct from one another, no repeats.
Rounding is always RNE. For the inputs, DAZ==0 is assumed, for the output FTZ==1 is assumed.
MXCSR is neither consulted nor updated, no exceptions are raised or denoted.
Any attempt to execute the TDP[B,H,BH,HB]F8PS instructions inside an Intel TSX transaction will result in a trans-
action abort.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.MAP5.W0 FD 11:rrr:bbb
TDPBF8PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP8 Matrix multiply BF8 elements from tmm2
and tmm3 and accumulate the packed
single precision elements in tmm1.

VEX.128.F2.MAP5.W0 FD 11:rrr:bbb
TDPBHF8PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP8 Matrix multiply HF8 elements from tmm2
and tmm3 and accumulate the packed
single precision elements in tmm1.

VEX.128.F3.MAP5.W0 FD 11:rrr:bbb
TDPHBF8PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP8 Matrix multiply BF8 elements from tmm2
and HF8 elements from tmm3 and
accumulate the packed single precision
elements in tmm1.

VEX.128.66.MAP5.W0 FD 11:rrr:bbb
TDPHF8PS tmm1, tmm2, tmm3

A V/N.E. AMX-FP8 Matrix multiply HF8 elements from tmm2
and BF8 elements from tmm3 and
accumulate the packed single precision
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-33

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Operation

TDP[B,H,BH,HB]F8PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)
src1 and src2 elements are 4-tuples of bfloat8 or hfloat8
elements_src1 = tsrc1.colsb / 4
elements_dest = tsrcdest.colsb / 4
elements_temp1 = tsrcdest.colsb / 4

if *tsrc1 is bfloat8*:
type1 = bf8

else:
type1 = hf8

if *tsrc2 is bfloat8*:
type2 = bf8

else:
type2 = hf8

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp1-1] = 0
for k in 0 ... elements_src1-1:

for n in 0 ... elements_dest-1:
// FP32 MUL with DAZ=1, FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
s1e0.int64 = convert_fp8_to_int64(tsrc1.row[m].float8[4*k+0], type1)
s2e0.int64 = convert_fp8_to_int64(tsrc2.row[k].float8[4*n+0], type2)
s1e1.int64 = convert_fp8_to_int64(tsrc1.row[m].float8[4*k+1], type1)
s2e1.int64 = convert_fp8_to_int64(tsrc2.row[k].float8[4*n+1], type2)

s1e2.int64 = convert_fp8_to_int64(tsrc1.row[m].float8[4*k+2], type1)
s2e2.int64 = convert_fp8_to_nt64(tsrc2.row[k].float8[4*n+2], type2)

s1e3.int64 = convert_fp8_to_int64(tsrc1.row[m].float8[4*k+3], type1)
s2e3.int64 = convert_fp8_to_int64(tsrc2.row[k].float8[4*n+3], type2)

temp.int128 = s1e0.int64 * s2e0.int64 + s1e1.int64 * s2e1.int64 + s1e2.int64 * s2e2.int64 + s1e3.int64 * s2e3.int64
temp1.int128[n] += temp.int128

// INF Computation treatment:
// -------------------------------
// mult(INF, normal) = INF (dest.sign == negative if INF.sign != normal.sign)
// add(INF, normal) = INF (dest.sign == INF.sign)
// mult(INF, ZERO) = QNaN_indefinite (i.e. invalid operation)
// add(+INF, -INF) = QNaN_indefinite (i.e. invalid operation)

// NaN treatment:
// ---------------------------
// if any element:
// * tsrc1.row[m].float8[4k, 4k+1, 4k+2, 4k+3],
// * tsrc2.row[k].float8[4n, 4n+1, 4n+2, 4n+3], or
// * tsrcdest.row[m].float32[n]
// has any NaN value, then the corresponding result
// tsrcdest.row[m].float32[n] is 0xFFC0.000 (QNaN Indefinite)
Document Number: 319433-055 3-34

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
for n in 0 ... elements_dest-1:
// FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 = convert_int128_to_fp32(temp1.int128[n], type1, type2)
tmp.row[m].fp32[n] = srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)
zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-35

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TILELOADDRS[,T1]—Load Tile Format Optimized for Read Only Shared Data

Instruction Operand Encoding

Description

This instruction moves data from the source operand (second operand), a memory operand, to the destination
operand (first operand), a register. This instruction may be used to load a TMM register from memory, The amount
of data moved is specified by the tile register operand’s tile configuration. Additionally, this instruction indicates the
source memory location is likely to become read-shared by multiple processors, i.e., read in the future by at least
one other processor before it is written, assuming it is ever written in the future.

Implementations may optimize the behavior of the caches, especially shared caches, for this data for future reads
by multiple processors. A future write to this data before it becomes read-shared will behave as usual, but its
performance may be less optimal than if the current read were done via a load without a read-shared hint.

The TILECFG.start_row in the XTILECFG data should be initialized to ‘0’ in order to load or store the entire tile and
is set to zero on successful completion of the instruction. This is a restartable instruction and the
TILECFG.start_row will be non-zero when restartable events occur during the instruction execution.
Any attempt to execute these instructions inside an Intel TSX transaction will result in a transaction abort.

Operation

TILELOADDRS[T1] tdest, tsib
start := tilecfg.start_row
zero_upper_rows(tdest,start)
membegin := tsib.base + displacement
// if no index register in the SIB encoding, the value zero is used.
stride := tsib.index << tsib.scale
nbytes := tdest.colsb
while start < tdest.rows:

memptr := membegin + start * stride
write_row_and_zero(tdest, start, read_memory(memptr, nbytes), nbytes)
start := start + 1

zero_tilecfg_start()
// In the case of a memory fault in the middle of an instruction, the tilecfg.start_row := start

Flags Affected

None.

Exceptions

VEX-encoded instructions, AMX-E3. See Section 3.6, “Exception Classes” for details.
EVEX-encoded instructions, AMX-E3-EVEX. See Section 3.6, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 4A !(11):rrr:100
TILELOADDRS tmm1, sibmem

A V/N.E. AMX-MOVRS Load data into tmm1 as specified by
information in sibmem with read-shared
indication.

VEX.128.66.0F38.W0 4A !(11):rrr:100
TILELOADDRST1 tmm1, sibmem

A V/N.E. AMX-MOVRS Load data into tmm1 as specified by
information in sibmem with read-shared
indication.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Document Number: 319433-055 3-36

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TILEMOVROW—Tile Move Row

Instruction Operand Encoding

Description

These instructions move one row of a tile register to a zmm register. The row of the tile is selected by an imm8, or
a 32-bit general-purpose register. If the row indicated is out of range, a general protection exception #GP(0) is
generated.
Any attempt to execute the TILEMOVROW instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

TILEMOVROW zdest, tsrc, imm8
VL = (512)
VL_bytes := VL>>3 // bits to bytes
row_index := imm8&0x3f
row_chunk := (imm8>>6) * VL_bytes

for i in 0 ... VL_bytes-1:
if row_chunk + i >= tsrc.colsb:

zdest.byte[i] := 0
else:

zdest.byte[i] := tsrc.row[row_index].byte[row_chunk+i]

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag1, 2

NOTES:

1. For instructions with a CPUID feature flag specifying AVX10, the programmer must check the available vector options on the proces-
sor at run-time via CPUID Leaf 24H, the Intel AVX10 Converged Vector ISA Leaf. This leaf enumerates the maximum supported vec-
tor width and as such will determine the set of instructions available to the programmer listed in the above opcode table.

2. For instructions with a CPUID feature flag specifying a combination of AVX10 and some form of AVX512, a programmer should avoid
querying AVX512 enumerations when targeting Intel AVX10 systems, especially early E-core only systems, which will not enumerate
AVX512 CPUID Leaves.

Description

EVEX.512.66.0F3A.W0 07 11:rrr:bbb /ib
TILEMOVROW zmm1, tmm2, imm8

A V/N.E. AMX-AVX512
AVX10.2

Move a row specified by imm8 from tmm2
to zmm1.

EVEX.512.66.0F38.W0 4A 11:rrr:bbb
TILEMOVROW zmm1, tmm2, r32

B V/N.E. AMX-AVX512
AVX10.2

Move a row specified by r32 from tmm2 to
zmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) imm8 (r) N/A

B N/A ModRM:reg (w) ModRM:r/m (r) EVEX.vvvv (r) N/A
Document Number: 319433-055 3-37

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TILEMOVROW zdest, tsrc, r32
VL = (512)
VL_bytes := VL>>3 // bits to bytes
row_index := r32&0xffff
row_chunk := ((r32>>16) & 0xffff) * VL_bytes

for i in 0 ... VL_bytes-1:
if row_chunk + i >= tsrc.colsb:

zdest.byte[i] := 0
else:

zdest.byte[i] := tsrc.row[row_index].byte[row_chunk+i]

zdest[MAX_VL-1:VL] := 0
zero_tileconfig_start()

Flags Affected

None.

Exceptions

Instruction Exception Type

TILEMOVROW zmm1, tmm2, r32 AMX-E7-EVEX. See Section 3.6, “Exception Classes” for details.

TILEMOVROW zmm1, tmm2, imm8 AMX-E8-EVEX. See Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-38

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TMMULTF32PS—Matrix Multiplication of TF32 Tiles into Packed Single Precision Tile

Instruction Operand Encoding

Description

This instruction performs matrix multiplication of two tiles containing single precision elements converted to TF32
and accumulates the results into a packed single precision tile. For each possible combination of (row of tmm2,
column of tmm3), the instruction performs a convert to TF32, multiply and then accumulates the result into the
corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output FP32 denormals
are always flushed to zero. Input single precision denormals are always handled and not treated as zero.
MXCSR is not consulted nor updated.
Any attempt to execute the TMMULTF32PS instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

define zero_lower_mantissa_bits_fp32(x):
// the input is an fp32 number.
// the output is a fp32 number with the low 13 bits set to zero
// This is masked FP32 referred to as TF32.
dword := 0
dword[31:13] := x[31:13]
return dword

define silence_snan_fp32(x):
// SNAN has exponent 255 and high fraction bit set to 0 and
// nonzero other fraction bits.
if x.exponent == 255 and x.fraction != 0 and x.fraction[22] == 0:

x.fraction[22] := 1
return x

TMMULTF32PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = m x k (tsrc1), B = k x n (tsrc2)
src1 and src2 elements are fp32
elements_src1 := tsrc1.colsb / 4
elements_src2 := tsrc2.colsb / 4
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 4

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... elements_src1-1:

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.66.0F38.W0 48 11:rrr:bbb
TMMULTF32PS tmm1, tmm2, tmm3

A V/N.E. AMX-TF32 Matrix multiply single precision elements
converted to TF32 from tmm2 and tmm3,
and accumulate the packed single precision
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-39

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
for n in 0 ... elements_dest-1:
// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
a := silence_snan_fp32(tsrc1.row[m].fp32[k])
b := silence_snan_fp32(tsrc2.row[k].fp32[n])
temp1.fp32[n] += zero_lower_mantissa_bits_fp32(a) * zero_lower_mantissa_bits_fp32(b)

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + temp1.fp32[n]

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E4; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-40

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TTCMM[IM,RL]FP16PS—Matrix Transpose and Multiplication of Complex Tiles Accumulated into
Packed Single Precision Tile

Instruction Operand Encoding

Description

These instructions perform matrix transpose and multiplication of two tiles containing complex elements and accu-
mulate the results into a packed single precision tile. Each dword element in input tiles tmm2 and tmm3 is inter-
preted as a complex number with FP16 real part and FP16 imaginary part.
The TTCMMRLFP16PS instruction calculates the real part of the result. For each possible combination of (trans-
posed column of tmm2, column of tmm3), the instruction performs a set of multiplication and accumulations on all
corresponding complex numbers (one from tmm2 and one from tmm3). The real part of the tmm2 element is
multiplied with the real part of the corresponding tmm3 element, and the negated imaginary part of the tmm2
element is multiplied with the imaginary part of the corresponding tmm3 elements. The two accumulated results
are added, and then accumulated into the corresponding row and column of tmm1.
The TTCMMIMFP16PS instruction calculates the imaginary part of the result. For each possible combination of
(transposed column of tmm2, column of tmm3), the instruction performs a set of multiplication and accumulations
on all corresponding complex numbers (one from tmm2 and one from tmm3). The imaginary part of the tmm2
element is multiplied with the real part of the corresponding tmm3 element, and the real part of the tmm2 element
is multiplied with the imaginary part of the corresponding tmm3 elements. The two accumulated results are added,
and then accumulated into the corresponding row and column of tmm1.
“Round to nearest even” rounding mode is used when doing each accumulation of the FMA. Output denormals are
always flushed to zero but FP16 input denormals are not treated as zero. MXCSR is not consulted nor updated.
Any attempt to execute the TTCMM[IM,RL]FP16PS instructions inside an Intel TSX transaction will result in a trans-
action abort.

Operation

TTCMMRLFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = k x m (tsrc1), B = k x n (tsrc2)
src1 and src2 elements are pairs of fp16
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1-1:

for n in 0 ... elements_dest-1:
s1e = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+0])
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 6B 11:rrr:bbb
TTCMMIMFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-COMPLEX

Matrix multiply complex elements from
dword transposed tmm2 and tmm3, and
accumulate the imaginary part into single
precision elements in tmm1.

VEX.128.F3.0F38.W0 6B 11:rrr:bbb
TTCMMRLFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-COMPLEX

Matrix multiply complex elements from
dword transposed tmm2 and tmm3, and
accumulate the real part into single
precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-41

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
s1o = cvt_fp16_to_fp32(-tsrc1.row[k].fp16[2*m+1]) // imaginary*imaginary
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])
// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1e, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1o, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

TTCMMIMFP16PS tsrcdest, tsrc1, tsrc2
// C = m x n (tsrcdest), A = k x m (tsrc1), B = k x n (tsrc2)
src1 and src2 elements are pairs of fp16
elements_dest := tsrcdest.colsb / 4
elements_temp := tsrcdest.colsb / 2 // Count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1.rows-1:

for n in 0 ... elements_dest-1:
s1e = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+0])
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])
s1o = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+1])
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])

// FP32 FMA with DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.

temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1o, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1e, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... elements_dest-1:
// DAZ=FTZ=1, RNE rounding.
// MXCSR is neither consulted nor updated.
// No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n] + temp1.fp32[2*n+1]
srcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.
Document Number: 319433-055 3-42

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Exceptions

AMX-E10; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-43

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TTDPBF16PS—Dot Product and Transpose of BF16 Tiles Accumulated into Packed Single
Precision Tile

Instruction Operand Encoding

Description

This instruction computes the transpose and dot product of BF16 pairs, accumulating to single precision. This
instruction has three tile operands, one source/dest accumulator operand, and two source operands, src1 and src2.
Src1 is transposed and matrix multiplied with src2. The transpose operation is done in BF16 pair granularity, trans-
forming columns of BF16 pairs into rows. The tile registers specified must be distinct from one another, no repeats.
Any attempt to execute the TTDPBF16PS instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

// C = M x N (tsrcdest), A = K x M(tsrc1), B = K x N (tsrc2)
// src1 and src2 elements are pairs of bfloat16
elements_dest:= tsrcdest.colsb/4
elements_temp:= tsrcdest.colsb/2 //count is in bfloat16 prior to horizontal

for m in 0 ... tsrcdest.rows-1
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1.rows-1:

for n in 0 ... elements_dest-1:
s1e = make_fp32(tsrc1.row[k].bfloat16[2*m+0])
s2e = make_fp32(tsrc2.row[k].bfloat16[2*n+0])
s1o = make_fp32(tsrc1.row[k].bfloat16[2*m+1])
s2o = make_fp32(tsrc2.row[k].bfloat16[2*n+1])

// FP32 FMA with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.

temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1e, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1o, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... Elements_dest-1:
// FP32 add with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.

tmpf32 := temp1.fp32[2*n+0] + temp1.fp32[2*n+1]
tsrcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 6C 11:rrr:bbb
TTDPBF16PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-BF16

Matrix multiply BF16 elements from dword
transposed tmm2 and tmm3, and
accumulate the packed single precision
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-44

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E10; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-45

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TTDPFP16PS—Dot Product and Transpose of FP16 Tiles Accumulated into Packed Single
Precision Tile

Instruction Operand Encoding

Description

This instruction computes the transpose and dot product of FP16 pairs, accumulating to single precision. This
instruction has three tile operands, one source/dest accumulator operand, and two source operands, src1 and src2.
Src1 is transposed and matrix multiplied with src2. The transpose operation is done in FP16 pair granularity, trans-
forming columns of FP16 pairs into rows. The tile registers specified must be distinct from one another, no repeats.
Any attempt to execute the TTDPFP16PS instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

// C = M x N (tsrcdest), A = K x M(tsrc1), B = K x N (tsrc2)
tsrc1 and tsrc2 elements are pairs of fp16
elements_dest:= tsrcdest.colsb/4
elements_temp:= tsrcdest.colsb/2 //count is in fp16 prior to horizontal

for m in 0 ... tsrcdest.rows-1:
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1.rows-1:

for n in 0 ... elements_dest-1:
s1e = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+0])
s2e = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+0])
s1o = cvt_fp16_to_fp32(tsrc1.row[k].fp16[2*m+1])
s2o = cvt_fp16_to_fp32(tsrc2.row[k].fp16[2*n+1])

// FP32 FMA with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.
temp1.fp32[2*n+0] = fma32(temp1.fp32[2*n+0], s1e, s2e, daz=1, ftz=1, sae=1, rc=RNE)
temp1.fp32[2*n+1] = fma32(temp1.fp32[2*n+1], s1o, s2o, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... Elements_dest-1:
// FP32 add with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.
tmpf32 := temp1.fp32[2*n+0] + temp1.fp32[2*n+1]
tsrcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + tmpf32
write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F2.0F38.W0 6C 11:rrr:bbb
TTDPFP16PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-BF16

Matrix multiply FP16 elements from dword
transposed tmm2 and tmm3, and
accumulate the packed single precision
elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-46

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Flags Affected

None.

Exceptions

AMX-E10; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-47

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TTMMULTF32PS—Matrix Transpose and Multiplication of TF32 Tiles into Packed Single
Precision Tile

Instruction Operand Encoding

Description

This instruction performs matrix multiplication of a transposed tile with another tile containing single precision
elements converted to TF32 and accumulates the results into a packed single precision tile. For each possible
combination of (transposed column of tmm2, column of tmm3), the instruction performs a convert to TF32,
multiply and then accumulates the result into the corresponding row and column of tmm1.
Any attempt to execute the TTMMULTF32PS instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

TTMMULTF32PS tsrcdest, tsrc1, tsrc2
// C = M x N (tsrcdest), A = K x M(tsrc1), B = K x N (tsrc2)
// tsrc1 and tsrc2 elements are fp32
elements_dest:= tsrcdest.colsb/4
elements_temp:= tsrcdest.colsb/4

for m in 0 ... tsrcdest.rows-1
temp1[0 ... elements_temp-1] := 0
for k in 0 ... tsrc1.rows-1:

for n in 0 ... elements_dest-1:
a1e := silence_snan_fp32(tsrc1.row[k].fp32[m])
a2e := silence_snan_fp32(tsrc2.row[k].fp32[n])
s1e := zero_lower_mantissa_bits_fp32(a1e)
s2e := zero_lower_mantissa_bits_fp32(a2e)

// FP32 FMA with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.

temp1.fp32[n] := fma32(temp1.fp32[n], s1e, s2e, daz=1, ftz=1, sae=1, rc=RNE)

for n in 0 ... elements_dest-1:
// FP32 add with DAZ=FTZ=1, RNE rounding. MXCSR is neither
// consulted nor updated. No exceptions raised or denoted.
tsrcdest.row[m].fp32[n] := srcdest.row[m].fp32[n] + temp1.fp32[n]

write_row_and_zero(tsrcdest, m, tmp, tsrcdest.colsb)

zero_upper_rows(tsrcdest, tsrcdest.rows)
zero_tileconfig_start()

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.NP.0F38.W0 48 11:rrr:bbb
TTMMULTF32PS tmm1, tmm2, tmm3

A V/N.E. AMX-TRANSPOSE
AMX-TF32

Matrix multiply single precision elements
converted to TF32 from transposed tmm2
and tmm3, and accumulate the packed
single precision elements in tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (r, w) ModRM:r/m (r) VEX.vvvv (r) N/A
Document Number: 319433-055 3-48

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
Flags Affected

None.

Exceptions

AMX-E10; see Section 3.6, “Exception Classes” for details.
Document Number: 319433-055 3-49

INTEL® AMX INSTRUCTION SET REFERENCE, A-Z
TTRANSPOSED—Matrix Transpose of 32-Bit Elements

Instruction Operand Encoding

Description

This instruction transposes 32-bit elements from tmm2 and writes the result to tmm1. This instruction has two tile
operands, one source operand, and one destination operand.
Any attempt to execute the TTRANSPOSED instruction inside an Intel TSX transaction will result in a transaction
abort.

Operation

for i in 0 ... tdest.rows-1:
for j in 0 ... tdest.colsb/4-1:

tmp.dword[j] := tsrc.row[j].dword[i]
write_row_and_zero(tdest,i,tmp,tdest.colsb)

zero_upper_rows(tdest,tdest.rows)
zero_tileconfig_start()

Flags Affected

None.

Exceptions

AMX-E9; see Section 3.6, “Exception Classes” for details.

Opcode/
Instruction

Op/
En

64/32
bit Mode
Support

CPUID Feature
Flag

Description

VEX.128.F3.0F38.W0 5F 11:rrr:bbb
TTRANSPOSED tmm1, tmm2

A V/N.E. AMX-TRANSPOSE Transpose dword from tmm2 and write the
result into tmm1.

Op/En Tuple Operand 1 Operand 2 Operand 3 Operand 4

A N/A ModRM:reg (w) ModRM:r/m (r) N/A N/A
Document Number: 319433-055 3-50

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
CHAPTER 4
INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES

Intel® Resource Director Technology (Intel® RDT) provides several monitoring and control capabilities for shared
resources in multiprocessor systems. This chapter covers updates to the Cache Bandwidth Allocation feature of
Intel RDT.
Previous versions of this document contained additional information on Intel RDT. This information can now be
found in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, as well as in a new docu-
ment titled “Intel® Resource Director Technology Architecture Specification,” available here:
https://cdrdv2.intel.com/v1/dl/getContent/789566.

4.1 CACHE BANDWIDTH ALLOCATION (CBA)

4.1.1 Introduction to Cache Bandwidth Allocation
The Cache Bandwidth Allocation (CBA) feature provides control over bandwidth available between Level 1 (L1)
caches, Level 2 (L2) Caches, and Level 3 (L3) Caches (as applicable) for each of the logical processors. Since
reducing upstream bandwidth can also reduce bandwidth to external memory, this also provides an indirect control
of memory bandwidth. The CBA feature, along with the MBA, provides a mechanism to control the bandwidth of
different applications.
A given CLOS used for L3 CAT, for instance, means the same thing as a CLOS used for CBA. Infrastructure such as
the MSR used to associate a logical processor with a CLOS (the IA32_PQR_ASSOC_MSR) and some elements of the
CPUID enumeration (such as CPUID leaf 10H (Cache Allocation Technology Enumeration Leaf)) are shared. For
more information, refer to the “Intel® Resource Director Technology Architecture Specification.”
The following sections describe the CPUID enumeration and configuration interfaces (Model-Specific Registers)
applicable to the Cache Bandwidth Allocation feature.

4.1.2 Cache Bandwidth Allocation Enumeration
As with certain other Intel RDT features, enumeration of the presence and details of the CBA feature is provided via
a sub-leaf of the CPUID instruction.
Key components of the enumeration include support for the CBA feature on the processor, and if CBA is supported,
the following details:
• Number of supported Classes of Service for the processor.
• Scope of the CBA feature MSRs.
• The maximum CBA throttle Level supported.
• An indication of whether the throttle values that can be programmed are linearly spaced or not.
The presence of any of the Intel RDT features that enable control over shared platform resources is enumerated by
executing CPUID instruction with EAX = 07H and ECX = 0H as input. If CPUID.(EAX=07H, ECX=0H):EBX.PQE[bit
15] reports 1, the processor supports software control over shared processor resources. Software may then use
CPUID leaf 10H to enumerate additional details on the specific controls provided.
Using CPUID leaf 10H, software may determine whether CBA is supported on the platform. Specifically, as shown
in Figure 17-31, bit 5 of the EBX register indicates whether CBA is supported on the processor, and the bit position
(5) constitutes a Resource ID (ResID), which allows the enumeration of CBA details. For instance, if bit 5 is
supported, this implies the presence of CPUID.10H.[ResID=5] as shown in CPUID.(EAX=10H, ECX=5H), CBA
Feature Details Identification, which provides the following details (this information can also be found in Table 1-3,
“Information Returned by CPUID Instruction”):
Document Number: 319433-055 4-1

https://cdrdv2.intel.com/v1/dl/getContent/789566

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
• CPUID.(EAX=10H, ECX=ResID=5):EAX

— EAX[7:0] reports the maximum CBA throttling value supported.

— EAX[11:8] reports the scope of CBA IA32_QoS_Core_BW_Thrtl_n MSRs. If EAX[11:8]=1, this indicates the
logical processor scope of the MSRs.

— EAX[31:12] is reserved.
• CPUID.(EAX=10H, ECX=ResID=5):EBX

— EBX[31:0] is reserved.
• CPUID.(EAX=10H, ECX=ResID=5):ECX

— ECX[3] reports whether the response of the bandwidth control is approximately linear. If ECX[3] is 1, the
response of the bandwidth control is approximately linear. If ECX[3] is 0, the response of the bandwidth
control is non-linear.

— ECX[2:0] and ECX[31:4] are reserved.
• CPUID.(EAX=10H, ECX=ResID=5):EDX

— EDX[15:0] reports the number of Classes of Service supported for the feature. Add one to the return value
to get the result. For instance, a reported value of 15 implies a maximum of 16 supported CBA CLOS.

— EDX[31:16] is reserved.

Figure 4-1. CPUID.(EAS=10H, ECX=5H), CBA Feature Details Identification

031

Reserved

031 3 2

31 12 11 8 7 0

Reserved

ECX

EBX

EAX CBA_MAX_Throttle_Level

31 16 15 0

Reserved CLOS_MAXEDX

 CPUID.(EAX = 10H, ECX = ResID = 5) Output:

Reserved

CBA_Lin_Rsp

Scope of
CBA MSRs
Document Number: 319433-055 4-2

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
4.1.3 Cache Bandwidth Allocation Configuration
The configuration of CBA consists of two processes once enumeration is complete:
• The association of logical processors to Classes of Service (CLOS) is accomplished commonly across Intel RDT

features through the IA32_PQR_ASSOC MSR. Software may update the CLOS field of the PQR MSR dynami-
cally, including at context swap time, to maintain the proper association of logical processors to Classes of
Service on the hardware.

• A new set of architectural MSRs is added to enable software to communicate the memory bandwidth QoS
requirements of the application running on the logical processor. The scope of these MSRs,
IA32_QoS_Core_BW_Thrtl_n, is per logical processor. Each MSR encodes packed 8-bit fields indexed by Class
of Service, which specify the Throttle Level for each CLOS.

The CLOS field value of the IA32_PQR_ASSOC MSR is used to index into the MSRs and select the software-specified
Throttle Level. Each logical processor uses this level to control the bandwidth across the cache hierarchy. The hard-
ware ensures coordination with the MBA feature (where present). The reset value of the CLOS[i].Level=0 indicates
unthrottled bandwidth. This field may be programmed from 0 to CBA_MAX_Throttle_Level (see Figure 4-1). Any
values outside this range will generate a #GP(0). A higher value of CLOS[i].Level implies a higher level of band-
width throttling, and a lower number indicates lesser throttling. The number of supported CLOS for a given logical
processor is enumerated in CPUID.(EAX=10H, ECX=5H):EDX. In an example where a logical processor supports 16
CLOS, two 64-bit MSRs with packed Throttling Levels (TLs) are defined, IA32_QoS_Core_BW_Thrtl_0 (defining
packed TLs for CLOS[7:0]) and IA32_QoS_Core_BW_Thrtl_1 (defining TLs for CLOS[15:8]). For example, within
the MSR IA32_QoS_Core_BW_Thrtl_0, bits [7:0] define the TL field for CLOS 0 (see Figure 4-2).

Advanced versions of the MBA feature may manage the external memory bandwidth associated with the CLOS by
dynamically increasing or decreasing the bandwidth, under software guidance, to maintain throttling priorities
while maximizing system performance as described in the Intel Software Developer's Manual and the Intel RDT
Architecture Specification. The CBA feature, along with the MBA, provides a mechanism to control the bandwidth
of different applications. Software should understand that the effective throttling of an application may be which-
ever of the CBA or MBA specifies more throttling. Software may use CBA, MBA, or a combination to achieve band-
width and performance management goals if supported on a processor.

Table 4-1. Cache Bandwidth Allocation (CBA) MSRs

Delay Value MSR Address

IA32_QoS_Core_BW_Thrtl_0 E00H

IA32_QoS_Core_BW_Thrtl_1 E01H

IA32_QoS_Core_BW_Thrtl_2 E02H

... ...

IA32_QoS_Core_BW_Thrtl _'(((COS_MAX+1)/8) - 1)' E00H + ((COS_MAX from CPUID.10H.5 + 1)/8 - 1)
Document Number: 319433-055 4-3

INTEL® RESOURCE DIRECTOR TECHNOLOGY FEATURE UPDATES
Note that the throttling values provided to the software are calibrated through specific traffic patterns; however, as
workload characteristics may vary, the response precision and linearity of the bandwidth threshold values will vary
across products and should be treated as approximate values only.

4.1.4 Cache Bandwidth Allocation Usage Considerations
Cache Bandwidth Allocation has various software usage considerations and improves efficiency over product
generations. See the “Intel® Resource Director Technology Architecture Specification” for additional details.

Figure 4-2. IA32_QoS_Core_BW_Thrtl_n MSR Definition

063

IA32_QoS_Core_BW_Thrtl_0 MSR

[63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

CLOS[7].Level CLOS[6].Level CLOS[5].Level CLOS[4].Level CLOS[3].Level CLOS[2].Level CLOS[1].Level CLOS[0].Level

Base MSR Address = E00H

063

IA32_QoS_Core_BW_Thrtl_1 MSR

[63:56] [55:48] [47:40] [39:32] [31:24] [23:16] [15:8] [7:0]

CLOS[15].Level CLOS[14].Level CLOS[13].Level CLOS[12].Level CLOS[11].Level CLOS[10].Level CLOS[9].Level CLOS[8].Level

Base MSR Address = E01H
Document Number: 319433-055 4-4

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
CHAPTER 5
REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE

5.1 INTRODUCTION
Remote Atomic Operations (RAO) are a set of instructions to improve synchronization performance. RAO is espe-
cially useful in multiprocessor applications that have a set of characteristics commonly found together:
• A need to update, i.e., read and modify, one or more variables atomically, e.g., because multiple processors

may attempt to update the same variable simultaneously.
• Updates are not expected to be interleaved with other reads or writes of the variables.
• The order in which the updates happen is unimportant.
One example of this scenario is a multiprocessor histogram computation, where multiple processors cooperate to
compute a shared histogram, which is then used in the next phase of computation. This is described in more detail
in Section 5.8.1.
RAO instructions aim to provide high performance in this scenario by:
• Atomically updating memory without returning any information to the processor itself.
• Relaxing the ordering of RAO instructions with respect to other updates or writes to the variables.
RAO instructions are defined such that, unlike conventional atomics (e.g., LOCK ADD), their operations may be
performed closer to memory, such as at a shared cache or memory controller. Performing operations closer to
memory reduces or even eliminates movement of data between memory and the processor executing the instruc-
tion. They also have weaker ordering guarantees than conventional atomics. This facilitates execution closer to
memory, and can also lead to reduced stalls in the processor pipeline. These properties mean that using RAO
instead of conventional atomics may provide a significant performance boost for the scenario outlined above.

5.2 INSTRUCTIONS
The current set of RAO instructions can be found in Chapter 2, “Instruction Set Reference, A-Z.” These instructions
include integer addition and bitwise AND, OR, and XOR. These operations may be performed on 32-bit (double-
word) or 64-bit (quadword) data elements. The destination, which is also one of the inputs, is always a location in
memory. The other input is a general-purpose register, ry, in Table 5-1. The instructions do not change any regis-
ters or flags.

5.3 ALIGNMENT REQUIREMENTS
The memory location updated by an RAO instruction must be naturally aligned. That is, a doubleword update must
be four-byte aligned and a quadword update must be eight-byte aligned. This facilitates implementations closer to
memory; otherwise, a single update may straddle a cache line boundary.

Table 5-1. RAO Instructions
Instruction Operation Function Data Types

AADD Atomic addition mem = mem + ry Doubleword, quadword

AAND Atomic bitwise AND mem = mem AND ry Doubleword, quadword

AOR Atomic bitwise OR mem = mem OR ry Doubleword, quadword

AXOR Atomic bitwise XOR mem = mem XOR ry Doubleword, quadword
Document Number: 319433-055 5-1

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
5.4 MEMORY ORDERING
RAO instructions have weaker memory ordering guarantees than conventional atomic instructions. Thus, other
instructions are not ordered with respect to RAO instructions as they are with conventional atomics.
More specifically, the memory operations from RAO instructions follow the Write Combining (WC) memory
protocol. From software's point of view, they behave similarly to non-temporal stores. Unlike non-temporal stores,
RAO instructions update a memory location, i.e., use the value in that location as an input, rather than overwrite
the current contents. Another critical difference is that with RAO, the memory location may be cached upon
completion of the instruction.
RAO instructions are not reordered with other memory accesses to the same memory location. That is, reads,
writes, and RAO instructions to the same location by the same processor will execute in program order.
However, RAO instructions may be reordered with certain memory accesses to other memory locations. In partic-
ular, RAO instructions may be reordered with writes or RAO instructions to other memory locations. This means, for
example, that if a processor executes a set of RAO instructions to a set of distinct addresses, those instructions
may appear to update memory in any order.
If a stronger ordering is required, software should use a fencing operation such as those implemented by the
LFENCE, SFENCE, and MFENCE instructions. However, note that RAO instructions are not ordered with respect to
younger LFENCE instructions since they do not load data from memory into the processor.

5.5 MEMORY TYPE
RAO instructions are restricted to operating on Write Back (WB) memory. Other memory types place restrictions on
the writing of and/or cacheability of data, which conflicts with RAO instructions' ability to cache data. Use of an RAO
instruction to access non-WB memory results in a general-protection exception (#GP).

5.6 WRITE COMBINING BEHAVIOR
RAO implementations that execute updates closer to memory require interconnect traffic between a processor and
the memory subsystem. To reduce such traffic, and increase the throughput of RAO operations, implementations
may combine multiple RAO memory operations before execution. This is similar to how multiple writes via a WC
protocol may combine before going to memory.
Implementations that combine RAO instructions take advantage of spatial locality, i.e., that a cache line contains
multiple data elements, and that separate instructions may update distinct elements in a given cache line. For
example, a first RAO instruction may update the first element in a cache line, and a second RAO instruction may
update the third element.
Implementations may have restrictions on combining operations. For example, they may only be able to combine
operations doing the same type of update (e.g., addition) and/or the same data element size.
Operations to the same cache line that are not combined must be serialized, and this could hurt performance. For
example, an operation to a given cache line may need to complete before a second operation to that cache line may
begin; otherwise, the memory system could have multiple concurrent accesses from the same processor to the
same cache line, and some implementations do not support this.

5.7 PERFORMANCE EXPECTATIONS
RAO instructions are expected to provide higher performance than conventional atomics under certain conditions.
The actual performance depends on both the implementation and the data access pattern for the memory location
(at the cache line granularity) updated with RAO instructions.
Document Number: 319433-055 5-2

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
5.7.1 Interaction Between RAO and Other Accesses
As discussed in Section 5.4, weak ordering allows RAO instructions to be reordered with respect to other memory
operations. This is a key difference from conventional atomics, which follow strong memory ordering, and can allow
a processor to execute RAO instructions with higher throughput. However, only certain reordering is allowed. If a
fence is used to enforce stronger ordering, or if a processor interleaves RAO updates with reads of the same
memory location, for example, this may result in serialized accesses, and hurt performance. If software performs
an RAO update to a memory location, and soon after reads that memory location, then the read needs to wait for
the update to complete. If the RAO is done close to memory, then the cache closest to the processor may not hold
a copy of the cache line after the RAO instruction executes, and the read may need to access a cache farther away
from the processor, or even go all the way to memory.
Mixing of RAO updates to a given memory location from one or more processors with non-RAO accesses to the
same memory location can also reduce the benefits of RAO. Implementations that perform RAO updates close to
memory can reduce data movement between a series of RAO updates to the same location. However, a non-RAO
access may cause a processor to cache the data close to itself; a subsequent RAO instruction from another
processor may require the line to be moved to a lower level of the cache hierarchy. Therefore, interleaving RAO and
non-RAO accesses to a given memory location can reduce or eliminate the data movement and/or performance
benefits of RAO.

5.7.2 Updates of Contended Data
Contended data is defined as data for which the memory system has memory accesses from multiple processors
in-flight simultaneously. That is, for contended data, the memory system is at some point in time handling at least
two accesses from different processors. Contended read-only data does not present a fundamental performance
problem, but if at least one of the contending processors attempts to write the data, e.g., perform an update on it,
the writer needs exclusive access to the data. Gaining exclusive access can be costly, in terms of latency and
traffic; in a system with caches, hardware must invalidate all other copies of the data to provide a processor exclu-
sive access.
For software performing a set of contended updates to a memory location with conventional atomic instructions,
data may “ping-pong” between processors. As each processor executes its update, it will obtain exclusive access to
the data, perform its update, and then have to send its new version of the data to the next processor wanting to
update it. The time to pass data from one processor to another, and the time that a processor takes to perform its
atomic update, limits the throughput in this scenario.
In contrast, if software uses RAO for such contended updates, and if the implementation performs the updates in
a central location such as a shared cache or at the memory controller, then this bottleneck is alleviated. In such a
scenario, each update will not have to fetch the current contents of the memory location or invalidate any other
copies of the data because the only valid copy is already at the hardware performing the update. The only funda-
mental limit to the throughput in this case is the time taken for each update. Therefore, we may expect that for
updates to contended lines, throughput is much higher with RAO. Further, reducing data movement means
reducing traffic between processors and memory. This may improve the performance of other memory accesses.

5.7.3 Updates of Uncontended Data
In contrast to contended data, uncontended data is data that is accessed by only a single processor or by multiple
processors, but far enough apart in time that at most a single memory access is executed at a time.
For uncontended data accessed by multiple processors, most of the above discussion about contended data still
applies. However, the frequency of updates is by definition lower for uncontended data. Therefore, the perfor-
mance benefits of RAO are expected to be lower in this situation.
For data accessed by only a single processor, data movement between processors is not an issue, and conventional
atomics can take advantage of the processor's caches. Performance may still be impacted by the strong ordering
of conventional atomics; memory accesses to other memory locations may not be reordered with these instruc-
tions. If software uses RAO instructions instead, the weaker ordering may provide some performance benefits.
However, if an implementation performs RAO updates closer to memory, it may not take advantage of all of the
processor's caches, and may even require removing the data from some of those caches. This could lead to an
increase in data movement, and potentially lower performance. Of course, if software is aware that only a single
processor will access the data, then it does not need to use atomic updates, but it may not always be so aware.
Document Number: 319433-055 5-3

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
5.8 EXAMPLES

5.8.1 Histogram
Histogram is a common computational pattern, including in multiprocessor programming, but achieving an effi-
cient parallel implementation can be tricky. In a conventional histogram computation, software sweeps over a set
of input values; it maps each input value to a histogram bin, and increments that bin.
Common multiprocessor histogram implementations partition the inputs across the processors, so each processor
works on a subset of the inputs. Straightforward implementations have each processor directly update the shared
histogram. To ensure correctness, since multiple processors may attempt updates to the same histogram bin
simultaneously, the updates must use atomics. As described above, using conventional atomics can be expensive,
especially when we have highly contended cache lines in the histogram. That may occur for small histograms or for
histograms where many inputs map to a small number of histogram bins.
A common alternative approach uses a technique called privatization, where each processor gets its own “local”
histogram; as each processor works on its subset of the inputs, it updates its local histogram. As a final “extra”
step, software must accumulate the local histograms into the globally shared histogram, a step called a reduction.
This reduction step is where processors synchronize and communicate; using it allows the computation of local
histograms to be embarrassingly parallel and require no atomics or inter-processor communication, and can often
lead to good performance. However, privatization has downsides:
• The reduction step can take a lot of time if the histogram has many bins.
• The time for a reduction is relatively constant regardless of the number of processors. As the number of

processors grows, therefore, the fraction of time spent on the reduction tends to grow.
• The local histograms require extra memory, and that memory footprint grows with the number of processors.
• The reduction is an “extra” step that complicates the software.
With RAO, software can use the simpler multiprocessor algorithm and achieve reliably good performance. The
following pseudo-code lists a RAO-based histogram implementation.

int *histogram; // “histogram” is a global histogram array

// in each processor:
double *data; // “data” is a per-processor array, holding a subset of all inputs
data = get_data(); // populate “data” values

for (size_t i = 0; i < data_size; ++i) {
int bin = map(data[i]); // map data[i] to a histogram bin
_aadd(&histogram[bin], 1); // RAO AADD instruction

}

The above code can provide good performance under various scenarios, i.e., sizes of histograms and biases in
which histogram bins are updated. RAO avoids data “ping-ponging” between processors, even under high conten-
tion. Further, the weak ordering of RAO allows a series of AADD instructions to overlap with each other in the pipe-
line, and thus provide for instruction level parallelism.
In addition to the performance benefits, the RAO code is simple and is thus easier to maintain.
While we specifically show and discuss histogram above, this computation pattern is very common, e.g., software
packet processing workloads exhibit this in how they track statistics of the packets. Other algorithms exhibiting this
pattern should similarly see benefits from RAO.

5.8.2 Interrupt/Event Handler
An interrupt/event handler, running either in a dedicated thread or preemptively in a specific processor, notifies a
set of receivers (e.g., all processors or threads in a waiting list) of the occurrence of an event by atomically setting
flags in the receivers' specific data fields. The example below shows how this may be done with RAO instructions.
Document Number: 319433-055 5-4

REMOTE ATOMIC OPERATIONS IN INTEL ARCHITECTURE
// One processor sets event bits to notify other processors:
01: void handle_event(event_t *e) {
02: uint32_t event_bits = process_event(e);
03: for (int i = 0; i < num_of_receivers; ++i) {
04: core_t *core = receivers[i];
05: _aor(&core->flags, event_bits); // RAO AOR instruction
06: if (some_condition) {
07: _aor(&core->extra_flags, event_bits); // combining of RAO could occur
08: } // if “extra_flags” and “flags” are in the same cache line
09: }
10: _mm_sfence(); // ensure event_bits are visible before leaving the handler
11: }

// In other processors:
12: if (my_core->flags & SOME_EVENT) {
13: …… // react to the occurrence of SOME_EVENT
14: clear_bits(&my_core->flags, SOME_EVENT);
15: }

With conventional atomics (e.g., LOCK OR), a significant portion of execution time of handle_event would be spent
accessing core->flags (line 5) and core->extra_flags (line 7). It is likely that when handle_event begins, the two
fields are in another processor's cache, e.g., if that processor updated some bits in the fields. Therefore, the data
would need to migrate to the cache of the processor executing handle_event.
In contrast, for the above code example, for RAO implementations that perform updates close to memory, the RAO
AOR instruction should reduce data movement of core->flags and core->extra_flags and thus result in a lower
execution latency. Further, when other processors later access these fields (lines 12-15), they will also benefit from
a lower latency due to reduced data movement, since they may get the data from a more central location.
Also note that since the order of notifications does not matter in this case, the function further takes advantage of
RAO's weak ordering, allowing multiple RAO AOR instructions to be executed concurrently. It does, however,
include a memory fence at the end (line 10), to ensure that all updates are visible to all processors before leaving
the handler.
Document Number: 319433-055 5-5

TOTAL STORAGE ENCRYPTION IN INTEL ARCHITECTURE
CHAPTER 6
TOTAL STORAGE ENCRYPTION IN INTEL ARCHITECTURE

6.1 INTRODUCTION
Total Storage Encryption (TSE) is an architecture that allows encryption of storage at high speed. TSE provides the
following capabilities:
• Protection (confidentiality) of data at rest in storage.
• NIST Standard AES-XTS Encryption.
• A mechanism for software to configure hardware keys (which are not software visible) or software keys.
• A consistent key interface to the crypto engine.

6.1.1 Key Programming Overview
Keys for TSE can either be programmed directly in plain text or through wrapped Binary Large Objects (BLOBs).
• Direct programming: Software programs keys after reset to the TSE engine using a structure in memory. Keys

may be exposed in memory.
• Wrapped BLOB programming: Wrapped-key BLOBs are generated once at provisioning time, persist across

boots, and are used directly to program the TSE engine without unwrapping/recovering keys in software.

6.1.1.1 Key Wrapping Support: PBNDKB
Platform Bind Key BLOB (PBNDKB) allows software to wrap secret information with a platform-specific wrapping
key and bind it to the TSE engine.

6.1.2 Unwrapping and Hardware Key Programming Support: PCONFIG
The PCONFIG instruction allows software to program keys to the TSE engine either directly from memory or using
PBNDKB-generated wrapped BLOBs.
The PCONFIG instruction is also used to program the TME-MK engine. For additional details on the PCONFIG
instruction, see Chapter 2 of this document.

6.2 ENUMERATION
CPUID enumerates the existence of the IA32_TSE_CAPABILITY MSR and the PBNDKB instruction.
The IA32_TSE_CAPABILITY MSR enumerates supported cryptographic algorithms and keys.

6.2.1 CPUID Detection
If CPUID.(EAX=07H, ECX=1):EBX.PBNDKB[bit 1] = 1, the processor supports the IA32_TSE_CAPABILITY MSR and
the PBNDKB instruction.

6.2.1.1 PCONFIG CPUID Leaf Extended to Support Total Storage Encryption
TSE is assigned a PCONFIG target identifier. The current PCONFIG target identifiers are as follows:
• 0: Invalid Target ID
• 1: TME-MK
Document Number: 319433-055 6-1

TOTAL STORAGE ENCRYPTION IN INTEL ARCHITECTURE
• 2: TSE
If TSE is supported on the platform, CPUID.PCONFIG_LEAF will enumerate TSE as a supported target in sub-leaf 0,
ECX=TSE:
• TSE_KEY_PROGRAM leaf is available when TSE is enumerated by PCONFIG as a target.
• TSE_KEY_PROGRAM_WRAPPED is available when TSE is enumerated by PCONFIG as a target.

6.2.2 Total Storage Encryption Capability MSR
The TSE_CAPABILITY MSR (9F1H) enumerates the supported capabilities of TSE. It has the fields shown in
Table 6-1.

Bits 15:0 enumerate, as a bitmap, the encryption algorithms that are supported. As of this writing, the only
supported algorithm is 256-bit AES-XTS, which is enumerated by setting bit 0.

6.3 VMX SUPPORT

6.3.1 Changes to VMCS Fields
A new execution control called “enable PBNDKB” is added to support TSE in bit 9 of the tertiary processor-based
execution controls field of the VMCS. If this control is zero, then any execution of the PBNDKB instruction causes
an invalid-opcode exception (#UD).

6.3.2 Changes to VMX Capability MSRs
Support for “enabled PBNDKB” is indicated by bit 9 of the IA32_VMX_PROCBASED_CTLS3 MSR (index 492H).

6.3.3 Changes to VM Entry
If bit 9 is clear in the IA32_VMX_PROCBASED_CTLS3 MSR, then VM entry fails if “enable PBNDKB” and the
“activate tertiary controls” primary processor-based VM-execution control are both 1.

6.4 INSTRUCTION SET
See Chapter 2 for details on the PBNDKB instruction, as well as information on updates to the PCONFIG instruction.

Table 6-1. TSE Capability MSR Fields
Bit Description

15:0 Supported encryption algorithms (see below).

23:16 TSE Engine Key Sources Supported.

35:24 Reserved.

50:36 TSE_MAX_KEYS (Indicates the maximum number of keys that are available).

63:51 Reserved.
Document Number: 319433-055 6-2

USER-TIMER EVENTS AND INTERRUPTS
CHAPTER 7
USER-TIMER EVENTS AND INTERRUPTS

This chapter describes an architectural feature called user-timer events.
The feature defines a new 64-bit value called the user deadline. Software may read and write the user deadline.
When the user deadline is not zero, a user-timer event becomes pending when the logical processor’s timestamp
counter (TSC) is greater than or equal to the user deadline.
A pending user-timer event is processed by the processor when CPL = 3 and certain other conditions apply. When
processed, the event results in a user interrupt with the user-timer vector. (Software may read and write the
user-timer vector). Specifically, the processor sets the bit in the UIRR (user interrupt request register) corre-
sponding to the user timer vector. The processing also clears the user deadline, ensuring that there will be no
subsequent user-timer events until software writes the user deadline again.
Section 7.1 discusses the enabling and enumeration of the new feature. Section 7.2 presents details of the user
deadline, and Section 7.3 explains how it (together with the user-timer vector) is represented in a new MSR.
Section 7.4 explains when and how a logical processor processes a pending user-timer event. Section 7.5 presents
VMX support for virtualizing the new feature.

7.1 ENABLING AND ENUMERATION
Processor support for user-timer events is enumerated by CPUID.(EAX=07H, ECX=1H):EDX.UTMR[bit 13]. If this
feature flag is set, the processor supports user-timer events, and software can access the IA32_UINTR_TIMER
MSR (see Section 7.3).

7.2 USER DEADLINE
A logical processor that supports user-timer events supports a 64-bit value called the user deadline. If the user
deadline is non-zero, the logical processor pends a user-timer event when the timestamp counter (TSC) reaches or
exceeds the user deadline.
Software can write the user deadline using instructions specified later in this chapter (see Section 7.3). The
processor enforces the following:
• Writing zero to the user deadline disables user-timer events and cancels any that were pending. As a result, no

user-timer event is pending after zero is written to the user deadline.
• If software writes the user deadline with a non-zero value that is less than the TSC, a user-timer event will be

pending upon completion of that write.
• If software writes the user deadline with a non-zero value that is greater than that of the TSC, no user-timer

event will be pending after the write until the TSC reaches the new user deadline.
• A logical processor processes a pending user-timer event under certain conditions; see Section 7.4. The logical

processor clears the user deadline after pending a user-timer event.
Races may occur if software writes a new user deadline when the value of the TSC is close to that of the original
user deadline. In such a case, either of the following may occur:
• The TSC may reach the original deadline before the write to the deadline, causing a user-timer event to be

pended. Either of the following may occur:

— If the user-timer event is processed before the write to the deadline, the logical processor will clear the
deadline before the write. The write to the deadline may cause a second user-timer event to occur later.

— If the write to the deadline occurs before the user-timer event is processed, the original user-timer event is
canceled, and any subsequent user-timer event will be based on the new value of the deadline.

When writing to the deadline, it may not be possible for software to control with certainty which of these two
situations occurs.
Document Number: 319433-055 7-1

USER-TIMER EVENTS AND INTERRUPTS
• The write to the deadline may occur before TSC reaches the original deadline. In this case, no user-timer event
will occur based on the original deadline. Any subsequent user-timer event will be based on the new value of
the deadline.

Software writes to the user deadline using a new MSR described in Section 7.3.

7.3 USER TIMER: ARCHITECTURAL STATE
The user-timer architecture defines a new MSR, IA32_UINTR_TIMER. This MSR can be accessed using MSR index
1B00H.
The IA32_UINTR_TIMER MSR has the following format:
• Bits 5:0 are the user-timer vector. Processing of a user-timer event results in the pending of a user interrupt

with this vector (see Section 7.4).
• Bits 63:6 are the upper 56 bits of the user deadline (see Section 7.2).
Note that no bits are reserved in the MSR and that writes to the MSR will not fault due to the value of the instruc-
tion's source operand. The IA32_UINTR_TIMER MSR can be accessed via the following instructions: RDMSR,
RDMSRLIST, URDMSR, UWRMSR, WRMSR, WRMSRLIST, and WRMSRNS.
If the IA32_UINTR_TIMER MSR is written with value X, the user-timer vector gets value X & 3FH; the user deadline
gets value X & ~3FH.
If the user-timer vector is V (0 ≤ V ≤ 63) and the user deadline is D, a read from the IA32_UINTR_TIMER MSR
return value (D & ~3FH) | V.

7.4 PENDING AND PROCESSING OF USER-TIMER EVENTS
There is a user-timer event pending whenever the user deadline (Section 7.2) is non-zero and is less than or equal
to the value of the timestamp counter (TSC).
If CR4.UINTR = 1, a logical processor processes a pending user-timer event at an instruction boundary at which the
following conditions all hold1: (1) IA32_EFER.LMA = CS.L = 1 (the logical processor is in 64-bit mode); (2) CPL =
3; (3) UIF = 1; and (4) the logical processor is not in the shutdown state or in the wait-for-SIPI state.2

When the conditions just identified hold, the logical processor processes a user-timer event. User-timer events
have priority just above that of user-interrupt delivery. If the logical processor was in a state entered using the
TPAUSE and UMWAIT instructions, it first wakes up from that state and becomes active. If the logical processor was
in enclave mode, it exits the enclave (via AEX) before processing the user-timer event.
The following pseudocode details the processing of a user-timer event:

UIRR[UserTimerVector] := 1;
recognize a pending user interrupt;// may be delivered immediately after processing
IA32_UINTR_TIMER := 0;// clears the deadline and the vector

Processing of a user-timer event aborts transactional execution and results in a transition to a non-transactional
execution. The transactional abort loads EAX as it would have had it been due to an ordinary interrupt.
Processing of a user-timer event cannot cause a fault or a VM exit.

7.5 VMX SUPPORT
The VMX architecture supports virtualization of the instruction set and its system architecture. Certain extensions
are needed to support virtualization of user-timer events. This section describes these extensions.

1. Execution of MOV SS, POP SS, or STI may block the processing of user-timer events for one instruction.

2. A logical processor processes a user-timer event only if CPL = 3. Since the HLT and MWAIT instructions can be executed only if CPL
= 0, a user-timer event is never processed when a logical processor is an activity state that was entered using one of those instruc-
tions.
7-2 Document Number: 319433-055

USER-TIMER EVENTS AND INTERRUPTS
7.5.1 VMCS Changes
One new 64-bit VM-execution control field is defined called the virtual user-timer control. It can be accessed
with the encoding pair 2050H/2051H. See Section 7.5.2 for its use in VMX non-root operation. This field exists only
on processors that enumerate CPUID.(EAX=07H, ECX=1H):EDX[13] as 1 (see Section 7.1).

7.5.2 Changes to VMX Non-Root Operation
This section describes changes to VMX non-root operation for user-timer events.

7.5.2.1 Treatment of Accesses to the IA32_UINTR_TIMER MSR
As noted in Section 7.3, software can read and write the IA32_UINTR_TIMER MSR using certain instructions. The
operation of those instructions is changed when they are executed in VMX non-root operation:
• Any read from the IA32_UINTR_TIMER MSR (e.g., by RDMSR) returns the value of the virtual user-timer

control.
• Any write to the IA32_UINTR_TIMER MSR (e.g., by WRMSR) is treated as follows:

— The source operand is written to the virtual user-timer control (updating the VMCS).

— Bits 5:0 of the source operand are written to the user-timer vector.

— If bits 63:6 of the source operand are zero, the user deadline (the value that actually controls when
hardware generates a user time event) is cleared to 0. Section 7.2 identifies the consequences of this
clearing.

— If bits 63:6 of the source operand are not all zero, the user deadline is computed as follows. The source
operand (with the low 6 bits cleared) is interpreted as a virtual user deadline. The processor converts that
value to the actual user deadline based on the current configuration of TSC offsetting and TSC scaling.1

— Following such a write, the value of the IA32_UINTR_TIMER MSR (e.g., as would be observed following a
subsequent VM exit) is such that bits 63:6 contain the actual user deadline (not the virtual user deadline),
while bits 5:0 contain the user-timer vector.

7.5.2.2 Treatment of User-Timer Events
The processor’s treatment of user-timer events is described in Section 7.4. These events occur in VMX non-root
operation under the same conditions described in that section.
The processing of user-timer events differs in VMX non-root operation only in that, in addition to clearing the
IA32_UINTR_TIMER MSR, the processing also clears the virtual user-timer control (updating the VMCS).

7.5.3 Changes to VM Entries
A VM entry results in a pending user-timer event if and only if the VM entry completes with the user deadline non-
zero and less than or equal to the (non-virtualized) TSC. The processor will process such an event only if indicated
by the conditions identified in Section 7.4.

1. This conversion may not be meaningful if “RDTSC exiting” is 1. Software setting “RDTSC exiting” to 1 should ensure that any write to
the IA32_UINTR_TIMER MSR causes a VM exit.
Document Number: 319433-055 7-3

USER-TIMER EVENTS AND INTERRUPTS
7-4 Document Number: 319433-055

APIC-TIMER VIRTUALIZATION
CHAPTER 8
APIC-TIMER VIRTUALIZATION

This chapter describes a VMX extension called APIC-timer virtualization.
The new feature virtualizes the TSC-deadline mode of the APIC timer. When this mode is active, software can
program the APIC timer with a deadline written to the IA32_TSC_DEADLINE MSR. A timer interrupt becomes
pending when the logical processor’s timestamp counter (TSC) is greater or equal to the deadline.
APIC-timer virtualization operates in conjunction with the existing virtual-interrupt delivery feature. With that
feature, a virtual-machine monitor (VMM) establishes a virtual-APIC page in memory for each virtual logical
processor (vCPU). A logical processor uses this page to virtualize certain aspects of APIC operation for the vCPU.
The feature is based on new guest-timer hardware that introduces two new architectural features: guest-timer
events and a guest deadline. With APIC-timer virtualization, guest writes to the IA32_TSC_DEADLINE MSR do
not interact with the APIC (or its timer) but instead establish a guest deadline to arm the guest-timer hardware.
When a logical processor’s TSC is greater than or equal to the guest deadline, a guest-timer event becomes
pending. Processing of a guest-timer event updates the virtual-APIC page to record the fact that a new virtual
interrupt is pending.
Section 8.1 presents the new guest-timer hardware, focusing on the guest deadline and guest-timer events.
Section 8.2 identifies new VMCS support (a new control and new fields). Section 8.3, Section 8.4, and Section 8.5
detail the changes to VM entries, VMX non-root operation, and VM exits, respectively.

8.1 GUEST-TIMER HARDWARE
A logical processor supports APIC-timer virtualization using new guest-timer hardware. Software controls this
hardware using an unsigned 64-bit value called the guest deadline. (There is a separate guest deadline for each
logical processor.) If the guest deadline is non-zero, a guest-timer event will be pending when the timestamp
counter (TSC) reaches or exceeds the guest deadline.
Section 8.1.1 describes how the guest-timer hardware responds to updates to the guest deadline. Section 8.1.2
presents details of the new guest-timer events.

8.1.1 Responding to Guest-Deadline Updates
Subsequent sections specify the operations that modify the guest deadline. The processor enforces the following:
• Modifying the guest deadline to have value zero disables guest-timer events. After this, no guest-timer event

will be pending before the next modification of the guest deadline.
• Modifying the guest deadline to have a non-zero value less than or equal to the TSC causes a guest-timer event

to be pending at the next instruction boundary.
• Modifying the guest deadline to have a non-zero value greater than the TSC arms the guest timer. After this, no

guest-timer event will be pending before the TSC reaches the guest deadline (unless the guest deadline is
modified again). A guest-timer event will become pending when the TSC reaches the guest deadline.

Races may occur if the guest deadline is modified when the value of the TSC is close to that of the guest deadline.
In such a case, either of the following may occur:
• The TSC may reach the original guest deadline before the guest deadline is modified, causing a guest-timer

event to be pended. Either of the following may occur:

— If the guest-timer event is processed before the guest deadline is modified, the logical processor will clear
the deadline (as part of event processing) before the deadline is modified. The new deadline may cause a
second guest-timer event to occur later.

— If the guest deadline is modified before a guest-timer event can be processed, no guest-timer event based
on the original deadline will occur, and any subsequent guest-timer event will be based on the new guest
deadline.
Document Number: 319433-055 8-1

APIC-TIMER VIRTUALIZATION
• The guest deadline may be modified before the TSC reaches the original guest deadline. In this case, no guest-
timer event will occur based on the original guest deadline, and any subsequent guest-timer event will be based
on the new guest deadline.

8.1.2 Guest-Timer Events
A guest-timer event becomes pending when the guest deadline is non-zero and is less than or equal to the TSC.
A logical processor in the wait-for-SIPI state or the shutdown state inhibits guest-timer events.
Guest-timer events have priority just below that of external interrupts (and above that of virtual interrupts or inter-
rupt-window exiting).
A pending guest-timer event that is not inhibited or preempted by higher-priority events is processed by the logical
processor as described in Section 8.4.2.
The remainder of this chapter should make clear that the guest deadline is always zero outside VMX non-root oper-
ation and thus a guest-timer event can become pending only if in VMX non-root operation.

8.2 VMCS SUPPORT
Section 8.2.1 identifies a new VM-execution control to enable the APIC-timer virtualization feature. Section 8.2.2
enumerates new fields added to the VMCS to support the feature.

8.2.1 New VMX Control
This feature introduces a new VM-execution control called “APIC-timer virtualization.” It is tertiary processor-based
VM-execution control 8.
Setting this control enables guest-timer events based on the guest deadline. See Section 8.3.2 and Section 8.4.1.

8.2.2 New VMCS Fields
This feature introduces three new VMCS fields:
• Guest deadline is a new 64-bit guest-state field. Software can access this field with VMREAD or VMWRITE

using the encoding pair 2830H/2831H.
• Guest deadline shadow is a new 64-bit VM-execution control field. This is the guest deadline relative to the

guest’s virtualized view of the TSC. See Section 8.4.1 for details. Software can access this field with VMREAD or
VMWRITE using the encoding pair 204EH/204FH.

• Virtual timer vector is a new 16-bit VM-execution control field. The low 8 bits of this field contain the vector
used for virtual timer interrupts. Software can access this field with VMREAD or VMWRITE using the encoding
000AH.

8.3 CHANGES TO VM ENTRIES
This section describes changes to the operation of VM entries related to this new feature. Changes include new
checking of certain VMX controls (Section 8.3.1) and possible loading of the guest deadline (Section 8.3.2).

8.3.1 Checking VMX Controls
If the “APIC-timer virtualization” VM-execution control is 1, VM entry ensures that the following all hold:
• The “virtual-interrupt delivery” VM-execution control is 1.
• The “RDTSC exiting” VM-execution control is 0.
• The value of the virtual timer vector is at most 255.
8-2 Document Number: 319433-055

APIC-TIMER VIRTUALIZATION
If any of those is not the case, VM entry fails. Control is passed to the next instruction, RFLAGS.ZF is set to 1 to
indicate the failure, and the VM-instruction error field is loaded with value 7, indicating “VM entry with invalid
control field(s).”
(This check may be performed in any order with respect to other checks on VMX controls and the host-state area.
Different processors may thus give different error numbers for the same VMCS.)

8.3.2 Loading the Guest Deadline
If the “APIC-timer virtualization” VM-execution control is 1, VM entry loads the guest deadline from the corre-
sponding field in the guest-state area of the VMCS. If the value loaded is non-zero, a guest-timer event may
become pending, as described in Section 8.1.1.
If the “APIC-timer virtualization” VM-execution control is 0, the guest deadline is not loaded and its value remains
zero. As a result, no guest-timer event will be pending after the VM entry.

8.4 CHANGES TO VMX NON-ROOT OPERATION
The 1-setting of the “APIC-timer virtualization” VM-execution control changes how a logical processor responds to
accesses to the IA32_TSC_DEADLINE MSR. These changes are described in Section 8.4.1. In addition, the 1-
setting of that control may result in the processing of guest-timer events, as is detailed in Section 8.4.2.

8.4.1 Accesses to the IA32_TSC_DEADLINE MSR
If the “APIC-timer virtualization” VM-execution control is 1, the operation of reads and writes to the
IA32_TSC_DEADLINE MSR (MSR 6E0H) is modified:
• Any read from the IA32_TSC_DEADLINE MSR (e.g., by RDMSR) that does not cause a fault or a VM exit returns

the value of the guest deadline shadow (from the VMCS).
• Any write to the IA32_TSC_DEADLINE MSR (e.g., by WRMSR) that does not cause a fault or a VM exit is treated

as follows:

— The source operand is written to the guest deadline shadow (updating the VMCS).

— If the source operand is zero, the guest deadline (the value that controls when hardware generates a guest
time event) is cleared to 0.

— If the source operand is not zero, the guest deadline is computed as follows. The source operand is
interpreted as a virtual deadline. The processor converts that value to the actual guest deadline based on
the current configuration of TSC offsetting and TSC scaling.

(See Section 8.1.1 for how a logical processor responds to such updates to the guest deadline.)

Note that when the “APIC-timer virtualization” VM-execution control is 1, such writes do not change the value
of the IA32_TSC_DEADLINE MSR nor do they interact with the APIC timer in any way.

When the “APIC-timer virtualization” VM-execution control is 0, reads and writes of the IA32_TSC_DEADLINE MSR
operate as they would on processors that do not support the new feature. In this case, there is no way to read or
write the guest deadline, and it is always zero.

8.4.2 Processing of Guest-Timer Events
As explained in Section 8.1.2, a pending guest-timer event that is not inhibited or preempted by higher-priority
events is processed by the logical processor. This section provides details of that processing.
Document Number: 319433-055 8-3

APIC-TIMER VIRTUALIZATION
Processing of a guest-timer event updates the virtual-APIC page to cause a virtual timer interrupt to become
pending. Specifically, the logical processor performs the following steps:

V := virtual timer vector;
VIRR[V] := 1;// update virtual IRR field on virtual-APIC page
RVI := max{RVI, V};// update guest interrupt status field in VMCS
evaluate pending virtual interrupts;// a virtual interrupt may be delivered immediately after this processing
Guest deadline := 0;
Guest deadline shadow := 0;

The following items consider certain special cases:
• If a guest-timer event is processed between iterations of a REP-prefixed instruction (after at least one iteration

has completed but before all iterations have completed), the following items characterize processor state after
the steps indicated above and before guest execution resumes:

— RIP references the REP-prefixed instruction;

— RCX, RSI, and RDI are updated to reflect the iterations completed; and

— RFLAGS.RF = 1.
• If a guest-timer event is processed after partial execution of a gather instruction or a scatter instruction, the

destination register and the mask operand are partially updated and RFLAGS.RF = 1.
• If a guest-timer event is processed while the logical processor is in the state entered by HLT, the processor

returns to the HLT state after the steps indicated above (if a pending virtual interrupt was recognized, the
logical processor may immediately wake from the HLT state).

• If a guest-timer event is processed while the logical processor is in the state entered by MWAIT, TPAUSE, or
UMWAIT, the processor will be in the active state after the steps indicated above.

• A guest-timer event that becomes pending during transactional execution may abort the transaction and result
in a transition to a non-transactional execution. If it does, the transactional abort loads EAX as it would had it
been due to an interrupt.

• A guest-timer event that occurs while the logical processor is in enclave mode causes an asynchronous enclave
exit (AEX) to occur before the steps indicated above.

8.5 CHANGES TO VM EXITS
This section describes changes to the operation of VM exits related to this new feature.
On a processor that supports the 1-setting of “APIC-timer virtualization” VM-execution control, every VM exit saves
the value of the guest deadline into the corresponding field in the guest-state area of the VMCS and then clears the
guest deadline to zero. This implies that, if “APIC-timer virtualization” is 0, a VM exit will overwrite the guest-dead-
line field in the VMCS with zero, and the previous value of that field will be lost.
Since VM exits always result in the guest deadline being zero and the guest deadline must remain zero until the
next VM entry, guest-timer events are pending only VMX non-root operation (and only if the “APIC-timer virtualiza-
tion” VM-execution control is 1).
8-4 Document Number: 319433-055

PROCESSOR TRACE TRIGGER TRACING
CHAPTER 9
PROCESSOR TRACE TRIGGER TRACING

This chapter documents the architecture for Processor Trace Trigger Tracing, an addition to the Intel® Processor
Trace (Intel® PT) feature, which captures information about software execution. Details on the Intel PT infrastruc-
ture and control flow trace capabilities can be found in Chapter 33, “Intel® Processor Trace‚” of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3C.
Processor Trace Trigger Tracing (PTTT) aids software in functional debug more easily by linking other features like
performance monitoring counters and debug breakpoints with Processor Trace. It does this by allowing those other
features to cause Processor Trace actions like generating packets or resuming/pausing tracing. This can give
various benefits, from lower overhead logging of breakpoints or performance events to tracing only the desired
blocks based on memory access pattern or performance activity (e.g., trace when the instructions per cycle drop
below 1).
PTTT achieves this by allowing inputs like performance monitoring event increments, overflows, or debug break-
point matches to cause a 'trigger event.' When a trigger event happens, the hardware generates a new PT packet
called a TRIG packet, which contains information about the triggered event. A logical processor may implement
many trigger input/action (trigger unit) hardware units, each of which can be independently programmed. The
presence of the PTTT feature, the number of trigger units implemented in a logical processor, and their supported
capabilities are enumerated using CPUID Leaf 14H.

9.1 PROCESSOR TRACE TRIGGER TRACING OVERVIEW
Processor support for PTTT is enumerated by CPUID.(EAX=14H, ECX=0H):EBX.PTTT[bit 9]. When this bit is set,
software can query details of the supported capabilities by enumerating the CPUID.(EAX=14H, ECX=01H) subleaf.
PTTT capability enumerated in CPUID Leaf 14H is consistent across all the logical processors in the system.

9.1.1 Trigger Unit
The PTTT feature contains multiple trigger units. Each trigger unit can be independently configured to select the
input used for the trigger and the actions to be taken by hardware when the trigger event happens. Trigger units
can be configured using the trigger configuration IA32_RTIT_TRIGGERx_CFG MSRs described in Section 9.2.1.
Each trigger unit is configured using 16 bits in the IA32_RTIT_TRIGGERx_CFG MSR. Each trigger configuration
MSR allows the configuration of four trigger units. The number of IA32_RTIT_TRIGGERx_CFG MSRs present in a
logical processor is enumerated using CPUID.(EAX=14H, ECX=01H):EAX[10:8].

9.1.2 Trigger Input
Within the 16 bits of each trigger unit, the first seven bits (e.g., [6:0], [22:16], etc.) are used to select the trigger
input. Table 9-1 describes the supported trigger inputs.

Table 9-1. Supported Trigger Inputs
Trigger Input Encoding Description

00H—07H PMC[0..7] Event Increment. If IA32_PERFEVTSELx_MSR.EN_PT_LOG = 1, whenever the
selected performance counter increments, it will be treated as a PT trigger event.

20H—27H PMC[0..7] Overflow. If IA32_PERFEVTSELx_MSR.EN_PT_LOG = 1, whenever the selected
performance counter overflows, it will be treated as a PT trigger event.

40H—43H DR[0..3] Breakpoint Match. If DR7.DRx_PT_LOG = 1, whenever the selected code or data
breakpoints match, it will be treated as a PT trigger event. This is supported only if
CPUID.(EAX=14H, ECX=01H):ECX[15] = 1.

08H—1FH, 28H—3FH, 44H—7FH Reserved for future use.
Document Number: 319433-055 9-1

PROCESSOR TRACE TRIGGER TRACING
If the PTTT capability is detected (CPUID.(EAX=014H, ECX=0H):EBX[9] = 1), then both PMC Event Increment and
PMC Overflows are supported as valid trigger inputs.
The DRx Breakpoint Match capability is enumerated by CPUID.(EAX=014H, ECX=01H):ECX[15] = 1. Only code and
data breakpoint matches are supported, not I/O breakpoints. Operations that can delay a data breakpoint
(MOV/POP SS) also delay the breakpoint trigger event. When a corresponding DRx_PT_LOG bit is set, that break-
point will only be recognized as a trigger event (when properly enabled) and will not pend a #DB exception or trap.
Programming a reserved trigger input encoding into a trigger configuration MSR does not generate a general
protection exception #GP(0), but when and whether it causes a trigger event is undefined.

9.1.3 Trigger Actions
Table 9-2 defines the trigger actions. A trigger input can have multiple trigger actions.

When a trigger unit's configured event happens, hardware takes the requested trigger actions for the enabled
trigger input. If a TRACE_PAUSE trigger action is requested, then tracing is paused, and a newly defined
IA32_RTIT_STATUS.Paused[8] MSR bit (Section 9.2.4) is set. If a TRACE_RESUME trigger action is requested, then
tracing resumes and the IA32_RTIT_STATUS.Paused[8] MSR bit is cleared. If both TRACE_PAUSE and TRACE_RE-
SUME actions are requested, then no action will be taken by hardware and IA32_RTIT_STATUS.Paused[8] bit
remains unchanged. The EN_ICNT Trigger Action allows the trace decoder to determine the instruction pointer of
the instruction that caused the trigger event. It is possible for multiple trigger events from the same trigger unit or
from different trigger units to occur simultaneously. In this case, the resume or pause action is determined by the
action of the youngest instruction that caused a trigger.

9.1.4 Programming Considerations
Software should follow these programming guidelines to enable the PTTT feature:
• Before configuring a trigger unit, software should ensure that the trigger action EN bit remains clear in the

IA32_RTIT_TRIGGERx_CFG MSR.
• Software should configure the corresponding performance monitor counter or debug register and set the corre-

sponding IA32_PERFEVTSELx_MSR.EN_PT_LOG or DR7.DRx_PT_LOG bits before writing to the trigger input to
set the EN bit.

• Software should only set the EN bit when all fields of the trigger input are populated (both trigger input and
trigger action).

• Because unsupported encodings may not generate a fault, software should use extra care to use only
supported encodings.

9.1.5 Trigger (TRIG) Packet
When a trigger event happens for an enabled trigger unit, a new PT packet called ‘TRIG packet’ will be generated if
(IA32_RTIT_STATUS.TriggerEn=1 && IA32_RTIT_STATUS.FilterEn=1 && IA32_RTIT_STATUS.Paused=0). ‘Paused’
is the new status bit added in the IA32_RTIT_STATUS MSR defined in Section 9.2.4.

Table 9-2. Trigger Actions
Bit Position in Trigger Unit Description

12 TRACE_RESUME. PT Tracing will be resumed on the trigger event when this bit is 1. This is
supported only if CPUID.(ECX=14H, ECX=01H):ECX[1] = 1.

13 TRACE_PAUSE. PT Tracing will be paused on the trigger event when this bit is 1. This is
supported only if CPUID.(ECX=14H, ECX=01H):ECX[1] = 1.

14 EN_ICNT. Retired instruction count information will be valid in the TRIG packet when this
bit=1. This is supported only if CPUID.(EAX=14H, ECX=01H):ECX[0] = 1.

15 EN. Trigger Unit Enable. Trigger actions will only occur when this bit is 1.
9-2 Document Number: 319433-055

PROCESSOR TRACE TRIGGER TRACING
The format of the TRIG packet is defined in Table 9-4. The TRIG packet supplies information about which trigger(s)
occurred in a cycle.
The ICNTV bit in a TRIG packet indicates whether the packet contains an ICNT field. If an ICNT trigger action is
requested for that trigger unit, the TRIG packet will set ICNTV to 1 and include an ICNT field, which may be used
to determine which instruction caused the trigger. The ICNT field indicates the number of instructions that have
retired since the last IP indication, which was sent earlier (e.g., an earlier FUP, TIP, TIP.PGE, TNT, TRIG+ICNT
packet). The ICNT field is a 16-bit unsigned value. It is possible for the ICNT instruction counter to overflow (i.e.,
when 216 instructions have retired since the last IP indication). In this overflow situation, the next trigger event will
generate a TRIG packet with an ICNT of 0 and an IP of 1, and it will be followed by an FUP packet containing the
instruction pointer of the instruction linked to the trigger. Like the overflow situation, when BranchEn=0, hardware
will indicate a subsequent TRIG packet with an ICNT of 0 and an IP of 1, followed by an FUP packet containing the
instruction pointer of the instruction linked to the trigger. When ContextEn=0, the TRIG packet will have ICNTV=0,
indicating no valid ICNT information is available. If TNT was used as the last IP indication, the anchor IP is the desti-
nation IP of the last TNT bit, which is the branch destination if the branch was taken and the next IP if the branch
was not taken. ICNT information will indicate the instruction that caused the trigger when the trigger is a PMC
Event Increment for a precise event, a PMC Overflow for a PDIR counter counting a precise event, or a DRx Break-
point Match. When the trigger is due to a non-precise PMC Event Increment or PMC Overflow, the ICNT information
will indicate an instruction that retires soon after the event occurs. When the trigger is due to a PMC Overflow for a
non-PDIR counter counting a precise event, the ICNT information will indicate an instruction that increments the
event at or soon after the counter overflows (e.g., there may be some skid). This behavior corresponds to how
PEBS attributes the instruction pointer for a PMC overflow event.

The TRBV field in a TRIG packet is a bitmap, indicating which trigger(s) fired. Each trigger unit has a corresponding
bit in TRBV. For example, if the trigger event for trigger unit 3 triggered and caused a TRIG packet, then bit 3 of
TRBV will be set in that TRIG packet. Multiple bits may be set in TRBV if multiple trigger units are fired in the same
cycle. The MULT field in a TRIG packet allows the trace decoder to identify the instruction(s) to which the ICNT field
applies. Table 9-3 describes the various scenarios and how software should interpret the ICNT field.

TRIG packets are CYC-eligible. Also, if the TNT buffer is not empty when a TRIG packet is generated, a TNT packet
will be generated before the TRIG packet. This allows the trace decoder to identify the instruction that caused the
trigger(s) without waiting for a future TNT packet.

Table 9-3. ICNT on Multiple Trigger Events
TRBV (Bitmap) MULT ICNTV Event Description

Don’t Care Don’t
Care

0 The ICNT field is not present in the TRIG packet because it is not enabled for any trigger
event(s), or the trace is out of context. If ContextEn=0, the TRIG packet will have ICNTV = 0.

One Bit 0 1 A single trigger fired from a single instruction. The ICNT value refers to the instruction that
caused the trigger event.

One Bit 1 1 A single trigger fired more than once from multiple instructions retired in the same cycle. The
ICNT value refers to the first instruction that fired the trigger.

Multiple Bits 0 1 Multiple triggers were fired from the same instruction. The ICNT value refers to the
instruction that caused the trigger events.

Multiple Bits 1 1 Multiple triggers were fired from multiple instructions retired on the same cycle. The ICNT
value refers to the first instruction in the cycle fired from the trigger with the lowest
numerical order.
Document Number: 319433-055 9-3

PROCESSOR TRACE TRIGGER TRACING
9.2 MSR CHANGES
New and current MSR changes are described in the subsections that follow. For an existing MSR, only changes to
existing operation are highlighted in violet with change bars.

9.2.1 IA32_RTIT_TRIGGERx_CFG
The IA32_RTIT_TRIGGERx_CFG MSR allows the configuration of individual trigger units. Specifically, it allows the
user to select the input for the trigger and the actions to be taken when the trigger event happens. The number of
supported IA32_RTIT_TRIGGERx_CFG MSRs is indicated in the CPUID.(EAX=14H,ECX=01H):EAX[10:8] field.

Table 9-4. TRIG Packet Definition

Name Trigger (TRIG) Packet

Packet Format

Dependencies TriggerEn && FilterEn &&
~Paused && Trigger-
Cfg.Action.En && TriggerInputEn-
abled.

For perfmon triggers, TriggerIn-
putEnabled = PMC Enabled &&
PERFEVTSELx.EN_PT_LOG
For debug breakpoints triggers,
TriggerInputEnabled = DRx
Enabled && DR7.DRx_PT_LOG.

Generation
Scenario

TRIG packet is generated when a trigger event happens.

Description This packet indicates that one or more trigger(s) occurred in the same cycle.
IP−Set to indicate if this trigger packet consumes the following FUP packet.

ICNTV−Set indicates the ICNT field is present and valid. Set only when EN_ICNT trigger action is enabled.

ICNT−Present only when ICNTV=1. Indicates the number of instructions retired since the last IP indication refer-
ence packets (FUP, TIP*, TNT, TRIG+ICNT). It is a 16-bit unsigned value.
MULT−Indicates more than one instruction caused a trigger. When set, the ICNT value refers to the first instruction
in the cycle that fired from the lowest-order trigger unit.
TRBV−Trigger bit vector. Indicates all the trigger(s) that fired and are represented by this packet.

Application TRIG packets indicate when a trigger event occurred. If the IP bit is set, a FUP will follow that is stand-alone, and the
TRIG consumes the FUP. The FUP packet provides the precise IP of the trigger event, and ICNT will be zero in this
case. If the IP bit is not set, TRIG is stand-alone, and ICNT indicates the number of retired instructions from the last
anchor packet, which is a preceding TIP, TIP.PGE, FUP, TNT, or TRIG with ICNTV=1. In the case of TNT, the anchor IP
is the destination IP of the last TNT bit, which is the branch destination if the branch was taken and the next IP if
the branch was not taken. When ContextEn=0, ICNTV is cleared to 0. When BranchEn=0, ICNTV=1, IP=1, ICNT=0,
pointing to the instruction that caused the trigger.

7 6 5 4 3 2 1 0

0 1 1 0 1 1 0 0 1

1 IP ICNTV MULT Reserved

2 TRBV

3 ICNT[7:0]

4 ICNT[15:8]
9-4 Document Number: 319433-055

PROCESSOR TRACE TRIGGER TRACING
9.2.2 IA32_PERFEVTSELx MSR Changes
The IA32_PERFEVTSELx MSR is an existing MSR that describes a performance counter's configuration. When PTTT
is supported, a new bit 38 is defined as EN_PT_LOG. If EN_PT_LOG is set to 1, that performance counter can be
used as a trigger input in the IA32_RTIT_TRIGGERx_CFG.Input fields.

Table 9-5. IA32_RTIT_TRIGGERx_CFG MSR Definition

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 568H−56EH, 1384−
1390

IA32_RTIT_TRIGGERx_CFG

Trace Trigger X Configuration Register (R/W) Thread

6:0 Input0 (R/W)
Selects the event used as a trigger input for trigger unit 0. The following
encoding values are supported:
• 0H...7H: PMC[0...7] Event Increment.
• 20H...27H: PMC[0...7] Overflow.
• 40H...43H: DR[0...3] Breakpoint Match.
All other values are reserved. Reset value: 0.

11:7 Reserved.

15:12 Action0 (R/W)
Bitmap field that selects the actions to be taken on a trigger event. The
following bit encodings are supported:
• Bit 12: TRACE_RESUME−Trace Resume.
• Bit 13: TRACE_PAUSE−Trace Pause.
• Bit 14: EN_ICNT−Enable ICNT.
• Bit 15: EN−Trigger Unit Enable.

22:16 Input1 (R/W)
Same definition as Input0, but for trigger unit 1.

27:23 Reserved.

31:28 Action1 (R/W)
Same definition as Action0, but for trigger unit 1.

38:32 Input2 (R/W)
Same definition as Input0, but for trigger unit 2.

43:39 Reserved.

47:44 Action2 (R/W)
Same definition as Action0, but for trigger unit 2.

54:48 Input3 (R/W)
Same definition as Input0, but for trigger unit 3.

59:55 Reserved.

63:60 Action3 (R/W)
Same definition as Action0, but for trigger unit 3.
Document Number: 319433-055 9-5

PROCESSOR TRACE TRIGGER TRACING

9.2.3 DR7 Changes
The DR7 Debug Control Register is an existing architectural register that can be used for enabling debug breakpoint
matches. If an implementation supports DR Breakpoint Match as a PTTT trigger input, indicated by
CPUID.(EAX=14H, ECX=01H):ECX[15]=1, then bits [35:32] of DR7 are described as DRx_PT_LOG bits, with the
four bits corresponding to DR0-3. Note that the upper bits of DR7 are changed by MOV to DR7 only in 64-bit mode.

9.2.4 IA32_RTIT_STATUS Changes
A new ‘Paused’ bit is added to the IA32_RTIT_STATUS register as part of PTTT (see Table 9-6, bit 8). Hardware sets
this bit when a PTTT paused trigger action occurs. Hardware clears this bit when a PTTT resume trigger action
occurs. The Paused bit has read/write semantics. Software that wants tracing to start only after reaching a trigger
can manually set Paused=1 before setting the TraceEn bit. When Paused=1, packets that depend on FilterEn=1 will
be suppressed. PacketEn has the following updated semantics:
 PacketEn := BranchEn AND TriggerEn AND ContextEn AND FilterEn AND !Paused
Note that, as defined in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C, Section
33.2.6.3, Paused bit transitions that result in PacketEn transitions will also cause the hardware to generate
PGE/PGD packets. Such PGE/PGD packets may have a small skid.

Figure 9-1. Layout of the IA32_PERFEVTSELx MSR

Table 9-6. IA32_RTIT_STATUS MSR Definition

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope

Register Address: 571H, 1393 IA32_RTIT_STATUS

Tracing Status Register (R/W) Core

0 FilterEn

Writes ignored.

1 ContextEn

Writes ignored.

2 TriggerEn

Writes ignored.

63 38 31 24 23 22 21 20 19 18 17 16 15 8 7 0

Event SelectUnit Mask
(UMASK)

U
S
R

O
SEP

C

I
N
T

A
N
Y

E
N

I
N
V

Counter Mask
(CMASK)

INV—Invert Counter Mask

EN—Enable Counters

ANY—Any Thread

INT—APIC Interrupt Enable

PC—Pin Control

E—Edge Detect

OS—Operating System Mode

USR—User Mode

Reserved

EN_PT_LOG—Enable as Trigger Input
9-6 Document Number: 319433-055

PROCESSOR TRACE TRIGGER TRACING
3 Reserved.

4 Error

5 Stopped

6 PendPSB

7 PendToPAPMI

8 Paused

31:9 Reserved, must be zero.

48:32 PacketByteCnt

63:49 Reserved, must be zero.

Table 9-6. IA32_RTIT_STATUS MSR Definition (Contd.)

Register Address: Hex, Decimal Register Name (Former Register Name)

Register Information / Bit Fields Bit Description Scope
Document Number: 319433-055 9-7

PROCESSOR TRACE TRIGGER TRACING
9-8 Document Number: 319433-055

MONITORLESS MWAIT
CHAPTER 10
MONITORLESS MWAIT

This chapter documents the monitorless MWAIT feature.
Prior this feature, execution of the MWAIT instruction causes a logical processor to suspend execution and enter an
implementation-dependent optimized state only if the MONITOR instruction was executed previously, specifying an
address range to monitor, and there have been no stores to that address range since MONITOR executed. The
logical processor leaves the optimized state and resumes execution when there is a write to the monitored address
range.
This existing functionality supports software that seeks to suspend execution until an event associated with a write
to the monitored address range. For example, that range may contain the head pointer of a work queue that is
written when there is work for the suspended logical processor.
It is possible that software may wish to suspend execution with no requirement to resume execution in response to
a memory write. Such software is not well served by the existing MWAIT instruction since it must incur the over-
head of monitoring some (irrelevant) address range and may resume execution earlier than intended following a
memory write.
Monitorless MWAIT enhances the MWAIT instruction by allowing suspension of execution without monitoring an
address range.
The feature is defined with an enumeration independent of that of existing MONITOR/MWAIT. That allows a VMM to
virtualize monitorless MWAIT without having to virtualize the address-range monitoring of the existing feature.

10.1 USING MONITORLESS MWAIT
The MWAIT instruction uses the value of ECX to determine which MWAIT extensions are requested by software.
If ECX[2] is 1, an execution of MWAIT is monitorless. The logical processor will suspend execution and enter an
implementation-dependent optimized state regardless of any previous execution of the MONITOR instruction.
There is no address range to which a write is guaranteed to cause the logical processor to leave the optimized state
and resume execution.
Software may set ECX[2] while also setting other bits in ECX that control other aspects of MWAIT execution.
Execution of MWAIT with ECX[2] = 1 is allowed only if the processor enumerates support for monitorless MWAIT
(see Section 10.2); if it not, such an execution causes a general-protection fault (#GP(0)).
See Section 10.5 for details on the operation of the MWAIT instruction.

10.2 ENUMERATION
Existing processors indicate support for the MONITOR and MWAIT instructions by enumerating
CPUID.01H:ECX.MONITOR[bit 3] as 1. This enumeration also implies support for CPUID leaf 05H, the
MONTOR/MWAIT leaf. CPUID leaf 05H enumerates details of the operation of the MONITOR instruction (e.g., the
size of the monitored address range) and the capabilities of the MWAIT instruction (e.g., the extensions that can be
specified in ECX).
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] enumerates support for monitorless use of MWAIT. If this bit is
enumerated as 1, software can execute MWAIT with ECX[2] = 1 (see Section 10.1).
To allow virtualization of monitorless MWAIT (without the monitored form; see Section 10.4),
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] indicates support for the MWAIT instruction and for CPUID leaf
05H. The following items detail the implications of the value enumerated for this bit:
• If CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] is enumerated as 0, MWAIT is still supported if

CPUID.01H:ECX.MONITOR[bit 3] is enumerated as 1. Monitorless MWAIT is supported only if
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] is enumerated as 1.
Document Number: 319433-055 10-1

MONITORLESS MWAIT
• If CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] is enumerated as 1, MONITOR is supported as long as
CPUID.01H:ECX.MONITOR[bit 3] is enumerated as 1. Monitorless MWAIT is supported only if
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] is enumerated as 1.

• If CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] is enumerated as 1 and CPUID.01H:ECX.MONITOR[bit 3]
is enumerated as 0, MWAIT is supported but MONITOR is not. Moreover, only the monitorless form of MWAIT is
supported; execution of MWAIT with ECX[2] = 0 causes #GP(0).

Software seeking to use MONITOR and MWAIT together should continue to use CPUID.01H:ECX.MONITOR[bit 3]
and CPUID leaf 05H; software seeking to use monitorless MWAIT should consult
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] and CPUID leaf 05H.

NOTE
Cores in hybrid CPU support MWAIT consistently. A core will support monitorless MWAIT only if all
cores in the hybrid CPU do so.

10.3 ENABLING
The MONITOR and MWAIT instructions are available only when
IA32_MISC_ENABLE.ENABLE_MONITOR_FSM[bit 18] = 1.
If IA32_MISC_ENABLE.ENABLE_MONITOR_FSM[bit 18] = 0, execution of MONITOR or MWAIT causes an invalid-
opcode exception (#UD). In addition, CPUID.01H:ECX.MONITOR[bit 3] and
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] are each enumerated as 0, and CPUID leaf 05H is not
supported.

10.4 VIRTUALIZATION
A virtual-machine monitor (VMM) may want to present the abstraction of a virtual machine that supports monitor-
less MWAIT but not the existing monitoring of address ranges.
Such a VMM can virtualize CPUID to enumerate CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] as 1,
CPUID.01H:ECX.MONITOR[bit 3] as 0, and CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] as 1. The VMM can
intercept executions of MONITOR and deliver a #UD to the guest; it can intercept executions of MWAIT and either
(1) deliver a #GP(0) to the guest if ECX[2] = 0; or (2) virtualize monitorless MWAIT if ECX[2] = 1.

10.5 MWAIT INSTRUCTION DETAILS
All changes to existing MWAIT operation are highlighted in violet with change bars.
10-2 Document Number: 319433-055

MONITORLESS MWAIT
MWAIT—Monitor Wait

Instruction Operand Encoding

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-dependent optimized state.
There are two principal targeted usages: address-range monitor and advanced power management.

CPUID.01H:ECX.MONITOR[bit 3] and CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] both indicate the avail-
ability of MWAIT in the processor; the instruction is supported if either is enumerated as 1. When set, MWAIT may
be executed only at privilege level 0 (use at any other privilege level results in an invalid-opcode exception).
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] indicates the availability of MWAIT that does not use a monitored
address range (with ECX[2] set; “monitorless MWAIT”) but does not indicate availability of MONITOR or of non-
monitorless MWAIT (MWAIT with ECX[2] cleared).
The operating system or system BIOS may disable this instruction by using the IA32_MISC_ENABLE MSR;
disabling MWAIT clears the CPUID feature flag and causes execution to generate an invalid-opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such as the preferred opti-
mized state the processor should enter. The first processors to implement MWAIT supported only the zero value for
EAX and ECX. Later processors allowed setting ECX[0] to enable masked interrupts as break events for MWAIT or
setting ECX[2] to enable monitorless MWAIT (see below). Software can use the CPUID instruction to determine the
extensions and hints supported by the processor.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR instruction. The two instructions
allow the definition of an address at which to wait (MONITOR) and a implementation-dependent-optimized opera-
tion to commence at the wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can enter
an implementation-dependent-optimized state while waiting for an event or a store operation to the address range
armed by MONITOR.

The following cause the processor to exit the implementation-dependent-optimized state: a store to the address
range armed by the MONITOR instruction, an NMI or SMI, a debug exception, a machine check exception, the
BINIT# signal, the INIT# signal, and the RESET# signal. Other implementation-dependent events may also cause
the processor to exit the implementation-dependent-optimized state.

In addition, an external interrupt causes the processor to exit the implementation-dependent-optimized state
either (1) if the interrupt would be delivered to software (e.g., as it would be if HLT had been executed instead of
MWAIT); or (2) if ECX[0] = 1. Software can execute MWAIT with ECX[0] = 1 only if CPUID.05H:ECX[bit 1] = 1.
(Implementation-specific conditions may result in an interrupt causing the processor to exit the implementation-
dependent-optimized state even if interrupts are masked and ECX[0] = 0.)

Following exit from the implementation-dependent-optimized state, control passes to the instruction following the
MWAIT instruction. A pending interrupt that is not masked (including an NMI or an SMI) may be delivered before
execution of that instruction. Unlike the HLT instruction, the MWAIT instruction does not support a restart at the
MWAIT instruction following the handling of an SMI.

If the preceding MONITOR instruction did not successfully arm an address range or if the MONITOR instruction has
not been executed prior to executing MWAIT, then the processor will not enter the implementation-dependent-opti-
mized state. Execution will resume at the instruction following the MWAIT.

Opcode Instruction Op/
En

64-Bit
Mode

Compat/
Leg Mode

Description

0F 01 C9 MWAIT ZO Valid Valid A hint that allows the processor to stop instruction
execution and enter an implementation-dependent
optimized state until occurrence of a class of events.

Op/En Operand 1 Operand 2 Operand 3 Operand 4

ZO N/A N/A N/A N/A
Document Number: 319433-055 10-3

MONITORLESS MWAIT
MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a specified target C state while
waiting for an event or a store operation to the address range armed by MONITOR. Support for MWAIT extensions
for power management is indicated by CPUID.05H:ECX[bit 0] reporting 1.

EAX and ECX are used to communicate the additional information to the MWAIT instruction, such as the kind of
optimized state the processor should enter. ECX specifies optional extensions for the MWAIT instruction. EAX may
contain hints such as the preferred optimized state the processor should enter. Implementation-specific conditions
may cause a processor to ignore the hint and enter a different optimized state. Future processor implementations
may implement several optimized “waiting” states and will select among those states based on the hint argument.

Table 10-1 describes the meaning of ECX and EAX registers for MWAIT extensions.

Note that if MWAIT is used to enter any of the C-states that are numerically higher than C1, a store to the address
range armed by the MONITOR instruction will cause the processor to exit MWAIT only if the store was originated by
other processor agents. A store from non-processor agent might not cause the processor to exit MWAIT in such
cases.
If MWAIT is used with ECX[2] set, it will ignore any preceding MONITOR instruction and will ignore stores to any
address range that may have been monitored. Support for this is enumerated by
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3].

For additional details of MWAIT extensions, see Chapter 15, “Power and Thermal Management,” of Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3B.

Table 10-1. MWAIT Extension Register (ECX)
Bits Description

0 Treat interrupts as break events even if masked (e.g., even if EFLAGS.IF=0). May be set only if
CPUID.05H:ECX[bit 1] = 1.

1 Reserved.

2 Allows MWAIT to enter and stay in an implementation-dependent-optimized state regardless of whether an
address range armed by MONITOR exists or has been stored to. May be set only if
CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] = 1. Must be set if CPUID.01H:ECX.MONITOR[bit 3] = 0.

31:3 Reserved.

Table 10-2. MWAIT Hints Register (EAX)
Bits Description

3:0 Sub C-state within a C-state, indicated by bits [7:4]

7:4 Target C-state*

Value of 0 means C1; 1 means C2, etc.

Value of 01111B means C0.

Note: Target C states for MWAIT extensions are processor-specific C-states, not ACPI C-states

31:8 Reserved.
10-4 Document Number: 319433-055

MONITORLESS MWAIT
Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX as an instruction extension
MWAIT EAX, ECX *)
{
WHILE ((“Monitor Hardware is in armed state”)) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Example Using a Monitored Address

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of the MWAIT instruction will
trigger the monitor hardware. It is not a proper usage to execute MONITOR once and then execute MWAIT in a
loop. Setting up MONITOR without executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

The above code sequence makes sure that a triggering store does not happen between the first check of the trigger
and the execution of the monitor instruction. Without the second check that triggering store would go unnoticed.
Typical usage of MONITOR and MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None.

Protected Mode Exceptions
#GP(0) If ECX[31:3] ≠ 0 or ECX[1] = 1.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
If ECX[2] = 1 and CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] = 0.
If ECX[2] = 0 and CPUID.01H:ECX.MONITOR[bit 3] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0 and
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] = 0.
If current privilege level is not 0.

Real Address Mode Exceptions
#GP If ECX[31:3] ≠ 0 or ECX[1] = 1.

If ECX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
If ECX[2] = 1 and CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] = 0.
If ECX[2] = 0 and CPUID.01H:ECX.MONITOR[bit 3] = 0.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0 and
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] = 0.
Document Number: 319433-055 10-5

MONITORLESS MWAIT
Virtual 8086 Mode Exceptions
#UD The MWAIT instruction is not recognized in virtual-8086 mode (even if

CPUID.01H:ECX.MONITOR[bit 3] = 1 or CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] =
1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If RCX[63:3] ≠ 0 or RCX[1] = 1.

If RCX[0] = 1 and CPUID.05H:ECX[bit 1] = 0.
If RCX[2] = 1 and CPUID.05H:ECX.MONITORLESS_MWAIT[bit 3] = 0.
If RCX[2] = 0 and CPUID.01H:ECX.MONITOR[bit 3] = 0.

#UD If the current privilege level is not 0.
If CPUID.01H:ECX.MONITOR[bit 3] = 0 and
CPUID.(EAX=07H, ECX=01H):EDX.MWAIT[bit 23] = 0.
10-6 Document Number: 319433-055

ARCHITECTURAL PEBS
CHAPTER 11
ARCHITECTURAL PEBS

Processor Event-Based Sampling (PEBS) is a non-destructive profiling facility that enables capturing the CPU state,
e.g., the Instruction Pointer register, memory access address, etc., when the counter of a Performance Monitoring
(Perfmon) event, such as a cache miss or a retired instruction, overflows. Architectural PEBS creates a permanent,
enumerated, and stable event-based sampling architecture based on the positive evolution of legacy PEBS.
A counter can select, independently from other counters, any of the following state groups to be included on its
samples:
• Basic group (Instruction Pointer, time-stamp)
• Memory Auxiliary group
• General-Purpose Registers group
• XSAVE-Enabled Registers (XER) group
• Last Branch Records (LBRs) group
• Performance-monitoring Counters group
Additionally, the counter reload value dictates the sampling rate of PEBS. The counter can be configured for either
a precise or non-precise event.
Architectural PEBS expands on the usability and applicability of legacy PEBS versions. The Output Buffer, a memory
area where the processor dumps the CPU state, is physically addressed and configured via MSRs, making it virtu-
alization-friendly for system-wide profiling (e.g., for hypervisors).
Architectural PEBS configuration is per counter in support of multi-tenant environments. The PEBS record is
restructured, too, for a consistent yet expandable format for tools and enriched with additional state information
(e.g., the XER group). Architectural PEBS ensures a state is not exposed across protection boundaries. It also
improves the performance over previous PEBS versions using PMI-based sampling. Note that any cores using
architectural PEBS will not support legacy PEBS, as it will have been deprecated.
The capabilities of PEBS are enumerated through the CPUID instruction.
The remaining sections of this chapter are organized as follows: Section 11.1 defines the enumeration of Architec-
tural PEBS; Section 11.2 previews this feature’s behavior; Section 11.3 defines the details of its registers; Section
11.4 defines the details of the PEBS records; and Section 11.5 defines its interactions with other Intel Architecture
technologies.

11.1 ENUMERATION
If CPUID.(EAX=23H, ECX=0H):EAX[5] is set to 1, the processor supports Architectural PEBS. In this case,
Subleaves 04H and 05H of CPUID Leaf 23H indicate details of Architectural PEBS capabilities. MSR enumeration of
legacy PEBS is also modified, as described in Section 11.1.1 and Section 11.1.2.
The details of CPUID Leaf 23H are shown in Table 1-3 of Chapter 1.

11.1.1 IA32_PERF_CAPABILITIES
Architectural PEBS requires changes to the IA32_PERF_CAPABILITIES MSR (address 345H):
• BASELINE[14] = 0.
• PEBS_TRAP[6], PEBS_ARCH_REG[7], and PEBS_TIMING_INFO[17] = 1.
• PEBS_RECORD_FORMAT[11:8] = 0xF (legacy PEBS is unavailable).
• PEBS_Output_PT_Available[16] = 0.
Document Number: 319433-055 11-1

ARCHITECTURAL PEBS
11.1.2 IA32_MISC_ENABLE
Architectural PEBS requires changes to the IA32_MISC_ENABLE MSR (address 1A0H). Specifically, the read-only
field PEBS_UNAVAILABLE[12] is removed, but its value is kept as 1.

11.2 BEHAVIOR
The processor effectively stores the selected CPU state to memory when a PEBS event occurs, namely after a
performance-monitoring counter overflows. The counter can be configured with a precise or non-precise perfor-
mance-monitoring event. PEBS generates a record for precise events immediately after the instruction (as speci-
fied by the Instruction Pointer field of the Basic group) that experienced the event. For non-precise events, PEBS
generates a record for some instruction when the counter overflows.
A PEBS record is always generated at an instruction boundary, reducing the need for expensive performance moni-
toring interrupt (PMI)-based sampling.
For historical information, see Chapter 21 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B.

11.2.1 Counters
Section 21.2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, describes general-
purpose and fixed-function counters.
Also refer to Section 21.2.6, “Architectural Performance Monitoring Version 6,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B, for more details on the performance monitoring architecture. Use
CPUID to enumerate the number and type of counters.
Reload values associated with individual counters are set in the lowest 32 bits of the extension registers, specifi-
cally IA32_PMC_GPn_CFG_C.RELOAD_VALUE[31:0] for general-purpose counters and
IA32_PMC_FXm_CFG_C.RELOAD_VALUE[31:0] for fixed-function counters, where n and m are the counter
numbers.
Since the counters count up, the reload values are configured by storing the two’s-complement negation first. For
example, the value 1024 would be written as -1024 or 0xFFFFFC00 using 32 bits. On a reload, for a 48-bit Archi-
tectural performance-monitoring counter, the processor 1-extends this to 48 bits (0xFFFF_FFFFFC00).

11.2.2 Record Data
The CPU writes a PEBS Record for each counter that has overflowed at the instruction boundary. Each PEBS Record
contains a header followed by a collection of record groups. The header contains information about the size of the
PEBS record and a bit vector indicating the presence of selected record groups. Available record groups are the
Basic group, the Memory Auxiliary group, the General-Purpose Registers group, the XSAVE-Enabled Registers
group, the Last Branch Records group, and the Performance-Monitoring Counters group. The Basic group is present
by default in PEBS records as it includes necessary data for processing a record. These groups are listed in Table
11-1 and described in detail in Section 11.4, “Records and Groups.”

Table 11-1. Architectural PEBS Configuration Locations
Register/Format Bit Description

31 30 29 28:24 23:21 20:19 18:16 15:10 9:8 7:3 2:0

CPUID.(EAX=23H,
ECX=04H):EBX

0 AUX GPR 0 XER 0 XER 0 LBR CNTR/A 0

63 62 61 60:56 55:53 52:51 50:49 48:42 41:40 39:35 34:32

IA32_PMC_GPn_CFG_C
IA32_PMC_FXm_CFG_C

PEBS_EN AUX GPR MBZ XER MBZ XER MBZ LBR CNTR/A MBZ
11-2 Document Number: 319433-055

ARCHITECTURAL PEBS
11.2.3 Programming PEBS
This section lists the programming guidelines1 that system software should follow in the specified order. Then, it
illustrates the behavior through an example.

11.2.3.1 Programming Guidelines at Initialization Phase
1. Disable counting globally.

2. Setup the PEBS output buffer via the IA32_PEBS_BASE and IA32_PEBS_INDEX registers.

3. Configure counter(s).2

a. Configure a performance-monitoring event into a counter.3

i. Select a performance-monitoring event via the IA32_PMC_GPn_CFG_A MSR for general-purpose
counters. This step does not apply for fixed-function counters.

ii. Set CPL filters via the IA32_PMC_GPn_CFG_A MSR for general-purpose counters or via the
IA32_FIXED_CTR_CTRL MSR for fixed-function counters.

iii. Enable the counter locally.

b. Configure PEBS for the same counter via the IA32_PMC_GPn/FXm_CFG_C MSR.4

i. Program a Reload value.

ii. Select the groups to be included in the PEBS records; see Table 11-1.

iii. Set the PEBS_EN bit.

c. Initialize the counter register with its Reload value.

4. Re-enable counting globally.

11.2.3.2 Programming Guidelines at Runtime (e.g., Inside the PMI Interrupt Service Routine)
1. Disable counting globally.

2. Handle PEBS.

a. Drain data from the PEBS buffer; for example, copy-over data to another buffer. This is the most-common
case for which PEBS-triggered PMI is invoked.

b. Update IA32_PEBS_INDEX[WR_OFFSET] to the start of the PEBS buffer, if needed.

63 62 61 60:56 55:53 52:51 50:49 48:42 41:40 39:35

PEBS Record Format BASIC AUX GPR RSVD XER RSVD XER RSVD LBR CNTR/
RSVD

RSVD

1. The first and last steps in both lists may rely on IA32_PERF_GLOBAL_CTRL. Architectural PEBS and Architectural Performance-Mon-
itoring do not mandate a particular sequence for enabling counting. However, the recommendation is to enable
IA32_PERF_GLOBAL_CTRL last or disable it first, as it provides atomic starting and stopping of the counters and ensures the least
disruption to profiling.

2. Step 3 in Section 11.2.3.1 may be repeated for each counter that software wishes to generate a PEBS record, at initialization, or
when another event is configured (e.g., event-counter multiplexing usage).

3. The counter registers are accessed in the IA32_PMC_GPn_CTR MSR for general-purpose counter n, or in the IA32_PMC_FXm_CTR
MSR for fixed-function counter m.

4. Details on the referenced IA32_* registers can be found in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Vol-
ume 4.

Table 11-1. Architectural PEBS Configuration Locations (Contd.)
Register/Format Bit Description
Document Number: 319433-055 11-3

ARCHITECTURAL PEBS
c. Clear IA32_PERF_GLOBAL_STATUS[ARCH_PEBS] via the IA32_PERF_GLOBAL_STATUS_RESET MSR if the
PEBS buffer Threshold is enabled and/or Clear IA32_PEBS_INDEX[Full].

3. Handle counter n overflow.

a. Set the counter register to its Reload value. Retrieve n, the counter index, via one of the following methods:

i. The Applicable Counter field of the Basic group of most recent record(s) in step 2a above.

ii. Traversing the counter registers’ values.

b. In some usages, software may need to save the current value of counter n, prior to reloading the counter
value.

4. Re-enable counting globally.
For general-purpose counters, PEBS is enabled when IA32_PMC_GPn_CFG_C.PEBS_EN &&
IA32_PERF_GLOBAL_CTRL.EN[n] && IA32_PMC_GPn_CFG_A.CNTR_EN is true, where n is the counter index.
For fixed-function counters, PEBS is enabled when IA32_PMC_FXm_CFG_C.PEBS_EN &&
IA32_PERF_GLOBAL_CTRL.EN[32+m] && IA32_FIXED_CTR_CTRL.[USR|OS]m is true, where m is the counter
index.
Furthermore, PEBS is enabled for a counter when the logical processor's Current Privilege Level (CPL) satisfies the
counter configuration. The PEBS enable bits are distributed per counter, unlike the “global” register in legacy PEBS.

Example 11-1. Programming PEBS

To get the records, as shown in Figure 11-1, software should use the following steps:

1. Disable counting globally by writing zero to the IA32_PERF_GLOBAL_CTRL MSR (address 38FH).

2. Set up IA32_PEBS_BASE and IA32_PEBS_INDEX registers.

3. For the general-purpose counter 1:

a. Configure the event BR_INST_RETIRED.ALL_BRANCHES, which counts retired branches.

b. Set the PEBS_EN[63] bit in the IA32_PMC_GP1_CFG_C MSR (address 1907H). This enables PEBS.

c. Put the 32-bit reload value into IA32_PMC_GP1_CFG_C.RELOAD_VALUE.

d. There is no need to set other bits for the optional groups since the Basic group is included by default in PEBS
records.

4. For the fixed-function counter 1:

a. Locally enable it by setting the CPL bits IA32_FIXED_CTR_CTRL.[USR1|OS1]. This counter counts
CPU_CLK_UNHALTED.THREAD – Unhalted Core Cycles.

b. Set the PEBS_EN[63] bit in the IA32_PMC_FX1_CFG_C MSR (address 1987H). This enables PEBS.

c. Put the 32-bit reload value into IA32_PMC_FX1_CFG_C.RELOAD_VALUE.

d. Set the AUX[62] bit and GPR[61] bit in the IA32_PMC_FX1_CFG_C MSR. This includes the AUX and GPR
groups in the record.

5. Re-enable counting globally by setting bits 1 and 33 in the IA32_PERF_GLOBAL_CTRL MSR to start counting on
both counters. See Section 2.1, “Architectural MSRs,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4, for details of the MSR.
11-4 Document Number: 319433-055

ARCHITECTURAL PEBS
When the general-purpose counter and the fixed-function counter overflow, the two records are written to
memory.

11.3 MODEL-SPECIFIC REGISTERS (MSRS)
The Architectural PEBS MSRs are listed in Table 11-2.

Figure 11-1. Example PEBS Record

Table 11-2. Architectural PEBS MSRs

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 3F4H, 1012 IA32_PEBS_BASE

Arch PEBS Output Buffer Base Register (R/W)

Holds the start address and size of the output buffer.

This MSR exists only if CPUID.(EAX=23H,ECX=0H):EAX[5] == 1.

Register Address: 3F5H, 1013 IA32_PEBS_INDEX

Arch PEBS Output Buffer Base Register (R/W)

This MSR exists only if CPUID.(EAX=23H,ECX=0H):EAX[5] == 1.

Register Address:

1903H, 1907H, …, 1903H+(4*n),

6403, 6407, ..., 6403 +(4*n)

IA32_PMC_GPn_CFG_C

Extended Performance Event Selector for GP Counter x (R/W)

For general-purpose counters, the IA32_PMC_GPn_CFG_C MSR is available if either
CPUID.(EAX=23H,ECX=05H):EAX[n] or CPUID.(EAX=23H,ECX=02H):EAX[n] is set. Reserved bits must be zero.

Register Address:

1983H, 1987H, …, 1983H+(4*m),

6531, 6535, ..., 6531 +(4*m)

IA32_PMC_FXm_CFG_C

Extended Performance Event Selector for Fixed-Function Counter x (R/W)

For fixed-function counters, the IA32_PMC_FXm_CFG_C MSR is available if either CPUID.(EAX=23H,ECX=05H):ECX[m]
or CPUID.(EAX=23H, ECX=02H):EBX[m] is set. Reserved bits must be zero.

Basic Group Basic Group

AUX Group

GPR Group

Header Information

Fixed Counter 1

Header Information

General Purpose Counter 1
Document Number: 319433-055 11-5

ARCHITECTURAL PEBS
11.3.1 IA32_PEBS_BASE MSR
Table 11-3 shows the layout of the IA32_PEBS_BASE MSR, the Output Buffer Base Register MSR. The functions of
the flags and fields are:
• SIZE field (bits 3:0) – Specifies the output buffer size in powers of 2, where buffer size = 4 KB * 2^SIZE, e.g.,

SIZE = 7 results in a 512 KB output buffer and SIZE = 9 results in a 2 MB output buffer. The maximum SIZE
value is 15, or 128 MB output buffer.

• Reserved field (bits 11:4) – Reserved for future usage and must be zero.
• PHYS_ADDR (bits (MAXPHYADDR – 1):12) – Specifies the value of the base physical address of a single,

contiguous physical output region.
• Reserved field (bits 63:MAXPHYADDR) – Reserved for future usage and must be zero.
The MSR is initialized to all zeros on reset.

11.3.2 IA32_PEBS_INDEX MSR
Table 11-4 shows the layout of the IA32_PEBS_INDEX MSR, the Output Buffer Index Register MSR. The functions
of the flags and fields are:
• Reserved field (bits 3:0) – Reserved for future usage and must be zero.
• WR_OFFSET field (bits 26:4) – Specifies the value of the next-byte-to-write offset from

IA32_PEBS_BASE.PHYS_ADDR.
• Reserved field (bits 30:27) – Reserved for future usage and must be zero.
• FULL flag (bit 31) – When set, the output buffer is full, and no further records will be generated.
• THRESH_EN field (bit 32) – When set, the PMI threshold is enabled.
• Reserved field (bits 35:33) – Reserved for future usage and must be zero.
• THRESH_OFFSET field (bits 58:36) – Specifies the value of bits [26:4] of the PMI threshold offset from the

output buffer base.
• Reserved field (bits 63:59) – Reserved for future usage and must be zero.
The MSR is initialized to all zeros on reset.

Table 11-3. IA32_PEBS_BASE MSR

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 3F4H, 1012 IA32_PEBS_BASE

Architectural PEBS Output Buffer Base Register (R/W)

Holds basic structural controls for Architectural PEBS.

This MSR exists only if CPUID.(EAX=23H, ECX=0H):EAX[5] == 1.

3:0 SIZE (R/W)

Size options for the PEBS output buffer (actual size is power-of-2
multiples of 4KB, that is, Buffer Size = 4KB * 2^SIZE).

11:4 Reserved.

MAXPHYADDR – 1:12 PHYS_ADDR (R/W)

Start of the PEBS output buffer (4KB-aligned physical address,
excluding the 12b page offset).

63:MAXPHYADDR Reserved.
11-6 Document Number: 319433-055

ARCHITECTURAL PEBS
11.3.3 IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs
Table 11-5 shows the layout of the Performance Event Select Extended Register MSRs. The IA32_PMC_GPn_CFG_C
MSR is the Event Select Extended register for a general-purpose counter, while the IA32_PMC_FXm_CFG_C MSR is
the Event Select Extended register for a fixed-function counter, where n and m are the counter numbers. The func-
tions of the flags and fields are:
• RELOAD_VALUE field (bits 31:0) – Selects a 32-bit value loaded into IA32_PMC_GPn_CTR when a PEBS record

is generated due to counter n. For a 48-bit counter, the value will be 1-extended into a 48-bit value.
• Reserved field (bits 34:32) – Reserved for future usage and must be zero.
• ALLOW_IN_RECORD field (bit 35) – When set, indicates that this counter's value will be included in the PEBS

record if the associated CNTR subgroup is enabled.
• CNTR field (bits 38:36) – When any bit is set, the counter group will be included in the PEBS record. If bit 36 is

set, the general-purpose counters subgroup will be included. If bit 37 is set, the fixed-function counters
subgroup will be included. If bit 38 is set, the performance metrics subgroup will be included and reset.

• Reserved field (bit 39) – Reserved for future usage and must be zero.
• LBR field (bits 41:40) – Identifies the number of Last Branch Records (LBRs) to record. The encodings of this

field are as follows:

• 00 – LBR group will not be recorded. The group is disabled.

• 01 – 8 LBRs will be recorded.

• 10 – 16 LBRs will be recorded.

• 11 – The number of LBRs to be recorded is IA32_LBR_DEPTH.DEPTH.
• Reserved field (bits 48:42) – Reserved for future usage and must be zero.
• XER field (bits 55:49) – When set, enables particular XSAVE-Enabled Registers to be included in the PEBS

record. The encodings for the register subgroup are:

Table 11-4. IA32_PEBS_INDEX MSR

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address: 3F5H, 1013 IA32_PEBS_INDEX

Arch PEBS Output Buffer Index Register (R/W)

Holds status and additional controls for Architectural PEBS.

This MSR exists only if CPUID.(EAX=23H, ECX=0H):EAX[5] == 1.

3:0 Reserved.

26:4 WR_OFFSET (R/W)

Next-byte-to-write offset from IA32_PEBS_BASE.PHYS_ADDR.

30:27 Reserved.

31 FULL (R/W)

The buffer is full, and no further records will be generated.

32 THRESH_EN (R/W)

Enable PMI on PEBS buffer Threshold checks.

35:33 Reserved.

58:36 THRESH_OFFSET (R/W)

The threshold for the PEBS buffer (specified as offset in bytes from
IA32_PEBS_BASE.PHYS_ADDR).

63:59 Reserved.
Document Number: 319433-055 11-7

ARCHITECTURAL PEBS
• Bit 49 – SSER: Record XMM0-XMM15.

• Bit 50 – YMMHIR: Record the upper 128 bits of YMM0-YMM15.

• Bit 53 – OPMASKR: Record K0-K7.

• Bit 54 – ZMMHIR: Record the upper 256 bits of ZMM0-ZMM15.

• Bit 55 – Hi16ZMMR: Record ZMM16-ZMM31.
• Reserved field (bits 60:56) – Reserved for future usage and must be zero.
• GPR field (bit 61) – When set, this field enables the General-Purpose Registers group to be included in the PEBS

record.
• AUX field (bit 62) – When set, this field enables the Auxiliary group to be included in the PEBS record.
• PEBS_EN field (bit 63) – When set, PEBS is enabled for this counter.
On reset, the MSR is initialized to all zeros.

Table 11-5. IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope

Register Address:

1903H, 1907H, …, 1903H+(4*n),

6403, 6407, ..., 6403 +(4*n)

IA32_PMC_GPn_CFG_C

Extended Performance Event Selector for GP Counter x (R/W)

For general-purpose counters, the IA32_PMC_GPn_CFG_C MSR is available if either CPUID.(EAX=23H,ECX=05H):EAX[n]
or CPUID.(EAX=23H,ECX=02H):EAX[n] is set. Reserved bits must be zero.

31:0 RELOAD_VALUE (R/W)
Contains the reload value to be loaded into the associated counter by
Auto Counter Reload. It will be 1-extended to 48 bits.

34:32 Reserved.

35 ALLOW_IN_RECORD (R/W)
If 1, indicates that this counter's value will be included in the PEBS record
if the associated CNTR subgroup is enabled.

38:36 CNTR (R/W)
When any bit is set, the counter group will be included in the PEBS record.
Bit 36: If 1, the general-purpose counters subgroup will be included.
Bit 37: If 1, the fixed-function counters subgroup will be included.
Bit 38: If 1, the performance metrics subgroup will be included and will be
reset

39 Reserved.

41:40 LBR (R/W)
Identifies the number of Last Branch Records (LBRs) to record. The
encodings of this field are as follows:
• 00 – LBR group will not be recorded. The group is disabled.
• 01 – 8 LBRs will be recorded.
• 10 – 16 LBRs will be recorded.
• 11 – The number of LBRs to be recorded is IA32_LBR_DEPTH.DEPTH.

48:42 Reserved.
11-8 Document Number: 319433-055

ARCHITECTURAL PEBS
11.3.4 Changes from Legacy PEBS
The following MSRs are removed and generate a #GP exception on any attempt to read or write them:
• IA32_PEBS_ENABLE
• MSR_PEBS_DATA_CFG
Architectural PEBS does not use the IA32_DS_AREA MSR, but it is maintained for BTS use.
Bits 32, 36, 40, and 44 of IA32_PMC_FXm_CFG_C.ADAPTIVE_RECORD_CTRm will report 0 on a RDMSR and will
generate a #GP exception on an attempt to set them. The same results occur with IA32_PMC_GPn_CFG.Adaptive
PEBS for all general-purpose counters.
See Section 20.9.2.1, “Adaptive_Record Counter Control,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for more information.
The IA32_ PERF_GLOBAL_STATUS, IA32_ PERF_GLOBAL_STATUS _RESET, and IA32_PERF_GLOBAL_STATUS_SET
MSRs are modified by adding a bit, ARCH_PEBS[54]:
• The processor clears IA32_ PERF_GLOBAL_STATUS[54]=0 on a software write of 1 to

IA32_PERF_GLOBAL_STATUS_RESET[54].
• The processor sets IA32_ PERF_GLOBAL_STATUS[54]=1 on a software write of 1 to

IA32_PERF_GLOBAL_STATUS_SET[54].
See Section 20.2.4.2, “IA32_PERF_GLOBAL_STATUS_RESET and IA32_PERF_GLOBAL_STATUS_SET MSRs,” of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for more information.

55:49 XER (R/W)
When set, enables particular XSAVE-Enabled Registers to be included in
the PEBS record. The encodings for the register subgroup are:
• Bit 49 – SSER: Record XMM0-XMM15.
• Bit 50 – YMMHIR: Record the upper 128 bits of YMM0-YMM15.
• Bits 52:51 – Reserved and must be zero.
• Bit 53 – OPMASKR: Record K0-K7.
• Bit 54 – ZMMHIR: Record the upper 256 bits of ZMM0-ZMM15.
• Bit 55 – Hi16ZMMR: Record ZMM16-ZMM31.

60:56 Reserved.

61 GPR (R/W)
If 1, enables the General-Purpose Registers Group to be included in the
PEBS record.

62 AUX (R/W)
If 1, enables the Auxiliary Group to be included in the PEBS record.

63 PEBS (R/W)
If 1, PEBS is enabled for this counter.

Register Address:

1983H, 1987H, …, 1983H+(4*m),

6531, 6535, ..., 6531 +(4*m)

IA32_PMC_FXm_CFG_C

Extended Performance Event Selector for Fixed-Function Counter x (R/W)

For fixed-function counters, the IA32_PMC_FXm_CFG_C MSR is available if either CPUID.(EAX=23H,ECX=05H):ECX[m]
or CPUID.(EAX=23H,ECX=02H):EBX[m] is set. Reserved bits must be zero.

63:0 This MSR has identical bit definitions to the IA32_PMC_GPn_CFG_C MSR.

Table 11-5. IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs (Contd.)

Register Address: Hex, Decimal Register Name

Register Information / Bit Fields Bit Description Scope
Document Number: 319433-055 11-9

ARCHITECTURAL PEBS
11.4 RECORDS AND GROUPS
All records begin with a 16-byte header, shown in Figure 11-2, which includes the 8-byte PEBS record format. The
record format contains the following:
• The bit vector indicating the groups in the record.
• The record size, which may include end padding; see Section 11.4.7, “Fragmented Records.”
• Other indicator bits.
The remaining 8 bytes in the header are reserved.

The record size is a 16-bit field containing the size of the generated record (the header plus the groups) in bytes,
with a maximum size of 64 kilobytes. A record always starts at a 16-byte aligned address. The size may include
padding at the end for alignment reasons. The padding bytes would be stale and not written by the processor.
The Continued bit indicates that the record has additional groups in subsequent record fragments. Refer to Section
11.4.7, “Fragmented Records,” for an example.
A record continues in the architecturally defined group order: Basic group, Memory Auxiliary group, General-
Purpose Registers group, XSAVE-Enabled Registers group, Last Branch Records group, and finally, Performance-
Monitoring Counters group. The record is also compacted to place only those groups indicated in the bit vector
contiguously.
All groups are aligned along 16-byte boundaries and multiples of 16 bytes. Some groups have reserved fields and
subfields to preserve alignment requirements. Most groups have a predetermined size, though some are variable.
A processor may dump groups/fields in any temporal order, not necessarily per their offset.

11.4.1 Basic Group
The Basic group is present in all complete PEBS records.1 The group size is 48 bytes and consists of the Instruction
Pointer, Applicable Counter, Time-Stamp Counter, and Retire Latency fields. The final two fields in the group, each
consisting of 8 bytes, are reserved for future growth.

Table 11-6 lists the Basic group's fields and the offset from the start of the Basic group. Each field is 64 bits wide.

Figure 11-2. PEBS Record Format

1. See Section 11.4.7, “Fragmented Records.”

Table 11-6. Basic Group Fields
Field Name Byte Offset

Instruction Pointer 00H

Applicable Counter 08H

Time-Stamp Counter 10H

Retire Latency 18H

Reserved Groups Reserved

Continued

64-bit Mode

127 64 63 32 31 30 29 16 15 0

Record Size
11-10 Document Number: 319433-055

ARCHITECTURAL PEBS
11.4.1.1 Instruction Pointer
The Instruction Pointer field holds the RIP register value1 of the instruction that retired immediately before emitting
the PEBS record. This field is sometimes historically referred to as “EventingIP.”
For precise events, this is the instruction that triggered PEBS record generation. For non-precise events, this is
some instruction when the counter overflows without necessarily stopping at the causing instruction.
If a record was generated immediately after execution just became “in context” for a given counter, then the
Instruction Pointer of that record is considered “out of context.” A -1 value denotes an out-of-context Instruction
Pointer. This behavior avoids leaking information across contexts.
Note that the Instruction Pointer field differs from the RIP field in the General-Purpose Registers group, which
records the instruction pointer of the next instruction to be executed after record generation. Also, when not in 64-
bit mode, the upper 32 bits will be zero.

11.4.1.2 Applicable Counter
This field indicates which counter(s) triggered the generation of the PEBS record.
Figure 11-3 shows the mapping of the various one-hot counter bits in the PEBS record. GP[n-1:0] is the bit vector
of General-Purpose Counters, where GP0 starts at bit 0, and n is the maximum general-purpose counter ID
supported. Fixed[32+m-1:32] is the bit vector of fixed-function counters, where FIXED0 starts at bit 32, and m is
the maximum fixed-function counter ID supported. Bits that do not correspond to counters identified in Section
21.2.9, “Scalable Enumeration Architecture,” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, are reserved.

Reserved 20H

Reserved 28H

1. RIP register without the CS register base.

Figure 11-3. Bit Mapping of Applicable Counters in the PEBS Record

Table 11-6. Basic Group Fields (Contd.)
Field Name Byte Offset

Reserved

IA32_FIXED_CTR1

IA32_FIXED_CTR0

63 32 + m-1 ... 35 34 33 32 31 n … 2 1 0

IA32_FIXED_CTR3

IA32_PMC(n-1)

IA32_PMC1

IA32_FIXED_CTR2

IA32_PMC0

Reserved
Document Number: 319433-055 11-11

ARCHITECTURAL PEBS
11.4.1.3 Time-Stamp Counter
The time-stamp counter is a 64-bit counter set to 0 following a processor reset. After a reset, the counter incre-
ments even when the HLT instruction or the external STPCLK# pin halts the processor.
The time-stamp counter will reflect the value of the counter when the record is generated, and it will include the
offset and scale adjustments even if RDTSC Exiting is enabled (i.e., no exit taken). It is the same as Intel Processor
Trace.
For more details, see Section 18.17, “Time-Stamp Counter,” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B.

11.4.1.4 Retire Latency
The Retire Latency field in the record will consist of:
• Retire Latency field, bits 15:0 – Indicates the elapsed cycles between the retirement of the architecturally-

visible instruction that caused PEBS and the prior instruction retirement. The measurement reflects core
unhalted cycles (at the pace of Fixed-Function Counter 1) and is reported for any PEBS, regardless of whether
precise or non-precise events are programmed. The count saturates at 216-1.

• Retire Latency Valid flag, bit 16 – A valid bit for the Retire Latency field. When set, the Retire Latency field
holds a valid value.

• Reserved field, bits 63:17 – Reserved for future usage.

11.4.2 Auxiliary Group
The Auxiliary (AUX) group is home to custom fields, often without ties to the state of a particular processor archi-
tectural feature and without architectural registers. The AUX group size is 64 bytes, consisting of 8 fields of 8 bytes
each. The first 8-byte field is the Memory Access Address, followed by seven 8-byte reserved fields, as shown in
Table 11-7. A named reserved field may have processor-dependent implementation.

If CPUID.(EAX=23H, ECX=04H):EBX.AUX[30] = 1, then the Auxiliary group is available. If AUX[62] in the counter’s
Event Select Extended register is set, then the Auxiliary group will be included when that particular counter gener-
ates a PEBS record.
If PEBS Record Format.AUX[62] = 1 in the record itself, then the Auxiliary group is included.
All fields are populated in a model- and event-specific manner. None of the architectural events are architecturally
specified to populate these fields, including the Memory Access Address field.
If the Memory Access Address population is not indicated in the model-specific event list, the field contents are
reserved.

Table 11-7. Auxiliary Group Fields
Field Name Byte Offset

Memory Access Address 00H

Reserved 08H

Reserved 10H

Reserved 18H

Reserved 20H

Reserved (Memory Auxiliary Information) 28H

Reserved (Memory Access Latency) 30H

Reserved (TSX Auxiliary Information) 38H
11-12 Document Number: 319433-055

ARCHITECTURAL PEBS
11.4.2.1 Memory Access Address
The Memory Access Address (MAA) is the 64-bit canonical linear address1 of memory accessed by a load or store
access of an instruction. The location of the MAA field is architectural, but which events update it and the address
saved is model-specific. Unlike legacy PEBS, Architectural PEBS enables one instruction to generate multiple
records with different MAA fields. For example, MOVDIR* instructions have distinct load and store addresses.
The MAA will be the address of a linear access performed by the instruction immediately preceding the PEBS event
(at EventingIP, or macrofused2 to it), or zero. The MAA will never expose access from any of these cases:
• A filtered out CPL, even for ring transitions.
• Before any counters are enabled, e.g., a VMM address after a VM entry enables counters.
• Inside a production/opt-out enclave. (No PEBS records are taken during a production enclave, and PEBS

records taken after EEXIT/AEX will have MAA=0).
For instructions with multiple linear load accesses, or multiple linear store accesses, which one (if any) is recorded
is model-specific. Consult the online event list for more details on the MAA behavior for a particular processor:
https://perfmon-events.intel.com/.

NOTE
For MSR flows (VMX MSR list, WRMSRLIST) that can disable and re-enable counters, it is possible
for an MAA recorded before the disable to persist. Intel advises against such uses.

11.4.3 General-Purpose Register Group
The General-Purpose Register group contains 20 fields, each being 64 bits wide, for a total of 160 bytes. The group
contains RFLAGS, RIP, RAX, RCX, etc., as well as the Shadow Stack Pointer (SSP), as shown in Table 5. The SSP will
be zero on implementations that do not support CET or when CET is not in use.

If CPUID.(EAX=23H, ECX=04H):EBX.GPR[29] = 1, then the General-Purpose Register group is available. If
IA32_PMC_GPn_CFG_C.GPR[61]=1 or IA32_PMC_FXm_CFG_C.GPR[61] = 1, then the record will include the
General-Purpose Register group when the counter generates a PEBS record. In the PEBS record, if PEBS Record
Format.GPR[61] = 1, the General-Purpose Register group is included.

1. No Linear Address Masking (LAM) bits are included.

2. Macrofusion merges two instructions to a single micro-op. See Section 3.4.2.2, “Optimizing for Macrofusion,” in the Intel® 64 and IA-
32 Architectures Optimization Reference Manual: Volume 1.

Table 11-8. General-Purpose Register Group Fields
Field Name Byte Offset

RFLAGS 00H

RIP 08H

RAX 10H

RCX 18H

RDX 20H

RBX 28H

RSP 30H

RBP 38H

RSI 40H

RDI 48H

R8 50H

... ...

R15 88H
Document Number: 319433-055 11-13

https://perfmon-events.intel.com/

ARCHITECTURAL PEBS
The fields are sized to support 64-bit mode.
When not in 64-bit mode, the upper 32 bits of the RAX through RDI fields will be unmodified. Furthermore, fields
for registers that “do not exist” are left unmodified, similar to how XSAVE handles vector registers. Space is not
compacted away. Registers R8-R15 will be unmodified.

11.4.4 XSAVE-Enabled Registers Group
The XSAVE-Enabled Registers (XER) group is a super-group for user-level state with XSAVE architectural support,
i.e., those supported by the XSAVEC instruction. Five groups (or sub-groups) are available initially; see Table 11-9.
Additional groups are likely to be supported in future generations. The supported groups depend on the ISA
support of the processor.
The bits CPUID.(EAX=23H, ECX=04H):EBX.XER[23:17] indicate which components of the XER super-group are
available. The bits IA32_PMC_GPn_CFG_C.XER[55:49] and IA32_PMC_FXm_CFG_C.XER[55:49] select which
groups of XER to include when the counter generates a PEBS record. The select bit in the *CFG_C MSRs is writeable
if that group is available in CPUID.
The bits PEBS Record Format.XER[55:49] indicate which components of the XER group are included in the PEBS
record. Group sizes are listed in Table 11-9.

Memory space in the output buffer is not allocated for groups that are not selected or not-enabled for a particular
group. A group is not enabled either by XSAVE (XCR0[x] = 0)or by Control Registers (either CR4.OSXSAVE = 0 or
CR0.TS = 1, meaning the state has not been lazily restored). The memory space is allocated but not written when
a group is selected and is enabled, and that group is either not in use (that is, in the INIT state) or is disabled by
XFD (eXtended Feature Disable) if any. These choices shall improve performance and lower overhead.The memory
space is allocated and written when all conditions are met (that is, the group is selected, enabled by XSAVE, is in
use, and not disabled by XFD if any).
The first eight bytes include the XSAVES instruction’s XSTATE_BV bit vector (reflecting INUSE xinit optimization).
Outside 64-bit mode, vector registers beyond XMM7/YMM7/ZMM7are not accessible. Thus, the memory space is
allocated but not written for those registers (should the memory space be allocated for relevant groups).
Processors that do not support a particular group, e.g., ZMMHIR, will have the corresponding bit clear in CPUID,
and attempting to set the select bit will cause a #GP fault.

SSP 90H

Reserved 98H

Table 11-9. XSAVE-Enabled Registers (XER) Group Fields and Sizes
Field Name Registers Used Size

XSTATE_BV/TS P-core: XINUSE/XFD/CR0.TS & 0xE6
E-core: XINUSE/XFD/CR0.TS & 0x06

8 B

Reserved Reserved 8 B

SSER XMM0-XMM15 16 regs * 16 B = 256 B

YMMHIR Upper 128 bits of YMM0-YMM15 16 regs * 16 B = 256 B

OPMASKR K0-K7 8 regs * 8 B = 64 B

ZMMHIR Upper 256 bits of ZMM0-ZMM15 16 regs * 32 B = 512 B

Hi16ZMMR ZMM16-ZMM31 16 regs * 64 B = 1024 B

Table 11-8. General-Purpose Register Group Fields (Contd.)
Field Name Byte Offset
11-14 Document Number: 319433-055

ARCHITECTURAL PEBS
11.4.5 Last Branch Record Group
Last Branch Records (LBRs) enable the recording of the software path history by logging taken branches and other
control flow transfers within processor registers. See Section 18.5, “Last Branch, Interrupt, and Exception
Recording (Intel® Core™ 2 Duo and Intel Atom® Processors),” of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, for information about last branch records.

Table 11-10 lists the LBR fields.
Architectural PEBS can include a subset of the architectural LBRs available. Software may, independent to PEBS,
reduce the number of active LBR records from the maximum using the IA32_LBR_DEPTH MSR.
The bits IA32_PMC_GPn_CFG_C.LBR[41:40] and IA32_PMC_FXm_CFG_C.LBR[41:40] indicate the number of LBR
records to include in the Last Branch Record group. The encodings of this field are as follows:
• 00 – LBR group will not be recorded. The group is disabled.
• 01 – 8 LBRs will be recorded.
• 10 – 16 LBRs will be recorded.
• 11 – Variable size: the number of LBRs to be recorded is defined by IA32_LBR_DEPTH.DEPTH.
The bits PEBS Record Format.LBR[41:40] indicate the number of LBR records in the group.

The group size is 6*8 bytes + Num_LBR*24 bytes. Software must look at IA32_LBR_DEPTH recorded in the group.
If a fixed size was requested in the IA32_PMC_GPn_CFG_C or IA32_PMC_FXm_CFG_C register, IA32_LBR_DEPTH
recorded in the group will indicate how many LBR entries in the group are valid (meaningful). If a variable size was
requested in the IA32_PMC_GPn_CFG_C or IA32_PMC_FXm_CFG_C register, IA32_LBR_DEPTH recorded in the
group will indicate the size of the variable portion of the LBR group.
The LBR array is preceded in the record by five additional LBR- and LER-related fields. Should a fixed number of
Num_LBRs be requested, but LBR_DEPTH is set lower, entries beyond LBR_DEPTH will be unmodified.
IA32_LBR_DEPTH is included in the LBR group in a specific location.
It is possible for LBRs to be in system wide mode (IA32_LBR_CTL[OS=1, USR=1]) while PEBS is in user mode.
PEBS will not attempt to filter out any non-user data from the LBRs, including LERs. It is up to the software to
ensure that if it allows LBRs in PEBS, that the filtering conditions are appropriate.
The size of a single LBR entry is 3 fields * 64 bits, or 24 bytes. The contents of each field is determined by the archi-
tectural LBR feature.

Table 11-10. Last Branch Record Group Fields
Field Name Byte Offset

Reserved 00H

IA32_LBR_CTL 08H

IA32_LBR_DEPTH 10H

IA32_LER_FROM_IP 18H

IA32_LER_TO_IP 20H

IA32_LER_INFO 28H

IA32_LBR_0_FROM_IP 30H

IA32_LBR_0_TO_IP 38H

IA32_LBR_0_INFO 40H

... ...

IA32_LBR_[Num_LBR-1]_FROM_IP 30H+[Num_LBR-1]*24

IA32_LBR_[Num_LBR-1]_TO_IP 38H+[Num_LBR-1]*24

IA32_LBR_[Num_LBR-1]_INFO 40H+[Num_LBR-1]*24
Document Number: 319433-055 11-15

ARCHITECTURAL PEBS
11.4.6 Performance Counters Group
Performance Counters enable performance monitoring events to be counted during processor execution. The
Counters group (CNTR) enables users to snapshot the current values of select performance monitoring counters
into the PEBS record. General-purpose (GP), fixed-function (FIXED), and performance metrics (METRICS) are
covered by the Counters group. Table 11-11 provides the Counter group details.
The bits CPUID.(EAX=23H, ECX=04H):EBX.CNTR[7:4] indicate that the Counter group component subgroups are
available.
IA32_PMC_GPn_CFG_C.CNTR[39:36] and IA32_PMC_FXm_CFG_C.CNTR[39:36] indicate whether to include the
Counter group subgroups when this counter generates a PEBS record. Any set bit will cause the Counter group
header to be included in the record.
The bits PEBS Record Format.CNTR[39:36] indicate which counter group subgroups were included in the record. If
any of these bits are set, the PEBS record will include the 16-byte group header. The group header contains four
32-bit vectors, one vector per subgroup, indicating which counters are included in each subgroup. Individual
counters must opt in.
CPUID.(EAX=23H, ECX=04H):EBX.ALLOW_IN_RECORD[3] indicates the
IA32_PMC_GPn_CFG_C.ALLOW_IN_RECORD and IA32_PMC_FXm_CFG_C.ALLOW_IN_RECORD bits are available.
Software should set IA32_PMC_GPn_CFG_C.ALLOW_IN_RECORD[35] and
IA32_PMC_FXm_CFG_C.ALLOW_IN_RECORD[35] to include the counter’s value in the PEBS record when a record
is generated that includes the associated subgroup.
The ALLOW_IN_RECORD, METRICS, FIXED, and GP bits within the extension registers allow software to control
which counters actually appear in the PEBS record.

Note that the bit PEBS Record Format.ALLOW_IN_RECORD[35] is reserved.

Consider the following example using general-purpose counters, where:
• IA32_PMC_GP0_CFG_C.{ALLOW=1, GP=1}
• IA32_PMC_GP1_CFG_C.ALLOW=1
• IA32_PMC_GP2_CFG_C.ALLOW=0
If general-purpose counter 0 generates a PEBS record, it includes general-purpose counter 0 and general-purpose
counter 1 (but not general-purpose counter 2 because its ALLOW bit was clear).
If general-purpose counter 1 or general-purpose counter 2 generates a PEBS record, it does not include any
counters because all METRICS, FIXED, and GP bits were clear for general-purpose counter 1 and general-purpose
counter 2.

11.4.7 Fragmented Records
A PEBS record can be split into n fragments that comprise the complete record. Fragmented records can help miti-
gate the contiguous buffer when PEBS2GPA is used. See Section 11.5.1 for information about PEBS2GPA and
Chapter 29 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D, for
EPT details.

Table 11-11. Counter Group Details

Bit Reserved
METRICS
Subgroup

FIXED
Subgroup

GP
Subgroup

ALLOW_IN_RECORD

CPUID.(EAX=23H, ECX=04H):EBX 7 6 5 4 3

IA32_PMC_GPn_CFG_C
39 38 37 36 35

IA32_PMC_FXm_CFG_C
PEBS Record Format 39 38 37 36 35

Group Header Bits 127:96 95:94 63:32 31:0 N/A
11-16 Document Number: 319433-055

ARCHITECTURAL PEBS
Each fragment of the complete record has a header and a subset of the groups. The first n-1 fragments will have
their Continued[31] bit set to 1 to indicate that the record has additional groups in subsequent record fragments.
The last fragment will have its Continued bit clear.
If there is empty space between record fragments, then either the Record Size field may indicate padding (i.e.,
having a value larger than the required size; refer to Section 11.4, “Records and Groups”) or a NULL record will be
inserted. A NULL record is an empty record where only the Record Size field is non-zero (Group indicators, the
Continued bit, and other fields are clear).
For example, suppose that a complete record consists of two fragments, record 4 and record 5, which cross an EPT
page boundary as shown in Figure 11-4. In the upper part of Figure 11-4, record 4 includes some of the requested
groups and padding to abut the end of the page, and it has its Continued bit set to 1. In the lower part of
Figure 11-4, record 4 includes some of the requested groups with no padding (it has its Continued bit set to 1) and
the Null Record abuts the end of the page. Record 5 contains the remaining groups in both instances, with the
Continued bit clear.

Figure 11-4. Example of a Fragmented Record

Complete Record

C
O

N
T

=
0

Record
0

Record
1

C
O

N
T

=
0

Record
2

C
O

N
T

=
0

Record
3

C
O

N
T

=
0

 Record 4 Padding

C
O

N
T

=
1

 Record 5

C
O

N
T

=
0

EPT Page Boundary

Write Offset

Base End

Complete Record

C
O

N
T

=
0

Record
0

Record
1

C
O

N
T

=
0

Record
2

C
O

N
T

=
0

Record
3

C
O

N
T

=
0

 Record
4

C
O

N
T

=
1

 Record 5

C
O

N
T

=
0

EPT Page Boundary

Write Offset

Base End

Null
Record

C
O

N
T

=
0

Document Number: 319433-055 11-17

ARCHITECTURAL PEBS
11.5 INTERACTIONS WITH OTHER PROCESSOR FEATURES

11.5.1 Virtual Machine Extension (VMX)
By default, PEBS operation persists across VMX transitions. However, VMCS fields have been added to enable
constraining PEBS usage to within VMX non-root operation only. See details in Table 11-12.

To enable the guest-only PEBS use case, a VMM should set the “PEBS Uses Guest Physical Addresses” VMCS execu-
tion control, and allocate the PEBS buffer using guest physical addresses (GPAs). Additionally, counters should be
enabled only in VMX non-root operation for that guest. In other words, on VM exit from the guest, the counters
should be stopped, and on VM entry back to the guest, the counters should be resumed. This ensures that the
counters and the PEBS record information belong to that guest.

Figure 11-5. EPT Page Boundary Example with Included Padding

Table 11-12. PEBS VMCS Fields
Name Type Bit Behavior

PEBS Uses Guest Physical
Addresses (PEBS2GPA)

Tertiary
Processor-Based
VM-Execution
Control

121

NOTES:

1. Definitions of Tertiary Processor-Based VM-Execution Controls. Software should consult the VMX capability
MSR, IA32_VMX_PROCBASED_CTLS3, to determine if this bit may be set. See the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 3D, Appendix A.3.4.

This bit determines whether the PEBS buffer uses guest
physical addresses.

0x3000

GPA Contents

Output Wr Offset
Output Base

0x0FF8
0x0FF0 <old contents> (16B)
0x0FD0 Basic Group (32B)
0x0FC0 Header BASIC CONT Sz=16+32+16 = 64B
0x0000 ...

0x1B80
0x1B80 <old contents> (16B)
0x1850 LBR Group (816B)
0x1010 VECR (2112B)
0x1000 Header VECR, LBR CONT Sz=2936+1160 = 4096B (16B)

0x2810
0x2010 FUTURE Group (2040B)
0x2000 Header FUTURE, Sz=2056B (16B)

Next Wr Offset

Guest Physical Memory

0x0FF8
0x3FF0 <old contents> (16B)
0x3FD0 Basic Group (32B)
0x3FC0 Header BASIC CONT Sz=16+32+16 = 64B
0x3000 ...

PPA Contents

0x0808
0x0010 FUTURE Group (2040B)
0x0000 Header FUTURE, Sz=2056B (16B)

0x1000

0x2B80
0x2B80 <old contents> (16B)
0x2850 LBR Group (816B)
0x2010 VECR (2112B)
0x2000 Header VECR, LBR CONT Sz=2936+1160 = 4096B (16B)

Platform Physical Memory

**Note that the Group sizes may have changed and are for illustrative purposes.
11-18 Document Number: 319433-055

ARCHITECTURAL PEBS
In this use case, the Guest owns counter/PEBS configuration, manages the PEBS output buffer, and switches the
counter/PEBS state across applications inside that guest. The Host can simply pass through the PEBS and counter
management handling to that guest as illustrated by Figure 11-6.

To enable the system-wide PEBS use case, a VMM should keep the PEBS Uses Guest Physical Addresses bit clear
and allocate the PEBS buffer using platform physical addresses (PPAs). Additionally, counters configured for PEBS
should always be enabled, possibly hidden from guests. In other words, on any VM exit or VM entry, the counters
should continue counting. This ensures that the counters and the PEBS record information are system-wide.

Figure 11-6. Guest-Only PEBS: Diagram of Interactions Across Entities

Guest

System Software
Guest

MemoryPMU Layer Interrupt Handler

Platform

Counter/
PEBS Management

 VMM

PMI PEBS
Records

SMM

Core with Architectural PEBS
Document Number: 319433-055 11-19

ARCHITECTURAL PEBS
In this use case, the host owns counter/PEBS configuration, manages the PEBS output buffer, and assures the
counter/PEBS state persists across guests, as illustrated by Figure 11-7.

Other use cases, e.g., host-only, are possible but must be managed by the VMM.

11.5.2 Intel® Secure Guard Extensions (Intel® SGX)
For production (opt-out) enclaves, an enclave entry freezes counters, except fixed-function counters 1 and 2
(unhalted core cycles and unhalted reference cycles, respectively). Additionally, handling any PEBS event that may
occur during an enclave execution is deferred until after the enclave exit, i.e., the PEBS event would skid to the end
of EEXIT/AEX. Specifically, the EventingIP field of the PEBS record would have the EENTER/ERESUME address and
the Memory Access Address (MAA) field would be zero.
For non-production (opt-in) enclaves, all counters continue to count. Any PEBS event that may occur during
enclave execution would be handled normally. Specifically, fields of the PEBS record would expose the non-produc-
tion enclave state.
Architectural PEBS will write nothing to memory in the case where the PEBS buffer is mapped to the Processor
Reserved Memory Range Register (PRMRR). Writes are directed to the abort page.

11.5.3 Intel® Trust Domain Extensions (Intel® TDX)
Intel TDX supports two modes of monitoring:
• TD Profiling – The trusted domain (TD) uses performance-monitoring/PEBS to profile itself.

Figure 11-7. System-Wide PEBS: Diagram of Interactions Across Entities

Host

System Software
Host Memory

PMU Layer Interrupt Handler

 Platform

Counter/
PEBS Management

PEBS
Records

SMM

Core with Architectural PEBS

Guest 1 Guest 2
Uses CTR Secure Guest 3

PMI
11-20 Document Number: 319433-055

ARCHITECTURAL PEBS
• System Profiling – The VMM uses performance-monitoring/PEBS to profile itself plus any debuggable TDs.
For TD profiling mode, a TD may use performance-monitoring by setting the TDCS.ATTRIBUTES[Perfmon] bit. This
enables a performance-monitoring-enabled TD to access all performance-monitoring MSRs. Architectural PEBS will
be enumerated to the TD and the PEBS2GPA flag is set. The TD is expected to set up the PEBS buffer in TD private
pages.
Architectural PEBS will not be available for TDs that are not performance-monitoring-enabled. Specifically, Leaf
23H Subleaves 4 and 5 will be cleared, and accesses to the IA32_PEBS_* and IA32_PMC_*_CFG_C MSRs will result
in a #GP exception.

11.5.4 System Management Mode (SMM)
Performance-monitoring counters count through system management mode (SMM), unless
IA32_DEBUGCTL.FREEZE_WHILE_SMM_EN = 1.
PEBS will be inhibited on opt-out #SMI, inhibit cleared on RSM. This ensures any PEBS pended during SMM will skid
to end of RSM and precludes any SMM use of PEBS.

11.5.5 SMM-Transfer Monitor (STM)
No STM-specific support is added with Architectural PEBS. However, the STM should configure the SMM-transfer
VMCS as follows:
• The “save IA32_PERF_GLOBAL_CTRL” and “load IA32_PERF_GLOBAL_CTRL” VM-exit controls are set to 1.
• The host IA32_PERF_GLOBAL_CTRL value is zero.
• The “load IA32_PERF_GLOBAL_CTRL” VM-entry control is set to 1.
These ensure that non-SMM counters are disabled on an SMM VM exit, that any PEBS pended during such a VM exit
are deferred, and that non-SMM counters are re-enabled by a VM entry that returns from SMM.
An STM is free to use PEBS itself, but it should ensure that non-SMM counter configuration state is restored before
a VM entry that returns from SMM.
Document Number: 319433-055 11-21

ARCHITECTURAL PEBS
11-22 Document Number: 319433-055

MOVRS INSTRUCTIONS
CHAPTER 12
MOVRS INSTRUCTIONS

The mnemonic MOVRS identifies a set of load instructions that carry a “read-shared” hint. Functionally, these
instructions are equivalent to existing load instructions (and can be used as “drop-in” replacements) for which the
read-shared hint is appropriate. From a performance point of view, the hint indicates that the data being accessed
is expected to be read concurrently by multiple cores.
Intel processors are typically optimized assuming that, on a first read, data is private and is reasonably likely to be
written. This assumption influences the hardware's determination of the cache locations into which data are placed
on an access as well as the coherence state of the data after the access.
These determinations are especially relevant for hardware with non-inclusive last-level caches. Accessing read-
shared data, i.e., data concurrently read by multiple cores, with conventional loads can cause performance issues.
In particular, for both a multi-readers scenario where data starts in DRAM and a single-producer multi-consumer
scenario where data starts dirty in one core’s private cache, snoops are required to distribute the data to the
readers.
Loads with a read-shared hint are expected to trigger uncore1 behavior different from that used for conventional
loads. The read-shared hint tells caches that the data is expected to be read by multiple (unspecified) cores within
the socket. Thus, hardware, to the extent possible, installs the cache line into the appropriate cache(s) and in the
appropriate coherence state to minimize snoops triggered by future reads.
On a cache miss, the read-shared hint may influence which cache(s) hardware installs data into, and the uncore
transactions used to fetch data to the core. On a cache hit, the hint is not expected to trigger different behavior.
Also, at least for currently planned implementations, the hint is not stored in the caches; hardware will act (or not)
on the hint immediately. The exception to this is hardware prefetchers, which will train on the hint, and attempt to
issue requests matching the presence/absence of the hint.
Mixing conventional loads and read-shared loads to the same cache line and/or access stream will behave as
expected functionally. However, the cache behavior will depend on the order of the requests and the behavior of the
hardware prefetchers. It is easier to predict and understand the hardware behavior if software consistently uses (or
not) read-shared loads for a given access pattern.
The exception to this is phased program behavior. Software may have phases, where a given data structure is
read-shared in one phase, and not in the next phase. It is expected that the different phases will use the appro-
priate type of load instruction, i.e., read-shared loads for the phase with read sharing and conventional loads for
other phases.
Since the read-shared hint simply influences which caches hold a copy of a line and the coherence state, it does not
limit how the data is accessed by software in the future. In particular, a future write to a cache line that has been
read with a read-shared load instruction, by the same core that executed the load instruction or another core, will
behave as expected architecturally. The performance of such a write may be worse than if the data was read with
a conventional load instruction, if the read-shared load leaves caches in a state such that additional cache and/or
uncore transactions are needed for the write.
The MOVRS family includes scalar, vector, and tile variants. It also includes a software prefetch instruction,
PREFETCHRST2, that carries the same read-shared hint. This instruction is for applications that want to apply soft-
ware prefetching to read-shared data structures.

1. The term “uncore” roughly equates to logic outside the CPU cores but residing on the same die.
Document Number: 319433-055 12-1

MOVRS INSTRUCTIONS
12-2 Document Number: 319433-055

	Revision History
	Chapter 1 Future Intel® Architecture Instruction Extensions and Features
	1.1 About This Document
	1.2 DisplayFamily and DisplayModel for Future Processors
	1.3 Instruction Set Extensions and Feature Introduction in Intel® 64 and IA-32 Processors
	1.4 Detection of Future Instructions and Features
	CPUID—CPU Identification
	Basic CPUID Information
	0H
	01H
	02H
	03H

	Deterministic Cache Parameters Leaf (Initial EAX Value = 04H)
	MONITOR/MWAIT Leaf (Initial EAX Value = 05H)
	Thermal and Power Management Leaf (Initial EAX Value = 06H)
	Structured Extended Feature Flags Enumeration Main Leaf (Initial EAX Value = 07H, ECX = 0)
	Direct Cache Access Information Leaf (Initial EAX Value = 09H)
	Architectural Performance Monitoring Leaf (Initial EAX Value = 0AH)
	Extended Topology Enumeration Leaf (Initial EAX Value = 0BH, ECX ≥ 0)
	Processor Extended State Enumeration Main Leaf (Initial EAX Value = 0DH, ECX = 0)
	Intel® Resource Director Technology Monitoring Enumeration Sub-leaf (Initial EAX Value = 0FH, ECX = 0)
	Intel® Resource Director Technology Allocation Enumeration Sub-leaf (Initial EAX Value = 10H, ECX = 0)
	Intel® Software Guard Extensions Capability Enumeration Leaf, Sub-leaf 0 (Initial EAX Value = 12H, ECX = 0)
	Intel® Processor Trace Enumeration Main Leaf (Initial EAX Value = 14H, ECX = 0)
	Time Stamp Counter and Core Crystal Clock Information Leaf (Initial EAX Value = 15H)
	Processor Frequency Information Leaf (Initial EAX Value = 16H)
	System-On-Chip Vendor Attribute Enumeration Main Leaf (Initial EAX Value = 17H, ECX = 0)
	Deterministic Address Translation Parameters Main Leaf (Initial EAX Value = 18H, ECX = 0)
	Key Locker Leaf (Initial EAX Value = 19H)
	Native Model ID Enumeration Leaf (Initial EAX Value = 1AH, ECX = 0)
	PCONFIG Information Sub-leaf (Initial EAX Value = 1BH, ECX ≥ 0)
	Last Branch Records Information Leaf (Initial EAX Value = 1CH)
	Tile Information Main Leaf (Initial EAX Value = 1DH, ECX = 0)
	TMUL Information Main Leaf (Initial EAX Value = 1EH, ECX = 0)
	TMUL Information Sub-leaf (Initial EAX Value = 1EH, ECX =1)
	V2 Extended Topology Enumeration Leaf (Initial EAX Value = 1FH, ECX ≥ 0)
	Processor History Reset Sub-leaf (Initial EAX Value = 20H, ECX = 0)
	Architectural Performance Monitoring Extended Main Leaf (Initial EAX Value = 23H, ECX = 0)
	Unimplemented CPUID Leaf Functions
	21H
	40000000H - 4FFFFFFFH

	Extended Function CPUID Information
	80000000H
	80000001H
	80000002H
	80000003H
	80000004H
	80000005H
	80000006H
	80000007H
	80000008H

	1.5 Compressed Displacement (disp8*N) Support in EVEX
	1.6 bfloat16 Floating-Point Format
	1.7 FP8 Format
	1.7.1 Numeric Definition
	1.7.2 Floating-Point Rounding, Denormal Handling, NaN/Inf/Overflow Handling, and FP Exceptions

	Chapter 2 Instruction Set Reference, A-Z
	2.1 Instruction Set Reference
	AADD—Atomically Add
	AAND—Atomically AND
	AOR—Atomically OR
	AXOR—Atomically XOR
	MOVRS—Move Read-Shared Value
	PBNDKB—Platform Bind Key to Binary Large Object
	PCONFIG—Platform Configuration
	PREFETCHRST2—Prefetch Data into Caches Using a Read-Shared Hint
	RDMSR—Read From Model Specific Register
	URDMSR—User Read from Model-Specific Register
	UWRMSR—User Write to Model-Specific Register
	VSM4KEY4—Perform Four Rounds of SM4 Key Expansion
	VSM4RNDS4—Performs Four Rounds of SM4 Encryption
	WRMSRNS—Non-Serializing Write to Model Specific Register

	Chapter 3 Intel® AMX Instruction Set Reference, A-Z
	3.1 Introduction
	3.1.1 Tile Architecture Details
	3.1.2 TMUL Architecture Details
	3.1.3 Handling of Tile Row and Column Limits
	3.1.4 Exceptions and Interrupts

	3.2 Operand Restrictions
	3.3 Implementation Parameters
	3.4 Helper Functions
	3.5 Notation
	3.6 Exception Classes
	3.7 Instruction Set Reference
	T2RPNTLVW[Z0,Z1][,T1]—Tile Load to VNNI 16-Bit Format
	T2RPNTLVW[Z0,Z1]RS[,T1]—Tile Load to VNNI 16-Bit Format Optimized for Read Only Shared Data
	TCMMIMFP16PS/TCMMRLFP16PS—Matrix Multiplication of Complex Tiles Accumulated into Packed Single Precision Tile
	TCONJTCMMIMFP16PS—Matrix Conjugate Transpose and Multiplication of Complex Tiles Accumulated into Packed Single Precision Tile
	TCONJTFP16—Tile Conjugate Transpose FP16-Pair Complex Elements
	TCVTROWD2PS—Tile Move Row and Convert INT32 to Single Precision
	TCVTROWPS2PBF16[H,L]—Tile Move Row and Convert FP32 Elements to BF16 Elements
	TCVTROWPS2PH[H,L]—Tile Move Row and Convert Single Precision to FP16
	TDP[B,H,BH,HB]F8PS—Dot Product of FP8 Tiles Accumulated into Packed Single Precision Tile
	TILELOADDRS[,T1]—Load Tile Format Optimized for Read Only Shared Data
	TILEMOVROW—Tile Move Row
	TMMULTF32PS—Matrix Multiplication of TF32 Tiles into Packed Single Precision Tile
	TTCMM[IM,RL]FP16PS—Matrix Transpose and Multiplication of Complex Tiles Accumulated into Packed Single Precision Tile
	TTDPBF16PS—Dot Product and Transpose of BF16 Tiles Accumulated into Packed Single Precision Tile
	TTDPFP16PS—Dot Product and Transpose of FP16 Tiles Accumulated into Packed Single Precision Tile
	TTMMULTF32PS—Matrix Transpose and Multiplication of TF32 Tiles into Packed Single Precision Tile
	TTRANSPOSED—Matrix Transpose of 32-Bit Elements

	Chapter 4 Intel® Resource Director Technology Feature Updates
	4.1 Cache Bandwidth Allocation (CBA)
	4.1.1 Introduction to Cache Bandwidth Allocation
	4.1.2 Cache Bandwidth Allocation Enumeration
	4.1.3 Cache Bandwidth Allocation Configuration
	4.1.4 Cache Bandwidth Allocation Usage Considerations

	Chapter 5 Remote Atomic Operations in Intel Architecture
	5.1 Introduction
	5.2 Instructions
	5.3 Alignment Requirements
	5.4 Memory Ordering
	5.5 Memory Type
	5.6 Write Combining Behavior
	5.7 Performance Expectations
	5.7.1 Interaction Between RAO and Other Accesses
	5.7.2 Updates of Contended Data
	5.7.3 Updates of Uncontended Data

	5.8 Examples
	5.8.1 Histogram
	5.8.2 Interrupt/Event Handler

	Chapter 6 Total Storage Encryption in Intel Architecture
	6.1 Introduction
	6.1.1 Key Programming Overview
	6.1.1.1 Key Wrapping Support: PBNDKB

	6.1.2 Unwrapping and Hardware Key Programming Support: PCONFIG

	6.2 Enumeration
	6.2.1 CPUID Detection
	6.2.1.1 PCONFIG CPUID Leaf Extended to Support Total Storage Encryption

	6.2.2 Total Storage Encryption Capability MSR

	6.3 VMX Support
	6.3.1 Changes to VMCS Fields
	6.3.2 Changes to VMX Capability MSRs
	6.3.3 Changes to VM Entry

	6.4 Instruction Set

	Chapter 7 User-Timer Events and Interrupts
	7.1 Enabling and Enumeration
	7.2 User Deadline
	7.3 User Timer: Architectural State
	7.4 Pending and Processing of User-Timer Events
	7.5 VMX Support
	7.5.1 VMCS Changes
	7.5.2 Changes to VMX Non-Root Operation
	7.5.2.1 Treatment of Accesses to the IA32_UINTR_TIMER MSR
	7.5.2.2 Treatment of User-Timer Events

	7.5.3 Changes to VM Entries

	Chapter 8 APIC-Timer Virtualization
	8.1 Guest-Timer Hardware
	8.1.1 Responding to Guest-Deadline Updates
	8.1.2 Guest-Timer Events

	8.2 VMCS Support
	8.2.1 New VMX Control
	8.2.2 New VMCS Fields

	8.3 Changes to VM Entries
	8.3.1 Checking VMX Controls
	8.3.2 Loading the Guest Deadline

	8.4 Changes to VMX Non-Root Operation
	8.4.1 Accesses to the IA32_TSC_DEADLINE MSR
	8.4.2 Processing of Guest-Timer Events

	8.5 Changes to VM Exits

	Chapter 9 Processor Trace Trigger Tracing
	9.1 Processor Trace Trigger Tracing Overview
	9.1.1 Trigger Unit
	9.1.2 Trigger Input
	9.1.3 Trigger Actions
	9.1.4 Programming Considerations
	9.1.5 Trigger (TRIG) Packet

	9.2 MSR Changes
	9.2.1 IA32_RTIT_TRIGGERx_CFG
	9.2.2 IA32_PERFEVTSELx MSR Changes
	9.2.3 DR7 Changes
	9.2.4 IA32_RTIT_STATUS Changes

	Chapter 10 Monitorless MWAIT
	10.1 Using Monitorless MWAIT
	10.2 Enumeration
	10.3 Enabling
	10.4 Virtualization
	10.5 MWAIT Instruction Details
	MWAIT—Monitor Wait

	Chapter 11 Architectural PEBS
	11.1 Enumeration
	11.1.1 IA32_PERF_CAPABILITIES
	11.1.2 IA32_MISC_ENABLE

	11.2 Behavior
	11.2.1 Counters
	11.2.2 Record Data
	11.2.3 Programming PEBS
	11.2.3.1 Programming Guidelines at Initialization Phase
	11.2.3.2 Programming Guidelines at Runtime (e.g., Inside the PMI Interrupt Service Routine)

	11.3 Model-Specific Registers (MSRs)
	11.3.1 IA32_PEBS_BASE MSR
	11.3.2 IA32_PEBS_INDEX MSR
	11.3.3 IA32_PMC_GPn_CFG_C and IA32_PMC_FXm_CFG_C MSRs
	11.3.4 Changes from Legacy PEBS

	11.4 Records and Groups
	11.4.1 Basic Group
	11.4.1.1 Instruction Pointer
	11.4.1.2 Applicable Counter
	11.4.1.3 Time-Stamp Counter
	11.4.1.4 Retire Latency

	11.4.2 Auxiliary Group
	11.4.2.1 Memory Access Address

	11.4.3 General-Purpose Register Group
	11.4.4 XSAVE-Enabled Registers Group
	11.4.5 Last Branch Record Group
	11.4.6 Performance Counters Group
	11.4.7 Fragmented Records

	11.5 Interactions with Other Processor Features
	11.5.1 Virtual Machine Extension (VMX)
	11.5.2 Intel® Secure Guard Extensions (Intel® SGX)
	11.5.3 Intel® Trust Domain Extensions (Intel® TDX)
	11.5.4 System Management Mode (SMM)
	11.5.5 SMM-Transfer Monitor (STM)

	Chapter 12 MOVRS Instructions

