
AP-500

Application
Note

Optimizations for Intel's
32-Bit Processors

February 1994

Pentium is a registered trademark and Intel386, Intel486, and i486 are trademarks of Intel Corporation and
may only be used to identify Intel products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in
this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or it FASTPATH trademark or
products.

* Third-party trademarks are the property of their respective owners.

Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

Copyright  1993, 1994. Intel Corporation. All rights reserved.

Table of Contents

1. Introduction... 1
2. Overview of Intel386, Intel486, and Pentium Processors ... 1

2.1. The Intel386 Processor .. 1
2.1.1. Instruction Prefetcher ... 1
2.1.2. Instruction Decoder .. 1
2.1.3. Execution Core... 1

2.2. The Intel486 Processor .. 1
2.2.1. Integer Pipeline... 1
2.2.2. On-Chip Cache... 2
2.2.3. On-Chip Floating-Point Unit.. 2

2.3. The Pentium Processor.. 2
2.3.1. Integer Pipelines... 3
2.3.2. Caches ... 3
2.3.3. Instruction Prefetcher ... 3
2.3.4. Branch Target Buffer .. 3
2.3.5. Pipelined Floating-Point Unit .. 3

3. Integer Examples.. 4
3.1. Code Sequence 1, Intel486 Processor... 5
3.2. Code Sequence 1, Pentium Processor .. 6
3.3. Code Sequence 2, Intel486 Processor... 6
3.4. Code sequence 2, Pentium Processor... 7
3.5. Code Sequence 3, Intel486 Processor... 7
3.6. Code Sequence 3, Pentium Processor .. 7

4. Code Generation Strategy.. 9
5. Blended Code Generation Consideration... 10

5.1. Choice of Index Versus Base Register... 10
5.2. Addressing Modes and Register Usage... 10
5.3. Prefetch Bandwidth .. 11
5.4. Alignment.. 12

5.4.1. Code... 12
5.4.2. Data.. 12
5.4.3. 2-byte Data... 12
5.4.4. 4-byte Data... 12
5.4.5. 8-byte Data... 12

5.5. Prefixed Opcodes... 12
5.6. Integer Instruction Scheduling.. 13

5.6.1. Pairing .. 13
5.6.2. Instruction Set Pairability .. 13
5.6.3. Unpairability Due to Registers.. 14
5.6.4. Special Pairs... 15
5.6.5. Restrictions on Pair Execution ... 16

5.7. Integer Instruction Selection... 16
6. Processor Specific Optimizations... 21

6.1. Pentium Processor Floating-Point Optimizations ... 21
6.1.1. Floating-Point Example .. 21
6.1.2. FXCH Rules and Regulations .. 23
6.1.3. Memory Operands.. 23
6.1.4. Floating-Point Stalls.. 24

7. Summary .. 27
Appendix A Instruction Pairing Summary ... A-1

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 1

1. Introduction

The Intel386 Architecture Family represents a series of compatible processors including the
Intel386, Intel486, and the Pentium processors. The newer members of the family are capable of
executing any binaries created for members of previous generations. For example, any existing
8086/8088, 80286, Intel386 (DX or SX), and Intel486 applications will be able to execute on the Pentium
processor without any modification or recompilation. However, there are certain code optimization
techniques which will make applications execute faster on a specific member of the family with little or no
impact on the performance of other members. Most of these optimizations deal with instruction sequence
selection and instruction reordering to complement the processor micro architecture .

The intent of this document is to describe the implementation differences of the processor members
and the optimization strategy that gives the best performance for all members of the family.

2. Overview of Intel386 , Intel486 , and Pentium  Processors

2.1. The Intel386 Processor

The Intel386 processor is the first implementation of the 32-bit Intel386 architecture. It includes full 32-bit
data paths, rich 32-bit addressing modes and on-chip memory management.

2.1.1. Instruction Prefetcher

The instruction prefetcher prefetches the instruction stream from external memory and the prefetched
instructions are kept in its four-deep, four-byte-wide prefetch buffers. The instruction decoder operates on
the code stream fed to it through the prefetch buffers.

2.1.2. Instruction Decoder

The instruction decoder places the decoded information in a three-deep FIFO. It is decoupled from both
the prefetcher and the execution core and has separate protocols with each.

2.1.3. Execution Core

The core engine executes the incoming instructions one at a time, but for certain cases, it allows
overlapping the last execution cycle of the current instruction with the effective address calculation of the
next instruction's memory reference.

From the compiler writer's point of view, the decoupled prefetch/decode/execution stages and the
sequential nature of the core engine has placed few requirements for instruction scheduling. Avoiding the
use of an index in the effective address will save one extra clock. A careful choice of instructions to
minimize the execution clock counts is the best optimization approach.

2.2. The Intel486 Processor

The Intel486 processor has a full blown integer pipeline delivering a peak throughput of one instruction per
clock. It has integrated the first level cache and the floating-point unit on chip, and it has the same on-chip
memory management capabilities as the Intel386 processor.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 2

2.2.1. Integer Pipeline

The Intel486 has a five-stage integer pipeline capable of processing one instruction per clock. The five
pipeline stages are:

a. Prefetch, (PF) - where instructions are fetched from the cache and placed in one of two 16-byte buffers.

b. Decode (D1) - where incoming code stream is being decoded. Prefixed instructions stay in D1 for two
clocks.

c. Address Generation (D2) - where effective address and linear address are calculated in parallel. The
address generation can usually be completed in one cycle except in cases where the indexed addressing
mode is used. If the index is used, the instruction stays in D2 for two clocks.

d. Execution (E) - where the machine operations are performed. Simple instructions (those with one
machine operation) take one cycle to execute giving a maximum throughput of one instruction per clock.
The more complex instructions take multiple execution cycles.

e. Writeback (WB) - where the needed register update occurs.

A taken branch breaks the pipeline stream and causes a two-clock penalty, whereas the pipeline stream is
unaffected by a not-taken branch.

2.2.2. On-Chip Cache

The on-chip cache is a combined instruction and data cache. It is 8-Kbytes in size, four-way set
associative with a 16-byte line size and pseudo-LRU replacement algorithm. All data references have
priority access to the cache over instruction prefetch cycles.

2.2.3. On-Chip Floating-Point Unit

The on-chip floating-point unit utilizes the integer pipeline for early data access. The bus structure allows
64-bit data to be transferred between the cache and the floating point hardware in one clock. The floating-
point design also allows overlapping the floating-point operations with integer operations.

The execution core of the Intel486 processor has been architected to maximize the throughput of a class
of "frequently used" instructions. Hence, careful selection of an instruction sequence to perform a given
task results in faster execution time. Also, code scheduling to avoid pipeline stalls helps to boost
application performance. Most of the optimizations targeted to the Intel486 processor do not have
negative effects on Intel386 processor.

2.3. The Pentium Processor

The Pentium processor is an advanced superscalar processor. It is built around two general purpose
integer pipelines and a pipelined floating-point unit. The Pentium processor can execute two integer
instructions simultaneously. A software-transparent dynamic branch-prediction mechanism minimizes
pipeline stalls due to branches.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 3

2.3.1. Integer Pipelines

The Pentium processor has two parallel integer pipelines, the main pipe (U) which is an enhanced Intel486
processor pipe and the secondary pipe (V) which is similar to the main one but has some limitations on
the instructions it can execute. The limitations will be described in more detail in later sections.

The Pentium processor can issue two instructions every cycle. During execution, the next two instructions
are checked, and if possible, they are issued such that the first one executes in the U pipe, and the
second in the V pipe. (If it is not possible to issue two instructions, then the next instruction is issued to
the U pipe and no instruction is issued to the V pipe.)

When instructions execute in the two pipes, their behavior is exactly the same as if they were executed
sequentially. When a stall occurs, successive instructions are not allowed to pass the stalled instruction in
either pipe. In the Pentium processor's pipelines, the D2 stage can perform a multiway add, so there is not
a one-clock index penalty as with the Intel486 pipeline.

2.3.2. Caches

The on-chip cache subsystem consists of two (instruction and data) 8-Kbyte, two-way set associative
caches with a cache line length of 32 bytes. There is a 64-bit wide external data bus interface. The caches
employ a write back mechanism and an LRU replacement algorithm. The data cache consists of eight
banks interleaved on four-byte boundaries. The data cache can be accessed simultaneously from both
pipes, as long as the references are to different banks. The minimum delay for a cache miss is 3 clocks.

2.3.3. Instruction Prefetcher

The instruction prefetcher has four buffers, each of which is 32 bytes long. It can fetch an instruction which
is split among two cache lines with no penalty. Because the instruction and data caches are separate,
instruction prefetches no longer conflict with data references for access to the cache (as in the case of
Intel486 processor).

2.3.4. Branch Target Buffer

The Pentium processor employs a dynamic branch prediction scheme with a 256-entry Branch Target
Buffer (BTB). If the prediction is correct, there is no penalty when executing a branch instruction. There is
a 3-cycle penalty if the conditional branch was executed in the U pipe or a 4-cycle penalty if it was
executed in the V pipe. Mispredicted calls and unconditional jump instructions have a 3-clock penalty in
either pipe. On the Intel486 processor, taken branches have a two-clock penalty.

2.3.5. Pipelined Floating-Point Unit

The majority of the frequently used instructions are pipelined so that the pipelines can accept a new pair of
operands every cycle. Therefore a good code generator can achieve a throughput of almost 1 instruction
per cycle (of course this assumes a program with a modest amount of natural parallelism!). The fxch
instruction can be executed in parallel with the commonly used FP instructions, which lets the code
generator or programmer treat the floating-point stack as a regular register set without any performance
degradation.

With the superscalar implementation, it is important to schedule the instruction stream to maximize the
usage of the two integer pipelines. Since each of the Pentium processor's integer pipelines is enhanced
from the pipeline of the Intel486 processor, the instruction scheduling criteria for the Pentium processor is
a superset of the Intel486 processor requirements.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 4

3. Integer Examples

With the overview of the Intel386, Intel486 and Pentium processors in the previous section, the examples
given in this section further illustrate the execution clock cycles among various instruction sequences.

All examples assume a 100% cache hit rate and non-conflicting memory accesses. A 32-bit flat address
model is also assumed.

There is a cycle count next to each instruction. A cycle count appears without an instruction when there is
a pipe stall. These examples also assume that the branch prediction is correct.

Going through these examples should give you an intuitive feel for how pairing works on the Pentium
processor and additional insight about some of the common delays on both the Intel486 and Pentium
processors.

C source:

static int a[10], b[10];
int i;
for (i=0; i<10; i++) {
 a[i] = a[i] + 1;
 b[i] = b[i] + 1;
}

There are various instruction sequences which will produce a correct program. Their individual
performance, however, may vary considerably.

Here are three examples:

Sequence 1 Sequence 2 Sequence 3

 xor eax, eax xor eax, eax mov eax, -40

TopOfLoop: TopOfLoop: TopOfLoop:
 mov edx, eax inc dword ptr [eax*4+a] mov edx, [eax+40+a]
 shl edx, 2 inc dword ptr [eax*4+b] mov ecx, [eax+40+b]
 inc dword ptr [edx+a] inc eax inc edx
 mov edx, eax cmp eax, 10 inc ecx
 shl edx, 2 jl TopOfLoop mov [eax+40+a], edx
 inc dword ptr [edx+b] mov [eax+40+b], ecx
 inc eax add eax, 4
 cmp eax, 10 jnz TopOfLoop
 j1 TopOfLoop

Code Sequence 1 could benefit from common subexpression elimination. It is not unoptimized code, it is
just not thoroughly optimized. Code that is unoptimized would not keep "i" in a register.

Code Sequence 2 is the most straight-forward style code.

Code Sequence 3 uses a load/store model. It also incorporates some induction variable elimination
optimizations with test replacement. The loop counter in eax counts up to zero. When it becomes zero,
the jnz is not taken. This code avoids the compare instruction.

The performance of each of these code sequences is examined on both the Intel486 and Pentium
processors.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 5

3.1. Code Sequence 1, Intel486 Processor

The shl instruction takes two cycles on an Intel486 processor. ALU operations (e.g. add) with memory
results take 3 clocks: 1 to load, 1 to add, and 1 to store.

mov edx, eax ; 1
shl edx, 2 ; 2 2 clock instruction
 (sh1) ; 3
inc dword ptr [edx+a] ; 4 3 clocks with memory operand
 (inc) ; 5 plus 1 clock for edx AGI
 (inc) ; 6
 (inc) ; 7
mov edx, eax ; 8
shl edx, 2 ; 9 2 clock instruction
 (shl) ; 10
inc dword ptr [edx+b] ; 11 3 clocks with memory operand
 (inc) ; 12 plus 1 clock for edx AGI
 (inc) ; 13
 (inc) ; 14
inc eax ; 15
cmp eax, 10 ; 16
jl TopOfLoop ; 17 2 clocks because jl is prefixed

;18
; 19 branch taken penalty
; 20

mov edx, eax ; 21 next iteration

Total: 20 cycles

Cycles 4 and 11 had an Address Generation Interlock (AGI) Delay. Register edx was written in cycle 3
and used as a base register in cycle 5. When a register is used in an effective address calculation in the
cycle after the register is written, there is a one-clock penalty. This happens because the effective address
calculation is performed in the D2 stage of the pipeline.

With the assembler used for this code sequence, the jl instruction was a "jump near," not a "jump short."
"Jump near" is a 0f prefixed instruction. Prefixed instructions take an extra cycle on the Intel486
processor in the D1 stage.

The Intel486 processor does not have any branch prediction mechanism. Whenever jumps are taken,
there is a 2-clock penalty (Cycles 19 and 20).

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 6

3.2. Code Sequence 1, Pentium Processor

U pipe V pipe

mov edx, eax ; 1
shl edx, 2 ; 2
inc dword ptr [edx+a] ; 3 3 clocks with mem. op
 (inc) ; 4 plus 1 for edx AGI
 (inc) ; 5
 (inc) mov edx, eax ; 6 Pairs with last U cycle
shl edx, 2 ; 7
inc dword ptr [edx+b] ; 8 3 clocks with mem. op
 (inc) ; 9 plus l for edx AGI
 (inc) ; 10
 (inc) inc eax ; 11 Pairs with last U cycle
cmp eax, 10 jl TopOfLoop ; 12
mov edx, eax ; 13 Next iteration

Total :12 cycles

Note that the "shift" instruction takes two clocks on the Intel486 processor and only one on the Pentium
processor. The Pentium processor has special hardware to avoid the 0f prefix delay on jcc "near"
instructions. It also can pair the compare and jump, even though cmp writes a condition flag and jl reads
it. The branch prediction hardware, when it predicts the branch to be taken, can execute the target
instruction in the cycle following the jump. When a multiple cycle instruction in the U pipe pairs with
another instruction, the last memory operation of the U pipe instruction pairs with the first operation of the
V pipe instruction (cycles 6 and 11).

3.3. Code Sequence 2, Intel486 Processor

inc dword ptr [eax*4+a] ; 1 3 clocks with memory operand
 (inc) ; 2 plus 1 for indexing
 (inc) ; 3
 (inc) ; 4
inc dword ptr [eax*4+b] ; 5 3 clocks with memory operand
 (inc) ; 6 plus 1 for indexing
 (inc) ; 7
 (inc) ; 8
inc eax ; 9
cmp eax, 10 ; 10
jl TopOfLoop ; 11 2 clocks because jl is prefixed

; 12
; 13 Branch taken penalty
; 14

inc dword ptr [eax*4+a] ; 15 Next iteration

Total :14 cycles

On the Intel486 processor, whenever an index register is used in an effective address calculation, there is
a one-clock penalty in the D2 stage (Cycles 1 and 5). This does not apply to base registers.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 7

3.4. Code sequence 2, Pentium Processor

U pipe V pipe

inc dword ptr [eax*4+a] ; 1 3 clocks with mem. op.
 (inc) ; 2
 (inc) inc dword ptr [eax*4+b] ; 3 1st V pairs with last U
 (inc) ; 4

 (inc) ; 5
inc eax ; 6
cmp eax, 10 jl TopOfLoop ; 7
inc dword ptr [eax*4+a] ; 8 Next iteration

Total: 7 cycles

The inc eax instruction at cycle 6 did not pair with the cmp instruction because of a register
dependence. Other than in a few special cases (such as cmp-jmp), a register cannot be accessed until
the cycle after it is written.

3.5. Code Sequence 3, Intel486 Processor

mov edx, [eax+40+a] ; 1
; 2 Fill prefetch buffer

mov ecx, [eax+40+b] ; 3
inc edx ; 4
inc ecx ; 5
mov [eax+40+a], edx ; 6
mov [eax+40+b], ecx ; 7
add eax, 4 ; 8
jnz TopOfLoop ; 9 Prefix on jnz

; 10
; 11 Branch penalty

 ; 12
mov edx, [eax+40+a] ; 13 Next iteration

Total : 12 cycles

The delay at clock 2 is caused by a miss in the Intel486 processor's prefetch buffer. The previous two
examples had a similar penalty, but it was hidden by the 2-clocks used for the shl instruction in code
sequence 1, and by the index penalty in code sequence 2.

3.6. Code Sequence 3, Pentium Processor

U pipe V pipe

mov edx, [eax+40+a] mov ecx, [eax+40+b] ; 1
inc edx inc ecx ; 2
mov [eax+40+a], edx mov [eax+40+b], ecx ; 3
add eax, 4 jnz TopOfLoop ; 4
mov edx, [eax+40+a] mov ecx, [eax+40+b] ; 5 AGI on eax with
 (mov) (mov) ; 6 next iteration

Total: 5 cycles

The prefetch buffer delay on the Intel486 processor is no longer relevant. The Pentium processor has
more prefetch buffers and different alignment capabilities. In the example above, the loop control is
determined by the add eax, 4 instruction setting the zero condition code as it counts up to zero.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 8

There is an AGI on eax because the add in cycle 4 writes to eax and both mov' s in cycle 5 reference it,
even though there is a branch in between. On the Intel486 processor, AGl's only happen between
adjacent instructions. On the Pentium processor, there can be two instructions in between and still be an
AGI; for example, between a U pipe add in cycle n and a V pipe mov that uses the result of the add as a
base in cycle n+1. The general rule is than an AGI will occur when any instruction in cycle n writes to a
register that is used in an effective address calculation in any instruction in cycle n+1. This is because the
effective address calculation is performed in D2.

In a compiler's intermediate representation of the program before instruction scheduling (reordering), one
might expect the order for sequence 3 to be:

load [a+eax+40] load [b+eax+40]
 | |
 | |
 add 1 add 1
 | |
 | |
 store [a+eax+40] store [b+eax+40]
 | |
 | |
 add eax, 1
 |
 |
 cmp 10
 |
 |
 jump

Reordering this intermediate code to obtain the assembly code shown earlier involves moving the load
from "b" in front of the store into "a." Instruction reordering requires knowing that memory operands are
independent. In this case, it can be easily proven that elements of "a" do not overlap in memory with
elements of "b."

Comments

Using a load/store paradigm works well on the Pentium processor because it exposes more opportunities
for pairing instructions when the instructions are scheduled. It does not however, increase the number of
clocks, even without scheduling, though this ignores possible secondary effects such as larger code size.
This can lead to instruction cache misses. Another secondary effect is the use of more registers, which
are a limited resource on these processors. Compiler writers may want to pay more attention to register
allocation.

In this document, we will refer to this as "load/store" style code generation.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 9

4. Code Generation Strategy

Even though each member of the Intel386 processor family has a different micro architecture due to
technology versus implementation tradeoffs, the differences induced few conflicts in the overall code
optimization strategy. In fact, there is a set of "blended" optimizations that will create an optimal binary
across the entire family. The "blended" optimizations include:

1. Optimizations that benefit all members.

2. Optimizations that benefit one or more members but do not hurt the remaining members.

3. Optimizations that benefit one or more members a lot but only hurt the remaining members
 a little.

For those optimizations that benefit only certain members but cause noticeable degradation to others, it is
recommended that they be implemented under switches and left to the user to decide whether maximizing
the performance of a specific processor is desirable.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 10

5. Blended Code Generation Consideration

5.1. Choice of Index Versus Base Register

The Intel386 and the Intel486 processors need an additional clock cycle to generate an effective address
when an index register is used. Therefore, if only one indexing component is used (i.e., not both a base
register and an index register) and scaling is not necessary, then it is faster to use the register as a base
rather than an index. For example:

mov eax, [esi] ; use esi as base
mov eax, [esi*] ; use esi as index, 1 clock penalty

It takes the Pentium processor one clock to calculate the effective address even when an index register is
used. Hence, Pentium processor is neutral to the choice of index versus base register.

5.2. Addressing Modes and Register Usage

1. For the Intel486 processor, when a register is used as the base component, an additional clock cycle is
used if that register is the destination of the immediately preceding instruction (assuming all instructions
are already in the prefetch queue). For example:

add esi, eax ; esi is destination register
mov eax, [esi] ; esi is base, 1 clock penalty

Since the Pentium processor has two integer pipelines and each pipeline has a similar organization on the
Intel486 processor, a register used as the base or index component of an effective address calculation (in
either pipe) causes an additional clock cycle if that register is the destination of either instruction from the
immediately preceding cycle (Address Generation Interlock, (AGI)). To avoid the AGI, the instructions
should be separated by at least one cycle by placing other instructions between them.

2. Note that some instructions have implicit reads/writes to registers. Instructions that generate addresses
implicitly through esp (push,pop/ret/call) also suffer from the AGI penalty.

Examples:

sub esp, 24
 ; 1 cycle stall
push ebx

mov esp, ebp
 ; 1 cycle stall
pop ebp

Push and pop also implicitly write to esp . This, however, does not cause an AGI when the next instruction
addresses through esp .

Example:

push edi ; no stall
mov ebx, [esp]

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 11

3. On the Intel486 processor there is a 1-clock penalty for decoding an instruction with either an index or
an immediate-displacement combination. On the Pentium processor, the immediate-displacement
combination is not pairable. When it is necessary to use constants, it would still be more efficient to use
immediate data instead of loading the constant into a register first. However, if the same immediate data
is used more than once, it would be faster to load the constant in a register and then use the register
multiple times.

mov result, 555 ; 555 is immediate, result is displacement
mov dword ptr [esp+4], 1 ; 1 is immediate, 4 is displacement

4. The Intel486 processor has a 1-clock penalty when using a register immediately after its sub-register
was written. The Pentium processor is neutral in this respect.

Example (Pentium Processor):

mov al, 0 ; 1
mov [ebp], eax ; 2 - No delay on the Pentium processor

Example (Intel486 processor):

mov al, 0 ; 1
; 2

mov [ebp], eax ; 3

5.3. Prefetch Bandwidth

The Intel486 processor prefetch unit will access the on-chip cache to fill the prefetch queue whenever the
cache is idle and there is enough room in the queue for another cache line (16 bytes). If the prefetch
queue becomes empty, it can take up to three additional clocks to start the next instruction. The prefetch
queue is 32 bytes in size (2 cache lines).

Because data accesses always have priority over prefetch requests, keeping the cache busy with data
accesses can lock out the prefetch unit. As a result, optimized code should avoid four consecutive
memory instructions.

It is important to arrange instructions so that the memory bus is not used continuously by a series of
memory-reference instructions. The instructions should be rearranged so that there is a non-memory
referencing instruction (such as a register instruction) at least two clocks before the prefetch queue
becomes exhausted. This will allow the prefetch unit to transfer a cache line into the queue.

Such arrangement of the instructions will not affect the performance of the Intel386 and Pentium
processors.

In general, it is difficult for a compiler to model the Intel486 prefetch buffer behavior. A sequence of four
consecutive memory instructions without stalls (i.e., index penalty) will probably stall because of the
prefetch buffers being exhausted.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 12

5.4. Alignment

5.4.1. Code

The Intel486 processor has a cache line size of 16 bytes and the Pentium processor has a cache line size
of 32 bytes. Since the Intel486 processor has only two prefetch buffers (16 bytes each), code alignment
has a direct impact on Intel486 processor performance as a result of the prefetch buffer efficiency. Code
alignment has little effect on the Pentium processor performance because of its ability to prefetch across a
cache line boundary with no penalty. The Intel386 processor with no on-chip cache and a decoupled
prefetch unit is not sensitive to code alignment. For optimal performance across the family, it is
recommended that labels be aligned to the next 0MOD16 when it is less than 8 bytes away from that
boundary.

5.4.2. Data

A misaligned access in the data cache costs at least an extra 3 cycles on both the Intel486 and Pentium
processor.

5.4.3. 2-byte Data : A 2-byte object should be fully contained within an aligned 4-byte word (i.e., its binary
address should be xxxx00, xxxx01, xxxx10, but not xxxx11).

5.4.4. 4-byte Data: The alignment of 4-byte object should be on a 4-byte boundary.

5.4.5. 8-byte Data: An 8-byte datum (64-bit, e.g., double-precision reals) should be aligned on an 8-byte
boundary.

5.5. Prefixed Opcodes

On the Intel386 processor and the Intel486 processor, all prefix opcodes require an additional clock to
decode. On the Pentium processor, an instruction with a prefix is pairable in the U pipe (PU) if the
instruction (without the prefix) is pairable in both pipes (UV) or in the U pipe (PU). This is a special case of
pairing. The prefixes are issued to the U pipe and get decoded in one cycle for each prefix and then the
instruction is issued to the U pipe and may be paired.

All these prefixes: lock, segment override, address size, second opcode map (Of), and operand size
belong to this group. Note that this includes all the 16 bit instructions when executing in 32-bit mode
because an operand size prefix is required (e.g., mov word ptr [..] , add word ptr [..] , ...)

The near jcc prefix behaves differently; it does not take an extra cycle to decode and belongs to PV group.
Other 0f opcodes behave as normal prefixed instructions. For optimized code, prefixed opcodes should
be avoided.

When prefixed opcodes have to be used, there are two cases in which overlap can be achieved between
the extra clock it takes to decode a prefix and a cycle used by the previous instruction executing in the
same pipe:

1. The one-cycle penalty from using the result register of a previous instruction as a base or index (AGI).

2. The last cycle of a preceding multi-cycle instruction.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 13

5.6. Integer Instruction Scheduling

Instruction scheduling is the process of reordering the instructions in a program to avoid stalls and delays
while maintaining the semantics of the generated code.

Scheduling of integer instructions has two purposes:

1. Eliminate stalls in the Intel486 pipeline and each pipe of the Pentium processor.

There are some conditions where pipe stalls are encountered. The general guideline is to find instructions
that can be inserted between the instructions that cause a stall. Since most of the commonly used integer
instructions take only one clock, there is not much need to hide latencies. The most common delays which
can be avoided through scheduling are AGI 's.

2. Create pairs for maximum throughput from the Pentium processor's dual pipe architecture:

The Pentium processor can issue two instructions for execution simultaneously. This is called pairing.
There are limitations on which two instructions can be paired and some pairs, even when issued, will not
execute in parallel. Pairing details are described in following sections. More information about instruction
pairability can be found in Appendix A.

Reordering instructions should be done in order to increase the possibility of issuing two instructions
simultaneously. Dependent instructions should be separated by at least one other instruction. Scheduling
for the Pentium processor's dual pipe is overkill for the Intel486 processor but has otherwise little effect on
its performance.

The following subsections are Pentium processor specific optimizations. These optimizations do not
adversely impact the Intel386 and Intel486 processors.

5.6.1. Pairing

Pairing cannot be performed when the following conditions occur:

1. The next two instructions are not pairable instructions (See Appendix A for pairing characteristics of
individual instructions. In general, most simple ALU instructions are pairable.

2. The next two instructions have some type of register contention (implicit or explicit). There are some
special exceptions to this rule where register contention can occur with pairing. These are described later.

3. The instructions are not both in the instruction cache. An exception to this which permits pairing is if the
first instruction is a one byte instruction.

5.6.2. Instruction Set Pairability

5.6.2.1. Unpairable instructions (NP)

1. shift/rotate with the shift count in cl

2. Long-Arithmetic instructions, for example, mul , div

3. Extended instructions, for example, ret , enter , pusha , movs, rep stos , loopnz

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 14

4. Some Floating-Point Instructions, for example, fscale , fldcw , fst

5. Inter-segment instructions, for example, push sreg , call far

5.6.2.2. Pairable instructions issued to U or V pipes (UV)

1. Most 8/32-bit ALU operations, for example, add , inc , xor

2. All 8/32-bit compare instructions, for example cmp, test

3. All 8/32-bit stack operations using registers, for example, push reg , pop reg

5.6.2.3. Pairable instructions issued to U pipe (PU)

These instructions must be issued to the U pipe and can pair with a suitable instruction in the V
Pipe. These instructions never execute in the V pipe.

1. Carry and borrow instructions, for example, adc , sbb

2. Prefixed instructions (see next section)

3. Shift with immediate

4. Some Floating-Point Operations, for example, fadd , fmul , fld

5.6.2.4. Pairable instructions issued to V pipe (PV)

These instructions can execute in either the U pipe or the V pipe, but they are only paired when they are in
the V pipe. Since these instructions change the instruction pointer (eip), they cannot pair in the U pipe
because the next instruction may not be adjacent. Even when a branch in the U pipe is predicted "not
taken", it will not pair with the following instruction.

1. Simple control transfer instructions, for example - call near , jmp near , jcc . This includes both the
jcc short and the jcc near (which has a 0f prefix) versions of the conditional jump instructions.

2. fxch

5.6.3. Unpairability Due to Registers

The pairability of an instruction is also affected by its operands. The following are the combinations that
are not pairable due to register contention. Exceptions to these rules are given in the next section.

1. The first instruction writes to a register that the second one reads from (flow-dependence).

Example:

 mov eax, 8
 mov [ebp], eax

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 15

2. Both instructions write to the same register (output-dependence).

Example:

 mov eax, 8
 mov eax, [ebp]

This limitation does not apply to a pair of instructions which write to the eflags register (e.g. two ALU
operations that change the condition codes). The condition code after the paired instructions execute will
have the condition from the V pipe instruction.

Note that a pair of instructions in which the first reads a register and the second writes to it
(anti-dependence) is pairable.

Example:

 mov eax, ebx mov ebx, [ebp]

For purposes of determining register contention, a reference to a byte or word register is treated as a
reference to the containing 32-bit register. Hence,

 mov al, 1
 mov ah, 0

do not pair due to apparent output dependencies on eax .

5.6.4. Special Pairs

There are some instructions that can be paired although the general rule prohibits this. These special
pairs overcome register dependencies. Most of these exceptions involve implicit reads/writes to the esp
register or implicit writes to the condition codes:

Stack Pointer:

1. push reg/imm; push reg/imm

2. push reg/imm; call

3. pop reg ; pop reg

Condition Codes:

1. cmp ; jcc

2. add ; jne

Note that the special pairs that consist of push/pop instructions may have only immediate or register
operands.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 16

5.6.5. Restrictions on Pair Execution

There are some pairs that may be issued simultaneously but will not execute in parallel:

1. If both instructions access the same data-cache memory bank then the second request (V pipe) must
wait for the first request to complete. A bank conflict occurs when bits 2-4 are the same in the two physical
addresses. This is because the cache is organized as 8 banks of 32-bit wide data entries. A bank conflict
incurs a one clock penalty on the V pipe instruction .

2. Inter-pipe concurrency in execution preserves memory-access ordering. A multi-cycle instruction in the
U pipe will execute alone until its last memory access.

add eax, meml add ebx, mem2 ; 1
 (add) (add) ; 2 2-cycle

The instructions above add the contents of the register and the value at the memory location, then put the
result in the register. An add with a memory operand takes two clocks to execute. The first clock loads the
value from cache, and the second clock performs the addition. Since there is only one memory access in
the U pipe instruction, the add in the V pipe can start in the same cycle.

add meml, eax ; 1
 (add) ; 2
 (add) add mem2, ebx ; 3

 (add) ; 4
 (add) ; 5

The above instructions add the contents of the register to the memory location and store the result at the
memory location. An add with a memory result takes 3 clocks to execute. The first clock loads the value,
the second performs the addition, and the third stores the result. When paired, the last cycle of the U pipe
instruction overlaps with the first cycle of the V pipe instruction execution.

No other instructions may begin execution until the instructions already executing have completed.

To expose the opportunities for scheduling and pairing, it is better to issue a sequence of simple
instructions rather than a complex instruction that takes the same number of cycles. The simple instruction
sequence can take advantage of more issue slots. Compiler writers/programmers can also choose to
reconstruct the complex form if the pairing opportunity does not materialize. The load/store style code
generation requires more registers and increases code size. This impacts Intel486 processor
performance, although only as a second order effect. To compensate for the extra registers needed, extra
effort should be put into the register allocator and instruction scheduler so that extra registers are only
used when parallelism increases.

5.7. Integer Instruction Selection

The following highlights some instruction sequences to avoid and some sequences to use when
generating optimal assembly code.

The lea instruction can be advantageous:

a. Lea may be used sometimes as a three/four operand addition instruction
 e.g., lea ecx, [eax+ebx+4+a]

b. In many cases an lea instruction or a sequence of lea , add , sub and the shift instructions may be
used to replace constant multiply instructions.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 17

c. This can also be used to avoid copying a register when both operands to an add are still needed after
the add, since lea need not overwrite its operands.

The disadvantage of the lea instruction is that it increases the possibility of an AGI stall with previous
instructions. Lea is useful for shifts of 2,4,8 because the shift instructions take 2 clocks on Intel486
processor whereas lea only takes one. On the Pentium processor, lea can execute in either U or V
pipes, but the shift instructions can only execute in the U pipe.

Complex instructions

Avoid using complex instructions (for example, enter , leave , loop). Use sequences of simple
instructions instead.

Zero-Extension of Short

The movzx instruction has a prefix and takes 3 cycles to execute, totaling 4 cycles. As with the Intel486
processor, it is recommended the following sequence be used instead:

xor eax, eax
mov al, mem

If this occurs within a loop, it may be possible to pull the xor out of the loop if the only assignment to eax
is the mov al , mem. This has greater importance for the Pentium processor since the movzx is not
pairable and the new sequence may be paired with adjacent instructions.

Push mem

The push mem instruction takes four cycles for the Intel486 processor. It is recommended to use the
following sequence because it takes only two cycles for the Intel486 processor and increases pairing
opportunity for the Pentium processor.

mov mem, reg
push reg

Short Opcodes

Use one-byte long instructions as much as possible. This will reduce code size and help increase
instruction density in the instruction cache. The most common example is using inc and dec rather than
adding or subtracting the constant 1 with add or sub .

8/16 bit operands

With 8-bit operands, try to use the byte opcodes, rather than using 32-bit operations on sign and zero
extended bytes. Prefixes for operand size override apply to 16-bit operands, not to 8-bit operands.

Sign Extension is usually quite expensive. Often, the semantics can be maintained by zero extending
16-bit operands. Specifically, the C code in the following example does not need sign extension nor does it
need prefixes for operand size overrides.

static short int a, b;
if (a==b) {
 . . .
}

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 18

Code for comparing these 16-bit operands might be:

 U pipe V pipe

xor eax, eax xor ebx, ebx ; 1
movw ax, [a]
; 2 (prefix) + 1
movw bx, [b]
; 4 (prefix) +1

cmp eax, ebx ; 6

The straight-forward method may be slower:

movsw eax, a ; 1 1 prefix + 3
movsw ebx, b ; 5
cmp ebx, eax ; 9

Of course, this can only be done under certain circumstances, but the circumstances tend to be quite
common. This would not work if the compare was for greater than, less than, greater than or equal, and so
on, or if the values in eax or ebx were to be used in another operation where sign extension was
required.

Compares

Use test when comparing a value in a register with 0. Test essentially "ands" the operands together
without writing to a destination register. If you "and" a value with itself and the result sets the zero
condition flag, the value was zero. Test is preferred over and because the and writes the result register
which may subsequently cause an AGI. Test is better than cmp .., 0 because the instruction size is
smaller.

Use test when comparing the result of a Boolean "and" with an immediate constant for equality or
inequality if the register is eax . (if (avar & 8) { }) .

Test is a one-cycle pairable instruction when the form is eax , imm or reg , reg . Other forms of test
take two cycles and do not pair.

Address Calculations

Pull address calculations into load and store instructions. Internally, memory reference instructions can
have 4 operands: a relocatable load-time constant, an immediate constant, a base register, and a scaled
index register. (In the segmented model, a segment register may constitute an additional operand in the
linear address calculation.) In many cases, several integer instructions can be eliminated by fully using the
operands of memory references.

When there is a choice to use either a base or index register, always choose the base because there is a
1-clock penalty on the Intel486 processor for using an index.

Clearing a Register

The preferred sequence to move zero to a register is xor reg , reg . This saves code space but sets the
condition codes. In contexts where the condition codes must be preserved, use mov reg , 0.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 19

Integer Divide

Typically, an integer divide is preceded by a cdq instruction (Divide instructions use edx: eax as the
dividend and cdq sets up edx). It is better to copy eax into edx , then right shift edx 31 places to sign
extend. The copy/shift takes the same number of clocks as cdq on both the Pentium and Intel486
processors, but the copy/shift scheme allows two other instructions to execute at the same time on the
Pentium processor. If you know the value is positive, use xor edx , edx .

Prolog Sequences

Be careful to avoid AGl's in the prolog due to register esp . Since push can pair with other push
instructions, saving callee-saved registers on entry to functions should use these instructions. If possible,
load parameters before decrementing esp .

In routines that do not call other routines (leaf routines), use esp as the base register to free up ebp . If
you are not using the 32-bit flat model, remember that ebp cannot be used as a general purpose base
register because it references the stack segment.

Avoid Compares with Immediate Zero

Often when a value is compared with zero, the operation producing the value sets condition codes which
can be tested directly by a jcc instruction. The most notable exceptions are mov and lea . In these cases,
use test.

Epilog Sequence

If only 4 bytes were allocated in the stack frame for the current function, instead of incrementing the stack
pointer by 4, use pop instructions. This avoids AGls and helps both Intel486 and Pentium processor. For
Pentium processor use 2 pops for eight bytes.

Integer Multiply by Constant

The integer multiply by an immediate can usually be replaced by a faster series of shifts , adds , subs ,
and leas .

a. Binary Method

In general, if there are 8 or fewer bits set in the binary representation of the constant, it is better not to do
the integer multiply. On an Intel486 processor, the break even point is lower: it is profitable if 6 bits or less
are in the constant. Basically, shift and add for each bit set.

b. Factorization Method

This is done by factoring the constant by powers of two plus or minus one, and the constant plus or minus
one by powers of two. If the number can be factored by powers of two, then the multiplication can be
performed by a series of shifts. If powers of two plus or minus one are included, a shift of the previous
result and an add or subtract of the previous result can be generated. If the given number plus or minus
one can be factored by a power of two, a shift of the previous result and an add or subtract of the original
operand can be generated. An iterative for checking powers of two from 31 to 1 can be done. The shift
amount needed and an ordinal to specify an add or subtract is saved for each factor. This information can
be used in reverse order to generate the needed instructions.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 20

For example:

imul eax, 217 ; 10 clocks, no pairing

In checking powers of two in decreasing order it is found that 217 will divide by 31.
 217/31 = 7. 31 = (2^^5)-1

save shift = 5 and ordinal = sub_previous_result

After a check of 217/31 or 7, it is found that 7+1 is divisible by 8.

save shift = 3 and ordinal = sub_operand

After factoring, the instructions can be generated in reverse.

 mov ecx, eax ; 1
 shl eax, 3 ; 2
 sub eax, ecx ; 3
 mov ecx, eax ; 4
 shl eax, 5 ; 5
 sub eax, ecx ; 6

This code sequence allows scheduling of other instructions in the Pentium processor's V pipe.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 21

6. Processor Specific Optimizations

6.1. Pentium Processor Floating-Point Optimizations

The Pentium processor is the first generation of the Intel386 family that implements a pipelined floating-
point unit. However, in order to achieve maximum throughput from the Pentium processor floating-point
unit, specific optimizations must be done.

6.1.1. Floating-Point Example

FORTRAN source:

subroutine da(x,y,z,n)
dimension x(n),y(n)

do 10 i=l,n
10 x(i) = x(i) + y(i) * z

return
end

Assembly code:

 Pentium/Intel486 processor
 TopOfLoop:
 fld dword ptr [esp+8] ; 1 / 1
 fmul dword ptr [ebx+eax*4] ; 2 / 5
 fadd dword ptr [ecx+eax*4] ; 5 / 16
 fstp dword ptr [ecx+eax*4] ; 9 / 26
 inc eax ; 11 / 33
 cmp eax, ebp ; 12 / 34
 jle TopOfLoop ; 12 / 36+2 for branch

Total :12 cycles per iteration

On the Intel486 processor, the time it takes to add and multiply varies depending on the values. In this
example, 11 was used for multiply and 10 for add. The load takes 3 clocks; the store requires 7 clocks.
The extra cycle before the fmul is an index penalty for the fmul . The fadd and fstp do not show an
index penalty because the penalty overlapped with the execution of the previous floating-point instruction.
These overlaps do not occur with fld or fxch .

On the Pentium processor, the results of fadd and fmul can be used three cycles after they start, except
when the use is fst . When an fst instruction uses the result of another floating-point operation, an extra
cycle is needed. The fst instruction executes for two cycles and nothing can execute in parallel.

There is an enormous improvement due to decreasing the clock counts for the common floating-point
instructions; however, this example does not overlap any floating-point instructions. A further improvement
can be achieved by overlapping the execution of the floating-point instructions as explained in the next
section.

To expose more parallelism, loop unrolling can be used if the iterations are independent.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 22

Following is the assembly code after unrolling:

 Pentium processor Intel486 CPU
 TopOfLoop:
 fld dword ptr [esp+8] ; 1 1
 fmul dword ptr [ebx+eax*4] ; 2 5
 fadd dword ptr [ecx+eax*4] ; 5 16
 fstp dword ptr [ecx+eax*4] ; 9 26
 fld dword ptr [esp+8] ; 11 33
 fmul dword ptr [ebx+eax*4+4] ; 12 37
 fadd dword ptr [ecx+eax*4+4] ; 15 48
 fstp dword ptr [ecx+eax*4+4] ; 19 58
 fld dword ptr [esp+8] ; 21 65
 fmul dword ptr [ebx+eax*4+8] ; 22 69
 fadd dword ptr [ecx+eax*4+8] ; 25 80
 fstp dword ptr [ecx+eax*4+8] ; 29 90
 add eax, 3 ; 31 97
 cmp eax, ebp ; 32 98
 jle TopOfLoop ; 32 100+2 (br taken)

Total: 32 cycles (10.7/ iteration)

The clock count improvements gained through loop unrolling was due to eliminating some of the loop
control overhead. To get more improvement, we need to get the floating-point operations overlapped in
order to hide their latencies.

Most floating-point operations require that one operand and the result use the top of stack. This makes
each instruction dependent on the previous instruction and inhibits overlapping the instructions .

One obvious way to get around this is to change the architecture and have floating-point registers, rather
than a stack. Unfortunately, upward and downward compatibility would be lost. Instead, the fxch
instruction was made "fast". This provides us another way to avoid the top of stack dependencies. The
fxch instructions can be paired with the common floating-point operations, so there is no penalty on the
Pentium processor. On the Intel486 processor, each fxch takes 4 clocks.

To take advantage of the exposed parallelism from loop unrolling, the instructions should be scheduled.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 23

Assembly code after unrolling and scheduling:

 After Instruction
 Intel486 Pentium ST(O) ST(l) ST(2)
 CPU CPU -------- -------- -----
TopOfLoop:
 fld dword ptr [esp+8] 1 1 z
 fmul dword ptr [ebx+eax*4] 5 2 y0*z
 fld dword ptr [esp+8] 16 3 z y0*z
 fmul dword ptr [ebx+eax*4+4] 20 4 yl*z y0*z
 fxch st(l) 31 4 y0*z yl*z
 fadd dword ptr [ecx+eax*4] 36 5 x0+y0*z yl*z
 fld dword ptr [esp+8] 46 6 z x0+y0*z yl*z
 fmul dword ptr [ebx+eax*4+8] 50 7 y2*z x0+y0*z yl*z
 fxch st(2) 61 7 yl*z x0+y0*z y2*z
 fadd dword ptr [ecx+eax*4+4] 66 8 xl+yl*z x0+y0*z y2*z
 fxch st(l) 76 8 x0+y0*z xl+yl*z y2*z
 fstp dword ptr [ecx+eax*4] 81 9 xl+yl*z y2*z
 fxch st(l) 88 11 y2*z xl+yl*z
 fadd dword ptr [ecx+eax*4+8] 93 12 x2+y2*z xl+yl*z
 fxch st(l) 103 12 xl+yl*z x2+y2*z
 fstp dword ptr [ecx+eax*4+4] 108 13 x2+y2*z
 fstp dword ptr [ecx+eax*4+8] 116 16
 add eax, 3 123 18
 cmp eax, ebp 124 19
 jle TopOfLoop 126+2 19

 |

 (jle taken)

Total :1 9 cycles (6.3/iteration)

On the Intel486 processor, the index penalty and the added cost of fxch are apparent. The index penalty
does not overlap with the fxch instruction.

On the Pentium processor, the fxch instructions pair with preceding fadd and fmul instructions and
execute in parallel with them (cycles 7,8,12). The fxch instructions move an operand into position for the
next floating point instruction. There is a cycle lost at clock 15 due to the store waiting 3 clocks after the
instruction defining its operand. The fxch instruction does not pair with fst and takes one clock as a
separate instruction (cycles 9-11)

6.1.2. FXCH Rules and Regulations

The fxch instruction can be executed for "free" when all of the following conditions occur:

An FP instruction follows the fxch instruction.

An FP instruction belonging to the following list immediately precedes the fxch instruction: fadd , fsub ,
fmul , fld , fcom , fucom , fchs , ftst , fabs , fdiv .

This fxch instruction has already been executed. This is because the instruction boundaries in the cache
are marked the first time the instruction is executed, so pairing only happens the second time this
instruction is executed from the cache.

This means that this instruction is almost "free" and can be used to access elements in the deeper levels
of the FP stack instead of storing them and then loading them again.

6.1.3. Memory Operands

Performing a floating-point operation on a memory operand instead of on a stack register costs no cycles.
In the integer part of the Pentium processor, it was better to avoid memory operands. In the floating-point
part, you are encouraged to use memory operands.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 24

6.1.4. Floating-Point Stalls

There are cases where a delay occurs between two operations. Instructions should be inserted between
the pair that cause the pipe stall. These instructions could be integer instructions or floating-point
instructions that will not cause a new stall themselves. The number of instructions that should be inserted
depends on the delay length.

One example of this is when a floating-point instruction depends on the result of the immediately
preceding instruction which is also a floating-point instruction. In this case, it would be advantageous to
move integer instructions between the two fp instructions, even if the integer instructions perform loop
control. The following example restructures a loop in this manner:

for (i=0; i<Size; i++)
array1 [i] += array2 [i];

 Pentium Processor Intel486 Processor
 Clocks Clocks
TopOfLoop:
 flds [eax + array2] 2 - AGI 3
 fadds [eax + array1] 1 3
 fstps [eax + array1] 5 - Wait for fadds 14 - Wait for fadds
 add eax, 4 1 1
 jnz TopOfLoop 0 - Pairs with add 3
 ------ ------

9 24

 Pentium Processor Intel486 Processor
 Clocks Clocks
TopOfLoop:
 fstps [eax + array1] 4 - Wait for fadds,AGI 10 - Wait for fadds
LoopEntryPoint:
 flds [eax + array2] 1 3
 fadds [eax + array1] 1 3
 add eax, 4 1 1
 jnz TopOfLoop 0 - Pairs with add 3

------- -------
7 20

By moving the integer instructions between the fadds and fstps , both processors can execute the
integer instructions while the fadds is completing in the floating-point unit and before the fstps begins
execution. Note that this new loop structure requires a separate entry point for the first iteration because
the loop needs to begin with the flds . Also, there needs to be an additional fstps after the conditional
jump to finish the final loop iteration.

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 25

1. Floating-Point Stores

A floating-point store must wait an extra cycle for its floating-point operand. After an fld , an fst must
wait one clock. After the common arithmetic operations, fmul and fadd , which normally have a latency of
two, fst waits an extra cycle for a total of three1.

fld meml ; 1 fld takes 1 clock
; 2 fst waits, schedule something here

fst mem2 ; 3,4 fst takes 2 clocks

fadd meml ; 1 add takes 3 clocks
; 2 add, schedule something here
; 3 add, schedule something here
; 4 fst waits, schedule something here

fst mem2 ; 5,2 fst takes 2 clocks

In the next example, the store is not dependent on the previous load:

fld meml : 1
fld mem2 ; 2
fxch st(l) ; 2
fst mem3 ; 3 stores values loaded from meml

2. A register may be used immediately after it has been loaded (with fld).

fld mem1 ; l
fadd mem2 ; 2,3,4

3. Use of a register by a floating-point operation immediately after it has been written by another fadd ,
fsub , or fmul causes a 2 cycle delay. If instructions are inserted between these two, then latency and a
potential stall can be hidden.

4. There are multi-cycle floating-point instructions (fdiv and fsqrt) that execute in the floating-point unit
pipe. While executing these instructions in the floating-point unit pipe, integer instructions can be executed
in parallel. Emitting a number of integer instructions after such an instruction will keep the integer
execution units busy (the exact number of instructions depends on the floating-point instruction's cycle
count).

5. The integer multiply operations, mul and imul , are executed in the floating-point unit so these
instructions cannot be executed in parallel with a floating-point instruction.

6. A floating-point multiply instruction (fmul) delays for one cycle if the immediately preceding cycle
executed an fmul or an fmul / fxch pair. The multiplier can only accept a new pair of operands every
other cycle.

7. Transcendental operations execute in the U pipe and nothing can be overlapped with them, so an
integer instruction following such an instruction will wait until that instruction completes.

8. Floating-point operations that take integer operands (fiadd or fisub ..) should be avoided. These
instructions should be split into two instructions: fild and a floating-point operation. The number of
cycles before another instruction can be issued (throughput) for fiadd is 4, while for fild and simple
floating-point op it is 1.

1 This set includes also the faddp, fsubrp, ... instructions

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 26

Example:

Complex Instructions Better for Potential Overlap

fiadd [ebp] ; 4 fild [ebp] ; 1
 faddp st(l) ; 2

Using the fild - faddp instructions yields 2 free cycles for executing other instructions.

9. The fstsw instruction that usually appears after a floating-point comparison instruction (fcom , fcomp ,
fcompp) delays for 3 cycles. Other instructions may be inserted after the comparison instruction in order
to hide the latency.

10. Moving a floating-point memory/immediate to memory should be done by integer moves (if precision
conversion is not needed) instead of doing fld - fstp .

Examples for floating-point moves:

double precision: 4 vs. 2 cycles

 fld [ebp] ; 1 mov eax, [ebp] ; 1
 ; 2 mov edx, [ebp+4] ; 1
 fstp [edi] ; 3,4 mov [edi], eax ; 2
 mov [edi+4], edx ; 2

 single precision: 4 vs. 2 cycles

 fld [ebp] ; 1 mov eax, [ebp] ; 1
 ; 2 mov [edi], eax ; 2
 fstp [edi] ; 3,4

This optimization also applies to the Intel486 processor.

11. Transcendental operations execute on the Pentium processor much faster than on the Intel486
processor. It may be worthwhile inlining some of these math library calls because of the fact that the
call and prologue/epilogue overhead involved with the library calls is no longer negligible. Emulating
these operations in software will not be faster than the hardware unless accuracy is sacrificed.

12. Integer instructions generally overlap with the floating-point operations except when the last floating-
point operation was fxch. In this case there is a one cycle delay.

 U pipe V pipe

fadd fxch ; 1
 ; 2 fxch delay

mov eax, 1 inc edx ; 3

Optimizations for Intel's 32-Bit Processors Version 2.0

Page 27

7. Summary

The following tables summarize the micro architecture differences among Intel386, Intel486 and Pentium
processors and the corresponding code generation consideration. It is possible to derive a set of code
generation strategies that provide the optimal performance across the various members of the Intel386
processor family except for the use of FXCH to maximize the Pentium processor floating-point throughput
which can be implemented under a user-directed option.

Intel386 TM Processor Intel486 TM Processor Pentium  Processor
Cache None 8K Combined 8K Code, 8K Data
Prefetch 4x4b filled by external

memory access
2x6b shared bus to
cache

4x32b private bus to
cache

Decoder 3 deep decoded FIFO part of core pipeline part of core pipeline
Core some instruction

overlap
5 stages pipeline 5 stages pipeline &

superscalar
Math Co-processor On-Chip On-Chip & pipelined

Processor
Characteristics Optimizations

Intel386 TM

Processor
Intel486 TM

Processor
Pentium 

Processor
Cache Interleave mem

with non-mem
don't care Interleave if 4

consecutive
don't care

Prefetcher Alignment 0-MOD-4 0-MOD-16 don't care
Pipelined
Execution core

Base Vs index don't care use base don't care

Avoid AGI don't care next instr next 3 instr
Instruction
selection

1 clk penalty short instr short instr

Superscalar Pairing don't care don't care pair
Pipelined FPU
with FXCH

more scheduling 18 clk penalty 4 clk penalty schedule

Recommendations for Blended:

1. Interleave mem with non-mem: do nothing

2. Code alignment: 0-mod-16 on loop

3. Base Vs index: use base

4. Avoid AGI: next 3 instructions

5. Instruction selection: short instructions sequence

6. Pairing: pair

7. FP scheduling: avoid FXCH

A-1

APPENDIX A
INSTRUCTION PAIRING SUMMARY

The following abbreviations are used in the Pairing column of the integer table in this Appendix:

NP — Not pairable, executes in U pipe

PU — Pairable if issued to U pipe

PV — Pairable if issued to V pipe

UV — Pairable in either pipe

In the floating-point table in this Appendix:

FX — Pairs with FXCH

NP — No pairing.

The I/O instructions are not pairable.

Optimizations for Intel's 32-Bit Processors Version 2.0

A-2

Integer Instruction Pairing

INSTRUCTION FORMAT Pairing

AAA – ASCII Adjust after Addition NP

AAD – ASCII Adjust AX before Division NP

AAM – ASCII Adjust AX after Multiply NP

AAS – ASCII Adjust AL after Subtraction NP

ADC – ADD with Carry PU

ADD – Add UV

AND – Logical AND UV

ARPL – Adjust RPL Field of Selector NP

BOUND – Check Array Against Bounds NP

BSF – Bit Scan Forward NP

BSR – Bit Scan Reverse NP

BSWAP – Byte Swap NP

BT – Bit Test NP

BTC – Bit Test and Complement NP

BTR – Bit Test and Reset NP

BTS – Bit Test and Set NP

CALL – Call Procedure (in same segment)

 direct 1110 1000 : full displacement PV

 register indirect 1111 1111 : 11 010 reg NP

 memory indirect 1111 1111 : mod 010 r/m NP

CALL – Call Procedure (in other segment) NP

CBW – Convert Byte to Word
CWDE – Convert Word to Doubleword

NP

CLC – Clear Carry Flag NP

CLD – Clear Direction Flag NP

CLI – Clear Interrupt Flag NP

CLTS – Clear Task-Switched Flag in CR0 NP

CMC – Complement Carry Flag NP

CMP – Compare Two Operands UV

CMPS/CMPSB/CMPSW/CMPSD – Compare String Operands NP

CMPXCHG – Compare and Exchange NP

CMPXCHG8B – Compare and Exchange 8 Bytes NP

CWD – Convert Word to Dword
CDQ – Convert Dword to Qword

NP

DAA – Decimal Adjust AL after Addition NP

DAS – Decimal Adjust AL after Subtraction NP

DEC – Decrement by 1 UV

DIV – Unsigned Divide NP

ENTER – Make Stack Frame for Procedure Parameters NP

HLT – Halt

Optimizations for Intel's 32-Bit Processors Version 2.0

A-3

Integer Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

IDIV – Signed Divide NP

IMUL – Signed Multiply NP

INC – Increment by 1 UV

INT n – Interrupt Type n NP

INT – Single-Step Interrupt 3 NP

INTO – Interrupt 4 on Overflow NP

INVD – Invalidate Cache NP

INVLPG – Invalidate TLB Entry NP

IRET/IRETD – Interrupt Return NP

Jcc – Jump if Condition is Met PV

JCXZ/JECXZ – Jump on CX/ECX Zero NP

JMP – Unconditional Jump (to same segment)

 short 1110 1011 : 8-bit displacement PV

 direct 1110 1001 : full displacement PV

 register indirect 1111 1111 : 11 100 reg NP

 memory indirect 1111 1111 : mod 100 r/m NP

JMP – Unconditional Jump (to other segment) NP

LAHF – Load Flags into AH Register NP

LAR – Load Access Rights Byte NP

LDS – Load Pointer to DS NP

LEA – Load Effective Address UV

LEAVE – High Level Procedure Exit NP

LES – Load Pointer to ES NP

LFS – Load Pointer to FS NP

LGDT – Load Global Descriptor Table Register NP

LGS – Load Pointer to GS NP

LIDT – Load Interrupt Descriptor Table Register NP

LLDT – Load Local Descriptor Table Register NP

LMSW – Load Machine Status Word NP

LOCK – Assert LOCK# Signal Prefix

LODS/LODSB/LODSW/LODSD – Load String Operand NP

LOOP – Loop Count NP

LOOPZ/LOOPE – Loop Count while Zero/Equal NP

LOOPNZ/LOOPNE – Loop Count while not Zero/Equal NP

LSL – Load Segment Limit NP

LSS – Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m NP

LTR – Load Task Register NP

MOV – Move Data UV

MOV – Move to/from Control Registers NP

MOV – Move to/from Debug Registers NP

Optimizations for Intel's 32-Bit Processors Version 2.0

A-4

Integer Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

MOV – Move to/from Segment Registers NP

MOVS/MOVSB/MOVSW/MOVSD – Move Data from String to String NP

MOVSX – Move with Sign-Extend NP

MOVZX – Move with Zero-Extend NP

MUL – Unsigned Multiplication of AL, AX or EAX NP

NEG – Two's Complement Negation NP

NOP – No Operation 1001 0000 UV

NOT – One's Complement Negation NP

OR – Logical Inclusive OR UV

POP – Pop a Word from the Stack

 reg 1000 1111 : 11 000 reg UV

 or 0101 1 reg UV

 memory 1000 1111 : mod 000 r/m NP

POP – Pop a Segment Register from the Stack NP

POPA/POPAD – Pop All General Registers NP

POPF/POPFD – Pop Stack into FLAGS or EFLAGS Register NP

PUSH – Push Operand onto the Stack

 reg 1111 1111 : 11 110 reg UV

 or 0101 0 reg UV

 memory 1111 1111 : mod 110 r/m NP

 immediate 0110 10s0 : immediate data UV

PUSH – Push Segment Register onto the Stack NP

PUSHA/PUSHAD – Push All General Registers NP

PUSHF/PUSHFD – Push Flags Register onto the Stack NP

RCL – Rotate thru Carry Left

 reg by 1 1101 000w : 11 010 reg PU

 memory by 1 1101 000w : mod 010 r/m PU

 reg by CL 1101 001w : 11 010 reg NP

 memory by CL 1101 001w : mod 010 r/m NP

 reg by immediate count 1100 000w : 11 010 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 010 r/m : imm8 data PU

RCR – Rotate thru Carry Right

 reg by 1 1101 000w : 11 011 reg PU

 memory by 1 1101 000w : mod 011 r/m PU

 reg by CL 1101 001w : 11 011 reg NP

 memory by CL 1101 001w : mod 011 r/m NP

 reg by immediate count 1100 000w : 11 011 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 011 r/m : imm8 data PU

RDMSR – Read from Model-Specific Register NP

REP LODS – Load String NP

Optimizations for Intel's 32-Bit Processors Version 2.0

A-5

Integer Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

REP MOVS – Move String NP

REP STOS – Store String NP

REPE CMPS – Compare String (Find Non-Match) NP

REPE SCAS – Scan String (Find Non-AL/AX/EAX) NP

REPNE CMPS – Compare String (Find Match) NP

REPNE SCAS – Scan String (Find AL/AX/EAX) NP

RET – Return from Procedure (to same segment) NP

RET – Return from Procedure (to other segment) NP

ROL – Rotate (not thru Carry) Left

 reg by 1 1101 000w : 11 000 reg PU

 memory by 1 1101 000w : mod 000 r/m PU

 reg by CL 1101 001w : 11 000 reg NP

 memory by CL 1101 001w : mod 000 r/m NP

 reg by immediate count 1100 000w : 11 000 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 000 r/m : imm8 data PU

ROR – Rotate (not thru Carry) Right

 reg by 1 1101 000w : 11 001 reg PU

 memory by 1 1101 000w : mod 001 r/m PU

 reg by CL 1101 001w : 11 001 reg NP

 memory by CL 1101 001w : mod 001 r/m NP

 reg by immediate count 1100 000w : 11 001 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 001 r/m : imm8 data PU

RSM – Resume from System Management Mode NP

SAHF – Store AH into Flags NP

SAL – Shift Arithmetic Left same instruction as SHL

SAR – Shift Arithmetic Right

 reg by 1 1101 000w : 11 111 reg PU

 memory by 1 1101 000w : mod 111 r/m PU

 reg by CL 1101 001w : 11 111 reg NP

 memory by CL 1101 001w : mod 111 r/m NP

 reg by immediate count 1100 000w : 11 111 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 111 r/m : imm8 data PU

SBB – Integer Subtraction with Borrow PU

SCAS/SCASB/SCASW/SCASD – Scan String NP

SETcc – Byte Set on Condition NP

SGDT – Store Global Descriptor Table Register NP

Optimizations for Intel's 32-Bit Processors Version 2.0

A-6

Integer Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

SHL – Shift Left

 reg by 1 1101 000w : 11 100 reg PU

 memory by 1 1101 000w : mod 100 r/m PU

 reg by CL 1101 001w : 11 100 reg NP

 memory by CL 1101 001w : mod 100 r/m NP

 reg by immediate count 1100 000w : 11 100 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 100 r/m : imm8 data PU

SHLD – Double Precision Shift Left

 register by immediate count 0000 1111 : 1010 0100 : 11 reg2 reg1 : imm8 NP

 memory by immediate count 0000 1111 : 1010 0100 : mod reg r/m : imm8 NP

 register by CL 0000 1111 : 1010 0101 : 11 reg2 reg1 NP

 memory by CL 0000 1111 : 1010 0101 : mod reg r/m NP

SHR – Shift Right

 reg by 1 1101 000w : 11 101 reg PU

 memory by 1 1101 000w : mod 101 r/m PU

 reg by CL 1101 001w : 11 101 reg NP

 memory by CL 1101 001w : mod 101 r/m NP

 reg by immediate count 1100 000w : 11 101 reg : imm8 data PU

 memory by immediate count 1100 000w : mod 101 r/m : imm8 data PU

SHRD – Double Precision Shift Right

 register by immediate count 0000 1111 : 1010 1100 : 11 reg2 reg1 : imm8 NP

 memory by immediate count 0000 1111 : 1010 1100 : mod reg r/m : imm8 NP

 register by CL 0000 1111 : 1010 1101 : 11 reg2 reg1 NP

 memory by CL 0000 1111 : 1010 1101 : mod reg r/m NP

SIDT – Store Interrupt Descriptor Table Register NP

SLDT – Store Local Descriptor Table Register NP

SMSW – Store Machine Status Word NP

STC – Set Carry Flag NP

STD – Set Direction Flag NP

STI – Set Interrupt Flag

STOS/STOSB/STOSW/STOSD – Store String Data NP

STR – Store Task Register NP

SUB – Integer Subtraction UV

TEST – Logical Compare

 reg1 and reg2 1000 010w : 11 reg1 reg2 UV

 memory and register 1000 010w : mod reg r/m UV

 immediate and register 1111 011w : 11 000 reg : immediate data NP

 immediate and accumulator 1010 100w : immediate data UV

 immediate and memory 1111 011w : mod 000 r/m : immediate data NP

Optimizations for Intel's 32-Bit Processors Version 2.0

A-7

Integer Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

VERR – Verify a Segment for Reading NP

VERW – Verify a Segment for Writing NP

WAIT – Wait 1001 1011 NP

WBINVD – Write-Back and Invalidate Data Cache NP

WRMSR – Write to Model-Specific Register NP

XADD – Exchange and Add NP

XCHG – Exchange Register/Memory with Register NP

XLAT/XLATB – Table Look-up Translation NP

XOR – Logical Exclusive OR UV

Optimizations for Intel's 32-Bit Processors Version 2.0

A-8

Floating-Point Instruction Pairing

INSTRUCTION FORMAT Pairing

F2XM1 – Compute 2 ST(0) – 1 NP

FABS – Absolute Value FX

FADD – Add FX

FADDP – Add and Pop FX

FBLD – Load Binary Coded Decimal NP

FBSTP – Store Binary Coded Decimal and Pop NP

FCHS – Change Sign FX

FCLEX – Clear Exceptions NP

FCOM – Compare Real FX

FCOMP – Compare Real and Pop FX

FCOMPP – Compare Real and Pop Twice

FCOS – Cosine of ST(0) NP

FDECSTP – Decrement Stack-Top Pointer NP

FDIV – Divide FX

FDIVP – Divide and Pop FX

FDIVR – Reverse Divide FX

FDIVRP – Reverse Divide and Pop FX

FFREE – Free ST(i) Register NP

FIADD – Add Integer NP

FICOM – Compare Integer NP

FICOMP – Compare Integer and Pop NP

FIDIV NP

FIDIVR NP

FILD – Load Integer NP

FIMUL NP

FINCSTP – Increment Stack Pointer NP

FINIT – Initialize Floating-Point Unit NP

FIST – Store Integer NP

FISTP – Store Integer and Pop NP

FISUB NP

FISUBR NP

FLD – Load Real

 32-bit memory 11011 001 : mod 000 r/m FX

 64-bit memory 11011 101 : mod 000 r/m FX

 80-bit memory 11011 011 : mod 101 r/m NP

 ST(i) 11011 001 : 11 000 ST(i) FX

FLD1 – Load +1.0 into ST(0) NP

FLDCW – Load Control Word NP

FLDENV – Load FPU Environment NP

FLDL2E – Load log 2(εε) into ST(0) NP

FLDL2T – Load log 2(10) into ST(0) NP

Optimizations for Intel's 32-Bit Processors Version 2.0

A-9

Floating-Point Instruction Pairing (Continued)

INSTRUCTION FORMAT Pairing

FLDLG2 – Load log 10(2) into ST(0) NP

FLDLN2 – Load log εε(2) into ST(0) NP

FLDPI – Load ππ into ST(0) NP

FLDZ – Load +0.0 into ST(0) NP

FMUL – Multiply FX

FMULP – Multiply FX

FNOP – No Operation NP

FPATAN – Partial Arctangent NP

FPREM – Partial Remainder NP

FPREM1 – Partial Remainder (IEEE) NP

FPTAN – Partial Tangent NP

FRNDINT – Round to Integer

FRSTOR – Restore FPU State NP

FSAVE – Store FPU State NP

FSCALE – Scale NP

FSIN – Sine NP

FSINCOS – Sine and Cosine NP

FSQRT – Square Root NP

FST – Store Real NP

FSTCW – Store Control Word NP

FSTENV – Store FPU Environment NP

FSTP – Store Real and Pop NP

FSTSW – Store Status Word into AX NP

FSTSW – Store Status Word into Memory NP

FSUB – Subtract FX

FSUBP – Subtract and Pop FX

FSUBR – Reverse Subtract FX

FSUBRP – Reverse Subtract and Pop FX

FTST – Test FX

FUCOM – Unordered Compare Real) FX

FUCOMP – Unordered Compare and Pop FX

FUCOMPP – Unordered Compare and Pop Twice FX

FXAM – Examine NP

FXCH – Exchange ST(0) and ST(i)

FXTRACT – Extract Exponent and Significand NP

FYL2X – ST(1) ×× log 2(ST(0)) NP

FYL2XP1 – ST(1) ×× log 2(ST(0) + 1.0) NP

FWAIT – Wait until FPU Ready

	Optimizations for Intel's 32-Bit Processors
	Table of Contents
	1. Introduction
	2. Overview of Intel386, Intel486, and Pentium Processors
	2.1. The Intel386 Processor
	2.1.1. Instruction Prefetcher
	2.1.2. Instruction Decoder
	2.1.3. Execution Core

	2.2. The Intel486 Processor
	2.2.1. Integer Pipeline
	2.2.2. On-Chip Cache
	2.2.3. On-Chip Floating-Point Unit

	2.3. The Pentium Processor
	2.3.1. Integer Pipelines
	2.3.2. Caches
	2.3.3. Instruction Prefetcher
	2.3.4. Branch Target Buffer
	2.3.5. Pipelined Floating-Point Unit

	3. Integer Examples
	3.1. Code Sequence 1, Intel486 Processor
	3.2. Code Sequence 1, Pentium Processor
	3.3. Code Sequence 2, Intel486 Processor
	3.4. Code Sequence 2, Pentium Processor
	3.5. Code Sequence 3, Intel486 Processor
	3.6. Code Sequence 3, Pentium Processor

	4. Code Generation Strategy
	5. Blended Code Generation Consideration
	5.1. Choice of Index Versus Base Register
	5.2. Addressing Modes and Register Usage
	5.3. Prefetch Bandwidth
	5.4. Alignment
	5.4.1. Code
	5.4.2. Data
	5.4.3. 2-byte Data
	5.4.4. 4-byte Data
	5.4.5. 8-byte Data

	5.5. Prefixed Opcodes
	5.6. Integer Instruction Scheduling
	5.6.1. Pairing
	5.6.2. Instruction Set Pairability
	5.6.3. Unpairability Due to Registers
	5.6.4. Special Pairs
	5.6.5. Restrictions on Pair Execution

	5.7. Integer Instruction Selection

	6. Processor Specific Optimizations
	6.1. Pentium Processor Floating-Point Optimizations
	6.1.1. Floating-Point Example
	6.1.2. FXCH Rules and Regulations
	6.1.3. Memory Operands
	6.1.4. Floating-Point Stalls

	7. Summary
	Appendix A Instruction Pairing Summary

