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Introduction
The IA-32 Intel® Architecture Optimization Reference Manual 
describes how to optimize software to take advantage of the 
performance characteristics of the current generation of IA-32 Intel 
Architecture family of processors. The optimizations described in this 
manual apply to IA-32 processors based on the Intel® NetBurst™ 
microarchitecture, the Intel® Pentium® M processor family and IA-32 
processors that support Hyper-Threading Technology. 

The target audience for this manual includes software programmers and 
compiler writers. This manual assumes that the reader is familiar with 
the basics of the IA-32 architecture and has access to the three-volume 
set of manuals: Intel® Architecture Software Developer’s Manual: 
Volume 1, Basic Architecture; Volume 2, Instruction Set Reference; and 
Volume 3, System Programmer’s Guide.

When developing and optimizing software applications to achieve a 
high level of performance when running on IA-32 processors, a detailed 
understanding of IA-32 family of processors is often required. In many 
cases, knowledge of new IA-32 microarchitectures is also required.

This manual provides an overview of the Intel NetBurst 
microarchitecture and the Intel Pentium M processor microarchitecture. 
It contains design guidelines for high-performance software 
applications, coding rules, and techniques for many aspects of 
code-tuning. These rules are useful to programmers and compiler 
developers. 
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The design guidelines that are discussed in this manual for developing 
high-performance software apply to current as well as to future IA-32 
processors.The coding rules and code optimization techniques listed 
target  the Intel NetBurst microarchitecture and the Pentium M 
processor microarchitecture.

Tuning Your Application
Tuning an application for high performance on any IA-32 processor 
requires understanding and basic skills in:

• the IA-32 architecture

• C and Assembly language

• the hot-spot regions in your application that have significant impact 
on software performance

• the optimization capabilities of your compiler

• techniques to evaluate the application’s performance.

The Intel® VTune™ Performance Analyzer can help you analyze and 
locate hot-spot regions in your applications. On the Pentium 4, Intel® 
Xeon™ and Pentium M processors, this tool can monitor an application 
through a selection of performance monitoring events and analyze the 
performance event data that is gathered during code execution. 

This manual also describes information that can be gathered using the 
performance counters through Pentium 4 processor’s performance 
monitoring events.

For VTune Performance Analyzer order information, see the web page:
http://developer.intel.com
xxiv
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Introduction
About This Manual
In this document, the reference “Pentium 4 processor” refers to  
processors based on the Intel NetBurst microarchitecture. Currently this 
includes the Intel Pentium 4 processor and Intel Xeon processor. Where 
appropriate, differences between Pentium 4 processor and Intel Xeon 
processor are noted.

The manual consists of the following parts:

Introduction. Defines the purpose and outlines the contents of this 
manual.

Chapter 1: IA-32 Intel® Architecture Processor Family Overview. 
Describes the features relevant to software optimization of the current 
generation of IA-32 Intel Architecture processors, including the 
architectural extensions to the IA-32 architecture and an overview of the 
Intel NetBurst microarchitecture, Pentium M processor 
microarchitecture and Hyper-Threading Technology.

Chapter 2: General Optimization Guidelines. Describes general code 
development and optimization techniques that apply to all applications 
designed to take advantage of the common features of the Intel NetBurst 
microarchitecture and Pentium M processor microarchitecture.

Chapter 3: Coding for SIMD Architectures. Describes techniques 
and concepts for using the SIMD integer and SIMD floating-point 
instructions provided by the MMX™ technology, Streaming SIMD 
Extensions, and Streaming SIMD Extensions 2.

Chapter 4: Optimizing for SIMD Integer Applications. Provides 
optimization suggestions and common building blocks for applications 
that use the 64-bit and 128-bit SIMD integer instructions.

Chapter 5: Optimizing for SIMD Floating-point Applications. 
Provides optimization suggestions and common building blocks for 
applications that use the single-precision and double-precision SIMD 
floating-point instructions.
xxv
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Chapter 6—Optimizing Cache Usage. Describes how to use the 
prefetch instruction and cache control management instructions to 
optimize cache usage.

Chapter 7—Multiprocessor and Hyper-Threading Technology. 
Describes guidelines and techniques to optimize multithreaded 
applications to achieve optimal performance scaling when running on 
multiprocessor (MP) systems or MP systems using IA-32 processors 
with Hyper-Threading Technology.

Appendix A—Application Performance Tools. Introduces tools for 
analyzing and enhancing application performance without having to 
write assembly code.

Appendix B—Intel Pentium 4 Processor Performance Metrics. 
Provides information that can be gathered using Pentium 4 processor’s 
performance monitoring events. These performance metrics can help 
programmers determine how effectively an application is using the 
features of the Intel NetBurst microarchitecture.

Appendix C—IA-32 Instruction Latency and Throughput. Provides 
latency and throughput data for the IA-32 instructions. Instruction 
timing data specific to the Pentium 4 and Pentium M processors are 
provided.

Appendix D—Stack Alignment. Describes stack alignment 
conventions and techniques to optimize performance of accessing 
stack-based data.

Appendix E—The Mathematics of Prefetch Scheduling Distance. 
Discusses the optimum spacing to insert prefetch instructions and 
presents a mathematical model for determining the prefetch scheduling 
distance (PSD) for your application.
xxvi



Introduction
Related Documentation
For more information on the Intel architecture, specific techniques, and 
processor architecture terminology referenced in this manual, see the 
following documents:

• Intel® C++ Compiler User’s Guide

• Intel® Fortran Compiler User’s Guide

• VTune Performance Analyzer online help

• Intel® Architecture Software Developer’s Manual:

— Volume 1: Basic Architecture, doc. number 245470

— Volume 2: Instruction Set Reference Manual, doc. number 
245471

— Volume 3: System Programmer’s Guide, doc. number 245472

• Intel Processor Identification with the CPUID Instruction, doc. 
number 241618.

Also, refer to the following Application Notes:

• Adjusting Thread Stack Address To Improve Performance On Intel 
Xeon MP Hyper-Threading Technology Enabled Processors 

• Detecting Hyper-Threading Technology Enabled Processors 

• Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon 
Processor MP

In addition, refer to publications in the following web sites:

• http://developer.intel.com/technology/hyperthread 

• http://cedar.intel.com/cgi-bin/ids.dll/topic.jsp?catCode=CDN
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Notational Conventions
This manual uses the following conventions:

This type style Indicates an element of syntax, a reserved 
word, a keyword, a filename, instruction, 
computer output, or part of a program 
example. The text appears in lowercase 
unless uppercase is significant.

THIS TYPE STYLE Indicates a value, for example, TRUE, CONST1, 
or a variable, for example, A, B, or register 
names MMO through MM7.

l indicates lowercase letter L in examples. 1 
is the number 1 in examples. O is the 
uppercase O in examples. 0 is the number 0 in 
examples.

This type style Indicates a placeholder for an identifier, an 
expression, a string, a symbol, or a value. 
Substitute one of these items for the 
placeholder.

... (ellipses) Indicate that a few lines of the code are 
omitted.

This type style Indicates a hypertext link.
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IA-32 Intel® Architecture 
Processor Family Overview
This chapter gives an overview of the key features relevant to software 
optimization of the current generation of IA-32 processors, including 
Intel® Pentium® 4, Intel® Xeon™ processors, and Intel® Pentium® M 
processors. This overview provides the background for understanding 
the coding recommendations described in detail in later chapters.

The key features of the current generation of IA-32 processors that enable 
high performance are:

• SIMD instruction extensions including MMX™ technology, 
Streaming SIMD Extensions (SSE), and Streaming SIMD 
Extensions 2 (SSE2) 

• Microarchitectures that enable executing instructions with high 
throughput at high clock rates, a high speed cache hierarchy and the 
ability to fetch data with high speed system bus

• Intel® processors supporting Hyper-Threading (HT) Technology1

Intel Pentium 4 processors and Intel Xeon processors are based on 
Intel® NetBurst™ microarchitecture. The Intel Pentium M processor 
microarchitecture balances performance and low power consumption.

1. Hyper-Threading Technology requires a computer system with an Intel® Pentium® 4 
processor an Intel® Xeon™ processor supporting HT Technology and an HT Technology 
enabled chipset, BIOS and operating system. Performance will vary depending on the 
specific hardware and software you use. 
See http://www.intel.com/technology/hyperthread/index.htm for more information. See 
also “Detecting Support for Hyper-Threading Technology Enabled Processors” application 
note for how to identify the presence of HT Technology.
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SIMD Technology
One way to increase processor performance is to execute several 
computations in parallel. An good way to achieve this type of parallel 
execution is to use a single-instruction, multiple-data (SIMD) 
computation technique. 

SIMD computations (see Figure 1-1) were introduced in the IA-32 
architecture with MMX technology. MMX technology allows SIMD 
computations to be performed on packed byte, word, and doubleword 
integers. The integers are contained in a set of eight 64-bit registers 
called MMX registers (see Figure 1-2).

The Pentium III processor extended the SIMD computation model with 
the introduction of the Streaming SIMD Extensions (SSE). SSE allows 
SIMD computations to be performed on operands that contain four 
packed single-precision floating-point data elements. The operands can 
be in memory or in a set of eight 128-bit registers called the XMM 
registers (see Figure 1-2). SSE also extended SIMD computational 
capability by adding additional 64-bit MMX instructions.

Figure 1-1 shows a typical SIMD computation. Two sets of four packed 
data elements (X1, X2, X3, and X4, and Y1, Y2, Y3, and Y4) are 
operated on in parallel, with the same operation being performed on 
each corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 
and Y3, and X4 and Y4). The results of the four parallel computations 
are sorted as a set of four packed data elements.  
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The Pentium 4 processor further extended the SIMD computation model 
with the introduction of Streaming SIMD Extensions 2 (SSE2).  SSE2 
works with operands in either memory or in the XMM registers. The 
technology extends SIMD computations to process packed 
double-precision floating-point data elements and 128-bit packed 
integers. There are 144 instructions in SSE2 that operate on two packed 
double-precision floating-point data elements; or on 16 packed byte, 8 
packed word, 4 doubleword, and 2 quadword integers.

The full set of IA-32 SIMD technologies (MMX technology, SSE, and 
SSE2) give the programmer the ability to develop algorithms that 
combine operations on packed 64-bit and 128-bit integers and on single 
and double-precision floating-point operands.    

Figure 1-1 Typical SIMD Operations
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SIMD improves the performance of 3D graphics, speech recognition, 
image processing, scientific applications and applications that have the 
following characteristics:

• inherently parallel

• recurring memory access patterns

• localized recurring operations performed on the data

• data-independent control flow

SIMD floating-point instructions fully support the IEEE Standard 754 
for Binary Floating-Point Arithmetic. They are accessible from all 
IA-32 execution modes: protected mode, real address mode, and Virtual 
8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions in the 
IA-32 Intel® architecture. Existing software will continue to run 
correctly, without modification on IA-32 microprocessors that 
incorporate these technologies. Existing software will also run correctly 
in the presence of applications that incorporate SIMD technologies.

Figure 1-2 SIMD Instruction Register Usage
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SSE and SSE2 instructions also introduced cacheability and memory 
ordering instructions that can improve cache usage and application 
performance.

For more a more detailed introduction to SSE, SSE2 and MMX 
technologies, see also: 

IA-32 Intel Architecture Software Developer’s Manual, Vol. 1: Basic 
Architecture. Chapter 9: Programming with the Intel MMX 
Technology, Chapter 10: Programming with the Streaming SIMD 
Extensions (SSE), Chapter 11: Programming With the Streaming 
SIMD Extensions 2 (SSE2).

Summary of SIMD Technologies

These sections summarize the features of MMX technology, SSE, and 
SSE2.

MMX™ Technology

MMX Technology introduced:

• 64-bit MMX registers

• support for SIMD operations on packed byte, word, and doubleword 
integers

MMX instructions are useful for multimedia and communications 
software.

Streaming SIMD Extensions

SIMD extensions introduced:

• 128-bit XMM registers

• 128-bit data type with four packed single-precision floating-point 
operands

• data prefetch instructions
1-5
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• non-temporal store instructions and other cacheability and memory 
ordering instructions

• extra 64-bit SIMD integer support

SSE instructions are useful for 3D geometry, 3D rendering, speech 
recognition, and video encoding and decoding.

Streaming SIMD Extensions 2

SIMD extensions add the following:

• 128-bit data type with two packed double-precision floating-point 
operands

• 128-bit data types for SIMD integer operation on 16-byte, 8-word, 
4-doubleword, or 2-quadword integers

• support for SIMD arithmetic on 64-bit integer operands

• instructions for converting between new and existing data types

• extended support for data shuffling

• extended support for cacheability and memory ordering operations

SSE2 instructions are useful for 3D graphics, video decoding/encoding, 
and encryption.

Intel® NetBurst™ Microarchitecture
The Pentium 4 processor and the Intel Xeon processor implement the 
Intel NetBurst microarchitecture. This section describes the features of 
the Intel NetBurst microarchitecture and its operation on the Pentium 4 
and Intel Xeon processors. It provides the technical background 
required to understand optimization recommendations the coding rules 
discussed in the rest of this manual. For implementation details, 
including instruction latencies, see “IA-32 Instruction Latency and 
Throughput” in Appendix C. 
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Intel NetBurst microarchitecture is designed to achieve high 
performance for both integer and floating-point computations at high 
clock rates. It supports the following features:

• hyper-pipelined technology that enables high clock rates and 
frequency headroom up to 10 GHz

• a high-performance, quad-pumped bus interface to the Intel 
NetBurst microarchitecture system bus

• a rapid execution engine to reduce the latency of basic integer 
instructions

• out-of-order speculative execution to enable parallelism

• superscalar issue to enable parallelism

• hardware register renaming to avoid register name space limitations

• cache line sizes of 64 bytes

• hardware prefetch

Design Goals of Intel NetBurst Microarchitecture

The design goals of Intel NetBurst microarchitecture are: 

• to execute both legacy IA-32 applications and applications based on 
single-instruction, multiple-data (SIMD) technology at high 
throughput

• to operate at high clock rates and to scale to higher performance and 
clock rates in the future

Design advances of the Intel NetBurst microarchitecture include:

• A deeply pipelined design that allows high clock rates with different 
parts of the chip running at different clock rates, some faster and 
some slower than the nominally-quoted clock frequency of the 
processor.
1-7
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• A pipeline that optimizes for the common case of frequently 
executed instructions. This means that the most frequently-executed 
instructions in common circumstances (such as a cache hit) are 
decoded efficiently and executed with short latencies.

• Employment of techniques to hide stall penalties. Among these are 
parallel execution, buffering, and speculation. The 
microarchitecture executes instructions dynamically and 
out-of-order, so the time it takes to execute each individual 
instruction is not always deterministic.

Chapter 2 recommends optimizations to use and situations to avoid. The 
chapter also gives a sense of relative priority. It does not absolutely 
quantify expected benefits and penalties (this is not possible to do this 
with an architecture of this complexity). 

The following sections provide more information about key features of 
the Intel NetBurst microarchitecture.

Overview of the Intel NetBurst Microarchitecture Pipeline 

The pipeline of the Intel NetBurst microarchitecture contains the:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

The front end supplies instructions in program order to the out-of-order 
core. It fetches and decodes IA-32 instructions. The decoded IA-32 
instructions are translated into micro-operations (µops). The front end’s 
primary job is to feed a continuous stream of µops to the execution core 
in original program order.

The out-of-order core aggressively reorders µops so that µops whose 
inputs are ready (and have execution resources available) can execute as 
soon as possible. The core can issue multiple µops per cycle.
1-8
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The retirement section ensures that the results of execution are 
processed according to original program order and that the proper 
architectural states are updated.

Figure 1-3 illustrates a diagram of the major functional blocks 
associated with the Intel NetBurst microarchitecture pipeline. The 
following subsections provide an overview for each. 

Figure 1-3 The Intel NetBurst Microarchitecture
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The Front End

The front end of the Intel NetBurst microarchitecture consists of two 
parts:

• fetch/decode unit

• execution trace cache

It performs the following functions:

• prefetches IA-32 instructions that are likely to be executed

• fetches required instructions that have not been prefetched

• decodes instructions into µops

• generates microcode for complex instructions and special-purpose 
code

• delivers decoded instructions from the execution trace cache

• predicts branches using advanced algorithms

The front end is designed to address common problems in high-speed, 
pipelined microprocessors. Two problems that are sources of delays are:

• the time required to decode instructions fetched from the target

• wasted decode bandwidth due to branches or a branch target in the 
middle of a cache line

The execution trace cache addresses these problems by prefetching and 
storing decoded IA-32 instructions. Instructions are fetched and 
decoded by a translation engine. The translation engine then builds 
decoded instructions into µops sequences called traces. Traces are then 
stored in the execution trace cache. 

The execution trace cache stores µops in the path of program execution 
flow, where the results of branches in the code are integrated into the 
same cache line. This increases the instruction flow from the cache and 
makes better use of the overall cache storage space since the cache no 
longer stores instructions that are branched over and never executed. 

The trace cache can deliver up to 3 µops per clock to the core.
1-10
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The execution trace cache and the translation engine have cooperating 
branch prediction hardware. Branch targets are predicted based on their 
linear address using branch prediction logic and fetched as soon as 
possible. Branch targets are fetched from the execution trace cache if 
they are cached, otherwise they are fetched from the memory hierarchy. 
The translation engine’s branch prediction information is used to form 
traces along the most likely paths.

The Out-of-order Core

The core’s ability to execute instructions out of order is a key factor in 
enabling parallelism. This feature enables the processor to reorder 
instructions so that if one µop is delayed while waiting for data or a 
contended resource, other µops that appear later in the program order 
may proceed. This implies that when one portion of the pipeline 
experiences a delay, the delay may be covered by other operations 
executing in parallel or by the execution of µops queued up in a buffer. 
The delays described in this chapter must be understood in this context. 

The core is designed to facilitate parallel execution. It can dispatch up to 
six µops per cycle through the issue ports (Figure 1-4, page 1-18). Note 
that six µops per cycle exceeds the trace cache and retirement µop 
bandwidth. The higher bandwidth in the core allows for peak bursts of 
greater than three µops and to achieve higher issue rates by allowing 
greater flexibility in issuing µops to different execution ports.

Most core execution units can start executing a new µop every cycle, so 
several instructions can be in flight at one time in each pipeline. A 
number of arithmetic logical unit (ALU) instructions can start at two per 
cycle; many floating-point instructions start one every two cycles. 
Finally, µops can begin execution out of program order, as soon as their 
data inputs are ready and resources are available.
1-11
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Retirement

The retirement section receives the results of the executed µops from the 
execution core and processes the results so that the architectural state is 
updated according to the original program order. For semantically 
correct execution, the results of IA-32 instructions must be committed 
in original program order before they are retired. Exceptions may be 
raised as instructions are retired. For this reason, exceptions cannot 
occur speculatively. 

When a µop completes and writes its result to the destination, it is 
retired. Up to three µops may be retired per cycle. The reorder buffer 
(ROB) is the unit in the processor which buffers completed µops, 
updates the architectural state and manages the ordering of exceptions.

The retirement section also keeps track of branches and sends updated 
branch target information to the branch target buffer (BTB). This 
updates branch history. Figure 1-3 illustrates the paths that are most 
frequently executing inside the Intel NetBurst microarchitecture: an 
execution loop that interacts with multilevel cache hierarchy and the 
system bus.

The following sections describe in more detail the operation of the front 
end and the execution core. This information provides the background 
for using the optimization techniques and instruction latency data 
documented in this manual.

 Front End Pipeline Detail

The following information about the front end operation is be useful for 
tuning software with respect to prefetching, branch prediction, and 
execution trace cache operations.
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Prefetching

The Intel NetBurst microarchitecture supports three prefetching 
mechanisms:

• The first mechanism is a hardware instruction fetcher that 
automatically prefetches instructions. 

• The second is a hardware mechanism that automatically fetches data 
and instructions into the unified second-level cache. 

• The third mechanism fetches data only and includes two distinct 
components: (1) a hardware mechanism to fetch the adjacent cache 
line within an 128-byte sector that contains the data needed due to a 
cache line miss, this is also referred to as adjacent cache line 
prefetch (2) a software controlled mechanism that fetches data into 
the caches using the prefetch instructions. 

The hardware instruction fetcher reads instructions along the path 
predicted by the branch target buffer (BTB) into instruction streaming 
buffers. Data is read in 32-byte chunks starting at the target address. The 
second and third mechanisms are described later.

Decoder

The front end of the Intel NetBurst microarchitecture has a single 
decoder that decodes instructions at the maximum rate of one 
instruction per clock. Some complex instructions must enlist the help of 
the microcode ROM. The decoder operation is connected to the 
execution trace cache.

Execution Trace Cache

The execution trace cache (TC) is the primary instruction cache in the 
Intel NetBurst microarchitecture. The TC stores decoded IA-32 
instructions (µops).
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In the Pentium 4 processor implementation, TC can hold up to 12K 
µops and can deliver up to three µops per cycle. TC does not hold all of 
the µops that need to be executed in the execution core. In some 
situations, the execution core may need to execute a microcode flow 
instead of the µop traces that are stored in the trace cache.

The Pentium 4 processor is optimized so that most frequently-executed 
IA-32 instructions come from the trace cache while only a few 
instructions involve the microcode ROM. 

Branch Prediction

Branch prediction is important to the performance of a deeply pipelined 
processor. It enables the processor to begin executing instructions long 
before the branch outcome is certain. Branch delay is the penalty that is 
incurred in the absence of correct prediction. For Pentium 4 and Intel 
Xeon processors, the branch delay for a correctly predicted instruction 
can be as few as zero clock cycles. The branch delay for a mispredicted 
branch can be many cycles, usually equivalent to the pipeline depth. 

Branch prediction in the Intel NetBurst microarchitecture predicts all 
near branches (conditional calls, unconditional calls, returns and 
indirect branches). It does not predict far transfers (far calls, irets and 
software interrupts).

Mechanisms have been implemented to aid in predicting branches 
accurately and to reduce the cost of taken branches. These include:

• the ability to dynamically predict the direction and target of 
branches based on an instruction’s linear address, using the branch 
target buffer (BTB)

• if no dynamic prediction is available or if it is invalid, the ability to 
statically predict the outcome based on the offset of the target: a 
backward branch is predicted to be taken, a forward branch is 
predicted to be not taken

• the ability to predict return addresses using the 16-entry return 
address stack
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• the ability to build a trace of instructions across predicted taken 
branches to avoid branch penalties.

The Static Predictor. Once a branch instruction is decoded, the 
direction of the branch (forward or backward) is known. If there was no 
valid entry in the BTB for the branch, the static predictor makes a 
prediction based on the direction of the branch. The static prediction 
mechanism predicts backward conditional branches (those with 
negative displacement, such as loop-closing branches) as taken. 
Forward branches are predicted not taken.

To take advantage of the forward-not-taken and backward-taken static 
predictions, code should be arranged so that the likely target of the 
branch immediately follows forward branches (see also “Branch 
Prediction” in Chapter 2).

Branch Target Buffer. Once branch history is available, the Pentium 4 
processor can predict the branch outcome even before the branch 
instruction is decoded. The processor uses a branch history table and a 
branch target buffer (collectively called the BTB) to predict the 
direction and target of branches based on an instruction’s linear address. 
Once the branch is retired, the BTB is updated with the target address.

Return Stack. Returns are always taken; but since a procedure may be 
invoked from several call sites, a single predicted target does not suffice. 
The Pentium 4 processor has a Return Stack that can predict return 
addresses for a series of procedure calls. This increases the benefit of 
unrolling loops containing function calls. It also mitigates the need to 
put certain procedures inline since the return penalty portion of the 
procedure call overhead is reduced.

Even if the direction and target address of the branch are correctly 
predicted, a taken branch may reduce available parallelism in a typical 
processor (since the decode bandwidth is wasted for instructions which 
immediately follow the branch and precede the target, if the branch does 
not end the line and target does not begin the line). The branch predictor 
allows a branch and its target to coexist in a single trace cache line, 
maximizing instruction delivery from the front end.
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Execution Core Detail

The execution core is designed to optimize overall performance by 
handling common cases most efficiently. The hardware is designed to 
execute frequent operations in a common context as fast as possible, at 
the expense of infrequent operations using rare contexts. 

Some parts of the core may speculate that a common condition holds to 
allow faster execution. If it does not, the machine may stall. An example 
of this pertains to store-to-load forwarding (see “Store Forwarding” in 
this chapter). If a load is predicted to be dependent on a store, it gets its 
data from that store and tentatively proceeds. If the load turned out not 
to depend on the store, the load is delayed until the real data has been 
loaded from memory, then it proceeds.

Instruction Latency and Throughput

The superscalar out-of-order core contains hardware resources that can 
execute multiple µops in parallel. The core’s ability to make use of 
available parallelism of execution units can enhanced by software’s 
ability to:

• select IA-32 instructions that can be decoded in less than 4 µops 
and/or have short latencies

• order IA-32 instructions to preserve available parallelism by 
minimizing long dependence chains and covering long instruction 
latencies

• order instructions so that their operands are ready and their 
corresponding issue ports and execution units are free when they 
reach the scheduler

This subsection describes port restrictions, result latencies, and issue 
latencies (also referred to as throughput). These concepts form the basis 
to assist software for ordering instructions to increase parallelism. The 
order that µops are presented to the core of the processor is further 
affected by the machine’s scheduling resources. 
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It is the execution core that reacts to an ever-changing machine state, 
reordering µops for faster execution or delaying them because of 
dependence and resource constraints. The ordering of instructions in 
software is more of a suggestion to the hardware.

“IA-32 Instruction Latency and Throughput” in Appendix C, lists the 
IA-32 instructions with their latency, their issue throughput, and 
associated execution units (where relevant). Some execution units are 
not pipelined (meaning that µops cannot be dispatched in consecutive 
cycles and the throughput is less than one per cycle). The number of 
µops associated with each instruction provides a basis for selecting 
instructions to generate. All µops executed out of the microcode ROM 
involve extra overhead. 

Execution Units and Issue Ports

At each cycle, the core may dispatch µops to one or more of four issue 
ports. At the micro-architecture level, store operations are further 
divided into two parts: store data and store address operations. The four 
ports through which µops are dispatched to execution units and to load 
and store operations are shown in Figure 1-4. Some ports can dispatch 
two µops per clock. Those execution units are marked Double Speed.

Port 0. In the first half of the cycle, port 0 can dispatch either one 
floating-point move µop (a floating-point stack move, floating-point 
exchange or floating-point store data), or one arithmetic logical unit 
(ALU) µop (arithmetic, logic or store data). In the second half of the 
cycle, it can dispatch one similar ALU µop.

Port 1. In the first half of the cycle, port 1 can dispatch either one 
floating-point execution (all floating-point operations except moves, all 
SIMD operations) µop or one normal-speed integer (multiply, shift and 
rotate) µop or one ALU (arithmetic, logic or branch) µop. In the second 
half of the cycle, it can dispatch one similar ALU µop.

Port 2. This port supports the dispatch of one load operation per cycle.

Port 3. This port supports the dispatch of one store address operation 
per cycle.
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The total issue bandwidth can range from zero to six µops per cycle. 
Each pipeline contains several execution units. The µops are dispatched 
to the pipeline that corresponds to the correct type of operation. For 
example, an integer arithmetic logic unit and the floating-point 
execution units (adder, multiplier, and divider) can share a pipeline.  

Caches

The Intel NetBurst microarchitecture supports up to three levels of 
on-chip cache. Two levels of on-chip cache are actually implemented in 
the Pentium 4 processor. 

Figure 1-4 Execution Units and Ports in the Out-Of-Order Core
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The first level cache (nearest to the execution core) contains separate 
caches for instructions and data. These include the first-level data cache 
and the trace cache (an advanced first-level instruction cache). All other 
caches are shared between instructions and data. 

Levels in the cache hierarchy are not inclusive. The fact that a line is in 
level i does not imply that it is also in level i+1. All caches use a 
pseudo-LRU (least recently used) replacement algorithm. 

Table 1-1 provides parameters for all cache levels. 

1 Each read due to a cache miss fetches a sector, consisting of two adjacent cache lines; write operation is 64 bytes only. 
2 Pentium 4 and Intel Xeon processors with CPUID model encoding value of 2 have a second level cache of 512 KB.

On processors without a third level cache, the second-level cache miss 
initiates a transaction across the system bus interface to the memory 
sub-system. On processors with a third level cache, the third-level cache 
miss initiates a transaction across the system bus. A bus write 
transaction writes 64 bytes to cacheable memory, or separate 8-byte 
chunks if the destination is not cacheable. A bus read transaction from 
cacheable memory fetches two cache lines of data. 

The system bus interface supports using a scalable bus clock and 
achieves an effective speed that quadruples the speed of the scalable bus 
clock. It takes on the order of 12 processor cycles to get to the bus and 
back within the processor, and 6-12 bus cycles to access memory if 
there is no bus congestion. Each bus cycle equals several processor 

Table 1-1 Pentium 4 and Intel Xeon Processor Cache Parameters

Level Capacity

Associa-
tivity 
(ways)

Line Size 
(bytes)

Access Latency, 
Integer/floating-p
oint (clocks)

Write Update 
Policy

First 8 KB 4 64 2/9 write through

TC 12K µops 8 N/A N/A N/A

Second 256 KB or 
512 KB2

8 641 7/7 write back

Third 0, 512 KB, 
or 1 MB

8 641 14/14 write back
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cycles. The ratio of processor clock speed to the scalable bus clock 
speed is referred to as bus ratio. For example, one bus cycle for a 100 
MHz bus is equal to 15 processor cycles on a 1.50 GHz processor. Since 
the speed of the bus is implementation-dependent, consult the 
specifications of a given system for further details.

Data Prefetch

The Pentium 4 processor has two mechanisms for prefetching data: a 
software controlled prefetch and an automatic hardware prefetch.

Software controlled prefetch is enabled using the four prefetch 
instructions (PREFETCHh) introduced with SSE. The 
software-controlled prefetch is not intended for prefetching code. Using 
it can incur significant penalties on a multiprocessor system if code is 
shared.

Software controlled data prefetch can provide benefits in selected 
situations. These situations include:

• when the pattern of memory access operations in software allows 
the programmer to hide memory latency

• when a reasonable choice can be made about how many cache lines 
to fetch ahead of the line being execute

• when an choice can be made about the type of prefetch to use

SSE prefetch instructions have different behaviors, depending on cache 
levels updated and the processor implementation. For instance, a 
processor may implement the non-temporal prefetch by returning data 
to the cache level closest to the processor core. This approach has the 
following effect:

• minimizes disturbance of temporal data in other cache levels

• avoids the need to access off-chip caches, which can increase the 
realized bandwidth compared to a normal load-miss, which returns 
data to all cache levels
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Situations that are less likely to benefit from software controlled data 
prefetch are:

• for cases that are already bandwidth bound, prefetching tends to 
increase bandwidth demands

• prefetching far ahead can cause eviction of cached data from the 
caches prior to the data being used in execution

• not prefetching far enough can reduce the ability to overlap memory 
and execution latencies

Software prefetches consume resources in the processor and the use of 
too many prefetches can limit their effectiveness. Examples of this 
include prefetching data in a loop for a reference outside the loop and 
prefetching in a basic block that is frequently executed, but which 
seldom precedes the reference for which the prefetch is targeted.

See also: Chapter 6, “Optimizing Cache Usage”.

Automatic hardware prefetch is a feature in the Pentium 4 processor. 
It brings cache lines into the unified second-level cache based on prior 
reference patterns. See also: Chapter 6, “Optimizing Cache Usage”.

Pros and Cons of Software and Hardware Prefetching. Software 
prefetching has the following characteristics:

• handles irregular access patterns, which would not trigger the 
hardware prefetcher

• handles prefetching of short arrays and avoids hardware prefetching 
start-up delay before initiating the fetches

• must be added to new code; so it does not benefit existing 
applications

Hardware prefetching for Pentium 4 processor has the following 
characteristics:

• works with existing applications

• does not require extensive study of prefetch instructions

• requires regular access patterns
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• avoids instruction and issue port bandwidth overhead

• has a start-up penalty before the hardware prefetcher triggers and 
begins initiating fetches

The hardware prefetcher can handle multiple streams in either the 
forward or backward directions. The start-up delay and fetch-ahead has 
a larger effect for short arrays when hardware prefetching generates a 
request for data beyond the end of an array (not actually utilized). The 
hardware penalty diminishes if it is amortized over longer arrays. 

Loads and Stores

The Pentium 4 processor employs the following techniques to speed up 
the execution of memory operations:

• speculative execution of loads

• reordering of loads with respect to loads and stores

• multiple outstanding misses

• buffering of writes

• forwarding of data from stores to dependent loads

Performance may be enhanced by not exceeding the memory issue 
bandwidth and buffer resources provided by the processor. Up to one 
load and one store may be issued for each cycle from a memory port 
reservation station. In order to be dispatched to a reservation station, 
there must be a buffer entry available for each memory operation. There 
are 48 load buffers and 24 store buffers. These buffers hold the µop and 
address information until the operation is completed, retired, and 
deallocated.

The Pentium 4 processor is designed to enable the execution of memory 
operations out of order with respect to other instructions and with 
respect to each other. Loads can be carried out speculatively, that is, 
before all preceding branches are resolved. However, speculative loads 
cannot cause page faults.
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Reordering loads with respect to each other can prevent a load miss 
from stalling later loads. Reordering loads with respect to other loads 
and stores to different addresses can enable more parallelism, allowing 
the machine to execute operations as soon as their inputs are ready. 
Writes to memory are always carried out in program order to maintain 
program correctness.

A cache miss for a load does not prevent other loads from issuing and 
completing. The Pentium 4 processor supports up to four outstanding 
load misses that can be serviced either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to 
continue executing instructions without having to wait until a write to 
memory and/or cache is complete. Writes are generally not on the 
critical path for dependence chains, so it is often beneficial to delay 
writes for more efficient use of memory-access bus cycles.

Store Forwarding

Loads can be moved before stores that occurred earlier in the program if 
they are not predicted to load from the same linear address. If they do 
read from the same linear address, they have to wait for the store data to 
become available. However, with store forwarding, they do not have to 
wait for the store to write to the memory hierarchy and retire. The data 
from the store can be forwarded directly to the load, as long as the 
following conditions are met:

• Sequence: the data to be forwarded to the load has been generated 
by a programmatically-earlier store which has already executed

• Size: the bytes loaded must be a subset of (including a proper 
subset, that is, the same) bytes stored

• Alignment: the store cannot wrap around a cache line boundary, and 
the linear address of the load must be the same as that of the store
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Intel® Pentium® M Processor Microarchitecture
Like the Intel NetBurst microarchitecture, the pipeline of the Intel 
Pentium M processor microarchitecture contains three sections:

• in-order issue front end

• out-of-order superscalar execution core

• in-order retirement unit

Intel Pentium M processor microarchitecture supports a high-speed 
system bus with 64-byte line size. Most coding recommendations that 
apply to the Intel NetBurst microarchitecture also apply to the Intel 
Pentium M processor.

The Intel Pentium M processor microarchitecture is designed for lower 
power consumption. There are other specific areas of the Pentium M 
processor microarchitecture that differ from the Intel NetBurst 
microarchitecture. They are described next. A block diagram of the Intel 
Pentium M processor is shown in Figure 1-5.
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Figure 1-5 The Intel Pentium M Processor Microarchitecture
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The Front End

The Intel Pentium M processor uses a pipeline depth that enables high 
performance and low power consumption. It’s shorter than that of the 
Intel NetBurst microarchitecture.

The Intel Pentium M processor front end consists of two parts:

• fetch/decode unit

• instruction cache

The fetch and decode unit includes a hardware instruction prefetcher 
and three decoders that enable parallelism. It also provides a 32KB 
instruction cache that stores un-decoded binary instructions.

The instruction prefetcher fetches instructions in a linear fashion from 
memory if the target instructions are not already in the instruction cache. 
The prefetcher is designed to fetch efficiently from an aligned 16-byte 
block. If the modulo 16 remainder of a branch target address is 14, only 
two useful instruction bytes are fetched in the first cycle. The rest of the 
instruction bytes are fetched in subsequent cycles.

The three decoders decode IA-32 instructions and break them down into 
micro-ops (µops). In each clock cycle, the first decoder is capable of 
decoding an instruction with four or fewer µops. The remaining two 
decoders each decode a one µop instruction in each clock cycle. 

The front end can issue multiple µops per cycle, in original program 
order, to the out-of-order core.

The Intel Pentium M processor incorporates sophisticated branch 
prediction hardware to support the out-of-order core. The branch 
prediction hardware includes dynamic prediction, and branch target 
buffers. 

The Intel Pentium M processor has enhanced dynamic branch prediction 
hardware. Branch target buffers (BTB) predict the direction and target 
of branches based on an instruction’s address.
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The Pentium M Processor includes two techniques to reduce the 
execution time of certain operations:

• ESP Folding. This eliminates the ESP manipulation 
micro-operations in stack-related instructions such as PUSH, POP, 
CALL and RET. It increases decode rename and retirement 
throughput. ESP folding also increases execution bandwidth by 
eliminating µops which would have required execution resources.

• Micro-ops (µops) fusion. Some of the most frequent pairs of µops 
derived from the same instruction can be fused into a single µops. 
The following categories of fused µops have been implemented in 
the Pentium M processor: 

— “Store address” and “store data” micro-ops are fused into a 
single “Store” micro-op. This holds for all types of store 
operations, including integer, floating-point, MMX technology, 
and Streaming SIMD Extensions (SSE and SSE2) operations. 

— A load micro-op in most cases can be fused with a successive 
execution micro-op.This holds for integer, floating-point and 
MMX technology loads and for most kinds of successive 
execution operations. Note that SSE Loads can not be fused.

Data Prefetching

The Intel Pentium M processor supports three prefetching mechanisms:

• The first mechanism is a hardware instruction fetcher and is 
described in the previous section. 

• The second mechanism automatically fetches data into the 
second-level cache. 

• The third mechanism is a software-controlled mechanism that 
fetches data into the caches using the prefetch instructions. 

Data is fetched 64 bytes at a time; the instruction and data translation 
lookaside buffers support 128 entries. See Table 1-2 for processor cache 
parameters.
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Out-of-Order Core

The processor core dynamically executes µops independent of program 
order. The core is designed to facilitate parallel execution by employing 
many buffers, issue ports, and parallel execution units. 

The out-of-order core buffers µops in a Reservation Station (RS) until 
their operands are ready and resources are available. Each cycle, the 
core may dispatch up to five µops through the issue ports.

In-Order Retirement

The retirement unit in the Pentium M processor buffers completed µops 
is the reorder buffer (ROB). The ROB updates the architectural state in 
order. Up to three µops may be retired per cycle.

Hyper-Threading Technology
Intel Hyper-Threading (HT) Technology is supported in the Intel Xeon 
processor family and Intel Pentium 4 processor with Hyper-Threading 
Technology. The technology enables software to take advantage of 
task-level, or thread-level parallelism by providing multiple logical 
processors within a physical processor package. In its first 
implementation in Intel Xeon processor, Hyper-Threading Technology 
makes a single physical processor appear as two logical processors.

Table 1-2 The Pentium M Processor Cache Parameters

Level Capacity
Associativity 
(ways)

Line 
Size 
(bytes)

Access 
Latency  
(clocks)

Write Update 
Policy

First 32 KB 8 64 3 Writeback

Instruction 32 KB 8 N/A N/A N/A

Second  1MB 8 64 9 Writeback
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The two logical processors each have a complete set of architectural 
registers while sharing one single physical processor’s resources. By 
maintaining the architecture state of two processors, an HT Technology 
capable processor looks like two processors to software, including 
operating system and application code.

By sharing resources needed for peak demands between two logical 
processors, HT Technology is well suited for multiprocessor systems to 
provide an additional performance boost in throughput when compared 
to traditional MP systems. 

Figure 1-6 shows a typical bus-based symmetric multiprocessor (SMP) 
based on processors with HT Technology. Each logical processor can 
execute a software thread, allowing a maximum of two software threads 
to execute simultaneously on one physical processor. The two software 
threads execute simultaneously, meaning that in the same clock cycle an 
“add” operation from logical processor 0 and another “add” operation 
and load from logical processor 1 can be executed simultaneously by the 
execution engine.

In the first implementation of HT Technology, the physical execution 
resources are shared and the architecture state is duplicated for each 
logical processor. This minimizes the die area cost of implementing HT 
Technology while still achieving performance gains for multithreaded 
applications or multitasking workloads. 

   
1-29



IA-32 Intel® Architecture Optimization
The performance potential due to HT Technology is due to:

• the fact that operating systems and user programs can schedule 
processes or threads to execute simultaneously on the logical 
processors in each physical processor

• the ability to use on-chip execution resources at a higher level than 
when only a single thread is consuming the execution resources; 
higher level of resource utilization can lead to higher system 
throughput 

Processor Resources and Hyper-Threading Technology

The majority of microarchitecture resources in a physical processor are 
shared between the logical processors. Only a few small data structures 
were replicated for each logical processor. This section describes how 
resources are shared, partitioned or replicated. 

Figure 1-6 Hyper-Threading Technology on an SMP
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Replicated Resources 

The architectural state is replicated for each logical processor. The 
architecture state consists of registers that are used by the operating 
system and application code to control program behavior and store data 
for computations. This state includes the eight general-purpose 
registers, the control registers, machine state registers, debug registers, 
and others. There are a few exceptions, most notably the memory type 
range registers (MTRRs) and the performance monitoring resources. 
For a complete list of the architecture state and exceptions, see the IA-32 
Intel Architecture System Programming Guide.

Other resources such as instruction pointers and register renaming tables 
were replicated to simultaneously track execution and state changes of 
the two logical processors. The return stack predictor is replicated to 
improve branch prediction of return instructions.

In addition, a few buffers (for example, the 2-entry instruction 
streaming buffers) were replicated to reduce complexity. 

Partitioned Resources

Several buffers are shared by limiting the use of each logical processor 
to half the entries. These are referred to as partitioned resources. 
Reasons for this partitioning include:

• operational fairness

• permitting the ability to allow operations from one logical processor 
to bypass operations of the other logical processor that may have 
stalled

For example: a cache miss, a branch misprediction, or instruction 
dependencies may prevent a logical processor from making forward 
progress for some number of cycles. The partitioning prevents the 
stalled logical processor from blocking forward progress. 
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In general, the buffers for staging instructions between major pipe 
stages are partitioned. These buffers include µop queues after the 
execution trace cache, the queues after the register rename stage, the 
reorder buffer which stages instructions for retirement, and the load and 
store buffers.

In the case of  load and store buffers, partitioning also provided an easier 
implementation to maintain memory ordering for each logical processor 
and detect memory ordering violations. 

Shared Resources

Most resources in a physical processor are fully shared to improve the 
dynamic utilization of the resource, including caches and all the 
execution units. Some shared resources which are linearly addressed, 
like the DTLB, include a logical processor ID bit to distinguish whether 
the entry belongs to one logical processor or the other. 

The other resources are fully shared.

Microarchitecture Pipeline and Hyper-Threading Technology

This section describes the HT Technology microarchitecture and how 
instructions from the two logical processors are handled between the 
front end and the back end of the pipeline.

Although instructions originating from two programs or two threads 
execute simultaneously and not necessarily in program order in the 
execution core and memory hierarchy, the front end and back end 
contain several selection points to select between instructions from the 
two logical processors. All selection points alternate between the two 
logical processors unless one logical processor cannot make use of a 
pipeline stage. In this case, the other logical processor has full use of 
every cycle of the pipeline stage. Reasons why a logical processor may 
not use a pipeline stage include cache misses, branch mispredictions, 
and instruction dependencies.
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 Front End Pipeline 

The execution trace cache is shared between two logical processors. 
Execution trace cache access is arbitrated by the two logical processors 
every clock. If a cache line is fetched for one logical processor in one 
clock cycle, the next clock cycle a line would be fetched for the other 
logical processor provided that both logical processors are requesting 
access to the trace cache. 

If one logical processor is stalled or is unable to use the execution trace 
cache, the other logical processor can use the full bandwidth of the trace 
cache until the initial logical processor’s instruction fetches return from 
the L2 cache. 

After fetching the instructions and building traces of µops, the µops are 
placed in a queue. This queue decouples the execution trace cache from 
the register rename pipeline stage. As described earlier, if both logical 
processors are active, the queue is partitioned so that both logical 
processors can make independent forward progress. 

Execution Core

The core can dispatch up to six µops per cycle, provided the µops are 
ready to execute. Once the µops are placed in the queues waiting for 
execution, there is no distinction between instructions from the two 
logical processors. The execution core and memory hierarchy is also 
oblivious to which instructions belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The 
re-order buffer decouples the execution stage from the retirement stage. 
The re-order buffer is partitioned such that each uses half the entries.

Retirement

The retirement logic tracks when instructions from the two logical 
processors are ready to be retired. It retires the instruction in program 
order for each logical processor by alternating between the two logical 
1-33



IA-32 Intel® Architecture Optimization
processors. If one logical processor is not ready to retire any 
instructions, then all retirement bandwidth is dedicated to the other 
logical processor.

Once stores have retired, the processor needs to write the store data into 
the level-one data cache. Selection logic alternates between the two 
logical processors to commit store data to the cache.
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2
General Optimization 
Guidelines
This chapter discusses general optimization techniques that can improve 
the performance of applications running on the Intel Pentium 4, Intel 
Xeon and Pentium M processors. These techniques take advantage of 
the features of the current generation of IA-32 processor family 
described in Chapter 1.

This chapter explains the optimization techniques both for those who 
use the Intel® C++ or Fortran Compiler and for those who use other 
compilers. The Intel® compiler, which generates code specifically tuned 
for IA-32 processor family, provides the most of the optimization. For 
those not using the Intel C++ or Fortran Compiler, the assembly code 
tuning optimizations may be useful. The explanations are supported by 
coding examples.

Tuning to Achieve Optimum Performance
The most important factors in achieving optimum processor 
performance are:

• good branch prediction

• avoiding memory access stalls

• good floating-point performance

• instruction selection, including use of SIMD instructions

• instruction scheduling (to maximize trace cache bandwidth)

• vectorization
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The following sections describe practices, tools, coding rules and 
recommendations associated with these factors that will aid in 
optimizing the performance on IA-32 processors.

Tuning to Prevent Known Coding Pitfalls
To produce program code that takes advantage of the Intel NetBurst 
microarchitecture and the Pentium M processor microarchitecture, you 
must avoid the coding pitfalls that limit the performance of the target 
processor family. This section lists several known pitfalls that can limit 
performance of Pentium 4 and Intel Xeon processor implementations. 
Some of these pitfalls, to a lesser degree, also negatively impact 
Pentium M processor performance (store-to-load-forwarding 
restrictions, cache-line splits).

Table 2-1 lists coding pitfalls that cause performance degradation in 
some Pentium 4 and Intel Xeon processor implementations. For every 
issue, Table 2-1 references a section in this document. The section 
describes in detail the causes of the penalty and presents a 
recommended solution. Note that “aligned” here means that the address 
of the load is aligned with respect to the address of the store.  

Table 2-1 Coding Pitfalls Affecting Performance

Factors Affecting 
Performance Symptom

Example 
(if applicable) Section Reference

Small, unaligned load 
after large store

Store-forwarding 
blocked

Example 2-12 Store Forwarding, 
Store-to-Load-Forwar
ding Restriction on 
Size and Alignment

Large load after small 
store;

Load dword after store 
dword, store byte;

Load dword, AND with 
0xff after store byte

Store-forwarding 
blocked

Example 2-13, 
Example 2-14

Store Forwarding, 
Store-to-Load-Forwar
ding Restriction on 
Size and Alignment

continued
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*   Streaming SIMD Extensions (SSE)

** Streaming SIMD Extensions 2 (SSE2)

General Practices and Coding Guidelines
This section discusses guidelines derived from the performance factors 
listed in the “Tuning to Achieve Optimum Performance” section. It also 
highlights practices that use performance tools.

The majority of these guidelines benefit processors based on the Intel 
NetBurst microarchitecture and the Pentium M processor 
microarchitecture. Some guidelines benefit one microarchitecture more 
than the other. As a whole, these coding rules enable software to be 
optimized for the common performance features of the Intel NetBurst 
microarchitecture and the Pentium M processor microarchitecture.

The coding practices recommended under each heading and the bullets 
under each heading are listed in order of importance.

Cache line splits Access across 
cache line 
boundary

Example 2-11 Align data on natural 
operand size address 
boundaries. If the 
data will be accesses 
with vector instruction 
loads and stores, 
align the data on 16 
byte boundaries.

Denormal inputs and 
outputs

Slows x87, SSE*, 
SSE2** floating-

point operations

Floating-point 
Exceptions

Cycling more than 2 
values of Floating-point 
Control Word

fldcw not 
optimized

Floating-point Modes

Table 2-1 Coding Pitfalls Affecting Performance (continued)

Factors Affecting 
Performance Symptom

Example 
(if applicable) Section Reference
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Use Available Performance Tools

• Current-generation compiler, such as the Intel C++ Compiler:

— Set this compiler to produce code for the target processor 
implementation

— Use the compiler switches for optimization and/or 
profile-guided optimization. These features are summarized in 
the “Intel® C++ Compiler” section. For more detail, see the 
Intel C++ Compiler User’s Guide.

• Current-generation performance monitoring tools, such as VTune™ 
Performance Analyzer:

— Identify performance issues, use event-based sampling, code 
coach and other analysis resource

— Characterize the performance gain.

Optimize Performance Across Processor Generations

• Use a cpuid dispatch strategy to deliver optimum performance for 
all processor generations.

• Use compatible code strategy to deliver optimum performance for 
the current generation of IA-32 processor family and future IA-32 
processors.

Optimize Branch Predictability

• Improve branch predictability and optimize instruction prefetching 
by arranging code to be consistent with the static branch prediction 
assumption: backward taken and forward not taken.

• Avoid mixing near calls, far calls and returns.

• Avoid implementing a call by pushing the return address and 
jumping to the target. The hardware can pair up call and return 
instructions to enhance predictability.

• Use the pause instruction in spin-wait loops.
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• Inline functions according to coding recommendations.

• Whenever possible, eliminate branches.

• Avoid indirect calls.

Optimize Memory Access

• Observe store-forwarding constraints.

• Ensure proper data alignment to prevent data split across cache line. 
boundary. This includes stack and passing parameters.

• Avoid mixing code and data (self-modifying code).

• Choose data types carefully (see next bullet below) and avoid type 
casting.

• Employ data structure layout optimization to ensure efficient use of 
64-byte cache line size.

• Use prefetching appropriately.

• Minimize use of global variables and pointers.

• Use the const modifier; use the static modifier for global 
variables.

• Use the following techniques to enhance locality: blocking, loop 
interchange, loop skewing.

• Use new cacheability instructions and memory-ordering behavior.

Optimize Floating-point Performance

• Avoid exceeding representable ranges during computation, since 
handling these cases can have a performance impact. Do not use a 
larger precision format (double-extended floating point) unless 
required, since this increases memory size and bandwidth 
utilization.

• Use the optimized fldcw when possible; avoid changing 
floating-point control/status registers (rounding modes) between 
more than two values.
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• Use efficient conversions, such as those that implicitly include a 
rounding mode, in order to avoid changing control/status registers.

• Take advantage of the SIMD capabilities of Streaming SIMD 
Extensions (SSE) and of Streaming SIMD Extensions 2 (SSE2) 
instructions. Enable flush-to-zero mode and DAZ mode when using 
SSE and SSE2 instructions.

• Avoid denormalized input values, denormalized output values, and 
explicit constants that could cause denormal exceptions.

• Avoid excessive use of the fxch instruction.

Optimize Instruction Selection

• Avoid longer latency instructions: shifts, integer multiplies and 
divides. Replace them with alternate code sequences (e.g. adds 
instead of shifts, and shifts instead of multiplies).

• Use the lea instruction and the full range of addressing modes to do 
address calculation.

• Some types of stores use more µops than others, try to use simpler 
store variants and/or reduce the number of stores.

• Avoid use of complex instructions that require more than 4 µops.

• Avoid instructions that unnecessarily introduce dependence-related 
stalls: inc and dec instructions, partial register operations (8/16-bit 
operands).

• Avoid use of ah, bh, and other higher 8-bits of the 16-bit registers, 
because accessing them requires a shift operation internally.

• Use xor and pxor instructions to clear registers and break 
dependencies.

• Use efficient approaches for performing comparisons.
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Optimize Instruction Scheduling

• Consider latencies and resource constraints.

• Calculate store addresses as early as possible.

• Arrange load operations and store operations using the same address 
such that the load does not follow the store immediately, especially 
if the store depends on a long-latency operation.

Enable Vectorization

• Use the smallest possible data type. This enables more parallelism 
with the use of a longer vector.

• Arrange the nesting of loops so the innermost nesting level is free of 
inter-iteration dependencies. It is especially important to avoid the 
case where the store of data in an earlier iteration happens lexically 
after the load of that data in a future iteration (called 
lexically-backward dependence).

• Avoid the use of conditionals.

• Keep induction (loop) variable expressions simple.

• Avoid using pointers, try to replace pointers with arrays and indices.

Coding Rules, Suggestions and Tuning Hints
This chapter includes rules, suggestions and hints. They are maintained 
in separately-numbered lists and are targeted for engineers who are: 

• modifying the source to enhance performance (user/source rules)

• writing assembly or compilers (assembly/compiler rules)

• doing detailed performance tuning (tuning suggestions)

Coding recommendations are ranked in importance using two measures:

• Local impact (referred to as “impact”) is the difference that a 
recommendation makes to performance for a given instance, with 
the impact’s priority marked as: H = high, M = medium, L = low.
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• Generality measures how frequently such instances occur across all 
application domains, with the frequency marked as: H = high, 
M = medium, L = low.

These rules are very approximate. They can vary depending on coding 
style, application domain, and other factors. The purpose of including 
high, medium and low priorities with each recommendation is to 
provide some hints as to the degree of performance gain that one can 
expect if a recommendation is implemented. 

Because it is not possible to predict the frequency of occurrence of a 
code instance in applications, priority hints cannot be directly correlated 
to application-level performance gain. However, in important cases 
where application-level performance gain has been observed, a more 
quantitative characterization of application-level performance gain is 
provided for information only (see: “Store-to-Load-Forwarding 
Restriction on Size and Alignment” and “Instruction Selection” in this 
document). In places where no priority is assigned, the impact has been 
deemed inapplicable.

Performance Tools
Intel offers several tools that can facilitate optimizing your application’s 
performance.

Intel® C++ Compiler

Use the Intel C++ Compiler following the recommendations described 
here. The Intel Compiler’s advanced optimization features provide good 
performance without the need to hand-tune assembly code. However, 
the following features may enhance performance even further:

• Inlined assembly
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• Intrinsics, which have a one-to-one correspondence with assembly 
language instructions but allow the compiler to perform register 
allocation and instruction scheduling. Refer to the “Intel C++ 
Intrinsics Reference” section of the Intel C++ Compiler User’s 
Guide.

• C++ class libraries. Refer to the “Intel C++ Class Libraries for 
SIMD Operations Reference” section of the Intel C++ Compiler 
User’s Guide.

• Vectorization in conjunction with compiler directives (pragmas). 
Refer to the “Compiler Vectorization Support and Guidelines” 
section of the Intel C++ Compiler User’s Guide.

The Intel C++ Compiler can generate an executable which uses features 
such as Streaming SIMD Extensions 2. The executable will maximize 
performance on the current generation of IA-32 processor family (for 
example, a Pentium 4 processor) and still execute correctly on older 
processors. Refer to the “Processor Dispatch Support” section in the 
Intel C++ Compiler User’s Guide.

General Compiler Recommendations

A compiler that has been extensively tuned for the target 
microarchitecture can be expected to match or outperform hand-coding 
in a general case. However, if particular performance problems are 
noted with the compiled code, some compilers (like the Intel C++ and 
Fortran Compilers) allow the coder to insert intrinsics or inline 
assembly in order to exert greater control over what code is generated. If 
inline assembly is used, the user should verify that the code generated to 
integrate the inline assembly is of good quality and yields good overall 
performance.

Default compiler switches are targeted for the common case. An 
optimization may be made to the compiler default if it is beneficial for 
most programs. If a performance problem is root-caused to a poor 
choice on the part of the compiler, using different switches or compiling 
the targeted module with a different compiler may be the solution.
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VTune™ Performance Analyzer

Where performance is a critical concern, use performance monitoring 
hardware and software tools to tune your application and its interaction 
with the hardware. IA-32 processors have counters which can be used to 
monitor a large number of performance-related events for each 
microarchitecture. The counters also provide information that helps 
resolve the coding pitfalls.

The VTune Performance Analyzer uses these counters to provide with 
two kinds of feedback:

• indication of a performance improvement gained by using a specific 
coding recommendation or microarchitectural feature

• information on whether a change in the program has improved or 
degraded performance with respect to a particular metric

Note that improving performance in one part of the machine does not 
necessarily bring significant gains to overall performance. It is possible 
to degrade overall performance by improving performance for some 
particular metric.

Where appropriate, coding recommendations in this chapter include 
descriptions of the VTune analyzer events that provide measurable data 
of performance gain achieved by following recommendations. Refer to 
the VTune analyzer online help for instructions on how to use the tool.

The VTune analyzer events include a number of Pentium 4 processor 
performance metrics described in Appendix B, “Intel Pentium 4 
Processor Performance Metrics”.

Processor Perspectives
The majority of the coding recommendations for the Pentium 4 and 
Intel Xeon processors also apply to Pentium M processors. However, 
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there are situations where a recommendation may benefit one 
microarchitecture more than the other.  The most important of these are:

• Instruction decode throughput is important for the Pentium M 
processor but less important for the Pentium 4 and Intel Xeon 
processors. Generating code with the 4-1-1 template (instruction 
with four µops followed by two instructions with one µop each) 
helps the Pentium M processor. The practice has no real impact on 
processors based on the Intel NetBurst microarchitecture. 

• Dependencies for partial register writes incur large penalties when 
using the Pentium M processor. On Pentium 4 and Intel Xeon 
processors, such penalties are resolved by artificial dependencies 
between each partial register write.  To avoid false dependences 
from partial register updates, use full register updates and extended 
moves.

• On Pentium 4 and Intel Xeon processors, some latencies have 
increased: shifts, rotates, integer multiplies, and moves from 
memory with sign extension are longer than before. Use care when 
using the lea instruction. See the section “Use of the lea 
Instruction” for recommendations.

• The inc and dec instructions should always be avoided. Using add 
and sub instructions instead avoids data dependence and improves 
performance.

• Dependence-breaking support is added for the pxor instruction.

• Floating point register stack exchange instructions were free; now 
they are slightly more expensive due to issue restrictions.

• Writes and reads to the same location should now be spaced apart. 
This is especially true for writes that depend on long-latency 
instructions.

• Hardware prefetching may shorten the effective memory latency for 
data and instruction accesses.

• Cacheability instructions are available to streamline stores and 
manage cache utilization.  
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• Cache lines are 64 bytes (see Table 1-1 and Table 1-2). Because of 
this, software prefetching should be done less often. False sharing, 
however, can be an issue.

• On the Pentium 4 and Intel Xeon processors, the primary code size 
limit of interest is imposed by the trace cache. On Pentium M 
processors, code size limit is governed by the instruction cache.

• There may be a penalty when instructions with immediates 
requiring more than 16-bit signed representation are placed next to 
other instructions that use immediates.

Note that memory-related optimization techniques for alignments, 
complying with store-to-load-forwarding restrictions and avoiding data 
splits help Pentium 4 processors as well as Pentium M processors.

CPUID Dispatch Strategy and Compatible Code Strategy

Where optimum performance on all processor generations is desired, 
applications can take advantage of cpuid to identify the processor 
generation and integrate processor-specific instructions (such as SSE2 
instructions) into the source code. The Intel C++ Compiler supports the 
integration of different versions of the code for different target 
processors. The selection of which code to execute at runtime is made 
based on the CPU identifier that is read with cpuid. Binary code 
targeted for different processor generations can be generated under the 
control of the programmer or by the compiler.

For applications run on both the Intel Pentium 4 and Pentium M 
processors, and where minimum binary code size and single code path 
is important, a compatible code strategy is the best. Optimizing 
applications for the Intel NetBurst microarchitecture is likely to improve 
code efficiency and scalability when running on processors based on 
current and future generations of IA-32 processors. This approach to 
optimization is also likely to deliver high performance on Pentium M 
processors. 
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Branch Prediction
Branch optimizations have a significant impact on performance. By 
understanding the flow of branches and improving the predictability of 
branches, you can increase the speed of code significantly.

Optimizations that help branch prediction are:

• Keep code and data on separate pages (a very important item, see 
more details in the “Memory Accesses” section).

• Whenever possible, eliminate branches.

• Arrange code to be consistent with the static branch prediction 
algorithm.

• If it is not possible to arrange code, use branch direction hints where 
appropriate.

• Use the pause instruction in spin-wait loops.

• Inline functions and pair up calls and returns.

• Unroll as necessary so that repeatedly-executed loops have sixteen 
or fewer iterations, unless this causes an excessive code size 
increase.

• Separate branches so that they occur no more frequently than every 
three µops where possible.

Eliminating Branches

Eliminating branches improves performance because it:

• reduces the possibility of mispredictions

• reduces the number of required branch target buffer (BTB) entries; 
conditional branches, which are never taken, do not consume BTB 
resources

There are four principal ways of eliminating branches:

• arrange code to make basic blocks contiguous

• unroll loops, as discussed in the “Loop Unrolling” section
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• use the cmov instruction

• use the setcc instruction

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange 
code to make basic blocks contiguous and eliminate unnecessary branches.

For the Pentium M processor, every branch counts, even correctly 
predicted branches have a negative effect on the amount of useful code 
delivered to the processor. Also, taken branches consume space in the 
branch prediction structures and extra branches create pressure on the 
capacity of the structures.

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the 
setcc and cmov instructions to eliminate unpredictable conditional branches 
where possible. Do not do this for predictable branches. Do not use these 
instructions to eliminate all unpredictable conditional branches, because using 
these instructions will incur execution overhead due to executing both paths of 
a conditional branch.  In addition, converting conditional branches to cmovs 
or setcc trades of control flow dependence for data dependence and restricts 
the capability of the out of order engine. When tuning, note that all IA-32 
based processors have very high branch prediction rates. Consistently 
mispredicted are rare. Use these instructions only if the increase in 
computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the 
constants:

X = (A < B) ? CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is 
true, X is set to CONST1; otherwise it is set to CONST2. An assembly code 
sequence equivalent to the above C code can contain branches that are 
not predictable if there are no correlation in the two values.
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Example 2-1 shows the assembly code with unpredictable branches. 
The unpredictable branches in Example 2-1 can be removed with the 
use of the setcc instruction. Example 2-2 shows an optimized code that 
does not have branches.    

See Example 2-2. The optimized code sets ebx to zero, then compares A  
and B. If A is greater than or equal to B, ebx is set to one. Then ebx is 
decreased and “and-ed” with the difference of the constant values. This 
sets ebx to either zero or the difference of the values. By adding CONST2 
back to ebx, the correct value is written to ebx. When CONST2 is equal to 
zero, the last instruction can be deleted.

Another way to remove branches on Pentium II and subsequent 
processors is to use the cmov and fcmov instructions. Example 2-3 
shows changing a test and branch instruction sequence using cmov and 

Example 2-1 Assembly Code with an Unpredictable Branch

cmp   A, B ; condition
jge   L30 ; conditional branch
mov   ebx, CONST1     ; ebx holds X
jmp   L31 ; unconditional branch

L30:
mov   ebx, CONST2

L31:

Example 2-2 Code Optimization to Eliminate Branches

xor   ebx, ebx     ; clear ebx (X in the C code)

cmp   A, B 

setge bl     ; When ebx = 0 or 1

    ; OR the complement condition

sub   ebx, 1     ; ebx=11...11 or 00...00

and   ebx, CONST3  ; CONST3 = CONST1-CONST2

add   ebx, CONST2  ; ebx=CONST1 or CONST2
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eliminating a branch. If the test sets the equal flag, the value in ebx 
will be moved to eax. This branch is data-dependent, and is 
representative of an unpredictable branch.

The cmov and fcmov instructions are available on the Pentium II and 
subsequent processors, but not on Pentium processors and earlier 32-bit 
Intel architecture processors. Be sure to check whether a processor 
supports these instructions with the cpuid instruction. 

Spin-Wait and Idle Loops

The Pentium 4 processor introduces a new pause instruction; the 
instruction is architecturally a nop on all IA-32 implementations. To the 
Pentium 4 processor, this instruction acts as a hint that the code 
sequence is a spin-wait loop. Without a pause instruction in such loops, 
the Pentium 4 processor may suffer a severe penalty when exiting the 
loop because the processor may detect a possible memory order 
violation. Inserting the pause instruction significantly reduces the 
likelihood of a memory order violation and as a result improves 
performance.

Example 2-3 Eliminating Branch with CMOV Instruction

test ecx, ecx

jne  1h

mov  eax, ebx

1h:

; To optimize code, combine jne and mov into one cmovcc 
; instruction that checks the equal flag

test      ecx, ecx ; test the flags 
cmoveq    eax, ebx ; if the equal flag is set, move 

; ebx to eax - the lh: tag no longer
 ; needed
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In Example 2-4, the code spins until memory location A matches the 
value stored in the register eax. Such code sequences are common when 
protecting a critical section, in producer-consumer sequences, for 
barriers, or other synchronization.

Static Prediction

Branches that do not have a history in the BTB (see the “Branch 
Prediction” section) are predicted using a static prediction algorithm. 
The Pentium 4, Pentium III and Pentium II processors have the static 
prediction algorithm that follows:

• Predict unconditional branches to be taken.

• Predict backward conditional branches to be taken. This rule is 
suitable for loops.

• Predict forward conditional branches to be NOT taken.

• Predict indirect branches to be NOT taken.

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code 
to be consistent with the static branch prediction algorithm: make the 
fall-through code following a conditional branch be the likely target for a 
branch with a forward target, and make the fall-through code following a 
conditional branch be the unlikely target for a branch with a backward target.

Example 2-4 Use of pause Instruction

lock: cmp eax, A

jne loop

; code in critical section:

loop: pause

cmp eax, A

jne loop

jmp lock
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Pentium M processors do not predict conditional branches according to 
the jump direction. All conditional branches are dynamically predicted, 
even at their first appearance.

Example 2-5 illustrates the static branch prediction algorithm. The body 
of an if-then conditional is predicted to be executed

Example 2-5 Pentium 4 Processor Static Branch Prediction Algorithm

forward conditional branches not taken (fall through)

If <condition> {
...

} Unconditional Branches taken
JMP

for <condition> {
...

}

Backward Conditional Branches are taken

loop {

} <condition>
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Examples 2-6, Example 2-7 provide basic rules for a static prediction 
algorithm.

In Example 2-6, the backward branch (JC Begin) is not in the BTB the 
first time through, therefore, the BTB does not issue a prediction. The 
static predictor, however, will predict the branch to be taken, so a 
misprediction will not occur.

The first branch instruction (JC Begin) in Example 2-7 segment is a 
conditional forward branch. It is not in the BTB the first time through, 
but the static predictor will predict the branch to fall through.

The static prediction algorithm correctly predicts that the Call 
Convert instruction will be taken, even before the branch has any 
branch history in the BTB. 

Example 2-6 Static Taken Prediction Example

Begin: mov  eax, mem32

and  eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 2-7 Static Not-Taken Prediction Example

mov eax, mem32

and eax, ebx

imul eax, edx

shld eax, 7

jc Begin

mov eax, 0

Begin: call Convert
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Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic 
predictors to optimize specifically for calls and returns. It holds 16 
entries, which is large enough to cover the call depth of most programs. 
If there is a chain of more than 16 nested calls and more than 16 returns 
in rapid succession, performance may be degraded. 

The trace cache maintains branch prediction information for calls and 
returns. As long as the trace with the call or return remains in the trace 
cache and if the call and return targets remain unchanged, the depth 
limit of the return address stack described above will not impede 
performance.

To enable the use of the return stack mechanism, calls and returns must 
be matched in pairs.  If this is done, the likelihood of exceeding the 
stack depth in a manner that will impact performance is very low.

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near 
calls must be matched with near returns, and far calls must be matched with 
far returns. Pushing the return address on the stack and jumping to the routine 
to be called is not recommended since it creates a mismatch in calls and 
returns.

Calls and returns are expensive; use inlining for the following reasons:

• Parameter passing overhead can be eliminated.

• In a compiler, inlining a function exposes more opportunity for 
optimization.

• If the inlined routine contains branches, the additional context of the 
caller may improve branch prediction within the routine.

• A mispredicted branch can lead to larger performance penalties 
inside a small function than if that function is inlined.

Assembly/Compiler Coding Rule 5. (MH impact, MH generality)  
Selectively inline a function where doing so decreases code size or if the 
function is small and the call site is frequently executed. 
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Assembly/Compiler Coding Rule 6. (H impact, M generality) Do not inline 
a function if doing so increases the working set size beyond what will fit in the 
trace cache.

Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If there 
are more than 16 nested calls and returns in rapid succession; consider 
transforming the program with inline to reduce the call depth.

Assembly/Compiler Coding Rule 8. (ML impact, ML generality)  Favor 
inlining small functions that contain branches with poor prediction rates. If a 
branch misprediction results in a RETURN being prematurely predicted as 
taken, a performance penalty may be incurred.

Assembly/Compiler Coding Rule 9. (L impact, L generality)  If the last 
statement in  a function is a call to another function, consider converting the 
call to a jump. This will save the call/ return overhead as well as an entry in the 
return stack buffer.

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put 
more than four branches in a 16-byte chunk. 

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not put 
more than two end loop branches in a 16-byte chunk. 

Branch Type Selection

Counting loops can have a test and conditional branch at the top of the 
loop body or at the bottom.

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the 
average number of total iterations is less than or equal to 100, use a forward 
branch to exit the loop. 

The default predicted target for indirect branches and calls is the 
fall-through path. The fall-through prediction is overridden if and when 
a hardware prediction is available for that branch. The predicted branch 
target from branch prediction hardware for an indirect branch is the 
previously executed branch target.
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The default prediction to the fall-through path is only a significant issue 
if no branch prediction is available, due to poor code locality or 
pathological branch conflict problems. For indirect calls, predicting the 
fall-through path is usually not an issue, since execution will likely 
return to the instruction after the associated return.

Placing data immediately following an indirect branch can cause a 
performance problem. If the data consist of all zeros, it looks like a long 
stream of adds to memory destinations, which can cause resource 
conflicts and slow down branch recovery. Also, the data immediately 
following indirect branches may appear as branches to the branch 
predication hardware, which can branch off to execute other data pages. 
This can lead to subsequent self-modifying code problems.

Assembly/Compiler Coding Rule 13. (M impact, L generality) When 
indirect branches are present, try to put the most likely target of an indirect 
branch immediately following the indirect branch. Alternatively, if indirect 
branches are common but they cannot be predicted by branch prediction 
hardware, then follow the indirect branch with a UD2 instruction, which will 
stop the processor from decoding down the fall-through path.

Indirect branches resulting from code constructs, such as switch 
statements, computed GOTOs or calls through pointers, can jump to an 
arbitrary number of locations. If the code sequence is such that the target 
destination of a branch goes to the same address most of the time, then 
the BTB will predict accurately most of the time. Since only one taken 
(non-fall-through) target can be stored in the BTB, indirect branches 
with multiple taken targets may have lower prediction rates. 

The effective number of targets stored may be increased by introducing 
additional conditional branches. Adding a conditional branch to a target 
is fruitful if and only if:

• The branch direction is correlated with the branch history leading up 
to that branch, that is, not just the last target, but how it got to this 
branch.
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• The source/target pair is common enough to warrant using the extra 
branch prediction capacity. (This may increase the number of 
overall branch mispredictions, while improving the misprediction of 
indirect branches. The profitability is lower if the number of 
mispredicting branches is very large).

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch 
has two or more common taken targets, and at least one of those targets are 
correlated with branch history leading up to the branch, then convert the 
indirect branch into a tree where one or more indirect branches are preceded 
by conditional branches to those targets. Apply this “peeling” procedure to the 
common target of an indirect branch that correlates to branch history. 

The purpose of this rule is to reduce the total number of mispredictions 
by enhancing the predictability of branches, even at the expense of 
adding more branches. The added branches must be very predictable for 
this to be worthwhile. One reason for such predictability is a strong 
correlation with preceding branch history, that is, the directions taken on 
preceding branches are a good indicator of the direction of the branch 
under consideration. 

Example 2-8 shows a simple example of the correlation between a target 
of a preceding conditional branch with a target of an indirect branch. 
Correlation can be difficult to determine analytically, either for a 
compiler or sometimes for an assembly language programmer. It may be 
fruitful to evaluate performance with and without this peeling, to get the 
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best performance from a coding effort. An example of peeling out the 
most favored target of an indirect branch with correlated branch history 
is shown in Example 2-9.

Example 2-8 Indirect Branch With Two Favored Targets

function () 

{

    int n    = rand();   // random integer  0 to RAND_MAX 

if( !(n & 0x01) ){ // n will be 0 half the times 

 n = 0;             // updates branch history to predict taken

}  

// indirect branches with multiple taken targets 

// may have lower prediction rates

    switch (n) {

case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken

    case 1: handle_1(); break;// uncommon

case 3: handle_3(); break;// uncommon

default: handle_other();  // common target

    }

}
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 Loop Unrolling

The benefits of unrolling loops are:

• Unrolling amortizes the branch overhead, since it eliminates 
branches and some of the code to manage induction variables.

• Unrolling allows you to aggressively schedule (or pipeline) the loop 
to hide latencies. This is useful if you have enough free registers to 
keep variables live as you stretch out the dependence chain to 
expose the critical path. 

• Unrolling exposes the code to various other optimizations, such as 
removal of redundant loads, common subexpression elimination, 
and so on.

• The Pentium 4 processor can correctly predict the exit branch for an 
inner loop that has 16 or fewer iterations, if that number of iterations 
is predictable and there are no conditional branches in the loop. 
Therefore, if the loop body size is not excessive, and the probable 

Example 2-9 A Peeling Technique to Reduce Indirect Branch Misprediction

function () 

{

    int n    = rand(); // random integer  0 to RAND_MAX 

if( !(n & 0x01) ) n = 0;

      // n will be 0 half the times 

if (!n) handle_0();  // peel out the most common target
// with correlated branch history

else {

    switch (n) { 

case 1: handle_1(); break; // uncommon

case 3: handle_3(); break;// uncommon

default: handle_other(); // make the favored target in
// the fall-through path 

}

    }

}
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number of iterations is known, unroll inner loops until they have a 
maximum of 16 iterations. With the Pentium M processor, do not 
unroll loops more than 64 iterations.

The potential costs of unrolling loops are:

• Excessive unrolling, or unrolling of very large loops can lead to 
increased code size. This can be harmful if the unrolled loop no 
longer fits in the trace cache (TC).

• Unrolling loops whose bodies contain branches increases demands 
on the BTB capacity. If the number of iterations of the unrolled loop 
is 16 or less, the branch predictor should be able to correctly predict 
branches in the loop body that alternate direction.

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small 
loops until the overhead of the branch and the induction variable accounts, 
generally, for less than about 10% of the execution time of the loop.

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid 
unrolling loops excessively, as this may thrash the trace cache or instruction 
cache.

Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll 
loops that are frequently executed and that have a predictable number of 
iterations to reduce the number of iterations to 16 or fewer, unless this 
increases code size so that the working set no longer fits in the trace cache or 
instruction cache.  If the loop body contains more than one conditional branch, 
then unroll so that the number of iterations is 16/(# conditional branches).
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Example 2-10 shows how unrolling enables other optimizations. 

In this example, a loop that executes 100 times assigns x to every 
even-numbered element and y to every odd-numbered element. By 
unrolling the loop you can make both assignments each iteration, 
removing one branch in the loop body.

Compiler Support for Branch Prediction

Compilers can generate code that improves the efficiency of branch 
prediction in the Pentium 4 and Pentium M processors. The Intel C++ 
Compiler accomplishes this by:

• keeping code and data on separate pages

• using conditional move instructions to eliminate branches

• generating code that is consistent with the static branch prediction 
algorithm

• inlining where appropriate

• unrolling, if the number of iterations is predictable

Example 2-10 Loop Unrolling

Before unrolling:

do i=1,100
  if (i mod 2 == 0) then a(i) = x
  else a(i) = y
enddo

After unrolling

do i=1,100,2
   a(i) = y
  a(i+1) = x
enddo
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With profile-guided optimization, the Intel compiler can lay out basic 
blocks to eliminate branches for the most frequently executed paths of a 
function or at least improve their predictability. Branch prediction need 
not be a concern at the source level. For more information, see the 
Intel® C++ Compiler User’s Guide.

Memory Accesses
This section discusses guidelines for optimizing code and data memory 
accesses. The most important recommendations are:

• align data, paying attention to data layout and stack alignment

• enable store forwarding

• place code and data on separate pages

• enhance data locality

• use prefetching and cacheability control instructions

• enhance code locality and align branch targets

• take advantage of write combining

Alignment and forwarding problems are among the most common 
sources of large delays on the Pentium 4 processor.

Alignment

Alignment of data concerns all kinds of variables:

• dynamically allocated

• members of a data structure

• global or local variables

• parameters passed on the stack

Misaligned data access can incur significant performance penalties. This 
is particularly true for cache line splits. The size of a cache line is
64 bytes in the Pentium 4, Intel Xeon, and Pentium M processors. 
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On the Pentium 4 processor, an access to data unaligned on 64-byte 
boundary leads to two memory accesses and requires several µops to be 
executed (instead of one). Accesses that span either 16-byte or 64-byte 
boundaries are likely to incur a large performance penalty, since they are 
executed near retirement, and can incur stalls that are on the order of the 
depth of the pipeline.

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align data 
on natural operand size address boundaries. If the data will be accesses with 
vector instruction loads and stores, align the data on 16 byte boundaries.

For best performance, align data as follows:

• Align 8-bit data at any address.

• Align 16-bit data to be contained within an aligned four byte word.

• Align 32-bit data so that its base address is a multiple of four.

• Align 64-bit data so that its base address is a multiple of eight.

• Align 80-bit data so that its base address is a multiple of sixteen.

• Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its 
base address is a multiple of 64. Sorting data in decreasing size order is 
one heuristic for assisting with natural alignment. As long as 16-byte 
boundaries (and cache lines) are never crossed, natural alignment is not 
strictly necessary, though it is an easy way to enforce this.

Example 2-11 shows the type of code that can cause a cache line split. 
The code loads the addresses of two dword arrays.  029e70feh is not a 
4-byte-aligned address, so a 4-byte access at this address will get 2 bytes 
from the cache line this address is contained in, and 2 bytes from the 
cache line that starts at 029e7100h. On processors with 64-byte cache 
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lines, a similar cache line split will occur every 8 iterations.  Figure 2-1 
illustrates the situation of accessing a data element that span across 
cache line boundaries.

   

Example 2-11 Code That Causes Cache Line Split

mov esi, 029e70feh

mov edi, 05be5260h

Blockmove:

mov eax, DWORD PTR [esi]

mov ebx, DWORD PTR [esi+4]

mov DWORD PTR [edi], eax

mov DWORD PTR [edi+4], ebx

add esi, 8

add edi, 8

sub edx, 1

jnz Blockmove

Figure 2-1 Cache Line Split in Accessing Elements in a Array

Index 1Index 0 cont’d

Index 0

Index 15 Index 16Line 029e7100h

Line 029e70c0h

Index 17Index 16 cont’d Index 31 Index 32Line 029e7140h

Address 029e70fehAddress 029e70c1h
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Alignment of code is less of an issue for the Pentium 4 processor.  
Alignment of branch targets to maximize bandwidth of fetching cached 
instructions is an issue only when not executing out of the trace cache.

Alignment of code can be an issue for the Pentium M processor, and 
alignment of branch targets will improve decoder throughput.

Store Forwarding

The processor’s memory system only sends stores to memory (including 
cache) after store retirement. However, store data can be forwarded 
from a store to a subsequent load from the same address to give a much 
shorter store-load latency.

There are two kinds of requirements for store forwarding. If these 
requirements are violated, store forwarding cannot occur and the load 
must get its data from the cache (so the store must write its data back to 
the cache first). This incurs a penalty that is related to pipeline depth.

The first requirement pertains to the size and alignment of the 
store-forwarding data. This restriction is likely to have high impact to 
overall application performance. Typically, performance penalty due to 
violating this restriction can be prevented. Several examples of coding 
pitfalls that cause store-forwarding stalls and solutions to these pitfalls 
are discussed in detail in the “Store-to-Load-Forwarding Restriction on 
Size and Alignment” section. The second requirement is the availability 
of data, discussed in the “Store-forwarding Restriction on Data 
Availability” section. 

A good practice is to eliminate redundant load operations, see some 
guidelines below.

It may be possible to keep a temporary scalar variable in a register and 
never write it to memory. Generally, such a variable must not be 
accessible via indirect pointers. Moving a variable to a register 
eliminates all loads and stores of that variable and eliminates potential 
problems associated with store forwarding. However, it also increases 
register pressure.
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Load instructions tend to start chains of computation. Since the out of 
order engine is based on data dependence, load instructions play a 
significant role in the engine capability to execute at a high rate. 
Eliminating loads should be given a high priority.

If a variable is known not to change between when it is stored and when 
it is used again, the register that was stored can be copied or used 
directly. If register pressure is too high, or an unseen function is called 
before the store and the second load, it may not be possible to eliminate 
the second load.

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass 
parameters in registers instead of on the stack where possible. Passing 
arguments on the stack is a case of store followed by a reload. While this 
sequence is optimized in IA-32 processors by providing the value to the load 
directly from the memory order buffer without the need to access the data 
cache, floating point values incur a significant latency in forwarding. Passing 
floating point argument in (preferably XMM) registers should save this long 
latency operation.

Parameter passing conventions may limit the choice of which 
parameters are passed in registers versus on the stack. However, these 
limitations may be overcome if the compiler has control of the 
compilation of the whole binary (using whole-program optimization).

Store-to-Load-Forwarding Restriction on Size and 
Alignment

Data size and alignment restrictions for store-forwarding apply to the 
Pentium 4, Intel Xeon and Pentium M processor. The performance 
penalty from violating store-forwarding restrictions is less for Pentium 
M processors than that for Pentium 4 processors. 

This section describes these restrictions in all cases. It prescribes 
recommendations to prevent the non-forwarding penalty. Fixing this 
problem for Pentium 4 and Intel Xeon processors also fixes problem on 
Pentium M processors. 
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The size and alignment restrictions for store forwarding are illustrated in 
Figure 2-2.

Coding rules to help programmers satisfy size and alignment restrictions 
for store forwarding follow.

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load that 
forwards from a store must have the same address start point and therefore the 
same alignment as the store data.

Assembly/Compiler Coding Rule 20. (H impact, M generality) The data of 
a load which is forwarded from a store must be completely contained within the 
store data.

Figure 2-2 Size and Alignment Restrictions in Store Forwarding
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A load that forwards from a store must wait for the store’s data to be 
written to the store buffer before proceeding, but other, unrelated loads 
need not wait. 

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is 
necessary to extract a non-aligned portion of stored data, read out the smallest 
aligned portion that completely contains the data and shift/mask the data as 
necessary.

This is better than incurring the penalties of a failed store-forward.

Assembly/Compiler Coding Rule 22. (MH impact, ML generality)  Avoid 
several small loads after large stores to the same area of memory by using a 
single large read and register copies as needed.

Example 2-12 contains several store-forwarding situations when small 
loads follow large stores. The first three load operations illustrate the 
situations described in Rule 22. However, the last load operation gets 
data from store-forwarding without problem.

Example 2-12 Several Situations of Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; not blocked - same alignment
mov BL, [EBP + 1] ; blocked

mov CL, [EBP + 2] ; blocked

mov DL, [EBP + 3] ; blocked

mov AL, [EBP] ; not blocked - same alignment
; n.b. passes older blocked loads
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Example 2-13 illustrates a store-forwarding situation when a large load 
follows after several small stores. The data needed by the load operation 
cannot be forwarded because all of the data that needs to be forwarded is 
not contained in the store buffer. Avoid large loads after small stores to 
the same area of memory.

Example 2-14 illustrates a stalled store-forwarding situation that may 
appear in compiler generated code. Sometimes a compiler generates 
code similar to that shown in Example 2-14 to handle spilled byte to the 
stack and convert the byte to an integer value. 

Example 2-13 A Non-forwarding Example of Large Load After Small Store

mov [EBP],     ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; blocked

; The first 4 small store can be consolidated into 
; a single DWORD store to prevent this non-forwarding
; situation

Example 2-14 A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h]  ; Stall 

and eax, 0xff ; converting back to byte value
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Example 2-15 offers two alternatives to avoid the non-forwarding 
situation shown in Example 2-14.

When moving data that is smaller than 64 bits between memory 
locations, 64-bit or 128-bit SIMD register moves are more efficient (if 
aligned) and can be used to avoid unaligned loads. Although 
floating-point registers allow the movement of 64 bits at a time, floating 
point instructions should not be used for this purpose, as data may be 
inadvertently modified.

As an additional example, consider the cases in Example 2-16. In the 
first case (A), there is a large load after a series of small stores to the 
same area of memory (beginning at memory address mem). The large 
load will stall.

Example 2-15 Two Examples to Avoid the Non-forwarding Situation in 
Example 2-14

;A. Use movz instruction to avoid large load after small
; store, when spills are ignored

movz eax, bl ; Replaces the last three instructions
 ; in Example 2-12

;B. Use movz instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h  

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h]  ; not blocked
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The fld must wait for the stores to write to memory before it can 
access all the data it requires. This stall can also occur with other data 
types (for example, when bytes or words are stored and then words or 
doublewords are read from the same area of memory).

In the second case (Example 2-16, B), there is a series of small loads 
after a large store to the same area of memory (beginning at memory 
address mem). The small loads will stall.

The word loads must wait for the quadword store to write to memory 
before they can access the data they require. This stall can also occur 
with other data types (for example, when doublewords or words are 
stored and then words or bytes are read from the same area of memory). 
This can be avoided by moving the store as far from the loads as 
possible.

Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can 
be completed. If this restriction is violated, the execution of the load will 
be delayed until the data is available. This delay causes some execution 
resources to be used unnecessarily, and that can lead to sizable but 
non-deterministic delays. However, the overall impact of this problem is 
much smaller than that from size and alignment requirement violations.

Example 2-16 Large and Small Load Stalls

;A. Large load stall

mov mem, eax ; store dword to address “mem"
mov mem + 4, ebx ; store dword to address “mem + 4"
fld mem ; load qword at address “mem", stalls

;B. Small Load stall

fstp  mem   ; store qword to address “mem"
mov   bx,mem+2 ; load word at address “mem + 2", stalls
mov   cx,mem+4 ; load word at address “mem + 4", stalls
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The Pentium 4 and Intel Xeon processors predict when loads are both 
dependent on and get their data forwarded from preceding stores. These 
predictions can significantly improve performance. However, if a load is 
scheduled too soon after the store it depends on or if the generation of 
the data to be stored is delayed, there can be a significant penalty. 

There are several cases where data is passed through memory, where the 
store may need to be separated from the load:

• spills, save and restore registers in a stack frame

• parameter passing

• global and volatile variables

• type conversion between integer and floating point

• when compilers do not analyze code that is inlined, forcing 
variables that are involved in the interface with inlined code to be in 
memory, creating more memory variables and preventing the 
elimination of redundant loads

Assembly/Compiler Coding Rule 23. (H impact, MH generality) Where it is 
possible to do so without incurring other penalties, prioritize the allocation of 
variables to registers, as in register allocation and for parameter passing to 
minimize the likelihood and impact of store- forwarding problems. Try not to 
store-forward data generated from a long latency instruction, e.g. mul, div. 
Avoid store-forwarding data for variables with the shortest store-load distance. 
Avoid store-forwarding data for variables with many and/or long dependence 
chains, and especially avoid including a store forward on a loop-carried 
dependence chain. 

An example of a loop-carried dependence chain is shown in 
Example 2-17.

Example 2-17 An Example of Loop-carried Dependence Chain

for (i=0; i<MAX; i++) {

  a[i] = b[i] * foo;

  foo = a[i]/3;

}  // foo is a loop-carried dependence
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Data Layout Optimizations

User/Source Coding Rule 2. (H impact, M generality) Pad data structures 
defined in the source code so that every data element is aligned to a natural 
operand size address boundary. 

If the operands are packed in a SIMD instruction, align to the packed 
element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. 
Programmers can reorganize structures and arrays to minimize the 
amount of memory wasted by padding. However, compilers might not 
have this freedom. The C programming language, for example, specifies 
the order in which structure elements are allocated in memory. Section 
“Stack and Data Alignment” of Chapter 3, and Appendix D, “Stack 
Alignment”, further defines the exact storage layout.

Example 2-18 shows how a data structure could be rearranged to reduce 
its size.

Cache line size for Pentium 4 and Pentium M processors can impact 
streaming applications (for example, multimedia). These reference and 
use data only once before discarding it. Data accesses which sparsely 
utilize the data within a cache line can result in less efficient utilization 
of system memory bandwidth. For example, arrays of structures can be 
decomposed into several arrays to achieve better packing, as shown in 
Example 2-19.

Example 2-18 Rearranging a Data Structure

struct unpacked { /* fits in 20 bytes due to padding */

int a;
char b;
int c;
char d;
int e;

}

struct packed {  /* fits in 16 bytes */
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The efficiency of such optimizations depends on usage patterns. If the 
elements of the structure are all accessed together but the access pattern 
of the array is random, then array_of_struct avoids unnecessary 
prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality, such as if 
the array index is being swept through, then the Pentium 4 processor 
prefetches data from struct_of_array, even if the elements of the 
structure are accessed together. 

When the elements of the structure are not accessed with equal 
frequency, such as when element a is accessed ten times more often than 
the other entries, then struct_of_array not only saves memory, but it 
also prevents fetching unnecessary data items b, c, d, and e.

Example 2-19 Decomposing an Array

struct {/* 1600 bytes */

int  a, c, e;
char b, d;

} array_of_struct [100];

struct {/* 1400 bytes */
int  a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct {/* 1200 bytes */

int a, c, e;
} hybrid_struct_of_array_ace[100];

struct {/* 200 bytes */

char b, d;
} hybrid_struct_of_array_bd[100];
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Using struct_of_array also enables the use of the SIMD data types by 
the programmer and the compiler.

Note that struct_of_array can have the disadvantage of requiring 
more independent memory stream references. This can require the use 
of more prefetches and additional address generation calculations. It can 
also have an impact on DRAM page access efficiency. An alternative, 
hybrid_struct_of_array blends the two approaches. In this case, only 
2 separate address streams are generated and referenced: 1 for 
hybrid_struct_of_array_ace and 1 for 
hybrid_struct_of_array_bd. The second alterative also prevents 
fetching unnecessary data (assuming the variables a, c and e are always 
used together; whereas the variables b and d would be also used 
together, but not at the same time as a, c and e). 

The hybrid approach ensures:

• simpler/fewer address generation than struct_of_array

• fewer streams, which reduces DRAM page misses

• use of fewer prefetches due to fewer streams

• efficient cache line packing of data elements that are used 
concurrently.

Assembly/Compiler Coding Rule 24. (H impact, M generality) Try to 
arrange data structures such that they permit sequential access.

If the data is arranged into set of streams, the automatic hardware 
prefetcher can prefetch data that will be needed by the application, 
reducing the effective memory latency. If the data is accessed in a 
non-sequential manner, the automatic hardware prefetcher cannot 
prefetch the data. The prefetcher can recognize up to eight concurrent 
streams. See Chapter 6 for more information and the hardware 
prefetcher.

Memory coherence is maintained on 64-byte cache lines on the
Pentium 4, Intel Xeon and Pentium M processors, rather than earlier 
processors’ 32-byte cache lines.  This can increase the opportunity for 
false sharing.
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User/Source Coding Rule 3. (M impact, L generality) Beware of false 
sharing within a cache line (64 bytes) for Pentium 4, Intel Xeon, and Pentium 
M processors; and within a sector of 128 bytes on Pentium 4 and Intel Xeon 
processors. 

Stack Alignment

The easiest way to avoid stack alignment problems is to keep the stack 
aligned at all times. For example: if a language only supports 8-bit, 
16-bit, 32-bit, and 64-bit data quantities, but never uses 80-bit data 
quantities; the language can require the stack to always be aligned on a 
64-bit boundary.

Assembly/Compiler Coding Rule 25. (H impact, M generality) If 64-bit 
data is ever passed as a parameter or allocated on the stack, make sure that the 
stack is aligned to an 8-byte boundary.

Doing so will require the use of a general purpose register (such as EBP) 
as a frame pointer. The tradeoff is between causing unaligned 64-bit 
references if the stack is not aligned and causing extra general purpose 
register spills if the stack is aligned. Note that a performance penalty is 
caused only when an unaligned access splits a cache line. This means 
that one out of eight spatially consecutive unaligned accesses is always 
penalized.

A routine that makes frequent use of 64-bit data can avoid stack 
misalignment by placing the code described in Example 2-20 in the 
function prologue and epilogue.
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If for some reason it is not possible to align the stack for 64-bits, the 
routine should access the parameter and save it into a register or known 
aligned storage, thus incurring the penalty only once.

Aliasing Cases

There are cases where addresses with a given stride will compete for 
some resource in the memory hierarchy. Aliasing conditions are specific 
to each microarchitecture. Note that first-level cache lines are 64 bytes. 
Thus the least significant 6 bits are not considered in alias comparisons. 
For the Pentium 4 and Intel Xeon processors, data are loaded into the 
second level cache in a sector of 128 bytes, so the least significant 7 bits 
are not considered in alias comparisons.

Example 2-20 Dynamic Stack Alignment

prologue:

subl esp, 4 ; save frame ptr

movl [esp], ebp

movl ebp, esp ; new frame pointer

andl ebp, 0xFFFFFFFC; aligned to 64 bits

movl [ebp], esp ; save old stack ptr

subl esp, FRAMESIZE ; allocate space

; ... callee saves, etc.

epilogue:

; ... callee restores, etc.

movl esp, [ebp] ; restore stack ptr

movl ebp, [esp] ; restore frame ptr

addl esp, 4

ret
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Aliasing Cases in the Pentium. 4 and Intel® Xeon™ 
Processors

Pentium 4 processor and Intel Xeon processor aliasing cases are listed 
below.

• 2K for data – map to the same first-level cache set (32 sets, 64-byte 
lines). There are 4 ways in the first-level cache, so if there are more 
that 4 lines that alias to the same 2K modulus in the working set, 
there will be an excess of first-level cache misses.

• 16K for data – will look the same to the store-forwarding logic. If 
there has been a store to an address which aliases with the load, the 
load will stall until the store data is available. 

• 16K for code – can only be one of these in the trace cache at a time. 
If two traces whose starting addresses are 16K apart are in the same 
working set, the symptom will be a high trace cache miss rate. Solve 
this by offsetting one of the addresses by one or more bytes.

• 32K for code or data – map to the same second-level cache set (256 
sets, 128-byte lines). There are 8 ways in the second-level cache, so 
if there are more than 8 lines that alias to the same 32K modulus in 
the working set, there will be an excess of second-level cache 
misses.

• 64K for data – can only be one of these in the first-level cache at a 
time. If a reference (load or store) occurs that has bits 0-15 of the 
linear address identical to a reference (load or store) which is under 
way, then the second reference cannot begin until the first one is 
kicked out of the cache. If you avoiding this kind of aliasing, you 
can speedup programs by a factor of three if they load frequently 
from preceding stores with aliased addresses and there is little other 
instruction-level parallelism available. The gain is smaller when 
loads alias with other loads, which cause thrashing in the first-level 
cache.

If a large number of data structures are in the same working set, accesses 
to aliased locations in the sets may cause cache thrashing and store 
forwarding problems. For example, if the code dynamically allocates 
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many data 3 KB structures, some memory allocators will return starting 
addresses for these structures which are on 4 KB boundaries. For the 
sake of simplifying this discussion, suppose these allocations were 
made to consecutive 4 KB addresses (though that scenario is more likely 
to be random in a real system). Then every structure would alias with 
the structure allocated 16 structures after it. The likelihood of aliasing 
conflicts may increase with the size of the data structures.

Aliasing Cases in the Pentium M Processor

Pentium M processor aliasing cases are listed below.

• First level cache set - 4 KB for data maps to the same first-level 
cache set (64 sets, 64-byte lines). There are eight ways in the 
first-level data cache, so if there are more than eight lines that alias 
to the same 4 KB modulus in the working set, there will be an 
excess of first-level cache misses.

• Store forwarding - 4 KB for data will look the same to the 
store-forwarding logic. If there has been a store to an address which 
aliases with the load, the load will stall until the store data is 
available.

• Second-level cache set - 128 KB for code or data map to the same 
second-level cache set (2 KB sets, 64-byte lines). There are eight 
ways in the second-level cache, so if there are more than eight lines 
that alias to the same 128 KB modulus in the working set, there will 
be an excess of second-level cache misses.

• 128 KB for code or data - map to the same second-level cache set
(2 KB sets, 64-byte lines). There are 8 ways in the second-level 
cache, so if there are more than 8 lines that alias to the same 128 k 
modulus in the working set, there will be an excess of second-level 
cache misses.

Assembly/Compiler Coding Rule 26. (H impact, MH generality) Lay out 
data or order computation to avoid having cache lines that have linear 
addresses that are a multiple of 64 KB apart in the same working set. Avoid 
having more than 4 cache lines that are some multiple of 2 KB apart in the 
same first-level cache working set, and avoid having more than eight cache 
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lines that are some multiple of 4 KB apart in the same first-level cache working 
set. Avoid having more than 8 cache lines that are some multiple of 64 KB  
apart in the same second-level cache working set. Avoid having a store 
followed by a non-dependent load with addresses that differ by a multiple of
4 KB.

When declaring multiple arrays that are referenced with the same index 
and are each a multiple of 64 KB (as can happen with 
struct_of_array data layouts), pad them to avoid declaring them 
contiguously. Padding can be accomplished by either intervening 
declarations of other variables, or by artificially increasing the 
dimension. 

User/Source Coding Rule 4. (H impact, ML generality) Consider using a 
special memory allocation library to avoid aliasing. 

One way to implement a memory allocator to avoid aliasing is to 
allocate more than enough space and pad. For example, allocate 
structures that are 68 KB instead of 64 KB to avoid the 64 KB aliasing; 
or have the allocator pad and return random offsets that are a multiple of 
128 Bytes (the size of a cache line). 

User/Source Coding Rule 5. (M impact, M generality) When padding 
variable declarations to avoid aliasing, the greatest benefit comes from 
avoiding aliasing on second-level cache lines, suggesting an offset of 128 bytes 
or more.

Mixing Code and Data

The Pentium 4 processor’s aggressive prefetching and pre-decoding of 
instructions has two related effects:

• Self-modifying code works correctly, according to the Intel 
architecture processor requirements, but incurs a significant 
performance penalty. Avoid self-modifying code.

• Placing writable data in the code segment might be impossible to 
distinguish from self-modifying code. Writable data in the code 
segment might suffer the same performance penalty as 
self-modifying code.
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Assembly/Compiler Coding Rule 27. (M impact, L generality) If (hopefully 
read-only) data must occur on the same page as code, avoid placing it 
immediately after an indirect jump. For example, follow an indirect jump with 
its mostly likely target, and place the data after an unconditional branch.

Tuning Suggestion 1. In rare cases, a performance problem may be noted due 
to executing data on a code page as instructions. The condition where this is 
very likely to happen is when execution is following an indirect branch that is 
not resident in the trace cache. If a performance problem is clearly due to this 
cause, try moving the data elsewhere or inserting an illegal opcode or a pause 
instruction immediately following the indirect branch. The latter two 
alternatives may degrade performance in some circumstances.

Assembly/Compiler Coding Rule 28. (H impact, L generality) Always put 
code and data on separate pages. Avoid self-modifying code wherever possible. 
If code is to be modified, try to do it all at once and make sure the code that 
performs the modifications and the code being modified are on separate 4 KB 
pages or on separate aligned 1 KB subpages.

Self-modifying Code

Self-modifying code (SMC) that ran correctly on Pentium III processors 
and prior implementations will run correctly on subsequent 
implementations, including Pentium 4 and Intel Xeon processors. SMC 
and cross-modifying code (when more than one processor in a 
multi-processor system are writing to a code page) should be avoided 
when high performance is desired.

Software should avoid writing to a code page in the same 1 KB subpage 
of that is being executed or fetching code in the same 2 KB subpage of 
that is currently being written. In addition, sharing a page containing 
directly or speculatively executed code with another processor as a data 
page can trigger an SMC condition that causes the entire pipeline of the 
machine and the trace cache to be cleared. This is due to the 
self-modifying code condition.

Dynamic code need not cause the SMC condition if the code written 
fills up a data page before that page is accessed as code.  
Dynamically-modified code (for example, from target fix-ups) is likely 
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to suffer from the SMC condition and should be avoided where possible. 
Avoid the condition by introducing indirect branches and using data 
tables on data (not code) pages via register-indirect calls. 

Write Combining

Write combining (WC) improves performance in two ways:

• On a write miss to the first-level cache, it allows multiple stores to 
the same cache line to occur before that cache line is read for 
ownership (RFO) from further out in the cache/memory hierarchy. 
Then the rest of line is read, and the bytes that have not been written  
are combined with the unmodified bytes in the returned line.

• Write combining allows multiple writes to be assembled and written 
further out in the cache hierarchy as a unit. This saves port and bus 
traffic. Saving traffic is particularly important for avoiding partial 
writes to uncached memory.

There are 6 write-combining buffers. Two of these buffers may be 
written out to higher cache levels and freed up for use on other write 
misses; only four write-combining buffers are guaranteed to be 
available for simultaneous use. 

Assembly/Compiler Coding Rule 29. (H impact, L generality) If an inner 
loop writes to more than four arrays, (four distinct cache lines), apply loop 
fission to break up the body of the loop such that only four arrays are being 
written to in each iteration of each of the resulting loops.

The write combining buffers are used for stores of all memory types. 
They are particularly important for writes to uncached memory: writes 
to different parts of the same cache line can be grouped into a single, 
full-cache-line bus transaction instead of going across the bus (since 
they are not cached) as several partial writes. Avoiding partial writes can 
have a significant impact on bus bandwidth-bound graphics 
applications, where graphics buffers are in uncached memory. 
Separating writes to uncached memory and writes to writeback memory 
into separate phases can assure that the write combining buffers can fill 
before getting evicted by other write traffic. Eliminating partial write 
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transactions has been found to have performance impact of the order of 
20% for some applications. Because the cache lines are 64 bytes, a write 
to the bus for 63 bytes will result in 8 partial bus transactions. 

When coding functions that execute simultaneously on two threads, 
reducing the number of writes that are allowed in an inner loop will help 
take full advantage of write-combining store buffers. See Chapter 7 for 
the write-combining buffer recommendation with Hyper-Threading 
Technology.

Store ordering and visibility are also important issues for write 
combining. When a write to a write-combining buffer for a 
previously-unwritten cache line occurs, there will be a 
read-for-ownership (RFO). If a subsequent write happens to another 
write-combining buffer, a separate RFO may be caused for that cache 
line. Subsequent writes to the first cache line and write-combining 
buffer will be delayed  until the second RFO has been serviced to 
guarantee properly ordered visibility of the writes. If the memory type 
for the writes is write-combining, there will be no RFO since the line is 
not cached, and there is no such delay. For details on write-combining, 
see the Intel Architecture Software Developer’s Manual.

Locality Enhancement

Although cache miss rates may be low, processors typically spend a 
sizable portion of their execution time waiting for cache misses to be 
serviced. Reducing cache misses by enhancing a program’s locality is a 
key optimization. This can take several forms: 

• blocking to iterate over a portion of an array that will fit in the cache

• loop interchange to avoid crossing cache lines or page boundaries

• loop skewing to make accesses contiguous

It is also important to avoid operations that work against locality- 
enhancing techniques. Using the lock prefix heavily can incur large 
delays when accessing memory, irrespective of whether the data is in the 
cache or in system memory.
2-49



IA-32 Intel® Architecture Optimization
User/Source Coding Rule 6. (H impact, H generality)   Optimization 
techniques such as blocking, loop interchange, loop skewing and packing are 
best done by the compiler. Optimize data structures to either fit in one-half of 
the first-level cache or in the second-level cache;  turn on loop optimizations in 
the compiler to enhance locality for nested loops. 

Optimizing for one-half of the first-level cache will bring the greatest 
performance benefit. If one-half of the first-level cache is too small to 
be practical, optimize for the second-level cache. Optimizing for a point 
in between (for example, for the entire first-level cache) will likely not 
bring a substantial improvement over optimizing for the second-level 
cache.

Minimizing Bus Latency

The system bus on Xeon and Pentium 4 processors provides up to
4.2 GB/sec bandwidth of throughput at 133 MHz scalable bus clock rate 
(See MSR_EBC_FREQUENCY_ID register). The peak bus bandwidth 
is even higher with higher bus clock rates. 

Each bus transaction includes the overhead of making request and 
arbitrations. The average latency of bus read and bus write transactions 
will be longer if reads and writes alternate. Segmenting reads and writes 
into phases can reduce the average latency of bus transactions. This is 
because the number of incidences of successive transactions involving a 
read following a write or a write following a read are reduced.

User/Source Coding Rule 7. (M impact, ML generality) If there is a blend of 
reads and writes on the bus, changing the code to separate these bus 
transactions into read phases and write phases can help performance. 

Note, however, that the order of read and write operations on the bus are 
not the same as they appear in the program.
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Non-Temporal Store Bus Traffic

Peak system bus bandwidth is shared by several types of bus activities, 
including: reads (from memory), read for ownership (of a cache line), 
and writes. The data transfer rate for bus write transactions is higher if 
64 bytes are written out to the bus at a time. 

Typically, bus writes to Writeback (WB) type memory must share the 
system bus bandwidth with read-for-ownership (RFO) traffic. 
Non-temporal stores do not require RFO traffic; they do require care in 
managing the access patterns in order to ensure 64 bytes are evicted at 
once (rather than evicting several 8 byte chunks). 

Although full 64-byte bus writes due to non-temporal stores have data 
bandwidth that is twice that of bus writes to WB memory, transferring 
8-byte chunks wastes bus request bandwidth and delivers significantly 
lower data bandwidth.
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Example 2-21 Non-temporal stores and 64-byte bus write transactions

Example 2-22 Non-temporal stores and partial bus write transactions

Prefetching

The Pentium 4 processor has three prefetching mechanisms: 

• hardware instruction prefetcher

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmm0

movntps XMMWORD ptr [ecx + eax+16], xmm0

movntps XMMWORD ptr [ecx + eax+32], xmm0

movntps XMMWORD ptr [ecx + eax+48], xmm0

; 64 bytes is written in one bus transaction

add eax, STRIDESIZE

cmp eax, edx

jl slloop

#define STRIDESIZE 256

Lea ecx, p64byte_Aligned

Mov edx, ARRAY_LEN

Xor eax, eax

slloop:

movntps XMMWORD ptr [ecx + eax], xmm0

movntps XMMWORD ptr [ecx + eax+16], xmm0

movntps XMMWORD ptr [ecx + eax+32], xmm0

; Storing 48 bytes results in 6 bus partial transactions

add eax, STRIDESIZE

cmp eax, edx
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• software prefetch for data

• hardware prefetch for cache lines of data or instructions. 

Hardware Instruction Fetching

The hardware instruction fetcher reads instructions, 32 bytes at a time, 
into the 64-byte instruction streaming buffers. 

Software and Hardware Cache Line Fetching

The Pentium 4 and Intel Xeon processors provide hardware prefetching, 
in addition to software prefetching. The hardware prefetcher operates 
transparently to fetch data and instruction streams from memory, 
without requiring programmer intervention. The hardware prefetcher 
can track 8 independent streams. Software prefetch using the 
prefetchnta instruction fetches 128 bytes into one way of the 
second-level cache.

The Pentium M processor also provides a hardware prefetcher for data. 
It can track 12 separate streams in the forward direction and 4 streams in 
the backward direction. This processor’s prefetchnta instruction also 
fetches 64-bytes into the first-level data cache without polluting the 
second-level cache.

Typically, prefetching can provide significant gains. The use of 
prefetches is recommended. The hardware prefetcher is best for linear 
data access patterns in either direction. Software prefetch can 
complement the hardware prefetcher if used carefully. 

There is a trade-off to make between hardware and software 
prefetching. This pertains to application characteristics such as 
regularity and stride of accesses. Bus bandwidth, issue bandwidth (the 
latency of loads on the critical path) and whether access patterns are 
suitable for non-temporal prefetch will also have an impact.

For a detailed description of how to use prefetching, see Chapter 6, 
“Optimizing Cache Usage”. 
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User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch 
generation in your compiler. Note: As a compiler’s prefetch implementation 
improves, it is expected that its prefetch insertion will outperform manual 
insertion except for that done by code tuning experts, but this is not always the 
case. If the compiler does not support software prefetching, intrinsics or inline 
assembly may be used to manually insert prefetch instructions.  

Chapter 6 contains an example of using software prefetch to implement 
memory copy algorithm.

Tuning Suggestion 2. If a load is found to miss frequently, either insert a 
prefetch before it, or, if issue bandwidth is a concern, move the load up to 
execute earlier.

Cacheability instructions

SSE2 provides additional cacheability instructions that extend further 
from the cacheability instructions provided in SSE. The new 
cacheability instructions include: 

• new streaming store instructions

• new cache line flush instruction

• new memory fencing instructions

For a detailed description of using cacheability instructions, see 
Chapter 6.

Code Alignment

Because the trace cache (TC) removes the decoding stage from the 
pipeline for frequently executed code, optimizing code alignment for 
decoding is not as important for Pentium 4 and Intel Xeon processors.

For the Pentium M processor, code alignment and the alignment of 
branch target will affect the throughput of the decoder. 
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Careful arrangement of code can enhance cache and memory locality. 
Likely sequences of basic blocks should be laid out contiguously in 
memory. This may involve pulling unlikely code, such as code to handle 
error conditions, out of that sequence. See “Prefetching” section on how 
to optimize for the instruction prefetcher. 

Assembly/Compiler Coding Rule 30. (M impact, H generality) All branch 
targets should be 16-byte aligned. 

Assembly/Compiler Coding Rule 31. (M impact, H generality) If the body 
of a conditional is not likely to be executed, it should be placed in another part 
of the program. If it is highly unlikely to be executed and code locality is an 
issue, the body of the conditional should be placed on a different code page. 

Improving the Performance of Floating-point 
Applications

When programming floating-point applications, it is best to start with a 
high-level programming language such as C, C++ or Fortran. Many 
compilers perform floating-point scheduling and optimization when it is 
possible. However in order to produce optimal code, the compiler may 
need some assistance.

Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 9. (M impact, M generality) Enable the 
compiler’s use of SSE2 instructions with appropriate switches.

Follow this procedure to investigate the performance of your 
floating-point application:

• Understand how the compiler handles floating-point code. 
• Look at the assembly dump and see what transforms are already 

performed on the program. 
• Study the loop nests in the application that dominate the execution 

time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
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• Determine the problem area: bus bandwidth, cache locality, trace 
cache bandwidth or instruction latency. Focus on optimizing the 
problem area. For example, adding prefetch instructions will not 
help if the bus is already saturated. If trace cache bandwidth is the 
problem, added prefetch µops may degrade performance.

For floating-point coding, follow all the general coding  
recommendations discussed in this chapter, including:
• blocking the cache
• using prefetch
• enabling vectorization
• unrolling loops
User/Source Coding Rule 10. (H impact, ML generality) Make sure your 
application stays in range to avoid denormal values, underflows. 

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 11. (M impact, ML generality) Do not use double 
precision unless necessary. Set the precision control (PC) field in the x87 FPU 
control word to “Single Precision”. This allows single precision (32-bit) 
computation to complete faster on some operations (for example, divides due 
to early out).  However, be careful of introducing more than a total of two 
values for the floating point control word, or there will be a large performance 
penalty.  See “Floating-point Modes”. 

User/Source Coding Rule 12. (H impact, ML generality) Use fast 
float-to-int routines. If coding these routines, use the cvttss2si, 
cvttsd2si instructions if coding with Streaming SIMD Extensions 2. 

Many libraries do more work than is necessary. The instructions 
cvttss2si/cvttsd2si save many µops and some store-forwarding 
delays over some compiler implementations. This avoids changing the 
rounding mode.

User/Source Coding Rule 13. (M impact, ML generality) Break dependence 
chains where possible. 
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For example, to calculate z = a + b + c + d, instead of:

x = a + b;

y = x + c;

z = y + d;

use:

x = a + b;

y = c + d;

z = x + y;

User/Source Coding Rule 14. (M impact, ML generality) Usually, math 
libraries take advantage of the transcendental instructions (for example, 
fsin) when evaluating elementary functions. If there is no critical need to 
evaluate the transcendental functions using the extended precision of 80 bits, 
applications should consider alternate, software-based approach, such as 
look-up-table-based algorithm using interpolation techniques. It is possible to 
improve transcendental performance with these techniques by choosing the 
desired numeric precision, the size of the look-up tableland taking advantage 
of the parallelism of the Streaming SIMD Extensions and the Streaming SIMD 
Extensions 2 instructions. 

Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed 
microprocessors frequently must deal with situations that need special 
handling in hardware or code. The Pentium 4 processor is optimized to 
handle the most common cases of such situations efficiently.

Floating-point Exceptions

The most frequent situation that can lead to performance degradation 
involve masked floating-point exception conditions such as:

• arithmetic overflow

• arithmetic underflow 

• denormalized operand
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Refer to Chapter 4 of the IA-32 Intel® Architecture Software 
Developer’s Manual, Volume 1 for the definition of overflow, underflow 
and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:

• directly: when they are used as operands

• indirectly: when they are produced as a result of an underflow 
situation

If a floating-point application never underflows, the denormals can only 
come from floating-point constants. 

User/Source Coding Rule 15. (H impact, ML generality) Denormalized 
floating-point constants should be avoided as much as possible. 

Denormal and arithmetic underflow exceptions can occur during the 
execution of either x87 instructions or SSE/SSE2 instructions. The 
Pentium 4 processor can handle these exceptions more efficiently when 
executing SSE/SSE2 instructions and when speed is more important 
than complying to IEEE standard. The following two paragraphs give 
recommendations on how to optimize your code to reduce performance 
degradations related to floating-point exceptions.

Dealing with floating-point exceptions in x87 FPU code

Every special situation listed in the “Floating-point Exceptions” section 
is costly in terms of performance. For that reason, x87 FPU code should 
be written to avoid these situations.

There are basically three ways to reduce the impact of 
overflow/underflow situations with x87 FPU code:

• Choose floating-point data types that are large enough to 
accommodate results without generating arithmetic overflow and 
underflow exceptions.

• Scale the range of operands/results to reduce as much as possible the 
number of arithmetic overflow/underflow situations.
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• Keep intermediate results on the x87 FPU register stack until the 
final results have been computed and stored to memory. Overflow 
or underflow is less likely to happen when intermediate results are 
kept in the x87 FPU stack (this is because data on the stack is stored 
in double extended-precision format and overflow/underflow 
conditions are detected accordingly). 

Denormalized floating-point constants (which are read only, and hence 
never change) should be avoided and replaced, if possible, with zeros of 
the same sign.

Dealing with Floating-point Exceptions in SSE and SSE2 
code

Most special situations that involve masked floating-point exceptions 
are handled efficiently on the Pentium 4 processor. When a masked 
overflow exception occurs while executing SSE or SSE2 code, the 
Pentium 4 processor handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually 
treated according to the IEEE 754 specification. If a programmer is 
willing to trade pure IEEE 754 compliance for speed, two non-IEEE 
754 compliant modes are provided to speed situations where underflows 
and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically 
converted to a zero with the correct sign. Although this behavior is not 
IEEE 754 compliant, it is provided for use in applications where 
performance is more important than IEEE 754 compliance. Since 
denormal results are not produced when the FTZ mode is enabled, the 
only denormal floating-point numbers that can be encountered in FTZ 
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands 
efficiently when running an SSE application. When the DAZ mode is 
enabled, input denormals are treated as zeros with the same sign. 
Enabling the DAZ mode is the way to deal with denormal floating-point 
constants when performance is the objective.
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If departing from IEEE 754 specification is acceptable and if 
performance is critical, run an SSE/SSE2 application with FTZ and 
DAZ modes enabled.

Floating-point Modes

On the Pentium III processor, the FLDCW instruction is an expensive 
operation. On the Pentium 4 processor, FLDCW is improved for situations 
where an application alternates between two constant values of the x87 
FPU control word (FCW), such as when performing conversions to 
integers.

Specifically, the optimization for FLDCW allows programmers to 
alternate between two constant values efficiently. For the FLDCW 
optimization to be effective, the two constant FCW values are only 
allowed to differ on the following 5 bits in the FCW:

FCW[8-9] precision control

FCW[10-11] rounding control

FCW[12] infinity control

If programmers need to modify other bits (for example: mask bits) in the 
FCW, the FLDCW instruction is still an expensive operation.

In situations where an application cycles between three (or more) 
constant values, FLDCW optimization does not apply and the performance 
degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, 
take advantage of the optimization of the FLDCW instruction to alternate 
between only these two constant FCW values, and devise some means 

NOTE.  The DAZ mode is available with both the SSE 
and SSE2 extensions, although the speed improvement 
expected from this mode is fully realized only in SSE 
code.
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to accomplish the task that requires the 3rd FCW value without actually 
changing the FCW to a third constant value. An alternative solution is to 
structure the code so that, for periods of time, the application alternates 
between only two constant FCW values. When the application later 
alternates between a pair of different FCW values, the performance 
degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate FTZ and 
DAZ mode values. Consequently, the SIMD control word does not have 
the short latencies that the floating-point control register does. A read of 
the MXCSR register has a fairly long latency, and a write to the register is 
a serializing instruction.

There is no separate control word for single and double precision; both 
use the same modes. Notably, this applies to both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 32. (H impact, M generality) Minimize 
changes to bits 8-12 of the floating point control word.  Changes for more than 
two values (each value being a combination of the following bits: precision, 
rounding and infinity control, and the rest of bits in FCW) leads to delays that 
are on the order of the pipeline depth.

Rounding Mode

Many libraries provide the float-to-integer library routines that convert 
floating-point values to integer. Many of these libraries conform to 
ANSI C coding standards which state that the rounding mode should be 
truncation. With the Pentium 4 processor, one can use the cvttsd2si 
and cvttss2si instructions to convert operands with truncation and 
without ever needing to change rounding modes. The cost savings of 
using these instructions over the methods below is enough to justify 
using Streaming SIMD Extensions and Streaming SIMD Extensions 2 
wherever possible when truncation is involved.

For x87 floating point, the fist instruction uses the rounding mode 
represented in the floating-point control word (FCW). The rounding 
mode is generally round to nearest, therefore many compiler writers 
implement a change in the rounding mode in the processor in order to 
conform to the C and FORTRAN standards. This implementation 
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requires changing the control word on the processor using the fldcw 
instruction. For a change in the rounding, precision, and infinity bits; 
use the fstcw instruction to store the floating-point control word. Then 
use the fldcw instruction to change the rounding mode to truncation.

In a typical code sequence that changes the rounding mode in the FCW, 
a fstcw instruction is usually followed by a load operation. The load 
operation from memory should be a 16-bit operand to prevent store- 
forwarding problem. If the load operation on the previously-stored 
FCW word involves either an 8-bit or a 32-bit operand, this will cause a 
store-forwarding problem due to mismatch of the size of the data 
between the store operation and the load operation. 

Make sure that the write and read to the FCW are both 16-bit operations, 
to avoid store-forwarding problems.

If there is more than one change to rounding, precision and infinity bits 
and the rounding mode is not important to the result; use the algorithm 
in Example 2-23 to avoid synchronization issues, the overhead of the 
fldcw instruction and having to change the rounding mode. The 
provided example suffers from a store-forwarding problem which will 
lead to a performance penalty. However, its performance is still better 
than changing the rounding, precision and infinity bits among more than 
two values.  
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Example 2-23 Algorithm to Avoid Changing the Rounding Mode

_fto132proc

lea ecx,[esp-8]

sub esp,16 ; allocate frame

and ecx,-8 ; align pointer on boundary of 8

fld st(0)  ; duplicate FPU stack top

fistp qword ptr[ecx]

fild qword ptr[ecx]

mov edx,[ecx+4]; high dword of integer

mov eax,[ecx] ; low dword of integer

test eax,eax

je integer_QnaN_or_zero

arg_is_not_integer_QnaN:

fsubp st(1),st ; TOS=d-round(d),

; { st(1)=st(1)-st & pop ST}

test edx,edx ; what’s sign of integer

continued
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Assembly/Compiler Coding Rule 33. (H impact, L generality) Minimize the 
number of changes to the rounding mode. Do not use changes in the rounding 
mode to implement the floor and ceiling functions if this involves a total of 
more than two values of the set of rounding, precision and infinity bits.

jns positive ; number is negative

fstp dword ptr[ecx]; result of subtraction

mov ecx,[ecx] ; dword of diff(single-
; precision)

add esp,16

xor ecx,80000000h

add ecx,7fffffffh ; if diff<0 then decrement
; integer

adc eax,0 ; inc eax (add CARRY flag)

ret

positive:

fstp dword ptr[ecx] ; 17-18 result of subtraction

mov ecx,[ecx] ; dword of diff(single precision)

add esp,16

add ecx,7fffffffh ; if diff<0 then decrement integer

sbb eax,0 ; dec eax (subtract CARRY flag)

ret

integer_QnaN_or_zero:

test edx,7fffffffh

jnz arg_is_not_integer_QnaN

add esp,16

ret

Example 2-23 Algorithm to Avoid Changing the Rounding Mode (continued)
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Precision

If single precision is adequate, use it instead of double precision.  This is 
true because:

• Single precision operations allow the use of longer SIMD vectors, 
since more single precision data elements can fit in a register.

• If the precision control (PC) field in the x87 FPU control word is set 
to “Single Precision,” the floating-point divider can complete a 
single-precision computation much faster than either a 
double-precision computation or an extended double-precision 
computation. If the PC field is set to “Double Precision,” this will 
enable those x87 FPU operations on double-precision data to 
complete faster than extended double-precision computation. These 
characteristics affect computations including floating-point divide 
and square root.

Assembly/Compiler Coding Rule 34. (H impact, L generality) Minimize the 
number of changes to the precision mode.

Improving Parallelism and the Use of FXCH

The x87 instruction set relies on the floating point stack for one of its 
operands. If the dependence graph is a tree, which means each 
intermediate result is used only once and code is scheduled carefully, it 
is often possible to use only operands that are on the top of the stack or 
in memory, and to avoid using operands that are buried under the top of 
the stack. When operands need to be pulled from the middle of the 
stack, an fxch instruction can be used to swap the operand on the top of 
the stack with another entry in the stack. 

The fxch instruction can also be used to enhance parallelism. 
Dependent chains can be overlapped to expose more independent 
instructions to the hardware scheduler. An fxch instruction may be 
required to effectively increase the register name space so that more 
operands can be simultaneously live.
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Note, however, that fxch inhibits issue bandwidth in the trace cache. It 
does this not only because it consumes a slot, but also because of issue 
slot restrictions imposed on fxch. If the application is not bound by 
issue or retirement bandwidth, fxch will have no impact.

The Pentium 4 processor’s effective instruction window size is large 
enough to permit instructions that are as far away as the next iteration to 
be overlapped. This often obviates the need to use fxch to enhance 
parallelism.

The fxch instruction should be used only when it’s needed to express an 
algorithm or to enhance parallelism. If the size of register name space is 
a problem, the use of XMM registers is recommended (see the section).

Assembly/Compiler Coding Rule 35. (M impact, M generality) Use fxch 
only where necessary to increase the effective name space. 

This in turn allows instructions to be reordered to make instructions 
available to be executed in parallel. Out-of-order execution precludes 
the need for using fxch to move instructions for very short distances. 

x87 vs. SIMD Floating-point Trade-offs

There are a number of differences between x87 floating-point code and 
scalar floating-point code (using SSE and SSE2). The following 
differences drive decisions about which registers and instructions to use:

• When an input operand for a SIMD floating-point instruction 
contains values that are less than the representable range of the data 
type, a denormal exception occurs. This causes significant 
performance penalty. SIMD floating-point operation has a 
flush-to-zero mode. In flush-to-zero mode, the results will not 
underflow. Therefore subsequent computation will not face the 
performance penalty of handling denormal input operands. For 
example, in the case of 3D applications with low lighting levels, 
using flush-to-zero mode can improve performance by as much as 
50% for applications with large numbers underflows.
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• Scalar floating point has lower latencies. This generally does not 
matter much as long as resource utilization is low.

• Only x87 supports transcendental instructions.

• x87 supports 80-bit precision, double extended floating point. 
Streaming SIMD Extensions support a maximum of 32-bit 
precision, and Streaming SIMD Extensions 2 supports a maximum 
of 64-bit precision.

• On the Pentium 4 processor, floating point adds are pipelined for 
x87 but not for scalar floating-point code. Floating point multiplies 
are not pipelined for either case. For applications with a large 
number of floating-point adds relative to the number of 
multiplies, x87 may be a better choice.

• Scalar floating-point registers may be accessed directly, avoiding 
fxch and top-of-stack restrictions. On the Pentium 4 processor, the 
floating-point register stack may be used simultaneously with XMM 
registers. The same hardware is used for both kinds of instructions, 
but the added name space may be beneficial.

• The cost of converting from floating point to integer with truncation 
is significantly lower with Streaming SIMD Extensions 2 and 
Streaming SIMD Extensions in the Pentium 4 processor than with 
either changes to the rounding mode or the sequence prescribed in 
the Example 2-23 above.

Assembly/Compiler Coding Rule 36. (M impact, M generality) Use 
Streaming SIMD Extensions 2 or Streaming SIMD Extensions unless you need 
an x87 feature.  Most SSE2 arithmetic operations have shorter latency then 
their X87 counterpart and they eliminate the overhead associated with the 
management of the X87 register stack.

Memory Operands

Double-precision floating-point operands that are eight-byte aligned 
have better performance than operands that are not eight-byte aligned, 
since they are less likely to incur penalties for cache and MOB splits. 
Floating-point operation on a memory operands require that the operand 
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be loaded from memory.  This incurs an additional µop, which can have 
a minor negative impact on front end bandwidth.  Additionally, memory 
operands may cause a data cache miss, causing a penalty.

Floating-Point Stalls

Floating-point instructions have a latency of at least two cycles. But, 
because of the out-of-order nature of Pentium II and the subsequent 
processors, stalls will not necessarily occur on an instruction or µop 
basis. However, if an instruction has a very long latency such as an 
fdiv, then scheduling can improve the throughput of the overall 
application.

x87 Floating-point Operations with Integer Operands

For Pentium 4 processor, splitting floating-point operations (fiadd, 
fisub, fimul, and fidiv) that take 16-bit integer operands into two 
instructions (fild and a floating-point operation) is more efficient. 
However, for floating-point operations with 32-bit integer operands, 
using fiadd, fisub, fimul, and fidiv is equally efficient compared 
with using separate instructions.

Assembly/Compiler Coding Rule 37. (M impact, L generality) Try to use 
32-bit operands rather than 16-bit operands for fild.  However, do not do so 
at the expense of introducing a store forwarding problem by writing the two 
halves of the 32-bit memory operand separately.

x87 Floating-point Comparison Instructions

On Pentium II and the subsequent processors, the fcomi and fcmov 
instructions should be used when performing floating-point 
comparisons. Using (fcom, fcomp, fcompp) instructions typically 
requires additional instruction like fstsw. The latter alternative causes 
more µops to be decoded, and should be avoided.
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Transcendental Functions

If an application needs to emulate math functions in software due to 
performance or other reasons (see the “Guidelines for Optimizing 
Floating-point Code” section), it may be worthwhile to inline math 
library calls because the call and the prologue/epilogue involved with 
such calls can significantly affect the latency of operations.

Note that transcendental functions are supported only in x87 floating 
point, not in Streaming SIMD Extensions or Streaming SIMD 
Extensions 2.

Instruction Selection
This section explains how to generate optimal assembly code. The listed 
optimizations have been shown to contribute to the overall performance 
at the application level on the order of 5%. Performance gain for 
individual applications may vary.

The recommendations are prioritized as follows:

• Choose instructions with shorter latencies and fewer µops.

• Use optimized sequences for clearing and comparing registers.

• Enhance register availability.

• Avoid prefixes, especially more than one prefix.

Assembly/Compiler Coding Rule 38. (M impact, H generality) Choose 
instructions with shorter latencies and fewer micro-ops. Favor 
single-micro-operation instructions. 

A compiler may be already doing a good job on instruction selection as 
it is. In that case, user intervention usually is not necessary.

Assembly/Compiler Coding Rule 39. (M impact, L generality) Avoid 
prefixes, especially multiple non-0F-prefixed opcodes.

Assembly/Compiler Coding Rule 40. (M impact, L generality) Do not use 
many segment registers. 
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On the Pentium M processor, there is only one level of renaming of 
segment registers.

Complex Instructions

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid 
using complex instructions (for example, enter, leave, or loop) that have 
more than four µops and require multiple cycles to decode. Use sequences of 
simple instructions instead.

Complex instructions may save architectural registers, but incur a 
penalty of 4 µops to set up parameters for the microcode ROM.

Use of the lea Instruction

In many cases, the lea instruction or a sequence of lea, add, sub and 
shift instructions can replace constant multiply instructions. The lea 
instruction can also be used as a multiple operand addition instruction, 
for example: 

lea ecx, [eax + ebx + 4 + a]

Using lea in this way may avoids some register usage by not tying up 
registers for the operands of arithmetic instructions. It may also save 
code space.

The lea instruction is not always as fast on the Pentium 4 processor as it 
is on Pentium II and Pentium III processors. This is due to the fact that 
the lea instruction can produce a shift µop.

If the lea instruction uses a shift by a constant amount then the latency 
of the sequence of µops is shorter if adds are used instead of a shift, and 
the lea instruction may be replaced with an appropriate sequence of 
µops. This, however, this increases the total number of µops, leading to 
a trade-off.
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Assembly/Compiler Coding Rule 42. (ML impact, M generality) If a lea 
instruction using the scaled index is on the critical path, a sequence with adds 
may be better. If code density and bandwidth out of the trace cache are the 
critical factor, then use the lea instruction. 

Use of the inc and dec Instructions

The inc and dec instructions modify only a subset of the bits in the flag 
register. This creates a dependence on all previous writes of the flag 
register. This is especially problematic when these instructions are on 
the critical path because they are used to change an address for a load on 
which many other instructions depend. 

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc and 
dec instructions should be replaced with an add or sub instruction, because 
add and sub overwrite all flags, whereas inc and dec do not, therefore 
creating false dependencies on earlier instructions that set the flags.   

Use of the shift and rotate Instructions

The shift and rotate instructions have a longer latency on the 
Pentium 4 processor than on previous processor generations. The 
latency of a sequence of adds will be shorter for left shifts of three or 
less. Fixed and variable shifts have the same latency. 

The rotate by immediate and rotate by register instructions are more 
expensive than a shift. The rotate by 1 instruction has the same 
latency as a shift.

Assembly/Compiler Coding Rule 44. (ML impact, L generality) Avoid 
rotate by register or rotate by immediate instructions. If possible, replace 
with a rotate by 1 instruction.
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Integer and Floating-point Multiply

On Pentium 4 and Intel Xeon processors, the integer multiply 
operations, mul and imul, are executed in the floating-point unit so 
these instructions should not be executed in parallel with a 
floating-point instruction. They also incur extra latency due to being 
executed on the floating-point unit.

The floating-point multiply instruction (fmul) delays for one cycle if the 
immediately preceding cycle executed an fmul. The multiplier can only 
accept a new pair of operands every other cycle.

Assembly/Compiler Coding Rule 45. (M impact, MH generality)  Replace 
integer multiplies by a small constant with two or more add and lea 
instructions, especially when these multiplications is part of a dependence 
chain.

Integer Divide

Typically, an integer divide is preceded by a cwd or cdq instruction. 
Depending on the operand size, divide instructions use DX:AX or 
EDX:EAX for the dividend. The cwd or cdq instructions sign-extend AX or 
EAX into DX or EDX, respectively. These instructions are denser encoding 
than a shift and move would be, but they generate the same number of 
µops. If AX or EAX are known to be positive, replace these instructions 
with 

xor dx, dx

or

xor edx, edx

Assembly/Compiler Coding Rule 46. (ML impact, L generality) Use cdw or 
cdq instead of a shift and a move. Replace these with an xor whenever AX 
or EAX is known to be positive.
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Operand Sizes

The Pentium 4 processor does not incur a penalty for partial register 
accesses as does the Pentium M processor, since every operation on a 
partial register updates the whole register. However, this does mean that 
there may be false dependencies between any references to partial 
registers.  

Example 2-24 demonstrates a series of false and real dependencies 
caused by referencing partial registers.

If instructions 4 and 6 (see Example 2-24) are changed to use a movzx 
instruction instead of a mov, then the dependences of instructions 4 on 2 
(and transitively 1 before it), and instructions 6 on 5 are broken.  This 

Example 2-24 Dependencies Caused by Referencing Partial Registers

1: add ah, bh   

2: add al, 3   ; instruction 2 has a false dependency on 1

3: mov bl, al ; depends on 2, but the dependence is real

4: mov ah, ch ; instruction 4 has a false dependency on 2 

5: sar eax, 16 ; this wipes out the al/ah/ax part, so the

 ; result really doesn’t depend on them programatically,

; but the processor must deal with the real dependency on 
al/ah/ax 

6: mov al, bl ; instruction 6 has a real dependency on 5 

7: add ah, 13 ; instruction 7 has a false dependency on 6 

8: imul dl ; instruction 8 has a false dependency on 7

; because al is implicitly used

9: mov al, 17 ; instruction 9 has a false dependency on 7 

; and a real dependency on 8

10: imul cx : implicitly uses ax and writes to dx, hence

; a real dependency
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creates two independent chains of computation instead of one serial one. 
In a tight loop with limited parallelism, the resulting optimization can 
yield several percent performance improvement.

Assembly/Compiler Coding Rule 47. (ML impact, L generality) Use simple 
instructions that are less than eight bytes in length.

Assembly/Compiler Coding Rule 48. (M impact, MH generality) Avoid 
using prefixes to change the size of immediate and displacement.  

Long instructions (more than seven bytes) limit the number of decoded 
instructions per cycle on the Pentium M processor. Each prefix adds one 
byte to the length of instruction, possibly limiting the decoder’s 
throughput. In addition, multiple prefixes can only be decoded by the 
first decoder. These prefixes also incur a delay when decoded. If 
multiple prefixes or a prefix that changes the size of an immediate or 
displacement cannot be avoided, schedule them behind instructions that 
stall the pipe for some other reason.

Assembly/Compiler Coding Rule 49. (M impact, MH generality) Break 
dependences on portions of registers between instructions by operating on 
32-bit registers instead of partial registers.  For moves, this can be 
accomplished with 32-bit moves or by using movzx. 

On Pentium M processors, the movsx and movzx instructions both take a 
single µop, whether they move from a register or memory. On Pentium 
4 processors, the movsx takes an additional µop. This is likely to cause 
less delay than the partial register update problem mentioned above, but 
the performance gain may vary. If the additional µop is a critical 
problem, movsx can sometimes be used as alternative. 

Sometimes sign-extended semantics can be maintained by 
zero-extending operands. For example, the C code in the following 
statements does not need sign extension, nor does it need prefixes for 
operand size overrides:

static short int a, b;

if (a == b) {

   . . .

}
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Code for comparing these 16-bit operands might be:

movzw eax, [a]

movzw ebx, [b]

cmp eax, ebx

These circumstances tend to be common. However, the technique will 
not work if the compare is for greater than, less than, greater than or 
equal, and so on; or if the values in eax or ebx are to be used in another 
operation where sign extension is required.

Assembly/Compiler Coding Rule 50. (M impact, M generality) Try to use 
zero extension or operate on 32-bit operands instead of using moves with sign 
extension.

The trace cache can be packed more tightly when instructions with 
operands that can only be represented as 32 bits are not adjacent. 

Assembly/Compiler Coding Rule 51. (ML impact, M generality) Avoid 
placing instructions that use 32-bit immediates which cannot be encoded as a 
sign-extended 16-bit immediate near each other. Try to schedule µops that 
have no immediate immediately before or after µops with 32-bit immediates.

Address Calculations

Use the addressing modes for computing addresses rather than using the 
general-purpose computation. Internally, memory reference instructions 
can have four operands: 

• relocatable load-time constant 

• immediate constant 

• base register 

• scaled index register

In the segmented model, a segment register may constitute an additional 
operand in the linear address calculation. In many cases, several integer 
instructions can be eliminated by fully using the operands of memory 
references.
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Clearing Registers

Pentium 4 processor provides special support to xor, sub, or pxor 
operations when executed within the same register. This recognizes that 
clearing a register does not depend on the old value of the register. The 
xorps and xorpd instructions do not have this special support. They 
cannot be used to break dependence chains.

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Use xor, 
sub, or pxor to set a register to 0, or to break a false dependence chain 
resulting from re-use of registers. In contexts where the condition codes must 
be preserved, move 0 into the register instead. This requires more code space 
than using xor and sub, but avoids setting the condition codes.

Compares

Use test when comparing a value in a register with zero. Test 
essentially ands the operands together without writing to a destination 
register. Test is preferred over and because and produces an extra result 
register. Test is better than cmp ..., 0 because the instruction size is 
smaller.

Use test when comparing the result of a logical and with an immediate 
constant for equality or inequality if the register is eax for cases such 
as:

if (avar & 8) { }

The test instruction can also be used to detect rollover of modulo a 
power of 2. For example, the C code:

if ( (avar % 16) == 0 ) { }

can be implemented using:

test eax, 0x0F

jnz  AfterIf
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Assembly/Compiler Coding Rule 53. (ML impact, M generality) Use the 
test instruction instead of and when the result of the logical and is not used. 
This saves uops in execution. Use a test if a register with itself instead of a 
cmp of the register to zero, this saves the need to encode the zero and saves 
encoding space.  Avoid comparing a constant to a memory operand. It is 
preferable to load the memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a 
branch. Because most Intel architecture instructions set the condition 
codes as part of their execution, the compare instruction may be 
eliminated. Thus the operation can be tested directly by a jcc 
instruction. The notable exceptions are mov and lea. In these cases, use 
test.

Assembly/Compiler Coding Rule 54. (ML impact, M generality)  Eliminate 
unnecessary compare with zero instructions by using the appropriate 
conditional jump instruction when the flags are already set by a preceding 
arithmetic instruction. If necessary, use a test instruction instead of a 
compare. Be certain that any code transformations made do not introduce 
problems with overflow.

Floating Point/SIMD Operands

In initial Pentium 4 processor implementations, the latency of MMX or 
SIMD floating point register to register moves is significant. This can 
have implications for register allocation.

Moves that write a portion of a register can introduce unwanted 
dependences. The movsd reg, reg instruction writes only the bottom 
64 bits of a register, not to all 128 bits. This introduces a dependence on 
the preceding instruction that produces the upper 64 bits (even if those 
bits are not longer wanted). The dependence inhibits register renaming, 
and thereby reduces parallelism. 
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Use movapd as an alternative; it writes all 128 bits. Even though this 
instruction has a longer latency, the µops for movapd use a different 
execution port and this port is more likely to be free. The change can 
impact performance. There may be exceptional cases where the latency 
matters more than the dependence or the execution port.

Assembly/Compiler Coding Rule 55. (M impact, ML generality) Avoid 
introducing dependences with partial floating point register writes, e.g. from 
the movsd xmmreg1, xmmreg2 instruction.  Use the movapd xmmreg1, 
xmmreg2 instruction instead.

The movsd xmmreg, mem instruction writes all 128 bits and breaks a 
dependence.

The movupd from memory instruction performs two 64-bit loads, but 
requires additional µops to adjust the address and combine the loads 
into a single register. This same functionality can be obtained using 
movsd xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd xmmreg1, 
xmmreg2, which uses fewer µops and can be packed into the trace cache 
more effectively. The latter alternative has been found to provide several 
percent of performance improvement in some cases. Its encoding 
requires more instruction bytes, but this is seldom an issue for the 
Pentium 4 processor. The store version of movupd is complex and slow, 
so much so that the sequence with two movsd and a unpckhpd should 
always be used.

Assembly/Compiler Coding Rule 56. (ML impact, L generality) Instead of 
using movupd xmmreg1, mem  for a unaligned 128-bit load, use movsd 
xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd xmmreg1, 
xmmreg2.  If the additional register is not available, then use movsd 
xmmreg1, mem; movhpd xmmreg1, mem+8.

Assembly/Compiler Coding Rule 57. (M impact, ML generality) Instead of 
using movupd mem, xmmreg1 for a store, use movsd mem, xmmreg1; 
unpckhpd xmmreg1, xmmreg1; movsd mem+8, xmmreg1 instead.
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Prolog Sequences

Assembly/Compiler Coding Rule 58. (M impact, MH generality) In 
routines that do not need a frame pointer and that do not have called routines 
that modify ESP, use ESP as the base register to free up EBP. This optimization 
does not apply in the following cases: a routine is called that leaves ESP 
modified upon return, for example, alloca; routines that rely on EBP for 
structured or C++ style exception handling; routines that use setjmp and 
longjmp; routines that use EBP to align the local stack on an 8- or 16-byte 
boundary; and routines that rely on EBP debugging. 

If you are not using the 32-bit flat model, remember that EBP cannot be 
used as a general purpose base register because it references the stack 
segment.

Code Sequences that Operate on Memory Operands

Careful management of memory operands can improve performance. 
Instructions of the form “OP REG, MEM” can reduce register pressure by 
taking advantage of scratch registers that are not available to the 
compiler.

Assembly/Compiler Coding Rule 59. (M impact, ML generality) For 
arithmetic or logical operations that have their source operand in memory and 
the destination operand is in a register, attempt a strategy that initially loads 
the memory operand to a register followed by a register to register ALU 
operation. Next, attempt to remove redundant loads by identifying loads from 
the same memory location. Finally, combine the remaining loads with their 
corresponding ALU operations.

The recommended strategy follows:

1. Initially, operate on register operands and use explicit load and 
store instructions, minimizing the number of memory accesses by 
merging redundant loads.

2. In a subsequent pass, free up the registers that contain the operands 
that were in memory for other uses by replacing any detected code 
sequence of the form shown in Example 2-25 with OP REG2, MEM1.
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Using memory as a destination operand may further reduce register 
pressure at the slight risk of making trace cache packing more difficult.

On the Pentium 4 processor, the sequence of loading a value from 
memory into a register and adding the results in a register to memory is 
faster than the alternate sequence of adding a value from memory to a 
register and storing the results in a register to memory. The first 
sequence also uses one less µop than the latter.

Assembly/Compiler Coding Rule 60. (ML impact, M generality)  Give 
preference to adding a register to memory (memory is the destination) instead 
of adding memory to a register. Also, give preference to adding a register to 
memory over loading the memory, adding two registers and storing the result.

Assembly/Compiler Coding Rule 61. (M impact, M generality) When an 
address of a store is unknown, subsequent loads cannot be scheduled to 
execute out of order ahead of the store, limiting the out of order execution of 
the processor. When an address of a store is computed by a potentially long 
latency operation (such as a load that might miss the data cache) attempt to 
reorder subsequent loads ahead of the store.

Instruction Scheduling
Ideally, scheduling or pipelining should be done in a way that optimizes 
performance across all processor generations. This section presents 
scheduling rules that can improve the performance of your code on the 
Pentium 4 processor.

Latencies and Resource Constraints

Assembly/Compiler Coding Rule 62. (M impact, MH generality)  Calculate 
store addresses as early as possible to avoid having stores block loads.

Example 2-25 Recombining LOAD/OP Code into REG,MEM Form

LOAD reg1, mem1
... code that does not write to reg1...
OP reg2, reg1
... code that does not use reg1 ...
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Spill Scheduling

The spill scheduling algorithm used by a code generator will be 
impacted by the Pentium 4 processor memory subsystem. A spill 
scheduling algorithm is an algorithm that selects what values to spill to 
memory when there are too many live values to fit in registers. Consider 
the code in Example 2-26, where it is necessary to spill either A, B, or C.

For the Pentium 4 processor, using dependence depth information in 
spill scheduling is even more important than in previous processors. The 
loop- carried dependence in A makes it especially important that A not be 
spilled. Not only would a store/load be placed in the dependence chain, 
but there would also be a data-not-ready stall of the load, costing further 
cycles.

Assembly/Compiler Coding Rule 63. (H impact, MH generality) For small 
loops, placing loop invariants in memory is better than spilling loop-carried 
dependencies.

A possibly counter-intuitive result: in such a situation it is better to put 
loop invariants in memory than in registers, since loop invariants never 
have a load blocked by store data that is not ready.

Scheduling Rules for the Pentium 4 Processor Decoder

The Pentium 4 and Intel Xeon processors have a single decoder that can 
decode instructions at the maximum rate of one instruction per clock. 
Complex instructions must enlist the help of the microcode ROM; see 
Chapter 1, “IA-32 Intel® Architecture Processor Family Overview” for 
details. 

Example 2-26 Spill Scheduling Example Code

LOOP
C := ...
B := ...
A := A + ...
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Because micro-ops are delivered from the trace cache in the common 
cases, decoding rules are not required. 

Scheduling Rules for the Pentium M Processor Decoder

The Pentium M processor has three decoders, but the decoding rules to 
supply micro-ops at high bandwidth are less stringent than those of the 
Pentium III processor. This provides an opportunity to build a front-end 
tracker in the compiler and try to schedule instructions correctly. The 
decoder limitations are as follows:

• The first decoder is capable of decoding one macroinstruction made 
up of four or fewer micro-ops In each clock cycle. It can handle any 
number of bytes up to the maximum of 15. Multiple prefix 
instructions require additional cycles.

• The two additional decoders can each decode one macroinstruction 
per clock cycle (assuming the instruction is one micro-op up to 
seven bytes in length).

• Instructions composed of more than four micro-ops take multiple 
cycles to decode.

Assembly/Compiler Coding Rule 64. (M impact, M generality) Avoid 
putting explicit references to ESP in a sequence of stack operations (POP, PUSH, 
CALL, RET).

Vectorization
This section provides a brief summary of optimization issues related to 
vectorization. Chapters 3, 4 and 5 provide greater detail.

Vectorization is a program transformation which allows special 
hardware to perform the same operation of multiple data elements at the 
same time. Successive processor generations have provided vector 
support through the MMX technology, Streaming SIMD Extensions 
technology and Streaming SIMD Extensions 2. Vectorization is a 
special case of SIMD, a term defined in Flynn’s architecture taxonomy 
to denote a Single Instruction stream capable of operating on Multiple 
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Data elements in parallel. The number of elements which can be 
operated on in parallel range from four single-precision floating point 
data elements in Streaming SIMD Extensions and two double-precision 
floating- point data elements in Streaming SIMD Extensions 2 to 
sixteen byte operations in a 128-bit register in Streaming SIMD 
Extensions 2. Thus the vector length ranges from 2 to 16, depending on 
the instruction extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:

• The compiler may be able to generate SIMD code without 
intervention from the user.

• The user inserts pragmas to help the compiler realize that it can 
vectorize the code.

• The user may write SIMD code explicitly using intrinsics and C++ 
classes.

To help enable the compiler to generate SIMD code 

• avoid global pointers 

• avoid global variables

These may be less of a problem if all modules are compiled 
simultaneously, and whole-program optimization is used.

User/Source Coding Rule 16. (H impact, M generality) Use the smallest 
possible floating-point or SIMD data type, to enable more parallelism with the 
use of a (longer) SIMD vector. For example, use single precision instead of 
double precision where possible.

User/Source Coding Rule 17. (M impact, ML generality) Arrange the 
nesting of loops so that the innermost nesting level is free of inter-iteration 
dependencies. Especially avoid the case where the store of data in an earlier 
iteration happens lexically after the load of that data in a future iteration, 
something which is called a lexically backward dependence. 

The integer part of the SIMD instruction set extensions are primarily 
targeted for 16-bit operands. Not all of the operators are supported for 
32 bits, meaning that some source code will not be able to be vectorized 
at all unless smaller operands are used. 
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User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of 
conditional branches inside loops and consider using SSE instructions to 
eliminate branches. 

User/Source Coding Rule 19. (M impact, ML generality) Keep induction 
(loop) variables expressions simple. 

Miscellaneous
This section explains separate guidelines that do not belong to any 
category described above.

NOPs

Code generators generate a no-operation (NOP) to align instructions. 
The NOPs are recommended for the following operations:

• 1-byte: xchg EAX, EAX

• 2-byte: mov reg, reg

• 3-byte: lea reg, 0 (reg) (8-bit displacement)

• 6-byte: lea reg, 0 (reg) (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine 
except to advance the EIP. Because NOPs require hardware resources to 
decode and execute, use the least number of NOPs to achieve the 
desired padding. 

The one byte NOP, xchg EAX,EAX, has special hardware support. 
Although it still consumes a µop and its accompanying resources, the 
dependence upon the old value of EAX is removed. Therefore, this µop 
can be executed at the earliest possible opportunity, reducing the 
number of outstanding instructions. This is the lowest cost NOP 
possible.
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The other NOPs have no special hardware support. Their input and 
output registers are interpreted by the hardware. Therefore, a code 
generator should arrange to use the register containing the oldest value 
as input, so that the NOP will dispatch and release RS resources at the 
earliest possible opportunity. 

Try to observe the following NOP generation priority:

• Select the smallest number of NOPs and pseudo-NOPs to provide 
the desired padding.

• Select NOPs that are least likely to execute on slower execution unit 
clusters.

• Select the register arguments of NOPs to reduce dependencies.

Summary of Rules and Suggestions
To summarize the rules and suggestions specified in this chapter, be 
reminded that coding recommendations are ranked in importance 
according to these two criteria:

• Local impact (referred to earlier as “impact”) – the difference that a 
recommendation makes to performance for a given instance.

• Generality – how frequently such instances occur across all 
application domains.

Again, understand that this ranking is intentionally very approximate, 
and can vary depending on coding style, application domain, and other 
factors. Throughout the chapter you observed references to these criteria 
using the high, medium and low priorities for each recommendation. In 
places where there was no priority assigned, the local impact or 
generality has been determined not to be applicable.

The sections that follow summarize the sets of rules and tuning 
suggestions referenced in the manual.
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User/Source Coding Rules

User/Source Coding Rule 1. (L impact, L generality) If an indirect branch 
has two or more common taken targets, and at least one of those targets are 
correlated with branch history leading up to the branch, then convert the 
indirect branch into a tree where one or more indirect branches are preceded 
by conditional branches to those targets. Apply this “peeling” procedure to the 
common target of an indirect branch that correlates to branch history.  2-22

User/Source Coding Rule 2. (H impact, M generality)   Pad data structures 
defined in the source code so that every data element is aligned to a natural 
operand size address boundary. If the operands are packed in a SIMD 
instruction, align to the packed element size (64- or 128-bit).   2-38

User/Source Coding Rule 3. (M impact, L generality)  Beware of false 
sharing within a cache line (64 bytes) for both Pentium 4, Intel Xeon, and 
Pentium M processors; and within a sector of 128 bytes on Pentium 4 and Intel 
Xeon processors.   2-41

User/Source Coding Rule 4. (H impact, ML generality)  Consider using a 
special memory allocation library to avoid aliasing.  2-45

User/Source Coding Rule 5. (M impact, M generality)  When padding 
variable declarations to avoid aliasing, the greatest benefit comes from 
avoiding aliasing on second-level cache lines, suggesting an offset of 128 bytes 
or more.  2-45

User/Source Coding Rule 6. (H impact, H generality)  Optimization 
techniques such as blocking, loop interchange, loop skewing and packing are 
best done by the compiler. Optimize data structures to either fit in one-half of 
the first-level cache or in the second-level cache; turn on loop optimizations 
in the compiler to enhance locality for nested loops.  2-49

User/Source Coding Rule 7. (M impact, ML generality)  If there is a blend 
of reads and writes on the bus, changing the code to separate these bus 
transactions into read phases and write phases can help performance. Note, 
however, that the order of read and write operations on the bus are not the 
same as they appear in the program.  2-49

User/Source Coding Rule 8. (M impact, H generality) Enable the prefetch 
generation in your compile. Note: As the compiler’s prefetch implementation 
improves, it is expected that its prefetch insertion will outperform manual 
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insertion except for code tuning experts, but this is not always the case. If the 
compiler does not support software prefetching, intrinsics or inline assembly 
may be used to manually insert prefetch instructions.  2-53

User/Source Coding Rule 9. (M impact, M generality) Enable the 
compiler’s use of SSE2 instructions with appropriate switches.  2-54

User/Source Coding Rule 10. (H impact, ML generality)  Make sure your 
application stays in range to avoid denormal values, underflows.  2-55

User/Source Coding Rule 11. (M impact, ML generality)  Do not use double 
precision unless necessary. Set the precision control (PC) field in the x87 FPU 
control word to “Single Precision”. This allows single precision (32-bit) 
computation to complete faster on some operations (for example, divides due 
to early out). However, be careful of introducing more than a total of two 
values for the floating point control word, or there will be a large performance 
penalty.  See “Floating-point Modes”.  2-55

User/Source Coding Rule 12. (H impact, ML generality) Use fast 
float-to-int routines. If coding these routines, use the cvttss2si, 
cvttsd2si instructions if coding with Streaming SIMD Extensions 2. 2-55

User/Source Coding Rule 13. (M impact, ML generality) Break dependence 
chains where possible. 2-55

User/Source Coding Rule 14. (M impact, ML generality) Usually, math 
libraries take advantage of the transcendental instructions (for example, 
fsin) when evaluating elementary functions. If there is no critical need to 
evaluate the transcendental functions using the extended precision of 80 bits, 
applications should consider alternate, software-based approach, such as 
look-up-table-based algorithm using interpolation techniques. It is possible to 
improve transcendental performance with these techniques by choosing the 
desired numeric precision, the size of the look-up tableland taking advantage 
of the parallelism of the Streaming SIMD Extensions and the Streaming SIMD 
Extensions 2 instructions.  2-56

User/Source Coding Rule 15. (H impact, ML generality)  Denormalized 
floating-point constants should be avoided as much as possible.  2-57
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User/Source Coding Rule 16. (H impact, M generality)  Use the smallest 
possible floating-point or SIMD data type, to enable more parallelism with the 
use of a (longer) SIMD vector. For example, use single precision instead of 
double precision where possible.  2-82

User/Source Coding Rule 17. (M impact, ML generality) Arrange the 
nesting of loops so that the innermost nesting level is free of inter-iteration 
dependencies. Especially avoid the case where the store of data in an earlier 
iteration happens lexically after the load of that data in a future iteration, 
something which is called a lexically backward dependence.  2-83

User/Source Coding Rule 18. (M impact, ML generality)  Avoid the use of 
conditional branches inside loops and consider using SSE instructions to 
eliminate branches.  2-83

User/Source Coding Rule 19. (M impact, ML generality) Keep loop 
induction variables expressions simple.  2-83
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Assembly/Compiler Coding Rules

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arran
ge code to make basic blocks contiguous to eliminate unnecessary 
branches.  2-14

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use 
the setcc and cmov instructions to eliminate unpredictable conditional 
branches where possible. Do not do this for predictable branches. Do not 
use these instructions to eliminate all unpredictable conditional branches, 
because using these instructions will incur execution overhead due to 
executing both paths of a conditional branch.  In addition, converting 
conditional branches to cmovs or setcc trades of control flow 
dependence for data dependence and restricts the capability of the out of 
order engine. When tuning, note that all IA-32 based processors have very 
high branch prediction rates. Consistently mispredicted are rare. Use 
these instructions only if the increase in computation time is less than the 
expected cost of a mispredicted branch. 2-14

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange 
code to be consistent with the static branch prediction algorithm: make 
the fall-through code following a conditional branch be the likely target 
for a branch with a forward target, and make the fall-through code 
following a conditional branch be the unlikely target for a branch with a 
backward target.  2-17 

Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Nea
r calls must be matched with near returns, and far calls must be matched 
with far returns. Pushing the return address on the stack and jumping to 
the routine to be called is not recommended since it creates a mismatch in 
calls and returns.  2-20

Assembly/Compiler Coding Rule 5. (MH impact, MH generality)  
Selectively inline a function where doing so decreases code size, or if the 
function is small and the call site is frequently executed. 2-20

Assembly/Compiler Coding Rule 6. (H impact, M generality) Do not 
inline a function if doing so increases the working set size beyond what 
will fit in the trace cache.  2-20
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Assembly/Compiler Coding Rule 7. (ML impact, ML generality) If 
there are more than 16 nested calls and returns in rapid succession, 
consider transforming the program, for example, with inline, to reduce the 
call depth.  2-20

Assembly/Compiler Coding Rule 8. (ML impact, ML generality)  
Favor inlining small functions that contain branches with poor prediction 
rates. If a branch misprediction results in a RETURN being prematurely 
predicted as taken, a performance penalty may be incurred.  2-20

Assembly/Compiler Coding Rule 9. (L impact, L generality) If the last 
statement in  a function is a call to another function, consider converting 
the call to a jump. This will save the call/ return overhead as well as an 
entry in the return stack buffer.  2-20

Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not 
put more than four branches in 16-byte chunks. 2-20

Assembly/Compiler Coding Rule 11. (M impact, L generality) Do not 
put more than two end loop branches in a 16-byte chunk.  2-21

Assembly/Compiler Coding Rule 12. (M impact, MH generality) If the 
average number of total iterations is less than or equal to 100, use a 
forward branch to exit the loop.  2-21

Assembly/Compiler Coding Rule 13. (M impact, L generality) When 
indirect branches are present, try to put the most likely target of an 
indirect branch immediately following that indirect branch. Alternatively, 
if indirect branches are common but they cannot be predicted by branch 
prediction hardware, then follow the indirect branch with a UD2 
instruction, which will stop the processor from decoding down the 
fall-through path.  2-21

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll 
small loops until the overhead of the branch and the induction variable 
accounts, generally, for less than about 10% of the execution time of the 
loop.  2-25

Assembly/Compiler Coding Rule 15. (H impact, M generality) Avoid 
unrolling loops excessively, as this may thrash the trace cache or 
instruction cache.  2-25
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Assembly/Compiler Coding Rule 16. (M impact, M generality) Unroll 
loops that are frequently executed and that have a predictable number of 
iterations to reduce the number of iterations to 16 or fewer, unless this 
increases code size so that the working set no longer fits in the trace 
cache.  If the loop body contains more than one conditional branch, then 
unroll so that the number of iterations is 16/(# conditional branches).  
2-25

Assembly/Compiler Coding Rule 17. (H impact, H generality) Align 
data on natural operand size address boundaries.  If the data will be 
accesses with vector instruction loads and stores, align the data on 
16-byte boundaries.  2-28

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass 
parameters in registers instead of on the stack where possible. Passing 
arguments on the stack is a case of store followed by a reload. While this 
sequence is optimized in IA-32 processors by providing the value to the 
load directly from the memory order buffer without the need to access the 
data cache, floating point values incur a significant latency in forwarding. 
Passing floating point argument in (preferably XMM) registers should 
save this long latency operation.  2-31

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load 
that forwards from a store must have the same address start point and 
therefore the same alignment as the store data.  2-32

Assembly/Compiler Coding Rule 20. (H impact, M generality) The 
data of a load which is forwarded from a store must be completely 
contained within the store data.  2-32

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is 
necessary to extract a non-aligned portion of stored data, read out the 
smallest aligned portion that completely contains the data and shift/mask 
the data as necessary.  2-33

Assembly/Compiler Coding Rule 22. (MH impact, ML generality)  
Avoid several small loads after large stores to the same area of memory by 
using a single large read and register copies as needed.  2-33
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Assembly/Compiler Coding Rule 23. (H impact, MH generality)  
Where it is possible to do so without incurring other penalties, prioritize 
the allocation of variables to registers, as in register allocation and for 
parameter passing to minimize the likelihood and impact of store- 
forwarding problems. Try not to store-forward data generated from a long 
latency instruction, e.g. mul, div. Avoid store-forwarding data for 
variables with the shortest store-load distance. Avoid store-forwarding 
data for variables with many and/or long dependence chains, and 
especially avoid including a store forward on a loop-carried dependence 
chain.  2-37

Assembly/Compiler Coding Rule 24. (H impact, M generality) Try to 
arrange data structures such that they permit sequential access.  2-40

Assembly/Compiler Coding Rule 25. (H impact, M generality) If 
64-bit data is ever passed as a parameter or allocated on the stack, make 
sure that the stack is aligned to an 8-byte boundary.  2-41

Assembly/Compiler Coding Rule 26. (H impact, MH generality) Lay 
out data or order computation to avoid having cache lines that have linear 
addresses that are a multiple of 64 KB apart in the same working set. 
Avoid having more than 4 cache lines that are some multiple of 2 KB apart 
in the same first-level cache working set, and avoid having more than 
eight cache lines that are some multiple of 4 KB apart in the same 
first-level cache working set. Avoid having more than 8 cache lines that 
are some multiple of 64 KB  apart in the same second-level cache working 
set. Avoid having a store followed by a non-dependent load with addresses 
that differ by a multiple of 4 KB. 2-44

Assembly/Compiler Coding Rule 27. (M impact, L generality) If 
(hopefully read-only) data must occur on the same page as code, avoid 
placing it immediately after an indirect jump. For example, follow an 
indirect jump with its mostly likely target, and place the data after an 
unconditional branch.  2-46

Assembly/Compiler Coding Rule 28. (H impact, L generality) Always 
put code and data on separate pages. Avoid self-modifying code wherever 
possible. If code is to be modified, try to do it all at once and make sure 
the code that performs the modifications and the code being modified are 
on separate 4 KB pages or on separate aligned 1 KB subpages.  2-46
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Assembly/Compiler Coding Rule 29. (H impact, L generality) If an 
inner loop writes to more than four arrays, (four distinct cache lines), 
apply loop fission to break up the body of the loop such that only four 
arrays are being written to in each iteration of each of the resulting loops. 
2-47

Assembly/Compiler Coding Rule 30. (M impact, H generality) All 
branch targets should be 16-byte aligned.  2-54 

Assembly/Compiler Coding Rule 31. (M impact, H generality) If the 
body of a conditional is not likely to be executed, it should be placed in 
another part of the program. If it is highly unlikely to be executed and 
code locality is an issue, the body of the conditional should be placed on a 
different code page.  2-54 

Assembly/Compiler Coding Rule 32. (H impact, M generality)  
Minimize changes to bits 8-12 of the floating point control word.  
Changing among more than two values (each value being a combination 
of these bits: precision, rounding and infinity control, and the rest of bits 
in FCW) leads to delays that are on the order of the pipeline depth.  2-60

Assembly/Compiler Coding Rule 33. (H impact, L generality)  
Minimize the number of changes to the rounding mode. Do not use 
changes in the rounding mode to implement the floor and ceiling functions 
if this involves a total of more than two values of the set of rounding, 
precision and infinity bits.  2-63

Assembly/Compiler Coding Rule 34. (H impact, L generality)  
Minimize the number of changes to the precision mode.  2-64

Assembly/Compiler Coding Rule 35. (M impact, M generality)  Use 
fxch only where necessary to increase the effective name space.  2-65

Assembly/Compiler Coding Rule 36. (M impact, M generality)  Use 
Streaming SIMD Extensions 2 or Streaming SIMD Extensions unless you 
need an x87 feature. Most SSE2 arithmetic operations have shorter 
latency then their X87 counterparts and they eliminate the overhead 
associated with the management of the X87 register stack.  2-66
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Assembly/Compiler Coding Rule 37. (M impact, L generality)  Try to 
use 32-bit operands rather than 16-bit operands for fild.  However, do 
not do so at the expense of introducing a store forwarding problem by 
writing the two halves of the 32-bit memory operand separately.  2-67

Assembly/Compiler Coding Rule 38. (M impact, H generality)  
Choose instructions with shorter latencies and fewer micro-ops. Favor 
single micro-operation instructions.  2-68 

Assembly/Compiler Coding Rule 39. (M impact, L generality)  Avoid 
prefixes, especially multiple non-0F-prefixed opcodes.  2-68

Assembly/Compiler Coding Rule 40. (M impact, L generality) Do not 
use many segment registers.  2-68

Assembly/Compiler Coding Rule 41. (ML impact, M generality) Avoid 
using complex instructions (for example, enter, leave, or loop) that 
generally have more than four µops and require multiple cycles to decode. 
Use sequences of simple instructions instead.  2-69

Assembly/Compiler Coding Rule 42. (ML impact, M generality)  If a 
lea instruction using the scaled index is on the critical path, a sequence 
with adds may be better. If code density and bandwidth out of the trace 
cache are the critical factor, then use the lea instruction.  2-70

Assembly/Compiler Coding Rule 43. (M impact, H generality) inc 
and dec instructions should be replaced with an add or sub instruction, 
because add and sub overwrite all flags, whereas inc and dec do not, 
therefore creating false dependencies on earlier instructions that set the 
flags.  2-70 

Assembly/Compiler Coding Rule 44. (ML impact, L generality) Avoid 
rotate by register or rotate by immediate instructions. If possible, 
replace with a rotate by 1 instruction.  2-70

Assembly/Compiler Coding Rule 45. (M impact, MH generality)  
Replace integer multiplies by a small constant with two or more add and 
lea instructions, especially when these multiplications is part of a 
dependence chain. 2-71

Assembly/Compiler Coding Rule 46. (ML impact, L generality)  Use 
cdw or cdq instead of a shift and a move. Replace these with an xor 
whenever AX or EAX is known to be positive.  2-71
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Assembly/Compiler Coding Rule 47. (ML impact, L generality)  Use 
simple instructions that are less than eight bytes in length.  2-73

Assembly/Compiler Coding Rule 48. (M impact, MH generality)  
Avoid using prefixes to change the size of immediate and displacement.  
2-73

Assembly/Compiler Coding Rule 49. (M impact, MH generality) Brea
k dependences on portions of registers between instructions by operating 
on 32-bit registers instead of partial registers.  For moves, this can be 
accomplished with 32-bit moves or by using movzx.  2-73

Assembly/Compiler Coding Rule 50. (M impact, M generality) Try to 
use zero extension or operate on 32-bit operands instead of using moves 
with sign extension.  2-74

Assembly/Compiler Coding Rule 51. (ML impact, M generality) Avoid 
placing instructions that use 32-bit immediates which cannot be encoded 
as a sign-extended 16-bit immediate near each other. Try to schedule µops 
that have no immediate immediately before or after µops with 32-bit 
immediates.  2-74

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Use 
xor, sub, or pxor to set a register to 0, or to break a false dependence 
chain resulting from re-use of registers. In contexts where the condition 
codes must be preserved, move 0 into the register instead. This requires 
more code space than using xor and sub, but avoids setting the condition 
codes. 2-75

Assembly/Compiler Coding Rule 53. (ML impact, M generality)   Use 
the test instruction instead of and when the result of the logical and is 
not used. This saves uops in execution. Use a test if a register with itself 
instead of a cmp of the register to zero, this saves the need to encode the 
zero and saves encoding space.  Avoid comparing a constant to a memory 
operand. It is preferable to load the memory operand and compare the 
constant to a register.  2-76

Assembly/Compiler Coding Rule 54. (ML impact, M generality)  
Eliminate unnecessary compare with zero instructions by using the 
appropriate conditional jump instruction when the flags are already set by 
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a preceding arithmetic instruction. If necessary, use a test instruction 
instead of a compare. Be certain that any code transformations made do 
not introduce problems with overflow. 2-76

Assembly/Compiler Coding Rule 55. (M impact, ML generality) Avoid 
introducing dependences with partial floating point register writes, e.g. 
from the movsd xmmreg1, xmmreg2 instruction.  Use the movapd 
xmmreg1, xmmreg2 instruction instead. 2-77

Assembly/Compiler Coding Rule 56. (ML impact, L generality) Inste
ad of using movupd xmmreg1, mem  for a unaligned 128-bit load, use 
movsd xmmreg1, mem; movsd xmmreg2, mem+8; unpcklpd 
xmmreg1, xmmreg2.  If the additional register is not available, then use 
movsd xmmreg1, mem; movhpd xmmreg1, mem+8. 2-77

Assembly/Compiler Coding Rule 57. (M impact, ML generality) Inste
ad of using movupd mem, xmmreg1 for a store, use movsd mem, 
xmmreg1; unpckhpd xmmreg1, xmmreg1; movsd mem+8, 

xmmreg1 instead. 2-77

Assembly/Compiler Coding Rule 58. (M impact, MH generality)  In 
routines that do not need a frame pointer and that do not have called 
routines that modify ESP, use ESP as the base register to free up EBP. This 
optimization does not apply in the following cases: a routine is called that 
leaves ESP modified upon return, for example, alloca; routines that rely 
on EBP for structured or C++ style exception handling; routines that use 
setjmp and longjmp; routines that use EBP to align the local stack on 
an 8- or 16-byte boundary; and routines that rely on EBP debugging. 2-78

Assembly/Compiler Coding Rule 59. (M impact, ML generality)  For 
arithmetic or logical operations that have their source operand in memory 
and the destination operand is in a register, attempt a strategy that 
initially loads the memory operand to a register followed by a register to 
register ALU operation. Next, attempt to remove redundant loads by 
identifying loads from the same memory location. Finally, combine the 
remaining loads with their corresponding ALU operations.  2-78
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Assembly/Compiler Coding Rule 60. (ML impact, M generality)  Give 
preference to adding a register to memory (memory is the destination) 
instead of adding memory to a register. Also, give preference to adding a 
register to memory over loading the memory, adding two registers and 
storing the result.  2-79

Assembly/Compiler Coding Rule 61. (M impact, M generality) When 
an address of a store is unknown, subsequent loads cannot be scheduled to 
execute out of order ahead of the store, limiting the out of order execution 
of the processor. When an address of a store is computed by a potentially 
long latency operation (such as a load that might miss the data cache) 
attempt to reorder subsequent loads ahead of the store.  2-79

Assembly/Compiler Coding Rule 62. (M impact, MH generality)  
Calculate store addresses as early as possible to avoid having stores block 
loads.  2-80

Assembly/Compiler Coding Rule 63. (H impact, MH generality) For 
small loops, placing loop invariants in memory is better than spilling 
loop-carried dependencies.  2-80

Assembly/Compiler Coding Rule 64. (M impact, M generality) Avoid 
putting explicit references to ESP in a sequence of stack operations (POP, 
PUSH, CALL, RET).  2-81

Tuning Suggestions

Tuning Suggestion 1.  Rarely, a performance problem may be noted due 
to executing data on a code page as instructions. The only condition 
where this is likely to happen is following an indirect branch that is not 
resident in the trace cache. If a performance problem is clearly due to this 
problem, try moving the data elsewhere, or inserting an illegal opcode or 
a pause instruction immediately following the indirect branch.  The latter 
two alternative may degrade performance in some circumstances.  2-46

Tuning Suggestion 2.  If a load is found to miss frequently, insert a 
prefetch before it or, if issue bandwidth is a concern, move the load up to 
execute earlier.  2-53
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Coding for SIMD Architectures
Intel Pentium 4, Intel Xeon and Pentium M processors include support 
for Streaming SIMD Extensions 2, Streaming SIMD Extensions 
technology, and MMX technology. These single-instruction, 
multiple-data (SIMD) technologies enable the development of advanced 
multimedia, signal processing, and modeling applications. 

To take advantage of the performance opportunities presented by these 
new capabilities, take into consideration the following:

• Ensure that the processor supports MMX technology, Streaming 
SIMD Extensions (SSE), and Streaming SIMD Extensions 2 
(SSE2).

• Ensure that the operating system supports MMX technology and 
SSE (OS support for SSE2 is the same as OS support for SSE).

• Employ all of the optimization and scheduling strategies described 
in this book.

• Use stack and data alignment techniques to keep data properly 
aligned for efficient memory use.

• Utilize the cacheability instructions offered by SSE and SSE2.
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Checking for Processor Support of SIMD 
Technologies

This section shows how to check whether a processor supports MMX 
technology, SSE, or SSE2. 

SIMD technology can be included in your application in three ways: 

1. Check for the SIMD technology during installation. If the desired 
SIMD technology is available, the appropriate DLLs can be 
installed.

2. Check for the SIMD technology during program execution and 
install the proper DLLs at runtime. This is effective for programs 
that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines; 
versions that use SIMD technology and versions that do not. Check 
for SIMD technology during program execution and run the 
appropriate versions of the routines. This is especially effective for 
programs that may be executed on different machines.

Checking for MMX Technology Support

To check if MMX technology is available on your system, use cpuid to 
and check the feature flags in the edx register. If cpuid returns bit 23 
set to 1 in the feature flags, the processor supports MMX technology. 

Use the code segment in Example 3-1 to test for the existence of MMX 
technology.
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For more information on cpuid see, Intel Processor Identification with 
CPUID Instruction, order number 241618.

Checking for Streaming SIMD Extensions Support

Checking for support of Streaming SIMD Extensions (SSE) on your 
processor is like checking for MMX technology. However, you must 
also check whether your operating system (OS) supports SSE. This is 
because the OS needs to manage saving and restoring the state 
introduced by SSE for your application to properly function.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the cpuid instruction.

2. Check the feature bits of cpuid for SSE existence.

3. Check for OS support for SSE.

Example 3-1 Identification of MMX Technology with cpuid

…identify existence of cpuid instruction
… ; 

… ; identify signature is genuine intel
… ;

mov eax, 1 ; request for feature flags
cpuid ; 0Fh, 0A2h cpuid instruction
test edx, 00800000h ; is MMX technology bit (bit

; 23)in feature flags equal to 1
jnz Found
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Example 3-2 shows how to find the SSE feature bit (bit 25) in the cpuid 
feature flags.

To find out whether the operating system supports SSE, execute an SSE 
instruction and trap for an exception if one occurs. Catching the 
exception in a simple try/except clause (using structured exception 
handling in C++) and checking whether the exception code is an invalid 
opcode will give you the answer. See Example 3-3.

Example 3-2 Identification of SSE with cpuid

…identify existence of cpuid instruction

… ; identify signature is genuine intel

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h   cpuid instruction

test EDX, 002000000h ; bit 25 in feature flags equal to 1

jnz Found

Example 3-3 Identification of SSE by the OS

 bool OSSupportCheck() {

_try {

__asm xorps xmm0, xmm0 ;Streaming SIMD Extension

} 

_except(EXCEPTION_EXECUTE_HANDLER) {

if (_exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE not supported */

return (false);

}

/* SSE are supported by OS */

return (true);

}
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Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 is like checking for SSE support. You 
must also check whether your operating system (OS) supports SSE. The 
OS requirements for SSE2 Support are the same as the requirements for 
SSE.

To check whether your system supports SSE2, follow these steps:

1. Check that your processor has the cpuid instruction.

2. Check the feature bits of cpuid for SSE2 technology existence.

3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE2 feature bit (bit 25) in the 
cpuid feature flags.

SSE2 requires the same support from the operating system as SSE. To 
find out whether the operating system supports SSE2, execute an SSE2 
instruction and trap for an exception if one occurs. Catching the 
exception in a simple try/except clause (using structured exception 
handling in C++) and checking whether the exception code is an invalid 
opcode will give you the answer. See Example 3-3.

Example 3-4 Identification of SSE2 with cpuid

…identify existence of cpuid instruction

… ; identify signature is genuine intel

mov eax, 1 ; request for feature flags

cpuid ; 0Fh, 0A2h   cpuid instruction

test EDX, 004000000h ; bit 26 in feature flags equal to 1

jnz Found
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Considerations for Code Conversion to SIMD 
Programming

The VTune Performance Enhancement Environment CD provides tools 
to aid in the evaluation and tuning. But before implementing them, you 
need answers to the following questions:

1. Will the current code benefit by using MMX technology, Streaming 
SIMD Extensions, or Streaming SIMD Extensions 2?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision is needed?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 3-1 provides a flowchart for the process of converting code to 
MMX technology, Streaming SIMD Extensions, or Streaming SIMD 
Extensions 2. 

Example 3-5 Identification of SSE2 by the OS

 bool OSSupportCheck() {

_try {

__asm xorpd xmm0, xmm0 ; SSE2} 

_except(EXCEPTION_EXECUTE_HANDLER) {

if _exception_code()==STATUS_ILLEGAL_INSTRUCTION)

/* SSE2not supported */

return (false);

}

/* SSE2 are supported by OS */

return (true);

}
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Figure 3-1 Converting to Streaming SIMD Extensions Chart
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To use any of the SIMD technologies optimally, you must evaluate the 
following situations in your code:

• fragments that are computationally intensive

• fragments that are executed often enough to have an impact on 
performance

• fragments that require integer computations with little 
data-dependent control flow

• fragments that require floating-point computations

• fragments that require help in using the cache hierarchy efficiently.

Identifying Hot Spots

To optimize performance, use the VTune Performance Analyzer to find 
sections of code that occupy most of the computation time. Such 
sections are called the hotspots. For details on the VTune analyzer, see 
“Application Performance Tools” in Appendix A. 

The VTune analyzer provides a hotspots view of a specific module to 
help you identify sections in your code that take the most CPU time and 
that have potential performance problems. For more explanation, see 
section “Sampling” in Appendix A, which includes an example of a 
hotspots report. The hotspots view helps you identify sections in your 
code that take the most CPU time and that have potential performance 
problems.

The VTune analyzer enables you to change the view to show hotspots 
by memory location, functions, classes, or source files. You can 
double-click on a hotspot and open the source or assembly view for the 
hotspot and see more detailed information about the performance of 
each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all 
levels of your source code and can also provide advice at the assembly 
language level. The code coach analyzes and identifies opportunities for 
better performance of C/C++, Fortran and Java* programs, and suggests 
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specific optimizations. Where appropriate, the coach displays 
pseudo-code to suggest the use of highly optimized intrinsics and 
functions in the Intel® Performance Library Suite. Because VTune 
analyzer is designed specifically for all of the Intel architecture 
(IA)-based processors, including the Pentium 4 processor, it can offer 
these detailed approaches to working with IA. See “Code Optimization 
Options” in Appendix A for more details and example of a code coach 
advice.

Determine If Code Benefits by Conversion to SIMD Execution

Identifying code that benefits by using SIMD technologies can be 
time-consuming and difficult. Likely candidates for conversion are 
applications that are highly computation intensive, such as the 
following:

• speech compression algorithms and filters

• speech recognition algorithms

• video display and capture routines

• rendering routines

• 3D graphics (geometry)

• image and video processing algorithms

• spatial (3D) audio

• physical modeling (graphics, CAD)

• workstation applications

• encryption algorithms

Generally, good candidate code is code that contains small-sized 
repetitive loops that operate on sequential arrays of integers of 8 or 16 
bits for MMX technology, single-precision 32-bit floating-point data for 
SSE technology, or double precision 64-bit floating-point data for SSE2 
(integer and floating-point data items should be sequential in memory). 
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The repetitiveness of these loops incurs costly application processing 
time. However, these routines have potential for increased performance 
when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you 
must evaluate what should be done to determine whether the current 
algorithm or a modified one will ensure the best performance.

Coding Techniques
The SIMD features of SSE2, SSE, and MMX technology require new 
methods of coding algorithms. One of them is vectorization. 
Vectorization is the process of transforming sequentially-executing, or 
scalar, code into code that can execute in parallel, taking advantage of the 
SIMD architecture parallelism. This section discusses the coding 
techniques available for an application to make use of the SIMD 
architecture.

To vectorize your code and thus take advantage of the SIMD 
architecture, do the following:

• Determine if the memory accesses have dependencies that would 
prevent parallel execution.

• “Strip-mine” the loop to reduce the iteration count by the length of 
the SIMD operations (for example, four for single-precision 
floating-point SIMD, eight for 16-bit integer SIMD on the XMM 
registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of 
this chapter. These sections also discuss enabling automatic 
vectorization via the Intel C++ Compiler.
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Coding Methodologies

Software developers need to compare the performance improvement 
that can be obtained from assembly code versus the cost of those 
improvements. Programming directly in assembly language for a target 
platform may produce the required performance gain, however, 
assembly code is not portable between processor architectures and is 
expensive to write and maintain.

Performance objectives can be met by taking advantage of the different 
SIMD technologies using high-level languages as well as assembly. The 
new C/C++ language extensions designed specifically for SSE2, SSE, 
and MMX technology help make this possible.

Figure 3-2 illustrates the trade-offs involved in the performance of 
hand- coded assembly versus the ease of programming and portability.

Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance 
Trade-offs
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The examples that follow illustrate the use of coding adjustments to 
enable the algorithm to benefit from the SSE. The same techniques may 
be used for single-precision floating-point, double-precision 
floating-point, and integer data under SSE2, SSE, and MMX 
technology.

As a basis for the usage model discussed in this section, consider a 
simple loop shown in Example 3-6.

Note that the loop runs for only four iterations. This allows a simple 
replacement of the code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data 
alignment on the 16-byte boundary, all examples in this chapter assume 
that the arrays passed to the routine, a, b, c, are aligned to 16-byte 
boundaries by a calling routine. For the methods to ensure this 
alignment, please refer to the application notes for the Pentium 4 
processor available at http://developer.intel.com.

The sections that follow provide details on the coding methodologies: 
inlined assembly, intrinsics, C++ vector classes, and automatic 
vectorization.

Example 3-6 Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

  int i;

  for (i = 0; i < 4; i++) {

    c[i] = a[i] + b[i];

  }

}
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Assembly

Key loops can be coded directly in assembly language using an 
assembler or by using inlined assembly (C-asm) in C/C++ code. The 
Intel compiler or assembler recognize the new instructions and registers, 
then directly generate the corresponding code. This model offers the 
opportunity for attaining greatest performance, but this performance is 
not portable across the different processor architectures. 

Example 3-7 shows the Streaming SIMD Extensions inlined assembly 
encoding.

Intrinsics

Intrinsics provide the access to the ISA functionality using C/C++ style 
coding instead of assembly language. Intel has defined three sets of 
intrinsic functions that are implemented in the Intel® C++ Compiler to 
support the MMX technology, Streaming SIMD Extensions and 
Streaming SIMD Extensions 2. Four new C data types, representing 
64-bit and 128-bit objects are used as the operands of these intrinsic 
functions. __m64 is used for MMX integer SIMD, __m128 is used for 
single-precision floating-point SIMD, __m128i is used for Streaming 

Example 3-7 Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{

  __asm {

    mov     eax, a

    mov     edx, b

    mov     ecx, c

    movaps  xmm0, XMMWORD PTR [eax]

    addps   xmm0, XMMWORD PTR [edx]

    movaps  XMMWORD PTR [ecx], xmm0

  }

}
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SIMD Extensions 2 integer SIMD and __m128d is used for double 
precision floating-point SIMD. These types enable the programmer to 
choose the implementation of an algorithm directly, while allowing the 
compiler to perform register allocation and instruction scheduling where 
possible. These intrinsics are portable among all Intel architecture-based 
processors supported by a compiler. The use of intrinsics allows you to 
obtain performance close to the levels achievable with assembly. The 
cost of writing and maintaining programs with intrinsics is considerably 
less. For a detailed description of the intrinsics and their use, refer to the 
Intel C++ Compiler User’s Guide.

Example 3-8 shows the loop from Example 3-4 using intrinsics.

The intrinsics map one-to-one with actual Streaming SIMD Extensions 
assembly code. The xmmintrin.h header file in which the prototypes 
for the intrinsics are defined is part of the Intel C++ Compiler included 
with the VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are 
based on the __m64 data type to represent the contents of an mm register. 
You can specify values in bytes, short integers, 32-bit values, or as a 
64-bit object. 

Example 3-8 Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>

void add(float *a, float *b, float *c)

{

__m128 t0, t1;

 t0 = _mm_load_ps(a);

 t1 = _mm_load_ps(b);

 t0 = _mm_add_ps(t0, t1);

 _mm_store_ps(c, t0);

}
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The intrinsic data types, however, are not a basic ANSI C data type, and 
therefore you must observe the following usage restrictions:

• Use intrinsic data types only on the left-hand side of an assignment 
as a return value or as a parameter. You cannot use it with other 
arithmetic expressions (for example, “+”, “>>”).

• Use intrinsic data type objects in aggregates, such as unions to 
access the byte elements and structures; the address of an __m64 
object may be also used.

• Use intrinsic data type data only with the MMX technology 
intrinsics described in this guide.

For complete details of the hardware instructions, see the Intel 
Architecture MMX Technology Programmer’s Reference Manual. For 
descriptions of data types, see the Intel Architecture Software 
Developer's Manual, Volume 2: Instruction Set Reference Manual.

Classes

A set of C++ classes has been defined and available in Intel C++ 
Compiler to provide both a higher-level abstraction and more flexibility 
for programming with MMX technology, Streaming SIMD Extensions 
and Streaming SIMD Extensions 2. These classes provide an 
easy-to-use and flexible interface to the intrinsic functions, allowing 
developers to write more natural C++ code without worrying about 
which intrinsic or assembly language instruction to use for a given 
operation. Since the intrinsic functions underlie the implementation of 
these C++ classes, the performance of applications using this 
methodology can approach that of one using the intrinsics. Further 
details on the use of these classes can be found in the Intel C++ Class 
Libraries for SIMD Operations User’s Guide, order number 693500.

Example 3-9 shows the C++ code using a vector class library. The 
example assumes the arrays passed to the routine are already aligned to 
16-byte boundaries.
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Here, fvec.h is the class definition file and F32vec4 is the class 
representing an array of four floats. The “+” and “=” operators are 
overloaded so that the actual Streaming SIMD Extensions 
implementation in the previous example is abstracted out, or hidden, 
from the developer. Note how much more this resembles the original 
code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are 
already aligned to 16-byte boundary.

Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which 
simple loops, such as in Example 3-6 can be automatically vectorized, 
or converted into Streaming SIMD Extensions code. The compiler uses 
similar techniques to those used by a programmer to identify whether a 
loop is suitable for conversion to SIMD. This involves determining 
whether the following might prevent vectorization:

• the layout of the loop and the data structures used 

• dependencies amongst the data accesses in each iteration and across 
iterations

Once the compiler has made such a determination, it can generate 
vectorized code for the loop, allowing the application to use the SIMD 
instructions.

Example 3-9 C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}
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The caveat to this is that only certain types of loops can be automatically 
vectorized, and in most cases user interaction with the compiler is 
needed to fully enable this. 

Example 3-10 shows the code for automatic vectorization for the simple 
four-iteration loop (from Example 3-6).

Compile this code using the -Qax and -Qrestrict switches of the Intel 
C++ Compiler, version 4.0 or later.

The restrict qualifier in the argument list is necessary to let the 
compiler know that there are no other aliases to the memory to which 
the pointers point. In other words, the pointer for which it is used, 
provides the only means of accessing the memory in question in the 
scope in which the pointers live. Without this qualifier, the compiler will 
not vectorize the loop because it cannot ascertain whether the array 
references in the loop overlap, and without this information, generating 
vectorized code is unsafe.

Refer to the Intel® C++ Compiler User’s Guide, for more details on the 
use of automatic vectorization.

Example 3-10 Automatic Vectorization for a Simple Loop

void add (float *restrict a, 
float *restrict b, 
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}
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Stack and Data Alignment
To get the most performance out of code written for SIMD technologies 
data should be formatted in memory according to the guidelines 
described in this section. Assembly code with an unaligned accesses is a 
lot slower than an aligned access.

Alignment and Contiguity of Data Access Patterns

The new 64-bit packed data types defined by MMX technology, and the 
128-bit packed data types for Streaming SIMD Extensions and 
Streaming SIMD Extensions 2 create more potential for misaligned data 
accesses. The data access patterns of many algorithms are inherently 
misaligned when using MMX technology and Streaming SIMD 
Extensions.

Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to 
data can be improved simply by a change in the declaration. For 
example, consider a declaration of a structure, which represents a point 
in space plus an attribute.

typedef struct { short x,y,z; char a} Point;

Point pt[N];

Assume we will be performing a number of computations on x, y, z in 
three of the four elements of a SIMD word; see the “Data Structure 
Layout” section for an example. Even if the first element in array pt is 
aligned, the second element will start 7 bytes later and not be aligned (3 
shorts at two bytes each plus a single byte = 7 bytes).

By adding the padding variable pad, the structure is now 8 bytes, and if 
the first element is aligned to 8 bytes (64 bits), all following elements 
will also be aligned. The sample declaration follows:

typedef struct { short x,y,z; char a; char pad; } 
Point;

Point pt[N];
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Using Arrays to Make Data Contiguous

In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension y needs to be multiplied by a scaling value. Here 
the for loop accesses each y dimension in the array pt thus disallowing 
the access to contiguous data. This can degrade the performance of the 
application by increasing cache misses, by achieving poor utilization of 
each cache line that is fetched, and by increasing the chance for accesses 
which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation 
and further improve the alignment of the data access patterns:

short ptx[N], pty[N], ptz[N];

for (i=0; i<N; i++) pty[i] *= scale;

With the SIMD technology, choice of data organization becomes more 
important and should be made carefully based on the operations that 
will be performed on the data. In some applications, traditional data 
arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a 
vector dot product in the length of the number of coefficient taps. 

Consider the following code:

(data [ j ] *coeff [0] + data [j+1]*coeff [1]+...+data 
[j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element i is the vector 
dot product that begins at data element j, then the filter operation of 
data element i+1 begins at data element j+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned 
coefficients vector, the filter operation on the first data element will be fully 
aligned. For the second data element, however, access to the data vector 
will be misaligned. For an example of how to avoid the misalignment 
problem in the FIR filter, please refer to the application notes available at 
http://developer.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm.
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Duplication and padding of data structures can be used to avoid the 
problem of data accesses in algorithms which are inherently misaligned. 
The “Data Structure Layout” section discusses further trade-offs for 
how data structures are organized.

Stack Alignment For 128-bit SIMD Technologies

For best performance, the Streaming SIMD Extensions and Streaming 
SIMD Extensions 2 require their memory operands to be aligned to 
16-byte (16B) boundaries. Unaligned data can cause significant 
performance penalties compared to aligned data. However, the existing 
software conventions for IA-32 (stdcall, cdecl, fastcall) as 
implemented in most compilers, do not provide any mechanism for 
ensuring that certain local data and certain parameters are 16-byte 
aligned. Therefore, Intel has defined a new set of IA-32 software 
conventions for alignment to support the new __m128* datatypes 
(__m128, __m128d, and __m128i) that meet the following conditions:

• Functions that use Streaming SIMD Extensions or Streaming SIMD 
Extensions 2 data need to provide a 16-byte aligned stack frame.

• The __m128* parameters need to be aligned to 16-byte boundaries, 
possibly creating “holes” (due to padding) in the argument block.

CAUTION.  The duplication and padding technique 
overcomes the misalignment problem, thus avoiding 
the expensive penalty for misaligned data access, at 
the cost of increasing the data size. When developing 
your code, you should consider this tradeoff and use 
the option which gives the best performance.
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These new conventions presented in this section as implemented by the 
Intel C++ Compiler can be used as a guideline for an assembly language 
code as well. In many cases, this section assumes the use of the __m128* 
data types, as defined by the Intel C++ Compiler, which represents an 
array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions 
and SSE2, see Appendix D, “Stack Alignment”.

Data Alignment for MMX Technology

Many compilers enable alignment of variables using controls. This 
aligns the variables’ bit lengths to the appropriate boundaries. If some of 
the variables are not appropriately aligned as specified, you can align 
them using the C algorithm shown in Example 3-11.

The algorithm in Example 3-11 aligns an array of 64-bit elements on a 
64-bit boundary. The constant of 7 is derived from one less than the 
number of bytes in a 64-bit element, or 8-1. Aligning data in this manner 
avoids the significant performance penalties that can occur when an 
access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into 
locations that are aligned on 64-bit boundaries. When the data is 
accessed frequently, this can provide a significant performance 
improvement.

Example 3-11 C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array */

/* of NUM_ELEMENTS 64-bit elements. */

double *p, *newp;

p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));

newp = (p+7) & (~0x7);
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Data Alignment for 128-bit data

Data must be 16-byte aligned when loading to or storing from the 
128-bit XMM registers used by SSE and SSE2 to avoid severe 
performance penalties at best, and at worst, execution faults. Although 
there are move instructions (and intrinsics) to allow unaligned data to be 
copied into and out of the XMM registers when not using aligned data, 
such operations are much slower than aligned accesses. If, however, the 
data is not 16-byte-aligned and the programmer or the compiler does not 
detect this and uses the aligned instructions, a fault will occur. So, the 
rule is: keep the data 16-byte-aligned. Such alignment will also work for 
MMX technology code, even though MMX technology only requires 
8-byte alignment. The following discussion and examples describe 
alignment techniques for Pentium 4 processor as implemented with the 
Intel C++ Compiler.

Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that 
the data is aligned.

Alignment by F32vec4 or __m128 Data Types. When compiler detects 
F32vec4 or __m128 data declarations or parameters, it will force 
alignment of the object to a 16-byte boundary for both global and local 
data, as well as parameters. If the declaration is within a function, the 
compiler will also align the function’s stack frame to ensure that local 
data and parameters are 16-byte-aligned. For details on the stack frame 
layout that the compiler generates for both debug and optimized 
(“release”-mode) compilations, please refer to the relevant Intel 
application notes in the Intel Architecture Performance Training Center 
provided with the SDK.

The __declspec(align(16)) specifications can be placed before data 
declarations to force 16-byte alignment. This is particularly useful for 
local or global data declarations that are assigned to 128-bit data types. 
The syntax for it is 

__declspec(align(integer-constant))
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where the integer-constant is an integral power of two but no greater 
than 32. For example, the following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable buffer could then be used as if it contained 100 objects of 
type __m128 or F32vec4. In the code below, the construction of the 
F32vec4 object, x, will occur with aligned data. 

void foo() {

F32vec4 x = *(__m128 *) buffer;

...

}

Without the declaration of __declspec(align(16)), a fault may occur.

Alignment by Using a union Structure. Preferably, when feasible, a 
union can be used with 128-bit data types to allow the compiler to align 
the data structure by default. Doing so is preferred to forcing alignment 
with __declspec(align(16)) because it exposes the true program 
intent to the compiler in that __m128 data is being used. For example:

union {

   float f[400];

   __m128 m[100];

} buffer;

The 16-byte alignment is used by default due to the __m128 type in the 
union; it is not necessary to use __declspec(align(16)) to force it.

In C++ (but not in C) it is also possible to force the alignment of a 
class/struct/union type, as in the code that follows:

struct __declspec(align(16)) my_m128
{

  float f[4];
};
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But, if the data in such a class is going to be used with the Streaming 
SIMD Extensions or Streaming SIMD Extensions 2, it is preferable to 
use a union to make this explicit. In C++, an anonymous union can be 
used to make this more convenient:

class my_m128 {

  union {

   __m128 m;

    float f[4];

  };

};

In this example, because the union is anonymous, the names, m and f, 
can be used as immediate member names of my__m128. Note that 
__declspec(align) has no effect when applied to a class, struct, or 
union member in either C or C++.

Alignment by Using __m64 or double Data. In some cases, for better 
performance, the compiler will align routines with __m64 or double 
data to 16-bytes by default. The command-line switch, -Qsfalign16, 
can be used to limit the compiler to only align in routines that contain 
128-bit data. The default behavior is to use -Qsfalign8, which instructs 
to align routines with 8- or 16-byte data types to 16-bytes.

For more details, see relevant Intel application notes in the Intel 
Architecture Performance Training Center provided with the SDK and 
the Intel C++ Compiler User’s Guide.
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Improving Memory Utilization
Memory performance can be improved by rearranging data and 
algorithms for SE 2, SSE, and MMX technology intrinsics. The 
methods for improving memory performance involve working with the 
following:

• Data structure layout

• Strip-mining for vectorization and memory utilization

• Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also 
greatly enhance memory utilization. For these instructions, see 
Chapter 6, “Optimizing Cache Usage”.

Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are 
two basic ways of arranging the vertex data. The traditional method is 
the array of structures (AoS) arrangement, with a structure for each 
vertex (see Example 3-12). However this method does not take full 
advantage of the SIMD technology capabilities.

The best processing method for code using SIMD technology is to 
arrange the data in an array for each coordinate (see Example 3-13). 
This data arrangement is called structure of arrays (SoA).

Example 3-12 AoS Data Structure

typedef struct{

float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];
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There are two options for computing data in AoS format: perform 
operation on the data as it stands in AoS format, or re-arrange it (swizzle 
it) into SoA format dynamically. See Example 3-14 for code samples of 
each option based on a dot-product computation.  

Example 3-13 SoA Data Structure

typedef struct{

float x[NumOfVertices];

float y[NumOfVertices];

float z[NumOfVertices];

int a[NumOfVertices];

int b[NumOfVertices];

int c[NumOfVertices];

. . . 

} VerticesList;

VerticesList Vertices;
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Example 3-14 AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a

; fixed vector (Fixed) is a common operation in 3D

; lighting operations,

;   where Array = (x0,y0,z0),(x1,y1,z1),...

;     and Fixed = (xF,yF,zF)  

; A dot product is defined as the scalar quantity

;            d0 = x0*xF + y0*yF + z0*zF.

; AoS code

; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the

; xyz format

movaps  xmm0, Array      ; xmm0 = DC, x0,    y0,    z0

movaps  xmm1, Fixed      ; xmm1 = DC, xF,    yF,    zF

mulps   xmm0, xmm1       ; xmm0 = DC, x0*xF, y0*yF, z0*zF

movhlps xmm1, xmm0       ; xmm1 = DC, DC,    DC,    x0*xF

addps   xmm1, xmm0       ; xmm0 = DC, DC,    DC,   

                         ;                    x0*xF+z0*zF

movaps  xmm2, xmm1

shufps  xmm2, xmm2,55h   ; xmm2 = DC, DC,    DC,    y0*yF

addps   mm2, xmm1        ; xmm1 = DC, DC,    DC, 

                         ;              x0*xF+y0*yF+z0*zF

; SoA code

;

; X = x0,x1,x2,x3

; Y = y0,y1,y2,y3

; Z = z0,z1,z2,z3

continued
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Performing SIMD operations on the original AoS format can require 
more calculations and some of the operations do not take advantage of 
all of the SIMD elements available. Therefore, this option is generally 
less efficient.

The recommended way for computing data in AoS format is to swizzle 
each set of elements to SoA format before processing it using SIMD 
technologies. This swizzling can either be done dynamically during 
program execution or statically when the data structures are generated; 
see Chapters 4 and 5 for specific examples of swizzling code. 
Performing the swizzle dynamically is usually better than using AoS, 
but is somewhat inefficient as there is the overhead of extra instructions 
during computation. Performing the swizzle statically, when the data 
structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of 
the parallelism of the SIMD technologies because the data is ready for 
computation in a more optimal vertical manner: multiplying 
components x0,x1,x2,x3 by xF,xF,xF,xF using 4 SIMD execution 
slots to produce 4 unique results. In contrast, computing directly on AoS 

; A = xF,xF,xF,xF

; B = yF,yF,yF,yF

; C = zF,zF,zF,zF

movaps xmm0, X        ; xmm0 = x0,x1,x2,x3

movaps xmm1, Y        ; xmm0 = y0,y1,y2,y3

movaps xmm2, Z        ; xmm0 = z0,z1,z2,z3

mulps  xmm0, A        ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF

mulps  xmm1, B        ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF

mulps  xmm2, C        ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF

addps  xmm0, xmm1

addps  xmm0, xmm2     ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Example 3-14 AoS and SoA Code Samples (continued)
3-28



Coding for SIMD Architectures 3
data can lead to horizontal operations that consume SIMD execution 
slots but produce only a single scalar result as shown by the many 
“don’t-care” (DC) slots in Example 3-14.

Use of the SoA format for data structures can also lead to more efficient 
use of caches and bandwidth. When the elements of the structure are not 
accessed with equal frequency, such as when element x, y, z are 
accessed ten times more often than the other entries, then SoA not only 
saves memory, but it also prevents fetching unnecessary data items a, b, 
and c.

Note that SoA can have the disadvantage of requiring more independent 
memory stream references. A computation that uses arrays x, y, and z in 
Example 3-13 would require three separate data streams. This can 
require the use of more prefetches, additional address generation 
calculations, as well as having a greater impact on DRAM page access 
efficiency. An alternative, a hybrid SoA approach blends the two 
alternatives (see Example 3-15). In this case, only 2 separate address 
streams are generated and referenced: one which contains 
xxxx,yyyy,zzzz,zzzz,... and the other which contains 

Example 3-15 Hybrid SoA data structure

NumOfGroups = NumOfVertices/SIMDwidth

typedef struct{

float x[SIMDwidth];

float y[SIMDwidth];

float z[SIMDwidth];

} VerticesCoordList;

typedef struct{

int a[SIMDwidth];

int b[SIMDwidth];

int c[SIMDwidth];

. . . 

} VerticesColorList;

VerticesCoordList VerticesCoord[NumOfGroups];

VerticesColorList VerticesColor[NumOfGroups];
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aaaa,bbbb,cccc,aaaa,dddd,.... This also prevents fetching 
unnecessary data, assuming the variables x, y, z are always used 
together; whereas the variables a, b, c would also used together, but not 
at the same time as x, y, z. This hybrid SoA approach ensures:

• data is organized to enable more efficient vertical SIMD 
computation,

• simpler/less address generation than AoS,

• fewer streams, which reduces DRAM page misses,

• use of fewer prefetches, due to fewer streams,

• efficient cache line packing of data elements that are used 
concurrently.

With the advent of the SIMD technologies, the choice of data 
organization becomes more important and should be carefully based on 
the operations to be performed on the data. This will become 
increasingly important in the Pentium 4 processor and future processors. 
In some applications, traditional data arrangements may not lead to the 
maximum performance. Application developers are encouraged to 
explore different data arrangements and data segmentation policies for 
efficient computation. This may mean using a combination of AoS, 
SoA, and Hybrid SoA in a given application. 

Strip Mining

Strip mining, also known as loop sectioning, is a loop transformation 
technique for enabling SIMD-encodings of loops, as well as providing a 
means of improving memory performance. First introduced for 
vectorizers, this technique consists of the generation of code when each 
vector operation is done for a size less than or equal to the maximum 
vector length on a given vector machine. By fragmenting a large loop 
into smaller segments or strips, this technique transforms the loop 
structure twofold:

• It increases the temporal and spatial locality in the data cache if the 
data are reusable in different passes of an algorithm.
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• It reduces the number of iterations of the loop by a factor of the 
length of each “vector,” or number of operations being performed 
per SIMD operation. In the case of Streaming SIMD Extensions, 
this vector or strip-length is reduced by 4 times: four floating-point 
data items per single Streaming SIMD Extensions single-precision 
floating-point SIMD operation are processed. Consider 
Example 3-16.

The main loop consists of two functions: transformation and lighting. 
For each object, the main loop calls a transformation routine to update 
some data, then calls the lighting routine to further work on the data. If 
the size of array v[Num] is larger than the cache, then the coordinates for 
v[i] that were cached during Transform(v[i]) will be evicted from 

Example 3-16 Pseudo-code Before Strip Mining

typedef struct _VERTEX {

float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec; 

 

main()

 {

Vertex_rec v[Num];

....

for (i=0; i<Num; i++) {

  Transform(v[i]);

}

for (i=0; i<Num; i++) {

  Lighting(v[i]);

}

....

 }
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the cache by the time we do Lighting(v[i]). This means that v[i] 
will have to be fetched from main memory a second time, reducing 
performance.

In Example 3-17, the computation has been strip-mined to a size 
strip_size. The value strip_size is chosen such that strip_size 
elements of array v[Num] fit into the cache hierarchy. By doing this, a 
given element v[i] brought into the cache by Transform(v[i]) will 
still be in the cache when we perform Lighting(v[i]), and thus 
improve performance over the non-strip-mined code.

Loop Blocking

Loop blocking is another useful technique for memory performance 
optimization. The main purpose of loop blocking is also to eliminate as 
many cache misses as possible. This technique transforms the memory 
domain of a given problem into smaller chunks rather than sequentially 
traversing through the entire memory domain. Each chunk should be 

Example 3-17 Strip Mined Code

main()

{

Vertex_rec v[Num];

....

for (i=0; i < Num; i+=strip_size) {

  for (j=i; j < min(Num, i+strip_size); j++) {

 Transform(v[j]);

  }

  for (j=i; j < min(Num, i+strip_size); j++) {

 Lighting(v[j]); 

  }

}

}
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small enough to fit all the data for a given computation into the cache, 
thereby maximizing data reuse. In fact, one can treat loop blocking as 
strip mining in two or more dimensions. Consider the code in 
Example 3-16 and access pattern in Figure 3-3. The two-dimensional 
array A is referenced in the j (column) direction and then referenced in 
the i (row) direction (column-major order); whereas array B is 
referenced in the opposite manner (row-major order). Assume the 
memory layout is in column-major order; therefore, the access strides of 
array A and B for the code in Example 3-18 would be 1 and MAX, 
respectively.

Example 3-18 Loop Blocking

A. Original Loop

float A[MAX, MAX], B[MAX, MAX]

for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {

A[i,j] = A[i,j] + B[j, i];

}
}

B. Transformed Loop after Blocking

float A[MAX, MAX], B[MAX, MAX]; 

for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {

for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {

A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}
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For the first iteration of the inner loop, each access to array B will generate a 
cache miss. If the size of one row of array A, that is, A[2, 0:MAX-1], is 
large enough, by the time the second iteration starts, each access to array 
B will always generate a cache miss. For instance, on the first iteration, 
the cache line containing B[0, 0:7] will be brought in when B[0,0] is 
referenced because the float type variable is four bytes and each cache 
line is 32 bytes. Due to the limitation of cache capacity, this line will be 
evicted due to conflict misses before the inner loop reaches the end. For 
the next iteration of the outer loop, another cache miss will be generated 
while referencing B[0,1]. In this manner, a cache miss occurs when 
each element of array B is referenced, that is, there is no data reuse in the 
cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the 
cache size. In Figure 3-3, a block_size is selected as the loop blocking 
factor. Suppose that block_size is 8, then the blocked chunk of each 
array will be eight cache lines (32 bytes each). In the first iteration of the 
inner loop, A[0, 0:7] and B[0, 0:7] will be brought into the cache. 
B[0, 0:7] will be completely consumed by the first iteration of the 
outer loop. Consequently, B[0, 0:7] will only experience one cache 
miss after applying loop blocking optimization in lieu of eight misses 
for the original algorithm. As illustrated in Figure 3-3, arrays A and B are 
blocked into smaller rectangular chunks so that the total size of two 
blocked A and B chunks is smaller than the cache size. This allows 
maximum data reuse.
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As one can see, all the redundant cache misses can be eliminated by 
applying this loop blocking technique. If MAX is huge, loop blocking can 
also help reduce the penalty from DTLB (data translation look-aside 
buffer) misses. In addition to improving the cache/memory 
performance, this optimization technique also saves external bus 
bandwidth.

Instruction Selection
The following section gives some guidelines for choosing instructions 
to complete a task.

Figure 3-3 Loop Blocking Access Pattern
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One barrier to SIMD computation can be the existence of 
data-dependent branches. Conditional moves can be used to eliminate 
data-dependent branches. Conditional moves can be emulated in SIMD 
computation by using masked compares and logicals, as shown in 
Example 3-19.

Example 3-19 Emulation of Conditional Moves

High-level code:

short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT], 
D[MAX_ELEMENT], E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {

if (A[i] > B[i]) {

C[i] = D[i];

} else {

C[i] = E[i];

}

}

Assembly code:

xor eax, eax

top_of_loop:

movq mm0, [A + eax]

pcmpgtw mm0, [B + eax]; Create compare mask

movq mm1, [D + eax]

pand mm1, mm0; Drop elements where A<B

pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word

movq [C + eax], mm0

add eax, 8

cmp eax, MAX_ELEMENT*2

jle top_of_loop
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Note that this can be applied to both SIMD integer and SIMD 
floating-point code.

If there are multiple consumers of an instance of a register, group the 
consumers together as closely as possible. However, the consumers 
should not be scheduled near the producer.

Tuning the Final Application
The best way to tune your application once it is functioning correctly is 
to use a profiler that measures the application while it is running on a 
system. VTune analyzer can help you determine where to make changes 
in your application to improve performance. Using the VTune analyzer 
can help you with various phases required for optimized performance. 
See “Intel® VTune™ Performance Analyzer” in Appendix A for more 
details on how to use the VTune analyzer. After every effort to optimize, 
you should check the performance gains to see where you are making 
your major optimization gains.
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4
Optimizing for SIMD Integer 
Applications
The SIMD integer instructions provide performance improvements in 
applications that are integer-intensive and can take advantage of the 
SIMD architecture of Pentium 4, Intel Xeon, and Pentium M processors.

The guidelines for using these instructions in addition to the guidelines 
described in Chapter 2, will help develop fast and efficient code that 
scales well across all processors with MMX technology, processors that 
use Streaming SIMD Extensions (SSE) SIMD integer instructions, as 
well as the Pentium 4 processor with the SIMD integer instructions in 
the Streaming SIMD Extensions 2 (SSE2).

For the sake of brevity, the collection of 64-bit and 128-bit SIMD 
integer instructions supported by MMX technology, SSE, and SSE2 
shall be referred to as SIMD integer instructions.

Unless otherwise noted, the following sequences are written for the 
64-bit integer registers. Note that they can easily be changed to use the 
128-bit SIMD integer form available with SSE2 by replacing the 
references to mm0-mm7 with references to xmm0-xmm7.

This chapter contains several simple examples that will help you to get 
started with coding your application. The goal is to provide simple, 
low-level operations that are frequently used. The examples use a 
minimum number of instructions necessary to achieve best performance 
on the current generation of IA-32 processors.

Each example includes a short description, sample code, and notes if 
necessary. These examples do not address scheduling as it is assumed 
the examples will be incorporated in longer code sequences.
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For planning considerations of using the new SIMD integer instructions, 
refer to “Checking for Streaming SIMD Extensions 2 Support” in 
Chapter 3.

General Rules on SIMD Integer Code
The overall rules and suggestions are as follows:

• Do not intermix 64-bit SIMD integer instructions with x87 
floating-point instructions. See “Using SIMD Integer with x87 
Floating-point” section. Note that all of the SIMD integer 
instructions can be intermixed without penalty. 

• When writing SSE2 code that works with both integer and 
floating-point data, use the subset of SIMD convert instructions or 
load/store instructions to ensure that the input operands in XMM 
registers contain properly defined data type to match the instruction. 
Code sequences containing cross-typed usage will produce the same 
result across different implementations, but will incur a significant 
performance penalty. Using SSE or SSE2 instructions to operate on 
type-mismatched SIMD data in the XMM register is strongly 
discouraged.

• Use the optimization rules and guidelines described in Chapters 2 
and 3 that apply to the Pentium 4, Intel Xeon and Pentium M 
processors.

• Take advantage of hardware prefetcher where possible. Use prefetch 
instruction only when data access patterns are irregular and prefetch 
distance can be pre-determined.  (for details, refer to Chapter 6, 
“Optimizing Cache Usage”).

• Emulate conditional moves by using masked compares and logicals 
instead of using conditional branches.
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Using SIMD Integer with x87 Floating-point
All 64-bit SIMD integer instructions use the MMX registers, which 
share register state with the x87 floating-point stack. Because of this 
sharing, certain rules and considerations apply. Instructions which use 
the MMX registers cannot be freely intermixed with x87 floating-point 
registers. Care must be taken when switching between using 64-bit 
SIMD integer instructions and x87 floating-point instructions (see 
“Using the EMMS Instruction” section below).

The SIMD floating-point operations and 128-bit SIMD integer 
operations can be freely intermixed with either x87 floating-point 
operations or 64-bit SIMD integer operations. The SIMD floating-point 
operations and 128-bit SIMD integer operations use registers that are 
unrelated to the x87 FP / MMX registers. The emms instruction is not 
needed to transition to or from SIMD floating-point operations or 
128-bit SIMD operations.

Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight 
MMX registers are aliased on the x87 floating-point registers. 
Switching from MMX instructions to x87 floating-point instructions 
incurs a finite delay, so it is the best to minimize switching between 
these instruction types. But when you need to switch, the emms 
instruction provides an efficient means to clear the x87 stack so that 
subsequent x87 code can operate properly on the x87 stack.

As soon as any instruction makes reference to an MMX register, all 
valid bits in the x87 floating-point tag word are set, which implies that 
all x87 registers contain valid values. In order for software to operate 
correctly, the x87 floating-point stack should be emptied when starting a 
series of x87 floating-point calculations after operating on the MMX 
registers
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Using emms clears all of the valid bits, effectively emptying the x87 
floating-point stack and making it ready for new x87 floating-point 
operations. The emms instruction ensures a clean transition between 
using operations on the MMX registers and using operations on the x87 
floating-point stack. On the Pentium 4 processor, there is a finite 
overhead for using the emms instruction. 

Failure to use the emms instruction (or the _mm_empty() intrinsic) 
between operations on the MMX registers and operations on the x87 
floating-point registers may lead to unexpected results.

Guidelines for Using EMMS Instruction

When developing code with both x87 floating-point and 64-bit SIMD 
integer instructions, follow these steps:

1. Always call the emms instruction at the end of 64-bit SIMD integer 
code when the code transitions to x87 floating-point code.

2. Insert the emms instruction at the end of all 64-bit SIMD integer 
code segments to avoid an x87 floating-point stack overflow 
exception when an x87 floating-point instruction is executed.

When writing an application that uses both floating-point and 64-bit 
SIMD integer instructions, use the following guidelines to help you 
determine when to use emms:

• If next instruction is x87 FP: Use _mm_empty() after a 64-bit SIMD 
integer instruction if the next instruction is an x87 FP instruction; 
for example, before doing calculations on floats, doubles or long 
doubles.

CAUTION.  Failure to reset the tag word for FP 
instructions after using an MMX instruction can result 
in faulty execution or poor performance.
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• Don’t empty when already empty: If the next instruction uses an 
MMX register, _mm_empty() incurs a cost with no benefit.

• Group Instructions: Try to partition regions that use x87 FP 
instructions from those that use 64-bit SIMD integer instructions. 
This eliminates needing an emms instruction within the body of a 
critical loop.

• Runtime initialization: Use _mm_empty() during runtime 
initialization of __m64 and x87 FP data types. This ensures 
resetting the register between data type transitions. See Example 4-1 
for coding usage.

Further, you must be aware that your code generates an MMX 
instruction, which uses the MMX registers with the Intel C++ Compiler, 
in the following situations:

• when using a 64-bit SIMD integer intrinsic from MMX technology, 
SSE, or SSE2

• when using a 64-bit SIMD integer instruction from MMX 
technology, SSE, or SSE2 through inline assembly

• when referencing an __m64 data type variable

Additional information on the x87 floating-point programming model 
can be found in the IA-32 Intel® Architecture Software Developer’s 
Manual, Volume 1. For more documentation on emms, visit the 
http://developer.intel.com web site.

Example 4-1 Resetting the Register between __m64 and FP Data Types

Incorrect Usage   Correct Usage

__m64 x = _m_paddd(y, z); __m64 x = _m_paddd(y, z);

float f = init(); float f = (_mm_empty(), init());
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Data Alignment
Make sure that 64-bit SIMD integer data is 8-byte aligned and that 
128-bit SIMD integer data is 16-byte aligned.  Referencing unaligned 
64-bit SIMD integer data can incur a performance penalty due to 
accesses that span 2 cache lines. Referencing unaligned 128-bit SIMD 
integer data will result in an exception unless the movdqu (move 
double-quadword unaligned) instruction is used. Using the movdqu 
instruction on unaligned data can result in lower performance than using 
16-byte aligned references.

Refer to section “Stack and Data Alignment” in Chapter 3 for more 
information.

Data Movement Coding Techniques
In general, better performance can be achieved if the data is 
pre-arranged for SIMD computation (see the “Improving Memory 
Utilization” section of Chapter 3). However, this may not always be 
possible. This section covers techniques for gathering and re-arranging 
data for more efficient SIMD computation.

Unsigned Unpack

The MMX technology provides several instructions that are used to 
pack and unpack data in the MMX registers. The unpack instructions 
can be used to zero-extend an unsigned number. Example 4-2 assumes 
the source is a packed-word (16-bit) data type.
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Signed Unpack

Signed numbers should be sign-extended when unpacking the values. 
This is similar to the zero-extend shown above except that the psrad 
instruction (packed shift right arithmetic) is used to effectively sign 
extend the values. Example 4-3 assumes the source is a packed-word 
(16-bit) data type.

Example 4-2 Unsigned Unpack Instructions

; Input:  

; MM0 source value
; MM7 0 a local variable can be used
; instead of the register MM7 if
; desired.

; Output: 

; MM0 two zero-extended 32-bit
; doublewords from two low-end
; words

; MM1 two zero-extended 32-bit
; doublewords from two high-end 
; words 

movq MM1, MM0 ; copy source

punpcklwd MM0, MM7 ; unpack the 2 low-end words 
; into two 32-bit doubleword

punpckhwd MM1, MM7 ; unpack the 2 high-end words
; into two 32-bit doublewords
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Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a 
predetermined order. Specifically, the packssdw instruction packs two 
signed doublewords from the source operand and two signed 
doublewords from the destination operand into four signed words in the 
destination register as shown in Figure 4-1.

Example 4-3 Signed Unpack Code

; Input:

; MM0 source value

; Output:

; MM0 two sign-extended 32-bit doublewords 
; from the two low-end words
; MM1 two sign-extended 32-bit doublewords 
; from the two high-end words

; 

movq MM1, MM0 ; copy source

punpcklwd MM0, MM0 ; unpack the 2 low end words of the source
; into the second and fourth words of the
; destination

punpckhwd MM1, MM1 ; unpack the 2 high-end words of the source
; into the second and fourth words of the
; destination

psrad MM0, 16 ; sign-extend the 2 low-end words of the 
source

; into two 32-bit signed doublewords

psrad MM1, 16 ; sign-extend the 2 high-end words of the
; source into two 32-bit signed doublewords
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Figure 4-2 illustrates two values interleaved in the destination register, 
and Example 4-4 shows code that uses the operation. The two signed 
doublewords are used as source operands and the result is interleaved 
signed words. The pack instructions can be performed with or without 
saturation as needed.   

Figure 4-1 PACKSSDW mm, mm/mm64 Instruction Example

Figure 4-2 Interleaved Pack with Saturation
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The pack instructions always assume that the source operands are 
signed numbers. The result in the destination register is always defined 
by the pack instruction that performs the operation. For example, the 
packssdw instruction packs each of the two signed 32-bit values of the 
two sources into four saturated 16-bit signed values in the destination 
register. The packuswb instruction, on the other hand, packs each of the 
four signed 16-bit values of the two sources into eight saturated eight-bit 
unsigned values in the destination. A complete specification of the 
MMX instruction set can be found in the Intel Architecture MMX 
Technology Programmer’s Reference Manual, order number 243007.

Interleaved Pack without Saturation

Example 4-5 is similar to Example 4-4 except that the resulting words 
are not saturated. In addition, in order to protect against overflow, only 
the low order 16 bits of each doubleword are used in this operation.

Example 4-4 Interleaved Pack with Saturation

; Input:

MM0 signed source1 value
; MM1 signed source2 value

; Output:

MM0 the first and third words contain 
the 
; signed-saturated doublewords from 
MM0, 
; the second and fourth words contain
; signed-saturated doublewords from 
MM1 

;

packssdw MM0, MM0 ; pack and sign saturate

packssdw MM1, MM1 ; pack and sign saturate

punpcklwd MM0, MM1 ; interleave the low-end 16-bit 
; values of the operands
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Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data 
elements of the destination and source operands into the destination 
register. The following example merges the two operands into the 
destination registers without interleaving. For example, take two 
adjacent elements of a packed-word data type in source1 and place this 
value in the low 32 bits of the results. Then take two adjacent elements 
of a packed-word data type in source2 and place this value in the high 
32 bits of the results. One of the destination registers will have the 
combination illustrated in Figure 4-3.

Example 4-5 Interleaved Pack without Saturation

; Input:

; MM0 signed source value
; MM1 signed source value

; Output:

; MM0 the first and third words contain the
; low 16-bits of the doublewords in MM0,
;     the second and fourth words contain the 
; low 16-bits of the doublewords in MM1

pslld MM1, 16 ; shift the 16 LSB from each of the 
; doubleword values to the 16 MSB 
; position

pand MM0, {0,ffff,0,ffff} 
; mask to zero the 16 MSB
; of each doubleword value

por MM0, MM1 ; merge the two operands
4-11



IA-32 Intel® Architecture Optimization
The other destination register will contain the opposite combination 
illustrated in Figure 4-4. 

Code in the Example 4-6 unpacks two packed-word sources in a 
non-interleaved way. The goal is to use the instruction which unpacks 
doublewords to a quadword, instead of using the instruction which 
unpacks words to doublewords.

Figure 4-3 Result of Non-Interleaved Unpack Low in MM0

Figure 4-4 Result of Non-Interleaved Unpack High in MM1
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Extract Word

The pextrw instruction takes the word in the designated MMX register 
selected by the two least significant bits of the immediate value and 
moves it to the lower half of a 32-bit integer register, see Figure 4-5 and 
Example 4-7.

Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way

; Input:

; MM0 packed-word source value
; MM1 packed-word source value

; Output:

; MM0 contains the two low-end words of the
; original sources, non-interleaved 
; MM2 contains the two high end words of the
; original sources, non-interleaved.

movq MM2, MM0 ; copy source1

punpckldq MM0, MM1 ; replace the two high-end words 
; of MMO with two low-end words of 
; MM1; leave the two low-end words
; of MM0 in place

punpckhdq MM2, MM1 ; move two high-end words of MM2
; to the two low-end words of MM2;
; place the two high-end words of
; MM1 in two high-end words of MM2
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Example 4-7 pextrw Instruction Code

; Input:

; eax source value

; immediate value:“0”

; Output:

; edx 32-bit integer register containing the

; extracted word in the low-order bits &

; the high-order bits zero-extended

movq mm0, [eax] 

pextrw edx, mm0, 0

Insert Word

The pinsrw instruction loads a word from the lower half of a 32-bit 
integer register or from memory and inserts it in the MMX technology 
destination register at a position defined by the two least significant bits 
of the immediate constant. Insertion is done in such a way that the three 
other words from the destination register are left untouched, see 
Figure 4-6 and Example 4-8. 

Figure 4-5 pextrw Instruction
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If all of the operands in a register are being replaced by a series of 
pinsrw instructions, it can be useful to clear the content and break the 
dependence chain by either using the pxor instruction or loading the 
register. See the “Clearing Registers” section in Chapter 2.

Figure 4-6 pinsrw Instruction

Example 4-8 pinsrw Instruction Code

; Input:

; edx  pointer to source value

; Output:

; mm0  register with new 16-bit value inserted

;

mov eax, [edx] 

pinsrw mm0, eax, 1
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Move Byte Mask to Integer

The pmovmskb instruction returns a bit mask formed from the most 
significant bits of each byte of its source operand. When used with the 
64-bit MMX registers, this produces an 8-bit mask, zeroing out the 
upper 24 bits in the destination register. When used with the 128-bit 
XMM registers, it produces a 16-bit mask, zeroing out the upper 16 bits 
in the destination register. The 64-bit version is shown in Figure 4-7 and 
Example 4-10.

Example 4-9 Repeated pinsrw Instruction Code

; Input:

; edx  pointer to structure containing source

; values at offsets: of +0, +10, +13, and +24
; immediate value: “1”

; Output:

; MMX register with new 16-bit value inserted

;

pxor mm0, mm0 ; Breaks dependedncy on previous value of 
mm0

mov eax, [edx] 

pinsrw mm0, eax, 0

mov eax, [edx+10] 

pinsrw mm0, eax, 1

mov eax, [edx+13] 

pinsrw mm0, eax, 2

mov eax, [edx+24] 

pinsrw mm0, eax, 3
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Figure 4-7 pmovmskb Instruction Example

Example 4-10 pmovmskb Instruction Code

; Input:

; source value

; Output:

; 32-bit register containing the byte mask in the 
lower 
; eight bits

;

movq     mm0, [edi] 

pmovmskb eax, mm0
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Packed Shuffle Word for 64-bit Registers

The pshuf instruction (see Figure 4-8, Example 4-11) uses the 
immediate (imm8) operand to select between the four words in either 
two MMX registers or one MMX register and a 64-bit memory location. 
Bits 1 and 0 of the immediate value encode the source for destination 
word 0 in MMX register ([15-0]), and so on as shown in the table:

Bits 7 and 6 encode for word 3 in MMX register ([63-48]). Similarly, 
the 2-bit encoding represents which source word is used, for example, 
binary encoding of 10 indicates that source word 2 in MMX 
register/memory (mm/mem[47-32]) is used, see Figure 4-8 and 
Example 4-11.   

Bits Word

1 - 0 0

3 - 2 1

5 - 4 2

7 - 6 3

Figure 4-8 pshuf Instruction Example
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Packed Shuffle Word for 128-bit Registers

The pshuflw/pshufhw instruction performs a full shuffle of any source 
word field within the low/high 64 bits to any result word field in the 
low/high 64 bits, using an 8-bit immediate operand; the other high/low 
64 bits are passed through from the source operand.

The pshufd instruction performs a full shuffle of any double-word field 
within the 128-bit source to any double-word field in the 128-bit result, 
using an 8-bit immediate operand.

No more than 3 instructions, using pshuflw/pshufhw/pshufd, are 
required to implement some common data shuffling operations. 
Broadcast, Swap, and Reverse are illustrated in Example 4-12, 
Example 4-13, and Example 4-14, respectively.     

Example 4-11 pshuf Instruction Code

; Input:  

; edi source value

; Output: 

; MM1 MM register containing re-arranged 
words

movq mm0, [edi] 

pshufw mm1, mm0, 0x1b

Example 4-12 Broadcast Using 2 Instructions

/* Goal:  Broadcast the value from word 5 to all words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFHW (3,2,1,1)| 7| 6| 5| 5| 3| 2| 1| 0|

PSHUFD (2,2,2,2)| 5| 5| 5| 5| 5| 5| 5| 5|
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Unpacking/interleaving 64-bit Data in 128-bit Registers

The punpcklqdq/punpchqdq instructions interleave the low/high-order 
64-bits of the source operand and the low/high-order 64-bits of the 
destination operand and writes them to the destination register. The 
high/low-order 64-bits of the source operands are ignored.

Example 4-13 Swap Using 3 Instructions

/* Goal:  Swap the values in word 6 and word 1 */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFD (3,0,1,2)| 7| 6| 1| 0| 3| 2| 5| 4|

PSHUFHW (3,1,2,0)| 7| 1| 6| 0| 3| 2| 5| 4|

PSHUFD (3,0,1,2)| 7| 1| 5| 4| 3| 2| 6| 0|

Example 4-14 Reverse Using 3 Instructions

/* Goal:  Reverse the order of the words */

/* Instruction Result */

| 7| 6| 5| 4| 3| 2| 1| 0|

PSHUFLW (0,1,2,3)| 7| 6| 5| 4| 0| 1| 2| 3|

PSHUFHW (0,1,2,3)| 4| 5| 6| 7| 0| 1| 2| 3|

PSHUFD (1,0,3,2)| 0| 1| 2| 3| 4| 5| 6| 7|
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Data Movement 

There are two additional instructions to enable data movement from the 
64-bit SIMD integer registers to the 128-bit SIMD registers. 

The movq2dq instruction moves the 64-bit integer data from an MMX 
register (source) to a 128-bit destination register. The high-order 64 bits 
of the destination register are zeroed-out.

The movdq2q instruction moves the low-order 64-bits of integer data 
from a 128-bit source register to an MMX register (destination). 

Conversion Instructions

New instructions have been added to support 4-wide conversion of 
single-precision data to/from double-word integer data. Also, 
conversions between double-precision data and double-word integer 
data have been added.

Generating Constants
The SIMD integer instruction sets do not have instructions that will load 
immediate constants to the SIMD registers. The following code 
segments generate frequently used constants in the SIMD register. Of 
course, you can also put constants as local variables in memory, but 
when doing so be sure to duplicate the values in memory and load the 
values with a movq, movdqa, or movdqu instructions, see Example 4-15.
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Example 4-15 Generating Constants

pxor MM0, MM0 ; generate a zero register in MM0

pcmpeq MM1, MM1 ; Generate all 1’s in register MM1,
; which is -1 in each of the packed
; data type fields

pxor MM0, MM0

pcmpeq MM1, MM1

psubb MM0, MM1 [psubw  MM0, MM1] (psubd  MM0, MM1)

; three instructions above generate 
; the constant 1 in every 
; packed-byte [or packed-word] 
; (or packed-dword) field

pcmpeq MM1, MM1

psrlw MM1, 16-n(psrld  MM1, 32-n)

; two instructions above generate 
; the signed constant 2n–1 in every 
; packed-word (or packed-dword) field

pcmpeq MM1, MM1

psllw MM1, n (pslld MM1, n)

; two instructions above generate 
; the signed constant -2n in every 
; packed-word (or packed-dword) field

NOTE.  Because the SIMD integer instruction sets do 
not support shift instructions for bytes, 2n–1 and -2n 
are relevant only for packed words and packed 
doublewords.
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Building Blocks
This section describes instructions and algorithms which implement 
common code building blocks efficiently.

Absolute Difference of Unsigned Numbers

Example 4-16 computes the absolute difference of two unsigned 
numbers. It assumes an unsigned packed-byte data type. Here, we make 
use of the subtract instruction with unsigned saturation. This instruction 
receives UNSIGNED operands and subtracts them with UNSIGNED 
saturation. This support exists only for packed bytes and packed words, 
not for packed doublewords.

This example will not work if the operands are signed.

Note that the psadbw instruction may also be used in some situations; 
see section “Packed Sum of Absolute Differences” for details.

Example 4-16 Absolute Difference of Two Unsigned Numbers

; Input:

; MM0 source operand
; MM1 source operand

; Output:

; MM0 absolute difference of the unsigned
;  operands 

movq MM2, MM0 ; make a copy of MM0

psubusb MM0, MM1 ; compute difference one way

psubusb MM1, MM2 ; compute difference the other way

por MM0, MM1 ; OR them together
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Absolute Difference of Signed Numbers

Chapter 4 computes the absolute difference of two signed numbers. 

The technique used here is to first sort the corresponding elements of the 
input operands into packed words of the maximum values, and packed 
words of the minimum values. Then the minimum values are subtracted 
from the maximum values to generate the required absolute difference. 
The key is a fast sorting technique that uses the fact that B = xor(A, 
xor (A,B)) and A = xor(A,0). Thus in a packed data type, having 
some elements being xor(A,B) and some being 0, you could xor such 
an operand with A and receive in some places values of A and in some 
values of B. The following examples assume a packed-word data type, 
each element being a signed value.

NOTE.  There is no MMX™ technology subtract 
instruction that receives SIGNED operands and 
subtracts them with UNSIGNED saturation.
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Absolute Value

Use Example 4-18 to compute |x|, where x is signed. This example 
assumes signed words to be the operands.

Example 4-17 Absolute Difference of Signed Numbers

;Input:

; MM0 signed source operand
; MM1 signed source operand

;Output:

; MM0 absolute difference of the unsigned
;  operands 

movq MM2, MM0 ; make a copy of source1 (A)

pcmpgtw MM0, MM1 ; create mask of

; source1>source2 (A>B)

movq MM4, MM2 ; make another copy of A

pxor MM2, MM1 ; create the intermediate value of
; the swap operation - xor(A,B)

pand MM2, MM0 ; create a mask of 0s and xor(A,B) 
; elements. Where A>B there will 
; be a value xor(A,B) and where 
; A<=B there will be 0.

pxor MM4, MM2 ; minima-xor(A, swap mask)

pxor MM1, MM2 ; maxima-xor(B, swap mask)

psubw MM1, MM4 ; absolute difference = 
; maxima-minima
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Clipping to an Arbitrary Range [high, low]

This section explains how to clip a values to a range [high, low]. 
Specifically, if the value is less than low or greater than high, then clip 
to low or high, respectively. This technique uses the packed-add and 
packed-subtract instructions with saturation (signed or unsigned), which 
means that this technique can only be used on packed-byte and 
packed-word data types.

The examples in this section use the constants packed_max and 
packed_min and show operations on word values. For simplicity we use 
the following constants (corresponding constants are used in case the 
operation is done on byte values):

• packed_max equals 0x7fff7fff7fff7fff

Example 4-18 Computing Absolute Value

; Input:

; MM0 signed source operand

; Output:

; MM1 ABS(MMO) 

pxor MM1, MM1 ; set MM1 to all zeros

psubw MM1, MM0 ; make each MM1 word contain the

   ; negative of each MM0 word

pmaxsw MM1, MM0 ; MM1 will contain only the positive

   ; (larger) values - the absolute value

CAUTION.  The absolute value of the most negative 
number (that is, 8000 hex for 16-bit) cannot be 
represented using positive numbers. This algorithm 
will return the original value for the absolute value 
(8000 hex).
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• packed_min equals 0x8000800080008000
• packed_low contains the value low in all four words of the 

packed-words data type

• packed_high contains the value high in all four words of the 
packed-words data type

• packed_usmax all values equal 1 
• high_us adds the high value to all data elements (4 words) of 

packed_min

• low_us adds the low value to all data elements (4 words) of 
packed_min

Highly Efficient Clipping

For clipping signed words to an arbitrary range, the pmaxsw and pminsw 
instructions may be used. For clipping unsigned bytes to an arbitrary 
range, the pmaxub and pminub instructions may be used. Example 4-19 
shows how to clip signed words to an arbitrary range; the code for 
clipping unsigned bytes is similar.  

Example 4-19 Clipping to a Signed Range of Words [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM0 signed words clipped to the signed 
; range [high, low] 

pminsw MM0, packed_high

pmaxsw MM0, packed_low
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The code above converts values to unsigned numbers first and then clips 
them to an unsigned range. The last instruction converts the data back to 
signed data and places the data within the signed range. Conversion to 
unsigned data is required for correct results when (high - low) < 
0x8000.

If (high - low) >= 0x8000, the algorithm can be simplified as shown in 
Example 4-21.

Example 4-20 Clipping to an Arbitrary Signed Range [high, low]

; Input:

; MM0 signed source operands

; Output:

; MM1 signed operands clipped to the unsigned 
; range [high, low] 

paddw MM0, packed_min ; add with no saturation 

; 0x8000 to convert to unsigned

paddusw MM0, (packed_usmax - high_us)

; in effect this clips to high

psubusw MM0, (packed_usmax - high_us + low_us) 

; in effect this clips to low

paddw MM0, packed_low ; undo the previous two offsets

Example 4-21 Simplified Clipping to an Arbitrary Signed Range

; Input: MM0 signed source operands

; Output: MM1 signed operands clipped to the unsigned 
;  range [high, low]

paddssw     MM0, (packed_max - packed_high)

; in effect this clips to high

psubssw     MM0, (packed_usmax - packed_high + packed_ow)

; clips to low

paddw       MM0, low ; undo the previous two offsets
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This algorithm saves a cycle when it is known that (high - low) >= 
0x8000. The three-instruction algorithm does not work when (high - 
low) < 0x8000, because 0xffff minus any number < 0x8000 will yield 
a number greater in magnitude than 0x8000, which is a negative 
number. When the second instruction, 
psubssw MM0, (0xffff - high + low), in the three-step algorithm 
(Example 4-21) is executed, a negative number is subtracted. The result 
of this subtraction causes the values in MM0 to be increased instead of 
decreased, as should be the case, and an incorrect answer is generated. 

Clipping to an Arbitrary Unsigned Range [high, low]

The code in Chapter 4 clips an unsigned value to the unsigned range 
[high, low]. If the value is less than low or greater than high, then clip 
to low or high, respectively. This technique uses the packed-add and 
packed-subtract instructions with unsigned saturation, thus this 
technique can only be used on packed-bytes and packed-words data 
types.

The example illustrates the operation on word values.

Example 4-22 Clipping to an Arbitrary Unsigned Range [high, low]

; Input:

; MM0 unsigned source operands

; Output:

; MM1 unsigned operands clipped to the unsigned
; range [HIGH, LOW] 

paddusw MM0, 0xffff - high

; in effect this clips to high

psubusw MM0, (0xffff - high + low) 

; in effect this clips to low

paddw MM0, low 

; undo the previous two offsets
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Packed Max/Min of Signed Word and Unsigned Byte 

Signed Word

The pmaxsw instruction returns the maximum between the four signed 
words in either two SIMD registers, or one SIMD register and a 
memory location.

The pminsw instruction returns the minimum between the four signed 
words in either two SIMD registers, or one SIMD register and a 
memory location.

Unsigned Byte

The pmaxub instruction returns the maximum between the eight 
unsigned bytes in either two SIMD registers, or one SIMD register and a 
memory location.

The pminub instruction returns the minimum between the eight 
unsigned bytes in either two SIMD registers, or one SIMD register and a 
memory location.

Packed Multiply High Unsigned

The pmulhuw and pmulhw instruction multiplies the unsigned/signed 
words in the destination operand with the unsigned/signed words in the 
source operand. The high-order 16 bits of the 32-bit intermediate results 
are written to the destination operand.

Packed Sum of Absolute Differences

The psadbw instruction (see Figure 4-9) computes the absolute value of 
the difference of unsigned bytes for either two SIMD registers, or one 
SIMD register and a memory location. These differences are then 
summed to produce a word result in the lower 16-bit field, and the upper 
three words are set to zero.
4-30



Optimizing for SIMD Integer Applications 4
The subtraction operation presented above is an absolute difference, that 
is, t = abs(x-y). The byte values are stored in temporary space, all 
values are summed together, and the result is written into the lower 
word of the destination register.

Packed Average (Byte/Word)

The pavgb and pavgw instructions add the unsigned data elements of the 
source operand to the unsigned data elements of the destination register, 
along with a carry-in. The results of the addition are then each 
independently shifted to the right by one bit position. The high order 
bits of each element are filled with the carry bits of the corresponding 
sum.

The destination operand is an SIMD register. The source operand can 
either be an SIMD register or a memory operand.

Figure 4-9 PSADBW Instruction Example
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The PAVGB instruction operates on packed unsigned bytes and the PAVGW 
instruction operates on packed unsigned words.

Complex Multiply by a Constant

Complex multiplication is an operation which requires four 
multiplications and two additions. This is exactly how the pmaddwd 
instruction operates. In order to use this instruction, you need to format 
the data into multiple 16-bit values. The real and imaginary components 
should be 16-bits each. Consider Example 4-23, which assumes that the 
64-bit MMX registers are being used:

• Let the input data be Dr and Di where Dr is real component of the 
data and Di is imaginary component of the data.

• Format the constant complex coefficients in memory as four 16-bit 
values [Cr -Ci Ci Cr]. Remember to load the values into the MMX 
register using a movq instruction.

• The real component of the complex product is 
Pr = Dr*Cr - Di*Ci 

and the imaginary component of the complex product is 
Pi = Dr*Ci + Di*Cr.

Example 4-23 Complex Multiply by a Constant

; Input:

; MM0 complex value, Dr, Di
; MM1 constant complex coefficient in the form 
; [Cr -Ci Ci Cr]

; Output:

; MM0 two 32-bit dwords containing [Pr Pi]

; 

punpckldq MM0, MM0 ; makes [Dr Di Dr Di]

pmaddwd MM0, MM1 ; done, the result is

     ; [(Dr*Cr-Di*Ci)(Dr*Ci+Di*Cr)]
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Note that the output is a packed doubleword. If needed, a pack 
instruction can be used to convert the result to 16-bit (thereby matching 
the format of the input).

Packed 32*32 Multiply

The PMULUDQ instruction performs an unsigned multiply on the lower 
pair of double-word operands within each 64-bit chunk from the two 
sources; the full 64-bit result from each multiplication is returned to the 
destination register. This instruction is added in both a 64-bit and 
128-bit version; the latter performs 2 independent operations, on the low 
and high halves of a 128-bit register.

Packed 64-bit Add/Subtract

The PADDQ/PSUBQ instructions add/subtract quad-word operands within 
each 64-bit chunk from the two sources; the 64-bit result from each 
computation is written to the destination register. Like the integer 
ADD/SUB instruction, PADDQ/PSUBQ can operate on either unsigned or 
signed (two’s complement notation) integer operands. When an 
individual result is too large to be represented in 64-bits, the lower 
64-bits of the result are written to the destination operand and therefore 
the result wraps around. These instructions are added in both a 64-bit 
and 128-bit version; the latter performs 2 independent operations, on the 
low and high halves of a 128-bit register.

128-bit Shifts

The pslldq/psrldq instructions shift the first operand to the left/right 
by the amount of bytes specified by the immediate operand. The empty 
low/high-order bytes are cleared (set to zero). If the value specified by 
the immediate operand is greater than 15, then the destination is set to 
all zeros.
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Memory Optimizations
You can improve memory accesses using the following techniques:

• Avoiding partial memory accesses

• Increasing the bandwidth of memory fills and video fills

• Prefetching data with Streaming SIMD Extensions (see Chapter 6, 
“Optimizing Cache Usage”).

The MMX registers and XMM registers allow you to move large 
quantities of data without stalling the processor. Instead of loading 
single array values that are 8, 16, or 32 bits long, consider loading the 
values in a single quadword or double quadword, then incrementing the 
structure or array pointer accordingly.

Any data that will be manipulated by SIMD integer instructions should 
be loaded using either:

• the SIMD integer instruction that loads a 64-bit or 128-bit operand 
(for example, movq MM0, m64) 

• the register-memory form of any SIMD integer instruction that 
operates on a quadword or double quadword memory operand (for 
example, pmaddw MM0, m64).

All SIMD data should be stored using the SIMD integer instruction that 
stores a 64-bit or 128-bit operand (for example, movq m64, MM0)

The goal of these recommendations is twofold. First, the loading and 
storing of SIMD data is more efficient using the larger block sizes. 
Second, this helps to avoid the mixing of 8-, 16-, or 32-bit load and store 
operations with SIMD integer technology load and store operations to 
the same SIMD data. This, in turn, prevents situations in which small 
loads follow large stores to the same area of memory, or large loads 
follow small stores to the same area of memory. The Pentium II, 
Pentium III, and Pentium 4 processors stall in these situations; see 
Chapter 2, “General Optimization Guidelines” for more details.
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Partial Memory Accesses

Consider a case with large load after a series of small stores to the same 
area of memory (beginning at memory address mem). The large load will 
stall in this case as shown in Example 4-24.

The movq must wait for the stores to write memory before it can access 
all the data it requires. This stall can also occur with other data types 
(for example, when bytes or words are stored and then words or 
doublewords are read from the same area of memory). When you 
change the code sequence as shown in Example 4-25, the processor can 
access the data without delay.

Example 4-24 A Large Load after a Series of Small Stores (Penalty)

mov mem, eax     ; store dword to address “mem"

mov mem + 4, ebx ; store dword to address “mem + 4"

       :

       :

movq   mm0, mem ; load qword at address “mem", stalls

Example 4-25 Accessing Data without Delay

movd mm1, ebx ; build data into a qword first 

; before storing it to memory

movd mm2, eax

psllq mm1, 32

por mm1, mm2

movq mem, mm1 ; store SIMD variable to “mem" as 
; a qword

        :

        :

movq mm0, mem ; load qword SIMD “mem", no stall
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Let us now consider a case with a series of small loads after a large store 
to the same area of memory (beginning at memory address mem) as 
shown in Example 4-26.   Most of the small loads will stall because they 
are not aligned with the store; see “Store Forwarding” in Chapter 2 for 
more details.

The word loads must wait for the quadword store to write to memory 
before they can access the data they require. This stall can also occur 
with other data types (for example, when doublewords or words are 
stored and then words or bytes are read from the same area of memory). 
When you change the code sequence as shown in Example 4-27, the 
processor can access the data without delay.

Example 4-26 A Series of Small Loads after a Large Store

movq mem, mm0   ; store qword to address “mem"

        :

        :

mov bx, mem + 2 ; load word at “mem + 2" stalls

mov cx, mem + 4 ; load word at “mem + 4" stalls

Example 4-27 Eliminating Delay for a Series of Small Loads after a Large Store

movq mem, mm0 ; store qword to address “mem"

        :

        :

movq mm1, mem ; load qword at address “mem"

movd eax, mm1 ; transfer “mem + 2" to eax from 

; MMX register, not memory 

psrlq mm1, 32

shr eax, 16

movd ebx, mm1 ; transfer “mem + 4" to bx from 

; MMX register, not memory 

and ebx, 0ffffh
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These transformations, in general, increase the number of instructions 
required to perform the desired operation. For Pentium II, Pentium III, 
and Pentium 4 processors, the benefit of avoiding forwarding problems 
outweighs the performance penalty due to the increased number of 
instructions, making the transformations worthwhile.

Increasing Bandwidth of Memory Fills and Video Fills

It is beneficial to understand how memory is accessed and filled. A 
memory-to-memory fill (for example a memory-to-video fill) is defined 
as a 64-byte (cache line) load from memory which is immediately stored 
back to memory (such as a video frame buffer). The following are 
guidelines for obtaining higher bandwidth and shorter latencies for 
sequential memory fills (video fills). These recommendations are 
relevant for all Intel architecture processors with MMX technology and 
refer to cases in which the loads and stores do not hit in the first- or 
second-level cache.

Increasing Memory Bandwidth Using the MOVDQ 
Instruction

Loading any size data operand will cause an entire cache line to be 
loaded into the cache hierarchy. Thus any size load looks more or less 
the same from a memory bandwidth perspective. However, using many 
smaller loads consumes more microarchitectural resources than fewer 
larger stores. Consuming too many of these resources can cause the 
processor to stall and reduce the bandwidth that the processor can 
request of the memory subsystem.

Using movdq to store the data back to UC memory (or WC memory in 
some cases) instead of using 32-bit stores (for example, movd) will 
reduce by three-quarters the number of stores per memory fill cycle. As 
a result, using the movdq instruction in memory fill cycles can achieve 
significantly higher effective bandwidth than using the movd instruction.
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Increasing Memory Bandwidth by Loading and Storing to 
and from the Same DRAM Page

DRAM is divided into pages, which are not the same as operating 
system (OS) pages. The size of a DRAM page is a function of the total 
size of the DRAM and the organization of the DRAM. Page sizes of 
several Kilobytes are common. Like OS pages, DRAM pages are 
constructed of sequential addresses. Sequential memory accesses to the 
same DRAM page have shorter latencies than sequential accesses to 
different DRAM pages. In many systems the latency for a page miss 
(that is, an access to a different page instead of the page previously 
accessed) can be twice as large as the latency of a memory page hit 
(access to the same page as the previous access). Therefore, if the loads 
and stores of the memory fill cycle are to the same DRAM page, a 
significant increase in the bandwidth of the memory fill cycles can be 
achieved.

Increasing UC and WC Store Bandwidth by Using Aligned 
Stores

Using aligned stores to fill UC or WC memory will yield higher 
bandwidth than using unaligned stores. If a UC store or some WC stores 
cross a cache line boundary, a single store will result in two transaction 
on the bus, reducing the efficiency of the bus transactions. By aligning 
the stores to the size of the stores, you eliminate the possibility of 
crossing a cache line boundary, and the stores will not be split into 
separate transactions.

Converting from 64-bit to 128-bit SIMD Integer
The SSE2 define a superset of 128-bit integer instructions currently 
available in MMX technology; the operation of the extended 
instructions remains the same and simply operate on data that is twice as 
wide. This simplifies porting of current 64-bit integer applications. 
However, there are few additional considerations:
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• Computation instructions which use a memory operand that may not 
be aligned to a 16-byte boundary must be replaced with an 
unaligned 128-bit load (movdqu) followed by the same computation 
operation that uses instead register operands. Use of 128-bit integer 
computation instructions with memory operands that are not 16-byte 
aligned will result in a General Protection fault. The unaligned 
128-bit load and store is not as efficient as the corresponding 
aligned versions; this can reduce the performance gains when using 
the 128-bit SIMD integer extensions. The general guidelines on the 
alignment of memory operands are:

— The greatest performance gains can be achieved when all 
memory streams are 16-byte aligned.

— Reasonable performance gains are possible if roughly half of all 
memory streams are 16-byte aligned, and the other half are not.

— Little or no performance gain may result if all memory streams 
are not aligned to 16-bytes; in this case, use of the 64-bit SIMD 
integer instructions may be preferable.

• Loop counters need to be updated because each 128-bit integer 
instruction operates on twice the amount of data as the 64-bit integer 
counterpart.

• Extension of the pshufw instruction (shuffle word across 64-bit 
integer operand) across a full 128-bit operand is emulated by a 
combination of the following instructions: pshufhw, pshuflw, 
pshufd.

• Use of the 64-bit shift by bit instructions (psrlq, psllq) are 
extended to 128 bits in these ways: 

— use of psrlq and psllq, along with masking logic operations

— code sequence is rewritten to use the psrldq and pslldq 
instructions (shift double quad-word operand by bytes).
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5
Optimizing for SIMD 
Floating-point Applications
This chapter discusses general rules of optimizing for the 
single-instruction, multiple-data (SIMD) floating-point instructions 
available in Streaming SIMD Extensions (SSE) and Streaming SIMD 
Extensions 2 (SSE2). This chapter also provides examples that illustrate 
the optimization techniques for single-precision and double-precision 
SIMD floating-point applications. 

General Rules for SIMD Floating-point Code
The rules and suggestions listed in this section help optimize 
floating-point code containing SIMD floating-point instructions. 
Generally, it is important to understand and balance port utilization to 
create efficient SIMD floating-point code. The basic rules and 
suggestions include the following:

• Follow all guidelines in Chapter 2 and Chapter 3.

• Exceptions: mask exceptions to achieve higher performance. When 
exceptions are unmasked, software performance is slower.

• Utilize the flush-to-zero mode for higher performance to avoid the 
penalty of dealing with denormals and underflows.

• Incorporate the prefetch instruction whenever possible (for details, 
refer to Chapter 6, “Optimizing Cache Usage”).

• Use MMX technology instructions and registers if the computations 
can be done in SIMD integer for shuffling data. 

• Use MMX technology instructions and registers or for copying data 
that is not used later in SIMD floating-point computations.
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• Use the reciprocal instructions followed by iteration for increased 
accuracy. These instructions yield reduced accuracy but execute 
much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration. 

— If near full accuracy is needed, use a Newton-Raphson iteration. 

— If full accuracy is needed, then use divide and square root which 
provide more accuracy, but slow down performance.

Planning Considerations
Whether adapting an existing application or creating a new one, using 
SIMD floating-point instructions to achieve optimum performance gain 
requires programmers to consider several issues. In general, when 
choosing candidates for optimization, look for code segments that are 
computationally intensive and floating-point intensive. Also consider 
efficient use of the cache architecture. 

The sections that follow answer the questions that should be raised 
before implementation:

• Which part of the code benefits from SIMD floating-point 
instructions?

• Is the current algorithm the most appropriate for SIMD 
floating-point instructions?

• Is the code floating-point intensive?

• Do either single-precision floating-point or double-precision 
floating- point computations provide enough range and precision?

• Is the data arranged for efficient utilization of the SIMD 
floating-point registers?

• Is this application targeted for processors without SIMD 
floating-point instructions?

For more details, see the section on “Considerations for Code 
Conversion to SIMD Programming” in Chapter 3.
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Detecting SIMD Floating-point Support
Applications must be able to determine if SSE are available. Please refer 
the section “Checking for Processor Support of SIMD Technologies” in 
Chapter 3 for the techniques to determine whether the processor and 
operating system support SSE.

Using SIMD Floating-point with x87 Floating-point
Because the XMM registers used for SIMD floating-point computations 
are separate registers and are not mapped onto the existing x87 
floating-point stack, SIMD floating-point code can be mixed with either 
x87 floating-point or 64-bit SIMD integer code.

Scalar Floating-point Code
There are SIMD floating-point instructions that operate only on the 
least-significant operand in the SIMD register. These instructions are 
known as scalar instructions. They allow the XMM registers to be used 
for general-purpose floating-point computations.

In terms of performance, scalar floating-point code can be equivalent to 
or exceed x87 floating-point code, and has the following advantages:

• SIMD floating-point code uses a flat register model, whereas x87 
floating-point code uses a stack model. Using scalar floating-point 
code eliminates the need to use fxch instructions, which has some 
performance limit on the Intel Pentium 4 processor.

• Mixing with MMX technology code without penalty.

• Flush-to-zero mode.

• Shorter latencies than x87 floating-point.
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When using scalar floating-point instructions, it is not necessary to 
ensure that the data appears in vector form. However, all of the 
optimizations regarding alignment, scheduling, instruction selection, 
and other optimizations covered in Chapters 2 and 3 should be 
observed.

Data Alignment
SIMD floating-point data is 16-byte aligned. Referencing unaligned 
128-bit SIMD floating-point data will result in an exception unless the 
movups or movupd (move unaligned packed single or unaligned packed 
double) instruction is used. The unaligned instructions used on aligned 
or unaligned data will also suffer a performance penalty relative to 
aligned accesses.

Refer to section “Stack and Data Alignment” in Chapter 3 for more 
information.

Data Arrangement

Because the SSE and SSE2 incorporate a SIMD architecture, arranging 
the data to fully use the SIMD registers produces optimum performance. 
This implies contiguous data for processing, which leads to fewer cache 
misses and can potentially quadruple the data throughput when using 
SSE, or twice the throughput when using SSE2. These performance 
gains can occur because four data element can be loaded with 128-bit 
load instructions into XMM registers using SSE (movaps – move 
aligned packed single precision). Similarly, two data element can loaded 
with 128-bit load instructions into XMM registers using SSE2 (movapd 
– move aligned packed double precision).

Refer to the “Stack and Data Alignment” in Chapter 3 for data 
arrangement recommendations. Duplicating and padding techniques 
overcome the misalignment problem that can occur in some data 
structures and arrangements. This increases the data space but avoids 
the expensive penalty for misaligned data access.
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For some applications, the traditional data arrangement requires some 
changes to fully utilize the SIMD registers and parallel techniques. 
Traditionally, the data layout has been an array of structures (AoS). To 
fully utilize the SIMD registers, a new data layout has been 
proposed—a structure of arrays (SoA) resulting in more optimized 
performance.

Vertical versus Horizontal Computation

Traditionally, the AoS data structure is used in 3D geometry 
computations. SIMD technology can be applied to AoS data structure 
using a horizontal computation technique. This means that the x, y, z, 
and w components of a single vertex structure (that is, of a single vector 
simultaneously referred to as an xyz data representation, see the 
diagram below) are computed in parallel, and the array is updated one 
vertex at a time.

To optimally utilize the SIMD registers, the data structure can be 
organized in the SoA format. The SoA data structure enables a vertical 
computation technique, and is recommended over horizontal 
computation, for the following reasons:

• When computing on a single vector (xyz), it is common to use only 
a subset of the vector components; for example, in 3D graphics the W 
component is sometimes ignored. This means that for single-vector 
operations, 1 of 4 computation slots is not being utilized. This 
typically results in a 25% reduction of peak efficiency.

• It may become difficult to hide long latency operations. For 
instance, another common function in 3D graphics is normalization, 
which requires the computation of a reciprocal square root (that is, 
1/sqrt). Both the division and square root are long latency 
operations. With vertical computation (SoA), each of the 4 
computation slots in a SIMD operation is producing a unique result, 

X Y Z W
5-5



IA-32 Intel® Architecture Optimization
so the net latency per slot is L/4 where L is the overall latency of the 
operation. However, for horizontal computation, the 4 computation 
slots each produce the same result, hence to produce 4 separate 
results requires a net latency per slot of L.

To utilize all 4 computation slots, the vertex data can be reorganized to 
allow computation on each component of 4 separate vertices, that is, 
processing multiple vectors simultaneously. This can also be referred to 
as an SoA form of representing vertices data shown in Table 5-1.

Organizing data in this manner yields a unique result for each 
computational slot for each arithmetic operation. 

Vertical computation takes advantage of the inherent parallelism in 3D 
geometry processing of vertices. It assigns the computation of four 
vertices to the four compute slots of the Pentium III processor, thereby 
eliminating the disadvantages of the horizontal approach described 
earlier. The dot product operation implements the SoA representation of 
vertices data. A schematic representation of dot product operation is 
shown in Figure 5-1.

Table 5-1 SoA Form of Representing Vertices Data

Vx array X1 X2 X3 X4 ..... Xn

Vy array Y1 Y2 Y3 Y4 ..... Yn

Vz array Z1 Z2 Z3 Y4 ..... Zn

Vw array W1 W2 W3 W4 ..... Wn
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Figure 5-1 Dot Product Operation
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Figure 5-1 shows how 1 result would be computed for 7 instructions if 
the data were organized as AoS: 4 results would require 28 instructions.

Now consider the case when the data is organized as SoA. Example 5-2 
demonstrates how 4 results are computed for 5 instructions.

For the most efficient use of the four component-wide registers, 
reorganizing the data into the SoA format yields increased throughput 
and hence much better performance for the instructions used.

As can be seen from this simple example, vertical computation yielded 
100% use of the available SIMD registers and produced 4 results. (The 
results may vary based on the application.) If the data structures must be 
in a format that is not “friendly” to vertical computation, it can be 
rearranged “on the fly” to achieve full utilization of the SIMD registers. 
This operation is referred to as “swizzling” operation and the reverse 
operation is referred to as “deswizzling.”

Example 5-1 Pseudocode for Horizontal (xyz, AoS) Computation

mulps ; x*x’, y*y’, z*z’

movaps ; reg->reg move, since next steps overwrite

shufps ; get b,a,d,c from a,b,c,d

addps ; get a+b,a+b,c+d,c+d

movaps ; reg->reg move

shufps ; get c+d,c+d,a+b,a+b from prior addps

addps ; get a+b+c+d,a+b+c+d,a+b+c+d,a+b+c+d

Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x’ for all 4 x-components of 4 vertices

mulps ; y*y’ for all 4 y-components of 4 vertices

mulps ; z*z’ for all 4 z-components of 4 vertices

addps ; x*x’ + y*y’

addps ; x*x’+y*y’+z*z’
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Data Swizzling

Swizzling data from one format to another is required in many 
algorithms. An example of this is AoS format, where the vertices come 
as xyz adjacent coordinates. Rearranging them into SoA format, xxxx, 
yyyy, zzzz, allows more efficient SIMD computations. For efficient 
data shuffling and swizzling use the following instructions:

• movlps, movhps load/store and move data on half sections of the 
registers

• shufps, unpackhps, and unpacklps unpack data

To gather data from 4 different memory locations on the fly, follow 
steps:

1. Identify the first half of the 128-bit memory location. 
2. Group the different halves together using the movlps and movhps to 

form an xyxy layout in two registers. 

3. From the 4 attached halves, get the xxxx by using one shuffle, the 
yyyy by using another shuffle. 

The zzzz is derived the same way but only requires one shuffle.

Example 5-3 illustrates the swizzle function.

Example 5-3 Swizzling Data

typedef struct _VERTEX_AOS {

    float x, y, z, color;

} Vertex_aos;   // AoS structure declaration

typedef struct _VERTEX_SOA {

    float x[4], float y[4], float z[4];

  float color[4];

} Vertex_soa;   // SoA structure declaration 

continued
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void swizzle_asm (Vertex_aos *in, Vertex_soa *out)

{

// in mem: x1y1z1w1-x2y2z2w2-x3y3z3w3-x4y4z4w4-

// SWIZZLE XYZW --> XXXX

  asm {

mov  ecx, in      // get structure addresses

mov  edx, out

 y1 x1

movhps xmm7, [ecx+16]  // xmm7 = y2 x2 y1 x1

movlps xmm0, [ecx+32]  // xmm0 = -- -- y3 x3

movhps xmm0, [ecx+48]  // xmm0 = y4 x4 y3 x3

movaps xmm6, xmm7      // xmm6 = y1 x1 y1 x1

shufps xmm7, xmm0, 0x88 // xmm7 = x1 x2 x3 x4 => X

shufps xmm6, xmm0, 0xDD // xmm6 = y1 y2 y3 y4 => Y

movlps xmm2, [ecx+8]   // xmm2 = -- -- w1 z1

movhps xmm2, [ecx+24]  // xmm2 = w2 z2 u1 z1

movlps xmm1, [ecx+40]  // xmm1 = -- -- s3 z3

movhps xmm1, [ecx+56]  // xmm1 = w4 z4 w3 z3

movaps xmm0, xmm2 // xmm0 = w1 z1 w1 z1

shufps xmm2, xmm1, 0x88 // xmm2 = z1 z2 z3 z4 => Z

movlps xmm7, [ecx] // xmm7 = -- --shufps xmm0, xmm1,
 // 0xDD xmm6 = w1 w2 w3 w4 => W

continued

Example 5-3 Swizzling Data (continued)
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Example 5-4 shows the same data -swizzling algorithm encoded using 
the Intel® C++ Compiler’s intrinsics for SSE.

movaps [edx], xmm7 // store X

movaps [edx+16], xmm6 // store Y

movaps [edx+32], xmm2 // store Z

movaps [edx+48], xmm0 // store W

// SWIZZLE XYZ -> XXX

   }

}

Example 5-4 Swizzling Data Using Intrinsics

//Intrinsics version of data swizzle

void swizzle_intrin (Vertex_aos *in, Vertex_soa *out, int stride)

{

  __m128 x, y, z, w;

  __m128 tmp;

  x = _mm_loadl_pi(x,(__m64 *)(in));

  x = _mm_loadh_pi(x,(__m64 *)(stride + (char *)(in)));

  y = _mm_loadl_pi(y,(__m64 *)(2*stride+(char *)(in)));

  y = _mm_loadh_pi(y,(__m64 *)(3*stride+(char *)(in)));

  tmp = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 2, 0, 2, 0));

  y = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 3, 1, 3, 1));

  x = tmp;

  z = _mm_loadl_pi(z,(__m64 *)(8 + (char *)(in)));

  z = _mm_loadh_pi(z,(__m64 *)(stride+8+(char *)(in)));

  w = _mm_loadl_pi(w,(__m64 *)(2*stride+8+(char*)(in)));

  w = _mm_loadh_pi(w,(__m64 *)(3*stride+8+(char*)(in)));

continued

Example 5-3 Swizzling Data (continued)
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Although the generated result of all zeros does not depend on the 
specific data contained in the source operand (that is, XOR of a register 
with itself always produces all zeros), the instruction cannot execute 
until the instruction that generates xmm0 has completed. In the worst 
case, this creates a dependence chain that links successive iterations of 
the loop, even if those iterations are otherwise independent. The 
performance impact can be significant depending on how many other 
independent intra-loop computations are performed. Note that on the 
Pentium 4 processor, the SIMD integer pxor instructions, if used with 
the same register, do break the dependence chain, eliminating false 
dependencies when clearing registers.

  tmp = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 2, 0, 2, 0));

  w = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 3, 1, 3, 1));

  z = tmp;

  _mm_store_ps(&out->x[0], x);

  _mm_store_ps(&out->y[0], y);

  _mm_store_ps(&out->z[0], z);

  _mm_store_ps(&out->w[0], w);

}

CAUTION.  Avoid creating a dependence chain from 
previous computations because the movhps/movlps 
instructions bypass one part of the register. The same 
issue can occur with the use of an exclusive-OR 
function within an inner loop in order to clear a 
register:
  xorps xmm0, xmm0  ; All 0’s written to xmm0

Example 5-4 Swizzling Data Using Intrinsics (continued)
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The same situation can occur for the above movhps/movlps/shufps 
sequence. Since each movhps/movlps instruction bypasses part of the 
destination register, the instruction cannot execute until the prior 
instruction that generates this register has completed. As with the xorps 
example, in the worst case this dependence can prevent successive loop 
iterations from executing in parallel.

A solution is to include a 128-bit load (that is, from a dummy local 
variable, such as tmp in Example 5-4) to each register to be used with a 
movhps/movlps instruction. This action effectively breaks the 
dependence by performing an independent load from a memory or 
cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into 
AoS format so the xxxx, yyyy, zzzz are rearranged and stored in 
memory as xyz. To do this we can use the unpcklps/unpckhps 
instructions to regenerate the xyxy layout and then store each half (xy) 
into its corresponding memory location using movlps/movhps followed 
by another movlps/movhps to store the z component.

Example 5-5 illustrates the deswizzle function:

Example 5-5 Deswizzling Single-Precision SIMD Data

void deswizzle_asm(Vertex_soa *in, Vertex_aos *out)

{

  __asm {

mov      ecx, in        // load structure addresses

mov      edx, out

movaps   xmm7, [ecx]    // load x1 x2 x3 x4 => xmm7

movaps   xmm6, [ecx+16] // load y1 y2 y3 y4 => xmm6

movaps   xmm5, [ecx+32] // load z1 z2 z3 z4 => xmm5

movaps   xmm4, [ecx+48] // load w1 w2 w3 w4 => xmm4

continued
5-13



IA-32 Intel® Architecture Optimization
You may have to swizzle data in the registers, but not in memory. This 
occurs when two different functions need to process the data in different 
layout. In lighting, for example, data comes as rrrr gggg bbbb aaaa, 
and you must deswizzle them into rgba before converting into integers. 
In this case you use the movlhps/movhlps instructions to do the first 
part of the deswizzle followed by shuffle instructions, see 
Example 5-6 and Example 5-7.

// START THE DESWIZZLING HERE

movaps   xmm0, xmm7 // xmm0= x1 x2 x3 x4

unpcklps xmm7, xmm6 // xmm7= x1 y1 x2 y2

movlps   [edx], xmm7 // v1 = x1 y1 -- --

movhps   [edx+16], xmm7 // v2 = x2 y2 -- --

unpckhps xmm0, xmm6 // xmm0= x3 y3 x4 y4

movlps   [edx+32], xmm0 // v3 = x3 y3 -- --

movhps   [edx+48], xmm0 // v4 = x4 y4 -- --

movaps   xmm0, xmm5 // xmm0= z1 z2 z3 z4

unpcklps xmm5, xmm4 // xmm5= z1 w1 z2 w2

unpckhps xmm0, xmm4 // xmm0= z3 w3 z4 w4

movlps   [edx+8], xmm5 // v1 = x1 y1 z1 w1

movhps   [edx+24], xmm5 // v2 = x2 y2 z2 w2

movlps   [edx+40], xmm0 // v3 = x3 y3 z3 w3

movhps   [edx+56], xmm0 // v4 = x4 y4 z4 w4

// DESWIZZLING ENDS HERE

    }

}

Example 5-5 Deswizzling Single-Precision SIMD Data (continued)
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Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions

void deswizzle_rgb(Vertex_soa *in, Vertex_aos *out)

{

//---deswizzle rgb--- 

// assume: xmm1=rrrr, xmm2=gggg, xmm3=bbbb, xmm4=aaaa

__asm {

      mov    ecx, in // load structure addresses

      mov    edx, out

      movaps xmm1, [ecx] // load r1 r2 r3 r4 => xmm1

      movaps xmm2, [ecx+16] // load g1 g2 g3 g4 => xmm2

      movaps xmm3, [ecx+32] // load b1 b2 b3 b4 => xmm3

      movaps xmm4, [ecx+48] // load a1 a2 a3 a4 => xmm4

// Start deswizzling here

   movaps xmm7, xmm4 // xmm7= a1 a2 a3 a4

      movhlps xmm7, xmm3 // xmm7= b3 b4 a3 a4

  movaps xmm6, xmm2 // xmm6= g1 g2 g3 g4

      movlhps xmm3, xmm4 // xmm3= b1 b2 a1 a2

      movhlps xmm2, xmm1 // xmm2= r3 r4 g3 g4

      movlhps xmm1, xmm6 // xmm1= r1 r2 g1 g2

      movaps xmm6, xmm2 // xmm6= r3 r4 g3 g4 

      movaps xmm5, xmm1 // xmm5= r1 r2 g1 g2

      shufps xmm2, xmm7, 0xDD // xmm2= r4 g4 b4 a4

      shufps xmm1, xmm3, 0x88 // xmm4= r1 g1 b1 a1

      shufps xmm5, xmm3, 0x88 // xmm5= r2 g2 b2 a2

      shufps xmm6, xmm7, 0xDD // xmm6= r3 g3 b3 a3

      movaps [edx], xmm4 // v1 = r1 g1 b1 a1

      movaps [edx+16], xmm5 // v2 = r2 g2 b2 a2

      movaps [edx+32], xmm6 // v3 = r3 g3 b3 a3

movaps [edx+48], xmm2 // v4 = r4 g4 b4 a4

// DESWIZZLING ENDS HERE

     }

}
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Using MMX Technology Code for Copy or Shuffling 
Functions

If there are some parts in the code that are mainly copying, shuffling, or 
doing logical manipulations that do not require use of SSE code, 
consider performing these actions with MMX technology code. For 
example, if texture data is stored in memory as SoA (uuuu, vvvv) and 
they need only to be deswizzled into AoS layout (uv) for the graphic 

Example 5-7 Deswizzling Data 64-bit Integer SIMD Data

void mmx_deswizzle(IVertex_soa *in, IVertex_aos *out)

{

  __asm {

    mov   ebx, in

    mov   edx, out

movq  mm0, [ebx] // mm0= u1 u2 

    movq  mm1, [ebx+16] // mm1= v1 v2

    movq  mm2, mm0 // mm2= u1 u2

    punpckhdq  mm0, mm1 // mm0= u1 v1

    punpckldq  mm2, mm1 // mm0= u2 v2

    movq [edx], mm2 // store u1 v1

movq [edx+8], mm0 // store u2 v2

    movq mm4, [ebx+8] // mm0= u3 u4  

    movq mm5, [ebx+24] // mm1= v3 v4  

    movq mm6, mm4 // mm2= u3 u4

    punpckhdq mm4, mm5 // mm0= u3 v3

    punpckldq mm6, mm5 // mm0= u4 v4

    movq [edx+16], mm6 // store u3v3

    movq [edx+24], mm4 // store u4v4

      }

}
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cards to process, you can use either the SSE or MMX technology code. 
Using the MMX instructions allow you to conserve XMM registers for 
other computational tasks.

Example 5-8 illustrates how to use MMX technology code for copying 
or shuffling.

Horizontal ADD

Although vertical computations use the SIMD performance better than 
horizontal computations do, in some cases, the code must use a 
horizontal operation. The movlhps/movhlps and shuffle can be used to 
sum data horizontally. For example, starting with four 128-bit registers, 
to sum up each register horizontally while having the final results in one 
register, use the movlhps/movhlps instructions to align the upper and 
lower parts of each register. This allows you to use a vertical add. With 
the resulting partial horizontal summation, full summation follows 

Example 5-8 Using MMX Technology Code for Copying or Shuffling

movq mm0, [Uarray+ebx] ; mm0= u1 u2 

movq mm1, [Varray+ebx] ; mm1= v1 v2

movq mm2, mm0 ; mm2= u1 u2

punpckhdq mm0, mm1 ; mm0= u1 v1

punpckldq mm2, mm1 ; mm2= u2 v2

movq [Coords+edx], mm0 ; store u1 v1

movq [Coords+8+edx], mm2 ; store u2 v2

movq mm4, [Uarray+8+ebx] ; mm4= u3 u4

movq mm5, [Varray+8+ebx] ; mm5= v3 v4  

movq mm6, mm4 ; mm6= u3 u4

punpckhdq mm4, mm5 ; mm4= u3 v3

punpckldq mm6, mm5 ; mm6= u4 v4

movq [Coords+16+edx], mm4 ; store u3 v3

movq [Coords+24+edx], mm6 ; store u4 v4
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easily. Figure 5-2 schematically presents horizontal add using 
movhlps/movlhps, while Example 5-9 and Example 5-10 provide the 
code for this operation.

Figure 5-2 Horizontal Add Using movhlps/movlhps

OM15169

A1+A2+A3+A4 B1+B2+B3+B4 C1+C2+C3+C4 D1+D2+D3+D4

A1+A3 B1+B3 C1+C3 D1+D3 A2+A4 B2+B4 C2+C4 D2+D4

A1+A3 A2+A4 B1+B3 B2+B4 C1+C3 C2+C4 D1+D3 D2+D4

A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4

A1 A2 B1 B2 A3 A4 B3 B4 C1 C2 D1 D2 C3 C4 D3 D4

ADDPS

SHUFPS SHUFPS

ADDPS ADDPS

MOVLHPS MOVLHPS

xmm0 xmm2

MOVHLPS MOVHLPS

xmm1 xmm3
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Example 5-9 Horizontal Add Using movhlps/movlhps

void horiz_add(Vertex_soa *in, float *out) {

  __asm {

mov      ecx, in // load structure addresses

mov      edx, out

movaps   xmm0, [ecx] // load A1 A2 A3 A4 => xmm0

movaps   xmm1, [ecx+16] // load B1 B2 B3 B4 => xmm1

movaps   xmm2, [ecx+32] // load C1 C2 C3 C4 => xmm2

movaps   xmm3, [ecx+48] // load D1 D2 D3 D4 => xmm3

 // START HORIZONTAL ADD        

movaps  xmm5, xmm0 // xmm5= A1,A2,A3,A4

movlhps xmm5, xmm1 // xmm5= A1,A2,B1,B2

movhlps xmm1, xmm0 // xmm1= A3,A4,B3,B4

addps   xmm5, xmm1 // xmm5= A1+A3,A2+A4,B1+B3,B2+B4

movaps  xmm4, xmm2

movlhps xmm2, xmm3 // xmm2= C1,C2,D1,D2

movhlps xmm3, xmm4 // xmm3= C3,C4,D3,D4

addps   xmm3, xmm2 // xmm3= C1+C3,C2+C4,D1+D3,D2+D4

movaps  xmm6, xmm3 // xmm6= C1+C3,C2+C4,D1+D3,D2+D4

shufps  xmm3, xmm5, 0xDD

//xmm6=A1+A3,B1+B3,C1+C3,D1+D3

shufps xmm5, xmm6, 0x88

// xmm5= A2+A4,B2+B4,C2+C4,D2+D4

addps  xmm6, xmm5 // xmm6= D,C,B,A

 // END HORIZONTAL ADD        

    movaps [edx], xmm6

  }

}
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Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps

void horiz_add_intrin(Vertex_soa *in, float *out)

{

  __m128 v1, v2, v3, v4;

  __m128 tmm0,tmm1,tmm2,tmm3,tmm4,tmm5,tmm6; 
 // Temporary variables

  tmm0 = _mm_load_ps(in->x);  // tmm0 = A1 A2 A3 A4

tmm1 = _mm_load_ps(in->y);  // tmm1 = B1 B2 B3 B4

  tmm2 = _mm_load_ps(in->z);  // tmm2 = C1 C2 C3 C4

  tmm3 = _mm_load_ps(in->w);  // tmm3 = D1 D2 D3 D4

  tmm5 = tmm0;  // tmm0 = A1 A2 A3 A4

  tmm5 = _mm_movelh_ps(tmm5, tmm1); // tmm5 = A1 A2 B1 B2

  tmm1 = _mm_movehl_ps(tmm1, tmm0); // tmm1 = A3 A4 B3 B4

  tmm5 = _mm_add_ps(tmm5, tmm1);  // tmm5 = A1+A3 A2+A4 B1+B3 B2+B4

  tmm4 = tmm2;

  tmm2 = _mm_movelh_ps(tmm2, tmm3); // tmm2 = C1 C2 D1 D2

  tmm3 = _mm_movehl_ps(tmm3, tmm4); // tmm3 = C3 C4 D3 D4

  tmm3 = _mm_add_ps(tmm3, tmm2);  // tmm3 = C1+C3 C2+C4 D1+D3 D2+D4

  tmm6 = tmm3;  // tmm6 = C1+C3 C2+C4 D1+D3 D2+D4

  tmm6 = _mm_shuffle_ps(tmm3, tmm5, 0xDD); 
 // tmm6 = A1+A3 B1+B3 C1+C3 D1+D3

  tmm5 = _mm_shuffle_ps(tmm5, tmm6, 0x88);
 // tmm5 = A2+A4 B2+B4 C2+C4 D2+D4

  tmm6 = _mm_add_ps(tmm6, tmm5);
 // tmm6 = A1+A2+A3+A4 B1+B2+B3+B4
 // C1+C2+C3+C4 D1+D2+D3+D4

   _mm_store_ps(out, tmm6);

}
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Use of cvttps2pi/cvttss2si Instructions
The cvttps2pi and cvttss2si instructions encode the truncate/chop 
rounding mode implicitly in the instruction, thereby taking precedence 
over the rounding mode specified in the MXCSR register. This behavior 
can eliminate the need to change the rounding mode from 
round-nearest, to truncate/chop, and then back to round-nearest to 
resume computation. Frequent changes to the MXCSR register should be 
avoided since there is a penalty associated with writing this register; 
typically, through the use of the cvttps2pi and cvttss2si instructions, 
the rounding control in MXCSR can be always be set to round-nearest.

Flush-to-Zero Mode
Activating the flush-to-zero mode has the following effects during 
underflow situations:

• Precision and underflow exception flags are set to 1

• Zero result is returned

The IEEE mandated response to underflow is to deliver the 
denormalized result (that is, gradual underflow); consequently, the 
flush-to-zero mode is not compatible with IEEE Standard 754. It is 
provided to improve performance for applications where underflow is 
common and where the generation of a denormalized result is not 
necessary. Underflow for flush-to-zero mode occurs when the exponent 
for a computed result falls in the denormal range, regardless of whether 
a loss of accuracy has occurred.

Unmasking the underflow exception takes precedence over 
flush-to-zero mode. For a SSE instruction that generates an underflow 
condition an exception handler is invoked. 
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6
Optimizing Cache Usage
Over the past decade, processor speed has increased more than ten 
times. Memory access speed has increased at a slower pace. The 
resulting disparity has made it important to tune applications so that a 
majority of the data accesses are fulfilled in the processor caches. The 
performance of most applications can be considerably improved if the 
data they require can be fetched from the processor caches rather than 
from main memory.

Standard techniques to bring data into the processor before it is needed 
involves additional programming which can be difficult to implement 
and may require special steps to prevent performance degradation. The 
Streaming SIMD Extensions addressed these issues by providing the 
various prefetch instructions. The Intel Pentium 4 and Pentium M 
processors extend prefetching support via an automatic hardware data 
prefetch, a new mechanism for data prefetching based on current data 
access patterns that does not require programmer intervention.

Streaming SIMD Extensions also introduced the various non-temporal 
store instructions. Streaming SIMD Extensions 2 extend this support to 
the new data types, and also introduces non-temporal store support for 
the 32-bit integer registers.

This chapter focuses on two major subjects:

• Prefetch and Cacheability Instructions: discussion about the 
instructions that allow you to affect data caching in an application.

• Memory Optimization Using Prefetch and Cacheability 
Instructions: discussion and examples of various techniques for 
implementing memory optimizations using these instructions.   
6-1



IA-32 Intel® Architecture Optimization
General Prefetch Coding Guidelines
The following guidelines will help you optimize the usage of prefetches 
in your code (specific details will be discussed in subsequent sections):

• Take advantage of the hardware prefetcher’s ability to prefetch data 
that are accessed in linear patterns, either forward or backward 
direction.

• Use a current-generation compiler, such as the Intel C++ Compiler 
that supports C++ language-level features for the Streaming SIMD 
Extensions. The Streaming SIMD Extensions and MMX technology 
instructions provide intrinsics that allow you to optimize cache 
utilization. The examples of such Intel compiler intrinsics are 
_mm_prefetch, _mm_stream and _mm_load, _mm_sfence. For more 
details on these intrinsics, refer to the Intel C++ Compiler User’s 
Guide, doc. number 718195.

• Facilitate compiler optimization: 

— Minimize use of global variables and pointers.

— Minimize use of complex control flow. 

— Use the const modifier, avoid register modifier. 

— Choose data types carefully (see below) and avoid type casting.

• Optimize prefetch scheduling distance –

— Far ahead enough to allow interim computation to overlap 
memory access time.

— Near enough that the prefetched data is not replaced from the 
data cache.

NOTE.  In a number of cases presented in this chapter, 
the prefetching and cache utilization are Pentium 4 
processor platform-specific and may change for the 
future processors.
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• Use prefetch concatenation:

— Arrange prefetches to avoid unnecessary prefetches at the end 
of an inner loop and to prefetch the first few iterations of the 
inner loop inside the next outer loop.

• Minimize the number of prefetches:

— Prefetch instructions are not completely free in terms of bus 
cycles, machine cycles and resources. Excessive usage of 
prefetches can adversely impact application performance. 

• Interleave prefetch with computation instructions:

— For best performance, prefetch instructions must be interspersed 
with other computational instructions in the instruction 
sequence rather than clustered together. 

• Use cache blocking techniques (for example, strip mining):

— Improve cache hit rate by using cache blocking techniques such 
as strip-mining (one dimensional arrays) or loop blocking (two 
dimensional arrays)

• Balance single-pass versus multi-pass execution:

— An algorithm can use single- or multi-pass execution defined as 
follows: single-pass, or unlayered execution passes a single data 
element through an entire computation pipeline. Multi-pass, or 
layered execution performs a single stage of the pipeline on a 
batch of data elements before passing the entire batch on to the 
next stage.

— General guideline: if your algorithm is single pass, use 
prefetchnta; if your algorithm is multi-pass use prefetcht0.

• Resolve memory bank conflict issues:

— Minimize memory bank conflicts by applying array grouping to 
group contiguously used data together or allocating data within 
4 KB memory pages. 
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• Resolve cache management issues:

— Minimize disturbance of temporal data held within the 
processor’s caches by using streaming store instructions, as 
appropriate

Hardware Data Prefetch
The Pentium 4, Intel Xeon, and Pentium M processors implement an 
automatic data prefetcher which monitors application data access 
patterns and prefetches data automatically. This behavior is automatic 
and does not require programmer’s intervention.

Characteristics of the hardware data prefetcher for the Pentium 4 and 
Intel Xeon processors are:

• Attempts to stay 256 bytes ahead of current data access locations

• Follows only one stream per 4K page (load or store)

• Can prefetch up to 8 simultaneous independent streams from eight 
different 4K regions

• Does not prefetch across 4K boundary; note that this is independent 
of paging modes

• Fetches data into second/third-level cache

• Does not prefetch UC or WC memory types

• Follows load and store streams. Issues Read For Ownership (RFO) 
transactions for store streams and Data Reads for load streams.

The hardware prefetcher implemented in the Pentium M processor 
fetches data to the second level cache. It can track 12 independent 
streams in the forward direction and 4 independent streams in the 
backward direction.
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Prefetch and Cacheability Instructions
The prefetch instruction, inserted by the programmers or compilers, 
accesses a minimum of two cache line of data on the Pentium 4 
processor (one cache line of data on the Pentium M processor) prior to 
that data actually being needed. This hides the latency for data access in 
the time required to process data already resident in the cache. Many 
algorithms can provide information in advance about the data that is to 
be required soon. In cases where the memory accesses are in long, 
regular data patterns, the automatic hardware prefetcher should be 
favored over software prefetches.

The cacheability control instructions allow you to control data caching 
strategy in order to increase cache efficiency and minimize cache 
pollution.

Data reference patterns can be classified as follows:

Temporal data will be used again soon

Spatial data will be used in adjacent locations, for example, 
same cache line

Non-temporal data which is referenced once and not reused in the 
immediate future; for example, some multimedia data 
types, such as the vertex buffer in a 3D graphics 
application.

These data characteristics are used in the discussions that follow.

Prefetch
This section discusses the mechanics of the software prefetch 
instructions and the automatic hardware prefetcher.
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Software Data Prefetch

The prefetch instruction can hide the latency of data access in 
performance-critical sections of application code by allowing data to be 
fetched in advance of its actual usage. The prefetch instructions do not 
change the user-visible semantics of a program, although they may 
affect the program’s performance. The prefetch instructions merely 
provide a hint to the hardware and generally will not generate 
exceptions or faults.

The prefetch instructions load either non-temporal data or temporal 
data in the specified cache level. This data access type and the cache 
level are specified as a hint. Depending on the implementation, the 
instruction fetches 32 or more aligned bytes, including the specified 
address byte, into the instruction-specified cache levels.

The prefetch instruction is implementation-specific; applications need 
to be tuned to each implementation to maximize performance.

The prefetch instructions merely provide a hint to the hardware, and 
they will not generate exceptions or faults except for a few special cases 
(see the “Prefetch and Load Instructions” section). However, excessive 
use of prefetch instructions may waste memory bandwidth and result in 
performance penalty due to resource constraints.

Nevertheless, the prefetch instructions can lessen the overhead of 
memory transactions by preventing cache pollution and by using the 
caches and memory efficiently. This is particularly important for 
applications that share critical system resources, such as the memory 
bus. See an example in the “Video Encoder” section.

NOTE.  Using the prefetch instructions is 
recommended only if data does not fit in cache.
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The prefetch instructions are mainly designed to improve application 
performance by hiding memory latency in the background. If segments 
of an application access data in a predictable manner, for example, using 
arrays with known strides, then they are good candidates for using 
prefetch to improve performance.

Use the prefetch instructions in:

• predictable memory access patterns

• time-consuming innermost loops

• locations where the execution pipeline may stall if data is not 
available

The Prefetch Instructions – Pentium 4 Processor 
Implementation

Streaming SIMD Extensions include four flavors of prefetch 
instructions, one non-temporal, and three temporal. They correspond to 
two types of operations, temporal and non-temporal. 

The non-temporal instruction is

prefetchnta Fetch the data into the second-level cache, minimizing 
cache pollution. 

The temporal instructions are

prefetcht0 Fetch the data into all cache levels, that is, to the 
second-level cache for the Pentium 4 processor. 

prefetcht1 Identical to prefetcht0

prefetcht2 Identical to prefetcht0

NOTE.  At the time of prefetch, if the data is already 
found in a cache level that is closer to the processor 
than the cache level specified by the instruction, no 
data movement occurs.
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Table 6-1 lists the prefetch implementation differences between the 
Pentium III and Pentium 4 processors. 

Prefetch and Load Instructions

The Pentium 4 processor has a decoupled execution and memory 
architecture that allows instructions to be executed independently with 
memory accesses if there are no data and resource dependencies. 
Programs or compilers can use dummy load instructions to imitate 
prefetch functionality, but preloading is not completely equivalent to 
prefetch instructions. Prefetch instructions provide a greater 
performance than preloading.

Currently, the prefetch instruction provides a greater performance gain 
than preloading because it:

• has no destination register, it only updates cache lines.

• does not stall the normal instruction retirement.

• does not affect the functional behavior of the program.

Table 6-1 Prefetch Implementation: Pentium III and Pentium 4 Processors

Prefetch Type Pentium III processor Pentium 4 processor

Prefetch NTA Fetch 32 bytes

Fetch into 1st- level cache

Do not fetch into 2nd-level 
cache

Fetch 128 bytes

Do not fetch into 1st-level 
cache

Fetch into 1 way of 2nd-level 
cache

PrefetchT0 Fetch 32 bytes

Fetch into 1st- level cache

Fetch into 2nd- level 
cache

Fetch 128 bytes

Do not fetch into 1st-level 
cache

Fetch into 2nd- level cache 

PrefetchT1, 
PrefetchT2

Fetch 32 bytes

Fetch into 2nd- level 
cache only

Do not fetch into 1st-level 
cache

Fetch 128 bytes

Do not fetch into 1st-level 
cache

Fetch into 2nd- level cache only
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• has no cache line split accesses.

• does not cause exceptions except when LOCK prefix is used; the LOCK 
prefix is not a valid prefix for use with the prefetch instructions 
and should not be used.

• does not complete its own execution if that would cause a fault.

The current advantages of the prefetch over preloading instructions are 
processor-specific. The nature and extent of the advantages may change 
in the future.

In addition there are a few cases where a prefetch instruction will not 
perform the data prefetch if:

• the prefetch causes a DTLB (Data Translation Lookaside Buffer) 
miss.

• an access to the specified address causes a fault/exception.

• the memory subsystem runs out of request buffers between the 

first-level cache and the second-level cache.

• the prefetch targets an uncacheable memory region, for example, 
USWC and UC.

• a LOCK prefix is used. This causes an invalid opcode exception.

Cacheability Control
This section covers the mechanics of the cacheability control 
instructions.

The Non-temporal Store Instructions

This section describes the behavior of streaming stores and reiterates 
some of the information presented in the previous section. In Streaming 
SIMD Extensions, the movntps, movntpd, movntq, movntdq, movnti, 
maskmovq and maskmovdqu instructions are streaming, non-temporal 
stores. With regard to memory characteristics and ordering, they are 
similar mostly to the Write-Combining (WC) memory type:
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• Write combining – successive writes to the same cache line are 
combined

• Write collapsing – successive writes to the same byte(s) result in 
only the last write being visible

• Weakly ordered – no ordering is preserved between WC stores, or 
between WC stores and other loads or stores

• Uncacheable and not write-allocating – stored data is written around 
the cache and will not generate a read-for-ownership bus request for 
the corresponding cache line

Fencing 

Because streaming stores are weakly ordered, a fencing operation is 
required to ensure that the stored data is flushed from the processor to 
memory. Failure to use an appropriate fence may result in data being 
“trapped” within the processor and will prevent visibility of this data by 
other processors or system agents. WC stores require software to ensure 
coherence of data by performing the fencing operation; see “The fence 
Instructions” section for more information.

Streaming Non-temporal Stores

Streaming stores can improve performance in the following ways:

• Increase store bandwidth if 64 bytes that fit within a cache line are 
written consecutively, since they do not require read-for-ownership 
bus requests and 64 bytes are combined into a single bus write 
transaction.

• Reduce disturbance of frequently used cached (temporal) data, since 
they write around the processor caches.

Streaming stores allow cross-aliasing of memory types for a given 
memory region. For instance, a region may be mapped as write-back 
(WB) via the page attribute tables (PAT) or memory type range registers 
(MTRRs) and yet is written using a streaming store.
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Memory Type and Non-temporal Stores

The memory type can take precedence over the non-temporal hint, 
leading to the following considerations:

• If the programmer specifies a non-temporal store to 
strongly-ordered uncacheable memory, for example, the 
Uncacheable (UC) or Write-Protect (WP) memory types, then the 
store behaves like an uncacheable store; the non-temporal hint is 
ignored and the memory type for the region is retained.

• If the programmer specifies the weakly-ordered uncacheable 
memory type of Write-Combining (WC), then the non-temporal 
store and the region have the same semantics, and there is no 
conflict.

• If the programmer specifies a non-temporal store to cacheable 
memory, for example, Write-Back (WB) or Write-Through (WT) 
memory types, two cases may result:

1. If the data is present in the cache hierarchy, the instruction will 
ensure consistency. A particular processor may choose different 
ways to implement this. The following approaches are probable: 
(a) updating data in-place in the cache hierarchy while 
preserving the memory type semantics assigned to that region, 
or (b) evicting the data from the caches and writing the new 
non-temporal data to memory (with WC semantics). Pentium III 
processor implements a combination of both approaches. 

If the streaming store hits a line that is present in the first-level 
cache, the store data will be combined in place within the 
first-level cache. If the streaming store hits a line present in the 
second-level, the line and stored data will be flushed from the 
second-level to system memory. Note that the approaches, 
separate or combined, can be different for future processors. 
Pentium 4 processor implements the latter policy, of evicting 
the data from all processor caches.
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2. If the data is not present in the cache hierarchy, and the 
destination region is mapped as WB or WT, the transaction will be 
weakly ordered, and is subject to all WC memory semantics. The 
non-temporal store will not write-allocate. Different 
implementations may choose to collapse and combine these 
stores.

Write-Combining

Generally, WC semantics require software to ensure coherence, with 
respect to other processors and other system agents (such as graphics 
cards). Appropriate use of synchronization and a fencing operation (see 
“The fence Instructions” later in this chapter) must be performed for 
producer-consumer usage models. Fencing ensures that all system 
agents have global visibility of the stored data; for instance, failure to 
fence may result in a written cache line staying within a processor, and 
the line would not be visible to other agents. 

For processors which implement non-temporal stores by updating data 
in-place that already resides in the cache hierarchy, the destination 
region should also be mapped as WC. Otherwise if mapped as WB or WT, 
there is a potential for speculative processor reads to bring the data into 
the caches; in this case, non-temporal stores would then update in place, 
and data would not be flushed from the processor by a subsequent 
fencing operation.

The memory type visible on the bus in the presence of memory type 
aliasing is implementation-specific. As one possible example, the 
memory type written to the bus may reflect the memory type for the first 
store to this line, as seen in program order; other alternatives are 
possible. This behavior should be considered reserved, and dependence 
on the behavior of any particular implementation risks future 
incompatibility.
6-12



Optimizing Cache Usage 6
Streaming Store Usage Models

The two primary usage domains for streaming store are coherent 
requests and non-coherent requests.

Coherent Requests

Coherent requests are normal loads and stores to system memory, which 
may also hit cache lines present in another processor in a 
multi-processor environment. With coherent requests, a streaming store 
can be used in the same way as a regular store that has been mapped 
with a WC memory type (PAT or MTRR). An sfence instruction must be 
used within a producer-consumer usage model in order to ensure 
coherency and visibility of data between processors. 

Within a single-processor system, the CPU can also re-read the same 
memory location and be assured of coherence (that is, a single, 
consistent view of this memory location): the same is true for a 
multi-processor (MP) system, assuming an accepted MP software 
producer-consumer synchronization policy is employed.

Non-coherent requests

Non-coherent requests arise from an I/O device, such as an AGP 
graphics card, that reads or writes system memory using non-coherent 
requests, which are not reflected on the processor bus and thus will not 
query the processor’s caches. An sfence instruction must be used 
within a producer-consumer usage model in order to ensure coherency 
and visibility of data between processors. In this case, if the processor is 
writing data to the I/O device, a streaming store can be used with a 
processor with any behavior of approach (a), page 6-11, above, only if 
the region has also been mapped with a WC memory type (PAT, MTRR).
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In case the region is not mapped as WC, the streaming might update 
in-place in the cache and a subsequent sfence would not result in the 
data being written to system memory. Explicitly mapping the region as 
WC in this case ensures that any data read from this region will not be 
placed in the processor’s caches. A read of this memory location by a 
non-coherent I/O device would return incorrect/out-of-date results. For 
a processor which solely implements approach (b), page 6-11, above, a 
streaming store can be used in this non-coherent domain without 
requiring the memory region to also be mapped as WB, since any cached 
data will be flushed to memory by the streaming store.

Streaming Store Instruction Descriptions

The movntq/movntdq (non-temporal store of packed integer in an 
MMX technology or Streaming SIMD Extensions register) instructions 
store data from a register to memory. The instruction is implicitly 
weakly-ordered, does no write-allocate, and so minimizes cache 
pollution.

The movntps (non-temporal store of packed single precision floating 
point) instruction is similar to movntq. It stores data from a Streaming 
SIMD Extensions register to memory in 16-byte granularity. Unlike 
movntq, the memory address must be aligned to a 16-byte boundary or a 
general protection exception will occur. The instruction is implicitly 
weakly-ordered, does not write-allocate, and thus minimizes cache 
pollution.

CAUTION.  Failure to map the region as WC may allow 
the line to be speculatively read into the processor 
caches, that is, via the wrong path of a mispredicted 
branch.
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The maskmovq/maskmovdqu (non-temporal byte mask store of packed 
integer in an MMX technology or Streaming SIMD Extensions register) 
instructions store data from a register to the location specified by the 
edi register. The most significant bit in each byte of the second mask 
register is used to selectively write the data of the first register on a 
per-byte basis. The instruction is implicitly weakly-ordered (that is, 
successive stores may not write memory in original program-order), 
does not write-allocate, and thus minimizes cache pollution.

The fence Instructions

The following fence instructions are available: sfence, lfence, and 
mfence.

The sfence Instruction

The sfence (store fence) instruction makes it possible for every 
store instruction that precedes the sfence instruction in program order 
to be globally visible before any store instruction that follows the 
sfence. The sfence instruction provides an efficient way of ensuring 
ordering between routines that produce weakly-ordered results.

The use of weakly-ordered memory types can be important under 
certain data sharing relationships, such as a producer-consumer 
relationship. Using weakly-ordered memory can make assembling the 
data more efficient, but care must be taken to ensure that the consumer 
obtains the data that the producer intended to see. Some common usage 
models may be affected in this way by weakly-ordered stores. Examples 
are: 

• library functions, which use weakly-ordered memory to write 
results

• compiler-generated code, which also benefits from writing 
weakly-ordered results

• hand-crafted code
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The degree to which a consumer of data knows that the data is 
weakly-ordered can vary for these cases. As a result, the sfence 
instruction should be used to ensure ordering between routines that 
produce weakly-ordered data and routines that consume this data. The 
sfence instruction provides a performance-efficient way by ensuring 
the ordering when every store instruction that precedes the store 
fence instruction in program order is globally visible before any store 
instruction which follows the fence.

The lfence Instruction

The lfence (load fence) instruction makes it possible for every load 
instruction that precedes the lfence instruction in program order to be 
globally visible before any load instruction that follows the lfence. 
The lfence instruction provides a means of segregating certain load 
instructions from other loads.

The mfence Instruction

The mfence (memory fence) instruction makes it possible for every 
load and store instruction that precedes the mfence instruction in 
program order to be globally visible before any other load or store 
instruction that follows the mfence. The mfence instruction provides a 
means of segregating certain memory instructions from other memory 
references.

Note that the use of a lfence and sfence is not equivalent to the use 
of a mfence since the load and store fences are not ordered with respect 
to each other. In other words, the load fence can be executed before 
prior stores, and the store fence can be executed before prior loads. The 
mfence instruction should be used whenever the cache line flush 
instruction (clflush) is used to ensure that speculative memory 
references generated by the processor do not interfere with the flush; see 
“The clflush Instruction” for more information. 
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The clflush Instruction

The cache line associated with the linear address specified by the value 
of byte address is invalidated from all levels of the processor cache 
hierarchy (data and instruction). The invalidation is broadcast 
throughout the coherence domain. If, at any level of the cache hierarchy, 
the line is inconsistent with memory (dirty) it is written to memory 
before invalidation. Other characteristics include:

• The data size affected is the cache coherency size, which is 64 bytes 
on Pentium 4 processor.

• The memory attribute of the page containing the affected line has no 
effect on the behavior of this instruction.

• The clflush instruction can be used at all privilege levels and is 
subject to all permission checking and faults associated with a byte 
load.

clflush is an unordered operation with respect to other memory traffic 
including other clflush instructions. Software should use a mfence, 
memory fence for cases where ordering is a concern. 

As an example, consider a video usage model, wherein a video capture 
device is using non-coherent AGP accesses to write a capture stream 
directly to system memory. Since these non-coherent writes are not 
broadcast on the processor bus, they will not flush any copies of the 
same locations that reside in the processor caches. As a result, before the 
processor re-reads the capture buffer, it should use clflush to ensure 
that any stale copies of the capture buffer are flushed from the processor 
caches. Due to speculative reads that may be generated by the processor, 
it is important to observe appropriate fencing, using mfence. 
Example 6-1 illustrates the pseudo-code for the recommended usage of 
cflush.
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Memory Optimization Using Prefetch
The Pentium 4 processor has two mechanisms for data prefetch: 
software-controlled prefetch and an automatic hardware prefetch.

Software-controlled Prefetch

The software-controlled prefetch is enabled using the four prefetch 
instructions introduced with Streaming SIMD Extensions instructions. 
These instructions are hints to bring a cache line of data in to various 
levels and modes in the cache hierarchy. The software-controlled 
prefetch is not intended for prefetching code. Using it can incur 
significant penalties on a multiprocessor system when code is shared.

Software prefetching has the following characteristics:

• Can handle irregular access patterns, which do not trigger the 
hardware prefetcher.

• Can use less bus bandwidth than hardware prefetching; see below.

• Software prefetches must be added to new code, and do not benefit 
existing applications.

Example 6-1 Pseudo-code for Using cflush

while (!buffer_ready} {}

mfence

for(i=0;i<num_cachelines;i+=cacheline_size) { 

clflush (char *)((unsigned int)buffer + i) 

}

mfence

prefnta buffer[0];

VAR = buffer[0]; 
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Hardware Prefetch

The automatic hardware prefetch, can bring lines into the unified 
first-level cache based on prior data misses. The automatic hardware 
prefetcher will attempt to prefetch two cache lines ahead of the prefetch 
stream. This feature is introduced with the Pentium 4 processor.

There are different strengths and weaknesses to software and hardware 
prefetching of the Pentium 4 processor. The characteristics of the 
hardware prefetching are as follows (compare with the software 
prefetching features listed above):

• Works with existing applications.

• Requires regular access patterns.

• Start-up penalty before hardware prefetcher triggers and extra 
fetches after array finishes. For short arrays this overhead can 
reduce effectiveness of the hardware prefetcher.

— The hardware prefetcher requires a couple misses before it 
starts operating.

— Hardware prefetching will generate a request for data beyond 
the end of an array, which will not be utilized. This behavior 
wastes bus bandwidth. In addition this behavior results in a 
start-up penalty when fetching the beginning of the next array; 
this occurs because the wasted prefetch should have been used 
instead to hide the latency for the initial data in the next array. 
Software prefetching can recognize and handle these cases.

• Will not prefetch across a 4K page boundary; i.e., the program 
would have to initiate demand loads for the new page before the 
hardware prefetcher will start prefetching from the new page.
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Example of Latency Hiding with S/W Prefetch Instruction

Achieving the highest level of memory optimization using prefetch 
instructions requires an understanding of the microarchitecture and 
system architecture of a given machine. This section translates the key 
architectural implications into several simple guidelines for 
programmers to use.

Figure 6-1 and Figure 6-2 show two scenarios of a simplified 3D 
geometry pipeline as an example. A 3D-geometry pipeline typically 
fetches one vertex record at a time and then performs transformation 
and lighting functions on it. Both figures show two separate pipelines, 
an execution pipeline, and a memory pipeline (front-side bus). 

Since the Pentium 4 processor, similarly to the Pentium II and
Pentium III processors, completely decouples the functionality of 
execution and memory access, these two pipelines can function 
concurrently. Figure 6-1 shows “bubbles” in both the execution and 
memory pipelines. When loads are issued for accessing vertex data, the 
execution units sit idle and wait until data is returned. On the other hand, 
the memory bus sits idle while the execution units are processing 
vertices. This scenario severely decreases the advantage of having a 
decoupled architecture.
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The performance loss caused by poor utilization of resources can be 
completely eliminated by correctly scheduling the prefetch instructions 
appropriately. As shown in Figure 6-2, prefetch instructions are issued 

Figure 6-1 Memory Access Latency and Execution Without Prefetch

Figure 6-2 Memory Access Latency and Execution With Prefetch
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two vertex iterations ahead. This assumes that only one vertex gets 
processed in one iteration and a new data cache line is needed for each 
iteration. As a result, when iteration n, vertex Vn, is being processed, the 
requested data is already brought into cache. In the meantime, the 
front-side bus is transferring the data needed for iteration n+1, vertex 
Vn+1. Because there is no dependence between Vn+1 data and the 
execution of Vn, the latency for data access of Vn+1 can be entirely 
hidden behind the execution of Vn. Under such circumstances, no 
“bubbles” are present in the pipelines and thus the best possible 
performance can be achieved.

Prefetching is useful for inner loops that have heavy computations, or 
are close to the boundary between being compute-bound and 
memory-bandwidth-bound. 

The prefetch is probably not very useful for loops which are 
predominately memory bandwidth-bound. 

When data is already located in the first level cache, prefetching can be 
useless and could even slow down the performance because the extra 
µops either back up waiting for outstanding memory accesses or may be 
dropped altogether. This behavior is platform-specific and may change 
in the future.

Prefetching Usage Checklist

The following checklist covers issues that need to be addressed and/or 
resolved to use the prefetch instruction properly:

• Determine prefetch scheduling distance

• Use prefetch concatenation

• Minimize the number of prefetches

• Mix prefetch with computation instructions

• Use cache blocking techniques (for example, strip mining)

• Balance single-pass versus multi-pass execution
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• Resolve memory bank conflict issues

• Resolve cache management issues

The subsequent sections discuss all the above items.

Prefetch Scheduling Distance

Determining the ideal prefetch placement in the code depends on many 
architectural parameters, including the amount of memory to be 
prefetched, cache lookup latency, system memory latency, and estimate 
of computation cycle. The ideal distance for prefetching data is 
processor- and platform-dependent. If the distance is too short, the 
prefetch will not hide any portion of the latency of the fetch behind 
computation. If the prefetch is too far ahead, the prefetched data may be 
flushed out of the cache by the time it is actually required.

Since prefetch distance is not a well-defined metric, for this discussion, 
we define a new term, prefetch scheduling distance (PSD), which is 
represented by the number of iterations. For large loops, prefetch 
scheduling distance can be set to 1, that is, schedule prefetch 
instructions one iteration ahead. For small loop bodies, that is, loop 
iterations with little computation, the prefetch scheduling distance must 
be more than one iteration.

A simplified equation to compute PSD is deduced from the 
mathematical model. For a simplified equation, complete mathematical 
model, and methodology of prefetch distance determination, refer to 
Appendix E, “Mathematics of Prefetch Scheduling Distance”. 

Example 6-2 illustrates the use of a prefetch within the loop body. The 
prefetch scheduling distance is set to 3, esi is effectively the pointer to a 
line, edx is the address of the data being referenced and xmm1-xmm4 are 
the data used in computation. Example 6-3 uses two independent cache 
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lines of data per iteration. The PSD would need to be 
increased/decreased if more/less than two cache lines are used per 
iteration.

Prefetch Concatenation

Maximum performance can be achieved when execution pipeline is at 
maximum throughput, without incurring any memory latency penalties. 
This can be achieved by prefetching data to be used in successive 
iterations in a loop. De-pipelining memory generates bubbles in the 
execution pipeline. To explain this performance issue, a 3D geometry 
pipeline that processes 3D vertices in strip format is used as an example. 
A strip contains a list of vertices whose predefined vertex order forms 
contiguous triangles. It can be easily observed that the memory pipe is 
de-pipelined on the strip boundary due to ineffective prefetch 
arrangement. The execution pipeline is stalled for the first two iterations 
for each strip. As a result, the average latency for completing an 

Example 6-2 Prefetch Scheduling Distance

top_loop:

prefetchnta [edx + esi + 128*3]

prefetchnta [edx*4 + esi + 128*3]

. . . . .

movaps xmm1, [edx + esi]

movaps xmm2, [edx*4 + esi]

movaps xmm3, [edx + esi + 16]

movaps xmm4, [edx*4 + esi + 16]

. . . . .

. . . . .

add esi, 128

cmp esi, ecx

jl top_loop
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iteration will be 165(FIX) clocks. (See Appendix E, “Mathematics of 
Prefetch Scheduling Distance”, for a detailed memory pipeline 
description.)

This memory de-pipelining creates inefficiency in both the memory 
pipeline and execution pipeline. This de-pipelining effect can be 
removed by applying a technique called prefetch concatenation. With 
this technique, the memory access and execution can be fully pipelined 
and fully utilized.

For nested loops, memory de-pipelining could occur during the interval 
between the last iteration of an inner loop and the next iteration of its 
associated outer loop. Without paying special attention to prefetch 
insertion, the loads from the first iteration of an inner loop can miss the 
cache and stall the execution pipeline waiting for data returned, thus 
degrading the performance.

In the code of Example 6-3, the cache line containing a[ii][0] is not 
prefetched at all and always misses the cache. This assumes that no 
array a[][] footprint resides in the cache. The penalty of memory 
de-pipelining stalls can be amortized across the inner loop iterations. 
However, it may become very harmful when the inner loop is short. In 
addition, the last prefetch in the last PSD iterations are wasted and 
consume machine resources. Prefetch concatenation is introduced here 
in order to eliminate the performance issue of memory de-pipelining.

Example 6-3 Using Prefetch Concatenation

for (ii = 0; ii < 100; ii++) {

   for (jj = 0; jj < 32; jj+=8) {

          prefetch a[ii][jj+8]

          computation a[ii][jj]

   }

}
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Prefetch concatenation can bridge the execution pipeline bubbles 
between the boundary of an inner loop and its associated outer loop. 
Simply by unrolling the last iteration out of the inner loop and 
specifying the effective prefetch address for data used in the following 
iteration, the performance loss of memory de-pipelining can be 
completely removed. Example 6-4 gives the rewritten code.

This code segment for data prefetching is improved and only the first 
iteration of the outer loop suffers any memory access latency penalty, 
assuming the computation time is larger than the memory latency. 
Inserting a prefetch of the first data element needed prior to entering the 
nested loop computation would eliminate or reduce the start-up penalty 
for the very first iteration of the outer loop. This uncomplicated 
high-level code optimization can improve memory performance 
significantly.

Minimize Number of Prefetches

Prefetch instructions are not completely free in terms of bus cycles, 
machine cycles and resources, even though they require minimal clocks 
and memory bandwidth.

Example 6-4 Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii = 0; ii < 100; ii++) {

   for (jj = 0; jj < 24; jj+=8) { /* N-1 iterations */

          prefetch a[ii][jj+8]

          computation a[ii][jj]

   }

   prefetch a[ii+1][0]

   computation a[ii][jj]/* Last iteration */

}
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Excessive prefetching may lead to performance penalties because issue 
penalties in the front-end of the machine and/or resource contention in 
the memory sub-system. This effect may be severe in cases where the 
target loops are small and/or cases where the target loop is issue-bound

One approach to solve the excessive prefetching issue is to unroll and/or 
software-pipeline the loops to reduce the number of prefetches required. 
Figure 6-3 presents a code example which implements prefetch and 
unrolls the loop to remove the redundant prefetch instructions whose 
prefetch addresses hit the previously issued prefetch instructions. In this 
particular example, unrolling the original loop once saves six prefetch 
instructions and nine instructions for conditional jumps in every other 
iteration.   

Figure 6-3 Prefetch and Loop Unrolling

OM15172

top_loop:
prefetchnta  [edx+esi+32]
prefetchnta  [edx*4+esi+32]
.  .  .  .  .
movaps xmm1,  [edx+esi]
movaps xmm2, [edx*4+esi]
.  .  .  .  .
add esi, 16
cmp esi, ecx
jl top_loop

top_loop:
prefetchnta  [edx+esi+128]
prefetchnta  [edx*4+esi+128]
.  .  .  .  .
movaps xmm1,  [edx+esi]
movaps xmm2, [edx*4+esi]
.  .  .  .  .
movaps xmm1, [edx+esi+16]
movaps xmm2, [edx*4+esi+16]
.  .  .  .  .
movaps xmm1, [edx+esi+96]
movaps xmm2, [edx*4+esi+96]
.  .  .  .  .
.  .  .  .  .
add esi, 128
cmp esi, ecx
jl top_loop

unrolled
iteration
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Figure 6-4 demonstrates the effectiveness of software prefetches in 
latency hiding. The X axis indicates the number of computation clocks 
per loop (each iteration is independent). The Y axis indicates the 
execution time measured in clocks per loop. The secondary Y axis 
indicates the percentage of bus bandwidth utilization. The tests vary by 
the following parameters:

1. The number of load/store streams. Each load and store stream 
accesses one 128-byte cache line each, per iteration.

2. The amount of computation per loop. This is varied by increasing 
the number of dependent arithmetic operations executed.

3. The number of the software prefetches per loop. (for example, one 
every 16 bytes, 32 bytes, 64 bytes, 128 bytes). 

As expected, the leftmost portion of each of the graphs in Figure 6-4 
shows that when there is not enough computation to overlap the latency 
of memory access, prefetch does not help and that the execution is 
essentially memory-bound. The graphs also illustrate that redundant 
prefetches do not increase performance.
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Figure 6-4 Memory Access Latency and Execution With Prefetch
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Mix Prefetch with Computation Instructions

It may seem convenient to cluster all of the prefetch instructions at the 
beginning of a loop body or before a loop, but this can lead to severe 
performance degradation. In order to achieve best possible performance, 
prefetch instructions must be interspersed with other computational 
instructions in the instruction sequence rather than clustered together. If 
possible, they should also be placed apart from loads. This improves the 
instruction level parallelism and reduces the potential instruction 
resource stalls. In addition, this mixing reduces the pressure on the 
memory access resources and in turn reduces the possibility of the 
prefetch retiring without fetching data.

Example 6-5 illustrates distributing prefetch instructions. A simple and 
useful heuristic of prefetch spreading for a Pentium 4 processor is to 
insert a prefetch instruction every 20 to 25 clocks. Rearranging prefetch 
instructions could yield a noticeable speedup for the code which stresses 
the cache resource.
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Example 6-5 Spread Prefetch Instructions

NOTE.  To avoid instruction execution stalls due to the 
over-utilization of the resource, prefetch instructions 
must be interspersed with computational instructions.

top_loop:
  prefetchnta [ebx+128]
  prefetchnta [ebx+1128]
  prefetchnta [ebx+2128]
  prefetchnta [ebx+3128]
  . . . .
  . . . .
  prefetchnta [ebx+17128]
  prefetchnta [ebx+18128]
  prefetchnta [ebx+19128]
  prefetchnta [ebx+20128]
  movps xmm1, [ebx]
  addps xmm2, [ebx+3000]
  mulps xmm3, [ebx+4000]
  addps xmm1, [ebx+1000]
  addps xmm2, [ebx+3016]
  mulps xmm1, [ebx+2000]
  mulps xmm1, xmm2
  . . . . . . . .
  . . . .  . .
  . . . . .
  add ebx, 128
  cmp ebx, ecx
  jl top_loop

top_loop:
  prefetchnta [ebx+128]
  movps xmm1, [ebx]
  addps xmm2, [ebx+3000]
  mulps xmm3, [ebx+4000]
  prefetchnta [ebx+1128]
  addps xmm1, [ebx+1000]
  addps xmm2, [ebx+3016]
  prefetchnta [ebx+2128]
  mulps xmm1, [ebx+2000]
  mulps xmm1, xmm2
  prefetchnta [ebx+3128]
  . . . . . . .
  . . .
  prefetchnta [ebx+18128]
  . . . . . .
  prefetchnta [ebx+19128]
  . . . . . .
  . . . .
  prefetchnta [ebx+20128]
  add ebx, 128
  cmp ebx, ecx
  jl top_loop

spr
ead

 pre
fetc

hes
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Prefetch and Cache Blocking Techniques

Cache blocking techniques, such as strip-mining, are used to improve 
temporal locality, and thereby cache hit rate. Strip-mining is a 
one-dimensional temporal locality optimization for memory. When 
two-dimensional arrays are used in programs, loop blocking technique 
(similar to strip-mining but in two dimensions) can be applied for a 
better memory performance.

If an application uses a large data set that can be reused across multiple 
passes of a loop, it will benefit from strip mining: data sets larger than 
the cache will be processed in groups small enough to fit into cache. 
This allows temporal data to reside in the cache longer, reducing bus 
traffic.

Data set size and temporal locality (data characteristics) fundamentally 
affect how prefetch instructions are applied to strip-mined code. 
Figure 6-5 shows two simplified scenarios for temporally-adjacent data 
and temporally-non-adjacent data.
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In the temporally-adjacent scenario, subsequent passes use the same 
data and find it already in second-level cache. Prefetch issues aside, this 
is the preferred situation. In the temporally non-adjacent scenario, data 
used in pass m is displaced by pass (m+1), requiring data re-fetch into 
the first level cache and perhaps the second level cache if a later pass 
reuses the data. If both data sets fit into the second-level cache, load 
operations in passes 3 and 4 become less expensive.

Figure 6-5 Cache Blocking – Temporally Adjacent and Non-adjacent Passes
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Figure 6-6 shows how prefetch instructions and strip-mining can be 
applied to increase performance in both of these scenarios.

For Pentium 4 processors, the left scenario shows a graphical 
implementation of using prefetchnta to prefetch data into selected 
ways of the second-level cache only (SM1 denotes strip mine one way 
of second-level), minimizing second-level cache pollution. Use 
prefetchnta if the data is only touched once during the entire 
execution pass in order to minimize cache pollution in the higher level 
caches. This provides instant availability, assuming the prefetch was 
issued far ahead enough, when the read access is issued.

Figure 6-6 Examples of Prefetch and Strip-mining for Temporally Adjacent and 
Non-Adjacent Passes Loops
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In scenario to the right, in Figure 6-6, keeping the data in one way of the 
second-level cache does not improve cache locality. Therefore, use 
prefetcht0 to prefetch the data. This hides the latency of the memory 
references in passes 1 and 2, and keeps a copy of the data in 
second-level cache, which reduces memory traffic and latencies for 
passes 3 and 4. To further reduce the latency, it might be worth 
considering extra prefetchnta instructions prior to the memory 
references in passes 3 and 4.

In Example 6-6, consider the data access patterns of a 3D geometry 
engine first without strip-mining and then incorporating strip-mining. 
Note that 4-wide SIMD instructions of Pentium III processor can 
process 4 vertices per every iteration.

Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM_VTX) {

  prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

  prefetchnta vertexi+1 data

  prefetchnta vertexi+2 data 

  prefetchnta vertexi+3 data

  TRANSFORMATION code // use only x,y,z,tu,tv of a vertex

  nvtx+=4

}  

while (nvtx < MAX_NUM_VTX) {  

  prefetchnta vertexi data // v =[x,y,z,nx,ny,nz,tu,tv]

      // x,y,z fetched again

  prefetchnta vertexi+1 data

  prefetchnta vertexi+2 data 

  prefetchnta vertexi+3 data 

  compute the light vectors // use only x,y,z  

  LOCAL LIGHTING code // use only nx,ny,nz 

  nvtx+=4

}
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Without strip-mining, all the x,y,z coordinates for the four vertices must 
be re-fetched from memory in the second pass, that is, the lighting loop. 
This causes under-utilization of cache lines fetched during 
transformation loop as well as bandwidth wasted in the lighting loop. 

Now consider the code in Example 6-7 where strip-mining has been 
incorporated into the loops.

    

Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM_STRIP) {

/* Strip-mine the loop to fit data into one way of the second-level 
   cache */

  while (nvtx < MAX_NUM_VTX_PER_STRIP) {

    prefetchnta vertexi data // v=[x,y,z,nx,ny,nz,tu,tv]

    prefetchnta vertexi+1 data

    prefetchnta vertexi+2 data 

    prefetchnta vertexi+3 data 

    TRANSFORMATION code

         nvtx+=4

}  

while (nvtx < MAX_NUM_VTX_PER_STRIP) {  

    /* x y z coordinates are in the second-level cache, no prefetch 
is 

   required */

    compute the light vectors    

    POINT LIGHTING code

    nvtx+=4

  }  

}

6-36



Optimizing Cache Usage 6
With strip-mining, all the vertex data can be kept in the cache (for 
example, one way of second-level cache) during the strip-mined 
transformation loop and reused in the lighting loop. Keeping data in the 
cache reduces both bus traffic and the number of prefetches used.

Figure 6-7 summarizes the steps of the basic usage model that 
incorporates prefetch with strip-mining. The steps are:

• Do strip-mining: partition loops so that the dataset fits into 
second-level cache. 

• Use prefetchnta if the data is only used once or the dataset fits 
into 32K (one way of second-level cache). Use prefetcht0 if the 
dataset exceeds 32K. 

The above steps are platform-specific and provide an implementation 
example. The variables NUM_STRIP and MAX_NUM_VX_PER_STRIP can be 
heuristically determined for peak performance for specific application 
on a specific platform.

Single-pass versus Multi-pass Execution

An algorithm can use single- or multi-pass execution defined as follows:

• Single-pass, or unlayered execution passes a single data element 
through an entire computation pipeline.

Figure 6-7 Incorporating Prefetch into Strip-mining Code
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• Multi-pass, or layered execution performs a single stage of the 
pipeline on a batch of data elements, before passing the batch on to 
the next stage. 

A characteristic feature of both single-pass and multi-pass execution is 
that a specific trade-off exists depending on an algorithm’s 
implementation and use of a single-pass or multiple-pass execution, see 
Figure 6-8. 

Multi-pass execution is often easier to use when implementing a general 
purpose API, where the choice of code paths that can be taken depends 
on the specific combination of features selected by the application (for 
example, for 3D graphics, this might include the type of vertex 
primitives used and the number and type of light sources). 

With such a broad range of permutations possible, a single-pass 
approach would be complicated, in terms of code size and validation. In 
such cases, each possible permutation would require a separate code 
sequence. For example, an object with features A, B, C, D can have a 
subset of features enabled, say, A, B, D. This stage would use one code 
path; another combination of enabled features would have a different 
code path. It makes more sense to perform each pipeline stage as a 
separate pass, with conditional clauses to select different features that 
are implemented within each stage. By using strip-mining, the number 
of vertices processed by each stage (for example, the batch size) can be 
selected to ensure that the batch stays within the processor caches 
through all passes. An intermediate cached buffer is used to pass the 
batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit 
the number of features that may be used at a given time. A single-pass 
approach can reduce the amount of data copying that can occur with a 
multi-pass engine, see Figure 6-8.
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The choice of single-pass or multi-pass can have a number of 
performance implications. For instance, in a multi-pass pipeline, stages 
that are limited by bandwidth (either input or output) will reflect more 
of this performance limitation in overall execution time. In contrast, for 
a single-pass approach, bandwidth-limitations can be distributed/

Figure 6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines
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amortized across other computation-intensive stages. Also, the choice of 
which prefetch hints to use are also impacted by whether a single-pass 
or multi-pass approach is used (see “Hardware Data Prefetch”).

Memory Optimization using Non-Temporal Stores
The non-temporal stores can also be used to manage data retention in 
the cache. Uses for the non-temporal stores include:

• To combine many writes without disturbing the cache hierarchy

• To manage which data structures remain in the cache and which are 
transient.

Detailed implementations of these usage models are covered in the 
following sections.

Non-temporal Stores and Software Write-Combining

Use non-temporal stores in the cases when the data to be stored is:

• write-once (non-temporal)

• too large and thus cause cache thrashing. 

Non-temporal stores do not invoke a cache line allocation, which means 
they are not write-allocate. As a result, caches are not polluted and no 
dirty writeback is generated to compete with useful data bandwidth. 
Without using non-temporal stores, bus bandwidth will suffer when 
caches start to be thrashed because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal 
stores are written into writeback or write-combining memory regions, 
these stores are weakly-ordered and will be combined internally inside 
the processor’s write-combining buffer and be written out to memory as 
a line burst transaction. To achieve the best possible performance, it is 
recommended to align data along the cache line boundary and write 
them consecutively in a cache line size while using non-temporal stores. 
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If the consecutive writes are prohibitive due to programming 
constraints, then software write-combining (SWWC) buffers can be used 
to enable line burst transaction.

You can declare small SWWC buffers (a cache line for each buffer) in your 
application to enable explicit write-combining operations. Instead of 
writing to non-temporal memory space immediately, the program writes 
data into SWWC buffers and combines them inside these buffers. The 
program only writes a SWWC buffer out using non-temporal stores when 
the buffer is filled up, that is, a cache line (128 bytes for the Pentium 4 
processor). Although the SWWC method requires explicit instructions for 
performing temporary writes and reads, this ensures that the transaction 
on the front-side bus causes line transaction rather than several partial 
transactions. Application performance gains considerably from 
implementing this technique. These SWWC buffers can be maintained 
in the second-level and re-used throughout the program.

Cache Management

The streaming instructions (prefetch and stores) can be used to 
manage data and minimize disturbance of temporal data held within the 
processor’s caches.

In addition, the Pentium 4 processor takes advantage of the Intel C ++ 
Compiler that supports C ++ language-level features for the Streaming 
SIMD Extensions. The Streaming SIMD Extensions and MMX 
technology instructions provide intrinsics that allow you to optimize 
cache utilization. The examples of such Intel compiler intrinsics are 
_mm_prefetch, _mm_stream, _mm_load, _mm_sfence. For more details 
on these intrinsics, refer to the Intel C ++ Compiler User’s Guide, order 
number 718195.

The following examples of using prefetching instructions in the 
operation of video encoder and decoder as well as in simple 8-byte 
memory copy, illustrate performance gain from using the prefetching 
instructions for efficient cache management.
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Video Encoder

In a video encoder example, some of the data used during the encoding 
process is kept in the processor’s second-level cache, to minimize the 
number of reference streams that must be re-read from system memory. 
To ensure that other writes do not disturb the data in the second-level 
cache, streaming stores (movntq) are used to write around all processor 
caches.

The prefetching cache management implemented for the video encoder 
reduces the memory traffic. The second-level cache pollution reduction 
is ensured by preventing single-use video frame data from entering the 
second-level cache. Using a non-temporal prefetch (prefetchnta) 
instruction brings data into only one way of the second-level cache, thus 
reducing pollution of the second-level cache. If the data brought directly 
to second-level cache is not re-used, then there is a performance gain 
from the non-temporal prefetch over a temporal prefetch. The encoder 
uses non-temporal prefetches to avoid pollution of the second-level 
cache, increasing the number of second-level cache hits and decreasing 
the number of polluting write-backs to memory. The performance gain 
results from the more efficient use of the second-level cache, not only 
from the prefetch itself.

Video Decoder

In the video decoder example, completed frame data is written to local 
memory of the graphics card, which is mapped to WC (Write-combining) 
memory type. A copy of reference data is stored to the WB memory at a 
later time by the processor in order to generate future data. The 
assumption is that the size of the reference data is too large to fit in the 
processor’s caches. A streaming store is used to write the data around 
the cache, to avoid displaying other temporal data held in the caches. 
Later, the processor re-reads the data using prefetchnta, which ensures 
maximum bandwidth, yet minimizes disturbance of other cached 
temporal data by using the non-temporal (NTA) version of prefetch.
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Conclusions from Video Encoder and Decoder 
Implementation

These two examples indicate that by using an appropriate combination 
of non-temporal prefetches and non-temporal stores, an application can 
be designed to lessen the overhead of memory transactions by 
preventing second-level cache pollution, keeping useful data in the 
second-level cache and reducing costly write-back transactions. Even if 
an application does not gain performance significantly from having data 
ready from prefetches, it can improve from more efficient use of the 
second-level cache and memory. Such design reduces the encoder’s 
demand for such critical resource as the memory bus. This makes the 
system more balanced, resulting in higher performance.

Using Prefetch and Streaming-store for a Simple Memory 
Copy

Consider a memory copy task to transfer a large array of 8-byte data 
elements from one memory location to another. Example 6-8 presents 
the basic algorithm of the simple memory copy. This task can be sped 
up greatly using prefetch and streaming store instructions. The 
techniques are discussed in the following paragraph and a code example 
is shown in Example 6-9.

The memory copy algorithm can be optimized using the Streaming 
SIMD Extensions and these considerations:

• alignment of data

• proper layout of pages in memory 

Example 6-8 Basic Algorithm of a Simple Memory Copy

#define N 512000

double a[N], b[N];

for (i = 0; i < N; i++) {

b[i] = a[i];

}
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• cache size

• interaction of the transaction lookaside buffer (TLB) with memory 
accesses

• combining prefetch and streaming-store instructions. 

The guidelines discussed in this chapter come into play in this simple 
example. TLB priming is required for the Pentium 4 processor just as it 
is for the Pentium III processor, since software prefetch instructions will 
not initiate page table walks on either processor.

TLB Priming

The TLB is a fast memory buffer that is used to improve performance of 
the translation of a virtual memory address to a physical memory 
address by providing fast access to page table entries. If memory pages 
are accessed and the page table entry is not resident in the TLB, a TLB 
miss results and the page table must be read from memory. 

The TLB miss results in a performance degradation since another 
memory access must be performed (assuming that the translation is not 
already present in the processor caches) to update the TLB. The TLB 
can be preloaded with the page table entry for the next desired page by 
accessing (or touching) an address in that page. This is similar to 
prefetch, but instead of a data cache line the page table entry is being 
loaded in advance of its use. This helps to ensure that the page table 
entry is resident in the TLB and that the prefetch happens as requested 
subsequently.
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Optimizing the 8-byte Memory Copy

Example 6-9 presents the copy algorithm that uses second level cache. 
The algorithm performs the following steps:

1. uses blocking technique to transfer 8-byte data from memory into 
second-level cache using the _mm_prefetch intrinsic, 128 bytes at 
a time to fill a block. The size of a block should be less than one 
half of the size of the second-level cache, but large enough to 
amortize the cost of the loop.

2. loads the data into an xmm register using the _mm_load_ps intrinsic.

3. transfers the 8-byte data to a different memory location via the 
_mm_stream intrinsics, bypassing the cache. For this operation, it is 
important to ensure that the page table entry prefetched for the 
memory is preloaded in the TLB.    
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Example 6-9 An Optimized 8-byte Memory Copy

#define PAGESIZE 4096;

#define NUMPERPAGE 512 // # of elements to fit a page

 

double a[N], b[N], temp;

for (kk=0; kk<N; kk+=NUMPERPAGE) {

temp = a[kk+NUMPERPAGE];  // TLB priming

// use block size = page size,

// prefetch entire block, one cache line per loop

for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {

   _mm_prefetch((char*)&a[j], _MM_HINT_NTA);

    }

// copy 128 byte per loop

for (j=kk; j<kk+NUMPERPAGE; j+=16) {

       _mm_stream_ps((float*)&b[j],

 _mm_load_ps((float*)&a[j]));

_mm_stream_ps((float*)&b[j+2],

  _mm_load_ps((float*)&a[j+2]));

_mm_stream_ps((float*)&b[j+4],

  _mm_load_ps((float*)&a[j+4]));

_mm_stream_ps((float*)&b[j+6],

  _mm_load_ps((float*)&a[j+6]));

continued
6-46



Optimizing Cache Usage 6
In Example 6-9, eight _mm_load_ps and _mm_stream_ps intrinsics are 
used so that all of the data prefetched (a 128-byte cache line) is written 
back. The prefetch and streaming-stores are executed in separate loops 
to minimize the number of transitions between reading and writing data. 
This significantly improves the bandwidth of the memory accesses.

The instruction, temp = a[kk+CACHESIZE], is used to ensure the page 
table entry for array, and a is entered in the TLB prior to prefetching. 
This is essentially a prefetch itself, as a cache line is filled from that 
memory location with this instruction. Hence, the prefetching starts 
from kk+4 in this loop.

This example assumes that the destination of the copy is not temporally 
adjacent to the code. If the copied data is destined to be reused in the 
near future, then the streaming store instructions should be replaced 
with regular 128 bit stores(_mm_store_ps). This is required because the 
implementation of streaming stores on Pentium 4 processor writes data 
directly to memory, maintaining cache coherency.

_mm_stream_ps((float*)&b[j+8],

  _mm_load_ps((float*)&a[j+8]));

_mm_stream_ps((float*)&b[j+10],

  _mm_load_ps((float*)&a[j+10]));

_mm_stream_ps((float*)&b[j+12],

  _mm_load_ps((float*)&a[j+12]));

_mm_stream_ps((float*)&b[j+14],

  _mm_load_ps((float*)&a[j+14]));

}   // finished copying one block

} // finished copying N elements

_mm_sfence();

Example 6-9 An Optimized 8-byte Memory Copy (continued)
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7
Multiprocessor and 
Hyper-Threading Technology
This chapter describes software optimization techniques for 
multithreaded applications running on multiprocessor (MP) systems. 
The multiprocessor systems covered here include traditional systems 
using discrete microprocessors1 and those using IA-32 processors with 
Hyper-Threading Technology2.

Hyper-Threading Technology is discussed in Chapter 1. An IA-32 
processor with Hyper-Threading Technology appears to software as two 
logical processors in one physical package. The performance gain using 
two discrete processors is greater than that gained using two logical 
processors in the same physical processor package. Nevertheless, there 
are many similarities in the performance characteristics between 
Hyper-Threading Technology and traditional MP systems. The 
programming models and optimization techniques for multi-threaded 
applications to take advantage of Hyper-Threading Technology and 
traditional MP system are also similar. 

This chapter covers

• Performance characteristics and usage models,

1. Each processor is contained in a separate physical package. 
2. The presence of Hyper-Threading Technology in IA-32 processors can be detected by 

reading the CPUID feature flag bit 28. A return value of 1 in bit 28 and at least two logical 
processors per package indicates that Hyper-Threading Technology is present in the 
processor.  The number of logical processors supported in each package can also be 
obtained from CPUID. The application must also check how many logical processors are 
provided under the operating system by making the appropriate operating system calls.   
See the application notes “Intel Processor Identification and the CPUID Instruction” and 
“Detecting Support for Hyper-Threading Technology Enabled Processors” for more 
information.
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• Programming models for multithreaded applications,

• Software optimization techniques in five specific areas.

Performance and Usage Models
The performance gains of using multiple processors or 
Hyper-Threading Technology are greatly affected by the usage model 
and the amount of parallelism in the control flow of the workload. Two 
common usage models are: 

• multithreaded applications

• multitasking using single-threaded applications 

Multithreading

When an application employs multi-threading to exploit task-level 
parallelism in a workload, the control flow of the multi-threaded 
software can be divided into two parts: parallel tasks and sequential 
tasks. 

Amdahl’s law describes an application’s performance gain as it relates 
to the degree of parallelism in the control flow. It is a useful guide for 
selecting the code modules, functions, or instruction sequences that are 
most likely to realize the most gains from transforming sequential tasks 
and control flows into parallel code to take advantage MP systems and 
Hyper-Threading Technology. 

Figure 7-1 illustrates how performance gains can be realized for any 
workload according to Amdahl’s law. The bar in Figure 7-1 represents 
an individual task unit or the collective workload of an entire 
application. 

In general, the speed-up of running multiple threads on an MP systems 
with N physical processors, over single-threaded execution, can be 
expressed as:

RelativeResponse
Tsequential

Tparallel
-------------------------------= 1 P–

P
N
---- O+ + 

 =
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where P is the fraction of workload that can be parallelized, and O 
represents the overhead of multithreading and may vary between 
different operating systems. In this case, performance gain is the inverse 
of the relative response.

When optimizing application performance in a multithreaded 
environment, control flow parallelism is likely to have the largest 
impact on performance scaling with respect to the number of physical 
processors and to the number of logical processors per physical 
processor. 

If the control flow of a multi-threaded application contains a workload 
in which only 50% can be executed in parallel, the maximum 
performance gain using two physical processors is only 33%, compared 
to using a single processor. Using four processors can deliver no more 
than a 60% speed-up over a single processor! Thus, it is critical to 
maximize the portion of control flow that can take advantage of 
parallelism. Improper implementation of thread synchronization can 
significantly increase the proportion of serial control flow and further 
reduce the application’s performance scaling. 

Figure 7-1 Amdahl’s Law and MP Speed-up
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In addition to maximizing the parallelism of control flows, 
multithreaded applications should ensure each thread has good 
frequency scaling. 

Excessive cache misses are one cause of poor performance scaling. In a 
multithreaded execution environment, they can occur from:

• aliased stack accesses by different threads in the same process

• thread contentions resulting in cache line evictions

• false-sharing of cache lines between different processors

Techniques that address each of these situations (and many other areas) 
are described in sections in this chapter. 

Multitasking Environment

Hyper-Threading Technology can exploit task-level parallelism when a 
workload consists of several single-threaded applications and these 
applications are scheduled to run concurrently under an MP-aware 
operating system. In this environment, Hyper-Threading Technology 
can deliver higher throughput for the workload, although it does not 
increase the performance of an application (in terms of time of 
completion of each application). 

For development purposes, several popular operating systems (for 
example Microsoft Windows* XP Professional and Home, Linux* 
distributions using kernel 2.4.19 or later3) include OS kernel code that 
can manage the task scheduling and the balancing of shared execution 
resources within each physical processor to maximize the throughput.

Because applications run independently under a multi-tasking 
environment, thread synchronization issues are less likely to limit the 
scaling of throughput. This is because the control flow of the workload 
is likely to be 100% parallel4 (if no inter-processor communication is 
taking place and if there are no system bus constraints). 

3. This code is included in Red Hat* Linux Enterprise AS 2.1. 
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With a multi-tasking workload, however, bus activities and cache access 
patterns are likely to affect the scaling of the throughput. Running two 
copies of the same application or same suite of applications in a 
lock-step can expose an artifact in performance measuring 
methodology. This is because an access pattern to the 1st level data 
cache can lead to excessive cache misses and produce skewed 
performance results. Fix this problem by: 

1. including a per-instance offset at the start-up of an application

2. introducing heterogeneity in the workload by using different 
datasets with each instance of the application

3. randomizing the sequence of start-up of applications when 
running multiple copies of the same suite

When two applications are employed as part of a multi-tasking 
workload, there is little synchronization overhead between these two 
processes. It is also important to ensure each application has minimal 
synchronization overhead within itself. 

An application that uses lengthy spin loops for intra-process 
synchronization is less likely to benefit from Hyper-Threading 
Technology in a multi-tasking workload. This is because critical 
resources will be consumed by the long spin loops.

Programming Models and Multithreading
Parallelism is the most important concept in designing a multithreaded 
application and realizing optimal performance scaling with multiple 
processors. An optimized multithreaded application is characterized by 
large degrees of parallelism or minimal dependencies in the following 
areas: 

• workload

4. A software tool that attempts to measure the throughput of a multi-tasking workload is 
likely to introduce additional control flows that are not parallel. For example, see
Example 7-2 for coding pitfalls using spin-wait loop. Thus, thread synchronization issues 
must be considered as an integral part of its performance measuring methodology.
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• thread interaction

• hardware utilization

The key to maximizing workload parallelism is to identify multiple 
tasks that have minimal inter-dependencies within an application and to 
create separate threads for parallel execution of those tasks.

Concurrent execution of independent threads is the essence of deploying 
a multithreaded application on a multiprocessing system. Managing the 
interaction between threads to minimize the cost of thread 
synchronization is also critical to achieving optimal performance 
scaling with multiple processors.

Efficient use of hardware resources between concurrent threads requires 
optimization techniques in specific areas to prevent contentions of 
hardware resources. Coding techniques for optimizing thread 
synchronization and managing other hardware resources are discussed 
in subsequent sections. 

Parallel programming models are discussed next.

Parallel Programming Models

Two common programming models for transforming independent task 
requirements into application threads are: 

• domain decomposition 
• functional decomposition 

Domain Decomposition

Usually large compute-intensive tasks use data sets that can be divided 
into a number of small subsets, each having a large degree of 
computational independence. Examples include:

• computation of a discrete cosine transformation (DCT) on 
two-dimensional data by dividing the two-dimensional data into 
several subsets and creating threads to compute the transform on 
each subset
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• matrix multiplication; here, threads can be created to handle the 
multiplication of half of matrix with the multiplier matrix

Domain Decomposition is a programming model based on creating 
identical or similar threads to process smaller pieces of data 
independently. This model can take advantage of duplicated execution 
resources present in a traditional multiprocessor system. It can also take 
advantage of shared execution resources between two logical processors 
in Hyper-Threading Technology. This is because a data domain thread 
typically consumes only a fraction of the available on-chip execution 
resources. 

The section “Key Practices of Execution Resource Optimization” 
discusses additional guidelines that can help data domain threads use 
shared execution resources cooperatively and avoid the pitfalls creating 
contentions of hardware resources between two threads.

Functional Decomposition

Applications usually process a wide variety of tasks with diverse 
functions and many unrelated data sets. For example, a video codec 
needs several different processing functions. These include DCT, 
motion estimation and color conversion. Using a functional threading 
model, applications can program separate threads to do motion 
estimation, color conversion, and other functional tasks. 

Functional decomposition will achieve more flexible thread-level 
parallelism if it is less dependent on the duplication of hardware 
resources. For example, a thread executing a sorting algorithm and a 
thread executing a matrix multiplication routine are not likely to require 
the same execution unit at the same time. A design recognizing this 
could advantage of traditional multiprocessor systems as well as 
multiprocessor systems using IA-32 processor with Hyper-Threading 
Technology.
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Tools for Creating Multithreaded Applications

Programming directly to a multithreading application programming 
interface (API) is not the only method for creating multithreaded 
applications. New tools such as the Intel® Compiler  have become 
available with capabilities that make the challenge of creating 
multithreaded application easier.

Two features available in the latest Intel Compilers are:

• generating multithreaded code using OpenMP* directives5

• generating multithreaded code automatically from unmodified 
high-level code6

Programming with OpenMP Directives. OpenMP provides a 
standardized, non-proprietary, portable set of Fortran and C++ compiler 
directives supporting shared memory parallelism in applications. 
OpenMP supports directive-based processing. This uses special 
preprocessors or modified compilers to interpret parallelism expressed 
in Fortran comments or C/C++ pragmas. Benefits of directive-based 
processing include:

• The original source can be compiled unmodified.

• It is possible to make incremental code changes. This preserves  
algorithms in the original code and enables rapid debugging.

• Incremental code changes help programmers maintain serial 
consistency. When the code is run on one processor, it gives the 
same result as the unmodified source code.

Automatic Parallelization of Code. While OpenMP directives allow 
programmers to quickly transform serial applications into parallel 
applications, programmers must identify specific portions of the 
application code that contain parallelism and add compiler directives. 
Intel Compiler 6.0 supports a new (-Qparallel) option, which can 
identify loop structures that contain parallelism. During program 

5. Intel Compiler 5.0 and later supports OpenMP directives. Visit 
http://developer.intel.com/software/products for details.

6. Intel Compiler 6.0 supports auto-parallelization.
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compilation, the compiler automatically attempts to decompose the 
parallelism into threads for parallel processing. No other intervention or 
programmer is needed.

Supporting Development Tools. The Intel® Threading Tools include  
Intel® Thread Checker and Thread Profiler.

Intel® Thread Checker. Use Intel Thread Checker to find threading 
errors and reduce the amount of time spent debugging threaded 
applications.

Intel Thread Checker product is an Intel VTune Performance Analyzer 
plug-in data collector that executes a program and automatically locates 
threading errors. As the program runs, Intel Thread Checker monitors 
memory accesses and other events and automatically detects situations 
which could cause unpredictable threading-related results.

Thread Profiler. Thread Profiler is a plug-in data collector for the Intel 
VTune Performance Analyzer. Use it to analyze threading performance 
and identify parallel performance bottlenecks. It graphically illustrates 
what each OpenMP* thread is doing at various levels of detail using a 
hierarchical summary. Data is collapsed into relevant summaries, sorted 
to identify parallel regions or loops that require attention.

Optimization Guidelines
This section summarizes optimization guidelines for tuning 
multithreaded applications. Five areas are listed (in order of 
importance):

• thread synchronization

• bus utilization

• memory optimization

• front end optimization

• execution resource optimization
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Practices associated with each area are listed in this section. Guidelines 
for each area are discussed in greater depth in sections that follow.

Most of the coding recommendations improve performance scaling with 
physical processors and scaling due to Hyper-Threading Technology. 
Techniques that apply to only one environment are noted.

Key Practices of Thread Synchronization

Key practices for minimizing the cost of thread synchronization are 
summarized below:

• Insert the PAUSE instruction in fast spin loops and keep the number 
of loop repetitions to a minimum to improve overall system 
performance. 

• Replace a spin lock that may be acquired by multiple threads with 
pipelined locks such that no more than two threads have write 
accesses to one lock. If only one thread needs to write to a variable 
shared by two threads, there is no need to acquire a lock.

• Use a thread-blocking API in a long idle loop to free up the 
processor.

• Prevent “false-sharing” of per-thread-data between two threads.

• Place each synchronization variable alone, separated by 128 bytes 
or in a separate cache line.

 See “Thread Synchronization” for more details.

Key Practices of System Bus Optimization

Managing bus traffic can significantly impact the overall performance 
of multithreaded software and MP systems. Key practices of system bus 
optimization for achieving high data throughput and quick response are: 

• Improve data and code locality to conserve bus command 
bandwidth.
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• Avoid excessive use of software prefetch instructions and allow the 
automatic hardware prefetcher to work. Excessive use of software 
prefetches can significantly and unnecessarily increase bus 
utilization if used inappropriately.

• Consider using overlapping multiple back-to-back memory reads to 
improve effective cache miss latencies.

• Use full write transactions to achieve higher data throughput.

See “System Bus Optimization” for more details.

Key Practices of Memory Optimization

Key practices for optimizing memory operations are summarized 
below:

• Use cache blocking to improve locality of data access. Target one 
quarter to one half of cache size when targeting IA-32 processors 
with Hyper-Threading Technology.

• Minimize the sharing of data between threads that execute on 
different physical processors sharing a common bus.

• Minimize data access patterns that are offset by multiples of 64 KB 
in each thread.

• Adjust the private stack of each thread in an application so the 
spacing between these stacks is not offset by multiples of 64 KB or 
1 MB (prevents unnecessary cache line evictions) when targeting 
IA-32 processors with Hyper-Threading Technology.

• Add a per-instance stack offset when two instances of the same 
application are executing in lock steps to avoid memory accesses 
that are offset by multiples of 64 KB or 1 MB when targeting IA-32 
processors with Hyper-Threading Technology.

See “Memory Optimization” for more details.
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Key Practices of Front-end Optimization

Key practices for front-end optimization are:

• Avoid Excessive Loop Unrolling to ensure the Trace Cache is 
operating efficiently.

• Optimize code size to improve locality of Trace Cache and increase 
delivered trace length.

See “Front-end Optimization” for more details.

Key Practices of Execution Resource Optimization

Each physical processor has dedicated execution resources. Logical 
processors in physical processors supporting Hyper-Threading 
Technology share specific on-chip execution resources. Key practices 
for execution resource optimization include:

• Optimize each thread to achieve optimal frequency scaling first.

• Optimize multithreaded applications to achieve optimal scaling with 
respect to the number of physical processors.

• Use on-chip execution resources cooperatively if two threads are 
sharing the execution resources in the same physical processor 
package.

• For each processor with Hyper-Threading Technology, consider 
adding functionally uncorrelated threads to increase the hardware 
resource utilization of each physical processor package.

See “Execution Resource Optimization” for more details.

Generality and Performance Impact

The next five sections cover the optimization techniques in detail. 
Recommendations discussed in each section are ranked by importance 
in terms of estimated local impact and generality. 
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Rankings are subjective and approximate. They can vary depending on 
coding style, application and threading domain. The purpose of 
including high, medium and low impact ranking with each 
recommendation is to provide a relative indicator as to the degree of 
performance gain that can be expected when a recommendation is 
implemented.

It is not possible to predict the frequency of a code instance in an 
applications, so an impact ranking cannot be directly correlated to 
application-level performance gain. The ranking on generality is also 
subjective and approximate. 

Coding recommendations that do not impact all three scaling factors are 
typically categorized as medium or lower.

Thread Synchronization
Applications with multiple threads use synchronization techniques in 
order to ensure correct operation. However, thread synchronization that 
are improperly implemented can significantly reduce performance. 

Several coding techniques and operating system (OS) calls that are 
frequently used for thread synchronization. These include spin-wait 
loops, spin-locks, critical sections, to name a few. Choosing the optimal 
OS calls for the circumstance and implementing synchronization code 
with parallelism in mind are critical in minimizing the cost of handling 
thread synchronization.

Synchronization for Short Periods

The frequency and duration that a thread needs to synchronize with 
other threads depends application characteristics. When a 
synchronization loop needs very fast response, applications may use a 
spin-wait loop.
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A spin-wait loop is typically used when one thread needs to wait a short 
amount of time for another thread to reach a point of synchronization. A 
spin-wait loop consists of a loop that compares a synchronization 
variable with some pre-defined value [see Example 7-1(a)].

On a modern microprocessor with a superscalar speculative execution 
engine, a loop like this results in the issue of multiple simultaneous read 
requests from the spinning thread. These requests usually execute 
out-of-order with each read request being allocated a buffer resource. 
On detection of a write by a worker thread to a load that is in progress, 
the processor must guarantee no violations of memory order occur. The 
necessity of maintaining the order of outstanding memory operations 
inevitably costs the processor a severe penalty that impacts all threads.

This penalty occurs on the Pentium Pro processor, the Pentium II 
processor and the Pentium III processor. However, the penalty on these 
processors is small compared with penalties suffered on the Pentium 4 
and Intel Xeon processors. There the performance penalty for exiting 
the loop is about 25 times more severe. 

On a processor with Hyper-Threading Technology, spin-wait loops can 
consume a significant portion of the execution bandwidth of the 
processor. One logical processor executing a spin-wait loop can severely 
impact the performance of the other logical processor.
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Example 7-1 Spin-wait Loop and PAUSE Instructions  

(a) An un-optimized spin-wait loop experiences performance penalty when exiting 
the loop. It consumes execution resources without contributing computational 
work.

do { 

// this loop can run faster than the speed of memory access, 

// other worker threads cannot finish modifying sync_var until
// outstanding loads from the spinning loops are resolved.

} while( sync_var != constant_value)

                                                                       

(b) Inserting the PAUSE instruction in a fast spin-wait loop prevents 
performance-penalty to the spinning thread and the worker thread 

do {  

_asm   pause 

// ensure this loop is de-pipelined, i.e. preventing more than 
one 

// load request to sync_var to be outstanding, 

// avoiding performance penalty when the worker thread updates 
// sync_var and the spinning thread exiting the loop

} 

while( sync_var != constant_value)

continued
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User/Source Coding Rule 20. (M impact, H generality) Insert the PAUSE 
instruction in fast spin loops and keep the number of loop repetitions to a 
minimum to improve overall system performance.  

On IA-32 processors that use the Intel NetBurst microarchitecture core, 
the penalty of exiting from a spin-wait loop can be avoided by inserting 
a PAUSE instruction in the loop. In spite of the name, the PAUSE 
instruction improves performance by introducing a slight delay in the 
loop and effectively causing the memory read requests to be issued at a 
rate that allows immediate detection of any store to the synchronization 
variable. This prevents the occurrence of a long delay due to memory 
order violation. 

(c) A spin-wait loop using a “test, test-and-set” technique to determine the 
availability of the synchronization variable. This technique is recommended when 
writing spin-wait loops to run on IA-32 architecture processors.

Spin_Lock:

CMP lockvar, 0 ; Check if lock is free

JE  Get_lock

PAUSE ; Short delay

JMP Spin_Lock

Get_Lock:

MOV EAX, 1

XCHG EAX, lockvar ; Try to get lock

CMP EAX, 0 ; Test if successful

JNE Spin_Lock

Critical_Section:

<critical section code>

MOV lockvar, 0 ; Release lock

Example 7-1 Spin-wait Loop and PAUSE Instructions (continued) 
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One example of inserting the PAUSE instruction in a simplified spin-wait 
loop is shown in Example 7-1(b). The PAUSE instruction is compatible 
with all IA-32 processors. On IA-32 processors prior to Intel NetBurst 
microarchitecture, the PAUSE instruction is essentially a NOP instruction. 
Additional examples of optimizing spin-wait loops using the PAUSE 
instruction are available in Application Note AP-949 “Using 
Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor.”

Inserting the PAUSE instruction has the added benefit of significantly 
reducing the power consumed during the spin-wait because fewer 
system resources are used.

Optimization with Spin-Locks

Spin-locks are typically used when several threads needs to modify a 
synchronization variable and the synchronization variable must be 
protected by a lock to prevent un-intentional overwrites. When the lock 
is released, however, several threads may compete to acquire it at once. 
Such thread contention significantly reduces performance scaling with 
respect to frequency, number of discrete processors, and 
Hyper-Threading Technology.

To reduce the performance penalty, one approach is to reduce the 
likelihood of many threads competing to acquire the same lock. Apply a 
software pipelining technique to handle data that must be shared 
between multiple threads. 

Instead of allowing multiple threads to compete for a given lock, no 
more than two threads should have write access to a given lock. If an 
application must use spin-locks, include the PAUSE instruction in the 
wait loop. Example 7-1 (c) shows an example of the “test, test-and-set” 
technique for determining the availability of the lock in a spin-wait 
loop. 

User/Source Coding Rule 21. (M impact, L generality) Replace a spin lock 
that may be acquired by multiple threads with pipelined locks such that no 
more than two threads have write accesses to one lock. If only one thread needs 
to write to a variable shared by two threads, there is no need to use a lock,  
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Synchronization for Longer Periods

When using a spin-wait loop not expected to be released quickly, an 
application should follow these guidelines:

• Keep the duration of the spin-wait loop to a minimum number of 
repetitions.

• Applications should use an OS service to block the waiting thread; 
this can release the processor so that other runnable threads can 
make use of the processor or available execution resources.

On processors supporting Hyper-Threading Technology, operating 
systems should use the HLT instruction if one logical processor is active 
and the other is not.  HLT will allow an idle logical processor to 
transition to a halted state; this allows the active logical processor to use 
all the hardware resources in the physical package. An operating system 
that does not use this technique must still execute instructions on the 
idle logical processor that repeatedly check for work.  This “idle loop” 
consumes execution resources that could otherwise be used to make 
progress on the other active logical processor.

If an application thread must remain idle for a long time, the application 
should use a thread blocking API or other method to release the idle 
processor. The techniques discussed here apply to traditional MP 
system, but they have an even higher impact on IA-32 processors that 
support Hyper-Threading Technology. 

Typically, an operating system provides timing services, for example 
Sleep(dwMilliseconds)7; such variables can be used to prevent frequent 
checking of a synchronization variable.

Another technique to synchronize between worker threads and a control 
loop is to use a thread-blocking API provided by the OS. Using a 
thread-blocking API allows the control thread to use less processor 

7. The Sleep() API is not thread-blocking, because it does not guarantee the processor will be 
released. 
Example 7-2 (a) shows an example of using Sleep(0), which does not always realize the 
processor to another thread.
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cycles for spinning and waiting. This gives the OS more time quanta to 
schedule the worker threads on available processors.  Furthermore, 
using a thread-blocking API also benefits from the system idle loop 
optimization that OS implements using the HLT instruction. 

User/Source Coding Rule 22. (H impact, M generality) Use a 
thread-blocking API in a long idle loop to free up the processor. 

Using a spin-wait loop in a traditional MP system may be less of an 
issue when the number of runnable threads is less than the number of 
processors in the system. If the number of threads in an application is 
expected to be greater than the number of processors (either one 
processor or multiple processors), use a thread-blocking API to free up 
processor resources. A multithreaded application adopting one control 
thread to synchronize multiple worker threads may consider limiting 
worker threads to the number of processors in a system and use 
thread-blocking APIs in the control thread.

Avoid Coding Pitfalls in Thread Synchronization

Synchronization between multiple threads must be designed and 
implemented with care to achieve good performance scaling with 
respect to the number of discrete processors and the number of logical 
processor per physical processor. No single technique is a universal 
solution for every synchronization situation. 

The pseudo-code example in Example 7-2 (a) illustrates a polling loop 
implementation of a control thread. If there is only one runnable worker 
thread, an attempt to call a timing service API, such as Sleep(0), may be 
ineffective in minimizing the cost of thread synchronization. Because 
the control thread still behaves like a fast spinning loop, the only 
runnable worker thread must share execution resources with the 
spin-wait loop if both are running on the same physical processor that 
supports Hyper-Threading Technology. If there are more than one 
runnable worker threads, then calling a thread blocking API, such as 
Sleep(0), could still release the processor running the spin-wait loop, 
allowing the processor to be used by another worker thread instead of 
the spinning loop.
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A control thread waiting for the completion of worker threads can 
usually implement thread synchronization using a thread-blocking API 
or a timing service, if the worker threads require significant time to 
complete.  Example 7-2 (b) shows an example that reduces the overhead 
of the control thread in its thread synchronization.  

Example 7-2 Coding Pitfall using Spin Wait Loop

(a) A spin-wait loop attempts to release the processor incorrectly. It experiences a 
performance penalty if the only worker thread and the control thread runs on the 
same physical processor package.

// Only one worker thread is running, 

// the control loop waits for the worker thread to complete

ResumeWorkThread(thread_handle);

While (!task_not_done ) { 

 Sleep(0)   //  Returns immediately back to spin loop

 … 

}

(b) A polling loop frees up the processor correctly.

// Let a worker thread run and wait for completion

ResumeWorkThread(thread_handle);

While (!task_not_done ) { 

 Sleep(FIVE_MILISEC)   

//  This processor is released for some duration, the processor can 
be

//  used by other threads

 … 

}
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In general, OS function calls should be used with care when 
synchronizing threads. When using OS-supported thread 
synchronization objects (critical section, mutex, or semaphore), 
preference should be given to the OS service that has the least 
synchronization overhead, such as a critical section.

Prevent False-Sharing of Data

When two threads must share data, it is important to avoid false sharing. 
False sharing applies to data used by one thread that happens to reside 
on the same cache line as different data used by another thread.

An example of false sharing is when thread-private data and a thread 
synchronization variable are located within the line size boundary (64 
bytes) or sector boundary (128 bytes). When one thread modifies the 
synchronization variable, the “dirty” cache line must be written out to 
memory and updated for each physical processor sharing the bus. 
Subsequently, data is fetched into each target processor 128 bytes at a 
time, causing previously cached data to be evicted from its cache on 
each target processor. False-sharing incurs a performance penalty, when 
two threads run on different physical processors or on two logical 
processors in the physical processor package. In the first case, the 
performance penalty is due to cache evictions to maintain cache 
coherency. In the latter case, performance penalty is due to memory 
order machine clear conditions. 

User/Source Coding Rule 23. (H impact, M generality) Beware of false 
sharing within a cache line (64 bytes on Intel Pentium 4, Intel Xeon and 
Pentium M processors), and within a sector (128 bytes on Pentium 4 and Intel 
Xeon processors). 

When a common block of parameters is passed from a parent thread to 
several worker threads, it is desirable for each work thread to create a 
private copy of frequently accessed data in the parameter block.
7-21



IA-32 Intel® Architecture Optimization
Placement of Shared Synchronization Variable

Because bus reads typically fetch 128 bytes into a cache, the optimal 
spacing to minimize eviction of cached data is 128 bytes. To prevent 
false-sharing, synchronization variables and system objects (such as a 
critical section) should be allocated to reside alone in a 128-byte region 
and aligned to a 128-byte boundary. Example 7-3 shows a way to 
minimize the bus traffic required to maintain cache coherency in MP 
systems. This technique is also applicable to MP systems using IA-32 
processors with or without Hyper-Threading Technology.

User/Source Coding Rule 24. (M impact, ML generality) Place each 
synchronization variable alone, separated by 128 bytes or in a separate cache 
line. 

User/Source Coding Rule 25. (H impact, L generality) Do not place any 
spin lock variable to span a cache line boundary (64 bytes on Intel Pentium 4 
and Intel Xeon processors). 

System Bus Optimization
The system bus supports a maximum data rate of 3.2 Gigabytes per 
second (GB/S) at 400 MHz, or 4.2 GB/s at 533 MHz. The bus has a line 
size of 64 bytes and can fetch two lines. This means that 128 bytes of 
data can be fetched from memory as the result of a cache miss. The high 
data rate is achieved only when bus transactions use the full capacity of 
each line. While read and prefetch transactions across the bus are 
conducted at 64-byte line size or 128 bytes at a time, write transactions 
can occur in full or various partial line sizes. Conducting partial write 
transactions not only reduces the effective data rate of the system bus, 

Example 7-3 Placement of Synchronization and RegularVariables

int regVar;

int padding[32];

int SynVar[32*NUM_SYNC_VARS];

int AnotherVar;
7-22



Multiprocessor and Hyper-Threading Technology 7
but each request for a partial write transaction also consumes the finite 
command bandwidth of the system bus. When both logical processors in 
an IA-32 processor that supports Hyper-Threading Technology are 
active, each logical processor is an agent that can initiate requests for 
bus transactions. 

Conserve Bus Command Bandwidth

In an N-way MP system with IA-32 processors supporting 
Hyper-Threading Technology, there are twice as many agents that can 
issue bus transaction requests. Preserving the bus command bandwidth 
can help each bus agent achieve higher performance. 

One way for conserving available bus command bandwidth is to 
improve the locality of code and data. Improving the locality of data 
reduces the number of cache line evictions and requests to fetch data. 
This technique also reduces the number of instruction fetches from 
system memory.

User/Source Coding Rule 26. (M impact, H generality) Improve data and 
code locality to conserve bus command bandwidth.  

Using a compiler that supports profiler-guided optimization can 
improve code locality by keeping frequently used code paths in the 
cache. This reduces instruction fetches. Loop blocking can also improve 
the data locality.

Avoid Excessive Software Prefetches

Pentium 4 and Intel Xeon Processors have an automatic hardware 
prefetcher. It can bring data and instructions into the unified 
second-level cache based on prior reference patterns. In most situations, 
the hardware prefetcher is likely to reduce system memory latency 
without explicit intervention from software prefetches. Using software 
prefetch instructions excessively or indiscriminately will inevitably 
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cause performance penalties. This is because excessively or 
indiscriminately using software prefetch instructions wastes the 
command and data bandwidth of the system bus. 

Using software prefetches delays the hardware prefetcher from starting 
to fetch data needed by the processor core. It also consumes critical 
execution resources and can result in stalled execution. The guidelines 
for using software prefetch instructions are described in Chapter 2. The 
calculation of prefetch-ahead distance is discussed in Chapter 6.

User/Source Coding Rule 27. (M impact, L generality) Avoid excessive use 
of software prefetch instructions and allow automatic hardware prefetcher to 
work. Excessive use of software prefetches can significantly and unnecessarily 
increase bus utilization if used inappropriately. 

Improve Effective Latency of Cache Misses

System memory access latency due to cache misses is affected by bus 
traffic. This is because bus read requests must be arbitrated along with 
other requests for bus transactions. Reducing the number of outstanding 
bus transactions helps improve effective memory access latency.

One technique to improve effective latency of memory read transactions 
is to use multiple overlapping bus reads to reduce the latency of sparse 
reads. In situations where there is little locality of data or when memory 
reads need to be arbitrated with other bus transactions, the effective 
latency of scattered memory reads can be improved by issuing multiple 
memory reads back-to-back to overlap multiple outstanding memory 
read transactions. The average latency of back-to-back bus reads is 
likely to be lower than the average latency of scattered reads 
interspersed with other bus transactions. This is because only the first 
memory read needs to wait for the full delay of a cache miss.

User/Source Coding Rule 28. (M impact, M generality) Consider using 
overlapping multiple back-to-back memory reads to improve effective cache 
miss latencies.
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Use Full Write Transactions to Achieve Higher Data Rate

Write transactions across the bus can result in write to physical memory 
either using the full line size of 64 bytes or less than the full line size. 
The latter is referred to as a partial write. Typically, writes to writeback 
(WB) memory addresses are full-size and writes to write-combine (WC) 
or uncacheable (UC) type memory addresses result in partial writes. 
Both cached WB store operations and WC store operations utilize a set 
of six WC buffers (64 bytes wide) to manage the traffic of write 
transactions. When competing traffic closes a WC buffer before all 
writes to the buffer are finished, this results in a series of 8-byte partial 
bus transactions rather than a single 64-byte write transaction.

User/Source Coding Rule 29. (M impact, M generality) Use full write 
transactions to achieve higher data throughput.

Frequently, multiple partial writes to WC memory can be combined into 
full-sized writes using a software write-combining technique to separate 
WC store operations from competing with WB store traffic. To 
implement software write-combining, uncacheable writes to memory 
with the WC attribute are written to a small, temporary buffer (WB 
type) that fits in the first level data cache. When the temporary buffer is 
full, the application copies the content of the temporary buffer to the 
final WC destination.

When partial-writes are transacted on the bus, the effective data rate to 
system memory is reduced to only 1/8 of the system bus bandwidth.

Memory Optimization
Efficient operation of caches is the most important aspect of memory 
optimization. Efficient operation of caches by: 

• cache blocking

• shared memory optimization

• eliminating 64-K-Aliased data accesses

• preventing excessive evictions in first-level cache
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Cache Blocking Technique

Loop blocking is useful for reducing cache misses and improving 
memory access performance. The selection of a suitable block size is 
critical when applying the loop blocking technique. Loop blocking is 
applicable to single-threaded applications as well as to multithreaded 
applications running on processors with or without Hyper-Threading 
Technology. The technique transforms the memory access pattern into 
blocks that efficiently fit in the target cache size.

When targeting IA-32 processors with Hyper-Threading Technology, 
the loop blocking technique should select a block size that is no more 
than one half of the target cache size. The upper limit of the block size 
for loop blocking should be determined by dividing the target cache size 
by the number of logical processors available in a physical processor 
package. Typically, some cache lines are needed to access data that are 
not part of the source or destination buffers used in cache blocking, so 
the block size can be chosen between one quarter to one half of the 
target cache (see also, Chapter 3).

User/Source Coding Rule 30. (H impact, H generality)   Use cache blocking 
to improve locality of data access. Target one quarter to one half of the cache 
size when targeting IA-32 processors with Hyper-Threading Technology. 

Shared-Memory Optimization

Maintaining cache coherency between discrete processors frequently 
involves moving data across a bus that operates at a clock rate 
substantially slower that the processor frequency. 

Minimize Sharing of Data between Physical Processors

When two threads are executing on two physical processors and sharing 
data, reading from or writing to shared data usually involves several bus 
transactions (including snooping, request for ownership changes, and 
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sometimes fetching data across the bus). A thread accessing a large 
amount of shared memory is not likely to scale with processor clock 
rates.

User/Source Coding Rule 31. (H impact, M generality) Minimize the 
sharing of data between threads that execute on different physical processors 
sharing a common bus. 

One technique to minimize sharing of data is to copy data to local stack 
variables if it is to be accessed repeatedly over an extended period. If 
necessary, results from multiple threads can be combined later by 
writing them back to a shared memory location. This approach can also 
minimize time spent to synchronize access to shared data.

Eliminate 64-K-Aliased Data Accesses

The 64 KB aliasing condition is discussed in Chapter 2. Memory 
accesses that satisfy the 64 KB aliasing condition can cause excessive 
evictions of the first-level data cache. Eliminating 64-KB-aliased data 
accesses originating from each thread helps improve frequency scaling 
in general. Furthermore, it enables the first-level data cache to perform 
efficiently when Hyper-Threading Technology is fully utilized by 
software applications.

User/Source Coding Rule 32. (H impact, H generality)   Minimize data 
access patterns that are offset by multiples of 64 KB in each thread. 

The presence of 64-KB-aliased data access can be detected using 
Pentium 4 processor performance monitoring events. Appendix B 
includes an updated list of Pentium 4 processor performance metrics. 
These metrics are based on events accessed using the Intel VTune 
performance analyzer.

Performance penalties associated with 64 KB aliasing are applicable 
mainly to current processor implementations of Hyper-Threading 
Technology or Intel NetBurst microarchitecture. The next section 
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discusses a memory optimization techniques that are applicable only to 
multithreaded applications running on processors with Hyper-Threading 
Technology.

Preventing Excessive Evictions in First-Level Data Cache

Cached data in a first-level data cache are indexed to linear addresses 
but physically tagged. Data in second-level and third-level caches are 
tagged and indexed to physical addresses. While two logical processors 
in the same physical processor package execute in separate linear 
address space, the same processors can reference data at the same linear 
address in two address spaces but mapped to different physical 
addresses. When such competing accesses occur simultaneously, they 
can cause repeated evictions and allocations of cache lines in the 
first-level data cache. Preventing unnecessary evictions in the first-level 
data cache by two competing threads improves the temporal locality of 
the first-level data cache.

Multithreaded applications need to prevent unnecessary evictions in the 
first-level data cache when:

• Multiple threads within an application try to access private data on 
their stack, some data access patterns can cause excessive evictions 
of cache lines. Within the same software process, multiple threads 
have their respective stacks, and these stacks are located at different 
linear addresses. Frequently the linear addresses of these stacks are 
spaced apart by some fixed distance that increases the likelihood of 
a cache line being used by multiple threads.

• Two instances of the same application run concurrently and are 
executing in lock steps (for example, corresponding data in each 
instance are accessed more or less synchronously), accessing data 
on the stack (and sometimes accessing data on the heap) by these 
two processes can also cause excessive evictions of cache lines 
because of address conflicts.
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Per-thread Stack Offset

To prevent private stack accesses in concurrent threads from thrashing 
the first-level data cache, an application can use a per-thread stack offset 
for each of its threads. The size of these offsets should be multiples of a 
common base offset. The optimum choice of this common base offset 
may depend on the memory access characteristics of the threads; but it 
should be multiples of 128 bytes.

One effective technique for choosing a per-thread stack offset in an 
application is to add an equal amount of stack offset each time a new 
thread is created in a thread pool.8  Example 7-4 shows a code fragment 
that implements per-thread stack offset for three threads using a 
reference offset of 1024 bytes.

User/Source Coding Rule 33. (H impact, M generality) Adjust the private 
stack of each thread in an application so that the spacing between these stacks 
is not offset by multiples of 64 KB or 1 MB to prevent unnecessary cache line 
evictions, when using IA-32 processors with Hyper-Threading Technology. 

8. For parallel applications written to run with OpenMP, the OpenMP runtime library in
Intel KAP/Pro Toolset automatically provides the stack offset adjustment for each 
thread. 
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Example 7-4 Adding an Offset to the Stack Pointer of Three Threads

Void Func_thread_entry(DWORD *pArg)

{DWORD StackOffset = *pArg;

DWORD var1; // The local variable at this scope may not benefit

DWORD var2; // from the adjustment of the stack pointer that ensue

// call runtime library routine to offset stack pointer

_alloca(StackOffset) ; 

}

// Managing per-thread stack offset to create three threads:

// * Code for the thread function

// * Stack accesses within descendant functions (do_foo1, do_foo2) 
are //  less likely to cause data cache evictions because of the 
stack 
//  offset.

do_foo1();

do_foo2();

}

main ()

{ DWORD Stack_offset, ID_Thread1, ID_Thread2, ID_Thread3;

Stack_offset = 1024; 

// stack offset between parent thread and the first child thread

ID_Thread1 = CreateThread(Func_thread_entry, &Stack_offset); 

// call OS thread API

Stack_offset = 2048;

ID_Thread2 = CreateThread(Func_thread_entry, &Stack_offset);

Stack_offset = 3072;

ID_Thread3 = CreateThread(Func_thread_entry, &Stack_offset);

}
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Per-instance Stack Offset

Each instance an application runs in its own linear address space; but the 
address layout of data for stack segments is identical for the both 
instances. When the instances are running in lock step, stack accesses 
are likely to cause of excessive evictions of cache lines in the first-level 
data cache for some implementations of Hyper-Threading Technology 
in IA-32 processors. 

Although this situation (two copies of an application running in lock 
step) is seldom an objective for multithreaded software or a 
multiprocessor platform, it can happen by an end-user’s direction. One 
solution is to allow application instance to add a suitable linear 
address-offset for its stack. Once this offset is added at start-up, a buffer 
of linear addresses is established even when two copies of the same 
application are executing using two logical processors in the same 
physical processor package. The space has negligible impact on running 
dissimilar applications and on executing multiple copies of the same 
application.

However, the buffer space does enable the first-level data cache to be 
shared cooperatively when two copies of the same application are 
executing on the two logical processors in a physical processor package.

Example 7-5 Adding an Offset to the Stack Pointer of Three Threads

{ DWORD Stack_offset, ID_Thread1, ID_Thread2, ID_Thread3;

Stack_offset = 1024; 

// stack offset between parent thread and the first child thread

ID_Thread1 = CreateThread(Func_thread_entry, &Stack_offset); 

// call OS thread API

Stack_offset = 2048;

ID_Thread2 = CreateThread(Func_thread_entry, &Stack_offset);

Stack_offset = 3072;

ID_Thread3 = CreateThread(Func_thread_entry, &Stack_offset);

}
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To establish a suitable stack offset for two instances of the same 
application running on two logical processors in the same physical 
processor package, the stack pointer can be adjusted in the entry 
function of the application using the technique shown in Example 7-5. 
The size of stack offsets should also be a multiple of a reference offset 
that may depend on the characteristics of the application’s data access 
pattern. One way to determine the per-instance value of the stack offsets 
is to choose a pseudo-random number that is also a multiple of the 
reference offset or 128 bytes. Usually, this per-instance pseudo-random 
offset can be less than 7 KB. Example 7-5 provides a code fragment for 
adjusting the stack pointer in an application entry function.

User/Source Coding Rule 34. (M impact, L generality) Add per-instance 
stack offset when two instances of the same application are executing in lock 
steps to avoid memory accesses that are offset by multiples of 64 KB or 1 MB, 
when targeting IA-32 processors with Hyper-Threading Technology. 

Example 7-6 Adding a Pseudo-random Offset to the Stack Pointer in the
Entry Function

void main()

{char * pPrivate = NULL;

long myOffset = GetMod7Krandom128X()

; a pseudo-random number that is a multiple 
; of 128 and less than 7K

  // ; use runtime library routine to reposition

_alloca(myOffset);  //  the stack pointer
}

// the rest of application code below, stack accesses in descendant
// functions (e.g. do_foo) are less likely to cause data cache 
// evictions because of the stack offsets.

do_foo();

}
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Front-end Optimization
In the Intel NetBurst microarchitecture family of processors, the 
instructions are decoded into micro-ops (µops) and sequences of µops 
(called traces) are stored in the Execution Trace Cache. The Trace 
Cache is the primary sub-system in the front end of the processor that 
delivers µop traces to the execution engine. Optimization guidelines for 
front-end operation in single-threaded applications are discussed in 
Chapter 2. 

This section discusses guidelines for optimizing the operation of the 
Execution Trace Cache on IA-32 processors with Hyper-Threading 
Technology.

Avoid Excessive Loop Unrolling

Unrolling loops can reduce the number of branches and improve the 
branch predictability of application code. Loop unrolling is discussed in 
detail in Chapter 2. Loop unrolling must be used judiciously. Be sure to 
consider the benefit of improved branch predictability and the cost of 
increased code size relative to the Trace Cache.

User/Source Coding Rule 35. (M impact, L generality) Avoid excessive loop 
unrolling to ensure the Trace cache is operating efficiently.. 

On Hyper-Threading-Technology-enabled processors, excessive loop 
unrolling is likely to reduce the Trace Cache’s ability to deliver high 
bandwidth µop streams to the execution engine. 

Optimization for Code Size

When the Trace Cache is continuously and repeatedly delivering µop 
traces that are pre-built, the scheduler in the execution engine can 
dispatch µops for execution at a high rate and maximize the utilization 
of available execution resources. Optimizing application code size by 
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organizing code sequences that are repeatedly executed into sections, 
each with a footprint that can fit into the Trace Cache, can improve 
application performance greatly.

On Hyper-Threading-Technology-enabled processors, multithreaded 
applications should improve code locality of frequently executed 
sections and target one half of the size of Trace Cache for each 
application thread when considering code size optimization. If code size 
becomes an issue affecting the efficiency of the front end, this may be 
detected by evaluating performance metrics discussed in the previous 
sub-section with respect to loop unrolling.

User/Source Coding Rule 36. (L impact, L generality) Optimize code size to 
improve locality of Trace cache and increase delivered trace length. 

Execution Resource Optimization
For applications based on the domain decomposition threading model, 
optimization techniques with respect to execution resources are 
essentially the same as single-threaded applications in the absence of 
Hyper-Threading Technology. Each thread should be optimized to 
achieved optimal frequency scaling first. Then, optimization in an area 
such as thread synchronization can improve MP scaling to supplement 
good frequency scaling.

Hyper-Threading Technology enables several threads to run 
simultaneously on a physical processor while sharing on-chip execution 
resources. There may be instances where one thread has a high resource 
utilization rate, which may be indicated by a low cycle per instruction 
(CPI) value. In these special situations, additional domain 
decomposition threads may not be able to take advantage of 
Hyper-Threading Technology to increase application performance. 
However, for the majority of applications, the average utilization rate of 
execution resources is low compared to the processor’s peak execution 
bandwidth. 
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To help multithreaded applications utilize shared execution resources 
effectively, this section describes guidelines to deal with common 
situations as well as those limited situations where execution resource 
utilization between threads may impact overall performance of the 
application in a multiprocessor system with Hyper-Threading 
Technology.

Optimization Priorities

There are three aspects of performance scaling: 

• frequency scaling

• scaling to the number of discrete processors

• scaling to the number of logical processor per physical processor 
package 

These three factors can be largely orthogonal in most cases, if 
code-tuning efforts follow the order of priorities listed below:

Tuning Suggestion 3. (H Impact, H Generality) Optimize single threaded 
code to achieve optimal frequency scaling first.

Most applications only use about 20-30% of peak execution 
resources when running on modern high-end processors. Execution 
of a single thread can scale well with processor frequency while 
leaving substantial execution bandwidth and issue bandwidth 
unused. For example, most applications that scale well with 
frequency seldom use the issue bandwidth of 3 µops per cycle in the 
Pentium 4 and Intel Xeon processors. Optimizing single-threaded 
code for frequency scaling builds the foundation for multithreaded 
applications to take advantage of the frequency headroom in Intel 
NetBurst microarchitecture.
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Tuning Suggestion 4. (M Impact, M Generality) The next priority (after 
tuning for frequency scaling) is to optimize multithreaded applications to 
achieve optimal scaling with respect to the number of physical processors.

Following the guidelines for thread synchronization and conserving 
bus bandwidth can increase the degree of task-level parallelism and 
improve MP scaling. Highly parallel application threads can utilize 
the performance potential of multiple discrete processors much 
more effectively than applications with less parallelism. Application 
code with high degree of MP scaling is also more likely to take 
advantage of the performance potential of Hyper-Threading 
Technology.

Tuning Suggestion 5. (M Impact, L Generality) Use on-chip execution 
resources cooperatively if two threads are sharing the execution resources in 
the same physical processor package.

Using functional threading model, a multithreaded application can 
add additional threads and use the execution resources within a 
physical processors effectively. The concept of functional threading 
model may also be extended to multithreaded applications based on 
the domain threading model to form a heterogeneous 
domain-decomposition model, when targeted to run on MP systems 
with multiple physical processors. When two domain threads are 
both highly optimized to rely on a specific type of execution unit, a 
multithreaded application should consider adding additional 
functional threads (or other heterogeneous domain threads that are 
less dependent on the same execution unit) to use available 
processors. 

Continuing the domain threading model to decompose one finite 
task into finer threading granularity, while attempting to use all of 
the available processors is less likely to deliver optimal overall 
performance scaling with respect to MP and Hyper-Threading 
Technology. Because of the well-known Amdahl’s law: as the finite 
amount of total task is divided between increasing number of 
data-domain threads, the speed-up of these parallel threads represent 
a smaller percentage of the total time of execution. Increasing the 
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degree of task-level parallelism in the workload also increases the 
opportunity to create additional threads based on the relevant 
threading models.  

User/Source Coding Rule 37. (M impact, L generality) Consider using 
thread affinity so that two highly-optimized data domain threads are executing 
on separate physical processors. 

In many situations, data domain threads can scale well with 
frequency and effectively use logical processors sharing execution 
resources within a physical processor. In selected cases where an 
individual thread needs a specific type of execution resource 
dedicated to it, consider scheduling such a pair of data-domain 
threads to run on different physical processors in an MP system.

Managing Heavily-Used Execution Resources

One way to measure the degree of overall resource utilization by a 
single thread is to use performance-monitoring events to count the clock 
cycles that a logical processor is executing code and compare that 
number to the number of instructions executed to completion. Such 
performance metrics are described in Appendix B and can be accessed 
using the Intel VTune Performance Analyzer. 

An event ratio like non-halted cycles per instructions retired (non-halted 
CPI) and non-sleep CPI can be useful in directing code-tuning efforts. 
The non-sleep CPI metric can be interpreted as the inverse of the overall 
throughput of a physical processor package. The non-halted CPI metric 
can be interpreted as the inverse of the throughput of a logical 
processor9. 

When a single thread is executing and all on-chip execution resources 
are available to it, non-halted CPI can indicate the unused execution 
bandwidth available in the physical processor package. If the value of a 

9. Non-halted CPI can correlate to the resource utilization of an application thread, if the 
application thread is affinitized to a fixed logical processor.
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non-halted CPI is significantly higher than unity and overall on-chip 
execution resource utilization is low, a multithreaded application can 
direct tuning efforts to encompass the factors discussed earlier.

An optimized single thread with exclusive use of on-chip execution 
resources may exhibit a non-halted CPI in the neighborhood of unity10. 
Because most frequently used instructions typically decode into a single 
micro-op and have throughput of no more than two cycles, an optimized 
thread that retires one micro-op per cycle is only consuming about one 
third of peak retirement bandwidth. Significant portions of the  issue 
port bandwidth are left unused. Thus, optimizing single-thread 
performance usually can be complementary with optimizing a 
multithreaded application to take advantage of the benefits of 
Hyper-Threading Technology.

On a processor with Hyper-Threading Technology, it is possible that an 
execution unit with lower throughput than one issue every two cycles  
may find itself in contention from two threads implemented using a data 
decomposition threading model. In one scenario, this can happen when 
the inner loop of both threads rely on executing a low-throughput 
instruction, such as fdiv, and the execution time of the inner loop is 
bound by the throughput of fdiv.

Using a function decomposition threading model, a multithreaded 
application can pair up a thread with critical dependence on a 
low-throughput resource with other threads that do not have the same 
dependency.

User/Source Coding Rule 38. (M impact, L generality)  If a single thread 
consumes half of the peak bandwidth of a specific execution unit (e.g. fdiv), 
consider adding a thread that seldom or rarely relies on that execution unit, 
when tuning for Hyper-Threading Technology. 

10. In current implementations of processors based on Intel NetBurst microarchitecture, the 
theoretical lower bound for either non-halted CPI or non-sleep CPI is 1/3. Practical 
applications rarely achieve any value close to the lower bound.
7-38



Multiprocessor and Hyper-Threading Technology 7
To ensure execution resources are shared cooperatively and efficiently 
between two logical processors, it is important to reduce stall 
conditions, especially those conditions causing the machine to flush its 
pipeline. 

The primary indicator of  a Pentium 4 processor pipeline stall condition 
is called Machine Clear. The metric is available from the VTune 
Analyzer’s event sampling capability. When the machine clear 
condition occurs, all instructions that are in flight (at various stages of 
processing in the pipeline) must be resolved and then they are either 
retired or cancelled. While the pipeline is being cleared, no new 
instructions can be fed into the pipeline for execution. Before a machine 
clear condition is de-asserted, execution resources are idle.

Reducing the machine clear condition benefits single-thread 
performance because it increases the frequency scaling of each thread. 
The impact is even higher with Hyper-Threading Technology, because a 
machine clear condition caused by one thread can impact other threads 
executing simultaneously.

Several performance metrics can be used to detect situations that may 
cause a pipeline to be cleared. The primary metric is the Machine Clear 
Count: it indicates the total number of times a machine clear condition is 
asserted due to any cause. Possible causes include memory order 
violations and self-modifying code. Assists while executing x87 or SSE 
instructions have a similar effect on the processor’s pipeline and should 
be reduced to a minimum.

Write-combining buffers are another example of execution resources 
shared between two logical processors. With two threads running 
simultaneously on a processor with Hyper-Threading Technology, the 
writes of both threads count toward the limit of four write-combining 
buffers. For example: if an inner loop that writes to three separate areas 
of memory per iteration is run by two threads simultaneously, the total 
number of cache lines written could be six. This being true, the code 
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would lose the benefits of write-combining.  Loop-fission applied to this 
situation creates two loops, neither of which would be allowed to write 
to more than two cache lines per iteration.
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Application Performance Tools
Intel offers an array of application performance tools that are optimized 
to take advantage of the Intel architecture (IA)-based processors. This 
appendix introduces these tools and explains their capabilities for 
developing the most efficient programs without having to write 
assembly code.

The following performance tools are available:

• Intel C++ Compiler and Intel® Fortran Compiler

The Intel compilers generate highly optimized executable code and 
provide unique features such as profile-guided optimizations and 
high-level language support. This includes vectorization for MMX 
technology, the Streaming SIMD Extensions (SSE), and the 
Streaming SIMD Extensions 2 (SSE2).

• Enhanced Debugger

The Enhanced Debugger (EDB) enables you to debug C++, Fortran 
or mixed language programs. It allows you to view the XMM 
registers in a variety of formats corresponding to the data types 
supported by SSE and SSE2. These registers can also be viewed 
using the debugger supplied with Microsoft Visual C++* version 
6.0, service pack 4 or later.

• VTune Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel 
architecture-specific software performance data from the 
system-wide view down to a specific module, function, and 
instruction in your code.
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• Intel Performance Libraries

The Intel Performance Library family consists of a set of software 
libraries optimized for Intel architecture processors. The library 
family includes the following: 

— Intel® Math Kernel Library (MKL)

— Intel® Integrated Performance Primitives (IPP)

• Intel Threading Tools. The Intel Threading Tools consist of the 
following:

— Intel Thread Checker

— Thread Profiler

Intel® Compilers1

Intel C++ compilers can deliver significant application performance 
improvements for Microsoft Windows as well as Linux operating 
system environments. In Windows environment, the Intel C++ compiler 
is compatible with Microsoft Visual* C++ and plugs into the Microsoft 
Developer Studio IDE. The Intel Fortran Compiler can be run out of the 
Microsoft Developer Studio IDE by using the Fortran Build Tool that 
plugs into it. The Fortran compiler offers substantial source 
compatibility with Compaq* Visual Fortran. In Linux environment, the 
Intel Compilers are compatible with widely used Linux software 
development utilities.

Both compilers allow you to optimize your code by using special 
optimization options described in this section. There are several coding 
methods and optimizations, described here and other sections in this 
manual, targeted specifically for enabling software developers to 
optimize applications for the Pentium III and Intel Pentium 4 processors. 

1. The compiler options shown in this section use syntax specific to the Microsoft 
Windows-based compiler. Equivalent options, which may have slightly different syntax, 
exist for the Linux-based compiler. See your compiler documentation for a complete listing 
and description of the various options available.
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Vectorization, processor dispatch, inter-procedural optimization, and 
profile-guided optimization are all supported by the Intel compilers and 
can significantly aid the performance of an application.

The most general optimization options are -O1 and -O2. Each of them 
enables a number of specific optimization options. In most cases, -O2 is 
recommended over -O1 because the -O2 option enables inline 
expansion, which helps programs that have many function calls. The 
-O2 option is on by default.

The -O1 and -O2 options enable specific options as follows: 

-O1 Enables options -Og, -Oi-, -Os, -Oy, -Ob1, 
-Gf, -Gs, and -Gy. However, -O1 disables a few 
options that increase code size. 

-O2 Enables options -Og, -Oi, -Ot, -Oy, -Ob1, 
-Gf, -Gs, and -Gy. Confines optimizations to the 
procedural level.

The -Od option disables all optimizations.

All the command-line options are described in the Intel C++ Compiler 
User’s Guide.

Code Optimization Options

This section describes the options used to optimize your code and 
improve the performance of your application.

Targeting a Processor (-Gn)

Use -Gn to target an application to run on a specific processor for 
maximum performance. Any of the -Gn suboptions you choose results 
in your binary being optimized for corresponding Intel architecture 
32-bit processors. -G6 is the default, and targets optimization for the 
Pentium II and Pentium III processors. -G7 targets the Intel Pentium 4 
processor. Code produced will run on any Intel architecture 32-bit 
processor, but will be optimized specifically for the targeted processor.
A-3



IA-32 Intel® Architecture Optimization
Automatic Processor Dispatch Support 
(-Qx[extensions] and -Qax[extensions])

The -Qx[extensions] and -Qax[extensions] options provide 
support to generate code that is specific to processor-instruction 
extensions. 

 -Qx[extensions] generates specialized code to run exclusively on 
the processors indicated by the extension(s).

-Qax[extensions] generates code specialized to processors which 
support the specified extensions, but also 
generates generic IA-32 code. The generic code 
usually executes slower than the specialized 
version. A runtime check for the processor type 
is made to determine which code executes.

You can specify the same extensions for either option as follows:

i Pentium II and Pentium III processors, which use the 
CMOV and FCMOV instructions

M Pentium processor with MMX technology, Pentium II, 
and Pentium III processors

K Streaming SIMD Extensions. Includes the i and M 
extensions.

W Streaming SIMD Extensions 2. Includes the i, M, 
and K extensions. 

CAUTION.  When you use -Qax[extensions] in 
conjunction with -Qx[extensions], the extensions 
specified by -Qx[extensions] can be used 
unconditionally by the compiler, and the resulting 
program will require the processor extensions to 
execute properly.
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Vectorizer Switch Options

The Intel C++ and Fortran Compiler can vectorize your code using the 
vectorizer switch options. The options that enable the vectorizer are 
the-Qx[M,K,W] and -Qax[M,K,W] described above. The compiler 
provides a number of other vectorizer switch options that allow you to 
control vectorization. All vectorization switches require the 
-Qx[M,K,W] or -Qax[M,K,W] switch to be on. The default is off.

In addition to the -Qx[M,K,W] or -Qax[M,K,W] switches, the compiler 
provides the following vectorization control switch options:

-Qvec_report[n] Controls the vectorizer’s diagnostic levels, 
where n is either 0, 1, 2, or 3.

-Qrestrict Enables pointer disambiguation with the 

restrict qualifier.

Prefetching

The compilers, with the -Qx[M,K,W] and -Qax[M,K,W] switches on, 
insert prefetch instructions, where appropriate, for the Pentium III and 
Pentium 4 processors.

Loop Unrolling

The compilers automatically unroll loops with the -Qx[M,K,W] and 
-Qax[M,K,W] switches.

To disable loop unrolling, specify -Qunroll0.

Multithreading with OpenMP

Both the Intel C++ and Fortran Compilers support shared memory 
parallelism via OpenMP compiler directives, library functions and 
environment variables. OpenMP directives are activated by the compiler 
switch -Qopenmp. The available directives are described in the Compiler 
User's Guides available with the Intel C++ and Fortran Compilers, 
version 5.0 and higher. Further information about the OpenMP standard 
is available at http://www.openmp.org.
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Inline Expansion of Library Functions (-Oi, -Oi-)

The compiler inlines a number of standard C, C++, and math library 
functions by default. This usually results in faster execution of your 
program. Sometimes, however, inline expansion of library functions can 
cause unexpected results. For explanation, see the Intel® C++ Compiler 
User’s Guide.

Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, 
-Qprec_div, -Qpc, -Qlong_double)

These options provide optimizations with varying degrees of precision 
in floating-point arithmetic.

Rounding Control Option (-Qrcd)

The compiler uses the -Qrcd option to improve the performance of 
code that requires floating-point calculations. The optimization is 
obtained by controlling the change of the rounding mode.

The -Qrcd option disables the change to truncation of the rounding 
mode in floating-point-to-integer conversions. 

For complete details on all of the code optimization options, refer to the 
Intel C++ Compiler User’s Guide.

Interprocedural and Profile-Guided Optimizations

The following are two methods to improve the performance of your 
code based on its unique profile and procedural dependencies: 

Interprocedural Optimization (IPO)

Use the -Qip option to analyze your code and apply optimizations 
between procedures within each source file. Use multifile IPO with 
-Qipo to enable the optimizations between procedures in separate 
source files.
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Profile-Guided Optimization (PGO)

Creates an instrumented program from your source code and special 
code from the compiler. Each time this instrumented code is executed, 
the compiler generates a dynamic information file. When you compile a 
second time, the dynamic information files are merged into a summary 
file. Using the profile information in this file, the compiler attempts to 
optimize the execution of the most heavily travelled paths in the 
program.

Profile-guided optimization is particularly beneficial for the Pentium 4 
processor. It greatly enhances the optimization decisions the compiler 
makes regarding instruction cache utilization and memory paging. Also, 
because PGO uses execution-time information to guide the 
optimizations, branch-prediction can be significantly enhanced by 
reordering branches and basic blocks to keep the most commonly used 
paths in the microarchitecture pipeline, as well as generating the 
appropriate branch-hints for the processor.

When you use PGO, consider the following guidelines:

• Minimize the changes to your program after instrumented execution 
and before feedback compilation. During feedback compilation, the 
compiler ignores dynamic information for functions modified after 
that information was generated. 

• Repeat the instrumentation compilation if you make many changes 
to your source files after execution and before feedback 
compilation.

NOTE.  The compiler issues a warning that the 
dynamic information corresponds to a modified 
function.
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For complete details on the interprocedural and profile-guided 
optimizations, refer to the Intel C++ Compiler User’s Guide With 
Support for the Streaming SIMD Extensions 2 (Doc. number 
718195-2001).

Intel® VTune™ Performance Analyzer
The Intel VTune Performance Analyzer is a powerful software-profiling 
tool for Microsoft Windows and Linux. The VTune analyzer helps you 
understand the performance characteristics of your software at all 
levels: the system, application, microarchitecture.

The sections that follow describe the major features of the VTune 
analyzer and briefly explain how to use them. For more details on these 
features, run the VTune analyzer and see the online help or the built in 
Getting Started Guide.

All these features are available for Microsoft Windows. However, 
sampling is the only profiling tool currently available on Linux.

Sampling

Sampling allows you to profile all active software on your system, 
including operating system, device driver, and application software. It 
works by occasionally interrupting the processor and collecting the 
instruction address, process ID, and thread ID. After the sampling 
activity completes, the VTune analyzer displays the data by process, 
thread, software module, function, relative virtual address, or line of 
source. There are two methods for generating samples: Time-based 
sampling and Event-based sampling.

Time-based Sampling
• Time-based sampling (TBS) uses an operating system’s (OS) timer 

to periodically interrupt the processor to collect samples. The 
sampling interval is user definable.  TBS is useful for identifying the 
software on your computer that is taking the most CPU time.
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Figure A-1 provides an example of a hotspots report by location.

Event-based Sampling

Event-based sampling (EBS) profiles all software on your computer 
based on the occurrence of processor events, such as cache misses and 
branch mispredictions. The VTune analyzer indicates where micro 
architectural events, specific to the Pentium 4, Pentium III and Pentium 
II processors, occur the most often. On Pentium III and Pentium II 
processors, the VTune analyzer can collect two different events at a 
time.  The number of the events that the VTune analyzer can collect at 
once on the Pentium 4 processor depends on the events selected.

Figure A-1 Sampling Analysis of Hotspots by Location
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Event-based samples are collected after a specific number of processor 
events have occurred. Like TBS, the samples can then be attributed to 
the different processes, threads, and software modules running on the 
system. You identify where the events are occurring from the system 
level down to the source level.

EBS can be used to provide detailed information on the behavior of the 
microprocessor as it executes software. Some of the events that can be 
sampled include clockticks, instructions retired, mispredicted branches 
retired, and L1 cache load misses retired.  All the different events are 
described in the VTune analyzer’s on-line help.

Call Graph

Call graph helps you understand the relationships between the functions 
in your application by providing timing and caller / callee (functions 
called) information. Call graph works by instrumenting the functions in 
your application.  Instrumentation is the process of modifying a function 
so that information can be captured when the function is executed.  
Instrumentation does not change the functionality of the program.  
However, it can reduce performance. The VTune analyzer can detect 
modules as they are loaded by the operating system, and instrument 
them at run-time. Call graph can be used to profile Win32*, Java*, and 
Microsoft.NET* applications. Call graph only works for ring 3 
software.

Call graph profiling provides the following information on the functions 
called by your application: total time, self-time, wait time, self wait 
time, callers, callees, and the number of calls. This data is displayed 
using three different views: function summary, call graph, and call list. 
These views are all synchronized.

The Function Summary View can be used to focus the data displayed in 
the call graph and call list views. This view displays all the information 
about the functions called by your application in a table format.  
However, it does not provide callee and caller information. It just 
provides timing information and number of times a function is called.    
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The Call Graph View graphically depicts the caller / callee relationships. 
Each thread in the application is the root of a call tree. Each node (box) 
in the call tree represents a function. Each edge (line with an arrow) 
connecting two nodes represents the call from the parent to the child 
function. If the mouse pointer is hovered over a node, a tool tip will pop 
up displaying the function’s timing information.

The Call List View is useful for analyzing programs with large, complex 
call trees.  This view displays only the caller and callee information for 
the single function that you select in the Function Summary View. The 
data is displayed in a table format.

Counter Monitor

Counter monitor helps you identify system level performance hold-ups. 
It periodically polls software and hardware performance counters. The 
performance counter data can help you understand the cause-and-effect 
relationship between the computer’s subsystems and your application. 
Counter monitor data can be displayed in real-time and logged to a file. 
You can also develop application specific performance counters using 
Performance DLLs (for more information see the VTune analyzer 
on-line help). The VTune analyzer can also correlate performance 
counter data with sampling data.

Intel® Tuning Assistant

The Intel Tuning Assistant can generate tuning advice based on counter 
monitor and sampling data.  It can also analyze C, C++, Fortran, Java*, 
and assembly source code, and generate source level optimization 
advice.  You can invoke the Intel Tuning Assistant from the source, 
counter monitor, or sampling views by clicking on the Intel Tuning 
Assistant icon.  

When analyzing source code, the Intel Tuning Assistant examines the 
entire block of code or function you select and searches for optimization 
opportunities. Typically, a compiler is restricted by pointer semantics 
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when optimizing code. The Intel Tuning Assistant can suggest 
source-level modifications to overcome these and other restrictions. It 
also recognizes commonly used code patterns in your code and suggests 
how they can be modified to improve performance. You can 
double-click on any advice in the Intel Tuning Assistant window to 
display context-sensitive help with examples of the original and 
optimized code.

Intel Performance Libraries
The Intel Performance Library family contains a variety of specialized 
libraries which has been optimized for performance on Intel processors. 
These optimizations take advantage of appropriate architectural 
features, including MMX technology, Streaming SIMD Extensions 
(SSE) and Streaming SIMD Extensions 2 (SSE2). The library set 
includes:

• The Intel Math Kernel Library (Intel MKL) is composed of highly 
optimized mathematical functions for engineering, scientific and 
financial applications requiring high performance on Intel 
platforms. The functional areas of the library include linear algebra 
consisting of LAPACK and BLAS, Fast Fourier Transforms (FFT) 
and vector transcendental functions (vector math library/VML). 
Intel MKL is optimized for the latest features and capabilities of the 
Intel Pentium 4 processor, Intel Xeon processors and Intel® 
Itanium® architecture.

• Intel® Integrated Performance Primitives (IPP) is a cross-platform 
software library which provides a range of library functions for 
multimedia, audio codecs, video codecs (for example H.263, 
MPEG-4), image processing (JPEG), signal processing, speech 
compression (that is, G.723.1) plus computer vision as well as math 
support routines for such processing capabilities. Intel IPP is 
optimized for the broad range of Intel microprocessors: Intel 
Pentium 4 processor, the Intel Itanium architecture, Intel Xeon 
processors, Intel® SA-1110 and Intel® PCA application processors 
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based on the Intel® XScale™ microarchitecture. With a single API 
across the range of platforms, the users can have platform 
compatibility and reduced cost of development.

Benefits Summary

The overall benefits the libraries provide to the application developers 
are as follows:

• Low-level building block functions that support rapid application 
development, improving time to market 

• Highly-optimized routines with a C interface that give 
Assembly-level performance in a C/C++ development environment 
(MKL also supports a Fortran interface)

• Processor-specific optimizations that yield the best performance for 
each Intel processor 

• Processor detection and DLL dispatching that loads the appropriate 
code for the current processor

• Built-in error handling facility that improves productivity in the 
development cycle

The MKL and IPP libraries are optimized for all Intel architecture-based 
processors, including the Pentium, Pentium II, Pentium III, Pentium 4, 
Intel Xeon and Itanium  processors. IPP is also optimized for the Intel® 
StrongARM* SA1110 processor. 

 Libraries Architecture

Intel Performance Libraries are designed for performance, productivity 
and ease of use. The Math Kernel Library (MKL) is designed for 
scientific, engineering and financial applications and supports both 
Fortran and C calling conventions. Its high-performance math functions 
include full Linear Algebra PACKage (LAPACK), Basic Linear Algebra 
Subprograms (BLAS) and fast Fourier transforms (FFTs) threaded to 
run on multiprocessor systems. No change of the code is required for 
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multiprocessor support. The library, including the parts which are not 
threaded, such as VML (the vector transcendental functions, Vector 
Math Library),  is threadsafe. All libraries employ sophisticated 
memory management schemes and processor detection.

The Intel Integrated Performance Primitives (IPP) functions are light 
weight kernels without the predefined data structures of other libraries. 
They are designed for use as building blocks for efficiently constructing 
and optimizing more complex functions. Latest additions to IPP also 
include basic functions for operations on small matrices and 
fixed-accuracy vector arithmetic functions, as well as more 
sophisticated primitives for construction of audio, video and speech 
codecs such as MP3, MPEG-4, JPEG, G.723 and GSM-AMR. With the 
level of optimization provided by IPP, application developers are urged 
to investigate and utilize IPP to the full extent possible.

Optimizations with the Intel Performance Libraries

The Intel Performance Libraries implement a number of optimizations 
that are discussed throughout this manual. Examples include 
architecture-specific tuning such as loop unrolling, instruction pairing 
and scheduling; and memory management with explicit and implicit 
data prefetching and cache tuning.

The Libraries take advantage of the parallelism in the SIMD instructions 
using MMX technology, Streaming SIMD Extensions (SSE), and 
Streaming SIMD Extensions 2 (SSE2). These techniques improve the 
performance of computationally intensive algorithms and deliver hand 
coded performance in a high level language development environment.

For performance sensitive applications, the Intel Performance Libraries 
free the application developer from the time consuming task of 
assembly-level programming for a multitude of frequently used 
functions. The time required for prototyping and implementing new 
application features is substantially reduced and most important, the 
time to market is substantially improved. Finally, applications 
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developed with the Intel Performance Libraries benefit from new 
architectural features of future generations of Intel processors simply by 
relinking the application with upgraded versions of the libraries.

Enhanced Debugger (EDB)
The Enhanced Debugger (EDB) enables you to debug C++, Fortran or 
mixed language programs running under Windows NT* or Windows 
2000 (not Windows 98). It allows you to display in a separate window 
the contents of the eight registers, XMM0 through XMM7, used by the 
Streaming SIMD Extensions and Streaming SIMD Extensions 2. You 
may select one of five formats for the register fields: byte (16 bytes); 
word (8 words); double word (4 double words); single precision (4 
single precision floating point); and double precision (2 double 
precision floating point). When a register is updated, the new value 
appears in red. The corresponding Streaming SIMD Extensions or 
Streaming SIMD Extensions 2 instruction can be seen in the 
disassembly window. For further detail on the features and use of the 
Enhanced Debugger, refer to the online help.

Intel® Threading Tools2

The Intel® Threading Tools consist of the The Intel Thread Checker and 
Thread Profiler.

Intel Thread Checker

The Intel Thread Checker locates programming errors in threaded 
applications. Use the Intel Thread Checker to find threading errors and 
reduce the amount of time you spend debugging your threaded 
application. 

2. For additional threading resources, visit 
http://www.intel.com/software/products/threadtool.htm.
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The Intel Thread Checker product is an Intel VTune Performance 
Analyzer plug-in data collector that executes your program and 
automatically locates threading errors. As your program runs, the Intel 
Thread Checker monitors memory accesses and other events and 
automatically detects situations which could cause unpredictable 
threading-related results. The Intel Thread Checker detects thread 
deadlocks, stalls, data race conditions and more.

Thread Profiler

The thread profiler is a plug-in data collector for the Intel VTune 
Performance Analyzer. Use it to analyze threading performance and 
identify parallel performance problems. The thread profiler graphically 
illustrates what each OpenMP thread is doing at various levels of detail 
using a hierarchical summary. Mountains of data are collapsed into 
relevant summaries, sorted to identify parallel regions or loops that 
require attention. Its intuitive, color-coded displays make it easy to 
assess your application’s performance. 

Intel® Software College
The Intel® Software College is a valuable resource for classes on 
Streaming SIMD Extensions 2 (SSE2), Threading and the IA-32 Intel 
Architecture. For online training on how to use the SSE2 and 
Hyper-Threading Technology, refer to the IA-32 Architecture Training - 
Online Training at  
http://developer.intel.com/software/college/CourseCatalog.asp?CatID=
web-based. For key algorithms and their optimization examples for the 
Pentium 4 processor, refer to the application notes. You can find 
additional information on classroom training from the Intel Software 
College Web site at http://developer.intel.com/software/college, and 
general information for developers from Intel Developer Services at 
http://www.intel.com/ids.
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B
Intel Pentium 4 Processor 
Performance Metrics
The Intel Pentium 4 processor performance metrics are a set of 
quantities that are useful for tuning software performance when running 
applications on the Pentium 4 and Intel Xeon processors. The metrics 
are derived from the Pentium 4 and Intel Xeon processor performance 
monitoring events, which are described in Chapter 15 and Appendix A 
of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3: 
“System Programming.”

The descriptions of the Intel Pentium 4 processor performance metrics 
use terminology that are specific to the Intel NetBurst microarchitecture 
and to the implementation in the Pentium 4 and Intel Xeon processors. 
The following sections explain the terminology specific to Pentium 4 
and Intel Xeon processors, usage notes that apply to counting clock 
cycles, and notes for using some of the performance metrics dealing 
with bus, memory and Hyper-Threading Technology. The performance 
metrics are listed in Tables B-1 through B-6.

Pentium 4 Processor-Specific Terminology

Bogus, Non-bogus, Retire

Branch mispredictions incur a large penalty on microprocessors with 
deep pipelines. In general, the direction of branches can be predicted 
with a high degree of accuracy by the front end of the Intel Pentium 4 
processor, such that most computations can be performed along the 
predicted path while waiting for the resolution of the branch. 
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In the event of a misprediction, instructions and micro-ops (µops) that 
were scheduled to execute along the mispredicted path must be 
cancelled. These instructions and µops are referred to as bogus 
instructions and bogus µops. A number of Pentium 4 processor 
performance monitoring events, for example, instruction_ retired 
and mops_retired, can count instructions or µops that are retired based 
on the characterization of bogus versus non-bogus.

In the event descriptions in Table B-1, the term “bogus” refers to 
instructions or micro-ops that must be cancelled because they are on a 
path taken from a mispredicted branch. The terms “retired” and 
“non-bogus” refer to instructions or micro-ops along the path that 
results in committed architectural state changes as required by the 
program execution. Thus instructions and µops are either bogus or 
non-bogus, but not both.

Bus Ratio 

Bus Ratio is the ratio of the processor clock to the bus clock. In the Bus 
Utilization metric, it is the Bus_ratio.

Replay

In order to maximize performance for the common case, the Intel 
NetBurst  microarchitecture sometimes aggressively schedules µops for 
execution before all the conditions for correct execution are guaranteed 
to be satisfied. In the event that all of these conditions are not satisfied, 
µops must be reissued. This mechanism is called replay. 

Some occurrences of replays are caused by cache misses, dependence 
violations (for example, store forwarding problems), and unforeseen 
resource constraints. In normal operation, some number of replays are 
common and unavoidable. An excessive number of replays indicate that 
there is a performance problem.
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Assist

When the hardware needs the assistance of microcode to deal with some 
event, the machine takes an assist. One example of such situation is an 
underflow condition in the input operands of a floating-point operation. 
The hardware must internally modify the format of the operands in 
order to perform the computation. Assists clear the entire machine of 
µops before they begin to accumulate, and are costly. The assist 
mechanism on the Pentium 4 processor is similar in principle to that on 
the Pentium II processors, which also have an assist event.

Tagging

Tagging is a means of marking µops to be counted at retirement. See 
Appendix A of the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 3: “System Programming” for the description of the 
tagging mechanisms. The same event can happen more than once per 
µop. The tagging mechanisms allow a µop to be tagged once during its 
lifetime. The retired suffix is used for metrics that increment a count 
once per µop, rather than once per event. For example, a µop may 
encounter a cache miss more than once during its life time, but a Misses 
Retired metric (for example, 1st-Level Cache Misses Retired) will 
increment only once for that µop.

Counting Clocks
The count of cycles, also known as clock ticks, forms a fundamental 
basis for measuring how long a program takes to execute, and as part of 
efficiency ratios like cycles per instruction (CPI).  Some processor 
clocks may stop “ticking” under certain circumstances:

• The processor is halted, e.g. during I/O, there may be nothing for the 
CPU to do while servicing a disk read request, and the processor 
may halt to save power. When Hyper-Threading Technology is 
enabled, both logical processors must be halted for 
performance-monitoring-related counters to be powered down.
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• The processor is asleep, either as a result of being halted for a while, 
or as part of a power-management scheme.  Note that there are 
different levels of sleep, and in the deeper sleep levels, the 
timestamp counter stops counting.

This section describes three mechanisms to count processor clock cycles 
for monitoring performance. They are:

• Non-Halted Clockticks: clocks when the specified logical 
processor is not halted nor in any power-saving states. These can be 
measured on a per-logical-processor basis, when Hyper-Threading 
Technology is enabled.

• Non-Sleep Clockticks: clocks when the physical processor is not in 
any of the sleep modes, nor power-saving states. These cannot be 
measured on a per-logical- processor basis

• Timestamp Counter: clocks when the physical processor is not in 
deep sleep. These cannot be measured on a per-logical-processor 
basis.

The first two metrics use performance counters, and thus can be used to 
cause interrupt upon overflow for sampling.  They may also be useful 
for those cases where it is easier for a tool to read a performance counter 
instead of the time stamp counter. The timestamp counter is accessed 
via an instruction, RDTSC.  

For applications with a significant amount of I/O, there may be two 
ratios of interest:

• Non-halted CPI: non-halted clockticks/instructions retired 
measures the CPI for the phases where the CPU was being used. 
This ratio can be measured on a per- logical-processor basis, when 
Hyper-Threading Technology is enabled.

• Nominal CPI: timestamp counter ticks/instructions retired 
measures the CPI over the entire duration of the program, including 
those periods the machine is halted while waiting for I/O.
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The distinction between these two CPI is important for processors that 
support Hyper-Threading Technology. Non-halted CPI should use the 
“Non-Halted clockticks” performance metric as the numerator. Nominal 
CPI can use “Non-Sleep clockticks” in the numerator. “Non-sleep 
clockticks” is the same as the “clockticks” metric in previous editions of 
this manual.

Non-Halted Clockticks

Non-halted clockticks can be obtained by programming the appropriate 
ESCR and CCCR following the recipe listed in the general metrics 
category in Table B-1. Additionally, the desired 
T0_OS/T0_USR/T1_OS/T1_USR bits may be specified to qualify a 
specific logical processor and/or kernel vs. user mode.

Non-Sleep Clockticks 

The performance monitoring counters can also be configured to count 
clocks whenever the performance monitoring hardware is not 
powered-down.  To count “non-sleep clockticks” with a 
performance-monitoring counter, do the following:

• Select any one of the 18 counters.

• Select any of the possible ESCRs whose events the selected counter 
can count, and set its event select to anything other than no_event.  
This may not seem necessary, but the counter may be disabled in 
some cases if this is not done.

• Turn threshold comparison on in the CCCR by setting the compare 
bit to 1.

• Set the threshold to 15 and the complement to 1 in the CCCR.  Since 
no event can ever exceed this threshold, the threshold condition is 
met every cycle, and hence the counter counts every cycle. Note that 
this overrides any qualification (e.g. by CPL) specified in the ESCR.

• Enable counting in the CCCR for that counter by setting the enable 
bit.
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The counts produced by the Non-halted and Non-sleep metrics are 
equivalent in most cases if each physical package supports one logical 
processor and is not in any power-saving states. An operating system 
may execute the HLT instruction and place a physical processor in a 
power-saving state.

On processors that support Hyper-Threading Technology, each physical 
package can support two or more logical processors. Current 
implementation of Hyper-Threading Technology provides two logical 
processors for each physical processor. 

While both logical processors can execute two threads simultaneously, 
one logical processor may be halted to allow the other logical processor 
to execute without sharing execution resources between two logical 
processors. “Non-halted clockticks” can be qualified to count the 
number of processor clock cycles for each logical processor whenever 
that logical processor is not halted (it may include some portion of the 
clock cycles for that logical processor to complete a transition into a 
halted state). A physical processor that supports Hyper-Threading 
Technology enters into a power-saving state if all logical processors are 
halted.

“Non-sleep clockticks” use is based on the filtering mechanism in the 
CCCR: it will continue to increment as long as one logical processor is 
not halted, nor is it in any power-saving states. An application may 
indirectly cause a processor to enter into a power-saving state via an OS 
service that transfers control into the operating system's idle loop. The 
system idle loop may place the processor into a power-saving state after 
an implementation-dependent period if there is no work for the 
processor to do.
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Time Stamp Counter

The time stamp counter increments whenever the sleep pin is not 
asserted or when the clock signal on the system bus is active.  It can be 
read with the RDTSC instruction.  The difference in values between two 
reads (modulo 2**64) gives the number of processor clocks between 
those reads.

The time stamp counter and “Non-sleep clockticks” counts should agree 
in practically all cases if the physical processor is not in any 
power-saving states. However, it is possible to have both logical 
processors in a physical package halted, which results in most of the 
chip (including the performance monitoring hardware) being powered 
down. In this situation, it is possible for the time stamp counter to 
continue incrementing because the clock signal on the system bus is still 
active, but “non-sleep clockticks” will no longer increment because the 
performance monitoring hardware is powered down in power-saving 
states.

Microarchitecture Notes

Trace Cache Events

The trace cache is not directly comparable to an instruction cache. The 
two are organized very differently. For example, a trace can span many 
lines' worth of instruction-cache data. As with most micro-architectural 
elements, trace cache performance is only an issue if something else is 
not a bigger bottleneck. If an application is bus bandwidth bound, the 
bandwidth that the front end is getting uops to the core may be 
irrelevant.  When front-end bandwidth is an issue, the trace cache, in 
deliver mode, can issue uops to the core faster than either the decoder 
(build mode) or the microcode store (the MS ROM).  Thus the percent 
of time in trace cache deliver mode, or similarly, the percentage of all 
bogus and non-bogus uops from the trace cache can be a useful metric 
for determining front-end performance.  
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The metric that is most analogous to an instruction cache miss is a trace 
cache miss.  An unsuccessful lookup of the trace cache (colloquially, a 
miss) is not interesting, per se, if we are in build mode and don’t find a 
trace available; we just keep building traces.  The only “penalty” in that 
case is that we continue to have a lower front-end bandwidth.  The trace 
cache miss metric that is currently used is not just any TC miss, but 
rather one that is incurred while the machine is already in deliver mode; 
i.e., when a 15-20 cycle penalty is paid.  Again, care must be exercised: 
a small average number of TC misses per instruction does not indicate 
good front-end performance if the percentage of time in deliver mode is 
also low.

Bus and Memory Metrics

In order to correctly interpret the observed counts of performance 
metrics related to bus events, it is helpful to understand transaction 
sizes, when entries are allocated in different queues, and how sectoring 
and prefetching affect counts.

There is a simplified block diagram below of the sub-systems connected 
to the IOQ unit in the front side bus sub-system and the BSQ unit that 
interface to the IOQ. A two-way SMP configuration is illustrated.  
1st-level cache misses and writebacks (also called core references) 
result in references to the 2nd-level cache.  The Bus Sequence Queue 
(BSQ) holds requests from the processor core or prefetcher that are to be 
serviced on the front side bus (FSB), or in the local XAPIC.  If a 
3rd-level cache is present on-die, the BSQ also holds writeback requests 
(dirty, evicted data) from the 2nd-level cache.  The FSB's IOQ holds 
requests that have gone out onto the front side bus.   
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Core references are nominally 64 bytes, the size of a 1st-level cache 
line.  Smaller sizes are called partials, e.g., uncacheable and write 
combining reads, uncacheable, write-through and write-protect writes, 
and all I/O.  Writeback locks, streaming stores and write combining 
stores may be full line or partials.  Partials are not relevant for cache 
references, since they are associated with non-cached data.  Likewise, 
writebacks (due to the eviction of dirty data) and RFOs (reads for 
ownership due to program stores) are not relevant for non-cached data.

The granularity at which the core references are counted by different 
bus and memory metrics listed in Table B-1 varies, depending on the 
underlying performance-monitoring events that these bus and memory 
metrics are derived from. The granularities of core references are listed 
below, according to the performance monitoring events that are docu-
mented in Appendix A of the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3: “System Programming”.

Figure B-1 Relationships Between the Cache Hierarchy, IOQ, BSQ and Front 
Side Bus

Chip SetSystem Memory

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache

1st Level Data
Cache

3rd Level Cache

FSB_ IOQ

BSQ

Unified 2nd Level
Cache
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Reads due to program loads
• BSQ_cache_reference: 128 bytes for misses (on current 

implementations), 64 bytes for hits

• BSQ_allocation: 128 bytes for hits or misses (on current 
implementations), smaller for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’ 
hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes, smaller for partials’ 
hits or misses.

Reads due to program writes (RFOs)
• BSQ_cache_reference: 64 bytes for hits or misses

• BSQ_allocation: 64 bytes for hits or misses (the granularity for 
misses may change in future implementations of BSQ_allocation), 
smaller for partials’ hits or misses

• BSQ_active_entries: 64 bytes for hits or misses, smaller for partials’ 
hits or misses

• IOQ_allocation, IOQ_active_entries: 64 bytes for hits or misses, 
smaller for partials’ hits or misses.

Writebacks (dirty evictions)
• BSQ_cache_reference: 64 bytes 

• BSQ_allocation: 64 bytes 

• BSQ_active_entries: 64 bytes

• IOQ_allocation, IOQ_active_entries: 64 bytes. 
B-10



Intel Pentium 4 Processor Performance Metrics B
The count of IOQ allocations may exceed the count of corresponding 
BSQ allocations on current implementations for several reasons, 
including: 

• Partials: 

In the FSB IOQ, any transaction smaller than 64 bytes is broken up 
into one to eight  partials, each being counted separately as a or one 
to eight-byte chunks.  In the BSQ, allocations of partials get a count 
of one.  Future implementations will count each partial individually. 

• Different transaction sizes: 

The allocations of non-partial programmatic load requests get a 
count of one per 128 bytes in the BSQ on current implementations, 
and a count of one per 64 bytes in the FSB IOQ.  The allocations of 
RFOs get a count of 1 per 64 bytes for earlier processors and for the 
FSB IOQ (This granularity may change in future implementations).

• Retries: 

If the chipset requests a retry, the FSB IOQ allocations get one count 
per retry.

There are two noteworthy cases where there may be BSQ allocations 
without FSB IOQ allocations. The first is UC reads and writes to the 
local XAPIC registers.  Second, if a cache line is evicted from the 
2nd-level cache but it hits in the on-die 3rd-level cache, then a BSQ 
entry is allocated but no FSB transaction is necessary, and there will be 
no allocation in the FSB IOQ. The difference in the number of write 
transactions of the writeback (WB) memory type for the FSB IOQ and 
the BSQ can be an indication of how often this happens. It is less likely 
to occur for applications with poor locality of writes to the 3rd-level 
cache, and of course cannot happen when no 3rd-level cache is present.

Usage Notes for Specific Metrics

The difference between the metrics “Read from the processor” and 
“Reads non-prefetch from the processor”  is nominally the number of 
hardware prefetches.   
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The paragraphs below cover several performance metrics that are based 
on the Pentium 4 processor performance-monitoring event 
“BSQ_cache_rerference”. The metrics are:

• 2nd-Level Cache Read Misses

• 2nd-Level Cache Read References

• 3rd-Level Cache Read Misses

• 3rd-Level Cache Read References

• 2nd-Level Cache Reads Hit Shared

• 2nd-Level Cache Reads Hit Modified

• 2nd-Level Cache Reads Hit Exclusive

• 3rd-Level Cache Reads Hit Shared

• 3rd-Level Cache Reads Hit Modified

• 3rd-Level Cache Reads Hit Exclusive.

These metrics based on BSQ_cache_reference may be useful as an 
indicator of the relative effectiveness of the 2nd-level cache, and the 
3rd-level cache if present. But due to the current implementation of  
BSQ_cache_reference in Pentium 4 and Intel Xeon processors, they 
should not be used to calculate cache hit rates or cache miss rates.  The 
following three paragraphs describe some of the issues related to 
BSQ_cache_reference, so that its results can be better interpreted.

Current implementations of the BSQ_cache_reference event do not 
distinguish between programmatic read and write misses.  
Programmatic writes that miss must get the rest of the cache line and 
merge the new data.  Such a request is called a read for ownership 
(RFO).  To the “BSQ_cache_reference” hardware, both a programmatic 
read and an RFO look like a data bus read, and are counted as such.  
Further distinction between programmatic reads and RFOs may be 
provided in future implementations.  

Current implementations of the BSQ_cache_reference event can suffer 
from perceived over- or under-counting.  References are based on BSQ 
allocations, as described above.  Consequently, read misses are 
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generally counted once per 128-byte line BSQ allocation (whether one 
or both sectors are referenced), but read and write (RFO) hits and most 
write (RFO) misses are counted once per 64-byte line, the size of a core 
reference.  This makes the event counts for read misses appear to have a 
2-times overcounting with respect to read and write (RFO) hits and 
write (RFO) misses.  This granularity mismatch cannot always be 
corrected for, making it difficult to correlate to the number of 
programmatic misses and hits.  If the user knows that both sectors in a 
128 -byte line are always referenced soon after each other, then the 
number of read misses can be multiplied by two to adjust miss counts to 
a 64-byte granularity.  

Prefetches themselves are not counted as either hits or misses, as of 
Pentium 4 and Intel Xeon processors with a CPUID signature of 0xf21.  
However, in Pentium 4 Processor implementations with a CPUID 
signature of 0xf07 and earlier have the problem that reads to lines that 
are already being prefetched are counted as hits in addition to  misses, 
thus overcounting hits.   

The number of “Reads Non-prefetch from the Processor” is a good 
approximation of the number of outermost cache misses due to loads or 
RFOs, for the writeback memory type.

Usage Notes on Bus Activities

A number of performance metrics in Table B-1 are based on 
IOQ_active_entries and BSQ_active entries. The next three paragraphs 
provide information of various bus transaction underway metrics. These 
metrics nominally measure the end-to-end latency of transactions 
entering the BSQ; i.e., the aggregate sum of the allocation-to-
deallocation durations for the BSQ entries used for all individual 
transaction in the processor.  They can be divided by the corresponding 
number-of-transactions metrics (i.e., those that measure allocations) to 
approximate an average latency per transaction.  However, that 
approximation can be significantly higher than the number of cycles it 
takes to get the first chunk of data for the demand fetch (e.g., load), 
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because the entire transaction must be completed before deallocation.  
That latency includes deallocation overheads, and the time to get the 
other half of the 128-byte line, which is called an adjacent-sector 
prefetch.  Since adjacent-sector prefetches have lower priority than 
demand fetches, there is a high probability on a heavily utilized system 
that the adjacent-sector prefetch will have to wait until the next bus 
arbitration cycle from that processor.  Note also that on current 
implementations, the granularities at which BSQ_allocation  and 
BSQ_active_entries count can differ, leading to a possible 2-times 
overcounting of latencies for non-partial programmatic loads.

Users of the bus transaction underway metrics would be best served by 
employing them for relative comparisons across BSQ latencies of all 
transactions.  Users that want to do cycle-by-cycle or type-by-type 
analysis should be aware that this event is known to be inaccurate for 
“UC Reads Chunk Underway” and “Write WC partial underway” 
metrics.  Relative changes to the average of all BSQ latencies should be 
viewed as an indication that overall memory performance has changed. 
That memory performance change may or may not be reflected in the 
measured FSB latencies.

Also note that for Pentium 4 and Intel Xeon Processor implementations 
with an integrated 3rd-level cache, BSQ entries are allocated for all 
2nd-level writebacks (replaced lines), not just those that become bus 
accesses (i.e., are also 3rd-level misses).  This can decrease the average 
measured BSQ latencies for workloads that frequently thrash (miss or 
prefetch a lot into) the 2nd-level cache but hit in the 3rd-level cache.  
This effect may be less of a factor for workloads that miss all on-chip 
caches, since all BSQ entries due to such references will become bus 
transactions.

Metrics Descriptions and Categories
The Performance metrics for Intel Pentium 4 and Intel Xeon processors 
are listed in Table B-1. These performance metrics consist of recipes to 
program specific Pentium 4 and Intel Xeon processor performance 
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monitoring events to obtain event counts that represent one of the 
following: number of instructions, cycles, or occurrences. Table B-1 
also includes a few ratios that are derived from counts of other 
performance metrics.

On IA-32 processors that support Hyper-Threading Technology, the 
performance counters and associated model specific registers (MSRs) 
are extended to support Hyper-Threading Technology. A subset of the 
performance monitoring events allow the event counts to be qualified by 
logical processors. The programming interface for qualification of 
performance monitoring events by logical processors is documented in  
IA-32 Intel Architecture Software Developer’s Manual, Volume 3: 
“System Programming.” Other performance monitoring events produce 
counts that are  independent of which logical processor is associated 
with the microarchitectural events. The qualification of the performance 
metrics on IA-32 processors that support Hyper-Threading Technology 
is listed in Table B-5 and B-6.  

In Table B-1, the recipe for programming the performance metrics using 
performance-monitoring event is arranged as follows: 

• Column 1 specifies performance metrics. This may be a 
single-event metric; for example, the metric Instructions Retired is 
based on the counts of the performance monitoring event 
instr_retired, using a specific set of event mask bits. Or it can be 
an expression built up from other metrics; for example, IPC is 
derived from two single-event metrics.

• Column 2 provides a description of the metric in column 1. Please 
refer to the previous section, “Pentium 4 Processor-Specific 
Terminology” for various terms that are specific to the Pentium 4 
processor’s performance monitoring capabilities. 

• Column 3 specifies the performance monitoring event(s) or an 
algebraic expression(s) that form(s) the metric. There are several 
metrics that require yet another sub-event in addition to the counting 
event. The additional sub-event information is included in column 3 
as various tags, which are described in “Performance Metrics and 
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Tagging Mechanisms”. For event names that appear in this column, 
refer to the IA-32 Intel Architecture Software Developer’s Manual, 
Volume 3: “System Programming.”

• Column 4 specifies the event mask bit that is needed to use the 
counting event. The addresses of various model-specific registers 
(MSR), the event mask bits in Event Select Control registers 
(ESCR), the bit fields in Counter Configuration Control registers 
(CCCR) are described in IA-32 Intel Architecture Software 
Developer’s Manual, Volume 3: “System Programming.”

The metrics listed in Table B-1 are grouped into several categories:

General Operation not specific to any 
sub-system of the microarchitecture

Branching Branching activities 

Trace Cache and Front End Front end activities and trace cache 
operation modes

Memory Memory operation related to the 
cache hierarch

Bus Activities related to Front-Side Bus 
(FSB)

Characterization Operations specific to the processor 
core
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Table B-1 Pentium 4 Processor Performance Metrics

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required

General metrics

Non-Sleep 
Clockticks

The number of 
clockticks.while a 
processor is not in 
any sleep modes.

See explanation on how 
to count clocks in section  
“Counting Clocks”.

Non-Halted 
Clockticks

The number of 
clockticks that the 
processor is in not 
halted nor in sleep. 

Global_power_events RUNNING

Instructions 
Retired

Non-bogus IA-32 
instructions executed 
to completion. May 
count more than 
once for some 
instructions with 
complex uop flow 
and were interrupted 
before retirement. 
The count may vary 
depending on the 
microarchitectural 
states when counting 
begins. 

Instr_retired NBOGUSNTAG|
NBOGUSTAG

Non-Sleep CPI Cycles per 
instruction for a 
physical processor 
package.

(Non-Sleep Clockticks) / 
(Instructions Retired)

Non-Halted 
CPI

Cycles per 
instruction for a 
logical processor.

(Non-Halted Clockticks) / 
(Instructions Retired)

µops Retired Non-bogus µops 
executed to 
completion

uops_retired NBOGUS

UPC µop per cycle for a 
logical processor

µops Retired/ Non-Halted 
Clockticks

continued
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Speculative 
Uops Retired 

Number of uops 
retired (include both 
instructions executed 
to completion and 
speculatively 
executed in the path 
of branch 
mispredictions). 

uops_retired NBOGUS|BOGUS

Branching metrics

Branches 
Retired 

All branch 
instructions executed 
to completion

Branch_retired MMTM|MMNM|MMTP|
MMNP

Mispredicted 
Branches 
Retired

Mispredicted branch 
instructions executed 
to completion. This 
stat is often used in a 
per-instruction ratio.

Mispred_branch_
retired

NBOGUS

Misprediction 
Ratio

Misprediction rate 
per branch

(Mispredicted Branches 
Retired) /(Branches 
Retired)

All returns The number of return 
branches 

retired_branch_type RETURN

All indirect 
branches

All returns and 
indirect calls and 
indirect jumps 

retired_branch_type INDIRECT

All calls All direct and indirect 
calls 

retired_branch_type CALL

All conditionals The number of 
branches that are 
conditional jumps 
(may overcount if the 
branch is from build 
mode or there is a 
machine clear near 
the branch) 

retired_branch_type CONDITIONAL

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Mispredicted 
returns 

The number of 
mispredicted returns 
including all causes. 

retired_mispred_
branch_type

RETURN

Mispredicted 
indirect 
branches

All Mispredicted 
returns and indirect 
calls and indirect 
jumps  

retired_mispred_
branch_type

INDIRECT

Mispredicted 
calls

All Mispredicted 
indirect calls  

retired_branch_type CALL

Mispredicted 
conditionals

The number of 
mispredicted 
branches that are 
conditional jumps  

retired_mispred_
branch_type

CONDITIONAL

Trace Cache (TC) and front end metrics

Page Walk 
Miss ITLB

The number of page 
walk requests due to 
ITLB misses.

page_walk_type ITMISS

ITLB Misses The number of ITLB 
lookups that resulted 
in a miss. Page Walk 
Miss ITLB.is less 
speculative than 
ITLB Misses and is 
the recommended 
alternative.

ITLB_reference MISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Logical 
Processor 0 
Deliver Mode

The number of 
cycles that the trace 
and delivery engine 
(TDE) is delivering 
traces associated 
with logical 
processor 0, 
regardless of the 
operating modes of 
the TDE for traces 
associated with 
logical processor 1. If 
a physical processor 
supports only one 
logical processor, all 
traces are 
associated with 
logical processor 0. 
This is the formerly 
known as “Trace 
Cache Deliver Mode“

 TC_deliver_mode SS|SB|SI

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Logical 
Processor 1 
Deliver Mode

The number of 
cycles that the trace 
and delivery engine 
(TDE) is delivering 
traces associated 
with logical 
processor 1, 
regardless of the 
operating modes of 
the TDE for traces 
associated with 
logical processor 0. 
This metric is 
applicable only if a 
physical processor 
supports 
Hyper-Threading 
Technology and have 
two logical 
processors per 
package. 

 TC_deliver_mode SS|BS|IS

% Logical 
Processor N In 
Deliver Mode

Fraction of all 
non-halted cycles 
that the trace cache 
is delivering µops 
associated with a 
given logical 
processor.

(Logical Processor N 
Deliver 
Mode)*100/(Non-Halted 
Clockticks)

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Logical 
Processor 0 
Build Mode

The number of 
cycles that the trace 
and delivery engine 
(TDE) is building 
traces associated 
with logical 
processor 0, 
regardless of the 
operating modes of 
the TDE for traces 
associated with 
logical processor 1. If 
a physical processor 
supports only one 
logical processor, all 
traces are 
associated with 
logical processor 0. 

 TC_deliver_mode BB|BS|BI

Logical 
Processor 1 
Build Mode

The number of 
cycles that the trace 
and delivery engine 
(TDE) is building 
traces associated 
with logical 
processor 1, 
regardless of the 
operating modes of 
the TDE for traces 
associated with 
logical processor 0. 
This metric is 
applicable only if a 
physical processor 
supports 
Hyper-Threading 
Technology and have 
two logical 
processors per 
package. 

 TC_deliver_mode BB|SB|IB

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Trace Cache 
Misses

The number of times 
that significant 
delays occurred in 
order to decode 
instructions and build 
a trace because of a 
TC miss. 

BPU_fetch_request TCMISS

TC to ROM 
Transfers 

Twice the number of 
times that the ROM 
microcode is 
accessed to decode 
complex IA-32 
instructions instead 
of building|delivering 
traces. (Divide the 
count by 2 to get the 
number of 
occurrence.) 

tc_ms_xfer CISC

Speculative 
TC-Built Uops 

The number of 
speculative uops 
originating when the 
TC is in build mode. 

uop_queue_writes FROM_TC_BUILD 

Speculative 
TC-Delivered 
Uops 

The number of 
speculative uops 
originating when the 
TC is in deliver 
mode. 

uop_queue_writes FROM_TC_DELIVER

Speculative 
Microcode 
Uops

The number of 
speculative uops 
originating from the 
microcode ROM (Not 
all uops of an 
instruction from the 
microcode ROM will 
be included).

uop_queue_writes FROM_ROM

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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Memory metrics

Page Walk 
DTLB All 
Misses

The number of page 
walk requests due to 
DTLB misses from 
either load or store.

page_walk_type DTMISS

1st-Level 
Cache Load 
Misses Retired

The number of 
retired µops that 
experienced 
1st-Level cache load 
misses. This stat is 
often used in a 
per-instruction ratio.

Replay_event; set the 
following replay tag: 
1stL_cache_load
_miss_retired

NBOGUS

2nd-Level 
Cache Load 
Misses Retired

The number of 
retired load µops that 
experienced 
2nd-Level cache  
misses. This stat is 
known to undercount  
when loads are 
spaced apart.

Replay_event; set the 
following replay tag: 
2ndL_cache_load_
miss_retired

NBOGUS

DTLB Load 
Misses Retired

The number of 
retired load µops that 
experienced DTLB 
misses. 

Replay_event; set the 
following replay tag: 
DTLB_load_miss_
retired

NBOGUS

DTLB Store 
Misses Retired

The number of 
retired store µops 
that experienced 
DTLB misses. 

Replay_event; set the 
following replay tag: 
DTLB_store_miss_
retired

NBOGUS

DTLB Load 
and Store 
Misses Retired

The number of 
retired load or µops 
that experienced 
DTLB misses. 

Replay_event; set the 
following replay tag: 
DTLB_all_miss_
retired

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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64K Aliasing 
Conflicts1

The number of 64K 
aliasing conflicts. A 
memory reference 
causing 64K aliasing 
conflict can be 
counted more than 
once in this stat. The 
performance penalty 
resulted from 
64K-aliasing conflict 
can vary from being 
unnoticeable to 
considerable. Some 
implementations of 
the Pentium 4 
processor family can 
incur significant 
penalties for loads 
that alias to 
preceding stores. 

Memory_cancel 64K_CONF

Split Load 
Replays

The number of load 
references to data 
that spanned two 
cache lines.

Memory_complete LSC

Split Loads 
Retired

The number of 
retired load µops that 
spanned two cache 
lines. 

Replay_event; set the 
following replay tag: 
Split_load_retired.

NBOGUS

Split Store 
Replays

The number of store 
references that 
spans across cache 
line boundary.

Memory_complete SSC

Split Stores 
Retired

The number of 
retired store µops 
that spanned two 
cache lines. 

Replay_event; set the 
following replay tag: 
Split_store_retired
.

NBOGUS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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MOB Load 
Replays

The number of 
replayed loads 
related to the 
Memory Order Buffer 
(MOB). This metric 
counts only the case 
where the 
store-forwarding  
data is not an aligned 
subset of the stored 
data.

MOB_load_replay PARTIAL_DATA, 
UNALGN_ADDR

2nd-Level 
Cache Read 
Misses2

The number of 
2nd-level cache read 
misses (load and 
RFO misses). 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_MISS

2nd-Level 
Cache Read 
References2

The number of 
2nd-level cache read 
references (loads 
and RFOs). Beware 
of granularity 
differences.  

BSQ_cache_reference RD_2ndL_HITS, 
RD_2ndL_HITE, 
RD_2ndL_HITM, 
RD_2ndL_MISS

3rd-Level 
Cache Read 
Misses2 

The number of 
3rd-level cache read 
misses (load and 
RFOs misses). 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_MISS 

3rd-Level 
Cache Read 
References2

The number of 
3rd-level cache read 
references (loads 
and RFOs). Beware 
of granularity 
differences.  

BSQ_cache_reference RD_3rdL_HITS, 
RD_3rdL_HITE, 
RD_3rdL_HITM, 
RD_3rdL_MISS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
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2nd-Level 
Cache Reads 
Hit Shared 

The number of 
2nd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
shared state. Beware 
of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITS

2nd-Level 
Cache Reads 
Hit Modified 

The number of 
2nd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
modified state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITM

2nd-Level 
Cache Reads 
Hit Exclusive 

The number of 
2nd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
exclusive state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_2ndL_HITE

3rd-Level 
Cache Reads 
Hit Shared 

The number of 
3rd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
shared state. Beware 
of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITS

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
B-27



IA-32 Intel® Architecture Optimization
3rd-Level 
Cache Reads 
Hit Modified 

The number of 
3rd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
modified state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITM

3rd-Level 
Cache Reads 
Hit Exclusive 

The number of 
3rd-level cache read 
references (loads 
and RFOs) that hit 
the cache line in 
exclusive state. 
Beware of granularity 
differences. 

BSQ_cache_reference RD_3rdL_HITE

MOB Load 
Replays 
Retired

The number of 
retired load µops that 
experienced replays 
related to the MOB. 

Replay_event; set the 
following replay tag: 
MOB_load_replay_
retired

NBOGUS

Loads Retired The number of 
retired load 
operations that were 
tagged at the front 
end. 

Front_end_event; set 
the following  front end 
tag: Memory_loads

NBOGUS

Stores Retired The number of 
retired stored 
operations that were 
tagged at the front 
end. This stat is often 
used in a 
per-instruction ratio.

Front_end_event; set 
the following  front end 
tag: Memory_stores

NBOGUS

continued
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All WCB 
Evictions 

The number of times 
a WC buffer eviction 
occurred due to any 
causes (This can be 
used to distinguish 
64K aliasing cases 
that contribute more 
significantly to 
performance penalty,  
e.g., stores that are 
64K aliased. A high 
count of this metric 
when there is no 
significant 
contribution due to 
write combining 
buffer full condition 
may indicate such a 
situation.) 

WC_buffer WCB_EVICTS 

WCB Full 
Evictions 

The number of times 
a WC buffer eviction 
occurred when all of 
the WC buffers are 
already allocated. 

WC_buffer WCB_FULL_EVICT 

Bus metrics

continued
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Bus Accesses 
from the 
Processor 

The number of all 
bus transactions that 
were allocated in the 
IO Queue from this 
processor. Beware of 
granularity issues 
with this event. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2. 

IOQ_allocation 1a. ReqA0, 
ALL_READ, 
ALL_WRITE, OWN, 
PREFETCH (CPUID 
model < 2); 

1b.ReqA0, 
ALL_READ, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN, 
PREFETCH (CPUID 
model >= 2).

2. Enable edge 
filtering6 in 
the CCCR.

Non-prefetch 
Bus Accesses 
from the 
Processor 

The number of all 
bus transactions that 
were allocated in the 
IO Queue from this 
processor excluding 
prefetched sectors. 
Beware of granularity 
issues with this 
event. Also Beware 
of different recipes in 
mask bits for 
Pentium 4 and Intel 
Xeon processors 
between CPUID 
model field value of 2 
and model value less 
than 2.

IOQ_allocation 1a. ReqA0, 
ALL_READ, 
ALL_WRITE, OWN 
(CPUID model < 
2);

1b. ReqA0, 
ALL_READ, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN 
(CPUID model < 
2).

2. Enable edge 
filtering6 in 
the CCCR.

continued
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Prefetch Ratio Fraction of all bus 
transactions 
(including retires) 
that were for HW or 
SW prefetching.

(Bus Accesses – 
Nonprefetch Bus 
Accesses)/ (Bus 
Accesses)

FSB Data 
Ready

The number of 
front-side bus clocks 
that the bus is 
transmitting data 
driven by this 
processor (includes 
full reads|writes and 
partial reads|writes 
and implicit 
writebacks).  

FSB_data_activity 1. DRDY_OWN, 
DRDY_DRV

2. Enable edge 
filtering6 in 
the CCCR.

Bus Utilization The % of time that 
the bus is actually 
occupied 

(FSB Data Ready) 
*Bus_ratio*100/ 
Non-Sleep Clockticks

Reads from the 
Processor  

The number of all 
read (includes 
RFOs) transactions 
on the bus that were 
allocated in IO 
Queue from this 
processor (includes 
prefetches). Beware 
of granularity issues 
with this event. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_allocation 1a. ReqA0, 
ALL_READ, 

OWN, PREFETCH 
(CPUID model < 
2);

1b. ReqA0, 
ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, 

OWN, PREFETCH 
(CPUID model >= 
2);

2. Enable edge 
filtering6 in 
the CCCR.

continued
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Writes from the 
Processor 

The number of all 
write transactions on 
the bus that were 
allocated in IO 
Queue from this 
processor (excludes 
RFOs). Beware of 
granularity issues 
with this event. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_allocation 1a. ReqA0, 
ALL_WRITE, OWN

(CPUID model < 
2);

1b. ReqA0, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN

(CPUID model >= 
2).

2. Enable edge 
filtering6 in 
the CCCR.

Reads 
Non-prefetch 
from the 
Processor 

The number of all 
read transactions 
(includes RFOs but 
excludes prefetches) 
on the bus that 
originated from this 
processor. Beware of 
granularity issues 
with this event. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_allocation 1a. ReqA0, 
ALL_READ, OWN 
(CPUID model < 
2);

1b. ReqA0, 
ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN 
(CPUID model >= 
2).

2. Enable edge 
filtering6 in 
the CCCR.

continued
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All WC from 
the Processor 

The number of Write 
Combining memory 
transactions on the 
bus that originated 
from this processor. 
Beware of granularity 
issues with this 
event.  Also Beware 
of different recipes in 
mask bits for 
Pentium 4 and Intel 
Xeon processors 
between CPUID 
model field value of 2 
and model value less 
than 2.

IOQ_allocation 1a. ReqA0, 
MEM_WC, OWN 
(CPUID model < 
2);

1a. 
ReqA0,ALL_READ, 
ALL_WRITE, 
MEM_WC, OWN 
(CPUID model >= 
2)

2. Enable edge 
filtering6 in 
the CCCR.

All UC from the 
Processor 

The number of UC 
(Uncacheable) 
memory transactions 
on the bus that 
originated from this 
processor. User 
Note: Beware of 
granularity issues. 
e.g. a store of 
dqword to UC 
memory requires two 
entries in IOQ 
allocation. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_allocation 1a. ReqA0, 
MEM_UC, OWN 
(CPUID model < 
2);

1a. 
ReqA0,ALL_READ, 
ALL_WRITE, 
MEM_UC, OWN 
(CPUID model >= 
2)

2. Enable edge 
filtering6 in 
the CCCR.

continued
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Bus Accesses 
from All Agents 

The number of all 
bus transactions that 
were allocated in the 
IO Queue by all 
agents. Beware of 
granularity issues 
with this event. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_allocation 1a. ReqA0, 
ALL_READ, 
ALL_WRITE, OWN, 
OTHER, PREFETCH

 (CPUID model < 
2); 1b.ReqA0, 
ALL_READ, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN, 
OTHER, PREFETCH

 (CPUID model >= 
2).

2. Enable edge 
filtering6 in 
the CCCR.

Bus Accesses 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of all bus 
transactions by this 
processor. Divide by 
“Bus Accesses from 
the processor” to get 
bus request latency. 
Also Beware of 
different recipes in 
mask bits for 
Pentium 4 and Intel 
Xeon processors 
between CPUID 
model field value of 2 
and model value less 
than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_READ, 
ALL_WRITE, OWN, 
PREFETCH

 (CPUID model < 
2); 1b.ReqA0, 
ALL_READ, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN, 
PREFETCH

 (CPUID model >= 
2).

continued
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Bus Reads 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of all read (includes 
RFOs) transactions 
by this processor. 
Divide by “Reads 
from the Processor” 
to get bus read 
request latency. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_READ, 

OWN, PREFETCH 
(CPUID model < 
2);

1b. ReqA0, 
ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, 

OWN, PREFETCH 
(CPUID model >= 
2);

continued

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Metric Description
Event Name or Metric 
Expression

Event Mask value 
required
B-35



IA-32 Intel® Architecture Optimization
Non-prefetch 
Reads 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of read (includes 
RFOs but excludes 
prefetches) transac-
tions that originate 
from this processor. 
Divide by “Reads 
Non-
prefetch from the 
processor” to get 
Non-prefetch read 
request latency. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon processors 
between CPUID 
model field value of 2 
and model value less 
than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_READ, OWN 
(CPUID model < 
2);

1b. ReqA0, 
ALL_READ, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN 
(CPUID model >= 
2).

All UC 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of all UC 
transactions by this 
processor. Divide by 
“All UC from the 
processor” to get UC 
request latency.  Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_active_entries 1a. ReqA0, 
MEM_UC, OWN 
(CPUID model < 
2);

1a. 
ReqA0,ALL_READ, 
ALL_WRITE, 
MEM_UC, OWN 
(CPUID model >= 
2)

continued
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All WC 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of all WC 
transactions by this 
processor. Divide by 
“All WC from the 
processor” to get WC 
request latency. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_active_entries 1a. ReqA0, 
MEM_WC, OWN 
(CPUID model < 
2);

1a. 
ReqA0,ALL_READ, 
ALL_WRITE, 
MEM_WC, OWN 
(CPUID model >= 
2)

Bus Writes 
Underway from 
the processor7 

This is an accrued 
sum of the durations 
of all write 
transactions by this 
processor. Divide by 
“Writes from the 
Processor” to get 
bus write request 
latency. Also Beware 
of different recipes in 
mask bits for 
Pentium 4 and Intel 
Xeon processors 
between CPUID 
model field value of 2 
and model value less 
than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_WRITE, OWN

(CPUID model < 
2);

1b. ReqA0, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN

(CPUID model >= 
2).

continued
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Bus Accesses 
Underway from 
All Agents7 

This is an accrued 
sum of the durations 
of entries by all 
agents on the bus. 
Divide by “Bus 
Accesses from All 
Agents” to get bus 
request latency. Also 
Beware of different 
recipes in mask bits 
for Pentium 4 and 
Intel Xeon 
processors between 
CPUID model field 
value of 2 and model 
value less than 2.

IOQ_active_entries 1a. ReqA0, 
ALL_READ, 
ALL_WRITE, OWN, 
OTHER, PREFETCH

 (CPUID model < 
2); 1b.ReqA0, 
ALL_READ, 
ALL_WRITE, 
MEM_WB, MEM_WT, 
MEM_WP, MEM_WC, 
MEM_UC, OWN, 
OTHER, PREFETCH

 (CPUID model >= 
2).

Write WC Full 
(BSQ)

The number of write 
(but neither 
writeback nor RFO) 
transactions to 
WC-type memory. 

BSQ_allocation 1. REQ_TYPE1| 
REQ_LEN0|REQ_LE
N1|MEM_TYPE0|REQ
_DEM_
TYPE

2. Enable edge 
filtering6 in 
the CCCR.

Write WC 
Partial (BSQ)

The number of 
partial write 
transactions to 
WC-type memory. 
User note: This 
event may 
undercount WC 
partials that originate 
from DWord 
operands.

BSQ_allocation 1. REQ_TYPE1| 
REQ_LEN0|MEM_TY
PE0|REQ_DEM_TYP
E

2. Enable edge 
filtering6 in 
the CCCR.

continued
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Writes WB Full 
(BSQ) 

The number of 
writeback (evicted 
from cache) 
transactions to 
WB-type memory. 
Note: These 
writebacks may not 
have a 
corresponding FSB 
IOQ transaction if 
3rd level cache is 
present. 

BSQ_allocation 1. REQ_TYPE0| 
REQ_TYPE1|REQ_L
EN0|REQ_LEN1|MEM
_TYPE1|MEM_TYPE
2|REQ_CACHE_TYP
E|REQ_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

Reads 
Non-prefetch 
Full (BSQ) 

The number of read 
(excludes RFOs and 
HW|SW prefetches) 
transactions to 
WB-type memory. 
Beware of granularity 
issues with this 
event. 

BSQ_allocation 1. REQ_LEN0| 
REQ_LEN1|MEM_TY
PE1|MEM_TYPE2|R
EQ_CACHE_TYPE|R
EQ_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

Reads 
Invalidate Full- 
RFO (BSQ) 

The number of read 
invalidate (RFO) 
transactions to 
WB-type memory

BSQ_allocation 1. REQ_TYPE0| 
REQ_LEN0|REQ_LE
N1|MEM_TYPE1|MEM
_TYPE2|REQ_CACH
E_TYPE|REQ_ORD_
TYPE|REQ_DEM_TY
PE

2. Enable edge 
filtering6 in 
the CCCR.

continued
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UC Reads 
Chunk (BSQ) 

The number of 
8-byte aligned UC 
read transactions. 
User note: Read 
requests associated 
with 16 byte 
operands may 
under-count. 

BSQ_allocation 1.  REQ_LEN0| 
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

UC Reads 
Chunk Split 
(BSQ) 

The number of UC 
read transactions 
that span an 8-byte 
boundary. User note: 
Read requests may 
under-count if the 
data chunk straddles 
64-byte boundary. 

BSQ_allocation 1.  REQ_LEN0| 
REQ_SPLIT_TYPE|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

UC Write 
Partial (BSQ) 

The number of UC 
write transactions. 
Beware of granularity 
issues between BSQ 
and FSB IOQ 
events. 

BSQ_allocation 1.  REQ_TYPE0| 
REQ_LEN0| 
REQ_SPLIT_TYPE|
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

IO Reads 
Chunk (BSQ) 

The number of 
8-byte aligned IO 
port read 
transactions.

BSQ_allocation 1.  REQ_LEN0| 
REQ_ORD_TYPE|RE
Q_IO_TYPE|REQ_D
EM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

continued
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IO Writes 
Chunk (BSQ) 

The number of IO 
port write 
transactions. 

BSQ_allocation 1. REQ_TYPE0| 
REQ_LEN0| 
REQ_ORD_TYPE|RE
Q_IO_TYPE|REQ_D
EM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

WB Writes Full 
Underway 
(BSQ)8 

This is an accrued 
sum of the durations 
of writeback (evicted 
from cache) 
transactions to 
WB-type memory. 
Divide by Writes WB 
Full (BSQ) to 
estimate average 
request latency. User 
note: Beware of 
effects of writebacks 
from 2nd-level cache 
that are quickly 
satisfied from the 
3rd-level cache (if 
present). 

BSQ_active_entries 1. REQ_TYPE0| 
REQ_TYPE1|REQ_L
EN0|REQ_LEN1|MEM
_TYPE1|MEM_TYPE
2|REQ_CACHE_TYP
E|REQ_DEM_TYPE

UC Reads 
Chunk 
Underway 
(BSQ)8 

This is an accrued 
sum of the durations 
of UC read 
transactions. Divide 
by UC Reads Chunk 
(BSQ) to estimate 
average request 
latency. User note: 
Estimated latency 
may be affected by 
undercount in 
allocated entries. 

BSQ_active_entries 1.  REQ_LEN0| 
REQ_ORD_TYPE|RE
Q_DEM_TYPE

2. Enable edge 
filtering6 in 
the CCCR.

continued
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Write WC 
Partial 
Underway 
(BSQ)8

This is an accrued 
sum of the durations 
of partial write 
transactions to 
WC-type memory. 
Divide by Write WC 
Partial (BSQ) to 
estimate average 
request latency. User 
note: Allocated 
entries of WC 
partials that originate 
from DWord 
operands are not 
included. 

BSQ_active_entries 1. REQ_TYPE1| 
REQ_LEN0|MEM_TY
PE0|REQ_DEM_TYP
E

2. Enable edge 
filtering6 in 
the CCCR.

Characterization metrics

x87 Input 
Assists

The number of 
occurrences of x87 
input operands 
needing assistance 
to handle an 
exception condition. 
This stat is often 
used in a 
per-instruction ratio.

X87_assists PREA

x87 Output 
Assists

The number of 
occurrences of x87 
operations needing 
assistance to handle 
an exception 
condition. 

X87_assists POAO, POAU

continued
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SSE Input 
Assists

The number of 
occurrences of 
SSE/SSE2 
floating-point 
operations needing 
assistance to handle 
an exception 
condition. The 
number of 
occurrences includes 
speculative counts.

SSE_input_assist ALL

Packed SP 
Retired3

Non-bogus packed 
single-precision 
instructions retired.

Execution_event; set 
this execution tag: 
Packed_SP_retired

NONBOGUS0

Packed DP 
Retired3

Non-bogus packed 
double-precision 
instructions retired.

Execution_event; set 
this execution tag:

Packed_DP_retired

NONBOGUS0

Scalar SP 
Retired3

Non-bogus scalar 
single-precision 
instructions retired.

Execution_event; set 
this execution tag:

Scalar_SP_retired

NONBOGUS0

Scalar DP 
Retired3

Non-bogus scalar 
double-precision 
instructions retired.

Execution_event; set 
this execution tag:

Scalar_DP_retired

NONBOGUS0

64-bit MMX 
Instructions 
Retired3

Non-bogus 64-bit 
integer SIMD 
instruction (MMX 
instructions) retired.

Execution_event; set the 
following  execution tag:

64_bit_MMX_retired

NONBOGUS0

128-bit MMX 
Instructions 
Retired3

Non-bogus 128-bit 
integer SIMD 
instructions retired.

Execution_event; set 
this execution tag:

128_bit_MMX_
retired

NONBOGUS0

X87 Retired4 Non-bogus x87 
floating-point 
instructions retired.

Execution_event; set 
this execution tag: 
X87_FP_retired

NONBOGUS0

continued
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1. A memory reference causing 64K aliasing conflict can be counted more than once in this stat. The resulting 
performance penalty can vary from unnoticeable to considerable. Some implementations of the Pentium 4 processor 
family can incur significant penalties from loads that alias to preceding stores.

2. Currently, bugs in this event can cause both overcounting and undercounting by as much as a factor of 2.

3. Most MMX technology instructions, Streaming SIMD Extensions and Streaming SIMD Extensions 2 decode into a 
single µop. There are some instructions that decode into several µops; in these limited cases, the metrics count the 
number of µops that are actually tagged.

4. Most commonly used x87 instructions (e.g., fmul, fadd, fdiv, fsqrt, fstp, etc.) decode into a singleµop. 
However, transcendental and some x87 instructions decode into several µops; in these limited cases, the metrics will 
count the number of µops thatare actually tagged.

5. This metric may not be supported in all models of the Pentium 4 processor family.

6. Set the following CCCR bits to make edge triggered: Compare=1; Edge=1; Threshold=0

7. Must program both MSR_FSB_ESCR0 and MSR_FSB_ESCR1.

8. Must program both MSR_BSU_ESCR0 and MSR_BSU_ESCR1.

Stalled Cycles 
of Store Buffer 
Resources 
(non-standard5

)

The duration of stalls 
due to lack of store 
buffers. 

Resource_stall SBFULL

Machine clear metrics

Machine Clear 
Count

The number of 
cycles that the entire 
pipeline of the 
machine is cleared 
for all causes.

Machine_clear CLEAR 

(Also Set the 
following CCCR bits:

Compare=1; 
Edge=1;

Threshold=0)

Memory Order 
Machine Clear

The number of times 
that the entire 
pipeline of the 
machine is cleared 
due to memory-
ordering issues.

Machine_clear MOCLEAR

Self-modifying 
Code Clear

The number of times 
the entire pipeline of 
the machine is 
cleared due to 
self-modifying code 
issues.

Machine_clear SMCCLEAR

Table B-1 Pentium 4 Processor Performance Metrics (continued)
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Performance Metrics and Tagging Mechanisms
A number of metrics require more tags to be specified in addition to 
programming a counting event; for example, the metric Split Loads 
Retired requires specifying a split_load_retired tag in addition to 
programming the replay_event to count at retirement. This section 
describes three sets of tags that are used in conjunction with three 
at-retirement counting events: front_end_event, replay_event, and 
execution_event. Please refer to Appendix A of the “IA-32 Intel® 
Architecture Software Developer’s Manual, Volume 3: System 
Programming” for the description of the at-retirement events.

Tags for replay_event

Table B-2 provides a list of the tags that are used by various metrics in 
Table B-1. These tags enable you to mark µops at earlier stage of 
execution and count the µops at retirement using the replay_event. 
These tags require at least two MSR’s (see  Table B-2, column 2 and 
column 3) to tag the µops so they can be detected at retirement. Some 
tags require additional MSR (see Table B-2, column 4) to select the 
event types for these tagged µops. The event names referenced in 
column 4 are those from the Pentium 4 processor performance 
monitoring events.  

Table B-2 Metrics That Utilize Replay Tagging Mechanism

Replay Metric Tags1

Bit field to 
set:

IA32_PEBS_
ENABLE 

Bit field 
to set: 
MSR_
PEBS_
MATRIX_
VERT Additional MSR 

See Event 
Mask 
Parameter 
for 
Replay_
event 

1stL_cache_load_
miss_retired

Bit 0, BIT 24, 
BIT 25

Bit 0 None NBOGUS 

2ndL_cache_load_
miss_retired

Bit 1, BIT 24, 
BIT 25

Bit 0 None NBOGUS

continued
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Tags for front_end_event

Table B-3 provides a list of the tags that are used by various metrics 
derived from the front_end_event. The event names referenced in 
column 2 can be found from the Pentium 4 processor performance 
monitoring events.  

DTLB_load_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 0 None NBOGUS

DTLB_store_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 1 None NBOGUS

DTLB_all_miss_
retired

Bit 2, BIT 24, 
BIT 25

Bit 0, Bit 1 None NBOGUS

MOB_load_
replay_retired

Bit 9, BIT 24, 
BIT 25

Bit 0 Select MOB_load_
replay and set the 
PARTIAL_DATA and 
UNALGN_ADDR bits 

NBOGUS

Split_load_
retired

Bit 10, BIT 
24, BIT 25

Bit 0 Select 
Load_port_replay 
event on 
SAAT_CR_ESCR1 and 
set SPLIT_LD  bit  

NBOGUS

Split_store_
retired

Bit 10, BIT 
24, BIT 25

Bit 1 Select Store_port_
replay event on 
SAAT_CR_ESCR0 and 
set SPLIT_ST  bit 

NBOGUS

1. Certain kinds of µops cannot be tagged. These include I/O operations, UC and locked accesses, returns, and far 
transfers.

Table B-2 Metrics That Utilize Replay Tagging Mechanism (continued)
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Tags for execution_event

Table B-4 provides a list of the tags that are used by various metrics 
derived from the execution_event. These tags require programming 
an upstream ESCR to select event mask with its TagUop and TagValue 
bit fields. The event mask for the downstream ESCR is specified in 
column 4. The event names referenced in column 4 can be found in the 
Pentium 4 processor performance monitoring events.

Table B-3 Table 3 Metrics That Utilize the Front-end Tagging Mechanism

Front-end MetricTags1  Additional MSR
See Event Mask Parameter for 
Front_end_event 

Memory_loads Set the TAGLOADS bit in 
Uop_Type

NBOGUS

Memory_stores Set the TAGSTORES bit in 
Uop_Type

NBOGUS

1.  There may be some undercounting of front end events when there is an overflow or underflow of the floating point 
stack.
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Table B-4 Metrics That Utilize the Execution Tagging Mechanism

Execution Metric Tags Upstream ESCR

Tag Value in 
Upstream 
ESCR

See Event Mask 
Parameter for 
Execution_
event 

Packed_SP_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of packed_SP_uop. 

1 NBOGUS0

Scalar_SP_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of scalar_SP_uop. 

1 NBOGUS0

Scalar_DP_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of scalar_DP_uop. 

1 NBOGUS0

128_bit_MMX_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of 128_bit_MMX_uop.

1 NBOGUS0

64_bit_MMX_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of 64_bit_MMX_uop.

1 NBOGUS0

X87_FP_retired Set the ALL bit in the 
event mask and the 
TagUop bit in the ESCR 
of x87_FP_uop. 

1 NBOGUS0 

X87_SIMD_memory_
moves_retired

Set the ALLP0 and 
ALLP2 bits in event mask 
and the TagUop bit in the 
ESCR of X87_SIMD_ 
moves_uop. 

1 NBOGUS0
B-48



Intel Pentium 4 Processor Performance Metrics B
Using Performance Metrics with Hyper-Threading 
Technology

On Intel Xeon processors that support Hyper-Threading Technology, the 
performance metrics listed in Table B-1 may be qualified to associate 
the counts with a specific logical processor, provided the relevant 
performance monitoring events supports qualification by logical 
processor. Within the subset of those performance metrics that support 
qualification by logical processors, some of them can be programmed 
with parallel ESCRs and CCCRs to collect separate counts for each 
logical processor simultaneously. For some metrics, qualification by 
logical processor is supported but there is not sufficient number of 
MSRs for simultaneous counting of the same metric on both logical 
processors. In both cases, it is also possible to program the relevant 
ESCR for a performance metric that supports qualification by logical 
processor to produce counts that are, typically, the sum of contributions 
from both logical processors. 

A number of performance metrics are based on performance monitoring 
events that do not support qualification by logical processor. Any 
attempts to program the relevant ESCRs to qualify counts by logical 
processor will not produce different results. The results obtained in this 
manner should not be summed together. 

The performance metrics listed in Table B-1 fall into three categories:

• Logical processor specific and supporting parallel counting

• Logical processor specific but constrained by ESCR limitations

• Logical processor independent and not supporting parallel counting.

Table B-5 lists performance metrics in the first and second category. 
Table B-6 lists performance metrics in the third category.

There are four specific performance metrics related to the trace cache 
that are exceptions to the three categories above. They are:

• Logical Processor 0 Deliver Mode

• Logical Processor 1 Deliver Mode
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• Logical Processor 0 Build Mode

• Logical Processor 0 Build Mode.

Each of these four metrics cannot be qualified by programming bit 0 to 
4 in the respective ESCR. However, it is possible and useful to collect 
two of these four metrics simultaneously.

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting

General Metrics Uops Retired

Instructions Retired

Non-Halted Clockticks

Speculative Uops Retired

Branching Metrics Branches Retired

Mispredicted Branches Retired

All returns

All indirect branches

All calls

All conditionals

Mispredicted returns

Mispredicted indirect branches

Mispredicted calls

Mispredicted conditionals

TC and Front End Metrics Trace Cache Misses

ITLB Misses

TC to ROM Transfers

Speculative TC-Built Uops

Speculative TC-Delivered Uops

Speculative Microcode Uops

continued
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Memory Metrics Split Load Replays1

Split Store Replays1

MOB Load Replays1

64k Aliasing Conflicts

1st-Level Cache Load Misses Retired

2nd-Level Cache Load Misses Retired

DTLB Load Misses Retired

Split Loads Retired1

Split Stores Retired1

MOB Load Replays Retired

Loads Retired

Stores Retired

DTLB Store Misses Retired

DTLB Load and Store Misses Retired

2nd-Level Cache Read Misses

2nd-Level Cache Read References

3rd-Level Cache Read Misses

3rd-Level Cache Read References

2nd-Level Cache Reads Hit Shared

2nd-Level Cache Reads Hit Modified

2nd-Level Cache Reads Hit Exclusive

3rd-Level Cache Reads Hit Shared

3rd-Level Cache Reads Hit Modified

3rd-Level Cache Reads Hit Exclusive

continued

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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Bus Metrics Bus Accesses from the Processor1

Non-prefetch Bus Accesses from the Processor1

Reads from the Processor1

Writes from the Processor1

Reads Non-prefetch from the Processor1

All WC from the Processor1

All UC from the Processor1

Bus Accesses from All Agents1

Bus Accesses Underway from the processor1

Bus Reads Underway from the processor1

Non-prefetch Reads Underway from the processor1

All UC Underway from the processor1

All WC Underway from the processor1

Bus Writes Underway from the processor1

Bus Accesses Underway from All Agents1

Write WC Full (BSQ)1

Write WC Partial (BSQ)1

Writes WB Full (BSQ)1

Reads Non-prefetch Full (BSQ)1

Reads Invalidate Full- RFO (BSQ)1

UC Reads Chunk (BSQ)1

UC Reads Chunk Split (BSQ)1

UC Write Partial (BSQ)1

IO Reads Chunk (BSQ)1

IO Writes Chunk (BSQ)1

WB Writes Full Underway (BSQ)1

UC Reads Chunk Underway (BSQ)1

Write WC Partial Underway(BSQ)1

continued

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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Characterization Metrics x87 Input Assists

x87 Output Assists

Machine Clear Count

Memory Order Machine Clear

Self-Modifying Code Clear

Scalar DP Retired

Scalar SP Retired

Packed DP Retired

Packed SP Retired

128-bit MMX Instructions Retired

64-bit MMX Instructions Retired

x87 Instructions Retired

Stalled Cycles of Store Buffer Resources
1 Parallel counting is not supported due to ESCR restrictions.

Table B-6 Metrics That Are Independent of Logical Processors

General Metrics Non-Sleep Clockticks

TC and Front End Metrics Page Walk Miss ITLB

Memory Metrics Page Walk DTLB All Misses

All WCB Evictions

WCB Full Evictions

Bus Metrics Bus Data Ready from the Processor

Characterization Metrics SSE Input Assists

Table B-5 Metrics That Support Qualification by Logical Processor and 
Parallel Counting (continued)
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C
IA-32 Instruction Latency and  
Throughput
This appendix contains tables of the latency, throughput and execution 
units that are associated with IA-32 instructions. The instruction timing 
data varies within the IA-32 family of processors. Only data specific to 
the Intel Pentium 4, Intel Xeon processors and Intel Pentium M 
processor are provided. The relevance of instruction throughput and 
latency information for code tuning is discussed in Chapter 1 and 
Chapter 2, see “Execution Core Detail” in Chapter 1 and “Floating 
Point/SIMD Operands” in Chapter 2.

This appendix contains the following sections:

• “Overview”– an overview of issues related to instruction selection 
and scheduling.

• “Definitions” – the definitions for the primary information 
presented in the tables in section “Latency and Throughput.”

• “Latency and Throughput of Pentium 4 and Intel Xeon processors” 
– the listings of IA-32 instruction throughput, latency and execution 
units associated with commonly-used instruction.

Overview
The current generation of IA-32 family of processors use out-of-order 
execution with dynamic scheduling and buffering to tolerate poor 
instruction selection and scheduling that may occur in legacy code. It 
can reorder µops to cover latency delays and to avoid resource conflicts. 
In some cases, the microarchitecture’s ability to avoid such delays can 
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be enhanced by arranging IA-32 instructions. While reordering IA-32 
instructions may help, the execution core determines the final schedule 
of µops.

This appendix provides information to assembly language programmers 
and compiler writers, to aid in selecting the sequence of instructions 
which minimizes dependency chain latency, and to arrange instructions 
in an order which assists the hardware in processing instructions 
efficiently while avoiding resource conflicts. The performance impact 
of applying the information presented in this appendix has been shown 
to be on the order of several percent, for applications which are not 
completely dominated by other performance factors, such as:

• cache miss latencies

• bus bandwidth

• I/O bandwidth

Instruction selection and scheduling matters when the compiler or 
assembly programmer has already addressed the performance issues 
discussed in Chapter 2:

• observe store forwarding restrictions

• avoid cache line and memory order buffer splits

• do not inhibit branch prediction

• minimize the use of xchg instructions on memory locations

While several items on the above list involve selecting the right 
instruction, this appendix focuses on the following issues. These are 
listed in an expected priority order, though which item contributes most 
to performance will vary by application.

• Maximize the flow of µops into the execution core. IA-32 
instructions which consist of more than four µops require additional 
steps from microcode ROM. These instructions with longer µop 
flows incur a delay in the front end and reduce the supply of uops to 
the execution core.  In Pentium 4 and Intel Xeon processors, 
transfers to microcode ROM often reduce how efficiently µops can 
be packed into the trace cache. Where possible, it is advisable to 
C-2



IA-32 Instruction Latency and Throughput C
select instructions with four or fewer µops. For example, a 32-bit 
integer multiply with a memory operand fits in the trace cache 
without going to microcode, while a 16-bit integer multiply to 
memory does not.

• Avoid resource conflicts. Interleaving instructions so that they don’t 
compete for the same port or execution unit can increase 
throughput. For example, alternating PADDQ and PMULUDQ, each have 
a throughput of one issue per two clock cycles. When interleaved, 
they can achieve an effective throughput of one instruction per cycle 
because they use the same port but different execution units. 
Selecting instructions with fast throughput also helps to preserve 
issue port bandwidth, hide latency and allows for higher software 
performance.

• Minimize the latency of dependency chains that are on the critical 
path. For example, an operation to shift left by two bits executes 
faster when encoded as two adds than when it is encoded as a shift. 
If latency is not an issue, the shift results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the 
instruction data provided in this manual, you can take advantage of the 
software performance analysis and tuning toolset available at 
http://developer.intel.com/software/products/index.htm. The tools 
include the VTune Performance Analyzer, with its 
performance-monitoring capabilities.

Definitions
The IA-32 instruction performance data are listed in several tables. The 
tables contain the following information:

Instruction Name:The assembly mnemonic of each instruction.

Latency: The number of clock cycles that are required for the 
execution core to complete the execution of all of the 
µops that form a IA-32 instruction. 
C-3
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Throughput: The number of clock cycles required to wait before the 
issue ports are free to accept the same instruction 
again. For many IA-32 instructions, the throughput of 
an instruction can be significantly less than its latency. 

Execution units: The names of the execution units in the execution core 
that are utilized to execute the µops for each 
instruction. This information is provided only for 
IA-32 instructions that are decoded into no more than 
4 µops. µops for instructions that decode into more 
than 4 µops are supplied by microcode ROM. Note 
that several execution units may share the same port, 
such as FP_ADD, FP_MUL, or MMX_SHFT in the 
FP_EXECUTE cluster (see Figure 1-4). 

Latency and Throughput
This section presents the latency and throughput information for the 
IA-32 instruction set including the Streaming SIMD Extensions 2, 
Streaming SIMD Extensions, MMX technology, and most of the 
frequently used general-purpose integer and x87 floating-point 
instructions. 

Due to the complexity of dynamic execution and out-of-order nature of 
the execution core, the instruction latency data may not be sufficient to 
accurately predict realistic performance of actual code sequences based 
on adding instruction latency data.

• The instruction latency data are useful when tuning a dependency 
chain. However, dependency chains limit the out-of-order core’s 
ability to execute micro-ops in parallel. The instruction throughput 
data are useful when tuning parallel code unencumbered by 
dependency chains.

• All numeric data in the tables are: 
— approximate and are subject to change in future 

implementations of the Intel NetBurst microarchitecture or the 
Pentium M processor microarchitecture.
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— not meant to be used as reference numbers for comparisons of 
instruction-level performance benchmarks. Comparison of 
instruction-level performance of microprocessors that are based 
on different microarchitecture is a complex subject that requires 
additional information that is beyond the scope of this manual. 

Comparisons of latency and throughput data between the Pentium 4 
processor and the Pentium M processor can be misleading, because one 
cycle in the Pentium 4 processor is NOT equal to one cycle in the 
Pentium M processor. The Pentium 4 processor is designed to operate at 
higher clock frequencies than the Pentium M processor. Many IA-32 
instructions can operate with either registers as their operands or with a 
combination of register/memory address as their operands. The 
performance of a given instruction between these two types is different.

The section that follows, “Latency and Throughput with Register 
Operands”, gives the latency and throughput data for the 
register-to-register instruction type. Section “Latency and Throughput 
with Memory Operands” discusses how to adjust latency and 
throughput specifications for the register-to-memory and 
memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half 
of a clock. This occurs only for the double-speed ALUs.

 Latency and Throughput with Register Operands

The IA-32 instruction latency and throughput data are presented in 
Table C-1 through Table C-7. The tables include the Streaming SIMD 
Extension 2, Streaming SIMD Extension, MMX technology and most of 
the commonly used IA-32 instructions. Instruction latency and 
throughput of the Pentium 4 processor and of the Pentium M processor 
are given in separate columns. Pentium 4 processor instruction timing 
data are shown in the columns represented by CPUID signature 0xF2n. 
Pentium M processor instruction timing data are shown in the columns 
represented by CPUID signature 0x69n. 
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Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

CVTDQ2PS3 xmm, xmm 5 2 FP_ADD

CVTPS2DQ3 xmm, xmm 5 3+1 2 2 FP_ADD

CVTTPS2DQ3 xmm, xmm 5 3+1 2 2 FP_ADD

MOVD xmm, r32 6 1 2 2 MMX_MISC,MMX_
SHFT

MOVD r32, xmm 10 1+1 1 2 FP_MOVE,FP_MIS
C

MOVDQA xmm, xmm 6 1 1 1 FP_MOVE

MOVDQU xmm, xmm 6 1 1 1 FP_MOVE

MOVDQ2Q mm, xmm 8 1 2 1 FP_MOVE,MMX_A
LU

MOVQ2DQ xmm, mm 8 1 2 1 FP_MOVE,MMX_S
HFT

MOVQ xmm, xmm 2 1 2 1 MMX_SHFT

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

4 2+1 2 2 MMX_SHFT

PADDB/PADDW/PADDD xmm, 
xmm

2 1 2 1 MMX_ALU 

PADDSB/PADDSW/
PADDUSB/PADDUSW 
xmm, xmm

2 1 2 1 MMX_ALU

PADDQ mm, mm 2 2 1 1 FP_MISC

PSUBQ mm, mm 2 2+1 1 2 FP_MISC

PADDQ/ PSUBQ3 xmm, xmm 6 2+1 2 2 FP_MISC

PAND xmm, xmm 2 1 2 1 MMX_ALU

PANDN xmm, xmm 2 1 2 1 MMX_ALU

PAVGB/PAVGW xmm, xmm 2 2 MMX_ALU 

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

2 1 2 1 MMX_ALU 

continued
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PCMPGTB/PCMPGTD/PCMP
GTW xmm, xmm

2 1 2 1 MMX_ALU

PEXTRW r32, xmm, imm8 7 3 2 2 MMX_SHFT,FP_MI
SC

PINSRW xmm, r32, imm8 4 1+1 2 2 MMX_SHFT,MMX_
MISC

PMADDWD xmm, xmm 8 3+1 2 2 FP_MUL

PMAX xmm, xmm 2 2 MMX_ALU

PMIN xmm, xmm 2 2 MMX_ALU

PMOVMSKB3 r32, xmm 7 2 FP_MISC 

PMULHUW/PMULHW/
PMULLW3 xmm, xmm

8 3+1 2 2 FP_MUL

PMULUDQ mm, mm 8 6 1 2 FP_MUL

PMULUDQ xmm, xmm 8 6+2 2 4 FP_MUL

POR xmm, xmm 2 1 2 1 MMX_ALU

PSADBW xmm, xmm 4 5+2 2 4 MMX_ALU

PSHUFD xmm, xmm, imm8 4 2+1 2 2 MMX_SHFT

PSHUFHW xmm, xmm, imm8 2 1 2 1 MMX_SHFT

PSHUFLW xmm, xmm, imm8 2 1 2 1 MMX_SHFT

PSLLDQ xmm, imm8 4 4 2 4 MMX_SHFT

PSLLW/PSLLD/PSLLQ xmm, 
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSRAW/PSRAD xmm, 
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSRLDQ xmm, imm8 4 4 2 4 MMX_SHFT

PSRLW/PSRLD/PSRLQ xmm, 
xmm/imm8

2 1+1 2 2 MMX_SHFT

PSUBB/PSUBW/PSUBD xmm, 
xmm

2 1 2 1 MMX_ALU 

PSUBSB/PSUBSW/PSUBUSB
/PSUBUSW xmm, xmm

2 1 2 1 MMX_ALU 

continued

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
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PUNPCKHBW/PUNPCKHWD/
PUNPCKHDQ xmm, xmm

4 1+1 2 2 MMX_SHFT 

PUNPCKHQDQ xmm, xmm 4 1_1 2 2 MMX_SHFT 

PUNPCKLBW/PUNPCKLWD/P
UNPCKLDQ xmm, xmm

2 2 2 2 MMX_SHFT

PUNPCKLQDQ3 xmm, xmm 4 1 1 1 FP_MISC

PXOR xmm, xmm 2 1 2 1 MMX_ALU

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point 
Instructions 

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADDPD xmm, xmm 4 4 2 2 FP_ADD

ADDSD xmm, xmm 4 3 2 1 FP_ADD

ANDNPD3 xmm, xmm 4 1 2 1 MMX_ALU

ANDPD3 xmm, xmm 4 1 2 1 MMX_ALU

CMPPD xmm, xmm, 
imm8

4 4 2 2 FP_ADD

CMPSD xmm, xmm, 
imm8

4 3 2 1 FP_ADD

COMISD xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

CVTDQ2PD xmm, xmm 8 4+1 3 4 FP_ADD, MMX_SHFT

CVTPD2PI mm, xmm 11 5 3 3 FP_ADD, 
MMX_SHFT,MMX_ALU

CVTPD2DQ xmm, xmm 9 5 2 3 FP_ADD, MMX_SHFT

CVTPD2PS3 xmm, xmm 10 2 FP_ADD, MMX_SHFT

CVTPI2PD xmm, mm 11 4+1 4 4 FP_ADD, 
MMX_SHFT,MMX_ALU

continued

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)

Instruction Latency1 Throughput Execution Unit2
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CVTPS2PD3 xmm, xmm 2 2+1 2 3 FP_ADD, 
MMX_SHFT,MMX_ALU

CVTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

CVTSD2SS3 xmm, xmm 16 4 4 1 FP_ADD, MMX_SHFT

CVTSI2SD3 xmm, r32 15 4 3 1 FP_ADD, MMX_SHFT, 
MMX_MISC

CVTSS2SD3 xmm, xmm 8 2 2 2

CVTTPD2PI mm, xmm 11 5 3 3 FP_ADD, 
MMX_SHFT,MMX_ALU

CVTTPD2DQ xmm, xmm 9 2 FP_ADD, MMX_SHFT

CVTTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC

DIVPD xmm, xmm 69 32+31 69 62 FP_DIV

DIVSD xmm, xmm 38 32 38 31 FP_DIV

MAXPD xmm, xmm 4 4 2 2 FP_ADD

MAXSD xmm, xmm 4 3 2 1 FP_ADD

MINPD xmm, xmm 4 4 2 2 FP_ADD

MINSD xmm, xmm 4 3 2 1 FP_ADD

MOVAPD xmm, xmm 6 1 FP_MOVE

MOVMSKPD r32, xmm 6 2 FP_MISC

MOVSD xmm, xmm 6 2 MMX_SHFT

MOVUPD xmm, xmm 6 1 FP_MOVE

MULPD xmm, xmm 6 2 FP_MUL

MULSD xmm, xmm 6 2 FP_MUL

ORPD3 xmm, xmm 4 2 MMX_ALU

SHUFPD3 xmm, xmm, 
imm8

6 2 MMX_SHFT

SQRTPD xmm, xmm 69 58+57 69 114 FP_DIV

SQRTSD xmm, xmm 38 58 38 57 FP_DIV

SUBPD xmm, xmm 4 4 2 2 FP_ADD

continued

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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SUBSD xmm, xmm 4 3 2 1 FP_ADD

UCOMISD xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

UNPCKHPD3 xmm, xmm 6 1 2 1 MMX_SHFT

UNPCKLPD3 xmm, xmm 4 1 2 1 MMX_SHFT

XORPD3 xmm, xmm 4 1 2 1 MMX_ALU

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions 

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADDPS xmm, xmm 4 4 2 2 FP_ADD

ADDSS xmm, xmm 4 3 2 1 FP_ADD

ANDNPS3 xmm, xmm 4 2 2 2 MMX_ALU

ANDPS3 xmm, xmm 4 2 2 2 MMX_ALU

CMPPS xmm, xmm 4 4 2 2 FP_ADD

CMPSS xmm, xmm 4 3 2 1 FP_ADD

COMISS xmm, xmm 6 1 2 1 FP_ADD,FP_MISC

CVTPI2PS xmm, mm 11 3 4 1 MMX_ALU,FP_ADD,MMX_
SHFT

CVTPS2PI mm, xmm 7 3 2 1 FP_ADD,MMX_ALU

CVTSI2SS3 xmm, r32 11 4 2 2 FP_ADD,MMX_SHFT, 
MMX_MISC

CVTSS2SI r32, xmm 8 4 2 1 FP_ADD,FP_MISC

CVTTPS2PI mm, xmm 7 3 2 1 FP_ADD,MMX_ALU

CVTTSS2SI r32, xmm 8 4 2 1 FP_ADD,FP_MISC

DIVPS xmm, xmm 39 18+17 39 36 FP_DIV

DIVSS xmm, xmm 23 23 FP_DIV

continued

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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MAXPS xmm, xmm 4 2 FP_ADD

MAXSS xmm, xmm 4 2 FP_ADD

MINPS xmm, xmm 4 2 FP_ADD

MINSS xmm, xmm 4 2 FP_ADD

MOVAPS xmm, xmm 6 1 FP_MOVE

MOVHLPS3 xmm, 
xmm

6 2 MMX_SHFT

MOVLHPS3 xmm, 
xmm

4 2 MMX_SHFT

MOVMSKPS r32, xmm 6 2 FP_MISC

MOVSS xmm, xmm 4 2 MMX_SHFT

MOVUPS xmm, xmm 6 1 FP_MOVE

MULPS xmm, xmm 6 4+1 2 2 FP_MUL

MULSS xmm, xmm 6 2 FP_MUL

ORPS3 xmm, xmm 4 2 2 2 MMX_ALU

RCPPS3 xmm, xmm 6 2 4 2 MMX_MISC

RCPSS3 xmm, xmm 6 1 2 1 MMX_MISC,MMX_SHFT

RSQRTPS3 xmm, 
xmm

6 2 4 2 MMX_MISC

RSQRTSS3 xmm, 
xmm

6 4 1 MMX_MISC,MMX_SHFT

SHUFPS3 xmm, xmm, 
imm8

6 2 2 2 MMX_SHFT

SQRTPS xmm, xmm 39 29+28 39 58 FP_DIV

SQRTSS xmm, xmm 23 30 23 29 FP_DIV

SUBPS xmm, xmm 4 4 2 2 FP_ADD

SUBSS xmm, xmm 4 3 2 1 FP_ADD

UCOMISS xmm, xmm 6 1 2 1 FP_ADD, FP_MISC

UNPCKHPS3 xmm, 
xmm

6 3 2 2 MMX_SHFT

continued

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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See “Table Footnotes”
 

UNPCKLPS3 xmm, 
xmm

4 3 2 2 MMX_SHFT

XORPS3 xmm, xmm 4 2 2 2 MMX_ALU

FXRSTOR 150

FXSAVE 100

Table C-4 Streaming SIMD Extension 64-bit Integer Instructions 

Instruction Latency1 Throughput Execution Unit

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

PAVGB/PAVGW mm, mm 2 1 MMX_ALU

PEXTRW r32, mm, imm8 7 2 2 1 MMX_SHFT,FP_MISC

PINSRW mm, r32, imm8 4 1 1 1 MMX_SHFT,MMX_MISC

PMAX mm, mm 2 1 MMX_ALU

PMIN mm, mm 2 1 MMX_ALU

PMOVMSKB3 r32, mm 7 1 2 1 FP_MISC

PMULHUW3 mm, mm 8 1 FP_MUL

PSADBW mm, mm 4 5 1 2 MMX_ALU

PSHUFW mm, mm, imm8 2 1 1 1 MMX_SHFT

Table C-5 MMX Technology 64-bit Instructions 

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

MOVD mm, r32 2 1 MMX_ALU
MOVD3 r32, mm 5 1 FP_MISC
MOVQ mm, mm 6 1 FP_MOV

PACKSSWB/PACKSSDW/PACKU
SWB mm, mm

2 1 MMX_SHFT

continued

Table C-3 Streaming SIMD Extension Single-precision Floating-point 
Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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PADDB/PADDW/PADDD mm, mm 2 1 MMX_ALU 

PADDSB/PADDSW
/PADDUSB/PADDUSW mm, mm

2 1 MMX_ALU

PAND mm, mm 2 1 MMX_ALU
PANDN mm, mm 2 1 MMX_ALU 
PCMPEQB/PCMPEQD
PCMPEQW mm, mm

2 1 MMX_ALU 

PCMPGTB/PCMPGTD/
PCMPGTW mm, mm

2 1 MMX_ALU

PMADDWD3 mm, mm 8 1 FP_MUL

PMULHW/PMULLW3 mm, mm 8 1 FP_MUL
POR mm, mm 2 1 MMX_ALU
PSLLQ/PSLLW/
PSLLD mm, mm/imm8

2 1 MMX_SHFT

PSRAW/PSRAD mm, mm/imm8 2 1 MMX_SHFT

PSRLQ/PSRLW/PSRLD mm, 
mm/imm8 

2 1 MMX_SHFT

PSUBB/PSUBW/PSUBD mm, mm     2 1 MMX_ALU 
PSUBSB/PSUBSW/PSUBUSB/PS
UBUSW mm, mm     

2 1 MMX_ALU 

PUNPCKHBW/PUNPCKHWD/PU
NPCKHDQ mm, mm 

2 1 MMX_SHFT 

PUNPCKLBW/PUNPCKLWD/PUN
PCKLDQ mm, mm 

2 1 MMX_SHFT

PXOR mm, mm 2 1 MMX_ALU
EMMS1 12 12

See “Table Footnotes”

Table C-5 MMX Technology 64-bit Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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Table C-6 IA-32 x87 Floating-point Instructions 

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

FABS 2 1 FP_MISC

FADD 5 1 FP_ADD

FSUB 5 1 FP_ADD

FMUL 7 2 FP_MUL

FCOM 2 1 FP_MISC

FCHS 2 1 FP_MISC

FDIV  Single Precision 23 23 FP_DIV

FDIV  Double Precision 38 38 FP_DIV

FDIV  Extended Precision 43 43 FP_DIV

FSQRT SP 23 23 FP_DIV

FSQRT DP 38 38 FP_DIV

FSQRT EP 43 43 FP_DIV

F2XM14 90-
150

60

FCOS4 190-
240

130

FPATAN4 150-
300

140

FPTAN4 225-
250

170

FSIN4 160-
180

130

FSINCOS4 160-
220

140

FYL2X4 140-
190

85

FYL2XP14 140-
190

85

FSCALE4 60 7

FRNDINT4 30 11

continued
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FXCH5 0 1 FP_MOVE

FLDZ6 0

FINCSTP/FDECSTP6 0

Table C-7 IA-32 General Purpose Instructions 

Instruction Latency1 Throughput Execution Unit2

CPUID 0F2n 0x69n 0F2n 0x69n 0F2n

ADC/SBB reg, reg 8 3

ADC/SBB reg, imm 6 2 ALU

ADD/SUB 0.5 0.5 ALU     

AND/OR/XOR 0.5 0.5 ALU     

BSF/BSR 8 4

BSWAP 7 1 ALU

CLI 26

CMP/TEST 0.5 0.5 ALU     

DEC/INC 1 0.5 ALU     

IMUL r32 14 4 3 FP_MUL

IMUL imm32 14 4 3 FP_MUL

IMUL 15-18 4 5

IDIV 56-70 23

IN/OUT1 <225 40

Jcc7 Not 
Applic
able

0.5 ALU

LOOP 8 1.5 ALU

MOV 0.5 0.5 ALU

MOVSB/MOVSW 0.5 0.5 ALU

continued

Table C-6 IA-32 x87 Floating-point Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
C-15



IA-32 Intel® Architecture Optimization
See “Table Footnotes”

Table Footnotes

The following footnotes refer to all tables in this appendix.

1. Latency information for many of instructions that are complex
(> 4 µops) are estimates based on conservative and worst-case 
estimates. Actual performance of these instructions by the 

MOVZB/MOVZW 0.5 0.5 ALU

NEG/NOT/NOP 0.5 0.5 ALU

POP r32 1.5 1 MEM_LOAD,ALU

PUSH 1.5 1 MEM_STORE,ALU

RCL/RCR reg, 18 4 1

RCL/RCR reg, 18 4 1

ROL/ROR 4 1

RET 8 1 MEM_LOAD,ALU

SAHF 0.5 0.5 ALU

SAL/SAR/SHL/SHR 4 1 1

SCAS 4 1.5 ALU,MEM_LOAD

SETcc 5 1.5 ALU

STI 36

STOSB 5 2 ALU,MEM_STORE

XCHG 1.5 1 ALU

CALL 5 1 ALU,MEM_STORE

MUL 14-18 5

DIV 56-70 23

Table C-7 IA-32 General Purpose Instructions  (continued)

Instruction Latency1 Throughput Execution Unit2
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out-of-order core execution unit can range from somewhat faster to 
significantly faster than the nominal latency data shown in these 
tables.

2. The names of execution units apply to processor implementations 
of the Intel NetBurst microarchitecture only.  They include: ALU, 
FP_EXECUTE, FPMOVE, MEM_LOAD, MEM_STORE. See Figure 1-4 for 
execution units and ports in the out-of-order core. Note the 
following:
• The FP_EXECUTE unit is actually a cluster of execution units, 

roughly consisting of seven separate execution units. 
• The FP_ADD unit handles x87 and SIMD floating-point add and 

subtract operation. 
• The FP_MUL unit handles x87 and SIMD floating-point multiply 

operation. 
• The FP_DIV unit handles x87 and SIMD floating-point divide 

square-root operations. 
• The MMX_SHFT unit handles shift and rotate operations. 
• The MMX_ALU unit handles SIMD integer ALU operations. 
• The MMX_MISC unit handles reciprocal MMX computations and 

some integer operations.
• The FP_MISC designates other execution units in port 1 that are 

separated from the six units listed above.

3. It may be possible to construct repetitive calls to some IA-32 
instructions in code sequences to achieve latency that is one or two 
clock cycles faster than the more realistic number listed in this 
table.

4. Latency and Throughput of transcendental instructions can vary 
substantially in a dynamic execution environment. Only an 
approximate value or a range of values are given for these 
instructions.

5. The FXCH instruction has 0 latency in code sequences. However, it 
is limited to an issue rate of one instruction per clock cycle. 
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6. The load constant instructions, FINCSTP, and FDECSTP have 0 
latency in code sequences.

7. Selection of conditional jump instructions should be based on the 
recommendation of section “Branch Prediction” to improve the 
predictability of branches. When branches are predicted 
successfully, the latency of jcc is effectively zero.

8. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR 
with shift count other than 1 will be executed more slowly. This 
applies to the Pentium 4 and Intel Xeon processors.

Latency and Throughput with Memory Operands

The discussion of this section applies to the Intel Pentium 4 and Intel 
Xeon processors. Typically, instructions with a memory address as the 
source operand, add one more µop to the “reg, reg” instructions type 
listed in Table C-1 through C-7. However, the throughput in most cases 
remains the same because the load operation utilizes port 2 without 
affecting port 0 or port 1. 

Many IA-32 instructions accept a memory address as either the source 
operand or as the destination operand. The former is commonly referred 
to as a load operation, while the latter a store operation.

The latency for IA-32 instructions that perform either a load or a store 
operation are typically longer than the latency of corresponding 
register-to-register type of the IA-32 instructions. This is because load 
or store operations require access to the cache hierarchy and, in some 
cases, the memory sub-system. 

For the sake of simplicity, all data being requested is assumed to reside 
in the first level data cache (cache hit). In general, IA-32 instructions 
with load operations that execute in the integer ALU units require two 
more clock cycles than the corresponding register-to-register flavor of 
the same instruction. Throughput of these instructions with load 
operation remains the same with the register-to-register flavor of the 
instructions.
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Floating-point, MMX technology, Streaming SIMD Extensions and 
Streaming SIMD Extension 2 instructions with load operations require 6 
more clocks in latency than the register-only version of the instructions, 
but throughput remains the same. 

When store operations are on the critical path, their results can generally 
be forwarded to a dependent load in as few as zero cycles. Thus, the 
latency to complete and store isn’t relevant here.
C-19



IA-32 Intel® Architecture Optimization
C-20



D
Stack Alignment
This appendix details on the alignment of the stacks of data for 
Streaming SIMD Extensions and Streaming SIMD Extensions 2.

Stack Frames
This section describes the stack alignment conventions for both 
esp-based (normal), and ebp-based (debug) stack frames. A stack frame 
is a contiguous block of memory allocated to a function for its local 
memory needs. It contains space for the function’s parameters, return 
address, local variables, register spills, parameters needing to be passed 
to other functions that a stack frame may call, and possibly others. It is 
typically delineated in memory by a stack frame pointer (esp) that 
points to the base of the frame for the function and from which all data 
are referenced via appropriate offsets. The convention on IA-32 is to use 
the esp register as the stack frame pointer for normal optimized code, 
and to use ebp in place of esp when debug information must be kept. 
Debuggers use the ebp register to find the information about the 
function via the stack frame.

It is important to ensure that the stack frame is aligned to a 16-byte 
boundary upon function entry to keep local __m128 data, parameters, 
and xmm register spill locations aligned throughout a function 
invocation.The Intel C++ Compiler for Win32* Systems supports 
conventions presented here help to prevent memory references from 
incurring penalties due to misaligned data by keeping them aligned to 
16-byte boundaries. In addition, this scheme supports improved 
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alignment for __m64 and double type data by enforcing that these 
64-bit data items are at least eight-byte aligned (they will now be 
16-byte aligned). 

For variables allocated in the stack frame, the compiler cannot 
guarantee the base of the variable is aligned unless it also ensures that 
the stack frame itself is 16-byte aligned. Previous IA-32 software 
conventions, as implemented in most compilers, only ensure that 
individual stack frames are 4-byte aligned. Therefore, a function called 
from a Microsoft-compiled function, for example, can only assume that 
the frame pointer it used is 4-byte aligned.

Earlier versions of the Intel C++ Compiler for Win32 Systems have 
attempted to provide 8-byte aligned stack frames by dynamically 
adjusting the stack frame pointer in the prologue of main and preserving 
8-byte alignment of the functions it compiles. This technique is limited 
in its applicability for the following reasons:

• The main function must be compiled by the Intel C++ Compiler.

• There may be no functions in the call tree compiled by some other 
compiler (as might be the case for routines registered as callbacks). 

• Support is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume 
only 4-byte alignment. If the function has a need for 8-byte or 16-byte 
alignment, then code can be inserted to dynamically align the stack 
appropriately, resulting in one of the stack frames shown in Figure D-1.
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As an optimization, an alternate entry point can be created that can be 
called when proper stack alignment is provided by the caller. Using call 
graph profiling of the VTune analyzer, calls to the normal (unaligned) 
entry point can be optimized into calls to the (alternate) aligned entry 
point when the stack can be proven to be properly aligned. Furthermore, 
a function alignment requirement attribute can be modified throughout 
the call graph so as to cause the least number of calls to unaligned entry 
points. As an example of this, suppose function F has only a stack 
alignment requirement of 4, but it calls function G at many call sites, 
and in a loop. If G’s alignment requirement is 16, then by promoting F’s 
alignment requirement to 16, and making all calls to G go to its aligned 
entry point, the compiler can minimize the number of times that control 
passes through the unaligned entry points. Example D-1 and 

Figure D-1 Stack Frames Based on Alignment Type
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Example D-1 in the following sections illustrate this technique. Note the 
entry points foo and foo.aligned, the latter is the alternate aligned 
entry point.

Aligned esp-Based Stack Frames

This section discusses data and parameter alignment and the 
declspec(align) extended attribute, which can be used to request 
alignment in C and C++ code. In creating esp-based stack frames, the 
compiler adds padding between the return address and the register save 
area as shown in Example 3-9. This frame can be used only when debug 
information is not requested, there is no need for exception handling 
support, inlined assembly is not used, and there are no calls to alloca 
within the function. 

If the above conditions are not met, an aligned ebp-based frame must be 
used. When using this type of frame, the sum of the sizes of the return 
address, saved registers, local variables, register spill slots, and 
parameter space must be a multiple of 16 bytes. This causes the base of 
the parameter space to be 16-byte aligned. In addition, any space 
reserved for passing parameters for stdcall functions also must be a 
multiple of 16 bytes. This means that the caller needs to clean up some 
of the stack space when the size of the parameters pushed for a call to a 
stdcall function is not a multiple of 16. If the caller does not do this, 
the stack pointer is not restored to its pre-call value.

In Example D-1, we have 12 bytes on the stack after the point of 
alignment from the caller: the return pointer, ebx and edx. Thus, we 
need to add four more to the stack pointer to achieve alignment. 
Assuming 16 bytes of stack space are needed for local variables, the 
compiler adds 16 + 4 = 20 bytes to esp, making esp aligned to a 0 mod 
16 address.
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Example D-1 Aligned esp-Based Stack Frames

void  _cdecl foo (int k)

{

 int j;

 foo:                             // See Note A

 push      ebx

 mov       ebx, esp

 sub       esp, 0x00000008

 and       esp, 0xfffffff0

 add       esp, 0x00000008

 jmp       common

foo.aligned:

push      ebx

mov       ebx, esp

common:                          // See Note B

push      edx

sub       esp, 20

j = k;

mov       edx, [ebx + 8]

mov       [esp + 16], edx

foo(5);

mov       [esp], 5

call      foo.aligned

return j;

mov       eax, [esp + 16]

add       esp, 20

pop       edx

mov       esp, ebx

pop       ebx

ret
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Aligned ebp-Based Stack Frames

In ebp-based frames, padding is also inserted immediately before the 
return address. However, this frame is slightly unusual in that the return 
address may actually reside in two different places in the stack. This 
occurs whenever padding must be added and exception handling is in 
effect for the function. Example D-2 shows the code generated for this 
type of frame. The stack location of the return address is aligned 12 mod 
16. This means that the value of ebp always satisfies the condition (ebp 
& 0x0f) == 0x08. In this case, the sum of the sizes of the return 
address, the previous ebp, the exception handling record, the local 
variables, and the spill area must be a multiple of 16 bytes. In addition, 
the parameter passing space must be a multiple of 16 bytes. For a call to 
a stdcall function, it is necessary for the caller to reserve some stack 
space if the size of the parameter block being pushed is not a multiple 
of 16.

NOTE.  A. Aligned entry points assume that parameter 
block beginnings are aligned. This places the stack 
pointer at a 12 mod 16 boundary, as the return pointer 
has been pushed. Thus, the unaligned entry point must 
force the stack pointer to this boundary.
            B. The code at the common label assumes the 
stack is at an 8 mod 16 boundary, and adds sufficient 
space to the stack so that the stack pointer is aligned to 
a 0 mod 16 boundary.
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Example D-2 Aligned ebp-based Stack Frames

void _stdcall foo (int k)
{

 int j;

 foo:

 push ebx

mov ebx, esp

sub esp, 0x00000008

and esp, 0xfffffff0

add esp, 0x00000008 // esp is (8 mod 16) 
after add 

jmp common

 foo.aligned:

push ebx // esp is (8 mod 16) 
after push

mov ebx, esp

 common: 

 push ebp // this slot will be 
used for 

// duplicate return pt

push    ebp // esp is (0 mod 16) 
after push  

// (rtn,ebx,ebp,ebp)

mov     ebp, [ebx + 4] // fetch return pointer 
and store 

mov     [esp + 4], ebp // relative to ebp 
// (rtn,ebx,rtn,ebp)

mov ebp, esp // ebp is (0 mod 16)

sub esp, 28 // esp is (4 mod 16) 

//see Note A

push edx // esp is (0 mod 16) 
after push

continued
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// the goal is to make 
esp and ebp

// (0 mod 16) here

j = k;

mov edx, [ebx + 8] // k is (0 mod 16) if 
caller aligned

// its stack

mov [ebp - 16], edx // J is (0 mod 16)

foo(5);

add esp, -4 // normal call sequence 
to

 // unaligned entry

mov     [esp],5

call    foo // for stdcall, callee 
// cleans up stack

foo.aligned(5);

add     esp,-16 // aligned entry, this 
should

 // be a multiple of 16

mov     [esp],5

call    foo.aligned

add     esp,12 // see Note B

return j;

mov     eax,[ebp-16]

pop     edx

mov     esp,ebp

pop     ebp

mov     esp,ebx

pop     ebx

ret 4

}

Example D-2 Aligned ebp-based Stack Frames (continued)
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Stack Frame Optimizations

The Intel C++ Compiler provides certain optimizations that may 
improve the way aligned frames are set up and used. These 
optimizations are as follows:

• If a procedure is defined to leave the stack frame 16-byte-aligned 
and it calls another procedure that requires 16-byte alignment, then 
the callee’s aligned entry point is called, bypassing all of the 
unnecessary aligning code.

• If a static function requires 16-byte alignment, and it can be proven 
to be called only by other functions that require 16-byte alignment, 
then that function will not have any alignment code in it. That is, the 
compiler will not use ebx to point to the argument block and it will 
not have alternate entry points, because this function will never be 
entered with an unaligned frame.

NOTE.  A. Here we allow for local variables. However, 
this value should be adjusted so that, after pushing the 
saved registers, esp is 0 mod 16.
           B. Just prior to the call, esp is 0 mod 16. To 
maintain alignment, esp should be adjusted by 16. 
When a callee uses the stdcall calling sequence, the 
stack pointer is restored by the callee. The final 
addition of 12 compensates for the fact that only 4 
bytes were passed, rather than 16, and thus the caller 
must account for the remaining adjustment. 
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Inlined Assembly and ebx
When using aligned frames, the ebx register generally should not be 
modified in inlined assembly blocks since ebx is used to keep track of 
the argument block. Programmers may modify ebx only if they do not 
need to access the arguments and provided they save ebx and restore it 
before the end of the function (since esp is restored relative to ebx in the 
function’s epilog). 

For additional information on the use of ebx in inline assembly code and 
other related issues, see relevant application notes in the Intel 
Architecture Performance Training Center.

CAUTION.  Do not use the ebx register in inline 
assembly functions that use dynamic stack alignment 
for double, __m64, and __m128 local variables unless 
you save and restore ebx each time you use it. The 
Intel C++ Compiler uses the ebx register to control 
alignment of variables of these types, so the use of ebx, 
without preserving it, will cause unexpected program 
execution.
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E
Mathematics of Prefetch 
Scheduling Distance
This appendix discusses how far away to insert prefetch instructions. It 
presents a mathematical model allowing you to deduce a simplified 
equation which you can use for determining the prefetch scheduling 
distance (PSD) for your application. 

For your convenience, the first section presents this simplified equation; 
the second section provides the background for this equation: the 
mathematical model of the calculation.

Simplified Equation
A simplified equation to compute PSD is as follows:

 

where

psd is prefetch scheduling distance.

Nlookup is the number of clocks for lookup latency. This 
parameter is system-dependent. The type of memory 
used and the chipset implementation affect its value.

Nxfer is the number of clocks to transfer a cache-line. This 
parameter is implementation-dependent.

Npref and Nst are the numbers of cache lines to be prefetched and 
stored.

CPI is the number of clocks per instruction. This parameter 
is implementation-dependent.

psd
Nlookup Nxfer Npref Nst+( )⋅+

CPI Ninst⋅
-------------------------------------------------------------------------------=
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Ninst is the number of instructions in the scope of one loop 
iteration.

Consider the following example of a heuristic equation assuming that 
parameters have the values as indicated:

where 60 corresponds to Nlookup, 25 to Nxfer, and 1.5 to CPI.

The values of the parameters in the equation can be derived from the 
documentation for memory components and chipsets as well as from 
vendor datasheets. 

Mathematical Model for PSD
The parameters used in the mathematics discussed are as follows:

psd prefetch scheduling distance (measured in number of 
iterations)

il iteration latency

Tc computation latency per iteration with prefetch caches

Tl memory leadoff latency including cache miss latency, 
chip set latency, bus arbitration, etc.

CAUTION.  The values in this example are for 
illustration only and do not represent the actual values 
for these parameters. The example is provided as a 
“starting point approximation” of calculating the 
prefetch scheduling distance using the above formula. 
Experimenting with the instruction around the 
“starting point approximation” may be required to 
achieve the best possible performance.

psd
60 25 Npref Nst+( )⋅+

1.5 Ninst⋅
-----------------------------------------------------=
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Tb data transfer latency which is equal to number of lines 
per iteration * line burst latency

Note that the potential effects of µop reordering are not factored into the 
estimations discussed.

Examine Example E-1 that uses the prefetchnta instruction with a 
prefetch scheduling distance of 3, that is, psd = 3. The data prefetched in 
iteration i, will actually be used in iteration i+3. Tc represents the cycles 
needed to execute top_loop - assuming all the memory accesses hit L1 
while il (iteration latency) represents the cycles needed to execute this 
loop with actually run-time memory footprint. Tc can be determined by 
computing the critical path latency of the code dependency graph. This 
work is quite arduous without help from special performance 
characterization tools or compilers. A simple heuristic for estimating the 
Tc value is to count the number of instructions in the critical path and 
multiply the number with an artificial CPI. A reasonable CPI value 
would be somewhere between 1.0 and 1.5 depending on the quality of 
code scheduling.

Example E-1 Calculating Insertion for Scheduling Distance of 3

top_loop:

  prefetchnta [edx+esi+32*3]

  prefetchnta [edx*4+esi+32*3]

  . . . . .

  movaps xmm1, [edx+esi]

  movaps xmm2, [edx*4+esi]

  movaps xmm3, [edx+esi+16]

  movaps xmm4, [edx*4+esi+16]

  . . . . .

  . . .

  add esi, 32

  cmp esi, ecx

  jl top_loop
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Memory access plays a pivotal role in prefetch scheduling. For more 
understanding of a memory subsystem, consider Streaming SIMD 
Extensions and Streaming SIMD Extensions 2 memory pipeline 
depicted in Figure E-1.   

Assume that three cache lines are accessed per iteration and four chunks 
of data are returned per iteration for each cache line. Also assume these 
3 accesses are pipelined in memory subsystem. Based on these 
assumptions,
Tb = 3 * 4 = 12 FSB cycles. 

Figure E-1 Pentium II, Pentium III and Pentium 4 Processors Memory Pipeline 
Sketch

 1 2 3 4 1 

1 2 3 4 1 

1 2 3 4 1 

T l T b 

:  L2 lookup miss latency 

:  Memory page access leadoff latency 

:  Latency for 4 chunks returned per line 2 3 1 4 
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Tl varies dynamically and is also system hardware-dependent. The static 
variants include the core-to-front-side-bus ratio, memory manufacturer 
and memory controller (chipset). The dynamic variants include the 
memory page open/miss occasions, memory accesses sequence, 
different memory types, and so on.

To determine the proper prefetch scheduling distance, follow these steps 
and formulae:

• Optimize Tc as much as possible

• Use the following set of formulae to calculate the proper prefetch 
scheduling distance: 

• Schedule the prefetch instructions according to the computed 
prefetch scheduling distance.

• For optimized memory performance, apply techniques described in 
“Memory Optimization Using Prefetch” in Chapter 6.

The following sections explain and illustrate the architectural 
considerations involved in the prefetch scheduling distance formulae 
above.
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No Preloading or Prefetch

The traditional programming approach does not perform data 
preloading or prefetch. It is sequential in nature and will experience 
stalls because the memory is unable to provide the data immediately 
when the execution pipeline requires it. Examine Figure E-2. 

As you can see from Figure E-2, the execution pipeline is stalled while 
waiting for data to be returned from memory. On the other hand, the 
front side bus is idle during the computation portion of the loop. The 
memory access latencies could be hidden behind execution if data could 
be fetched earlier during the bus idle time.

Further analyzing Figure E-2,

• assume execution cannot continue till last chunk returned and

• δf indicates flow data dependency that stalls the execution pipelines

With these two things in mind the iteration latency (il) is computed as 
follows:

Figure E-2 Execution Pipeline, No Preloading or Prefetch
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The iteration latency is approximately equal to the computation latency 
plus the memory leadoff latency (includes cache miss latency, chipset 
latency, bus arbitration, and so on.) plus the data transfer latency where

 transfer latency= number of lines per iteration * line burst latency. 

This means that the decoupled memory and execution are ineffective to 
explore the parallelism because of flow dependency. That is the case 
where prefetch can be useful by removing the bubbles in either the 
execution pipeline or the memory pipeline. 

With an ideal placement of the data prefetching, the iteration latency 
should be either bound by execution latency or memory latency, that is

 il = maximum(Tc, Tb).

Compute Bound (Case:Tc >= Tl + Tb)

Figure E-3 represents the case when the compute latency is greater than 
or equal to the memory leadoff latency plus the data transfer latency. In 
this case, the prefetch scheduling distance is exactly 1; i.e., prefetch data 
one iteration ahead is good enough. The data for loop iteration i can be 
prefetched during loop iteration i-1, the δf symbol between front-side 
bus and execution pipeline indicates the data flow dependency.  

Figure E-3 Compute Bound Execution Pipeline
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The following formula shows the relationship among the parameters:

It can be seen from this relationship that the iteration latency is equal to 
the computation latency, which means the memory accesses are 
executed in background and their latencies are completely hidden.

Compute Bound (Case: Tl + Tb > Tc > Tb)

Now consider the next case by first examining Figure E-4.   

Figure E-4 Another Compute Bound Execution Pipeline
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For this particular example the prefetch scheduling distance is greater 
than 1. Data being prefetched for iteration i will be consumed in 
iteration i+2. 
Figure E-4 represents the case when the leadoff latency plus data 
transfer latency is greater than the compute latency, which is greater 
than the data transfer latency. The following relationship can be used to 
compute the prefetch scheduling distance.

In consequence, the iteration latency is also equal to the computation 
latency, that is, compute bound program.

Memory Throughput Bound (Case: Tb >= Tc)

When the application or loop is memory throughput bound, the memory 
latency is no way to be hidden. Under such circumstances, the burst 
latency is always greater than the compute latency. Examine Figure E-5.  
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The following relationship calculates the prefetch scheduling distance 
(or prefetch iteration distance) for the case when memory throughput 
latency is greater than the compute latency.

Apparently, the iteration latency is dominant by the memory throughput 
and you cannot do much about it. Typically, data copy from one space to 
another space, for example, graphics driver moving data from writeback 
memory to you cannot do much about it. Typically, data copy from one 
space to another space, for example, graphics driver moving data from 
writeback memory to write-combining memory, belongs to this 
category, where performance advantage from prefetch instructions will 
be marginal.

Figure E-5 Memory Throughput Bound Pipeline
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Example

As an example of the previous cases consider the following conditions 
for computation latency and the memory throughput latencies. Assume 
Tl = 18 and Tb = 8 (in front side bus cycles).

Now for the case Tl =18, Tb =8 (2 cache lines are needed per iteration) 
examine the following graph. Consider the graph of accesses per 
iteration in example 1, Figure E-6.

The prefetch scheduling distance is a step function of Tc, the 
computation latency. The steady state iteration latency (il) is either 
memory-bound or compute-bound depending on Tc if prefetches are 
scheduled effectively.

Figure E-6 Accesses per Iteration, Example 1
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The graph in example 2 of accesses per iteration in Figure E-7 shows 
the results for prefetching multiple cache lines per iteration. The cases 
shown are for 2, 4, and 6 cache lines per iteration, resulting in differing 
burst latencies. (Tl=18, Tb =8, 16, 24).

In reality, the front-side bus (FSB) pipelining depth is limited, that is, 
only four transactions are allowed at a time in the Pentium III and 
Pentium 4 processors. Hence a transaction bubble or gap, Tg, (gap due 
to idle bus of imperfect front side bus pipelining) will be observed on 
FSB activities. This leads to consideration of the transaction gap in 
computing the prefetch scheduling distance. The transaction gap, Tg, 
must be factored into the burst cycles, Tb, for the calculation of prefetch 
scheduling distance.

The following relationship shows computation of the transaction gap.

Figure E-7 Accesses per Iteration, Example 2
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where Tl is the memory leadoff latency, c is the number of chunks per 
cache line and n is the FSB pipelining depth.
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