
IA-32 Intel® Architecture
Optimization
Reference Manual

Issued in U.S.A.
Order Number: 248966-009

World Wide Web: http://developer.intel.com

http://developer.intel.com

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PROD-
UCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTEL-
LECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WAR-
RANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.

This IA-32 Intel® Architecture Optimization Reference Manual as well as the software described in it is
furnished under license and may only be used or copied in accordance with the terms of the license. The
information in this manual is furnished for informational use only, is subject to change without notice,
and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no respon-
sibility or liability for any errors or inaccuracies that may appear in this document or any software that
may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Designers must not rely on the absence or characteristics of any features or instructions marked
“reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility what-
soever for conflicts or incompatibilities arising from future changes to them.

Intel, Pentium, Intel Xeon, Intel NetBurst, Itanium, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1999-2003 Intel Corporation.
ii

Contents
Introduction
Tuning Your Application ..xxiv
About This Manual .. xxv
Related Documentation..xxvii
Notational Conventions... xxviii

Chapter 1 IA-32 Intel® Architecture Processor Family Overview
SIMD Technology.. 1-2

Summary of SIMD Technologies .. 1-5
MMX™ Technology... 1-5
Streaming SIMD Extensions... 1-5
Streaming SIMD Extensions 2.. 1-6

Intel® NetBurst™ Microarchitecture ... 1-6
Design Goals of Intel NetBurst Microarchitecture .. 1-7
Overview of the Intel NetBurst Microarchitecture Pipeline ... 1-8

The Front End... 1-10
The Out-of-order Core .. 1-11
Retirement .. 1-12

 Front End Pipeline Detail... 1-12
Prefetching.. 1-13
Decoder .. 1-13
Execution Trace Cache .. 1-13
Branch Prediction ... 1-14

Execution Core Detail... 1-16
Instruction Latency and Throughput ... 1-16
Execution Units and Issue Ports... 1-17
Caches.. 1-18
Data Prefetch.. 1-20
Loads and Stores.. 1-22
Store Forwarding .. 1-23
iii

IA-32 Intel® Architecture Optimization
Intel® Pentium® M Processor Microarchitecture ... 1-24
The Front End... 1-26
Data Prefetching ... 1-27
Out-of-Order Core... 1-28
In-Order Retirement.. 1-28

Hyper-Threading Technology.. 1-28
Processor Resources and Hyper-Threading Technology... 1-30

Replicated Resources... 1-31
Partitioned Resources .. 1-31
Shared Resources.. 1-32

Microarchitecture Pipeline and Hyper-Threading Technology.. 1-32
 Front End Pipeline... 1-33
Execution Core... 1-33
Retirement.. 1-33

Chapter 2 General Optimization Guidelines
Tuning to Achieve Optimum Performance .. 2-1
Tuning to Prevent Known Coding Pitfalls.. 2-2
General Practices and Coding Guidelines .. 2-3

Use Available Performance Tools... 2-4
Optimize Performance Across Processor Generations.. 2-4
Optimize Branch Predictability.. 2-4
Optimize Memory Access... 2-5
Optimize Floating-point Performance... 2-5
Optimize Instruction Selection.. 2-6
Optimize Instruction Scheduling... 2-7
Enable Vectorization... 2-7

Coding Rules, Suggestions and Tuning Hints... 2-7
Performance Tools .. 2-8

Intel® C++ Compiler ... 2-8
General Compiler Recommendations .. 2-9
VTune™ Performance Analyzer... 2-10

Processor Perspectives .. 2-10
CPUID Dispatch Strategy and Compatible Code Strategy ... 2-12

Branch Prediction.. 2-13
Eliminating Branches.. 2-13
Spin-Wait and Idle Loops ... 2-16
Static Prediction.. 2-17
Inlining, Calls and Returns ... 2-20
Branch Type Selection ... 2-21
iv

Contents
 Loop Unrolling ... 2-25
Compiler Support for Branch Prediction... 2-27

Memory Accesses... 2-28
Alignment ... 2-28
Store Forwarding .. 2-31

Store-to-Load-Forwarding Restriction on Size and Alignment.................................. 2-32
Store-forwarding Restriction on Data Availability.. 2-37

Data Layout Optimizations ... 2-39
Stack Alignment.. 2-42
Aliasing Cases.. 2-43

Aliasing Cases in the Pentium. 4 and Intel® Xeon™ Processors 2-44
Aliasing Cases in the Pentium M Processor... 2-45

Mixing Code and Data .. 2-46
Self-modifying Code ... 2-47

Write Combining... 2-48
Locality Enhancement .. 2-49
Minimizing Bus Latency.. 2-50
Non-Temporal Store Bus Traffic ... 2-51
Prefetching ... 2-52

Hardware Instruction Fetching.. 2-53
Software and Hardware Cache Line Fetching.. 2-53

Cacheability instructions... 2-54
Code Alignment.. 2-54

Improving the Performance of Floating-point Applications.. 2-55
Guidelines for Optimizing Floating-point Code... 2-55
Floating-point Modes and Exceptions .. 2-57

Floating-point Exceptions ... 2-57
Floating-point Modes .. 2-60

Improving Parallelism and the Use of FXCH.. 2-65
x87 vs. SIMD Floating-point Trade-offs .. 2-66
Memory Operands.. 2-67
Floating-Point Stalls.. 2-68

x87 Floating-point Operations with Integer Operands .. 2-68
x87 Floating-point Comparison Instructions ... 2-68
Transcendental Functions .. 2-69

Instruction Selection.. 2-69
Complex Instructions.. 2-70
Use of the lea Instruction.. 2-70
Use of the inc and dec Instructions .. 2-71
Use of the shift and rotate Instructions ... 2-71
v

IA-32 Intel® Architecture Optimization
Integer and Floating-point Multiply ... 2-72
Integer Divide ... 2-72
Operand Sizes.. 2-73
Address Calculations.. 2-75
Clearing Registers.. 2-76
Compares... 2-76
Floating Point/SIMD Operands... 2-77
Prolog Sequences .. 2-79
Code Sequences that Operate on Memory Operands ... 2-79

Instruction Scheduling... 2-80
Latencies and Resource Constraints.. 2-80
Spill Scheduling.. 2-81
Scheduling Rules for the Pentium 4 Processor Decoder ... 2-81
Scheduling Rules for the Pentium M Processor Decoder .. 2-82

Vectorization ... 2-82
Miscellaneous ... 2-84

NOPs.. 2-84
Summary of Rules and Suggestions... 2-85

User/Source Coding Rules... 2-86
Assembly/Compiler Coding Rules.. 2-89
Tuning Suggestions.. 2-97

Chapter 3 Coding for SIMD Architectures
Checking for Processor Support of SIMD Technologies ... 3-2

Checking for MMX Technology Support ... 3-2
Checking for Streaming SIMD Extensions Support.. 3-3
Checking for Streaming SIMD Extensions 2 Support... 3-5

Considerations for Code Conversion to SIMD Programming.. 3-6
Identifying Hot Spots .. 3-8
Determine If Code Benefits by Conversion to SIMD Execution.. 3-9

Coding Techniques ... 3-10
Coding Methodologies.. 3-11

Assembly .. 3-13
Intrinsics.. 3-13
Classes... 3-15
Automatic Vectorization .. 3-16

Stack and Data Alignment... 3-18
Alignment and Contiguity of Data Access Patterns.. 3-18

Using Padding to Align Data... 3-18
Using Arrays to Make Data Contiguous.. 3-19
vi

Contents
Stack Alignment For 128-bit SIMD Technologies ... 3-20
Data Alignment for MMX Technology ... 3-21
Data Alignment for 128-bit data.. 3-22

Compiler-Supported Alignment... 3-22
Improving Memory Utilization.. 3-25

Data Structure Layout... 3-25
Strip Mining... 3-30
Loop Blocking... 3-32

Instruction Selection.. 3-35
Tuning the Final Application.. 3-37

Chapter 4 Optimizing for SIMD Integer Applications
General Rules on SIMD Integer Code .. 4-2
Using SIMD Integer with x87 Floating-point.. 4-3

Using the EMMS Instruction... 4-3
Guidelines for Using EMMS Instruction.. 4-4

Data Alignment.. 4-6
Data Movement Coding Techniques ... 4-6

Unsigned Unpack ... 4-6
Signed Unpack ... 4-7
Interleaved Pack with Saturation.. 4-8
Interleaved Pack without Saturation... 4-10
Non-Interleaved Unpack... 4-11
Extract Word... 4-13
Insert Word... 4-14
Move Byte Mask to Integer... 4-16
Packed Shuffle Word for 64-bit Registers .. 4-18
Packed Shuffle Word for 128-bit Registers .. 4-19
Unpacking/interleaving 64-bit Data in 128-bit Registers... 4-20
Data Movement .. 4-21
Conversion Instructions.. 4-21

Generating Constants ... 4-21
Building Blocks.. 4-23

Absolute Difference of Unsigned Numbers .. 4-23
Absolute Difference of Signed Numbers .. 4-24
Absolute Value.. 4-25
Clipping to an Arbitrary Range [high, low] .. 4-26

Highly Efficient Clipping .. 4-27
Clipping to an Arbitrary Unsigned Range [high, low] .. 4-29
vii

IA-32 Intel® Architecture Optimization
Packed Max/Min of Signed Word and Unsigned Byte.. 4-30
Signed Word ... 4-30
Unsigned Byte .. 4-30

Packed Multiply High Unsigned.. 4-30
Packed Sum of Absolute Differences... 4-30
Packed Average (Byte/Word) ... 4-31
Complex Multiply by a Constant ... 4-32
Packed 32*32 Multiply.. 4-33
Packed 64-bit Add/Subtract.. 4-33
128-bit Shifts... 4-33

Memory Optimizations .. 4-34
Partial Memory Accesses... 4-35
Increasing Bandwidth of Memory Fills and Video Fills ... 4-37

Increasing Memory Bandwidth Using the MOVDQ Instruction 4-37
Increasing Memory Bandwidth by Loading and Storing to and from the

Same DRAM Page .. 4-38
Increasing UC and WC Store Bandwidth by Using Aligned Stores........................... 4-38

Converting from 64-bit to 128-bit SIMD Integer .. 4-38

Chapter 5 Optimizing for SIMD Floating-point Applications
General Rules for SIMD Floating-point Code.. 5-1
Planning Considerations ... 5-2
Detecting SIMD Floating-point Support... 5-3
Using SIMD Floating-point with x87 Floating-point ... 5-3
Scalar Floating-point Code.. 5-3
Data Alignment.. 5-4

Data Arrangement .. 5-4
Vertical versus Horizontal Computation.. 5-5
Data Swizzling .. 5-9
Data Deswizzling .. 5-13
Using MMX Technology Code for Copy or Shuffling Functions 5-16
Horizontal ADD... 5-17

Use of cvttps2pi/cvttss2si Instructions .. 5-21
Flush-to-Zero Mode... 5-21

Chapter 6 Optimizing Cache Usage
General Prefetch Coding Guidelines... 6-2
Hardware Data Prefetch.. 6-4
Prefetch and Cacheability Instructions.. 6-5
Prefetch... 6-5
viii

Contents
Software Data Prefetch .. 6-6
The Prefetch Instructions – Pentium 4 Processor Implementation................................... 6-7
Prefetch and Load Instructions... 6-8

Cacheability Control .. 6-9
The Non-temporal Store Instructions.. 6-9

Fencing... 6-10
Streaming Non-temporal Stores ... 6-10
Memory Type and Non-temporal Stores... 6-11
Write-Combining ... 6-12

Streaming Store Usage Models.. 6-13
Coherent Requests... 6-13
Non-coherent requests ... 6-13

Streaming Store Instruction Descriptions ... 6-14
The fence Instructions .. 6-15

The sfence Instruction .. 6-15
The lfence Instruction ... 6-16
The mfence Instruction ... 6-16

The clflush Instruction .. 6-17
Memory Optimization Using Prefetch.. 6-18

Software-controlled Prefetch .. 6-18
Hardware Prefetch ... 6-19
Example of Latency Hiding with S/W Prefetch Instruction ... 6-20
Prefetching Usage Checklist .. 6-22
Prefetch Scheduling Distance .. 6-23
Prefetch Concatenation.. 6-24
Minimize Number of Prefetches ... 6-26
Mix Prefetch with Computation Instructions ... 6-30
Prefetch and Cache Blocking Techniques.. 6-32
Single-pass versus Multi-pass Execution ... 6-37

Memory Optimization using Non-Temporal Stores.. 6-40
Non-temporal Stores and Software Write-Combining... 6-40
Cache Management ... 6-41

Video Encoder .. 6-42
Video Decoder .. 6-42
Conclusions from Video Encoder and Decoder Implementation 6-43
Using Prefetch and Streaming-store for a Simple Memory Copy 6-43
TLB Priming.. 6-44
Optimizing the 8-byte Memory Copy .. 6-45
ix

IA-32 Intel® Architecture Optimization
Chapter 7 Multiprocessor and Hyper-Threading Technology
Performance and Usage Models... 7-2

Multithreading... 7-2
Multitasking Environment ... 7-4

Programming Models and Multithreading ... 7-5
Parallel Programming Models .. 7-6

Domain Decomposition... 7-6
Functional Decomposition .. 7-7
Tools for Creating Multithreaded Applications .. 7-8

Optimization Guidelines .. 7-9
Key Practices of Thread Synchronization .. 7-10
Key Practices of System Bus Optimization .. 7-10
Key Practices of Memory Optimization .. 7-11
Key Practices of Front-end Optimization.. 7-12
Key Practices of Execution Resource Optimization ... 7-12
Generality and Performance Impact... 7-12

Thread Synchronization .. 7-13
Synchronization for Short Periods.. 7-13
Optimization with Spin-Locks ... 7-17
Synchronization for Longer Periods ... 7-18

Avoid Coding Pitfalls in Thread Synchronization .. 7-19
Prevent False-Sharing of Data ... 7-21
Placement of Shared Synchronization Variable ... 7-22

System Bus Optimization.. 7-22
Conserve Bus Command Bandwidth.. 7-23
Avoid Excessive Software Prefetches.. 7-23
Improve Effective Latency of Cache Misses... 7-24
Use Full Write Transactions to Achieve Higher Data Rate... 7-25

Memory Optimization .. 7-25
Cache Blocking Technique ... 7-26
Shared-Memory Optimization... 7-26

Minimize Sharing of Data between Physical Processors.. 7-26
Eliminate 64-K-Aliased Data Accesses .. 7-27
Preventing Excessive Evictions in First-Level Data Cache .. 7-28

Per-thread Stack Offset .. 7-29
Per-instance Stack Offset ... 7-31

Front-end Optimization.. 7-33
Avoid Excessive Loop Unrolling ... 7-33
Optimization for Code Size... 7-33
x

Contents
Execution Resource Optimization... 7-34
Optimization Priorities .. 7-35
Managing Heavily-Used Execution Resources .. 7-37

Appendix A Application Performance Tools
Intel® Compilers ... A-2

Code Optimization Options ... A-3
Targeting a Processor (-Gn) .. A-3
Automatic Processor Dispatch Support (-Qx[extensions] and -Qax[extensions])...... A-4

Vectorizer Switch Options ... A-5
Prefetching... A-5
Loop Unrolling.. A-5
Multithreading with OpenMP.. A-5

Inline Expansion of Library Functions (-Oi, -Oi-) ... A-6
Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div, -Qpc,

-Qlong_double)... A-6
Rounding Control Option (-Qrcd) .. A-6
Interprocedural and Profile-Guided Optimizations .. A-6

Interprocedural Optimization (IPO).. A-6
Profile-Guided Optimization (PGO) ... A-7

Intel® VTune™ Performance Analyzer... A-8
Sampling ... A-8

Time-based Sampling.. A-8
Event-based Sampling... A-9

Call Graph ... A-10
Counter Monitor... A-11
Intel® Tuning Assistant .. A-11

Intel Performance Libraries.. A-12
Benefits Summary ... A-13
 Libraries Architecture ... A-13
Optimizations with the Intel Performance Libraries ... A-14

Enhanced Debugger (EDB) ... A-15
Intel® Threading Tools.. A-15

Intel Thread Checker... A-15
Thread Profiler... A-16

Intel® Software College.. A-16
xi

IA-32 Intel® Architecture Optimization
Appendix B Intel Pentium 4 Processor Performance Metrics
Pentium 4 Processor-Specific Terminology.. B-1

Bogus, Non-bogus, Retire ... B-1
Bus Ratio... B-2
Replay ... B-2
Assist ... B-3
Tagging.. B-3

Counting Clocks... B-3
Non-Halted Clockticks ... B-5
Non-Sleep Clockticks .. B-5
Time Stamp Counter.. B-7

Microarchitecture Notes ... B-7
Trace Cache Events .. B-7
Bus and Memory Metrics... B-8

Reads due to program loads ... B-10
Reads due to program writes (RFOs).. B-10
Writebacks (dirty evictions).. B-10

Usage Notes for Specific Metrics .. B-11
Usage Notes on Bus Activities .. B-13

Metrics Descriptions and Categories ... B-14
Performance Metrics and Tagging Mechanisms .. B-45

Tags for replay_event .. B-45
Tags for front_end_event... B-46
Tags for execution_event .. B-47

Using Performance Metrics with Hyper-Threading Technology ... B-49

Appendix C IA-32 Instruction Latency and Throughput
Overview .. C-1
Definitions .. C-3
Latency and Throughput .. C-4

 Latency and Throughput with Register Operands.. C-5
Table Footnotes ... C-16

Latency and Throughput with Memory Operands ... C-18
xii

Contents
Appendix D Stack Alignment
Stack Frames ... D-1

Aligned esp-Based Stack Frames ... D-4
Aligned ebp-Based Stack Frames ... D-6
Stack Frame Optimizations.. D-9

Inlined Assembly and ebx .. D-10

Appendix E Mathematics of Prefetch Scheduling Distance
Simplified Equation .. E-1
Mathematical Model for PSD ... E-2

No Preloading or Prefetch ... E-6
Compute Bound (Case:Tc >= Tl + Tb) ... E-7
Compute Bound (Case: Tl + Tb > Tc > Tb) ... E-8
Memory Throughput Bound (Case: Tb >= Tc) ... E-9
Example .. E-11

Index
xiii

IA-32 Intel® Architecture Optimization
xiv

Examples
Example 2-1 Assembly Code with an Unpredictable Branch ..2-15
Example 2-2 Code Optimization to Eliminate Branches..2-15
Example 2-3 Eliminating Branch with CMOV Instruction ..2-16
Example 2-4 Use of pause Instruction...2-17
Example 2-5 Pentium 4 Processor Static Branch Prediction Algorithm2-18
Example 2-6 Static Taken Prediction Example..2-19
Example 2-7 Static Not-Taken Prediction Example...2-19
Example 2-8 Indirect Branch With Two Favored Targets ..2-24
Example 2-9 A Peeling Technique to Reduce Indirect Branch Misprediction....................2-25
Example 2-10 Loop Unrolling ..2-27
Example 2-11 Code That Causes Cache Line Split ..2-30
Example 2-12 Several Situations of Small Loads After Large Store...................................2-34
Example 2-13 A Non-forwarding Example of Large Load After Small Store.......................2-35
Example 2-14 A Non-forwarding Situation in Compiler Generated Code2-35
Example 2-15 Two Examples to Avoid the Non-forwarding Situation in

Example 2-14...2-36
Example 2-16 Large and Small Load Stalls ..2-37
Example 2-17 An Example of Loop-carried Dependence Chain...2-38
Example 2-18 Rearranging a Data Structure ..2-39
Example 2-19 Decomposing an Array...2-40
Example 2-20 Dynamic Stack Alignment ..2-43
Example 2-21 Non-temporal stores and 64-byte bus write transactions.............................2-52
Example 2-22 Non-temporal stores and partial bus write transactions2-52
Example 2-23 Algorithm to Avoid Changing the Rounding Mode2-63
Example 2-24 Dependencies Caused by Referencing Partial Registers2-73
Example 2-25 Recombining LOAD/OP Code into REG,MEM Form2-80
Example 2-26 Spill Scheduling Example Code...2-81
Example 3-1 Identification of MMX Technology with cpuid ...3-3
Example 3-2 Identification of SSE with cpuid..3-4
Example 3-3 Identification of SSE by the OS..3-4
Example 3-4 Identification of SSE2 with cpuid..3-5
Example 3-5 Identification of SSE2 by the OS..3-6
Example 3-6 Simple Four-Iteration Loop...3-12
Example 3-7 Streaming SIMD Extensions Using Inlined Assembly Encoding..................3-13
xv

IA-32 Intel® Architecture Optimization
Example 3-8 Simple Four-Iteration Loop Coded with Intrinsics ..3-14
Example 3-9 C++ Code Using the Vector Classes..3-16
Example 3-10 Automatic Vectorization for a Simple Loop ..3-17
Example 3-11 C Algorithm for 64-bit Data Alignment..3-21
Example 3-12 AoS Data Structure ..3-25
Example 3-13 SoA Data Structure ..3-26
Example 3-14 AoS and SoA Code Samples ...3-27
Example 3-15 Hybrid SoA data structure ..3-29
Example 3-16 Pseudo-code Before Strip Mining ..3-31
Example 3-17 Strip Mined Code ...3-32
Example 3-18 Loop Blocking...3-33
Example 3-19 Emulation of Conditional Moves...3-36
Example 4-1 Resetting the Register between __m64 and FP Data Types4-5
Example 4-2 Unsigned Unpack Instructions ...4-7
Example 4-3 Signed Unpack Code ...4-8
Example 4-4 Interleaved Pack with Saturation..4-10
Example 4-5 Interleaved Pack without Saturation... 4-11
Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way4-13
Example 4-7 pextrw Instruction Code ...4-14
Example 4-8 pinsrw Instruction Code..4-15
Example 4-9 Repeated pinsrw Instruction Code...4-16
Example 4-10 pmovmskb Instruction Code...4-17
Example 4-11 Broadcast Using 2 Instructions ..4-19
Example 4-12 pshuf Instruction Code ...4-19
Example 4-13 Swap Using 3 Instructions..4-20
Example 4-14 Reverse Using 3 Instructions ...4-20
Example 4-15 Generating Constants ..4-22
Example 4-16 Absolute Difference of Two Unsigned Numbers ..4-23
Example 4-17 Absolute Difference of Signed Numbers ..4-25
Example 4-18 Computing Absolute Value...4-26
Example 4-19 Clipping to a Signed Range of Words [high, low]...4-27
Example 4-20 Simplified Clipping to an Arbitrary Signed Range ..4-28
Example 4-21 Clipping to an Arbitrary Signed Range [high, low]..4-28
Example 4-22 Clipping to an Arbitrary Unsigned Range [high, low]....................................4-29
Example 4-23 Complex Multiply by a Constant...4-32
Example 4-24 A Large Load after a Series of Small Stores (Penalty)4-35
Example 4-25 Accessing Data without Delay..4-35
Example 4-26 A Series of Small Loads after a Large Store..4-36
Example 4-27 Eliminating Delay for a Series of Small Loads after a Large Store4-36
Example 5-1 Pseudocode for Horizontal (xyz, AoS) Computation......................................5-7
Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation5-8
Example 5-3 Swizzling Data..5-9
Example 5-4 Swizzling Data Using Intrinsics .. 5-11
xvi

Examples
Example 5-5 Deswizzling Single-Precision SIMD Data...5-13
Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions5-15
Example 5-7 Deswizzling Data 64-bit Integer SIMD Data...5-16
Example 5-8 Using MMX Technology Code for Copying or Shuffling5-17
Example 5-9 Horizontal Add Using movhlps/movlhps...5-19
Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps5-20
Example 6-1 Pseudo-code for Using cflush ..6-19
Example 6-2 Prefetch Scheduling Distance ..6-25
Example 6-3 Using Prefetch Concatenation ...6-26
Example 6-4 Concatenation and Unrolling the Last Iteration of Inner Loop......................6-27
Example 6-5 Spread Prefetch Instructions..6-32
Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining.......................6-36
Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining............................6-37
Example 6-8 Basic Algorithm of a Simple Memory Copy..6-44
Example 6-9 An Optimized 8-byte Memory Copy ...6-47
Example 7-1 Spin-wait Loop and PAUSE Instructions ..7-15
Example 7-2 Coding Pitfall using Spin Wait Loop ...7-20
Example 7-3 Placement of Synchronization and RegularVariables7-22
Example 7-4 Adding an Offset to the Stack Pointer of Three Threads7-30
Example 7-5 Adding an Offset to the Stack Pointer of Three Threads7-31
Example 7-6 Adding a Pseudo-random Offset to the Stack Pointer in the Entry

Function ...7-33
Example D-1 Aligned esp-Based Stack Frames... D-5
Example D-2 Aligned ebp-based Stack Frames ... D-7
Example E-1 Calculating Insertion for Scheduling Distance of 3.. E-3
xvii

IA-32 Intel® Architecture Optimization
xviii

Figures
Figure 1-1 Typical SIMD Operations ...1-3
Figure 1-2 SIMD Instruction Register Usage...1-4
Figure 1-3 The Intel NetBurst Microarchitecture..1-9
Figure 1-4 Execution Units and Ports in the Out-Of-Order Core1-20
Figure 1-5 The Intel Pentium M processor Microarchitecture..1-26
Figure 1-6 Hyper-Threading Technology on an SMP ..1-31
Figure 2-1 Cache Line Split in Accessing Elements in a Array2-30
Figure 2-2 Size and Alignment Restrictions in Store Forwarding2-33
Figure 3-1 Converting to Streaming SIMD Extensions Chart ..3-7
Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance

Trade-offs ... 3-11
Figure 3-3 Loop Blocking Access Pattern ...3-35
Figure 4-1 Interleaved Pack with Saturation..4-9
Figure 4-2 PACKSSDW mm, mm/mm64 Instruction Example ..4-9
Figure 4-3 Result of Non-Interleaved Unpack High in MM1..4-12
Figure 4-4 Result of Non-Interleaved Unpack Low in MM0...4-12
Figure 4-5 pextrw Instruction ...4-14
Figure 4-6 pinsrw Instruction ...4-15
Figure 4-7 pmovmskb Instruction Example ...4-17
Figure 4-8 pshuf Instruction Example..4-18
Figure 4-9 PSADBW Instruction Example ...4-31
Figure 5-1 Dot Product Operation ...5-7
Figure 5-2 Horizontal Add Using movhlps/movlhps...5-18
Figure 6-1 Memory Access Latency and Execution With Prefetch................................6-22
Figure 6-2 Memory Access Latency and Execution Without Prefetch...........................6-22
Figure 6-3 Prefetch and Loop Unrolling...6-28
Figure 6-4 Memory Access Latency and Execution With Prefetch................................6-30
Figure 6-5 Cache Blocking – Temporally Adjacent and Non-adjacent Passes..............6-34
Figure 6-6 Examples of Prefetch and Strip-mining for Temporally Adjacent

and Non-Adjacent Passes Loops...6-35
Figure 6-7 Incorporating Prefetch into Strip-mining Code ...6-38
Figure 6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines......................................6-40
Figure 7-1 Amdahl’s Law and MP Speed-up...7-3
Figure A-1 Sampling Analysis of Hotspots by Location .. A-10
xix

IA-32 Intel® Architecture Optimization
Figure B-1 Relationships Between the Cache Hierarchy, IOQ, BSQ and Front
Side Bus.. B-9

Figure D-1 Stack Frames Based on Alignment Type .. D-3
Figure E-1 Pentium II, Pentium III and Pentium 4 Processors Memory

Pipeline Sketch ... E-4
Figure E-2 Execution Pipeline, No Preloading or Prefetch ... E-6
Figure E-3 Compute Bound Execution Pipeline.. E-7
Figure E-4 Another Compute Bound Execution Pipeline .. E-8
Figure E-5 Memory Throughput Bound Pipeline... E-10
Figure E-6 Accesses per Iteration, Example 1...E-11
Figure E-7 Accesses per Iteration, Example 2.. E-12
xx

Tables
Table 1-1 Pentium 4 and Intel Xeon Processor Cache Parameters.............................1-21
Table 1-2 The Pentium M Processor Cache Parameters...1-29
Table 2-1 Coding Pitfalls Affecting Performance..2-2
Table 5-1 SoA Form of Representing Vertices Data ..5-6
Table 6-1 Prefetch Implementation: Pentium III and Pentium 4 Processors..................6-9
Table B-1 Pentium 4 Processor Performance Metrics... B-17
Table B-2 Metrics That Utilize Replay Tagging Mechanism .. B-45
Table B-3 able 3 Metrics That Utilize the Front-end Tagging Mechanism B-46
Table B-4 Metrics That Utilize the Execution Tagging Mechanism.............................. B-48
Table B-5 Metrics That Support Qualification by Logical Processor and

Parallel Counting... B-50
Table B-6 Metrics That Are Independent of Logical Processors B-53
Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions C-6
Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point

Instructions.. C-9
Table C-3 Streaming SIMD Extension Single-precision Floating-point

Instructions.. C-10
Table C-4 Streaming SIMD Extension 64-bit Integer Instructions C-12
Table C-5 MMX Technology 64-bit Instructions ... C-13
Table C-6 IA-32 x87 Floating-point Instructions... C-14
Table C-7 IA-32 General Purpose Instructions .. C-16
xxi

IA-32 Intel® Architecture Optimization
xxii

Introduction
The IA-32 Intel® Architecture Optimization Reference Manual
describes how to optimize software to take advantage of the
performance characteristics of the current generation of IA-32 Intel
Architecture family of processors. The optimizations described in this
manual apply to IA-32 processors based on the Intel® NetBurst™
microarchitecture, the Intel® Pentium® M processor family and IA-32
processors that support Hyper-Threading Technology.

The target audience for this manual includes software programmers and
compiler writers. This manual assumes that the reader is familiar with
the basics of the IA-32 architecture and has access to the three-volume
set of manuals: Intel® Architecture Software Developer’s Manual:
Volume 1, Basic Architecture; Volume 2, Instruction Set Reference; and
Volume 3, System Programmer’s Guide.

When developing and optimizing software applications to achieve a
high level of performance when running on IA-32 processors, a detailed
understanding of IA-32 family of processors is often required. In many
cases, knowledge of new IA-32 microarchitectures is also required.

This manual provides an overview of the Intel NetBurst
microarchitecture and the Intel Pentium M processor microarchitecture.
It contains design guidelines for high-performance software
applications, coding rules, and techniques for many aspects of
code-tuning. These rules are useful to programmers and compiler
developers.
xxiii

IA-32 Intel® Architecture Optimization
The design guidelines that are discussed in this manual for developing
high-performance software apply to current as well as to future IA-32
processors.The coding rules and code optimization techniques listed
target the Intel NetBurst microarchitecture and the Pentium M
processor microarchitecture.

Tuning Your Application
Tuning an application for high performance on any IA-32 processor
requires understanding and basic skills in:

• the IA-32 architecture

• C and Assembly language

• the hot-spot regions in your application that have significant impact
on software performance

• the optimization capabilities of your compiler

• techniques to evaluate the application’s performance.

The Intel® VTune™ Performance Analyzer can help you analyze and
locate hot-spot regions in your applications. On the Pentium 4, Intel®
Xeon™ and Pentium M processors, this tool can monitor an application
through a selection of performance monitoring events and analyze the
performance event data that is gathered during code execution.

This manual also describes information that can be gathered using the
performance counters through Pentium 4 processor’s performance
monitoring events.

For VTune Performance Analyzer order information, see the web page:
http://developer.intel.com
xxiv

http://developer.intel.com
http://developer.intel.com

Introduction
About This Manual
In this document, the reference “Pentium 4 processor” refers to
processors based on the Intel NetBurst microarchitecture. Currently this
includes the Intel Pentium 4 processor and Intel Xeon processor. Where
appropriate, differences between Pentium 4 processor and Intel Xeon
processor are noted.

The manual consists of the following parts:

Introduction. Defines the purpose and outlines the contents of this
manual.

Chapter 1: IA-32 Intel® Architecture Processor Family Overview.
Describes the features relevant to software optimization of the current
generation of IA-32 Intel Architecture processors, including the
architectural extensions to the IA-32 architecture and an overview of the
Intel NetBurst microarchitecture, Pentium M processor
microarchitecture and Hyper-Threading Technology.

Chapter 2: General Optimization Guidelines. Describes general code
development and optimization techniques that apply to all applications
designed to take advantage of the common features of the Intel NetBurst
microarchitecture and Pentium M processor microarchitecture.

Chapter 3: Coding for SIMD Architectures. Describes techniques
and concepts for using the SIMD integer and SIMD floating-point
instructions provided by the MMX™ technology, Streaming SIMD
Extensions, and Streaming SIMD Extensions 2.

Chapter 4: Optimizing for SIMD Integer Applications. Provides
optimization suggestions and common building blocks for applications
that use the 64-bit and 128-bit SIMD integer instructions.

Chapter 5: Optimizing for SIMD Floating-point Applications.
Provides optimization suggestions and common building blocks for
applications that use the single-precision and double-precision SIMD
floating-point instructions.
xxv

IA-32 Intel® Architecture Optimization
Chapter 6—Optimizing Cache Usage. Describes how to use the
prefetch instruction and cache control management instructions to
optimize cache usage.

Chapter 7—Multiprocessor and Hyper-Threading Technology.
Describes guidelines and techniques to optimize multithreaded
applications to achieve optimal performance scaling when running on
multiprocessor (MP) systems or MP systems using IA-32 processors
with Hyper-Threading Technology.

Appendix A—Application Performance Tools. Introduces tools for
analyzing and enhancing application performance without having to
write assembly code.

Appendix B—Intel Pentium 4 Processor Performance Metrics.
Provides information that can be gathered using Pentium 4 processor’s
performance monitoring events. These performance metrics can help
programmers determine how effectively an application is using the
features of the Intel NetBurst microarchitecture.

Appendix C—IA-32 Instruction Latency and Throughput. Provides
latency and throughput data for the IA-32 instructions. Instruction
timing data specific to the Pentium 4 and Pentium M processors are
provided.

Appendix D—Stack Alignment. Describes stack alignment
conventions and techniques to optimize performance of accessing
stack-based data.

Appendix E—The Mathematics of Prefetch Scheduling Distance.
Discusses the optimum spacing to insert prefetch instructions and
presents a mathematical model for determining the prefetch scheduling
distance (PSD) for your application.
xxvi

Introduction
Related Documentation
For more information on the Intel architecture, specific techniques, and
processor architecture terminology referenced in this manual, see the
following documents:

• Intel® C++ Compiler User’s Guide

• Intel® Fortran Compiler User’s Guide

• VTune Performance Analyzer online help

• Intel® Architecture Software Developer’s Manual:

— Volume 1: Basic Architecture, doc. number 245470

— Volume 2: Instruction Set Reference Manual, doc. number
245471

— Volume 3: System Programmer’s Guide, doc. number 245472

• Intel Processor Identification with the CPUID Instruction, doc.
number 241618.

Also, refer to the following Application Notes:

• Adjusting Thread Stack Address To Improve Performance On Intel
Xeon MP Hyper-Threading Technology Enabled Processors

• Detecting Hyper-Threading Technology Enabled Processors

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon
Processor MP

In addition, refer to publications in the following web sites:

• http://developer.intel.com/technology/hyperthread

• http://cedar.intel.com/cgi-bin/ids.dll/topic.jsp?catCode=CDN
xxvii

IA-32 Intel® Architecture Optimization
Notational Conventions
This manual uses the following conventions:

This type style Indicates an element of syntax, a reserved
word, a keyword, a filename, instruction,
computer output, or part of a program
example. The text appears in lowercase
unless uppercase is significant.

THIS TYPE STYLE Indicates a value, for example, TRUE, CONST1,
or a variable, for example, A, B, or register
names MMO through MM7.

l indicates lowercase letter L in examples. 1
is the number 1 in examples. O is the
uppercase O in examples. 0 is the number 0 in
examples.

This type style Indicates a placeholder for an identifier, an
expression, a string, a symbol, or a value.
Substitute one of these items for the
placeholder.

... (ellipses) Indicate that a few lines of the code are
omitted.

This type style Indicates a hypertext link.
xxviii

1
IA-32 Intel® Architecture
Processor Family Overview
This chapter gives an overview of the key features relevant to software
optimization of the current generation of IA-32 processors, including
Intel® Pentium® 4, Intel® Xeon™ processors, and Intel® Pentium® M
processors. This overview provides the background for understanding
the coding recommendations described in detail in later chapters.

The key features of the current generation of IA-32 processors that enable
high performance are:

• SIMD instruction extensions including MMX™ technology,
Streaming SIMD Extensions (SSE), and Streaming SIMD
Extensions 2 (SSE2)

• Microarchitectures that enable executing instructions with high
throughput at high clock rates, a high speed cache hierarchy and the
ability to fetch data with high speed system bus

• Intel® processors supporting Hyper-Threading (HT) Technology1

Intel Pentium 4 processors and Intel Xeon processors are based on
Intel® NetBurst™ microarchitecture. The Intel Pentium M processor
microarchitecture balances performance and low power consumption.

1. Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4
processor an Intel® Xeon™ processor supporting HT Technology and an HT Technology
enabled chipset, BIOS and operating system. Performance will vary depending on the
specific hardware and software you use.
See http://www.intel.com/technology/hyperthread/index.htm for more information. See
also “Detecting Support for Hyper-Threading Technology Enabled Processors” application
note for how to identify the presence of HT Technology.
1-1

IA-32 Intel® Architecture Optimization
SIMD Technology
One way to increase processor performance is to execute several
computations in parallel. An good way to achieve this type of parallel
execution is to use a single-instruction, multiple-data (SIMD)
computation technique.

SIMD computations (see Figure 1-1) were introduced in the IA-32
architecture with MMX technology. MMX technology allows SIMD
computations to be performed on packed byte, word, and doubleword
integers. The integers are contained in a set of eight 64-bit registers
called MMX registers (see Figure 1-2).

The Pentium III processor extended the SIMD computation model with
the introduction of the Streaming SIMD Extensions (SSE). SSE allows
SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can
be in memory or in a set of eight 128-bit registers called the XMM
registers (see Figure 1-2). SSE also extended SIMD computational
capability by adding additional 64-bit MMX instructions.

Figure 1-1 shows a typical SIMD computation. Two sets of four packed
data elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are
operated on in parallel, with the same operation being performed on
each corresponding pair of data elements (X1 and Y1, X2 and Y2, X3
and Y3, and X4 and Y4). The results of the four parallel computations
are sorted as a set of four packed data elements.
1-2

IA-32 Intel® Architecture Processor Family Overview 1
The Pentium 4 processor further extended the SIMD computation model
with the introduction of Streaming SIMD Extensions 2 (SSE2). SSE2
works with operands in either memory or in the XMM registers. The
technology extends SIMD computations to process packed
double-precision floating-point data elements and 128-bit packed
integers. There are 144 instructions in SSE2 that operate on two packed
double-precision floating-point data elements; or on 16 packed byte, 8
packed word, 4 doubleword, and 2 quadword integers.

The full set of IA-32 SIMD technologies (MMX technology, SSE, and
SSE2) give the programmer the ability to develop algorithms that
combine operations on packed 64-bit and 128-bit integers and on single
and double-precision floating-point operands.

Figure 1-1 Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148
1-3

IA-32 Intel® Architecture Optimization
SIMD improves the performance of 3D graphics, speech recognition,
image processing, scientific applications and applications that have the
following characteristics:

• inherently parallel

• recurring memory access patterns

• localized recurring operations performed on the data

• data-independent control flow

SIMD floating-point instructions fully support the IEEE Standard 754
for Binary Floating-Point Arithmetic. They are accessible from all
IA-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions in the
IA-32 Intel® architecture. Existing software will continue to run
correctly, without modification on IA-32 microprocessors that
incorporate these technologies. Existing software will also run correctly
in the presence of applications that incorporate SIMD technologies.

Figure 1-2 SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149
1-4

IA-32 Intel® Architecture Processor Family Overview 1
SSE and SSE2 instructions also introduced cacheability and memory
ordering instructions that can improve cache usage and application
performance.

For more a more detailed introduction to SSE, SSE2 and MMX
technologies, see also:

IA-32 Intel Architecture Software Developer’s Manual, Vol. 1: Basic
Architecture. Chapter 9: Programming with the Intel MMX
Technology, Chapter 10: Programming with the Streaming SIMD
Extensions (SSE), Chapter 11: Programming With the Streaming
SIMD Extensions 2 (SSE2).

Summary of SIMD Technologies

These sections summarize the features of MMX technology, SSE, and
SSE2.

MMX™ Technology

MMX Technology introduced:

• 64-bit MMX registers

• support for SIMD operations on packed byte, word, and doubleword
integers

MMX instructions are useful for multimedia and communications
software.

Streaming SIMD Extensions

SIMD extensions introduced:

• 128-bit XMM registers

• 128-bit data type with four packed single-precision floating-point
operands

• data prefetch instructions
1-5

IA-32 Intel® Architecture Optimization
• non-temporal store instructions and other cacheability and memory
ordering instructions

• extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech
recognition, and video encoding and decoding.

Streaming SIMD Extensions 2

SIMD extensions add the following:

• 128-bit data type with two packed double-precision floating-point
operands

• 128-bit data types for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers

• support for SIMD arithmetic on 64-bit integer operands

• instructions for converting between new and existing data types

• extended support for data shuffling

• extended support for cacheability and memory ordering operations

SSE2 instructions are useful for 3D graphics, video decoding/encoding,
and encryption.

Intel® NetBurst™ Microarchitecture
The Pentium 4 processor and the Intel Xeon processor implement the
Intel NetBurst microarchitecture. This section describes the features of
the Intel NetBurst microarchitecture and its operation on the Pentium 4
and Intel Xeon processors. It provides the technical background
required to understand optimization recommendations the coding rules
discussed in the rest of this manual. For implementation details,
including instruction latencies, see “IA-32 Instruction Latency and
Throughput” in Appendix C.
1-6

IA-32 Intel® Architecture Processor Family Overview 1
Intel NetBurst microarchitecture is designed to achieve high
performance for both integer and floating-point computations at high
clock rates. It supports the following features:

• hyper-pipelined technology that enables high clock rates and
frequency headroom up to 10 GHz

• a high-performance, quad-pumped bus interface to the Intel
NetBurst microarchitecture system bus

• a rapid execution engine to reduce the latency of basic integer
instructions

• out-of-order speculative execution to enable parallelism

• superscalar issue to enable parallelism

• hardware register renaming to avoid register name space limitations

• cache line sizes of 64 bytes

• hardware prefetch

Design Goals of Intel NetBurst Microarchitecture

The design goals of Intel NetBurst microarchitecture are:

• to execute both legacy IA-32 applications and applications based on
single-instruction, multiple-data (SIMD) technology at high
throughput

• to operate at high clock rates and to scale to higher performance and
clock rates in the future

Design advances of the Intel NetBurst microarchitecture include:

• A deeply pipelined design that allows high clock rates with different
parts of the chip running at different clock rates, some faster and
some slower than the nominally-quoted clock frequency of the
processor.
1-7

IA-32 Intel® Architecture Optimization
• A pipeline that optimizes for the common case of frequently
executed instructions. This means that the most frequently-executed
instructions in common circumstances (such as a cache hit) are
decoded efficiently and executed with short latencies.

• Employment of techniques to hide stall penalties. Among these are
parallel execution, buffering, and speculation. The
microarchitecture executes instructions dynamically and
out-of-order, so the time it takes to execute each individual
instruction is not always deterministic.

Chapter 2 recommends optimizations to use and situations to avoid. The
chapter also gives a sense of relative priority. It does not absolutely
quantify expected benefits and penalties (this is not possible to do this
with an architecture of this complexity).

The following sections provide more information about key features of
the Intel NetBurst microarchitecture.

Overview of the Intel NetBurst Microarchitecture Pipeline

The pipeline of the Intel NetBurst microarchitecture contains the:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

The front end supplies instructions in program order to the out-of-order
core. It fetches and decodes IA-32 instructions. The decoded IA-32
instructions are translated into micro-operations (µops). The front end’s
primary job is to feed a continuous stream of µops to the execution core
in original program order.

The out-of-order core aggressively reorders µops so that µops whose
inputs are ready (and have execution resources available) can execute as
soon as possible. The core can issue multiple µops per cycle.
1-8

IA-32 Intel® Architecture Processor Family Overview 1
The retirement section ensures that the results of execution are
processed according to original program order and that the proper
architectural states are updated.

Figure 1-3 illustrates a diagram of the major functional blocks
associated with the Intel NetBurst microarchitecture pipeline. The
following subsections provide an overview for each.

Figure 1-3 The Intel NetBurst Microarchitecture

O M 15150

Bus U nit

3rd Level C ache
O ptional, Server P roduct O nly

Fetch /D ecode

2nd Level C ache
8-way

T race C ache
M icrocode RO M

Execution
Out-Of-Order Core

System Bus

BT Bs/Branch Predic tion
Branch H is tory U pdate

Front End

1st Level Cache
4-way

Frequently used paths

Less frequently used paths

R etirem ent
1-9

IA-32 Intel® Architecture Optimization
The Front End

The front end of the Intel NetBurst microarchitecture consists of two
parts:

• fetch/decode unit

• execution trace cache

It performs the following functions:

• prefetches IA-32 instructions that are likely to be executed

• fetches required instructions that have not been prefetched

• decodes instructions into µops

• generates microcode for complex instructions and special-purpose
code

• delivers decoded instructions from the execution trace cache

• predicts branches using advanced algorithms

The front end is designed to address common problems in high-speed,
pipelined microprocessors. Two problems that are sources of delays are:

• the time required to decode instructions fetched from the target

• wasted decode bandwidth due to branches or a branch target in the
middle of a cache line

The execution trace cache addresses these problems by prefetching and
storing decoded IA-32 instructions. Instructions are fetched and
decoded by a translation engine. The translation engine then builds
decoded instructions into µops sequences called traces. Traces are then
stored in the execution trace cache.

The execution trace cache stores µops in the path of program execution
flow, where the results of branches in the code are integrated into the
same cache line. This increases the instruction flow from the cache and
makes better use of the overall cache storage space since the cache no
longer stores instructions that are branched over and never executed.

The trace cache can deliver up to 3 µops per clock to the core.
1-10

IA-32 Intel® Architecture Processor Family Overview 1
The execution trace cache and the translation engine have cooperating
branch prediction hardware. Branch targets are predicted based on their
linear address using branch prediction logic and fetched as soon as
possible. Branch targets are fetched from the execution trace cache if
they are cached, otherwise they are fetched from the memory hierarchy.
The translation engine’s branch prediction information is used to form
traces along the most likely paths.

The Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in
enabling parallelism. This feature enables the processor to reorder
instructions so that if one µop is delayed while waiting for data or a
contended resource, other µops that appear later in the program order
may proceed. This implies that when one portion of the pipeline
experiences a delay, the delay may be covered by other operations
executing in parallel or by the execution of µops queued up in a buffer.
The delays described in this chapter must be understood in this context.

The core is designed to facilitate parallel execution. It can dispatch up to
six µops per cycle through the issue ports (Figure 1-4, page 1-18). Note
that six µops per cycle exceeds the trace cache and retirement µop
bandwidth. The higher bandwidth in the core allows for peak bursts of
greater than three µops and to achieve higher issue rates by allowing
greater flexibility in issuing µops to different execution ports.

Most core execution units can start executing a new µop every cycle, so
several instructions can be in flight at one time in each pipeline. A
number of arithmetic logical unit (ALU) instructions can start at two per
cycle; many floating-point instructions start one every two cycles.
Finally, µops can begin execution out of program order, as soon as their
data inputs are ready and resources are available.
1-11

IA-32 Intel® Architecture Optimization
Retirement

The retirement section receives the results of the executed µops from the
execution core and processes the results so that the architectural state is
updated according to the original program order. For semantically
correct execution, the results of IA-32 instructions must be committed
in original program order before they are retired. Exceptions may be
raised as instructions are retired. For this reason, exceptions cannot
occur speculatively.

When a µop completes and writes its result to the destination, it is
retired. Up to three µops may be retired per cycle. The reorder buffer
(ROB) is the unit in the processor which buffers completed µops,
updates the architectural state and manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated
branch target information to the branch target buffer (BTB). This
updates branch history. Figure 1-3 illustrates the paths that are most
frequently executing inside the Intel NetBurst microarchitecture: an
execution loop that interacts with multilevel cache hierarchy and the
system bus.

The following sections describe in more detail the operation of the front
end and the execution core. This information provides the background
for using the optimization techniques and instruction latency data
documented in this manual.

 Front End Pipeline Detail

The following information about the front end operation is be useful for
tuning software with respect to prefetching, branch prediction, and
execution trace cache operations.
1-12

IA-32 Intel® Architecture Processor Family Overview 1
Prefetching

The Intel NetBurst microarchitecture supports three prefetching
mechanisms:

• The first mechanism is a hardware instruction fetcher that
automatically prefetches instructions.

• The second is a hardware mechanism that automatically fetches data
and instructions into the unified second-level cache.

• The third mechanism fetches data only and includes two distinct
components: (1) a hardware mechanism to fetch the adjacent cache
line within an 128-byte sector that contains the data needed due to a
cache line miss, this is also referred to as adjacent cache line
prefetch (2) a software controlled mechanism that fetches data into
the caches using the prefetch instructions.

The hardware instruction fetcher reads instructions along the path
predicted by the branch target buffer (BTB) into instruction streaming
buffers. Data is read in 32-byte chunks starting at the target address. The
second and third mechanisms are described later.

Decoder

The front end of the Intel NetBurst microarchitecture has a single
decoder that decodes instructions at the maximum rate of one
instruction per clock. Some complex instructions must enlist the help of
the microcode ROM. The decoder operation is connected to the
execution trace cache.

Execution Trace Cache

The execution trace cache (TC) is the primary instruction cache in the
Intel NetBurst microarchitecture. The TC stores decoded IA-32
instructions (µops).
1-13

IA-32 Intel® Architecture Optimization
In the Pentium 4 processor implementation, TC can hold up to 12K
µops and can deliver up to three µops per cycle. TC does not hold all of
the µops that need to be executed in the execution core. In some
situations, the execution core may need to execute a microcode flow
instead of the µop traces that are stored in the trace cache.

The Pentium 4 processor is optimized so that most frequently-executed
IA-32 instructions come from the trace cache while only a few
instructions involve the microcode ROM.

Branch Prediction

Branch prediction is important to the performance of a deeply pipelined
processor. It enables the processor to begin executing instructions long
before the branch outcome is certain. Branch delay is the penalty that is
incurred in the absence of correct prediction. For Pentium 4 and Intel
Xeon processors, the branch delay for a correctly predicted instruction
can be as few as zero clock cycles. The branch delay for a mispredicted
branch can be many cycles, usually equivalent to the pipeline depth.

Branch prediction in the Intel NetBurst microarchitecture predicts all
near branches (conditional calls, unconditional calls, returns and
indirect branches). It does not predict far transfers (far calls, irets and
software interrupts).

Mechanisms have been implemented to aid in predicting branches
accurately and to reduce the cost of taken branches. These include:

• the ability to dynamically predict the direction and target of
branches based on an instruction’s linear address, using the branch
target buffer (BTB)

• if no dynamic prediction is available or if it is invalid, the ability to
statically predict the outcome based on the offset of the target: a
backward branch is predicted to be taken, a forward branch is
predicted to be not taken

• the ability to predict return addresses using the 16-entry return
address stack
1-14

IA-32 Intel® Architecture Processor Family Overview 1
• the ability to build a trace of instructions across predicted taken
branches to avoid branch penalties.

The Static Predictor. Once a branch instruction is decoded, the
direction of the branch (forward or backward) is known. If there was no
valid entry in the BTB for the branch, the static predictor makes a
prediction based on the direction of the branch. The static prediction
mechanism predicts backward conditional branches (those with
negative displacement, such as loop-closing branches) as taken.
Forward branches are predicted not taken.

To take advantage of the forward-not-taken and backward-taken static
predictions, code should be arranged so that the likely target of the
branch immediately follows forward branches (see also “Branch
Prediction” in Chapter 2).

Branch Target Buffer. Once branch history is available, the Pentium 4
processor can predict the branch outcome even before the branch
instruction is decoded. The processor uses a branch history table and a
branch target buffer (collectively called the BTB) to predict the
direction and target of branches based on an instruction’s linear address.
Once the branch is retired, the BTB is updated with the target address.

Return Stack. Returns are always taken; but since a procedure may be
invoked from several call sites, a single predicted target does not suffice.
The Pentium 4 processor has a Return Stack that can predict return
addresses for a series of procedure calls. This increases the benefit of
unrolling loops containing function calls. It also mitigates the need to
put certain procedures inline since the return penalty portion of the
procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly
predicted, a taken branch may reduce available parallelism in a typical
processor (since the decode bandwidth is wasted for instructions which
immediately follow the branch and precede the target, if the branch does
not end the line and target does not begin the line). The branch predictor
allows a branch and its target to coexist in a single trace cache line,
maximizing instruction delivery from the front end.
1-15

IA-32 Intel® Architecture Optimization
Execution Core Detail

The execution core is designed to optimize overall performance by
handling common cases most efficiently. The hardware is designed to
execute frequent operations in a common context as fast as possible, at
the expense of infrequent operations using rare contexts.

Some parts of the core may speculate that a common condition holds to
allow faster execution. If it does not, the machine may stall. An example
of this pertains to store-to-load forwarding (see “Store Forwarding” in
this chapter). If a load is predicted to be dependent on a store, it gets its
data from that store and tentatively proceeds. If the load turned out not
to depend on the store, the load is delayed until the real data has been
loaded from memory, then it proceeds.

Instruction Latency and Throughput

The superscalar out-of-order core contains hardware resources that can
execute multiple µops in parallel. The core’s ability to make use of
available parallelism of execution units can enhanced by software’s
ability to:

• select IA-32 instructions that can be decoded in less than 4 µops
and/or have short latencies

• order IA-32 instructions to preserve available parallelism by
minimizing long dependence chains and covering long instruction
latencies

• order instructions so that their operands are ready and their
corresponding issue ports and execution units are free when they
reach the scheduler

This subsection describes port restrictions, result latencies, and issue
latencies (also referred to as throughput). These concepts form the basis
to assist software for ordering instructions to increase parallelism. The
order that µops are presented to the core of the processor is further
affected by the machine’s scheduling resources.
1-16

IA-32 Intel® Architecture Processor Family Overview 1
It is the execution core that reacts to an ever-changing machine state,
reordering µops for faster execution or delaying them because of
dependence and resource constraints. The ordering of instructions in
software is more of a suggestion to the hardware.

“IA-32 Instruction Latency and Throughput” in Appendix C, lists the
IA-32 instructions with their latency, their issue throughput, and
associated execution units (where relevant). Some execution units are
not pipelined (meaning that µops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle). The number of
µops associated with each instruction provides a basis for selecting
instructions to generate. All µops executed out of the microcode ROM
involve extra overhead.

Execution Units and Issue Ports

At each cycle, the core may dispatch µops to one or more of four issue
ports. At the micro-architecture level, store operations are further
divided into two parts: store data and store address operations. The four
ports through which µops are dispatched to execution units and to load
and store operations are shown in Figure 1-4. Some ports can dispatch
two µops per clock. Those execution units are marked Double Speed.

Port 0. In the first half of the cycle, port 0 can dispatch either one
floating-point move µop (a floating-point stack move, floating-point
exchange or floating-point store data), or one arithmetic logical unit
(ALU) µop (arithmetic, logic or store data). In the second half of the
cycle, it can dispatch one similar ALU µop.

Port 1. In the first half of the cycle, port 1 can dispatch either one
floating-point execution (all floating-point operations except moves, all
SIMD operations) µop or one normal-speed integer (multiply, shift and
rotate) µop or one ALU (arithmetic, logic or branch) µop. In the second
half of the cycle, it can dispatch one similar ALU µop.

Port 2. This port supports the dispatch of one load operation per cycle.

Port 3. This port supports the dispatch of one store address operation
per cycle.
1-17

IA-32 Intel® Architecture Optimization
The total issue bandwidth can range from zero to six µops per cycle.
Each pipeline contains several execution units. The µops are dispatched
to the pipeline that corresponds to the correct type of operation. For
example, an integer arithmetic logic unit and the floating-point
execution units (adder, multiplier, and divider) can share a pipeline.

Caches

The Intel NetBurst microarchitecture supports up to three levels of
on-chip cache. Two levels of on-chip cache are actually implemented in
the Pentium 4 processor.

Figure 1-4 Execution Units and Ports in the Out-Of-Order Core

OM15151

ALU 0
Double
Speed

Port 0

ADD/SUB
Logic

Store Data
Branches

FP Move
FP Store Data

FXCH

ALU 1
Double
Speed

ADD/SUB Shift/Rotate

FP
Execute

FP_ADD
FP_MUL
FP_DIV

FP_MISC
MMX_SHFT
MMX_ALU

MMX_MISC

Port 1

M em ory
Store

M em ory
Load

All Loads
Prefetch

Port 2 Port 3

S tore
Address

FP
M ove

Integer
Operation

Norm al
Speed

Note:
FP_ADD refers to x87 FP , and SIMD FP add and subtract operations
FP_MUL refers to x87 FP , and SIMD FP m ultiply operations
FP_DIV refers to x87 FP, and SIMD FP divide and square root operations
MMX_ALU refers to S IMD integer arithm etic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles S IMD reciprocal and som e integer operations
1-18

IA-32 Intel® Architecture Processor Family Overview 1
The first level cache (nearest to the execution core) contains separate
caches for instructions and data. These include the first-level data cache
and the trace cache (an advanced first-level instruction cache). All other
caches are shared between instructions and data.

Levels in the cache hierarchy are not inclusive. The fact that a line is in
level i does not imply that it is also in level i+1. All caches use a
pseudo-LRU (least recently used) replacement algorithm.

Table 1-1 provides parameters for all cache levels.

1 Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; write operation is 64 bytes only.
2 Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level cache of 512 KB.

On processors without a third level cache, the second-level cache miss
initiates a transaction across the system bus interface to the memory
sub-system. On processors with a third level cache, the third-level cache
miss initiates a transaction across the system bus. A bus write
transaction writes 64 bytes to cacheable memory, or separate 8-byte
chunks if the destination is not cacheable. A bus read transaction from
cacheable memory fetches two cache lines of data.

The system bus interface supports using a scalable bus clock and
achieves an effective speed that quadruples the speed of the scalable bus
clock. It takes on the order of 12 processor cycles to get to the bus and
back within the processor, and 6-12 bus cycles to access memory if
there is no bus congestion. Each bus cycle equals several processor

Table 1-1 Pentium 4 and Intel Xeon Processor Cache Parameters

Level Capacity

Associa-
tivity
(ways)

Line Size
(bytes)

Access Latency,
Integer/floating-p
oint (clocks)

Write Update
Policy

First 8 KB 4 64 2/9 write through

TC 12K µops 8 N/A N/A N/A

Second 256 KB or
512 KB2

8 641 7/7 write back

Third 0, 512 KB,
or 1 MB

8 641 14/14 write back
1-19

IA-32 Intel® Architecture Optimization
cycles. The ratio of processor clock speed to the scalable bus clock
speed is referred to as bus ratio. For example, one bus cycle for a 100
MHz bus is equal to 15 processor cycles on a 1.50 GHz processor. Since
the speed of the bus is implementation-dependent, consult the
specifications of a given system for further details.

Data Prefetch

The Pentium 4 processor has two mechanisms for prefetching data: a
software controlled prefetch and an automatic hardware prefetch.

Software controlled prefetch is enabled using the four prefetch
instructions (PREFETCHh) introduced with SSE. The
software-controlled prefetch is not intended for prefetching code. Using
it can incur significant penalties on a multiprocessor system if code is
shared.

Software controlled data prefetch can provide benefits in selected
situations. These situations include:

• when the pattern of memory access operations in software allows
the programmer to hide memory latency

• when a reasonable choice can be made about how many cache lines
to fetch ahead of the line being execute

• when an choice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache
levels updated and the processor implementation. For instance, a
processor may implement the non-temporal prefetch by returning data
to the cache level closest to the processor core. This approach has the
following effect:

• minimizes disturbance of temporal data in other cache levels

• avoids the need to access off-chip caches, which can increase the
realized bandwidth compared to a normal load-miss, which returns
data to all cache levels
1-20

IA-32 Intel® Architecture Processor Family Overview 1
Situations that are less likely to benefit from software controlled data
prefetch are:

• for cases that are already bandwidth bound, prefetching tends to
increase bandwidth demands

• prefetching far ahead can cause eviction of cached data from the
caches prior to the data being used in execution

• not prefetching far enough can reduce the ability to overlap memory
and execution latencies

Software prefetches consume resources in the processor and the use of
too many prefetches can limit their effectiveness. Examples of this
include prefetching data in a loop for a reference outside the loop and
prefetching in a basic block that is frequently executed, but which
seldom precedes the reference for which the prefetch is targeted.

See also: Chapter 6, “Optimizing Cache Usage”.

Automatic hardware prefetch is a feature in the Pentium 4 processor.
It brings cache lines into the unified second-level cache based on prior
reference patterns. See also: Chapter 6, “Optimizing Cache Usage”.

Pros and Cons of Software and Hardware Prefetching. Software
prefetching has the following characteristics:

• handles irregular access patterns, which would not trigger the
hardware prefetcher

• handles prefetching of short arrays and avoids hardware prefetching
start-up delay before initiating the fetches

• must be added to new code; so it does not benefit existing
applications

Hardware prefetching for Pentium 4 processor has the following
characteristics:

• works with existing applications

• does not require extensive study of prefetch instructions

• requires regular access patterns
1-21

IA-32 Intel® Architecture Optimization
• avoids instruction and issue port bandwidth overhead

• has a start-up penalty before the hardware prefetcher triggers and
begins initiating fetches

The hardware prefetcher can handle multiple streams in either the
forward or backward directions. The start-up delay and fetch-ahead has
a larger effect for short arrays when hardware prefetching generates a
request for data beyond the end of an array (not actually utilized). The
hardware penalty diminishes if it is amortized over longer arrays.

Loads and Stores

The Pentium 4 processor employs the following techniques to speed up
the execution of memory operations:

• speculative execution of loads

• reordering of loads with respect to loads and stores

• multiple outstanding misses

• buffering of writes

• forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue
bandwidth and buffer resources provided by the processor. Up to one
load and one store may be issued for each cycle from a memory port
reservation station. In order to be dispatched to a reservation station,
there must be a buffer entry available for each memory operation. There
are 48 load buffers and 24 store buffers. These buffers hold the µop and
address information until the operation is completed, retired, and
deallocated.

The Pentium 4 processor is designed to enable the execution of memory
operations out of order with respect to other instructions and with
respect to each other. Loads can be carried out speculatively, that is,
before all preceding branches are resolved. However, speculative loads
cannot cause page faults.
1-22

IA-32 Intel® Architecture Processor Family Overview 1
Reordering loads with respect to each other can prevent a load miss
from stalling later loads. Reordering loads with respect to other loads
and stores to different addresses can enable more parallelism, allowing
the machine to execute operations as soon as their inputs are ready.
Writes to memory are always carried out in program order to maintain
program correctness.

A cache miss for a load does not prevent other loads from issuing and
completing. The Pentium 4 processor supports up to four outstanding
load misses that can be serviced either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to
continue executing instructions without having to wait until a write to
memory and/or cache is complete. Writes are generally not on the
critical path for dependence chains, so it is often beneficial to delay
writes for more efficient use of memory-access bus cycles.

Store Forwarding

Loads can be moved before stores that occurred earlier in the program if
they are not predicted to load from the same linear address. If they do
read from the same linear address, they have to wait for the store data to
become available. However, with store forwarding, they do not have to
wait for the store to write to the memory hierarchy and retire. The data
from the store can be forwarded directly to the load, as long as the
following conditions are met:

• Sequence: the data to be forwarded to the load has been generated
by a programmatically-earlier store which has already executed

• Size: the bytes loaded must be a subset of (including a proper
subset, that is, the same) bytes stored

• Alignment: the store cannot wrap around a cache line boundary, and
the linear address of the load must be the same as that of the store
1-23

IA-32 Intel® Architecture Optimization
Intel® Pentium® M Processor Microarchitecture
Like the Intel NetBurst microarchitecture, the pipeline of the Intel
Pentium M processor microarchitecture contains three sections:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed
system bus with 64-byte line size. Most coding recommendations that
apply to the Intel NetBurst microarchitecture also apply to the Intel
Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower
power consumption. There are other specific areas of the Pentium M
processor microarchitecture that differ from the Intel NetBurst
microarchitecture. They are described next. A block diagram of the Intel
Pentium M processor is shown in Figure 1-5.
1-24

IA-32 Intel® Architecture Processor Family Overview 1
Figure 1-5 The Intel Pentium M Processor Microarchitecture

Bus Unit

System Bus
Frequently used paths

Less frequently used
paths

1st Level
Instruction

Cache
Fetch/Decode Execution

Out-Of-Order Core
Retirement

1st Level Data
Cache

2nd Level Cache

BTBs/Branch Prediction

Front End

Branch History Update
1-25

IA-32 Intel® Architecture Optimization
The Front End

The Intel Pentium M processor uses a pipeline depth that enables high
performance and low power consumption. It’s shorter than that of the
Intel NetBurst microarchitecture.

The Intel Pentium M processor front end consists of two parts:

• fetch/decode unit

• instruction cache

The fetch and decode unit includes a hardware instruction prefetcher
and three decoders that enable parallelism. It also provides a 32KB
instruction cache that stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from
memory if the target instructions are not already in the instruction cache.
The prefetcher is designed to fetch efficiently from an aligned 16-byte
block. If the modulo 16 remainder of a branch target address is 14, only
two useful instruction bytes are fetched in the first cycle. The rest of the
instruction bytes are fetched in subsequent cycles.

The three decoders decode IA-32 instructions and break them down into
micro-ops (µops). In each clock cycle, the first decoder is capable of
decoding an instruction with four or fewer µops. The remaining two
decoders each decode a one µop instruction in each clock cycle.

The front end can issue multiple µops per cycle, in original program
order, to the out-of-order core.

The Intel Pentium M processor incorporates sophisticated branch
prediction hardware to support the out-of-order core. The branch
prediction hardware includes dynamic prediction, and branch target
buffers.

The Intel Pentium M processor has enhanced dynamic branch prediction
hardware. Branch target buffers (BTB) predict the direction and target
of branches based on an instruction’s address.
1-26

IA-32 Intel® Architecture Processor Family Overview 1
The Pentium M Processor includes two techniques to reduce the
execution time of certain operations:

• ESP Folding. This eliminates the ESP manipulation
micro-operations in stack-related instructions such as PUSH, POP,
CALL and RET. It increases decode rename and retirement
throughput. ESP folding also increases execution bandwidth by
eliminating µops which would have required execution resources.

• Micro-ops (µops) fusion. Some of the most frequent pairs of µops
derived from the same instruction can be fused into a single µops.
The following categories of fused µops have been implemented in
the Pentium M processor:

— “Store address” and “store data” micro-ops are fused into a
single “Store” micro-op. This holds for all types of store
operations, including integer, floating-point, MMX technology,
and Streaming SIMD Extensions (SSE and SSE2) operations.

— A load micro-op in most cases can be fused with a successive
execution micro-op.This holds for integer, floating-point and
MMX technology loads and for most kinds of successive
execution operations. Note that SSE Loads can not be fused.

Data Prefetching

The Intel Pentium M processor supports three prefetching mechanisms:

• The first mechanism is a hardware instruction fetcher and is
described in the previous section.

• The second mechanism automatically fetches data into the
second-level cache.

• The third mechanism is a software-controlled mechanism that
fetches data into the caches using the prefetch instructions.

Data is fetched 64 bytes at a time; the instruction and data translation
lookaside buffers support 128 entries. See Table 1-2 for processor cache
parameters.
1-27

IA-32 Intel® Architecture Optimization
Out-of-Order Core

The processor core dynamically executes µops independent of program
order. The core is designed to facilitate parallel execution by employing
many buffers, issue ports, and parallel execution units.

The out-of-order core buffers µops in a Reservation Station (RS) until
their operands are ready and resources are available. Each cycle, the
core may dispatch up to five µops through the issue ports.

In-Order Retirement

The retirement unit in the Pentium M processor buffers completed µops
is the reorder buffer (ROB). The ROB updates the architectural state in
order. Up to three µops may be retired per cycle.

Hyper-Threading Technology
Intel Hyper-Threading (HT) Technology is supported in the Intel Xeon
processor family and Intel Pentium 4 processor with Hyper-Threading
Technology. The technology enables software to take advantage of
task-level, or thread-level parallelism by providing multiple logical
processors within a physical processor package. In its first
implementation in Intel Xeon processor, Hyper-Threading Technology
makes a single physical processor appear as two logical processors.

Table 1-2 The Pentium M Processor Cache Parameters

Level Capacity
Associativity
(ways)

Line
Size
(bytes)

Access
Latency
(clocks)

Write Update
Policy

First 32 KB 8 64 3 Writeback

Instruction 32 KB 8 N/A N/A N/A

Second 1MB 8 64 9 Writeback
1-28

IA-32 Intel® Architecture Processor Family Overview 1
The two logical processors each have a complete set of architectural
registers while sharing one single physical processor’s resources. By
maintaining the architecture state of two processors, an HT Technology
capable processor looks like two processors to software, including
operating system and application code.

By sharing resources needed for peak demands between two logical
processors, HT Technology is well suited for multiprocessor systems to
provide an additional performance boost in throughput when compared
to traditional MP systems.

Figure 1-6 shows a typical bus-based symmetric multiprocessor (SMP)
based on processors with HT Technology. Each logical processor can
execute a software thread, allowing a maximum of two software threads
to execute simultaneously on one physical processor. The two software
threads execute simultaneously, meaning that in the same clock cycle an
“add” operation from logical processor 0 and another “add” operation
and load from logical processor 1 can be executed simultaneously by the
execution engine.

In the first implementation of HT Technology, the physical execution
resources are shared and the architecture state is duplicated for each
logical processor. This minimizes the die area cost of implementing HT
Technology while still achieving performance gains for multithreaded
applications or multitasking workloads.

1-29

IA-32 Intel® Architecture Optimization
The performance potential due to HT Technology is due to:

• the fact that operating systems and user programs can schedule
processes or threads to execute simultaneously on the logical
processors in each physical processor

• the ability to use on-chip execution resources at a higher level than
when only a single thread is consuming the execution resources;
higher level of resource utilization can lead to higher system
throughput

Processor Resources and Hyper-Threading Technology

The majority of microarchitecture resources in a physical processor are
shared between the logical processors. Only a few small data structures
were replicated for each logical processor. This section describes how
resources are shared, partitioned or replicated.

Figure 1-6 Hyper-Threading Technology on an SMP

OM15152

Bus Interface

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

System Bus

Execution Engine

Architectural
State

Architectural
State

Local APIC Local APIC

Bus Interface
1-30

IA-32 Intel® Architecture Processor Family Overview 1
Replicated Resources

The architectural state is replicated for each logical processor. The
architecture state consists of registers that are used by the operating
system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose
registers, the control registers, machine state registers, debug registers,
and others. There are a few exceptions, most notably the memory type
range registers (MTRRs) and the performance monitoring resources.
For a complete list of the architecture state and exceptions, see the IA-32
Intel Architecture System Programming Guide.

Other resources such as instruction pointers and register renaming tables
were replicated to simultaneously track execution and state changes of
the two logical processors. The return stack predictor is replicated to
improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction
streaming buffers) were replicated to reduce complexity.

Partitioned Resources

Several buffers are shared by limiting the use of each logical processor
to half the entries. These are referred to as partitioned resources.
Reasons for this partitioning include:

• operational fairness

• permitting the ability to allow operations from one logical processor
to bypass operations of the other logical processor that may have
stalled

For example: a cache miss, a branch misprediction, or instruction
dependencies may prevent a logical processor from making forward
progress for some number of cycles. The partitioning prevents the
stalled logical processor from blocking forward progress.
1-31

IA-32 Intel® Architecture Optimization
In general, the buffers for staging instructions between major pipe
stages are partitioned. These buffers include µop queues after the
execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and
store buffers.

In the case of load and store buffers, partitioning also provided an easier
implementation to maintain memory ordering for each logical processor
and detect memory ordering violations.

Shared Resources

Most resources in a physical processor are fully shared to improve the
dynamic utilization of the resource, including caches and all the
execution units. Some shared resources which are linearly addressed,
like the DTLB, include a logical processor ID bit to distinguish whether
the entry belongs to one logical processor or the other.

The other resources are fully shared.

Microarchitecture Pipeline and Hyper-Threading Technology

This section describes the HT Technology microarchitecture and how
instructions from the two logical processors are handled between the
front end and the back end of the pipeline.

Although instructions originating from two programs or two threads
execute simultaneously and not necessarily in program order in the
execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the
two logical processors. All selection points alternate between the two
logical processors unless one logical processor cannot make use of a
pipeline stage. In this case, the other logical processor has full use of
every cycle of the pipeline stage. Reasons why a logical processor may
not use a pipeline stage include cache misses, branch mispredictions,
and instruction dependencies.
1-32

IA-32 Intel® Architecture Processor Family Overview 1
 Front End Pipeline

The execution trace cache is shared between two logical processors.
Execution trace cache access is arbitrated by the two logical processors
every clock. If a cache line is fetched for one logical processor in one
clock cycle, the next clock cycle a line would be fetched for the other
logical processor provided that both logical processors are requesting
access to the trace cache.

If one logical processor is stalled or is unable to use the execution trace
cache, the other logical processor can use the full bandwidth of the trace
cache until the initial logical processor’s instruction fetches return from
the L2 cache.

After fetching the instructions and building traces of µops, the µops are
placed in a queue. This queue decouples the execution trace cache from
the register rename pipeline stage. As described earlier, if both logical
processors are active, the queue is partitioned so that both logical
processors can make independent forward progress.

Execution Core

The core can dispatch up to six µops per cycle, provided the µops are
ready to execute. Once the µops are placed in the queues waiting for
execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also
oblivious to which instructions belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The
re-order buffer decouples the execution stage from the retirement stage.
The re-order buffer is partitioned such that each uses half the entries.

Retirement

The retirement logic tracks when instructions from the two logical
processors are ready to be retired. It retires the instruction in program
order for each logical processor by alternating between the two logical
1-33

IA-32 Intel® Architecture Optimization
processors. If one logical processor is not ready to retire any
instructions, then all retirement bandwidth is dedicated to the other
logical processor.

Once stores have retired, the processor needs to write the store data into
the level-one data cache. Selection logic alternates between the two
logical processors to commit store data to the cache.
1-34

2
General Optimization
Guidelines
This chapter discusses general optimization techniques that can improve
the performance of applications running on the Intel Pentium 4, Intel
Xeon and Pentium M processors. These techniques take advantage of
the features of the current generation of IA-32 processor family
described in Chapter 1.

This chapter explains the optimization techniques both for those who
use the Intel® C++ or Fortran Compiler and for those who use other
compilers. The Intel® compiler, which generates code specifically tuned
for IA-32 processor family, provides the most of the optimization. For
those not using the Intel C++ or Fortran Compiler, the assembly code
tuning optimizations may be useful. The explanations are supported by
coding examples.

Tuning to Achieve Optimum Performance
The most important factors in achieving optimum processor
performance are:

• good branch prediction

• avoiding memory access stalls

• good floating-point performance

• instruction selection, including use of SIMD instructions

• instruction scheduling (to maximize trace cache bandwidth)

• vectorization
2-1

IA-32 Intel® Architecture Optimization
The following sections describe practices, tools, coding rules and
recommendations associated with these factors that will aid in
optimizing the performance on IA-32 processors.

Tuning to Prevent Known Coding Pitfalls
To produce program code that takes advantage of the Intel NetBurst
microarchitecture and the Pentium M processor microarchitecture, you
must avoid the coding pitfalls that limit the performance of the target
processor family. This section lists several known pitfalls that can limit
performance of Pentium 4 and Intel Xeon processor implementations.
Some of these pitfalls, to a lesser degree, also negatively impact
Pentium M processor performance (store-to-load-forwarding
restrictions, cache-line splits).

Table 2-1 lists coding pitfalls that cause performance degradation in
some Pentium 4 and Intel Xeon processor implementations. For every
issue, Table 2-1 references a section in this document. The section
describes in detail the causes of the penalty and presents a
recommended solution. Note that “aligned” here means that the address
of the load is aligned with respect to the address of the store.

Table 2-1 Coding Pitfalls Affecting Performance

Factors Affecting
Performance Symptom

Example
(if applicable) Section Reference

Small, unaligned load
after large store

Store-forwarding
blocked

Example 2-12 Store Forwarding,
Store-to-Load-Forwar
ding Restriction on
Size and Alignment

Large load after small
store;

Load dword after store
dword, store byte;

Load dword, AND with
0xff after store byte

Store-forwarding
blocked

Example 2-13,
Example 2-14

Store Forwarding,
Store-to-Load-Forwar
ding Restriction on
Size and Alignment

continued
2-2

General Optimization Guidelines 2
* Streaming SIMD Extensions (SSE)

** Streaming SIMD Extensions 2 (SSE2)

General Practices and Coding Guidelines
This section discusses guidelines derived from the performance factors
listed in the “Tuning to Achieve Optimum Performance” section. It also
highlights practices that use performance tools.

The majority of these guidelines benefit processors based on the Intel
NetBurst microarchitecture and the Pentium M processor
microarchitecture. Some guidelines benefit one microarchitecture more
than the other. As a whole, these coding rules enable software to be
optimized for the common performance features of the Intel NetBurst
microarchitecture and the Pentium M processor microarchitecture.

The coding practices recommended under each heading and the bullets
under each heading are listed in order of importance.

Cache line splits Access across
cache line
boundary

Example 2-11 Align data on natural
operand size address
boundaries. If the
data will be accesses
with vector instruction
loads and stores,
align the data on 16
byte boundaries.

Denormal inputs and
outputs

Slows x87, SSE*,
SSE2** floating-

point operations

Floating-point
Exceptions

Cycling more than 2
values of Floating-point
Control Word

fldcw not
optimized

Floating-point Modes

Table 2-1 Coding Pitfalls Affecting Performance (continued)

Factors Affecting
Performance Symptom

Example
(if applicable) Section Reference
2-3

IA-32 Intel® Architecture Optimization
Use Available Performance Tools

• Current-generation compiler, such as the Intel C++ Compiler:

— Set this compiler to produce code for the target processor
implementation

— Use the compiler switches for optimization and/or
profile-guided optimization. These features are summarized in
the “Intel® C++ Compiler” section. For more detail, see the
Intel C++ Compiler User’s Guide.

• Current-generation performance monitoring tools, such as VTune™
Performance Analyzer:

— Identify performance issues, use event-based sampling, code
coach and other analysis resource

— Characterize the performance gain.

Optimize Performance Across Processor Generations

• Use a cpuid dispatch strategy to deliver optimum performance for
all processor generations.

• Use compatible code strategy to deliver optimum performance for
the current generation of IA-32 processor family and future IA-32
processors.

Optimize Branch Predictability

• Improve branch predictability and optimize instruction prefetching
by arranging code to be consistent with the static branch prediction
assumption: backward taken and forward not taken.

• Avoid mixing near calls, far calls and returns.

• Avoid implementing a call by pushing the return address and
jumping to the target. The hardware can pair up call and return
instructions to enhance predictability.

• Use the pause instruction in spin-wait loops.
2-4

General Optimization Guidelines 2
• Inline functions according to coding recommendations.

• Whenever possible, eliminate branches.

• Avoid indirect calls.

Optimize Memory Access

• Observe store-forwarding constraints.

• Ensure proper data alignment to prevent data split across cache line.
boundary. This includes stack and passing parameters.

• Avoid mixing code and data (self-modifying code).

• Choose data types carefully (see next bullet below) and avoid type
casting.

• Employ data structure layout optimization to ensure efficient use of
64-byte cache line size.

• Use prefetching appropriately.

• Minimize use of global variables and pointers.

• Use the const modifier; use the static modifier for global
variables.

• Use the following techniques to enhance locality: blocking, loop
interchange, loop skewing.

• Use new cacheability instructions and memory-ordering behavior.

Optimize Floating-point Performance

• Avoid exceeding representable ranges during computation, since
handling these cases can have a performance impact. Do not use a
larger precision format (double-extended floating point) unless
required, since this increases memory size and bandwidth
utilization.

• Use the optimized fldcw when possible; avoid changing
floating-point control/status registers (rounding modes) between
more than two values.
2-5

IA-32 Intel® Architecture Optimization
• Use efficient conversions, such as those that implicitly include a
rounding mode, in order to avoid changing control/status registers.

• Take advantage of the SIMD capabilities of Streaming SIMD
Extensions (SSE) and of Streaming SIMD Extensions 2 (SSE2)
instructions. Enable flush-to-zero mode and DAZ mode when using
SSE and SSE2 instructions.

• Avoid denormalized input values, denormalized output values, and
explicit constants that could cause denormal exceptions.

• Avoid excessive use of the fxch instruction.

Optimize Instruction Selection

• Avoid longer latency instructions: shifts, integer multiplies and
divides. Replace them with alternate code sequences (e.g. adds
instead of shifts, and shifts instead of multiplies).

• Use the lea instruction and the full range of addressing modes to do
address calculation.

• Some types of stores use more µops than others, try to use simpler
store variants and/or reduce the number of stores.

• Avoid use of complex instructions that require more than 4 µops.

• Avoid instructions that unnecessarily introduce dependence-related
stalls: inc and dec instructions, partial register operations (8/16-bit
operands).

• Avoid use of ah, bh, and other higher 8-bits of the 16-bit registers,
because accessing them requires a shift operation internally.

• Use xor and pxor instructions to clear registers and break
dependencies.

• Use efficient approaches for performing comparisons.
2-6

General Optimization Guidelines 2
Optimize Instruction Scheduling

• Consider latencies and resource constraints.

• Calculate store addresses as early as possible.

• Arrange load operations and store operations using the same address
such that the load does not follow the store immediately, especially
if the store depends on a long-latency operation.

Enable Vectorization

• Use the smallest possible data type. This enables more parallelism
with the use of a longer vector.

• Arrange the nesting of loops so the innermost nesting level is free of
inter-iteration dependencies. It is especially important to avoid the
case where the store of data in an earlier iteration happens lexically
after the load of that data in a future iteration (called
lexically-backward dependence).

• Avoid the use of conditionals.

• Keep induction (loop) variable expressions simple.

• Avoid using pointers, try to replace pointers with arrays and indices.

Coding Rules, Suggestions and Tuning Hints
This chapter includes rules, suggestions and hints. They are maintained
in separately-numbered lists and are targeted for engineers who are:

• modifying the source to enhance performance (user/source rules)

• writing assembly or compilers (assembly/compiler rules)

• doing detailed performance tuning (tuning suggestions)

Coding recommendations are ranked in importance using two measures:

• Local impact (referred to as “impact”) is the difference that a
recommendation makes to performance for a given instance, with
the impact’s priority marked as: H = high, M = medium, L = low.
2-7

IA-32 Intel® Architecture Optimization
• Generality measures how frequently such instances occur across all
application domains, with the frequency marked as: H = high,
M = medium, L = low.

These rules are very approximate. They can vary depending on coding
style, application domain, and other factors. The purpose of including
high, medium and low priorities with each recommendation is to
provide some hints as to the degree of performance gain that one can
expect if a recommendation is implemented.

Because it is not possible to predict the frequency of occurrence of a
code instance in applications, priority hints cannot be directly correlated
to application-level performance gain. However, in important cases
where application-level performance gain has been observed, a more
quantitative characterization of application-level performance gain is
provided for information only (see: “Store-to-Load-Forwarding
Restriction on Size and Alignment” and “Instruction Selection” in this
document). In places where no priority is assigned, the impact has been
deemed inapplicable.

Performance Tools
Intel offers several tools that can facilitate optimizing your application’s
performance.

Intel® C++ Compiler

Use the Intel C++ Compiler following the recommendations described
here. The Intel Compiler’s advanced optimization features provide good
performance without the need to hand-tune assembly code. However,
the following features may enhance performance even further:

• Inlined assembly
2-8

General Optimization Guidelines 2
• Intrinsics, which have a one-to-one correspondence with assembly
language instructions but allow the compiler to perform register
allocation and instruction scheduling. Refer to the “Intel C++
Intrinsics Reference” section of the Intel C++ Compiler User’s
Guide.

• C++ class libraries. Refer to the “Intel C++ Class Libraries for
SIMD Operations Reference” section of the Intel C++ Compiler
User’s Guide.

• Vectorization in conjunction with compiler directives (pragmas).
Refer to the “Compiler Vectorization Support and Guidelines”
section of the Intel C++ Compiler User’s Guide.

The Intel C++ Compiler can generate an executable which uses features
such as Streaming SIMD Extensions 2. The executable will maximize
performance on the current generation of IA-32 processor family (for
example, a Pentium 4 processor) and still execute correctly on older
processors. Refer to the “Processor Dispatch Support” section in the
Intel C++ Compiler User’s Guide.

General Compiler Recommendations

A compiler that has been extensively tuned for the target
microarchitecture can be expected to match or outperform hand-coding
in a general case. However, if particular performance problems are
noted with the compiled code, some compilers (like the Intel C++ and
Fortran Compilers) allow the coder to insert intrinsics or inline
assembly in order to exert greater control over what code is generated. If
inline assembly is used, the user should verify that the code generated to
integrate the inline assembly is of good quality and yields good overall
performance.

Default compiler switches are targeted for the common case. An
optimization may be made to the compiler default if it is beneficial for
most programs. If a performance problem is root-caused to a poor
choice on the part of the compiler, using different switches or compiling
the targeted module with a different compiler may be the solution.
2-9

IA-32 Intel® Architecture Optimization
VTune™ Performance Analyzer

Where performance is a critical concern, use performance monitoring
hardware and software tools to tune your application and its interaction
with the hardware. IA-32 processors have counters which can be used to
monitor a large number of performance-related events for each
microarchitecture. The counters also provide information that helps
resolve the coding pitfalls.

The VTune Performance Analyzer uses these counters to provide with
two kinds of feedback:

• indication of a performance improvement gained by using a specific
coding recommendation or microarchitectural feature

• information on whether a change in the program has improved or
degraded performance with respect to a particular metric

Note that improving performance in one part of the machine does not
necessarily bring significant gains to overall performance. It is possible
to degrade overall performance by improving performance for some
particular metric.

Where appropriate, coding recommendations in this chapter include
descriptions of the VTune analyzer events that provide measurable data
of performance gain achieved by following recommendations. Refer to
the VTune analyzer online help for instructions on how to use the tool.

The VTune analyzer events include a number of Pentium 4 processor
performance metrics described in Appendix B, “Intel Pentium 4
Processor Performance Metrics”.

Processor Perspectives
The majority of the coding recommendations for the Pentium 4 and
Intel Xeon processors also apply to Pentium M processors. However,
2-10

General Optimization Guidelines 2
there are situations where a recommendation may benefit one
microarchitecture more than the other. The most important of these are:

• Instruction decode throughput is important for the Pentium M
processor but less important for the Pentium 4 and Intel Xeon
processors. Generating code with the 4-1-1 template (instruction
with four µops followed by two instructions with one µop each)
helps the Pentium M processor. The practice has no real impact on
processors based on the Intel NetBurst microarchitecture.

• Dependencies for partial register writes incur large penalties when
using the Pentium M processor. On Pentium 4 and Intel Xeon
processors, such penalties are resolved by artificial dependencies
between each partial register write. To avoid false dependences
from partial register updates, use full register updates and extended
moves.

• On Pentium 4 and Intel Xeon processors, some latencies have
increased: shifts, rotates, integer multiplies, and moves from
memory with sign extension are longer than before. Use care when
using the lea instruction. See the section “Use of the lea
Instruction” for recommendations.

• The inc and dec instructions should always be avoided. Using add
and sub instructions instead avoids data dependence and improves
performance.

• Dependence-breaking support is added for the pxor instruction.

• Floating point register stack exchange instructions were free; now
they are slightly more expensive due to issue restrictions.

• Writes and reads to the same location should now be spaced apart.
This is especially true for writes that depend on long-latency
instructions.

• Hardware prefetching may shorten the effective memory latency for
data and instruction accesses.

• Cacheability instructions are available to streamline stores and
manage cache utilization.
2-11

IA-32 Intel® Architecture Optimization
• Cache lines are 64 bytes (see Table 1-1 and Table 1-2). Because of
this, software prefetching should be done less often. False sharing,
however, can be an issue.

• On the Pentium 4 and Intel Xeon processors, the primary code size
limit of interest is imposed by the trace cache. On Pentium M
processors, code size limit is governed by the instruction cache.

• There may be a penalty when instructions with immediates
requiring more than 16-bit signed representation are placed next to
other instructions that use immediates.

Note that memory-related optimization techniques for alignments,
complying with store-to-load-forwarding restrictions and avoiding data
splits help Pentium 4 processors as well as Pentium M processors.

CPUID Dispatch Strategy and Compatible Code Strategy

Where optimum performance on all processor generations is desired,
applications can take advantage of cpuid to identify the processor
generation and integrate processor-specific instructions (such as SSE2
instructions) into the source code. The Intel C++ Compiler supports the
integration of different versions of the code for different target
processors. The selection of which code to execute at runtime is made
based on the CPU identifier that is read with cpuid. Binary code
targeted for different processor generations can be generated under the
control of the programmer or by the compiler.

For applications run on both the Intel Pentium 4 and Pentium M
processors, and where minimum binary code size and single code path
is important, a compatible code strategy is the best. Optimizing
applications for the Intel NetBurst microarchitecture is likely to improve
code efficiency and scalability when running on processors based on
current and future generations of IA-32 processors. This approach to
optimization is also likely to deliver high performance on Pentium M
processors.
2-12

General Optimization Guidelines 2
Branch Prediction
Branch optimizations have a significant impact on performance. By
understanding the flow of branches and improving the predictability of
branches, you can increase the speed of code significantly.

Optimizations that help branch prediction are:

• Keep code and data on separate pages (a very important item, see
more details in the “Memory Accesses” section).

• Whenever possible, eliminate branches.

• Arrange code to be consistent with the static branch prediction
algorithm.

• If it is not possible to arrange code, use branch direction hints where
appropriate.

• Use the pause instruction in spin-wait loops.

• Inline functions and pair up calls and returns.

• Unroll as necessary so that repeatedly-executed loops have sixteen
or fewer iterations, unless this causes an excessive code size
increase.

• Separate branches so that they occur no more frequently than every
three µops where possible.

Eliminating Branches

Eliminating branches improves performance because it:

• reduces the possibility of mispredictions

• reduces the number of required branch target buffer (BTB) entries;
conditional branches, which are never taken, do not consume BTB
resources

There are four principal ways of eliminating branches:

• arrange code to make basic blocks contiguous

• unroll loops, as discussed in the “Loop Unrolling” section
2-13

IA-32 Intel® Architecture Optimization
• use the cmov instruction

• use the setcc instruction

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange
code to make basic blocks contiguous and eliminate unnecessary branches.

For the Pentium M processor, every branch counts, even correctly
predicted branches have a negative effect on the amount of useful code
delivered to the processor. Also, taken branches consume space in the
branch prediction structures and extra branches create pressure on the
capacity of the structures.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the
setcc and cmov instructions to eliminate unpredictable conditional branches
where possible. Do not do this for predictable branches. Do not use these
instructions to eliminate all unpredictable conditional branches, because using
these instructions will incur execution overhead due to executing both paths of
a conditional branch. In addition, converting conditional branches to cmovs
or setcc trades of control flow dependence for data dependence and restricts
the capability of the out of order engine. When tuning, note that all IA-32
based processors have very high branch prediction rates. Consistently
mispredicted are rare. Use these instructions only if the increase in
computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the
constants:

X = (A < B) ? CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is
true, X is set to CONST1; otherwise it is set to CONST2. An assembly code
sequence equivalent to the above C code can contain branches that are
not predictable if there are no correlation in the two values.
2-14

General Optimization Guidelines 2
Example 2-1 shows the assembly code with unpredictable branches.
The unpredictable branches in Example 2-1 can be removed with the
use of the setcc instruction. Example 2-2 shows an optimized code that
does not have branches.

See Example 2-2. The optimized code sets ebx to zero, then compares A
and B. If A is greater than or equal to B, ebx is set to one. Then ebx is
decreased and “and-ed” with the difference of the constant values. This
sets ebx to either zero or the difference of the values. By adding CONST2
back to ebx, the correct value is written to ebx. When CONST2 is equal to
zero, the last instruction can be deleted.

Another way to remove branches on Pentium II and subsequent
processors is to use the cmov and fcmov instructions. Example 2-3
shows changing a test and branch instruction sequence using cmov and

Example 2-1 Assembly Code with an Unpredictable Branch

cmp A, B ; condition
jge L30 ; conditional branch
mov ebx, CONST1 ; ebx holds X
jmp L31 ; unconditional branch

L30:
mov ebx, CONST2

L31:

Example 2-2 Code Optimization to Eliminate Branches

xor ebx, ebx ; clear ebx (X in the C code)

cmp A, B

setge bl ; When ebx = 0 or 1

 ; OR the complement condition

sub ebx, 1 ; ebx=11...11 or 00...00

and ebx, CONST3 ; CONST3 = CONST1-CONST2

add ebx, CONST2 ; ebx=CONST1 or CONST2
2-15

IA-32 Intel® Architecture Optimization
eliminating a branch. If the test sets the equal flag, the value in ebx
will be moved to eax. This branch is data-dependent, and is
representative of an unpredictable branch.

The cmov and fcmov instructions are available on the Pentium II and
subsequent processors, but not on Pentium processors and earlier 32-bit
Intel architecture processors. Be sure to check whether a processor
supports these instructions with the cpuid instruction.

Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new pause instruction; the
instruction is architecturally a nop on all IA-32 implementations. To the
Pentium 4 processor, this instruction acts as a hint that the code
sequence is a spin-wait loop. Without a pause instruction in such loops,
the Pentium 4 processor may suffer a severe penalty when exiting the
loop because the processor may detect a possible memory order
violation. Inserting the pause instruction significantly reduces the
likelihood of a memory order violation and as a result improves
performance.

Example 2-3 Eliminating Branch with CMOV Instruction

test ecx, ecx

jne 1h

mov eax, ebx

1h:

; To optimize code, combine jne and mov into one cmovcc
; instruction that checks the equal flag

test ecx, ecx ; test the flags
cmoveq eax, ebx ; if the equal flag is set, move

; ebx to eax - the lh: tag no longer
 ; needed
2-16

General Optimization Guidelines 2
In Example 2-4, the code spins until memory location A matches the
value stored in the register eax. Such code sequences are common when
protecting a critical section, in producer-consumer sequences, for
barriers, or other synchronization.

Static Prediction

Branches that do not have a history in the BTB (see the “Branch
Prediction” section) are predicted using a static prediction algorithm.
The Pentium 4, Pentium III and Pentium II processors have the static
prediction algorithm that follows:

• Predict unconditional branches to be taken.

• Predict backward conditional branches to be taken. This rule is
suitable for loops.

• Predict forward conditional branches to be NOT taken.

• Predict indirect branches to be NOT taken.

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code
to be consistent with the static branch prediction algorithm: make the
fall-through code following a conditional branch be the likely target for a
branch with a forward target, and make the fall-through code following a
conditional branch be the unlikely target for a branch with a backward target.

Example 2-4 Use of pause Instruction

lock: cmp eax, A

jne loop

; code in critical section:

loop: pause

cmp eax, A

jne loop

jmp lock
2-17

IA-32 Intel® Architecture Optimization
Pentium M processors do not predict conditional branches according to
the jump direction. All conditional branches are dynamically predicted,
even at their first appearance.

Example 2-5 illustrates the static branch prediction algorithm. The body
of an if-then conditional is predicted to be executed

Example 2-5 Pentium 4 Processor Static Branch Prediction Algorithm

forward conditional branches not taken (fall through)

If <condition> {
...

} Unconditional Branches taken
JMP

for <condition> {
...

}

Backward Conditional Branches are taken

loop {

} <condition>
2-18

General Optimization Guidelines 2
Examples 2-6, Example 2-7 provide basic rules for a static prediction
algorithm.

In Example 2-6, the backward branch (JC Begin) is not in the BTB the
first time through, therefore, the BTB does not issue a prediction. The
static predictor, however, will predict the branch to be taken, so a
misprediction will not occur.

The first branch instruction (JC Begin) in Example 2-7 segment is a
conditional forward branch. It is not in the BTB the first time through,
but the static predictor will predict the branch to fall through.

The static prediction algorithm correctly predicts that the Call
Convert instruction will be taken, even before the branch has any
branch history in the BTB.

Example 2-6 Static Taken Prediction Example

Begin: mov eax, mem32

and eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 2-7 Static Not-Taken Prediction Example

mov eax, mem32

and eax, ebx

imul eax, edx

shld eax, 7

jc Begin

mov eax, 0

Begin: call Convert
2-19

IA-32 Intel® Architecture Optimization
Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic
predictors to optimize specifically for calls and returns. It holds 16
entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns
in rapid succession, performance may be degraded.

The trace cache maintains branch prediction information for calls and
returns. As long as the trace with the call or return remains in the trace
cache and if the call and return targets remain unchanged, the depth
limit of the return address stack described above will not impede
performance.

To enable the use of the return stack mechanism, calls and returns must
be matched in pairs. If this is done, the likelihood of exceeding the
stack depth in a manner that will impact performance is very low.

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near
calls must be matched with near returns, and far calls must be matched with
far returns. Pushing the return address on the stack and jumping to the routine
to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:

• Parameter passing overhead can be eliminated.

• In a compiler, inlining a function exposes more opportunity for
optimization.

• If the inlined routine contains branches, the additional context of the
caller may improve branch prediction within the routine.

• A mispredicted branch can lead to larger performance penalties
inside a small function than if that function is inlined.

Assembly/Compiler Coding Rule 5. (MH impact, MH generality)
Selectively inline a function where doing so decreases code size or if the
function is small and the call site is frequently executed.
2-20

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 6. (H impact, M generality) Do not inline
a function if doing so increases the working set size beyond what will fit in the
trace cache.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If there
are more than 16 nested calls and returns in rapid succession; consider
transforming the program with inline to reduce the call depth.

Assembly/Compiler Coding Rule 8. (ML impact, ML generality) Favor
inlining small functions that contain branches with poor prediction rates. If a
branch misprediction results in a RETURN being prematurely predicted as
taken, a performance penalty may be incurred.

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last
statement in a function is a call to another function, consider converting the
call to a jump. This will save the call/ return overhead as well as an entry in the
return stack buffer.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put
more than four branches in a 16-byte chunk.

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not put
more than two end loop branches in a 16-byte chunk.

Branch Type Selection

Counting loops can have a test and conditional branch at the top of the
loop body or at the bottom.

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the
average number of total iterations is less than or equal to 100, use a forward
branch to exit the loop.

The default predicted target for indirect branches and calls is the
fall-through path. The fall-through prediction is overridden if and when
a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the
previously executed branch target.
2-21

IA-32 Intel® Architecture Optimization
The default prediction to the fall-through path is only a significant issue
if no branch prediction is available, due to poor code locality or
pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely
return to the instruction after the associated return.

Placing data immediately following an indirect branch can cause a
performance problem. If the data consist of all zeros, it looks like a long
stream of adds to memory destinations, which can cause resource
conflicts and slow down branch recovery. Also, the data immediately
following indirect branches may appear as branches to the branch
predication hardware, which can branch off to execute other data pages.
This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 13. (M impact, L generality) When
indirect branches are present, try to put the most likely target of an indirect
branch immediately following the indirect branch. Alternatively, if indirect
branches are common but they cannot be predicted by branch prediction
hardware, then follow the indirect branch with a UD2 instruction, which will
stop the processor from decoding down the fall-through path.

Indirect branches resulting from code constructs, such as switch
statements, computed GOTOs or calls through pointers, can jump to an
arbitrary number of locations. If the code sequence is such that the target
destination of a branch goes to the same address most of the time, then
the BTB will predict accurately most of the time. Since only one taken
(non-fall-through) target can be stored in the BTB, indirect branches
with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing
additional conditional branches. Adding a conditional branch to a target
is fruitful if and only if:

• The branch direction is correlated with the branch history leading up
to that branch, that is, not just the last target, but how it got to this
branch.
2-22

General Optimization Guidelines 2
• The source/target pair is common enough to warrant using the extra
branch prediction capacity. (This may increase the number of
overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of
mispredicting branches is very large).

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch
has two or more common taken targets, and at least one of those targets are
correlated with branch history leading up to the branch, then convert the
indirect branch into a tree where one or more indirect branches are preceded
by conditional branches to those targets. Apply this “peeling” procedure to the
common target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions
by enhancing the predictability of branches, even at the expense of
adding more branches. The added branches must be very predictable for
this to be worthwhile. One reason for such predictability is a strong
correlation with preceding branch history, that is, the directions taken on
preceding branches are a good indicator of the direction of the branch
under consideration.

Example 2-8 shows a simple example of the correlation between a target
of a preceding conditional branch with a target of an indirect branch.
Correlation can be difficult to determine analytically, either for a
compiler or sometimes for an assembly language programmer. It may be
fruitful to evaluate performance with and without this peeling, to get the
2-23

IA-32 Intel® Architecture Optimization
best performance from a coding effort. An example of peeling out the
most favored target of an indirect branch with correlated branch history
is shown in Example 2-9.

Example 2-8 Indirect Branch With Two Favored Targets

function ()

{

 int n = rand(); // random integer 0 to RAND_MAX

if(!(n & 0x01)){ // n will be 0 half the times

 n = 0; // updates branch history to predict taken

}

// indirect branches with multiple taken targets

// may have lower prediction rates

 switch (n) {

case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken

 case 1: handle_1(); break;// uncommon

case 3: handle_3(); break;// uncommon

default: handle_other(); // common target

 }

}

2-24

General Optimization Guidelines 2
 Loop Unrolling

The benefits of unrolling loops are:

• Unrolling amortizes the branch overhead, since it eliminates
branches and some of the code to manage induction variables.

• Unrolling allows you to aggressively schedule (or pipeline) the loop
to hide latencies. This is useful if you have enough free registers to
keep variables live as you stretch out the dependence chain to
expose the critical path.

• Unrolling exposes the code to various other optimizations, such as
removal of redundant loads, common subexpression elimination,
and so on.

• The Pentium 4 processor can correctly predict the exit branch for an
inner loop that has 16 or fewer iterations, if that number of iterations
is predictable and there are no conditional branches in the loop.
Therefore, if the loop body size is not excessive, and the probable

Example 2-9 A Peeling Technique to Reduce Indirect Branch Misprediction

function ()

{

 int n = rand(); // random integer 0 to RAND_MAX

if(!(n & 0x01)) n = 0;

 // n will be 0 half the times

if (!n) handle_0(); // peel out the most common target
// with correlated branch history

else {

 switch (n) {

case 1: handle_1(); break; // uncommon

case 3: handle_3(); break;// uncommon

default: handle_other(); // make the favored target in
// the fall-through path

}

 }

}

2-25

IA-32 Intel® Architecture Optimization
number of iterations is known, unroll inner loops until they have a
maximum of 16 iterations. With the Pentium M processor, do not
unroll loops more than 64 iterations.

The potential costs of unrolling loops are:

• Excessive unrolling, or unrolling of very large loops can lead to
increased code size. This can be harmful if the unrolled loop no
longer fits in the trace cache (TC).

• Unrolling loops whose bodies contain branches increases demands
on the BTB capacity. If the number of iterations of the unrolled loop
is 16 or less, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small
loops until the overhead of the branch and the induction variable accounts,
generally, for less than about 10% of the execution time of the loop.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid
unrolling loops excessively, as this may thrash the trace cache or instruction
cache.

Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll
loops that are frequently executed and that have a predictable number of
iterations to reduce the number of iterations to 16 or fewer, unless this
increases code size so that the working set no longer fits in the trace cache or
instruction cache. If the loop body contains more than one conditional branch,
then unroll so that the number of iterations is 16/(# conditional branches).
2-26

General Optimization Guidelines 2
Example 2-10 shows how unrolling enables other optimizations.

In this example, a loop that executes 100 times assigns x to every
even-numbered element and y to every odd-numbered element. By
unrolling the loop you can make both assignments each iteration,
removing one branch in the loop body.

Compiler Support for Branch Prediction

Compilers can generate code that improves the efficiency of branch
prediction in the Pentium 4 and Pentium M processors. The Intel C++
Compiler accomplishes this by:

• keeping code and data on separate pages

• using conditional move instructions to eliminate branches

• generating code that is consistent with the static branch prediction
algorithm

• inlining where appropriate

• unrolling, if the number of iterations is predictable

Example 2-10 Loop Unrolling

Before unrolling:

do i=1,100
 if (i mod 2 == 0) then a(i) = x
 else a(i) = y
enddo

After unrolling

do i=1,100,2
 a(i) = y
 a(i+1) = x
enddo
2-27

IA-32 Intel® Architecture Optimization
With profile-guided optimization, the Intel compiler can lay out basic
blocks to eliminate branches for the most frequently executed paths of a
function or at least improve their predictability. Branch prediction need
not be a concern at the source level. For more information, see the
Intel® C++ Compiler User’s Guide.

Memory Accesses
This section discusses guidelines for optimizing code and data memory
accesses. The most important recommendations are:

• align data, paying attention to data layout and stack alignment

• enable store forwarding

• place code and data on separate pages

• enhance data locality

• use prefetching and cacheability control instructions

• enhance code locality and align branch targets

• take advantage of write combining

Alignment and forwarding problems are among the most common
sources of large delays on the Pentium 4 processor.

Alignment

Alignment of data concerns all kinds of variables:

• dynamically allocated

• members of a data structure

• global or local variables

• parameters passed on the stack

Misaligned data access can incur significant performance penalties. This
is particularly true for cache line splits. The size of a cache line is
64 bytes in the Pentium 4, Intel Xeon, and Pentium M processors.
2-28

General Optimization Guidelines 2
On the Pentium 4 processor, an access to data unaligned on 64-byte
boundary leads to two memory accesses and requires several µops to be
executed (instead of one). Accesses that span either 16-byte or 64-byte
boundaries are likely to incur a large performance penalty, since they are
executed near retirement, and can incur stalls that are on the order of the
depth of the pipeline.

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align data
on natural operand size address boundaries. If the data will be accesses with
vector instruction loads and stores, align the data on 16 byte boundaries.

For best performance, align data as follows:

• Align 8-bit data at any address.

• Align 16-bit data to be contained within an aligned four byte word.

• Align 32-bit data so that its base address is a multiple of four.

• Align 64-bit data so that its base address is a multiple of eight.

• Align 80-bit data so that its base address is a multiple of sixteen.

• Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its
base address is a multiple of 64. Sorting data in decreasing size order is
one heuristic for assisting with natural alignment. As long as 16-byte
boundaries (and cache lines) are never crossed, natural alignment is not
strictly necessary, though it is an easy way to enforce this.

Example 2-11 shows the type of code that can cause a cache line split.
The code loads the addresses of two dword arrays. 029e70feh is not a
4-byte-aligned address, so a 4-byte access at this address will get 2 bytes
from the cache line this address is contained in, and 2 bytes from the
cache line that starts at 029e7100h. On processors with 64-byte cache
2-29

IA-32 Intel® Architecture Optimization
lines, a similar cache line split will occur every 8 iterations. Figure 2-1
illustrates the situation of accessing a data element that span across
cache line boundaries.

Example 2-11 Code That Causes Cache Line Split

mov esi, 029e70feh

mov edi, 05be5260h

Blockmove:

mov eax, DWORD PTR [esi]

mov ebx, DWORD PTR [esi+4]

mov DWORD PTR [edi], eax

mov DWORD PTR [edi+4], ebx

add esi, 8

add edi, 8

sub edx, 1

jnz Blockmove

Figure 2-1 Cache Line Split in Accessing Elements in a Array

Index 1Index 0 cont’d

Index 0

Index 15 Index 16Line 029e7100h

Line 029e70c0h

Index 17Index 16 cont’d Index 31 Index 32Line 029e7140h

Address 029e70fehAddress 029e70c1h
2-30

General Optimization Guidelines 2
Alignment of code is less of an issue for the Pentium 4 processor.
Alignment of branch targets to maximize bandwidth of fetching cached
instructions is an issue only when not executing out of the trace cache.

Alignment of code can be an issue for the Pentium M processor, and
alignment of branch targets will improve decoder throughput.

Store Forwarding

The processor’s memory system only sends stores to memory (including
cache) after store retirement. However, store data can be forwarded
from a store to a subsequent load from the same address to give a much
shorter store-load latency.

There are two kinds of requirements for store forwarding. If these
requirements are violated, store forwarding cannot occur and the load
must get its data from the cache (so the store must write its data back to
the cache first). This incurs a penalty that is related to pipeline depth.

The first requirement pertains to the size and alignment of the
store-forwarding data. This restriction is likely to have high impact to
overall application performance. Typically, performance penalty due to
violating this restriction can be prevented. Several examples of coding
pitfalls that cause store-forwarding stalls and solutions to these pitfalls
are discussed in detail in the “Store-to-Load-Forwarding Restriction on
Size and Alignment” section. The second requirement is the availability
of data, discussed in the “Store-forwarding Restriction on Data
Availability” section.

A good practice is to eliminate redundant load operations, see some
guidelines below.

It may be possible to keep a temporary scalar variable in a register and
never write it to memory. Generally, such a variable must not be
accessible via indirect pointers. Moving a variable to a register
eliminates all loads and stores of that variable and eliminates potential
problems associated with store forwarding. However, it also increases
register pressure.
2-31

IA-32 Intel® Architecture Optimization
Load instructions tend to start chains of computation. Since the out of
order engine is based on data dependence, load instructions play a
significant role in the engine capability to execute at a high rate.
Eliminating loads should be given a high priority.

If a variable is known not to change between when it is stored and when
it is used again, the register that was stored can be copied or used
directly. If register pressure is too high, or an unseen function is called
before the store and the second load, it may not be possible to eliminate
the second load.

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass
parameters in registers instead of on the stack where possible. Passing
arguments on the stack is a case of store followed by a reload. While this
sequence is optimized in IA-32 processors by providing the value to the load
directly from the memory order buffer without the need to access the data
cache, floating point values incur a significant latency in forwarding. Passing
floating point argument in (preferably XMM) registers should save this long
latency operation.

Parameter passing conventions may limit the choice of which
parameters are passed in registers versus on the stack. However, these
limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

Store-to-Load-Forwarding Restriction on Size and
Alignment

Data size and alignment restrictions for store-forwarding apply to the
Pentium 4, Intel Xeon and Pentium M processor. The performance
penalty from violating store-forwarding restrictions is less for Pentium
M processors than that for Pentium 4 processors.

This section describes these restrictions in all cases. It prescribes
recommendations to prevent the non-forwarding penalty. Fixing this
problem for Pentium 4 and Intel Xeon processors also fixes problem on
Pentium M processors.
2-32

General Optimization Guidelines 2
The size and alignment restrictions for store forwarding are illustrated in
Figure 2-2.

Coding rules to help programmers satisfy size and alignment restrictions
for store forwarding follow.

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load that
forwards from a store must have the same address start point and therefore the
same alignment as the store data.

Assembly/Compiler Coding Rule 20. (H impact, M generality) The data of
a load which is forwarded from a store must be completely contained within the
store data.

Figure 2-2 Size and Alignment Restrictions in Store Forwarding

OM15155

(a) Small load after
Large Store

Store

Load

Load Aligned with
Store W ill Forward

Non-Forwarding

Penalty

(b) Size of Load >=
Store

Store

Load

Penalty

(c) Size of Load >=
Store(s)

Store

Load

Penalty

(d) 128-bit Forward
Must Be 16-Byte

Aligned

Store

Load

Penalty

16-Byte
Boundary
2-33

IA-32 Intel® Architecture Optimization
A load that forwards from a store must wait for the store’s data to be
written to the store buffer before proceeding, but other, unrelated loads
need not wait.

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is
necessary to extract a non-aligned portion of stored data, read out the smallest
aligned portion that completely contains the data and shift/mask the data as
necessary.

This is better than incurring the penalties of a failed store-forward.

Assembly/Compiler Coding Rule 22. (MH impact, ML generality) Avoid
several small loads after large stores to the same area of memory by using a
single large read and register copies as needed.

Example 2-12 contains several store-forwarding situations when small
loads follow large stores. The first three load operations illustrate the
situations described in Rule 22. However, the last load operation gets
data from store-forwarding without problem.

Example 2-12 Several Situations of Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; not blocked - same alignment
mov BL, [EBP + 1] ; blocked

mov CL, [EBP + 2] ; blocked

mov DL, [EBP + 3] ; blocked

mov AL, [EBP] ; not blocked - same alignment
; n.b. passes older blocked loads
2-34

General Optimization Guidelines 2
Example 2-13 illustrates a store-forwarding situation when a large load
follows after several small stores. The data needed by the load operation
cannot be forwarded because all of the data that needs to be forwarded is
not contained in the store buffer. Avoid large loads after small stores to
the same area of memory.

Example 2-14 illustrates a stalled store-forwarding situation that may
appear in compiler generated code. Sometimes a compiler generates
code similar to that shown in Example 2-14 to handle spilled byte to the
stack and convert the byte to an integer value.

Example 2-13 A Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; blocked

; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation

Example 2-14 A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h] ; Stall

and eax, 0xff ; converting back to byte value
2-35

IA-32 Intel® Architecture Optimization
Example 2-15 offers two alternatives to avoid the non-forwarding
situation shown in Example 2-14.

When moving data that is smaller than 64 bits between memory
locations, 64-bit or 128-bit SIMD register moves are more efficient (if
aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating
point instructions should not be used for this purpose, as data may be
inadvertently modified.

As an additional example, consider the cases in Example 2-16. In the
first case (A), there is a large load after a series of small stores to the
same area of memory (beginning at memory address mem). The large
load will stall.

Example 2-15 Two Examples to Avoid the Non-forwarding Situation in
Example 2-14

;A. Use movz instruction to avoid large load after small
; store, when spills are ignored

movz eax, bl ; Replaces the last three instructions
 ; in Example 2-12

;B. Use movz instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; not blocked
2-36

General Optimization Guidelines 2
The fld must wait for the stores to write to memory before it can
access all the data it requires. This stall can also occur with other data
types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (Example 2-16, B), there is a series of small loads
after a large store to the same area of memory (beginning at memory
address mem). The small loads will stall.

The word loads must wait for the quadword store to write to memory
before they can access the data they require. This stall can also occur
with other data types (for example, when doublewords or words are
stored and then words or bytes are read from the same area of memory).
This can be avoided by moving the store as far from the loads as
possible.

Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can
be completed. If this restriction is violated, the execution of the load will
be delayed until the data is available. This delay causes some execution
resources to be used unnecessarily, and that can lead to sizable but
non-deterministic delays. However, the overall impact of this problem is
much smaller than that from size and alignment requirement violations.

Example 2-16 Large and Small Load Stalls

;A. Large load stall

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"
fld mem ; load qword at address “mem", stalls

;B. Small Load stall

fstp mem ; store qword to address “mem"
mov bx,mem+2 ; load word at address “mem + 2", stalls
mov cx,mem+4 ; load word at address “mem + 4", stalls
2-37

IA-32 Intel® Architecture Optimization
The Pentium 4 and Intel Xeon processors predict when loads are both
dependent on and get their data forwarded from preceding stores. These
predictions can significantly improve performance. However, if a load is
scheduled too soon after the store it depends on or if the generation of
the data to be stored is delayed, there can be a significant penalty.

There are several cases where data is passed through memory, where the
store may need to be separated from the load:

• spills, save and restore registers in a stack frame

• parameter passing

• global and volatile variables

• type conversion between integer and floating point

• when compilers do not analyze code that is inlined, forcing
variables that are involved in the interface with inlined code to be in
memory, creating more memory variables and preventing the
elimination of redundant loads

Assembly/Compiler Coding Rule 23. (H impact, MH generality) Where it is
possible to do so without incurring other penalties, prioritize the allocation of
variables to registers, as in register allocation and for parameter passing to
minimize the likelihood and impact of store- forwarding problems. Try not to
store-forward data generated from a long latency instruction, e.g. mul, div.
Avoid store-forwarding data for variables with the shortest store-load distance.
Avoid store-forwarding data for variables with many and/or long dependence
chains, and especially avoid including a store forward on a loop-carried
dependence chain.

An example of a loop-carried dependence chain is shown in
Example 2-17.

Example 2-17 An Example of Loop-carried Dependence Chain

for (i=0; i<MAX; i++) {

 a[i] = b[i] * foo;

 foo = a[i]/3;

} // foo is a loop-carried dependence
2-38

General Optimization Guidelines 2
Data Layout Optimizations

User/Source Coding Rule 2. (H impact, M generality) Pad data structures
defined in the source code so that every data element is aligned to a natural
operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed
element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays.
Programmers can reorganize structures and arrays to minimize the
amount of memory wasted by padding. However, compilers might not
have this freedom. The C programming language, for example, specifies
the order in which structure elements are allocated in memory. Section
“Stack and Data Alignment” of Chapter 3, and Appendix D, “Stack
Alignment”, further defines the exact storage layout.

Example 2-18 shows how a data structure could be rearranged to reduce
its size.

Cache line size for Pentium 4 and Pentium M processors can impact
streaming applications (for example, multimedia). These reference and
use data only once before discarding it. Data accesses which sparsely
utilize the data within a cache line can result in less efficient utilization
of system memory bandwidth. For example, arrays of structures can be
decomposed into several arrays to achieve better packing, as shown in
Example 2-19.

Example 2-18 Rearranging a Data Structure

struct unpacked { /* fits in 20 bytes due to padding */

int a;
char b;
int c;
char d;
int e;

}

struct packed { /* fits in 16 bytes */
2-39

IA-32 Intel® Architecture Optimization
The efficiency of such optimizations depends on usage patterns. If the
elements of the structure are all accessed together but the access pattern
of the array is random, then array_of_struct avoids unnecessary
prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality, such as if
the array index is being swept through, then the Pentium 4 processor
prefetches data from struct_of_array, even if the elements of the
structure are accessed together.

When the elements of the structure are not accessed with equal
frequency, such as when element a is accessed ten times more often than
the other entries, then struct_of_array not only saves memory, but it
also prevents fetching unnecessary data items b, c, d, and e.

Example 2-19 Decomposing an Array

struct {/* 1600 bytes */

int a, c, e;
char b, d;

} array_of_struct [100];

struct {/* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct {/* 1200 bytes */

int a, c, e;
} hybrid_struct_of_array_ace[100];

struct {/* 200 bytes */

char b, d;
} hybrid_struct_of_array_bd[100];
2-40

General Optimization Guidelines 2
Using struct_of_array also enables the use of the SIMD data types by
the programmer and the compiler.

Note that struct_of_array can have the disadvantage of requiring
more independent memory stream references. This can require the use
of more prefetches and additional address generation calculations. It can
also have an impact on DRAM page access efficiency. An alternative,
hybrid_struct_of_array blends the two approaches. In this case, only
2 separate address streams are generated and referenced: 1 for
hybrid_struct_of_array_ace and 1 for
hybrid_struct_of_array_bd. The second alterative also prevents
fetching unnecessary data (assuming the variables a, c and e are always
used together; whereas the variables b and d would be also used
together, but not at the same time as a, c and e).

The hybrid approach ensures:

• simpler/fewer address generation than struct_of_array

• fewer streams, which reduces DRAM page misses

• use of fewer prefetches due to fewer streams

• efficient cache line packing of data elements that are used
concurrently.

Assembly/Compiler Coding Rule 24. (H impact, M generality) Try to
arrange data structures such that they permit sequential access.

If the data is arranged into set of streams, the automatic hardware
prefetcher can prefetch data that will be needed by the application,
reducing the effective memory latency. If the data is accessed in a
non-sequential manner, the automatic hardware prefetcher cannot
prefetch the data. The prefetcher can recognize up to eight concurrent
streams. See Chapter 6 for more information and the hardware
prefetcher.

Memory coherence is maintained on 64-byte cache lines on the
Pentium 4, Intel Xeon and Pentium M processors, rather than earlier
processors’ 32-byte cache lines. This can increase the opportunity for
false sharing.
2-41

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 3. (M impact, L generality) Beware of false
sharing within a cache line (64 bytes) for Pentium 4, Intel Xeon, and Pentium
M processors; and within a sector of 128 bytes on Pentium 4 and Intel Xeon
processors.

Stack Alignment

The easiest way to avoid stack alignment problems is to keep the stack
aligned at all times. For example: if a language only supports 8-bit,
16-bit, 32-bit, and 64-bit data quantities, but never uses 80-bit data
quantities; the language can require the stack to always be aligned on a
64-bit boundary.

Assembly/Compiler Coding Rule 25. (H impact, M generality) If 64-bit
data is ever passed as a parameter or allocated on the stack, make sure that the
stack is aligned to an 8-byte boundary.

Doing so will require the use of a general purpose register (such as EBP)
as a frame pointer. The tradeoff is between causing unaligned 64-bit
references if the stack is not aligned and causing extra general purpose
register spills if the stack is aligned. Note that a performance penalty is
caused only when an unaligned access splits a cache line. This means
that one out of eight spatially consecutive unaligned accesses is always
penalized.

A routine that makes frequent use of 64-bit data can avoid stack
misalignment by placing the code described in Example 2-20 in the
function prologue and epilogue.
2-42

General Optimization Guidelines 2
If for some reason it is not possible to align the stack for 64-bits, the
routine should access the parameter and save it into a register or known
aligned storage, thus incurring the penalty only once.

Aliasing Cases

There are cases where addresses with a given stride will compete for
some resource in the memory hierarchy. Aliasing conditions are specific
to each microarchitecture. Note that first-level cache lines are 64 bytes.
Thus the least significant 6 bits are not considered in alias comparisons.
For the Pentium 4 and Intel Xeon processors, data are loaded into the
second level cache in a sector of 128 bytes, so the least significant 7 bits
are not considered in alias comparisons.

Example 2-20 Dynamic Stack Alignment

prologue:

subl esp, 4 ; save frame ptr

movl [esp], ebp

movl ebp, esp ; new frame pointer

andl ebp, 0xFFFFFFFC; aligned to 64 bits

movl [ebp], esp ; save old stack ptr

subl esp, FRAMESIZE ; allocate space

; ... callee saves, etc.

epilogue:

; ... callee restores, etc.

movl esp, [ebp] ; restore stack ptr

movl ebp, [esp] ; restore frame ptr

addl esp, 4

ret
2-43

IA-32 Intel® Architecture Optimization
Aliasing Cases in the Pentium. 4 and Intel® Xeon™
Processors

Pentium 4 processor and Intel Xeon processor aliasing cases are listed
below.

• 2K for data – map to the same first-level cache set (32 sets, 64-byte
lines). There are 4 ways in the first-level cache, so if there are more
that 4 lines that alias to the same 2K modulus in the working set,
there will be an excess of first-level cache misses.

• 16K for data – will look the same to the store-forwarding logic. If
there has been a store to an address which aliases with the load, the
load will stall until the store data is available.

• 16K for code – can only be one of these in the trace cache at a time.
If two traces whose starting addresses are 16K apart are in the same
working set, the symptom will be a high trace cache miss rate. Solve
this by offsetting one of the addresses by one or more bytes.

• 32K for code or data – map to the same second-level cache set (256
sets, 128-byte lines). There are 8 ways in the second-level cache, so
if there are more than 8 lines that alias to the same 32K modulus in
the working set, there will be an excess of second-level cache
misses.

• 64K for data – can only be one of these in the first-level cache at a
time. If a reference (load or store) occurs that has bits 0-15 of the
linear address identical to a reference (load or store) which is under
way, then the second reference cannot begin until the first one is
kicked out of the cache. If you avoiding this kind of aliasing, you
can speedup programs by a factor of three if they load frequently
from preceding stores with aliased addresses and there is little other
instruction-level parallelism available. The gain is smaller when
loads alias with other loads, which cause thrashing in the first-level
cache.

If a large number of data structures are in the same working set, accesses
to aliased locations in the sets may cause cache thrashing and store
forwarding problems. For example, if the code dynamically allocates
2-44

General Optimization Guidelines 2
many data 3 KB structures, some memory allocators will return starting
addresses for these structures which are on 4 KB boundaries. For the
sake of simplifying this discussion, suppose these allocations were
made to consecutive 4 KB addresses (though that scenario is more likely
to be random in a real system). Then every structure would alias with
the structure allocated 16 structures after it. The likelihood of aliasing
conflicts may increase with the size of the data structures.

Aliasing Cases in the Pentium M Processor

Pentium M processor aliasing cases are listed below.

• First level cache set - 4 KB for data maps to the same first-level
cache set (64 sets, 64-byte lines). There are eight ways in the
first-level data cache, so if there are more than eight lines that alias
to the same 4 KB modulus in the working set, there will be an
excess of first-level cache misses.

• Store forwarding - 4 KB for data will look the same to the
store-forwarding logic. If there has been a store to an address which
aliases with the load, the load will stall until the store data is
available.

• Second-level cache set - 128 KB for code or data map to the same
second-level cache set (2 KB sets, 64-byte lines). There are eight
ways in the second-level cache, so if there are more than eight lines
that alias to the same 128 KB modulus in the working set, there will
be an excess of second-level cache misses.

• 128 KB for code or data - map to the same second-level cache set
(2 KB sets, 64-byte lines). There are 8 ways in the second-level
cache, so if there are more than 8 lines that alias to the same 128 k
modulus in the working set, there will be an excess of second-level
cache misses.

Assembly/Compiler Coding Rule 26. (H impact, MH generality) Lay out
data or order computation to avoid having cache lines that have linear
addresses that are a multiple of 64 KB apart in the same working set. Avoid
having more than 4 cache lines that are some multiple of 2 KB apart in the
same first-level cache working set, and avoid having more than eight cache
2-45

IA-32 Intel® Architecture Optimization
lines that are some multiple of 4 KB apart in the same first-level cache working
set. Avoid having more than 8 cache lines that are some multiple of 64 KB
apart in the same second-level cache working set. Avoid having a store
followed by a non-dependent load with addresses that differ by a multiple of
4 KB.

When declaring multiple arrays that are referenced with the same index
and are each a multiple of 64 KB (as can happen with
struct_of_array data layouts), pad them to avoid declaring them
contiguously. Padding can be accomplished by either intervening
declarations of other variables, or by artificially increasing the
dimension.

User/Source Coding Rule 4. (H impact, ML generality) Consider using a
special memory allocation library to avoid aliasing.

One way to implement a memory allocator to avoid aliasing is to
allocate more than enough space and pad. For example, allocate
structures that are 68 KB instead of 64 KB to avoid the 64 KB aliasing;
or have the allocator pad and return random offsets that are a multiple of
128 Bytes (the size of a cache line).

User/Source Coding Rule 5. (M impact, M generality) When padding
variable declarations to avoid aliasing, the greatest benefit comes from
avoiding aliasing on second-level cache lines, suggesting an offset of 128 bytes
or more.

Mixing Code and Data

The Pentium 4 processor’s aggressive prefetching and pre-decoding of
instructions has two related effects:

• Self-modifying code works correctly, according to the Intel
architecture processor requirements, but incurs a significant
performance penalty. Avoid self-modifying code.

• Placing writable data in the code segment might be impossible to
distinguish from self-modifying code. Writable data in the code
segment might suffer the same performance penalty as
self-modifying code.
2-46

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 27. (M impact, L generality) If (hopefully
read-only) data must occur on the same page as code, avoid placing it
immediately after an indirect jump. For example, follow an indirect jump with
its mostly likely target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be noted due
to executing data on a code page as instructions. The condition where this is
very likely to happen is when execution is following an indirect branch that is
not resident in the trace cache. If a performance problem is clearly due to this
cause, try moving the data elsewhere or inserting an illegal opcode or a pause
instruction immediately following the indirect branch. The latter two
alternatives may degrade performance in some circumstances.

Assembly/Compiler Coding Rule 28. (H impact, L generality) Always put
code and data on separate pages. Avoid self-modifying code wherever possible.
If code is to be modified, try to do it all at once and make sure the code that
performs the modifications and the code being modified are on separate 4 KB
pages or on separate aligned 1 KB subpages.

Self-modifying Code

Self-modifying code (SMC) that ran correctly on Pentium III processors
and prior implementations will run correctly on subsequent
implementations, including Pentium 4 and Intel Xeon processors. SMC
and cross-modifying code (when more than one processor in a
multi-processor system are writing to a code page) should be avoided
when high performance is desired.

Software should avoid writing to a code page in the same 1 KB subpage
of that is being executed or fetching code in the same 2 KB subpage of
that is currently being written. In addition, sharing a page containing
directly or speculatively executed code with another processor as a data
page can trigger an SMC condition that causes the entire pipeline of the
machine and the trace cache to be cleared. This is due to the
self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written
fills up a data page before that page is accessed as code.
Dynamically-modified code (for example, from target fix-ups) is likely
2-47

IA-32 Intel® Architecture Optimization
to suffer from the SMC condition and should be avoided where possible.
Avoid the condition by introducing indirect branches and using data
tables on data (not code) pages via register-indirect calls.

Write Combining

Write combining (WC) improves performance in two ways:

• On a write miss to the first-level cache, it allows multiple stores to
the same cache line to occur before that cache line is read for
ownership (RFO) from further out in the cache/memory hierarchy.
Then the rest of line is read, and the bytes that have not been written
are combined with the unmodified bytes in the returned line.

• Write combining allows multiple writes to be assembled and written
further out in the cache hierarchy as a unit. This saves port and bus
traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

There are 6 write-combining buffers. Two of these buffers may be
written out to higher cache levels and freed up for use on other write
misses; only four write-combining buffers are guaranteed to be
available for simultaneous use.

Assembly/Compiler Coding Rule 29. (H impact, L generality) If an inner
loop writes to more than four arrays, (four distinct cache lines), apply loop
fission to break up the body of the loop such that only four arrays are being
written to in each iteration of each of the resulting loops.

The write combining buffers are used for stores of all memory types.
They are particularly important for writes to uncached memory: writes
to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since
they are not cached) as several partial writes. Avoiding partial writes can
have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory.
Separating writes to uncached memory and writes to writeback memory
into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write
2-48

General Optimization Guidelines 2
transactions has been found to have performance impact of the order of
20% for some applications. Because the cache lines are 64 bytes, a write
to the bus for 63 bytes will result in 8 partial bus transactions.

When coding functions that execute simultaneously on two threads,
reducing the number of writes that are allowed in an inner loop will help
take full advantage of write-combining store buffers. See Chapter 7 for
the write-combining buffer recommendation with Hyper-Threading
Technology.

Store ordering and visibility are also important issues for write
combining. When a write to a write-combining buffer for a
previously-unwritten cache line occurs, there will be a
read-for-ownership (RFO). If a subsequent write happens to another
write-combining buffer, a separate RFO may be caused for that cache
line. Subsequent writes to the first cache line and write-combining
buffer will be delayed until the second RFO has been serviced to
guarantee properly ordered visibility of the writes. If the memory type
for the writes is write-combining, there will be no RFO since the line is
not cached, and there is no such delay. For details on write-combining,
see the Intel Architecture Software Developer’s Manual.

Locality Enhancement

Although cache miss rates may be low, processors typically spend a
sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a
key optimization. This can take several forms:

• blocking to iterate over a portion of an array that will fit in the cache

• loop interchange to avoid crossing cache lines or page boundaries

• loop skewing to make accesses contiguous

It is also important to avoid operations that work against locality-
enhancing techniques. Using the lock prefix heavily can incur large
delays when accessing memory, irrespective of whether the data is in the
cache or in system memory.
2-49

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 6. (H impact, H generality) Optimization
techniques such as blocking, loop interchange, loop skewing and packing are
best done by the compiler. Optimize data structures to either fit in one-half of
the first-level cache or in the second-level cache; turn on loop optimizations in
the compiler to enhance locality for nested loops.

Optimizing for one-half of the first-level cache will bring the greatest
performance benefit. If one-half of the first-level cache is too small to
be practical, optimize for the second-level cache. Optimizing for a point
in between (for example, for the entire first-level cache) will likely not
bring a substantial improvement over optimizing for the second-level
cache.

Minimizing Bus Latency

The system bus on Xeon and Pentium 4 processors provides up to
4.2 GB/sec bandwidth of throughput at 133 MHz scalable bus clock rate
(See MSR_EBC_FREQUENCY_ID register). The peak bus bandwidth
is even higher with higher bus clock rates.

Each bus transaction includes the overhead of making request and
arbitrations. The average latency of bus read and bus write transactions
will be longer if reads and writes alternate. Segmenting reads and writes
into phases can reduce the average latency of bus transactions. This is
because the number of incidences of successive transactions involving a
read following a write or a write following a read are reduced.

User/Source Coding Rule 7. (M impact, ML generality) If there is a blend of
reads and writes on the bus, changing the code to separate these bus
transactions into read phases and write phases can help performance.

Note, however, that the order of read and write operations on the bus are
not the same as they appear in the program.
2-50

General Optimization Guidelines 2
Non-Temporal Store Bus Traffic

Peak system bus bandwidth is shared by several types of bus activities,
including: reads (from memory), read for ownership (of a cache line),
and writes. The data transfer rate for bus write transactions is higher if
64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) type memory must share the
system bus bandwidth with read-for-ownership (RFO) traffic.
Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at
once (rather than evicting several 8 byte chunks).

Although full 64-byte bus writes due to non-temporal stores have data
bandwidth that is twice that of bus writes to WB memory, transferring
8-byte chunks wastes bus request bandwidth and delivers significantly
lower data bandwidth.
2-51

IA-32 Intel® Architecture Optimization
Example 2-21 Non-temporal stores and 64-byte bus write transactions

Example 2-22 Non-temporal stores and partial bus write transactions

Prefetching

The Pentium 4 processor has three prefetching mechanisms:

• hardware instruction prefetcher

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmm0

movntps XMMWORD ptr [ecx + eax+16], xmm0

movntps XMMWORD ptr [ecx + eax+32], xmm0

movntps XMMWORD ptr [ecx + eax+48], xmm0

; 64 bytes is written in one bus transaction

add eax, STRIDESIZE

cmp eax, edx

jl slloop

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmm0

movntps XMMWORD ptr [ecx + eax+16], xmm0

movntps XMMWORD ptr [ecx + eax+32], xmm0

; Storing 48 bytes results in 6 bus partial transactions

add eax, STRIDESIZE

cmp eax, edx
2-52

General Optimization Guidelines 2
• software prefetch for data

• hardware prefetch for cache lines of data or instructions.

Hardware Instruction Fetching

The hardware instruction fetcher reads instructions, 32 bytes at a time,
into the 64-byte instruction streaming buffers.

Software and Hardware Cache Line Fetching

The Pentium 4 and Intel Xeon processors provide hardware prefetching,
in addition to software prefetching. The hardware prefetcher operates
transparently to fetch data and instruction streams from memory,
without requiring programmer intervention. The hardware prefetcher
can track 8 independent streams. Software prefetch using the
prefetchnta instruction fetches 128 bytes into one way of the
second-level cache.

The Pentium M processor also provides a hardware prefetcher for data.
It can track 12 separate streams in the forward direction and 4 streams in
the backward direction. This processor’s prefetchnta instruction also
fetches 64-bytes into the first-level data cache without polluting the
second-level cache.

Typically, prefetching can provide significant gains. The use of
prefetches is recommended. The hardware prefetcher is best for linear
data access patterns in either direction. Software prefetch can
complement the hardware prefetcher if used carefully.

There is a trade-off to make between hardware and software
prefetching. This pertains to application characteristics such as
regularity and stride of accesses. Bus bandwidth, issue bandwidth (the
latency of loads on the critical path) and whether access patterns are
suitable for non-temporal prefetch will also have an impact.

For a detailed description of how to use prefetching, see Chapter 6,
“Optimizing Cache Usage”.
2-53

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch
generation in your compiler. Note: As a compiler’s prefetch implementation
improves, it is expected that its prefetch insertion will outperform manual
insertion except for that done by code tuning experts, but this is not always the
case. If the compiler does not support software prefetching, intrinsics or inline
assembly may be used to manually insert prefetch instructions.

Chapter 6 contains an example of using software prefetch to implement
memory copy algorithm.

Tuning Suggestion 2. If a load is found to miss frequently, either insert a
prefetch before it, or, if issue bandwidth is a concern, move the load up to
execute earlier.

Cacheability instructions

SSE2 provides additional cacheability instructions that extend further
from the cacheability instructions provided in SSE. The new
cacheability instructions include:

• new streaming store instructions

• new cache line flush instruction

• new memory fencing instructions

For a detailed description of using cacheability instructions, see
Chapter 6.

Code Alignment

Because the trace cache (TC) removes the decoding stage from the
pipeline for frequently executed code, optimizing code alignment for
decoding is not as important for Pentium 4 and Intel Xeon processors.

For the Pentium M processor, code alignment and the alignment of
branch target will affect the throughput of the decoder.
2-54

General Optimization Guidelines 2
Careful arrangement of code can enhance cache and memory locality.
Likely sequences of basic blocks should be laid out contiguously in
memory. This may involve pulling unlikely code, such as code to handle
error conditions, out of that sequence. See “Prefetching” section on how
to optimize for the instruction prefetcher.

Assembly/Compiler Coding Rule 30. (M impact, H generality) All branch
targets should be 16-byte aligned.

Assembly/Compiler Coding Rule 31. (M impact, H generality) If the body
of a conditional is not likely to be executed, it should be placed in another part
of the program. If it is highly unlikely to be executed and code locality is an
issue, the body of the conditional should be placed on a different code page.

Improving the Performance of Floating-point
Applications

When programming floating-point applications, it is best to start with a
high-level programming language such as C, C++ or Fortran. Many
compilers perform floating-point scheduling and optimization when it is
possible. However in order to produce optimal code, the compiler may
need some assistance.

Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 9. (M impact, M generality) Enable the
compiler’s use of SSE2 instructions with appropriate switches.

Follow this procedure to investigate the performance of your
floating-point application:

• Understand how the compiler handles floating-point code.
• Look at the assembly dump and see what transforms are already

performed on the program.
• Study the loop nests in the application that dominate the execution

time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
2-55

IA-32 Intel® Architecture Optimization
• Determine the problem area: bus bandwidth, cache locality, trace
cache bandwidth or instruction latency. Focus on optimizing the
problem area. For example, adding prefetch instructions will not
help if the bus is already saturated. If trace cache bandwidth is the
problem, added prefetch µops may degrade performance.

For floating-point coding, follow all the general coding
recommendations discussed in this chapter, including:
• blocking the cache
• using prefetch
• enabling vectorization
• unrolling loops
User/Source Coding Rule 10. (H impact, ML generality) Make sure your
application stays in range to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 11. (M impact, ML generality) Do not use double
precision unless necessary. Set the precision control (PC) field in the x87 FPU
control word to “Single Precision”. This allows single precision (32-bit)
computation to complete faster on some operations (for example, divides due
to early out). However, be careful of introducing more than a total of two
values for the floating point control word, or there will be a large performance
penalty. See “Floating-point Modes”.

User/Source Coding Rule 12. (H impact, ML generality) Use fast
float-to-int routines. If coding these routines, use the cvttss2si,
cvttsd2si instructions if coding with Streaming SIMD Extensions 2.

Many libraries do more work than is necessary. The instructions
cvttss2si/cvttsd2si save many µops and some store-forwarding
delays over some compiler implementations. This avoids changing the
rounding mode.

User/Source Coding Rule 13. (M impact, ML generality) Break dependence
chains where possible.
2-56

General Optimization Guidelines 2
For example, to calculate z = a + b + c + d, instead of:

x = a + b;

y = x + c;

z = y + d;

use:

x = a + b;

y = c + d;

z = x + y;

User/Source Coding Rule 14. (M impact, ML generality) Usually, math
libraries take advantage of the transcendental instructions (for example,
fsin) when evaluating elementary functions. If there is no critical need to
evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider alternate, software-based approach, such as
look-up-table-based algorithm using interpolation techniques. It is possible to
improve transcendental performance with these techniques by choosing the
desired numeric precision, the size of the look-up tableland taking advantage
of the parallelism of the Streaming SIMD Extensions and the Streaming SIMD
Extensions 2 instructions.

Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed
microprocessors frequently must deal with situations that need special
handling in hardware or code. The Pentium 4 processor is optimized to
handle the most common cases of such situations efficiently.

Floating-point Exceptions

The most frequent situation that can lead to performance degradation
involve masked floating-point exception conditions such as:

• arithmetic overflow

• arithmetic underflow

• denormalized operand
2-57

IA-32 Intel® Architecture Optimization
Refer to Chapter 4 of the IA-32 Intel® Architecture Software
Developer’s Manual, Volume 1 for the definition of overflow, underflow
and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:

• directly: when they are used as operands

• indirectly: when they are produced as a result of an underflow
situation

If a floating-point application never underflows, the denormals can only
come from floating-point constants.

User/Source Coding Rule 15. (H impact, ML generality) Denormalized
floating-point constants should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the
execution of either x87 instructions or SSE/SSE2 instructions. The
Pentium 4 processor can handle these exceptions more efficiently when
executing SSE/SSE2 instructions and when speed is more important
than complying to IEEE standard. The following two paragraphs give
recommendations on how to optimize your code to reduce performance
degradations related to floating-point exceptions.

Dealing with floating-point exceptions in x87 FPU code

Every special situation listed in the “Floating-point Exceptions” section
is costly in terms of performance. For that reason, x87 FPU code should
be written to avoid these situations.

There are basically three ways to reduce the impact of
overflow/underflow situations with x87 FPU code:

• Choose floating-point data types that are large enough to
accommodate results without generating arithmetic overflow and
underflow exceptions.

• Scale the range of operands/results to reduce as much as possible the
number of arithmetic overflow/underflow situations.
2-58

General Optimization Guidelines 2
• Keep intermediate results on the x87 FPU register stack until the
final results have been computed and stored to memory. Overflow
or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored
in double extended-precision format and overflow/underflow
conditions are detected accordingly).

Denormalized floating-point constants (which are read only, and hence
never change) should be avoided and replaced, if possible, with zeros of
the same sign.

Dealing with Floating-point Exceptions in SSE and SSE2
code

Most special situations that involve masked floating-point exceptions
are handled efficiently on the Pentium 4 processor. When a masked
overflow exception occurs while executing SSE or SSE2 code, the
Pentium 4 processor handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually
treated according to the IEEE 754 specification. If a programmer is
willing to trade pure IEEE 754 compliance for speed, two non-IEEE
754 compliant modes are provided to speed situations where underflows
and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically
converted to a zero with the correct sign. Although this behavior is not
IEEE 754 compliant, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since
denormal results are not produced when the FTZ mode is enabled, the
only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands
efficiently when running an SSE application. When the DAZ mode is
enabled, input denormals are treated as zeros with the same sign.
Enabling the DAZ mode is the way to deal with denormal floating-point
constants when performance is the objective.
2-59

IA-32 Intel® Architecture Optimization
If departing from IEEE 754 specification is acceptable and if
performance is critical, run an SSE/SSE2 application with FTZ and
DAZ modes enabled.

Floating-point Modes

On the Pentium III processor, the FLDCW instruction is an expensive
operation. On the Pentium 4 processor, FLDCW is improved for situations
where an application alternates between two constant values of the x87
FPU control word (FCW), such as when performing conversions to
integers.

Specifically, the optimization for FLDCW allows programmers to
alternate between two constant values efficiently. For the FLDCW
optimization to be effective, the two constant FCW values are only
allowed to differ on the following 5 bits in the FCW:

FCW[8-9] precision control

FCW[10-11] rounding control

FCW[12] infinity control

If programmers need to modify other bits (for example: mask bits) in the
FCW, the FLDCW instruction is still an expensive operation.

In situations where an application cycles between three (or more)
constant values, FLDCW optimization does not apply and the performance
degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values,
take advantage of the optimization of the FLDCW instruction to alternate
between only these two constant FCW values, and devise some means

NOTE. The DAZ mode is available with both the SSE
and SSE2 extensions, although the speed improvement
expected from this mode is fully realized only in SSE
code.
2-60

General Optimization Guidelines 2
to accomplish the task that requires the 3rd FCW value without actually
changing the FCW to a third constant value. An alternative solution is to
structure the code so that, for periods of time, the application alternates
between only two constant FCW values. When the application later
alternates between a pair of different FCW values, the performance
degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate FTZ and
DAZ mode values. Consequently, the SIMD control word does not have
the short latencies that the floating-point control register does. A read of
the MXCSR register has a fairly long latency, and a write to the register is
a serializing instruction.

There is no separate control word for single and double precision; both
use the same modes. Notably, this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 32. (H impact, M generality) Minimize
changes to bits 8-12 of the floating point control word. Changes for more than
two values (each value being a combination of the following bits: precision,
rounding and infinity control, and the rest of bits in FCW) leads to delays that
are on the order of the pipeline depth.

Rounding Mode

Many libraries provide the float-to-integer library routines that convert
floating-point values to integer. Many of these libraries conform to
ANSI C coding standards which state that the rounding mode should be
truncation. With the Pentium 4 processor, one can use the cvttsd2si
and cvttss2si instructions to convert operands with truncation and
without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify
using Streaming SIMD Extensions and Streaming SIMD Extensions 2
wherever possible when truncation is involved.

For x87 floating point, the fist instruction uses the rounding mode
represented in the floating-point control word (FCW). The rounding
mode is generally round to nearest, therefore many compiler writers
implement a change in the rounding mode in the processor in order to
conform to the C and FORTRAN standards. This implementation
2-61

IA-32 Intel® Architecture Optimization
requires changing the control word on the processor using the fldcw
instruction. For a change in the rounding, precision, and infinity bits;
use the fstcw instruction to store the floating-point control word. Then
use the fldcw instruction to change the rounding mode to truncation.

In a typical code sequence that changes the rounding mode in the FCW,
a fstcw instruction is usually followed by a load operation. The load
operation from memory should be a 16-bit operand to prevent store-
forwarding problem. If the load operation on the previously-stored
FCW word involves either an 8-bit or a 32-bit operand, this will cause a
store-forwarding problem due to mismatch of the size of the data
between the store operation and the load operation.

Make sure that the write and read to the FCW are both 16-bit operations,
to avoid store-forwarding problems.

If there is more than one change to rounding, precision and infinity bits
and the rounding mode is not important to the result; use the algorithm
in Example 2-23 to avoid synchronization issues, the overhead of the
fldcw instruction and having to change the rounding mode. The
provided example suffers from a store-forwarding problem which will
lead to a performance penalty. However, its performance is still better
than changing the rounding, precision and infinity bits among more than
two values.
2-62

General Optimization Guidelines 2
Example 2-23 Algorithm to Avoid Changing the Rounding Mode

_fto132proc

lea ecx,[esp-8]

sub esp,16 ; allocate frame

and ecx,-8 ; align pointer on boundary of 8

fld st(0) ; duplicate FPU stack top

fistp qword ptr[ecx]

fild qword ptr[ecx]

mov edx,[ecx+4]; high dword of integer

mov eax,[ecx] ; low dword of integer

test eax,eax

je integer_QnaN_or_zero

arg_is_not_integer_QnaN:

fsubp st(1),st ; TOS=d-round(d),

; { st(1)=st(1)-st & pop ST}

test edx,edx ; what’s sign of integer

continued
2-63

IA-32 Intel® Architecture Optimization
Assembly/Compiler Coding Rule 33. (H impact, L generality) Minimize the
number of changes to the rounding mode. Do not use changes in the rounding
mode to implement the floor and ceiling functions if this involves a total of
more than two values of the set of rounding, precision and infinity bits.

jns positive ; number is negative

fstp dword ptr[ecx]; result of subtraction

mov ecx,[ecx] ; dword of diff(single-
; precision)

add esp,16

xor ecx,80000000h

add ecx,7fffffffh ; if diff<0 then decrement
; integer

adc eax,0 ; inc eax (add CARRY flag)

ret

positive:

fstp dword ptr[ecx] ; 17-18 result of subtraction

mov ecx,[ecx] ; dword of diff(single precision)

add esp,16

add ecx,7fffffffh ; if diff<0 then decrement integer

sbb eax,0 ; dec eax (subtract CARRY flag)

ret

integer_QnaN_or_zero:

test edx,7fffffffh

jnz arg_is_not_integer_QnaN

add esp,16

ret

Example 2-23 Algorithm to Avoid Changing the Rounding Mode (continued)
2-64

General Optimization Guidelines 2
Precision

If single precision is adequate, use it instead of double precision. This is
true because:

• Single precision operations allow the use of longer SIMD vectors,
since more single precision data elements can fit in a register.

• If the precision control (PC) field in the x87 FPU control word is set
to “Single Precision,” the floating-point divider can complete a
single-precision computation much faster than either a
double-precision computation or an extended double-precision
computation. If the PC field is set to “Double Precision,” this will
enable those x87 FPU operations on double-precision data to
complete faster than extended double-precision computation. These
characteristics affect computations including floating-point divide
and square root.

Assembly/Compiler Coding Rule 34. (H impact, L generality) Minimize the
number of changes to the precision mode.

Improving Parallelism and the Use of FXCH

The x87 instruction set relies on the floating point stack for one of its
operands. If the dependence graph is a tree, which means each
intermediate result is used only once and code is scheduled carefully, it
is often possible to use only operands that are on the top of the stack or
in memory, and to avoid using operands that are buried under the top of
the stack. When operands need to be pulled from the middle of the
stack, an fxch instruction can be used to swap the operand on the top of
the stack with another entry in the stack.

The fxch instruction can also be used to enhance parallelism.
Dependent chains can be overlapped to expose more independent
instructions to the hardware scheduler. An fxch instruction may be
required to effectively increase the register name space so that more
operands can be simultaneously live.
2-65

IA-32 Intel® Architecture Optimization
Note, however, that fxch inhibits issue bandwidth in the trace cache. It
does this not only because it consumes a slot, but also because of issue
slot restrictions imposed on fxch. If the application is not bound by
issue or retirement bandwidth, fxch will have no impact.

The Pentium 4 processor’s effective instruction window size is large
enough to permit instructions that are as far away as the next iteration to
be overlapped. This often obviates the need to use fxch to enhance
parallelism.

The fxch instruction should be used only when it’s needed to express an
algorithm or to enhance parallelism. If the size of register name space is
a problem, the use of XMM registers is recommended (see the section).

Assembly/Compiler Coding Rule 35. (M impact, M generality) Use fxch
only where necessary to increase the effective name space.

This in turn allows instructions to be reordered to make instructions
available to be executed in parallel. Out-of-order execution precludes
the need for using fxch to move instructions for very short distances.

x87 vs. SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and
scalar floating-point code (using SSE and SSE2). The following
differences drive decisions about which registers and instructions to use:

• When an input operand for a SIMD floating-point instruction
contains values that are less than the representable range of the data
type, a denormal exception occurs. This causes significant
performance penalty. SIMD floating-point operation has a
flush-to-zero mode. In flush-to-zero mode, the results will not
underflow. Therefore subsequent computation will not face the
performance penalty of handling denormal input operands. For
example, in the case of 3D applications with low lighting levels,
using flush-to-zero mode can improve performance by as much as
50% for applications with large numbers underflows.
2-66

General Optimization Guidelines 2
• Scalar floating point has lower latencies. This generally does not
matter much as long as resource utilization is low.

• Only x87 supports transcendental instructions.

• x87 supports 80-bit precision, double extended floating point.
Streaming SIMD Extensions support a maximum of 32-bit
precision, and Streaming SIMD Extensions 2 supports a maximum
of 64-bit precision.

• On the Pentium 4 processor, floating point adds are pipelined for
x87 but not for scalar floating-point code. Floating point multiplies
are not pipelined for either case. For applications with a large
number of floating-point adds relative to the number of
multiplies, x87 may be a better choice.

• Scalar floating-point registers may be accessed directly, avoiding
fxch and top-of-stack restrictions. On the Pentium 4 processor, the
floating-point register stack may be used simultaneously with XMM
registers. The same hardware is used for both kinds of instructions,
but the added name space may be beneficial.

• The cost of converting from floating point to integer with truncation
is significantly lower with Streaming SIMD Extensions 2 and
Streaming SIMD Extensions in the Pentium 4 processor than with
either changes to the rounding mode or the sequence prescribed in
the Example 2-23 above.

Assembly/Compiler Coding Rule 36. (M impact, M generality) Use
Streaming SIMD Extensions 2 or Streaming SIMD Extensions unless you need
an x87 feature. Most SSE2 arithmetic operations have shorter latency then
their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

Memory Operands

Double-precision floating-point operands that are eight-byte aligned
have better performance than operands that are not eight-byte aligned,
since they are less likely to incur penalties for cache and MOB splits.
Floating-point operation on a memory operands require that the operand
2-67

IA-32 Intel® Architecture Optimization
be loaded from memory. This incurs an additional µop, which can have
a minor negative impact on front end bandwidth. Additionally, memory
operands may cause a data cache miss, causing a penalty.

Floating-Point Stalls

Floating-point instructions have a latency of at least two cycles. But,
because of the out-of-order nature of Pentium II and the subsequent
processors, stalls will not necessarily occur on an instruction or µop
basis. However, if an instruction has a very long latency such as an
fdiv, then scheduling can improve the throughput of the overall
application.

x87 Floating-point Operations with Integer Operands

For Pentium 4 processor, splitting floating-point operations (fiadd,
fisub, fimul, and fidiv) that take 16-bit integer operands into two
instructions (fild and a floating-point operation) is more efficient.
However, for floating-point operations with 32-bit integer operands,
using fiadd, fisub, fimul, and fidiv is equally efficient compared
with using separate instructions.

Assembly/Compiler Coding Rule 37. (M impact, L generality) Try to use
32-bit operands rather than 16-bit operands for fild. However, do not do so
at the expense of introducing a store forwarding problem by writing the two
halves of the 32-bit memory operand separately.

x87 Floating-point Comparison Instructions

On Pentium II and the subsequent processors, the fcomi and fcmov
instructions should be used when performing floating-point
comparisons. Using (fcom, fcomp, fcompp) instructions typically
requires additional instruction like fstsw. The latter alternative causes
more µops to be decoded, and should be avoided.
2-68

General Optimization Guidelines 2
Transcendental Functions

If an application needs to emulate math functions in software due to
performance or other reasons (see the “Guidelines for Optimizing
Floating-point Code” section), it may be worthwhile to inline math
library calls because the call and the prologue/epilogue involved with
such calls can significantly affect the latency of operations.

Note that transcendental functions are supported only in x87 floating
point, not in Streaming SIMD Extensions or Streaming SIMD
Extensions 2.

Instruction Selection
This section explains how to generate optimal assembly code. The listed
optimizations have been shown to contribute to the overall performance
at the application level on the order of 5%. Performance gain for
individual applications may vary.

The recommendations are prioritized as follows:

• Choose instructions with shorter latencies and fewer µops.

• Use optimized sequences for clearing and comparing registers.

• Enhance register availability.

• Avoid prefixes, especially more than one prefix.

Assembly/Compiler Coding Rule 38. (M impact, H generality) Choose
instructions with shorter latencies and fewer micro-ops. Favor
single-micro-operation instructions.

A compiler may be already doing a good job on instruction selection as
it is. In that case, user intervention usually is not necessary.

Assembly/Compiler Coding Rule 39. (M impact, L generality) Avoid
prefixes, especially multiple non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 40. (M impact, L generality) Do not use
many segment registers.
2-69

IA-32 Intel® Architecture Optimization
On the Pentium M processor, there is only one level of renaming of
segment registers.

Complex Instructions

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid
using complex instructions (for example, enter, leave, or loop) that have
more than four µops and require multiple cycles to decode. Use sequences of
simple instructions instead.

Complex instructions may save architectural registers, but incur a
penalty of 4 µops to set up parameters for the microcode ROM.

Use of the lea Instruction

In many cases, the lea instruction or a sequence of lea, add, sub and
shift instructions can replace constant multiply instructions. The lea
instruction can also be used as a multiple operand addition instruction,
for example:

lea ecx, [eax + ebx + 4 + a]

Using lea in this way may avoids some register usage by not tying up
registers for the operands of arithmetic instructions. It may also save
code space.

The lea instruction is not always as fast on the Pentium 4 processor as it
is on Pentium II and Pentium III processors. This is due to the fact that
the lea instruction can produce a shift µop.

If the lea instruction uses a shift by a constant amount then the latency
of the sequence of µops is shorter if adds are used instead of a shift, and
the lea instruction may be replaced with an appropriate sequence of
µops. This, however, this increases the total number of µops, leading to
a trade-off.
2-70

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 42. (ML impact, M generality) If a lea
instruction using the scaled index is on the critical path, a sequence with adds
may be better. If code density and bandwidth out of the trace cache are the
critical factor, then use the lea instruction.

Use of the inc and dec Instructions

The inc and dec instructions modify only a subset of the bits in the flag
register. This creates a dependence on all previous writes of the flag
register. This is especially problematic when these instructions are on
the critical path because they are used to change an address for a load on
which many other instructions depend.

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc and
dec instructions should be replaced with an add or sub instruction, because
add and sub overwrite all flags, whereas inc and dec do not, therefore
creating false dependencies on earlier instructions that set the flags.

Use of the shift and rotate Instructions

The shift and rotate instructions have a longer latency on the
Pentium 4 processor than on previous processor generations. The
latency of a sequence of adds will be shorter for left shifts of three or
less. Fixed and variable shifts have the same latency.

The rotate by immediate and rotate by register instructions are more
expensive than a shift. The rotate by 1 instruction has the same
latency as a shift.

Assembly/Compiler Coding Rule 44. (ML impact, L generality) Avoid
rotate by register or rotate by immediate instructions. If possible, replace
with a rotate by 1 instruction.
2-71

IA-32 Intel® Architecture Optimization
Integer and Floating-point Multiply

On Pentium 4 and Intel Xeon processors, the integer multiply
operations, mul and imul, are executed in the floating-point unit so
these instructions should not be executed in parallel with a
floating-point instruction. They also incur extra latency due to being
executed on the floating-point unit.

The floating-point multiply instruction (fmul) delays for one cycle if the
immediately preceding cycle executed an fmul. The multiplier can only
accept a new pair of operands every other cycle.

Assembly/Compiler Coding Rule 45. (M impact, MH generality) Replace
integer multiplies by a small constant with two or more add and lea
instructions, especially when these multiplications is part of a dependence
chain.

Integer Divide

Typically, an integer divide is preceded by a cwd or cdq instruction.
Depending on the operand size, divide instructions use DX:AX or
EDX:EAX for the dividend. The cwd or cdq instructions sign-extend AX or
EAX into DX or EDX, respectively. These instructions are denser encoding
than a shift and move would be, but they generate the same number of
µops. If AX or EAX are known to be positive, replace these instructions
with

xor dx, dx

or

xor edx, edx

Assembly/Compiler Coding Rule 46. (ML impact, L generality) Use cdw or
cdq instead of a shift and a move. Replace these with an xor whenever AX
or EAX is known to be positive.
2-72

General Optimization Guidelines 2
Operand Sizes

The Pentium 4 processor does not incur a penalty for partial register
accesses as does the Pentium M processor, since every operation on a
partial register updates the whole register. However, this does mean that
there may be false dependencies between any references to partial
registers.

Example 2-24 demonstrates a series of false and real dependencies
caused by referencing partial registers.

If instructions 4 and 6 (see Example 2-24) are changed to use a movzx
instruction instead of a mov, then the dependences of instructions 4 on 2
(and transitively 1 before it), and instructions 6 on 5 are broken. This

Example 2-24 Dependencies Caused by Referencing Partial Registers

1: add ah, bh

2: add al, 3 ; instruction 2 has a false dependency on 1

3: mov bl, al ; depends on 2, but the dependence is real

4: mov ah, ch ; instruction 4 has a false dependency on 2

5: sar eax, 16 ; this wipes out the al/ah/ax part, so the

 ; result really doesn’t depend on them programatically,

; but the processor must deal with the real dependency on
al/ah/ax

6: mov al, bl ; instruction 6 has a real dependency on 5

7: add ah, 13 ; instruction 7 has a false dependency on 6

8: imul dl ; instruction 8 has a false dependency on 7

; because al is implicitly used

9: mov al, 17 ; instruction 9 has a false dependency on 7

; and a real dependency on 8

10: imul cx : implicitly uses ax and writes to dx, hence

; a real dependency
2-73

IA-32 Intel® Architecture Optimization
creates two independent chains of computation instead of one serial one.
In a tight loop with limited parallelism, the resulting optimization can
yield several percent performance improvement.

Assembly/Compiler Coding Rule 47. (ML impact, L generality) Use simple
instructions that are less than eight bytes in length.

Assembly/Compiler Coding Rule 48. (M impact, MH generality) Avoid
using prefixes to change the size of immediate and displacement.

Long instructions (more than seven bytes) limit the number of decoded
instructions per cycle on the Pentium M processor. Each prefix adds one
byte to the length of instruction, possibly limiting the decoder’s
throughput. In addition, multiple prefixes can only be decoded by the
first decoder. These prefixes also incur a delay when decoded. If
multiple prefixes or a prefix that changes the size of an immediate or
displacement cannot be avoided, schedule them behind instructions that
stall the pipe for some other reason.

Assembly/Compiler Coding Rule 49. (M impact, MH generality) Break
dependences on portions of registers between instructions by operating on
32-bit registers instead of partial registers. For moves, this can be
accomplished with 32-bit moves or by using movzx.

On Pentium M processors, the movsx and movzx instructions both take a
single µop, whether they move from a register or memory. On Pentium
4 processors, the movsx takes an additional µop. This is likely to cause
less delay than the partial register update problem mentioned above, but
the performance gain may vary. If the additional µop is a critical
problem, movsx can sometimes be used as alternative.

Sometimes sign-extended semantics can be maintained by
zero-extending operands. For example, the C code in the following
statements does not need sign extension, nor does it need prefixes for
operand size overrides:

static short int a, b;

if (a == b) {

 . . .

}

2-74

General Optimization Guidelines 2
Code for comparing these 16-bit operands might be:

movzw eax, [a]

movzw ebx, [b]

cmp eax, ebx

These circumstances tend to be common. However, the technique will
not work if the compare is for greater than, less than, greater than or
equal, and so on; or if the values in eax or ebx are to be used in another
operation where sign extension is required.

Assembly/Compiler Coding Rule 50. (M impact, M generality) Try to use
zero extension or operate on 32-bit operands instead of using moves with sign
extension.

The trace cache can be packed more tightly when instructions with
operands that can only be represented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule 51. (ML impact, M generality) Avoid
placing instructions that use 32-bit immediates which cannot be encoded as a
sign-extended 16-bit immediate near each other. Try to schedule µops that
have no immediate immediately before or after µops with 32-bit immediates.

Address Calculations

Use the addressing modes for computing addresses rather than using the
general-purpose computation. Internally, memory reference instructions
can have four operands:

• relocatable load-time constant

• immediate constant

• base register

• scaled index register

In the segmented model, a segment register may constitute an additional
operand in the linear address calculation. In many cases, several integer
instructions can be eliminated by fully using the operands of memory
references.
2-75

IA-32 Intel® Architecture Optimization
Clearing Registers

Pentium 4 processor provides special support to xor, sub, or pxor
operations when executed within the same register. This recognizes that
clearing a register does not depend on the old value of the register. The
xorps and xorpd instructions do not have this special support. They
cannot be used to break dependence chains.

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Use xor,
sub, or pxor to set a register to 0, or to break a false dependence chain
resulting from re-use of registers. In contexts where the condition codes must
be preserved, move 0 into the register instead. This requires more code space
than using xor and sub, but avoids setting the condition codes.

Compares

Use test when comparing a value in a register with zero. Test
essentially ands the operands together without writing to a destination
register. Test is preferred over and because and produces an extra result
register. Test is better than cmp ..., 0 because the instruction size is
smaller.

Use test when comparing the result of a logical and with an immediate
constant for equality or inequality if the register is eax for cases such
as:

if (avar & 8) { }

The test instruction can also be used to detect rollover of modulo a
power of 2. For example, the C code:

if ((avar % 16) == 0) { }

can be implemented using:

test eax, 0x0F

jnz AfterIf
2-76

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 53. (ML impact, M generality) Use the
test instruction instead of and when the result of the logical and is not used.
This saves uops in execution. Use a test if a register with itself instead of a
cmp of the register to zero, this saves the need to encode the zero and saves
encoding space. Avoid comparing a constant to a memory operand. It is
preferable to load the memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a
branch. Because most Intel architecture instructions set the condition
codes as part of their execution, the compare instruction may be
eliminated. Thus the operation can be tested directly by a jcc
instruction. The notable exceptions are mov and lea. In these cases, use
test.

Assembly/Compiler Coding Rule 54. (ML impact, M generality) Eliminate
unnecessary compare with zero instructions by using the appropriate
conditional jump instruction when the flags are already set by a preceding
arithmetic instruction. If necessary, use a test instruction instead of a
compare. Be certain that any code transformations made do not introduce
problems with overflow.

Floating Point/SIMD Operands

In initial Pentium 4 processor implementations, the latency of MMX or
SIMD floating point register to register moves is significant. This can
have implications for register allocation.

Moves that write a portion of a register can introduce unwanted
dependences. The movsd reg, reg instruction writes only the bottom
64 bits of a register, not to all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those
bits are not longer wanted). The dependence inhibits register renaming,
and thereby reduces parallelism.
2-77

IA-32 Intel® Architecture Optimization
Use movapd as an alternative; it writes all 128 bits. Even though this
instruction has a longer latency, the µops for movapd use a different
execution port and this port is more likely to be free. The change can
impact performance. There may be exceptional cases where the latency
matters more than the dependence or the execution port.

Assembly/Compiler Coding Rule 55. (M impact, ML generality) Avoid
introducing dependences with partial floating point register writes, e.g. from
the movsd xmmreg1, xmmreg2 instruction. Use the movapd xmmreg1,
xmmreg2 instruction instead.

The movsd xmmreg, mem instruction writes all 128 bits and breaks a
dependence.

The movupd from memory instruction performs two 64-bit loads, but
requires additional µops to adjust the address and combine the loads
into a single register. This same functionality can be obtained using
movsd xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd xmmreg1,
xmmreg2, which uses fewer µops and can be packed into the trace cache
more effectively. The latter alternative has been found to provide several
percent of performance improvement in some cases. Its encoding
requires more instruction bytes, but this is seldom an issue for the
Pentium 4 processor. The store version of movupd is complex and slow,
so much so that the sequence with two movsd and a unpckhpd should
always be used.

Assembly/Compiler Coding Rule 56. (ML impact, L generality) Instead of
using movupd xmmreg1, mem for a unaligned 128-bit load, use movsd
xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd xmmreg1,
xmmreg2. If the additional register is not available, then use movsd
xmmreg1, mem; movhpd xmmreg1, mem+8.

Assembly/Compiler Coding Rule 57. (M impact, ML generality) Instead of
using movupd mem, xmmreg1 for a store, use movsd mem, xmmreg1;
unpckhpd xmmreg1, xmmreg1; movsd mem+8, xmmreg1 instead.
2-78

General Optimization Guidelines 2
Prolog Sequences

Assembly/Compiler Coding Rule 58. (M impact, MH generality) In
routines that do not need a frame pointer and that do not have called routines
that modify ESP, use ESP as the base register to free up EBP. This optimization
does not apply in the following cases: a routine is called that leaves ESP
modified upon return, for example, alloca; routines that rely on EBP for
structured or C++ style exception handling; routines that use setjmp and
longjmp; routines that use EBP to align the local stack on an 8- or 16-byte
boundary; and routines that rely on EBP debugging.

If you are not using the 32-bit flat model, remember that EBP cannot be
used as a general purpose base register because it references the stack
segment.

Code Sequences that Operate on Memory Operands

Careful management of memory operands can improve performance.
Instructions of the form “OP REG, MEM” can reduce register pressure by
taking advantage of scratch registers that are not available to the
compiler.

Assembly/Compiler Coding Rule 59. (M impact, ML generality) For
arithmetic or logical operations that have their source operand in memory and
the destination operand is in a register, attempt a strategy that initially loads
the memory operand to a register followed by a register to register ALU
operation. Next, attempt to remove redundant loads by identifying loads from
the same memory location. Finally, combine the remaining loads with their
corresponding ALU operations.

The recommended strategy follows:

1. Initially, operate on register operands and use explicit load and
store instructions, minimizing the number of memory accesses by
merging redundant loads.

2. In a subsequent pass, free up the registers that contain the operands
that were in memory for other uses by replacing any detected code
sequence of the form shown in Example 2-25 with OP REG2, MEM1.
2-79

IA-32 Intel® Architecture Optimization
Using memory as a destination operand may further reduce register
pressure at the slight risk of making trace cache packing more difficult.

On the Pentium 4 processor, the sequence of loading a value from
memory into a register and adding the results in a register to memory is
faster than the alternate sequence of adding a value from memory to a
register and storing the results in a register to memory. The first
sequence also uses one less µop than the latter.

Assembly/Compiler Coding Rule 60. (ML impact, M generality) Give
preference to adding a register to memory (memory is the destination) instead
of adding memory to a register. Also, give preference to adding a register to
memory over loading the memory, adding two registers and storing the result.

Assembly/Compiler Coding Rule 61. (M impact, M generality) When an
address of a store is unknown, subsequent loads cannot be scheduled to
execute out of order ahead of the store, limiting the out of order execution of
the processor. When an address of a store is computed by a potentially long
latency operation (such as a load that might miss the data cache) attempt to
reorder subsequent loads ahead of the store.

Instruction Scheduling
Ideally, scheduling or pipelining should be done in a way that optimizes
performance across all processor generations. This section presents
scheduling rules that can improve the performance of your code on the
Pentium 4 processor.

Latencies and Resource Constraints

Assembly/Compiler Coding Rule 62. (M impact, MH generality) Calculate
store addresses as early as possible to avoid having stores block loads.

Example 2-25 Recombining LOAD/OP Code into REG,MEM Form

LOAD reg1, mem1
... code that does not write to reg1...
OP reg2, reg1
... code that does not use reg1 ...
2-80

General Optimization Guidelines 2
Spill Scheduling

The spill scheduling algorithm used by a code generator will be
impacted by the Pentium 4 processor memory subsystem. A spill
scheduling algorithm is an algorithm that selects what values to spill to
memory when there are too many live values to fit in registers. Consider
the code in Example 2-26, where it is necessary to spill either A, B, or C.

For the Pentium 4 processor, using dependence depth information in
spill scheduling is even more important than in previous processors. The
loop- carried dependence in A makes it especially important that A not be
spilled. Not only would a store/load be placed in the dependence chain,
but there would also be a data-not-ready stall of the load, costing further
cycles.

Assembly/Compiler Coding Rule 63. (H impact, MH generality) For small
loops, placing loop invariants in memory is better than spilling loop-carried
dependencies.

A possibly counter-intuitive result: in such a situation it is better to put
loop invariants in memory than in registers, since loop invariants never
have a load blocked by store data that is not ready.

Scheduling Rules for the Pentium 4 Processor Decoder

The Pentium 4 and Intel Xeon processors have a single decoder that can
decode instructions at the maximum rate of one instruction per clock.
Complex instructions must enlist the help of the microcode ROM; see
Chapter 1, “IA-32 Intel® Architecture Processor Family Overview” for
details.

Example 2-26 Spill Scheduling Example Code

LOOP
C := ...
B := ...
A := A + ...
2-81

IA-32 Intel® Architecture Optimization
Because micro-ops are delivered from the trace cache in the common
cases, decoding rules are not required.

Scheduling Rules for the Pentium M Processor Decoder

The Pentium M processor has three decoders, but the decoding rules to
supply micro-ops at high bandwidth are less stringent than those of the
Pentium III processor. This provides an opportunity to build a front-end
tracker in the compiler and try to schedule instructions correctly. The
decoder limitations are as follows:

• The first decoder is capable of decoding one macroinstruction made
up of four or fewer micro-ops In each clock cycle. It can handle any
number of bytes up to the maximum of 15. Multiple prefix
instructions require additional cycles.

• The two additional decoders can each decode one macroinstruction
per clock cycle (assuming the instruction is one micro-op up to
seven bytes in length).

• Instructions composed of more than four micro-ops take multiple
cycles to decode.

Assembly/Compiler Coding Rule 64. (M impact, M generality) Avoid
putting explicit references to ESP in a sequence of stack operations (POP, PUSH,
CALL, RET).

Vectorization
This section provides a brief summary of optimization issues related to
vectorization. Chapters 3, 4 and 5 provide greater detail.

Vectorization is a program transformation which allows special
hardware to perform the same operation of multiple data elements at the
same time. Successive processor generations have provided vector
support through the MMX technology, Streaming SIMD Extensions
technology and Streaming SIMD Extensions 2. Vectorization is a
special case of SIMD, a term defined in Flynn’s architecture taxonomy
to denote a Single Instruction stream capable of operating on Multiple
2-82

General Optimization Guidelines 2
Data elements in parallel. The number of elements which can be
operated on in parallel range from four single-precision floating point
data elements in Streaming SIMD Extensions and two double-precision
floating- point data elements in Streaming SIMD Extensions 2 to
sixteen byte operations in a 128-bit register in Streaming SIMD
Extensions 2. Thus the vector length ranges from 2 to 16, depending on
the instruction extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:

• The compiler may be able to generate SIMD code without
intervention from the user.

• The user inserts pragmas to help the compiler realize that it can
vectorize the code.

• The user may write SIMD code explicitly using intrinsics and C++
classes.

To help enable the compiler to generate SIMD code

• avoid global pointers

• avoid global variables

These may be less of a problem if all modules are compiled
simultaneously, and whole-program optimization is used.

User/Source Coding Rule 16. (H impact, M generality) Use the smallest
possible floating-point or SIMD data type, to enable more parallelism with the
use of a (longer) SIMD vector. For example, use single precision instead of
double precision where possible.

User/Source Coding Rule 17. (M impact, ML generality) Arrange the
nesting of loops so that the innermost nesting level is free of inter-iteration
dependencies. Especially avoid the case where the store of data in an earlier
iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions are primarily
targeted for 16-bit operands. Not all of the operators are supported for
32 bits, meaning that some source code will not be able to be vectorized
at all unless smaller operands are used.
2-83

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of
conditional branches inside loops and consider using SSE instructions to
eliminate branches.

User/Source Coding Rule 19. (M impact, ML generality) Keep induction
(loop) variables expressions simple.

Miscellaneous
This section explains separate guidelines that do not belong to any
category described above.

NOPs

Code generators generate a no-operation (NOP) to align instructions.
The NOPs are recommended for the following operations:

• 1-byte: xchg EAX, EAX

• 2-byte: mov reg, reg

• 3-byte: lea reg, 0 (reg) (8-bit displacement)

• 6-byte: lea reg, 0 (reg) (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine
except to advance the EIP. Because NOPs require hardware resources to
decode and execute, use the least number of NOPs to achieve the
desired padding.

The one byte NOP, xchg EAX,EAX, has special hardware support.
Although it still consumes a µop and its accompanying resources, the
dependence upon the old value of EAX is removed. Therefore, this µop
can be executed at the earliest possible opportunity, reducing the
number of outstanding instructions. This is the lowest cost NOP
possible.
2-84

General Optimization Guidelines 2
The other NOPs have no special hardware support. Their input and
output registers are interpreted by the hardware. Therefore, a code
generator should arrange to use the register containing the oldest value
as input, so that the NOP will dispatch and release RS resources at the
earliest possible opportunity.

Try to observe the following NOP generation priority:

• Select the smallest number of NOPs and pseudo-NOPs to provide
the desired padding.

• Select NOPs that are least likely to execute on slower execution unit
clusters.

• Select the register arguments of NOPs to reduce dependencies.

Summary of Rules and Suggestions
To summarize the rules and suggestions specified in this chapter, be
reminded that coding recommendations are ranked in importance
according to these two criteria:

• Local impact (referred to earlier as “impact”) – the difference that a
recommendation makes to performance for a given instance.

• Generality – how frequently such instances occur across all
application domains.

Again, understand that this ranking is intentionally very approximate,
and can vary depending on coding style, application domain, and other
factors. Throughout the chapter you observed references to these criteria
using the high, medium and low priorities for each recommendation. In
places where there was no priority assigned, the local impact or
generality has been determined not to be applicable.

The sections that follow summarize the sets of rules and tuning
suggestions referenced in the manual.
2-85

IA-32 Intel® Architecture Optimization
User/Source Coding Rules

User/Source Coding Rule 1. (L impact, L generality) If an indirect branch
has two or more common taken targets, and at least one of those targets are
correlated with branch history leading up to the branch, then convert the
indirect branch into a tree where one or more indirect branches are preceded
by conditional branches to those targets. Apply this “peeling” procedure to the
common target of an indirect branch that correlates to branch history. 2-22

User/Source Coding Rule 2. (H impact, M generality) Pad data structures
defined in the source code so that every data element is aligned to a natural
operand size address boundary. If the operands are packed in a SIMD
instruction, align to the packed element size (64- or 128-bit). 2-38

User/Source Coding Rule 3. (M impact, L generality) Beware of false
sharing within a cache line (64 bytes) for both Pentium 4, Intel Xeon, and
Pentium M processors; and within a sector of 128 bytes on Pentium 4 and Intel
Xeon processors. 2-41

User/Source Coding Rule 4. (H impact, ML generality) Consider using a
special memory allocation library to avoid aliasing. 2-45

User/Source Coding Rule 5. (M impact, M generality) When padding
variable declarations to avoid aliasing, the greatest benefit comes from
avoiding aliasing on second-level cache lines, suggesting an offset of 128 bytes
or more. 2-45

User/Source Coding Rule 6. (H impact, H generality) Optimization
techniques such as blocking, loop interchange, loop skewing and packing are
best done by the compiler. Optimize data structures to either fit in one-half of
the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops. 2-49

User/Source Coding Rule 7. (M impact, ML generality) If there is a blend
of reads and writes on the bus, changing the code to separate these bus
transactions into read phases and write phases can help performance. Note,
however, that the order of read and write operations on the bus are not the
same as they appear in the program. 2-49

User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch
generation in your compile. Note: As the compiler’s prefetch implementation
improves, it is expected that its prefetch insertion will outperform manual
2-86

General Optimization Guidelines 2
insertion except for code tuning experts, but this is not always the case. If the
compiler does not support software prefetching, intrinsics or inline assembly
may be used to manually insert prefetch instructions. 2-53

User/Source Coding Rule 9. (M impact, M generality) Enable the
compiler’s use of SSE2 instructions with appropriate switches. 2-54

User/Source Coding Rule 10. (H impact, ML generality) Make sure your
application stays in range to avoid denormal values, underflows. 2-55

User/Source Coding Rule 11. (M impact, ML generality) Do not use double
precision unless necessary. Set the precision control (PC) field in the x87 FPU
control word to “Single Precision”. This allows single precision (32-bit)
computation to complete faster on some operations (for example, divides due
to early out). However, be careful of introducing more than a total of two
values for the floating point control word, or there will be a large performance
penalty. See “Floating-point Modes”. 2-55

User/Source Coding Rule 12. (H impact, ML generality) Use fast
float-to-int routines. If coding these routines, use the cvttss2si,
cvttsd2si instructions if coding with Streaming SIMD Extensions 2. 2-55

User/Source Coding Rule 13. (M impact, ML generality) Break dependence
chains where possible. 2-55

User/Source Coding Rule 14. (M impact, ML generality) Usually, math
libraries take advantage of the transcendental instructions (for example,
fsin) when evaluating elementary functions. If there is no critical need to
evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider alternate, software-based approach, such as
look-up-table-based algorithm using interpolation techniques. It is possible to
improve transcendental performance with these techniques by choosing the
desired numeric precision, the size of the look-up tableland taking advantage
of the parallelism of the Streaming SIMD Extensions and the Streaming SIMD
Extensions 2 instructions. 2-56

User/Source Coding Rule 15. (H impact, ML generality) Denormalized
floating-point constants should be avoided as much as possible. 2-57
2-87

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 16. (H impact, M generality) Use the smallest
possible floating-point or SIMD data type, to enable more parallelism with the
use of a (longer) SIMD vector. For example, use single precision instead of
double precision where possible. 2-82

User/Source Coding Rule 17. (M impact, ML generality) Arrange the
nesting of loops so that the innermost nesting level is free of inter-iteration
dependencies. Especially avoid the case where the store of data in an earlier
iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence. 2-83

User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of
conditional branches inside loops and consider using SSE instructions to
eliminate branches. 2-83

User/Source Coding Rule 19. (M impact, ML generality) Keep loop
induction variables expressions simple. 2-83
2-88

General Optimization Guidelines 2
Assembly/Compiler Coding Rules

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arran
ge code to make basic blocks contiguous to eliminate unnecessary
branches. 2-14

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use
the setcc and cmov instructions to eliminate unpredictable conditional
branches where possible. Do not do this for predictable branches. Do not
use these instructions to eliminate all unpredictable conditional branches,
because using these instructions will incur execution overhead due to
executing both paths of a conditional branch. In addition, converting
conditional branches to cmovs or setcc trades of control flow
dependence for data dependence and restricts the capability of the out of
order engine. When tuning, note that all IA-32 based processors have very
high branch prediction rates. Consistently mispredicted are rare. Use
these instructions only if the increase in computation time is less than the
expected cost of a mispredicted branch. 2-14

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange
code to be consistent with the static branch prediction algorithm: make
the fall-through code following a conditional branch be the likely target
for a branch with a forward target, and make the fall-through code
following a conditional branch be the unlikely target for a branch with a
backward target. 2-17

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Nea
r calls must be matched with near returns, and far calls must be matched
with far returns. Pushing the return address on the stack and jumping to
the routine to be called is not recommended since it creates a mismatch in
calls and returns. 2-20

Assembly/Compiler Coding Rule 5. (MH impact, MH generality)
Selectively inline a function where doing so decreases code size, or if the
function is small and the call site is frequently executed. 2-20

Assembly/Compiler Coding Rule 6. (H impact, M generality) Do not
inline a function if doing so increases the working set size beyond what
will fit in the trace cache. 2-20
2-89

IA-32 Intel® Architecture Optimization
Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If
there are more than 16 nested calls and returns in rapid succession,
consider transforming the program, for example, with inline, to reduce the
call depth. 2-20

Assembly/Compiler Coding Rule 8. (ML impact, ML generality)
Favor inlining small functions that contain branches with poor prediction
rates. If a branch misprediction results in a RETURN being prematurely
predicted as taken, a performance penalty may be incurred. 2-20

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last
statement in a function is a call to another function, consider converting
the call to a jump. This will save the call/ return overhead as well as an
entry in the return stack buffer. 2-20

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not
put more than four branches in 16-byte chunks. 2-20

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not
put more than two end loop branches in a 16-byte chunk. 2-21

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the
average number of total iterations is less than or equal to 100, use a
forward branch to exit the loop. 2-21

Assembly/Compiler Coding Rule 13. (M impact, L generality) When
indirect branches are present, try to put the most likely target of an
indirect branch immediately following that indirect branch. Alternatively,
if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2
instruction, which will stop the processor from decoding down the
fall-through path. 2-21

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll
small loops until the overhead of the branch and the induction variable
accounts, generally, for less than about 10% of the execution time of the
loop. 2-25

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid
unrolling loops excessively, as this may thrash the trace cache or
instruction cache. 2-25
2-90

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll
loops that are frequently executed and that have a predictable number of
iterations to reduce the number of iterations to 16 or fewer, unless this
increases code size so that the working set no longer fits in the trace
cache. If the loop body contains more than one conditional branch, then
unroll so that the number of iterations is 16/(# conditional branches).
2-25

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align
data on natural operand size address boundaries. If the data will be
accesses with vector instruction loads and stores, align the data on
16-byte boundaries. 2-28

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass
parameters in registers instead of on the stack where possible. Passing
arguments on the stack is a case of store followed by a reload. While this
sequence is optimized in IA-32 processors by providing the value to the
load directly from the memory order buffer without the need to access the
data cache, floating point values incur a significant latency in forwarding.
Passing floating point argument in (preferably XMM) registers should
save this long latency operation. 2-31

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load
that forwards from a store must have the same address start point and
therefore the same alignment as the store data. 2-32

Assembly/Compiler Coding Rule 20. (H impact, M generality) The
data of a load which is forwarded from a store must be completely
contained within the store data. 2-32

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is
necessary to extract a non-aligned portion of stored data, read out the
smallest aligned portion that completely contains the data and shift/mask
the data as necessary. 2-33

Assembly/Compiler Coding Rule 22. (MH impact, ML generality)
Avoid several small loads after large stores to the same area of memory by
using a single large read and register copies as needed. 2-33
2-91

IA-32 Intel® Architecture Optimization
Assembly/Compiler Coding Rule 23. (H impact, MH generality)
Where it is possible to do so without incurring other penalties, prioritize
the allocation of variables to registers, as in register allocation and for
parameter passing to minimize the likelihood and impact of store-
forwarding problems. Try not to store-forward data generated from a long
latency instruction, e.g. mul, div. Avoid store-forwarding data for
variables with the shortest store-load distance. Avoid store-forwarding
data for variables with many and/or long dependence chains, and
especially avoid including a store forward on a loop-carried dependence
chain. 2-37

Assembly/Compiler Coding Rule 24. (H impact, M generality) Try to
arrange data structures such that they permit sequential access. 2-40

Assembly/Compiler Coding Rule 25. (H impact, M generality) If
64-bit data is ever passed as a parameter or allocated on the stack, make
sure that the stack is aligned to an 8-byte boundary. 2-41

Assembly/Compiler Coding Rule 26. (H impact, MH generality) Lay
out data or order computation to avoid having cache lines that have linear
addresses that are a multiple of 64 KB apart in the same working set.
Avoid having more than 4 cache lines that are some multiple of 2 KB apart
in the same first-level cache working set, and avoid having more than
eight cache lines that are some multiple of 4 KB apart in the same
first-level cache working set. Avoid having more than 8 cache lines that
are some multiple of 64 KB apart in the same second-level cache working
set. Avoid having a store followed by a non-dependent load with addresses
that differ by a multiple of 4 KB. 2-44

Assembly/Compiler Coding Rule 27. (M impact, L generality) If
(hopefully read-only) data must occur on the same page as code, avoid
placing it immediately after an indirect jump. For example, follow an
indirect jump with its mostly likely target, and place the data after an
unconditional branch. 2-46

Assembly/Compiler Coding Rule 28. (H impact, L generality) Always
put code and data on separate pages. Avoid self-modifying code wherever
possible. If code is to be modified, try to do it all at once and make sure
the code that performs the modifications and the code being modified are
on separate 4 KB pages or on separate aligned 1 KB subpages. 2-46
2-92

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 29. (H impact, L generality) If an
inner loop writes to more than four arrays, (four distinct cache lines),
apply loop fission to break up the body of the loop such that only four
arrays are being written to in each iteration of each of the resulting loops.
2-47

Assembly/Compiler Coding Rule 30. (M impact, H generality) All
branch targets should be 16-byte aligned. 2-54

Assembly/Compiler Coding Rule 31. (M impact, H generality) If the
body of a conditional is not likely to be executed, it should be placed in
another part of the program. If it is highly unlikely to be executed and
code locality is an issue, the body of the conditional should be placed on a
different code page. 2-54

Assembly/Compiler Coding Rule 32. (H impact, M generality)
Minimize changes to bits 8-12 of the floating point control word.
Changing among more than two values (each value being a combination
of these bits: precision, rounding and infinity control, and the rest of bits
in FCW) leads to delays that are on the order of the pipeline depth. 2-60

Assembly/Compiler Coding Rule 33. (H impact, L generality)
Minimize the number of changes to the rounding mode. Do not use
changes in the rounding mode to implement the floor and ceiling functions
if this involves a total of more than two values of the set of rounding,
precision and infinity bits. 2-63

Assembly/Compiler Coding Rule 34. (H impact, L generality)
Minimize the number of changes to the precision mode. 2-64

Assembly/Compiler Coding Rule 35. (M impact, M generality) Use
fxch only where necessary to increase the effective name space. 2-65

Assembly/Compiler Coding Rule 36. (M impact, M generality) Use
Streaming SIMD Extensions 2 or Streaming SIMD Extensions unless you
need an x87 feature. Most SSE2 arithmetic operations have shorter
latency then their X87 counterparts and they eliminate the overhead
associated with the management of the X87 register stack. 2-66
2-93

IA-32 Intel® Architecture Optimization
Assembly/Compiler Coding Rule 37. (M impact, L generality) Try to
use 32-bit operands rather than 16-bit operands for fild. However, do
not do so at the expense of introducing a store forwarding problem by
writing the two halves of the 32-bit memory operand separately. 2-67

Assembly/Compiler Coding Rule 38. (M impact, H generality)
Choose instructions with shorter latencies and fewer micro-ops. Favor
single micro-operation instructions. 2-68

Assembly/Compiler Coding Rule 39. (M impact, L generality) Avoid
prefixes, especially multiple non-0F-prefixed opcodes. 2-68

Assembly/Compiler Coding Rule 40. (M impact, L generality) Do not
use many segment registers. 2-68

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid
using complex instructions (for example, enter, leave, or loop) that
generally have more than four µops and require multiple cycles to decode.
Use sequences of simple instructions instead. 2-69

Assembly/Compiler Coding Rule 42. (ML impact, M generality) If a
lea instruction using the scaled index is on the critical path, a sequence
with adds may be better. If code density and bandwidth out of the trace
cache are the critical factor, then use the lea instruction. 2-70

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc
and dec instructions should be replaced with an add or sub instruction,
because add and sub overwrite all flags, whereas inc and dec do not,
therefore creating false dependencies on earlier instructions that set the
flags. 2-70

Assembly/Compiler Coding Rule 44. (ML impact, L generality) Avoid
rotate by register or rotate by immediate instructions. If possible,
replace with a rotate by 1 instruction. 2-70

Assembly/Compiler Coding Rule 45. (M impact, MH generality)
Replace integer multiplies by a small constant with two or more add and
lea instructions, especially when these multiplications is part of a
dependence chain. 2-71

Assembly/Compiler Coding Rule 46. (ML impact, L generality) Use
cdw or cdq instead of a shift and a move. Replace these with an xor
whenever AX or EAX is known to be positive. 2-71
2-94

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 47. (ML impact, L generality) Use
simple instructions that are less than eight bytes in length. 2-73

Assembly/Compiler Coding Rule 48. (M impact, MH generality)
Avoid using prefixes to change the size of immediate and displacement.
2-73

Assembly/Compiler Coding Rule 49. (M impact, MH generality) Brea
k dependences on portions of registers between instructions by operating
on 32-bit registers instead of partial registers. For moves, this can be
accomplished with 32-bit moves or by using movzx. 2-73

Assembly/Compiler Coding Rule 50. (M impact, M generality) Try to
use zero extension or operate on 32-bit operands instead of using moves
with sign extension. 2-74

Assembly/Compiler Coding Rule 51. (ML impact, M generality) Avoid
placing instructions that use 32-bit immediates which cannot be encoded
as a sign-extended 16-bit immediate near each other. Try to schedule µops
that have no immediate immediately before or after µops with 32-bit
immediates. 2-74

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Use
xor, sub, or pxor to set a register to 0, or to break a false dependence
chain resulting from re-use of registers. In contexts where the condition
codes must be preserved, move 0 into the register instead. This requires
more code space than using xor and sub, but avoids setting the condition
codes. 2-75

Assembly/Compiler Coding Rule 53. (ML impact, M generality) Use
the test instruction instead of and when the result of the logical and is
not used. This saves uops in execution. Use a test if a register with itself
instead of a cmp of the register to zero, this saves the need to encode the
zero and saves encoding space. Avoid comparing a constant to a memory
operand. It is preferable to load the memory operand and compare the
constant to a register. 2-76

Assembly/Compiler Coding Rule 54. (ML impact, M generality)
Eliminate unnecessary compare with zero instructions by using the
appropriate conditional jump instruction when the flags are already set by
2-95

IA-32 Intel® Architecture Optimization
a preceding arithmetic instruction. If necessary, use a test instruction
instead of a compare. Be certain that any code transformations made do
not introduce problems with overflow. 2-76

Assembly/Compiler Coding Rule 55. (M impact, ML generality) Avoid
introducing dependences with partial floating point register writes, e.g.
from the movsd xmmreg1, xmmreg2 instruction. Use the movapd
xmmreg1, xmmreg2 instruction instead. 2-77

Assembly/Compiler Coding Rule 56. (ML impact, L generality) Inste
ad of using movupd xmmreg1, mem for a unaligned 128-bit load, use
movsd xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd
xmmreg1, xmmreg2. If the additional register is not available, then use
movsd xmmreg1, mem; movhpd xmmreg1, mem+8. 2-77

Assembly/Compiler Coding Rule 57. (M impact, ML generality) Inste
ad of using movupd mem, xmmreg1 for a store, use movsd mem,
xmmreg1; unpckhpd xmmreg1, xmmreg1; movsd mem+8,

xmmreg1 instead. 2-77

Assembly/Compiler Coding Rule 58. (M impact, MH generality) In
routines that do not need a frame pointer and that do not have called
routines that modify ESP, use ESP as the base register to free up EBP. This
optimization does not apply in the following cases: a routine is called that
leaves ESP modified upon return, for example, alloca; routines that rely
on EBP for structured or C++ style exception handling; routines that use
setjmp and longjmp; routines that use EBP to align the local stack on
an 8- or 16-byte boundary; and routines that rely on EBP debugging. 2-78

Assembly/Compiler Coding Rule 59. (M impact, ML generality) For
arithmetic or logical operations that have their source operand in memory
and the destination operand is in a register, attempt a strategy that
initially loads the memory operand to a register followed by a register to
register ALU operation. Next, attempt to remove redundant loads by
identifying loads from the same memory location. Finally, combine the
remaining loads with their corresponding ALU operations. 2-78
2-96

General Optimization Guidelines 2
Assembly/Compiler Coding Rule 60. (ML impact, M generality) Give
preference to adding a register to memory (memory is the destination)
instead of adding memory to a register. Also, give preference to adding a
register to memory over loading the memory, adding two registers and
storing the result. 2-79

Assembly/Compiler Coding Rule 61. (M impact, M generality) When
an address of a store is unknown, subsequent loads cannot be scheduled to
execute out of order ahead of the store, limiting the out of order execution
of the processor. When an address of a store is computed by a potentially
long latency operation (such as a load that might miss the data cache)
attempt to reorder subsequent loads ahead of the store. 2-79

Assembly/Compiler Coding Rule 62. (M impact, MH generality)
Calculate store addresses as early as possible to avoid having stores block
loads. 2-80

Assembly/Compiler Coding Rule 63. (H impact, MH generality) For
small loops, placing loop invariants in memory is better than spilling
loop-carried dependencies. 2-80

Assembly/Compiler Coding Rule 64. (M impact, M generality) Avoid
putting explicit references to ESP in a sequence of stack operations (POP,
PUSH, CALL, RET). 2-81

Tuning Suggestions

Tuning Suggestion 1. Rarely, a performance problem may be noted due
to executing data on a code page as instructions. The only condition
where this is likely to happen is following an indirect branch that is not
resident in the trace cache. If a performance problem is clearly due to this
problem, try moving the data elsewhere, or inserting an illegal opcode or
a pause instruction immediately following the indirect branch. The latter
two alternative may degrade performance in some circumstances. 2-46

Tuning Suggestion 2. If a load is found to miss frequently, insert a
prefetch before it or, if issue bandwidth is a concern, move the load up to
execute earlier. 2-53
2-97

IA-32 Intel® Architecture Optimization
2-98

3
Coding for SIMD Architectures
Intel Pentium 4, Intel Xeon and Pentium M processors include support
for Streaming SIMD Extensions 2, Streaming SIMD Extensions
technology, and MMX technology. These single-instruction,
multiple-data (SIMD) technologies enable the development of advanced
multimedia, signal processing, and modeling applications.

To take advantage of the performance opportunities presented by these
new capabilities, take into consideration the following:

• Ensure that the processor supports MMX technology, Streaming
SIMD Extensions (SSE), and Streaming SIMD Extensions 2
(SSE2).

• Ensure that the operating system supports MMX technology and
SSE (OS support for SSE2 is the same as OS support for SSE).

• Employ all of the optimization and scheduling strategies described
in this book.

• Use stack and data alignment techniques to keep data properly
aligned for efficient memory use.

• Utilize the cacheability instructions offered by SSE and SSE2.
3-1

IA-32 Intel® Architecture Optimization
Checking for Processor Support of SIMD
Technologies

This section shows how to check whether a processor supports MMX
technology, SSE, or SSE2.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired
SIMD technology is available, the appropriate DLLs can be
installed.

2. Check for the SIMD technology during program execution and
install the proper DLLs at runtime. This is effective for programs
that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines;
versions that use SIMD technology and versions that do not. Check
for SIMD technology during program execution and run the
appropriate versions of the routines. This is especially effective for
programs that may be executed on different machines.

Checking for MMX Technology Support

To check if MMX technology is available on your system, use cpuid to
and check the feature flags in the edx register. If cpuid returns bit 23
set to 1 in the feature flags, the processor supports MMX technology.

Use the code segment in Example 3-1 to test for the existence of MMX
technology.
3-2

Coding for SIMD Architectures 3
For more information on cpuid see, Intel Processor Identification with
CPUID Instruction, order number 241618.

Checking for Streaming SIMD Extensions Support

Checking for support of Streaming SIMD Extensions (SSE) on your
processor is like checking for MMX technology. However, you must
also check whether your operating system (OS) supports SSE. This is
because the OS needs to manage saving and restoring the state
introduced by SSE for your application to properly function.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the cpuid instruction.

2. Check the feature bits of cpuid for SSE existence.

3. Check for OS support for SSE.

Example 3-1 Identification of MMX Technology with cpuid

…identify existence of cpuid instruction
… ;

… ; identify signature is genuine intel
… ;

mov eax, 1 ; request for feature flags
cpuid ; 0Fh, 0A2h cpuid instruction
test edx, 00800000h ; is MMX technology bit (bit

; 23)in feature flags equal to 1
jnz Found
3-3

IA-32 Intel® Architecture Optimization
Example 3-2 shows how to find the SSE feature bit (bit 25) in the cpuid
feature flags.

To find out whether the operating system supports SSE, execute an SSE
instruction and trap for an exception if one occurs. Catching the
exception in a simple try/except clause (using structured exception
handling in C++) and checking whether the exception code is an invalid
opcode will give you the answer. See Example 3-3.

Example 3-2 Identification of SSE with cpuid

…identify existence of cpuid instruction

… ; identify signature is genuine intel

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h cpuid instruction

test EDX, 002000000h ; bit 25 in feature flags equal to 1

jnz Found

Example 3-3 Identification of SSE by the OS

 bool OSSupportCheck() {

_try {

__asm xorps xmm0, xmm0 ;Streaming SIMD Extension

}

_except(EXCEPTION_EXECUTE_HANDLER) {

if (_exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE not supported */

return (false);

}

/* SSE are supported by OS */

return (true);

}

3-4

Coding for SIMD Architectures 3
Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 is like checking for SSE support. You
must also check whether your operating system (OS) supports SSE. The
OS requirements for SSE2 Support are the same as the requirements for
SSE.

To check whether your system supports SSE2, follow these steps:

1. Check that your processor has the cpuid instruction.

2. Check the feature bits of cpuid for SSE2 technology existence.

3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE2 feature bit (bit 25) in the
cpuid feature flags.

SSE2 requires the same support from the operating system as SSE. To
find out whether the operating system supports SSE2, execute an SSE2
instruction and trap for an exception if one occurs. Catching the
exception in a simple try/except clause (using structured exception
handling in C++) and checking whether the exception code is an invalid
opcode will give you the answer. See Example 3-3.

Example 3-4 Identification of SSE2 with cpuid

…identify existence of cpuid instruction

… ; identify signature is genuine intel

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h cpuid instruction

test EDX, 004000000h ; bit 26 in feature flags equal to 1

jnz Found
3-5

IA-32 Intel® Architecture Optimization
Considerations for Code Conversion to SIMD
Programming

The VTune Performance Enhancement Environment CD provides tools
to aid in the evaluation and tuning. But before implementing them, you
need answers to the following questions:

1. Will the current code benefit by using MMX technology, Streaming
SIMD Extensions, or Streaming SIMD Extensions 2?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision is needed?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 3-1 provides a flowchart for the process of converting code to
MMX technology, Streaming SIMD Extensions, or Streaming SIMD
Extensions 2.

Example 3-5 Identification of SSE2 by the OS

 bool OSSupportCheck() {

_try {

__asm xorpd xmm0, xmm0 ; SSE2}

_except(EXCEPTION_EXECUTE_HANDLER) {

if _exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE2not supported */

return (false);

}

/* SSE2 are supported by OS */

return (true);

}

3-6

Coding for SIMD Architectures 3
Figure 3-1 Converting to Streaming SIMD Extensions Chart

OM15156

Code benefits
from SIMD

STOP

Identify Hot Spots in Code

Integer or
floating-point?

Yes

Floating Point

W hy FP?

Can convert
to Integer?

Range or
Precision

If possible, re-arrange data
for SIMD efficiency

Integer

Change to use
SIMD Integer

Yes

Change to use
Single Precision

Can convert to
Single-precision?

Yes

No

No

Align data structures

Convert to code to use
SIMD Technologies

Follow general coding
guidelines and SIMD

coding guidelines

Use memory optimizations
and prefetch if appropriate

Schedule instructions to
optimize performance

No

Performance
3-7

IA-32 Intel® Architecture Optimization
To use any of the SIMD technologies optimally, you must evaluate the
following situations in your code:

• fragments that are computationally intensive

• fragments that are executed often enough to have an impact on
performance

• fragments that require integer computations with little
data-dependent control flow

• fragments that require floating-point computations

• fragments that require help in using the cache hierarchy efficiently.

Identifying Hot Spots

To optimize performance, use the VTune Performance Analyzer to find
sections of code that occupy most of the computation time. Such
sections are called the hotspots. For details on the VTune analyzer, see
“Application Performance Tools” in Appendix A.

The VTune analyzer provides a hotspots view of a specific module to
help you identify sections in your code that take the most CPU time and
that have potential performance problems. For more explanation, see
section “Sampling” in Appendix A, which includes an example of a
hotspots report. The hotspots view helps you identify sections in your
code that take the most CPU time and that have potential performance
problems.

The VTune analyzer enables you to change the view to show hotspots
by memory location, functions, classes, or source files. You can
double-click on a hotspot and open the source or assembly view for the
hotspot and see more detailed information about the performance of
each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all
levels of your source code and can also provide advice at the assembly
language level. The code coach analyzes and identifies opportunities for
better performance of C/C++, Fortran and Java* programs, and suggests
3-8

Coding for SIMD Architectures 3
specific optimizations. Where appropriate, the coach displays
pseudo-code to suggest the use of highly optimized intrinsics and
functions in the Intel® Performance Library Suite. Because VTune
analyzer is designed specifically for all of the Intel architecture
(IA)-based processors, including the Pentium 4 processor, it can offer
these detailed approaches to working with IA. See “Code Optimization
Options” in Appendix A for more details and example of a code coach
advice.

Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be
time-consuming and difficult. Likely candidates for conversion are
applications that are highly computation intensive, such as the
following:

• speech compression algorithms and filters

• speech recognition algorithms

• video display and capture routines

• rendering routines

• 3D graphics (geometry)

• image and video processing algorithms

• spatial (3D) audio

• physical modeling (graphics, CAD)

• workstation applications

• encryption algorithms

Generally, good candidate code is code that contains small-sized
repetitive loops that operate on sequential arrays of integers of 8 or 16
bits for MMX technology, single-precision 32-bit floating-point data for
SSE technology, or double precision 64-bit floating-point data for SSE2
(integer and floating-point data items should be sequential in memory).
3-9

IA-32 Intel® Architecture Optimization
The repetitiveness of these loops incurs costly application processing
time. However, these routines have potential for increased performance
when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you
must evaluate what should be done to determine whether the current
algorithm or a modified one will ensure the best performance.

Coding Techniques
The SIMD features of SSE2, SSE, and MMX technology require new
methods of coding algorithms. One of them is vectorization.
Vectorization is the process of transforming sequentially-executing, or
scalar, code into code that can execute in parallel, taking advantage of the
SIMD architecture parallelism. This section discusses the coding
techniques available for an application to make use of the SIMD
architecture.

To vectorize your code and thus take advantage of the SIMD
architecture, do the following:

• Determine if the memory accesses have dependencies that would
prevent parallel execution.

• “Strip-mine” the loop to reduce the iteration count by the length of
the SIMD operations (for example, four for single-precision
floating-point SIMD, eight for 16-bit integer SIMD on the XMM
registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of
this chapter. These sections also discuss enabling automatic
vectorization via the Intel C++ Compiler.
3-10

Coding for SIMD Architectures 3
Coding Methodologies

Software developers need to compare the performance improvement
that can be obtained from assembly code versus the cost of those
improvements. Programming directly in assembly language for a target
platform may produce the required performance gain, however,
assembly code is not portable between processor architectures and is
expensive to write and maintain.

Performance objectives can be met by taking advantage of the different
SIMD technologies using high-level languages as well as assembly. The
new C/C++ language extensions designed specifically for SSE2, SSE,
and MMX technology help make this possible.

Figure 3-2 illustrates the trade-offs involved in the performance of
hand- coded assembly versus the ease of programming and portability.

Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance
Trade-offs

P
er

fo
rm

an
ce

Ease of Programming/Portability

InstrinsicsAssembly

C/C++/Fortran

Automatic
Vecorization
3-11

IA-32 Intel® Architecture Optimization
The examples that follow illustrate the use of coding adjustments to
enable the algorithm to benefit from the SSE. The same techniques may
be used for single-precision floating-point, double-precision
floating-point, and integer data under SSE2, SSE, and MMX
technology.

As a basis for the usage model discussed in this section, consider a
simple loop shown in Example 3-6.

Note that the loop runs for only four iterations. This allows a simple
replacement of the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data
alignment on the 16-byte boundary, all examples in this chapter assume
that the arrays passed to the routine, a, b, c, are aligned to 16-byte
boundaries by a calling routine. For the methods to ensure this
alignment, please refer to the application notes for the Pentium 4
processor available at http://developer.intel.com.

The sections that follow provide details on the coding methodologies:
inlined assembly, intrinsics, C++ vector classes, and automatic
vectorization.

Example 3-6 Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

 int i;

 for (i = 0; i < 4; i++) {

 c[i] = a[i] + b[i];

 }

}

3-12

Coding for SIMD Architectures 3
Assembly

Key loops can be coded directly in assembly language using an
assembler or by using inlined assembly (C-asm) in C/C++ code. The
Intel compiler or assembler recognize the new instructions and registers,
then directly generate the corresponding code. This model offers the
opportunity for attaining greatest performance, but this performance is
not portable across the different processor architectures.

Example 3-7 shows the Streaming SIMD Extensions inlined assembly
encoding.

Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style
coding instead of assembly language. Intel has defined three sets of
intrinsic functions that are implemented in the Intel® C++ Compiler to
support the MMX technology, Streaming SIMD Extensions and
Streaming SIMD Extensions 2. Four new C data types, representing
64-bit and 128-bit objects are used as the operands of these intrinsic
functions. __m64 is used for MMX integer SIMD, __m128 is used for
single-precision floating-point SIMD, __m128i is used for Streaming

Example 3-7 Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{

 __asm {

 mov eax, a

 mov edx, b

 mov ecx, c

 movaps xmm0, XMMWORD PTR [eax]

 addps xmm0, XMMWORD PTR [edx]

 movaps XMMWORD PTR [ecx], xmm0

 }

}

3-13

IA-32 Intel® Architecture Optimization
SIMD Extensions 2 integer SIMD and __m128d is used for double
precision floating-point SIMD. These types enable the programmer to
choose the implementation of an algorithm directly, while allowing the
compiler to perform register allocation and instruction scheduling where
possible. These intrinsics are portable among all Intel architecture-based
processors supported by a compiler. The use of intrinsics allows you to
obtain performance close to the levels achievable with assembly. The
cost of writing and maintaining programs with intrinsics is considerably
less. For a detailed description of the intrinsics and their use, refer to the
Intel C++ Compiler User’s Guide.

Example 3-8 shows the loop from Example 3-4 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions
assembly code. The xmmintrin.h header file in which the prototypes
for the intrinsics are defined is part of the Intel C++ Compiler included
with the VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are
based on the __m64 data type to represent the contents of an mm register.
You can specify values in bytes, short integers, 32-bit values, or as a
64-bit object.

Example 3-8 Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}

3-14

Coding for SIMD Architectures 3
The intrinsic data types, however, are not a basic ANSI C data type, and
therefore you must observe the following usage restrictions:

• Use intrinsic data types only on the left-hand side of an assignment
as a return value or as a parameter. You cannot use it with other
arithmetic expressions (for example, “+”, “>>”).

• Use intrinsic data type objects in aggregates, such as unions to
access the byte elements and structures; the address of an __m64
object may be also used.

• Use intrinsic data type data only with the MMX technology
intrinsics described in this guide.

For complete details of the hardware instructions, see the Intel
Architecture MMX Technology Programmer’s Reference Manual. For
descriptions of data types, see the Intel Architecture Software
Developer's Manual, Volume 2: Instruction Set Reference Manual.

Classes

A set of C++ classes has been defined and available in Intel C++
Compiler to provide both a higher-level abstraction and more flexibility
for programming with MMX technology, Streaming SIMD Extensions
and Streaming SIMD Extensions 2. These classes provide an
easy-to-use and flexible interface to the intrinsic functions, allowing
developers to write more natural C++ code without worrying about
which intrinsic or assembly language instruction to use for a given
operation. Since the intrinsic functions underlie the implementation of
these C++ classes, the performance of applications using this
methodology can approach that of one using the intrinsics. Further
details on the use of these classes can be found in the Intel C++ Class
Libraries for SIMD Operations User’s Guide, order number 693500.

Example 3-9 shows the C++ code using a vector class library. The
example assumes the arrays passed to the routine are already aligned to
16-byte boundaries.
3-15

IA-32 Intel® Architecture Optimization
Here, fvec.h is the class definition file and F32vec4 is the class
representing an array of four floats. The “+” and “=” operators are
overloaded so that the actual Streaming SIMD Extensions
implementation in the previous example is abstracted out, or hidden,
from the developer. Note how much more this resembles the original
code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are
already aligned to 16-byte boundary.

Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which
simple loops, such as in Example 3-6 can be automatically vectorized,
or converted into Streaming SIMD Extensions code. The compiler uses
similar techniques to those used by a programmer to identify whether a
loop is suitable for conversion to SIMD. This involves determining
whether the following might prevent vectorization:

• the layout of the loop and the data structures used

• dependencies amongst the data accesses in each iteration and across
iterations

Once the compiler has made such a determination, it can generate
vectorized code for the loop, allowing the application to use the SIMD
instructions.

Example 3-9 C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

3-16

Coding for SIMD Architectures 3
The caveat to this is that only certain types of loops can be automatically
vectorized, and in most cases user interaction with the compiler is
needed to fully enable this.

Example 3-10 shows the code for automatic vectorization for the simple
four-iteration loop (from Example 3-6).

Compile this code using the -Qax and -Qrestrict switches of the Intel
C++ Compiler, version 4.0 or later.

The restrict qualifier in the argument list is necessary to let the
compiler know that there are no other aliases to the memory to which
the pointers point. In other words, the pointer for which it is used,
provides the only means of accessing the memory in question in the
scope in which the pointers live. Without this qualifier, the compiler will
not vectorize the loop because it cannot ascertain whether the array
references in the loop overlap, and without this information, generating
vectorized code is unsafe.

Refer to the Intel® C++ Compiler User’s Guide, for more details on the
use of automatic vectorization.

Example 3-10 Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}

3-17

IA-32 Intel® Architecture Optimization
Stack and Data Alignment
To get the most performance out of code written for SIMD technologies
data should be formatted in memory according to the guidelines
described in this section. Assembly code with an unaligned accesses is a
lot slower than an aligned access.

Alignment and Contiguity of Data Access Patterns

The new 64-bit packed data types defined by MMX technology, and the
128-bit packed data types for Streaming SIMD Extensions and
Streaming SIMD Extensions 2 create more potential for misaligned data
accesses. The data access patterns of many algorithms are inherently
misaligned when using MMX technology and Streaming SIMD
Extensions.

Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to
data can be improved simply by a change in the declaration. For
example, consider a declaration of a structure, which represents a point
in space plus an attribute.

typedef struct { short x,y,z; char a} Point;

Point pt[N];

Assume we will be performing a number of computations on x, y, z in
three of the four elements of a SIMD word; see the “Data Structure
Layout” section for an example. Even if the first element in array pt is
aligned, the second element will start 7 bytes later and not be aligned (3
shorts at two bytes each plus a single byte = 7 bytes).

By adding the padding variable pad, the structure is now 8 bytes, and if
the first element is aligned to 8 bytes (64 bits), all following elements
will also be aligned. The sample declaration follows:

typedef struct { short x,y,z; char a; char pad; }
Point;

Point pt[N];
3-18

Coding for SIMD Architectures 3
Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension y needs to be multiplied by a scaling value. Here
the for loop accesses each y dimension in the array pt thus disallowing
the access to contiguous data. This can degrade the performance of the
application by increasing cache misses, by achieving poor utilization of
each cache line that is fetched, and by increasing the chance for accesses
which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation
and further improve the alignment of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;

With the SIMD technology, choice of data organization becomes more
important and should be made carefully based on the operations that
will be performed on the data. In some applications, traditional data
arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a
vector dot product in the length of the number of coefficient taps.

Consider the following code:

(data [j] *coeff [0] + data [j+1]*coeff [1]+...+data
[j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element i is the vector
dot product that begins at data element j, then the filter operation of
data element i+1 begins at data element j+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned
coefficients vector, the filter operation on the first data element will be fully
aligned. For the second data element, however, access to the data vector
will be misaligned. For an example of how to avoid the misalignment
problem in the FIR filter, please refer to the application notes available at
http://developer.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm.
3-19

http://developer.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm

IA-32 Intel® Architecture Optimization
Duplication and padding of data structures can be used to avoid the
problem of data accesses in algorithms which are inherently misaligned.
The “Data Structure Layout” section discusses further trade-offs for
how data structures are organized.

Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming
SIMD Extensions 2 require their memory operands to be aligned to
16-byte (16B) boundaries. Unaligned data can cause significant
performance penalties compared to aligned data. However, the existing
software conventions for IA-32 (stdcall, cdecl, fastcall) as
implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte
aligned. Therefore, Intel has defined a new set of IA-32 software
conventions for alignment to support the new __m128* datatypes
(__m128, __m128d, and __m128i) that meet the following conditions:

• Functions that use Streaming SIMD Extensions or Streaming SIMD
Extensions 2 data need to provide a 16-byte aligned stack frame.

• The __m128* parameters need to be aligned to 16-byte boundaries,
possibly creating “holes” (due to padding) in the argument block.

CAUTION. The duplication and padding technique
overcomes the misalignment problem, thus avoiding
the expensive penalty for misaligned data access, at
the cost of increasing the data size. When developing
your code, you should consider this tradeoff and use
the option which gives the best performance.
3-20

Coding for SIMD Architectures 3
These new conventions presented in this section as implemented by the
Intel C++ Compiler can be used as a guideline for an assembly language
code as well. In many cases, this section assumes the use of the __m128*
data types, as defined by the Intel C++ Compiler, which represents an
array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions
and SSE2, see Appendix D, “Stack Alignment”.

Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This
aligns the variables’ bit lengths to the appropriate boundaries. If some of
the variables are not appropriately aligned as specified, you can align
them using the C algorithm shown in Example 3-11.

The algorithm in Example 3-11 aligns an array of 64-bit elements on a
64-bit boundary. The constant of 7 is derived from one less than the
number of bytes in a 64-bit element, or 8-1. Aligning data in this manner
avoids the significant performance penalties that can occur when an
access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into
locations that are aligned on 64-bit boundaries. When the data is
accessed frequently, this can provide a significant performance
improvement.

Example 3-11 C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array */

/* of NUM_ELEMENTS 64-bit elements. */

double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);
3-21

IA-32 Intel® Architecture Optimization
Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to or storing from the
128-bit XMM registers used by SSE and SSE2 to avoid severe
performance penalties at best, and at worst, execution faults. Although
there are move instructions (and intrinsics) to allow unaligned data to be
copied into and out of the XMM registers when not using aligned data,
such operations are much slower than aligned accesses. If, however, the
data is not 16-byte-aligned and the programmer or the compiler does not
detect this and uses the aligned instructions, a fault will occur. So, the
rule is: keep the data 16-byte-aligned. Such alignment will also work for
MMX technology code, even though MMX technology only requires
8-byte alignment. The following discussion and examples describe
alignment techniques for Pentium 4 processor as implemented with the
Intel C++ Compiler.

Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that
the data is aligned.

Alignment by F32vec4 or __m128 Data Types. When compiler detects
F32vec4 or __m128 data declarations or parameters, it will force
alignment of the object to a 16-byte boundary for both global and local
data, as well as parameters. If the declaration is within a function, the
compiler will also align the function’s stack frame to ensure that local
data and parameters are 16-byte-aligned. For details on the stack frame
layout that the compiler generates for both debug and optimized
(“release”-mode) compilations, please refer to the relevant Intel
application notes in the Intel Architecture Performance Training Center
provided with the SDK.

The __declspec(align(16)) specifications can be placed before data
declarations to force 16-byte alignment. This is particularly useful for
local or global data declarations that are assigned to 128-bit data types.
The syntax for it is

__declspec(align(integer-constant))
3-22

Coding for SIMD Architectures 3
where the integer-constant is an integral power of two but no greater
than 32. For example, the following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable buffer could then be used as if it contained 100 objects of
type __m128 or F32vec4. In the code below, the construction of the
F32vec4 object, x, will occur with aligned data.

void foo() {

F32vec4 x = *(__m128 *) buffer;

...

}

Without the declaration of __declspec(align(16)), a fault may occur.

Alignment by Using a union Structure. Preferably, when feasible, a
union can be used with 128-bit data types to allow the compiler to align
the data structure by default. Doing so is preferred to forcing alignment
with __declspec(align(16)) because it exposes the true program
intent to the compiler in that __m128 data is being used. For example:

union {

 float f[400];

 __m128 m[100];

} buffer;

The 16-byte alignment is used by default due to the __m128 type in the
union; it is not necessary to use __declspec(align(16)) to force it.

In C++ (but not in C) it is also possible to force the alignment of a
class/struct/union type, as in the code that follows:

struct __declspec(align(16)) my_m128
{

 float f[4];
};
3-23

IA-32 Intel® Architecture Optimization
But, if the data in such a class is going to be used with the Streaming
SIMD Extensions or Streaming SIMD Extensions 2, it is preferable to
use a union to make this explicit. In C++, an anonymous union can be
used to make this more convenient:

class my_m128 {

 union {

 __m128 m;

 float f[4];

 };

};

In this example, because the union is anonymous, the names, m and f,
can be used as immediate member names of my__m128. Note that
__declspec(align) has no effect when applied to a class, struct, or
union member in either C or C++.

Alignment by Using __m64 or double Data. In some cases, for better
performance, the compiler will align routines with __m64 or double
data to 16-bytes by default. The command-line switch, -Qsfalign16,
can be used to limit the compiler to only align in routines that contain
128-bit data. The default behavior is to use -Qsfalign8, which instructs
to align routines with 8- or 16-byte data types to 16-bytes.

For more details, see relevant Intel application notes in the Intel
Architecture Performance Training Center provided with the SDK and
the Intel C++ Compiler User’s Guide.
3-24

Coding for SIMD Architectures 3
Improving Memory Utilization
Memory performance can be improved by rearranging data and
algorithms for SE 2, SSE, and MMX technology intrinsics. The
methods for improving memory performance involve working with the
following:

• Data structure layout

• Strip-mining for vectorization and memory utilization

• Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also
greatly enhance memory utilization. For these instructions, see
Chapter 6, “Optimizing Cache Usage”.

Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are
two basic ways of arranging the vertex data. The traditional method is
the array of structures (AoS) arrangement, with a structure for each
vertex (see Example 3-12). However this method does not take full
advantage of the SIMD technology capabilities.

The best processing method for code using SIMD technology is to
arrange the data in an array for each coordinate (see Example 3-13).
This data arrangement is called structure of arrays (SoA).

Example 3-12 AoS Data Structure

typedef struct{

float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];
3-25

IA-32 Intel® Architecture Optimization
There are two options for computing data in AoS format: perform
operation on the data as it stands in AoS format, or re-arrange it (swizzle
it) into SoA format dynamically. See Example 3-14 for code samples of
each option based on a dot-product computation.

Example 3-13 SoA Data Structure

typedef struct{

float x[NumOfVertices];

float y[NumOfVertices];

float z[NumOfVertices];

int a[NumOfVertices];

int b[NumOfVertices];

int c[NumOfVertices];

. . .

} VerticesList;

VerticesList Vertices;
3-26

Coding for SIMD Architectures 3
Example 3-14 AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a

; fixed vector (Fixed) is a common operation in 3D

; lighting operations,

; where Array = (x0,y0,z0),(x1,y1,z1),...

; and Fixed = (xF,yF,zF)

; A dot product is defined as the scalar quantity

; d0 = x0*xF + y0*yF + z0*zF.

; AoS code

; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the

; xyz format

movaps xmm0, Array ; xmm0 = DC, x0, y0, z0

movaps xmm1, Fixed ; xmm1 = DC, xF, yF, zF

mulps xmm0, xmm1 ; xmm0 = DC, x0*xF, y0*yF, z0*zF

movhlps xmm1, xmm0 ; xmm1 = DC, DC, DC, x0*xF

addps xmm1, xmm0 ; xmm0 = DC, DC, DC,

 ; x0*xF+z0*zF

movaps xmm2, xmm1

shufps xmm2, xmm2,55h ; xmm2 = DC, DC, DC, y0*yF

addps mm2, xmm1 ; xmm1 = DC, DC, DC,

 ; x0*xF+y0*yF+z0*zF

; SoA code

;

; X = x0,x1,x2,x3

; Y = y0,y1,y2,y3

; Z = z0,z1,z2,z3

continued
3-27

IA-32 Intel® Architecture Optimization
Performing SIMD operations on the original AoS format can require
more calculations and some of the operations do not take advantage of
all of the SIMD elements available. Therefore, this option is generally
less efficient.

The recommended way for computing data in AoS format is to swizzle
each set of elements to SoA format before processing it using SIMD
technologies. This swizzling can either be done dynamically during
program execution or statically when the data structures are generated;
see Chapters 4 and 5 for specific examples of swizzling code.
Performing the swizzle dynamically is usually better than using AoS,
but is somewhat inefficient as there is the overhead of extra instructions
during computation. Performing the swizzle statically, when the data
structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of
the parallelism of the SIMD technologies because the data is ready for
computation in a more optimal vertical manner: multiplying
components x0,x1,x2,x3 by xF,xF,xF,xF using 4 SIMD execution
slots to produce 4 unique results. In contrast, computing directly on AoS

; A = xF,xF,xF,xF

; B = yF,yF,yF,yF

; C = zF,zF,zF,zF

movaps xmm0, X ; xmm0 = x0,x1,x2,x3

movaps xmm1, Y ; xmm0 = y0,y1,y2,y3

movaps xmm2, Z ; xmm0 = z0,z1,z2,z3

mulps xmm0, A ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF

mulps xmm1, B ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF

mulps xmm2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF

addps xmm0, xmm1

addps xmm0, xmm2 ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Example 3-14 AoS and SoA Code Samples (continued)
3-28

Coding for SIMD Architectures 3
data can lead to horizontal operations that consume SIMD execution
slots but produce only a single scalar result as shown by the many
“don’t-care” (DC) slots in Example 3-14.

Use of the SoA format for data structures can also lead to more efficient
use of caches and bandwidth. When the elements of the structure are not
accessed with equal frequency, such as when element x, y, z are
accessed ten times more often than the other entries, then SoA not only
saves memory, but it also prevents fetching unnecessary data items a, b,
and c.

Note that SoA can have the disadvantage of requiring more independent
memory stream references. A computation that uses arrays x, y, and z in
Example 3-13 would require three separate data streams. This can
require the use of more prefetches, additional address generation
calculations, as well as having a greater impact on DRAM page access
efficiency. An alternative, a hybrid SoA approach blends the two
alternatives (see Example 3-15). In this case, only 2 separate address
streams are generated and referenced: one which contains
xxxx,yyyy,zzzz,zzzz,... and the other which contains

Example 3-15 Hybrid SoA data structure

NumOfGroups = NumOfVertices/SIMDwidth

typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;

typedef struct{

int a[SIMDwidth];

int b[SIMDwidth];

int c[SIMDwidth];

. . .

} VerticesColorList;

VerticesCoordList VerticesCoord[NumOfGroups];

VerticesColorList VerticesColor[NumOfGroups];
3-29

IA-32 Intel® Architecture Optimization
aaaa,bbbb,cccc,aaaa,dddd,.... This also prevents fetching
unnecessary data, assuming the variables x, y, z are always used
together; whereas the variables a, b, c would also used together, but not
at the same time as x, y, z. This hybrid SoA approach ensures:

• data is organized to enable more efficient vertical SIMD
computation,

• simpler/less address generation than AoS,

• fewer streams, which reduces DRAM page misses,

• use of fewer prefetches, due to fewer streams,

• efficient cache line packing of data elements that are used
concurrently.

With the advent of the SIMD technologies, the choice of data
organization becomes more important and should be carefully based on
the operations to be performed on the data. This will become
increasingly important in the Pentium 4 processor and future processors.
In some applications, traditional data arrangements may not lead to the
maximum performance. Application developers are encouraged to
explore different data arrangements and data segmentation policies for
efficient computation. This may mean using a combination of AoS,
SoA, and Hybrid SoA in a given application.

Strip Mining

Strip mining, also known as loop sectioning, is a loop transformation
technique for enabling SIMD-encodings of loops, as well as providing a
means of improving memory performance. First introduced for
vectorizers, this technique consists of the generation of code when each
vector operation is done for a size less than or equal to the maximum
vector length on a given vector machine. By fragmenting a large loop
into smaller segments or strips, this technique transforms the loop
structure twofold:

• It increases the temporal and spatial locality in the data cache if the
data are reusable in different passes of an algorithm.
3-30

Coding for SIMD Architectures 3
• It reduces the number of iterations of the loop by a factor of the
length of each “vector,” or number of operations being performed
per SIMD operation. In the case of Streaming SIMD Extensions,
this vector or strip-length is reduced by 4 times: four floating-point
data items per single Streaming SIMD Extensions single-precision
floating-point SIMD operation are processed. Consider
Example 3-16.

The main loop consists of two functions: transformation and lighting.
For each object, the main loop calls a transformation routine to update
some data, then calls the lighting routine to further work on the data. If
the size of array v[Num] is larger than the cache, then the coordinates for
v[i] that were cached during Transform(v[i]) will be evicted from

Example 3-16 Pseudo-code Before Strip Mining

typedef struct _VERTEX {

float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec;

main()

 {

Vertex_rec v[Num];

....

for (i=0; i<Num; i++) {

 Transform(v[i]);

}

for (i=0; i<Num; i++) {

 Lighting(v[i]);

}

....

 }
3-31

IA-32 Intel® Architecture Optimization
the cache by the time we do Lighting(v[i]). This means that v[i]
will have to be fetched from main memory a second time, reducing
performance.

In Example 3-17, the computation has been strip-mined to a size
strip_size. The value strip_size is chosen such that strip_size
elements of array v[Num] fit into the cache hierarchy. By doing this, a
given element v[i] brought into the cache by Transform(v[i]) will
still be in the cache when we perform Lighting(v[i]), and thus
improve performance over the non-strip-mined code.

Loop Blocking

Loop blocking is another useful technique for memory performance
optimization. The main purpose of loop blocking is also to eliminate as
many cache misses as possible. This technique transforms the memory
domain of a given problem into smaller chunks rather than sequentially
traversing through the entire memory domain. Each chunk should be

Example 3-17 Strip Mined Code

main()

{

Vertex_rec v[Num];

....

for (i=0; i < Num; i+=strip_size) {

 for (j=i; j < min(Num, i+strip_size); j++) {

 Transform(v[j]);

 }

 for (j=i; j < min(Num, i+strip_size); j++) {

 Lighting(v[j]);

 }

}

}

3-32

Coding for SIMD Architectures 3
small enough to fit all the data for a given computation into the cache,
thereby maximizing data reuse. In fact, one can treat loop blocking as
strip mining in two or more dimensions. Consider the code in
Example 3-16 and access pattern in Figure 3-3. The two-dimensional
array A is referenced in the j (column) direction and then referenced in
the i (row) direction (column-major order); whereas array B is
referenced in the opposite manner (row-major order). Assume the
memory layout is in column-major order; therefore, the access strides of
array A and B for the code in Example 3-18 would be 1 and MAX,
respectively.

Example 3-18 Loop Blocking

A. Original Loop

float A[MAX, MAX], B[MAX, MAX]

for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {

A[i,j] = A[i,j] + B[j, i];

}
}

B. Transformed Loop after Blocking

float A[MAX, MAX], B[MAX, MAX];

for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {

for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {

A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}

3-33

IA-32 Intel® Architecture Optimization
For the first iteration of the inner loop, each access to array B will generate a
cache miss. If the size of one row of array A, that is, A[2, 0:MAX-1], is
large enough, by the time the second iteration starts, each access to array
B will always generate a cache miss. For instance, on the first iteration,
the cache line containing B[0, 0:7] will be brought in when B[0,0] is
referenced because the float type variable is four bytes and each cache
line is 32 bytes. Due to the limitation of cache capacity, this line will be
evicted due to conflict misses before the inner loop reaches the end. For
the next iteration of the outer loop, another cache miss will be generated
while referencing B[0,1]. In this manner, a cache miss occurs when
each element of array B is referenced, that is, there is no data reuse in the
cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the
cache size. In Figure 3-3, a block_size is selected as the loop blocking
factor. Suppose that block_size is 8, then the blocked chunk of each
array will be eight cache lines (32 bytes each). In the first iteration of the
inner loop, A[0, 0:7] and B[0, 0:7] will be brought into the cache.
B[0, 0:7] will be completely consumed by the first iteration of the
outer loop. Consequently, B[0, 0:7] will only experience one cache
miss after applying loop blocking optimization in lieu of eight misses
for the original algorithm. As illustrated in Figure 3-3, arrays A and B are
blocked into smaller rectangular chunks so that the total size of two
blocked A and B chunks is smaller than the cache size. This allows
maximum data reuse.
3-34

Coding for SIMD Architectures 3
As one can see, all the redundant cache misses can be eliminated by
applying this loop blocking technique. If MAX is huge, loop blocking can
also help reduce the penalty from DTLB (data translation look-aside
buffer) misses. In addition to improving the cache/memory
performance, this optimization technique also saves external bus
bandwidth.

Instruction Selection
The following section gives some guidelines for choosing instructions
to complete a task.

Figure 3-3 Loop Blocking Access Pattern

OM15158

A (i, j) access pattern
j

i

A(i, j) access pattern
after blocking

B(i, j) access pattern
after blocking

+

< cache size

Blocking
3-35

IA-32 Intel® Architecture Optimization
One barrier to SIMD computation can be the existence of
data-dependent branches. Conditional moves can be used to eliminate
data-dependent branches. Conditional moves can be emulated in SIMD
computation by using masked compares and logicals, as shown in
Example 3-19.

Example 3-19 Emulation of Conditional Moves

High-level code:

short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT],
D[MAX_ELEMENT], E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {

if (A[i] > B[i]) {

C[i] = D[i];

} else {

C[i] = E[i];

}

}

Assembly code:

xor eax, eax

top_of_loop:

movq mm0, [A + eax]

pcmpgtw mm0, [B + eax]; Create compare mask

movq mm1, [D + eax]

pand mm1, mm0; Drop elements where A<B

pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word

movq [C + eax], mm0

add eax, 8

cmp eax, MAX_ELEMENT*2

jle top_of_loop
3-36

Coding for SIMD Architectures 3
Note that this can be applied to both SIMD integer and SIMD
floating-point code.

If there are multiple consumers of an instance of a register, group the
consumers together as closely as possible. However, the consumers
should not be scheduled near the producer.

Tuning the Final Application
The best way to tune your application once it is functioning correctly is
to use a profiler that measures the application while it is running on a
system. VTune analyzer can help you determine where to make changes
in your application to improve performance. Using the VTune analyzer
can help you with various phases required for optimized performance.
See “Intel® VTune™ Performance Analyzer” in Appendix A for more
details on how to use the VTune analyzer. After every effort to optimize,
you should check the performance gains to see where you are making
your major optimization gains.
3-37

IA-32 Intel® Architecture Optimization
3-38

4
Optimizing for SIMD Integer
Applications
The SIMD integer instructions provide performance improvements in
applications that are integer-intensive and can take advantage of the
SIMD architecture of Pentium 4, Intel Xeon, and Pentium M processors.

The guidelines for using these instructions in addition to the guidelines
described in Chapter 2, will help develop fast and efficient code that
scales well across all processors with MMX technology, processors that
use Streaming SIMD Extensions (SSE) SIMD integer instructions, as
well as the Pentium 4 processor with the SIMD integer instructions in
the Streaming SIMD Extensions 2 (SSE2).

For the sake of brevity, the collection of 64-bit and 128-bit SIMD
integer instructions supported by MMX technology, SSE, and SSE2
shall be referred to as SIMD integer instructions.

Unless otherwise noted, the following sequences are written for the
64-bit integer registers. Note that they can easily be changed to use the
128-bit SIMD integer form available with SSE2 by replacing the
references to mm0-mm7 with references to xmm0-xmm7.

This chapter contains several simple examples that will help you to get
started with coding your application. The goal is to provide simple,
low-level operations that are frequently used. The examples use a
minimum number of instructions necessary to achieve best performance
on the current generation of IA-32 processors.

Each example includes a short description, sample code, and notes if
necessary. These examples do not address scheduling as it is assumed
the examples will be incorporated in longer code sequences.
4-1

IA-32 Intel® Architecture Optimization
For planning considerations of using the new SIMD integer instructions,
refer to “Checking for Streaming SIMD Extensions 2 Support” in
Chapter 3.

General Rules on SIMD Integer Code
The overall rules and suggestions are as follows:

• Do not intermix 64-bit SIMD integer instructions with x87
floating-point instructions. See “Using SIMD Integer with x87
Floating-point” section. Note that all of the SIMD integer
instructions can be intermixed without penalty.

• When writing SSE2 code that works with both integer and
floating-point data, use the subset of SIMD convert instructions or
load/store instructions to ensure that the input operands in XMM
registers contain properly defined data type to match the instruction.
Code sequences containing cross-typed usage will produce the same
result across different implementations, but will incur a significant
performance penalty. Using SSE or SSE2 instructions to operate on
type-mismatched SIMD data in the XMM register is strongly
discouraged.

• Use the optimization rules and guidelines described in Chapters 2
and 3 that apply to the Pentium 4, Intel Xeon and Pentium M
processors.

• Take advantage of hardware prefetcher where possible. Use prefetch
instruction only when data access patterns are irregular and prefetch
distance can be pre-determined. (for details, refer to Chapter 6,
“Optimizing Cache Usage”).

• Emulate conditional moves by using masked compares and logicals
instead of using conditional branches.
4-2

Optimizing for SIMD Integer Applications 4
Using SIMD Integer with x87 Floating-point
All 64-bit SIMD integer instructions use the MMX registers, which
share register state with the x87 floating-point stack. Because of this
sharing, certain rules and considerations apply. Instructions which use
the MMX registers cannot be freely intermixed with x87 floating-point
registers. Care must be taken when switching between using 64-bit
SIMD integer instructions and x87 floating-point instructions (see
“Using the EMMS Instruction” section below).

The SIMD floating-point operations and 128-bit SIMD integer
operations can be freely intermixed with either x87 floating-point
operations or 64-bit SIMD integer operations. The SIMD floating-point
operations and 128-bit SIMD integer operations use registers that are
unrelated to the x87 FP / MMX registers. The emms instruction is not
needed to transition to or from SIMD floating-point operations or
128-bit SIMD operations.

Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight
MMX registers are aliased on the x87 floating-point registers.
Switching from MMX instructions to x87 floating-point instructions
incurs a finite delay, so it is the best to minimize switching between
these instruction types. But when you need to switch, the emms
instruction provides an efficient means to clear the x87 stack so that
subsequent x87 code can operate properly on the x87 stack.

As soon as any instruction makes reference to an MMX register, all
valid bits in the x87 floating-point tag word are set, which implies that
all x87 registers contain valid values. In order for software to operate
correctly, the x87 floating-point stack should be emptied when starting a
series of x87 floating-point calculations after operating on the MMX
registers
4-3

IA-32 Intel® Architecture Optimization
Using emms clears all of the valid bits, effectively emptying the x87
floating-point stack and making it ready for new x87 floating-point
operations. The emms instruction ensures a clean transition between
using operations on the MMX registers and using operations on the x87
floating-point stack. On the Pentium 4 processor, there is a finite
overhead for using the emms instruction.

Failure to use the emms instruction (or the _mm_empty() intrinsic)
between operations on the MMX registers and operations on the x87
floating-point registers may lead to unexpected results.

Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD
integer instructions, follow these steps:

1. Always call the emms instruction at the end of 64-bit SIMD integer
code when the code transitions to x87 floating-point code.

2. Insert the emms instruction at the end of all 64-bit SIMD integer
code segments to avoid an x87 floating-point stack overflow
exception when an x87 floating-point instruction is executed.

When writing an application that uses both floating-point and 64-bit
SIMD integer instructions, use the following guidelines to help you
determine when to use emms:

• If next instruction is x87 FP: Use _mm_empty() after a 64-bit SIMD
integer instruction if the next instruction is an x87 FP instruction;
for example, before doing calculations on floats, doubles or long
doubles.

CAUTION. Failure to reset the tag word for FP
instructions after using an MMX instruction can result
in faulty execution or poor performance.
4-4

Optimizing for SIMD Integer Applications 4
• Don’t empty when already empty: If the next instruction uses an
MMX register, _mm_empty() incurs a cost with no benefit.

• Group Instructions: Try to partition regions that use x87 FP
instructions from those that use 64-bit SIMD integer instructions.
This eliminates needing an emms instruction within the body of a
critical loop.

• Runtime initialization: Use _mm_empty() during runtime
initialization of __m64 and x87 FP data types. This ensures
resetting the register between data type transitions. See Example 4-1
for coding usage.

Further, you must be aware that your code generates an MMX
instruction, which uses the MMX registers with the Intel C++ Compiler,
in the following situations:

• when using a 64-bit SIMD integer intrinsic from MMX technology,
SSE, or SSE2

• when using a 64-bit SIMD integer instruction from MMX
technology, SSE, or SSE2 through inline assembly

• when referencing an __m64 data type variable

Additional information on the x87 floating-point programming model
can be found in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 1. For more documentation on emms, visit the
http://developer.intel.com web site.

Example 4-1 Resetting the Register between __m64 and FP Data Types

Incorrect Usage Correct Usage

__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);

float f = init(); float f = (_mm_empty(), init());
4-5

IA-32 Intel® Architecture Optimization
Data Alignment
Make sure that 64-bit SIMD integer data is 8-byte aligned and that
128-bit SIMD integer data is 16-byte aligned. Referencing unaligned
64-bit SIMD integer data can incur a performance penalty due to
accesses that span 2 cache lines. Referencing unaligned 128-bit SIMD
integer data will result in an exception unless the movdqu (move
double-quadword unaligned) instruction is used. Using the movdqu
instruction on unaligned data can result in lower performance than using
16-byte aligned references.

Refer to section “Stack and Data Alignment” in Chapter 3 for more
information.

Data Movement Coding Techniques
In general, better performance can be achieved if the data is
pre-arranged for SIMD computation (see the “Improving Memory
Utilization” section of Chapter 3). However, this may not always be
possible. This section covers techniques for gathering and re-arranging
data for more efficient SIMD computation.

Unsigned Unpack

The MMX technology provides several instructions that are used to
pack and unpack data in the MMX registers. The unpack instructions
can be used to zero-extend an unsigned number. Example 4-2 assumes
the source is a packed-word (16-bit) data type.
4-6

Optimizing for SIMD Integer Applications 4
Signed Unpack

Signed numbers should be sign-extended when unpacking the values.
This is similar to the zero-extend shown above except that the psrad
instruction (packed shift right arithmetic) is used to effectively sign
extend the values. Example 4-3 assumes the source is a packed-word
(16-bit) data type.

Example 4-2 Unsigned Unpack Instructions

; Input:

; MM0 source value
; MM7 0 a local variable can be used
; instead of the register MM7 if
; desired.

; Output:

; MM0 two zero-extended 32-bit
; doublewords from two low-end
; words

; MM1 two zero-extended 32-bit
; doublewords from two high-end
; words

movq MM1, MM0 ; copy source

punpcklwd MM0, MM7 ; unpack the 2 low-end words
; into two 32-bit doubleword

punpckhwd MM1, MM7 ; unpack the 2 high-end words
; into two 32-bit doublewords
4-7

IA-32 Intel® Architecture Optimization
Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a
predetermined order. Specifically, the packssdw instruction packs two
signed doublewords from the source operand and two signed
doublewords from the destination operand into four signed words in the
destination register as shown in Figure 4-1.

Example 4-3 Signed Unpack Code

; Input:

; MM0 source value

; Output:

; MM0 two sign-extended 32-bit doublewords
; from the two low-end words
; MM1 two sign-extended 32-bit doublewords
; from the two high-end words

;

movq MM1, MM0 ; copy source

punpcklwd MM0, MM0 ; unpack the 2 low end words of the source
; into the second and fourth words of the
; destination

punpckhwd MM1, MM1 ; unpack the 2 high-end words of the source
; into the second and fourth words of the
; destination

psrad MM0, 16 ; sign-extend the 2 low-end words of the
source

; into two 32-bit signed doublewords

psrad MM1, 16 ; sign-extend the 2 high-end words of the
; source into two 32-bit signed doublewords
4-8

Optimizing for SIMD Integer Applications 4
Figure 4-2 illustrates two values interleaved in the destination register,
and Example 4-4 shows code that uses the operation. The two signed
doublewords are used as source operands and the result is interleaved
signed words. The pack instructions can be performed with or without
saturation as needed.

Figure 4-1 PACKSSDW mm, mm/mm64 Instruction Example

Figure 4-2 Interleaved Pack with Saturation

OM15159

D C B A

D1 C1 B1 A1

mm/m64 mm

mm

OM15160

D C B A

D1 B1 C1 A1

MM/M64 mm

mm
4-9

IA-32 Intel® Architecture Optimization
The pack instructions always assume that the source operands are
signed numbers. The result in the destination register is always defined
by the pack instruction that performs the operation. For example, the
packssdw instruction packs each of the two signed 32-bit values of the
two sources into four saturated 16-bit signed values in the destination
register. The packuswb instruction, on the other hand, packs each of the
four signed 16-bit values of the two sources into eight saturated eight-bit
unsigned values in the destination. A complete specification of the
MMX instruction set can be found in the Intel Architecture MMX
Technology Programmer’s Reference Manual, order number 243007.

Interleaved Pack without Saturation

Example 4-5 is similar to Example 4-4 except that the resulting words
are not saturated. In addition, in order to protect against overflow, only
the low order 16 bits of each doubleword are used in this operation.

Example 4-4 Interleaved Pack with Saturation

; Input:

MM0 signed source1 value
; MM1 signed source2 value

; Output:

MM0 the first and third words contain
the
; signed-saturated doublewords from
MM0,
; the second and fourth words contain
; signed-saturated doublewords from
MM1

;

packssdw MM0, MM0 ; pack and sign saturate

packssdw MM1, MM1 ; pack and sign saturate

punpcklwd MM0, MM1 ; interleave the low-end 16-bit
; values of the operands
4-10

Optimizing for SIMD Integer Applications 4
Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data
elements of the destination and source operands into the destination
register. The following example merges the two operands into the
destination registers without interleaving. For example, take two
adjacent elements of a packed-word data type in source1 and place this
value in the low 32 bits of the results. Then take two adjacent elements
of a packed-word data type in source2 and place this value in the high
32 bits of the results. One of the destination registers will have the
combination illustrated in Figure 4-3.

Example 4-5 Interleaved Pack without Saturation

; Input:

; MM0 signed source value
; MM1 signed source value

; Output:

; MM0 the first and third words contain the
; low 16-bits of the doublewords in MM0,
; the second and fourth words contain the
; low 16-bits of the doublewords in MM1

pslld MM1, 16 ; shift the 16 LSB from each of the
; doubleword values to the 16 MSB
; position

pand MM0, {0,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubleword value

por MM0, MM1 ; merge the two operands
4-11

IA-32 Intel® Architecture Optimization
The other destination register will contain the opposite combination
illustrated in Figure 4-4.

Code in the Example 4-6 unpacks two packed-word sources in a
non-interleaved way. The goal is to use the instruction which unpacks
doublewords to a quadword, instead of using the instruction which
unpacks words to doublewords.

Figure 4-3 Result of Non-Interleaved Unpack Low in MM0

Figure 4-4 Result of Non-Interleaved Unpack High in MM1

OM15161

21 20 11 10

mm/m64 mm

mm

23 22 21 20 13 12 11 10

OM15162

23 22 13 12

mm/m64 mm

mm

23 22 21 20 13 12 11 10
4-12

Optimizing for SIMD Integer Applications 4
Extract Word

The pextrw instruction takes the word in the designated MMX register
selected by the two least significant bits of the immediate value and
moves it to the lower half of a 32-bit integer register, see Figure 4-5 and
Example 4-7.

Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way

; Input:

; MM0 packed-word source value
; MM1 packed-word source value

; Output:

; MM0 contains the two low-end words of the
; original sources, non-interleaved
; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq MM2, MM0 ; copy source1

punpckldq MM0, MM1 ; replace the two high-end words
; of MMO with two low-end words of
; MM1; leave the two low-end words
; of MM0 in place

punpckhdq MM2, MM1 ; move two high-end words of MM2
; to the two low-end words of MM2;
; place the two high-end words of
; MM1 in two high-end words of MM2
4-13

IA-32 Intel® Architecture Optimization
Example 4-7 pextrw Instruction Code

; Input:

; eax source value

; immediate value:“0”

; Output:

; edx 32-bit integer register containing the

; extracted word in the low-order bits &

; the high-order bits zero-extended

movq mm0, [eax]

pextrw edx, mm0, 0

Insert Word

The pinsrw instruction loads a word from the lower half of a 32-bit
integer register or from memory and inserts it in the MMX technology
destination register at a position defined by the two least significant bits
of the immediate constant. Insertion is done in such a way that the three
other words from the destination register are left untouched, see
Figure 4-6 and Example 4-8.

Figure 4-5 pextrw Instruction

OM15163

0 ..0 X1

MM

R32
31 0

31 063

X4 X3 X2 X1
4-14

Optimizing for SIMD Integer Applications 4

If all of the operands in a register are being replaced by a series of
pinsrw instructions, it can be useful to clear the content and break the
dependence chain by either using the pxor instruction or loading the
register. See the “Clearing Registers” section in Chapter 2.

Figure 4-6 pinsrw Instruction

Example 4-8 pinsrw Instruction Code

; Input:

; edx pointer to source value

; Output:

; mm0 register with new 16-bit value inserted

;

mov eax, [edx]

pinsrw mm0, eax, 1

OM15164

Y2

MM

R32
31 0

31 063

X4 X3 Y1 X1

Y1
4-15

IA-32 Intel® Architecture Optimization
Move Byte Mask to Integer

The pmovmskb instruction returns a bit mask formed from the most
significant bits of each byte of its source operand. When used with the
64-bit MMX registers, this produces an 8-bit mask, zeroing out the
upper 24 bits in the destination register. When used with the 128-bit
XMM registers, it produces a 16-bit mask, zeroing out the upper 16 bits
in the destination register. The 64-bit version is shown in Figure 4-7 and
Example 4-10.

Example 4-9 Repeated pinsrw Instruction Code

; Input:

; edx pointer to structure containing source

; values at offsets: of +0, +10, +13, and +24
; immediate value: “1”

; Output:

; MMX register with new 16-bit value inserted

;

pxor mm0, mm0 ; Breaks dependedncy on previous value of
mm0

mov eax, [edx]

pinsrw mm0, eax, 0

mov eax, [edx+10]

pinsrw mm0, eax, 1

mov eax, [edx+13]

pinsrw mm0, eax, 2

mov eax, [edx+24]

pinsrw mm0, eax, 3
4-16

Optimizing for SIMD Integer Applications 4
Figure 4-7 pmovmskb Instruction Example

Example 4-10 pmovmskb Instruction Code

; Input:

; source value

; Output:

; 32-bit register containing the byte mask in the
lower
; eight bits

;

movq mm0, [edi]

pmovmskb eax, mm0

OM15165

MM

R32

31 063

0..0

31

0..0

7 0

55 47 39 23 15 7
4-17

IA-32 Intel® Architecture Optimization
Packed Shuffle Word for 64-bit Registers

The pshuf instruction (see Figure 4-8, Example 4-11) uses the
immediate (imm8) operand to select between the four words in either
two MMX registers or one MMX register and a 64-bit memory location.
Bits 1 and 0 of the immediate value encode the source for destination
word 0 in MMX register ([15-0]), and so on as shown in the table:

Bits 7 and 6 encode for word 3 in MMX register ([63-48]). Similarly,
the 2-bit encoding represents which source word is used, for example,
binary encoding of 10 indicates that source word 2 in MMX
register/memory (mm/mem[47-32]) is used, see Figure 4-8 and
Example 4-11.

Bits Word

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Figure 4-8 pshuf Instruction Example

OM15166

MM/m64
063

X4 X3 X2 X1

MM
063

X1 X2 X3 X4
4-18

Optimizing for SIMD Integer Applications 4
Packed Shuffle Word for 128-bit Registers

The pshuflw/pshufhw instruction performs a full shuffle of any source
word field within the low/high 64 bits to any result word field in the
low/high 64 bits, using an 8-bit immediate operand; the other high/low
64 bits are passed through from the source operand.

The pshufd instruction performs a full shuffle of any double-word field
within the 128-bit source to any double-word field in the 128-bit result,
using an 8-bit immediate operand.

No more than 3 instructions, using pshuflw/pshufhw/pshufd, are
required to implement some common data shuffling operations.
Broadcast, Swap, and Reverse are illustrated in Example 4-12,
Example 4-13, and Example 4-14, respectively.

Example 4-11 pshuf Instruction Code

; Input:

; edi source value

; Output:

; MM1 MM register containing re-arranged
words

movq mm0, [edi]

pshufw mm1, mm0, 0x1b

Example 4-12 Broadcast Using 2 Instructions

/* Goal: Broadcast the value from word 5 to all words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFHW (3,2,1,1)| 7| 6| 5| 5| 3| 2| 1| 0|

PSHUFD (2,2,2,2)| 5| 5| 5| 5| 5| 5| 5| 5|
4-19

IA-32 Intel® Architecture Optimization
Unpacking/interleaving 64-bit Data in 128-bit Registers

The punpcklqdq/punpchqdq instructions interleave the low/high-order
64-bits of the source operand and the low/high-order 64-bits of the
destination operand and writes them to the destination register. The
high/low-order 64-bits of the source operands are ignored.

Example 4-13 Swap Using 3 Instructions

/* Goal: Swap the values in word 6 and word 1 */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFD (3,0,1,2)| 7| 6| 1| 0| 3| 2| 5| 4|

PSHUFHW (3,1,2,0)| 7| 1| 6| 0| 3| 2| 5| 4|

PSHUFD (3,0,1,2)| 7| 1| 5| 4| 3| 2| 6| 0|

Example 4-14 Reverse Using 3 Instructions

/* Goal: Reverse the order of the words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFLW (0,1,2,3)| 7| 6| 5| 4| 0| 1| 2| 3|

PSHUFHW (0,1,2,3)| 4| 5| 6| 7| 0| 1| 2| 3|

PSHUFD (1,0,3,2)| 0| 1| 2| 3| 4| 5| 6| 7|
4-20

Optimizing for SIMD Integer Applications 4
Data Movement

There are two additional instructions to enable data movement from the
64-bit SIMD integer registers to the 128-bit SIMD registers.

The movq2dq instruction moves the 64-bit integer data from an MMX
register (source) to a 128-bit destination register. The high-order 64 bits
of the destination register are zeroed-out.

The movdq2q instruction moves the low-order 64-bits of integer data
from a 128-bit source register to an MMX register (destination).

Conversion Instructions

New instructions have been added to support 4-wide conversion of
single-precision data to/from double-word integer data. Also,
conversions between double-precision data and double-word integer
data have been added.

Generating Constants
The SIMD integer instruction sets do not have instructions that will load
immediate constants to the SIMD registers. The following code
segments generate frequently used constants in the SIMD register. Of
course, you can also put constants as local variables in memory, but
when doing so be sure to duplicate the values in memory and load the
values with a movq, movdqa, or movdqu instructions, see Example 4-15.
4-21

IA-32 Intel® Architecture Optimization
Example 4-15 Generating Constants

pxor MM0, MM0 ; generate a zero register in MM0

pcmpeq MM1, MM1 ; Generate all 1’s in register MM1,
; which is -1 in each of the packed
; data type fields

pxor MM0, MM0

pcmpeq MM1, MM1

psubb MM0, MM1 [psubw MM0, MM1] (psubd MM0, MM1)

; three instructions above generate
; the constant 1 in every
; packed-byte [or packed-word]
; (or packed-dword) field

pcmpeq MM1, MM1

psrlw MM1, 16-n(psrld MM1, 32-n)

; two instructions above generate
; the signed constant 2n–1 in every
; packed-word (or packed-dword) field

pcmpeq MM1, MM1

psllw MM1, n (pslld MM1, n)

; two instructions above generate
; the signed constant -2n in every
; packed-word (or packed-dword) field

NOTE. Because the SIMD integer instruction sets do
not support shift instructions for bytes, 2n–1 and -2n
are relevant only for packed words and packed
doublewords.
4-22

Optimizing for SIMD Integer Applications 4
Building Blocks
This section describes instructions and algorithms which implement
common code building blocks efficiently.

Absolute Difference of Unsigned Numbers

Example 4-16 computes the absolute difference of two unsigned
numbers. It assumes an unsigned packed-byte data type. Here, we make
use of the subtract instruction with unsigned saturation. This instruction
receives UNSIGNED operands and subtracts them with UNSIGNED
saturation. This support exists only for packed bytes and packed words,
not for packed doublewords.

This example will not work if the operands are signed.

Note that the psadbw instruction may also be used in some situations;
see section “Packed Sum of Absolute Differences” for details.

Example 4-16 Absolute Difference of Two Unsigned Numbers

; Input:

; MM0 source operand
; MM1 source operand

; Output:

; MM0 absolute difference of the unsigned
; operands

movq MM2, MM0 ; make a copy of MM0

psubusb MM0, MM1 ; compute difference one way

psubusb MM1, MM2 ; compute difference the other way

por MM0, MM1 ; OR them together
4-23

IA-32 Intel® Architecture Optimization
Absolute Difference of Signed Numbers

Chapter 4 computes the absolute difference of two signed numbers.

The technique used here is to first sort the corresponding elements of the
input operands into packed words of the maximum values, and packed
words of the minimum values. Then the minimum values are subtracted
from the maximum values to generate the required absolute difference.
The key is a fast sorting technique that uses the fact that B = xor(A,
xor (A,B)) and A = xor(A,0). Thus in a packed data type, having
some elements being xor(A,B) and some being 0, you could xor such
an operand with A and receive in some places values of A and in some
values of B. The following examples assume a packed-word data type,
each element being a signed value.

NOTE. There is no MMX™ technology subtract
instruction that receives SIGNED operands and
subtracts them with UNSIGNED saturation.
4-24

Optimizing for SIMD Integer Applications 4
Absolute Value

Use Example 4-18 to compute |x|, where x is signed. This example
assumes signed words to be the operands.

Example 4-17 Absolute Difference of Signed Numbers

;Input:

; MM0 signed source operand
; MM1 signed source operand

;Output:

; MM0 absolute difference of the unsigned
; operands

movq MM2, MM0 ; make a copy of source1 (A)

pcmpgtw MM0, MM1 ; create mask of

; source1>source2 (A>B)

movq MM4, MM2 ; make another copy of A

pxor MM2, MM1 ; create the intermediate value of
; the swap operation - xor(A,B)

pand MM2, MM0 ; create a mask of 0s and xor(A,B)
; elements. Where A>B there will
; be a value xor(A,B) and where
; A<=B there will be 0.

pxor MM4, MM2 ; minima-xor(A, swap mask)

pxor MM1, MM2 ; maxima-xor(B, swap mask)

psubw MM1, MM4 ; absolute difference =
; maxima-minima
4-25

IA-32 Intel® Architecture Optimization
Clipping to an Arbitrary Range [high, low]

This section explains how to clip a values to a range [high, low].
Specifically, if the value is less than low or greater than high, then clip
to low or high, respectively. This technique uses the packed-add and
packed-subtract instructions with saturation (signed or unsigned), which
means that this technique can only be used on packed-byte and
packed-word data types.

The examples in this section use the constants packed_max and
packed_min and show operations on word values. For simplicity we use
the following constants (corresponding constants are used in case the
operation is done on byte values):

• packed_max equals 0x7fff7fff7fff7fff

Example 4-18 Computing Absolute Value

; Input:

; MM0 signed source operand

; Output:

; MM1 ABS(MMO)

pxor MM1, MM1 ; set MM1 to all zeros

psubw MM1, MM0 ; make each MM1 word contain the

 ; negative of each MM0 word

pmaxsw MM1, MM0 ; MM1 will contain only the positive

 ; (larger) values - the absolute value

CAUTION. The absolute value of the most negative
number (that is, 8000 hex for 16-bit) cannot be
represented using positive numbers. This algorithm
will return the original value for the absolute value
(8000 hex).
4-26

Optimizing for SIMD Integer Applications 4
• packed_min equals 0x8000800080008000
• packed_low contains the value low in all four words of the

packed-words data type

• packed_high contains the value high in all four words of the
packed-words data type

• packed_usmax all values equal 1
• high_us adds the high value to all data elements (4 words) of

packed_min

• low_us adds the low value to all data elements (4 words) of
packed_min

Highly Efficient Clipping

For clipping signed words to an arbitrary range, the pmaxsw and pminsw
instructions may be used. For clipping unsigned bytes to an arbitrary
range, the pmaxub and pminub instructions may be used. Example 4-19
shows how to clip signed words to an arbitrary range; the code for
clipping unsigned bytes is similar.

Example 4-19 Clipping to a Signed Range of Words [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM0 signed words clipped to the signed
; range [high, low]

pminsw MM0, packed_high

pmaxsw MM0, packed_low
4-27

IA-32 Intel® Architecture Optimization
The code above converts values to unsigned numbers first and then clips
them to an unsigned range. The last instruction converts the data back to
signed data and places the data within the signed range. Conversion to
unsigned data is required for correct results when (high - low) <
0x8000.

If (high - low) >= 0x8000, the algorithm can be simplified as shown in
Example 4-21.

Example 4-20 Clipping to an Arbitrary Signed Range [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM1 signed operands clipped to the unsigned
; range [high, low]

paddw MM0, packed_min ; add with no saturation

; 0x8000 to convert to unsigned

paddusw MM0, (packed_usmax - high_us)

; in effect this clips to high

psubusw MM0, (packed_usmax - high_us + low_us)

; in effect this clips to low

paddw MM0, packed_low ; undo the previous two offsets

Example 4-21 Simplified Clipping to an Arbitrary Signed Range

; Input: MM0 signed source operands

; Output: MM1 signed operands clipped to the unsigned
; range [high, low]

paddssw MM0, (packed_max - packed_high)

; in effect this clips to high

psubssw MM0, (packed_usmax - packed_high + packed_ow)

; clips to low

paddw MM0, low ; undo the previous two offsets
4-28

Optimizing for SIMD Integer Applications 4
This algorithm saves a cycle when it is known that (high - low) >=
0x8000. The three-instruction algorithm does not work when (high -
low) < 0x8000, because 0xffff minus any number < 0x8000 will yield
a number greater in magnitude than 0x8000, which is a negative
number. When the second instruction,
psubssw MM0, (0xffff - high + low), in the three-step algorithm
(Example 4-21) is executed, a negative number is subtracted. The result
of this subtraction causes the values in MM0 to be increased instead of
decreased, as should be the case, and an incorrect answer is generated.

Clipping to an Arbitrary Unsigned Range [high, low]

The code in Chapter 4 clips an unsigned value to the unsigned range
[high, low]. If the value is less than low or greater than high, then clip
to low or high, respectively. This technique uses the packed-add and
packed-subtract instructions with unsigned saturation, thus this
technique can only be used on packed-bytes and packed-words data
types.

The example illustrates the operation on word values.

Example 4-22 Clipping to an Arbitrary Unsigned Range [high, low]

; Input:

; MM0 unsigned source operands

; Output:

; MM1 unsigned operands clipped to the unsigned
; range [HIGH, LOW]

paddusw MM0, 0xffff - high

; in effect this clips to high

psubusw MM0, (0xffff - high + low)

; in effect this clips to low

paddw MM0, low

; undo the previous two offsets
4-29

IA-32 Intel® Architecture Optimization
Packed Max/Min of Signed Word and Unsigned Byte

Signed Word

The pmaxsw instruction returns the maximum between the four signed
words in either two SIMD registers, or one SIMD register and a
memory location.

The pminsw instruction returns the minimum between the four signed
words in either two SIMD registers, or one SIMD register and a
memory location.

Unsigned Byte

The pmaxub instruction returns the maximum between the eight
unsigned bytes in either two SIMD registers, or one SIMD register and a
memory location.

The pminub instruction returns the minimum between the eight
unsigned bytes in either two SIMD registers, or one SIMD register and a
memory location.

Packed Multiply High Unsigned

The pmulhuw and pmulhw instruction multiplies the unsigned/signed
words in the destination operand with the unsigned/signed words in the
source operand. The high-order 16 bits of the 32-bit intermediate results
are written to the destination operand.

Packed Sum of Absolute Differences

The psadbw instruction (see Figure 4-9) computes the absolute value of
the difference of unsigned bytes for either two SIMD registers, or one
SIMD register and a memory location. These differences are then
summed to produce a word result in the lower 16-bit field, and the upper
three words are set to zero.
4-30

Optimizing for SIMD Integer Applications 4
The subtraction operation presented above is an absolute difference, that
is, t = abs(x-y). The byte values are stored in temporary space, all
values are summed together, and the result is written into the lower
word of the destination register.

Packed Average (Byte/Word)

The pavgb and pavgw instructions add the unsigned data elements of the
source operand to the unsigned data elements of the destination register,
along with a carry-in. The results of the addition are then each
independently shifted to the right by one bit position. The high order
bits of each element are filled with the carry bits of the corresponding
sum.

The destination operand is an SIMD register. The source operand can
either be an SIMD register or a memory operand.

Figure 4-9 PSADBW Instruction Example

OM15167

MM/m64

X8 X7 X6 X5 X4 X3 X2 X1

063

MM

Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1

063

Temp

T8 T7 T6 T5 T4 T3 T2 T1

063

= = = = = = = =

- - - - - - - -

MM

0..0 0..0 0..0 T1+T2+T3+T4+T5+T6+T7+T8

063
4-31

IA-32 Intel® Architecture Optimization
The PAVGB instruction operates on packed unsigned bytes and the PAVGW
instruction operates on packed unsigned words.

Complex Multiply by a Constant

Complex multiplication is an operation which requires four
multiplications and two additions. This is exactly how the pmaddwd
instruction operates. In order to use this instruction, you need to format
the data into multiple 16-bit values. The real and imaginary components
should be 16-bits each. Consider Example 4-23, which assumes that the
64-bit MMX registers are being used:

• Let the input data be Dr and Di where Dr is real component of the
data and Di is imaginary component of the data.

• Format the constant complex coefficients in memory as four 16-bit
values [Cr -Ci Ci Cr]. Remember to load the values into the MMX
register using a movq instruction.

• The real component of the complex product is
Pr = Dr*Cr - Di*Ci

and the imaginary component of the complex product is
Pi = Dr*Ci + Di*Cr.

Example 4-23 Complex Multiply by a Constant

; Input:

; MM0 complex value, Dr, Di
; MM1 constant complex coefficient in the form
; [Cr -Ci Ci Cr]

; Output:

; MM0 two 32-bit dwords containing [Pr Pi]

;

punpckldq MM0, MM0 ; makes [Dr Di Dr Di]

pmaddwd MM0, MM1 ; done, the result is

 ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]
4-32

Optimizing for SIMD Integer Applications 4
Note that the output is a packed doubleword. If needed, a pack
instruction can be used to convert the result to 16-bit (thereby matching
the format of the input).

Packed 32*32 Multiply

The PMULUDQ instruction performs an unsigned multiply on the lower
pair of double-word operands within each 64-bit chunk from the two
sources; the full 64-bit result from each multiplication is returned to the
destination register. This instruction is added in both a 64-bit and
128-bit version; the latter performs 2 independent operations, on the low
and high halves of a 128-bit register.

Packed 64-bit Add/Subtract

The PADDQ/PSUBQ instructions add/subtract quad-word operands within
each 64-bit chunk from the two sources; the 64-bit result from each
computation is written to the destination register. Like the integer
ADD/SUB instruction, PADDQ/PSUBQ can operate on either unsigned or
signed (two’s complement notation) integer operands. When an
individual result is too large to be represented in 64-bits, the lower
64-bits of the result are written to the destination operand and therefore
the result wraps around. These instructions are added in both a 64-bit
and 128-bit version; the latter performs 2 independent operations, on the
low and high halves of a 128-bit register.

128-bit Shifts

The pslldq/psrldq instructions shift the first operand to the left/right
by the amount of bytes specified by the immediate operand. The empty
low/high-order bytes are cleared (set to zero). If the value specified by
the immediate operand is greater than 15, then the destination is set to
all zeros.
4-33

IA-32 Intel® Architecture Optimization
Memory Optimizations
You can improve memory accesses using the following techniques:

• Avoiding partial memory accesses

• Increasing the bandwidth of memory fills and video fills

• Prefetching data with Streaming SIMD Extensions (see Chapter 6,
“Optimizing Cache Usage”).

The MMX registers and XMM registers allow you to move large
quantities of data without stalling the processor. Instead of loading
single array values that are 8, 16, or 32 bits long, consider loading the
values in a single quadword or double quadword, then incrementing the
structure or array pointer accordingly.

Any data that will be manipulated by SIMD integer instructions should
be loaded using either:

• the SIMD integer instruction that loads a 64-bit or 128-bit operand
(for example, movq MM0, m64)

• the register-memory form of any SIMD integer instruction that
operates on a quadword or double quadword memory operand (for
example, pmaddw MM0, m64).

All SIMD data should be stored using the SIMD integer instruction that
stores a 64-bit or 128-bit operand (for example, movq m64, MM0)

The goal of these recommendations is twofold. First, the loading and
storing of SIMD data is more efficient using the larger block sizes.
Second, this helps to avoid the mixing of 8-, 16-, or 32-bit load and store
operations with SIMD integer technology load and store operations to
the same SIMD data. This, in turn, prevents situations in which small
loads follow large stores to the same area of memory, or large loads
follow small stores to the same area of memory. The Pentium II,
Pentium III, and Pentium 4 processors stall in these situations; see
Chapter 2, “General Optimization Guidelines” for more details.
4-34

Optimizing for SIMD Integer Applications 4
Partial Memory Accesses

Consider a case with large load after a series of small stores to the same
area of memory (beginning at memory address mem). The large load will
stall in this case as shown in Example 4-24.

The movq must wait for the stores to write memory before it can access
all the data it requires. This stall can also occur with other data types
(for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory). When you
change the code sequence as shown in Example 4-25, the processor can
access the data without delay.

Example 4-24 A Large Load after a Series of Small Stores (Penalty)

mov mem, eax ; store dword to address “mem"

mov mem + 4, ebx ; store dword to address “mem + 4"

 :

 :

movq mm0, mem ; load qword at address “mem", stalls

Example 4-25 Accessing Data without Delay

movd mm1, ebx ; build data into a qword first

; before storing it to memory

movd mm2, eax

psllq mm1, 32

por mm1, mm2

movq mem, mm1 ; store SIMD variable to “mem" as
; a qword

 :

 :

movq mm0, mem ; load qword SIMD “mem", no stall
4-35

IA-32 Intel® Architecture Optimization
Let us now consider a case with a series of small loads after a large store
to the same area of memory (beginning at memory address mem) as
shown in Example 4-26. Most of the small loads will stall because they
are not aligned with the store; see “Store Forwarding” in Chapter 2 for
more details.

The word loads must wait for the quadword store to write to memory
before they can access the data they require. This stall can also occur
with other data types (for example, when doublewords or words are
stored and then words or bytes are read from the same area of memory).
When you change the code sequence as shown in Example 4-27, the
processor can access the data without delay.

Example 4-26 A Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"

 :

 :

mov bx, mem + 2 ; load word at “mem + 2" stalls

mov cx, mem + 4 ; load word at “mem + 4" stalls

Example 4-27 Eliminating Delay for a Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"

 :

 :

movq mm1, mem ; load qword at address “mem"

movd eax, mm1 ; transfer “mem + 2" to eax from

; MMX register, not memory

psrlq mm1, 32

shr eax, 16

movd ebx, mm1 ; transfer “mem + 4" to bx from

; MMX register, not memory

and ebx, 0ffffh
4-36

Optimizing for SIMD Integer Applications 4
These transformations, in general, increase the number of instructions
required to perform the desired operation. For Pentium II, Pentium III,
and Pentium 4 processors, the benefit of avoiding forwarding problems
outweighs the performance penalty due to the increased number of
instructions, making the transformations worthwhile.

Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A
memory-to-memory fill (for example a memory-to-video fill) is defined
as a 64-byte (cache line) load from memory which is immediately stored
back to memory (such as a video frame buffer). The following are
guidelines for obtaining higher bandwidth and shorter latencies for
sequential memory fills (video fills). These recommendations are
relevant for all Intel architecture processors with MMX technology and
refer to cases in which the loads and stores do not hit in the first- or
second-level cache.

Increasing Memory Bandwidth Using the MOVDQ
Instruction

Loading any size data operand will cause an entire cache line to be
loaded into the cache hierarchy. Thus any size load looks more or less
the same from a memory bandwidth perspective. However, using many
smaller loads consumes more microarchitectural resources than fewer
larger stores. Consuming too many of these resources can cause the
processor to stall and reduce the bandwidth that the processor can
request of the memory subsystem.

Using movdq to store the data back to UC memory (or WC memory in
some cases) instead of using 32-bit stores (for example, movd) will
reduce by three-quarters the number of stores per memory fill cycle. As
a result, using the movdq instruction in memory fill cycles can achieve
significantly higher effective bandwidth than using the movd instruction.
4-37

IA-32 Intel® Architecture Optimization
Increasing Memory Bandwidth by Loading and Storing to
and from the Same DRAM Page

DRAM is divided into pages, which are not the same as operating
system (OS) pages. The size of a DRAM page is a function of the total
size of the DRAM and the organization of the DRAM. Page sizes of
several Kilobytes are common. Like OS pages, DRAM pages are
constructed of sequential addresses. Sequential memory accesses to the
same DRAM page have shorter latencies than sequential accesses to
different DRAM pages. In many systems the latency for a page miss
(that is, an access to a different page instead of the page previously
accessed) can be twice as large as the latency of a memory page hit
(access to the same page as the previous access). Therefore, if the loads
and stores of the memory fill cycle are to the same DRAM page, a
significant increase in the bandwidth of the memory fill cycles can be
achieved.

Increasing UC and WC Store Bandwidth by Using Aligned
Stores

Using aligned stores to fill UC or WC memory will yield higher
bandwidth than using unaligned stores. If a UC store or some WC stores
cross a cache line boundary, a single store will result in two transaction
on the bus, reducing the efficiency of the bus transactions. By aligning
the stores to the size of the stores, you eliminate the possibility of
crossing a cache line boundary, and the stores will not be split into
separate transactions.

Converting from 64-bit to 128-bit SIMD Integer
The SSE2 define a superset of 128-bit integer instructions currently
available in MMX technology; the operation of the extended
instructions remains the same and simply operate on data that is twice as
wide. This simplifies porting of current 64-bit integer applications.
However, there are few additional considerations:
4-38

Optimizing for SIMD Integer Applications 4
• Computation instructions which use a memory operand that may not
be aligned to a 16-byte boundary must be replaced with an
unaligned 128-bit load (movdqu) followed by the same computation
operation that uses instead register operands. Use of 128-bit integer
computation instructions with memory operands that are not 16-byte
aligned will result in a General Protection fault. The unaligned
128-bit load and store is not as efficient as the corresponding
aligned versions; this can reduce the performance gains when using
the 128-bit SIMD integer extensions. The general guidelines on the
alignment of memory operands are:

— The greatest performance gains can be achieved when all
memory streams are 16-byte aligned.

— Reasonable performance gains are possible if roughly half of all
memory streams are 16-byte aligned, and the other half are not.

— Little or no performance gain may result if all memory streams
are not aligned to 16-bytes; in this case, use of the 64-bit SIMD
integer instructions may be preferable.

• Loop counters need to be updated because each 128-bit integer
instruction operates on twice the amount of data as the 64-bit integer
counterpart.

• Extension of the pshufw instruction (shuffle word across 64-bit
integer operand) across a full 128-bit operand is emulated by a
combination of the following instructions: pshufhw, pshuflw,
pshufd.

• Use of the 64-bit shift by bit instructions (psrlq, psllq) are
extended to 128 bits in these ways:

— use of psrlq and psllq, along with masking logic operations

— code sequence is rewritten to use the psrldq and pslldq
instructions (shift double quad-word operand by bytes).
4-39

IA-32 Intel® Architecture Optimization
4-40

5
Optimizing for SIMD
Floating-point Applications
This chapter discusses general rules of optimizing for the
single-instruction, multiple-data (SIMD) floating-point instructions
available in Streaming SIMD Extensions (SSE) and Streaming SIMD
Extensions 2 (SSE2). This chapter also provides examples that illustrate
the optimization techniques for single-precision and double-precision
SIMD floating-point applications.

General Rules for SIMD Floating-point Code
The rules and suggestions listed in this section help optimize
floating-point code containing SIMD floating-point instructions.
Generally, it is important to understand and balance port utilization to
create efficient SIMD floating-point code. The basic rules and
suggestions include the following:

• Follow all guidelines in Chapter 2 and Chapter 3.

• Exceptions: mask exceptions to achieve higher performance. When
exceptions are unmasked, software performance is slower.

• Utilize the flush-to-zero mode for higher performance to avoid the
penalty of dealing with denormals and underflows.

• Incorporate the prefetch instruction whenever possible (for details,
refer to Chapter 6, “Optimizing Cache Usage”).

• Use MMX technology instructions and registers if the computations
can be done in SIMD integer for shuffling data.

• Use MMX technology instructions and registers or for copying data
that is not used later in SIMD floating-point computations.
5-1

IA-32 Intel® Architecture Optimization
• Use the reciprocal instructions followed by iteration for increased
accuracy. These instructions yield reduced accuracy but execute
much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.

— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root which
provide more accuracy, but slow down performance.

Planning Considerations
Whether adapting an existing application or creating a new one, using
SIMD floating-point instructions to achieve optimum performance gain
requires programmers to consider several issues. In general, when
choosing candidates for optimization, look for code segments that are
computationally intensive and floating-point intensive. Also consider
efficient use of the cache architecture.

The sections that follow answer the questions that should be raised
before implementation:

• Which part of the code benefits from SIMD floating-point
instructions?

• Is the current algorithm the most appropriate for SIMD
floating-point instructions?

• Is the code floating-point intensive?

• Do either single-precision floating-point or double-precision
floating- point computations provide enough range and precision?

• Is the data arranged for efficient utilization of the SIMD
floating-point registers?

• Is this application targeted for processors without SIMD
floating-point instructions?

For more details, see the section on “Considerations for Code
Conversion to SIMD Programming” in Chapter 3.
5-2

Optimizing for SIMD Floating-point Applications 5
Detecting SIMD Floating-point Support
Applications must be able to determine if SSE are available. Please refer
the section “Checking for Processor Support of SIMD Technologies” in
Chapter 3 for the techniques to determine whether the processor and
operating system support SSE.

Using SIMD Floating-point with x87 Floating-point
Because the XMM registers used for SIMD floating-point computations
are separate registers and are not mapped onto the existing x87
floating-point stack, SIMD floating-point code can be mixed with either
x87 floating-point or 64-bit SIMD integer code.

Scalar Floating-point Code
There are SIMD floating-point instructions that operate only on the
least-significant operand in the SIMD register. These instructions are
known as scalar instructions. They allow the XMM registers to be used
for general-purpose floating-point computations.

In terms of performance, scalar floating-point code can be equivalent to
or exceed x87 floating-point code, and has the following advantages:

• SIMD floating-point code uses a flat register model, whereas x87
floating-point code uses a stack model. Using scalar floating-point
code eliminates the need to use fxch instructions, which has some
performance limit on the Intel Pentium 4 processor.

• Mixing with MMX technology code without penalty.

• Flush-to-zero mode.

• Shorter latencies than x87 floating-point.
5-3

IA-32 Intel® Architecture Optimization
When using scalar floating-point instructions, it is not necessary to
ensure that the data appears in vector form. However, all of the
optimizations regarding alignment, scheduling, instruction selection,
and other optimizations covered in Chapters 2 and 3 should be
observed.

Data Alignment
SIMD floating-point data is 16-byte aligned. Referencing unaligned
128-bit SIMD floating-point data will result in an exception unless the
movups or movupd (move unaligned packed single or unaligned packed
double) instruction is used. The unaligned instructions used on aligned
or unaligned data will also suffer a performance penalty relative to
aligned accesses.

Refer to section “Stack and Data Alignment” in Chapter 3 for more
information.

Data Arrangement

Because the SSE and SSE2 incorporate a SIMD architecture, arranging
the data to fully use the SIMD registers produces optimum performance.
This implies contiguous data for processing, which leads to fewer cache
misses and can potentially quadruple the data throughput when using
SSE, or twice the throughput when using SSE2. These performance
gains can occur because four data element can be loaded with 128-bit
load instructions into XMM registers using SSE (movaps – move
aligned packed single precision). Similarly, two data element can loaded
with 128-bit load instructions into XMM registers using SSE2 (movapd
– move aligned packed double precision).

Refer to the “Stack and Data Alignment” in Chapter 3 for data
arrangement recommendations. Duplicating and padding techniques
overcome the misalignment problem that can occur in some data
structures and arrangements. This increases the data space but avoids
the expensive penalty for misaligned data access.
5-4

Optimizing for SIMD Floating-point Applications 5
For some applications, the traditional data arrangement requires some
changes to fully utilize the SIMD registers and parallel techniques.
Traditionally, the data layout has been an array of structures (AoS). To
fully utilize the SIMD registers, a new data layout has been
proposed—a structure of arrays (SoA) resulting in more optimized
performance.

Vertical versus Horizontal Computation

Traditionally, the AoS data structure is used in 3D geometry
computations. SIMD technology can be applied to AoS data structure
using a horizontal computation technique. This means that the x, y, z,
and w components of a single vertex structure (that is, of a single vector
simultaneously referred to as an xyz data representation, see the
diagram below) are computed in parallel, and the array is updated one
vertex at a time.

To optimally utilize the SIMD registers, the data structure can be
organized in the SoA format. The SoA data structure enables a vertical
computation technique, and is recommended over horizontal
computation, for the following reasons:

• When computing on a single vector (xyz), it is common to use only
a subset of the vector components; for example, in 3D graphics the W
component is sometimes ignored. This means that for single-vector
operations, 1 of 4 computation slots is not being utilized. This
typically results in a 25% reduction of peak efficiency.

• It may become difficult to hide long latency operations. For
instance, another common function in 3D graphics is normalization,
which requires the computation of a reciprocal square root (that is,
1/sqrt). Both the division and square root are long latency
operations. With vertical computation (SoA), each of the 4
computation slots in a SIMD operation is producing a unique result,

X Y Z W
5-5

IA-32 Intel® Architecture Optimization
so the net latency per slot is L/4 where L is the overall latency of the
operation. However, for horizontal computation, the 4 computation
slots each produce the same result, hence to produce 4 separate
results requires a net latency per slot of L.

To utilize all 4 computation slots, the vertex data can be reorganized to
allow computation on each component of 4 separate vertices, that is,
processing multiple vectors simultaneously. This can also be referred to
as an SoA form of representing vertices data shown in Table 5-1.

Organizing data in this manner yields a unique result for each
computational slot for each arithmetic operation.

Vertical computation takes advantage of the inherent parallelism in 3D
geometry processing of vertices. It assigns the computation of four
vertices to the four compute slots of the Pentium III processor, thereby
eliminating the disadvantages of the horizontal approach described
earlier. The dot product operation implements the SoA representation of
vertices data. A schematic representation of dot product operation is
shown in Figure 5-1.

Table 5-1 SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 Xn

Vy array Y1 Y2 Y3 Y4 Yn

Vz array Z1 Z2 Z3 Y4 Zn

Vw array W1 W2 W3 W4 Wn
5-6

Optimizing for SIMD Floating-point Applications 5
Figure 5-1 Dot Product Operation

OM15168

X

+

X

+

X

+

X

=

X1 X2 X3 X4

Fx Fx Fx Fx

Y1 Y2 Y3 Y4

Fy Fy Fy Fy

Z1 Z2 Z3 Z4

Fz Fz Fz Fz

W 1 W 2 W 3 W 4

Fw Fw Fw Fw

R1 R2 R3 R4
5-7

IA-32 Intel® Architecture Optimization
Figure 5-1 shows how 1 result would be computed for 7 instructions if
the data were organized as AoS: 4 results would require 28 instructions.

Now consider the case when the data is organized as SoA. Example 5-2
demonstrates how 4 results are computed for 5 instructions.

For the most efficient use of the four component-wide registers,
reorganizing the data into the SoA format yields increased throughput
and hence much better performance for the instructions used.

As can be seen from this simple example, vertical computation yielded
100% use of the available SIMD registers and produced 4 results. (The
results may vary based on the application.) If the data structures must be
in a format that is not “friendly” to vertical computation, it can be
rearranged “on the fly” to achieve full utilization of the SIMD registers.
This operation is referred to as “swizzling” operation and the reverse
operation is referred to as “deswizzling.”

Example 5-1 Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x’, y*y’, z*z’

movaps ; reg->reg move, since next steps overwrite

shufps ; get b,a,d,c from a,b,c,d

addps ; get a+b,a+b,c+d,c+d

movaps ; reg->reg move

shufps ; get c+d,c+d,a+b,a+b from prior addps

addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x’ for all 4 x-components of 4 vertices

mulps ; y*y’ for all 4 y-components of 4 vertices

mulps ; z*z’ for all 4 z-components of 4 vertices

addps ; x*x’ + y*y’

addps ; x*x’+y*y’+z*z’
5-8

Optimizing for SIMD Floating-point Applications 5
Data Swizzling

Swizzling data from one format to another is required in many
algorithms. An example of this is AoS format, where the vertices come
as xyz adjacent coordinates. Rearranging them into SoA format, xxxx,
yyyy, zzzz, allows more efficient SIMD computations. For efficient
data shuffling and swizzling use the following instructions:

• movlps, movhps load/store and move data on half sections of the
registers

• shufps, unpackhps, and unpacklps unpack data

To gather data from 4 different memory locations on the fly, follow
steps:

1. Identify the first half of the 128-bit memory location.
2. Group the different halves together using the movlps and movhps to

form an xyxy layout in two registers.

3. From the 4 attached halves, get the xxxx by using one shuffle, the
yyyy by using another shuffle.

The zzzz is derived the same way but only requires one shuffle.

Example 5-3 illustrates the swizzle function.

Example 5-3 Swizzling Data

typedef struct _VERTEX_AOS {

 float x, y, z, color;

} Vertex_aos; // AoS structure declaration

typedef struct _VERTEX_SOA {

 float x[4], float y[4], float z[4];

 float color[4];

} Vertex_soa; // SoA structure declaration

continued
5-9

IA-32 Intel® Architecture Optimization
void swizzle_asm (Vertex_aos *in, Vertex_soa *out)

{

// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-

// SWIZZLE XYZW --> XXXX

 asm {

mov ecx, in // get structure addresses

mov edx, out

 y1 x1

movhps xmm7, [ecx+16] // xmm7 = y2 x2 y1 x1

movlps xmm0, [ecx+32] // xmm0 = -- -- y3 x3

movhps xmm0, [ecx+48] // xmm0 = y4 x4 y3 x3

movaps xmm6, xmm7 // xmm6 = y1 x1 y1 x1

shufps xmm7, xmm0, 0x88 // xmm7 = x1 x2 x3 x4 => X

shufps xmm6, xmm0, 0xDD // xmm6 = y1 y2 y3 y4 => Y

movlps xmm2, [ecx+8] // xmm2 = -- -- w1 z1

movhps xmm2, [ecx+24] // xmm2 = w2 z2 u1 z1

movlps xmm1, [ecx+40] // xmm1 = -- -- s3 z3

movhps xmm1, [ecx+56] // xmm1 = w4 z4 w3 z3

movaps xmm0, xmm2 // xmm0 = w1 z1 w1 z1

shufps xmm2, xmm1, 0x88 // xmm2 = z1 z2 z3 z4 => Z

movlps xmm7, [ecx] // xmm7 = -- --shufps xmm0, xmm1,
 // 0xDD xmm6 = w1 w2 w3 w4 => W

continued

Example 5-3 Swizzling Data (continued)
5-10

Optimizing for SIMD Floating-point Applications 5
Example 5-4 shows the same data -swizzling algorithm encoded using
the Intel® C++ Compiler’s intrinsics for SSE.

movaps [edx], xmm7 // store X

movaps [edx+16], xmm6 // store Y

movaps [edx+32], xmm2 // store Z

movaps [edx+48], xmm0 // store W

// SWIZZLE XYZ -> XXX

 }

}

Example 5-4 Swizzling Data Using Intrinsics

//Intrinsics version of data swizzle

void swizzle_intrin (Vertex_aos *in, Vertex_soa *out, int stride)

{

 __m128 x, y, z, w;

 __m128 tmp;

 x = _mm_loadl_pi(x,(__m64 *)(in));

 x = _mm_loadh_pi(x,(__m64 *)(stride + (char *)(in)));

 y = _mm_loadl_pi(y,(__m64 *)(2*stride+(char *)(in)));

 y = _mm_loadh_pi(y,(__m64 *)(3*stride+(char *)(in)));

 tmp = _mm_shuffle_ps(x, y, _MM_SHUFFLE(2, 0, 2, 0));

 y = _mm_shuffle_ps(x, y, _MM_SHUFFLE(3, 1, 3, 1));

 x = tmp;

 z = _mm_loadl_pi(z,(__m64 *)(8 + (char *)(in)));

 z = _mm_loadh_pi(z,(__m64 *)(stride+8+(char *)(in)));

 w = _mm_loadl_pi(w,(__m64 *)(2*stride+8+(char*)(in)));

 w = _mm_loadh_pi(w,(__m64 *)(3*stride+8+(char*)(in)));

continued

Example 5-3 Swizzling Data (continued)
5-11

IA-32 Intel® Architecture Optimization

Although the generated result of all zeros does not depend on the
specific data contained in the source operand (that is, XOR of a register
with itself always produces all zeros), the instruction cannot execute
until the instruction that generates xmm0 has completed. In the worst
case, this creates a dependence chain that links successive iterations of
the loop, even if those iterations are otherwise independent. The
performance impact can be significant depending on how many other
independent intra-loop computations are performed. Note that on the
Pentium 4 processor, the SIMD integer pxor instructions, if used with
the same register, do break the dependence chain, eliminating false
dependencies when clearing registers.

 tmp = _mm_shuffle_ps(z, w, _MM_SHUFFLE(2, 0, 2, 0));

 w = _mm_shuffle_ps(z, w, _MM_SHUFFLE(3, 1, 3, 1));

 z = tmp;

 _mm_store_ps(&out->x[0], x);

 _mm_store_ps(&out->y[0], y);

 _mm_store_ps(&out->z[0], z);

 _mm_store_ps(&out->w[0], w);

}

CAUTION. Avoid creating a dependence chain from
previous computations because the movhps/movlps
instructions bypass one part of the register. The same
issue can occur with the use of an exclusive-OR
function within an inner loop in order to clear a
register:
 xorps xmm0, xmm0 ; All 0’s written to xmm0

Example 5-4 Swizzling Data Using Intrinsics (continued)
5-12

Optimizing for SIMD Floating-point Applications 5
The same situation can occur for the above movhps/movlps/shufps
sequence. Since each movhps/movlps instruction bypasses part of the
destination register, the instruction cannot execute until the prior
instruction that generates this register has completed. As with the xorps
example, in the worst case this dependence can prevent successive loop
iterations from executing in parallel.

A solution is to include a 128-bit load (that is, from a dummy local
variable, such as tmp in Example 5-4) to each register to be used with a
movhps/movlps instruction. This action effectively breaks the
dependence by performing an independent load from a memory or
cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into
AoS format so the xxxx, yyyy, zzzz are rearranged and stored in
memory as xyz. To do this we can use the unpcklps/unpckhps
instructions to regenerate the xyxy layout and then store each half (xy)
into its corresponding memory location using movlps/movhps followed
by another movlps/movhps to store the z component.

Example 5-5 illustrates the deswizzle function:

Example 5-5 Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)

{

 __asm {

mov ecx, in // load structure addresses

mov edx, out

movaps xmm7, [ecx] // load x1 x2 x3 x4 => xmm7

movaps xmm6, [ecx+16] // load y1 y2 y3 y4 => xmm6

movaps xmm5, [ecx+32] // load z1 z2 z3 z4 => xmm5

movaps xmm4, [ecx+48] // load w1 w2 w3 w4 => xmm4

continued
5-13

IA-32 Intel® Architecture Optimization
You may have to swizzle data in the registers, but not in memory. This
occurs when two different functions need to process the data in different
layout. In lighting, for example, data comes as rrrr gggg bbbb aaaa,
and you must deswizzle them into rgba before converting into integers.
In this case you use the movlhps/movhlps instructions to do the first
part of the deswizzle followed by shuffle instructions, see
Example 5-6 and Example 5-7.

// START THE DESWIZZLING HERE

movaps xmm0, xmm7 // xmm0= x1 x2 x3 x4

unpcklps xmm7, xmm6 // xmm7= x1 y1 x2 y2

movlps [edx], xmm7 // v1 = x1 y1 -- --

movhps [edx+16], xmm7 // v2 = x2 y2 -- --

unpckhps xmm0, xmm6 // xmm0= x3 y3 x4 y4

movlps [edx+32], xmm0 // v3 = x3 y3 -- --

movhps [edx+48], xmm0 // v4 = x4 y4 -- --

movaps xmm0, xmm5 // xmm0= z1 z2 z3 z4

unpcklps xmm5, xmm4 // xmm5= z1 w1 z2 w2

unpckhps xmm0, xmm4 // xmm0= z3 w3 z4 w4

movlps [edx+8], xmm5 // v1 = x1 y1 z1 w1

movhps [edx+24], xmm5 // v2 = x2 y2 z2 w2

movlps [edx+40], xmm0 // v3 = x3 y3 z3 w3

movhps [edx+56], xmm0 // v4 = x4 y4 z4 w4

// DESWIZZLING ENDS HERE

 }

}

Example 5-5 Deswizzling Single-Precision SIMD Data (continued)
5-14

Optimizing for SIMD Floating-point Applications 5
Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)

{

//---deswizzle rgb---

// assume: xmm1=rrrr, xmm2=gggg, xmm3=bbbb, xmm4=aaaa

__asm {

 mov ecx, in // load structure addresses

 mov edx, out

 movaps xmm1, [ecx] // load r1 r2 r3 r4 => xmm1

 movaps xmm2, [ecx+16] // load g1 g2 g3 g4 => xmm2

 movaps xmm3, [ecx+32] // load b1 b2 b3 b4 => xmm3

 movaps xmm4, [ecx+48] // load a1 a2 a3 a4 => xmm4

// Start deswizzling here

 movaps xmm7, xmm4 // xmm7= a1 a2 a3 a4

 movhlps xmm7, xmm3 // xmm7= b3 b4 a3 a4

 movaps xmm6, xmm2 // xmm6= g1 g2 g3 g4

 movlhps xmm3, xmm4 // xmm3= b1 b2 a1 a2

 movhlps xmm2, xmm1 // xmm2= r3 r4 g3 g4

 movlhps xmm1, xmm6 // xmm1= r1 r2 g1 g2

 movaps xmm6, xmm2 // xmm6= r3 r4 g3 g4

 movaps xmm5, xmm1 // xmm5= r1 r2 g1 g2

 shufps xmm2, xmm7, 0xDD // xmm2= r4 g4 b4 a4

 shufps xmm1, xmm3, 0x88 // xmm4= r1 g1 b1 a1

 shufps xmm5, xmm3, 0x88 // xmm5= r2 g2 b2 a2

 shufps xmm6, xmm7, 0xDD // xmm6= r3 g3 b3 a3

 movaps [edx], xmm4 // v1 = r1 g1 b1 a1

 movaps [edx+16], xmm5 // v2 = r2 g2 b2 a2

 movaps [edx+32], xmm6 // v3 = r3 g3 b3 a3

movaps [edx+48], xmm2 // v4 = r4 g4 b4 a4

// DESWIZZLING ENDS HERE

 }

}

5-15

IA-32 Intel® Architecture Optimization
Using MMX Technology Code for Copy or Shuffling
Functions

If there are some parts in the code that are mainly copying, shuffling, or
doing logical manipulations that do not require use of SSE code,
consider performing these actions with MMX technology code. For
example, if texture data is stored in memory as SoA (uuuu, vvvv) and
they need only to be deswizzled into AoS layout (uv) for the graphic

Example 5-7 Deswizzling Data 64-bit Integer SIMD Data

void mmx_deswizzle(IVertex_soa *in, IVertex_aos *out)

{

 __asm {

 mov ebx, in

 mov edx, out

movq mm0, [ebx] // mm0= u1 u2

 movq mm1, [ebx+16] // mm1= v1 v2

 movq mm2, mm0 // mm2= u1 u2

 punpckhdq mm0, mm1 // mm0= u1 v1

 punpckldq mm2, mm1 // mm0= u2 v2

 movq [edx], mm2 // store u1 v1

movq [edx+8], mm0 // store u2 v2

 movq mm4, [ebx+8] // mm0= u3 u4

 movq mm5, [ebx+24] // mm1= v3 v4

 movq mm6, mm4 // mm2= u3 u4

 punpckhdq mm4, mm5 // mm0= u3 v3

 punpckldq mm6, mm5 // mm0= u4 v4

 movq [edx+16], mm6 // store u3v3

 movq [edx+24], mm4 // store u4v4

 }

}

5-16

Optimizing for SIMD Floating-point Applications 5
cards to process, you can use either the SSE or MMX technology code.
Using the MMX instructions allow you to conserve XMM registers for
other computational tasks.

Example 5-8 illustrates how to use MMX technology code for copying
or shuffling.

Horizontal ADD

Although vertical computations use the SIMD performance better than
horizontal computations do, in some cases, the code must use a
horizontal operation. The movlhps/movhlps and shuffle can be used to
sum data horizontally. For example, starting with four 128-bit registers,
to sum up each register horizontally while having the final results in one
register, use the movlhps/movhlps instructions to align the upper and
lower parts of each register. This allows you to use a vertical add. With
the resulting partial horizontal summation, full summation follows

Example 5-8 Using MMX Technology Code for Copying or Shuffling

movq mm0, [Uarray+ebx] ; mm0= u1 u2

movq mm1, [Varray+ebx] ; mm1= v1 v2

movq mm2, mm0 ; mm2= u1 u2

punpckhdq mm0, mm1 ; mm0= u1 v1

punpckldq mm2, mm1 ; mm2= u2 v2

movq [Coords+edx], mm0 ; store u1 v1

movq [Coords+8+edx], mm2 ; store u2 v2

movq mm4, [Uarray+8+ebx] ; mm4= u3 u4

movq mm5, [Varray+8+ebx] ; mm5= v3 v4

movq mm6, mm4 ; mm6= u3 u4

punpckhdq mm4, mm5 ; mm4= u3 v3

punpckldq mm6, mm5 ; mm6= u4 v4

movq [Coords+16+edx], mm4 ; store u3 v3

movq [Coords+24+edx], mm6 ; store u4 v4
5-17

IA-32 Intel® Architecture Optimization
easily. Figure 5-2 schematically presents horizontal add using
movhlps/movlhps, while Example 5-9 and Example 5-10 provide the
code for this operation.

Figure 5-2 Horizontal Add Using movhlps/movlhps

OM15169

A1+A2+A3+A4 B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4

A1+A3 B1+B3 C1+C3 D1+D3 A2+A4 B2+B4 C2+C4 D2+D4

A1+A3 A2+A4 B1+B3 B2+B4 C1+C3 C2+C4 D1+D3 D2+D4

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

A1 A2 B1 B2 A3 A4 B3 B4 C1 C2 D1 D2 C3 C4 D3 D4

ADDPS

SHUFPS SHUFPS

ADDPS ADDPS

MOVLHPS MOVLHPS

xmm0 xmm2

MOVHLPS MOVHLPS

xmm1 xmm3
5-18

Optimizing for SIMD Floating-point Applications 5
Example 5-9 Horizontal Add Using movhlps/movlhps

void horiz_add(Vertex_soa *in, float *out) {

 __asm {

mov ecx, in // load structure addresses

mov edx, out

movaps xmm0, [ecx] // load A1 A2 A3 A4 => xmm0

movaps xmm1, [ecx+16] // load B1 B2 B3 B4 => xmm1

movaps xmm2, [ecx+32] // load C1 C2 C3 C4 => xmm2

movaps xmm3, [ecx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD

movaps xmm5, xmm0 // xmm5= A1,A2,A3,A4

movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2

movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4

addps xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps xmm4, xmm2

movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2

movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4

addps xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4

movaps xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4

shufps xmm3, xmm5, 0xDD

//xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88

// xmm5= A2+A4,B2+B4,C2+C4,D2+D4

addps xmm6, xmm5 // xmm6= D,C,B,A

 // END HORIZONTAL ADD

 movaps [edx], xmm6

 }

}

5-19

IA-32 Intel® Architecture Optimization
Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps

void horiz_add_intrin(Vertex_soa *in, float *out)

{

 __m128 v1, v2, v3, v4;

 __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6;
 // Temporary variables

 tmm0 = _mm_load_ps(in->x); // tmm0 = A1 A2 A3 A4

tmm1 = _mm_load_ps(in->y); // tmm1 = B1 B2 B3 B4

 tmm2 = _mm_load_ps(in->z); // tmm2 = C1 C2 C3 C4

 tmm3 = _mm_load_ps(in->w); // tmm3 = D1 D2 D3 D4

 tmm5 = tmm0; // tmm0 = A1 A2 A3 A4

 tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2

 tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4

 tmm5 = _mm_add_ps(tmm5, tmm1); // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4

 tmm4 = tmm2;

 tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2

 tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4

 tmm3 = _mm_add_ps(tmm3, tmm2); // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4

 tmm6 = tmm3; // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4

 tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD);
 // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3

 tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88);
 // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4

 tmm6 = _mm_add_ps(tmm6, tmm5);
 // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4
 // C1+C2+C3+C4 D1+D2+D3+D4

 _mm_store_ps(out, tmm6);

}

5-20

Optimizing for SIMD Floating-point Applications 5
Use of cvttps2pi/cvttss2si Instructions
The cvttps2pi and cvttss2si instructions encode the truncate/chop
rounding mode implicitly in the instruction, thereby taking precedence
over the rounding mode specified in the MXCSR register. This behavior
can eliminate the need to change the rounding mode from
round-nearest, to truncate/chop, and then back to round-nearest to
resume computation. Frequent changes to the MXCSR register should be
avoided since there is a penalty associated with writing this register;
typically, through the use of the cvttps2pi and cvttss2si instructions,
the rounding control in MXCSR can be always be set to round-nearest.

Flush-to-Zero Mode
Activating the flush-to-zero mode has the following effects during
underflow situations:

• Precision and underflow exception flags are set to 1

• Zero result is returned

The IEEE mandated response to underflow is to deliver the
denormalized result (that is, gradual underflow); consequently, the
flush-to-zero mode is not compatible with IEEE Standard 754. It is
provided to improve performance for applications where underflow is
common and where the generation of a denormalized result is not
necessary. Underflow for flush-to-zero mode occurs when the exponent
for a computed result falls in the denormal range, regardless of whether
a loss of accuracy has occurred.

Unmasking the underflow exception takes precedence over
flush-to-zero mode. For a SSE instruction that generates an underflow
condition an exception handler is invoked.
5-21

IA-32 Intel® Architecture Optimization
5-22

6
Optimizing Cache Usage
Over the past decade, processor speed has increased more than ten
times. Memory access speed has increased at a slower pace. The
resulting disparity has made it important to tune applications so that a
majority of the data accesses are fulfilled in the processor caches. The
performance of most applications can be considerably improved if the
data they require can be fetched from the processor caches rather than
from main memory.

Standard techniques to bring data into the processor before it is needed
involves additional programming which can be difficult to implement
and may require special steps to prevent performance degradation. The
Streaming SIMD Extensions addressed these issues by providing the
various prefetch instructions. The Intel Pentium 4 and Pentium M
processors extend prefetching support via an automatic hardware data
prefetch, a new mechanism for data prefetching based on current data
access patterns that does not require programmer intervention.

Streaming SIMD Extensions also introduced the various non-temporal
store instructions. Streaming SIMD Extensions 2 extend this support to
the new data types, and also introduces non-temporal store support for
the 32-bit integer registers.

This chapter focuses on two major subjects:

• Prefetch and Cacheability Instructions: discussion about the
instructions that allow you to affect data caching in an application.

• Memory Optimization Using Prefetch and Cacheability
Instructions: discussion and examples of various techniques for
implementing memory optimizations using these instructions.
6-1

IA-32 Intel® Architecture Optimization
General Prefetch Coding Guidelines
The following guidelines will help you optimize the usage of prefetches
in your code (specific details will be discussed in subsequent sections):

• Take advantage of the hardware prefetcher’s ability to prefetch data
that are accessed in linear patterns, either forward or backward
direction.

• Use a current-generation compiler, such as the Intel C++ Compiler
that supports C++ language-level features for the Streaming SIMD
Extensions. The Streaming SIMD Extensions and MMX technology
instructions provide intrinsics that allow you to optimize cache
utilization. The examples of such Intel compiler intrinsics are
_mm_prefetch, _mm_stream and _mm_load, _mm_sfence. For more
details on these intrinsics, refer to the Intel C++ Compiler User’s
Guide, doc. number 718195.

• Facilitate compiler optimization:

— Minimize use of global variables and pointers.

— Minimize use of complex control flow.

— Use the const modifier, avoid register modifier.

— Choose data types carefully (see below) and avoid type casting.

• Optimize prefetch scheduling distance –

— Far ahead enough to allow interim computation to overlap
memory access time.

— Near enough that the prefetched data is not replaced from the
data cache.

NOTE. In a number of cases presented in this chapter,
the prefetching and cache utilization are Pentium 4
processor platform-specific and may change for the
future processors.
6-2

Optimizing Cache Usage 6
• Use prefetch concatenation:

— Arrange prefetches to avoid unnecessary prefetches at the end
of an inner loop and to prefetch the first few iterations of the
inner loop inside the next outer loop.

• Minimize the number of prefetches:

— Prefetch instructions are not completely free in terms of bus
cycles, machine cycles and resources. Excessive usage of
prefetches can adversely impact application performance.

• Interleave prefetch with computation instructions:

— For best performance, prefetch instructions must be interspersed
with other computational instructions in the instruction
sequence rather than clustered together.

• Use cache blocking techniques (for example, strip mining):

— Improve cache hit rate by using cache blocking techniques such
as strip-mining (one dimensional arrays) or loop blocking (two
dimensional arrays)

• Balance single-pass versus multi-pass execution:

— An algorithm can use single- or multi-pass execution defined as
follows: single-pass, or unlayered execution passes a single data
element through an entire computation pipeline. Multi-pass, or
layered execution performs a single stage of the pipeline on a
batch of data elements before passing the entire batch on to the
next stage.

— General guideline: if your algorithm is single pass, use
prefetchnta; if your algorithm is multi-pass use prefetcht0.

• Resolve memory bank conflict issues:

— Minimize memory bank conflicts by applying array grouping to
group contiguously used data together or allocating data within
4 KB memory pages.
6-3

IA-32 Intel® Architecture Optimization
• Resolve cache management issues:

— Minimize disturbance of temporal data held within the
processor’s caches by using streaming store instructions, as
appropriate

Hardware Data Prefetch
The Pentium 4, Intel Xeon, and Pentium M processors implement an
automatic data prefetcher which monitors application data access
patterns and prefetches data automatically. This behavior is automatic
and does not require programmer’s intervention.

Characteristics of the hardware data prefetcher for the Pentium 4 and
Intel Xeon processors are:

• Attempts to stay 256 bytes ahead of current data access locations

• Follows only one stream per 4K page (load or store)

• Can prefetch up to 8 simultaneous independent streams from eight
different 4K regions

• Does not prefetch across 4K boundary; note that this is independent
of paging modes

• Fetches data into second/third-level cache

• Does not prefetch UC or WC memory types

• Follows load and store streams. Issues Read For Ownership (RFO)
transactions for store streams and Data Reads for load streams.

The hardware prefetcher implemented in the Pentium M processor
fetches data to the second level cache. It can track 12 independent
streams in the forward direction and 4 independent streams in the
backward direction.
6-4

Optimizing Cache Usage 6
Prefetch and Cacheability Instructions
The prefetch instruction, inserted by the programmers or compilers,
accesses a minimum of two cache line of data on the Pentium 4
processor (one cache line of data on the Pentium M processor) prior to
that data actually being needed. This hides the latency for data access in
the time required to process data already resident in the cache. Many
algorithms can provide information in advance about the data that is to
be required soon. In cases where the memory accesses are in long,
regular data patterns, the automatic hardware prefetcher should be
favored over software prefetches.

The cacheability control instructions allow you to control data caching
strategy in order to increase cache efficiency and minimize cache
pollution.

Data reference patterns can be classified as follows:

Temporal data will be used again soon

Spatial data will be used in adjacent locations, for example,
same cache line

Non-temporal data which is referenced once and not reused in the
immediate future; for example, some multimedia data
types, such as the vertex buffer in a 3D graphics
application.

These data characteristics are used in the discussions that follow.

Prefetch
This section discusses the mechanics of the software prefetch
instructions and the automatic hardware prefetcher.
6-5

IA-32 Intel® Architecture Optimization
Software Data Prefetch

The prefetch instruction can hide the latency of data access in
performance-critical sections of application code by allowing data to be
fetched in advance of its actual usage. The prefetch instructions do not
change the user-visible semantics of a program, although they may
affect the program’s performance. The prefetch instructions merely
provide a hint to the hardware and generally will not generate
exceptions or faults.

The prefetch instructions load either non-temporal data or temporal
data in the specified cache level. This data access type and the cache
level are specified as a hint. Depending on the implementation, the
instruction fetches 32 or more aligned bytes, including the specified
address byte, into the instruction-specified cache levels.

The prefetch instruction is implementation-specific; applications need
to be tuned to each implementation to maximize performance.

The prefetch instructions merely provide a hint to the hardware, and
they will not generate exceptions or faults except for a few special cases
(see the “Prefetch and Load Instructions” section). However, excessive
use of prefetch instructions may waste memory bandwidth and result in
performance penalty due to resource constraints.

Nevertheless, the prefetch instructions can lessen the overhead of
memory transactions by preventing cache pollution and by using the
caches and memory efficiently. This is particularly important for
applications that share critical system resources, such as the memory
bus. See an example in the “Video Encoder” section.

NOTE. Using the prefetch instructions is
recommended only if data does not fit in cache.
6-6

Optimizing Cache Usage 6
The prefetch instructions are mainly designed to improve application
performance by hiding memory latency in the background. If segments
of an application access data in a predictable manner, for example, using
arrays with known strides, then they are good candidates for using
prefetch to improve performance.

Use the prefetch instructions in:

• predictable memory access patterns

• time-consuming innermost loops

• locations where the execution pipeline may stall if data is not
available

The Prefetch Instructions – Pentium 4 Processor
Implementation

Streaming SIMD Extensions include four flavors of prefetch
instructions, one non-temporal, and three temporal. They correspond to
two types of operations, temporal and non-temporal.

The non-temporal instruction is

prefetchnta Fetch the data into the second-level cache, minimizing
cache pollution.

The temporal instructions are

prefetcht0 Fetch the data into all cache levels, that is, to the
second-level cache for the Pentium 4 processor.

prefetcht1 Identical to prefetcht0

prefetcht2 Identical to prefetcht0

NOTE. At the time of prefetch, if the data is already
found in a cache level that is closer to the processor
than the cache level specified by the instruction, no
data movement occurs.
6-7

IA-32 Intel® Architecture Optimization
Table 6-1 lists the prefetch implementation differences between the
Pentium III and Pentium 4 processors.

Prefetch and Load Instructions

The Pentium 4 processor has a decoupled execution and memory
architecture that allows instructions to be executed independently with
memory accesses if there are no data and resource dependencies.
Programs or compilers can use dummy load instructions to imitate
prefetch functionality, but preloading is not completely equivalent to
prefetch instructions. Prefetch instructions provide a greater
performance than preloading.

Currently, the prefetch instruction provides a greater performance gain
than preloading because it:

• has no destination register, it only updates cache lines.

• does not stall the normal instruction retirement.

• does not affect the functional behavior of the program.

Table 6-1 Prefetch Implementation: Pentium III and Pentium 4 Processors

Prefetch Type Pentium III processor Pentium 4 processor

Prefetch NTA Fetch 32 bytes

Fetch into 1st- level cache

Do not fetch into 2nd-level
cache

Fetch 128 bytes

Do not fetch into 1st-level
cache

Fetch into 1 way of 2nd-level
cache

PrefetchT0 Fetch 32 bytes

Fetch into 1st- level cache

Fetch into 2nd- level
cache

Fetch 128 bytes

Do not fetch into 1st-level
cache

Fetch into 2nd- level cache

PrefetchT1,
PrefetchT2

Fetch 32 bytes

Fetch into 2nd- level
cache only

Do not fetch into 1st-level
cache

Fetch 128 bytes

Do not fetch into 1st-level
cache

Fetch into 2nd- level cache only
6-8

Optimizing Cache Usage 6
• has no cache line split accesses.

• does not cause exceptions except when LOCK prefix is used; the LOCK
prefix is not a valid prefix for use with the prefetch instructions
and should not be used.

• does not complete its own execution if that would cause a fault.

The current advantages of the prefetch over preloading instructions are
processor-specific. The nature and extent of the advantages may change
in the future.

In addition there are a few cases where a prefetch instruction will not
perform the data prefetch if:

• the prefetch causes a DTLB (Data Translation Lookaside Buffer)
miss.

• an access to the specified address causes a fault/exception.

• the memory subsystem runs out of request buffers between the

first-level cache and the second-level cache.

• the prefetch targets an uncacheable memory region, for example,
USWC and UC.

• a LOCK prefix is used. This causes an invalid opcode exception.

Cacheability Control
This section covers the mechanics of the cacheability control
instructions.

The Non-temporal Store Instructions

This section describes the behavior of streaming stores and reiterates
some of the information presented in the previous section. In Streaming
SIMD Extensions, the movntps, movntpd, movntq, movntdq, movnti,
maskmovq and maskmovdqu instructions are streaming, non-temporal
stores. With regard to memory characteristics and ordering, they are
similar mostly to the Write-Combining (WC) memory type:
6-9

IA-32 Intel® Architecture Optimization
• Write combining – successive writes to the same cache line are
combined

• Write collapsing – successive writes to the same byte(s) result in
only the last write being visible

• Weakly ordered – no ordering is preserved between WC stores, or
between WC stores and other loads or stores

• Uncacheable and not write-allocating – stored data is written around
the cache and will not generate a read-for-ownership bus request for
the corresponding cache line

Fencing

Because streaming stores are weakly ordered, a fencing operation is
required to ensure that the stored data is flushed from the processor to
memory. Failure to use an appropriate fence may result in data being
“trapped” within the processor and will prevent visibility of this data by
other processors or system agents. WC stores require software to ensure
coherence of data by performing the fencing operation; see “The fence
Instructions” section for more information.

Streaming Non-temporal Stores

Streaming stores can improve performance in the following ways:

• Increase store bandwidth if 64 bytes that fit within a cache line are
written consecutively, since they do not require read-for-ownership
bus requests and 64 bytes are combined into a single bus write
transaction.

• Reduce disturbance of frequently used cached (temporal) data, since
they write around the processor caches.

Streaming stores allow cross-aliasing of memory types for a given
memory region. For instance, a region may be mapped as write-back
(WB) via the page attribute tables (PAT) or memory type range registers
(MTRRs) and yet is written using a streaming store.
6-10

Optimizing Cache Usage 6
Memory Type and Non-temporal Stores

The memory type can take precedence over the non-temporal hint,
leading to the following considerations:

• If the programmer specifies a non-temporal store to
strongly-ordered uncacheable memory, for example, the
Uncacheable (UC) or Write-Protect (WP) memory types, then the
store behaves like an uncacheable store; the non-temporal hint is
ignored and the memory type for the region is retained.

• If the programmer specifies the weakly-ordered uncacheable
memory type of Write-Combining (WC), then the non-temporal
store and the region have the same semantics, and there is no
conflict.

• If the programmer specifies a non-temporal store to cacheable
memory, for example, Write-Back (WB) or Write-Through (WT)
memory types, two cases may result:

1. If the data is present in the cache hierarchy, the instruction will
ensure consistency. A particular processor may choose different
ways to implement this. The following approaches are probable:
(a) updating data in-place in the cache hierarchy while
preserving the memory type semantics assigned to that region,
or (b) evicting the data from the caches and writing the new
non-temporal data to memory (with WC semantics). Pentium III
processor implements a combination of both approaches.

If the streaming store hits a line that is present in the first-level
cache, the store data will be combined in place within the
first-level cache. If the streaming store hits a line present in the
second-level, the line and stored data will be flushed from the
second-level to system memory. Note that the approaches,
separate or combined, can be different for future processors.
Pentium 4 processor implements the latter policy, of evicting
the data from all processor caches.
6-11

IA-32 Intel® Architecture Optimization
2. If the data is not present in the cache hierarchy, and the
destination region is mapped as WB or WT, the transaction will be
weakly ordered, and is subject to all WC memory semantics. The
non-temporal store will not write-allocate. Different
implementations may choose to collapse and combine these
stores.

Write-Combining

Generally, WC semantics require software to ensure coherence, with
respect to other processors and other system agents (such as graphics
cards). Appropriate use of synchronization and a fencing operation (see
“The fence Instructions” later in this chapter) must be performed for
producer-consumer usage models. Fencing ensures that all system
agents have global visibility of the stored data; for instance, failure to
fence may result in a written cache line staying within a processor, and
the line would not be visible to other agents.

For processors which implement non-temporal stores by updating data
in-place that already resides in the cache hierarchy, the destination
region should also be mapped as WC. Otherwise if mapped as WB or WT,
there is a potential for speculative processor reads to bring the data into
the caches; in this case, non-temporal stores would then update in place,
and data would not be flushed from the processor by a subsequent
fencing operation.

The memory type visible on the bus in the presence of memory type
aliasing is implementation-specific. As one possible example, the
memory type written to the bus may reflect the memory type for the first
store to this line, as seen in program order; other alternatives are
possible. This behavior should be considered reserved, and dependence
on the behavior of any particular implementation risks future
incompatibility.
6-12

Optimizing Cache Usage 6
Streaming Store Usage Models

The two primary usage domains for streaming store are coherent
requests and non-coherent requests.

Coherent Requests

Coherent requests are normal loads and stores to system memory, which
may also hit cache lines present in another processor in a
multi-processor environment. With coherent requests, a streaming store
can be used in the same way as a regular store that has been mapped
with a WC memory type (PAT or MTRR). An sfence instruction must be
used within a producer-consumer usage model in order to ensure
coherency and visibility of data between processors.

Within a single-processor system, the CPU can also re-read the same
memory location and be assured of coherence (that is, a single,
consistent view of this memory location): the same is true for a
multi-processor (MP) system, assuming an accepted MP software
producer-consumer synchronization policy is employed.

Non-coherent requests

Non-coherent requests arise from an I/O device, such as an AGP
graphics card, that reads or writes system memory using non-coherent
requests, which are not reflected on the processor bus and thus will not
query the processor’s caches. An sfence instruction must be used
within a producer-consumer usage model in order to ensure coherency
and visibility of data between processors. In this case, if the processor is
writing data to the I/O device, a streaming store can be used with a
processor with any behavior of approach (a), page 6-11, above, only if
the region has also been mapped with a WC memory type (PAT, MTRR).
6-13

IA-32 Intel® Architecture Optimization
In case the region is not mapped as WC, the streaming might update
in-place in the cache and a subsequent sfence would not result in the
data being written to system memory. Explicitly mapping the region as
WC in this case ensures that any data read from this region will not be
placed in the processor’s caches. A read of this memory location by a
non-coherent I/O device would return incorrect/out-of-date results. For
a processor which solely implements approach (b), page 6-11, above, a
streaming store can be used in this non-coherent domain without
requiring the memory region to also be mapped as WB, since any cached
data will be flushed to memory by the streaming store.

Streaming Store Instruction Descriptions

The movntq/movntdq (non-temporal store of packed integer in an
MMX technology or Streaming SIMD Extensions register) instructions
store data from a register to memory. The instruction is implicitly
weakly-ordered, does no write-allocate, and so minimizes cache
pollution.

The movntps (non-temporal store of packed single precision floating
point) instruction is similar to movntq. It stores data from a Streaming
SIMD Extensions register to memory in 16-byte granularity. Unlike
movntq, the memory address must be aligned to a 16-byte boundary or a
general protection exception will occur. The instruction is implicitly
weakly-ordered, does not write-allocate, and thus minimizes cache
pollution.

CAUTION. Failure to map the region as WC may allow
the line to be speculatively read into the processor
caches, that is, via the wrong path of a mispredicted
branch.
6-14

Optimizing Cache Usage 6
The maskmovq/maskmovdqu (non-temporal byte mask store of packed
integer in an MMX technology or Streaming SIMD Extensions register)
instructions store data from a register to the location specified by the
edi register. The most significant bit in each byte of the second mask
register is used to selectively write the data of the first register on a
per-byte basis. The instruction is implicitly weakly-ordered (that is,
successive stores may not write memory in original program-order),
does not write-allocate, and thus minimizes cache pollution.

The fence Instructions

The following fence instructions are available: sfence, lfence, and
mfence.

The sfence Instruction

The sfence (store fence) instruction makes it possible for every
store instruction that precedes the sfence instruction in program order
to be globally visible before any store instruction that follows the
sfence. The sfence instruction provides an efficient way of ensuring
ordering between routines that produce weakly-ordered results.

The use of weakly-ordered memory types can be important under
certain data sharing relationships, such as a producer-consumer
relationship. Using weakly-ordered memory can make assembling the
data more efficient, but care must be taken to ensure that the consumer
obtains the data that the producer intended to see. Some common usage
models may be affected in this way by weakly-ordered stores. Examples
are:

• library functions, which use weakly-ordered memory to write
results

• compiler-generated code, which also benefits from writing
weakly-ordered results

• hand-crafted code
6-15

IA-32 Intel® Architecture Optimization
The degree to which a consumer of data knows that the data is
weakly-ordered can vary for these cases. As a result, the sfence
instruction should be used to ensure ordering between routines that
produce weakly-ordered data and routines that consume this data. The
sfence instruction provides a performance-efficient way by ensuring
the ordering when every store instruction that precedes the store
fence instruction in program order is globally visible before any store
instruction which follows the fence.

The lfence Instruction

The lfence (load fence) instruction makes it possible for every load
instruction that precedes the lfence instruction in program order to be
globally visible before any load instruction that follows the lfence.
The lfence instruction provides a means of segregating certain load
instructions from other loads.

The mfence Instruction

The mfence (memory fence) instruction makes it possible for every
load and store instruction that precedes the mfence instruction in
program order to be globally visible before any other load or store
instruction that follows the mfence. The mfence instruction provides a
means of segregating certain memory instructions from other memory
references.

Note that the use of a lfence and sfence is not equivalent to the use
of a mfence since the load and store fences are not ordered with respect
to each other. In other words, the load fence can be executed before
prior stores, and the store fence can be executed before prior loads. The
mfence instruction should be used whenever the cache line flush
instruction (clflush) is used to ensure that speculative memory
references generated by the processor do not interfere with the flush; see
“The clflush Instruction” for more information.
6-16

Optimizing Cache Usage 6
The clflush Instruction

The cache line associated with the linear address specified by the value
of byte address is invalidated from all levels of the processor cache
hierarchy (data and instruction). The invalidation is broadcast
throughout the coherence domain. If, at any level of the cache hierarchy,
the line is inconsistent with memory (dirty) it is written to memory
before invalidation. Other characteristics include:

• The data size affected is the cache coherency size, which is 64 bytes
on Pentium 4 processor.

• The memory attribute of the page containing the affected line has no
effect on the behavior of this instruction.

• The clflush instruction can be used at all privilege levels and is
subject to all permission checking and faults associated with a byte
load.

clflush is an unordered operation with respect to other memory traffic
including other clflush instructions. Software should use a mfence,
memory fence for cases where ordering is a concern.

As an example, consider a video usage model, wherein a video capture
device is using non-coherent AGP accesses to write a capture stream
directly to system memory. Since these non-coherent writes are not
broadcast on the processor bus, they will not flush any copies of the
same locations that reside in the processor caches. As a result, before the
processor re-reads the capture buffer, it should use clflush to ensure
that any stale copies of the capture buffer are flushed from the processor
caches. Due to speculative reads that may be generated by the processor,
it is important to observe appropriate fencing, using mfence.
Example 6-1 illustrates the pseudo-code for the recommended usage of
cflush.
6-17

IA-32 Intel® Architecture Optimization
Memory Optimization Using Prefetch
The Pentium 4 processor has two mechanisms for data prefetch:
software-controlled prefetch and an automatic hardware prefetch.

Software-controlled Prefetch

The software-controlled prefetch is enabled using the four prefetch
instructions introduced with Streaming SIMD Extensions instructions.
These instructions are hints to bring a cache line of data in to various
levels and modes in the cache hierarchy. The software-controlled
prefetch is not intended for prefetching code. Using it can incur
significant penalties on a multiprocessor system when code is shared.

Software prefetching has the following characteristics:

• Can handle irregular access patterns, which do not trigger the
hardware prefetcher.

• Can use less bus bandwidth than hardware prefetching; see below.

• Software prefetches must be added to new code, and do not benefit
existing applications.

Example 6-1 Pseudo-code for Using cflush

while (!buffer_ready} {}

mfence

for(i=0;i<num_cachelines;i+=cacheline_size) {

clflush (char *)((unsigned int)buffer + i)

}

mfence

prefnta buffer[0];

VAR = buffer[0];
6-18

Optimizing Cache Usage 6
Hardware Prefetch

The automatic hardware prefetch, can bring lines into the unified
first-level cache based on prior data misses. The automatic hardware
prefetcher will attempt to prefetch two cache lines ahead of the prefetch
stream. This feature is introduced with the Pentium 4 processor.

There are different strengths and weaknesses to software and hardware
prefetching of the Pentium 4 processor. The characteristics of the
hardware prefetching are as follows (compare with the software
prefetching features listed above):

• Works with existing applications.

• Requires regular access patterns.

• Start-up penalty before hardware prefetcher triggers and extra
fetches after array finishes. For short arrays this overhead can
reduce effectiveness of the hardware prefetcher.

— The hardware prefetcher requires a couple misses before it
starts operating.

— Hardware prefetching will generate a request for data beyond
the end of an array, which will not be utilized. This behavior
wastes bus bandwidth. In addition this behavior results in a
start-up penalty when fetching the beginning of the next array;
this occurs because the wasted prefetch should have been used
instead to hide the latency for the initial data in the next array.
Software prefetching can recognize and handle these cases.

• Will not prefetch across a 4K page boundary; i.e., the program
would have to initiate demand loads for the new page before the
hardware prefetcher will start prefetching from the new page.
6-19

IA-32 Intel® Architecture Optimization
Example of Latency Hiding with S/W Prefetch Instruction

Achieving the highest level of memory optimization using prefetch
instructions requires an understanding of the microarchitecture and
system architecture of a given machine. This section translates the key
architectural implications into several simple guidelines for
programmers to use.

Figure 6-1 and Figure 6-2 show two scenarios of a simplified 3D
geometry pipeline as an example. A 3D-geometry pipeline typically
fetches one vertex record at a time and then performs transformation
and lighting functions on it. Both figures show two separate pipelines,
an execution pipeline, and a memory pipeline (front-side bus).

Since the Pentium 4 processor, similarly to the Pentium II and
Pentium III processors, completely decouples the functionality of
execution and memory access, these two pipelines can function
concurrently. Figure 6-1 shows “bubbles” in both the execution and
memory pipelines. When loads are issued for accessing vertex data, the
execution units sit idle and wait until data is returned. On the other hand,
the memory bus sits idle while the execution units are processing
vertices. This scenario severely decreases the advantage of having a
decoupled architecture.
6-20

Optimizing Cache Usage 6
The performance loss caused by poor utilization of resources can be
completely eliminated by correctly scheduling the prefetch instructions
appropriately. As shown in Figure 6-2, prefetch instructions are issued

Figure 6-1 Memory Access Latency and Execution Without Prefetch

Figure 6-2 Memory Access Latency and Execution With Prefetch

OM15170

Execution units idle

Mem latency

Issue loads

Time

Vertex n+1

Execution units idleExecution
pipeline

Mem latency

Issue loads
(vertex data)

Vertex n

Front-Side
Bus

FSB idle

OM15171

Time

Vertex n-2
Execution

pipeline

Mem latency for Vn

issue prefetch
for vertex n

Front-Side
Bus

Vertex n-1 Vertex n Vertex n+1

Mem latency for Vn+1

Mem latency for Vn+2

prefetch
Vn+1

prefetch
Vn+2
6-21

IA-32 Intel® Architecture Optimization
two vertex iterations ahead. This assumes that only one vertex gets
processed in one iteration and a new data cache line is needed for each
iteration. As a result, when iteration n, vertex Vn, is being processed, the
requested data is already brought into cache. In the meantime, the
front-side bus is transferring the data needed for iteration n+1, vertex
Vn+1. Because there is no dependence between Vn+1 data and the
execution of Vn, the latency for data access of Vn+1 can be entirely
hidden behind the execution of Vn. Under such circumstances, no
“bubbles” are present in the pipelines and thus the best possible
performance can be achieved.

Prefetching is useful for inner loops that have heavy computations, or
are close to the boundary between being compute-bound and
memory-bandwidth-bound.

The prefetch is probably not very useful for loops which are
predominately memory bandwidth-bound.

When data is already located in the first level cache, prefetching can be
useless and could even slow down the performance because the extra
µops either back up waiting for outstanding memory accesses or may be
dropped altogether. This behavior is platform-specific and may change
in the future.

Prefetching Usage Checklist

The following checklist covers issues that need to be addressed and/or
resolved to use the prefetch instruction properly:

• Determine prefetch scheduling distance

• Use prefetch concatenation

• Minimize the number of prefetches

• Mix prefetch with computation instructions

• Use cache blocking techniques (for example, strip mining)

• Balance single-pass versus multi-pass execution
6-22

Optimizing Cache Usage 6
• Resolve memory bank conflict issues

• Resolve cache management issues

The subsequent sections discuss all the above items.

Prefetch Scheduling Distance

Determining the ideal prefetch placement in the code depends on many
architectural parameters, including the amount of memory to be
prefetched, cache lookup latency, system memory latency, and estimate
of computation cycle. The ideal distance for prefetching data is
processor- and platform-dependent. If the distance is too short, the
prefetch will not hide any portion of the latency of the fetch behind
computation. If the prefetch is too far ahead, the prefetched data may be
flushed out of the cache by the time it is actually required.

Since prefetch distance is not a well-defined metric, for this discussion,
we define a new term, prefetch scheduling distance (PSD), which is
represented by the number of iterations. For large loops, prefetch
scheduling distance can be set to 1, that is, schedule prefetch
instructions one iteration ahead. For small loop bodies, that is, loop
iterations with little computation, the prefetch scheduling distance must
be more than one iteration.

A simplified equation to compute PSD is deduced from the
mathematical model. For a simplified equation, complete mathematical
model, and methodology of prefetch distance determination, refer to
Appendix E, “Mathematics of Prefetch Scheduling Distance”.

Example 6-2 illustrates the use of a prefetch within the loop body. The
prefetch scheduling distance is set to 3, esi is effectively the pointer to a
line, edx is the address of the data being referenced and xmm1-xmm4 are
the data used in computation. Example 6-3 uses two independent cache
6-23

IA-32 Intel® Architecture Optimization
lines of data per iteration. The PSD would need to be
increased/decreased if more/less than two cache lines are used per
iteration.

Prefetch Concatenation

Maximum performance can be achieved when execution pipeline is at
maximum throughput, without incurring any memory latency penalties.
This can be achieved by prefetching data to be used in successive
iterations in a loop. De-pipelining memory generates bubbles in the
execution pipeline. To explain this performance issue, a 3D geometry
pipeline that processes 3D vertices in strip format is used as an example.
A strip contains a list of vertices whose predefined vertex order forms
contiguous triangles. It can be easily observed that the memory pipe is
de-pipelined on the strip boundary due to ineffective prefetch
arrangement. The execution pipeline is stalled for the first two iterations
for each strip. As a result, the average latency for completing an

Example 6-2 Prefetch Scheduling Distance

top_loop:

prefetchnta [edx + esi + 128*3]

prefetchnta [edx*4 + esi + 128*3]

.

movaps xmm1, [edx + esi]

movaps xmm2, [edx*4 + esi]

movaps xmm3, [edx + esi + 16]

movaps xmm4, [edx*4 + esi + 16]

.

.

add esi, 128

cmp esi, ecx

jl top_loop
6-24

Optimizing Cache Usage 6
iteration will be 165(FIX) clocks. (See Appendix E, “Mathematics of
Prefetch Scheduling Distance”, for a detailed memory pipeline
description.)

This memory de-pipelining creates inefficiency in both the memory
pipeline and execution pipeline. This de-pipelining effect can be
removed by applying a technique called prefetch concatenation. With
this technique, the memory access and execution can be fully pipelined
and fully utilized.

For nested loops, memory de-pipelining could occur during the interval
between the last iteration of an inner loop and the next iteration of its
associated outer loop. Without paying special attention to prefetch
insertion, the loads from the first iteration of an inner loop can miss the
cache and stall the execution pipeline waiting for data returned, thus
degrading the performance.

In the code of Example 6-3, the cache line containing a[ii][0] is not
prefetched at all and always misses the cache. This assumes that no
array a[][] footprint resides in the cache. The penalty of memory
de-pipelining stalls can be amortized across the inner loop iterations.
However, it may become very harmful when the inner loop is short. In
addition, the last prefetch in the last PSD iterations are wasted and
consume machine resources. Prefetch concatenation is introduced here
in order to eliminate the performance issue of memory de-pipelining.

Example 6-3 Using Prefetch Concatenation

for (ii = 0; ii < 100; ii++) {

 for (jj = 0; jj < 32; jj+=8) {

 prefetch a[ii][jj+8]

 computation a[ii][jj]

 }

}

6-25

IA-32 Intel® Architecture Optimization
Prefetch concatenation can bridge the execution pipeline bubbles
between the boundary of an inner loop and its associated outer loop.
Simply by unrolling the last iteration out of the inner loop and
specifying the effective prefetch address for data used in the following
iteration, the performance loss of memory de-pipelining can be
completely removed. Example 6-4 gives the rewritten code.

This code segment for data prefetching is improved and only the first
iteration of the outer loop suffers any memory access latency penalty,
assuming the computation time is larger than the memory latency.
Inserting a prefetch of the first data element needed prior to entering the
nested loop computation would eliminate or reduce the start-up penalty
for the very first iteration of the outer loop. This uncomplicated
high-level code optimization can improve memory performance
significantly.

Minimize Number of Prefetches

Prefetch instructions are not completely free in terms of bus cycles,
machine cycles and resources, even though they require minimal clocks
and memory bandwidth.

Example 6-4 Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii = 0; ii < 100; ii++) {

 for (jj = 0; jj < 24; jj+=8) { /* N-1 iterations */

 prefetch a[ii][jj+8]

 computation a[ii][jj]

 }

 prefetch a[ii+1][0]

 computation a[ii][jj]/* Last iteration */

}

6-26

Optimizing Cache Usage 6
Excessive prefetching may lead to performance penalties because issue
penalties in the front-end of the machine and/or resource contention in
the memory sub-system. This effect may be severe in cases where the
target loops are small and/or cases where the target loop is issue-bound

One approach to solve the excessive prefetching issue is to unroll and/or
software-pipeline the loops to reduce the number of prefetches required.
Figure 6-3 presents a code example which implements prefetch and
unrolls the loop to remove the redundant prefetch instructions whose
prefetch addresses hit the previously issued prefetch instructions. In this
particular example, unrolling the original loop once saves six prefetch
instructions and nine instructions for conditional jumps in every other
iteration.

Figure 6-3 Prefetch and Loop Unrolling

OM15172

top_loop:
prefetchnta [edx+esi+32]
prefetchnta [edx*4+esi+32]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta [edx+esi+128]
prefetchnta [edx*4+esi+128]
.
movaps xmm1, [edx+esi]
movaps xmm2, [edx*4+esi]
.
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]
.
movaps xmm1, [edx+esi+96]
movaps xmm2, [edx*4+esi+96]
.
.
add esi, 128
cmp esi, ecx
jl top_loop

unrolled
iteration
6-27

IA-32 Intel® Architecture Optimization
Figure 6-4 demonstrates the effectiveness of software prefetches in
latency hiding. The X axis indicates the number of computation clocks
per loop (each iteration is independent). The Y axis indicates the
execution time measured in clocks per loop. The secondary Y axis
indicates the percentage of bus bandwidth utilization. The tests vary by
the following parameters:

1. The number of load/store streams. Each load and store stream
accesses one 128-byte cache line each, per iteration.

2. The amount of computation per loop. This is varied by increasing
the number of dependent arithmetic operations executed.

3. The number of the software prefetches per loop. (for example, one
every 16 bytes, 32 bytes, 64 bytes, 128 bytes).

As expected, the leftmost portion of each of the graphs in Figure 6-4
shows that when there is not enough computation to overlap the latency
of memory access, prefetch does not help and that the execution is
essentially memory-bound. The graphs also illustrate that redundant
prefetches do not increase performance.
6-28

Optimizing Cache Usage 6
Figure 6-4 Memory Access Latency and Execution With Prefetch

2 Load streams, 1 store stream

50

100

150

200

250

300

350

54 108 144 192 240 336 390

Computations per loop

E
ff

ec
ti

ve
 l

o
o

p
 l

at
en

cy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

%
 o

f
B

u
s

U
ti

li
ze

d

16 32 64 128 none

% Bus Utilization

One load and one store stream

0

50

100

150

200

250

300

350

48 108 144 192 240 336 408

Computations per loop

E
ff

ec
ti

ve
 lo

o
p

 l
at

en
cy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

%
 o

f
B

us
 U

ti
li

za
ti

o
n

16_por 32_por 64_por 128_por None_por

% Bus Utilization
6-29

IA-32 Intel® Architecture Optimization
Mix Prefetch with Computation Instructions

It may seem convenient to cluster all of the prefetch instructions at the
beginning of a loop body or before a loop, but this can lead to severe
performance degradation. In order to achieve best possible performance,
prefetch instructions must be interspersed with other computational
instructions in the instruction sequence rather than clustered together. If
possible, they should also be placed apart from loads. This improves the
instruction level parallelism and reduces the potential instruction
resource stalls. In addition, this mixing reduces the pressure on the
memory access resources and in turn reduces the possibility of the
prefetch retiring without fetching data.

Example 6-5 illustrates distributing prefetch instructions. A simple and
useful heuristic of prefetch spreading for a Pentium 4 processor is to
insert a prefetch instruction every 20 to 25 clocks. Rearranging prefetch
instructions could yield a noticeable speedup for the code which stresses
the cache resource.
6-30

Optimizing Cache Usage 6

Example 6-5 Spread Prefetch Instructions

NOTE. To avoid instruction execution stalls due to the
over-utilization of the resource, prefetch instructions
must be interspersed with computational instructions.

top_loop:
 prefetchnta [ebx+128]
 prefetchnta [ebx+1128]
 prefetchnta [ebx+2128]
 prefetchnta [ebx+3128]

 prefetchnta [ebx+17128]
 prefetchnta [ebx+18128]
 prefetchnta [ebx+19128]
 prefetchnta [ebx+20128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2

 add ebx, 128
 cmp ebx, ecx
 jl top_loop

top_loop:
 prefetchnta [ebx+128]
 movps xmm1, [ebx]
 addps xmm2, [ebx+3000]
 mulps xmm3, [ebx+4000]
 prefetchnta [ebx+1128]
 addps xmm1, [ebx+1000]
 addps xmm2, [ebx+3016]
 prefetchnta [ebx+2128]
 mulps xmm1, [ebx+2000]
 mulps xmm1, xmm2
 prefetchnta [ebx+3128]

 . . .
 prefetchnta [ebx+18128]

 prefetchnta [ebx+19128]

 prefetchnta [ebx+20128]
 add ebx, 128
 cmp ebx, ecx
 jl top_loop

spr
ead

 pre
fetc

hes
6-31

IA-32 Intel® Architecture Optimization
Prefetch and Cache Blocking Techniques

Cache blocking techniques, such as strip-mining, are used to improve
temporal locality, and thereby cache hit rate. Strip-mining is a
one-dimensional temporal locality optimization for memory. When
two-dimensional arrays are used in programs, loop blocking technique
(similar to strip-mining but in two dimensions) can be applied for a
better memory performance.

If an application uses a large data set that can be reused across multiple
passes of a loop, it will benefit from strip mining: data sets larger than
the cache will be processed in groups small enough to fit into cache.
This allows temporal data to reside in the cache longer, reducing bus
traffic.

Data set size and temporal locality (data characteristics) fundamentally
affect how prefetch instructions are applied to strip-mined code.
Figure 6-5 shows two simplified scenarios for temporally-adjacent data
and temporally-non-adjacent data.
6-32

Optimizing Cache Usage 6
In the temporally-adjacent scenario, subsequent passes use the same
data and find it already in second-level cache. Prefetch issues aside, this
is the preferred situation. In the temporally non-adjacent scenario, data
used in pass m is displaced by pass (m+1), requiring data re-fetch into
the first level cache and perhaps the second level cache if a later pass
reuses the data. If both data sets fit into the second-level cache, load
operations in passes 3 and 4 become less expensive.

Figure 6-5 Cache Blocking – Temporally Adjacent and Non-adjacent Passes

Dataset A

Dataset B

Dataset B

Dataset A

Dataset A

Dataset A

Dataset B

Dataset B

Pass 1

Pass 2

Pass 3

Pass 4

Temporally
adjacent passes

Temporally
non-adjacent

passes
6-33

IA-32 Intel® Architecture Optimization
Figure 6-6 shows how prefetch instructions and strip-mining can be
applied to increase performance in both of these scenarios.

For Pentium 4 processors, the left scenario shows a graphical
implementation of using prefetchnta to prefetch data into selected
ways of the second-level cache only (SM1 denotes strip mine one way
of second-level), minimizing second-level cache pollution. Use
prefetchnta if the data is only touched once during the entire
execution pass in order to minimize cache pollution in the higher level
caches. This provides instant availability, assuming the prefetch was
issued far ahead enough, when the read access is issued.

Figure 6-6 Examples of Prefetch and Strip-mining for Temporally Adjacent and
Non-Adjacent Passes Loops

T e m p o r a l ly

n o n - a d j a c e n t

p a s s e s

T e m p o r a l ly

a d ja c e n t p a s s e s

P r e f e t c h n t a
D a t a s e t �

R e u s e

D a t a s e t A

R e u s e

D a t a s e t B

P r e f e t c h n t a

D a t a s e t B

S M 1

S M 1

P r e f e t c h t 0

D a t a s e t A

P r e f e t c h t 0

D a t a s e t B

R e u s e

D a t a s e t B

R e u s e

D a t a s e t A

S M 2
6-34

Optimizing Cache Usage 6
In scenario to the right, in Figure 6-6, keeping the data in one way of the
second-level cache does not improve cache locality. Therefore, use
prefetcht0 to prefetch the data. This hides the latency of the memory
references in passes 1 and 2, and keeps a copy of the data in
second-level cache, which reduces memory traffic and latencies for
passes 3 and 4. To further reduce the latency, it might be worth
considering extra prefetchnta instructions prior to the memory
references in passes 3 and 4.

In Example 6-6, consider the data access patterns of a 3D geometry
engine first without strip-mining and then incorporating strip-mining.
Note that 4-wide SIMD instructions of Pentium III processor can
process 4 vertices per every iteration.

Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM_VTX) {

 prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

 prefetchnta vertexi+1 data

 prefetchnta vertexi+2 data

 prefetchnta vertexi+3 data

 TRANSFORMATION code // use only x,y,z,tu,tv of a vertex

 nvtx+=4

}

while (nvtx < MAX_NUM_VTX) {

 prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

 // x,y,z fetched again

 prefetchnta vertexi+1 data

 prefetchnta vertexi+2 data

 prefetchnta vertexi+3 data

 compute the light vectors // use only x,y,z

 LOCAL LIGHTING code // use only nx,ny,nz

 nvtx+=4

}

6-35

IA-32 Intel® Architecture Optimization
Without strip-mining, all the x,y,z coordinates for the four vertices must
be re-fetched from memory in the second pass, that is, the lighting loop.
This causes under-utilization of cache lines fetched during
transformation loop as well as bandwidth wasted in the lighting loop.

Now consider the code in Example 6-7 where strip-mining has been
incorporated into the loops.

Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM_STRIP) {

/* Strip-mine the loop to fit data into one way of the second-level
 cache */

 while (nvtx < MAX_NUM_VTX_PER_STRIP) {

 prefetchnta vertexi data // v=[x,y,z,nx,ny,nz,tu,tv]

 prefetchnta vertexi+1 data

 prefetchnta vertexi+2 data

 prefetchnta vertexi+3 data

 TRANSFORMATION code

 nvtx+=4

}

while (nvtx < MAX_NUM_VTX_PER_STRIP) {

 /* x y z coordinates are in the second-level cache, no prefetch
is

 required */

 compute the light vectors

 POINT LIGHTING code

 nvtx+=4

 }

}

6-36

Optimizing Cache Usage 6
With strip-mining, all the vertex data can be kept in the cache (for
example, one way of second-level cache) during the strip-mined
transformation loop and reused in the lighting loop. Keeping data in the
cache reduces both bus traffic and the number of prefetches used.

Figure 6-7 summarizes the steps of the basic usage model that
incorporates prefetch with strip-mining. The steps are:

• Do strip-mining: partition loops so that the dataset fits into
second-level cache.

• Use prefetchnta if the data is only used once or the dataset fits
into 32K (one way of second-level cache). Use prefetcht0 if the
dataset exceeds 32K.

The above steps are platform-specific and provide an implementation
example. The variables NUM_STRIP and MAX_NUM_VX_PER_STRIP can be
heuristically determined for peak performance for specific application
on a specific platform.

Single-pass versus Multi-pass Execution

An algorithm can use single- or multi-pass execution defined as follows:

• Single-pass, or unlayered execution passes a single data element
through an entire computation pipeline.

Figure 6-7 Incorporating Prefetch into Strip-mining Code

Prefetch0, SM1

(2nd Level Pollution)

Prefetch0, SM1Prefetchnta

Non-Adjacent PassesAdjacent
Passes

Use Multiple
Times

Use Once

Prefetch0, SM1

(2nd Level Pollution)

Prefetch0, SM1Prefetchnta

Non-Adjacent PassesAdjacent
Passes

Use Multiple
Times

Use Once
6-37

IA-32 Intel® Architecture Optimization
• Multi-pass, or layered execution performs a single stage of the
pipeline on a batch of data elements, before passing the batch on to
the next stage.

A characteristic feature of both single-pass and multi-pass execution is
that a specific trade-off exists depending on an algorithm’s
implementation and use of a single-pass or multiple-pass execution, see
Figure 6-8.

Multi-pass execution is often easier to use when implementing a general
purpose API, where the choice of code paths that can be taken depends
on the specific combination of features selected by the application (for
example, for 3D graphics, this might include the type of vertex
primitives used and the number and type of light sources).

With such a broad range of permutations possible, a single-pass
approach would be complicated, in terms of code size and validation. In
such cases, each possible permutation would require a separate code
sequence. For example, an object with features A, B, C, D can have a
subset of features enabled, say, A, B, D. This stage would use one code
path; another combination of enabled features would have a different
code path. It makes more sense to perform each pipeline stage as a
separate pass, with conditional clauses to select different features that
are implemented within each stage. By using strip-mining, the number
of vertices processed by each stage (for example, the batch size) can be
selected to ensure that the batch stays within the processor caches
through all passes. An intermediate cached buffer is used to pass the
batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit
the number of features that may be used at a given time. A single-pass
approach can reduce the amount of data copying that can occur with a
multi-pass engine, see Figure 6-8.
6-38

Optimizing Cache Usage 6
The choice of single-pass or multi-pass can have a number of
performance implications. For instance, in a multi-pass pipeline, stages
that are limited by bandwidth (either input or output) will reflect more
of this performance limitation in overall execution time. In contrast, for
a single-pass approach, bandwidth-limitations can be distributed/

Figure 6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines

Transform

Lighting

Single-Pass

Culling

Lighting

Multi-Pass

Culling

40 vis

40 vis

60 invis
80 vis

80 vis

Vertex
processing
(inner loop)

Outer loop is
processing
strips

Transform

strip list
6-39

IA-32 Intel® Architecture Optimization
amortized across other computation-intensive stages. Also, the choice of
which prefetch hints to use are also impacted by whether a single-pass
or multi-pass approach is used (see “Hardware Data Prefetch”).

Memory Optimization using Non-Temporal Stores
The non-temporal stores can also be used to manage data retention in
the cache. Uses for the non-temporal stores include:

• To combine many writes without disturbing the cache hierarchy

• To manage which data structures remain in the cache and which are
transient.

Detailed implementations of these usage models are covered in the
following sections.

Non-temporal Stores and Software Write-Combining

Use non-temporal stores in the cases when the data to be stored is:

• write-once (non-temporal)

• too large and thus cause cache thrashing.

Non-temporal stores do not invoke a cache line allocation, which means
they are not write-allocate. As a result, caches are not polluted and no
dirty writeback is generated to compete with useful data bandwidth.
Without using non-temporal stores, bus bandwidth will suffer when
caches start to be thrashed because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal
stores are written into writeback or write-combining memory regions,
these stores are weakly-ordered and will be combined internally inside
the processor’s write-combining buffer and be written out to memory as
a line burst transaction. To achieve the best possible performance, it is
recommended to align data along the cache line boundary and write
them consecutively in a cache line size while using non-temporal stores.
6-40

Optimizing Cache Usage 6
If the consecutive writes are prohibitive due to programming
constraints, then software write-combining (SWWC) buffers can be used
to enable line burst transaction.

You can declare small SWWC buffers (a cache line for each buffer) in your
application to enable explicit write-combining operations. Instead of
writing to non-temporal memory space immediately, the program writes
data into SWWC buffers and combines them inside these buffers. The
program only writes a SWWC buffer out using non-temporal stores when
the buffer is filled up, that is, a cache line (128 bytes for the Pentium 4
processor). Although the SWWC method requires explicit instructions for
performing temporary writes and reads, this ensures that the transaction
on the front-side bus causes line transaction rather than several partial
transactions. Application performance gains considerably from
implementing this technique. These SWWC buffers can be maintained
in the second-level and re-used throughout the program.

Cache Management

The streaming instructions (prefetch and stores) can be used to
manage data and minimize disturbance of temporal data held within the
processor’s caches.

In addition, the Pentium 4 processor takes advantage of the Intel C ++
Compiler that supports C ++ language-level features for the Streaming
SIMD Extensions. The Streaming SIMD Extensions and MMX
technology instructions provide intrinsics that allow you to optimize
cache utilization. The examples of such Intel compiler intrinsics are
_mm_prefetch, _mm_stream, _mm_load, _mm_sfence. For more details
on these intrinsics, refer to the Intel C ++ Compiler User’s Guide, order
number 718195.

The following examples of using prefetching instructions in the
operation of video encoder and decoder as well as in simple 8-byte
memory copy, illustrate performance gain from using the prefetching
instructions for efficient cache management.
6-41

IA-32 Intel® Architecture Optimization
Video Encoder

In a video encoder example, some of the data used during the encoding
process is kept in the processor’s second-level cache, to minimize the
number of reference streams that must be re-read from system memory.
To ensure that other writes do not disturb the data in the second-level
cache, streaming stores (movntq) are used to write around all processor
caches.

The prefetching cache management implemented for the video encoder
reduces the memory traffic. The second-level cache pollution reduction
is ensured by preventing single-use video frame data from entering the
second-level cache. Using a non-temporal prefetch (prefetchnta)
instruction brings data into only one way of the second-level cache, thus
reducing pollution of the second-level cache. If the data brought directly
to second-level cache is not re-used, then there is a performance gain
from the non-temporal prefetch over a temporal prefetch. The encoder
uses non-temporal prefetches to avoid pollution of the second-level
cache, increasing the number of second-level cache hits and decreasing
the number of polluting write-backs to memory. The performance gain
results from the more efficient use of the second-level cache, not only
from the prefetch itself.

Video Decoder

In the video decoder example, completed frame data is written to local
memory of the graphics card, which is mapped to WC (Write-combining)
memory type. A copy of reference data is stored to the WB memory at a
later time by the processor in order to generate future data. The
assumption is that the size of the reference data is too large to fit in the
processor’s caches. A streaming store is used to write the data around
the cache, to avoid displaying other temporal data held in the caches.
Later, the processor re-reads the data using prefetchnta, which ensures
maximum bandwidth, yet minimizes disturbance of other cached
temporal data by using the non-temporal (NTA) version of prefetch.
6-42

Optimizing Cache Usage 6
Conclusions from Video Encoder and Decoder
Implementation

These two examples indicate that by using an appropriate combination
of non-temporal prefetches and non-temporal stores, an application can
be designed to lessen the overhead of memory transactions by
preventing second-level cache pollution, keeping useful data in the
second-level cache and reducing costly write-back transactions. Even if
an application does not gain performance significantly from having data
ready from prefetches, it can improve from more efficient use of the
second-level cache and memory. Such design reduces the encoder’s
demand for such critical resource as the memory bus. This makes the
system more balanced, resulting in higher performance.

Using Prefetch and Streaming-store for a Simple Memory
Copy

Consider a memory copy task to transfer a large array of 8-byte data
elements from one memory location to another. Example 6-8 presents
the basic algorithm of the simple memory copy. This task can be sped
up greatly using prefetch and streaming store instructions. The
techniques are discussed in the following paragraph and a code example
is shown in Example 6-9.

The memory copy algorithm can be optimized using the Streaming
SIMD Extensions and these considerations:

• alignment of data

• proper layout of pages in memory

Example 6-8 Basic Algorithm of a Simple Memory Copy

#define N 512000

double a[N], b[N];

for (i = 0; i < N; i++) {

b[i] = a[i];

}

6-43

IA-32 Intel® Architecture Optimization
• cache size

• interaction of the transaction lookaside buffer (TLB) with memory
accesses

• combining prefetch and streaming-store instructions.

The guidelines discussed in this chapter come into play in this simple
example. TLB priming is required for the Pentium 4 processor just as it
is for the Pentium III processor, since software prefetch instructions will
not initiate page table walks on either processor.

TLB Priming

The TLB is a fast memory buffer that is used to improve performance of
the translation of a virtual memory address to a physical memory
address by providing fast access to page table entries. If memory pages
are accessed and the page table entry is not resident in the TLB, a TLB
miss results and the page table must be read from memory.

The TLB miss results in a performance degradation since another
memory access must be performed (assuming that the translation is not
already present in the processor caches) to update the TLB. The TLB
can be preloaded with the page table entry for the next desired page by
accessing (or touching) an address in that page. This is similar to
prefetch, but instead of a data cache line the page table entry is being
loaded in advance of its use. This helps to ensure that the page table
entry is resident in the TLB and that the prefetch happens as requested
subsequently.
6-44

Optimizing Cache Usage 6
Optimizing the 8-byte Memory Copy

Example 6-9 presents the copy algorithm that uses second level cache.
The algorithm performs the following steps:

1. uses blocking technique to transfer 8-byte data from memory into
second-level cache using the _mm_prefetch intrinsic, 128 bytes at
a time to fill a block. The size of a block should be less than one
half of the size of the second-level cache, but large enough to
amortize the cost of the loop.

2. loads the data into an xmm register using the _mm_load_ps intrinsic.

3. transfers the 8-byte data to a different memory location via the
_mm_stream intrinsics, bypassing the cache. For this operation, it is
important to ensure that the page table entry prefetched for the
memory is preloaded in the TLB.
6-45

IA-32 Intel® Architecture Optimization
Example 6-9 An Optimized 8-byte Memory Copy

#define PAGESIZE 4096;

#define NUMPERPAGE 512 // # of elements to fit a page

double a[N], b[N], temp;

for (kk=0; kk<N; kk+=NUMPERPAGE) {

temp = a[kk+NUMPERPAGE]; // TLB priming

// use block size = page size,

// prefetch entire block, one cache line per loop

for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {

 _mm_prefetch((char*)&a[j], _MM_HINT_NTA);

 }

// copy 128 byte per loop

for (j=kk; j<kk+NUMPERPAGE; j+=16) {

 _mm_stream_ps((float*)&b[j],

 _mm_load_ps((float*)&a[j]));

_mm_stream_ps((float*)&b[j+2],

 _mm_load_ps((float*)&a[j+2]));

_mm_stream_ps((float*)&b[j+4],

 _mm_load_ps((float*)&a[j+4]));

_mm_stream_ps((float*)&b[j+6],

 _mm_load_ps((float*)&a[j+6]));

continued
6-46

Optimizing Cache Usage 6
In Example 6-9, eight _mm_load_ps and _mm_stream_ps intrinsics are
used so that all of the data prefetched (a 128-byte cache line) is written
back. The prefetch and streaming-stores are executed in separate loops
to minimize the number of transitions between reading and writing data.
This significantly improves the bandwidth of the memory accesses.

The instruction, temp = a[kk+CACHESIZE], is used to ensure the page
table entry for array, and a is entered in the TLB prior to prefetching.
This is essentially a prefetch itself, as a cache line is filled from that
memory location with this instruction. Hence, the prefetching starts
from kk+4 in this loop.

This example assumes that the destination of the copy is not temporally
adjacent to the code. If the copied data is destined to be reused in the
near future, then the streaming store instructions should be replaced
with regular 128 bit stores(_mm_store_ps). This is required because the
implementation of streaming stores on Pentium 4 processor writes data
directly to memory, maintaining cache coherency.

_mm_stream_ps((float*)&b[j+8],

 _mm_load_ps((float*)&a[j+8]));

_mm_stream_ps((float*)&b[j+10],

 _mm_load_ps((float*)&a[j+10]));

_mm_stream_ps((float*)&b[j+12],

 _mm_load_ps((float*)&a[j+12]));

_mm_stream_ps((float*)&b[j+14],

 _mm_load_ps((float*)&a[j+14]));

} // finished copying one block

} // finished copying N elements

_mm_sfence();

Example 6-9 An Optimized 8-byte Memory Copy (continued)
6-47

IA-32 Intel® Architecture Optimization
6-48

7
Multiprocessor and
Hyper-Threading Technology
This chapter describes software optimization techniques for
multithreaded applications running on multiprocessor (MP) systems.
The multiprocessor systems covered here include traditional systems
using discrete microprocessors1 and those using IA-32 processors with
Hyper-Threading Technology2.

Hyper-Threading Technology is discussed in Chapter 1. An IA-32
processor with Hyper-Threading Technology appears to software as two
logical processors in one physical package. The performance gain using
two discrete processors is greater than that gained using two logical
processors in the same physical processor package. Nevertheless, there
are many similarities in the performance characteristics between
Hyper-Threading Technology and traditional MP systems. The
programming models and optimization techniques for multi-threaded
applications to take advantage of Hyper-Threading Technology and
traditional MP system are also similar.

This chapter covers

• Performance characteristics and usage models,

1. Each processor is contained in a separate physical package.
2. The presence of Hyper-Threading Technology in IA-32 processors can be detected by

reading the CPUID feature flag bit 28. A return value of 1 in bit 28 and at least two logical
processors per package indicates that Hyper-Threading Technology is present in the
processor. The number of logical processors supported in each package can also be
obtained from CPUID. The application must also check how many logical processors are
provided under the operating system by making the appropriate operating system calls.
See the application notes “Intel Processor Identification and the CPUID Instruction” and
“Detecting Support for Hyper-Threading Technology Enabled Processors” for more
information.
7-1

IA-32 Intel® Architecture Optimization
• Programming models for multithreaded applications,

• Software optimization techniques in five specific areas.

Performance and Usage Models
The performance gains of using multiple processors or
Hyper-Threading Technology are greatly affected by the usage model
and the amount of parallelism in the control flow of the workload. Two
common usage models are:

• multithreaded applications

• multitasking using single-threaded applications

Multithreading

When an application employs multi-threading to exploit task-level
parallelism in a workload, the control flow of the multi-threaded
software can be divided into two parts: parallel tasks and sequential
tasks.

Amdahl’s law describes an application’s performance gain as it relates
to the degree of parallelism in the control flow. It is a useful guide for
selecting the code modules, functions, or instruction sequences that are
most likely to realize the most gains from transforming sequential tasks
and control flows into parallel code to take advantage MP systems and
Hyper-Threading Technology.

Figure 7-1 illustrates how performance gains can be realized for any
workload according to Amdahl’s law. The bar in Figure 7-1 represents
an individual task unit or the collective workload of an entire
application.

In general, the speed-up of running multiple threads on an MP systems
with N physical processors, over single-threaded execution, can be
expressed as:

RelativeResponse
Tsequential

Tparallel
-------------------------------= 1 P–

P
N
---- O+ +

 =
7-2

Multiprocessor and Hyper-Threading Technology 7
where P is the fraction of workload that can be parallelized, and O
represents the overhead of multithreading and may vary between
different operating systems. In this case, performance gain is the inverse
of the relative response.

When optimizing application performance in a multithreaded
environment, control flow parallelism is likely to have the largest
impact on performance scaling with respect to the number of physical
processors and to the number of logical processors per physical
processor.

If the control flow of a multi-threaded application contains a workload
in which only 50% can be executed in parallel, the maximum
performance gain using two physical processors is only 33%, compared
to using a single processor. Using four processors can deliver no more
than a 60% speed-up over a single processor! Thus, it is critical to
maximize the portion of control flow that can take advantage of
parallelism. Improper implementation of thread synchronization can
significantly increase the proportion of serial control flow and further
reduce the application’s performance scaling.

Figure 7-1 Amdahl’s Law and MP Speed-up

1-P P

Tsequential

1-P P/2
Tparallel

P/2

Single Thread

Multi-Thread on MP

O
verhead
7-3

IA-32 Intel® Architecture Optimization
In addition to maximizing the parallelism of control flows,
multithreaded applications should ensure each thread has good
frequency scaling.

Excessive cache misses are one cause of poor performance scaling. In a
multithreaded execution environment, they can occur from:

• aliased stack accesses by different threads in the same process

• thread contentions resulting in cache line evictions

• false-sharing of cache lines between different processors

Techniques that address each of these situations (and many other areas)
are described in sections in this chapter.

Multitasking Environment

Hyper-Threading Technology can exploit task-level parallelism when a
workload consists of several single-threaded applications and these
applications are scheduled to run concurrently under an MP-aware
operating system. In this environment, Hyper-Threading Technology
can deliver higher throughput for the workload, although it does not
increase the performance of an application (in terms of time of
completion of each application).

For development purposes, several popular operating systems (for
example Microsoft Windows* XP Professional and Home, Linux*
distributions using kernel 2.4.19 or later3) include OS kernel code that
can manage the task scheduling and the balancing of shared execution
resources within each physical processor to maximize the throughput.

Because applications run independently under a multi-tasking
environment, thread synchronization issues are less likely to limit the
scaling of throughput. This is because the control flow of the workload
is likely to be 100% parallel4 (if no inter-processor communication is
taking place and if there are no system bus constraints).

3. This code is included in Red Hat* Linux Enterprise AS 2.1.
7-4

Multiprocessor and Hyper-Threading Technology 7
With a multi-tasking workload, however, bus activities and cache access
patterns are likely to affect the scaling of the throughput. Running two
copies of the same application or same suite of applications in a
lock-step can expose an artifact in performance measuring
methodology. This is because an access pattern to the 1st level data
cache can lead to excessive cache misses and produce skewed
performance results. Fix this problem by:

1. including a per-instance offset at the start-up of an application

2. introducing heterogeneity in the workload by using different
datasets with each instance of the application

3. randomizing the sequence of start-up of applications when
running multiple copies of the same suite

When two applications are employed as part of a multi-tasking
workload, there is little synchronization overhead between these two
processes. It is also important to ensure each application has minimal
synchronization overhead within itself.

An application that uses lengthy spin loops for intra-process
synchronization is less likely to benefit from Hyper-Threading
Technology in a multi-tasking workload. This is because critical
resources will be consumed by the long spin loops.

Programming Models and Multithreading
Parallelism is the most important concept in designing a multithreaded
application and realizing optimal performance scaling with multiple
processors. An optimized multithreaded application is characterized by
large degrees of parallelism or minimal dependencies in the following
areas:

• workload

4. A software tool that attempts to measure the throughput of a multi-tasking workload is
likely to introduce additional control flows that are not parallel. For example, see
Example 7-2 for coding pitfalls using spin-wait loop. Thus, thread synchronization issues
must be considered as an integral part of its performance measuring methodology.
7-5

IA-32 Intel® Architecture Optimization
• thread interaction

• hardware utilization

The key to maximizing workload parallelism is to identify multiple
tasks that have minimal inter-dependencies within an application and to
create separate threads for parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying
a multithreaded application on a multiprocessing system. Managing the
interaction between threads to minimize the cost of thread
synchronization is also critical to achieving optimal performance
scaling with multiple processors.

Efficient use of hardware resources between concurrent threads requires
optimization techniques in specific areas to prevent contentions of
hardware resources. Coding techniques for optimizing thread
synchronization and managing other hardware resources are discussed
in subsequent sections.

Parallel programming models are discussed next.

Parallel Programming Models

Two common programming models for transforming independent task
requirements into application threads are:

• domain decomposition
• functional decomposition

Domain Decomposition

Usually large compute-intensive tasks use data sets that can be divided
into a number of small subsets, each having a large degree of
computational independence. Examples include:

• computation of a discrete cosine transformation (DCT) on
two-dimensional data by dividing the two-dimensional data into
several subsets and creating threads to compute the transform on
each subset
7-6

Multiprocessor and Hyper-Threading Technology 7
• matrix multiplication; here, threads can be created to handle the
multiplication of half of matrix with the multiplier matrix

Domain Decomposition is a programming model based on creating
identical or similar threads to process smaller pieces of data
independently. This model can take advantage of duplicated execution
resources present in a traditional multiprocessor system. It can also take
advantage of shared execution resources between two logical processors
in Hyper-Threading Technology. This is because a data domain thread
typically consumes only a fraction of the available on-chip execution
resources.

The section “Key Practices of Execution Resource Optimization”
discusses additional guidelines that can help data domain threads use
shared execution resources cooperatively and avoid the pitfalls creating
contentions of hardware resources between two threads.

Functional Decomposition

Applications usually process a wide variety of tasks with diverse
functions and many unrelated data sets. For example, a video codec
needs several different processing functions. These include DCT,
motion estimation and color conversion. Using a functional threading
model, applications can program separate threads to do motion
estimation, color conversion, and other functional tasks.

Functional decomposition will achieve more flexible thread-level
parallelism if it is less dependent on the duplication of hardware
resources. For example, a thread executing a sorting algorithm and a
thread executing a matrix multiplication routine are not likely to require
the same execution unit at the same time. A design recognizing this
could advantage of traditional multiprocessor systems as well as
multiprocessor systems using IA-32 processor with Hyper-Threading
Technology.
7-7

IA-32 Intel® Architecture Optimization
Tools for Creating Multithreaded Applications

Programming directly to a multithreading application programming
interface (API) is not the only method for creating multithreaded
applications. New tools such as the Intel® Compiler have become
available with capabilities that make the challenge of creating
multithreaded application easier.

Two features available in the latest Intel Compilers are:

• generating multithreaded code using OpenMP* directives5

• generating multithreaded code automatically from unmodified
high-level code6

Programming with OpenMP Directives. OpenMP provides a
standardized, non-proprietary, portable set of Fortran and C++ compiler
directives supporting shared memory parallelism in applications.
OpenMP supports directive-based processing. This uses special
preprocessors or modified compilers to interpret parallelism expressed
in Fortran comments or C/C++ pragmas. Benefits of directive-based
processing include:

• The original source can be compiled unmodified.

• It is possible to make incremental code changes. This preserves
algorithms in the original code and enables rapid debugging.

• Incremental code changes help programmers maintain serial
consistency. When the code is run on one processor, it gives the
same result as the unmodified source code.

Automatic Parallelization of Code. While OpenMP directives allow
programmers to quickly transform serial applications into parallel
applications, programmers must identify specific portions of the
application code that contain parallelism and add compiler directives.
Intel Compiler 6.0 supports a new (-Qparallel) option, which can
identify loop structures that contain parallelism. During program

5. Intel Compiler 5.0 and later supports OpenMP directives. Visit
http://developer.intel.com/software/products for details.

6. Intel Compiler 6.0 supports auto-parallelization.
7-8

Multiprocessor and Hyper-Threading Technology 7
compilation, the compiler automatically attempts to decompose the
parallelism into threads for parallel processing. No other intervention or
programmer is needed.

Supporting Development Tools. The Intel® Threading Tools include
Intel® Thread Checker and Thread Profiler.

Intel® Thread Checker. Use Intel Thread Checker to find threading
errors and reduce the amount of time spent debugging threaded
applications.

Intel Thread Checker product is an Intel VTune Performance Analyzer
plug-in data collector that executes a program and automatically locates
threading errors. As the program runs, Intel Thread Checker monitors
memory accesses and other events and automatically detects situations
which could cause unpredictable threading-related results.

Thread Profiler. Thread Profiler is a plug-in data collector for the Intel
VTune Performance Analyzer. Use it to analyze threading performance
and identify parallel performance bottlenecks. It graphically illustrates
what each OpenMP* thread is doing at various levels of detail using a
hierarchical summary. Data is collapsed into relevant summaries, sorted
to identify parallel regions or loops that require attention.

Optimization Guidelines
This section summarizes optimization guidelines for tuning
multithreaded applications. Five areas are listed (in order of
importance):

• thread synchronization

• bus utilization

• memory optimization

• front end optimization

• execution resource optimization
7-9

IA-32 Intel® Architecture Optimization
Practices associated with each area are listed in this section. Guidelines
for each area are discussed in greater depth in sections that follow.

Most of the coding recommendations improve performance scaling with
physical processors and scaling due to Hyper-Threading Technology.
Techniques that apply to only one environment are noted.

Key Practices of Thread Synchronization

Key practices for minimizing the cost of thread synchronization are
summarized below:

• Insert the PAUSE instruction in fast spin loops and keep the number
of loop repetitions to a minimum to improve overall system
performance.

• Replace a spin lock that may be acquired by multiple threads with
pipelined locks such that no more than two threads have write
accesses to one lock. If only one thread needs to write to a variable
shared by two threads, there is no need to acquire a lock.

• Use a thread-blocking API in a long idle loop to free up the
processor.

• Prevent “false-sharing” of per-thread-data between two threads.

• Place each synchronization variable alone, separated by 128 bytes
or in a separate cache line.

 See “Thread Synchronization” for more details.

Key Practices of System Bus Optimization

Managing bus traffic can significantly impact the overall performance
of multithreaded software and MP systems. Key practices of system bus
optimization for achieving high data throughput and quick response are:

• Improve data and code locality to conserve bus command
bandwidth.
7-10

Multiprocessor and Hyper-Threading Technology 7
• Avoid excessive use of software prefetch instructions and allow the
automatic hardware prefetcher to work. Excessive use of software
prefetches can significantly and unnecessarily increase bus
utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to
improve effective cache miss latencies.

• Use full write transactions to achieve higher data throughput.

See “System Bus Optimization” for more details.

Key Practices of Memory Optimization

Key practices for optimizing memory operations are summarized
below:

• Use cache blocking to improve locality of data access. Target one
quarter to one half of cache size when targeting IA-32 processors
with Hyper-Threading Technology.

• Minimize the sharing of data between threads that execute on
different physical processors sharing a common bus.

• Minimize data access patterns that are offset by multiples of 64 KB
in each thread.

• Adjust the private stack of each thread in an application so the
spacing between these stacks is not offset by multiples of 64 KB or
1 MB (prevents unnecessary cache line evictions) when targeting
IA-32 processors with Hyper-Threading Technology.

• Add a per-instance stack offset when two instances of the same
application are executing in lock steps to avoid memory accesses
that are offset by multiples of 64 KB or 1 MB when targeting IA-32
processors with Hyper-Threading Technology.

See “Memory Optimization” for more details.
7-11

IA-32 Intel® Architecture Optimization
Key Practices of Front-end Optimization

Key practices for front-end optimization are:

• Avoid Excessive Loop Unrolling to ensure the Trace Cache is
operating efficiently.

• Optimize code size to improve locality of Trace Cache and increase
delivered trace length.

See “Front-end Optimization” for more details.

Key Practices of Execution Resource Optimization

Each physical processor has dedicated execution resources. Logical
processors in physical processors supporting Hyper-Threading
Technology share specific on-chip execution resources. Key practices
for execution resource optimization include:

• Optimize each thread to achieve optimal frequency scaling first.

• Optimize multithreaded applications to achieve optimal scaling with
respect to the number of physical processors.

• Use on-chip execution resources cooperatively if two threads are
sharing the execution resources in the same physical processor
package.

• For each processor with Hyper-Threading Technology, consider
adding functionally uncorrelated threads to increase the hardware
resource utilization of each physical processor package.

See “Execution Resource Optimization” for more details.

Generality and Performance Impact

The next five sections cover the optimization techniques in detail.
Recommendations discussed in each section are ranked by importance
in terms of estimated local impact and generality.
7-12

Multiprocessor and Hyper-Threading Technology 7
Rankings are subjective and approximate. They can vary depending on
coding style, application and threading domain. The purpose of
including high, medium and low impact ranking with each
recommendation is to provide a relative indicator as to the degree of
performance gain that can be expected when a recommendation is
implemented.

It is not possible to predict the frequency of a code instance in an
applications, so an impact ranking cannot be directly correlated to
application-level performance gain. The ranking on generality is also
subjective and approximate.

Coding recommendations that do not impact all three scaling factors are
typically categorized as medium or lower.

Thread Synchronization
Applications with multiple threads use synchronization techniques in
order to ensure correct operation. However, thread synchronization that
are improperly implemented can significantly reduce performance.

Several coding techniques and operating system (OS) calls that are
frequently used for thread synchronization. These include spin-wait
loops, spin-locks, critical sections, to name a few. Choosing the optimal
OS calls for the circumstance and implementing synchronization code
with parallelism in mind are critical in minimizing the cost of handling
thread synchronization.

Synchronization for Short Periods

The frequency and duration that a thread needs to synchronize with
other threads depends application characteristics. When a
synchronization loop needs very fast response, applications may use a
spin-wait loop.
7-13

IA-32 Intel® Architecture Optimization
A spin-wait loop is typically used when one thread needs to wait a short
amount of time for another thread to reach a point of synchronization. A
spin-wait loop consists of a loop that compares a synchronization
variable with some pre-defined value [see Example 7-1(a)].

On a modern microprocessor with a superscalar speculative execution
engine, a loop like this results in the issue of multiple simultaneous read
requests from the spinning thread. These requests usually execute
out-of-order with each read request being allocated a buffer resource.
On detection of a write by a worker thread to a load that is in progress,
the processor must guarantee no violations of memory order occur. The
necessity of maintaining the order of outstanding memory operations
inevitably costs the processor a severe penalty that impacts all threads.

This penalty occurs on the Pentium Pro processor, the Pentium II
processor and the Pentium III processor. However, the penalty on these
processors is small compared with penalties suffered on the Pentium 4
and Intel Xeon processors. There the performance penalty for exiting
the loop is about 25 times more severe.

On a processor with Hyper-Threading Technology, spin-wait loops can
consume a significant portion of the execution bandwidth of the
processor. One logical processor executing a spin-wait loop can severely
impact the performance of the other logical processor.
7-14

Multiprocessor and Hyper-Threading Technology 7
Example 7-1 Spin-wait Loop and PAUSE Instructions

(a) An un-optimized spin-wait loop experiences performance penalty when exiting
the loop. It consumes execution resources without contributing computational
work.

do {

// this loop can run faster than the speed of memory access,

// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while(sync_var != constant_value)

(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents
performance-penalty to the spinning thread and the worker thread

do {

_asm pause

// ensure this loop is de-pipelined, i.e. preventing more than
one

// load request to sync_var to be outstanding,

// avoiding performance penalty when the worker thread updates
// sync_var and the spinning thread exiting the loop

}

while(sync_var != constant_value)

continued
7-15

IA-32 Intel® Architecture Optimization
User/Source Coding Rule 20. (M impact, H generality) Insert the PAUSE
instruction in fast spin loops and keep the number of loop repetitions to a
minimum to improve overall system performance.

On IA-32 processors that use the Intel NetBurst microarchitecture core,
the penalty of exiting from a spin-wait loop can be avoided by inserting
a PAUSE instruction in the loop. In spite of the name, the PAUSE
instruction improves performance by introducing a slight delay in the
loop and effectively causing the memory read requests to be issued at a
rate that allows immediate detection of any store to the synchronization
variable. This prevents the occurrence of a long delay due to memory
order violation.

(c) A spin-wait loop using a “test, test-and-set” technique to determine the
availability of the synchronization variable. This technique is recommended when
writing spin-wait loops to run on IA-32 architecture processors.

Spin_Lock:

CMP lockvar, 0 ; Check if lock is free

JE Get_lock

PAUSE ; Short delay

JMP Spin_Lock

Get_Lock:

MOV EAX, 1

XCHG EAX, lockvar ; Try to get lock

CMP EAX, 0 ; Test if successful

JNE Spin_Lock

Critical_Section:

<critical section code>

MOV lockvar, 0 ; Release lock

Example 7-1 Spin-wait Loop and PAUSE Instructions (continued)
7-16

Multiprocessor and Hyper-Threading Technology 7
One example of inserting the PAUSE instruction in a simplified spin-wait
loop is shown in Example 7-1(b). The PAUSE instruction is compatible
with all IA-32 processors. On IA-32 processors prior to Intel NetBurst
microarchitecture, the PAUSE instruction is essentially a NOP instruction.
Additional examples of optimizing spin-wait loops using the PAUSE
instruction are available in Application Note AP-949 “Using
Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor.”

Inserting the PAUSE instruction has the added benefit of significantly
reducing the power consumed during the spin-wait because fewer
system resources are used.

Optimization with Spin-Locks

Spin-locks are typically used when several threads needs to modify a
synchronization variable and the synchronization variable must be
protected by a lock to prevent un-intentional overwrites. When the lock
is released, however, several threads may compete to acquire it at once.
Such thread contention significantly reduces performance scaling with
respect to frequency, number of discrete processors, and
Hyper-Threading Technology.

To reduce the performance penalty, one approach is to reduce the
likelihood of many threads competing to acquire the same lock. Apply a
software pipelining technique to handle data that must be shared
between multiple threads.

Instead of allowing multiple threads to compete for a given lock, no
more than two threads should have write access to a given lock. If an
application must use spin-locks, include the PAUSE instruction in the
wait loop. Example 7-1 (c) shows an example of the “test, test-and-set”
technique for determining the availability of the lock in a spin-wait
loop.

User/Source Coding Rule 21. (M impact, L generality) Replace a spin lock
that may be acquired by multiple threads with pipelined locks such that no
more than two threads have write accesses to one lock. If only one thread needs
to write to a variable shared by two threads, there is no need to use a lock,
7-17

IA-32 Intel® Architecture Optimization
Synchronization for Longer Periods

When using a spin-wait loop not expected to be released quickly, an
application should follow these guidelines:

• Keep the duration of the spin-wait loop to a minimum number of
repetitions.

• Applications should use an OS service to block the waiting thread;
this can release the processor so that other runnable threads can
make use of the processor or available execution resources.

On processors supporting Hyper-Threading Technology, operating
systems should use the HLT instruction if one logical processor is active
and the other is not. HLT will allow an idle logical processor to
transition to a halted state; this allows the active logical processor to use
all the hardware resources in the physical package. An operating system
that does not use this technique must still execute instructions on the
idle logical processor that repeatedly check for work. This “idle loop”
consumes execution resources that could otherwise be used to make
progress on the other active logical processor.

If an application thread must remain idle for a long time, the application
should use a thread blocking API or other method to release the idle
processor. The techniques discussed here apply to traditional MP
system, but they have an even higher impact on IA-32 processors that
support Hyper-Threading Technology.

Typically, an operating system provides timing services, for example
Sleep(dwMilliseconds)7; such variables can be used to prevent frequent
checking of a synchronization variable.

Another technique to synchronize between worker threads and a control
loop is to use a thread-blocking API provided by the OS. Using a
thread-blocking API allows the control thread to use less processor

7. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be
released.
Example 7-2 (a) shows an example of using Sleep(0), which does not always realize the
processor to another thread.
7-18

Multiprocessor and Hyper-Threading Technology 7
cycles for spinning and waiting. This gives the OS more time quanta to
schedule the worker threads on available processors. Furthermore,
using a thread-blocking API also benefits from the system idle loop
optimization that OS implements using the HLT instruction.

User/Source Coding Rule 22. (H impact, M generality) Use a
thread-blocking API in a long idle loop to free up the processor.

Using a spin-wait loop in a traditional MP system may be less of an
issue when the number of runnable threads is less than the number of
processors in the system. If the number of threads in an application is
expected to be greater than the number of processors (either one
processor or multiple processors), use a thread-blocking API to free up
processor resources. A multithreaded application adopting one control
thread to synchronize multiple worker threads may consider limiting
worker threads to the number of processors in a system and use
thread-blocking APIs in the control thread.

Avoid Coding Pitfalls in Thread Synchronization

Synchronization between multiple threads must be designed and
implemented with care to achieve good performance scaling with
respect to the number of discrete processors and the number of logical
processor per physical processor. No single technique is a universal
solution for every synchronization situation.

The pseudo-code example in Example 7-2 (a) illustrates a polling loop
implementation of a control thread. If there is only one runnable worker
thread, an attempt to call a timing service API, such as Sleep(0), may be
ineffective in minimizing the cost of thread synchronization. Because
the control thread still behaves like a fast spinning loop, the only
runnable worker thread must share execution resources with the
spin-wait loop if both are running on the same physical processor that
supports Hyper-Threading Technology. If there are more than one
runnable worker threads, then calling a thread blocking API, such as
Sleep(0), could still release the processor running the spin-wait loop,
allowing the processor to be used by another worker thread instead of
the spinning loop.
7-19

IA-32 Intel® Architecture Optimization
A control thread waiting for the completion of worker threads can
usually implement thread synchronization using a thread-blocking API
or a timing service, if the worker threads require significant time to
complete. Example 7-2 (b) shows an example that reduces the overhead
of the control thread in its thread synchronization.

Example 7-2 Coding Pitfall using Spin Wait Loop

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a
performance penalty if the only worker thread and the control thread runs on the
same physical processor package.

// Only one worker thread is running,

// the control loop waits for the worker thread to complete

ResumeWorkThread(thread_handle);

While (!task_not_done) {

 Sleep(0) // Returns immediately back to spin loop

 …

}

(b) A polling loop frees up the processor correctly.

// Let a worker thread run and wait for completion

ResumeWorkThread(thread_handle);

While (!task_not_done) {

 Sleep(FIVE_MILISEC)

// This processor is released for some duration, the processor can
be

// used by other threads

 …

}

7-20

Multiprocessor and Hyper-Threading Technology 7
In general, OS function calls should be used with care when
synchronizing threads. When using OS-supported thread
synchronization objects (critical section, mutex, or semaphore),
preference should be given to the OS service that has the least
synchronization overhead, such as a critical section.

Prevent False-Sharing of Data

When two threads must share data, it is important to avoid false sharing.
False sharing applies to data used by one thread that happens to reside
on the same cache line as different data used by another thread.

An example of false sharing is when thread-private data and a thread
synchronization variable are located within the line size boundary (64
bytes) or sector boundary (128 bytes). When one thread modifies the
synchronization variable, the “dirty” cache line must be written out to
memory and updated for each physical processor sharing the bus.
Subsequently, data is fetched into each target processor 128 bytes at a
time, causing previously cached data to be evicted from its cache on
each target processor. False-sharing incurs a performance penalty, when
two threads run on different physical processors or on two logical
processors in the physical processor package. In the first case, the
performance penalty is due to cache evictions to maintain cache
coherency. In the latter case, performance penalty is due to memory
order machine clear conditions.

User/Source Coding Rule 23. (H impact, M generality) Beware of false
sharing within a cache line (64 bytes on Intel Pentium 4, Intel Xeon and
Pentium M processors), and within a sector (128 bytes on Pentium 4 and Intel
Xeon processors).

When a common block of parameters is passed from a parent thread to
several worker threads, it is desirable for each work thread to create a
private copy of frequently accessed data in the parameter block.
7-21

IA-32 Intel® Architecture Optimization
Placement of Shared Synchronization Variable

Because bus reads typically fetch 128 bytes into a cache, the optimal
spacing to minimize eviction of cached data is 128 bytes. To prevent
false-sharing, synchronization variables and system objects (such as a
critical section) should be allocated to reside alone in a 128-byte region
and aligned to a 128-byte boundary. Example 7-3 shows a way to
minimize the bus traffic required to maintain cache coherency in MP
systems. This technique is also applicable to MP systems using IA-32
processors with or without Hyper-Threading Technology.

User/Source Coding Rule 24. (M impact, ML generality) Place each
synchronization variable alone, separated by 128 bytes or in a separate cache
line.

User/Source Coding Rule 25. (H impact, L generality) Do not place any
spin lock variable to span a cache line boundary (64 bytes on Intel Pentium 4
and Intel Xeon processors).

System Bus Optimization
The system bus supports a maximum data rate of 3.2 Gigabytes per
second (GB/S) at 400 MHz, or 4.2 GB/s at 533 MHz. The bus has a line
size of 64 bytes and can fetch two lines. This means that 128 bytes of
data can be fetched from memory as the result of a cache miss. The high
data rate is achieved only when bus transactions use the full capacity of
each line. While read and prefetch transactions across the bus are
conducted at 64-byte line size or 128 bytes at a time, write transactions
can occur in full or various partial line sizes. Conducting partial write
transactions not only reduces the effective data rate of the system bus,

Example 7-3 Placement of Synchronization and RegularVariables

int regVar;

int padding[32];

int SynVar[32*NUM_SYNC_VARS];

int AnotherVar;
7-22

Multiprocessor and Hyper-Threading Technology 7
but each request for a partial write transaction also consumes the finite
command bandwidth of the system bus. When both logical processors in
an IA-32 processor that supports Hyper-Threading Technology are
active, each logical processor is an agent that can initiate requests for
bus transactions.

Conserve Bus Command Bandwidth

In an N-way MP system with IA-32 processors supporting
Hyper-Threading Technology, there are twice as many agents that can
issue bus transaction requests. Preserving the bus command bandwidth
can help each bus agent achieve higher performance.

One way for conserving available bus command bandwidth is to
improve the locality of code and data. Improving the locality of data
reduces the number of cache line evictions and requests to fetch data.
This technique also reduces the number of instruction fetches from
system memory.

User/Source Coding Rule 26. (M impact, H generality) Improve data and
code locality to conserve bus command bandwidth.

Using a compiler that supports profiler-guided optimization can
improve code locality by keeping frequently used code paths in the
cache. This reduces instruction fetches. Loop blocking can also improve
the data locality.

Avoid Excessive Software Prefetches

Pentium 4 and Intel Xeon Processors have an automatic hardware
prefetcher. It can bring data and instructions into the unified
second-level cache based on prior reference patterns. In most situations,
the hardware prefetcher is likely to reduce system memory latency
without explicit intervention from software prefetches. Using software
prefetch instructions excessively or indiscriminately will inevitably
7-23

IA-32 Intel® Architecture Optimization
cause performance penalties. This is because excessively or
indiscriminately using software prefetch instructions wastes the
command and data bandwidth of the system bus.

Using software prefetches delays the hardware prefetcher from starting
to fetch data needed by the processor core. It also consumes critical
execution resources and can result in stalled execution. The guidelines
for using software prefetch instructions are described in Chapter 2. The
calculation of prefetch-ahead distance is discussed in Chapter 6.

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive use
of software prefetch instructions and allow automatic hardware prefetcher to
work. Excessive use of software prefetches can significantly and unnecessarily
increase bus utilization if used inappropriately.

Improve Effective Latency of Cache Misses

System memory access latency due to cache misses is affected by bus
traffic. This is because bus read requests must be arbitrated along with
other requests for bus transactions. Reducing the number of outstanding
bus transactions helps improve effective memory access latency.

One technique to improve effective latency of memory read transactions
is to use multiple overlapping bus reads to reduce the latency of sparse
reads. In situations where there is little locality of data or when memory
reads need to be arbitrated with other bus transactions, the effective
latency of scattered memory reads can be improved by issuing multiple
memory reads back-to-back to overlap multiple outstanding memory
read transactions. The average latency of back-to-back bus reads is
likely to be lower than the average latency of scattered reads
interspersed with other bus transactions. This is because only the first
memory read needs to wait for the full delay of a cache miss.

User/Source Coding Rule 28. (M impact, M generality) Consider using
overlapping multiple back-to-back memory reads to improve effective cache
miss latencies.
7-24

Multiprocessor and Hyper-Threading Technology 7
Use Full Write Transactions to Achieve Higher Data Rate

Write transactions across the bus can result in write to physical memory
either using the full line size of 64 bytes or less than the full line size.
The latter is referred to as a partial write. Typically, writes to writeback
(WB) memory addresses are full-size and writes to write-combine (WC)
or uncacheable (UC) type memory addresses result in partial writes.
Both cached WB store operations and WC store operations utilize a set
of six WC buffers (64 bytes wide) to manage the traffic of write
transactions. When competing traffic closes a WC buffer before all
writes to the buffer are finished, this results in a series of 8-byte partial
bus transactions rather than a single 64-byte write transaction.

User/Source Coding Rule 29. (M impact, M generality) Use full write
transactions to achieve higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into
full-sized writes using a software write-combining technique to separate
WC store operations from competing with WB store traffic. To
implement software write-combining, uncacheable writes to memory
with the WC attribute are written to a small, temporary buffer (WB
type) that fits in the first level data cache. When the temporary buffer is
full, the application copies the content of the temporary buffer to the
final WC destination.

When partial-writes are transacted on the bus, the effective data rate to
system memory is reduced to only 1/8 of the system bus bandwidth.

Memory Optimization
Efficient operation of caches is the most important aspect of memory
optimization. Efficient operation of caches by:

• cache blocking

• shared memory optimization

• eliminating 64-K-Aliased data accesses

• preventing excessive evictions in first-level cache
7-25

IA-32 Intel® Architecture Optimization
Cache Blocking Technique

Loop blocking is useful for reducing cache misses and improving
memory access performance. The selection of a suitable block size is
critical when applying the loop blocking technique. Loop blocking is
applicable to single-threaded applications as well as to multithreaded
applications running on processors with or without Hyper-Threading
Technology. The technique transforms the memory access pattern into
blocks that efficiently fit in the target cache size.

When targeting IA-32 processors with Hyper-Threading Technology,
the loop blocking technique should select a block size that is no more
than one half of the target cache size. The upper limit of the block size
for loop blocking should be determined by dividing the target cache size
by the number of logical processors available in a physical processor
package. Typically, some cache lines are needed to access data that are
not part of the source or destination buffers used in cache blocking, so
the block size can be chosen between one quarter to one half of the
target cache (see also, Chapter 3).

User/Source Coding Rule 30. (H impact, H generality) Use cache blocking
to improve locality of data access. Target one quarter to one half of the cache
size when targeting IA-32 processors with Hyper-Threading Technology.

Shared-Memory Optimization

Maintaining cache coherency between discrete processors frequently
involves moving data across a bus that operates at a clock rate
substantially slower that the processor frequency.

Minimize Sharing of Data between Physical Processors

When two threads are executing on two physical processors and sharing
data, reading from or writing to shared data usually involves several bus
transactions (including snooping, request for ownership changes, and
7-26

Multiprocessor and Hyper-Threading Technology 7
sometimes fetching data across the bus). A thread accessing a large
amount of shared memory is not likely to scale with processor clock
rates.

User/Source Coding Rule 31. (H impact, M generality) Minimize the
sharing of data between threads that execute on different physical processors
sharing a common bus.

One technique to minimize sharing of data is to copy data to local stack
variables if it is to be accessed repeatedly over an extended period. If
necessary, results from multiple threads can be combined later by
writing them back to a shared memory location. This approach can also
minimize time spent to synchronize access to shared data.

Eliminate 64-K-Aliased Data Accesses

The 64 KB aliasing condition is discussed in Chapter 2. Memory
accesses that satisfy the 64 KB aliasing condition can cause excessive
evictions of the first-level data cache. Eliminating 64-KB-aliased data
accesses originating from each thread helps improve frequency scaling
in general. Furthermore, it enables the first-level data cache to perform
efficiently when Hyper-Threading Technology is fully utilized by
software applications.

User/Source Coding Rule 32. (H impact, H generality) Minimize data
access patterns that are offset by multiples of 64 KB in each thread.

The presence of 64-KB-aliased data access can be detected using
Pentium 4 processor performance monitoring events. Appendix B
includes an updated list of Pentium 4 processor performance metrics.
These metrics are based on events accessed using the Intel VTune
performance analyzer.

Performance penalties associated with 64 KB aliasing are applicable
mainly to current processor implementations of Hyper-Threading
Technology or Intel NetBurst microarchitecture. The next section
7-27

IA-32 Intel® Architecture Optimization
discusses a memory optimization techniques that are applicable only to
multithreaded applications running on processors with Hyper-Threading
Technology.

Preventing Excessive Evictions in First-Level Data Cache

Cached data in a first-level data cache are indexed to linear addresses
but physically tagged. Data in second-level and third-level caches are
tagged and indexed to physical addresses. While two logical processors
in the same physical processor package execute in separate linear
address space, the same processors can reference data at the same linear
address in two address spaces but mapped to different physical
addresses. When such competing accesses occur simultaneously, they
can cause repeated evictions and allocations of cache lines in the
first-level data cache. Preventing unnecessary evictions in the first-level
data cache by two competing threads improves the temporal locality of
the first-level data cache.

Multithreaded applications need to prevent unnecessary evictions in the
first-level data cache when:

• Multiple threads within an application try to access private data on
their stack, some data access patterns can cause excessive evictions
of cache lines. Within the same software process, multiple threads
have their respective stacks, and these stacks are located at different
linear addresses. Frequently the linear addresses of these stacks are
spaced apart by some fixed distance that increases the likelihood of
a cache line being used by multiple threads.

• Two instances of the same application run concurrently and are
executing in lock steps (for example, corresponding data in each
instance are accessed more or less synchronously), accessing data
on the stack (and sometimes accessing data on the heap) by these
two processes can also cause excessive evictions of cache lines
because of address conflicts.
7-28

Multiprocessor and Hyper-Threading Technology 7
Per-thread Stack Offset

To prevent private stack accesses in concurrent threads from thrashing
the first-level data cache, an application can use a per-thread stack offset
for each of its threads. The size of these offsets should be multiples of a
common base offset. The optimum choice of this common base offset
may depend on the memory access characteristics of the threads; but it
should be multiples of 128 bytes.

One effective technique for choosing a per-thread stack offset in an
application is to add an equal amount of stack offset each time a new
thread is created in a thread pool.8 Example 7-4 shows a code fragment
that implements per-thread stack offset for three threads using a
reference offset of 1024 bytes.

User/Source Coding Rule 33. (H impact, M generality) Adjust the private
stack of each thread in an application so that the spacing between these stacks
is not offset by multiples of 64 KB or 1 MB to prevent unnecessary cache line
evictions, when using IA-32 processors with Hyper-Threading Technology.

8. For parallel applications written to run with OpenMP, the OpenMP runtime library in
Intel KAP/Pro Toolset automatically provides the stack offset adjustment for each
thread.
7-29

IA-32 Intel® Architecture Optimization
Example 7-4 Adding an Offset to the Stack Pointer of Three Threads

Void Func_thread_entry(DWORD *pArg)

{DWORD StackOffset = *pArg;

DWORD var1; // The local variable at this scope may not benefit

DWORD var2; // from the adjustment of the stack pointer that ensue

// call runtime library routine to offset stack pointer

_alloca(StackOffset) ;

}

// Managing per-thread stack offset to create three threads:

// * Code for the thread function

// * Stack accesses within descendant functions (do_foo1, do_foo2)
are // less likely to cause data cache evictions because of the
stack
// offset.

do_foo1();

do_foo2();

}

main ()

{ DWORD Stack_offset, ID_Thread1, ID_Thread2, ID_Thread3;

Stack_offset = 1024;

// stack offset between parent thread and the first child thread

ID_Thread1 = CreateThread(Func_thread_entry, &Stack_offset);

// call OS thread API

Stack_offset = 2048;

ID_Thread2 = CreateThread(Func_thread_entry, &Stack_offset);

Stack_offset = 3072;

ID_Thread3 = CreateThread(Func_thread_entry, &Stack_offset);

}

7-30

Multiprocessor and Hyper-Threading Technology 7
Per-instance Stack Offset

Each instance an application runs in its own linear address space; but the
address layout of data for stack segments is identical for the both
instances. When the instances are running in lock step, stack accesses
are likely to cause of excessive evictions of cache lines in the first-level
data cache for some implementations of Hyper-Threading Technology
in IA-32 processors.

Although this situation (two copies of an application running in lock
step) is seldom an objective for multithreaded software or a
multiprocessor platform, it can happen by an end-user’s direction. One
solution is to allow application instance to add a suitable linear
address-offset for its stack. Once this offset is added at start-up, a buffer
of linear addresses is established even when two copies of the same
application are executing using two logical processors in the same
physical processor package. The space has negligible impact on running
dissimilar applications and on executing multiple copies of the same
application.

However, the buffer space does enable the first-level data cache to be
shared cooperatively when two copies of the same application are
executing on the two logical processors in a physical processor package.

Example 7-5 Adding an Offset to the Stack Pointer of Three Threads

{ DWORD Stack_offset, ID_Thread1, ID_Thread2, ID_Thread3;

Stack_offset = 1024;

// stack offset between parent thread and the first child thread

ID_Thread1 = CreateThread(Func_thread_entry, &Stack_offset);

// call OS thread API

Stack_offset = 2048;

ID_Thread2 = CreateThread(Func_thread_entry, &Stack_offset);

Stack_offset = 3072;

ID_Thread3 = CreateThread(Func_thread_entry, &Stack_offset);

}

7-31

IA-32 Intel® Architecture Optimization
To establish a suitable stack offset for two instances of the same
application running on two logical processors in the same physical
processor package, the stack pointer can be adjusted in the entry
function of the application using the technique shown in Example 7-5.
The size of stack offsets should also be a multiple of a reference offset
that may depend on the characteristics of the application’s data access
pattern. One way to determine the per-instance value of the stack offsets
is to choose a pseudo-random number that is also a multiple of the
reference offset or 128 bytes. Usually, this per-instance pseudo-random
offset can be less than 7 KB. Example 7-5 provides a code fragment for
adjusting the stack pointer in an application entry function.

User/Source Coding Rule 34. (M impact, L generality) Add per-instance
stack offset when two instances of the same application are executing in lock
steps to avoid memory accesses that are offset by multiples of 64 KB or 1 MB,
when targeting IA-32 processors with Hyper-Threading Technology.

Example 7-6 Adding a Pseudo-random Offset to the Stack Pointer in the
Entry Function

void main()

{char * pPrivate = NULL;

long myOffset = GetMod7Krandom128X()

; a pseudo-random number that is a multiple
; of 128 and less than 7K

 // ; use runtime library routine to reposition

_alloca(myOffset); // the stack pointer
}

// the rest of application code below, stack accesses in descendant
// functions (e.g. do_foo) are less likely to cause data cache
// evictions because of the stack offsets.

do_foo();

}

7-32

Multiprocessor and Hyper-Threading Technology 7
Front-end Optimization
In the Intel NetBurst microarchitecture family of processors, the
instructions are decoded into micro-ops (µops) and sequences of µops
(called traces) are stored in the Execution Trace Cache. The Trace
Cache is the primary sub-system in the front end of the processor that
delivers µop traces to the execution engine. Optimization guidelines for
front-end operation in single-threaded applications are discussed in
Chapter 2.

This section discusses guidelines for optimizing the operation of the
Execution Trace Cache on IA-32 processors with Hyper-Threading
Technology.

Avoid Excessive Loop Unrolling

Unrolling loops can reduce the number of branches and improve the
branch predictability of application code. Loop unrolling is discussed in
detail in Chapter 2. Loop unrolling must be used judiciously. Be sure to
consider the benefit of improved branch predictability and the cost of
increased code size relative to the Trace Cache.

User/Source Coding Rule 35. (M impact, L generality) Avoid excessive loop
unrolling to ensure the Trace cache is operating efficiently..

On Hyper-Threading-Technology-enabled processors, excessive loop
unrolling is likely to reduce the Trace Cache’s ability to deliver high
bandwidth µop streams to the execution engine.

Optimization for Code Size

When the Trace Cache is continuously and repeatedly delivering µop
traces that are pre-built, the scheduler in the execution engine can
dispatch µops for execution at a high rate and maximize the utilization
of available execution resources. Optimizing application code size by
7-33

IA-32 Intel® Architecture Optimization
organizing code sequences that are repeatedly executed into sections,
each with a footprint that can fit into the Trace Cache, can improve
application performance greatly.

On Hyper-Threading-Technology-enabled processors, multithreaded
applications should improve code locality of frequently executed
sections and target one half of the size of Trace Cache for each
application thread when considering code size optimization. If code size
becomes an issue affecting the efficiency of the front end, this may be
detected by evaluating performance metrics discussed in the previous
sub-section with respect to loop unrolling.

User/Source Coding Rule 36. (L impact, L generality) Optimize code size to
improve locality of Trace cache and increase delivered trace length.

Execution Resource Optimization
For applications based on the domain decomposition threading model,
optimization techniques with respect to execution resources are
essentially the same as single-threaded applications in the absence of
Hyper-Threading Technology. Each thread should be optimized to
achieved optimal frequency scaling first. Then, optimization in an area
such as thread synchronization can improve MP scaling to supplement
good frequency scaling.

Hyper-Threading Technology enables several threads to run
simultaneously on a physical processor while sharing on-chip execution
resources. There may be instances where one thread has a high resource
utilization rate, which may be indicated by a low cycle per instruction
(CPI) value. In these special situations, additional domain
decomposition threads may not be able to take advantage of
Hyper-Threading Technology to increase application performance.
However, for the majority of applications, the average utilization rate of
execution resources is low compared to the processor’s peak execution
bandwidth.
7-34

Multiprocessor and Hyper-Threading Technology 7
To help multithreaded applications utilize shared execution resources
effectively, this section describes guidelines to deal with common
situations as well as those limited situations where execution resource
utilization between threads may impact overall performance of the
application in a multiprocessor system with Hyper-Threading
Technology.

Optimization Priorities

There are three aspects of performance scaling:

• frequency scaling

• scaling to the number of discrete processors

• scaling to the number of logical processor per physical processor
package

These three factors can be largely orthogonal in most cases, if
code-tuning efforts follow the order of priorities listed below:

Tuning Suggestion 3. (H Impact, H Generality) Optimize single threaded
code to achieve optimal frequency scaling first.

Most applications only use about 20-30% of peak execution
resources when running on modern high-end processors. Execution
of a single thread can scale well with processor frequency while
leaving substantial execution bandwidth and issue bandwidth
unused. For example, most applications that scale well with
frequency seldom use the issue bandwidth of 3 µops per cycle in the
Pentium 4 and Intel Xeon processors. Optimizing single-threaded
code for frequency scaling builds the foundation for multithreaded
applications to take advantage of the frequency headroom in Intel
NetBurst microarchitecture.
7-35

IA-32 Intel® Architecture Optimization
Tuning Suggestion 4. (M Impact, M Generality) The next priority (after
tuning for frequency scaling) is to optimize multithreaded applications to
achieve optimal scaling with respect to the number of physical processors.

Following the guidelines for thread synchronization and conserving
bus bandwidth can increase the degree of task-level parallelism and
improve MP scaling. Highly parallel application threads can utilize
the performance potential of multiple discrete processors much
more effectively than applications with less parallelism. Application
code with high degree of MP scaling is also more likely to take
advantage of the performance potential of Hyper-Threading
Technology.

Tuning Suggestion 5. (M Impact, L Generality) Use on-chip execution
resources cooperatively if two threads are sharing the execution resources in
the same physical processor package.

Using functional threading model, a multithreaded application can
add additional threads and use the execution resources within a
physical processors effectively. The concept of functional threading
model may also be extended to multithreaded applications based on
the domain threading model to form a heterogeneous
domain-decomposition model, when targeted to run on MP systems
with multiple physical processors. When two domain threads are
both highly optimized to rely on a specific type of execution unit, a
multithreaded application should consider adding additional
functional threads (or other heterogeneous domain threads that are
less dependent on the same execution unit) to use available
processors.

Continuing the domain threading model to decompose one finite
task into finer threading granularity, while attempting to use all of
the available processors is less likely to deliver optimal overall
performance scaling with respect to MP and Hyper-Threading
Technology. Because of the well-known Amdahl’s law: as the finite
amount of total task is divided between increasing number of
data-domain threads, the speed-up of these parallel threads represent
a smaller percentage of the total time of execution. Increasing the
7-36

Multiprocessor and Hyper-Threading Technology 7
degree of task-level parallelism in the workload also increases the
opportunity to create additional threads based on the relevant
threading models.

User/Source Coding Rule 37. (M impact, L generality) Consider using
thread affinity so that two highly-optimized data domain threads are executing
on separate physical processors.

In many situations, data domain threads can scale well with
frequency and effectively use logical processors sharing execution
resources within a physical processor. In selected cases where an
individual thread needs a specific type of execution resource
dedicated to it, consider scheduling such a pair of data-domain
threads to run on different physical processors in an MP system.

Managing Heavily-Used Execution Resources

One way to measure the degree of overall resource utilization by a
single thread is to use performance-monitoring events to count the clock
cycles that a logical processor is executing code and compare that
number to the number of instructions executed to completion. Such
performance metrics are described in Appendix B and can be accessed
using the Intel VTune Performance Analyzer.

An event ratio like non-halted cycles per instructions retired (non-halted
CPI) and non-sleep CPI can be useful in directing code-tuning efforts.
The non-sleep CPI metric can be interpreted as the inverse of the overall
throughput of a physical processor package. The non-halted CPI metric
can be interpreted as the inverse of the throughput of a logical
processor9.

When a single thread is executing and all on-chip execution resources
are available to it, non-halted CPI can indicate the unused execution
bandwidth available in the physical processor package. If the value of a

9. Non-halted CPI can correlate to the resource utilization of an application thread, if the
application thread is affinitized to a fixed logical processor.
7-37

IA-32 Intel® Architecture Optimization
non-halted CPI is significantly higher than unity and overall on-chip
execution resource utilization is low, a multithreaded application can
direct tuning efforts to encompass the factors discussed earlier.

An optimized single thread with exclusive use of on-chip execution
resources may exhibit a non-halted CPI in the neighborhood of unity10.
Because most frequently used instructions typically decode into a single
micro-op and have throughput of no more than two cycles, an optimized
thread that retires one micro-op per cycle is only consuming about one
third of peak retirement bandwidth. Significant portions of the issue
port bandwidth are left unused. Thus, optimizing single-thread
performance usually can be complementary with optimizing a
multithreaded application to take advantage of the benefits of
Hyper-Threading Technology.

On a processor with Hyper-Threading Technology, it is possible that an
execution unit with lower throughput than one issue every two cycles
may find itself in contention from two threads implemented using a data
decomposition threading model. In one scenario, this can happen when
the inner loop of both threads rely on executing a low-throughput
instruction, such as fdiv, and the execution time of the inner loop is
bound by the throughput of fdiv.

Using a function decomposition threading model, a multithreaded
application can pair up a thread with critical dependence on a
low-throughput resource with other threads that do not have the same
dependency.

User/Source Coding Rule 38. (M impact, L generality) If a single thread
consumes half of the peak bandwidth of a specific execution unit (e.g. fdiv),
consider adding a thread that seldom or rarely relies on that execution unit,
when tuning for Hyper-Threading Technology.

10. In current implementations of processors based on Intel NetBurst microarchitecture, the
theoretical lower bound for either non-halted CPI or non-sleep CPI is 1/3. Practical
applications rarely achieve any value close to the lower bound.
7-38

Multiprocessor and Hyper-Threading Technology 7
To ensure execution resources are shared cooperatively and efficiently
between two logical processors, it is important to reduce stall
conditions, especially those conditions causing the machine to flush its
pipeline.

The primary indicator of a Pentium 4 processor pipeline stall condition
is called Machine Clear. The metric is available from the VTune
Analyzer’s event sampling capability. When the machine clear
condition occurs, all instructions that are in flight (at various stages of
processing in the pipeline) must be resolved and then they are either
retired or cancelled. While the pipeline is being cleared, no new
instructions can be fed into the pipeline for execution. Before a machine
clear condition is de-asserted, execution resources are idle.

Reducing the machine clear condition benefits single-thread
performance because it increases the frequency scaling of each thread.
The impact is even higher with Hyper-Threading Technology, because a
machine clear condition caused by one thread can impact other threads
executing simultaneously.

Several performance metrics can be used to detect situations that may
cause a pipeline to be cleared. The primary metric is the Machine Clear
Count: it indicates the total number of times a machine clear condition is
asserted due to any cause. Possible causes include memory order
violations and self-modifying code. Assists while executing x87 or SSE
instructions have a similar effect on the processor’s pipeline and should
be reduced to a minimum.

Write-combining buffers are another example of execution resources
shared between two logical processors. With two threads running
simultaneously on a processor with Hyper-Threading Technology, the
writes of both threads count toward the limit of four write-combining
buffers. For example: if an inner loop that writes to three separate areas
of memory per iteration is run by two threads simultaneously, the total
number of cache lines written could be six. This being true, the code
7-39

IA-32 Intel® Architecture Optimization
would lose the benefits of write-combining. Loop-fission applied to this
situation creates two loops, neither of which would be allowed to write
to more than two cache lines per iteration.
7-40

A
Application Performance Tools
Intel offers an array of application performance tools that are optimized
to take advantage of the Intel architecture (IA)-based processors. This
appendix introduces these tools and explains their capabilities for
developing the most efficient programs without having to write
assembly code.

The following performance tools are available:

• Intel C++ Compiler and Intel® Fortran Compiler

The Intel compilers generate highly optimized executable code and
provide unique features such as profile-guided optimizations and
high-level language support. This includes vectorization for MMX
technology, the Streaming SIMD Extensions (SSE), and the
Streaming SIMD Extensions 2 (SSE2).

• Enhanced Debugger

The Enhanced Debugger (EDB) enables you to debug C++, Fortran
or mixed language programs. It allows you to view the XMM
registers in a variety of formats corresponding to the data types
supported by SSE and SSE2. These registers can also be viewed
using the debugger supplied with Microsoft Visual C++* version
6.0, service pack 4 or later.

• VTune Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel
architecture-specific software performance data from the
system-wide view down to a specific module, function, and
instruction in your code.
A-1

IA-32 Intel® Architecture Optimization
• Intel Performance Libraries

The Intel Performance Library family consists of a set of software
libraries optimized for Intel architecture processors. The library
family includes the following:

— Intel® Math Kernel Library (MKL)

— Intel® Integrated Performance Primitives (IPP)

• Intel Threading Tools. The Intel Threading Tools consist of the
following:

— Intel Thread Checker

— Thread Profiler

Intel® Compilers1

Intel C++ compilers can deliver significant application performance
improvements for Microsoft Windows as well as Linux operating
system environments. In Windows environment, the Intel C++ compiler
is compatible with Microsoft Visual* C++ and plugs into the Microsoft
Developer Studio IDE. The Intel Fortran Compiler can be run out of the
Microsoft Developer Studio IDE by using the Fortran Build Tool that
plugs into it. The Fortran compiler offers substantial source
compatibility with Compaq* Visual Fortran. In Linux environment, the
Intel Compilers are compatible with widely used Linux software
development utilities.

Both compilers allow you to optimize your code by using special
optimization options described in this section. There are several coding
methods and optimizations, described here and other sections in this
manual, targeted specifically for enabling software developers to
optimize applications for the Pentium III and Intel Pentium 4 processors.

1. The compiler options shown in this section use syntax specific to the Microsoft
Windows-based compiler. Equivalent options, which may have slightly different syntax,
exist for the Linux-based compiler. See your compiler documentation for a complete listing
and description of the various options available.
A-2

Application Performance Tools A
Vectorization, processor dispatch, inter-procedural optimization, and
profile-guided optimization are all supported by the Intel compilers and
can significantly aid the performance of an application.

The most general optimization options are -O1 and -O2. Each of them
enables a number of specific optimization options. In most cases, -O2 is
recommended over -O1 because the -O2 option enables inline
expansion, which helps programs that have many function calls. The
-O2 option is on by default.

The -O1 and -O2 options enable specific options as follows:

-O1 Enables options -Og, -Oi-, -Os, -Oy, -Ob1,
-Gf, -Gs, and -Gy. However, -O1 disables a few
options that increase code size.

-O2 Enables options -Og, -Oi, -Ot, -Oy, -Ob1,
-Gf, -Gs, and -Gy. Confines optimizations to the
procedural level.

The -Od option disables all optimizations.

All the command-line options are described in the Intel C++ Compiler
User’s Guide.

Code Optimization Options

This section describes the options used to optimize your code and
improve the performance of your application.

Targeting a Processor (-Gn)

Use -Gn to target an application to run on a specific processor for
maximum performance. Any of the -Gn suboptions you choose results
in your binary being optimized for corresponding Intel architecture
32-bit processors. -G6 is the default, and targets optimization for the
Pentium II and Pentium III processors. -G7 targets the Intel Pentium 4
processor. Code produced will run on any Intel architecture 32-bit
processor, but will be optimized specifically for the targeted processor.
A-3

IA-32 Intel® Architecture Optimization
Automatic Processor Dispatch Support
(-Qx[extensions] and -Qax[extensions])

The -Qx[extensions] and -Qax[extensions] options provide
support to generate code that is specific to processor-instruction
extensions.

 -Qx[extensions] generates specialized code to run exclusively on
the processors indicated by the extension(s).

-Qax[extensions] generates code specialized to processors which
support the specified extensions, but also
generates generic IA-32 code. The generic code
usually executes slower than the specialized
version. A runtime check for the processor type
is made to determine which code executes.

You can specify the same extensions for either option as follows:

i Pentium II and Pentium III processors, which use the
CMOV and FCMOV instructions

M Pentium processor with MMX technology, Pentium II,
and Pentium III processors

K Streaming SIMD Extensions. Includes the i and M
extensions.

W Streaming SIMD Extensions 2. Includes the i, M,
and K extensions.

CAUTION. When you use -Qax[extensions] in
conjunction with -Qx[extensions], the extensions
specified by -Qx[extensions] can be used
unconditionally by the compiler, and the resulting
program will require the processor extensions to
execute properly.
A-4

Application Performance Tools A
Vectorizer Switch Options

The Intel C++ and Fortran Compiler can vectorize your code using the
vectorizer switch options. The options that enable the vectorizer are
the-Qx[M,K,W] and -Qax[M,K,W] described above. The compiler
provides a number of other vectorizer switch options that allow you to
control vectorization. All vectorization switches require the
-Qx[M,K,W] or -Qax[M,K,W] switch to be on. The default is off.

In addition to the -Qx[M,K,W] or -Qax[M,K,W] switches, the compiler
provides the following vectorization control switch options:

-Qvec_report[n] Controls the vectorizer’s diagnostic levels,
where n is either 0, 1, 2, or 3.

-Qrestrict Enables pointer disambiguation with the

restrict qualifier.

Prefetching

The compilers, with the -Qx[M,K,W] and -Qax[M,K,W] switches on,
insert prefetch instructions, where appropriate, for the Pentium III and
Pentium 4 processors.

Loop Unrolling

The compilers automatically unroll loops with the -Qx[M,K,W] and
-Qax[M,K,W] switches.

To disable loop unrolling, specify -Qunroll0.

Multithreading with OpenMP

Both the Intel C++ and Fortran Compilers support shared memory
parallelism via OpenMP compiler directives, library functions and
environment variables. OpenMP directives are activated by the compiler
switch -Qopenmp. The available directives are described in the Compiler
User's Guides available with the Intel C++ and Fortran Compilers,
version 5.0 and higher. Further information about the OpenMP standard
is available at http://www.openmp.org.
A-5

http://www.openmp.org
http://www.openmp.org
http://www.openmp.org

IA-32 Intel® Architecture Optimization
Inline Expansion of Library Functions (-Oi, -Oi-)

The compiler inlines a number of standard C, C++, and math library
functions by default. This usually results in faster execution of your
program. Sometimes, however, inline expansion of library functions can
cause unexpected results. For explanation, see the Intel® C++ Compiler
User’s Guide.

Floating-point Arithmetic Precision (-Op, -Op-, -Qprec,
-Qprec_div, -Qpc, -Qlong_double)

These options provide optimizations with varying degrees of precision
in floating-point arithmetic.

Rounding Control Option (-Qrcd)

The compiler uses the -Qrcd option to improve the performance of
code that requires floating-point calculations. The optimization is
obtained by controlling the change of the rounding mode.

The -Qrcd option disables the change to truncation of the rounding
mode in floating-point-to-integer conversions.

For complete details on all of the code optimization options, refer to the
Intel C++ Compiler User’s Guide.

Interprocedural and Profile-Guided Optimizations

The following are two methods to improve the performance of your
code based on its unique profile and procedural dependencies:

Interprocedural Optimization (IPO)

Use the -Qip option to analyze your code and apply optimizations
between procedures within each source file. Use multifile IPO with
-Qipo to enable the optimizations between procedures in separate
source files.
A-6

Application Performance Tools A
Profile-Guided Optimization (PGO)

Creates an instrumented program from your source code and special
code from the compiler. Each time this instrumented code is executed,
the compiler generates a dynamic information file. When you compile a
second time, the dynamic information files are merged into a summary
file. Using the profile information in this file, the compiler attempts to
optimize the execution of the most heavily travelled paths in the
program.

Profile-guided optimization is particularly beneficial for the Pentium 4
processor. It greatly enhances the optimization decisions the compiler
makes regarding instruction cache utilization and memory paging. Also,
because PGO uses execution-time information to guide the
optimizations, branch-prediction can be significantly enhanced by
reordering branches and basic blocks to keep the most commonly used
paths in the microarchitecture pipeline, as well as generating the
appropriate branch-hints for the processor.

When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution
and before feedback compilation. During feedback compilation, the
compiler ignores dynamic information for functions modified after
that information was generated.

• Repeat the instrumentation compilation if you make many changes
to your source files after execution and before feedback
compilation.

NOTE. The compiler issues a warning that the
dynamic information corresponds to a modified
function.
A-7

IA-32 Intel® Architecture Optimization
For complete details on the interprocedural and profile-guided
optimizations, refer to the Intel C++ Compiler User’s Guide With
Support for the Streaming SIMD Extensions 2 (Doc. number
718195-2001).

Intel® VTune™ Performance Analyzer
The Intel VTune Performance Analyzer is a powerful software-profiling
tool for Microsoft Windows and Linux. The VTune analyzer helps you
understand the performance characteristics of your software at all
levels: the system, application, microarchitecture.

The sections that follow describe the major features of the VTune
analyzer and briefly explain how to use them. For more details on these
features, run the VTune analyzer and see the online help or the built in
Getting Started Guide.

All these features are available for Microsoft Windows. However,
sampling is the only profiling tool currently available on Linux.

Sampling

Sampling allows you to profile all active software on your system,
including operating system, device driver, and application software. It
works by occasionally interrupting the processor and collecting the
instruction address, process ID, and thread ID. After the sampling
activity completes, the VTune analyzer displays the data by process,
thread, software module, function, relative virtual address, or line of
source. There are two methods for generating samples: Time-based
sampling and Event-based sampling.

Time-based Sampling
• Time-based sampling (TBS) uses an operating system’s (OS) timer

to periodically interrupt the processor to collect samples. The
sampling interval is user definable. TBS is useful for identifying the
software on your computer that is taking the most CPU time.
A-8

Application Performance Tools A
Figure A-1 provides an example of a hotspots report by location.

Event-based Sampling

Event-based sampling (EBS) profiles all software on your computer
based on the occurrence of processor events, such as cache misses and
branch mispredictions. The VTune analyzer indicates where micro
architectural events, specific to the Pentium 4, Pentium III and Pentium
II processors, occur the most often. On Pentium III and Pentium II
processors, the VTune analyzer can collect two different events at a
time. The number of the events that the VTune analyzer can collect at
once on the Pentium 4 processor depends on the events selected.

Figure A-1 Sampling Analysis of Hotspots by Location
A-9

IA-32 Intel® Architecture Optimization
Event-based samples are collected after a specific number of processor
events have occurred. Like TBS, the samples can then be attributed to
the different processes, threads, and software modules running on the
system. You identify where the events are occurring from the system
level down to the source level.

EBS can be used to provide detailed information on the behavior of the
microprocessor as it executes software. Some of the events that can be
sampled include clockticks, instructions retired, mispredicted branches
retired, and L1 cache load misses retired. All the different events are
described in the VTune analyzer’s on-line help.

Call Graph

Call graph helps you understand the relationships between the functions
in your application by providing timing and caller / callee (functions
called) information. Call graph works by instrumenting the functions in
your application. Instrumentation is the process of modifying a function
so that information can be captured when the function is executed.
Instrumentation does not change the functionality of the program.
However, it can reduce performance. The VTune analyzer can detect
modules as they are loaded by the operating system, and instrument
them at run-time. Call graph can be used to profile Win32*, Java*, and
Microsoft.NET* applications. Call graph only works for ring 3
software.

Call graph profiling provides the following information on the functions
called by your application: total time, self-time, wait time, self wait
time, callers, callees, and the number of calls. This data is displayed
using three different views: function summary, call graph, and call list.
These views are all synchronized.

The Function Summary View can be used to focus the data displayed in
the call graph and call list views. This view displays all the information
about the functions called by your application in a table format.
However, it does not provide callee and caller information. It just
provides timing information and number of times a function is called.
A-10

Application Performance Tools A
The Call Graph View graphically depicts the caller / callee relationships.
Each thread in the application is the root of a call tree. Each node (box)
in the call tree represents a function. Each edge (line with an arrow)
connecting two nodes represents the call from the parent to the child
function. If the mouse pointer is hovered over a node, a tool tip will pop
up displaying the function’s timing information.

The Call List View is useful for analyzing programs with large, complex
call trees. This view displays only the caller and callee information for
the single function that you select in the Function Summary View. The
data is displayed in a table format.

Counter Monitor

Counter monitor helps you identify system level performance hold-ups.
It periodically polls software and hardware performance counters. The
performance counter data can help you understand the cause-and-effect
relationship between the computer’s subsystems and your application.
Counter monitor data can be displayed in real-time and logged to a file.
You can also develop application specific performance counters using
Performance DLLs (for more information see the VTune analyzer
on-line help). The VTune analyzer can also correlate performance
counter data with sampling data.

Intel® Tuning Assistant

The Intel Tuning Assistant can generate tuning advice based on counter
monitor and sampling data. It can also analyze C, C++, Fortran, Java*,
and assembly source code, and generate source level optimization
advice. You can invoke the Intel Tuning Assistant from the source,
counter monitor, or sampling views by clicking on the Intel Tuning
Assistant icon.

When analyzing source code, the Intel Tuning Assistant examines the
entire block of code or function you select and searches for optimization
opportunities. Typically, a compiler is restricted by pointer semantics
A-11

IA-32 Intel® Architecture Optimization
when optimizing code. The Intel Tuning Assistant can suggest
source-level modifications to overcome these and other restrictions. It
also recognizes commonly used code patterns in your code and suggests
how they can be modified to improve performance. You can
double-click on any advice in the Intel Tuning Assistant window to
display context-sensitive help with examples of the original and
optimized code.

Intel Performance Libraries
The Intel Performance Library family contains a variety of specialized
libraries which has been optimized for performance on Intel processors.
These optimizations take advantage of appropriate architectural
features, including MMX technology, Streaming SIMD Extensions
(SSE) and Streaming SIMD Extensions 2 (SSE2). The library set
includes:

• The Intel Math Kernel Library (Intel MKL) is composed of highly
optimized mathematical functions for engineering, scientific and
financial applications requiring high performance on Intel
platforms. The functional areas of the library include linear algebra
consisting of LAPACK and BLAS, Fast Fourier Transforms (FFT)
and vector transcendental functions (vector math library/VML).
Intel MKL is optimized for the latest features and capabilities of the
Intel Pentium 4 processor, Intel Xeon processors and Intel®
Itanium® architecture.

• Intel® Integrated Performance Primitives (IPP) is a cross-platform
software library which provides a range of library functions for
multimedia, audio codecs, video codecs (for example H.263,
MPEG-4), image processing (JPEG), signal processing, speech
compression (that is, G.723.1) plus computer vision as well as math
support routines for such processing capabilities. Intel IPP is
optimized for the broad range of Intel microprocessors: Intel
Pentium 4 processor, the Intel Itanium architecture, Intel Xeon
processors, Intel® SA-1110 and Intel® PCA application processors
A-12

Application Performance Tools A
based on the Intel® XScale™ microarchitecture. With a single API
across the range of platforms, the users can have platform
compatibility and reduced cost of development.

Benefits Summary

The overall benefits the libraries provide to the application developers
are as follows:

• Low-level building block functions that support rapid application
development, improving time to market

• Highly-optimized routines with a C interface that give
Assembly-level performance in a C/C++ development environment
(MKL also supports a Fortran interface)

• Processor-specific optimizations that yield the best performance for
each Intel processor

• Processor detection and DLL dispatching that loads the appropriate
code for the current processor

• Built-in error handling facility that improves productivity in the
development cycle

The MKL and IPP libraries are optimized for all Intel architecture-based
processors, including the Pentium, Pentium II, Pentium III, Pentium 4,
Intel Xeon and Itanium processors. IPP is also optimized for the Intel®
StrongARM* SA1110 processor.

 Libraries Architecture

Intel Performance Libraries are designed for performance, productivity
and ease of use. The Math Kernel Library (MKL) is designed for
scientific, engineering and financial applications and supports both
Fortran and C calling conventions. Its high-performance math functions
include full Linear Algebra PACKage (LAPACK), Basic Linear Algebra
Subprograms (BLAS) and fast Fourier transforms (FFTs) threaded to
run on multiprocessor systems. No change of the code is required for
A-13

IA-32 Intel® Architecture Optimization
multiprocessor support. The library, including the parts which are not
threaded, such as VML (the vector transcendental functions, Vector
Math Library), is threadsafe. All libraries employ sophisticated
memory management schemes and processor detection.

The Intel Integrated Performance Primitives (IPP) functions are light
weight kernels without the predefined data structures of other libraries.
They are designed for use as building blocks for efficiently constructing
and optimizing more complex functions. Latest additions to IPP also
include basic functions for operations on small matrices and
fixed-accuracy vector arithmetic functions, as well as more
sophisticated primitives for construction of audio, video and speech
codecs such as MP3, MPEG-4, JPEG, G.723 and GSM-AMR. With the
level of optimization provided by IPP, application developers are urged
to investigate and utilize IPP to the full extent possible.

Optimizations with the Intel Performance Libraries

The Intel Performance Libraries implement a number of optimizations
that are discussed throughout this manual. Examples include
architecture-specific tuning such as loop unrolling, instruction pairing
and scheduling; and memory management with explicit and implicit
data prefetching and cache tuning.

The Libraries take advantage of the parallelism in the SIMD instructions
using MMX technology, Streaming SIMD Extensions (SSE), and
Streaming SIMD Extensions 2 (SSE2). These techniques improve the
performance of computationally intensive algorithms and deliver hand
coded performance in a high level language development environment.

For performance sensitive applications, the Intel Performance Libraries
free the application developer from the time consuming task of
assembly-level programming for a multitude of frequently used
functions. The time required for prototyping and implementing new
application features is substantially reduced and most important, the
time to market is substantially improved. Finally, applications
A-14

Application Performance Tools A
developed with the Intel Performance Libraries benefit from new
architectural features of future generations of Intel processors simply by
relinking the application with upgraded versions of the libraries.

Enhanced Debugger (EDB)
The Enhanced Debugger (EDB) enables you to debug C++, Fortran or
mixed language programs running under Windows NT* or Windows
2000 (not Windows 98). It allows you to display in a separate window
the contents of the eight registers, XMM0 through XMM7, used by the
Streaming SIMD Extensions and Streaming SIMD Extensions 2. You
may select one of five formats for the register fields: byte (16 bytes);
word (8 words); double word (4 double words); single precision (4
single precision floating point); and double precision (2 double
precision floating point). When a register is updated, the new value
appears in red. The corresponding Streaming SIMD Extensions or
Streaming SIMD Extensions 2 instruction can be seen in the
disassembly window. For further detail on the features and use of the
Enhanced Debugger, refer to the online help.

Intel® Threading Tools2

The Intel® Threading Tools consist of the The Intel Thread Checker and
Thread Profiler.

Intel Thread Checker

The Intel Thread Checker locates programming errors in threaded
applications. Use the Intel Thread Checker to find threading errors and
reduce the amount of time you spend debugging your threaded
application.

2. For additional threading resources, visit
http://www.intel.com/software/products/threadtool.htm.
A-15

http://www.intel.com/software/products/threadtool.htm

IA-32 Intel® Architecture Optimization
The Intel Thread Checker product is an Intel VTune Performance
Analyzer plug-in data collector that executes your program and
automatically locates threading errors. As your program runs, the Intel
Thread Checker monitors memory accesses and other events and
automatically detects situations which could cause unpredictable
threading-related results. The Intel Thread Checker detects thread
deadlocks, stalls, data race conditions and more.

Thread Profiler

The thread profiler is a plug-in data collector for the Intel VTune
Performance Analyzer. Use it to analyze threading performance and
identify parallel performance problems. The thread profiler graphically
illustrates what each OpenMP thread is doing at various levels of detail
using a hierarchical summary. Mountains of data are collapsed into
relevant summaries, sorted to identify parallel regions or loops that
require attention. Its intuitive, color-coded displays make it easy to
assess your application’s performance.

Intel® Software College
The Intel® Software College is a valuable resource for classes on
Streaming SIMD Extensions 2 (SSE2), Threading and the IA-32 Intel
Architecture. For online training on how to use the SSE2 and
Hyper-Threading Technology, refer to the IA-32 Architecture Training -
Online Training at
http://developer.intel.com/software/college/CourseCatalog.asp?CatID=
web-based. For key algorithms and their optimization examples for the
Pentium 4 processor, refer to the application notes. You can find
additional information on classroom training from the Intel Software
College Web site at http://developer.intel.com/software/college, and
general information for developers from Intel Developer Services at
http://www.intel.com/ids.
A-16

http://www.intel.com/ids
http://www.intel.com/ids
http://www.intel.com/ids
http://developer.intel.com/software/college
http://developer.intel.com/software/college
http://developer.intel.com/software/college
http://developer.intel.com/software/college/CourseCatalog.asp?CatID=web-based
http://developer.intel.com/software/college/CourseCatalog.asp?CatID=web-based

B
Intel Pentium 4 Processor
Performance Metrics
The Intel Pentium 4 processor performance metrics are a set of
quantities that are useful for tuning software performance when running
applications on the Pentium 4 and Intel Xeon processors. The metrics
are derived from the Pentium 4 and Intel Xeon processor performance
monitoring events, which are described in Chapter 15 and Appendix A
of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3:
“System Programming.”

The descriptions of the Intel Pentium 4 processor performance metrics
use terminology that are specific to the Intel NetBurst microarchitecture
and to the implementation in the Pentium 4 and Intel Xeon processors.
The following sections explain the terminology specific to Pentium 4
and Intel Xeon processors, usage notes that apply to counting clock
cycles, and notes for using some of the performance metrics dealing
with bus, memory and Hyper-Threading Technology. The performance
metrics are listed in Tables B-1 through B-6.

Pentium 4 Processor-Specific Terminology

Bogus, Non-bogus, Retire

Branch mispredictions incur a large penalty on microprocessors with
deep pipelines. In general, the direction of branches can be predicted
with a high degree of accuracy by the front end of the Intel Pentium 4
processor, such that most computations can be performed along the
predicted path while waiting for the resolution of the branch.
B-1

IA-32 Intel® Architecture Optimization
In the event of a misprediction, instructions and micro-ops (µops) that
were scheduled to execute along the mispredicted path must be
cancelled. These instructions and µops are referred to as bogus
instructions and bogus µops. A number of Pentium 4 processor
performance monitoring events, for example, instruction_ retired
and mops_retired, can count instructions or µops that are retired based
on the characterization of bogus versus non-bogus.

In the event descriptions in Table B-1, the term “bogus” refers to
instructions or micro-ops that must be cancelled because they are on a
path taken from a mispredicted branch. The terms “retired” and
“non-bogus” refer to instructions or micro-ops along the path that
results in committed architectural state changes as required by the
program execution. Thus instructions and µops are either bogus or
non-bogus, but not both.

Bus Ratio

Bus Ratio is the ratio of the processor clock to the bus clock. In the Bus
Utilization metric, it is the Bus_ratio.

Replay

In order to maximize performance for the common case, the Intel
NetBurst microarchitecture sometimes aggressively schedules µops for
execution before all the conditions for correct execution are guaranteed
to be satisfied. In the event that all of these conditions are not satisfied,
µops must be reissued. This mechanism is called replay.

Some occurrences of replays are caused by cache misses, dependence
violations (for example, store forwarding problems), and unforeseen
resource constraints. In normal operation, some number of replays are
common and unavoidable. An excessive number of replays indicate that
there is a performance problem.
B-2

Intel Pentium 4 Processor Performance Metrics B
Assist

When the hardware needs the assistance of microcode to deal with some
event, the machine takes an assist. One example of such situation is an
underflow condition in the input operands of a floating-point operation.
The hardware must internally modify the format of the operands in
order to perform the computation. Assists clear the entire machine of
µops before they begin to accumulate, and are costly. The assist
mechanism on the Pentium 4 processor is similar in principle to that on
the Pentium II processors, which also have an assist event.

Tagging

Tagging is a means of marking µops to be counted at retirement. See
Appendix A of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3: “System Programming” for the description of the
tagging mechanisms. The same event can happen more than once per
µop. The tagging mechanisms allow a µop to be tagged once during its
lifetime. The retired suffix is used for metrics that increment a count
once per µop, rather than once per event. For example, a µop may
encounter a cache miss more than once during its life time, but a Misses
Retired metric (for example, 1st-Level Cache Misses Retired) will
increment only once for that µop.

Counting Clocks
The count of cycles, also known as clock ticks, forms a fundamental
basis for measuring how long a program takes to execute, and as part of
efficiency ratios like cycles per instruction (CPI). Some processor
clocks may stop “ticking” under certain circumstances:

• The processor is halted, e.g. during I/O, there may be nothing for the
CPU to do while servicing a disk read request, and the processor
may halt to save power. When Hyper-Threading Technology is
enabled, both logical processors must be halted for
performance-monitoring-related counters to be powered down.
B-3

IA-32 Intel® Architecture Optimization
• The processor is asleep, either as a result of being halted for a while,
or as part of a power-management scheme. Note that there are
different levels of sleep, and in the deeper sleep levels, the
timestamp counter stops counting.

This section describes three mechanisms to count processor clock cycles
for monitoring performance. They are:

• Non-Halted Clockticks: clocks when the specified logical
processor is not halted nor in any power-saving states. These can be
measured on a per-logical-processor basis, when Hyper-Threading
Technology is enabled.

• Non-Sleep Clockticks: clocks when the physical processor is not in
any of the sleep modes, nor power-saving states. These cannot be
measured on a per-logical- processor basis

• Timestamp Counter: clocks when the physical processor is not in
deep sleep. These cannot be measured on a per-logical-processor
basis.

The first two metrics use performance counters, and thus can be used to
cause interrupt upon overflow for sampling. They may also be useful
for those cases where it is easier for a tool to read a performance counter
instead of the time stamp counter. The timestamp counter is accessed
via an instruction, RDTSC.

For applications with a significant amount of I/O, there may be two
ratios of interest:

• Non-halted CPI: non-halted clockticks/instructions retired
measures the CPI for the phases where the CPU was being used.
This ratio can be measured on a per- logical-processor basis, when
Hyper-Threading Technology is enabled.

• Nominal CPI: timestamp counter ticks/instructions retired
measures the CPI over the entire duration of the program, including
those periods the machine is halted while waiting for I/O.
B-4

Intel Pentium 4 Processor Performance Metrics B
The distinction between these two CPI is important for processors that
support Hyper-Threading Technology. Non-halted CPI should use the
“Non-Halted clockticks” performance metric as the numerator. Nominal
CPI can use “Non-Sleep clockticks” in the numerator. “Non-sleep
clockticks” is the same as the “clockticks” metric in previous editions of
this manual.

Non-Halted Clockticks

Non-halted clockticks can be obtained by programming the appropriate
ESCR and CCCR following the recipe listed in the general metrics
category in Table B-1. Additionally, the desired
T0_OS/T0_USR/T1_OS/T1_USR bits may be specified to qualify a
specific logical processor and/or kernel vs. user mode.

Non-Sleep Clockticks

The performance monitoring counters can also be configured to count
clocks whenever the performance monitoring hardware is not
powered-down. To count “non-sleep clockticks” with a
performance-monitoring counter, do the following:

• Select any one of the 18 counters.

• Select any of the possible ESCRs whose events the selected counter
can count, and set its event select to anything other than no_event.
This may not seem necessary, but the counter may be disabled in
some cases if this is not done.

• Turn threshold comparison on in the CCCR by setting the compare
bit to 1.

• Set the threshold to 15 and the complement to 1 in the CCCR. Since
no event can ever exceed this threshold, the threshold condition is
met every cycle, and hence the counter counts every cycle. Note that
this overrides any qualification (e.g. by CPL) specified in the ESCR.

• Enable counting in the CCCR for that counter by setting the enable
bit.
B-5

IA-32 Intel® Architecture Optimization
The counts produced by the Non-halted and Non-sleep metrics are
equivalent in most cases if each physical package supports one logical
processor and is not in any power-saving states. An operating system
may execute the HLT instruction and place a physical processor in a
power-saving state.

On processors that support Hyper-Threading Technology, each physical
package can support two or more logical processors. Current
implementation of Hyper-Threading Technology provides two logical
processors for each physical processor.

While both logical processors can execute two threads simultaneously,
one logical processor may be halted to allow the other logical processor
to execute without sharing execution resources between two logical
processors. “Non-halted clockticks” can be qualified to count the
number of processor clock cycles for each logical processor whenever
that logical processor is not halted (it may include some portion of the
clock cycles for that logical processor to complete a transition into a
halted state). A physical processor that supports Hyper-Threading
Technology enters into a power-saving state if all logical processors are
halted.

“Non-sleep clockticks” use is based on the filtering mechanism in the
CCCR: it will continue to increment as long as one logical processor is
not halted, nor is it in any power-saving states. An application may
indirectly cause a processor to enter into a power-saving state via an OS
service that transfers control into the operating system's idle loop. The
system idle loop may place the processor into a power-saving state after
an implementation-dependent period if there is no work for the
processor to do.
B-6

Intel Pentium 4 Processor Performance Metrics B
Time Stamp Counter

The time stamp counter increments whenever the sleep pin is not
asserted or when the clock signal on the system bus is active. It can be
read with the RDTSC instruction. The difference in values between two
reads (modulo 2**64) gives the number of processor clocks between
those reads.

The time stamp counter and “Non-sleep clockticks” counts should agree
in practically all cases if the physical processor is not in any
power-saving states. However, it is possible to have both logical
processors in a physical package halted, which results in most of the
chip (including the performance monitoring hardware) being powered
down. In this situation, it is possible for the time stamp counter to
continue incrementing because the clock signal on the system bus is still
active, but “non-sleep clockticks” will no longer increment because the
performance monitoring hardware is powered down in power-saving
states.

Microarchitecture Notes

Trace Cache Events

The trace cache is not directly comparable to an instruction cache. The
two are organized very differently. For example, a trace can span many
lines' worth of instruction-cache data. As with most micro-architectural
elements, trace cache performance is only an issue if something else is
not a bigger bottleneck. If an application is bus bandwidth bound, the
bandwidth that the front end is getting uops to the core may be
irrelevant. When front-end bandwidth is an issue, the trace cache, in
deliver mode, can issue uops to the core faster than either the decoder
(build mode) or the microcode store (the MS ROM). Thus the percent
of time in trace cache deliver mode, or similarly, the percentage of all
bogus and non-bogus uops from the trace cache can be a useful metric
for determining front-end performance.
B-7

IA-32 Intel® Architecture Optimization
The metric that is most analogous to an instruction cache miss is a trace
cache miss. An unsuccessful lookup of the trace cache (colloquially, a
miss) is not interesting, per se, if we are in build mode and don’t find a
trace available; we just keep building traces. The only “penalty” in that
case is that we continue to have a lower front-end bandwidth. The trace
cache miss metric that is currently used is not just any TC miss, but
rather one that is incurred while the machine is already in deliver mode;
i.e., when a 15-20 cycle penalty is paid. Again, care must be exercised:
a small average number of TC misses per instruction does not indicate
good front-end performance if the percentage of time in deliver mode is
also low.

Bus and Memory Metrics

In order to correctly interpret the observed counts of performance
metrics related to bus events, it is helpful to understand transaction
sizes, when entries are allocated in different queues, and how sectoring
and prefetching affect counts.

There is a simplified block diagram below of the sub-systems connected
to the IOQ unit in the front side bus sub-system and the BSQ unit that
interface to the IOQ. A two-way SMP configuration is illustrated.
1st-level cache misses and writebacks (also called core references)
result in references to the 2nd-level cache. The Bus Sequence Queue
(BSQ) holds requests from the processor core or prefetcher that are to be
serviced on the front side bus (FSB), or in the local XAPIC. If a
3rd-level cache is present on-die, the BSQ also holds writeback requests
(dirty, evicted data) from the 2nd-level cache. The FSB's IOQ holds
requests that have gone out onto the front side bus.
B-8

Intel Pentium 4 Processor Performance Metrics B
Core references are nominally 64 bytes, the size of a 1st-level cache
line. Smaller sizes are called partials, e.g., uncacheable and write
combining reads, uncacheable, write-through and write-protect writes,
and all I/O. Writeback locks, streaming stores and write combining
stores may be full line or partials. Partials are not relevant for cache
references, since they are associated with non-cached data. Likewise,
writebacks (due to the eviction of dirty data) and RFOs (reads for
ownership due to program stores) are not relevant for non-cached data.

The granularity at which the core references are counted by different
bus and memory metrics listed in Table B-1 varies, depending on the
underlying performance-monitoring events that these bus and memory
metrics are derived from. The granularities of core references are listed
below, according to the performance monitoring events that are docu-
mented in Appendix A of the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3: “System Programming”.

Figure B-1 Relationships Between the Cache Hierarchy, IOQ, BSQ and Front
Side Bus

Chip SetSystem Memory

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache
B-9

IA-32 Intel® Architecture Optimization
Reads due to program loads
• BSQ_cache_reference: 128 bytes for misses (on current

implementations), 64 bytes for hits

• BSQ_allocation: 128 bytes for hits or misses (on current
implementations), smaller for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’
hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes, smaller for partials’
hits or misses.

Reads due to program writes (RFOs)
• BSQ_cache_reference: 64 bytes for hits or misses

• BSQ_allocation: 64 bytes for hits or misses (the granularity for
misses may change in future implementations of BSQ_allocation),
smaller for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’
hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes for hits or misses,
smaller for partials’ hits or misses.

Writebacks (dirty evictions)
• BSQ_cache_reference: 64 bytes

• BSQ_allocation: 64 bytes

• BSQ_active_entries: 64 bytes

• IOQ_allocation, IOQ_active_entries: 64 bytes.
B-10

Intel Pentium 4 Processor Performance Metrics B
The count of IOQ allocations may exceed the count of corresponding
BSQ allocations on current implementations for several reasons,
including:

• Partials:

In the FSB IOQ, any transaction smaller than 64 bytes is broken up
into one to eight partials, each being counted separately as a or one
to eight-byte chunks. In the BSQ, allocations of partials get a count
of one. Future implementations will count each partial individually.

• Different transaction sizes:

The allocations of non-partial programmatic load requests get a
count of one per 128 bytes in the BSQ on current implementations,
and a count of one per 64 bytes in the FSB IOQ. The allocations of
RFOs get a count of 1 per 64 bytes for earlier processors and for the
FSB IOQ (This granularity may change in future implementations).

• Retries:

If the chipset requests a retry, the FSB IOQ allocations get one count
per retry.

There are two noteworthy cases where there may be BSQ allocations
without FSB IOQ allocations. The first is UC reads and writes to the
local XAPIC registers. Second, if a cache line is evicted from the
2nd-level cache but it hits in the on-die 3rd-level cache, then a BSQ
entry is allocated but no FSB transaction is necessary, and there will be
no allocation in the FSB IOQ. The difference in the number of write
transactions of the writeback (WB) memory type for the FSB IOQ and
the BSQ can be an indication of how often this happens. It is less likely
to occur for applications with poor locality of writes to the 3rd-level
cache, and of course cannot happen when no 3rd-level cache is present.

Usage Notes for Specific Metrics

The difference between the metrics “Read from the processor” and
“Reads non-prefetch from the processor” is nominally the number of
hardware prefetches.
B-11

IA-32 Intel® Architecture Optimization
The paragraphs below cover several performance metrics that are based
on the Pentium 4 processor performance-monitoring event
“BSQ_cache_rerference”. The metrics are:

• 2nd-Level Cache Read Misses

• 2nd-Level Cache Read References

• 3rd-Level Cache Read Misses

• 3rd-Level Cache Read References

• 2nd-Level Cache Reads Hit Shared

• 2nd-Level Cache Reads Hit Modified

• 2nd-Level Cache Reads Hit Exclusive

• 3rd-Level Cache Reads Hit Shared

• 3rd-Level Cache Reads Hit Modified

• 3rd-Level Cache Reads Hit Exclusive.

These metrics based on BSQ_cache_reference may be useful as an
indicator of the relative effectiveness of the 2nd-level cache, and the
3rd-level cache if present. But due to the current implementation of
BSQ_cache_reference in Pentium 4 and Intel Xeon processors, they
should not be used to calculate cache hit rates or cache miss rates. The
following three paragraphs describe some of the issues related to
BSQ_cache_reference, so that its results can be better interpreted.

Current implementations of the BSQ_cache_reference event do not
distinguish between programmatic read and write misses.
Programmatic writes that miss must get the rest of the cache line and
merge the new data. Such a request is called a read for ownership
(RFO). To the “BSQ_cache_reference” hardware, both a programmatic
read and an RFO look like a data bus read, and are counted as such.
Further distinction between programmatic reads and RFOs may be
provided in future implementations.

Current implementations of the BSQ_cache_reference event can suffer
from perceived over- or under-counting. References are based on BSQ
allocations, as described above. Consequently, read misses are
B-12

Intel Pentium 4 Processor Performance Metrics B
generally counted once per 128-byte line BSQ allocation (whether one
or both sectors are referenced), but read and write (RFO) hits and most
write (RFO) misses are counted once per 64-byte line, the size of a core
reference. This makes the event counts for read misses appear to have a
2-times overcounting with respect to read and write (RFO) hits and
write (RFO) misses. This granularity mismatch cannot always be
corrected for, making it difficult to correlate to the number of
programmatic misses and hits. If the user knows that both sectors in a
128 -byte line are always referenced soon after each other, then the
number of read misses can be multiplied by two to adjust miss counts to
a 64-byte granularity.

Prefetches themselves are not counted as either hits or misses, as of
Pentium 4 and Intel Xeon processors with a CPUID signature of 0xf21.
However, in Pentium 4 Processor implementations with a CPUID
signature of 0xf07 and earlier have the problem that reads to lines that
are already being prefetched are counted as hits in addition to misses,
thus overcounting hits.

The number of “Reads Non-prefetch from the Processor” is a good
approximation of the number of outermost cache misses due to loads or
RFOs, for the writeback memory type.

Usage Notes on Bus Activities

A number of performance metrics in Table B-1 are based on
IOQ_active_entries and BSQ_active entries. The next three paragraphs
provide information of various bus transaction underway metrics. These
metrics nominally measure the end-to-end latency of transactions
entering the BSQ; i.e., the aggregate sum of the allocation-to-
deallocation durations for the BSQ entries used for all individual
transaction in the processor. They can be divided by the corresponding
number-of-transactions metrics (i.e., those that measure allocations) to
approximate an average latency per transaction. However, that
approximation can be significantly higher than the number of cycles it
takes to get the first chunk of data for the demand fetch (e.g., load),
B-13

IA-32 Intel® Architecture Optimization
because the entire transaction must be completed before deallocation.
That latency includes deallocation overheads, and the time to get the
other half of the 128-byte line, which is called an adjacent-sector
prefetch. Since adjacent-sector prefetches have lower priority than
demand fetches, there is a high probability on a heavily utilized system
that the adjacent-sector prefetch will have to wait until the next bus
arbitration cycle from that processor. Note also that on current
implementations, the granularities at which BSQ_allocation and
BSQ_active_entries count can differ, leading to a possible 2-times
overcounting of latencies for non-partial programmatic loads.

Users of the bus transaction underway metrics would be best served by
employing them for relative comparisons across BSQ latencies of all
transactions. Users that want to do cycle-by-cycle or type-by-type
analysis should be aware that this event is known to be inaccurate for
“UC Reads Chunk Underway” and “Write WC partial underway”
metrics. Relative changes to the average of all BSQ latencies should be
viewed as an indication that overall memory performance has changed.
That memory performance change may or may not be reflected in the
measured FSB latencies.

Also note that for Pentium 4 and Intel Xeon Processor implementations
with an integrated 3rd-level cache, BSQ entries are allocated for all
2nd-level writebacks (replaced lines), not just those that become bus
accesses (i.e., are also 3rd-level misses). This can decrease the average
measured BSQ latencies for workloads that frequently thrash (miss or
prefetch a lot into) the 2nd-level cache but hit in the 3rd-level cache.
This effect may be less of a factor for workloads that miss all on-chip
caches, since all BSQ entries due to such references will become bus
transactions.

Metrics Descriptions and Categories
The Performance metrics for Intel Pentium 4 and Intel Xeon processors
are listed in Table B-1. These performance metrics consist of recipes to
program specific Pentium 4 and Intel Xeon processor performance
B-14

Intel Pentium 4 Processor Performance Metrics B
monitoring events to obtain event counts that represent one of the
following: number of instructions, cycles, or occurrences. Table B-1
also includes a few ratios that are derived from counts of other
performance metrics.

On IA-32 processors that support Hyper-Threading Technology, the
performance counters and associated model specific registers (MSRs)
are extended to support Hyper-Threading Technology. A subset of the
performance monitoring events allow the event counts to be qualified by
logical processors. The programming interface for qualification of
performance monitoring events by logical processors is documented in
IA-32 Intel Architecture Software Developer’s Manual, Volume 3:
“System Programming.” Other performance monitoring events produce
counts that are independent of which logical processor is associated
with the microarchitectural events. The qualification of the performance
metrics on IA-32 processors that support Hyper-Threading Technology
is listed in Table B-5 and B-6.

In Table B-1, the recipe for programming the performance metrics using
performance-monitoring event is arranged as follows:

• Column 1 specifies performance metrics. This may be a
single-event metric; for example, the metric Instructions Retired is
based on the counts of the performance monitoring event
instr_retired, using a specific set of event mask bits. Or it can be
an expression built up from other metrics; for example, IPC is
derived from two single-event metrics.

• Column 2 provides a description of the metric in column 1. Please
refer to the previous section, “Pentium 4 Processor-Specific
Terminology” for various terms that are specific to the Pentium 4
processor’s performance monitoring capabilities.

• Column 3 specifies the performance monitoring event(s) or an
algebraic expression(s) that form(s) the metric. There are several
metrics that require yet another sub-event in addition to the counting
event. The additional sub-event information is included in column 3
as various tags, which are described in “Performance Metrics and
B-15

IA-32 Intel® Architecture Optimization
Tagging Mechanisms”. For event names that appear in this column,
refer to the IA-32 Intel Architecture Software Developer’s Manual,
Volume 3: “System Programming.”

• Column 4 specifies the event mask bit that is needed to use the
counting event. The addresses of various model-specific registers
(MSR), the event mask bits in Event Select Control registers
(ESCR), the bit fields in Counter Configuration Control registers
(CCCR) are described in IA-32 Intel Architecture Software
Developer’s Manual, Volume 3: “System Programming.”

The metrics listed in Table B-1 are grouped into several categories:

General Operation not specific to any
sub-system of the microarchitecture

Branching Branching activities

Trace Cache and Front End Front end activities and trace cache
operation modes

Memory Memory operation related to the
cache hierarch

Bus Activities related to Front-Side Bus
(FSB)

Characterization Operations specific to the processor
core
B-16

Intel Pentium 4 Processor Performance Metrics B
Table B-1 Pentium 4 Processor Performance Metrics

Metric Description
Event Name or Metric
Expression

Event Mask value
required

General metrics

Non-Sleep
Clockticks

The number of
clockticks.while a
processor is not in
any sleep modes.

See explanation on how
to count clocks in section
“Counting Clocks”.

Non-Halted
Clockticks

The number of
clockticks that the
processor is in not
halted nor in sleep.

Global_power_events RUNNING

Instructions
Retired

Non-bogus IA-32
instructions executed
to completion. May
count more than
once for some
instructions with
complex uop flow
and were interrupted
before retirement.
The count may vary
depending on the
microarchitectural
states when counting
begins.

Instr_retired NBOGUSNTAG|
NBOGUSTAG

Non-Sleep CPI Cycles per
instruction for a
physical processor
package.

(Non-Sleep Clockticks) /
(Instructions Retired)

Non-Halted
CPI

Cycles per
instruction for a
logical processor.

(Non-Halted Clockticks) /
(Instructions Retired)

µops Retired Non-bogus µops
executed to
completion

uops_retired NBOGUS

UPC µop per cycle for a
logical processor

µops Retired/ Non-Halted
Clockticks

continued
B-17

IA-32 Intel® Architecture Optimization
Speculative
Uops Retired

Number of uops
retired (include both
instructions executed
to completion and
speculatively
executed in the path
of branch
mispredictions).

uops_retired NBOGUS|BOGUS

Branching metrics

Branches
Retired

All branch
instructions executed
to completion

Branch_retired MMTM|MMNM|MMTP|
MMNP

Mispredicted
Branches
Retired

Mispredicted branch
instructions executed
to completion. This
stat is often used in a
per-instruction ratio.

Mispred_branch_
retired

NBOGUS

Misprediction
Ratio

Misprediction rate
per branch

(Mispredicted Branches
Retired) /(Branches
Retired)

All returns The number of return
branches

retired_branch_type RETURN

All indirect
branches

All returns and
indirect calls and
indirect jumps

retired_branch_type INDIRECT

All calls All direct and indirect
calls

retired_branch_type CALL

All conditionals The number of
branches that are
conditional jumps
(may overcount if the
branch is from build
mode or there is a
machine clear near
the branch)

retired_branch_type CONDITIONAL

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-18

Intel Pentium 4 Processor Performance Metrics B
Mispredicted
returns

The number of
mispredicted returns
including all causes.

retired_mispred_
branch_type

RETURN

Mispredicted
indirect
branches

All Mispredicted
returns and indirect
calls and indirect
jumps

retired_mispred_
branch_type

INDIRECT

Mispredicted
calls

All Mispredicted
indirect calls

retired_branch_type CALL

Mispredicted
conditionals

The number of
mispredicted
branches that are
conditional jumps

retired_mispred_
branch_type

CONDITIONAL

Trace Cache (TC) and front end metrics

Page Walk
Miss ITLB

The number of page
walk requests due to
ITLB misses.

page_walk_type ITMISS

ITLB Misses The number of ITLB
lookups that resulted
in a miss. Page Walk
Miss ITLB.is less
speculative than
ITLB Misses and is
the recommended
alternative.

ITLB_reference MISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-19

IA-32 Intel® Architecture Optimization
Logical
Processor 0
Deliver Mode

The number of
cycles that the trace
and delivery engine
(TDE) is delivering
traces associated
with logical
processor 0,
regardless of the
operating modes of
the TDE for traces
associated with
logical processor 1. If
a physical processor
supports only one
logical processor, all
traces are
associated with
logical processor 0.
This is the formerly
known as “Trace
Cache Deliver Mode“

 TC_deliver_mode SS|SB|SI

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-20

Intel Pentium 4 Processor Performance Metrics B
Logical
Processor 1
Deliver Mode

The number of
cycles that the trace
and delivery engine
(TDE) is delivering
traces associated
with logical
processor 1,
regardless of the
operating modes of
the TDE for traces
associated with
logical processor 0.
This metric is
applicable only if a
physical processor
supports
Hyper-Threading
Technology and have
two logical
processors per
package.

 TC_deliver_mode SS|BS|IS

% Logical
Processor N In
Deliver Mode

Fraction of all
non-halted cycles
that the trace cache
is delivering µops
associated with a
given logical
processor.

(Logical Processor N
Deliver
Mode)*100/(Non-Halted
Clockticks)

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-21

IA-32 Intel® Architecture Optimization
Logical
Processor 0
Build Mode

The number of
cycles that the trace
and delivery engine
(TDE) is building
traces associated
with logical
processor 0,
regardless of the
operating modes of
the TDE for traces
associated with
logical processor 1. If
a physical processor
supports only one
logical processor, all
traces are
associated with
logical processor 0.

 TC_deliver_mode BB|BS|BI

Logical
Processor 1
Build Mode

The number of
cycles that the trace
and delivery engine
(TDE) is building
traces associated
with logical
processor 1,
regardless of the
operating modes of
the TDE for traces
associated with
logical processor 0.
This metric is
applicable only if a
physical processor
supports
Hyper-Threading
Technology and have
two logical
processors per
package.

 TC_deliver_mode BB|SB|IB

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-22

Intel Pentium 4 Processor Performance Metrics B
Trace Cache
Misses

The number of times
that significant
delays occurred in
order to decode
instructions and build
a trace because of a
TC miss.

BPU_fetch_request TCMISS

TC to ROM
Transfers

Twice the number of
times that the ROM
microcode is
accessed to decode
complex IA-32
instructions instead
of building|delivering
traces. (Divide the
count by 2 to get the
number of
occurrence.)

tc_ms_xfer CISC

Speculative
TC-Built Uops

The number of
speculative uops
originating when the
TC is in build mode.

uop_queue_writes FROM_TC_BUILD

Speculative
TC-Delivered
Uops

The number of
speculative uops
originating when the
TC is in deliver
mode.

uop_queue_writes FROM_TC_DELIVER

Speculative
Microcode
Uops

The number of
speculative uops
originating from the
microcode ROM (Not
all uops of an
instruction from the
microcode ROM will
be included).

uop_queue_writes FROM_ROM

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-23

IA-32 Intel® Architecture Optimization
Memory metrics

Page Walk
DTLB All
Misses

The number of page
walk requests due to
DTLB misses from
either load or store.

page_walk_type DTMISS

1st-Level
Cache Load
Misses Retired

The number of
retired µops that
experienced
1st-Level cache load
misses. This stat is
often used in a
per-instruction ratio.

Replay_event; set the
following replay tag:
1stL_cache_load
_miss_retired

NBOGUS

2nd-Level
Cache Load
Misses Retired

The number of
retired load µops that
experienced
2nd-Level cache
misses. This stat is
known to undercount
when loads are
spaced apart.

Replay_event; set the
following replay tag:
2ndL_cache_load_
miss_retired

NBOGUS

DTLB Load
Misses Retired

The number of
retired load µops that
experienced DTLB
misses.

Replay_event; set the
following replay tag:
DTLB_load_miss_
retired

NBOGUS

DTLB Store
Misses Retired

The number of
retired store µops
that experienced
DTLB misses.

Replay_event; set the
following replay tag:
DTLB_store_miss_
retired

NBOGUS

DTLB Load
and Store
Misses Retired

The number of
retired load or µops
that experienced
DTLB misses.

Replay_event; set the
following replay tag:
DTLB_all_miss_
retired

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-24

Intel Pentium 4 Processor Performance Metrics B
64K Aliasing
Conflicts1

The number of 64K
aliasing conflicts. A
memory reference
causing 64K aliasing
conflict can be
counted more than
once in this stat. The
performance penalty
resulted from
64K-aliasing conflict
can vary from being
unnoticeable to
considerable. Some
implementations of
the Pentium 4
processor family can
incur significant
penalties for loads
that alias to
preceding stores.

Memory_cancel 64K_CONF

Split Load
Replays

The number of load
references to data
that spanned two
cache lines.

Memory_complete LSC

Split Loads
Retired

The number of
retired load µops that
spanned two cache
lines.

Replay_event; set the
following replay tag:
Split_load_retired.

NBOGUS

Split Store
Replays

The number of store
references that
spans across cache
line boundary.

Memory_complete SSC

Split Stores
Retired

The number of
retired store µops
that spanned two
cache lines.

Replay_event; set the
following replay tag:
Split_store_retired
.

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-25

IA-32 Intel® Architecture Optimization
MOB Load
Replays

The number of
replayed loads
related to the
Memory Order Buffer
(MOB). This metric
counts only the case
where the
store-forwarding
data is not an aligned
subset of the stored
data.

MOB_load_replay PARTIAL_DATA,
UNALGN_ADDR

2nd-Level
Cache Read
Misses2

The number of
2nd-level cache read
misses (load and
RFO misses).
Beware of granularity
differences.

BSQ_cache_reference RD_2ndL_MISS

2nd-Level
Cache Read
References2

The number of
2nd-level cache read
references (loads
and RFOs). Beware
of granularity
differences.

BSQ_cache_reference RD_2ndL_HITS,
RD_2ndL_HITE,
RD_2ndL_HITM,
RD_2ndL_MISS

3rd-Level
Cache Read
Misses2

The number of
3rd-level cache read
misses (load and
RFOs misses).
Beware of granularity
differences.

BSQ_cache_reference RD_3rdL_MISS

3rd-Level
Cache Read
References2

The number of
3rd-level cache read
references (loads
and RFOs). Beware
of granularity
differences.

BSQ_cache_reference RD_3rdL_HITS,
RD_3rdL_HITE,
RD_3rdL_HITM,
RD_3rdL_MISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-26

Intel Pentium 4 Processor Performance Metrics B
2nd-Level
Cache Reads
Hit Shared

The number of
2nd-level cache read
references (loads
and RFOs) that hit
the cache line in
shared state. Beware
of granularity
differences.

BSQ_cache_reference RD_2ndL_HITS

2nd-Level
Cache Reads
Hit Modified

The number of
2nd-level cache read
references (loads
and RFOs) that hit
the cache line in
modified state.
Beware of granularity
differences.

BSQ_cache_reference RD_2ndL_HITM

2nd-Level
Cache Reads
Hit Exclusive

The number of
2nd-level cache read
references (loads
and RFOs) that hit
the cache line in
exclusive state.
Beware of granularity
differences.

BSQ_cache_reference RD_2ndL_HITE

3rd-Level
Cache Reads
Hit Shared

The number of
3rd-level cache read
references (loads
and RFOs) that hit
the cache line in
shared state. Beware
of granularity
differences.

BSQ_cache_reference RD_3rdL_HITS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-27

IA-32 Intel® Architecture Optimization
3rd-Level
Cache Reads
Hit Modified

The number of
3rd-level cache read
references (loads
and RFOs) that hit
the cache line in
modified state.
Beware of granularity
differences.

BSQ_cache_reference RD_3rdL_HITM

3rd-Level
Cache Reads
Hit Exclusive

The number of
3rd-level cache read
references (loads
and RFOs) that hit
the cache line in
exclusive state.
Beware of granularity
differences.

BSQ_cache_reference RD_3rdL_HITE

MOB Load
Replays
Retired

The number of
retired load µops that
experienced replays
related to the MOB.

Replay_event; set the
following replay tag:
MOB_load_replay_
retired

NBOGUS

Loads Retired The number of
retired load
operations that were
tagged at the front
end.

Front_end_event; set
the following front end
tag: Memory_loads

NBOGUS

Stores Retired The number of
retired stored
operations that were
tagged at the front
end. This stat is often
used in a
per-instruction ratio.

Front_end_event; set
the following front end
tag: Memory_stores

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-28

Intel Pentium 4 Processor Performance Metrics B
All WCB
Evictions

The number of times
a WC buffer eviction
occurred due to any
causes (This can be
used to distinguish
64K aliasing cases
that contribute more
significantly to
performance penalty,
e.g., stores that are
64K aliased. A high
count of this metric
when there is no
significant
contribution due to
write combining
buffer full condition
may indicate such a
situation.)

WC_buffer WCB_EVICTS

WCB Full
Evictions

The number of times
a WC buffer eviction
occurred when all of
the WC buffers are
already allocated.

WC_buffer WCB_FULL_EVICT

Bus metrics

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-29

IA-32 Intel® Architecture Optimization
Bus Accesses
from the
Processor

The number of all
bus transactions that
were allocated in the
IO Queue from this
processor. Beware of
granularity issues
with this event. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
ALL_READ,
ALL_WRITE, OWN,
PREFETCH (CPUID
model < 2);

1b.ReqA0,
ALL_READ,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN,
PREFETCH (CPUID
model >= 2).

2. Enable edge
filtering6 in
the CCCR.

Non-prefetch
Bus Accesses
from the
Processor

The number of all
bus transactions that
were allocated in the
IO Queue from this
processor excluding
prefetched sectors.
Beware of granularity
issues with this
event. Also Beware
of different recipes in
mask bits for
Pentium 4 and Intel
Xeon processors
between CPUID
model field value of 2
and model value less
than 2.

IOQ_allocation 1a. ReqA0,
ALL_READ,
ALL_WRITE, OWN
(CPUID model <
2);

1b. ReqA0,
ALL_READ,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN
(CPUID model <
2).

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-30

Intel Pentium 4 Processor Performance Metrics B
Prefetch Ratio Fraction of all bus
transactions
(including retires)
that were for HW or
SW prefetching.

(Bus Accesses –
Nonprefetch Bus
Accesses)/ (Bus
Accesses)

FSB Data
Ready

The number of
front-side bus clocks
that the bus is
transmitting data
driven by this
processor (includes
full reads|writes and
partial reads|writes
and implicit
writebacks).

FSB_data_activity 1. DRDY_OWN,
DRDY_DRV

2. Enable edge
filtering6 in
the CCCR.

Bus Utilization The % of time that
the bus is actually
occupied

(FSB Data Ready)
*Bus_ratio*100/
Non-Sleep Clockticks

Reads from the
Processor

The number of all
read (includes
RFOs) transactions
on the bus that were
allocated in IO
Queue from this
processor (includes
prefetches). Beware
of granularity issues
with this event. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
ALL_READ,

OWN, PREFETCH
(CPUID model <
2);

1b. ReqA0,
ALL_READ,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC,

OWN, PREFETCH
(CPUID model >=
2);

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-31

IA-32 Intel® Architecture Optimization
Writes from the
Processor

The number of all
write transactions on
the bus that were
allocated in IO
Queue from this
processor (excludes
RFOs). Beware of
granularity issues
with this event. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
ALL_WRITE, OWN

(CPUID model <
2);

1b. ReqA0,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN

(CPUID model >=
2).

2. Enable edge
filtering6 in
the CCCR.

Reads
Non-prefetch
from the
Processor

The number of all
read transactions
(includes RFOs but
excludes prefetches)
on the bus that
originated from this
processor. Beware of
granularity issues
with this event. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
ALL_READ, OWN
(CPUID model <
2);

1b. ReqA0,
ALL_READ,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN
(CPUID model >=
2).

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-32

Intel Pentium 4 Processor Performance Metrics B
All WC from
the Processor

The number of Write
Combining memory
transactions on the
bus that originated
from this processor.
Beware of granularity
issues with this
event. Also Beware
of different recipes in
mask bits for
Pentium 4 and Intel
Xeon processors
between CPUID
model field value of 2
and model value less
than 2.

IOQ_allocation 1a. ReqA0,
MEM_WC, OWN
(CPUID model <
2);

1a.
ReqA0,ALL_READ,
ALL_WRITE,
MEM_WC, OWN
(CPUID model >=
2)

2. Enable edge
filtering6 in
the CCCR.

All UC from the
Processor

The number of UC
(Uncacheable)
memory transactions
on the bus that
originated from this
processor. User
Note: Beware of
granularity issues.
e.g. a store of
dqword to UC
memory requires two
entries in IOQ
allocation. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
MEM_UC, OWN
(CPUID model <
2);

1a.
ReqA0,ALL_READ,
ALL_WRITE,
MEM_UC, OWN
(CPUID model >=
2)

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-33

IA-32 Intel® Architecture Optimization
Bus Accesses
from All Agents

The number of all
bus transactions that
were allocated in the
IO Queue by all
agents. Beware of
granularity issues
with this event. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_allocation 1a. ReqA0,
ALL_READ,
ALL_WRITE, OWN,
OTHER, PREFETCH

 (CPUID model <
2); 1b.ReqA0,
ALL_READ,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN,
OTHER, PREFETCH

 (CPUID model >=
2).

2. Enable edge
filtering6 in
the CCCR.

Bus Accesses
Underway from
the processor7

This is an accrued
sum of the durations
of all bus
transactions by this
processor. Divide by
“Bus Accesses from
the processor” to get
bus request latency.
Also Beware of
different recipes in
mask bits for
Pentium 4 and Intel
Xeon processors
between CPUID
model field value of 2
and model value less
than 2.

IOQ_active_entries 1a. ReqA0,
ALL_READ,
ALL_WRITE, OWN,
PREFETCH

 (CPUID model <
2); 1b.ReqA0,
ALL_READ,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN,
PREFETCH

 (CPUID model >=
2).

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-34

Intel Pentium 4 Processor Performance Metrics B
Bus Reads
Underway from
the processor7

This is an accrued
sum of the durations
of all read (includes
RFOs) transactions
by this processor.
Divide by “Reads
from the Processor”
to get bus read
request latency. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_active_entries 1a. ReqA0,
ALL_READ,

OWN, PREFETCH
(CPUID model <
2);

1b. ReqA0,
ALL_READ,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC,

OWN, PREFETCH
(CPUID model >=
2);

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-35

IA-32 Intel® Architecture Optimization
Non-prefetch
Reads
Underway from
the processor7

This is an accrued
sum of the durations
of read (includes
RFOs but excludes
prefetches) transac-
tions that originate
from this processor.
Divide by “Reads
Non-
prefetch from the
processor” to get
Non-prefetch read
request latency. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon processors
between CPUID
model field value of 2
and model value less
than 2.

IOQ_active_entries 1a. ReqA0,
ALL_READ, OWN
(CPUID model <
2);

1b. ReqA0,
ALL_READ,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN
(CPUID model >=
2).

All UC
Underway from
the processor7

This is an accrued
sum of the durations
of all UC
transactions by this
processor. Divide by
“All UC from the
processor” to get UC
request latency. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_active_entries 1a. ReqA0,
MEM_UC, OWN
(CPUID model <
2);

1a.
ReqA0,ALL_READ,
ALL_WRITE,
MEM_UC, OWN
(CPUID model >=
2)

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-36

Intel Pentium 4 Processor Performance Metrics B
All WC
Underway from
the processor7

This is an accrued
sum of the durations
of all WC
transactions by this
processor. Divide by
“All WC from the
processor” to get WC
request latency. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_active_entries 1a. ReqA0,
MEM_WC, OWN
(CPUID model <
2);

1a.
ReqA0,ALL_READ,
ALL_WRITE,
MEM_WC, OWN
(CPUID model >=
2)

Bus Writes
Underway from
the processor7

This is an accrued
sum of the durations
of all write
transactions by this
processor. Divide by
“Writes from the
Processor” to get
bus write request
latency. Also Beware
of different recipes in
mask bits for
Pentium 4 and Intel
Xeon processors
between CPUID
model field value of 2
and model value less
than 2.

IOQ_active_entries 1a. ReqA0,
ALL_WRITE, OWN

(CPUID model <
2);

1b. ReqA0,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN

(CPUID model >=
2).

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-37

IA-32 Intel® Architecture Optimization
Bus Accesses
Underway from
All Agents7

This is an accrued
sum of the durations
of entries by all
agents on the bus.
Divide by “Bus
Accesses from All
Agents” to get bus
request latency. Also
Beware of different
recipes in mask bits
for Pentium 4 and
Intel Xeon
processors between
CPUID model field
value of 2 and model
value less than 2.

IOQ_active_entries 1a. ReqA0,
ALL_READ,
ALL_WRITE, OWN,
OTHER, PREFETCH

 (CPUID model <
2); 1b.ReqA0,
ALL_READ,
ALL_WRITE,
MEM_WB, MEM_WT,
MEM_WP, MEM_WC,
MEM_UC, OWN,
OTHER, PREFETCH

 (CPUID model >=
2).

Write WC Full
(BSQ)

The number of write
(but neither
writeback nor RFO)
transactions to
WC-type memory.

BSQ_allocation 1. REQ_TYPE1|
REQ_LEN0|REQ_LE
N1|MEM_TYPE0|REQ
DEM
TYPE

2. Enable edge
filtering6 in
the CCCR.

Write WC
Partial (BSQ)

The number of
partial write
transactions to
WC-type memory.
User note: This
event may
undercount WC
partials that originate
from DWord
operands.

BSQ_allocation 1. REQ_TYPE1|
REQ_LEN0|MEM_TY
PE0|REQ_DEM_TYP
E

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-38

Intel Pentium 4 Processor Performance Metrics B
Writes WB Full
(BSQ)

The number of
writeback (evicted
from cache)
transactions to
WB-type memory.
Note: These
writebacks may not
have a
corresponding FSB
IOQ transaction if
3rd level cache is
present.

BSQ_allocation 1. REQ_TYPE0|
REQ_TYPE1|REQ_L
EN0|REQ_LEN1|MEM
_TYPE1|MEM_TYPE
2|REQ_CACHE_TYP
E|REQ_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

Reads
Non-prefetch
Full (BSQ)

The number of read
(excludes RFOs and
HW|SW prefetches)
transactions to
WB-type memory.
Beware of granularity
issues with this
event.

BSQ_allocation 1. REQ_LEN0|
REQ_LEN1|MEM_TY
PE1|MEM_TYPE2|R
EQ_CACHE_TYPE|R
EQ_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

Reads
Invalidate Full-
RFO (BSQ)

The number of read
invalidate (RFO)
transactions to
WB-type memory

BSQ_allocation 1. REQ_TYPE0|
REQ_LEN0|REQ_LE
N1|MEM_TYPE1|MEM
_TYPE2|REQ_CACH
E_TYPE|REQ_ORD_
TYPE|REQ_DEM_TY
PE

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-39

IA-32 Intel® Architecture Optimization
UC Reads
Chunk (BSQ)

The number of
8-byte aligned UC
read transactions.
User note: Read
requests associated
with 16 byte
operands may
under-count.

BSQ_allocation 1. REQ_LEN0|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

UC Reads
Chunk Split
(BSQ)

The number of UC
read transactions
that span an 8-byte
boundary. User note:
Read requests may
under-count if the
data chunk straddles
64-byte boundary.

BSQ_allocation 1. REQ_LEN0|
REQ_SPLIT_TYPE|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

UC Write
Partial (BSQ)

The number of UC
write transactions.
Beware of granularity
issues between BSQ
and FSB IOQ
events.

BSQ_allocation 1. REQ_TYPE0|
REQ_LEN0|
REQ_SPLIT_TYPE|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

IO Reads
Chunk (BSQ)

The number of
8-byte aligned IO
port read
transactions.

BSQ_allocation 1. REQ_LEN0|
REQ_ORD_TYPE|RE
Q_IO_TYPE|REQ_D
EM_TYPE

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-40

Intel Pentium 4 Processor Performance Metrics B
IO Writes
Chunk (BSQ)

The number of IO
port write
transactions.

BSQ_allocation 1. REQ_TYPE0|
REQ_LEN0|
REQ_ORD_TYPE|RE
Q_IO_TYPE|REQ_D
EM_TYPE

2. Enable edge
filtering6 in
the CCCR.

WB Writes Full
Underway
(BSQ)8

This is an accrued
sum of the durations
of writeback (evicted
from cache)
transactions to
WB-type memory.
Divide by Writes WB
Full (BSQ) to
estimate average
request latency. User
note: Beware of
effects of writebacks
from 2nd-level cache
that are quickly
satisfied from the
3rd-level cache (if
present).

BSQ_active_entries 1. REQ_TYPE0|
REQ_TYPE1|REQ_L
EN0|REQ_LEN1|MEM
_TYPE1|MEM_TYPE
2|REQ_CACHE_TYP
E|REQ_DEM_TYPE

UC Reads
Chunk
Underway
(BSQ)8

This is an accrued
sum of the durations
of UC read
transactions. Divide
by UC Reads Chunk
(BSQ) to estimate
average request
latency. User note:
Estimated latency
may be affected by
undercount in
allocated entries.

BSQ_active_entries 1. REQ_LEN0|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge
filtering6 in
the CCCR.

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-41

IA-32 Intel® Architecture Optimization
Write WC
Partial
Underway
(BSQ)8

This is an accrued
sum of the durations
of partial write
transactions to
WC-type memory.
Divide by Write WC
Partial (BSQ) to
estimate average
request latency. User
note: Allocated
entries of WC
partials that originate
from DWord
operands are not
included.

BSQ_active_entries 1. REQ_TYPE1|
REQ_LEN0|MEM_TY
PE0|REQ_DEM_TYP
E

2. Enable edge
filtering6 in
the CCCR.

Characterization metrics

x87 Input
Assists

The number of
occurrences of x87
input operands
needing assistance
to handle an
exception condition.
This stat is often
used in a
per-instruction ratio.

X87_assists PREA

x87 Output
Assists

The number of
occurrences of x87
operations needing
assistance to handle
an exception
condition.

X87_assists POAO, POAU

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-42

Intel Pentium 4 Processor Performance Metrics B
SSE Input
Assists

The number of
occurrences of
SSE/SSE2
floating-point
operations needing
assistance to handle
an exception
condition. The
number of
occurrences includes
speculative counts.

SSE_input_assist ALL

Packed SP
Retired3

Non-bogus packed
single-precision
instructions retired.

Execution_event; set
this execution tag:
Packed_SP_retired

NONBOGUS0

Packed DP
Retired3

Non-bogus packed
double-precision
instructions retired.

Execution_event; set
this execution tag:

Packed_DP_retired

NONBOGUS0

Scalar SP
Retired3

Non-bogus scalar
single-precision
instructions retired.

Execution_event; set
this execution tag:

Scalar_SP_retired

NONBOGUS0

Scalar DP
Retired3

Non-bogus scalar
double-precision
instructions retired.

Execution_event; set
this execution tag:

Scalar_DP_retired

NONBOGUS0

64-bit MMX
Instructions
Retired3

Non-bogus 64-bit
integer SIMD
instruction (MMX
instructions) retired.

Execution_event; set the
following execution tag:

64_bit_MMX_retired

NONBOGUS0

128-bit MMX
Instructions
Retired3

Non-bogus 128-bit
integer SIMD
instructions retired.

Execution_event; set
this execution tag:

128_bit_MMX_
retired

NONBOGUS0

X87 Retired4 Non-bogus x87
floating-point
instructions retired.

Execution_event; set
this execution tag:
X87_FP_retired

NONBOGUS0

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-43

IA-32 Intel® Architecture Optimization
1. A memory reference causing 64K aliasing conflict can be counted more than once in this stat. The resulting
performance penalty can vary from unnoticeable to considerable. Some implementations of the Pentium 4 processor
family can incur significant penalties from loads that alias to preceding stores.

2. Currently, bugs in this event can cause both overcounting and undercounting by as much as a factor of 2.

3. Most MMX technology instructions, Streaming SIMD Extensions and Streaming SIMD Extensions 2 decode into a
single µop. There are some instructions that decode into several µops; in these limited cases, the metrics count the
number of µops that are actually tagged.

4. Most commonly used x87 instructions (e.g., fmul, fadd, fdiv, fsqrt, fstp, etc.) decode into a singleµop.
However, transcendental and some x87 instructions decode into several µops; in these limited cases, the metrics will
count the number of µops thatare actually tagged.

5. This metric may not be supported in all models of the Pentium 4 processor family.

6. Set the following CCCR bits to make edge triggered: Compare=1; Edge=1; Threshold=0

7. Must program both MSR_FSB_ESCR0 and MSR_FSB_ESCR1.

8. Must program both MSR_BSU_ESCR0 and MSR_BSU_ESCR1.

Stalled Cycles
of Store Buffer
Resources
(non-standard5

)

The duration of stalls
due to lack of store
buffers.

Resource_stall SBFULL

Machine clear metrics

Machine Clear
Count

The number of
cycles that the entire
pipeline of the
machine is cleared
for all causes.

Machine_clear CLEAR

(Also Set the
following CCCR bits:

Compare=1;
Edge=1;

Threshold=0)

Memory Order
Machine Clear

The number of times
that the entire
pipeline of the
machine is cleared
due to memory-
ordering issues.

Machine_clear MOCLEAR

Self-modifying
Code Clear

The number of times
the entire pipeline of
the machine is
cleared due to
self-modifying code
issues.

Machine_clear SMCCLEAR

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric
Expression

Event Mask value
required
B-44

Intel Pentium 4 Processor Performance Metrics B
Performance Metrics and Tagging Mechanisms
A number of metrics require more tags to be specified in addition to
programming a counting event; for example, the metric Split Loads
Retired requires specifying a split_load_retired tag in addition to
programming the replay_event to count at retirement. This section
describes three sets of tags that are used in conjunction with three
at-retirement counting events: front_end_event, replay_event, and
execution_event. Please refer to Appendix A of the “IA-32 Intel®
Architecture Software Developer’s Manual, Volume 3: System
Programming” for the description of the at-retirement events.

Tags for replay_event

Table B-2 provides a list of the tags that are used by various metrics in
Table B-1. These tags enable you to mark µops at earlier stage of
execution and count the µops at retirement using the replay_event.
These tags require at least two MSR’s (see Table B-2, column 2 and
column 3) to tag the µops so they can be detected at retirement. Some
tags require additional MSR (see Table B-2, column 4) to select the
event types for these tagged µops. The event names referenced in
column 4 are those from the Pentium 4 processor performance
monitoring events.

Table B-2 Metrics That Utilize Replay Tagging Mechanism

Replay Metric Tags1

Bit field to
set:

IA32_PEBS_
ENABLE

Bit field
to set:
MSR_
PEBS_
MATRIX_
VERT Additional MSR

See Event
Mask
Parameter
for
Replay_
event

1stL_cache_load_
miss_retired

Bit 0, BIT 24,
BIT 25

Bit 0 None NBOGUS

2ndL_cache_load_
miss_retired

Bit 1, BIT 24,
BIT 25

Bit 0 None NBOGUS

continued
B-45

IA-32 Intel® Architecture Optimization
Tags for front_end_event

Table B-3 provides a list of the tags that are used by various metrics
derived from the front_end_event. The event names referenced in
column 2 can be found from the Pentium 4 processor performance
monitoring events.

DTLB_load_miss_
retired

Bit 2, BIT 24,
BIT 25

Bit 0 None NBOGUS

DTLB_store_miss_
retired

Bit 2, BIT 24,
BIT 25

Bit 1 None NBOGUS

DTLB_all_miss_
retired

Bit 2, BIT 24,
BIT 25

Bit 0, Bit 1 None NBOGUS

MOB_load_
replay_retired

Bit 9, BIT 24,
BIT 25

Bit 0 Select MOB_load_
replay and set the
PARTIAL_DATA and
UNALGN_ADDR bits

NBOGUS

Split_load_
retired

Bit 10, BIT
24, BIT 25

Bit 0 Select
Load_port_replay
event on
SAAT_CR_ESCR1 and
set SPLIT_LD bit

NBOGUS

Split_store_
retired

Bit 10, BIT
24, BIT 25

Bit 1 Select Store_port_
replay event on
SAAT_CR_ESCR0 and
set SPLIT_ST bit

NBOGUS

1. Certain kinds of µops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far
transfers.

Table B-2 Metrics That Utilize Replay Tagging Mechanism (continued)
B-46

Intel Pentium 4 Processor Performance Metrics B
Tags for execution_event

Table B-4 provides a list of the tags that are used by various metrics
derived from the execution_event. These tags require programming
an upstream ESCR to select event mask with its TagUop and TagValue
bit fields. The event mask for the downstream ESCR is specified in
column 4. The event names referenced in column 4 can be found in the
Pentium 4 processor performance monitoring events.

Table B-3 Table 3 Metrics That Utilize the Front-end Tagging Mechanism

Front-end MetricTags1 Additional MSR
See Event Mask Parameter for
Front_end_event

Memory_loads Set the TAGLOADS bit in
Uop_Type

NBOGUS

Memory_stores Set the TAGSTORES bit in
Uop_Type

NBOGUS

1. There may be some undercounting of front end events when there is an overflow or underflow of the floating point
stack.
B-47

IA-32 Intel® Architecture Optimization
Table B-4 Metrics That Utilize the Execution Tagging Mechanism

Execution Metric Tags Upstream ESCR

Tag Value in
Upstream
ESCR

See Event Mask
Parameter for
Execution_
event

Packed_SP_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of packed_SP_uop.

1 NBOGUS0

Scalar_SP_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of scalar_SP_uop.

1 NBOGUS0

Scalar_DP_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of scalar_DP_uop.

1 NBOGUS0

128_bit_MMX_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of 128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of 64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set the ALL bit in the
event mask and the
TagUop bit in the ESCR
of x87_FP_uop.

1 NBOGUS0

X87_SIMD_memory_
moves_retired

Set the ALLP0 and
ALLP2 bits in event mask
and the TagUop bit in the
ESCR of X87_SIMD_
moves_uop.

1 NBOGUS0
B-48

Intel Pentium 4 Processor Performance Metrics B
Using Performance Metrics with Hyper-Threading
Technology

On Intel Xeon processors that support Hyper-Threading Technology, the
performance metrics listed in Table B-1 may be qualified to associate
the counts with a specific logical processor, provided the relevant
performance monitoring events supports qualification by logical
processor. Within the subset of those performance metrics that support
qualification by logical processors, some of them can be programmed
with parallel ESCRs and CCCRs to collect separate counts for each
logical processor simultaneously. For some metrics, qualification by
logical processor is supported but there is not sufficient number of
MSRs for simultaneous counting of the same metric on both logical
processors. In both cases, it is also possible to program the relevant
ESCR for a performance metric that supports qualification by logical
processor to produce counts that are, typically, the sum of contributions
from both logical processors.

A number of performance metrics are based on performance monitoring
events that do not support qualification by logical processor. Any
attempts to program the relevant ESCRs to qualify counts by logical
processor will not produce different results. The results obtained in this
manner should not be summed together.

The performance metrics listed in Table B-1 fall into three categories:

• Logical processor specific and supporting parallel counting

• Logical processor specific but constrained by ESCR limitations

• Logical processor independent and not supporting parallel counting.

Table B-5 lists performance metrics in the first and second category.
Table B-6 lists performance metrics in the third category.

There are four specific performance metrics related to the trace cache
that are exceptions to the three categories above. They are:

• Logical Processor 0 Deliver Mode

• Logical Processor 1 Deliver Mode
B-49

IA-32 Intel® Architecture Optimization
• Logical Processor 0 Build Mode

• Logical Processor 0 Build Mode.

Each of these four metrics cannot be qualified by programming bit 0 to
4 in the respective ESCR. However, it is possible and useful to collect
two of these four metrics simultaneously.

Table B-5 Metrics That Support Qualification by Logical Processor and
Parallel Counting

General Metrics Uops Retired

Instructions Retired

Non-Halted Clockticks

Speculative Uops Retired

Branching Metrics Branches Retired

Mispredicted Branches Retired

All returns

All indirect branches

All calls

All conditionals

Mispredicted returns

Mispredicted indirect branches

Mispredicted calls

Mispredicted conditionals

TC and Front End Metrics Trace Cache Misses

ITLB Misses

TC to ROM Transfers

Speculative TC-Built Uops

Speculative TC-Delivered Uops

Speculative Microcode Uops

continued
B-50

Intel Pentium 4 Processor Performance Metrics B
Memory Metrics Split Load Replays1

Split Store Replays1

MOB Load Replays1

64k Aliasing Conflicts

1st-Level Cache Load Misses Retired

2nd-Level Cache Load Misses Retired

DTLB Load Misses Retired

Split Loads Retired1

Split Stores Retired1

MOB Load Replays Retired

Loads Retired

Stores Retired

DTLB Store Misses Retired

DTLB Load and Store Misses Retired

2nd-Level Cache Read Misses

2nd-Level Cache Read References

3rd-Level Cache Read Misses

3rd-Level Cache Read References

2nd-Level Cache Reads Hit Shared

2nd-Level Cache Reads Hit Modified

2nd-Level Cache Reads Hit Exclusive

3rd-Level Cache Reads Hit Shared

3rd-Level Cache Reads Hit Modified

3rd-Level Cache Reads Hit Exclusive

continued

Table B-5 Metrics That Support Qualification by Logical Processor and
Parallel Counting (continued)
B-51

IA-32 Intel® Architecture Optimization
Bus Metrics Bus Accesses from the Processor1

Non-prefetch Bus Accesses from the Processor1

Reads from the Processor1

Writes from the Processor1

Reads Non-prefetch from the Processor1

All WC from the Processor1

All UC from the Processor1

Bus Accesses from All Agents1

Bus Accesses Underway from the processor1

Bus Reads Underway from the processor1

Non-prefetch Reads Underway from the processor1

All UC Underway from the processor1

All WC Underway from the processor1

Bus Writes Underway from the processor1

Bus Accesses Underway from All Agents1

Write WC Full (BSQ)1

Write WC Partial (BSQ)1

Writes WB Full (BSQ)1

Reads Non-prefetch Full (BSQ)1

Reads Invalidate Full- RFO (BSQ)1

UC Reads Chunk (BSQ)1

UC Reads Chunk Split (BSQ)1

UC Write Partial (BSQ)1

IO Reads Chunk (BSQ)1

IO Writes Chunk (BSQ)1

WB Writes Full Underway (BSQ)1

UC Reads Chunk Underway (BSQ)1

Write WC Partial Underway(BSQ)1

continued

Table B-5 Metrics That Support Qualification by Logical Processor and
Parallel Counting (continued)
B-52

Intel Pentium 4 Processor Performance Metrics B
Characterization Metrics x87 Input Assists

x87 Output Assists

Machine Clear Count

Memory Order Machine Clear

Self-Modifying Code Clear

Scalar DP Retired

Scalar SP Retired

Packed DP Retired

Packed SP Retired

128-bit MMX Instructions Retired

64-bit MMX Instructions Retired

x87 Instructions Retired

Stalled Cycles of Store Buffer Resources
1 Parallel counting is not supported due to ESCR restrictions.

Table B-6 Metrics That Are Independent of Logical Processors

General Metrics Non-Sleep Clockticks

TC and Front End Metrics Page Walk Miss ITLB

Memory Metrics Page Walk DTLB All Misses

All WCB Evictions

WCB Full Evictions

Bus Metrics Bus Data Ready from the Processor

Characterization Metrics SSE Input Assists

Table B-5 Metrics That Support Qualification by Logical Processor and
Parallel Counting (continued)
B-53

IA-32 Intel® Architecture Optimization
B-54

C
IA-32 Instruction Latency and
Throughput
This appendix contains tables of the latency, throughput and execution
units that are associated with IA-32 instructions. The instruction timing
data varies within the IA-32 family of processors. Only data specific to
the Intel Pentium 4, Intel Xeon processors and Intel Pentium M
processor are provided. The relevance of instruction throughput and
latency information for code tuning is discussed in Chapter 1 and
Chapter 2, see “Execution Core Detail” in Chapter 1 and “Floating
Point/SIMD Operands” in Chapter 2.

This appendix contains the following sections:

• “Overview”– an overview of issues related to instruction selection
and scheduling.

• “Definitions” – the definitions for the primary information
presented in the tables in section “Latency and Throughput.”

• “Latency and Throughput of Pentium 4 and Intel Xeon processors”
– the listings of IA-32 instruction throughput, latency and execution
units associated with commonly-used instruction.

Overview
The current generation of IA-32 family of processors use out-of-order
execution with dynamic scheduling and buffering to tolerate poor
instruction selection and scheduling that may occur in legacy code. It
can reorder µops to cover latency delays and to avoid resource conflicts.
In some cases, the microarchitecture’s ability to avoid such delays can
C-1

IA-32 Intel® Architecture Optimization
be enhanced by arranging IA-32 instructions. While reordering IA-32
instructions may help, the execution core determines the final schedule
of µops.

This appendix provides information to assembly language programmers
and compiler writers, to aid in selecting the sequence of instructions
which minimizes dependency chain latency, and to arrange instructions
in an order which assists the hardware in processing instructions
efficiently while avoiding resource conflicts. The performance impact
of applying the information presented in this appendix has been shown
to be on the order of several percent, for applications which are not
completely dominated by other performance factors, such as:

• cache miss latencies

• bus bandwidth

• I/O bandwidth

Instruction selection and scheduling matters when the compiler or
assembly programmer has already addressed the performance issues
discussed in Chapter 2:

• observe store forwarding restrictions

• avoid cache line and memory order buffer splits

• do not inhibit branch prediction

• minimize the use of xchg instructions on memory locations

While several items on the above list involve selecting the right
instruction, this appendix focuses on the following issues. These are
listed in an expected priority order, though which item contributes most
to performance will vary by application.

• Maximize the flow of µops into the execution core. IA-32
instructions which consist of more than four µops require additional
steps from microcode ROM. These instructions with longer µop
flows incur a delay in the front end and reduce the supply of uops to
the execution core. In Pentium 4 and Intel Xeon processors,
transfers to microcode ROM often reduce how efficiently µops can
be packed into the trace cache. Where possible, it is advisable to
C-2

IA-32 Instruction Latency and Throughput C
select instructions with four or fewer µops. For example, a 32-bit
integer multiply with a memory operand fits in the trace cache
without going to microcode, while a 16-bit integer multiply to
memory does not.

• Avoid resource conflicts. Interleaving instructions so that they don’t
compete for the same port or execution unit can increase
throughput. For example, alternating PADDQ and PMULUDQ, each have
a throughput of one issue per two clock cycles. When interleaved,
they can achieve an effective throughput of one instruction per cycle
because they use the same port but different execution units.
Selecting instructions with fast throughput also helps to preserve
issue port bandwidth, hide latency and allows for higher software
performance.

• Minimize the latency of dependency chains that are on the critical
path. For example, an operation to shift left by two bits executes
faster when encoded as two adds than when it is encoded as a shift.
If latency is not an issue, the shift results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the
instruction data provided in this manual, you can take advantage of the
software performance analysis and tuning toolset available at
http://developer.intel.com/software/products/index.htm. The tools
include the VTune Performance Analyzer, with its
performance-monitoring capabilities.

Definitions
The IA-32 instruction performance data are listed in several tables. The
tables contain the following information:

Instruction Name:The assembly mnemonic of each instruction.

Latency: The number of clock cycles that are required for the
execution core to complete the execution of all of the
µops that form a IA-32 instruction.
C-3

http://developer.intel.com/software/products/index.htm

IA-32 Intel® Architecture Optimization
Throughput: The number of clock cycles required to wait before the
issue ports are free to accept the same instruction
again. For many IA-32 instructions, the throughput of
an instruction can be significantly less than its latency.

Execution units: The names of the execution units in the execution core
that are utilized to execute the µops for each
instruction. This information is provided only for
IA-32 instructions that are decoded into no more than
4 µops. µops for instructions that decode into more
than 4 µops are supplied by microcode ROM. Note
that several execution units may share the same port,
such as FP_ADD, FP_MUL, or MMX_SHFT in the
FP_EXECUTE cluster (see Figure 1-4).

Latency and Throughput
This section presents the latency and throughput information for the
IA-32 instruction set including the Streaming SIMD Extensions 2,
Streaming SIMD Extensions, MMX technology, and most of the
frequently used general-purpose integer and x87 floating-point
instructions.

Due to the complexity of dynamic execution and out-of-order nature of
the execution core, the instruction latency data may not be sufficient to
accurately predict realistic performance of actual code sequences based
on adding instruction latency data.

• The instruction latency data are useful when tuning a dependency
chain. However, dependency chains limit the out-of-order core’s
ability to execute micro-ops in parallel. The instruction throughput
data are useful when tuning parallel code unencumbered by
dependency chains.

• All numeric data in the tables are:
— approximate and are subject to change in future

implementations of the Intel NetBurst microarchitecture or the
Pentium M processor microarchitecture.
C-4

IA-32 Instruction Latency and Throughput C
— not meant to be used as reference numbers for comparisons of
instruction-level performance benchmarks. Comparison of
instruction-level performance of microprocessors that are based
on different microarchitecture is a complex subject that requires
additional information that is beyond the scope of this manual.

Comparisons of latency and throughput data between the Pentium 4
processor and the Pentium M processor can be misleading, because one
cycle in the Pentium 4 processor is NOT equal to one cycle in the
Pentium M processor. The Pentium 4 processor is designed to operate at
higher clock frequencies than the Pentium M processor. Many IA-32
instructions can operate with either registers as their operands or with a
combination of register/memory address as their operands. The
performance of a given instruction between these two types is different.

The section that follows, “Latency and Throughput with Register
Operands”, gives the latency and throughput data for the
register-to-register instruction type. Section “Latency and Throughput
with Memory Operands” discusses how to adjust latency and
throughput specifications for the register-to-memory and
memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half
of a clock. This occurs only for the double-speed ALUs.

 Latency and Throughput with Register Operands

The IA-32 instruction latency and throughput data are presented in
Table C-1 through Table C-7. The tables include the Streaming SIMD
Extension 2, Streaming SIMD Extension, MMX technology and most of
the commonly used IA-32 instructions. Instruction latency and
throughput of the Pentium 4 processor and of the Pentium M processor
are given in separate columns. Pentium 4 processor instruction timing
data are shown in the columns represented by CPUID signature 0xF2n.
Pentium M processor instruction timing data are shown in the columns
represented by CPUID signature 0x69n.
C-5

IA-32 Intel® Architecture Optimization
Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

CVTDQ2PS3 xmm, xmm 5 2 FP_ADD

CVTPS2DQ3 xmm, xmm 5 3+1 2 2 FP_ADD

CVTTPS2DQ3 xmm, xmm 5 3+1 2 2 FP_ADD

MOVD xmm, r32 6 1 2 2 MMX_MISC,MMX_
SHFT

MOVD r32, xmm 10 1+1 1 2 FP_MOVE,FP_MIS
C

MOVDQA xmm, xmm 6 1 1 1 FP_MOVE

MOVDQU xmm, xmm 6 1 1 1 FP_MOVE

MOVDQ2Q mm, xmm 8 1 2 1 FP_MOVE,MMX_A
LU

MOVQ2DQ xmm, mm 8 1 2 1 FP_MOVE,MMX_S
HFT

MOVQ xmm, xmm 2 1 2 1 MMX_SHFT

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

4 2+1 2 2 MMX_SHFT

PADDB/PADDW/PADDD xmm,
xmm

2 1 2 1 MMX_ALU

PADDSB/PADDSW/
PADDUSB/PADDUSW
xmm, xmm

2 1 2 1 MMX_ALU

PADDQ mm, mm 2 2 1 1 FP_MISC

PSUBQ mm, mm 2 2+1 1 2 FP_MISC

PADDQ/ PSUBQ3 xmm, xmm 6 2+1 2 2 FP_MISC

PAND xmm, xmm 2 1 2 1 MMX_ALU

PANDN xmm, xmm 2 1 2 1 MMX_ALU

PAVGB/PAVGW xmm, xmm 2 2 MMX_ALU

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

2 1 2 1 MMX_ALU

continued
C-6

IA-32 Instruction Latency and Throughput C
PCMPGTB/PCMPGTD/PCMP
GTW xmm, xmm

2 1 2 1 MMX_ALU

PEXTRW r32, xmm, imm8 7 3 2 2 MMX_SHFT,FP_MI
SC

PINSRW xmm, r32, imm8 4 1+1 2 2 MMX_SHFT,MMX_
MISC

PMADDWD xmm, xmm 8 3+1 2 2 FP_MUL

PMAX xmm, xmm 2 2 MMX_ALU

PMIN xmm, xmm 2 2 MMX_ALU

PMOVMSKB3 r32, xmm 7 2 FP_MISC

PMULHUW/PMULHW/
PMULLW3 xmm, xmm

8 3+1 2 2 FP_MUL

PMULUDQ mm, mm 8 6 1 2 FP_MUL

PMULUDQ xmm, xmm 8 6+2 2 4 FP_MUL

POR xmm, xmm 2 1 2 1 MMX_ALU

PSADBW xmm, xmm 4 5+2 2 4 MMX_ALU

PSHUFD xmm, xmm, imm8 4 2+1 2 2 MMX_SHFT

PSHUFHW xmm, xmm, imm8 2 1 2 1 MMX_SHFT

PSHUFLW xmm, xmm, imm8 2 1 2 1 MMX_SHFT

PSLLDQ xmm, imm8 4 4 2 4 MMX_SHFT

PSLLW/PSLLD/PSLLQ xmm,
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSRAW/PSRAD xmm,
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSRLDQ xmm, imm8 4 4 2 4 MMX_SHFT

PSRLW/PSRLD/PSRLQ xmm,
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSUBB/PSUBW/PSUBD xmm,
xmm

2 1 2 1 MMX_ALU

PSUBSB/PSUBSW/PSUBUSB
/PSUBUSW xmm, xmm

2 1 2 1 MMX_ALU

continued

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-7

IA-32 Intel® Architecture Optimization
See “Table Footnotes”

PUNPCKHBW/PUNPCKHWD/
PUNPCKHDQ xmm, xmm

4 1+1 2 2 MMX_SHFT

PUNPCKHQDQ xmm, xmm 4 1_1 2 2 MMX_SHFT

PUNPCKLBW/PUNPCKLWD/P
UNPCKLDQ xmm, xmm

2 2 2 2 MMX_SHFT

PUNPCKLQDQ3 xmm, xmm 4 1 1 1 FP_MISC

PXOR xmm, xmm 2 1 2 1 MMX_ALU

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point
Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADDPD xmm, xmm 4 4 2 2 FP_ADD

ADDSD xmm, xmm 4 3 2 1 FP_ADD

ANDNPD3 xmm, xmm 4 1 2 1 MMX_ALU

ANDPD3 xmm, xmm 4 1 2 1 MMX_ALU

CMPPD xmm, xmm,
imm8

4 4 2 2 FP_ADD

CMPSD xmm, xmm,
imm8

4 3 2 1 FP_ADD

COMISD xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

CVTDQ2PD xmm, xmm 8 4+1 3 4 FP_ADD, MMX_SHFT

CVTPD2PI mm, xmm 11 5 3 3 FP_ADD,
MMX_SHFT,MMX_ALU

CVTPD2DQ xmm, xmm 9 5 2 3 FP_ADD, MMX_SHFT

CVTPD2PS3 xmm, xmm 10 2 FP_ADD, MMX_SHFT

CVTPI2PD xmm, mm 11 4+1 4 4 FP_ADD,
MMX_SHFT,MMX_ALU

continued

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-8

IA-32 Instruction Latency and Throughput C
CVTPS2PD3 xmm, xmm 2 2+1 2 3 FP_ADD,
MMX_SHFT,MMX_ALU

CVTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

CVTSD2SS3 xmm, xmm 16 4 4 1 FP_ADD, MMX_SHFT

CVTSI2SD3 xmm, r32 15 4 3 1 FP_ADD, MMX_SHFT,
MMX_MISC

CVTSS2SD3 xmm, xmm 8 2 2 2

CVTTPD2PI mm, xmm 11 5 3 3 FP_ADD,
MMX_SHFT,MMX_ALU

CVTTPD2DQ xmm, xmm 9 2 FP_ADD, MMX_SHFT

CVTTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

DIVPD xmm, xmm 69 32+31 69 62 FP_DIV

DIVSD xmm, xmm 38 32 38 31 FP_DIV

MAXPD xmm, xmm 4 4 2 2 FP_ADD

MAXSD xmm, xmm 4 3 2 1 FP_ADD

MINPD xmm, xmm 4 4 2 2 FP_ADD

MINSD xmm, xmm 4 3 2 1 FP_ADD

MOVAPD xmm, xmm 6 1 FP_MOVE

MOVMSKPD r32, xmm 6 2 FP_MISC

MOVSD xmm, xmm 6 2 MMX_SHFT

MOVUPD xmm, xmm 6 1 FP_MOVE

MULPD xmm, xmm 6 2 FP_MUL

MULSD xmm, xmm 6 2 FP_MUL

ORPD3 xmm, xmm 4 2 MMX_ALU

SHUFPD3 xmm, xmm,
imm8

6 2 MMX_SHFT

SQRTPD xmm, xmm 69 58+57 69 114 FP_DIV

SQRTSD xmm, xmm 38 58 38 57 FP_DIV

SUBPD xmm, xmm 4 4 2 2 FP_ADD

continued

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point
Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-9

IA-32 Intel® Architecture Optimization
See “Table Footnotes”

SUBSD xmm, xmm 4 3 2 1 FP_ADD

UCOMISD xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

UNPCKHPD3 xmm, xmm 6 1 2 1 MMX_SHFT

UNPCKLPD3 xmm, xmm 4 1 2 1 MMX_SHFT

XORPD3 xmm, xmm 4 1 2 1 MMX_ALU

Table C-3 Streaming SIMD Extension Single-precision Floating-point
Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADDPS xmm, xmm 4 4 2 2 FP_ADD

ADDSS xmm, xmm 4 3 2 1 FP_ADD

ANDNPS3 xmm, xmm 4 2 2 2 MMX_ALU

ANDPS3 xmm, xmm 4 2 2 2 MMX_ALU

CMPPS xmm, xmm 4 4 2 2 FP_ADD

CMPSS xmm, xmm 4 3 2 1 FP_ADD

COMISS xmm, xmm 6 1 2 1 FP_ADD,FP_MISC

CVTPI2PS xmm, mm 11 3 4 1 MMX_ALU,FP_ADD,MMX_
SHFT

CVTPS2PI mm, xmm 7 3 2 1 FP_ADD,MMX_ALU

CVTSI2SS3 xmm, r32 11 4 2 2 FP_ADD,MMX_SHFT,
MMX_MISC

CVTSS2SI r32, xmm 8 4 2 1 FP_ADD,FP_MISC

CVTTPS2PI mm, xmm 7 3 2 1 FP_ADD,MMX_ALU

CVTTSS2SI r32, xmm 8 4 2 1 FP_ADD,FP_MISC

DIVPS xmm, xmm 39 18+17 39 36 FP_DIV

DIVSS xmm, xmm 23 23 FP_DIV

continued

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point
Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-10

IA-32 Instruction Latency and Throughput C
MAXPS xmm, xmm 4 2 FP_ADD

MAXSS xmm, xmm 4 2 FP_ADD

MINPS xmm, xmm 4 2 FP_ADD

MINSS xmm, xmm 4 2 FP_ADD

MOVAPS xmm, xmm 6 1 FP_MOVE

MOVHLPS3 xmm,
xmm

6 2 MMX_SHFT

MOVLHPS3 xmm,
xmm

4 2 MMX_SHFT

MOVMSKPS r32, xmm 6 2 FP_MISC

MOVSS xmm, xmm 4 2 MMX_SHFT

MOVUPS xmm, xmm 6 1 FP_MOVE

MULPS xmm, xmm 6 4+1 2 2 FP_MUL

MULSS xmm, xmm 6 2 FP_MUL

ORPS3 xmm, xmm 4 2 2 2 MMX_ALU

RCPPS3 xmm, xmm 6 2 4 2 MMX_MISC

RCPSS3 xmm, xmm 6 1 2 1 MMX_MISC,MMX_SHFT

RSQRTPS3 xmm,
xmm

6 2 4 2 MMX_MISC

RSQRTSS3 xmm,
xmm

6 4 1 MMX_MISC,MMX_SHFT

SHUFPS3 xmm, xmm,
imm8

6 2 2 2 MMX_SHFT

SQRTPS xmm, xmm 39 29+28 39 58 FP_DIV

SQRTSS xmm, xmm 23 30 23 29 FP_DIV

SUBPS xmm, xmm 4 4 2 2 FP_ADD

SUBSS xmm, xmm 4 3 2 1 FP_ADD

UCOMISS xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

UNPCKHPS3 xmm,
xmm

6 3 2 2 MMX_SHFT

continued

Table C-3 Streaming SIMD Extension Single-precision Floating-point
Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-11

IA-32 Intel® Architecture Optimization
See “Table Footnotes”

See “Table Footnotes”

UNPCKLPS3 xmm,
xmm

4 3 2 2 MMX_SHFT

XORPS3 xmm, xmm 4 2 2 2 MMX_ALU

FXRSTOR 150

FXSAVE 100

Table C-4 Streaming SIMD Extension 64-bit Integer Instructions

Instruction Latency1 Throughput Execution Unit

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

PAVGB/PAVGW mm, mm 2 1 MMX_ALU

PEXTRW r32, mm, imm8 7 2 2 1 MMX_SHFT,FP_MISC

PINSRW mm, r32, imm8 4 1 1 1 MMX_SHFT,MMX_MISC

PMAX mm, mm 2 1 MMX_ALU

PMIN mm, mm 2 1 MMX_ALU

PMOVMSKB3 r32, mm 7 1 2 1 FP_MISC

PMULHUW3 mm, mm 8 1 FP_MUL

PSADBW mm, mm 4 5 1 2 MMX_ALU

PSHUFW mm, mm, imm8 2 1 1 1 MMX_SHFT

Table C-5 MMX Technology 64-bit Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

MOVD mm, r32 2 1 MMX_ALU
MOVD3 r32, mm 5 1 FP_MISC
MOVQ mm, mm 6 1 FP_MOV

PACKSSWB/PACKSSDW/PACKU
SWB mm, mm

2 1 MMX_SHFT

continued

Table C-3 Streaming SIMD Extension Single-precision Floating-point
Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-12

IA-32 Instruction Latency and Throughput C

PADDB/PADDW/PADDD mm, mm 2 1 MMX_ALU

PADDSB/PADDSW
/PADDUSB/PADDUSW mm, mm

2 1 MMX_ALU

PAND mm, mm 2 1 MMX_ALU
PANDN mm, mm 2 1 MMX_ALU
PCMPEQB/PCMPEQD
PCMPEQW mm, mm

2 1 MMX_ALU

PCMPGTB/PCMPGTD/
PCMPGTW mm, mm

2 1 MMX_ALU

PMADDWD3 mm, mm 8 1 FP_MUL

PMULHW/PMULLW3 mm, mm 8 1 FP_MUL
POR mm, mm 2 1 MMX_ALU
PSLLQ/PSLLW/
PSLLD mm, mm/imm8

2 1 MMX_SHFT

PSRAW/PSRAD mm, mm/imm8 2 1 MMX_SHFT

PSRLQ/PSRLW/PSRLD mm,
mm/imm8

2 1 MMX_SHFT

PSUBB/PSUBW/PSUBD mm, mm 2 1 MMX_ALU
PSUBSB/PSUBSW/PSUBUSB/PS
UBUSW mm, mm

2 1 MMX_ALU

PUNPCKHBW/PUNPCKHWD/PU
NPCKHDQ mm, mm

2 1 MMX_SHFT

PUNPCKLBW/PUNPCKLWD/PUN
PCKLDQ mm, mm

2 1 MMX_SHFT

PXOR mm, mm 2 1 MMX_ALU
EMMS1 12 12

See “Table Footnotes”

Table C-5 MMX Technology 64-bit Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-13

IA-32 Intel® Architecture Optimization
Table C-6 IA-32 x87 Floating-point Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

FABS 2 1 FP_MISC

FADD 5 1 FP_ADD

FSUB 5 1 FP_ADD

FMUL 7 2 FP_MUL

FCOM 2 1 FP_MISC

FCHS 2 1 FP_MISC

FDIV Single Precision 23 23 FP_DIV

FDIV Double Precision 38 38 FP_DIV

FDIV Extended Precision 43 43 FP_DIV

FSQRT SP 23 23 FP_DIV

FSQRT DP 38 38 FP_DIV

FSQRT EP 43 43 FP_DIV

F2XM14 90-
150

60

FCOS4 190-
240

130

FPATAN4 150-
300

140

FPTAN4 225-
250

170

FSIN4 160-
180

130

FSINCOS4 160-
220

140

FYL2X4 140-
190

85

FYL2XP14 140-
190

85

FSCALE4 60 7

FRNDINT4 30 11

continued
C-14

IA-32 Instruction Latency and Throughput C
See “Table Footnotes”

FXCH5 0 1 FP_MOVE

FLDZ6 0

FINCSTP/FDECSTP6 0

Table C-7 IA-32 General Purpose Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADC/SBB reg, reg 8 3

ADC/SBB reg, imm 6 2 ALU

ADD/SUB 0.5 0.5 ALU

AND/OR/XOR 0.5 0.5 ALU

BSF/BSR 8 4

BSWAP 7 1 ALU

CLI 26

CMP/TEST 0.5 0.5 ALU

DEC/INC 1 0.5 ALU

IMUL r32 14 4 3 FP_MUL

IMUL imm32 14 4 3 FP_MUL

IMUL 15-18 4 5

IDIV 56-70 23

IN/OUT1 <225 40

Jcc7 Not
Applic
able

0.5 ALU

LOOP 8 1.5 ALU

MOV 0.5 0.5 ALU

MOVSB/MOVSW 0.5 0.5 ALU

continued

Table C-6 IA-32 x87 Floating-point Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-15

IA-32 Intel® Architecture Optimization
See “Table Footnotes”

Table Footnotes

The following footnotes refer to all tables in this appendix.

1. Latency information for many of instructions that are complex
(> 4 µops) are estimates based on conservative and worst-case
estimates. Actual performance of these instructions by the

MOVZB/MOVZW 0.5 0.5 ALU

NEG/NOT/NOP 0.5 0.5 ALU

POP r32 1.5 1 MEM_LOAD,ALU

PUSH 1.5 1 MEM_STORE,ALU

RCL/RCR reg, 18 4 1

RCL/RCR reg, 18 4 1

ROL/ROR 4 1

RET 8 1 MEM_LOAD,ALU

SAHF 0.5 0.5 ALU

SAL/SAR/SHL/SHR 4 1 1

SCAS 4 1.5 ALU,MEM_LOAD

SETcc 5 1.5 ALU

STI 36

STOSB 5 2 ALU,MEM_STORE

XCHG 1.5 1 ALU

CALL 5 1 ALU,MEM_STORE

MUL 14-18 5

DIV 56-70 23

Table C-7 IA-32 General Purpose Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
C-16

IA-32 Instruction Latency and Throughput C
out-of-order core execution unit can range from somewhat faster to
significantly faster than the nominal latency data shown in these
tables.

2. The names of execution units apply to processor implementations
of the Intel NetBurst microarchitecture only. They include: ALU,
FP_EXECUTE, FPMOVE, MEM_LOAD, MEM_STORE. See Figure 1-4 for
execution units and ports in the out-of-order core. Note the
following:
• The FP_EXECUTE unit is actually a cluster of execution units,

roughly consisting of seven separate execution units.
• The FP_ADD unit handles x87 and SIMD floating-point add and

subtract operation.
• The FP_MUL unit handles x87 and SIMD floating-point multiply

operation.
• The FP_DIV unit handles x87 and SIMD floating-point divide

square-root operations.
• The MMX_SHFT unit handles shift and rotate operations.
• The MMX_ALU unit handles SIMD integer ALU operations.
• The MMX_MISC unit handles reciprocal MMX computations and

some integer operations.
• The FP_MISC designates other execution units in port 1 that are

separated from the six units listed above.

3. It may be possible to construct repetitive calls to some IA-32
instructions in code sequences to achieve latency that is one or two
clock cycles faster than the more realistic number listed in this
table.

4. Latency and Throughput of transcendental instructions can vary
substantially in a dynamic execution environment. Only an
approximate value or a range of values are given for these
instructions.

5. The FXCH instruction has 0 latency in code sequences. However, it
is limited to an issue rate of one instruction per clock cycle.
C-17

IA-32 Intel® Architecture Optimization
6. The load constant instructions, FINCSTP, and FDECSTP have 0
latency in code sequences.

7. Selection of conditional jump instructions should be based on the
recommendation of section “Branch Prediction” to improve the
predictability of branches. When branches are predicted
successfully, the latency of jcc is effectively zero.

8. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR
with shift count other than 1 will be executed more slowly. This
applies to the Pentium 4 and Intel Xeon processors.

Latency and Throughput with Memory Operands

The discussion of this section applies to the Intel Pentium 4 and Intel
Xeon processors. Typically, instructions with a memory address as the
source operand, add one more µop to the “reg, reg” instructions type
listed in Table C-1 through C-7. However, the throughput in most cases
remains the same because the load operation utilizes port 2 without
affecting port 0 or port 1.

Many IA-32 instructions accept a memory address as either the source
operand or as the destination operand. The former is commonly referred
to as a load operation, while the latter a store operation.

The latency for IA-32 instructions that perform either a load or a store
operation are typically longer than the latency of corresponding
register-to-register type of the IA-32 instructions. This is because load
or store operations require access to the cache hierarchy and, in some
cases, the memory sub-system.

For the sake of simplicity, all data being requested is assumed to reside
in the first level data cache (cache hit). In general, IA-32 instructions
with load operations that execute in the integer ALU units require two
more clock cycles than the corresponding register-to-register flavor of
the same instruction. Throughput of these instructions with load
operation remains the same with the register-to-register flavor of the
instructions.
C-18

IA-32 Instruction Latency and Throughput C
Floating-point, MMX technology, Streaming SIMD Extensions and
Streaming SIMD Extension 2 instructions with load operations require 6
more clocks in latency than the register-only version of the instructions,
but throughput remains the same.

When store operations are on the critical path, their results can generally
be forwarded to a dependent load in as few as zero cycles. Thus, the
latency to complete and store isn’t relevant here.
C-19

IA-32 Intel® Architecture Optimization
C-20

D
Stack Alignment
This appendix details on the alignment of the stacks of data for
Streaming SIMD Extensions and Streaming SIMD Extensions 2.

Stack Frames
This section describes the stack alignment conventions for both
esp-based (normal), and ebp-based (debug) stack frames. A stack frame
is a contiguous block of memory allocated to a function for its local
memory needs. It contains space for the function’s parameters, return
address, local variables, register spills, parameters needing to be passed
to other functions that a stack frame may call, and possibly others. It is
typically delineated in memory by a stack frame pointer (esp) that
points to the base of the frame for the function and from which all data
are referenced via appropriate offsets. The convention on IA-32 is to use
the esp register as the stack frame pointer for normal optimized code,
and to use ebp in place of esp when debug information must be kept.
Debuggers use the ebp register to find the information about the
function via the stack frame.

It is important to ensure that the stack frame is aligned to a 16-byte
boundary upon function entry to keep local __m128 data, parameters,
and xmm register spill locations aligned throughout a function
invocation.The Intel C++ Compiler for Win32* Systems supports
conventions presented here help to prevent memory references from
incurring penalties due to misaligned data by keeping them aligned to
16-byte boundaries. In addition, this scheme supports improved
D-1

IA-32 Intel® Architecture Optimization
alignment for __m64 and double type data by enforcing that these
64-bit data items are at least eight-byte aligned (they will now be
16-byte aligned).

For variables allocated in the stack frame, the compiler cannot
guarantee the base of the variable is aligned unless it also ensures that
the stack frame itself is 16-byte aligned. Previous IA-32 software
conventions, as implemented in most compilers, only ensure that
individual stack frames are 4-byte aligned. Therefore, a function called
from a Microsoft-compiled function, for example, can only assume that
the frame pointer it used is 4-byte aligned.

Earlier versions of the Intel C++ Compiler for Win32 Systems have
attempted to provide 8-byte aligned stack frames by dynamically
adjusting the stack frame pointer in the prologue of main and preserving
8-byte alignment of the functions it compiles. This technique is limited
in its applicability for the following reasons:

• The main function must be compiled by the Intel C++ Compiler.

• There may be no functions in the call tree compiled by some other
compiler (as might be the case for routines registered as callbacks).

• Support is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume
only 4-byte alignment. If the function has a need for 8-byte or 16-byte
alignment, then code can be inserted to dynamically align the stack
appropriately, resulting in one of the stack frames shown in Figure D-1.
D-2

Stack Alignment D
As an optimization, an alternate entry point can be created that can be
called when proper stack alignment is provided by the caller. Using call
graph profiling of the VTune analyzer, calls to the normal (unaligned)
entry point can be optimized into calls to the (alternate) aligned entry
point when the stack can be proven to be properly aligned. Furthermore,
a function alignment requirement attribute can be modified throughout
the call graph so as to cause the least number of calls to unaligned entry
points. As an example of this, suppose function F has only a stack
alignment requirement of 4, but it calls function G at many call sites,
and in a loop. If G’s alignment requirement is 16, then by promoting F’s
alignment requirement to 16, and making all calls to G go to its aligned
entry point, the compiler can minimize the number of times that control
passes through the unaligned entry points. Example D-1 and

Figure D-1 Stack Frames Based on Alignment Type

Paramet
Pointe

EBP

ESP

EBP-based Aligned Frame

Parameters

Return Address

Padding

Previous EBP

Local Variables and
Spill Slots

Parameter Passing
Space

EBP-frame Saved
Register Area

Return Address 1

SEH/CEH Record

Parameter
Pointer

ESP

ESP-based Aligned Frame

Parameters

Return Address

Padding

Register Save Area

Local Variables and
Spill Slots

__cdecl Parameter
Passing Space

__stdcall Parameter
Passing Space
D-3

Stack Alignment D
Example D-1 in the following sections illustrate this technique. Note the
entry points foo and foo.aligned, the latter is the alternate aligned
entry point.

Aligned esp-Based Stack Frames

This section discusses data and parameter alignment and the
declspec(align) extended attribute, which can be used to request
alignment in C and C++ code. In creating esp-based stack frames, the
compiler adds padding between the return address and the register save
area as shown in Example 3-9. This frame can be used only when debug
information is not requested, there is no need for exception handling
support, inlined assembly is not used, and there are no calls to alloca
within the function.

If the above conditions are not met, an aligned ebp-based frame must be
used. When using this type of frame, the sum of the sizes of the return
address, saved registers, local variables, register spill slots, and
parameter space must be a multiple of 16 bytes. This causes the base of
the parameter space to be 16-byte aligned. In addition, any space
reserved for passing parameters for stdcall functions also must be a
multiple of 16 bytes. This means that the caller needs to clean up some
of the stack space when the size of the parameters pushed for a call to a
stdcall function is not a multiple of 16. If the caller does not do this,
the stack pointer is not restored to its pre-call value.

In Example D-1, we have 12 bytes on the stack after the point of
alignment from the caller: the return pointer, ebx and edx. Thus, we
need to add four more to the stack pointer to achieve alignment.
Assuming 16 bytes of stack space are needed for local variables, the
compiler adds 16 + 4 = 20 bytes to esp, making esp aligned to a 0 mod
16 address.
D-4

Stack Alignment D
Example D-1 Aligned esp-Based Stack Frames

void _cdecl foo (int k)

{

 int j;

 foo: // See Note A

 push ebx

 mov ebx, esp

 sub esp, 0x00000008

 and esp, 0xfffffff0

 add esp, 0x00000008

 jmp common

foo.aligned:

push ebx

mov ebx, esp

common: // See Note B

push edx

sub esp, 20

j = k;

mov edx, [ebx + 8]

mov [esp + 16], edx

foo(5);

mov [esp], 5

call foo.aligned

return j;

mov eax, [esp + 16]

add esp, 20

pop edx

mov esp, ebx

pop ebx

ret
D-5

Stack Alignment D
Aligned ebp-Based Stack Frames

In ebp-based frames, padding is also inserted immediately before the
return address. However, this frame is slightly unusual in that the return
address may actually reside in two different places in the stack. This
occurs whenever padding must be added and exception handling is in
effect for the function. Example D-2 shows the code generated for this
type of frame. The stack location of the return address is aligned 12 mod
16. This means that the value of ebp always satisfies the condition (ebp
& 0x0f) == 0x08. In this case, the sum of the sizes of the return
address, the previous ebp, the exception handling record, the local
variables, and the spill area must be a multiple of 16 bytes. In addition,
the parameter passing space must be a multiple of 16 bytes. For a call to
a stdcall function, it is necessary for the caller to reserve some stack
space if the size of the parameter block being pushed is not a multiple
of 16.

NOTE. A. Aligned entry points assume that parameter
block beginnings are aligned. This places the stack
pointer at a 12 mod 16 boundary, as the return pointer
has been pushed. Thus, the unaligned entry point must
force the stack pointer to this boundary.
 B. The code at the common label assumes the
stack is at an 8 mod 16 boundary, and adds sufficient
space to the stack so that the stack pointer is aligned to
a 0 mod 16 boundary.
D-6

Stack Alignment D
Example D-2 Aligned ebp-based Stack Frames

void _stdcall foo (int k)
{

 int j;

 foo:

 push ebx

mov ebx, esp

sub esp, 0x00000008

and esp, 0xfffffff0

add esp, 0x00000008 // esp is (8 mod 16)
after add

jmp common

 foo.aligned:

push ebx // esp is (8 mod 16)
after push

mov ebx, esp

 common:

 push ebp // this slot will be
used for

// duplicate return pt

push ebp // esp is (0 mod 16)
after push

// (rtn,ebx,ebp,ebp)

mov ebp, [ebx + 4] // fetch return pointer
and store

mov [esp + 4], ebp // relative to ebp
// (rtn,ebx,rtn,ebp)

mov ebp, esp // ebp is (0 mod 16)

sub esp, 28 // esp is (4 mod 16)

//see Note A

push edx // esp is (0 mod 16)
after push

continued
D-7

Stack Alignment D
// the goal is to make
esp and ebp

// (0 mod 16) here

j = k;

mov edx, [ebx + 8] // k is (0 mod 16) if
caller aligned

// its stack

mov [ebp - 16], edx // J is (0 mod 16)

foo(5);

add esp, -4 // normal call sequence
to

 // unaligned entry

mov [esp],5

call foo // for stdcall, callee
// cleans up stack

foo.aligned(5);

add esp,-16 // aligned entry, this
should

 // be a multiple of 16

mov [esp],5

call foo.aligned

add esp,12 // see Note B

return j;

mov eax,[ebp-16]

pop edx

mov esp,ebp

pop ebp

mov esp,ebx

pop ebx

ret 4

}

Example D-2 Aligned ebp-based Stack Frames (continued)
D-8

Stack Alignment D
Stack Frame Optimizations

The Intel C++ Compiler provides certain optimizations that may
improve the way aligned frames are set up and used. These
optimizations are as follows:

• If a procedure is defined to leave the stack frame 16-byte-aligned
and it calls another procedure that requires 16-byte alignment, then
the callee’s aligned entry point is called, bypassing all of the
unnecessary aligning code.

• If a static function requires 16-byte alignment, and it can be proven
to be called only by other functions that require 16-byte alignment,
then that function will not have any alignment code in it. That is, the
compiler will not use ebx to point to the argument block and it will
not have alternate entry points, because this function will never be
entered with an unaligned frame.

NOTE. A. Here we allow for local variables. However,
this value should be adjusted so that, after pushing the
saved registers, esp is 0 mod 16.
 B. Just prior to the call, esp is 0 mod 16. To
maintain alignment, esp should be adjusted by 16.
When a callee uses the stdcall calling sequence, the
stack pointer is restored by the callee. The final
addition of 12 compensates for the fact that only 4
bytes were passed, rather than 16, and thus the caller
must account for the remaining adjustment.
D-9

IA-32 Intel® Architecture Optimization
Inlined Assembly and ebx
When using aligned frames, the ebx register generally should not be
modified in inlined assembly blocks since ebx is used to keep track of
the argument block. Programmers may modify ebx only if they do not
need to access the arguments and provided they save ebx and restore it
before the end of the function (since esp is restored relative to ebx in the
function’s epilog).

For additional information on the use of ebx in inline assembly code and
other related issues, see relevant application notes in the Intel
Architecture Performance Training Center.

CAUTION. Do not use the ebx register in inline
assembly functions that use dynamic stack alignment
for double, __m64, and __m128 local variables unless
you save and restore ebx each time you use it. The
Intel C++ Compiler uses the ebx register to control
alignment of variables of these types, so the use of ebx,
without preserving it, will cause unexpected program
execution.
D-10

E
Mathematics of Prefetch
Scheduling Distance
This appendix discusses how far away to insert prefetch instructions. It
presents a mathematical model allowing you to deduce a simplified
equation which you can use for determining the prefetch scheduling
distance (PSD) for your application.

For your convenience, the first section presents this simplified equation;
the second section provides the background for this equation: the
mathematical model of the calculation.

Simplified Equation
A simplified equation to compute PSD is as follows:

where

psd is prefetch scheduling distance.

Nlookup is the number of clocks for lookup latency. This
parameter is system-dependent. The type of memory
used and the chipset implementation affect its value.

Nxfer is the number of clocks to transfer a cache-line. This
parameter is implementation-dependent.

Npref and Nst are the numbers of cache lines to be prefetched and
stored.

CPI is the number of clocks per instruction. This parameter
is implementation-dependent.

psd
Nlookup Nxfer Npref Nst+()⋅+

CPI Ninst⋅
---=
E-1

IA-32 Intel® Architecture Optimization
Ninst is the number of instructions in the scope of one loop
iteration.

Consider the following example of a heuristic equation assuming that
parameters have the values as indicated:

where 60 corresponds to Nlookup, 25 to Nxfer, and 1.5 to CPI.

The values of the parameters in the equation can be derived from the
documentation for memory components and chipsets as well as from
vendor datasheets.

Mathematical Model for PSD
The parameters used in the mathematics discussed are as follows:

psd prefetch scheduling distance (measured in number of
iterations)

il iteration latency

Tc computation latency per iteration with prefetch caches

Tl memory leadoff latency including cache miss latency,
chip set latency, bus arbitration, etc.

CAUTION. The values in this example are for
illustration only and do not represent the actual values
for these parameters. The example is provided as a
“starting point approximation” of calculating the
prefetch scheduling distance using the above formula.
Experimenting with the instruction around the
“starting point approximation” may be required to
achieve the best possible performance.

psd
60 25 Npref Nst+()⋅+

1.5 Ninst⋅
---=
E-2

Mathematics of Prefetch Scheduling Distance E
Tb data transfer latency which is equal to number of lines
per iteration * line burst latency

Note that the potential effects of µop reordering are not factored into the
estimations discussed.

Examine Example E-1 that uses the prefetchnta instruction with a
prefetch scheduling distance of 3, that is, psd = 3. The data prefetched in
iteration i, will actually be used in iteration i+3. Tc represents the cycles
needed to execute top_loop - assuming all the memory accesses hit L1
while il (iteration latency) represents the cycles needed to execute this
loop with actually run-time memory footprint. Tc can be determined by
computing the critical path latency of the code dependency graph. This
work is quite arduous without help from special performance
characterization tools or compilers. A simple heuristic for estimating the
Tc value is to count the number of instructions in the critical path and
multiply the number with an artificial CPI. A reasonable CPI value
would be somewhere between 1.0 and 1.5 depending on the quality of
code scheduling.

Example E-1 Calculating Insertion for Scheduling Distance of 3

top_loop:

 prefetchnta [edx+esi+32*3]

 prefetchnta [edx*4+esi+32*3]

 movaps xmm1, [edx+esi]

 movaps xmm2, [edx*4+esi]

 movaps xmm3, [edx+esi+16]

 movaps xmm4, [edx*4+esi+16]

 . . .

 add esi, 32

 cmp esi, ecx

 jl top_loop
E-3

IA-32 Intel® Architecture Optimization
Memory access plays a pivotal role in prefetch scheduling. For more
understanding of a memory subsystem, consider Streaming SIMD
Extensions and Streaming SIMD Extensions 2 memory pipeline
depicted in Figure E-1.

Assume that three cache lines are accessed per iteration and four chunks
of data are returned per iteration for each cache line. Also assume these
3 accesses are pipelined in memory subsystem. Based on these
assumptions,
Tb = 3 * 4 = 12 FSB cycles.

Figure E-1 Pentium II, Pentium III and Pentium 4 Processors Memory Pipeline
Sketch

 1 2 3 4 1

1 2 3 4 1

1 2 3 4 1

T l T b

: L2 lookup miss latency

: Memory page access leadoff latency

: Latency for 4 chunks returned per line 2 3 1 4
E-4

Mathematics of Prefetch Scheduling Distance E
Tl varies dynamically and is also system hardware-dependent. The static
variants include the core-to-front-side-bus ratio, memory manufacturer
and memory controller (chipset). The dynamic variants include the
memory page open/miss occasions, memory accesses sequence,
different memory types, and so on.

To determine the proper prefetch scheduling distance, follow these steps
and formulae:

• Optimize Tc as much as possible

• Use the following set of formulae to calculate the proper prefetch
scheduling distance:

• Schedule the prefetch instructions according to the computed
prefetch scheduling distance.

• For optimized memory performance, apply techniques described in
“Memory Optimization Using Prefetch” in Chapter 6.

The following sections explain and illustrate the architectural
considerations involved in the prefetch scheduling distance formulae
above.
E-5

IA-32 Intel® Architecture Optimization
No Preloading or Prefetch

The traditional programming approach does not perform data
preloading or prefetch. It is sequential in nature and will experience
stalls because the memory is unable to provide the data immediately
when the execution pipeline requires it. Examine Figure E-2.

As you can see from Figure E-2, the execution pipeline is stalled while
waiting for data to be returned from memory. On the other hand, the
front side bus is idle during the computation portion of the loop. The
memory access latencies could be hidden behind execution if data could
be fetched earlier during the bus idle time.

Further analyzing Figure E-2,

• assume execution cannot continue till last chunk returned and

• δf indicates flow data dependency that stalls the execution pipelines

With these two things in mind the iteration latency (il) is computed as
follows:

Figure E-2 Execution Pipeline, No Preloading or Prefetch

Execution cycles

Execution
 pipeline

(i+1)th iteration

Tl Tb

δf

Tc- T∆ T∆

Tl Tb

δf

T∆Tc- T∆

Front-Side
Bus

ith iteration

issue loads issue loads

Execution units idle Execution units idle

FSB idle

il Tc T+
l

Tb+≅
E-6

Mathematics of Prefetch Scheduling Distance E
The iteration latency is approximately equal to the computation latency
plus the memory leadoff latency (includes cache miss latency, chipset
latency, bus arbitration, and so on.) plus the data transfer latency where

 transfer latency= number of lines per iteration * line burst latency.

This means that the decoupled memory and execution are ineffective to
explore the parallelism because of flow dependency. That is the case
where prefetch can be useful by removing the bubbles in either the
execution pipeline or the memory pipeline.

With an ideal placement of the data prefetching, the iteration latency
should be either bound by execution latency or memory latency, that is

 il = maximum(Tc, Tb).

Compute Bound (Case:Tc >= Tl + Tb)

Figure E-3 represents the case when the compute latency is greater than
or equal to the memory leadoff latency plus the data transfer latency. In
this case, the prefetch scheduling distance is exactly 1; i.e., prefetch data
one iteration ahead is good enough. The data for loop iteration i can be
prefetched during loop iteration i-1, the δf symbol between front-side
bus and execution pipeline indicates the data flow dependency.

Figure E-3 Compute Bound Execution Pipeline

Front-Side Bus

Execution pipeline Tc

Tl Tb

Iteration i Iteration i+1

Tc

Tl Tb

Execution cycles

δf
E-7

IA-32 Intel® Architecture Optimization
The following formula shows the relationship among the parameters:

It can be seen from this relationship that the iteration latency is equal to
the computation latency, which means the memory accesses are
executed in background and their latencies are completely hidden.

Compute Bound (Case: Tl + Tb > Tc > Tb)

Now consider the next case by first examining Figure E-4.

Figure E-4 Another Compute Bound Execution Pipeline

Execution cycles

Front-Side Bus

Execution pipeline

i

i+1

i+2

i+3

i

i+1

i+2

i+3

Tc

Tc

Tc

Tc

Tl Tb

Tl Tb

Tl Tb

Tl Tb
δf

δf

Tc

δf

i+4
E-8

Mathematics of Prefetch Scheduling Distance E
For this particular example the prefetch scheduling distance is greater
than 1. Data being prefetched for iteration i will be consumed in
iteration i+2.
Figure E-4 represents the case when the leadoff latency plus data
transfer latency is greater than the compute latency, which is greater
than the data transfer latency. The following relationship can be used to
compute the prefetch scheduling distance.

In consequence, the iteration latency is also equal to the computation
latency, that is, compute bound program.

Memory Throughput Bound (Case: Tb >= Tc)

When the application or loop is memory throughput bound, the memory
latency is no way to be hidden. Under such circumstances, the burst
latency is always greater than the compute latency. Examine Figure E-5.
E-9

IA-32 Intel® Architecture Optimization
The following relationship calculates the prefetch scheduling distance
(or prefetch iteration distance) for the case when memory throughput
latency is greater than the compute latency.

Apparently, the iteration latency is dominant by the memory throughput
and you cannot do much about it. Typically, data copy from one space to
another space, for example, graphics driver moving data from writeback
memory to you cannot do much about it. Typically, data copy from one
space to another space, for example, graphics driver moving data from
writeback memory to write-combining memory, belongs to this
category, where performance advantage from prefetch instructions will
be marginal.

Figure E-5 Memory Throughput Bound Pipeline

i

Execution cycles

Execution pipeline

i+pid

Tc

δf

Tc Tc Tc

i+pid+1 i+pid+2 i+pid+3

Front-Side Bus

Tl Tb

Tl Tb

Tl Tb

Tl Tb

Tl Tb

δf δf δf
E-10

Mathematics of Prefetch Scheduling Distance E
Example

As an example of the previous cases consider the following conditions
for computation latency and the memory throughput latencies. Assume
Tl = 18 and Tb = 8 (in front side bus cycles).

Now for the case Tl =18, Tb =8 (2 cache lines are needed per iteration)
examine the following graph. Consider the graph of accesses per
iteration in example 1, Figure E-6.

The prefetch scheduling distance is a step function of Tc, the
computation latency. The steady state iteration latency (il) is either
memory-bound or compute-bound depending on Tc if prefetches are
scheduled effectively.

Figure E-6 Accesses per Iteration, Example 1
E-11

IA-32 Intel® Architecture Optimization
The graph in example 2 of accesses per iteration in Figure E-7 shows
the results for prefetching multiple cache lines per iteration. The cases
shown are for 2, 4, and 6 cache lines per iteration, resulting in differing
burst latencies. (Tl=18, Tb =8, 16, 24).

In reality, the front-side bus (FSB) pipelining depth is limited, that is,
only four transactions are allowed at a time in the Pentium III and
Pentium 4 processors. Hence a transaction bubble or gap, Tg, (gap due
to idle bus of imperfect front side bus pipelining) will be observed on
FSB activities. This leads to consideration of the transaction gap in
computing the prefetch scheduling distance. The transaction gap, Tg,
must be factored into the burst cycles, Tb, for the calculation of prefetch
scheduling distance.

The following relationship shows computation of the transaction gap.

Figure E-7 Accesses per Iteration, Example 2

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Tc (in FSB clocks)

p
sd

2 lines

4 lines

6 lines

psd for different number of cache lines prefetched per iteration
E-12

Mathematics of Prefetch Scheduling Distance E
where Tl is the memory leadoff latency, c is the number of chunks per
cache line and n is the FSB pipelining depth.
E-13

IA-32 Intel® Architecture Optimization
E-14

Index
A
absolute difference of signed numbers, 4-24

absolute difference of unsigned numbers, 4-23

absolute value, 4-25

accesses per iteration, E-11, E-12

algorithm to avoid changing the rounding mode,
2-63

aligned ebp-based frame, D-4, D-6

aligned esp-based stack frames, D-4

Alignment
stack, 2-42

alignment, 2-28
coe, 2-54

AoS format, 3-28

application performance tools, A-1

Arrays
Aligning, 2-39

automatic processor dispatch support, A-4

automatic vectorization, 3-16, 3-17

B - C
Branch Prediction, 2-4, 2-13

.cache blocking techniques, 6-32

cache level, 6-6

cache management
simple memory copy, 6-43
video decoder, 6-42

video encoder, 6-42

calculating insertion for scheduling distance,
E-3

call graph profiling, A-10

changing the rounding mode, 2-62

checking for MMX technology support, 3-2

checking for Streaming SIMD Extensions
support, 3-3

classes (C/C++), 3-15

clipping to an arbitrary signed range, 4-26

clipping to an arbitrary unsigned range, 4-29

code optimization options, A-3

Code segment
Data in, 2-46

coding methodologies, 3-11

coding techniques, 3-10
absolute difference of signed numbers, 4-24
absolute difference of unsigned numbers,

4-23
absolute value, 4-25
clipping to an arbitrary signed range, 4-26
clipping to an arbitrary unsigned range,

4-29
generating constants, 4-21
interleaved pack with saturation, 4-8
interleaved pack without saturation, 4-10
non-interleaved unpack, 4-11
signed unpack, 4-7
simplified clipping to an arbitrary signed

range, 4-28
unsigned unpack, 4-6

coherent requests, 6-13
Index-1

IA-32 Intel® Architecture Optimization
command-line options, A-2
automatic processor dispatch support, A-4
floating-point arithmetic precision, A-6
inline expansion of library functions, A-6
loop unrolling, A-5
rounding control, A-6
targeting a processor, A-3
vectorizer switch, A-5

comparing register values, 2-76

compiler intrinsics
_mm_load, 6-2, 6-41
_mm_prefetch, 6-2, 6-41
_mm_stream, 6-2, 6-41

compiler plug-in, A-2

compiler-supported alignment, 3-22

complex instructions, 2-70

computation latency, E-8

computation-intensive code, 3-9

compute bound, E-7, E-8

converting code to MMX technology, 3-6

CPUID instruction, 3-2

D
Data

Code segment and, 2-46

data alignment, 3-18

data arrangement, 5-4

data copy, E-10

data deswizzling, 5-13, 5-14

Data structures
Access pattern versus alignment, 2-40
Aligning, 2-39

data swizzling, 5-9

data swizzling using intrinsics, 5-11

decoupled memory, E-7

divide instructions, 2-72

E
eliminating branches, 2-13, 2-16

EMMS instruction, 4-3, 4-4

extract word instruction, 4-13

F
fist instruction, 2-61

fldcw instruction, 2-62

floating-point applications, 2-55

floating-point arithmetic precision options, A-6

floating-point code
improving parallelism, 2-65
loop unrolling, 2-25
memory access stall information, 2-36
memory operands, 2-67
operations with integer operands, 2-68
optimizing, 2-55
transcendental functions, 2-69

floating-point operations with integer operands,
2-68

floating-point stalls, 2-68

flow dependency, E-7

flush to zero, 5-21

FXCH instruction, 2-67

G
general optimization techniques, 2-1

branch prediction, 2-13
static prediction, 2-17

generating constants, 4-21

H
horizontal computations, 5-17

hotspots, 3-8

Hyper-Threading Technology, 7-1
avoid excessive software prefetches, 7-23
cache blocking technique, 7-26
Index-2

Index
conserve bus command bandwidth, 7-23
eliminate 64-K-aliased data accesses, 7-27
Front-end Optimization, 7-33
front-end optimization, 7-33
full write transactions, 7-25
functional decomposition, 7-7
improve effective latency of cache misses,

7-24
managing heavily-used execution

Resources, 7-37
memory optimization, 7-25
minimize data sharing between physical

processors, 7-26
Multitasking Environment, 7-4
optimization guidelines, 7-9
optimization with spin-locks, 7-17
parallel programming models, 7-6
per-instance stack offset, 7-31
per-thread stack offset, 7-29
placement of shared synchronization

variable, 7-22
prevent false-sharing of data, 7-21
preventing excessive evictions in first-level

data cache, 7-28
shared-memory optimization, 7-26
synchronization for longer periods, 7-18
synchronization for short periods, 7-13
system bus optimization, 7-22
thread synchronization, 7-13
tools for creating multithreaded

applications, 7-8

I
increasing bandwidth of memory fills, 4-37

increasing bandwidth of video fills, 4-37

indirect branch, 2-22

inline assembly, 4-5

inline expansion of library functions option,
A-6

inlined assembly blocks, D-10

inlined-asm, 3-13

insert word instruction, 4-14

instruction scheduling, 2-46, 4-38

instruction selection, 2-69

integer and floating-point multiply, 2-72

integer divide, 2-72

integer-intensive application, 4-1

Intel Performance Library Suite, A-2

interleaved pack with saturation, 4-8

interleaved pack without saturation, 4-10

interprocedural optimization, A-6

IPO. See interprocedural optimization

L
large load stalls, 2-37

latency, 2-68, 6-5

lea instruction, 2-70

loading and storing to and from the same
DRAM page, 4-38

loop blocking, 3-32

loop unrolling, 2-25

loop unrolling option, A-5

M
memory bank conflicts, 6-3

memory O=optimization U=using P=prefetch,
6-18

memory operands, 2-67

memory optimization, 4-34

memory optimizations
loading and storing to and from the same

DRAM page, 4-38
partial memory accesses, 4-35
using aligned stores, 4-38

memory performance, 3-25

memory reference instructions, 2-75

memory throughput bound, E-9

minimizing prefetches number, 6-26
Index-3

IA-32 Intel® Architecture Optimization
misaligned data access, 3-18

misalignment in the FIR filter, 3-19

move byte mask to integer, 4-16

MOVQ Instruction, 4-37

N
new SIMD-integer instructions

extract word, 4-13
insert word, 4-14
move byte mask to integer, 4-16
packed average byte or word), 4-31
packed multiply high unsigned, 4-30
packed shuffle word, 4-18
packed signed integer word maximum, 4-30
packed sum of absolute differences, 4-30

Newton-Raphson iteration, 5-2

non-coherent requests, 6-13

non-interleaved unpack, 4-11

non-temporal stores, 6-40

NOPs, 2-84
To align instructions, 2-84
XCHG EAX,EAX

Special hardware support for, 2-84

numeric exceptions
flush to zero, 5-21

O
optimizing cache utilization

cache management, 6-41
examples, 6-15
non-temporal store instructions, 6-9
prefetch and load, 6-8
prefetch Instructions, 6-7
prefetching, 6-6
SFENCE instruction, 6-15, 6-16
streaming, non-temporal stores, 6-9

optimizing floating-point applications
copying, shuffling, 5-16
data arrangement, 5-4

data deswizzling, 5-13
data swizzling using intrinsics, 5-11
horizontal ADD, 5-17
planning considerations, 5-2
rules and suggestions, 5-1
scalar code, 5-3
vertical versus horizontal computation, 5-5

optimizing floating-point code, 2-55

P
pack instruction, 4-10

pack instructions, 4-8

packed average byte or word), 4-31

packed multiply high unsigned, 4-30

packed shuffle word, 4-18

packed signed integer word maximum, 4-30

packed sum of absolute differences, 4-30

parallelism, 3-10, E-7

parameter alignment, D-4

partial memory accesses, 4-35

PAVGB instruction, 4-31

PAVGW instruction, 4-31

Performance and Usage Models
Multithreading, 7-2
Performance and Usage Models, 7-2

Performance Library Suite, A-12
architecture, A-13
optimizations, A-14

PEXTRW instruction, 4-13

PGO. See profile-guided optimization

PINSRW instruction, 4-14

PMINSW instruction, 4-30

PMINUB instruction, 4-30

PMOVMSKB instruction, 4-16

PMULHUW instruction, 4-30

predictable memory access patterns, 6-7

prefetch and cacheability Instructions, 6-4

prefetch and load Instructions, 6-8
Index-4

Index
prefetch concatenation, 6-24, 6-25

prefetch instruction, 6-1

prefetch instruction considerations, 6-22
cache blocking techniques, 6-32
concatenation, 6-24
minimizing prefetches number, 6-26
no preloading or prefetch, E-6
prefetch scheduling distance, E-5
scheduling distance, 6-23
single-pass execution, 6-3, 6-37
spread prefetch with computatin

instructions, 6-30
strip-mining, 6-35

prefetch instructions, 6-7

prefetch scheduling distance, 6-23, E-5, E-7,
E-10

prefetch use
predictable memory access patterns, 6-7
time-consuming innermost loops, 6-7

prefetching, A-5

prefetching concept, 6-6

prefetchnta instruction, 6-34

profile-guided optimization, A-7

prolog sequences, 2-79

PSADBW instruction, 4-30

PSHUF instruction, 4-18

R
reciprocal instructions, 5-2

rounding control option, A-6

S
sampling

event-based, A-9

Self-modifying code, 2-46

SFENCE Instruction, 6-15, 6-16

signed unpack, 4-7

SIMD integer code, 4-2

SIMD-floating-point code, 5-1

simple memory copy, 6-43

simplified 3D geometry pipeline, 6-20

simplified clipping to an arbitrary signed range,
4-28

single-pass versus multi-pass execution, 6-37

SoA format, 3-28

software write-combining, 6-40

spread prefetch, 6-31

Stack Alignment
Example of dynamic, 2-43

Stack alignment, 2-42

stack alignment, 3-20

stack frame, D-2

stack frame optimization, D-9

static branch prediction algorithm, 2-18

static prediction, 2-17

static prediction algorithm, 2-17

streaming store, 6-43

streaming stores
coherent requests, 6-13
non-coherent requests, 6-13

strip mining, 3-30, 3-33

strip-mining, 6-35, 6-36

Structs
Aligning, 2-39

swizzling data. See data swizzling.

System Bus Optimization, 7-22

T
targeting a processor option, A-3

time-based sampling, A-8

time-consuming innermost loops, 6-7

TLB. See transaction lookaside buffer

transaction lookaside buffer, 6-44

transcendental functions, 2-69

transfer latency, E-7, E-9
Index-5

IA-32 Intel® Architecture Optimization
U
unpack instructions, 4-11

unsigned unpack, 4-6

using MMX code for copy or shuffling
functions, 5-16

V
vector class library, 3-15

vectorization, 3-10

vectorized code, 3-16

vectorizer switch options, A-5

vertical versus horizontal computation, 5-5

VTune analyzer, 3-8, A-1

VTune Performance Analyzer, 3-8

W
write-combining buffer, 6-40

write-combining memory, 6-40
Index-6

INTEL SALES OFFICES

ASIA PACIFIC
Australia
Intel Corp.
Level 2
448 St Kilda Road
Melbourne VIC
3004
Australia
Fax:613-9862 5599

China
Intel Corp.
Rm 709, Shaanxi
Zhongda Int’l Bldg
No.30 Nandajie Street
Xian AX710002
China
Fax:(86 29) 7203356

Intel Corp.
Rm 2710, Metropolian
Tower
68 Zourong Rd
Chongqing CQ
400015
China

Intel Corp.
C1, 15 Flr, Fujian
Oriental Hotel
No. 96 East Street
Fuzhou FJ
350001
China

Intel Corp.
Rm 5803 CITIC Plaza
233 Tianhe Rd
Guangzhou GD
510613
China

Intel Corp.
Rm 1003, Orient Plaza
No. 235 Huayuan Street
Nangang District
Harbin HL
150001
China

Intel Corp.
Rm 1751 World Trade
Center, No 2
Han Zhong Rd
Nanjing JS
210009
China

Intel Corp.
Hua Xin International
Tower
215 Qing Nian St.
ShenYang LN
110015
China

Intel Corp.
Suite 1128 CITIC Plaza
Jinan
150 Luo Yuan St.
Jinan SN
China

Intel Corp.
Suite 412, Holiday Inn
Crowne Plaza
31, Zong Fu Street
Chengdu SU
610041
China
Fax:86-28-6785965

Intel Corp.
Room 0724, White Rose
Hotel
No 750, MinZhu Road
WuChang District
Wuhan UB
430071
China

India
Intel Corp.
Paharpur Business
Centre
21 Nehru Place
New Delhi DH
110019
India

Intel Corp.
Hotel Rang Sharda, 6th
Floor
Bandra Reclamation
Mumbai MH
400050
India
Fax:91-22-6415578

Intel Corp.
DBS Corporate Club
31A Cathedral Garden
Road
Chennai TD
600034
India

Intel Corp.
DBS Corporate Club
2nd Floor, 8 A.A.C. Bose
Road
Calcutta WB
700017
India

Japan
Intel Corp.
Kokusai Bldg 5F, 3-1-1,
Marunouchi
Chiyoda-Ku, Tokyo
1000005
Japan

Intel Corp.
2-4-1 Terauchi
Toyonaka-Shi
Osaka
5600872
Japan

Malaysia
Intel Corp.
Lot 102 1/F Block A
Wisma Semantan
12 Jalan Gelenggang
Damansara Heights
Kuala Lumpur SL
50490
Malaysia

Thailand
Intel Corp.
87 M. Thai Tower, 9th Fl.
All Seasons Place,
Wireless Road
Lumpini, Patumwan
Bangkok
10330
Thailand

Viet Nam
Intel Corp.
Hanoi Tung Shing
Square, Ste #1106
2 Ngo Quyen St
Hoan Kiem District
Hanoi
Viet Nam

EUROPE & AFRICA
Belgium
Intel Corp.
Woluwelaan 158
Diegem
1831
Belgium

Czech Rep
Intel Corp.
Nahorni 14
Brno
61600
Czech Rep

Denmark
Intel Corp.
Soelodden 13
Maaloev
DK2760
Denmark

Germany
Intel Corp.
Sandstrasse 4
Aichner
86551
Germany

Intel Corp.
Dr Weyerstrasse 2
Juelich
52428
Germany

Intel Corp.
Buchenweg 4
Wildberg
72218
Germany

Intel Corp.
Kemnader Strasse 137
Bochum
44797
Germany

Intel Corp.
Klaus-Schaefer Strasse
16-18
Erfstadt NW
50374
Germany

Intel Corp.
Heldmanskamp 37
Lemgo NW
32657
Germany

Italy
Intel Corp Italia Spa
Milanofiori Palazzo E/4
Assago
Milan
20094
Italy
Fax:39-02-57501221

Netherland
Intel Corp.
Strausslaan 31
Heesch
5384CW
Netherland

Poland
Intel Poland
Developments, Inc
Jerozolimskie Business
Park
Jerozolimskie 146c
Warsaw
2305
Poland
Fax:+48-22-570 81 40

Portugal
Intel Corp.
PO Box 20
Alcabideche
2765
Portugal

Spain
Intel Corp.
Calle Rioja, 9
Bajo F Izquierda
Madrid
28042
Spain

South Africa
Intel SA Corporation
Bldg 14, South Wing,
2nd Floor
Uplands, The Woodlands
Western Services Road
Woodmead
2052
Sth Africa
Fax:+27 11 806 4549

Intel Corp.
19 Summit Place,
Halfway House
Cnr 5th and Harry
Galaun Streets
Midrad
1685
Sth Africa

United Kingdom
Intel Corp.
The Manse
Silver Lane
Needingworth CAMBS
PE274SL
UK

Intel Corp.
2 Cameron Close
Long Melford SUFFK
CO109TS
UK

Israel
Intel Corp.
MTM Industrial Center,
P.O.Box 498
Haifa
31000
Israel
Fax:972-4-8655444

LATIN AMERICA &
CANADA
Argentina
Intel Corp.
Dock IV - Bldg 3 - Floor 3
Olga Cossentini 240
Buenos Aires
C1107BVA
Argentina

Brazil
Intel Corp.
Rua Carlos Gomez
111/403
Porto Alegre
90480-003
Brazil

Intel Corp.
Av. Dr. Chucri Zaidan
940 - 10th Floor
San Paulo
04583-904
Brazil

Intel Corp.
Av. Rio Branco,
1 - Sala 1804
Rio de Janeiro
20090-003
Brazil

Columbia
Intel Corp.
Carrera 7 No. 71021
Torre B, Oficina 603
Santefe de Bogota
Columbia

Mexico
Intel Corp.
Av. Mexico No. 2798-9B,
S.H.
Guadalajara
44680
Mexico

Intel Corp.
Torre Esmeralda II,
7th Floor
Blvd. Manuel Avila
Comacho #36
Mexico Cith DF
11000
Mexico

Intel Corp.
Piso 19, Suite 4
Av. Batallon de San
Patricio No 111
Monterrey, Nuevo le
66269
Mexico

Canada
Intel Corp.
168 Bonis Ave, Suite 202
Scarborough
MIT3V6
Canada
Fax:416-335-7695

Intel Corp.
3901 Highway #7,
Suite 403
Vaughan
L4L 8L5
Canada
Fax:905-856-8868

Intel Corp.
999 CANADA PLACE,
Suite 404,#11
Vancouver BC
V6C 3E2
Canada
Fax:604-844-2813

Intel Corp.
2650 Queensview Drive,
Suite 250
Ottawa ON
K2B 8H6
Canada
Fax:613-820-5936

Intel Corp.
190 Attwell Drive,
Suite 500
Rexcdale ON
M9W 6H8
Canada
Fax:416-675-2438

Intel Corp.
171 St. Clair Ave. E,
Suite 6
Toronto ON
Canada

Intel Corp.
1033 Oak Meadow Road
Oakville ON
L6M 1J6
Canada

USA
California
Intel Corp.
551 Lundy Place
Milpitas CA
95035-6833
USA
Fax:408-451-8266

Intel Corp.
1551 N. Tustin Avenue,
Suite 800
Santa Ana CA
92705
USA
Fax:714-541-9157

Intel Corp.
Executive Center del Mar
12230 El Camino Real
Suite 140
San Diego CA
92130
USA
Fax:858-794-5805

Intel Corp.
1960 E. Grand Avenue,
Suite 150
El Segundo CA
90245
USA
Fax:310-640-7133

Intel Corp.
23120 Alicia Parkway,
Suite 215
Mission Viejo CA
92692
USA
Fax:949-586-9499

Intel Corp.
30851 Agoura Road
Suite 202
Agoura Hills CA
91301
USA
Fax:818-874-1166

Intel Corp.
28202 Cabot Road,
Suite #363 & #371
Laguna Niguel CA
92677
USA

Intel Corp.
657 S Cendros Avenue
Solana Beach CA
90075
USA

Intel Corp.
43769 Abeloe Terrace
Fremont CA
94539
USA

Intel Corp.
1721 Warburton, #6
Santa Clara CA
95050
USA

Colorado
Intel Corp.
600 S. Cherry Street,
Suite 700
Denver CO
80222
USA
Fax:303-322-8670

Connecticut
Intel Corp.
Lee Farm Corporate Pk
83 Wooster Heights
Road
Danbury CT
6810
USA
Fax:203-778-2168

Florida
Intel Corp.
7777 Glades Road
Suite 310B
Boca Raton FL
33434
USA
Fax:813-367-5452

Georgia
Intel Corp.
20 Technology Park,
Suite 150
Norcross GA
30092
USA
Fax:770-448-0875

Intel Corp.
Three Northwinds Center
2500 Northwinds
Parkway, 4th Floor
Alpharetta GA
30092
USA
Fax:770-663-6354

Idaho
Intel Corp.
910 W. Main Street, Suite
236
Boise ID
83702
USA
Fax:208-331-2295

Illinois
Intel Corp.
425 N. Martingale Road
Suite 1500
Schaumburg IL
60173
USA
Fax:847-605-9762

Intel Corp.
999 Plaza Drive
Suite 360
Schaumburg IL
60173
USA

Intel Corp.
551 Arlington Lane
South Elgin IL
60177
USA

Indiana
Intel Corp.
9465 Counselors Row,
Suite 200
Indianapolis IN
46240
USA
Fax:317-805-4939

Massachusetts
Intel Corp.
125 Nagog Park
Acton MA
01720
USA
Fax:978-266-3867

Intel Corp.
59 Composit Way
suite 202
Lowell MA
01851
USA

Intel Corp.
800 South Street,
Suite 100
Waltham MA
02154
USA

Maryland
Intel Corp.
131 National Business
Parkway, Suite 200
Annapolis Junction MD
20701
USA
Fax:301-206-3678

Michigan
Intel Corp.
32255 Northwestern
Hwy., Suite 212
Farmington Hills MI
48334
USA
Fax:248-851-8770

MInnesota
Intel Corp.
3600 W 80Th St
Suite 450
Bloomington MN
55431
USA
Fax:952-831-6497

North Carolina
Intel Corp.
2000 CentreGreen Way,
Suite 190
Cary NC
27513
USA
Fax:919-678-2818

New Hampshire
Intel Corp.
7 Suffolk Park
Nashua NH
03063
USA

New Jersey
Intel Corp.
90 Woodbridge Center
Dr, Suite. 240
Woodbridge NJ
07095
USA
Fax:732-602-0096

New York
Intel Corp.
628 Crosskeys Office Pk
Fairport NY
14450
USA
Fax:716-223-2561

Intel Corp.
888 Veterans Memorial
Highway
Suite 530
Hauppauge NY
11788
USA
Fax:516-234-5093

Ohio
Intel Corp.
3401 Park Center Drive
Suite 220
Dayton OH
45414
USA
Fax:937-890-8658

Intel Corp.
56 Milford Drive
Suite 205
Hudson OH
44236
USA
Fax:216-528-1026

Oregon
Intel Corp.
15254 NW Greenbrier
Parkway, Building B
Beaverton OR
97006
USA
Fax:503-645-8181

Pennsylvania
Intel Corp.
925 Harvest Drive
Suite 200
Blue Bell PA
19422
USA
Fax:215-641-0785

Intel Corp.
7500 Brooktree
Suite 213
Wexford PA
15090
USA
Fax:714-541-9157

Texas
Intel Corp.
5000 Quorum Drive,
Suite 750
Dallas TX
75240
USA
Fax:972-233-1325

Intel Corp.
20445 State Highway
249, Suite 300
Houston TX
77070
USA
Fax:281-376-2891

Intel Corp.
8911 Capital of Texas
Hwy, Suite 4230
Austin TX
78759
USA
Fax:512-338-9335

Intel Corp.
7739 La Verdura Drive
Dallas TX
75248
USA

Intel Corp.
77269 La Cabeza Drive
Dallas TX
75249
USA

Intel Corp.
3307 Northland Drive
Austin TX
78731
USA

Intel Corp.
15190 Prestonwood
Blvd. #925
Dallas TX
75248
USA
Intel Corp.

Washington
Intel Corp.
2800 156Th Ave. SE
Suite 105
Bellevue WA
98007
USA
Fax:425-746-4495

Intel Corp.
550 Kirkland Way
Suite 200
Kirkland WA
98033
USA

Wisconsin
Intel Corp.
405 Forest Street
Suites 109/112
Oconomowoc Wi
53066
USA

	IA-32 Intel® Architecture Optimization
	Disclaimer
	Contents
	Introduction
	Tuning Your Application
	About This Manual
	Related Documentation
	Notational Conventions

	1 IA-32 Intel® Architecture Processor Family Overview
	SIMD Technology
	Summary of SIMD Technologies
	MMX™ Technology
	Streaming SIMD Extensions
	Streaming SIMD Extensions 2

	Intel® NetBurst™ Microarchitecture
	Design Goals of Intel NetBurst Microarchitecture
	Overview of the Intel NetBurst Microarchitecture Pipeline
	The Front End
	The Out-of-order Core
	Retirement

	Front End Pipeline Detail
	Prefetching
	Decoder
	Execution Trace Cache
	Branch Prediction

	Execution Core Detail
	Instruction Latency and Throughput
	Execution Units and Issue Ports
	Caches
	Data Prefetch
	Loads and Stores
	Store Forwarding

	Intel® Pentium® M Processor Microarchitecture
	The Front End
	Data Prefetching
	Out-of-Order Core
	In-Order Retirement

	Hyper-Threading Technology
	Processor Resources and Hyper-Threading Technology
	Replicated Resources
	Partitioned Resources
	Shared Resources

	Microarchitecture Pipeline and Hyper-Threading Technology
	Front End Pipeline
	Execution Core
	Retirement

	2 General Optimization Guidelines
	Tuning to Achieve Optimum Performance
	Tuning to Prevent Known Coding Pitfalls
	General Practices and Coding Guidelines
	Use Available Performance Tools
	Optimize Performance Across Processor Generations
	Optimize Branch Predictability
	Optimize Memory Access
	Optimize Floating-point Performance
	Optimize Instruction Selection
	Optimize Instruction Scheduling
	Enable Vectorization

	Coding Rules, Suggestions and Tuning Hints
	Performance Tools
	Intel® C++ Compiler
	General Compiler Recommendations
	VTune™ Performance Analyzer

	Processor Perspectives
	CPUID Dispatch Strategy and Compatible Code Strategy

	Branch Prediction
	Eliminating Branches
	Spin-Wait and Idle Loops
	Static Prediction
	Inlining, Calls and Returns
	Branch Type Selection
	Loop Unrolling
	Compiler Support for Branch Prediction

	Memory Accesses
	Alignment
	Store Forwarding
	Store-to-Load-Forwarding Restriction on Size and Alignment
	Store-forwarding Restriction on Data Availability

	Data Layout Optimizations
	Stack Alignment
	Aliasing Cases
	Aliasing Cases in the Pentium. 4 and Intel® Xeon™ Processors
	Aliasing Cases in the Pentium M Processor

	Mixing Code and Data
	Self-modifying Code

	Write Combining
	Locality Enhancement
	Minimizing Bus Latency
	Non-Temporal Store Bus Traffic
	Prefetching
	Hardware Instruction Fetching
	Software and Hardware Cache Line Fetching

	Cacheability instructions
	Code Alignment

	Improving the Performance of Floating-point Applications
	Guidelines for Optimizing Floating-point Code
	Floating-point Modes and Exceptions
	Floating-point Exceptions
	Floating-point Modes

	Improving Parallelism and the Use of FXCH
	x87 vs. SIMD Floating-point Trade-offs
	Memory Operands
	Floating-Point Stalls
	x87 Floating-point Operations with Integer Operands
	x87 Floating-point Comparison Instructions
	Transcendental Functions

	Instruction Selection
	Complex Instructions
	Use of the lea Instruction
	Use of the inc and dec Instructions
	Use of the shift and rotate Instructions
	Integer and Floating-point Multiply
	Integer Divide
	Operand Sizes
	Address Calculations
	Clearing Registers
	Compares
	Floating Point/SIMD Operands
	Prolog Sequences
	Code Sequences that Operate on Memory Operands

	Instruction Scheduling
	Latencies and Resource Constraints
	Spill Scheduling
	Scheduling Rules for the Pentium 4 Processor Decoder
	Scheduling Rules for the Pentium M Processor Decoder

	Vectorization
	Miscellaneous
	NOPs

	Summary of Rules and Suggestions
	User/Source Coding Rules
	Assembly/Compiler Coding Rules
	Tuning Suggestions

	3 Coding for SIMD Architectures
	Checking for Processor Support of SIMD Technologies
	Checking for MMX Technology Support
	Checking for Streaming SIMD Extensions Support
	Checking for Streaming SIMD Extensions 2 Support

	Considerations for Code Conversion to SIMD Programming
	Identifying Hot Spots
	Determine If Code Benefits by Conversion to SIMD Execution

	Coding Techniques
	Coding Methodologies
	Assembly
	Intrinsics
	Classes
	Automatic Vectorization

	Stack and Data Alignment
	Alignment and Contiguity of Data Access Patterns
	Using Padding to Align Data
	Using Arrays to Make Data Contiguous

	Stack Alignment For 128-bit SIMD Technologies
	Data Alignment for MMX Technology
	Data Alignment for 128-bit data
	Compiler-Supported Alignment

	Improving Memory Utilization
	Data Structure Layout
	Strip Mining
	Loop Blocking

	Instruction Selection
	Tuning the Final Application

	4 Optimizing for SIMD Integer Applications
	General Rules on SIMD Integer Code
	Using SIMD Integer with x87 Floating-point
	Using the EMMS Instruction
	Guidelines for Using EMMS Instruction

	Data Alignment
	Data Movement Coding Techniques
	Unsigned Unpack
	Signed Unpack
	Interleaved Pack with Saturation
	Interleaved Pack without Saturation
	Non-Interleaved Unpack
	Extract Word
	Insert Word
	Move Byte Mask to Integer
	Packed Shuffle Word for 64-bit Registers
	Packed Shuffle Word for 128-bit Registers
	Unpacking/interleaving 64-bit Data in 128-bit Registers
	Data Movement
	Conversion Instructions

	Generating Constants
	Building Blocks
	Absolute Difference of Unsigned Numbers
	Absolute Difference of Signed Numbers
	Absolute Value
	Clipping to an Arbitrary Range [high, low]
	Highly Efficient Clipping
	Clipping to an Arbitrary Unsigned Range [high, low]

	Packed Max/Min of Signed Word and Unsigned Byte
	Signed Word
	Unsigned Byte

	Packed Multiply High Unsigned
	Packed Sum of Absolute Differences
	Packed Average (Byte/Word)
	Complex Multiply by a Constant
	Packed 32*32 Multiply
	Packed 64-bit Add/Subtract
	128-bit Shifts

	Memory Optimizations
	Partial Memory Accesses
	Increasing Bandwidth of Memory Fills and Video Fills
	Increasing Memory Bandwidth Using the MOVDQ Instruction
	Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page
	Increasing UC and WC Store Bandwidth by Using Aligned Stores

	Converting from 64-bit to 128-bit SIMD Integer

	5 Optimizing for SIMD Floating-point Applications
	General Rules for SIMD Floating-point Code
	Planning Considerations
	Detecting SIMD Floating-point Support
	Using SIMD Floating-point with x87 Floating-point
	Scalar Floating-point Code
	Data Alignment
	Data Arrangement
	Vertical versus Horizontal Computation
	Data Swizzling
	Data Deswizzling
	Using MMX Technology Code for Copy or Shuffling Functions
	Horizontal ADD

	Use of cvttps2pi/cvttss2si Instructions
	Flush-to-Zero Mode

	6 Optimizing Cache Usage
	General Prefetch Coding Guidelines
	Hardware Data Prefetch
	Prefetch and Cacheability Instructions
	Prefetch
	Software Data Prefetch
	The Prefetch Instructions – Pentium 4 Processor Implementation
	Prefetch and Load Instructions

	Cacheability Control
	The Non-temporal Store Instructions
	Fencing
	Streaming Non-temporal Stores
	Memory Type and Non-temporal Stores
	Write-Combining

	Streaming Store Usage Models
	Coherent Requests
	Non-coherent requests

	Streaming Store Instruction Descriptions
	The fence Instructions
	The sfence Instruction
	The lfence Instruction
	The mfence Instruction

	The clflush Instruction

	Memory Optimization Using Prefetch
	Software-controlled Prefetch
	Hardware Prefetch
	Example of Latency Hiding with S/W Prefetch Instruction
	Prefetching Usage Checklist
	Prefetch Scheduling Distance
	Prefetch Concatenation
	Minimize Number of Prefetches
	Mix Prefetch with Computation Instructions
	Prefetch and Cache Blocking Techniques
	Single-pass versus Multi-pass Execution

	Memory Optimization using Non-Temporal Stores
	Non-temporal Stores and Software Write-Combining
	Cache Management
	Video Encoder
	Video Decoder
	Conclusions from Video Encoder and Decoder Implementation
	Using Prefetch and Streaming-store for a Simple Memory Copy
	TLB Priming
	Optimizing the 8-byte Memory Copy

	7 Multiprocessor and Hyper-Threading Technology
	Performance and Usage Models
	Multithreading
	Multitasking Environment

	Programming Models and Multithreading
	Parallel Programming Models
	Domain Decomposition

	Functional Decomposition
	Tools for Creating Multithreaded Applications

	Optimization Guidelines
	Key Practices of Thread Synchronization
	Key Practices of System Bus Optimization
	Key Practices of Memory Optimization
	Key Practices of Front-end Optimization
	Key Practices of Execution Resource Optimization
	Generality and Performance Impact

	Thread Synchronization
	Synchronization for Short Periods
	Optimization with Spin-Locks
	Synchronization for Longer Periods
	Avoid Coding Pitfalls in Thread Synchronization

	Prevent False-Sharing of Data
	Placement of Shared Synchronization Variable

	System Bus Optimization
	Conserve Bus Command Bandwidth
	Avoid Excessive Software Prefetches
	Improve Effective Latency of Cache Misses
	Use Full Write Transactions to Achieve Higher Data Rate

	Memory Optimization
	Cache Blocking Technique
	Shared-Memory Optimization
	Minimize Sharing of Data between Physical Processors

	Eliminate 64-K-Aliased Data Accesses
	Preventing Excessive Evictions in First-Level Data Cache
	Per-thread Stack Offset
	Per-instance Stack Offset

	Front-end Optimization
	Avoid Excessive Loop Unrolling
	Optimization for Code Size

	Execution Resource Optimization
	Optimization Priorities
	Managing Heavily-Used Execution Resources

	A Application Performance Tools
	Intel® Compilers
	Code Optimization Options
	Targeting a Processor (-Gn)
	Automatic Processor Dispatch Support (-Qx[extensions] and -Qax[extensions])

	Vectorizer Switch Options
	Prefetching
	Loop Unrolling
	Multithreading with OpenMP

	Inline Expansion of Library Functions (-Oi, -Oi-)
	Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div, -Qpc, -Qlong_double)
	Rounding Control Option (-Qrcd)
	Interprocedural and Profile-Guided Optimizations
	Interprocedural Optimization (IPO)
	Profile-Guided Optimization (PGO)

	Intel® VTune™ Performance Analyzer
	Sampling
	Time-based Sampling
	Event-based Sampling

	Call Graph
	Counter Monitor
	Intel® Tuning Assistant

	Intel Performance Libraries
	Benefits Summary
	Libraries Architecture
	Optimizations with the Intel Performance Libraries

	Enhanced Debugger (EDB)
	Intel® Threading Tools
	Intel Thread Checker
	Thread Profiler

	Intel® Software College

	B Intel Pentium 4 Processor Performance Metrics
	Pentium 4 Processor-Specific Terminology
	Bogus, Non-bogus, Retire
	Bus Ratio
	Replay
	Assist
	Tagging

	Counting Clocks
	Non-Halted Clockticks
	Non-Sleep Clockticks
	Time Stamp Counter

	Microarchitecture Notes
	Trace Cache Events
	Bus and Memory Metrics
	Reads due to program loads
	Reads due to program writes (RFOs)
	Writebacks (dirty evictions)

	Usage Notes for Specific Metrics
	Usage Notes on Bus Activities

	Metrics Descriptions and Categories
	Performance Metrics and Tagging Mechanisms
	Tags for replay_event
	Tags for front_end_event
	Tags for execution_event

	Using Performance Metrics with Hyper-Threading Technology

	C IA-32 Instruction Latency and Throughput
	Overview
	Definitions
	Latency and Throughput
	Latency and Throughput with Register Operands
	Table Footnotes

	Latency and Throughput with Memory Operands

	D Stack Alignment
	Stack Frames
	Aligned esp-Based Stack Frames
	Aligned ebp-Based Stack Frames
	Stack Frame Optimizations

	Inlined Assembly and ebx

	E Mathematics of Prefetch Scheduling Distance
	Simplified Equation
	Mathematical Model for PSD
	No Preloading or Prefetch
	Compute Bound (Case:Tc >= Tl + Tb)
	Compute Bound (Case: Tl + Tb > Tc > Tb)
	Memory Throughput Bound (Case: Tb >= Tc)
	Example

	Index
	Intel Sales Offices

