
Document Number: 355308-002

Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Documentation Changes

August 2023

2 Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/
licenses/0BSD. You may create software implementations based on this document and in compliance with the
foregoing that are intended to execute on the Intel product(s) referenced in this document. No rights are granted
to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 3

Contents

Revision History . 4

Preface . 5

Nomenclature. 5

Summary Tables of Changes . 5

Documentation Changes. 5

Revision History

4 Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes

Revision History

Revision Description Date

-001 Initial release May 2023

-002 Q3 Release August 2023

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 5

Preface

This document is an update to the optimization recommendations contained in the Intel® 64 and IA-32
Architectures Optimization Reference Manual, also known as the Software Optimization Manual. This document
is a compilation of device and documentation errata, specification clarifications and changes. It is intended for
hardware system manufacturers and software developers of applications, operating systems, or tools.

Nomenclature
Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Summary Tables of Changes
The following table indicates documentation changes which apply to the Intel® 64 and IA-32 Architecture
software optimization topics covered by this reference manual.

Documentation Changes
Changes to the Intel® 64 and IA-32 Architectures Optimization Reference Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

No. DOCUMENTATION CHANGES

1 Updates to Chapter 2

2 Updates to Chapter 3

3 Updates to Chapter 5

4 Updates to Chapter 20

5 Updates to Appendix E

6 Updates to Appendix F

7 Updates to Appendix D

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 6

1. Updates to Chapter 2

Change bars and violet text show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Introduction.

--
Changes to this chapter:
• Section 2.3

— Updated Figure 2-1 to correct a typo
• Section 2.4:

— Updated Figure 2-3 to match style of 2-1
• Section 2.7

— Removed section Relating to Knights Landing: “Intel Xeon Phi processors based on the Knights Landing
microarchitecture support 4 logical processors in each processor core; see Chapter 23 for detailed
information of Intel HT Technology that is implemented in the Knights Landing microarchitecture.”

— Updated Figure 2-9 to match style of other Figures.

Ref#: 248966-048 2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of
Intel® 64 and IA-32 processors1. These features are:
• Microarchitectures that enable executing instructions with high throughput at high clock speeds, a

high-speed cache hierarchy, and high-speed system bus.
• Intel® Hyper-Threading Technology2 (Intel® HT Technology) support.
• Intel 64 architecture on Intel 64 processors.
• Single Instruction Multiple Data (SIMD) instruction extensions: MMX™ technology, Streaming SIMD

Extensions (Intel® SSE), Streaming SIMD Extensions 2 (Intel® SSE2), Streaming SIMD Extensions 3
(Intel® SSE3), Supplemental Streaming SIMD Extensions 3 (SSSE3), Intel® SSE4.1, and Intel®

SSE4.2.
• Intel® Advanced Vector Extensions (Intel® AVX).
• Half-precision floating-point conversion and RDRAND.
• Fused Multiply Add Extensions.
• Intel® Advanced Vector Extensions 2 (Intel® AVX2).
• ADX and RDSEED.
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512).
• Intel® Thread Director.

2.1 SAPPHIRE RAPIDS MICROARCHITECTURE
Intel processors based on Sapphire Rapids microarchitecture use Golden Cove cores and support the
following additional features:
• Intel® Advanced Matrix Extensions (Intel® AMX) (Chapter 20).
• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) (Chapter 19).
• Intel® Data Streaming Accelerator (Intel® DSA)3.
• Intel® In-Memory Analytics Accelerator (Intel® IAA)4.
• Intel® Quick Assist Technology (Intel® QAT)(Chapter 22)

2.1.1 4th Generation Intel® Xeon® Scalable Family of Processors
Intel's fourth generation Xeon® Scalable Family of Processors changes from a single-die monolithic
design to multi-die Tiles.

The server products are scalable from dual-socket to eight-socket configurations (Section 3.11).

The I/O is increased with PCI Express 5.0, DDR5 memory, and Compute Express Link 1.1.

Packaging includes a multi-die chip with up to 4 tiles. Each tile is a 400mm2 SoC, providing both compute
cores and I/O.

1. Intel Atom® processors are covered in Chapter 4, “Intel Atom® Processor Architectures.”

2. Intel HT Technology requires a computer system with an Intel processor supporting hyper-threading and an Intel HT
Technology-enabled chipset, BIOS, and operating system. Performance varies depending on the hardware and software
used.

3. Please see the Intel® DSA Specification and Intel® DSA User Guide.

4. Please see the Intel® IAA Specification.

https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/759709

Ref#: 248966-048 2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Each tile contains 15 Golden Cove cores (see Section 2.3). Its memory controller provides two channels
of DDR5 with a maximum of eight channels across 4 tiles, and 28 PCIe 5.0 lanes for a maximum of 112
across 4 tiles.

2.2 ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE
The Alder Lake performance hybrid architecture combines two Intel architectures, bringing together the
Golden Cove performant cores and the Gracemont efficient Atom cores onto a single SoC. For details on
the Golden Cove microarchitecture, see Section 2.3 For details on the Gracemont microarchitecture, see
Section 4.1

2.2.1 12th Generation Intel® Core™ Processors Supporting Performance Hybrid
Architecture

12th Generation Intel® Core™ processors supporting performance hybrid architecture consist of up to
eight Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a
3MB Last Level Cache (LLC) per IDI module, where a module is one P-core or four E-cores. It has
symmetrical ISA and comes in variety of configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and
multithreaded efficiency. P-cores on these processors can also have Intel Hyper-Threading Technology
enabled. All cores can be active simultaneously when the operating system (OS) decides to schedule on
all processors.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a performance
hybrid architecture. In 12th Generation Intel Core processors supporting performance hybrid architec-
ture, ISA is converged to a common baseline between the P-cores and E-cores. In order to maintain
symmetric ISA, the E-cores do not support the following features: Intel AVX-512, Intel AVX-512 FP-16,
and Intel® TSX. The E-cores do support Intel AVX2 and Intel AVX-VNNI.

2.2.2 Hybrid Scheduling

2.2.2.1 Intel® Thread Director
Intel® Thread Director continually monitors software in real-time giving hints to the operating system's
scheduler allowing it to make more intelligent and data-driven decisions on thread scheduling. With Intel
Thread Director, hardware provides runtime feedback to the OS per thread based on various IPC perfor-
mance characteristics, in the form of:
• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on

power/thermal limits.
• Idling hints when power and thermal are constrained.

Intel Thread Director is first introduced in desktop and mobile variants of the 12th generation Intel Core
processor based on Alder Lake performance hybrid architecture.

A processor containing both P-cores and E-cores with different performance characteristics creates a
challenge for the operating system’s scheduler. Additionally, different software threads see different
performance ratios between the P-cores and E-cores. For example, the performance ratio between the
P-cores and E-cores for highly vectorized floating-point code is higher than the performance ratio for
scalar integer code. So, when the operating system needs to make an optimal scheduling decision it
needs to be aware of the characteristics of the software threads that are candidates for scheduling. If not
enough P-cores are available and there is a mix of software threads with different characteristics, the
operating system should schedule those threads that benefit most from the P-cores onto those cores and
schedule the others on the E-cores.

Ref#: 248966-048 2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Intel Thread Director provides the necessary hint to the operating system about the characteristics of the
software thread executing on each of the logical processors. The hint is dynamic and reflects the recent
characteristics of the thread, i.e., it may change over time based on the dynamic instruction mix of the
thread. The processor also considers microarchitecture factors to define the dynamic software thread
characteristics.

Thread specific hardware support is enumerated via the CPUID instruction and enabled by the operating
system via writing to configuration MSRs. The Intel Thread Director implementation on processors based
on Alder Lake performance hybrid architecture defines four thread classes:

0. Non-vectorized integer or floating-point code.

1. Integer or floating-point vectorized code, excluding Intel® Deep Learning Boost (Intel® DL Boost)
code.

2. Intel DL Boost code.

3. Pause (spin-wait) dominated code.

The dynamic code does not have to be 100% of the class definition. It should be large enough to be
considered belonging to that class. Also, dynamic microarchitectural metrics such as consumed memory
bandwidth or cache bandwidth may move software threads between classes. Example pseudo-code
sequences for the Intel Thread Director classes available on processors based on Alder Lake performance
hybrid architecture are provided in the Examples 2-1 through 2-4.

Intel Thread Director also provides a table in system memory, only accessible to the operating system,
that defines the P-core vs. E-core performance ratio per class. This allows the operating system to pick
and choose the right software thread for the right logical processor.

In addition to the performance ratio between P-cores and E-cores, Intel Thread Director provides the
energy efficiency ratio between those cores. The operating system can then use this information when it
prefers energy savings over maximum performance. For example, a background task such as indexing
can be scheduled on the most energy efficient core since its performance is less critical.

Example 2-1. Class 0 Pseudo-code Snippet

while (1)
{

asm(“xor rax, rax;”
“add rax, 5;”
“inc rax;”

);
}

Ref#: 248966-048 2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Example 2-2. Class 1 Pseudo-code Snippet

while (1)
{

asm(“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”

“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”

);
}

Ref#: 248966-048 2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For more detailed information on this technology, refer to the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

2.2.2.2 Scheduling with Intel® Hyper-Threading Technology-Enabled on Processors
Supporting x86 Hybrid Architecture

E-cores are designed to provide better performance than a logical P-core with both hardware sibling
hyper-threads busy.

Example 2-3. Class 2 Pseudo-code Snippet

while (1)
{

__asm(
vpdpbusd ymm2, ymm0, ymm1
vpdpbusd ymm3, ymm0, ymm1
vpdpbusd ymm4, ymm0, ymm1
vpdpbusd ymm5, ymm0, ymm1
vpdpbusd ymm6, ymm0, ymm1
vpdpbusd ymm7, ymm0, ymm1
vpdpbusd ymm8, ymm0, ymm1
vpdpbusd ymm9, ymm0, ymm1
vpdpbusd ymm10, ymm0, ymm1
vpdpbusd ymm11, ymm0, ymm1
vpdpbusd ymm12, ymm0, ymm1
vpdpbusd ymm13, ymm0, ymm1

);
}

Example 2-4. Class 3 Pseudo-code Snippet

while (1)
{

asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)

);
}

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://cdrdv2.intel.com/v1/dl/getContent/671200

Ref#: 248966-048 2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.2.2.3 Scheduling with a Multi-E-Core Module
E-cores within an idle module help provide better performance than E-cores in a busy module.

2.2.2.4 Scheduling Background Threads on x86 Hybrid Architecture
In most scenarios, background threads can leverage scalability and multithread efficiency of E-cores.

2.2.3 Recommendations for Application Developers
The following are recommendations when using processors supporting performance hybrid architecture:
• Stay up to date on updates on operating systems and optimized libraries.
• Software needs to avoid setting hard affinities on either threads or processes in order to allow the

operating system to provide the optimal core selection for Intel Hybrid.
• Software should replace active spin-waits with lightweight waits ideally using the new

UMWAIT/TPAUSE and older PAUSE instructions which will allow for better hints to the scheduler on
time spinning.

• Software can utilize the Windows Power Throttling information using process information and thread
information APIs, to give hints to the scheduler on the Quality of Service (QoS) required for a
particular thread or process to improve both performance and energy efficiency.

• Leverage Windows frameworks and media APIs for multimedia application development. Windows
Media Foundation framework is optimized for hybrid architecture and enables media applications to
run efficiently while preventing glitches.

• The Windows IrqPolicyMachineDefault policy enables Windows to optimally target interrupts to the
right core, and more so on hybrid architecture.

For additional recommendations and information on performance hybrid architecture, refer to the white
papers on the Performance Hybrid Architecture page.

2.3 GOLDEN COVE MICROARCHITECTURE
The Golden Cove microarchitecture is the successor of Ice Lake microarchitecture. The Golden Cove
microarchitecture introduces the following enhancements:
• Wider machine: 56 wide allocation, 1012 execution ports, and 48 wide retirement.
• Significant increases in the size of key structures enable deeper OOO execution and expose more

instruction level parallelism.
• Greater capabilities per execution port, e.g., 5th integer ALU execution ports with expanded

capability and a new fast floating-point adder.
• Intel® Advanced Matrix Extensions (Intel® AMX)1: Built-in integrated Tiled Matrix Multiplication /

Machine Learning Accelerator.
• Improved branch prediction.
• Improvements for large code footprint workloads, e.g., larger branch prediction structures, enhanced

code prefetcher, and larger instruction TLB.
• Wider fetch: legacy decode pipeline fetch bandwidth increase to 32B/cycles, 46 decoders,

increased micro-op cache size, and increased micro-op cache bandwidth.
• Maximum load bandwidth increased from 2 loads/cycle to 3 loads/cycle.
• Larger 4K Pages DTLB, increase in the number of outstanding Page Miss handlers.
• Increased number of outstanding misses (16 FB, 3248 Deeper MLC miss queues).

1. Intel AMX are not available on client parts.

https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html

Ref#: 248966-048 2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Enhanced data prefetchers for increased memory parallelism.
• Mid-level cache size increased to 2MB on server parts; remains 1.25MB on client parts.

2.3.1 Golden Cove Microarchitecture Overview
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-1.

The Golden Cove front end is depicted in Figure 2-2. The front end is built to feed the wider and deeper
out-of-order core:
• Legacy decode pipeline fetch bandwidth increased from 16 to 32 bytes/cycle.
• The number of decoders increased from four to six, allowing decode of up to 6 instructions per cycle.
• The micro-op cache size increased, and its bandwidth increased to deliver up to 8 micro-ops per

cycle.
• Improved branch prediction.

Figure 2-1. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture

ITLB + 32KB Instruction CacheITLB + 32KB Instruction Cache BPU

Scheduler / Reservation Station

BPU

DecodeMSROM

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler / Reservation Station

48KB DCU

1.25MB Client / 2MB Server MLC

SOC

LD DTLB STA DTLB

Load Buffer Store Buffer

3x256
2x512

3x256
2x512

2x256
1x512

VEC

FMA

ALU

Shift

FastADD

FMA

ALU

Shift

Shuffle

FastADD

FMA512

ALU

AMX

Shuffle

INT

*H

LEA LEA LEA LEA LEA

ALU ALU ALU ALU ALU

Shift MUL MULHi Shift

JMP1 IDIV JMP2

P0 P1 P5 P6 P10
P2

AGU
P3

AGU
P11
AGU

P4
STD

P9
STD

P7
AGU

P8
AGU

Ref#: 248966-048 2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Improvements for large code footprint workloads:
• Double the size of the instruction TLB: 128256 entries for 4K pages, 1632 entries for 2M/4M

pages.
• Bigger branch prediction structures.
• Enhanced code prefetcher.
• Improved LSD coverage.
• The IDQ can hold 144 uops per logical processor in single thread mode, or 72 uops per thread when

SMT is active.

Additional improvements include:
• Significant increase in size of key buffer structures to enable deeper OOO execution and expose more

instruction level parallelism.
• Wider machine:

— Wider allocation (56 uops per cycle) and retirement (48 uops per cycle) width.

— Increase in number of execution ports (1012).

— Greater capabilities per execution port.

Table 2-1 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Figure 2-2. Processor Front End of the Golden Cove Microarchitecture

ITLB + 32KB Instruction Cache BPU

DecodeMSROM

Ref#: 248966-048 2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-2 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the Intel® SSE, Intel AVX, and general-purpose instruction sets are
related to the number of units for the respective operations, and the varieties of instructions that execute
using a particular unit.

Table 2-1. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture

Port 0 Port 11 Port 2 Port 3 Port 4 Port 52 Port 6 Ports 7, 8 Port 9 Port 10 Port 11

INT ALU

LEA

INT Shift

Jump1

INT
ALU3

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Data

INT ALU

LEA

Load

FMA

Vec ALU

Vec
Shift

FP Div

FMA*

Fast
Adder*

Vec
ALU*

Vec
Shift*

Shuffle*

FMA**

Fast
Adder

Vec ALU

Shuffle

NOTES:
1. “*” in this table indicates that these features are not available for 512-bit vectors.
2. “**” in this table indicates that these features are not available for 512-bit vectors in Client parts.
3. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of Unit Instructions

ALU 52 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*,
(v)movup*

SHFT 23 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU

2x256-bit

1x512-bit
(v)add, (v)cmp. (v)max, (v)min, (v)sub, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2sl, (v)cvtss2sl

3x256-bit

2x512-bit
(v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft
2x256-bit

1x512-bit
(v)psllv*, (v)psrlv*, vector shift count in imm8

VEC Add (in
VEC FMA)

2x256-bit

1x512-bit
(v)add*, (v)cmp*, (v)max*, (v)min*, (v)sub*, (v)padds*, (v)paddus*, (v)psign, (v)pabs,
(v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Ref#: 248966-048 2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-3 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of
abbreviation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to a 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.

VEC Fast
Add

2x256-bit

1x512-bit
(v)add*, (v)addsub*, (v)sub*

Shuffle 2x256-bit

1x512-bit

(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*, vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw (new cross lane shuffle on
both ports)

Vec
Mul/FMA

2x256-bit

(1 or
2)x512-bit

(v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.
2. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.
3. Ibid.

Table 2-3. Bypass Delay Between Producer and Consumer Micro-Ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 MUL/0,1/4
Fast

Adder/1,5/3
SIMD/5/1,3

SHUF/
1,5/1,

3
V2I/0/3

SIMD/0,1/1 0 1 1 1 0 0 0

FMA/0,1/4 1 0 1 0 0 0 0

MUL/0,1/4 1 0 1 0 0 0 0

Fast Adder/0,1/3 1 0 1 -1 0 0 0

SIMD/5/1,3 0 1 1 1 0 0 0

SHUF/1,5/1,3 0 0 1 0 0 0 0

V2I/0/3 0 0 1 0 0 0 0

I2V/5/1 0 1 1 0 0 0 0

Table 2-2. Golden Cove Microarchitecture Execution Units and Representative Instructions1 (Contd.)

Execution
Unit

of Unit Instructions

Ref#: 248966-048 2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• “I2V/5/1” applies to a 1-cycle integer-to-vector uop dispatched to port 5.
• “Fast Adder/1,5/3” applies to either a 3-cycle 256-bit uop dispatched to either port 1 or port 5, or a

512-bit uop dispatched to port 5. This operation supports two cycles back-to-back between a pair of
Fast Adder operations.

A new Fast Adder1 unit is added as 512-bit on port 5 in VEC stack, and as 256-bit on ports 1 and 5. The
Fast Adder performs floating-point ADD/SUB operations in 3 cycles.

Back-to-back ADD/SUB operations that are both executed on the Fast Adder unit perform the operations
in two cycles.
• In 128/256-bit, back-to-back ADD/SUB operations executed on the Fast Adder unit perform the

operations in two cycles.
• In 512-bit, back-to-back ADD/SUB operations are executed in two cycles if both operations use the

Fast Adder unit on port 5.

The following instructions are executed by the Fast Adder unit:
• (V)ADDSUBSS/SD/PS/PD
• (V)ADDSS/SD/PS/PD
• (V)SUBSS/SD/PS/PD

2.3.1.1 Cache Subsystem and Memory Subsystem
The cache subsystem and memory subsystem changes in the Golden Cove microarchitecture are:
• Maximum load bandwidth increased from 2 to 3 loads per cycle. Bandwidth of Intel AVX-512 loads,

Intel AMX loads, and MMX/x87 loads remain at a maximum of 2 loads per cycle.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Number of entries for 4K pages in the load DTLB increased from 64 to 96.
• Page Miss handler can handle up to four D-side page walks in parallel instead of two.
• Increased number of outstanding DCU and MLC misses.
• Enhanced data prefetchers for increased memory parallelism.
• Partial store forwarding allowing forwarding data from store to load also when only part of the load

was covered by the store (in case the load's offset matches the store's offset).

2.3.1.2 Avoiding Destination False Dependency
Some SIMD instructions incur false dependency on the destination operand. The following instructions
are affected:
• VFMULCSH, VFMULCPH
• VFCMULCSH, VFCMULCPH
• VPERMD, VPERMQ, VPERMPS, VPERMPD
• VRANGE[SS,PS,SD,PD]
• VGETMANTSH, VGETMANTSS, VGETMANTSD
• VGETMANTPS, VGETMANTPD (memory versions only)
• VPMULLQ

1. The Fast Adder unit is not available on 512-bit vectors in Client parts.

Ref#: 248966-048 2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Recommendation: Use dependency breaking zero idioms on the destination register before the
affected instructions to avoid potential slowdown from the false dependency.

Example 2-5. Breaking False Dependency through Zero Idiom

Code with False Dependency Impact Mitigation: Break False Dependency with Zero Idiom

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vfmulcph zmm3, zmm2, zmm1 ;False dependency on
zmm3.

Will not execute out-of-order
until vaddps writes zmm3.

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vpxord zmm3, zmm3, zmm3 ;Dependency-breaking

zero idiom.
vfmulcph zmm3, zmm2, zmm1 ;Execute out-of-order

without waiting for
vaddps result.

Ref#: 248966-048 2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4 ICE LAKE CLIENT MICROARCHITECTURE
The Ice Lake client microarchitecture introduces the following new features that allow optimizations of
applications for performance and power consumption:
• Targeted vector acceleration.
• Crypto acceleration.
• Intel® Software Guard Extensions (Intel® SGX) enhancements.
• Cache line writeback instruction (CLWB).

2.4.1 Ice Lake Client Microarchitecture Overview
The Ice Lake client microarchitecture builds on the successes of the Skylake client microarchitecture.
The basic pipeline functionality of the Ice Lake Client microarchitecture is depicted in Figure 2-3.

Figure 2-3. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture1

NOTES:
1. “*” in the figure above indicates these features are not available for 512-bit vectors.
2. “INT” represents GPR scalar instructions.
3. “VEC” represents floating-point and integer vector instructions.
4. “MULHi” produces the upper 64 bits of the result of an iMul operation that multiplies two 64-bit registers and places the

result into two 64-bits registers.
5. The “Shuffle” on port 1 is new, and supports only in-lane shuffles that operate within the same 128-bit sub-vector.
6. The “IDIV” unit on port 1 is new, and performs integer divide operations at a reduced latency.
7. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-ops which

use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

BPU

Port 0 Port 1

*H

Port 5

*H

Port 6

Ref#: 248966-048 2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Ice Lake client microarchitecture introduces the following new features:
• Significant increase in size of key structures enable deeper OOO execution.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Intel AVX-512 (new for client processors): 512-bit vector operations, 512-bit loads and stores to

memory, and 32 new 512-bit registers.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA), reduced latency Integer Divider.
• 2×BW for AES-NI peak throughput for existing binaries (microarchitectural).
• Rep move string acceleration.
• 50% increase in size of the L1 data cache.
• Reduced effective load latency.
• 2×L1 store bandwidth: 1 2 stores per cycle.
• Enhanced data prefetchers for increased memory parallelism.
• Larger 2nd level TLB.
• Larger uop cache.
• Improved branch predictor.
• Large page ITLB size in single thread mode doubled.
• Larger L2 cache.

The Ice Lake client microarchitecture supports flexible integration of multiple processor cores with a
shared uncore sub-system consisting of a number of components including a ring interconnect to
multiple slices of L3, processor graphics, integrated memory controller, interconnect fabrics, and more.

2.4.1.1 The Front End
The front end changes in Ice Lake Client microarchitecture include:
• Improved branch predictor.
• Large page ITLB in single thread mode increased from 8 to 16 entries.
• Larger uop cache.
• The IDQ can hold 70 uops per logical processor vs. 64 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2×70 vs. 2×64 per
core). If only one logical processor is active in the core, the IDQ can hold 70 uops vs. 64 uops.

• The LSD in the IDQ can detect loops of up to 70 uops per logical processor irrespective single thread
or multi thread operation.

Ref#: 248966-048 2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.1.2 The Out of Order and Execution Engines
The Out of Order and execution engines changes in Ice Lake client microarchitecture include:
• A significant increase in size of reorder buffer, load buffer, store buffer, and reservation stations

enable deeper OOO execution and higher cache bandwidth.
• Wider machine: 4 5 wide allocation, 8 10 execution ports.
• Greater capabilities per execution port (e.g., SIMD shuffle, LEA).
• Reduced latency Integer Divider.
• A new iDIV unit was added that significantly reduces the latency and improves the of throughput of

integer divide operations.

Table 2-4 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Table 2-5 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the Intel SSE, Intel AVX, and general-purpose instruction sets are
related to the number of units for the respective operations, and the varieties of instructions that execute
using a particular unit.

Table 2-4. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture

Port 0 Port 11

NOTES:
1. “*” in this table indicates these features are not available for 512-bit vectors.

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9

INT ALU

LEA

INT Shift

Jump1

INT ALU

LEA

INT Mul

INT Div

Load Load Store
Data

INT ALU

LEA

INT MUL
Hi

INT ALU

LEA

INT Shift

Jump2

Store
Address

Store
Address

Store
Data

FMA

Vec ALU

Vec Shift

FP Div

FMA*

Vec ALU*

Vec
Shift*

Vec
Shuffle*

Vec ALU

Vec
Shuffle

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,

(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Ref#: 248966-048 2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-6 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.
• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.
• “I2V/5/1” applies to a 1-cycle integer-to-vector uop to port 5.

Shuffle 2 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,

vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Table 2-6. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latency]

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,
3

V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 0 0 1 0 0 0 NA

I2V/5/1 0 1 1 0 0 0 NA

Table 2-5. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit

Instructions

Ref#: 248966-048 2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.4.1.3 Cache and Memory Subsystem
The cache hierarchy changes in Ice Lake Client microarchitecture include:
• 50% increase in size of the L1 data cache.
• 2×L1 store bandwidth: 3 4 AGUs, 1 2 store data.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Higher cache bandwidth compared to previous generations.
• Larger 2nd level TLB: 1.5K entries 2K entries.
• Enhanced data prefetchers for increased memory parallelism.
• L2 cache size increased from 256KB to 512KB.
• L2 cache associativity increased from 4 ways to 8 ways.
• Significant reduction in effective load latency.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, shared L2 TLB
for 4K and 4MB pages and a dedicated L2 TLB for 1GB pages.

Table 2-7. Cache Parameters of the Ice Lake Client Microarchitecture

Level
Capacity /

Associativity
Line Size
(bytes)

Latency1
(cycles)

NOTES:
1. Software-visible latency/bandwidth will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cycles)

Sustained Bandwidth
(bytes/cycles)

Update
Policy

First Level
(DCU)

48KB/8 64 5 2×64B loads + 1x64B
or 2x32B stores

Same as peak Writeback

Second
Level (MLC)

512KB/8 64 13 64 48 Writeback

Third Level
(LLC)

Up to 2MB per
core/up to 16 ways

64 xx2

2. This number depends on core count.

32 21 Writeback

Table 2-8. TLB Parameters of the Ice Lake Client Microarchitecture

Level Page Size Entries ST
Per-thread Entries
MT Latency Associativity

Instruction 4KB 128 64 8

Instruction 2MB/4MB 16 8 8

First Level Data (loads) 4KB 64 64 competitively
shared

4

First Level Data (loads) 2MB/4MB 32 32 competitively
shared

4

First Level Data (loads) 1GB 8 8 competitively shared 8

First Level Data (stores) Shared for all page
sizes

16 16 competitively
shared

16

Second Level Shared for all page
sizes

20481

NOTES:
1. 4K pages can use all 2048 entries. 2/4MB pages can use 1024 entries (in 8 ways), sharing them with 4K pages. 1GB

pages can use the other 1024 entries (in 8 ways), also sharing them with 4K pages.

2048 competitively
shared

16

Ref#: 248966-048 2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Paired Stores
Ice Lake Client microarchitecture includes two store pipelines in the core, with the following features:
• Two dedicated AGU for LDs on ports 2 and 3.
• Two dedicated AGU for STAs on ports 7 and 8.
• Two fully featured STA pipelines.
• Two 256-bit wide STD pipelines (Intel AVX-512 store data takes two cycles to write).
• Second senior store pipeline to the DCU via store merging.

Ice Lake Client microarchitecture can write two senior stores to the cache in a single cycle if these two
stores can be paired together. That is:
• The stores must be to the same cache line.
• Both stores are of the same memory type, WB or USWC.
• None of the stores cross cache line or page boundary.

In order to maximize performance from the second store port try to:
• Align store operations whenever possible.
• Place consecutive stores in the same cache line (not necessarily as adjacent instructions).

As seen in Example 2-6, it is important to take into consideration all stores, explicit or not.

Example 2-6. Considering Stores

Stores are Paired Across Loop Iterations Stores Not Paired Due to Stack Update in Between

Loop:
compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop can be paired all together because
they usually would be same line

Loop:
call function to compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop cannot be paired anymore because
of the call store to stack
; the call is disturbing pairing

Ref#: 248966-048 2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In some cases it is possible to rearrange the code to achieve store pairing. Example 2-7 provides details.

2.4.1.4 New Instructions
New instructions and architectural changes in Ice Lake Client microarchitecture are listed below. Actual
support may be product dependent.
• Crypto acceleration

— SHA NI for acceleration of SHA1 and SHA256 hash algorithms.

— Big-Number Arithmetic (IFMA): VPMADD52 - two new instructions for big number multiplication
for acceleration of RSA vectorized SW and other Crypto algorithms (Public key) performance.

— Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error
correction algorithms, and bit matrix multiplications.

— Vector AES and Vector Carry-less Multiply (PCLMULQDQ) instructions to accelerate AES and
AES-GCM.

• Security Technologies

— Intel® SGX enhancements to improve usability and applicability: EDMM, multi-package server
support, support for VMM memory oversubscription, performance, larger secure memory.

• Sub Page protection for better performance of security VMMs.
• Targeted Acceleration

— Vector Bit Manipulation Instructions: VBMI1 (permutes, shifts) and VBMI2 (Expand, Compress,
Shifts)- used for columnar database access, dictionary based decompression, discrete mathe-
matics, and data-mining routines (bit permutation and bit-matrix-multiplication).

— VNNI with support for integer 8 and 16 bits data types- CNN/ML/DL acceleration.

— Bit Algebra (POPCNT, Bit Shuffle).

— Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while
retaining clean copy in cache.

• Platform analysis features for more efficient performance software tuning and debug.

— AnyThread removal.

Example 2-7. Rearranging Code to Achieve Store Pairing

Stores to Different Cache Lines - Not Paired Unrolling May Solve the Problem

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute ymm2 …
vmovaps [y], ymm2
add x, 32
add y, 32
jmp Loop ; this loop cannot pair any store because

of alternating store to different cache
lines [x] and [y]

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute new ymm1 …
vmovaps [x+32], ymm1
... compute ymm2 …
vmovaps [y], ymm2
... compute new ymm2 …
vmovaps [y+32], ymm2
add x, 64
add y, 64
jmp Loop ; the loop was unrolled 2 times and stores

re-arranged to make sure two stores to
the same cache line are placed one after
another. Now stores to addresses [x] and
[x+32] are to the same cache line and
could be paired together and executed in
same cycle

Ref#: 248966-048 2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— 2x general counters (up to 8 per-thread).

— Fixed Counter 3 for issue slots.

— New performance metrics for built-in support for Level 1 Top-Down method (% of Issue slots that
are front-end bound, back-end bound, bad speculation, retiring) while leaving the 8 general
purpose counters free for software use.

2.4.1.5 Ice Lake Client Microarchitecture Power Management
Processors based on Ice Lake client microarchitecture are the first client processors whose cores may
execute at a different frequency from one another. The frequency is selected based on the specific
instruction mix; the type, width and number of vector instructions of the program that executes on each
core, the ratio between active time and idle time of each core, and other considerations such as how
many cores share similar characteristics.

Most of the power management features of Skylake Server Microarchitecture (see Section 2.5) is appli-
cable to Ice Lake Client microarchitecture as well. The main differences are the following:
• The typical P0n max frequency difference between Intel® Advanced Vector Extensions (Intel®

AVX-512) and Intel® Advanced Vector Extensions 2 (Intel® AVX2) on Ice Lake Client microarchi-
tecture is much lower than on Skylake Server microarchitecture. Therefore, the negative impact on
overall application performance is much smaller.

• All processors based on Ice Lake Client microarchitecture contain a single 512-bit FMA unit, whereas
some of the processors based on Skylake Server microarchitecture contain two such units. Both
processors contain two 256-bit FMA units. The power consumed by Ice Lake Client FMA units is the
same, whereas on Skylake Server the 512-bit units consume twice as much.

Compute heavy workloads, especially those that span multiple Ice Lake client cores, execute at a lower
frequency than P0n, both under Intel AVX-512 and under Intel AVX2 instruction sets, due to power
limitations. In this scenario, Intel AVX-512 architecture, which requires less dynamic instructions to
complete the same task than Intel AVX2 architecture, consumes less power and thus may achieve higher
frequency. The net result may be higher performance due to the shorter path length and a bit higher
frequency.

There are still some cases where coding to the Intel AVX-512 instruction set yields lower performance
than when coding to the Intel AVX2 instruction set. Sometimes it is due to microarchitecture artifacts of
longer vectors, in other cases the natural vectors are just not long enough. Most compilers are still
maturing their Intel AVX-512 support, and it may take them a few more years to generate optimal code.

The general recommendation in the Skylake Server Power Management section (see Section 2.5.3) still
holds. Developers should code to the Intel AVX-512 instruction set and compare the performance to their
Intel AVX2 workload on Ice Lake client microarchitecture, before making the decision to proceed with a
complete port.

2.5 SKYLAKE SERVER MICROARCHITECTURE
The Intel® Xeon® Processor scalable processor family is based on the Skylake Server microarchitecture.
Processors based on the Skylake microarchitecture can be identified using CPUID’s DisplayFamily_Dis-
playModel signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features1 that allow you to optimize
your application for performance and power consumption.
• A new core based on the Skylake Server microarchitecture with process improvements based on the

Kaby Lake microarchitecture.
• Intel AVX-512 support.
• More cores per socket (max 28 vs. max 22).

1. Some features may not be available on all products.

https://cdrdv2.intel.com/v1/dl/getContent/671098

Ref#: 248966-048 2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.
• Bigger L2 cache, smaller non inclusive L3 cache.
• Intel® Optane™ support.
• Intel® Omni-Path Architecture (Intel® OPA).
• Sub-NUMA Clustering (SNC) support.

The green stars in Figure 2-4 represent new features in Skylake Server microarchitecture compared to
Skylake microarchitecture for client; a 1MB L2 cache and an additional Intel AVX-512 FMA unit on port 5
which is available on some parts.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port 0 will
execute on both port 0 and port 1; however, other operations such as lea can still execute on port 1 in
parallel. See the red block in Figure 2-8 for the fusion of ports 0 and 1.
Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its
front end loop stream detector (LSD) disabled.

Figure 2-4. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

INTEGER represent GPR scalar instructions.
VEC represent floating point and integer vector instructions.
SLOW LEA represent a lea with two registers and displacement, all other lea
versions considered as FAST LEA
BRANCH1 is primary branch and more capable than BRANCH2

32K
Instruction Cache

Legacy Decode
Pipeline

BPU

Decoded
ICache

1M L2 Cache

32K Data
Cache

Port 2 LD/STA

Scheduler

Allocate/Rename/Retire/Move Elimination/Zero Idiom

Micro-Op Queue

MSROM

Dedicated AVX-512 unit

AVX-512 Port Fusion

uncore

Port 3 LD/STA

Port 4 STD

Port 7 STA

Port 6
INTEGER ALU
INTEGER

SHIFT
BRANCH 1

Port 0
INTEGER ALU

DIVIDE
BRANCH 2

VEC FMA
VEC MUL
VEC ADD
VEC ALU

VEC SHIFTER

Port 1
INTEGER ALU
INTEGER MUL
SLOW LEA
FAST LEA

VEC FMA
VEC MUL
VEC ADD
VEC ALU

VEC SHIFTER

Port 5
INTEGER ALU
FAST LEA

VEC SHUFFLE

VEC FMA
VEC MUL
VEC ADD
VEC ALU

Ref#: 248966-048 2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.1 Skylake Server Microarchitecture Cache
Intel Xeon scalable processors based on Skylake server microarchitecture has significant changes in core
and uncore architecture to improve performance and scalability of several components compared with
the previous generation of the Intel Xeon processors based on the Broadwell microarchitecture.

2.5.1.1 Larger Mid-Level Cache
Skylake server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum
load-to-use latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in
previous Intel Xeon processor family implementations. The line size of the mid-level cache is 64B and it
is 16-way associative. The mid-level cache is private to each core.

Software that has been optimized to place data in mid-level cache may have to be revised to take advan-
tage of the larger mid-level cache available in Skylake server microarchitecture.

2.5.1.2 Non-Inclusive Last Level Cache
The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the
banks of last level cache has shrunk to 1.375 MB per bank. Because of the non-inclusive nature of the last
level cache, blocks that are present in the mid-level cache of one of the cores may not have a copy resi-
dent in a bank of last level cache. Based on the access pattern, size of the code and data accessed, and
sharing behavior between cores for a cache block, the last level cache may appear as a victim cache of
the mid-level cache and the aggregate cache capacity per core may appear to be a combination of the
private mid-level cache per core and a portion of the last level cache.

2.5.1.3 Skylake Server Microarchitecture Cache Recommendations
A high-level comparison between Skylake server microarchitecture cache and the previous generation
Broadwell microarchitecture cache is available in the table below.

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Cache level Category Broadwell
Microarchitecture

Skylake Server
Microarchitecture

L1 Data Cache
Unit (DCU)

Size [KB] 32 32

Latency [cycles] 4-6 4-6

Max bandwidth [bytes/cycles] 96 192

Sustained bandwidth [bytes/cycles] 93 133

Associativity [ways] 8 8

L2 Mid-level Cache
(MLC)

Size [KB] 256 1024 (1MB)

Latency [cycles] 12 14

Max bandwidth [bytes/cycles] 32 64

Sustained bandwidth [bytes/cycles] 25 52

Associativity [ways] 8 16

Ref#: 248966-048 2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The figure below shows how Skylake server microarchitecture shifts the memory balance from
shared-distributed with high latency, to private-local with low latency.

The potential performance benefit from the cache changes is high, but software will need to adapt its
memory tiling strategy to be optimal for the new cache sizes.
Recommendation: Rebalance application shared and private data sizes to match the smaller,
non-inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one
application to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared
to the previous generation Broadwell microarchitecture enables some applications to block to L2 instead
of L1 and thereby improves performance.

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the
application’s bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last
level cache can now be added together. Programs that determine cache capacity per core at run time
should now use a combination of mid-level cache size and last level cache size per core to estimate the
effective cache size per core. Using just the last level cache size per core may result in non-optimal use
of available on-chip cache; see Section 2.5.2 for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as
L2 and L3 cache sizes and not only L3 cache size.

L3 Last-level
Cache (LLC)

Size [MB] Up to 2.5 per core up to 1.3751 per core

Latency [cycles] 50-60 50-70

Max bandwidth [bytes/cycles] 16 32

Sustained bandwidth [bytes/cycles] 14 15

NOTES:
1. Some Skylake server parts have some cores disabled and hence have more than 1.375 MB per core of L3 cache.

Figure 2-5. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

Table 2-9. Cache Comparison Between Skylake Microarchitecture and Broadwell Microarchitecture

Ref#: 248966-048 2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.5.2 Non-Temporal Stores on Skylake Server Microarchitecture
Because of the change in the size of each bank of last level cache on Skylake server microarchitecture, if
an application, library, or driver only considers the last level cache to determine the size of on-chip
cache-per-core, it may see a reduction with Skylake server microarchitecture and may use non-temporal
store with smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory,
this may result in an increase in the number of subsequent cache misses and memory bandwidth
demands on Skylake Server microarchitecture, compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake
Server microarchitecture, the resources within each core remain busy for a longer duration compared to
similar accesses on the previous Intel Xeon processor family. As a result, if a series of such instructions
are executed, there is a potential that the processor may run out of resources and stall, thus limiting the
memory write bandwidth from each core.

The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write
bandwidth per core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake server microarchitecture, include
mid-level cache capacity per core in addition to the last level cache per core for applications, libraries, or
drivers that determine the on-chip cache available with each core. Doing so optimizes the available
on-chip cache capacity on Skylake server microarchitecture as intended, with its non-inclusive last level
cache implementation.

2.5.3 Skylake Server Power Management
This section describes the interaction of Skylake Server's Power Management and its Vector ISA.

Skylake Server microarchitecture dynamically selects the frequency at which each of its cores executes.
The selected frequency depends on the instruction mix; the type, width, and number of vector instruc-
tions that execute over a given period of time. The processor also takes into account the number of cores
that share similar characteristics.

Intel® Xeon® processors based on Broadwell microarchitecture work similarly, but to a lesser extent
since they only support 256-bit vector instructions. Skylake Server microarchitecture supports Intel®
AVX-512 instructions, which can potentially draw more current and more power than Intel® AVX2
instructions.

The processor dynamically adjusts its maximum frequency to higher or lower levels as necessary, there-
fore a program might be limited to different maximum frequencies during its execution.

Table 2-10 includes information about the maximum Intel® Turbo Boost technology core frequency for
each type of instruction executed. The maximum frequency (P0n) is an array of frequencies which
depend on the number of cores within the category. The more cores belonging to a category at any given
time, the lower the maximum frequency.

For per SKU max frequency details (reference figure 1-15), refer to the Intel® Xeon® Scalable Processor
Family Technical Resources page.

Table 2-10. Maximum Intel® Turbo Boost Technology Core Frequency Levels

Level Category Frequency Level Max Frequency (P0n) Instruction Types

0 Intel® AVX2 light
instructions

Highest Max Scalar, AVX128, SSE, Intel® AVX2 w/o FP
or INT MUL/FMA

1 Intel® AVX2 heavy
instructions +
Intel® AVX-512
light instructions

Medium Max Intel® AVX2 Intel® AVX2 FP + INT MUL/FMA, Intel®
AVX-512 without FP or INT MUL/FMA

2 Intel® AVX-512
heavy instructions

Lowest Max Intel® AVX-512 Intel® AVX-512 FP + INT MUL/FMA

https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html

Ref#: 248966-048 2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Figure 2-6 is an example for core frequency range in a given system where each core frequency is deter-
mined independently based on the demand of the workload.

The following performance monitoring events can be used to determine how many cycles were spent in
each of the three frequency levels.
• CORE_POWER.LVL0_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n.
• CORE_POWER.LVL1_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX2.
• CORE_POWER.LVL2_TURBO_LICENSE: Core cycles where the core was running in a manner where

the maximum frequency was P0n-AVX-512.

When the core requests a higher license level than its current one, it takes the PCU up to 500
micro-seconds to grant the new license. Until then the core operates at a lower peak capability. During
this time period the PCU evaluates how many cores are executing at the new license level and adjusts
their frequency as necessary, potentially lowering the frequency. Cores that execute at other license
levels are not affected.

A timer of approximately 2ms is applied before going back to a higher frequency level. Any condition that
would have requested a new license resets the timer.

NOTES
A license transition request may occur when executing instructions on a mis-speculated
path.

A large enough mix of Intel AVX-512 light instructions and Intel AVX2 heavy instructions
drives the core to request License 2, despite the fact that they usually map to License 1.
The same is true for Intel AVX2 light instructions and Intel SSE heavy instructions that
may drive the core to License 1 rather than License 0. For example, The Intel® Xeon®
Platinum 8180 processor moves from license 1 to license 2 when executing a mix of 110
Intel AVX-512 light instructions and 20 256-bit heavy instructions over a window of 65
cycles.

Figure 2-6. Mixed Workloads

Cores using Intel®AVX-512

Cores using Intel® AVX2

Cores not using Intel®AVX

AVX512

AVX2

Non-AVX

P0n

P0n-AVX2

P0n-AVX-512

P1

P1-AVX2

P1-AVX-512

Cores

AV
X2

AV
X5

12

N
on

-A
VX

AV
X2 N

on
-A

VX

...

Ref#: 248966-048 2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Some workloads do not cause the processor to reach its maximum frequency as these workloads are
bound by other factors. For example, the LINPACK benchmark is power limited and does not reach the
processor's maximum frequency. The following graph shows how frequency degrades as vector width
grows, but, despite the frequency drop, performance improves. The data for this graph was collected on
an Intel Xeon Platinum 8180 processor.

Workloads that execute Intel AVX-512 instructions as a large proportion of their whole instruction count
can gain performance compared to Intel AVX2 instructions, even though they may operate at a lower
frequency. For example, maximum frequency bound Deep Learning workloads that target Intel AVX-512
heavy instructions at a very high percentage can gain 1.3x-1.5x performance improvement vs. the same
workload built to target Intel AVX2 (both operating on Skylake Server microarchitecture).

It is not always easy to predict whether a program's performance will improve from building it to target
Intel AVX-512 instructions. Programs that enjoy high performance gains from the use of xmm or ymm
registers may expect performance improvement by moving to the use of zmm registers. However, some
programs that use zmm registers may not gain as much, or may even lose performance. It is recom-
mended to try multiple build options and measure the performance of the program.

Recommendation: To identify the optimal compiler options to use, build the application with each of the
following set of options and choose the set that provides the best performance.
• -xCORE-AVX2 -mtune=skylake-avx512 (Linux* and macOS*)

/QxCORE-AVX2 /tune=skylake-avx512 (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=low (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:low (Windows*)
• -xCORE-AVX512 -qopt-zmm-usage=high (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:high (Windows*)

See Section 18.26 for more information about these options.

Figure 2-7. LINPACK Performance

SOM00061

3500

3000

2500

2000

1500

1000

500

0

3.5

3.0

2.5

2.0

1.5

1.0
760

1178

2034

3259

669 768 791 767

2.1

SSE4.2 AVX AVX2 AVX512

C
or

e
F

re
qu

e
nc

y

G
F

LO
P

s,
 S

ys
te

m
 P

o
w

er

2.5

2.8

3.1

GFLOPs Power (W) Frequency (GHz)

LINPACK Performance

Ref#: 248966-048 2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The GCC Compiler has the option -mprefer-vector-width=none|128|256|512 to control vector width
preference. While -march=skylake-avx512 is designed to provide the best performance for the Skylake
Server microarchitecture some programs can benefit from different vector width preferences. To identify
the optimal compiler options to use, build the application with each of the following set of options and
choose the set that provides the best performance. -mprefer-vector-width=256 is the default for
skylake-avx512.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512

• -march=skylake-avx512 -mprefer-vector-width=512

Clang/LLVM is currently implementing the option -mprefer-vector-width=none|128|256|512, similar
to GCC. To identify the optimal compiler options to use, build the application with each of the following
set of options and choose the set that provides the best performance.
• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512 (plus -mprefer-vector-width=256, if available)

• -march=skylake-avx512 (plus -mprefer-vector-width=512, if available)

2.6 SKYLAKE CLIENT MICROARCHITECTURE
The Skylake client microarchitecture builds on the successes of the Haswell and Broadwell microarchitec-
tures. The basic pipeline functionality of the Skylake client microarchitecture is depicted in Figure 2-8.

Figure 2-8. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture

256k L2 Cache
(Unified)

32K L1 Data
Cache

32K L1
Instruction Cache

Legacy Decode
Pipeline

BPU

Decoded
Icache (DSB)

Port 2 LD/STA

Scheduler

Allocate/Rename/Retire/Move Elimination/Zero Idiom

MSROM

Port 3 LD/STA

Port 4 STD

Port 7 STA

Port 6
INTEGER ALU

Int Shft
Branch 1

Port 0
INTEGER ALU

VEC FMA
VEC MUL
VEC Add
VEC ALU
VEC Shft

Divide
Branch2

Port 1
INTEGER ALU

Fast LEA

VEC FMA
VEC MUL
VEC Add
VEC ALU
VEC Shft
Int MUL

Slow LEA

Port 5
INTEGER ALU

Fast LEA
VEC SHUFFLE

VEC SHUF
VEC ALU

CVT

Instruction Decode Queue (IDQ, or Micro-Ops Queue)

Ref#: 248966-048 2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Skylake Client microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore
sub-system consisting of a number of components including a ring interconnect to multiple slices of L3
cache (an off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics,
etc.

2.6.1 The Front End
The front end in the Skylake Client microarchitecture provides the following improvements over previous
generation microarchitectures:
• Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous gener-

ations.
• The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.
• The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous

generations when two sibling logical processors in the same core are active (2x64 vs. 2x28 per core).
If only one logical processor is active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST
operation).

• The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT
operation.

• Improved Branch Predictor.

2.6.2 The Out-of-Order Execution Engine
The Out of Order and execution engine changes in Skylake Client microarchitecture include:
• Larger buffers enable deeper OOO execution compared to previous generations.
• Improved throughput and latency for divide/sqrt and approximate reciprocals.
• Identical latency and throughput for all operations running on FMA units.
• Longer pause latency enables better power efficiency and better SMT performance resource utili-

zation.

Ref#: 248966-048 2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-11 summarizes the OOO engine’s capability to dispatch different types of operations to various
ports.

Table 2-12 lists execution units and common representative instructions that rely on these units.
Throughput improvements across the SSE, AVX and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a
particular unit.

Table 2-11. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,

Vec ALU

ALU,

Fast LEA,

Vec ALU

LD

STA
STD

ALU,

Fast LEA,

Vec ALU,

ALU,

Shft, STA

Vec Shft,

Vec Add,

Vec Shft,

Vec Add,
Vec Shuffle, Branch1

Vec Mul,

FMA,

Vec Mul,

FMA

DIV, Slow Int

Branch2 Slow LEA

Table 2-12. Skylake Client Microarchitecture Execution Units and Representative Instructions1

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruction

throughput remedy.

Execution
Unit

of
Unit

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*, (v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

Vec ALU 3
(v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*,

(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2
(v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs, (v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 1
(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

Ref#: 248966-048 2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A significant portion of the Intel SSE, Intel AVX and general-purpose instructions also have latency
improvements. Appendix C lists the specific details. Software-visible latency exposure of an instruction
sometimes may include additional contributions that depend on the relationship between micro-ops flows
of the producer instruction and the micro-op flows of the ensuing consumer instruction. For example, a
two-uop instruction like VPMULLD may experience two cumulative bypass delays of 1 cycle each from
each of the two micro-ops of VPMULLD.

Table 2-13 describes the bypass delay in cycles between a producer uop and the consumer uop. The
left-most column lists a variety of situations characteristic of the producer micro-op. The top row lists a
variety of situations characteristic of the consumer micro-op.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbrevi-
ation/one or more port number/latency cycle of the uop. For example:
• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.
• “VIMUL/0,1/4” applies to 4-cycle vector integer multiply uop dispatched to either port 0 or port 1.
• “SIMD/5/1,3” applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.6.3 Cache and Memory Subsystem
The cache hierarchy of the Skylake Client microarchitecture has the following enhancements:
• Higher Cache bandwidth compared to previous generations.
• Simultaneous handling of more loads and stores enabled by enlarged buffers.
• Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier

generations.
• Page split load penalty down from 100 cycles in previous generation to 5 cycles.
• L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.
• Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed

data using SFENCE.
• Reduced performance penalty for a software prefetch that specifies a NULL pointer.
• L2 associativity changed from 8 ways to 4 ways.

Table 2-13. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/1 FMA/0,1/4 VIMUL/0,1/4 SIMD/5/1,3 SHUF/5/1,3 V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 NA NA NA NA NA NA NA

I2V/5/1 0 0 1 0 0 0 NA

Ref#: 248966-048 2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2. The partition column of Table 2-15 indicates the resource sharing policy when Hyper-Threading
Technology is active.

2.6.4 Pause Latency in Skylake Client Microarchitecture
The PAUSE instruction is typically used with software threads executing on two logical processors located
in the same processor core, waiting for a lock to be released. Such short wait loops tend to last between
tens and a few hundreds of cycles, so performance-wise it is better to wait while occupying the CPU than
yielding to the OS. When the wait loop is expected to last for thousands of cycles or more, it is preferable
to yield to the operating system by calling an OS synchronization API function, such as WaitForSingleO-
bject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:
• Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin

loop) with competitively shared hardware resources. The competitively-shared microarchitectural
resources that the sibling logical processor can utilize in the Skylake Client microarchitecture are
listed below.

— Front end slots in the Decode ICache, LSD and IDQ.

— Execution slots in the RS.
• Save power consumed by the processor core compared with executing equivalent spin loop

instruction sequence in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.

Table 2-14. Cache Parameters of the Skylake Client Microarchitecture

Level
Capacity /

Associativity
Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cyc)

Sustained Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle
96 (2x32B Load +

1*32B Store)
~81 Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/4 64 12 cycle 64 ~29 Writeback

Third Level
(Shared L3)

Up to 2MB
per core/Up
to 16 ways

64 44 32 ~18 Writeback

Table 2-15. TLB Parameters of the Skylake Client Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 8 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1536 12 fixed

Second Level 1GB 16 4 fixed

Ref#: 248966-048 2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas
in Skylake Client microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural
resources to the logical processor ready to make forward progress) has a small positive performance
impact of 1-2% on highly threaded applications. It is expected to have negligible impact on less threaded
applications if forward progress is not blocked executing a fixed number of looped PAUSE instructions.
There's also a small power benefit in 2-core and 4-core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will
suffer some performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake Client microarchitecture the RDTSC instruction counts at the machine's guar-
anteed P1 frequency independently of the current processor clock (see the INVARIANT TSC property),
and therefore, when running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but
the number of instructions that could have been executed will change.

Use Poll Delay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified
in the “clocks” variable.

For contended spinlocks of the form shown in the baseline example below, we recommend an exponen-
tial back off when the lock is found to be busy, as shown in the improved example, to avoid significant
performance degradation that can be caused by conflicts between threads in the machine. This is more
important as we increase the number of threads in the machine and make changes to the architecture
that might aggravate these conflict conditions. In multi-socket Intel server processors with shared
memory, conflicts across threads take much longer to resolve as the number of threads contending for
the same lock increases. The exponential back off is designed to avoid these conflicts between the
threads thus avoiding the potential performance degradation. Note that in the example below, the

Example 2-8. Dynamic Pause Loop Example
#include <x86intrin.h>
#include <stdint.h>

/* A useful predicate for dealing with timestamps that may wrap.
 Is a before b? Since the timestamps may wrap, this is asking whether it's
 shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
 Times where going clockwise is less distance than going anti-clockwise
 are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
 then a > b (true) does not mean a reached b; whereas signed(a) = -2,
 signed(b) = 0 captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)
{
 return ((int64_t)b - (int64_t)a) > 0;
}

void pollDelay(uint32_t clocks)
{
 uint64_t endTime = _rdtsc()+ clocks;

 for (; before(_rdtsc(), endTime);)
 _mm_pause();
}

Ref#: 248966-048 2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which
is subject to tuning.

2.7 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT TECHNOLOGY)
Intel® Hyper-Threading Technology (Intel® HT Technology) enables software to take advantage of
task-level, or thread-level parallelism by providing multiple logical processors within a physical processor
package, or within each processor core in a physical processor package. In its first implementation in the
Intel® Xeon® processor, Intel HT Technology makes a single physical processor (or a processor core)
appear as two or more logical processors.

Most Intel Architecture processor families support Intel HT Technology with two logical processors in each
processor core, or in a physical processor in early implementations. The rest of this section describes
features of the early implementation of Intel HT Technology. Most of the descriptions also apply to later
implementations supporting two logical processors. The microarchitecture sections in this chapter
provide additional details to individual microarchitecture and enhancements to Intel HT Technology.

The two logical processors each have a complete set of architectural registers while sharing one single
physical processor's resources. By maintaining the architecture state of two processors, an Intel HT
Technology-capable processor looks like two processors to software, including operating system and
application code.

Example 2-9. Contended Locks with Increasing Back-off Example
/*******************/
/*Baseline Version */
/*******************/

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 __asm__ ("pause");
 }
}

/*******************/
/*Improved Version */
/*******************/

int mask = 1;
int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 for (int i=mask; i; --i){
 __asm__ ("pause");
 }

 mask = mask < max ? mask<<1 : max;
 }
}

Ref#: 248966-048 2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

By sharing resources needed for peak demands between two logical processors, Intel HT Technology is
well suited for multiprocessor systems to provide an additional performance boost in throughput when
compared to traditional MP systems.

Figure 2-9 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting
Intel HT Technology. Each logical processor can execute a software thread, allowing a maximum of two
software threads to execute simultaneously on one physical processor. The two software threads execute
simultaneously, meaning that in the same clock cycle an “add” operation from logical processor 0 and
another “add” operation and load from logical processor 1 can be executed simultaneously by the execu-
tion engine.

In the first implementation of Intel HT Technology, the physical execution resources are shared and the
architecture state is duplicated for each logical processor. This minimizes the die area cost of imple-
menting Intel HT Technology while still achieving performance gains for multithreaded applications or
multitasking workloads.

The performance potential due to Intel HT Technology is due to:
• The fact that operating systems and user programs can schedule processes or threads to execute

simultaneously on the logical processors in each physical processor.
• The ability to use on-chip execution resources at a higher level than when only a single thread is

consuming the execution resources; higher level of resource utilization can lead to higher system
throughput.

2.7.1 Processor Resources and Intel® HT Technology
The majority of microarchitecture resources in a physical processor are shared between the logical
processors. Only a few small data structures were replicated for each logical processor. This section
describes how resources are shared, partitioned or replicated.

2.7.1.1 Replicated Resources
The architectural state is replicated for each logical processor. The architecture state consists of registers
that are used by the operating system and application code to control program behavior and store data
for computations. This state includes the eight general-purpose registers, the control registers, machine
state registers, debug registers, and others. There are a few exceptions, most notably the memory type

Figure 2-9. Intel® Hyper-Threading Technology on an SMP System

Execution EngineExecution Engine

Local APICLocal APIC

Architectural
State

Architectural
State

Bus Interface
Local APICLocal APIC

Architectural
State

Architectural
State

Bus Interface

System Bus

Ref#: 248966-048 2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

range registers (MTRRs) and the performance monitoring resources. For a complete list of the architec-
ture state and exceptions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 3A, 3B, 3C, & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultane-
ously track execution and state changes of the two logical processors. The return stack predictor is repli-
cated to improve branch prediction of return instructions.

In addition, a few buffers (for example, the two-entry instruction streaming buffers) were replicated to
reduce complexity.

2.7.1.2 Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the entries. These are
referred to as partitioned resources. Reasons for this partitioning include:
• Operational fairness.
• Permitting the ability to allow operations from one logical processor to bypass operations of the other

logical processor that may have stalled.

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical
processor from making forward progress for some number of cycles. The partitioning prevents the stalled
logical processor from blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers
include µop queues after the execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain
memory ordering for each logical processor and detect memory ordering violations.

2.7.1.3 Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource,
including caches and all the execution units. Some shared resources which are linearly addressed, like
the DTLB, include a logical processor ID bit to distinguish whether the entry belongs to one logical
processor or the other.

2.7.2 Microarchitecture Pipeline and Intel® HT Technology
This section describes the Intel HT Technology microarchitecture and how instructions from the two
logical processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not
necessarily in program order in the execution core and memory hierarchy, the front end and back end
contain several selection points to select between instructions from the two logical processors. All selec-
tion points alternate between the two logical processors unless one logical processor cannot make use of
a pipeline stage. In this case, the other logical processor has full use of every cycle of the pipeline stage.
Reasons why a logical processor may not use a pipeline stage include cache misses, branch mispredic-
tions, and instruction dependencies.

2.7.3 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to execute. Once the µops
are placed in the queues waiting for execution, there is no distinction between instructions from the two
logical processors. The execution core and memory hierarchy is also oblivious to which instructions
belong to which logical processor.

Ref#: 248966-048 2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execu-
tion stage from the retirement stage. The re-order buffer is partitioned such that each uses half the
entries.

2.7.4 Retirement
The retirement logic tracks when instructions from the two logical processors are ready to be retired. It
retires the instruction in program order for each logical processor by alternating between the two logical
processors. If one logical processor is not ready to retire any instructions, then all retirement bandwidth
is dedicated to the other logical processor.

Once stores have retired, the processor needs to write the store data into the level-one data cache.
Selection logic alternates between the two logical processors to commit store data to the cache.

2.8 SIMD TECHNOLOGY
SIMD computations (see Figure 2-10) were introduced to the architecture with MMX technology. MMX
technology allows SIMD computations to be performed on packed byte, word, and doubleword integers.
The integers are contained in a set of eight 64-bit registers called MMX registers (see Figure 2-11).

The Pentium III processor extended the SIMD computation model with the introduction of the Streaming
SIMD Extensions (SSE). SSE allows SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be in memory or in a set of eight
128-bit XMM registers (see Figure 2-11). SSE also extended SIMD computational capability by adding
additional 64-bit MMX instructions.

Figure 2-10 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and
X4, and Y1, Y2, Y3, and Y4) are operated on in parallel, with the same operation being performed on each
corresponding pair of data elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of
the four parallel computations are sorted as a set of four packed data elements.

The Pentium 4 processor further extended the SIMD computation model with the introduction of
Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor
5100 series introduced Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD
computations to process packed double-precision floating-point data elements and 128-bit packed inte-

Figure 2-10. Typical SIMD Operations

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4 op Y4 X3 op Y3 X2 op Y2 X1 op Y1

OP OP OP OP

OM15148

Ref#: 248966-048 2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

gers. There are 144 instructions in SSE2 that operate on two packed double-precision floating-point data
elements or on 16 packed byte, 8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application perfor-
mance in specific areas. These include video processing, complex arithmetics, and thread synchroniza-
tion. SSE3 complements SSE and SSE2 with instructions that process SIMD data asymmetrically,
facilitate horizontal computation, and help avoid loading cache line splits. See Figure 2-11.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and
signal processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in
media processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32 architecture, with the
following enhancements:
• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.
• Instructions that reference 32-bit general purpose registers can access 16 general purpose registers

in 64-bit mode.

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applica-
tions and applications that have the following characteristics:
• Inherently parallel.
• Recurring memory access patterns.
• Localized recurring operations performed on the data.
• Data-independent control flow.

2.9 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic.
They are accessible from all IA-32 execution modes: protected mode, real address mode, and Virtual
8086 mode.

Figure 2-11. SIMD Instruction Register Usage

MM7

MM6

MM7

MM3

MM2

MM1

MM0

MM5

MM4

MM7

XMM6

XMM7

XMM3

XMM2

XMM1

XMM0

XMM5

XMM4

64-bit MMX Registers 128-bit XMM Registers

OM15149

Ref#: 248966-048 2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run
correctly, without modification on Intel microprocessors that incorporate these technologies. Existing
software will also run correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can
improve cache usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1
• Chapter 9, “Programming with Intel® MMX™ Technology.”
• Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE).”
• Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”
• Chapter 12, “Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI.”
• Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2.”
• Chapter 15, “Programming with Intel® AVX-512.”
• Chapter 16, “Programming with Intel® Transactional Synchronization Extensions.”

2.9.1 MMX™ Technology
MMX Technology introduced:
• 64-bit MMX registers.
• Support for SIMD operations on packed byte, word, and doubleword integers.

Recommendation: Integer SIMD code written using MMX instructions should consider more efficient
implementations using SSE/Intel AVX instructions.

2.9.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:
• 128-bit XMM registers.
• 128-bit data type with four packed single-precision floating-point operands.
• Data prefetch instructions.
• Non-temporal store instructions and other cacheability and memory ordering instructions.
• Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and
decoding.

2.9.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:
• 128-bit data type with two packed double-precision floating-point operands.
• 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword

integers.
• Support for SIMD arithmetic on 64-bit integer operands.
• Instructions for converting between new and existing data types.
• Extended support for data shuffling.
• Extended support for cacheability and memory ordering operations.

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

Ref#: 248966-048 2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.9.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:
• SIMD floating-point instructions for asymmetric and horizontal computation.
• A special-purpose 128-bit load instruction to avoid cache line splits.
• An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).
• Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.9.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight
types of computations on packed integers. These include:
• 12 instructions that perform horizontal addition or subtraction operations.
• 6 instructions that evaluate the absolute values.
• 2 instructions that perform multiply and add operations and speed up the evaluation of dot products.
• 2 instructions that accelerate packed-integer multiply operations and produce integer values with

scaling.
• 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control

operand.
• 6 instructions that negate packed integers in the destination operand if the signs of the corre-

sponding element in the source operand is less than zero.
• 2 instructions that align data from the composite of two operands.

2.9.6 SSE4.1
SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also
improves compiler vectorization and significantly increase support for packed dword computation. These
include:
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with input/output selects.
• One instruction provides a streaming hint for WC loads.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable rounding mode and precision exception

override.
• Seven instructions improve data insertion and extractions from XMM registers
• Twelve instructions improve packed integer format conversions (sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation for small block sizes.
• One instruction aids horizontal searching operations of word integers.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

2.9.7 SSE4.2
SSE4.2 introduces 7 new instructions. These include:

Ref#: 248966-048 2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.
• Four string/text processing instructions providing a rich set of primitives, these primitives can

accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.
• A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.
• A general-purpose instruction for calculating bit count population of integer numbers.

2.9.8 AESNI and PCLMULQDQ
AESNI introduces seven new instructions, six of them are primitives for accelerating algorithms based on
AES encryption/decryption standard, referred to as AESNI.

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations
via several primitives. The AES teration.

AES encryption involves processing 128-bit input data (plain text) through a finite number of iterative
operation, referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the
reverse direction of iterative operation using the “equivalent inverse cipher” instead of the “inverse
cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the
“round key”. Each round uses a different “round key”. The round keys are derived from the cipher key
using a “key schedule” algorithm. The “key schedule” algorithm is independent of the data processing of
encryption/decryption, and can be carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for
AES rounds on decryption using the equivalent inverse cipher, and two instructions to support the AES
key expansion procedure.

2.9.9 Intel® Advanced Vector Extensions (Intel® AVX)
Intel® Advanced Vector Extensions (Intel® AVX) offers comprehensive architectural enhancements over
previous generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural
enhancements:
• Support for 256-bit wide vectors and SIMD register set.
• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit

Streaming SIMD extensions.
• Instruction syntax support for generalized three-operand syntax to improve instruction programming

flexibility and efficient encoding of new instruction extensions.
• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to

simplify compiler vectorization of high-level language expressions.
• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar

code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. Optimization techniques
for Intel AVX are discussed in Chapter 15, “Optimizations for Intel® AVX, Intel® AVX2, and Intel® FMA.”

Ref#: 248966-048 2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.9.10 Half-Precision Floating-Point Conversion (F16C)
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type
conversion to and from single-precision floating-point data types. These two instruction extends on the
same programming model as Intel AVX.

2.9.11 RDRAND
The RDRAND instruction retrieves a random number supplied by a cryptographically secure, determin-
istic random bit generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.9.12 Fused-Multiply-ADD (FMA) Extensions
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused
multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply
on fused multiply-add and multiply-subtract operations. FMA extensions provide 36 256-bit
floating-point instructions to perform computation on 256-bit vectors and additional 128-bit and scalar
FMA instructions.

2.9.13 Intel® Advanced Vector Extensions 2 (Intel® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit
numeric processing capabilities. Intel AVX2 instructions follow the same programming model as AVX
instructions.
In addition, Intel AVX2 provide enhanced functionalities for broadcast/permute operations on data
elements, vector shift instructions with variable-shift count per data element, and instructions to fetch
non-contiguous data elements from memory.

2.9.14 General-Purpose Bit-Processing Instructions
The fourth generation Intel Core processor family introduces a collection of bit processing instructions
that operate on the general purpose registers. The majority of these instructions uses the VEX-prefix
encoding scheme to provide non-destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see
Section 5.1 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and chapters
3, 4 and 5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C,
& 2D.

2.9.15 Intel® Transactional Synchronization Extensions (Intel® TSX)
The fourth generation Intel Core processor family introduces Intel® Transactional Synchronization Exten-
sions (Intel® TSX), which aim to improve the performance of lock-protected critical sections of multi-
threaded applications while maintaining the lock-based programming model.

For background and details, see Chapter 16 of Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1.

Software tuning recommendations for using Intel TSX on lock-protected critical sections of multithreaded
applications are described in Chapter 16, “Intel® TSX Recommendations.”

https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671110

Ref#: 248966-048 2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.9.16 RDSEED
The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced
deterministic random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP
800-90B and NIST SP 800-90C standards.

2.9.17 ADCX and ADOX Instructions
The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up
calculations that require large integer numerics.

Intel® 64 and IA-32 Architectures Optimization Reference Manual 13

2. Updates to Chapter 3
Change bars and violet text show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Intel® 64 and IA-32 Processor Architectures.

--
Changes to this chapter:
• Corrected branding and style across chapter.
• Section 3.4

— Removed section referring to the updates in Intel® Core Duo.
• Section 3.5

— Updated Figure 3-1 to match style of those in Chapter 2
• Section 3.6:

— 3.6.1: added- Bank conflicts may occur with the introduction due to the third load port in the Golden Cove
microarchitecture. In this microarchitecture, conflicts happen between three loads with the same bits 2-5
of their linear address even if they access the same set of the cache. Up to two loads can access the same
cache bank without a conflict; however, a third load accessing the same bank must be delayed. The bank
conflicts do not apply to 512-bit wide loads because their bandwidth is limited to two per cycle.

Recommendation: In the Golden Cove microarchitecture, bank conflicts often happen when multiple
loads access the same memory location. Whenever possible, avoid reading the same memory location
within a tight loop or using multiple load operations. Commonly used memory locations are better kept in
the registers to prevent potential bank conflict penalty.

• Section 3.11:
— Added Section: 3.11.5: False Sharing.

Ref#: 248966-048 3-1

GENERAL OPTIMIZATION GUIDELINES

CHAPTER 3
GENERAL OPTIMIZATION GUIDELINES

This chapter discusses general optimization techniques that can improve the performance of applications
running on Intel® processors. These techniques take advantage of microarchitectural features described
in Chapter 2, “Intel® 64 and IA-32 Processor Architectures.” Optimization guidelines focusing on Intel
multi-core processors, Hyper-Threading Technology, and 64-bit mode applications are discussed in
Chapter 11, “Multicore and Intel® Hyper-Threading Technology (Intel® HT),” and Chapter 13, “64-bit
Mode Coding Guidelines.”

Practices that optimize performance focus on three areas:
• Tools and techniques for code generation.
• Analysis of the performance characteristics of the workload and its interaction with microarchitectural

sub-systems.
• Tuning code to the target microarchitecture (or families of microarchitecture) to improve perfor-

mance.

Some hints on using tools are summarized first to simplify the first two tasks. The rest of the chapter will
focus on recommendations for code generation or code tuning to the target microarchitectures.

This chapter explains optimization techniques for the Intel® C++ Compiler, the Intel® Fortran Compiler,
and other compilers.

3.1 PERFORMANCE TOOLS
Intel offers several tools to help optimize application performance, including compilers, performance
analysis, and multithreading tools.

3.1.1 Intel® C++ and Fortran Compilers
Intel compilers support multiple operating systems (Windows*, Linux*, Mac OS*, and embedded). The
Intel compilers optimize performance and give application developers access to advanced features,
including:
• Flexibility to target 32-bit or 64-bit Intel processors for optimization.
• Compatibility with many integrated development environments or third-party compilers.
• Automatic optimization features to take advantage of the target processor’s architecture.
• Automatic compiler optimization reduces the need to write different code for different processors.
• Common compiler features that are supported across Windows, Linux, and Mac OS include:

— General optimization settings.

— Cache-management features.

— Interprocedural optimization (IPO) methods.

— Profile-guided optimization (PGO) methods.

— Multithreading support.

— Floating-point arithmetic precision and consistency support.

— Compiler optimization and vectorization reports.

Ref#: 248966-048 3-2

GENERAL OPTIMIZATION GUIDELINES

3.1.2 General Compiler Recommendations
Generally speaking, a compiler tuned for a target microarchitecture can be expected to match or outper-
form hand-coding. However, if performance problems are noted with the compiled code, some compilers
(like Intel C++ and Fortran compilers) allow the coder to insert intrinsics or inline assembly to exert
control over generated code. If inline assembly is used, the user must verify that the code generated is
high quality and yields good performance.

Default compiler switches are targeted for common cases. An optimization may be made to the compiler
default if it benefits most programs. If the root cause of a performance problem is a poor choice on the
part of the compiler, using different switches or compiling the targeted module with a different compiler
may be the solution. See the “Quick Reference Guide to Optimization with Intel® C++ and Fortran
Compilers” for additional suggestions on compiler Optimization Options, including processor-specific
ones.

3.1.3 VTune™ Performance Analyzer
VTune uses performance monitoring hardware to collect statistics and coding information about your
application and its interaction with the microarchitecture. This allows software engineers to measure
performance characteristics of the workload for a given microarchitecture. VTune supports all current
and past Intel processor families.

The VTune Performance Analyzer provides two kinds of feedback:
• Indication of a performance improvement gained by using a specific coding recommendation or

microarchitectural feature.
• Information on whether a change in the program has improved or degraded performance with

respect to a particular metric.

The VTune Performance Analyzer also provides measures for a number of workload characteristics,
including:
• Retirement throughput of instruction execution as an indication of the degree of extractable

instruction-level parallelism in the workload.
• Data traffic locality as an indication of the stress point of the cache and memory hierarchy.
• Data traffic parallelism as an indication of the degree of effectiveness of amortization of data access

latency.

NOTE
Improving performance in one part of the machine does not necessarily bring significant
gains to overall performance. It is possible to degrade overall performance by improving
performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the VTune Perfor-
mance Analyzer events that provide measurable data on the performance gain achieved by following the
recommendations. For more on using the VTune analyzer, refer to the application’s online help.

3.2 PROCESSOR PERSPECTIVES
Many coding recommendations work well across current microarchitectures. However, there are situa-
tions where a recommendation may benefit one microarchitecture more than another.

3.2.1 CPUID Dispatch Strategy and Compatible Code Strategy
When optimum performance on all processor generations is desired, applications can take advantage of
the CPUID instruction to identify the processor generation and integrate processor-specific instructions

https://www.intel.com/content/dam/develop/external/us/en/documents/quick-reference-card-intel-compilers-v15-558870.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/quick-reference-card-intel-compilers-v15-558870.pdf

Ref#: 248966-048 3-3

GENERAL OPTIMIZATION GUIDELINES

into the source code. The Intel C++ Compiler supports the integration of different versions of the code
for different target processors. The selection of which code to execute at runtime is made based on the
CPU identifiers. Binary code targeted for different processor generations can be generated under the
control of the programmer or by the compiler. Refer to the “Intel® C++ Compiler Classic Developer
Guide and Reference” cpu_dispatch and cpu_specific sections for more information on CPU dispatching
(a.k.a function multi-versioning).

For applications that target multiple generations of microarchitectures, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Optimizing applications
using techniques developed for the Intel Core microarchitecture combined with Nehalem microarchitec-
ture are likely to improve code efficiency and scalability when running on processors based on current
and future generations of Intel 64 and IA-32 processors.

3.2.2 Transparent Cache-Parameter Strategy
If the CPUID instruction supports function leaf 4, also known as deterministic cache parameter leaf, the
leaf reports cache parameters for each level of the cache hierarchy in a deterministic and
forward-compatible manner across Intel 64 and IA-32 processor families.

For coding techniques that rely on specific parameters of a cache level, using the deterministic cache
parameter allows software to implement techniques in a way that is forward-compatible with future
generations of Intel 64 and IA-32 processors, and cross-compatible with processors equipped with
different cache sizes.

3.2.3 Threading Strategy and Hardware Multithreading Support
Intel 64 and IA-32 processor families offer hardware multithreading support in two forms: multi-core
technology and HT Technology.

To fully harness the performance potential of hardware multithreading in current and future generations
of Intel 64 and IA-32 processors, software must embrace a threaded approach in application design. At
the same time, to address the widest range of installed machines, multithreaded software should be able
to run without failure on a single processor without hardware multithreading support and should achieve
performance on a single logical processor that is comparable to an unthreaded implementation (if such
comparison can be made). This generally requires architecting a multithreaded application to minimize
the overhead of thread synchronization. Additional guidelines on multithreading are discussed in Chapter
11, “Multicore and Intel® Hyper-Threading Technology (Intel® HT).”

3.3 CODING RULES, SUGGESTIONS, AND TUNING HINTS
This section includes rules, suggestions, and hints. They are targeted for engineers who are:
• Modifying source code to enhance performance (user/source rules).
• Writing assemblers or compilers (assembly/compiler rules).
• Doing detailed performance tuning (tuning suggestions).

Coding recommendations are ranked in importance using two measures:
• Local impact (high, medium, or low) refers to a recommendation’s affect on the performance of a

given instance of code.
• Generality (high, medium, or low) measures how often such instances occur across all application

domains. Generality may also be thought of as “frequency.”

These recommendations are approximate. They can vary depending on coding style, application domain,
and other factors.

The purpose of the high, medium, and low (H, M, and L) priorities is to suggest the relative level of
performance gain one can expect if a recommendation is implemented.

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html

Ref#: 248966-048 3-4

GENERAL OPTIMIZATION GUIDELINES

Because it is not possible to predict the frequency of a particular code instance in applications, priority
hints cannot be directly correlated to application-level performance gain. In cases in which applica-
tion-level performance gain has been observed, we have provided a quantitative characterization of the
gain (for information only). In cases in which the impact has been deemed inapplicable, no priority is
assigned.

3.4 OPTIMIZING THE FRONT END
Optimizing the front end covers two aspects:
• Maintaining steady supply of micro-ops to the execution engine — Mispredicted branches can disrupt

streams of micro-ops, or cause the execution engine to waste execution resources on executing
streams of micro-ops in the non-architected code path. Much of the tuning in this respect focuses on
working with the Branch Prediction Unit. Common techniques are covered in Section 3.4.1

• Supplying streams of micro-ops to utilize the execution bandwidth and retirement bandwidth as
much as possible. In Sandy Bridge microarchitecture, this aspect focuses on keeping the hot code
running from Decoded ICache. Techniques to maximize decode throughput for Intel microarchi-
tecture are covered in Section 3.4.2

3.4.1 Branch Prediction Optimization
Branch optimizations have a significant impact on performance. By understanding the flow of branches
and improving their predictability, you can increase the speed of code significantly.

Optimizations that help branch prediction are:
• It is critical to keep code and data on separate pages. See Section 3.6 for more information.
• Eliminate branches whenever possible.
• Arrange code to be consistent with the static branch prediction algorithm.
• Use the PAUSE instruction in spin-wait loops.
• Inline functions and pair up calls and returns.
• Unroll as necessary so that repeatedly-executed loops have sixteen or fewer iterations (unless this

causes an excessive code size increase).
• Avoid putting multiple conditional branches in the same 8-byte aligned code block (i.e, have their last

bytes' addresses within the same 8-byte aligned code) if the lower 6 bits of their target IPs are the
same. This restriction has been removed in Ice Lake Client and later microarchitectures.

3.4.1.1 Eliminating Branches
Eliminating branches improves performance because:
• It reduces the possibility of mispredictions.
• It reduces the number of required branch target buffer (BTB) entries. Conditional branches that are

never taken do not consume BTB resources.

There are four principal ways of eliminating branches:
• Arrange code to make basic blocks contiguous.
• Unroll loops, as discussed in Section 3.4.1.6
• Use the CMOV instruction.
• Use the SETCC instruction.

Ref#: 248966-048 3-5

GENERAL OPTIMIZATION GUIDELINES

The following rules apply to branch elimination:
Assembly/Compiler Coding Rule 1. (MH impact, M generality) Arrange code to make basic blocks
contiguous and eliminate unnecessary branches.
Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the SETCC and CMOV
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Do not use these instructions to eliminate all unpredictable conditional branches
(because using these instructions will incur execution overhead due to the requirement for executing
both paths of a conditional branch). In addition, converting a conditional branch to SETCC or CMOV
trades off control flow dependence for data dependence and restricts the capability of the out-of-order
engine. When tuning, note that all Intel 64 and IA-32 processors usually have very high branch
prediction rates. Consistently mispredicted branches are generally rare. Use these instructions only if
the increase in computation time is less than the expected cost of a mispredicted branch.

Consider a line of C code that has a condition dependent upon one of the constants:

X = (A < B) CONST1 : CONST2;

This code conditionally compares two values, A and B. If the condition is true, X is set to CONST1; other-
wise it is set to CONST2. An assembly code sequence equivalent to the above C code can contain
branches that are not predictable if there are no correlation in the two values.

Example 3-1 shows the assembly code with unpredictable branches. The unpredictable branches can be
removed with the use of the SETCC instruction. Example 3-2 shows optimized code that has no
branches.

The optimized code in Example 3-2 sets EBX to zero, then compares A and B. If A is greater than or equal
to B, EBX is set to one. Then EBX is decreased and AND’d with the difference of the constant values. This
sets EBX to either zero or the difference of the values. By adding CONST2 back to EBX, the correct value
is written to EBX. When CONST2 is equal to zero, the last instruction can be deleted.

Another way to remove branches is to use the CMOV and FCMOV instructions. Example 3-3 shows how to
change a TEST and branch instruction sequence using CMOV to eliminate a branch. If the TEST sets the
equal flag, the value in EBX will be moved to EAX. This branch is data-dependent, and is representative
of an unpredictable branch.

Example 3-1. Assembly Code with an Unpredictable Branch

cmp a, b ; Condition
jbe L30 ; Conditional branch
mov ebx const1 ; ebx holds X
jmp L31 ; Unconditional branch

L30:
mov ebx, const2

L31:

Example 3-2. Code Optimization to Eliminate Branches

xor ebx, ebx ; Clear ebx (X in the C code)
cmp A, B
setge bl ; When ebx = 0 or 1

 ; OR the complement condition
sub ebx, 1 ; ebx=11...11 or 00...00
and ebx, CONST3; CONST3 = CONST1-CONST2
add ebx, CONST2; ebx=CONST1 or CONST2

Ref#: 248966-048 3-6

GENERAL OPTIMIZATION GUIDELINES

An extension to this concept can be seen in the AVX-512 masked operations, as well as in some instruc-
tions such as VPCMP which can be used to eliminate data dependent branches; see Section 18.4.

3.4.1.2 Static Prediction
Branches that do not have a history in the BTB (see Section 3.4.1) are predicted using a static prediction
algorithm:
• Predict forward conditional branches to be NOT taken.
• Predict backward conditional branches to be taken.
• Predict indirect branches to be NOT taken.

The following rule applies to static prediction:
Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent with
the static branch prediction algorithm: make the fall-through code following a conditional branch be the
likely target for a branch with a forward target, and make the fall-through code following a conditional
branch be the unlikely target for a branch with a backward target.

Example 3-4 illustrates the static branch prediction algorithm. The body of an IF-THEN conditional is
predicted.

Example 3-5 and Example 3-6 provide basic rules for a static prediction algorithm. In Example 3-5, the
backward branch (JC BEGIN) is not in the BTB the first time through; therefore, the BTB does not issue a

Example 3-3. Eliminating Branch with CMOV Instruction

test ecx, ecx
jne 1H
mov eax, ebx

1H:
; To optimize code, combine jne and mov into one cmovcc instruction that checks the equal flag

test ecx, ecx ; Test the flags
cmoveq eax, ebx ; If the equal flag is set, move

; ebx to eax- the 1H: tag no longer needed

Example 3-4. Static Branch Prediction Algorithm

//Forward condition branches not taken (fall through)
IF<condition> {....

}

IF<condition> {...

}

//Backward conditional branches are taken
LOOP {...
<condition>

//Unconditional branches taken
JMP

Ref#: 248966-048 3-7

GENERAL OPTIMIZATION GUIDELINES

prediction. The static predictor, however, will predict the branch to be taken, so a misprediction will not
occur.

The first branch instruction (JC BEGIN) in Example 3-6 is a conditional forward branch. It is not in the
BTB the first time through, but the static predictor will predict the branch to fall through. The static
prediction algorithm correctly predicts that the CALL CONVERT instruction will be taken, even before the
branch has any branch history in the BTB.

The Intel Core microarchitecture does not use the static prediction heuristic. However, to maintain
consistency across Intel 64 and IA-32 processors, software should maintain the static prediction heuristic
as the default.

3.4.1.3 Inlining, Calls, and Returns
The return address stack mechanism augments the static and dynamic predictors to optimize specifically
for calls and returns. It holds 16 entries, which is large enough to cover the call depth of most programs.
If there is a chain of more than 16 nested calls and more than 16 returns in rapid succession, perfor-
mance may degrade.

To enable the use of the return stack mechanism, calls and returns must be matched in pairs. If this is
done, the likelihood of exceeding the stack depth in a manner that will impact performance is very low.

The following rules apply to inlining, calls, and returns:
Assembly/Compiler Coding Rule 4. (MH impact, MH generality) Near calls must be matched with
near returns, and far calls must be matched with far returns. Pushing the return address on the stack
and jumping to the routine to be called is not recommended since it creates a mismatch in calls and
returns.

Calls and returns are expensive; use inlining for the following reasons:
• Parameter passing overhead can be eliminated.
• In a compiler, inlining a function exposes more opportunity for optimization.
• If the inlined routine contains branches, the additional context of the caller may improve branch

prediction within the routine.
• A mispredicted branch can lead to performance penalties inside a small function that are larger than

those that would occur if that function is inlined.

Example 3-5. Static Taken Prediction

Begin: mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin

Example 3-6. Static Not-Taken Prediction

mov eax, mem32
and eax, ebx
imul eax, edx
shld eax, 7
jc Begin
mov eax, 0

Begin: call Convert

Ref#: 248966-048 3-8

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 5. (MH impact, MH generality) Selectively inline a function if
doing so decreases code size or if the function is small and the call site is frequently executed.
Assembly/Compiler Coding Rule 6. (ML impact, ML generality) If there are more than 16 nested
calls and returns in rapid succession; consider transforming the program with inline to reduce the call
depth.
Assembly/Compiler Coding Rule 7. (ML impact, ML generality) Favor inlining small functions that
contain branches with poor prediction rates. If a branch misprediction results in a RETURN being
prematurely predicted as taken, a performance penalty may be incurred.
Assembly/Compiler Coding Rule 8. (L impact, L generality) If the last statement in a function is
a call to another function, consider converting the call to a jump. This will save the call/return overhead
as well as an entry in the return stack buffer.
Assembly/Compiler Coding Rule 9. (M impact, L generality) Do not put more than four branches
in a 16-byte chunk.
Assembly/Compiler Coding Rule 10. (M impact, L generality) Do not put more than two end loop
branches in a 16-byte chunk.

3.4.1.4 Code Alignment
Careful arrangement of code can enhance cache and memory locality. Likely sequences of basic blocks
should be laid out contiguously in memory. This may involve removing unlikely code, such as code to
handle error conditions, from the sequence. See Section 3.7 on optimizing the instruction prefetcher.
Assembly/Compiler Coding Rule 11. (M impact, H generality) When executing code from the
Decoded ICache, direct branches that are mostly taken should have all their instruction bytes in a 64B
cache line and nearer the end of that cache line. Their targets should be at or near the beginning of a
64B cache line.

When executing code from the legacy decode pipeline, direct branches that are mostly taken should have
all their instruction bytes in a 16B aligned chunk of memory and nearer the end of that 16B aligned
chunk. Their targets should be at or near the beginning of a 16B aligned chunk of memory.
Assembly/Compiler Coding Rule 12. (M impact, H generality) If the body of a conditional is not
likely to be executed, it should be placed in another part of the program. If it is highly unlikely to be
executed and code locality is an issue, it should be placed on a different code page.

3.4.1.5 Branch Type Selection
The default predicted target for indirect branches and calls is the fall-through path. Fall-through predic-
tion is overridden if and when a hardware prediction is available for that branch. The predicted branch
target from branch prediction hardware for an indirect branch is the previously executed branch target.

The default prediction to the fall-through path is only a significant issue if no branch prediction is avail-
able, due to poor code locality or pathological branch conflict problems. For indirect calls, predicting the
fall-through path is usually not an issue, since execution will likely return to the instruction after the
associated return.

Placing data immediately following an indirect branch can cause a performance problem. If the data
consists of all zeros, it looks like a long stream of ADDs to memory destinations and this can cause
resource conflicts and slow down branch recovery. Also, data immediately following indirect branches
may appear as branches to the branch predication hardware, which can branch off to execute other data
pages. This can lead to subsequent self-modifying code problems.
Assembly/Compiler Coding Rule 13. (M impact, L generality) When indirect branches are
present, try to put the most likely target of an indirect branch immediately following the indirect
branch. Alternatively, if indirect branches are common but they cannot be predicted by branch
prediction hardware, then follow the indirect branch with a UD2 instruction, which will stop the
processor from decoding down the fall-through path.

Indirect branches resulting from code constructs (such as switch statements, computed GOTOs or calls
through pointers) can jump to an arbitrary number of locations. If the code sequence is such that the
target destination of a branch goes to the same address most of the time, then the BTB will predict accu-

Ref#: 248966-048 3-9

GENERAL OPTIMIZATION GUIDELINES

rately most of the time. Since only one taken (non-fall-through) target can be stored in the BTB, indirect
branches with multiple taken targets may have lower prediction rates.

The effective number of targets stored may be increased by introducing additional conditional branches.
Adding a conditional branch to a target is fruitful if:
• The branch direction is correlated with the branch history leading up to that branch; that is, not just

the last target, but how it got to this branch.
• The source/target pair is common enough to warrant using the extra branch prediction capacity. This

may increase the number of overall branch mispredictions, while improving the misprediction of
indirect branches. The profitability is lower if the number of mispredicting branches is very large.

User/Source Coding Rule 1. (M impact, L generality) If an indirect branch has two or more
common taken targets and at least one of those targets is correlated with branch history leading up to
the branch, then convert the indirect branch to a tree where one or more indirect branches are
preceded by conditional branches to those targets. Apply this “peeling” procedure to the common
target of an indirect branch that correlates to branch history.

The purpose of this rule is to reduce the total number of mispredictions by enhancing the predictability of
branches (even at the expense of adding more branches). The added branches must be predictable for
this to be worthwhile. One reason for such predictability is a strong correlation with preceding branch
history. That is, the directions taken on preceding branches are a good indicator of the direction of the
branch under consideration.

Example 3-7 shows a simple example of the correlation between a target of a preceding conditional
branch and a target of an indirect branch.

Correlation can be difficult to determine analytically, for a compiler and for an assembly language
programmer. It may be fruitful to evaluate performance with and without peeling to get the best perfor-
mance from a coding effort.

An example of peeling out the most favored target of an indirect branch with correlated branch history is
shown in Example 3-8.

Example 3-7. Indirect Branch With Two Favored Targets

function ()
{
int n = rand(); // random integer 0 to RAND_MAX

if (! (n & 0x01)) { // n will be 0 half the times
n = 0; // updates branch history to predict taken

}
// indirect branches with multiple taken targets
// may have lower prediction rates

 switch (n) {
case 0: handle_0(); break; // common target, correlated with

// branch history that is forward taken
 case 1: handle_1(); break; // uncommon

case 3: handle_3(); break; // uncommon
default: handle_other(); // common target

 }
}

Ref#: 248966-048 3-10

GENERAL OPTIMIZATION GUIDELINES

3.4.1.6 Loop Unrolling
Benefits of unrolling loops are:
• Unrolling amortizes the branch overhead, since it eliminates branches and some of the code to

manage induction variables.
• Unrolling allows one to aggressively schedule (or pipeline) the loop to hide latencies. This is useful if

you have enough free registers to keep variables live as you stretch out the dependence chain to
expose the critical path.

• Unrolling exposes the code to various other optimizations, such as removal of redundant loads,
common subexpression elimination, and so on.

The potential costs of unrolling loops are:
• Unrolling loops whose bodies contain branches increases demand on BTB capacity. If the number of

iterations of the unrolled loop is 16 or fewer, the branch predictor should be able to correctly predict
branches in the loop body that alternate direction.

Example 3-8. A Peeling Technique to Reduce Indirect Branch Misprediction

function ()
{
 int n = rand(); // Random integer 0 to RAND_MAX

if(! (n & 0x01)) THEN
 n = 0; // n will be 0 half the times

if (!n) THEN
handle_0(); // Peel out the most common target

// with correlated branch history

 {
 switch (n) {

case 1: handle_1(); break; // Uncommon
case 3: handle_3(); break; // Uncommon

default: handle_other(); // Make the favored target in
// the fall-through path

}
 }
}

Ref#: 248966-048 3-11

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 14. (H impact, M generality) Unroll small loops until the
overhead of the branch and induction variable accounts (generally) for less than 10% of the execution
time of the loop.
Assembly/Compiler Coding Rule 15. (M impact, M generality) Unroll loops that are frequently
executed and have a predictable number of iterations to reduce the number of iterations to 16 or fewer.
Do this unless it increases code size so that the working set no longer fits in the instruction cache. If the
loop body contains more than one conditional branch, then unroll so that the number of iterations is
16/(# conditional branches).

Example 3-9 shows how unrolling enables other optimizations.

In this example, the loop that executes 100 times assigns X to every even-numbered element and Y to
every odd-numbered element. By unrolling the loop you can make assignments more efficiently,
removing one branch in the loop body.

3.4.2 Fetch and Decode Optimization
Intel Core microarchitecture provides several mechanisms to increase front end throughput. Techniques
to take advantage of some of these features are discussed below.

3.4.2.1 Optimizing for Microfusion
An Instruction that operates on a register and a memory operand decodes into more micro-ops than its
corresponding register-register version. Replacing the equivalent work of the former instruction using
the register-register version usually require a sequence of two instructions. The latter sequence is likely
to result in reduced fetch bandwidth.
Assembly/Compiler Coding Rule 16. (ML impact, M generality) For improving fetch/decode
throughput, Give preference to memory flavor of an instruction over the register-only flavor of the
same instruction, if such instruction can benefit from micro-fusion.

The following examples are some of the types of micro-fusions that can be handled by all decoders:
• All stores to memory, including store immediate. Stores execute internally as two separate

micro-ops: store-address and store-data.
• All “read-modify” (load+op) instructions between register and memory, for example:

ADDPS XMM9, OWORD PTR [RSP+40]
FADD DOUBLE PTR [RDI+RSI*8]
XOR RAX, QWORD PTR [RBP+32]

• All instructions of the form “load and jump,” for example:
JMP [RDI+200]
RET

• CMP and TEST with immediate operand and memory.

An Intel 64 instruction with RIP relative addressing is not micro-fused in the following cases:

Example 3-9. Loop Unrolling

Before unrolling:

do i = 1, 100
if (i mod 2 == 0) then a(i) = x

else a(i) = y
enddo

After unrolling

do i = 1, 100, 2
a(i) = y
a(i+1) = x

enddo

Ref#: 248966-048 3-12

GENERAL OPTIMIZATION GUIDELINES

• When an additional immediate is needed, for example:
CMP [RIP+400], 27
MOV [RIP+3000], 142

• When an RIP is needed for control flow purposes, for example:
JMP [RIP+5000000]

In these cases, Intel Core microarchitecture and Sandy Bridge microarchitecture provide a 2 micro-op
flow from decoder 0, resulting in a slight loss of decode bandwidth since 2 micro-op flow must be steered
to decoder 0 from the decoder with which it was aligned.

RIP addressing may be common in accessing global data. Since it will not benefit from micro-fusion,
compiler may consider accessing global data with other means of memory addressing.

3.4.2.2 Optimizing for Macrofusion
Macrofusion merges two instructions to a single micro-op. Intel Core microarchitecture performs this
hardware optimization under limited circumstances.

The first instruction of the macro-fused pair must be a CMP or TEST instruction. This instruction can be
REG-REG, REG-IMM, or a micro-fused REG-MEM comparison. The second instruction (adjacent in the
instruction stream) should be a conditional branch.

Since these pairs are common ingredient in basic iterative programming sequences, macrofusion
improves performance even on un-recompiled binaries. All of the decoders can decode one macro-fused
pair per cycle, with up to three other instructions, resulting in a peak decode bandwidth of 5 instructions
per cycle.

Each macro-fused instruction executes with a single dispatch. This process reduces latency, which in this
case shows up as a cycle removed from branch mispredict penalty. Software also gain all other fusion
benefits: increased rename and retire bandwidth, more storage for instructions in-flight, and power
savings from representing more work in fewer bits.

The following list details when you can use macrofusion:
• CMP or TEST can be fused when comparing:

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps.
• CMP can be fused with only the following conditional jumps in Intel Core microarchitecture. These

conditional jumps check carry flag (CF) or zero flag (ZF). jump. The list of macrofusion-capable
conditional jumps are:

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

CMP and TEST can not be fused when comparing MEM-IMM (e.g. CMP [EAX],0x80; JZ label). Macrofusion
is not supported in 64-bit mode for Intel Core microarchitecture.
• Nehalem microarchitecture supports the following enhancements in macrofusion:

— CMP can be fused with the following conditional jumps (that was not supported in Intel Core
microarchitecture):

• JL or JNGE

• JGE or JNL

Ref#: 248966-048 3-13

GENERAL OPTIMIZATION GUIDELINES

• JLE or JNG

• JG or JNLE

— Macrofusion is supported in 64-bit mode.
• Enhanced macrofusion support in Sandy Bridge microarchitecture is summarized in Table 3-1 with

additional information in Example 3-14:

• Enhanced macrofusion support in Haswell microarchitecture is summarized in Table 3-2. Macrofusion
is supported CMP/TEST/OP with reg-imm, reg-mem, and reg-reg addressing but not mem-imm
addressing.

Table 3-1. Macro-Fusible Instructions in Sandy Bridge Microarchitecture
Instructions TEST AND CMP ADD SUB INC DEC

JO/JNO Y Y N N N N N

JC/JB/JAE/JNB Y Y Y Y Y N N

JE/JZ/JNE/JNZ Y Y Y Y Y Y Y

JNA/JBE/JA/JNBE Y Y Y Y Y N N

JS/JNS/JP/JPE/JNP/JPO Y Y N N N N N

JL/JNGE/JGE/JNL/JLE/JNG/JG/JNLE Y Y Y Y Y Y Y

Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
Opcode JCC ADD / SUB / CMP INC / DEC TEST / AND

70 0F 80 Jo N N Y

71 0F 81 Jno N N Y

72 0F 82 Jc / Jb Y N Y

73 0F 83 Jae / Jnb Y N Y

74 0F 84 Je / Jz Y Y Y

75 0F 85 Jne / Jnz Y Y Y

76 0F 86 Jna / Jbe Y N Y

77 0F 87 Ja / Jnbe Y N Y

78 0F 88 Js N N Y

79 0F 89 Jns N N Y

7A 0F 8A Jp / Jpe N N Y

7B 0F 8B Jnp / Jpo N N Y

7C 0F 8C Jl / Jnge Y Y Y

7D 0F 8D Jge / Jnl Y Y Y

7E 0F 8E Jle / Jng Y Y Y

7F 0F 8F Jg / Jnle Y Y Y

Ref#: 248966-048 3-14

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 17. (M impact, ML generality) Employ macrofusion where
possible using instruction pairs that support macrofusion. Prefer TEST over CMP if possible. Use
unsigned variables and unsigned jumps when possible. Try to logically verify that a variable is
non-negative at the time of comparison. Avoid CMP or TEST of MEM-IMM flavor when possible.
However, do not add other instructions to avoid using the MEM-IMM flavor.

Example 3-10. Macrofusion, Unsigned Iteration Count
Without Macrofusion With Macrofusion

C code for (int1 i = 0; i < 1000; i++)
a++;

NOTES:
1. Signed iteration count inhibits macrofusion.

for (unsigned int2 i = 0; i < 1000; i++)
a++;

2. Unsigned iteration count is compatible with macrofusion.

Disassembly for (int i = 0; i < 1000; i++)
mov dword ptr [i], 0
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

for (unsigned int i = 0; i < 1000; i++)
xor eax, eax
mov dword ptr [i], eax
jmp First
Loop:
mov eax, dword ptr [i]
add eax, 1
mov dword ptr [i], eax

First:
cmp dword ptr [i], 3E8H3

jge End
a++;

mov eax, dword ptr [a]
addqq eax,1
mov dword ptr [a], eax
jmp Loop
End:

3. CMP MEM-IMM, JGE inhibit macrofusion.

First:
cmp eax, 3E8H 4

jae End
a++;

mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
jmp Loop
End:

4. CMP REG-IMM, JAE permits macrofusion.

Example 3-11. Macrofusion, If Statement
Without Macrofusion With Macrofusion

C code int1 a = 7;
if (a < 77)

a++;
else

a--;

unsigned int2 a = 7;
if (a < 77)

a++;
else

a--;

Disassembly int a = 7;
mov dword ptr [a], 7
if (a < 77)
cmp dword ptr [a], 4DH 3

jge Dec

unsigned int a = 7;
mov dword ptr [a], 7
if (a < 77)
mov eax, dword ptr [a]
cmp eax, 4DH
jae Dec

Ref#: 248966-048 3-15

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 18. (M impact, ML generality) Software can enable macro
fusion when it can be logically determined that a variable is non-negative at the time of comparison;
use TEST appropriately to enable macrofusion when comparing a variable with 0.

For either signed or unsigned variable ‘a’; “CMP a,0” and “TEST a,a” produce the same result as far as the
flags are concerned. Since TEST can be macro-fused more often, software can use “TEST a,a” to replace
“CMP a,0” for the purpose of enabling macrofusion.

Sandy Bridge microarchitecture enables more arithmetic and logic instructions to macro-fuse with condi-
tional branches. In loops where the ALU ports are already congested, performing one of these
macrofusions can relieve the pressure, as the macro-fused instruction consumes only port 5, instead of
an ALU port plus port 5.

In Example 3-14, the “add/cmp/jnz” loop contains two ALU instructions that can be dispatched via either
port 0, 1, 5. So there is higher probability of port 5 might bind to either ALU instruction causing JNZ to

a++;
mov eax, dword ptr [a]
add eax, 1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
mov eax, dword ptr [a]
sub eax, 1
mov dword ptr [a], eax
End::

a++;
add eax,1
mov dword ptr [a], eax
else
jmp End

a--;
Dec:
sub eax, 1
mov dword ptr [a], eax
End::

NOTES:
1. Signed iteration count inhibits macrofusion.
2. Unsigned iteration count is compatible with macrofusion.
3. CMP MEM-IMM, JGE inhibit macrofusion.

Example 3-12. Macrofusion, Signed Variable
Without Macrofusion With Macrofusion

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jge OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

test ecx, ecx
jle OutSideTheIF
cmp ecx, 64H
jae OutSideTheIF
<IF BLOCK CODE>
OutSideTheIF:

Example 3-13. Macrofusion, Signed Comparison
C Code Without Macrofusion With Macrofusion

if (a == 0) cmp a, 0
jne lbl
...
lbl:

test a, a
jne lbl
...
lbl:

if (a >= 0) cmp a, 0
jl lbl;
...
lbl:

test a, a
jl lbl
...
lbl:

Example 3-11. Macrofusion, If Statement (Contd.)
Without Macrofusion With Macrofusion

Ref#: 248966-048 3-16

GENERAL OPTIMIZATION GUIDELINES

wait a cycle. The “sub/jnz” loop, the likelihood of ADD/SUB/JNZ can be dispatched in the same cycle is
increased because only SUB is free to bind with either port 0, 1, 5.

3.4.2.3 Length-Changing Prefixes (LCP)
The length of an instruction can be up to 15 bytes in length. Some prefixes can dynamically change the
length of an instruction that the decoder must recognize. Typically, the pre-decode unit will estimate the
length of an instruction in the byte stream assuming the absence of LCP. When the predecoder encoun-
ters an LCP in the fetch line, it must use a slower length decoding algorithm. With the slower length
decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the usual 1 cycle. Normal
queuing throughout of the machine pipeline generally cannot hide LCP penalties.

The prefixes that can dynamically change the length of a instruction include:
• Operand size prefix (0x66).
• Address size prefix (0x67).

The instruction MOV DX, 01234h is subject to LCP stalls in processors based on Intel Core microarchitec-
ture, and in Intel Core Duo and Intel Core Solo processors. Instructions that contain imm16 as part of
their fixed encoding but do not require LCP to change the immediate size are not subject to LCP stalls.
The REX prefix (4xh) in 64-bit mode can change the size of two classes of instruction, but does not cause
an LCP penalty.

If the LCP stall happens in a tight loop, it can cause significant performance degradation. When decoding
is not a bottleneck, as in floating-point heavy code, isolated LCP stalls usually do not cause performance
degradation.
Assembly/Compiler Coding Rule 19. (MH impact, MH generality) Favor generating code using
imm8 or imm32 values instead of imm16 values.

If imm16 is needed, load equivalent imm32 into a register and use the word value in the register instead.

Double LCP Stalls

Instructions that are subject to LCP stalls and cross a 16-byte fetch line boundary can cause the LCP stall
to trigger twice. The following alignment situations can cause LCP stalls to trigger twice:
• An instruction is encoded with a MODR/M and SIB byte, and the fetch line boundary crossing is

between the MODR/M and the SIB bytes.
• An instruction starts at offset 13 of a fetch line references a memory location using register and

immediate byte offset addressing mode.

The first stall is for the 1st fetch line, and the 2nd stall is for the 2nd fetch line. A double LCP stall causes
a decode penalty of 11 cycles.

Example 3-14. Additional Macrofusion Benefit in Sandy Bridge Microarchitecture
Add + cmp + jnz alternative Loop control with sub + jnz
lea rdx, buff
xor rcx, rcx
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
add rcx, 1
cmp rcx, LEN
jnz loop

lea rdx, buff - 4
xor rcx, LEN
xor eax, eax
loop:
add eax, [rdx + 4 * rcx]
sub rcx, 1
jnz loop

Ref#: 248966-048 3-17

GENERAL OPTIMIZATION GUIDELINES

The following examples cause LCP stall once, regardless of their fetch-line location of the first byte of the
instruction:

ADD DX, 01234H
ADD word ptr [EDX], 01234H
ADD word ptr 012345678H[EDX], 01234H
ADD word ptr [012345678H], 01234H

The following instructions cause a double LCP stall when starting at offset 13 of a fetch line:
ADD word ptr [EDX+ESI], 01234H
ADD word ptr 012H[EDX], 01234H
ADD word ptr 012345678H[EDX+ESI], 01234H

To avoid double LCP stalls, do not use instructions subject to LCP stalls that use SIB byte encoding or
addressing mode with byte displacement.

False LCP Stalls

False LCP stalls have the same characteristics as LCP stalls, but occur on instructions that do not have
any imm16 value.

False LCP stalls occur when (a) instructions with LCP that are encoded using the F7 opcodes, and (b) are
located at offset 14 of a fetch line. These instructions are: not, neg, div, idiv, mul, and imul. False LCP
experiences delay because the instruction length decoder can not determine the length of the instruction
before the next fetch line, which holds the exact opcode of the instruction in its MODR/M byte.

The following techniques can help avoid false LCP stalls:
• Upcast all short operations from the F7 group of instructions to long, using the full 32 bit version.
• Ensure that the F7 opcode never starts at offset 14 of a fetch line.
Assembly/Compiler Coding Rule 20. (M impact, ML generality) Ensure instructions using 0xF7
opcode byte does not start at offset 14 of a fetch line; and avoid using these instruction to operate on
16-bit data, upcast short data to 32 bits.

3.4.2.4 Optimizing the Loop Stream Detector (LSD)
The LSD detects loops that have many iterations and fit into the µop-queue. The µop-queue streams the
loop until a branch miss-prediction inevitably ends it.

LSD improves fetch bandwidth. In single thread mode, it saves power by allowing the front-end to sleep.
In multi-thread mode, front-resource can better serve the other thread.

Loops qualify for LSD replay if all the following conditions are met:
• Loop body size up to 60 µops, with up to 15 taken branches, and up to 15 64-byte fetch lines.
• No CALL or RET.
• No mismatched stack operations (e.g., more PUSH than POP).
• More than ~20 iterations.

Many calculation-intensive loops, searches, and software string moves match these characteristics.
These loops exceed the BPU prediction capacity and always terminate in a branch misprediction.

Example 3-15. Avoiding False LCP Delays with 0xF7 Group Instructions
A Sequence Causing Delay in the Decoder Alternate Sequence to Avoid Delay

neg word ptr a movsx eax, word ptr a
neg eax
mov word ptr a, AX

Ref#: 248966-048 3-18

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 21. (MH impact, MH generality) Break up a loop body with a
long sequence of instructions into loops of shorter instruction blocks of no more than the size of the
LSD.

Allocation bandwidth in Ice Lake Client microarchitecture increased from 4 µops per cycle to 5 µops per
cycle.

Assume a loop that qualifies for LSD has 23 µops in the loop body. The hardware unrolls the loop such
that it still fits into the µop-queue, in this case twice. The loop in the µop-queue thus takes 46 µops.

The loop is sent to allocation 5 µops per cycle. After 45 out of the 46 µops are sent, in the next cycle only
a single µop is sent, which means that in that cycle, 4 of the allocation slots are wasted. This pattern
repeats itself, until the loop is exited by a misprediction. Hardware loop unrolling minimizes the number
of wasted slots during LSD.

3.4.2.5 Optimization for Decoded ICache
The decoded ICache is a new feature in Sandy Bridge microarchitecture. Running the code from the
Decoded ICache has two advantages:
• Higher bandwidth of micro-ops feeding the out-of-order engine.
• The front end does not need to decode the code that is in the Decoded ICache; this saves power.

There is overhead in switching between the Decoded ICache and the legacy decode pipeline. If your code
switches frequently between the front end and the Decoded ICache, the penalty may be higher than
running only from the legacy pipeline.

To ensure “hot” code is feeding from the decoded ICache:
• Make sure each hot code block is less than about 750 instructions. Specifically, do not unroll to more

than 750 instructions in a loop. This should enable Decoded ICache residency even when
hyper-threading is enabled.

• For applications with very large blocks of calculations inside a loop, consider loop-fission: split the
loop into multiple loops that fit in the Decoded ICache, rather than a single loop that overflows.

• If an application can be sure to run with only one thread per core, it can increase hot code block size
to about 1500 instructions.

Dense Read-Modify-Write Code

The Decoded ICache can hold only up to 18 micro-ops per each 32 byte aligned memory chunk. There-
fore, code with a high concentration of instructions that are encoded in a small number of bytes, yet have
many micro-ops, may overflow the 18 micro-op limitation and not enter the Decoded ICache.
Read-modify-write (RMW) instructions are a good example of such instructions.

RMW instructions accept one memory source operand, one register source operand, and use the source
memory operand as the destination. The same functionality can be achieved by two or three instructions:
the first reads the memory source operand, the second performs the operation with the second register
source operand, and the last writes the result back to memory. These instructions usually result in the
same number of micro-ops but use more bytes to encode the same functionality.

One case where RMW instructions may be used extensively is when the compiler optimizes aggressively
for code size.

 Here are some possible solutions to fit the hot code in the Decoded ICache:
• Replace RMW instructions with two or three instructions that have the same functionality. For

example, “adc [rdi], rcx“ is only three bytes long; the equivalent sequence “adc rax, [rdi]“ + “mov
[rdi], rax“ has a footprint of six bytes.

• Align the code so that the dense part is broken down among two different 32-byte chunks. This
solution is useful when using a tool that aligns code automatically, and is indifferent to code changes.

• Spread the code by adding multiple byte NOPs in the loop. Note that this solution adds micro-ops for
execution.

Ref#: 248966-048 3-19

GENERAL OPTIMIZATION GUIDELINES

Align Unconditional Branches for Decoded ICache

For code entering the Decoded ICache, each unconditional branch is the last micro-op occupying a
Decoded ICache Way. Therefore, only three unconditional branches per a 32 byte aligned chunk can
enter the Decoded ICache.

Unconditional branches are frequent in jump tables and switch declarations. Below are examples for
these constructs, and methods for writing them so that they fit in the Decoded ICache.

Compilers create jump tables for C++ virtual class methods or DLL dispatch tables. Each unconditional
branch consumes five bytes; therefore up to seven of them can be associated with a 32-byte chunk. Thus
jump tables may not fit in the Decoded ICache if the unconditional branches are too dense in each
32Byte-aligned chunk. This can cause performance degradation for code executing before and after the
branch table.

The solution is to add multi-byte NOP instructions among the branches in the branch table. This may
increases code size and should be used cautiously. However, these NOPs are not executed and therefore
have no penalty in later pipe stages.

Switch-Case constructs represents a similar situation. Each evaluation of a case condition results in an
unconditional branch. The same solution of using multi-byte NOP can apply for every three consecutive
unconditional branches that fits inside an aligned 32-byte chunk.

Two Branches in a Decoded ICache Way

The Decoded ICache can hold up to two branches in a way. Dense branches in a 32 byte aligned chunk,
or their ordering with other instructions may prohibit all the micro-ops of the instructions in the chunk
from entering the Decoded ICache. This does not happen often. When it does happen, you can space the
code with NOP instructions where appropriate. Make sure that these NOP instructions are not part of hot
code.
Assembly/Compiler Coding Rule 22. (M impact, M generality) Avoid putting explicit references to
ESP in a sequence of stack operations (POP, PUSH, CALL, RET).

3.4.2.6 Other Decoding Guidelines
Assembly/Compiler Coding Rule 23. (ML impact, L generality) Use simple instructions that are
less than eight bytes in length.
Assembly/Compiler Coding Rule 24. (M impact, MH generality) Avoid using prefixes to change
the size of immediate and displacement.

Long instructions (more than seven bytes) may limit the number of decoded instructions per cycle. Each
prefix adds one byte to the length of instruction, possibly limiting the decoder’s throughput. In addition,
multiple prefixes can only be decoded by the first decoder. These prefixes also incur a delay when
decoded. If multiple prefixes or a prefix that changes the size of an immediate or displacement cannot be
avoided, schedule them behind instructions that stall the pipe for some other reason.

3.5 OPTIMIZING THE EXECUTION CORE
The superscalar, out-of-order execution core(s) in recent generations of microarchitectures contain
multiple execution hardware resources that can execute multiple micro-ops in parallel. These resources
generally ensure that micro-ops execute efficiently and proceed with fixed latencies. General guidelines
to make use of the available parallelism are:
• Follow the rules (see Section 3.4) to maximize useful decode bandwidth and front end throughput.

These rules include favoring single micro-op instructions and taking advantage of micro-fusion, Stack
pointer tracker and macrofusion.

• Maximize rename bandwidth. Guidelines are discussed in this section and include properly dealing
with partial registers, ROB read ports and instructions which causes side-effects on flags.

• Scheduling recommendations on sequences of instructions so that multiple dependency chains are
alive in the reservation station (RS) simultaneously, thus ensuring that your code utilizes maximum
parallelism.

Ref#: 248966-048 3-20

GENERAL OPTIMIZATION GUIDELINES

• Avoid hazards, minimize delays that may occur in the execution core, allowing the dispatched
micro-ops to make progress and be ready for retirement quickly.

3.5.1 Instruction Selection
Some execution units are not pipelined, this means that micro-ops cannot be dispatched in consecutive
cycles and the throughput is less than one per cycle.

It is generally a good starting point to select instructions by considering the number of micro-ops associ-
ated with each instruction, favoring in the order of: single micro-op instructions, simple instruction with
less than 4 micro-ops, and last instruction requiring microsequencer ROM (micro-ops which are executed
out of the microsequencer involve extra overhead).
Assembly/Compiler Coding Rule 25. (M impact, H generality) Favor single-micro-operation
instructions. Also favor instruction with shorter latencies.

A compiler may be already doing a good job on instruction selection. If so, user intervention usually is not
necessary.
Assembly/Compiler Coding Rule 26. (M impact, L generality) Avoid prefixes, especially multiple
non-0F-prefixed opcodes.
Assembly/Compiler Coding Rule 27. (M impact, L generality) Do not use many segment
registers.
Assembly/Compiler Coding Rule 28. (M impact, M generality) Avoid using complex instructions
(for example, enter, leave, or loop) that have more than four µops and require multiple cycles to
decode. Use sequences of simple instructions instead.
Assembly/Compiler Coding Rule 29. (MH impact, M generality) Use push/pop to manage stack
space and address adjustments between function calls/returns instead of enter/leave. Using enter
instruction with non-zero immediates can experience significant delays in the pipeline in addition to
misprediction.

Theoretically, arranging instructions sequence to match the 4-1-1-1 template applies to processors
based on Intel Core microarchitecture. However, with macrofusion and micro-fusion capabilities in the
front end, attempts to schedule instruction sequences using the 4-1-1-1 template will likely provide
diminishing returns.

Instead, software should follow these additional decoder guidelines:
• If you need to use multiple micro-op, non-microsequenced instructions, try to separate by a few

single micro-op instructions. The following instructions are examples of multiple micro-op instruction
not requiring micro-sequencer:

ADC/SBB
CMOVcc
Read-modify-write instructions

• If a series of multiple micro-op instructions cannot be separated, try breaking the series into a
different equivalent instruction sequence. For example, a series of read-modify-write instructions
may go faster if sequenced as a series of read-modify + store instructions. This strategy could
improve performance even if the new code sequence is larger than the original one.

3.5.1.1 Integer Divide
Typically, an integer divide is preceded by a CWD or CDQ instruction. Depending on the operand size,
divide instructions use DX:AX or EDX:EAX for the dividend. The CWD or CDQ instructions sign-extend AX
or EAX into DX or EDX, respectively. These instructions have denser encoding than a shift and move
would be, but they generate the same number of micro-ops. If AX or EAX is known to be positive, replace
these instructions with:

xor dx, dx

or
xor edx, edx

Ref#: 248966-048 3-21

GENERAL OPTIMIZATION GUIDELINES

Modern compilers typically can transform high-level language expression involving integer division where
the divisor is a known integer constant at compile time into a faster sequence using IMUL instruction
instead. Thus programmers should minimize integer division expression with divisor whose value can not
be known at compile time.

Alternately, if certain known divisor value are favored over other unknown ranges, software may consider
isolating the few favored, known divisor value into constant-divisor expressions.

Section 13.2.4 describes more detail of using MUL/IMUL to replace integer divisions.

3.5.1.2 Using LEA
In Sandy Bridge microarchitecture, there are two significant changes to the performance characteristics
of LEA instruction:
• LEA can be dispatched via port 1 and 5 in most cases, doubling the throughput over prior genera-

tions. However this apply only to LEA instructions with one or two source operands.

• For LEA instructions with three source operands and some specific situations, instruction latency has
increased to 3 cycles, and must dispatch via port 1:

— LEA that has all three source operands: base, index, and offset.

— LEA that uses base and index registers where the base is EBP, RBP, or R13.

— LEA that uses RIP relative addressing mode.

— LEA that uses 16-bit addressing mode.

Example 3-16. Independent Two-Operand LEA Example

mov edx, N
mov eax, X
mov ecx, Y

loop:
lea ecx, [ecx + ecx] // ecx = ecx*2
lea eax, [eax + eax *4] // eax = eax*5
and ecx, 0xff

 and eax, 0xff
dec edx
jg loop

Ref#: 248966-048 3-22

GENERAL OPTIMIZATION GUIDELINES

.

The LEA instruction or a sequence of LEA, ADD, SUB and SHIFT instructions can replace constant multiply
instructions. The LEA instruction can also be used as a multiple operand addition instruction, for
example:

LEA ECX, [EAX + EBX*4 + A]

Using LEA in this way may avoid register usage by not tying up registers for operands of arithmetic
instructions. This use may also save code space.

If the LEA instruction uses a shift by a constant amount then the latency of the sequence of µops is
shorter if adds are used instead of a shift, and the LEA instruction may be replaced with an appropriate
sequence of µops. This, however, increases the total number of µops, leading to a trade-off.
Assembly/Compiler Coding Rule 30. (ML impact, L generality) If an LEA instruction using the
scaled index is on the critical path, a sequence with ADDs may be better.

3.5.1.3 ADC and SBB in Sandy Bridge Microarchitecture
The throughput of ADC and SBB in Sandy Bridge microarchitecture is 1 cycle, compared to 1.5-2 cycles
in the prior generation. These two instructions are useful in numeric handling of integer data types that
are wider than the maximum width of native hardware.

Example 3-17. Alternative to Three-Operand LEA
 3 operand LEA is slower Two-operand LEA alternative Alternative 2

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
xor edx, edx;
cmp ecx, 2;
jb finished;
dec ecx;

#define K 1
uint32 an = 0;
uint32 N= mi_N;
mov ecx, N
xor esi, esi;
mov edx, K;
cmp ecx, 2;
jb finished;
mov eax, 2
dec ecx;

loop1:
 mov edi, esi;
 lea esi, [K+esi+edx];
 and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [K+edx];
lea esi, [esi+edx];
and esi, 0xFF;
 mov edx, edi;
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

loop1:
 mov edi, esi;
 lea esi, [esi+edx];
 and esi, 0xFF;
 lea edx, [edi +K];
 dec ecx;
 jnz loop1;
finished:
 mov [an] ,esi;

Ref#: 248966-048 3-23

GENERAL OPTIMIZATION GUIDELINES

3.5.1.4 Bitwise Rotation
Bitwise rotation can choose between rotate with count specified in the CL register, an immediate constant
and by 1 bit. Generally, The rotate by immediate and rotate by register instructions are slower than
rotate by 1 bit. The rotate by 1 instruction has the same latency as a shift.

Example 3-18. Examples of 512-bit Additions

//Add 64-bit to 512 Number
lea rsi, gLongCounter
lea rdi, gStepValue
mov rax, [rdi]
xor rcx, rcx

loop_start:
mov r10, [rsi+rcx]
add r10, rax
mov [rsi+rcx], r10

mov r10, [rsi+rcx+8]
adc r10, 0
mov [rsi+rcx+8], r10

// 512-bit Addition
loop1:

mov rax, [StepValue]
add rax, [LongCounter]
mov LongCounter, rax
mov rax, [StepValue+8]
adc rax, [LongCounter+8]
mov LongCounter+8, rax
mov rax, [StepValue+16]
adc rax, [LongCounter+16]

mov r10, [rsi+rcx+16]
adc r10, 0
mov [rsi+rcx+16], r10
mov r10, [rsi+rcx+24]
adc r10, 0
mov [rsi+rcx+24], r10

mov r10, [rsi+rcx+32]
adc r10, 0
mov [rsi+rcx+32], r10
mov r10, [rsi+rcx+40]
adc r10, 0
mov [rsi+rcx+40], r10

mov LongCounter+16, rax
mov rax, [StepValue+24]
adc rax, [LongCounter+24]

mov LongCounter+24, rax
mov rax, [StepValue+32]
adc rax, [LongCounter+32]

mov LongCounter+32, rax
mov rax, [StepValue+40]
adc rax, [LongCounter+40]

mov LongCounter+40, rax
mov rax, [StepValue+48]
adc rax, [LongCounter+48]

 mov r10, [rsi+rcx+48]
 adc r10, 0
 mov [rsi+rcx+48], r10

 mov r10, [rsi+rcx+56]
 adc r10, 0
 mov [rsi+rcx+56], r10
 add rcx, 64
 cmp rcx, SIZE
 jnz loop_start

mov LongCounter+48, rax
mov rax, [StepValue+56]
adc rax, [LongCounter+56]

mov LongCounter+56, rax
dec rcx
jnz loop1

Ref#: 248966-048 3-24

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 31. (ML impact, L generality) Avoid ROTATE by register or
ROTATE by immediate instructions. If possible, replace with a ROTATE by 1 instruction.

In Sandy Bridge microarchitecture, ROL/ROR by immediate has 1-cycle throughput, SHLD/SHRD using
the same register as source and destination by an immediate constant has 1-cycle latency with 0.5 cycle
throughput. The “ROL/ROR reg, imm8” instruction has two micro-ops with the latency of 1-cycle for the
rotate register result and 2-cycles for the flags, if used.

In Ivy Bridge microarchitecture, The “ROL/ROR reg, imm8” instruction with immediate greater than 1, is
one micro-op with one-cycle latency when the overflow flag result is used. When the immediate is one,
dependency on the overflow flag result of ROL/ROR by a subsequent instruction will see the ROL/ROR
instruction with two-cycle latency.

3.5.1.5 Variable Bit Count Rotation and Shift
In Sandy Bridge microarchitecture, The “ROL/ROR/SHL/SHR reg, cl” instruction has three micro-ops.
When the flag result is not needed, one of these micro-ops may be discarded, providing better perfor-
mance in many common usages. When these instructions update partial flag results that are subse-
quently used, the full three micro-ops flow must go through the execution and retirement pipeline,
experiencing slower performance. In Ivy Bridge microarchitecture, executing the full three micro-ops
flow to use the updated partial flag result has additional delay. Consider the looped sequence below:
loop:

shl eax, cl
add ebx, eax
dec edx ; DEC does not update carry, causing SHL to execute slower three micro-ops flow
jnz loop

The DEC instruction does not modify the carry flag. Consequently, the SHL EAX, CL instruction needs to
execute the three micro-ops flow in subsequent iterations. The SUB instruction will update all flags. So
replacing DEC with SUB will allow SHL EAX, CL to execute the two micro-ops flow.

3.5.1.6 Address Calculations
For computing addresses, use the addressing modes rather than general-purpose computations. Inter-
nally, memory reference instructions can have four operands:
• Relocatable load-time constant.
• Immediate constant.
• Base register.
• Scaled index register.

Note that the latency and throughput of LEA with more than two operands are slower in Sandy Bridge
microarchitecture (see Section 3.5.1.2). Addressing modes that uses both base and index registers will
consume more read port resource in the execution engine and may experience more stalls due to avail-
ability of read port resources. Software should take care by selecting the speedy version of address
calculation.

In the segmented model, a segment register may constitute an additional operand in the linear address
calculation. In many cases, several integer instructions can be eliminated by fully using the operands of
memory references.

Ref#: 248966-048 3-25

GENERAL OPTIMIZATION GUIDELINES

3.5.1.7 Clearing Registers and Dependency Breaking Idioms
Code sequences that modifies partial register can experience some delay in its dependency chain, but
can be avoided by using dependency breaking idioms.

In processors based on Intel Core microarchitecture, a number of instructions can help clear execution
dependency when software uses these instruction to clear register content to zero. The instructions
include:

XOR REG, REG
SUB REG, REG
XORPS/PD XMMREG, XMMREG
PXOR XMMREG, XMMREG
SUBPS/PD XMMREG, XMMREG
PSUBB/W/D/Q XMMREG, XMMREG

In processors based on Sandy Bridge microarchitecture, the instruction listed above plus equivalent AVX
counter parts are also zero idioms that can be used to break dependency chains. Furthermore, they do
not consume an issue port or an execution unit. So using zero idioms are preferable than moving 0’s into
the register. The AVX equivalent zero idioms are:

VXORPS/PD XMMREG, XMMREG
VXORPS/PD YMMREG, YMMREG
VPXOR XMMREG, XMMREG
VSUBPS/PD XMMREG, XMMREG
VSUBPS/PD YMMREG, YMMREG
VPSUBB/W/D/Q XMMREG, XMMREG

Microarchitectures that support Intel AVX-512 have the equivalent of zero idioms for the 512-bit regis-
ters using the unmasked versions of the instructions:

VXORPS/PD ZMMREG, ZMMREG
VPXOR ZMMREG, ZMMREG
VSUBPS/PD ZMMREG, ZMMREG
VPSUBB/W/D/Q ZMMREG, ZMMREG

The XOR and SUB instructions can be used to clear execution dependencies on the zero evaluation of the
destination register.
Assembly/Compiler Coding Rule 32. (M impact, ML generality) Use dependency-breaking-idiom
instructions to set a register to 0, or to break a false dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the register instead.
This requires more code space than using XOR and SUB, but avoids setting the condition codes.

Example 3-19 of using pxor to break dependency idiom on a XMM register when performing negation on
the elements of an array.

int a[4096], b[4096], c[4096];
For (int i = 0; i < 4096; i++)

C[i] = - (a[i] + b[i]);

Ref#: 248966-048 3-26

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 33. (M impact, MH generality) Break dependences on portions
of registers between instructions by operating on 32-bit registers instead of partial registers. For
moves, this can be accomplished with 32-bit moves or by using MOVZX.

Sometimes sign-extended semantics can be maintained by zero-extending operands. For example, the C
code in the following statements does not need sign extension, nor does it need prefixes for operand size
overrides:

static short INT a, b;
IF (a == b) {
 . . .
}

Code for comparing these 16-bit operands might be:
MOVZW EAX, [a]
MOVZW EBX, [b]
CMP EAX, EBX

These circumstances tend to be common. However, the technique will not work if the compare is for
greater than, less than, greater than or equal, and so on, or if the values in eax or ebx are to be used in
another operation where sign extension is required.
Assembly/Compiler Coding Rule 34. (M impact, M generality) Try to use zero extension or
operate on 32-bit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can only be repre-
sented as 32 bits are not adjacent.
Assembly/Compiler Coding Rule 35. (ML impact, L generality) Avoid placing instructions that
use 32-bit immediates which cannot be encoded as sign-extended 16-bit immediates near each other.
Try to schedule µops that have no immediate immediately before or after µops with 32-bit immediates.

3.5.1.8 Compares
Use TEST when comparing a value in a register with zero. TEST essentially ANDs operands together
without writing to a destination register. TEST is preferred over AND because AND produces an extra
result register. TEST is better than CMP ..., 0 because the instruction size is smaller.

Example 3-19. Clearing Register to Break Dependency While Negating Array Elements
Negation (-x = (x XOR (-1)) - (-1) without breaking
dependency

Negation (-x = 0 -x) using PXOR reg, reg breaks
dependency

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
movdqa xmm7, allone
lp:

lea eax, a
lea ecx, b
lea edi, c
xor edx, edx
lp:

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm0, xmm7
psubd xmm0, xmm7
movdqa [edi + edx], xmm0
add edx, 16
cmp edx, 4096
jl lp

movdqa xmm0, [eax + edx]
paddd xmm0, [ecx + edx]
pxor xmm7, xmm7
psubd xmm7, xmm0
movdqa [edi + edx], xmm7
add edx,16
cmp edx, 4096
jl lp

Ref#: 248966-048 3-27

GENERAL OPTIMIZATION GUIDELINES

Use TEST when comparing the result of a logical AND with an immediate constant for equality or
inequality if the register is EAX for cases such as:

IF (AVAR & 8) { }

The TEST instruction can also be used to detect rollover of modulo of a power of 2. For example, the C
code:

IF ((AVAR % 16) == 0) { }

can be implemented using:

TEST EAX, 0x0F
JNZ AfterIf

Using the TEST instruction between the instruction that may modify part of the flag register and the
instruction that uses the flag register can also help prevent partial flag register stall.
Assembly/Compiler Coding Rule 36. (ML impact, M generality) Use the TEST instruction instead
of AND when the result of the logical AND is not used. This saves µops in execution. Use a TEST of a
register with itself instead of a CMP of the register to zero, this saves the need to encode the zero and
saves encoding space. Avoid comparing a constant to a memory operand. It is preferable to load the
memory operand and compare the constant to a register.

Often a produced value must be compared with zero, and then used in a branch. Because most Intel
architecture instructions set the condition codes as part of their execution, the compare instruction may
be eliminated. Thus the operation can be tested directly by a JCC instruction. The notable exceptions are
MOV and LEA. In these cases, use TEST.
Assembly/Compiler Coding Rule 37. (ML impact, M generality) Eliminate unnecessary compare
with zero instructions by using the appropriate conditional jump instruction when the flags are already
set by a preceding arithmetic instruction. If necessary, use a TEST instruction instead of a compare. Be
certain that any code transformations made do not introduce problems with overflow.

3.5.1.9 Using NOPs
Code generators generate a no-operation (NOP) to align instructions. Examples of NOPs of different
lengths in 32-bit mode are shown in Table 3-3.

These are all true NOPs, having no effect on the state of the machine except to advance the EIP. Because
NOPs require hardware resources to decode and execute, use the fewest number to achieve the desired
padding.

The one byte NOP:[XCHG EAX,EAX] has special hardware support. Although it still consumes a µop and
its accompanying resources, the dependence upon the old value of EAX is removed. This µop can be
executed at the earliest possible opportunity, reducing the number of outstanding instructions, and is the
lowest cost NOP.

Table 3-3. Recommended Multi-Byte Sequence of NOP Instruction
Length Assembly Byte Sequence

2 bytes 66 NOP 66 90H
3 bytes NOP DWORD ptr [EAX] 0F 1F 00H
4 bytes NOP DWORD ptr [EAX + 00H] 0F 1F 40 00H
5 bytes NOP DWORD ptr [EAX + EAX*1 + 00H] 0F 1F 44 00 00H
6 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00H] 66 0F 1F 44 00 00H
7 bytes NOP DWORD ptr [EAX + 00000000H] 0F 1F 80 00 00 00 00H
8 bytes NOP DWORD ptr [EAX + EAX*1 + 00000000H] 0F 1F 84 00 00 00 00 00H
9 bytes 66 NOP DWORD ptr [EAX + EAX*1 + 00000000H] 66 0F 1F 84 00 00 00 00 00H

Ref#: 248966-048 3-28

GENERAL OPTIMIZATION GUIDELINES

The other NOPs have no special hardware support. Their input and output registers are interpreted by the
hardware. Therefore, a code generator should arrange to use the register containing the oldest value as
input, so that the NOP will dispatch and release RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:
• Select the smallest number of NOPs and pseudo-NOPs to provide the desired padding.
• Select NOPs that are least likely to execute on slower execution unit clusters.
• Select the register arguments of NOPs to reduce dependencies.

3.5.1.10 Mixing SIMD Data Types
Previous microarchitectures (before Intel Core microarchitecture) do not have explicit restrictions on
mixing integer and floating-point (FP) operations on XMM registers. For Intel Core microarchitecture,
mixing integer and floating-point operations on the content of an XMM register can degrade perfor-
mance. Software should avoid mixed-use of integer/FP operation on XMM registers. Specifically:
• Use SIMD integer operations to feed SIMD integer operations. Use PXOR for idiom.
• Use SIMD floating-point operations to feed SIMD floating-point operations. Use XORPS for idiom.
• When floating-point operations are bitwise equivalent, use PS data type instead of PD data type.

MOVAPS and MOVAPD do the same thing, but MOVAPS takes one less byte to encode the instruction.

3.5.1.11 Spill Scheduling
The spill scheduling algorithm used by a code generator will be impacted by the memory subsystem. A
spill scheduling algorithm is an algorithm that selects what values to spill to memory when there are too
many live values to fit in registers. Consider the code in Example 3-20, where it is necessary to spill
either A, B, or C.

For modern microarchitectures, using dependence depth information in spill scheduling is even more
important than in previous processors. The loop-carried dependence in A makes it especially important
that A not be spilled. Not only would a store/load be placed in the dependence chain, but there would also
be a data-not-ready stall of the load, costing further cycles.
Assembly/Compiler Coding Rule 38. (H impact, MH generality) For small loops, placing loop
invariants in memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result is that in such a situation it is better to put loop invariants in memory
than in registers, since loop invariants never have a load blocked by store data that is not ready.

3.5.1.12 Zero-Latency MOV Instructions
In processors based on Ivy Bridge microarchitecture, a subset of register-to-register move operations
are executed in the front end (similar to zero-idioms, see Section 3.5.1.7). This conserves sched-
uling/execution resources in the out-of-order engine. Most forms of register-to-register MOV instructions

Example 3-20. Spill Scheduling Code

LOOP
C := ...
B := ...
A := A + ...

Ref#: 248966-048 3-29

GENERAL OPTIMIZATION GUIDELINES

can benefit from zero-latency MOV. Example 3-21 list the details of those forms that qualify and a small
set that do not.

Example 3-22 shows how to process 8-bit integers using MOVZX to take advantage of zero-latency MOV
enhancement. Consider

X = (X * 3^N) MOD 256;

Y = (Y * 3^N) MOD 256;

When “MOD 256” is implemented using the “AND 0xff” technique, its latency is exposed in the
result-dependency chain. Using a form of MOVZX on a truncated byte input, it can take advantage of
zero-latency MOV enhancement and gain about 45% in speed.

The effectiveness of coding a dense sequence of instructions to rely on a zero-latency MOV instruction
must also consider internal resource constraints in the microarchitecture.

Example 3-21. Zero-Latency MOV Instructions
MOV instructions latency that can be eliminated MOV instructions latency that cannot be eliminated

MOV reg32, reg32
MOV reg64, reg64
MOVUPD/MOVAPD xmm, xmm
MOVUPD/MOVAPD ymm, ymm
MOVUPS?MOVAPS xmm, xmm
MOVUPS/MOVAPS ymm, ymm
MOVDQA/MOVDQU xmm, xmm
MOVDQA/MOVDQU ymm, ymm
MOVDQA/MOVDQU zmm, zmm
MOVZX reg32, reg8 (if not AH/BH/CH/DH)
MOVZX reg64, reg8 (if not AH/BH/CH/DH)

MOV reg8, reg8
MOV reg16, reg16
MOVZX reg32, reg8 (if AH/BH/CH/DH)
MOVZX reg64, reg8 (if AH/BH/CH/DH)
MOVSX

Example 3-22. Byte-Granular Data Computation Technique
Use AND Reg32, 0xff Use MOVZX

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff

mov rsi, N
mov rax, X
mov rcx, Y
loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl

lea rcx, [rcx+rcx*2]
lea rax, [rax+rax*4]
and rcx, 0xff
and rax, 0xff
sub rsi, 2
jg loop

lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

Ref#: 248966-048 3-30

GENERAL OPTIMIZATION GUIDELINES

In Example 3-23, RBX/RCX and RDX/RAX are pairs of registers that are shared and continuously over-
written. In the right-hand sequence, registers are overwritten with new results immediately, consuming
less internal resources provided by the underlying microarchitecture. As a result, it is about 8% faster
than the left-hand sequence where internal resources could only support 50% of the attempt to take
advantage of zero-latency MOV instructions.

3.5.2 Avoiding Stalls in Execution Core
Although the design of the execution core is optimized to make common cases executes quickly. A
micro-op may encounter various hazards, delays, or stalls while making forward progress from the front
end to the ROB and RS. The significant cases are:
• ROB Read Port Stalls.
• Partial Register Reference Stalls.
• Partial Updates to XMM Register Stalls.
• Partial Flag Register Reference Stalls.

3.5.2.1 Writeback Bus Conflicts
The writeback bus inside the execution engine is a common resource needed to facilitate out-of-order
execution of micro-ops in flight. When the writeback bus is needed at the same time by two micro-ops
executing in the same stack of execution units, the younger micro-op will have to wait for the writeback
bus to be available. This situation typically will be more likely for short-latency instructions experience a
delay when it might have been otherwise ready for dispatching into the execution engine.

Consider a repeating sequence of independent floating-point ADDs with a single-cycle MOV bound to the
same dispatch port. When the MOV finds the dispatch port available, the writeback bus can be occupied
by the ADD. This delays the MOV operation.

If this problem is detected, you can sometimes change the instruction selection to use a different
dispatch port and reduce the writeback contention.

3.5.2.2 Bypass Between Execution Domains
Floating-point (FP) loads have an extra cycle of latency. Moves between FP and SIMD stacks have
another additional cycle of latency.

Example 3-23. Re-ordering Sequence to Improve Effectiveness of Zero-Latency MOV Instructions
Needing more internal resource for zero-latency
MOVs

Needing less internal resource for zero-latency MOVs

mov rsi, N
mov rax, X
mov rcx, Y

mov rsi, N
mov rax, X
mov rcx, Y

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

loop:
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rbx, [rcx+rcx*2]
movzx, rcx, bl
lea rdx, [rax+rax*4]
movzx, rax, dl
llea rdx, [rax+rax*4]
movzx, rax, dl
sub rsi, 2
jg loop

Ref#: 248966-048 3-31

GENERAL OPTIMIZATION GUIDELINES

Example:
ADDPS XMM0, XMM1
PAND XMM0, XMM3
ADDPS XMM2, XMM0

The overall latency for the above calculation is 9 cycles:
• 3 cycles for each ADDPS instruction.
• 1 cycle for the PAND instruction.
• 1 cycle to bypass between the ADDPS floating-point domain to the PAND integer domain.
• 1 cycle to move the data from the PAND integer to the second floating-point ADDPS domain.

To avoid this penalty, organize code to minimize domain changes. Sometimes bypasses cannot be
avoided.

Account for bypass cycles when counting the overall latency of your code. If your calculation is
latency-bound, you can execute more instructions in parallel or break dependency chains to reduce total
latency.

Code that has many bypass domains and is completely latency-bound may run slower on the Intel Core
microarchitecture than it did on previous microarchitectures.

3.5.2.3 Partial Register Stalls
Beginning with the Skylake microarchitecture, Partial Register Stalls are no longer treated using
micro-operation (UOP) insertions. The hardware takes care of merging the partial register (for instance
any of AL, AH or AX is merged into the RAX destination register). This eliminates the special allocation
window used to insert merge micro-operation.
From Skylake to Ice Lake microarchitectures, operations that access *H registers (i.e., AH, BH, CH, DH)
are executed exclusively on ports 1 and 5.

The *H micro-ops are executed with one cycle latency; however, one cycle of *additional* delay is
required for ensuing UOPs because they depend on the results of the *H operation. This additional delay
is required due to potential data swapping. A swap might happen, for example, with the instruction "Add
AH, BL", or "ADD AL, BH." The pipeline functionality is illustrated in Figure 2-3.

Beginning with the Golden Cove Microarchitecture, the *H operations are limited to Port 1 (port1) with
three cycles of latency. This penalty on *H operations helped performance improvement and timing
requirements of the Golden Cove microarchitecture.

For more information about Golden Cove microarchitecture, see Section 2.3.1. Figure 2-1 shows the
flow.

A closer look at the INT execution ports in Figure 3-1 shows the *H operation limited to Port 1:

Ref#: 248966-048 3-32

GENERAL OPTIMIZATION GUIDELINES

Figure 3-1. INT Execution Ports Within the Processor Core Pipeline

3.5.2.4 Partial XMM Register Stalls
Partial register stalls can also apply to XMM registers. The following SSE and SSE2 instructions update
only part of the destination register:

MOVL/HPD XMM, MEM64
MOVL/HPS XMM, MEM32
MOVSS/SD between registers

Using these instructions creates a dependency chain between the unmodified part of the register and the
modified part of the register. This dependency chain can cause performance loss.
Example 3-24 illustrates the use of MOVZX to avoid a partial register stall when packing three byte
values into a register.

Follow these recommendations to avoid stalls from partial updates to XMM registers:
• Avoid using instructions which update only part of the XMM register.
• If a 64-bit load is needed, use the MOVSD or MOVQ instruction.
• If 2 64-bit loads are required to the same register from non continuous locations, use

MOVSD/MOVHPD instead of MOVLPD/MOVHPD.
• When copying the XMM register, use the following instructions for full register copy, even if you only

want to copy some of the source register data:

MOVAPS
MOVAPD
MOVDQA

INT

*H

LEA LEA LEA LEA LEA

ALU ALU ALU ALU ALU

Shift MUL MULHi Shift

JMP1 IDIV JMP2

P0 P1 P5 P6 P10

Ref#: 248966-048 3-33

GENERAL OPTIMIZATION GUIDELINES

3.5.2.5 Partial Flag Register Stalls
A “partial flag register stall” occurs when an instruction modifies a part of the flag register and the
following instruction is dependent on the outcome of the flags. This happens most often with shift
instructions (SAR, SAL, SHR, SHL). The flags are not modified in the case of a zero shift count, but the
shift count is usually known only at execution time. The front end stalls until the instruction is retired.

Other instructions that can modify some part of the flag register include CMPXCHG8B, various rotate
instructions, STC, and STD. An example of assembly with a partial flag register stall and alternative code
without the stall is shown in Example 3-25.

In processors based on Intel Core microarchitecture, shift immediate by 1 is handled by special hardware
such that it does not experience partial flag stall.

In Sandy Bridge microarchitecture, the cost of partial flag access is replaced by the insertion of a
micro-op instead of a stall. However, it is still recommended to use less of instructions that write only to
some of the flags (such as INC, DEC, SET CL) before instructions that can write flags conditionally (such
as SHIFT CL).

Example 3-26 compares two techniques to implement the addition of very large integers (e.g., 1024
bits). The alternative sequence on the right side of Example 3-26 will be faster than the left side on
Sandy Bridge microarchitecture, but it will experience partial flag stalls on prior microarchitectures.

Example 3-24. Avoiding Partial Register Stalls in SIMD Code
Using movlpd for memory transactions and movsd
between register copies Causing Partial Register Stall

Using movsd for memory and movapd between
register copies Avoid Delay

mov edx, x
mov ecx, count
movlpd xmm3,_1_
movlpd xmm2,_1pt5_
align 16

mov edx, x
mov ecx, count
movsd xmm3,_1_
movsd xmm2, _1pt5_
align 16

lp:
movlpd xmm0, [edx]
addsd xmm0, xmm3
movsd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

lp:
movsd xmm0, [edx]
addsd xmm0, xmm3
movapd xmm1, xmm2
subsd xmm1, [edx]
mulsd xmm0, xmm1
movsd [edx], xmm0
add edx, 8
dec ecx
jnz lp

Example 3-25. Avoiding Partial Flag Register Stalls
Partial Flag Register Stall Avoiding Partial Flag Register Stall

xor eax, eax
mov ecx, a
sar ecx, 2
setz al ;SAR can update carry causing a stall

or eax, eax
mov ecx, a
sar ecx, 2
test ecx, ecx ; test always updates all flags
setz al ;No partial reg or flag stall,

Ref#: 248966-048 3-34

GENERAL OPTIMIZATION GUIDELINES

3.5.2.6 Floating-Point/SIMD Operands
Moves that write a portion of a register can introduce unwanted dependences. The MOVSD REG, REG
instruction writes only the bottom 64 bits of a register, not all 128 bits. This introduces a dependence on
the preceding instruction that produces the upper 64 bits (even if those bits are not longer wanted). The
dependence inhibits register renaming, and thereby reduces parallelism.

Use MOVAPD as an alternative; it writes all 128 bits. Even though this instruction has a longer latency,
the ops for MOVAPD use a different execution port and this port is more likely to be free. The change can
impact performance. There may be exceptional cases where the latency matters more than the depen-
dence or the execution port.
Assembly/Compiler Coding Rule 39. (M impact, ML generality) Avoid introducing dependences
with partial floating-point register writes, e.g. from the MOVSD XMMREG1, XMMREG2 instruction. Use
the MOVAPD XMMREG1, XMMREG2 instruction instead.

The MOVSD XMMREG, MEM instruction writes all 128 bits and breaks a dependence.

3.5.3 Vectorization
This section provides a brief summary of optimization issues related to vectorization. There is more detail
in the chapters that follow.

Vectorization is a program transformation that allows special hardware to perform the same operation on
multiple data elements at the same time. Successive processor generations have provided vector
support through the MMX technology, Intel Streaming SIMD Extensions (Intel SSE), Intel Streaming
SIMD Extensions 2 (Intel SSE2), Intel Streaming SIMD Extensions 3 (Intel SSE3) and Intel Supplemental
Streaming SIMD Extensions 3 (Intel SSSE3).

Vectorization is a special case of SIMD, a term defined in Flynn’s architecture taxonomy to denote a
single instruction stream capable of operating on multiple data elements in parallel. The number of
elements which can be operated on in parallel range from four single-precision floating-point data
elements in Intel SSE and two double-precision floating-point data elements in Intel SSE2 to sixteen byte
operations in a 128-bit register in Intel SSE2. Thus, vector length ranges from 2 to 16, depending on the
instruction extensions used and on the data type.

The Intel C++ Compiler supports vectorization in three ways:
• The compiler may be able to generate SIMD code without intervention from the user.

Example 3-26. Partial Flag Register Accesses in Sandy Bridge Microarchitecture
Save partial flag register to avoid stall Simplified code sequence

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16 ; 16*64 =1024 bit

lea rsi, [A]
lea rdi, [B]
xor rax, rax
mov rcx, 16

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
setc al ;save carry for next iteration
movzx rax, al
add rsi, 8
add rdi, 8
dec rcx
jnz lp_64bit

lp_64bit:
add rax, [rsi]
adc rax, [rdi]
mov [rdi], rax
lea rsi, [rsi+8]
lea rdi, [rdi+8]
dec rcx
jnz lp_64bit

Ref#: 248966-048 3-35

GENERAL OPTIMIZATION GUIDELINES

• The can user insert pragmas to help the compiler realize that it can vectorize the code.
• The user can write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code, avoid global pointers and global variables. These
issues may be less troublesome if all modules are compiled simultaneously, and whole-program optimi-
zation is used.
User/Source Coding Rule 2. (H impact, M generality) Use the smallest possible floating-point or
SIMD data type, to enable more parallelism with the use of a (longer) SIMD vector. For example, use
single precision instead of double precision where possible.
User/Source Coding Rule 3. (M impact, ML generality) Arrange the nesting of loops so that the
innermost nesting level is free of inter-iteration dependencies. Especially avoid the case where the
store of data in an earlier iteration happens lexically after the load of that data in a future iteration,
something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions cover 8-bit,16-bit and 32-bit operands. Not all
SIMD operations are supported for 32 bits, meaning that some source code will not be able to be vector-
ized at all unless smaller operands are used.
User/Source Coding Rule 4. (M impact, ML generality) Avoid the use of conditional branches
inside loops and consider using SSE instructions to eliminate branches.
User/Source Coding Rule 5. (M impact, ML generality) Keep induction (loop) variable expressions
simple.

3.5.4 Optimization of Partially Vectorizable Code
Frequently, a program contains a mixture of vectorizable code and some routines that are non-vectoriz-
able. A common situation of partially vectorizable code involves a loop structure which include mixtures
of vectorized code and unvectorizable code. This situation is depicted in Figure 3-2.

It generally consists of five stages within the loop:
• Prolog.
• Unpacking vectorized data structure into individual elements.
• Calling a unvectorizable routine to process each element serially.
• Packing individual result into vectorized data structure.
• Epilogue.

Figure 3-2. Generic Program Flow of Partially Vectorized Code

Serial Routine

Packed SIMD Instruction

 Unpacking

 Packing

 Unvectorizable Code

Packed SIMD Instruction

Ref#: 248966-048 3-36

GENERAL OPTIMIZATION GUIDELINES

This section discusses techniques that can reduce the cost and bottleneck associated with the
packing/unpacking stages in these partially vectorize code.

Example 3-27 shows a reference code template that is representative of partially vectorizable coding
situations that also experience performance issues. The unvectorizable portion of code is represented
generically by a sequence of calling a serial function named “foo” multiple times. This generic example is
referred to as “shuffle with store forwarding”, because the problem generally involves an unpacking stage
that shuffles data elements between register and memory, followed by a packing stage that can experi-
ence store forwarding issue.

There are more than one useful techniques that can reduce the store-forwarding bottleneck between the
serialized portion and the packing stage. The following sub-sections presents alternate techniques to
deal with the packing, unpacking, and parameter passing to serialized function calls.

Example 3-27. Reference Code Template for Partially Vectorizable Program

// Prolog ///////////////////////////////
push ebp
mov ebp, esp

// Unpacking ////////////////////////////
sub ebp, 32
and ebp, 0xfffffff0
movaps [ebp], xmm0

// Serial operations on components ///////
sub ebp, 4

mov eax, [ebp+4]
mov [ebp], eax
call foo
mov [ebp+16+4], eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
mov [ebp+16+4+4], eax

mov eax, [ebp+12]
mov [ebp], eax
call foo
mov [ebp+16+8+4], eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
mov [ebp+16+12+4], eax

// Packing ///////////////////////////////
movaps xmm0, [ebp+16+4]

// Epilog ////////////////////////////////
pop ebp
ret

Ref#: 248966-048 3-37

GENERAL OPTIMIZATION GUIDELINES

3.5.4.1 Alternate Packing Techniques
The packing method implemented in the reference code of Example 3-27 will experience delay as it
assembles 4 doubleword result from memory into an XMM register due to store-forwarding restrictions.

Three alternate techniques for packing, using different SIMD instruction to assemble contents in XMM
registers are shown in Example 3-28. All three techniques avoid store-forwarding delay by satisfying the
restrictions on data sizes between a preceding store and subsequent load operations.

3.5.4.2 Simplifying Result Passing
In Example 3-27, individual results were passed to the packing stage by storing to contiguous memory
locations. Instead of using memory spills to pass four results, result passing may be accomplished by
using either one or more registers. Using registers to simplify result passing and reduce memory spills
can improve performance by varying degrees depending on the register pressure at runtime.

Example 3-29 shows the coding sequence that uses four extra XMM registers to reduce all memory spills
of passing results back to the parent routine. However, software must observe the following conditions
when using this technique:
• There is no register shortage.
• If the loop does not have many stores or loads but has many computations, this technique does not

help performance. This technique adds work to the computational units, while the store and loads
ports are idle.

Example 3-28. Three Alternate Packing Methods for Avoiding Store Forwarding Difficulty
Packing Method 1 Packing Method 2 Packing Method 3

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
punpckldq xmm0, xmm1
punpckldq xmm2, xmm3
punpckldq xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
psllq xmm3, 32
orps xmm2, xmm3
psllq xmm1, 32
orps xmm0, xmm1movlhps xmm0, xmm2

movd xmm0, [ebp+16+4]
movd xmm1, [ebp+16+8]
movd xmm2, [ebp+16+12]
movd xmm3, [ebp+12+16+4]
movlhps xmm1,xmm3
psllq xmm1, 32
movlhps xmm0, xmm2
orps xmm0, xmm1

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing

mov eax, [ebp+4]
mov [ebp], eax
call foo
movd xmm0, eax

mov eax, [ebp+8]
mov [ebp], eax
call foo
movd xmm1, eax

Ref#: 248966-048 3-38

GENERAL OPTIMIZATION GUIDELINES

3.5.4.3 Stack Optimization
In Example 3-27, an input parameter was copied in turn onto the stack and passed to the unvectorizable
routine for processing. The parameter passing from consecutive memory locations can be simplified by a
technique shown in Example 3-30.

Stack Optimization can only be used when:
• The serial operations are function calls. The function “foo” is declared as: INT FOO(INT A). The

parameter is passed on the stack.
• The order of operation on the components is from last to first.

Note the call to FOO and the advance of EDP when passing the vector elements to FOO one by one from
last to first.

3.5.4.4 Tuning Considerations
Tuning considerations for situations represented by looping of Example 3-27 include:
• Applying one of more of the following combinations:

— Choose an alternate packing technique.

— Consider a technique to simply result-passing.

— Consider the stack optimization technique to simplify parameter passing.
• Minimizing the average number of cycles to execute one iteration of the loop.
• Minimizing the per-iteration cost of the unpacking and packing operations.

mov eax, [ebp+12]
mov [ebp], eax
call foo
movd xmm2, eax

mov eax, [ebp+12+4]
mov [ebp], eax
call foo
movd xmm3, eax

Example 3-30. Stack Optimization Technique to Simplify Parameter Passing

call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo
mov [ebp+16], eax

add ebp, 4
call foo

Example 3-29. Using Four Registers to Reduce Memory Spills and Simplify Result Passing (Contd.)

Ref#: 248966-048 3-39

GENERAL OPTIMIZATION GUIDELINES

The speed improvement by using the techniques discussed in this section will vary, depending on the
choice of combinations implemented and characteristics of the non-vectorizable routine. For example, if
the routine “foo” is short (representative of tight, short loops), the per-iteration cost of
unpacking/packing tend to be smaller than situations where the non-vectorizable code contain longer
operation or many dependencies. This is because many iterations of short, tight loop can be in flight in
the execution core, so the per-iteration cost of packing and unpacking is only partially exposed and
appear to cause very little performance degradation.

Evaluation of the per-iteration cost of packing/unpacking should be carried out in a methodical manner
over a selected number of test cases, where each case may implement some combination of the tech-
niques discussed in this section. The per-iteration cost can be estimated by:
• Evaluating the average cycles to execute one iteration of the test case.
• Evaluating the average cycles to execute one iteration of a base line loop sequence of

non-vectorizable code.

Example 3-31 shows the base line code sequence that can be used to estimate the average cost of a loop
that executes non-vectorizable routines.

The average per-iteration cost of packing/unpacking can be derived from measuring the execution times
of a large number of iterations by:

((Cycles to run TestCase) - (Cycles to run equivalent baseline sequence)) / (Iteration count).

For example, using a simple function that returns an input parameter (representative of tight, short
loops), the per-iteration cost of packing/unpacking may range from slightly more than 7 cycles (the
shuffle with store forwarding case, Example 3-27) to ~0.9 cycles (accomplished by several test cases).
Across 27 test cases (consisting of one of the alternate packing methods, no result-simplification/simpli-
fication of either 1 or 4 results, no stack optimization or with stack optimization), the average per-itera-
tion cost of packing/unpacking is about 1.7 cycles.

Generally speaking, packing method 2 and 3 (see Example 3-28) tend to be more robust than packing
method 1; the optimal choice of simplifying 1 or 4 results will be affected by register pressure of the
runtime and other relevant microarchitectural conditions.

Note that the numeric discussion of per-iteration cost of packing/packing is illustrative only. It will vary
with test cases using a different base line code sequence and will generally increase if the non-vectoriz-

Example 3-31. Base Line Code Sequence to Estimate Loop Overhead

push ebp
mov ebp, esp
sub ebp, 4

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

mov [ebp], edi
call foo

add ebp, 4
pop ebp
ret

Ref#: 248966-048 3-40

GENERAL OPTIMIZATION GUIDELINES

able routine requires longer time to execute because the number of loop iterations that can reside in
flight in the execution core decreases.

3.6 OPTIMIZING MEMORY ACCESSES
This section discusses guidelines for optimizing code and data memory accesses. The most important
recommendations are:
• Execute load and store operations within available execution bandwidth.
• Enable forward progress of speculative execution.
• Enable store forwarding to proceed.
• Align data, paying attention to data layout and stack alignment.
• Place code and data on separate pages.
• Enhance data locality.
• Use prefetching and cacheability control instructions.
• Enhance code locality and align branch targets.
• Take advantage of write combining.

3.6.1 Load and Store Execution Bandwidth
Typically, loads and stores are the most frequent operations in a workload, up to 40% of the instructions
in a workload carrying load or store intent are not uncommon. Each generation of microarchitecture
provides multiple buffers to support executing load and store operations while there are instructions in
flight. These buffers were comprised of 128-bit wide entries for the Sandy Bridge and Ivy Bridge microar-
chitectures. The size was increased to 256-bit in Haswell, Broadwell and Skylake Client microarchitec-
tures; and to 512-bit in Skylake Server, Cascade Lake, Cascade Lake Advanced Performance, and Ice
Lake Client microarchitectures. To maximize performance, it is best to use the largest width available in
the platform.

3.6.1.1 Making Use of Load Bandwidth in Sandy Bridge Microarchitecture
While prior microarchitecture has one load port (port 2), Sandy Bridge microarchitecture can load from
port 2 and port 3. Thus two load operations can be performed every cycle and doubling the load
throughput of the code. This improves code that reads a lot of data and does not need to write out results
to memory very often (Port 3 also handles store-address operation). To exploit this bandwidth, the data
has to stay in the L1 data cache or it should be accessed sequentially, enabling the hardware prefetchers
to bring the data to the L1 data cache in time.

Consider the following C code example of adding all the elements of an array:

int buff[BUFF_SIZE];

int sum = 0;

for (i=0;i<BUFF_SIZE;i++){

 sum+=buff[i];

}

Alternative 1 is the assembly code generated by the Intel compiler for this C code, using the optimization
flag for Nehalem microarchitecture. The compiler vectorizes execution using Intel SSE instructions. In
this code, each ADD operation uses the result of the previous ADD operation. This limits the throughput
to one load and ADD operation per cycle. Alternative 2 is optimized for Sandy Bridge microarchitecture
by enabling it to use the additional load bandwidth. The code removes the dependency among ADD oper-

Ref#: 248966-048 3-41

GENERAL OPTIMIZATION GUIDELINES

ations, by using two registers to sum the array values. Two load and two ADD operations can be executed
every cycle.

3.6.1.2 L1D Cache Latency in Sandy Bridge Microarchitecture
Load latency from L1D cache may vary. The best case if 4 cycles, which apply to load operations to
general purpose registers using one of the following:
• One register.
• A base register plus an offset that is smaller than 2048.

Consider the pointer-chasing code example in Example 3-33.

Example 3-32. Optimizing for Load Port Bandwidth in Sandy Bridge Microarchitecture

Register dependency inhibits PADD execution Reduce register dependency allow two load port to supply
PADD execution

xor eax, eax
pxor xmm0, xmm0
lea rsi, buff

xor eax, eax
pxor xmm0, xmm0
pxor xmm1, xmm1
lea rsi, buff

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm0, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm0, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm0, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm0, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

loop_start:
paddd xmm0, [rsi+4*rax]
paddd xmm1, [rsi+4*rax+16]
paddd xmm0, [rsi+4*rax+32]
paddd xmm1, [rsi+4*rax+48]
paddd xmm0, [rsi+4*rax+64]
paddd xmm1, [rsi+4*rax+80]
paddd xmm0, [rsi+4*rax+96]
paddd xmm1, [rsi+4*rax+112]
add eax, 32
cmp eax, BUFF_SIZE
jl loop_start

sum_partials:
paddd xmm0, xmm1
movdqa xmm1, xmm0
psrldq xmm1, 8
paddd xmm0, xmm1
movdqa xmm2, xmm0
psrldq xmm2, 4
paddd xmm0, xmm2
movd [sum], xmm0

Ref#: 248966-048 3-42

GENERAL OPTIMIZATION GUIDELINES

The left side implements pointer chasing via traversing an index. Compiler then generates the code
shown below addressing memory using base+index with an offset. The right side shows compiler gener-
ated code from pointer de-referencing code and uses only a base register.

The code on the right side is faster than the left side across Sandy Bridge microarchitecture and prior
microarchitecture. However the code that traverses index will be slower on Sandy Bridge microarchitec-
ture relative to prior microarchitecture.

3.6.1.3 Handling L1D Cache Bank Conflict
In the Sandy Bridge microarchitecture, the internal organization of the L1D cache may manifest a situa-
tion when two load micro-ops whose addresses have a bank conflict. When a bank conflict is present
between two load operations, the more recent one will be delayed until the conflict is resolved. A bank
conflict happens when two simultaneous load operations have the same bit 2-5 of their linear address but
they are not from the same set in the cache (bits 6 - 12).

Bank conflicts should be handled only if the code is bound by load bandwidth. Some do not cause any
performance degradation since they are hidden by other performance limiters. Eliminating such bank
conflicts does not improve performance.

The L1D cache bank conflict issue does not apply to Haswell microarchitecture.

The following example demonstrates bank conflict and how to modify the code and avoid them. It uses
two source arrays with a size that is a multiple of cache line size. When loading an element from A and
the counterpart element from B the elements have the same offset in their cache lines; therefore, a bank
conflict may happen.

Example 3-33. Index versus Pointers in Pointer-Chasing Code
Traversing through indexes Traversing through pointers

// C code example
index = buffer.m_buff[index].next_index;
// ASM example
loop:

shl rbx, 6
 mov rbx, 0x20(rbx+rcx)

dec rax
 cmp rax, -1
jne loop

// C code example
node = node->pNext;

// ASM example
loop:

mov rdx, [rdx]
 dec rax

cmp rax, -1
 jne loop

Ref#: 248966-048 3-43

GENERAL OPTIMIZATION GUIDELINES

Bank conflicts may occur with the introduction of the third load port in the Golden Cove microarchitec-
ture. In this microarchitecture, conflicts happen between three loads with the same bits 2-5 of their
linear address even if they access the same set of the cache. Up to two loads can access the same cache
bank without a conflict; however, a third load accessing the same bank must be delayed. The bank
conflicts do not apply to 512-bit wide loads because their bandwidth is limited to two per cycle.

Recommendation: In the Golden Cove microarchitecture, bank conflicts often happen when multiple
loads access the same memory location. Whenever possible, avoid reading the same memory location
within a tight loop or using multiple load operations. Commonly used memory locations are better kept
in the registers to prevent potential bank conflict penalty.

Example 3-34. Example of Bank Conflicts in L1D Cache and Remedy

int A[128];
int B[128];
int C[128];
for (i=0;i<128;i+=4){

C[i]=A[i]+B[i]; the loads from A[i] and B[i] collide
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];

}

// Code with Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
add edi, [r12+rsi*4]
mov r8d, [r11+rsi*4+4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
add r9d, [r12+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r10d, [r12+rsi*4+12]

// Code without Bank Conflicts
xor rcx, rcx
lea r11, A
lea r12, B
lea r13, C

loop:
lea esi, [rcx*4]
movsxd rsi, esi
mov edi, [r11+rsi*4]
mov r8d, [r11+rsi*4+4]
add edi, [r12+rsi*4]
add r8d, [r12+rsi*4+4]
mov r9d, [r11+rsi*4+8]
mov r10d, [r11+rsi*4+12]
add r9d, [r12+rsi*4+8]
add r10d, [r12+rsi*4+12]

mov [r13+rsi*4], edi
inc ecx
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

inc ecx
mov [r13+rsi*4], edi
mov [r13+rsi*4+4], r8d
mov [r13+rsi*4+8], r9d
mov [r13+rsi*4+12], r10d
cmp ecx, LEN
jb loop

Ref#: 248966-048 3-44

GENERAL OPTIMIZATION GUIDELINES

3.6.2 Minimize Register Spills
When a piece of code has more live variables than the processor can keep in general purpose registers,
a common method is to hold some of the variables in memory. This method is called register spill. The
effect of L1D cache latency can negatively affect the performance of this code. The effect can be more
pronounced if the address of register spills uses the slower addressing modes.

One option is to spill general purpose registers to XMM registers. This method is likely to improve perfor-
mance also on previous processor generations. The following example shows how to spill a register to an
XMM register rather than to memory.

3.6.3 Enhance Speculative Execution and Memory Disambiguation
Prior to Intel Core microarchitecture, when code contains both stores and loads, the loads cannot be
issued before the address of the older stores is known. This rule ensures correct handling of load depen-
dencies on preceding stores.
The Intel Core microarchitecture contains a mechanism that allows some loads to be executed specula-
tively in the presence of older unknown stores. The processor later checks if the load address overlapped
with an older store whose address was unknown at the time the load executed. If the addresses do
overlap, then the processor re-executes the load and all succeeding instructions.

Example 3-36 illustrates a situation that the compiler cannot be sure that “Ptr->Array” does not change
during the loop. Therefore, the compiler cannot keep “Ptr->Array” in a register as an invariant and must
read it again in every iteration. Although this situation can be fixed in software by a rewriting the code to
require the address of the pointer is invariant, memory disambiguation improves performance without
rewriting the code.

Example 3-35. Using XMM Register in Lieu of Memory for Register Spills
Register spills into memory Register spills into XMM

loop:
mov rdx, [rsp+0x18]
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

 movq xmm4, [rsp+0x18]
mov rcx, 0x10
movq xmm5, rcx

loop:
movq rdx, xmm4
movdqa xmm0, [rdx]
movdqa xmm1, [rsp+0x20]
pcmpeqd xmm1, xmm0
pmovmskb eax, xmm1
test eax, eax
jne end_loop
movzx rcx, [rbx+0x60]

add qword ptr[rsp+0x18], 0x10
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

padd xmm4, xmm5
add rdi, 0x4
movzx rdx, di
sub rcx, 0x4
add rsi, 0x1d0
cmp rdx, rcx
jle loop

Ref#: 248966-048 3-45

GENERAL OPTIMIZATION GUIDELINES

It is possible to disable speculative store bypass with the IA32_SPEC_CTRL.SSBD MSR.

Additional information on this topic can be found on the Software Security Guidance page.

3.6.4 Store Forwarding
The processor’s memory system only sends stores to memory (including cache) after store retirement.
However, store data can be forwarded from a store to a subsequent load from the same address to give
a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are violated, store
forwarding cannot occur and the load must get its data from the cache (so the store must write its data
back to the cache first). This incurs a penalty that is largely related to pipeline depth of the underlying
micro-architecture.

The first requirement pertains to the size and alignment of the store-forwarding data. This restriction is
likely to have high impact on overall application performance. Typically, a performance penalty due to
violating this restriction can be prevented. The store-to-load forwarding restrictions vary from one
microarchitecture to another. Several examples of coding pitfalls that cause store-forwarding stalls and
solutions to these pitfalls are discussed in detail in Section 3.6.4.1 The second requirement is the avail-
ability of data, discussed in Section 3.6.4.2 A good practice is to eliminate redundant load operations.

It may be possible to keep a temporary scalar variable in a register and never write it to memory. Gener-
ally, such a variable must not be accessible using indirect pointers. Moving a variable to a register elimi-
nates all loads and stores of that variable and eliminates potential problems associated with store
forwarding. However, it also increases register pressure.

Load instructions tend to start chains of computation. Since the out-of-order engine is based on data
dependence, load instructions play a significant role in the engine’s ability to execute at a high rate. Elim-
inating loads should be given a high priority.

If a variable does not change between the time when it is stored and the time when it is used again, the
register that was stored can be copied or used directly. If register pressure is too high, or an unseen func-
tion is called before the store and the second load, it may not be possible to eliminate the second load.
Assembly/Compiler Coding Rule 40. (H impact, M generality) Pass parameters in registers
instead of on the stack where possible. Passing arguments on the stack requires a store followed by a
reload. While this sequence is optimized in hardware by providing the value to the load directly from
the memory order buffer without the need to access the data cache if permitted by store-forwarding
restrictions, floating-point values incur a significant latency in forwarding. Passing floating-point
arguments in (preferably XMM) registers should save this long latency operation.

Parameter passing conventions may limit the choice of which parameters are passed in registers which
are passed on the stack. However, these limitations may be overcome if the compiler has control of the
compilation of the whole binary (using whole-program optimization).

Example 3-36. Loads Blocked by Stores of Unknown Address
C code Assembly sequence

struct AA {
AA ** array;
};
void nullify_array (AA *Ptr, DWORD Index, AA *ThisPtr)
{
while (Ptr->Array[--Index] != ThisPtr)

{
Ptr->Array[Index] = NULL ;
} ;

} ;

nullify_loop:
mov dword ptr [eax], 0
mov edx, dword ptr [edi]
sub ecx, 4
cmp dword ptr [ecx+edx], esi
lea eax, [ecx+edx]
jne nullify_loop

https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html

Ref#: 248966-048 3-46

GENERAL OPTIMIZATION GUIDELINES

3.6.4.1 Store-to-Load-Forwarding Restriction on Size and Alignment
Data size and alignment restrictions for store-forwarding apply to processors based on Intel Core
microarchitecture, Intel Core 2 Duo, Intel Core Solo and Pentium M processors. The performance penalty
for violating store-forwarding restrictions is less for shorter-pipelined machines.

Store-forwarding restrictions vary with each microarchitecture. The following rules help satisfy size and
alignment restrictions for store forwarding:
Assembly/Compiler Coding Rule 41. (H impact, M generality) A load that forwards from a store
must have the same address start point and therefore the same alignment as the store data.
Assembly/Compiler Coding Rule 42. (H impact, M generality) The data of a load which is
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store’s data to be written to the store buffer before
proceeding, but other, unrelated loads need not wait.
Assembly/Compiler Coding Rule 43. (H impact, ML generality) If it is necessary to extract a
non-aligned portion of stored data, read out the smallest aligned portion that completely contains the
data and shift/mask the data as necessary. This is better than incurring the penalties of a failed
store-forward.
Assembly/Compiler Coding Rule 44. (MH impact, ML generality) Avoid several small loads after
large stores to the same area of memory by using a single large read and register copies as needed.

Example 3-37 depicts several store-forwarding situations in which small loads follow large stores. The
first three load operations illustrate the situations described in Rule 44. However, the last load operation
gets data from store-forwarding without problem.

Example 3-38 illustrates a store-forwarding situation in which a large load follows several small stores.
The data needed by the load operation cannot be forwarded because all of the data that needs to be
forwarded is not contained in the store buffer. Avoid large loads after small stores to the same area of
memory.

Example 3-37. Situations Showing Small Loads After Large Store

mov [EBP],‘abcd’
mov AL, [EBP] ; Not blocked - same alignment
mov BL, [EBP + 1] ; Blocked
mov CL, [EBP + 2] ; Blocked
mov DL, [EBP + 3] ; Blocked
mov AL, [EBP] ; Not blocked - same alignment

; n.b. passes older blocked loads

Example 3-38. Non-forwarding Example of Large Load After Small Store

mov [EBP], ‘a’
mov [EBP + 1], ‘b’
mov [EBP + 2], ‘c’
mov [EBP + 3], ‘d’
mov EAX, [EBP] ; Blocked

; The first 4 small store can be consolidated into
; a single DWORD store to prevent this non-forwarding
; situation.

Ref#: 248966-048 3-47

GENERAL OPTIMIZATION GUIDELINES

Example 3-39 illustrates a stalled store-forwarding situation that may appear in compiler generated
code. Sometimes a compiler generates code similar to that shown in Example 3-39 to handle a spilled
byte to the stack and convert the byte to an integer value.

Example 3-40 offers two alternatives to avoid the non-forwarding situation shown in Example 3-39.

When moving data that is smaller than 64 bits between memory locations, 64-bit or 128-bit SIMD
register moves are more efficient (if aligned) and can be used to avoid unaligned loads. Although
floating-point registers allow the movement of 64 bits at a time, floating-point instructions should not be
used for this purpose, as data may be inadvertently modified.

As an additional example, consider the cases in Example 3-41.

In the first case (A), there is a large load after a series of small stores to the same area of memory
(beginning at memory address MEM). The large load will stall.

The FLD must wait for the stores to write to memory before it can access all the data it requires. This stall
can also occur with other data types (for example, when bytes or words are stored and then words or
doublewords are read from the same area of memory).

In the second case (B), there is a series of small loads after a large store to the same area of memory
(beginning at memory address MEM). The small loads will stall.

The word loads must wait for the quadword store to write to memory before they can access the data
they require. This stall can also occur with other data types (for example, when doublewords or words
are stored and then words or bytes are read from the same area of memory). This can be avoided by
moving the store as far from the loads as possible.

Example 3-39. A Non-forwarding Situation in Compiler Generated Code

mov DWORD PTR [esp+10h], 00000000h
mov BYTE PTR [esp+10h], bl
mov eax, DWORD PTR [esp+10h] ; Stall
and eax, 0xff ; Converting back to byte value

Example 3-40. Two Ways to Avoid Non-forwarding Situation in Example 3-39

; A. Use MOVZ instruction to avoid large load after small
; store, when spills are ignored.

movz eax, bl ; Replaces the last three instructions

; B. Use MOVZ instruction and handle spills to the stack

mov DWORD PTR [esp+10h], 00000000h

mov BYTE PTR [esp+10h], bl

movz eax, BYTE PTR [esp+10h] ; Not blocked

Example 3-41. Large and Small Load Stalls

; A. Large load stall

mov mem, eax ; Store dword to address “MEM"
mov mem + 4, ebx ; Store dword to address “MEM + 4"
fld mem ; Load qword at address “MEM", stalls

; B. Small Load stall

fstp mem ; Store qword to address “MEM"
mov bx, mem+2 ; Load word at address “MEM + 2", stalls
mov cx, mem+4 ; Load word at address “MEM + 4", stalls

Ref#: 248966-048 3-48

GENERAL OPTIMIZATION GUIDELINES

Store forwarding restrictions for processors based on Intel Core microarchitecture is listed in Table 3-4.

3.6.4.2 Store-Forwarding Restriction on Data Availability
The value to be stored must be available before the load operation can be completed. If this restriction is
violated, the execution of the load will be delayed until the data is available. This delay causes some
execution resources to be used unnecessarily, and that can lead to sizable but non-deterministic delays.
However, the overall impact of this problem is much smaller than that from violating size and alignment
requirements.

In modern microarchitectures, hardware predicts when loads are dependent on and get their data
forwarded from preceding stores. These predictions can significantly improve performance. However, if a
load is scheduled too soon after the store it depends on or if the generation of the data to be stored is
delayed, there can be a significant penalty.

There are several cases in which data is passed through memory, and the store may need to be sepa-
rated from the load:
• Spills, save and restore registers in a stack frame.
• Parameter passing.
• Global and volatile variables.

Table 3-4. Store Forwarding Restrictions of Processors Based on Intel Core Microarchitecture

Store Alignment
Width of

Store (bits)
Load Alignment (byte) Width of Load (bits)

Store Forwarding
Restriction

To Natural size 16 word aligned 8, 16 not stalled

To Natural size 16 not word aligned 8 stalled

To Natural size 32 dword aligned 8, 32 not stalled

To Natural size 32 not dword aligned 8 stalled

To Natural size 32 word aligned 16 not stalled

To Natural size 32 not word aligned 16 stalled

To Natural size 64 qword aligned 8, 16, 64 not stalled

To Natural size 64 not qword aligned 8, 16 stalled

To Natural size 64 dword aligned 32 not stalled

To Natural size 64 not dword aligned 32 stalled

To Natural size 128 dqword aligned 8, 16, 128 not stalled

To Natural size 128 not dqword aligned 8, 16 stalled

To Natural size 128 dword aligned 32 not stalled

To Natural size 128 not dword aligned 32 stalled

To Natural size 128 qword aligned 64 not stalled

To Natural size 128 not qword aligned 64 stalled

Unaligned, start byte 1 32 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 32 not byte 0 of store 8, 16 stalled

Unaligned, start byte 1 64 byte 0 of store 8, 16, 32 not stalled

Unaligned, start byte 1 64 not byte 0 of store 8, 16, 32 stalled

Unaligned, start byte 1 64 byte 0 of store 64 stalled

Unaligned, start byte 7 32 byte 0 of store 8 not stalled

Unaligned, start byte 7 32 not byte 0 of store 8 not stalled

Unaligned, start byte 7 32 don’t care 16, 32 stalled

Unaligned, start byte 7 64 don’t care 16, 32, 64 stalled

Ref#: 248966-048 3-49

GENERAL OPTIMIZATION GUIDELINES

• Type conversion between integer and floating-point.
• When compilers do not analyze code that is inlined, forcing variables that are involved in the interface

with inlined code to be in memory, creating more memory variables and preventing the elimination of
redundant loads.

Assembly/Compiler Coding Rule 45. (H impact, MH generality) Where it is possible to do so
without incurring other penalties, prioritize the allocation of variables to registers, as in register
allocation and for parameter passing, to minimize the likelihood and impact of store-forwarding
problems. Try not to store-forward data generated from a long latency instruction - for example, MUL
or DIV. Avoid store-forwarding data for variables with the shortest store-load distance. Avoid
store-forwarding data for variables with many and/or long dependence chains, and especially avoid
including a store forward on a loop-carried dependence chain.

Example 3-42 shows an example of a loop-carried dependence chain.

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Calculate store addresses as
early as possible to avoid having stores block loads.

3.6.5 Data Layout Optimizations
User/Source Coding Rule 6. (H impact, M generality) Pad data structures defined in the source
code so that every data element is aligned to a natural operand size address boundary.

If the operands are packed in a SIMD instruction, align to the packed element size (64-bit or 128-bit).

Align data by providing padding inside structures and arrays. Programmers can reorganize structures and
arrays to minimize the amount of memory wasted by padding. However, compilers might not have this
freedom. The C programming language, for example, specifies the order in which structure elements are
allocated in memory. For more information, see Section 5.4.

Example 3-43 shows how a data structure could be rearranged to reduce its size.

Cache line size of 64 bytes can impact streaming applications (for example, multimedia). These refer-
ence and use data only once before discarding it. Data accesses which sparsely utilize the data within a

Example 3-42. Loop-Carried Dependence Chain

for (i = 0; i < MAX; i++) {
a[i] = b[i] * foo;
foo = a[i] / 3;

} // foo is a loop-carried dependence.

Example 3-43. Rearranging a Data Structure

struct unpacked { /* Fits in 20 bytes due to padding */
int a;
char b;
int c;
char d;
int e;

};

struct packed { /* Fits in 16 bytes */
int a;
int c;
int e;
char b;
char d;

}

Ref#: 248966-048 3-50

GENERAL OPTIMIZATION GUIDELINES

cache line can result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown in Example 3-44.

The efficiency of such optimizations depends on usage patterns. If the elements of the structure are all
accessed together but the access pattern of the array is random, then ARRAY_OF_STRUCT avoids unnec-
essary prefetch even though it wastes memory.

However, if the access pattern of the array exhibits locality (for example, if the array index is being swept
through) then processors with hardware prefetchers will prefetch data from STRUCT_OF_ARRAY, even if
the elements of the structure are accessed together.

When the elements of the structure are not accessed with equal frequency, such as when element A is
accessed ten times more often than the other entries, then STRUCT_OF_ARRAY not only saves memory,
but it also prevents fetching unnecessary data items B, C, D, and E.

Using STRUCT_OF_ARRAY also enables the use of the SIMD data types by the programmer and the
compiler.

Note that STRUCT_OF_ARRAY can have the disadvantage of requiring more independent memory stream
references. This can require the use of more prefetches and additional address generation calculations.
It can also have an impact on DRAM page access efficiency. An alternative, HYBRID_STRUCT_OF_ARRAY
blends the two approaches. In this case, only 2 separate address streams are generated and referenced:
1 for HYBRID_STRUCT_OF_ARRAY_ACE and 1 for HYBRID_STRUCT_OF_ARRAY_BD. The second alter-
ative also prevents fetching unnecessary data — assuming that (1) the variables A, C and E are always
used together, and (2) the variables B and D are always used together, but not at the same time as A, C
and E.

The hybrid approach ensures:
• Simpler/fewer address generations than STRUCT_OF_ARRAY.
• Fewer streams, which reduces DRAM page misses.
• Fewer prefetches due to fewer streams.
• Efficient cache line packing of data elements that are used concurrently.
Assembly/Compiler Coding Rule 47. (H impact, M generality) Try to arrange data structures
such that they permit sequential access.

If the data is arranged into a set of streams, the automatic hardware prefetcher can prefetch data that
will be needed by the application, reducing the effective memory latency. If the data is accessed in a

Example 3-44. Decomposing an Array

struct { /* 1600 bytes */
int a, c, e;
char b, d;

} array_of_struct [100];

struct { /* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of_array;

struct { /* 1200 bytes */
int a, c, e;

} hybrid_struct_of_array_ace[100];

struct { /* 200 bytes */
char b, d;

} hybrid_struct_of_array_bd[100];

Ref#: 248966-048 3-51

GENERAL OPTIMIZATION GUIDELINES

non-sequential manner, the automatic hardware prefetcher cannot prefetch the data. The prefetcher can
recognize up to eight concurrent streams. See Chapter 9 for more information on the hardware
prefetcher.
User/Source Coding Rule 7. (M impact, L generality) Beware of false sharing within a cache line
(64 bytes).

3.6.6 Stack Alignment
Performance penalty of unaligned access to the stack happens when a memory reference splits a cache
line. This means that one out of eight spatially consecutive unaligned quadword accesses is always
penalized, similarly for one out of 4 consecutive, non-aligned double-quadword accesses, etc.

Aligning the stack may be beneficial any time there are data objects that exceed the default stack align-
ment of the system. For example, on 32/64bit Linux, and 64bit Windows, the default stack alignment is
16 bytes, while 32bit Windows is 4 bytes.
Assembly/Compiler Coding Rule 48. (H impact, M generality) Make sure that the stack is aligned
at the largest multi-byte granular data type boundary matching the register width.

Aligning the stack typically requires the use of an additional register to track across a padded area of
unknown amount. There is a trade-off between causing unaligned memory references that spanned
across a cache line and causing extra general purpose register spills.

The assembly level technique to implement dynamic stack alignment may depend on compilers, and
specific OS environment. The reader may wish to study the assembly output from a compiler of interest.

If for some reason it is not possible to align the stack for 64-bits, the routine should access the parameter
and save it into a register or known aligned storage, thus incurring the penalty only once.

3.6.7 Capacity Limits and Aliasing in Caches
There are cases in which addresses with a given stride will compete for some resource in the memory
hierarchy.

Typically, caches are implemented to have multiple ways of set associativity, with each way consisting of
multiple sets of cache lines (or sectors in some cases). Multiple memory references that compete for the
same set of each way in a cache can cause a capacity issue. There are aliasing conditions that apply to

Example 3-45. Examples of Dynamical Stack Alignment

// 32-bit environment
push ebp ; save ebp
mov ebp, esp ; ebp now points to incoming parameters
andl esp, $-<N> ;align esp to N byte boundary
sub esp, $<stack_size>; reserve space for new stack frame
. ; parameters must be referenced off of ebp
mov esp, ebp ; restore esp
pop ebp ; restore ebp

// 64-bit environment
sub esp, $<stack_size +N>
mov r13, $<offset_of_aligned_section_in_stack>
andl r13, $-<N> ; r13 point to aligned section in stack
. ;use r13 as base for aligned data

Ref#: 248966-048 3-52

GENERAL OPTIMIZATION GUIDELINES

specific microarchitectures. Note that first-level cache lines are 64 bytes. Thus, the least significant 6 bits
are not considered in alias comparisons.

3.6.8 Mixing Code and Data
The aggressive prefetching and pre-decoding of instructions by Intel processors have two related effects:
• Self-modifying code (SMC) works correctly, according to the Intel architecture processor require-

ments, but incurs a significant performance penalty. Avoid self-modifying code if possible.
• Placing writable data in the code segment might be impossible to distinguish from self-modifying

code. Writable data in the code segment might suffer the same performance penalty as
self-modifying code.

Assembly/Compiler Coding Rule 49. (M impact, L generality) If (hopefully read-only) data must
occur on the same page as code, avoid placing it immediately after an indirect jump. For example,
follow an indirect jump with its mostly likely target, and place the data after an unconditional branch.
Tuning Suggestion 1. In rare cases, a performance problem may be caused by executing data on a
code page as instructions. This is very likely to happen when execution is following an indirect branch
that is not resident in the trace cache. If this is clearly causing a performance problem, try moving the
data elsewhere, or inserting an illegal opcode or a PAUSE instruction immediately after the indirect
branch. Note that the latter two alternatives may degrade performance in some circumstances.
Assembly/Compiler Coding Rule 50. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code is to be modified, try to do it all at
once and make sure the code that performs the modifications and the code being modified are on
separate 4-KByte pages or on separate aligned 1-KByte subpages.

3.6.8.1 Self-Modifying Code (SMC)
Self-modifying code (SMC) that ran correctly on Pentium III processors and prior implementations will run
correctly on subsequent implementations. SMC and cross-modifying code (when multiple processors in a
multiprocessor system are writing to a code page) should be avoided when high performance is desired.

Software should avoid writing to a code page in the same 1-KByte subpage that is being executed or
fetching code in the same 2-KByte subpage of that is being written. In addition, sharing a page
containing directly or speculatively executed code with another processor as a data page can trigger an
SMC condition causing the entire pipeline of the machine and the trace cache to be cleared.

Dynamic code need not cause the SMC condition if the code written fills up a data page before that page
is accessed as code. Dynamically-modified code (for example, from target fix-ups) is likely to suffer from
the SMC condition and should be avoided where possible. Avoid the condition by introducing indirect
branches and using data tables on data pages (not code pages) using register-indirect calls.

Ref#: 248966-048 3-53

GENERAL OPTIMIZATION GUIDELINES

3.6.8.2 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. Example 3-46a
shows one technique to put the value of IP into the ECX register by issuing a CALL without a matching
RET. Example 3-46b shows an alternative technique to put the value of IP into the ECX register using a
matched pair of CALL/RET.

3.6.9 Write Combining
Write combining (WC) improves performance in two ways:
• On a write miss to the first-level cache, it allows multiple stores to the same cache line to occur before

that cache line is read for ownership (RFO) from further out in the cache/memory hierarchy. Then the
rest of line is read, and the bytes that have not been written are combined with the unmodified bytes
in the returned line.

• Write combining allows multiple writes to be assembled and written further out in the cache hierarchy
as a unit. This saves port and bus traffic. Saving traffic is particularly important for avoiding partial
writes to uncached memory.

Processors based on Intel Core microarchitecture have eight write-combining buffers in each core. Begin-
ning with Nehalem microarchitecture, there are 10 buffers available for write-combining. Beginning with
Ice Lake Client microarchitecture, there are 12 buffers available for write-combining.
Assembly/Compiler Coding Rule 51. (H impact, L generality) If an inner loop writes to more than
four arrays (four distinct cache lines), apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration of each of the resulting loops.

Write combining buffers are used for stores of all memory types. They are particularly important for
writes to uncached memory: writes to different parts of the same cache line can be grouped into a single,
full-cache-line bus transaction instead of going across the bus (since they are not cached) as several
partial writes. Avoiding partial writes can have a significant impact on bus bandwidth-bound graphics
applications, where graphics buffers are in uncached memory. Separating writes to uncached memory
and writes to writeback memory into separate phases can assure that the write combining buffers can fill
before getting evicted by other write traffic. Eliminating partial write transactions has been found to have
performance impact on the order of 20% for some applications. Because the cache lines are 64 bytes, a
write to the bus for 63 bytes will result in partial bus transactions.

When coding functions that execute simultaneously on two threads, reducing the number of writes that
are allowed in an inner loop will help take full advantage of write-combining store buffers. For
write-combining buffer recommendations for Intel® Hyper-Threading Technology (Intel® HT), see
Chapter 11.

Example 3-46. Instruction Pointer Query Techniques

a) Using call without return to obtain IP does not corrupt the RSB
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

Ref#: 248966-048 3-54

GENERAL OPTIMIZATION GUIDELINES

Store ordering and visibility are also important issues for write combining. When a write to a
write-combining buffer for a previously-unwritten cache line occurs, there will be a read-for-ownership
(RFO). If a subsequent write happens to another write-combining buffer, a separate RFO may be caused
for that cache line. Subsequent writes to the first cache line and write-combining buffer will be delayed
until the second RFO has been serviced to guarantee properly ordered visibility of the writes. If the
memory type for the writes is write-combining, there will be no RFO since the line is not cached, and
there is no such delay. For details on write-combining, see Chapter 9, “Optimizing Cache Usage”

3.6.10 Locality Enhancement
Locality enhancement can reduce data traffic originating from an outer-level sub-system in the
cache/memory hierarchy. This is to address the fact that the access-cost in terms of cycle-count from an
outer level will be more expensive than from an inner level. Typically, the cycle-cost of accessing a given
cache level (or memory system) varies across different microarchitectures, processor implementations,
and platform components. It may be sufficient to recognize the relative data access cost trend by locality
rather than to follow a large table of numeric values of cycle-costs, listed per locality, per processor/plat-
form implementations, etc. The general trend is typically that access cost from an outer sub-system may
be approximately 3-10X more expensive than accessing data from the immediate inner level in the
cache/memory hierarchy, assuming similar degrees of data access parallelism.

Thus locality enhancement should start with characterizing the dominant data traffic locality. Appendix A,
“Application Performance Tools” describes some techniques that can be used to determine the dominant
data traffic locality for any workload.

Even if cache miss rates of the last level cache may be low relative to the number of cache references,
processors typically spend a sizable portion of their execution time waiting for cache misses to be
serviced. Reducing cache misses by enhancing a program’s locality is a key optimization. This can take
several forms:
• Blocking to iterate over a portion of an array that will fit in the cache (with the purpose that

subsequent references to the data-block [or tile] will be cache hit references).
• Loop interchange to avoid crossing cache lines or page boundaries.
• Loop skewing to make accesses contiguous.

Locality enhancement to the last level cache can be accomplished with sequencing the data access
pattern to take advantage of hardware prefetching. This can also take several forms:
• Transformation of a sparsely populated multi-dimensional array into a one-dimension array such that

memory references occur in a sequential, small-stride pattern that is friendly to the hardware
prefetch.

• Optimal tile size and shape selection can further improve temporal data locality by increasing hit
rates into the last level cache and reduce memory traffic resulting from the actions of hardware
prefetching (see Section 9.5.11).

It is important to avoid operations that work against locality-enhancing techniques. Using the lock prefix
heavily can incur large delays when accessing memory, regardless of whether the data is in the cache or
in system memory.
User/Source Coding Rule 8. (H impact, H generality) Optimization techniques such as blocking,
loop interchange, loop skewing, and packing are best done by the compiler. Optimize data structures
either to fit in one-half of the first-level cache or in the second-level cache; turn on loop optimizations
in the compiler to enhance locality for nested loops.

Ref#: 248966-048 3-55

GENERAL OPTIMIZATION GUIDELINES

Optimizing for one-half of the first-level cache will bring the greatest performance benefit in terms of
cycle-cost per data access. If one-half of the first-level cache is too small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire first-level cache) will
likely not bring a substantial improvement over optimizing for the second-level cache.

3.6.11 Non-Temporal Store Bus Traffic
Peak system bus bandwidth is shared by several types of bus activities, including reads (from memory),
reads for ownership (of a cache line), and writes. The data transfer rate for bus write transactions is
higher if 64 bytes are written out to the bus at a time.

Typically, bus writes to Writeback (WB) memory must share the system bus bandwidth with
read-for-ownership (RFO) traffic. Non-temporal stores do not require RFO traffic; they do require care in
managing the access patterns in order to ensure 64 bytes are evicted at once (rather than evicting
several chunks).

Although the data bandwidth of full 64-byte bus writes due to non-temporal stores is twice that of bus
writes to WB memory, transferring several chunks wastes bus request bandwidth and delivers signifi-
cantly lower data bandwidth. This difference is depicted in Examples 3-47 and 3-48.

Example 3-47. Using Non-Temporal Stores and 64-byte Bus Write Transactions

#define STRIDESIZE 256
lea ecx, p64byte_Aligned
mov edx, ARRAY_LEN
xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0
movntps XMMWORD ptr [ecx + eax+48], xmm0
; 64 bytes is written in one bus transaction
add eax, STRIDESIZE
cmp eax, edx
jl slloop

Example 3-48. On-temporal Stores and Partial Bus Write Transactions

#define STRIDESIZE 256
Lea ecx, p64byte_Aligned
Mov edx, ARRAY_LEN
Xor eax, eax
slloop:
movntps XMMWORD ptr [ecx + eax], xmm0
movntps XMMWORD ptr [ecx + eax+16], xmm0
movntps XMMWORD ptr [ecx + eax+32], xmm0

; Storing 48 bytes results in several bus partial transactions
add eax, STRIDESIZE
cmp eax, edx
jl slloop

Ref#: 248966-048 3-56

GENERAL OPTIMIZATION GUIDELINES

3.7 PREFETCHING
Recent Intel processor families employ several prefetching mechanisms to accelerate the movement of
data or code and improve performance:
• Hardware instruction prefetcher.
• Software prefetch for data.
• Hardware prefetch for cache lines of data or instructions.

3.7.1 Hardware Instruction Fetching and Software Prefetching
Software prefetching requires a programmer to use PREFETCH hint instructions and anticipate some suit-
able timing and location of cache misses.

Software PREFETCH operations work the same way as do load from memory operations, with the
following exceptions:
• Software PREFETCH instructions retire after virtual to physical address translation is completed.
• If an exception, such as page fault, is required to prefetch the data, then the software prefetch

instruction retires without prefetching data.
• Avoid specifying a NULL address for software prefetches.

3.7.2 Hardware Prefetching for First-Level Data Cache
Example 3-49 depicts a technique to trigger hardware prefetch. The code demonstrates traversing a
linked list and performing some computational work on two members of each element that reside in two
different cache lines. Each element is of size 192 bytes. The total size of all elements is larger than can
be fitted in the L2 cache.

Example 3-49. Using DCU Hardware Prefetch
Original code Modified sequence benefit from prefetch

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov ecx, 60

mov ebx, DWORD PTR [First]
xor eax, eax
scan_list:
mov eax, [ebx+4]
mov eax, [ebx+4]
mov eax, [ebx+4]
mov ecx, 60

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

do_some_work_1:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_1
mov eax, [ebx+64]
mov ecx, 30
do_some_work_2:
add eax, eax
and eax, 6
sub ecx, 1
jnz do_some_work_2

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

mov ebx, [ebx]
test ebx, ebx
jnz scan_list

Ref#: 248966-048 3-57

GENERAL OPTIMIZATION GUIDELINES

The additional instructions to load data from one member in the modified sequence can trigger the DCU
hardware prefetch mechanisms to prefetch data in the next cache line, enabling the work on the second
member to complete sooner.

Software can gain from the first-level data cache prefetchers in two cases:
• If data is not in the second-level cache, the first-level data cache prefetcher enables early trigger of

the second-level cache prefetcher.
• If data is in the second-level cache and not in the first-level data cache, then the first-level data cache

prefetcher triggers earlier data bring-up of sequential cache line to the first-level data cache.

There are situations that software should pay attention to a potential side effect of triggering unneces-
sary DCU hardware prefetches. If a large data structure with many members spanning many cache lines
is accessed in ways that only a few of its members are actually referenced, but there are multiple pair
accesses to the same cache line. The DCU hardware prefetcher can trigger fetching of cache lines that
are not needed. In Example 3-50, references to the “Pts” array and “AltPts” will trigger DCU prefetch to
fetch additional cache lines that won’t be needed. If significant negative performance impact is detected
due to DCU hardware prefetch on a portion of the code, software can try to reduce the size of that
contemporaneous working set to be less than half of the L2 cache.

To fully benefit from these prefetchers, organize and access the data using one of the following methods:

Method 1:
• Organize the data so consecutive accesses can usually be found in the same 4-KByte page.
• Access the data in constant strides forward or backward IP Prefetcher.

Example 3-50. Avoid Causing DCU Hardware Prefetch to Fetch Unneeded Lines

while (CurrBond != NULL)
{
MyATOM *a1 = CurrBond->At1 ;
MyATOM *a2 = CurrBond->At2 ;

if (a1->CurrStep <= a1->LastStep &&
 a2->CurrStep <= a2->LastStep
)

{
a1->CurrStep++ ;
a2->CurrStep++ ;

double ux = a1->Pts[0].x - a2->Pts[0].x ;
double uy = a1->Pts[0].y - a2->Pts[0].y ;
double uz = a1->Pts[0].z - a2->Pts[0].z ;
a1->AuxPts[0].x += ux ;
a1->AuxPts[0].y += uy ;
a1->AuxPts[0].z += uz ;

a2->AuxPts[0].x += ux ;
a2->AuxPts[0].y += uy ;
a2->AuxPts[0].z += uz ;
} ;

CurrBond = CurrBond->Next ;
} ;

Ref#: 248966-048 3-58

GENERAL OPTIMIZATION GUIDELINES

Method 2:
• Organize the data in consecutive lines.
• Access the data in increasing addresses, in sequential cache lines.

Example 3-51 demonstrates accesses to sequential cache lines that can benefit from the first-level cache
prefetcher.

By elevating the load operations from memory to the beginning of each iteration, it is likely that a signif-
icant part of the latency of the pair cache line transfer from memory to the second-level cache will be in
parallel with the transfer of the first cache line.

The IP prefetcher uses only the lower 8 bits of the address to distinguish a specific address. If the code
size of a loop is bigger than 256 bytes, two loads may appear similar in the lowest 8 bits and the IP
prefetcher will be restricted. Therefore, if you have a loop bigger than 256 bytes, make sure that no two
loads have the same lowest 8 bits in order to use the IP prefetcher.

3.7.3 Hardware Prefetching for Second-Level Cache
The Intel Core microarchitecture contains two second-level cache prefetchers:
• Streamer — Loads data or instructions from memory to the second-level cache. To use the streamer,

organize the data or instructions in blocks of 128 bytes, aligned on 128 bytes. The first access to one
of the two cache lines in this block while it is in memory triggers the streamer to prefetch the pair
line. To software, the L2 streamer’s functionality is similar to the adjacent cache line prefetch
mechanism found in processors based on Intel NetBurst microarchitecture.

• Data prefetch logic (DPL) — DPL and L2 Streamer are triggered only by writeback memory type.
They prefetch only inside page boundary (4 KBytes). Both L2 prefetchers can be triggered by
software prefetch instructions and by prefetch request from DCU prefetchers. DPL can also be
triggered by read for ownership (RFO) operations. The L2 Streamer can also be triggered by DPL
requests for L2 cache misses.

Software can gain from organizing data both according to the instruction pointer and according to line
strides. For example, for matrix calculations, columns can be prefetched by IP-based prefetches, and
rows can be prefetched by DPL and the L2 streamer.

3.7.4 Cacheability Instructions
SSE2 provides additional cacheability instructions that extend those provided in SSE. The new cache-
ability instructions include:
• New streaming store instructions.
• New cache line flush instruction.
• New memory fencing instructions.

For more information, see Chapter 9

Example 3-51. Technique for Using L1 Hardware Prefetch

unsigned int *p1, j, a, b;
for (j = 0; j < num; j += 16)
{
a = p1[j];
b = p1[j+1];
// Use these two values
}

Ref#: 248966-048 3-59

GENERAL OPTIMIZATION GUIDELINES

3.7.5 REP Prefix and Data Movement
The REP prefix is commonly used with string move instructions for memory related library functions such
as MEMCPY (using REP MOVSD) or MEMSET (using REP STOS). These STRING/MOV instructions with the
REP prefixes are implemented in MS-ROM and have several implementation variants with different
performance levels.

The specific variant of the implementation is chosen at execution time based on data layout, alignment
and the counter (ECX) value. For example, MOVSB/STOSB with the REP prefix should be used with
counter value less than or equal to three for best performance.

String MOVE/STORE instructions have multiple data granularities. For efficient data movement, larger data
granularities are preferable. This means better efficiency can be achieved by decomposing an arbitrary
counter value into a number of doublewords plus single byte moves with a count value less than or equal
to 3.

Because software can use SIMD data movement instructions to move 16 bytes at a time, the following
paragraphs discuss general guidelines for designing and implementing high-performance library func-
tions such as MEMCPY(), MEMSET(), and MEMMOVE(). Four factors are to be considered:
• Throughput per iteration — If two pieces of code have approximately identical path lengths,

efficiency favors choosing the instruction that moves larger pieces of data per iteration. Also, smaller
code size per iteration will in general reduce overhead and improve throughput. Sometimes, this may
involve a comparison of the relative overhead of an iterative loop structure versus using REP prefix
for iteration.

• Address alignment — Data movement instructions with highest throughput usually have alignment
restrictions, or they operate more efficiently if the destination address is aligned to its natural data
size. Specifically, 16-byte moves need to ensure the destination address is aligned to 16-byte
boundaries, and 8-bytes moves perform better if the destination address is aligned to 8-byte
boundaries. Frequently, moving at doubleword granularity performs better with addresses that are
8-byte aligned.

• REP string move vs. SIMD move — Implementing general-purpose memory functions using SIMD
extensions usually requires adding some prolog code to ensure the availability of SIMD instructions,
preamble code to facilitate aligned data movement requirements at runtime. Throughput comparison
must also take into consideration the overhead of the prolog when considering a REP string imple-
mentation versus a SIMD approach.

• Cache eviction — If the amount of data to be processed by a memory routine approaches half the
size of the last level on-die cache, temporal locality of the cache may suffer. Using streaming store
instructions (for example: MOVNTQ, MOVNTDQ) can minimize the effect of flushing the cache. The
threshold to start using a streaming store depends on the size of the last level cache. Determine the
size using the deterministic cache parameter leaf of CPUID.
Techniques for using streaming stores for implementing a MEMSET()-type library must also consider
that the application can benefit from this technique only if it has no immediate need to reference
the target addresses. This assumption is easily upheld when testing a streaming-store implemen-
tation on a micro-benchmark configuration, but violated in a full-scale application situation.

When applying general heuristics to the design of general-purpose, high-performance library routines,
the following guidelines can are useful when optimizing an arbitrary counter value N and address align-
ment. Different techniques may be necessary for optimal performance, depending on the magnitude of
N:
• When N is less than some small count (where the small count threshold will vary between microarchi-

tectures -- empirically, 8 may be a good value when optimizing for Intel NetBurst microarchitecture),
each case can be coded directly without the overhead of a looping structure. For example, 11 bytes
can be processed using two MOVSD instructions explicitly and a MOVSB with REP counter equaling 3.

• When N is not small but still less than some threshold value (which may vary for different
micro-architectures, but can be determined empirically), an SIMD implementation using run-time
CPUID and alignment prolog will likely deliver less throughput due to the overhead of the prolog. A
REP string implementation should favor using a REP string of doublewords. To improve address
alignment, a small piece of prolog code using MOVSB/STOSB with a count less than 4 can be used to
peel off the non-aligned data moves before starting to use MOVSD/STOSD.

Ref#: 248966-048 3-60

GENERAL OPTIMIZATION GUIDELINES

• When N is less than half the size of last level cache, throughput consideration may favor either:

— An approach using a REP string with the largest data granularity because a REP string has little
overhead for loop iteration, and the branch misprediction overhead in the prolog/epilogue code to
handle address alignment is amortized over many iterations.

— An iterative approach using the instruction with largest data granularity, where the overhead for
SIMD feature detection, iteration overhead, and prolog/epilogue for alignment control can be
minimized. The trade-off between these approaches may depend on the microarchitecture.

An example of MEMSET() implemented using stosd for arbitrary counter value with the destination
address aligned to doubleword boundary in 32-bit mode is shown in Example 3-52.

• When N is larger than half the size of the last level cache, using 16-byte granularity streaming stores
with prolog/epilog for address alignment will likely be more efficient, if the destination addresses will
not be referenced immediately afterwards.

Memory routines in the runtime library generated by Intel compilers are optimized across a wide range
of address alignments, counter values, and microarchitectures. In most cases, applications should take
advantage of the default memory routines provided by Intel compilers.

In some situations, the byte count of the data is known by the context (as opposed to being known by a
parameter passed from a call), and one can take a simpler approach than those required for a
general-purpose library routine. For example, if the byte count is also small, using REP MOVSB/STOSB
with a count less than four can ensure good address alignment and loop-unrolling to finish the remaining
data; using MOVSD/STOSD can reduce the overhead associated with iteration.

Using a REP prefix with string move instructions can provide high performance in the situations described
above. However, using a REP prefix with string scan instructions (SCASB, SCASW, SCASD, SCASQ) or
compare instructions (CMPSB, CMPSW, SMPSD, SMPSQ) is not recommended for high performance.
Consider using SIMD instructions instead.

Example 3-52. REP STOSD with Arbitrary Count Size and 4-Byte-Aligned Destination
A ‘C’ example of Memset() Equivalent Implementation Using REP STOSD
void memset(void *dst,int c,size_t size)
{
char *d = (char *)dst;
size_t i;
for (i=0;i<size;i++)

*d++ = (char)c;
}

push edi
movzx eax, byte ptr [esp+12]
mov ecx, eax
shl ecx, 8
or ecx, eax
mov ecx, eax
shl ecx, 16
or eax, ecx

mov edi, [esp+8] ; 4-byte aligned
mov ecx, [esp+16] ; byte count
shr ecx, 2 ; do dword
cmp ecx, 127
jle _main
test edi, 4
jz _main
stosd ;peel off one dword
dec ecx

_main: ; 8-byte aligned
rep stosd
mov ecx, [esp + 16]
and ecx, 3 ; do count <= 3
rep stosb ; optimal with <= 3
pop edi
ret

Ref#: 248966-048 3-61

GENERAL OPTIMIZATION GUIDELINES

3.7.6 Enhanced REP MOVSB and STOSB Operation
Beginning with processors based on Ivy Bridge microarchitecture, REP string operation using MOVSB and
STOSB can provide both flexible and high-performance REP string operations for software in common
situations like memory copy and set operations. Processors that provide enhanced MOVSB/STOSB oper-
ations are enumerated by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitecture, REP MOVSB performance of short
operations is enhanced. The enhancement applies to string lengths between 1 and 128 bytes long.
Support for fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID [EAX=7H,
ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change in the REP STOS performance.

3.7.6.2 Memcpy Considerations
The interface for the standard library function memcpy introduces several factors (e.g. length, alignment
of the source buffer and destination) that interact with microarchitecture to determine the performance
characteristics of the implementation of the library function. Two of the common approaches to imple-
ment memcpy are driven from small code size vs. maximum throughput. The former generally uses REP
MOVSD+B (see Section 3.7.5), while the latter uses SIMD instruction sets and has to deal with additional
data alignment restrictions.

For processors supporting enhanced REP MOVSB/STOSB, implementing memcpy with REP MOVSB will
provide even more compact benefits in code size and better throughput than using the combination of
REP MOVSD+B. For processors based on Ivy Bridge microarchitecture, implementing memcpy using
Enhanced REP MOVSB and STOSB might not reach the same level of throughput as using 256-bit or
128-bit AVX alternatives, depending on length and alignment factors.

Figure 3-3. Memcpy Performance Comparison for Lengths up to 2KB

0

20

40

60

80

100

120

140

160

0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

67
2

70
4

73
6

76
8

80
0

83
2

86
4

89
6

92
8

96
0

99
2

10
24

REP MOVSB
REP MOVSD+B

length in bytes

cy
cl
es

Ref#: 248966-048 3-62

GENERAL OPTIMIZATION GUIDELINES

Figure 3-3 depicts the relative performance of memcpy implementation on a third-generation Intel Core
processor using Enhanced REP MOVSB and STOSB versus REP MOVSD+B, for alignment conditions when
both the source and destination addresses are aligned to a 16-Byte boundary and the source region does
not overlap with the destination region. Using Enhanced REP MOVSB and STOSB always delivers better
performance than using REP MOVSD+B. If the length is a multiple of 64, it can produce even higher
performance. For example, copying 65-128 bytes takes 40 cycles, while copying 128 bytes needs only 35
cycles.

If an application wishes to bypass standard memcpy library implementation with its own custom imple-
mentation and have freedom to manage the buffer length allocation for both source and destination, it
may be worthwhile to manipulate the lengths of its memory copy operation to be multiples of 64 to take
advantage the code size and performance benefit of Enhanced REP MOVSB and STOSB.

The performance characteristic of implementing a general-purpose memcpy library function using a
SIMD register is significantly more colorful than an equivalent implementation using a general-purpose
register, depending on length, instruction set selection between SSE2, 128-bit AVX, 256-bit AVX, relative
alignment of source/destination, and memory address alignment granularities/boundaries, etc.

Hence comparing performance characteristics between a memcpy using Enhanced REP MOVSB and
STOSB versus a SIMD implementation is highly dependent on the particular SIMD implementation. The
remainder of this section discusses the relative performance of memcpy using Enhanced REP MOVSB and
STOSB versus unpublished, optimized 128-bit AVX implementation of memcpy to illustrate the hardware
capability of Ivy Bridge microarchitecture.

Table 3-5 shows the relative performance of the Memcpy function implemented using enhanced REP
MOVSB versus 128-bit AVX for several ranges of memcpy lengths, when both the source and destination
addresses are 16-byte aligned and the source region and destination region do not overlap. For memcpy
length less than 128 bytes, using Enhanced REP MOVSB and STOSB is slower than what’s possible using
128-bit AVX, due to internal start-up overhead in the REP string.

For situations with address misalignment, memcpy performance will generally be reduced relative to the
16-byte alignment scenario (see Table 3-6).

Memcpy() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit
SIMD integer data-path in Haswell microarchitecture. See Section 15.16.3.

3.7.6.3 Memmove Considerations
When there is an overlap between the source and destination regions, software may need to use
memmove instead of memcpy to ensure correctness. It is possible to use REP MOVSB in conjunction with
the direction flag (DF) in a memmove() implementation to handle situations where the latter part of the
source region overlaps with the beginning of the destination region. However, setting the DF to force REP
MOVSB to copy bytes from high towards low addresses will experience significant performance degrada-
tion.

When using Enhanced REP MOVSB and STOSB to implement memmove function, one can detect the
above situation and handle first the rear chunks in the source region that will be written to as part of the

Table 3-5. Relative Performance of Memcpy() Using Enhanced REP MOVSB and STOSB Vs. 128-bit AVX
Range of Lengths (bytes) <128 128 to 2048 2048 to 4096

Memcpy_ERMSB/Memcpy_AVX128 0x7X 1X 1.02X

Table 3-6. Effect of Address Misalignment on Memcpy() Performance
Address Misalignment Performance Impact

Source Buffer The impact on Enhanced REP MOVSB and STOSB implementation versus
128-bit AVX is similar.

Destination Buffer The impact on Enhanced REP MOVSB and STOSB implementation can be 25%
degradation, while 128-bit AVX implementation of memcpy may degrade only
5%, relative to 16-byte aligned scenario.

Ref#: 248966-048 3-63

GENERAL OPTIMIZATION GUIDELINES

destination region, using REP MOVSB with the DF=0, to the non-overlapping region of the destination.
After the overlapping chunks in the rear section are copied, the rest of the source region can be
processed normally, also with DF=0.

3.7.6.4 Memset Considerations
The consideration of code size and throughput also applies for memset() implementations. For proces-
sors supporting Enhanced REP MOVSB and STOSB, using REP STOSB will again deliver more compact
code size and significantly better performance than the combination of STOSD+B technique described in
Section 3.7.5.

When the destination buffer is 16-byte aligned, memset() using Enhanced REP MOVSB and STOSB can
perform better than SIMD approaches. When the destination buffer is misaligned, memset() perfor-
mance using Enhanced REP MOVSB and STOSB can degrade about 20% relative to aligned case, for
processors based on Ivy Bridge microarchitecture. In contrast, SIMD implementation of memset() will
experience smaller degradation when the destination is misaligned.

Memset() implemented with Enhanced REP MOVSB and STOSB can benefit further from the 256-bit data
path in Haswell microarchitecture. see Section 15.16.3.3.

3.8 REP STRING OPERATIONS
Several REP string performance enhancements are available beginning with processors based on Golden
Cove microarchitecture.

3.8.1 Fast Zero Length REP MOVSB
REP MOVSB performance of zero length operations is enhanced. The latency of a zero length REP MOVSB
is now the same as the latency of lengths 1 to 128 bytes. When both Fast Short REP MOVSB and Fast Zero
Length REP MOVSB features are enabled, REP MOVSB performance is flat 9 cycles per operation, for all
strings 0-128 byte long whose source and destination operands reside in the processor first level cache.

Support for fast zero-length REP MOVSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_ZERO_LENGTH_REP_MOVSB[bit 10] = 1.

3.8.2 Fast Short REP STOSB
REP STOSB performance of short operations is enhanced. The enhancement applies to string lengths
between 0 and 128 bytes long. When Fast Short REP STOSB feature is enabled, REP STOSB performance
is flat 12 cycles per operation, for all strings 0-128 byte long whose destination operand resides in the
processor first level cache.

Support for fast-short REP STOSB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_STOSB[bit 11] = 1.

3.8.3 Fast Short REP CMPSB and SCASB
REP CMPSB and SCASB performance is enhanced. The enhancement applies to string lengths between 1
and 128 bytes long. When the Fast Short REP CMPSB and SCASB feature is enabled, REP CMPSB and REP
SCASB performance is flat 15 cycles per operation, for all strings 1-128 byte long whose two source oper-
ands reside in the processor first level cache.

Support for fast short REP CMPSB and SCASB is enumerated by the CPUID feature flag:

CPUID.07H.01H:EAX.FAST_SHORT_REP_CMPSB_SCASB[bit 12] = 1.

Ref#: 248966-048 3-64

GENERAL OPTIMIZATION GUIDELINES

3.9 FLOATING-POINT CONSIDERATIONS
When programming floating-point applications, it is best to start with a high-level programming language
such as C, C++, or Fortran. Many compilers perform floating-point scheduling and optimization when it
is possible. However in order to produce optimal code, the compiler may need some assistance.

3.9.1 Guidelines for Optimizing Floating-Point Code
User/Source Coding Rule 9. (M impact, M generality) Enable the compiler’s use of Intel SSE, Intel
SSE2, Intel AVX, Intel AVX2, and possibly more advanced SIMD instruction sets (Intel AVX-512) with
appropriate switches. Favor scalar SIMD code generation to replace x87 code generation.

Follow this procedure to investigate the performance of your floating-point application:
• Understand how the compiler handles floating-point code.
• Look at the assembly dump and see what transforms are already performed on the program.
• Study the loop nests in the application that dominate the execution time.
• Determine why the compiler is not creating the fastest code.
• See if there is a dependence that can be resolved.
• Determine the problem area: bus bandwidth, cache locality, trace cache bandwidth, or instruction

latency. Focus on optimizing the problem area. For example, adding PREFETCH instructions will not
help if the bus is already saturated. If trace cache bandwidth is the problem, added prefetch µops
may degrade performance.

Also, in general, follow the general coding recommendations discussed in this chapter, including:
• Blocking the cache.
• Using prefetch.
• Enabling vectorization.
• Unrolling loops.

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays in range
to avoid denormal values, underflows.

Out-of-range numbers cause very high overhead.

When converting floating-point values to 16-bit, 32-bit, or 64-bit integers using truncation, the instruc-
tions CVTTSS2SI and CVTTSD2SI are recommended over instructions that access x87 FPU stack. This
avoids changing the rounding mode.

User/Source Coding Rule 11. (M impact, ML generality) Usually, math libraries take advantage of
the transcendental instructions (for example, FSIN) when evaluating elementary functions. If there is
no critical need to evaluate the transcendental functions using the extended precision of 80 bits,
applications should consider an alternate, software-based approach, such as a look-up-table-based
algorithm using interpolation techniques. It is possible to improve transcendental performance with
these techniques by choosing the desired numeric precision and the size of the look-up table, and by
taking advantage of the parallelism of the Intel SSE and the Intel SSE2 instructions.

3.9.2 Floating-Point Modes and Exceptions
When working with floating-point numbers, high-speed microprocessors frequently must deal with situ-
ations that need special handling in hardware or code.

Ref#: 248966-048 3-65

GENERAL OPTIMIZATION GUIDELINES

3.9.2.1 Floating-Point Exceptions
The most frequent cause of performance degradation is the use of masked floating-point exception
conditions such as:
• Arithmetic overflow.
• Arithmetic underflow.
• Denormalized operand.

Refer to Chapter 4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 for defi-
nitions of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers impact performance in two ways:
• Directly when are used as operands.
• Indirectly when are produced as a result of an underflow situation.

If a floating-point application never underflows, the denormals can only come from floating-point
constants.
User/Source Coding Rule 12. (H impact, ML generality) Denormalized floating-point constants
should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of x87 instructions or Intel
SSE/Intel SSE2/Intel SSE3 instructions. Processors based on Intel NetBurst microarchitecture handle
these exceptions more efficiently when executing Intel SSE/Intel SSE2/Intel SSE3 instructions and when
speed is more important than complying with the IEEE standard. The following paragraphs give recom-
mendations on how to optimize your code to reduce performance degradations related to floating-point
exceptions.

3.9.2.2 Dealing with Floating-Point Exceptions in x87 FPU Code
Every special situation listed in Section 3.9.2.1 is costly in terms of performance. For that reason, x87
FPU code should be written to avoid these situations.

There are basically three ways to reduce the impact of overflow/underflow situations with x87 FPU code:
• Choose floating-point data types that are large enough to accommodate results without generating

arithmetic overflow and underflow exceptions.
• Scale the range of operands/results to reduce as much as possible the number of arithmetic

overflow/underflow situations.
• Keep intermediate results on the x87 FPU register stack until the final results have been computed

and stored in memory. Overflow or underflow is less likely to happen when intermediate results are
kept in the x87 FPU stack (this is because data on the stack is stored in double extended-precision
format and overflow/underflow conditions are detected accordingly).

• Denormalized floating-point constants (which are read-only, and hence never change) should be
avoided and replaced, if possible, with zeros of the same sign.

3.9.2.3 Floating-Point Exceptions in SSE/SSE2/SSE3 Code
Most special situations that involve masked floating-point exceptions are handled efficiently in hardware.
When a masked overflow exception occurs while executing Intel SSE/Intel SSE2/Intel SSE3/Intel
AVX/Intel AVX2/Intel AVX-512 code, processor hardware can handles it without performance penalty.

Underflow exceptions and denormalized source operands are usually treated according to the IEEE 754
specification1, but this can incur significant performance delay. If a programmer is willing to trade pure
IEEE 754 compliance for speed, two non-IEEE 754 compliant modes are provided to speed situations
where underflows and input are frequent: FTZ mode and DAZ mode.

1. “IEEE Standard for Floating-Point Arithmetic,” in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22
July 2019, doi: 10.1109/IEEESTD.2019.8766229.

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229

Ref#: 248966-048 3-66

GENERAL OPTIMIZATION GUIDELINES

When the FTZ mode is enabled, an underflow result is automatically converted to a zero with the correct
sign. Although this behavior is not compliant with IEEE 754, it is provided for use in applications where
performance is more important than IEEE 754 compliance. Since denormal results are not produced
when the FTZ mode is enabled, the only denormal floating-point numbers that can be encountered in FTZ
mode are the ones specified as constants (read only).

The DAZ mode is provided to handle denormal source operands efficiently when running a SIMD
floating-point application. When the DAZ mode is enabled, input denormals are treated as zeros with the
same sign. Enabling the DAZ mode is the way to deal with denormal floating-point constants when
performance is the objective.

If departing from the IEEE 754 specification is acceptable and performance is critical, run Intel SSE/Intel
SSE2/Intel SSE3/Intel AVX/Intel AVX2/Intel AVX-512 applications with FTZ and DAZ modes enabled.

NOTE
The DAZ mode is available with both the Intel SSE and Intel SSE2 extensions, although
the speed improvement expected from this mode is fully realized only in SSE code and
later.

3.9.3 Floating-Point Modes
For x87 code, using the FLDCW instruction to change floating modes can be an expensive operation in
many cases.

Recent processor generations provide hardware optimization for FLDCW that allows programmers to
alternate between two constant values efficiently. For the FLDCW optimization to be effective, the two
constant FCW values are only allowed to differ on the following 5 bits in the FCW:

FCW[8-9] ; Precision control
FCW[10-11] ; Rounding control
FCW[12] ; Infinity control

If programmers need to modify other bits (for example: mask bits) in the FCW, the FLDCW instruction is
still an expensive operation.

In situations where an application cycles between three (or more) constant values, FLDCW optimization
does not apply, and the performance degradation occurs for each FLDCW instruction.

One solution to this problem is to choose two constant FCW values, take advantage of the optimization of
the FLDCW instruction to alternate between only these two constant FCW values, and devise some
means to accomplish the task that requires the 3rd FCW value without actually changing the FCW to a
third constant value. An alternative solution is to structure the code so that, for periods of time, the appli-
cation alternates between only two constant FCW values. When the application later alternates between
a pair of different FCW values, the performance degradation occurs only during the transition.

It is expected that SIMD applications are unlikely to alternate between FTZ and DAZ mode values.
Consequently, the SIMD control word does not have the short latencies that the floating-point control
register does. A read of the MXCSR register has a fairly long latency, and a write to the register is a seri-
alizing instruction.

There is no separate control word for single and double precision; both use the same modes. Notably,
this applies to both FTZ and DAZ modes.
Assembly/Compiler Coding Rule 52. (H impact, M generality) Minimize changes to bits 8-12 of
the floating-point control word. Changes for more than two values (each value being a combination of
the following bits: precision, rounding and infinity control, and the rest of bits in FCW) leads to delays
that are on the order of the pipeline depth.

3.9.3.1 Rounding Mode
Many libraries provide float-to-integer library routines that convert floating-point values to integer. Many
of these libraries conform to ANSI C coding standards which state that the rounding mode should be

Ref#: 248966-048 3-67

GENERAL OPTIMIZATION GUIDELINES

truncation. With the Pentium 4 processor, one can use the CVTTSD2SI and CVTTSS2SI instructions to
convert operands with truncation without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using Intel SSE and Intel SSE2
wherever possible when truncation is involved.

For x87 floating-point, the FIST instruction uses the rounding mode represented in the floating-point
control word (FCW). The rounding mode is generally “round to nearest”, so many compiler writers imple-
ment a change in the rounding mode in the processor in order to conform to the C and FORTRAN stan-
dards. This implementation requires changing the control word on the processor using the FLDCW
instruction. For a change in the rounding, precision, and infinity bits, use the FSTCW instruction to store
the floating-point control word. Then use the FLDCW instruction to change the rounding mode to trunca-
tion.

In a typical code sequence that changes the rounding mode in the FCW, a FSTCW instruction is usually
followed by a load operation. The load operation from memory should be a 16-bit operand to prevent
store-forwarding problem. If the load operation on the previously-stored FCW word involves either an
8-bit or a 32-bit operand, this will cause a store-forwarding problem due to mismatch of the size of the
data between the store operation and the load operation.

To avoid store-forwarding problems, make sure that the write and read to the FCW are both 16-bit oper-
ations.

If there is more than one change to the rounding, precision, and infinity bits, and the rounding mode is
not important to the result, use the algorithm in Example 3-53 to avoid synchronization issues, the over-
head of the FLDCW instruction, and having to change the rounding mode. Note that the example suffers
from a store-forwarding problem which will lead to a performance penalty. However, its performance is
still better than changing the rounding, precision, and infinity bits among more than two values.

Example 3-53. Algorithm to Avoid Changing Rounding Mode

_fto132proc
lea ecx, [esp-8]
sub esp, 16 ; Allocate frame
and ecx, -8 ; Align pointer on boundary of 8
fld st(0) ; Duplicate FPU stack top

fistp qword ptr[ecx]
fild qword ptr[ecx]
mov edx, [ecx+4] ; High DWORD of integer
mov eax, [ecx] ; Low DWIRD of integer
test eax, eax
je integer_QnaN_or_zero

arg_is_not_integer_QnaN:
fsubp st(1), st ; TOS=d-round(d), { st(1) = st(1)-st & pop ST}
test edx, edx ; What’s sign of integer
jns positive ; Number is negative
fstp dword ptr[ecx] ; Result of subtraction
mov ecx, [ecx] ; DWORD of diff(single-precision)
add esp, 16
xor ecx, 80000000h
add ecx,7fffffffh ; If diff<0 then decrement integer
adc eax,0 ; INC EAX (add CARRY flag)
ret

positive:

Ref#: 248966-048 3-68

GENERAL OPTIMIZATION GUIDELINES

Assembly/Compiler Coding Rule 53. (H impact, L generality) Minimize the number of changes to
the rounding mode. Do not use changes in the rounding mode to implement the floor and ceiling
functions if this involves a total of more than two values of the set of rounding, precision, and infinity
bits.

3.9.3.2 Precision
If single precision is adequate, use it instead of double precision. This is true because:
• Single precision operations allow the use of longer SIMD vectors, since more single precision data

elements can fit in a register.
• If the precision control (PC) field in the x87 FPU control word is set to single precision, the

floating-point divider can complete a single-precision computation much faster than either a
double-precision computation or an extended double-precision computation. If the PC field is set to
double precision, this will enable those x87 FPU operations on double-precision data to complete
faster than extended double-precision computation. These characteristics affect computations
including floating-point divide and square root.

Assembly/Compiler Coding Rule 54. (H impact, L generality) Minimize the number of changes to
the precision mode.

3.9.4 x87 vs. Scalar SIMD Floating-Point Trade-Offs
There are a number of differences between x87 floating-point code and scalar floating-point code (using
Intel SSE and Intel SSE2). The following differences should drive decisions about which registers and
instructions to use:
• When an input operand for a SIMD floating-point instruction contains values that are less than the

representable range of the data type, a denormal exception occurs. This causes a significant
performance penalty. An SIMD floating-point operation has a flush-to-zero mode in which the results
will not underflow. Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in the case of 3D applications with low lighting
levels, using flush-to-zero mode can improve performance by as much as 50% for applications with
large numbers of underflows.

• Scalar floating-point SIMD instructions have lower latencies than equivalent x87 instructions. Scalar
SIMD floating-point multiply instruction may be pipelined, while x87 multiply instruction is not.

• Although x87 supports transcendental instructions, software library implementation of transcen-
dental function can be faster in many cases.

• x87 supports 80-bit precision, double extended floating-point. SSE support a maximum of 32-bit
precision. SSE2 supports a maximum of 64-bit precision.

• Scalar floating-point registers may be accessed directly, avoiding FXCH and top-of-stack restrictions.

positive:
fstp dword ptr[ecx] ; 17-18 result of subtraction
mov ecx, [ecx] ; DWORD of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; If diff<0 then decrement integer
sbb eax, 0 ; DEC EAX (subtract CARRY flag)
ret

integer_QnaN_or_zero:
test edx, 7fffffffh
jnz arg_is_not_integer_QnaN
add esp, 16
ret

Example 3-53. Algorithm to Avoid Changing Rounding Mode (Contd.)

Ref#: 248966-048 3-69

GENERAL OPTIMIZATION GUIDELINES

• The cost of converting from floating-point to integer with truncation is significantly lower with Intel
SSE and Intel SSE2 in the processors based on Intel NetBurst microarchitecture than with either
changes to the rounding mode or the sequence prescribed in the Example 3-53.

Assembly/Compiler Coding Rule 55. (M impact, M generality) Use Streaming SIMD Extensions 2
or Streaming SIMD Extensions unless you need an x87 feature. Most SSE2 arithmetic operations have
shorter latency then their X87 counterpart and they eliminate the overhead associated with the
management of the X87 register stack.

3.9.4.1 Scalar Intel® SSE/Intel® SSE2
In code sequences that have conversions from floating-point to integer, divide single-precision instruc-
tions, or any precision change, x87 code generation from a compiler typically writes data to memory in
single-precision and reads it again in order to reduce precision. Using Intel SSE/Intel SSE2 scalar code
instead of x87 code can generate a large performance benefit using Intel NetBurst microarchitecture and
a modest benefit on Intel Core Solo and Intel Core Duo processors.

Recommendation: Use the compiler switch to generate scalar floating-point code using XMM rather
than x87 code.

When working with Intel SSE/Intel SSE2 scalar code, pay attention to the need for clearing the content
of unused slots in an XMM register and the associated performance impact. For example, loading data
from memory with MOVSS or MOVSD causes an extra micro-op for zeroing the upper part of the XMM
register.

3.9.4.2 Transcendental Functions
If an application needs to emulate math functions in software for performance or other reasons (see
Section 3.9.1), it may be worthwhile to inline math library calls because the CALL and the
prologue/epilogue involved with such calls can significantly affect the latency of operations.

3.10 MAXIMIZING PCIE PERFORMANCE
PCIe performance can be dramatically impacted by the size and alignment of upstream reads and writes
(read and write transactions issued from a PCIe agent to the host’s memory). As a general rule, the best
performance, in terms of both bandwidth and latency, is obtained by aligning the start addresses of
upstream reads and writes on 64-byte boundaries and ensuring that the request size is a multiple of
64-bytes, with modest further increases in bandwidth when larger multiples (128, 192, 256 bytes) are
employed. In particular, a partial write will cause a delay for the following request (read or write).

A second rule is to avoid multiple concurrently outstanding accesses to a single cache line. This can result
in a conflict which in turn can cause serialization of accesses that would otherwise be pipelined, resulting
in higher latency and/or lower bandwidth. Patterns that violate this rule include sequential accesses
(reads or writes) that are not a multiple of 64-bytes, as well as explicit accesses to the same cache line
address. Overlapping requests—those with different start addresses but with request lengths that result
in overlap of the requests—can have the same effect. For example, a 96-byte read of address
0x00000200 followed by a 64-byte read of address 0x00000240 will cause a conflict—and a likely delay—
for the second read.

Upstream writes that are a multiple of 64-byte but are non-aligned will have the performance of a series
of partial and full sequential writes. For example, a write of length 128-byte to address 0x00000070 will
perform similarly to 3 sequential writes of lengths 16, 64, and 48 to addresses 0x00000070,
0x00000080, and 0x00000100, respectively.

For PCIe cards implementing multi-function devices, such as dual or quad port network interface cards
(NICs) or dual-GPU graphics cards, it is important to note that non-optimal behavior by one of those
devices can impact the bandwidth and/or latency observed by the other devices on that card. With
respect to the behavior described in this section, all traffic on a given PCIe port is treated as if it origi-
nated from a single device and function.

Ref#: 248966-048 3-70

GENERAL OPTIMIZATION GUIDELINES

For the best PCIe bandwidth:
1. Align start addresses of upstream reads and writes on 64-byte boundaries.
2. Use read and write requests that are a multiple of 64-bytes.
3. Eliminate or avoid sequential and random partial line upstream writes.
4. Eliminate or avoid conflicting upstream reads, including sequential partial line reads.

Techniques for avoiding performance pitfalls include cache line aligning all descriptors and data buffers,
padding descriptors that are written upstream to 64-byte alignment, buffering incoming data to achieve
larger upstream write payloads, allocating data structures intended for sequential reading by the PCIe
device in such a way as to enable use of (multiple of) 64-byte reads. The negative impact of unoptimized
reads and writes depends on the specific workload and the microarchitecture on which the product is
based.

3.10.1 Optimizing PCIe Performance for Accesses Toward Coherent Memory and
MMIO Regions (P2P)

In order to maximize performance for PCIe devices in the processors listed in Table 3-7 the software
should determine whether the accesses are toward coherent (system) memory or toward MMIO regions
(P2P access to other devices). If the access is toward MMIO region, then software can command HW to
set the RO bit in the TLP header, as this would allow hardware to achieve maximum throughput for these
types of accesses. For accesses toward coherent memory, software can command HW to clear the RO bit
in the TLP header (no RO), as this would allow hardware to achieve maximum throughput for these types
of accesses.

3.11 SCALABILITY WITH CONTENDED LINE ACCESS IN 4TH GENERATION
INTEL® XEON® SCALABLE PROCESSORS

A two-socket system as found in the Sapphire Rapids microarchitecture can have up to 224 (2 sockets
x 56 cores/socket x 2 threads/core) hardware threads. Scalability and performance bottlenecks may
happen when all of these hardware threads compete for the same address.

3.11.1 Causes of Performance Bottlenecks

When multiple hardware threads go after the same address (for example, AA), this address is queued
in the Ingress Queue, with one entry for each hardware thread. Due to the resource limitation of the
Ingress Queue, the CPU core is throttled to slow the rate of requests when this queue overflows. This
usually occurs with contention for a lock.

3.11.2 Performance Bottleneck Detection
When multiple cores are contending on the same lock, several outstanding requests are mapped to that
same address. The Phys_addr_match event can count as such an event. This CHA event increments by
one every other cycle when there is more than one outstanding request to the same address.

Here are the PMU event id and Umask for the 2 CHA events that are very useful for detecting contention:

1. Phys_addr_match event: Event id: 0x19, Umask: 0x80

Table 3-7. Intel Processor CPU RP Device IDs for Processors Optimizing PCIe Performance
Processor CPU RP Device IDs

Intel® Xeon processors based on Broadwell microarchitecture 6F01H-6F0EH

Intel® Xeon processors based on Haswell microarchitecture 2F01H-2F0EH

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools
https://v8.dev/blog/short-builtin-calls
https://v8.dev/blog/short-builtin-calls

Ref#: 248966-048 3-71

GENERAL OPTIMIZATION GUIDELINES

2. CHA_clockticks event: Event id: 0x01, Umask: 0x01

These events have to be measured on a per-CHA basis, and if the ratio of the counts between phys_ad-
dr_match to CHA_clockticks is more than 0.15 on any CHA that indicates > 30% of the CHA cycles (2x
the ratio as this event can count only once every two cycles) are spent with multiple requests outstanding
to the same address.

Here is the recipe to measure these events with Linux Perf:
$ sudo perf stat -a -e 'uncore_cha/event=0x19,umask=0x80/,uncore_cha/event=0x1,umask=0x1/' --per-socket
--no-merge -- sleep 30

Once confirmed that the ratio of phys_addr_match events to the CHA clockticks is more than 0.15, the
next step is figuring out where this may be happening in the code. Intel CPUs provide a PMU mechanism
wherein a load operation is randomly selected and tracked through completion, and the true latency is
recorded if it is over a given threshold. The threshold value is specified in cycles and must be in the power
of 2. In the following “perf mem record” command, define a command to sample all loads that take more
than 128 cycles to complete.

$ sudo perf mem record -a --ldlat 128 sleep 1

Ref#: 248966-048 3-72

GENERAL OPTIMIZATION GUIDELINES

Once the above data is collected, execute the following command to process the data collected:
$ sudo perf mem report

Information similar to the table below will be generated. Such information will include details on hot loads
along with data linear address and the actual latency that the load experienced. This can be used to iden-
tify the necessary fixes to the code.

3.11.3 Solutions for Performance Bottlenecks
The following is a list of suggested solutions:

1. Run multiple instances of the workload with a scale-out approach instead of a single instance
with scale-up so that the contention for per instance hot variables (including locks) is reduced.

2. Guard the cmpxchg by checking that the destination memory is expected with a load, test, and
branch beforehand.

Table 3-8. Samples: 365K of Events ‘anon group{cpu/mem-loads-aux/,cpu/mem-loads,ldat=128/pp}’, Event Count (a--r0x):
67900852

O
ve

rh
ea

d

Sa
m

pl
es

Lo
ca

l W
ei

gh
t

M
em

or
y

A
cc

es
s

Sy
m

bo
l

Sh
ar

ed
 O

bj
ec

t

D
at

a
Sy

m
bo

l

D
at

a
O

bj
ec

t

Sn
oo

p

TL
B

 A
cc

es
s

Lo
ck

ed

B
lo

ck
ed

Lo
ca

l I
N

ST
R

 L
at

en
cy

0.22%
0.07%

1
1

38060

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 47251

0.18%
0.06%

1
1

31338

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 40411

0.17%
0.06%

1
1

29572

L3
 o

r
L3

 h
it

[.]
as

m
_m

ut
ex

lo
ck

co
nt

en
tio

n

[.]
0x

00
00

55
6d

b1
42

82
a0

[h
ea

p]

HitM

L1
 o

r
L2

 h
it

Yes N/A 36652

Ref#: 248966-048 3-73

GENERAL OPTIMIZATION GUIDELINES

3. Implement a backoff mechanism so that the cmpxchg is issued less. For example, in locks,
exponential backoff is a common and effective method to prevent all cores from being in
lockstep. In the case of contention for a lock, checking to see if it is accessible by a load before
trying to write to it through a cmpxchg will help.

The code in Example 3-54 provides an example:

Example 3-54. Locking Algorithm for the Sapphire Rapids Microarchitecture

Additionally, as the core counts continue to increase, exploring other algorithmic fixes that dissolve or
reduce contention on memory variables (including locks) is essential. For example, instead of frequently
updating a hot statistical variable from all threads, consider updating a copy of it per thread (without
contention) and later aggregate the updated per-thread copies on a less frequent basis or use some
existing atomic-free concurrency methods such as rseq1. As another example, restructure locking algo-
rithms to use hierarchical locking when excessive contention is detected on a global lock.

3.11.4 Case Study: SysBench/MariaDB
With SysBench/MariaDB 10.3.342, the workload’s throughput drops as the number of threads increases.
Another metric we can use is the CHA% Cycles Fast Asserted. It is a signal to slow down the cores when
the Ingress Queue fills up. This is another way to identify scalability issues. The graph below plots the
number of active client threads representing the work intensity on the horizontal axis. The percentage of
Fast Asserts is plotted on the vertical axis.

The baseline case (blue line) had a sharp throughput with increased thread count, as all cores reduced
their throughput as they suffered from the increasing percent of Fast Asserts. With the same work
distributed instances (red line), Fast asserts dropped. Similarly, with a software fix (gray line), again, the
Fast Asserts dropped even though only one instance was in execution.

lock_loop:

while (lock is not free) // just a load operation

execute pause;

// now the lock is free, so try to acquire it.

Exponential Backoff spin // so all the cores don’t come back at the same time

Execute cmpxchg on the lock

if the lock is not successfully acquired, goto lock_loop

1. https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2

2. The most current version is MariaDB 10.3.39

https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2
https://git.kernel.org/pub/scm/libs/librseq/librseq.git/tree/doc/man/rseq.2
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://mariadb.com/kb/en/mariadb-10334-release-notes/
https://mariadb.com/kb/en/mariadb-10-3-39-release-notes/

Ref#: 248966-048 3-74

GENERAL OPTIMIZATION GUIDELINES

Figure 3-4. MariaDB - CHA % Cycles Fast Asserted

3.11.5 Scalability With False Sharing
A two-socket 4th Generation Intel® Xeon® Scalable Processors 8480 system can support up to 224
hardware threads (2 sockets x 56 cores per socket x 2 threads per core). However, when multiple threads
concurrently access different variables in a structure that happen to reside in the same cache line, it can
result in false sharing leading to scalability issues. False sharing can cause unnecessary cache invalida-
tions and updates leading to significant performance degradation in multi-threaded programs that utilize
all the hardware threads. Therefore, it is essential to avoid false sharing by designing data structures and
memory layouts that minimize contention on shared cache lines to achieve optimal performance in
multi-threaded environments.

3.11.5.1 Causes of False Sharing
False sharing is a performance problem that can occur in multi-threaded programming when threads
access different variables sharing the same cache line. Cache lines are units of memory that are loaded
into the processor's cache. When multiple threads write different variables in the same cache line, they
end up competing for access to the cache line. This results in cache invalidations and updates that are
unnecessary, which can lead to a significant performance degradation. This problem gets worse when
many threads are contending for the same cache line.

3.11.5.2 Detecting False Sharing
The perf c2c is a profiling tool available in Linux that detects false sharing issues by analyzing
cache-to-cache (c2c) transfers between threads. It works by intercepting the cache coherence messages
sent between threads and identifying the specific cache lines that are involved in false sharing. The perf
c2c approach generates a report that shows the amount of time spent on c2c transfers, the number of
bytes transferred, and the specific cache lines that are affected by false sharing. This approach provides
a more precise and accurate method of detecting false sharing issues compared to traditional profiling
tools, as it directly measures the cache coherence overhead caused by false sharing. The perf c2c
approach is particularly useful for detecting subtle false sharing issues that may not be visible using other
profiling tools.

Ref#: 248966-048 3-75

GENERAL OPTIMIZATION GUIDELINES

Hardware Invalidation Tracking Modified (HITM) is a counter in the perf c2c output that represents the
number of cache lines that were modified in one cache and then invalidated in another cache due to both
false and true sharing. The HITM counter provides insight into the performance impact of false sharing by
measuring the number of unnecessary cache invalidations and the resulting traffic between caches. By
reducing false sharing, the HITM counter can be reduced, leading to better performance and scalability in
multi-threaded programs.

Steps for perf c2c analysis:

1. Collect perf c2c data on the target system (this example is for the full system):

 “perf c2c record -a -u --ldlat 50 -- sleep 30

2. Generate report (this can take considerable time to process)

 “perf c2c report -NN -g --call-graph --full-symbols -c pid,iaddr --stdio >perf_report.txt

3. Check the generated perf_report.txt for “Shared Data Cache Line Table” (see Table 3-9). This table is
sorted by the HITM. Pay attention to the topped “CacheLine address”. See Example 3-55.

4. Read the perf_report.txt for the “Shared Cache Line Distribution Pareto” (see Table 3-10). Check the
“Offset” column to see if there are multiple offset within single cache line. If there are multiple offset,
that points to a potential false s haring issue. See Example 3-56.

The blog, https://joemario.github.io/blog/2016/09/01/c2c-blog/ , provides a nice introduction to perf
c2c in Linux.

3.11.5.3 Fixing False Sharing and Additional Resources
The following is a list of suggested solutions:

1. Add padding so the fields are not on the same cache line. Example 3-56 shows to prevent the false
sharing between the full and empty lfstack variables padding is added between them. This is the fix
detailed in Section 3.11.5.4. This has the additional effect of increasing the memory sizes and may
create other false sharing for other variables.

2. Run multiple instances of the workload instead of a single instance so that the false sharing for per
in-stance false sharing variables is reduced as fewer hardware threads are allocated per instances.

3. Change other parameters to prevent the false sharing. In the case of Go, the GOGC variable can be
tuned to reduce this.

4. In some environments, it may not be desirable to increase data structure sizes. In this case there
may be other patterns to follow such as splitting up a data structure or changing writes for some
global variable to use compare(read)-then-write instead of unconditional write. However, this will
require further code refactoring.

The Linux kernel has documented some kernel specific False Sharing issues and how to mitigate them.

A blog by a Netflix engineer details how they used a variety of tools including the Intel PMCs (Perfor-
mance Monitoring Counters) to find and fix False Sharing in JVM.

https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://netflixtechblog.com/seeing-through-hardware-counters-a-journey-to-threefold-performance-increase-2721924a2822
https://docs.kernel.org/kernel-hacking/false-sharing.html

Ref#: 248966-048 3-76

GENERAL OPTIMIZATION GUIDELINES

Example 3-55. Perf Annotation for runtime.getempty

Example 3-56. Padding Insertion in Go Runtime

3.11.5.4 Case Study: DeathStarBench/hotelReservation
DeathStarBench is an open-source benchmark suite for microservice workloads, originally developed by
Cornell University. It represents different applications written in modern cloud native architecture. The
hotelReservation workload in DeathStarBench mimics a typical microservice workload: a hotel booking
system. It is written in Golang and uses gRPC-go for inter-microservice communication.

When running with the default parameters and on a single instance of the workload, perf c2c shows false
sharing issue with the DSB HR workload. Table 3-10 shows that there are two different offsets being
modified by different threads/functions for the specific cache line.

next :* atomic.Load64(&node.next)

6290 425fb6: mov (%rcx) ,%rdx // lfstack.go.48

 425fb9 lea 0x87fb88(%rip) ,%rbx

9703 425fc0 lock cmpxchng %rdx,(%rbx) // lfstack.go.49

 425fc5 sete %dl

 425fc8 test %dl,%dl

 425fca je 425f9e <runtime.getempty+0x19e>

 425fcc jmp 425fde <runtime.getempty+0x1d0>

 425fce xor %ecx,%ecx

src/runtime/mgc.go
@@ -285,8 + @@ func pollFractionalWorkerExit() bool {

var work struct {
 full l-stack // lock-free list of full blocks workbuf.

+ pad0 cpu.CacheLinePad // prevents false-sharing between full and empty.
 empty l-stack // lock-free list of empty blocks workbuf.

Table 3-9. Shared Data Cache Line Table
Cache Line Total

Hitm
Load Hitm

Index Address Node PA cnt Total LclHitm

0 0xca5b40 1 19364 3.25% 9083 9083

1 0xd9a840 0 10918 1.66% 4652 4652

2 0xce1140 1 10613 1.56% 4352 4352

3 0xd9a080 0 8300 1.14% 3181 3181

4 0xd9a8c0 0 4274 0.87% 2448 2448

5 0xd95900 0 5346 0.83% 2334 2334

6 0xd9d800 1 5440 0.83% 2324 2324

7 0xce0980 1 6129 0.83% 2319 2319

8 0xd98800 1 5117 0.77% 2160 2160

Ref#: 248966-048 3-77

GENERAL OPTIMIZATION GUIDELINES

To find the root causes, perf annotate target function:

perf annotate --tui -l -n "runtime.(*lfstack).push

and review the source code to identify false sharing. In this case the update of full and empty lfstack
variables by hardware threads on different cores causes the false sharing.

After identifying and fixing the false sharing problem in the Golang runtime (it is in the Go Runtime),
releasing in and recompiling the workload binary with the modified Golang runtime improved the
throughput metric by 12%. As the following table shows, other metrics such as the CPI and the CHA Fast
Asserts also improve significantly. The perf c2c report also shows no additional false sharing.

3.11.6 Instruction Sequence Slowdowns
The Golden Cove CPU microarchitecture upon which the Sapphire Rapids microarchitecture is based has
increased the cost of mixing Legacy SSE and VEX without clearing the state of upper registers for power
efficiency reasons.

3.11.6.1 Causes of Instruction Sequence Slowdowns
The Golden Cove CPU microarchitecture eliminated some hardware speed paths for power efficiency and
replaced them with microcode. The instruction sequence in Table 3-12 mixes VEX and Legacy SSE. It
has, for example, higher core cycles than on the previous generation Sunny Cove CPU microarchitecture

Table 3-10. Shared Cache Line Distribution Pareto
HTTM Data Address

RmtHitm LclHitm Offset Node
Total

Records
cpu
cnt

Symbol
Shared
Object

Souce:Line

0.00% 15.26% 0x0 1 8272 112 [.] runtime.gcDrainN frontend mgmark.go:1186

0.00% 8.99% 0x0 1 7276 112 [.] runtime.gcDrain frontend mgmark.go:1028

0.00% 7.99% 0x0 1 2850 112 [.] runtime.trygetfull frontend lfstack.go.49

0.00% 3.36% 0x0 1 2827 112 [.] runtime.trygetfull frontend mgcwork.go.421

0.00% 3.01% 0x0 1 1324 112 [.] runtime.(*lfstack).push frontend lfstack.go.35

0.00% 1.94% 0x0 1 885 112 [.] runtime.(*lfstack).push frontend lfstack.go.33

0.00% 37.84% 0x8 1 9239 112 [.] runtime.getempty frontend lfstack.go.49

0.00% 6.90% 0x8 1 2875 112 [.] runtime.(*lfstack).push frontend fstack.go.35

0.00% 5.92% 0x8 1 7188 112 [.] runtime.getempty frontend lfstack.go.43

0.00% 4.81% 0x8 1 1947 112 [.] runtime.(*lfstack).push frontend lfstack.go.33

0.00% 2.87% 0x8 1 1012 112 [.] runtime.getempty frontend mgcwork.go.350

Table 3-11. False Sharing Improvements
Metric False Sharing Fix/Base

TPS 1.12

CPI 0.84

Metric CHA % cycles Fast Asserted 0.42

Ref#: 248966-048 3-78

GENERAL OPTIMIZATION GUIDELINES

for the Ice Lake version of the 3rd Generation of Intel® Xeon® Scalable processors. The higher core
cycles are due to the execution of additional micro-operations.

3.11.6.2 Detecting Instruction Sequence Slowdowns
The event ASSISTS.SSE_AVX_MIX can be used to determine if there are VEX to legacy SSE transitions.
The following Linux perf command-line can be used while the workload is running:

$ sudo perf stat -e 'assists.sse_avx_mix’1 <workload>

With the Intel® TMA (Topdown Methodology) (there is a metric called Mixing_Vectors which gives the
percentage of injected blend uops out of all the uops issued. Usually, a Mixing_Vectors metric over 5% is
worth investigating. You can find more details in Appendix B1 of the Optimizations Guide.

3.11.6.3 Fixing Instruction Sequence Slowdowns

The following is a list of suggested solutions:

1. When possible, use VEX-encoded instructions for all the SIMD instructions when possible.

2. Insert a VZEROUPPER to tell the hardware that the state of the higher registers is clean
between the VEX and the legacy SSE instructions. Often the best way to do this is to insert a
VZEROUPPER before returning from any function that uses VEX (that does not produce a VEX
register) and before any call to an unknown function.

VZEROUPPER was inserted in the code sequence below and there are no SSE_AVX_MIX assists. With
this change, the Core Cycles do not have a performance inversion relative to the previous generation.

3.11.7 Misprediction for Branches >2GB

The Golden Cove CPU is a wider machine and might exhibit a higher Top-down Microarchitecture Analy-
sis (TMA) Bad Speculation percentage. See Section B.1.1 for additional information about TMA. Some
sources of Bad Speculation are branch prediction misses. In this case, however, Bad Speculation is due
to the wider machine and less efficient branch prediction for certain indirect branches.

Table 3-12. Instruction Sequence Mixing VEX on the Sapphire Rapids and Ice Lake Server Microarchitectures

Intel Assembly Code Syntax
Ice lake Server Microarchitecture

(Sunny Cove Cores)
Sapphire Rapids Microarchitecture

(Golden Cove Cores)

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
PXOR XMM3, XMM3

Inst Retired Core Cycles Inst Retired Core Cycles

3.00 1 3.00 388.04

1. Using upstream perf. If OS doesn’t have support for the event use
cpu/event=0xc1,umask=0x10,name=assists_sse_avx_mix/

Table 3-13. Fixed Instruction Sequence with Improved Performance on Sapphire Rapids Microarchitecture

Intel Assembly Code Syntax
Ice lake Microarchitecture

(Sunny Cove Cores)

Sapphire Rapids
Microarchitecture

(Golden Cove Cores)

ASSISTS.SSE
_AVX_MIX

VPXOR XMM3, XMM3, XMM3;
VEXTRACTI128 XMM3, YMM3, 1;
PXOR XMM3, XMM3

Inst Retired Core Cycles Inst Retired Core Cycles

4.00 2.00 4.00 1.00 0

Ref#: 248966-048 3-79

GENERAL OPTIMIZATION GUIDELINES

3.11.7.1 Causes of Branch Misprediction >2GB
For a near absolute indirect JMP/CALL branch instruction (opcodes FF /4 and FF /2), the branch distance
(ADDR_TARGET - ADDR_BRANCH) affects the performance of the branch predictor. The branch predictor
uses fewer resources to predict the branch if its distance can be specified with a 32-bit signed displace-
ment (JMP/CALL imm32). If the distance is larger (>2GB), the predictor uses more resources to predict
the branch and performance may suffer.

3.11.7.2 Detecting Branch Mispredictions >2GB
You can use the Last Branch Record (LBR) to identify jumps greater than 2GB. The collection of perfor-
mance analysis tools based on perf on Linux supports this. The following is an example output from the
tool. It shows that 21% of the call/jumps of >2GB offset are mispredicted. The histogram of one of the
indirect branches at address 0x555555603664 shows that it is to one target and in a library. The profile
mask is to use LBR, and the duration is 10 seconds. It does a system-level profile.

Figure 3-5. Identifying >2GB Branches

3.11.7.3 Fixing Branch Mispredictions >2GB
Arrange the code so the jumps don’t span the >2GB range. This can be done through a variety of
approaches:
1. If possible, statically link all the libraries into the executable.

2. For .text to library code, use the Glibc environment variable LD_PREFER_MAP_32BIT_EXEC=1 to
restrict the addresses into the 4GB range.

3. For dynamically compiled code, keep it close to the .text address or copy the frequently called entries
into the dynamically compiled code address region. See the Google V8 Blog.

In a case study with WordPress/PHP running eight containers with and without the 2GB fix, the CPI and
performance scores improve by 6%.

% ./do.py profile --profile-mask=0x100 -s 10

count of indirect call/jump of >2GB offset: 93200

count of mispredicted indirect call/jump of >2GB offset: 19943

misprediction ratio for indirect branch at address 0x7ffff577eca4: 4.23%

misprediction ratio for indirect branch at address 0x5555556030c4: 32.23%

misprediction ratio for indirect branch at address 0x555555603664: 22.30%

misprediction ratio for indirect branch at address 0x555555603c24: 13.84%

…

indirect_0x555555603664 histogram:

0x7ffff7af2670: 50501 100.0%

Table 3-14. WordPress/PHP Case Study: With and Without a 2GB Fix for Branch Misprediction
 WP4.2 / PHP7.4.29

- NO FIX
 WP4.2 / PHP7.4.29 -

2G FIX in Glibc
 2G FIX/
NO FIX

Config

Workers 8c x 42 8c x 42 -

Cores Per socket 56 56 1.00

Sockets 2 2 1.00

Total Cores 112 112 1.00

Total Thread Count 224 224 1.00

https://github.com/aayasin/perf-tools
https://github.com/aayasin/perf-tools
https://v8.dev/blog/short-builtin-calls
https://v8.dev/
https://v8.dev/
https://v8.dev/blog

Ref#: 248966-048 3-80

GENERAL OPTIMIZATION GUIDELINES

Performance
Throughput 1.00 1.06 1.06

CPI 1.12 1.05 0.96

Path Length Instructions per Unit of Work 33,789,862.68 33,730,155.10 1.00

Cycles per
Transaction

Cycles per Unit of Work 37,803,310.48 35,359,628.33 0.94

Table 3-14. WordPress/PHP Case Study: With and Without a 2GB Fix for Branch Misprediction
 WP4.2 / PHP7.4.29

- NO FIX
 WP4.2 / PHP7.4.29 -

2G FIX in Glibc
 2G FIX/
NO FIX

Ref#: 248966-048 3-81

GENERAL OPTIMIZATION GUIDELINES

3.12 OPTIMIZING COMMUNICATION WITH PCI DEVICES ON INTEL® 4TH
GENERATION INTEL® XEON® SCALABLE PROCESSORS

The Sapphire Rapids microarchitecture introduced a new set of instructions designed to optimize
communication between SW running on IA cores and PCI devices on the platform.

3.12.1 Signaling Devices with Direct Move
Most software-to-device interaction follows a producer-to-consumer relationship where the software
creates work for the device and then signals it to inform the device that work is available. Descriptor rings
are the ubiquitous pattern here and once descriptors are added to the ring, the signal (or “doorbell”)
consists of an update to the tail pointer register on the device. This is a write to an MMIO-mapped BAR
register.

Such writes tend to be relatively expensive operations –the latency to complete the write to the device is
high relative to the CPU operating speed. Since writes are ordered by default, this creates a bubble
during which subsequent writes cannot be drained from store buffers. Signaling can therefore affect
performance via store backpressure.

As a result, some software libraries avoid frequent signaling by batching relatively large quantities of
work descriptors with each doorbell update. However, this is not always possible, and it introduces
latency.

The Sapphire Rapids microarchitecture introduces “Direct Store” instructions to optimize signaling; there
are two instructions in the family:
• MOVDIRI: 4/8B direct store.
• MOVDIR64B: 64B atomic direct copy.

Direct Stores are weakly ordered (like non-temporal or USWC-mapped memory writes) regardless of the
underlying memory type (which is usually UC for MMIO-mapped locations). Since they do not order
subsequent writes the performance issue described above does not occur.

Since they are intended for signaling, direct stores will never combine with other stores to the same
address as can happen with non-temporal or USWC writes. Each write is guaranteed to occur as issued.
In the case of MOVDIR64B, the full 64B will be delivered as a single write to the device. This is the only
ISA that carries an architectural guarantee of >8B atomicity.

These instructions benefit from the fact that signaling use cases typically do not care if subsequent writes
are observed before the doorbell itself because the ordering is relaxed. However, since typically the door-
bell must not be observable before earlier writes (such writes are creating the work descriptors), SW
should insert a store fence immediately before the direct store.

Having a fence before the direct store does not normally limit performance– except when many direct
stores are issued. If there is an SFENCE before each, the fence on direct store N+1 imposes an order on
direct store N, which can remove some of the benefits. The guideline is to avoid this where possible. One
technique that may work if multiple doorbells to different addresses are being issued (such as for a NIC
driver that is handling multiple descriptor rings), is to group the direct stores to different locations
together and insert a single SFENCE before the group.

It is also worth noting that the device write latency can vary widely with the address being written. This
is especially true on large CPUs implemented as multiple tiles. So if SW has the luxury of choosing
between multiple addresses, it is possible to envisage adaptive schemes that “match” an address to a SW
thread (especially if that thread is pinned to a single core) by selecting the best performing such address
during an initialization stage.

Ref#: 248966-048 3-82

GENERAL OPTIMIZATION GUIDELINES

3.12.1.1 MOVDIR64B: Additional Considerations
As noted above MOVDIR64B is a copy operation; it moves data from one 64B-aligned address to another.
Typical usage is that the source address is a memory location, and the destination is MMIO mapped to a
device, whereupon it confers the benefits described above. However, since the source data is usually
written immediately before the MOVDIR64B, additional considerations include:
• It is unnecessary to fence to ensure the source data is written before the MOVDIR64B since the

source data is written to the same address that the MOVDIR64B reads. In some scenarios, no store
fence is needed in conjunction with MOVDIR64B. The correct operation of the system depends on
being observed before the MOVDIR64B if no other data is written to memory.

• It is critical to allow store forwarding of the source data for the best performance.
• The source data should be aligned to 64B and written at the same granularity that the MOVDIR64B

reads. For the Sapphire Rapids microarchitecture, this is 64B: the source data should, therefore, be
written using 64B Intel® AVX-512 Instructions for the best performance.

3.12.1.2 Streaming Data
MOVDIR64B can also be used to stream data to a device by copying a block of memory because it is
weakly ordered. This is similar behavior to mapping the destination memory locations as USWC, except:
• The destination address can remain mapped UC.
• The writes are guaranteed to arrive at the device as 64B writes, which is not guaranteed with any

other method.

3.13 SYNCHRONIZATION

3.13.1 User-Level Monitor, User-Level MWAIT, and TPAUSE
New instructions for user-level monitor and MWAIT act like legacy monitor and MWAIT instructions with
additional functionality identified as the timeout and ring-3 (user space) application support. TPAUSE is
similar to legacy pause instruction but is designed to accept time interval and sleep state parameters.
User-level MWAIT and TPAUSE support the same C0.1 light sleep and C0.2 deeper sleep states. These
instructions are helpful in user space applications that support a busy poll, synchronization, or asynchro-
nous IO, such as waiting for an event. A minor code modification yields power benefits along with low
latency wake-up.

3.13.1.1 Checking for User-Level Monitor, MWAIT, and TPAUSE Support
This section describes how to check whether a processor supports user-level monitor, user-level MWAIT,
or TPAUSE; if user-level monitor, user-level MWAIT, or TPAUSE instruction is supported, then CPUID.
(EAX=07H, ECX=0): ECX [bit 5] is enumerated as 1.

Example 3-57. Identification of WAITPKG with CPUID
…identify the existence of cpuid instruction

… ;

… ;

Identify signature is genuine Intel …;

mov eax, 7; Request for feature flags

mov ecx, 0; Request for feature flags

cpuid; 0FH, A2H CPUID instruction

test ecx, 00000020h;

Is waitpkg bit (bit 5) in feature flags equal to 1 jnz Found

Ref#: 248966-048 3-83

GENERAL OPTIMIZATION GUIDELINES

3.13.1.2 User-Level Monitor, User-Level MWAIT, and TPAUSE Operations
User-level monitor initializes the monitor hardware in such a way that, after execution of the user-level
MWAIT, a store to a monitored address acts as a wakeup event. So, the User level monitor and the
user-level MWAIT work together to obtain a sleep state. TPAUSE is a single instruction request to enter
one of the same two sleep states for a defined time

There are possibilities of a “false wake-up” because of other events, notably interrupts or timeouts. The
application may re-execute user-level MWAIT/TPAUSE if it has been falsely woken. If the application
needs to determine the source of the predefined OS sleep wakeup, RFLAGS.CF is set Otherwise it is
assumed that the application can detect changes at the monitored address (MWAIT) or poll for activity
(TPAUSE).

3.13.1.3 Recommended Usage of Monitor, MWAIT, and TPAUSE Operations
A frequent paradigm in packet processing applications is to have dedicated HW threads polling a NIC
receive descriptor ring for ingress traffic. This kind of “busy polling” arrangement wastes energy when
the traffic rates are low. Changing the polling loop to perform user-level Monitor/MWAIT on the next
descriptor to be written can save substantial power in periods of low traffic. The same scheme could be
used with any “work distributor,” assigning work by writing to selected memory locations.

Accelerators frequently offload tasks from SW in an asynchronous manner. For example, the Intel® Data
Streaming Accelerator (Intel® DSA) performs copy operations and can return the status of the completed
operation by writing to memory. If an application uses the user-level monitor/MWAIT at a memory loca-
tion where the status field will be written, it can be woken when the task is complete. Instead of moni-
toring, the device may issue an interrupt that can act as a wake-up event.

Alternatively, applications may decide to choose TPAUSE as a wait event. This has the advantage of being
independent of the number of event sources.

In all cases, a small change in the user space application is needed to convert a busy poll application to
something more energy efficient with low latency wake-up.

Synchronous application: when two hardware threads from the same core use user-level monitor and
user-level MWAIT, it can progress effectively as some of the hardware resources are available to the
other thread when a hyperthread issues the user-level MWAITs.

To achieve the best performance using user-level monitor and user-level MWAIT:
• The entire contents of monitored locations must be verified after user-level MWAIT to avoid a false

wake-up.
• It is the developer’s responsibility to check the contents of monitored locations:

— Before issuing monitor.

— Before issuing user-level MWAIT.

— After user-level MWAIT. See Example 3-58.
• If an application expects a store to a monitored location, the timeout value should be as high as it is

supported.

Ref#: 248966-048 3-84

GENERAL OPTIMIZATION GUIDELINES

Since user-level MWAIT and TPAUSE are a hint to a processor, a user should selectively identify locations
in the application.

Example 3-58. Code Snippet in an Asynchronous Example
void * m_address; // it is expected device will update m_address to 1

unsigned char ret;

while (1) {

if (*m_address != 0) // if device already finished operation, no need to user monitor/user mwait

break;

if (*m_address == 0) { // check monitored location before issuing umonitor instruction

_umonitor (m_address);

if (*m_address == 0) { // check monitored location before issuing umwait instruction

ret = _umwait(0, 0x186A0); // some high value in timeout

}

}

}

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

5. Updates to Chapter 5
Change bars and violet text show changes to Chapter 5 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Coding for SIMD Architectures.

--
Changes to this chapter:
• Section 5.3.1

— Typo correction in Figure 5-4 (Instrinsics to Intrinsics)

Ref#: 248966-047 5-1

CODING FOR SIMD ARCHITECTURES

CHAPTER 5
CODING FOR SIMD ARCHITECTURES

• Processors based on Intel Core microarchitecture support MMX™, Intel® SSE, Intel® SSE2, Intel®

SSE3, and Intel® SSSE3.
• Processors based on Enhanced Intel Core microarchitecture support MMX, Intel SSE, Intel SSE2,

Intel SSE3, Intel SSSE3, and Intel SSE4.1.
• Processors based on Nehalem microarchitecture support MMX, Intel SSE, Intel SSE2, Intel SSE3,

Intel SSSE3, Intel SSE4.1, and Intel SSE4.2.
• Processors based Westmere microarchitecture support MMX, Intel SSE, Intel SSE2, Intel SSE3, Intel

SSSE3, Intel SSE4.1, Intel SSE4.2, and AESNI.
• Processors based on Sandy Bridge microarchitecture support MMX, Intel SSE, Intel SSE2, Intel SSE3,

Intel SSSE3, Intel SSE4.1, Intel SSE4.2, AESNI, PCLMULQDQ, and Intel® AVX.
• Intel® Pentium® 4, Intel® Xeon® and Intel® Pentium® M processors include support for Intel SSE2,

Intel SSE, and MMX technology. Intel SSE3 was introduced with the Intel Pentium 4 processor
supporting Intel® Hyper-Threading Technology at 90 nm technology.

• Intel® Core™ Solo and Intel® Core™ Duo processors support MMX, Intel SSE, Intel SSE2, and Intel
SSE3.

Single-instruction, multiple-data (SIMD) technologies enable the development of advanced multimedia,
signal processing, and modeling applications.

SIMD techniques can be applied to text/string processing, lexing and parser applications. This is covered
in Chapter 14, “Intel® SSE4.2 and SIMD Programming For Text-Processing/Lexing/Parsing.” Techniques
for optimizing AESNI are discussed in Section 6.10.

To take advantage of the performance opportunities presented by these capabilities, do the following:
• Ensure that the processor supports MMX technology, Intel SSE, Intel SSE2, Intel SSE3, Intel SSSE3,

and Intel SSE4.1.
• Ensure that the operating system supports MMX technology and Intel SSE (OS support for Intel

SSE2, Intel SSE3 and Intel SSSE3 is the same as OS support for Intel SSE).
• Employ the optimization and scheduling strategies described in this book.
• Use stack and data alignment techniques to keep data properly aligned for efficient memory use.
• Utilize the cacheability instructions offered by Intel SSE and Intel SSE2, where appropriate.

5.1 CHECKING FOR PROCESSOR SUPPORT OF SIMD TECHNOLOGIES
This section shows how to check whether a processor supports MMX technology, Intel SSE, Intel SSE2,
Intel SSE3, Intel SSSE3, and Intel SSE4.1.

SIMD technology can be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD technology is available, the
appropriate DLLs can be installed.

2. Check for the SIMD technology during program execution and install the proper DLLs at runtime. This
is effective for programs that may be executed on different machines.

3. Create a “fat” binary that includes multiple versions of routines; versions that use SIMD technology
and versions that do not. Check for SIMD technology during program execution and run the
appropriate versions of the routines. This is especially effective for programs that may be executed
on different machines.

Ref#: 248966-047 5-2

CODING FOR SIMD ARCHITECTURES

5.1.1 Checking for MMX Technology Support
If MMX technology is available, then CPUID.01H:EDX[BIT 23] = 1. Use the code segment in Example 5-1
to test for MMX technology.

See CPUID Information for Intel® Processors for more information.

5.1.2 Checking for Intel® Streaming SIMD Extensions (Intel® SSE) Support
Checking for processor support of Intel Streaming SIMD Extensions (SIntel SE) on your processor is
similar to checking for MMX technology. However, operating system (OS) must provide support for Intel
SSE states save and restore on context switches to ensure consistent application behavior when using
Intel SSE instructions.

To check whether your system supports Intel SSE, follow these steps:

1. Check that your processor supports the CPUID instruction.

2. Check the feature bits of CPUID for Intel SSE existence.

Example 5-2 shows how to find the SSE feature bit (bit 25) in CPUID feature flags.

5.1.3 Checking for Intel® Streaming SIMD Extensions 2 (Intel® SSE2) Support
Checking for support of Intel SSE2 is like checking for Intel SSE support. The OS requirements for Intel
SSE2 Support are the same as the OS requirements for Intel SSE.

To check whether your system supports Intel SSE2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for Intel SSE2 technology existence.

Example 5-1. Identification of MMX Technology with CPUID

…identify existence of cpuid instruction
… ;
… ; Identify signature is genuine Intel
… ;
mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test edx, 00800000h ; Is MMX technology bit (bit 23) in feature flags equal to 1
jnz Found

Example 5-2. Identification of Intel® SSE with CPUID

…Identify existence of cpuid instruction
; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H cpuid instruction
test EDX, 002000000h ; Bit 25 in feature flags equal to 1
jnz Found

https://www.intel.com/content/www/us/en/support/articles/000006831/processors/processor-utilities-and-programs.html

Ref#: 248966-047 5-3

CODING FOR SIMD ARCHITECTURES

Example 5-3 shows how to find the SSE2 feature bit (bit 26) in the CPUID feature flags.

5.1.4 Checking for Intel® Streaming SIMD Extensions 3 (Intel® SSE3) Support
Intel SSE3 includes 13 instructions, 11 of those are suited for SIMD or x87 style programming. Checking
for support of Intel SSE3 instructions is similar to checking for Intel SSE support. The OS requirements
for Intel SSE3 Support are the same as the requirements for Intel SSE.

To check whether your system supports the x87 and SIMD instructions of Intel SSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the ECX feature bit 0 of CPUID for Intel SSE3 technology existence.

Example 5-4 shows how to find the SSE3 feature bit (bit 0 of ECX) in the CPUID feature flags.

Software must check for support of MONITOR and MWAIT before attempting to use MONITOR and
MWAIT.Detecting the availability of MONITOR and MWAIT can be done using a code sequence similar to
Example 5-4. The availability of MONITOR and MWAIT is indicated by bit 3 of the returned value in ECX.

5.1.5 Checking for Intel® Supplemental Streaming SIMD Extensions 3 (Intel® SSSE)
Support

Checking for support of Intel SSSE3 is similar to checking for Intel SSE support. The OS requirements for
Intel SSSE3 support are the same as the requirements for Intel SSE.

To check whether your system supports Intel SSSE3, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bits of CPUID for Intel SSSE3 technology existence.

Example 5-5 shows how to find the Intel SSSE3 feature bit in the CPUID feature flags.

Example 5-3. Identification of Intel® SSE2 with cpuid

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test EDX, 004000000h ; Bit 26 in feature flags equal to 1
jnz Found

Example 5-4. Identification of Intel® SSE3 with CPUID

…identify existence of cpuid instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000001h ; Bit 0 in feature flags equal to 1
jnz Found

Example 5-5. Identification of SSSE3 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000200h ; ECX bit 9
jnz Found

Ref#: 248966-047 5-4

CODING FOR SIMD ARCHITECTURES

5.1.6 Checking for Intel® SSE4.1 Support
Checking for support of SSE4.1 is similar to checking for Intel SSE support. The OS requirements for Intel
SSE4.1 support are the same as the requirements for Intel SSE.

To check whether your system supports Intel SSE4.1, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for Intel SSE4.1.

Example 5-6 shows how to find the Intel SSE4.1 feature bit in the CPUID feature flags.

5.1.7 Checking for Intel® SSE4.2 Support
Checking for support of Intel SSE4.2 is similar to checking for Intel SSE support. The OS requirements for
SSE4.2 support are the same as the requirements for Intel SSE.

To check whether your system supports SSE4.2, follow these steps:

1. Check that your processor has the CPUID instruction.

2. Check the feature bit of CPUID for Intel SSE4.2.

Example 5-7 shows how to find the INtel SSE4.2 feature bit in the CPUID feature flags.

5.1.8 DetectiON of PCLMULQDQ and AESNI Instructions
Before an application attempts to use the following AESNI instructions: AESDEC/AESDE-
CLAST/AESENC/AESENCLAST/AESIMC/AESKEYGENASSIST, it must check that the processor supports
the AESNI extensions. AESNI extensions is supported if CPUID.01H:ECX.AESNI[bit 25] = 1.
Prior to using PCLMULQDQ instruction, application must check if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.

Example 5-6. Identification of Intel® SSE4.1 with CPUID

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000080000h ; ECX bit 19
jnz Found

Example 5-7. Identification of SSE4.2 with cpuid

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000100000h ; ECX bit 20
jnz Found

Ref#: 248966-047 5-5

CODING FOR SIMD ARCHITECTURES

Operating systems that support handling SSE state will also support applications that use AESNI exten-
sions and PCLMULQDQ instruction. This is the same requirement for Intel SSE2, Intel SSE3, Intel SSSE3,
and Intel SSE4.

5.1.9 Detection of Intel® AVX Instructions
Intel AVX operates on the 256-bit YMM register state. Application detection of new instruction extensions
operating on the YMM state follows the general procedural flow in Figure 5-1.
Prior to using AVX, the application must identify that the operating system supports the XGETBV instruc-
tion, the YMM register state, in addition to processor’s support for YMM state management using
XSAVE/XRSTOR and AVX instructions. The following simplified sequence accomplishes both and is
strongly recommended.
1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application use1)
2) Issue XGETBV and verify that XFEATURE_ENABLED_MASK[2:1] = ‘11b’ (XMM state and YMM state are
enabled by OS).
3) Detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
Note: Step 3 can be done in any order relative to 1 and 2.

Example 5-8. Detection of AESNI Instructions

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 002000000h ; ECX bit 25
jnz Found

Example 5-9. Detection of PCLMULQDQ Instruction

…Identify existence of CPUID instruction
… ; Identify signature is genuine intel

mov eax, 1 ; Request for feature flags
cpuid ; 0FH, 0A2H CPUID instruction
test ECX, 000000002h ; ECX bit 1
jnz Found

1.If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBV, proces-
sor extended state bit vector XFEATURE_ENALBED_MASK register. Thus an application may streamline the checking of
CPUID feature flags for XSAVE and OSXSAVE. XSETBV is a privileged instruction.

Ref#: 248966-047 5-6

CODING FOR SIMD ARCHITECTURES

The following pseudocode illustrates this recommended application Intel AVX detection process:

NOTE
It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system
support. If YMM state management is not enabled by an operating systems, AVX instruc-
tions will #UD regardless of CPUID.1:ECX.AVX[bit 28]. “CPUID.1:ECX.XSAVE[bit 26] =
1” does not guarantee the OS actually uses the XSAVE process for state management.

Figure 5-1. General Procedural Flow of Application Detection of Intel® AVX

Example 5-10. Detection of Intel® AVX Instruction

INT supports_AVX()
{ mov eax, 1

cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Implied HW support for

Check enabled state in

XCR0 via XGETBV
Check feature flag

for Instruction set

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes

Ref#: 248966-047 5-7

CODING FOR SIMD ARCHITECTURES

5.1.10 Detection of VEX-Encoded AES and VPCLMULQDQ
VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate
on YMM states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and
the sequence for detection application support for Intel AVX.

Similarly, the detection sequence for VPCLMULQDQ must combine checking for
CPUID.1:ECX.PCLMULQDQ[bit 1] = 1 and the sequence for detection application support for AVX.
This is shown in the pseudocode:

Example 5-11. Detection of VEX-Encoded AESNI Instructions

INT supports_VAESNI()
{ mov eax, 1

cpuid
and ecx, 01A000000H
cmp ecx, 01A000000H; check OSXSAVE AVX and AESNI feature flags
 jne not_supported
; processor supports AVX and VEX-encoded AESNI and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Example 5-12. Detection of VEX-Encoded AESNI Instructions

INT supports_VPCLMULQDQ)
{ mov eax, 1

cpuid

and ecx, 018000002H
cmp ecx, 018000002H; check OSXSAVE AVX and PCLMULQDQ feature flags
 jne not_supported
; processor supports AVX and VEX-encoded PCLMULQDQ and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV ; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done

NOT_SUPPORTED:
mov eax, 0

done:

Ref#: 248966-047 5-8

CODING FOR SIMD ARCHITECTURES

5.1.11 Detection of F16C Instructions
Application using float 16 instruction must follow a detection sequence similar to Intel AVX to ensure:
• The OS has enabled YMM state management support.
• The processor support Intel AVX as indicated by the CPUID feature flag, i.e. CPUID.01H:ECX.AVX[bit

28] = 1.
• The processor support 16-bit floating-point conversion instructions via a CPUID feature flag

(CPUID.01H:ECX.F16C[bit 29] = 1).
Application detection of Float-16 conversion instructions follow the general procedural flow in Figure 5-2.

--
INT supports_f16c()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 038000000H
cmp ecx, 038000000H; check OSXSAVE, AVX, F16C feature flags
 jne not_supported
; processor supports AVX,F16C instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

Figure 5-2. General Procedural Flow of Application Detection of Float-16

Implied HW support for

Check enabled YMM state in
XCR0 via XGETBV

Check feature flags
for AVX and F16C

Check feature flag

CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

State ok to use

XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

enabled Instructions

Yes

Ref#: 248966-047 5-9

CODING FOR SIMD ARCHITECTURES

5.1.12 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.
Application Software must identify that hardware supports AVX, after that it must also detect support for
FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of FMA is:
--
INT supports_fma()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018001000H
cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags
 jne not_supported
; processor supports AVX,FMA instructions and XGETBV is enabled by OS
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

5.1.13 Detection of Intel® AVX2
Hardware support for Intel AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.
Application Software must identify that hardware supports Intel AVX, after that it must also detect
support for AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended pseudo-
code sequence for detection of Intel AVX2 is:
--
INT supports_avx2()
{ ; result in eax

mov eax, 1
cpuid
and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
 jne not_supported
; processor supports AVX instructions and XGETBV is enabled by OS
mov eax, 7
mov ecx, 0
cpuid

Ref#: 248966-047 5-10

CODING FOR SIMD ARCHITECTURES

and ebx, 20H
cmp ebx, 20H; check AVX2 feature flags
 jne not_supported
mov ecx, 0; specify 0 for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX
and eax, 06H
cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported
mov eax, 1
jmp done
NOT_SUPPORTED:
mov eax, 0
done:

}

5.2 CONSIDERATIONS FOR CODE CONVERSION TO SIMD
PROGRAMMING

The VTune Performance Enhancement Environment CD provides tools to aid in the evaluation and tuning.
Before implementing them, you need answers to the following questions:

1. Will the current code benefit by using MMX technology, Intel SSE, Intel SSE2, Intel SSE3, or Intel
SSSE3?

2. Is this code integer or floating-point?

3. What integer word size or floating-point precision is needed?

4. What coding techniques should I use?

5. What guidelines do I need to follow?

6. How should I arrange and align the datatypes?

Figure 5-3 provides a flowchart for the process of converting code to MMX technology, Intel SSE, Intel
SSE2, Intel SSE3, or Intel SSSE3.

Ref#: 248966-047 5-11

CODING FOR SIMD ARCHITECTURES

To use any of the SIMD technologies optimally, you must evaluate the following situations in your code:
• Fragments that are computationally intensive.
• Fragments that are executed often enough to have an impact on performance.
• Fragments that with little data-dependent control flow.
• Fragments that require floating-point computations.
• Fragments that can benefit from moving data 16 bytes at a time.
• Fragments of computation that can coded using fewer instructions.
• Fragments that require help in using the cache hierarchy efficiently.

Figure 5-3. Converting to Intel® Streaming SIMD Extensions Chart

OM15156

Code benefits
from SIMD

STOP

Identify Hot Spots in Code

Integer or
floating-point?

Yes

Floating Point

W hy FP?

Can convert
to Integer?

Range or
Precision

If possible, re-arrange data
for SIMD efficiency

Integer

Change to use
SIMD Integer

Yes

Change to use
Single Precision

Can convert to
Single-precision?

Yes

No

No

Align data structures

Convert to code to use
SIMD Technologies

Follow general coding
guidelines and SIMD

coding guidelines

Use memory optimizations
and prefetch if appropriate

Schedule instructions to
optimize performance

No

Performance

Ref#: 248966-047 5-12

CODING FOR SIMD ARCHITECTURES

5.2.1 Identifying Hot Spots
To optimize performance, use the VTune Performance Analyzer to find sections of code that occupy most
of the computation time. Such sections are called the hotspots. See Appendix A, “Application Perfor-
mance Tools.”

The VTune analyzer provides a hotspots view of a specific module to help you identify sections in your
code that take the most CPU time and that have potential performance problems. The hotspots view
helps you identify sections in your code that take the most CPU time and that have potential performance
problems.

The VTune analyzer enables you to change the view to show hotspots by memory location, functions,
classes, or source files. You can double-click on a hotspot and open the source or assembly view for the
hotspot and see more detailed information about the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your source code and
can also provide advice at the assembly language level. The code coach analyzes and identifies opportu-
nities for better performance of C/C++, Fortran and Java* programs, and suggests specific optimiza-
tions. Where appropriate, the coach displays pseudo-code to suggest the use of highly optimized
intrinsics and functions in the Intel® Performance Library Suite. Because VTune analyzer is designed
specifically for Intel architecture (IA)-based processors, including the Pentium 4 processor, it can offer
detailed approaches to working with IA. See Appendix A.1.1 for details.

5.2.2 Determine If Code Benefits by Conversion to SIMD Execution
Identifying code that benefits by using SIMD technologies can be time-consuming and difficult. Likely
candidates for conversion are applications that are highly computation intensive, such as the following:
• Speech compression algorithms and filters.
• Speech recognition algorithms.
• Video display and capture routines.
• Rendering routines.
• 3D graphics (geometry).
• Image and video processing algorithms.
• Spatial (3D) audio.
• Physical modeling (graphics, CAD).
• Workstation applications.
• Encryption algorithms.
• Complex arithmetics.

Generally, good candidate code is code that contains small-sized repetitive loops that operate on sequen-
tial arrays of integers of 8, 16 or 32 bits, single-precision 32-bit floating-point data, double precision 64-
bit floating-point data (integer and floating-point data items should be sequential in memory). The repet-
itiveness of these loops incurs costly application processing time. However, these routines have potential
for increased performance when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate what should be
done to determine whether the current algorithm or a modified one will ensure the best performance.

Ref#: 248966-047 5-13

CODING FOR SIMD ARCHITECTURES

5.3 CODING TECHNIQUES
The SIMD features of Intel SSE3, Intel SSE2, Intel SSE, and MMX technology require new methods of
coding algorithms. One of them is vectorization. Vectorization is the process of transforming sequen-
tially-executing, or scalar, code into code that can execute in parallel, taking advantage of the SIMD
architecture parallelism. This section discusses the coding techniques available for an application to
make use of the SIMD architecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the following:
• Determine if the memory accesses have dependencies that would prevent parallel execution.
• “Strip-mine” the inner loop to reduce the iteration count by the length of the SIMD operations (for

example, four for single-precision floating-point SIMD, eight for 16-bit integer SIMD on the XMM
registers).

• Re-code the loop with the SIMD instructions.

Each of these actions is discussed in detail in the subsequent sections of this chapter. These sections also
discuss enabling automatic vectorization using the Intel C++ Compiler.

5.3.1 Coding Methodologies
Software developers need to compare the performance improvement that can be obtained from
assembly code versus the cost of those improvements. Programming directly in assembly language for a
target platform may produce the required performance gain, however, assembly code is not portable
between processor architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD technologies using high-
level languages as well as assembly. The new C/C++ language extensions designed specifically for Intel
SSE3, Intel SSE2, Intel SSE, and MMX technology help make this possible.

Figure 5-4 illustrates the trade-offs involved in the performance of hand-coded assembly versus the ease
of programming and portability.

Figure 5-4. Hand-Coded Assembly and High-Level Compiler Performance Trade-Offs

Assembly Intrinsics

C/C++ / Fortran

Automatic
Vectoriztion

Ease of Programming/Portability

P
e

rf
o

rm
a

n
ce

Ref#: 248966-047 5-14

CODING FOR SIMD ARCHITECTURES

The examples that follow illustrate the use of coding adjustments to enable the algorithm to benefit from
the Intel SSE. The same techniques may be used for single-precision floating-point, double-precision
floating-point, and integer data under Intel SSE3, Intel SSE2, Intel SSE, and MMX technology.

As a basis for the usage model discussed in this section, consider a simple loop shown in Example 5-13.

Note that the loop runs for only four iterations. This allows a simple replacement of the code with
Streaming SIMD Extensions.

For the optimal use of the Intel SSE that need data alignment on the 16-byte boundary, all examples in
this chapter assume that the arrays passed to the routine, A, B, C, are aligned to 16-byte boundaries by
a calling routine. For the methods to ensure this alignment, please refer to the application notes for the
Intel Pentium 4 processor.

The sections that follow provide details on the coding methodologies: inlined assembly, intrinsics, C++
vector classes, and automatic vectorization.

5.3.1.1 Assembly
Key loops can be coded directly in assembly language using an assembler or by using inlined assembly
(C-asm) in C/C++ code. The Intel compiler or assembler recognize the new instructions and registers,
then directly generate the corresponding code. This model offers the opportunity for attaining greatest
performance, but this performance is not portable across the different processor architectures.

Example 5-14 shows the Intel SSE inlined assembly encoding.

5.3.1.2 Intrinsics
Intrinsics provide the access to the ISA functionality using C/C++ style coding instead of assembly
language. Intel has defined three sets of intrinsic functions that are implemented in the Intel C++
Compiler to support the MMX technology, Intel SSE, Intel SSE2. Four new C data types, representing 64-
bit and 128-bit objects are used as the operands of these intrinsic functions. __M64 is used for MMX
integer SIMD, __M128 is used for single-precision floating-point SIMD, __M128I is used for Streaming
SIMD Extensions 2 integer SIMD, and __M128D is used for double precision floating-point SIMD. These

Example 5-13. Simple Four-Iteration Loop

void add(float *a, float *b, float *c)

{

int i;

for (i = 0; i < 4; i++) {

 c[i] = a[i] + b[i];

 }

}

Example 5-14. Intel® Streaming SIMD Extensions (Intel® SSE) Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)
{
 __asm {
 mov eax, a
 mov edx, b
 mov ecx, c
 movaps xmm0, XMMWORD PTR [eax]
 addps xmm0, XMMWORD PTR [edx]
 movaps XMMWORD PTR [ecx], xmm0
 }
}

Ref#: 248966-047 5-15

CODING FOR SIMD ARCHITECTURES

types enable the programmer to choose the implementation of an algorithm directly, while allowing the
compiler to perform register allocation and instruction scheduling where possible. The intrinsics are
portable among all Intel architecture-based processors supported by a compiler.

The use of intrinsics allows you to obtain performance close to the levels achievable with assembly. The
cost of writing and maintaining programs with intrinsics is considerably less. For a detailed description of
the intrinsics and their use, refer to the Intel C++ Compiler documentation.

Example 5-15 shows the loop from Example 5-13 using intrinsics.

The intrinsics map one-to-one with actual Intel SSE assembly code. The XMMINTRIN.H header file in
which the prototypes for the intrinsics are defined is part of the Intel C++ Compiler included with the
VTune Performance Enhancement Environment CD.

Intrinsics are also defined for the MMX technology ISA. These are based on the __m64 data type to
represent the contents of an mm register. You can specify values in bytes, short integers, 32-bit values,
or as a 64-bit object.

The intrinsic data types, however, are not a basic ANSI C data type, and therefore you must observe the
following usage restrictions:
• Use intrinsic data types only on the left-hand side of an assignment as a return value or as a

parameter. You cannot use it with other arithmetic expressions (for example, “+”, “>>”).
• Use intrinsic data type objects in aggregates, such as unions to access the byte elements and

structures; the address of an __M64 object may be also used.
• Use intrinsic data type data only with the MMX technology intrinsics described in this guide.
For complete details of the hardware instructions, see the Intel Architecture MMX Technology
Developer’s Guide. For a description of data types, see the Intel® 64 and IA-32 Architectures Software
Developer’s Manual.

5.3.1.3 Classes
A set of C++ classes has been defined and available in Intel C++ Compiler to provide both a higher-level
abstraction and more flexibility for programming with MMX technology, Intel SSE and Intel SSE2. These
classes provide an easy-to-use and flexible interface to the intrinsic functions, allowing developers to
write more natural C++ code without worrying about which intrinsic or assembly language instruction to
use for a given operation. Since the intrinsic functions underlie the implementation of these C++ classes,
the performance of applications using this methodology can approach that of one using the intrinsics.
Further details on the use of these classes can be found in the Intel C++ Class Libraries for SIMD Opera-
tions page.

Example 5-15. Simple Four-Iteration Loop Coded with Intrinsics

#include <xmmintrin.h>
void add(float *a, float *b, float *c)
{

__m128 t0, t1;
 t0 = _mm_load_ps(a);
 t1 = _mm_load_ps(b);
 t0 = _mm_add_ps(t0, t1);
 _mm_store_ps(c, t0);
}

https://www.intel.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-developers-guide-140701.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/mmx-manual-tech-developers-guide-140701.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/c-classes-and-simd-operations.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/c-classes-and-simd-operations.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/c-classes-and-simd-operations.html

Ref#: 248966-047 5-16

CODING FOR SIMD ARCHITECTURES

Example 5-16 shows the C++ code using a vector class library. The example assumes the arrays passed
to the routine are already aligned to 16-byte boundaries.

Here, fvec.h is the class definition file and F32vec4 is the class representing an array of four floats. The
“+” and “=” operators are overloaded so that the actual Streaming SIMD Extensions implementation in
the previous example is abstracted out, or hidden, from the developer. Note how much more this resem-
bles the original code, allowing for simpler and faster programming.

Again, the example is assuming the arrays, passed to the routine, are already aligned to 16-byte
boundary.

5.3.1.4 Automatic Vectorization
The Intel C++ Compiler provides an optimization mechanism by which loops, such as in Example 5-13
can be automatically vectorized, or converted into Intel SSE code. The compiler uses similar techniques
to those used by a programmer to identify whether a loop is suitable for conversion to SIMD. This
involves determining whether the following might prevent vectorization:
• The layout of the loop and the data structures used.
• Dependencies amongst the data accesses in each iteration and across iterations.

Once the compiler has made such a determination, it can generate vectorized code for the loop, allowing
the application to use the SIMD instructions.

The caveat to this is that only certain types of loops can be automatically vectorized, and in most cases
user interaction with the compiler is needed to fully enable this.

Example 5-17 shows the code for automatic vectorization for the simple four-iteration loop (from
Example 5-13).

Compile this code using the -QAX and -QRESTRICT switches of the Intel C++ Compiler, version 4.0 or
later.

The RESTRICT qualifier in the argument list is necessary to let the compiler know that there are no other
aliases to the memory to which the pointers point. In other words, the pointer for which it is used,

Example 5-16. C++ Code Using the Vector Classes

#include <fvec.h>
void add(float *a, float *b, float *c)
{

F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;

F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *bv;

}

Example 5-17. Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

{

int i;

for (i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

}

Ref#: 248966-047 5-17

CODING FOR SIMD ARCHITECTURES

provides the only means of accessing the memory in question in the scope in which the pointers live.
Without the restrict qualifier, the compiler will still vectorize this loop using runtime data dependence
testing, where the generated code dynamically selects between sequential or vector execution of the
loop, based on overlap of the parameters. The restrict keyword avoids the associated overhead alto-
gether.

See Intel® C++ Compiler Classic Developer Guide and Reference for details.

5.4 STACK AND DATA ALIGNMENT
To get the most performance out of code written for SIMD technologies data should be formatted in
memory according to the guidelines described in this section. Assembly code with an unaligned accesses
is a lot slower than an aligned access.

5.4.1 Alignment and Contiguity of Data Access Patterns
The 64-bit packed data types defined by MMX technology, and the 128-bit packed data types for Intel
SSE and Intel SSE2 create more potential for misaligned data accesses. The data access patterns of
many algorithms are inherently misaligned when using MMX technology and SSE. Several techniques for
improving data access, such as padding, organizing data elements into arrays, etc. are described below.
Intel SSE3 provides a special-purpose instruction LDDQU that can avoid cache line splits is discussed in
Section 6.7.3

5.4.1.1 Using Padding to Align Data
However, when accessing SIMD data using SIMD operations, access to data can be improved simply by a
change in the declaration. For example, consider a declaration of a structure, which represents a point in
space plus an attribute.

typedef struct {short x,y,z; char a} Point;
Point pt[N];

Assume we will be performing a number of computations on X, Y, Z in three of the four elements of a
SIMD word; see Section 5.5.1 for an example. Even if the first element in array PT is aligned, the second
element will start 7 bytes later and not be aligned (3 shorts at two bytes each plus a single byte = 7
bytes).

By adding the padding variable PAD, the structure is now 8 bytes, and if the first element is aligned to 8
bytes (64 bits), all following elements will also be aligned. The sample declaration follows:

typedef struct {short x,y,z; char a; char pad;} Point;
Point pt[N];

5.4.1.2 Using Arrays to Make Data Contiguous
In the following code,

for (i=0; i<N; i++) pt[i].y *= scale;

the second dimension Y needs to be multiplied by a scaling value. Here, the FOR loop accesses each Y
dimension in the array PT thus disallowing the access to contiguous data. This can degrade the perfor-
mance of the application by increasing cache misses, by poor utilization of each cache line that is fetched,
and by increasing the chance for accesses which span multiple cache lines.

The following declaration allows you to vectorize the scaling operation and further improve the alignment
of the data access patterns:

short ptx[N], pty[N], ptz[N];
for (i=0; i<N; i++) pty[i] *= scale;

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html

Ref#: 248966-047 5-18

CODING FOR SIMD ARCHITECTURES

With the SIMD technology, choice of data organization becomes more important and should be made
carefully based on the operations that will be performed on the data. In some applications, traditional
data arrangements may not lead to the maximum performance.

A simple example of this is an FIR filter. An FIR filter is effectively a vector dot product in the length of the
number of coefficient taps.

Consider the following code:
(data [j] *coeff [0] + data [j+1]*coeff [1]+...+data [j+num of taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element I is the vector dot product that begins at data
element J, then the filter operation of data element I+1 begins at data element J+1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients vector, the filter opera-
tion on the first data element will be fully aligned. For the second data element, however, access to the
data vector will be misaligned. For an example of how to avoid the misalignment problem in the FIR filter,
refer to Intel application notes on Streaming SIMD Extensions and filters.

Duplication and padding of data structures can be used to avoid the problem of data accesses in algo-
rithms which are inherently misaligned. Section 5.5.1 discusses trade-offs for organizing data structures.

NOTE
The duplication and padding technique overcomes the misalignment problem, thus
avoiding the expensive penalty for misaligned data access, at the cost of increasing the
data size. When developing your code, you should consider this tradeoff and use the
option which gives the best performance.

5.4.2 Stack Alignment for 128-bit SIMD Technologies
For best performance, the Streaming SIMD Extensions and Streaming SIMD Extensions 2 require their
memory operands to be aligned to 16-byte boundaries. Unaligned data can cause significant perfor-
mance penalties compared to aligned data. However, the existing software conventions for IA-32
(STDCALL, CDECL, FASTCALL) as implemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore, Intel has defined
a new set of IA-32 software conventions for alignment to support the new __M128* datatypes (__M128,
__M128D, and __M218I). These meet the following conditions:
• Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2 data need to provide

a 16-byte aligned stack frame.
• __M128* parameters need to be aligned to 16-byte boundaries, possibly creating “holes” (due to

padding) in the argument block.

The new conventions presented in this section as implemented by the Intel C++ Compiler can be used as
a guideline for an assembly language code as well. In many cases, this section assumes the use of the
__M128* data types, as defined by the Intel C++ Compiler, which represents an array of four 32-bit floats.

5.4.3 Data Alignment for MMX™ Technology
Many compilers enable alignment of variables using controls. This aligns variable bit lengths to the
appropriate boundaries. If some of the variables are not appropriately aligned as specified, you can align
them using the C algorithm in Example 5-18.

Example 5-18. C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array of NUM_ELEMENTS 64-bit elements. */
double *p, *newp;
p = (double*)malloc (sizeof(double)*(NUM_ELEMENTS+1));
newp = (p+7) & (~0x7);

Ref#: 248966-047 5-19

CODING FOR SIMD ARCHITECTURES

The algorithm in Example 5-18 aligns an array of 64-bit elements on a 64-bit boundary. The constant of
7 is derived from one less than the number of bytes in a 64-bit element, or 8-1. Aligning data in this
manner avoids the significant performance penalties that can occur when an access crosses a cache line
boundary.

Another way to improve data alignment is to copy the data into locations that are aligned on 64-bit
boundaries. When the data is accessed frequently, this can provide a significant performance improve-
ment.

5.4.4 Data Alignment for 128-bit data
Data must be 16-byte aligned when loading to and storing from the 128-bit XMM registers used by Intel
SSE, Intel SSE2, Intel SSE3, and Intel SSSE3. This must be done to avoid severe performance penalties
and, at worst, execution faults.

There are MOVE instructions (and intrinsics) that allow unaligned data to be copied to and out of XMM
registers when not using aligned data, but such operations are much slower than aligned accesses. If
data is not 16-byte-aligned and the programmer or the compiler does not detect this and uses the
aligned instructions, a fault occurs. So keep data 16-byte-aligned. Such alignment also works for MMX
technology code, even though MMX technology only requires 8-byte alignment.

The following describes alignment techniques for Pentium 4 processor as implemented with the Intel
C++ Compiler.

5.4.4.1 Compiler-Supported Alignment
The Intel C++ Compiler provides the following methods to ensure that the data is aligned.

Alignment by F32vec4 or __m128 Data Types

When the compiler detects F32VEC4 or __M128 data declarations or parameters, it forces alignment of
the object to a 16-byte boundary for both global and local data, as well as parameters. If the declaration
is within a function, the compiler also aligns the function's stack frame to ensure that local data and
parameters are 16-byte-aligned. For details on the stack frame layout that the compiler generates for
both debug and optimized (“release”-mode) compilations, refer to Intel’s compiler documentation.

__declspec(align(16)) specifications

These can be placed before data declarations to force 16-byte alignment. This is useful for local or global
data declarations that are assigned to 128-bit data types. The syntax for it is

__declspec(align(integer-constant))

where the INTEGER-CONSTANT is an integral power of two but no greater than 32. For example, the
following increases the alignment to 16-bytes:

__declspec(align(16)) float buffer[400];

The variable BUFFER could then be used as if it contained 100 objects of type __M128 or F32VEC4. In the
code below, the construction of the F32VEC4 object, X, will occur with aligned data.

void foo() {
F32vec4 x = *(__m128 *) buffer;
...

}

Without the declaration of __DECLSPEC(ALIGN(16)), a fault may occur.

Alignment by Using a UNION Structure

When feasible, a UNION can be used with 128-bit data types to allow the compiler to align the data struc-
ture by default. This is preferred to forcing alignment with __DECLSPEC(ALIGN(16)) because it exposes
the true program intent to the compiler in that __M128 data is being used. For example:

Ref#: 248966-047 5-20

CODING FOR SIMD ARCHITECTURES

union {
 float f[400];
 __m128 m[100];

} buffer;

Now, 16-byte alignment is used by default due to the __M128 type in the UNION; it is not necessary to
use __DECLSPEC(ALIGN(16)) to force the result.

In C++ (but not in C) it is also possible to force the alignment of a CLASS/STRUCT/UNION type, as in the
code that follows:

struct __declspec(align(16)) my_m128
{

 float f[4];
};

If the data in such a CLASS is going to be used with the Intel SSE or Intel SSE2, it is preferable to use a
UNION to make this explicit. In C++, an anonymous UNION can be used to make this more convenient:

class my_m128 {
 union {
 __m128 m;
 float f[4];
 };

};

Because the UNION is anonymous, the names, M and F, can be used as immediate member names of
MY__M128. Note that __DECLSPEC(ALIGN) has no effect when applied to a CLASS, STRUCT, or UNION
member in either C or C++.

Alignment by Using __m64 or DOUBLE Data

In some cases, the compiler aligns routines with __M64 or DOUBLE data to 16-bytes by default. The
command-line switch, -QSFALIGN16, limits the compiler so that it only performs this alignment on
routines that contain 128-bit data. The default behavior is to use -QSFALIGN8. This switch instructs the
complier to align routines with 8- or 16-byte data types to 16 bytes.

See Intel® C++ Compiler Classic Developer Guide and Reference for details.

5.5 IMPROVING MEMORY UTILIZATION
Memory performance can be improved by rearranging data and algorithms for Intel SSE, Intel SSE2, and
MMX technology intrinsics. Methods for improving memory performance involve working with the
following:
• Data structure layout.
• Strip-mining for vectorization and memory utilization.
• Loop-blocking.

Using the cacheability instructions, prefetch and streaming store, also greatly enhance memory utiliza-
tion. See also: Chapter 9, “Optimizing Cache Usage.”

5.5.1 Data Structure Layout
For certain algorithms, like 3D transformations and lighting, there are two basic ways to arrange vertex
data. The traditional method is the array of structures (AoS) arrangement, with a structure for each

https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-8/overview.html

Ref#: 248966-047 5-21

CODING FOR SIMD ARCHITECTURES

vertex (Example 5-19). However this method does not take full advantage of SIMD technology capabili-
ties.

The best processing method for code using SIMD technology is to arrange the data in an array for each
coordinate (Example 5-20). This data arrangement is called structure of arrays (SoA).

There are two options for computing data in AoS format: perform operation on the data as it stands in
AoS format, or re-arrange it (swizzle it) into SoA format dynamically. See Example 5-21 for code samples
of each option based on a dot-product computation.

Example 5-19. AoS Data Structure

typedef struct{
float x,y,z;
int a,b,c;
. . .

} Vertex;
Vertex Vertices[NumOfVertices];

Example 5-20. SoA Data Structure

typedef struct{
float x[NumOfVertices];
float y[NumOfVertices];
float z[NumOfVertices];
int a[NumOfVertices];
int b[NumOfVertices];
int c[NumOfVertices];
. . .

} VerticesList;
VerticesList Vertices;

Example 5-21. AoS and SoA Code Samples

; The dot product of an array of vectors (Array) and a fixed vector (Fixed) is a
; common operation in 3D lighting operations, where Array = (x0,y0,z0),(x1,y1,z1),...
; and Fixed = (xF,yF,zF)
; A dot product is defined as the scalar quantity d0 = x0*xF + y0*yF + z0*zF.

;
; AoS code
; All values marked DC are “don’t-care.”

; In the AOS model, the vertices are stored in the xyz format
movaps xmm0, Array ; xmm0 = DC, x0, y0, z0
movaps xmm1, Fixed ; xmm1 = DC, xF, yF, zF
mulps xmm0, xmm1 ; xmm0 = DC, x0*xF, y0*yF, z0*zF
movhlps xmm, xmm0 ; xmm = DC, DC, DC, x0*xF

addps xmm1, xmm0 ; xmm0 = DC, DC, DC,
 ; x0*xF+z0*zFmovaps xmm2, xmm1
shufps xmm2, xmm2,55h ; xmm2 = DC, DC, DC, y0*yF
addps xmm2, xmm1 ; xmm1 = DC, DC, DC,

; x0*xF+y0*yF+z0*zF

Ref#: 248966-047 5-22

CODING FOR SIMD ARCHITECTURES

Performing SIMD operations on the original AoS format can require more calculations and some opera-
tions do not take advantage of all SIMD elements available. Therefore, this option is generally less effi-
cient.

The recommended way for computing data in AoS format is to swizzle each set of elements to SoA format
before processing it using SIMD technologies. Swizzling can either be done dynamically during program
execution or statically when the data structures are generated. See Chapter 6, “Optimizing for SIMD
Integer Applications” and Chapter 7, “Optimizing for SIMD Floating-Point Applications” for examples.
Performing the swizzle dynamically is usually better than using AoS, but can be somewhat inefficient
because there are extra instructions during computation. Performing the swizzle statically, when data
structures are being laid out, is best as there is no runtime overhead.

As mentioned earlier, the SoA arrangement allows more efficient use of the parallelism of SIMD technol-
ogies because the data is ready for computation in a more optimal vertical manner: multiplying compo-
nents X0,X1,X2,X3 by XF,XF,XF,XF using 4 SIMD execution slots to produce 4 unique results. In contrast,
computing directly on AoS data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result (as shown by the many “don’t-care” (DC) slots in Example 5-21).

Use of the SoA format for data structures can lead to more efficient use of caches and bandwidth. When
the elements of the structure are not accessed with equal frequency, such as when element x, y, z are
accessed ten times more often than the other entries, then SoA saves memory and prevents fetching
unnecessary data items a, b, and c.

; SoA code
; X = x0,x1,x2,x3
; Y = y0,y1,y2,y3
; Z = z0,z1,z2,z3
; A = xF,xF,xF,xF
; B = yF,yF,yF,yF
; C = zF,zF,zF,zF

movaps xmm0, X ; xmm0 = x0,x1,x2,x3
movaps xmm1, Y ; xmm0 = y0,y1,y2,y3
movaps xmm2, Z ; xmm0 = z0,z1,z2,z3
mulps xmm0, A ; xmm0 = x0*xF, x1*xF, x2*xF, x3*xF
mulps xmm1, B ; xmm1 = y0*yF, y1*yF, y2*yF, y3*xF
mulps xmm2, C ; xmm2 = z0*zF, z1*zF, z2*zF, z3*zF
addps xmm0, xmm1
addps xmm0, xmm2 ; xmm0 = (x0*xF+y0*yF+z0*zF), ...

Example 5-22. Hybrid SoA Data Structure

NumOfGroups = NumOfVertices/SIMDwidth
typedef struct{

float x[SIMDwidth];
float y[SIMDwidth];
float z[SIMDwidth];

} VerticesCoordList;
typedef struct{

int a[SIMDwidth];
int b[SIMDwidth];
int c[SIMDwidth];
. . .

Example 5-21. AoS and SoA Code Samples (Contd.)

Ref#: 248966-047 5-23

CODING FOR SIMD ARCHITECTURES

Note that SoA can have the disadvantage of requiring more independent memory stream references. A
computation that uses arrays X, Y, and Z (see Example 5-20) would require three separate data streams.
This can require the use of more prefetches, additional address generation calculations, as well as having
a greater impact on DRAM page access efficiency.

There is an alternative: a hybrid SoA approach blends the two alternatives (see Example 5-22). In this
case, only 2 separate address streams are generated and referenced: one contains XXXX, YYYY,ZZZZ,
ZZZZ,... and the other AAAA, BBBB, CCCC, AAAA, DDDD,... . The approach prevents fetching unneces-
sary data, assuming the variables X, Y, Z are always used together; whereas the variables A, B, C would
also be used together, but not at the same time as X, Y, Z.

The hybrid SoA approach ensures:
• Data is organized to enable more efficient vertical SIMD computation.
• Simpler/less address generation than AoS.
• Fewer streams, which reduces DRAM page misses.
• Use of fewer prefetches, due to fewer streams.
• Efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technologies, the choice of data organization becomes more important and
should be carefully based on the operations to be performed on the data. This will become increasingly
important in the Pentium 4 processor and future processors. In some applications, traditional data
arrangements may not lead to the maximum performance. Application developers are encouraged to
explore different data arrangements and data segmentation policies for efficient computation. This may
mean using a combination of AoS, SoA, and Hybrid SoA in a given application.

5.5.2 Strip-Mining
Strip-mining, also known as loop sectioning, is a loop transformation technique for enabling SIMD-
encodings of loops, as well as providing a means of improving memory performance. First introduced for
vectorizers, this technique consists of the generation of code when each vector operation is done for a
size less than or equal to the maximum vector length on a given vector machine. By fragmenting a large
loop into smaller segments or strips, this technique transforms the loop structure by:
• Increasing the temporal and spatial locality in the data cache if the data are reusable in different

passes of an algorithm.
• Reducing the number of iterations of the loop by a factor of the length of each “vector,” or number of

operations being performed per SIMD operation. In the case of Intel SSE, this vector or strip-length
is reduced by 4 times: four floating-point data items per single Streaming SIMD Extensions single-
precision floating-point SIMD operation are processed.

} VerticesColorList;
VerticesCoordList VerticesCoord[NumOfGroups];
VerticesColorList VerticesColor[NumOfGroups];

Example 5-22. Hybrid SoA Data Structure (Contd.)

Ref#: 248966-047 5-24

CODING FOR SIMD ARCHITECTURES

Consider Example 5-23:

The main loop consists of two functions: transformation and lighting. For each object, the main loop calls
a transformation routine to update some data, then calls the lighting routine to further work on the data.
If the size of array V[NUM] is larger than the cache, then the coordinates for V[I] that were cached during
TRANSFORM(V[I]) will be evicted from the cache by the time we do LIGHTING(V[I]). This means that
V[I] will have to be fetched from main memory a second time, reducing performance.

In Example 5-24, the computation has been strip-mined to a size STRIP_SIZE. The value STRIP_SIZE is
chosen such that STRIP_SIZE elements of array V[NUM] fit into the cache hierarchy. By doing this, a
given element V[I] brought into the cache by TRANSFORM(V[I]) will still be in the cache when we
perform LIGHTING(V[I]), and thus improve performance over the non-strip-mined code.

5.5.3 Loop Blocking
Loop blocking is another useful technique for memory performance optimization. The main purpose of
loop blocking is also to eliminate as many cache misses as possible. This technique transforms the
memory domain of a given problem into smaller chunks rather than sequentially traversing through the
entire memory domain. Each chunk should be small enough to fit all the data for a given computation

Example 5-23. Pseudo-Code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, nz, u, v;

 } Vertex_rec;

main()
 {

Vertex_rec v[Num];
....
for (i=0; i<Num; i++) {
 Transform(v[i]);
}

for (i=0; i<Num; i++) {
 Lighting(v[i]);
}
....

 }

Example 5-24. Strip Mined Code

MAIN()
{

Vertex_rec v[Num];
....
for (i=0; i < Num; i+=strip_size) {
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 TRANSFORM(V[J]);
 }
 FOR (J=I; J < MIN(NUM, I+STRIP_SIZE); J++) {

 LIGHTING(V[J]);
 }
}

}

Ref#: 248966-047 5-25

CODING FOR SIMD ARCHITECTURES

into the cache, thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in two
or more dimensions.

Consider the code in Example 5-23 and access pattern in Figure 5-5. The two-dimensional array A is
referenced in the J (column) direction and then referenced in the I (row) direction (column-major order);
whereas array B is referenced in the opposite manner (row-major order). Assume the memory layout is
in column-major order; therefore, the access strides of array A and B for the code in Example 5-25 would
be 1 and MAX, respectively.

For the first iteration of the inner loop, each access to array B will generate a cache miss. If the size of
one row of array A, that is, A[2, 0:MAX-1], is large enough, by the time the second iteration starts, each
access to array B will always generate a cache miss. For instance, on the first iteration, the cache line
containing B[0, 0:7] will be brought in when B[0,0] is referenced because the float type variable is four
bytes and each cache line is 32 bytes. Due to the limitation of cache capacity, this line will be evicted due
to conflict misses before the inner loop reaches the end.

For the next iteration of the outer loop, another cache miss will be generated while referencing B[0, 1].
In this manner, a cache miss occurs when each element of array B is referenced, that is, there is no data
reuse in the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In Figure 5-5, a
BLOCK_SIZE is selected as the loop blocking factor. Suppose that BLOCK_SIZE is 8, then the blocked
chunk of each array will be eight cache lines (32 bytes each). In the first iteration of the inner loop, A[0,
0:7] and B[0, 0:7] will be brought into the cache. B[0, 0:7] will be completely consumed by the first iter-
ation of the outer loop. Consequently, B[0, 0:7] will only experience one cache miss after applying loop
blocking optimization in lieu of eight misses for the original algorithm.

As illustrated in Figure 5-5, arrays A and B are blocked into smaller rectangular chunks so that the total
size of two blocked A and B chunks is smaller than the cache size. This allows maximum data reuse.

Example 5-25. Loop Blocking

A. Original Loop
float A[MAX, MAX], B[MAX, MAX]
for (i=0; i< MAX; i++) {

for (j=0; j< MAX; j++) {
A[i,j] = A[i,j] + B[j, i];

}
}

B. Transformed Loop after Blocking
float A[MAX, MAX], B[MAX, MAX];
for (i=0; i< MAX; i+=block_size) {

for (j=0; j< MAX; j+=block_size) {
for (ii=i; ii<i+block_size; ii++) {

for (jj=j; jj<j+block_size; jj++) {
A[ii,jj] = A[ii,jj] + B[jj, ii];

}
}

}
}

Ref#: 248966-047 5-26

CODING FOR SIMD ARCHITECTURES

As one can see, all the redundant cache misses can be eliminated by applying this loop blocking tech-
nique. If MAX is huge, loop blocking can also help reduce the penalty from DTLB (data translation look-
aside buffer) misses. In addition to improving the cache/memory performance, this optimization tech-
nique also saves external bus bandwidth.

5.6 INSTRUCTION SELECTION
The following section gives some guidelines for choosing instructions to complete a task.

One barrier to SIMD computation can be the existence of data-dependent branches. Conditional moves
can be used to eliminate data-dependent branches. Conditional moves can be emulated in SIMD compu-
tation by using masked compares and logicals, as shown in Example 5-26. SSE4.1 provides packed blend
instruction that can vectorize data-dependent branches in a loop.

Figure 5-5. Loop Blocking Access Pattern

Example 5-26. Emulation of Conditional Moves

High-level code:
__declspec(align(16)) short A[MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT], D[MAX_ELEMENT],
E[MAX_ELEMENT];

for (i=0; i<MAX_ELEMENT; i++) {
if (A[i] > B[i]) {

C[i] = D[i];
} else {

C[i] = E[i];
}

OM15158

A (i, j) access pattern
j

i

A(i, j) access pattern
after blocking

B(i, j) access pattern
after blocking

+

< cache size

Blocking

Ref#: 248966-047 5-27

CODING FOR SIMD ARCHITECTURES

If there are multiple consumers of an instance of a register, group the consumers together as closely as
possible. However, the consumers should not be scheduled near the producer.

5.7 TUNING THE FINAL APPLICATION
The best way to tune your application once it is functioning correctly is to use a profiler that measures the
application while it is running on a system. Intel VTune Amplifier XE can help you determine where to
make changes in your application to improve performance. Using Intel VTune Amplifier XE can help you
with various phases required for optimized performance. See Appendix A.3.1 for details. After every
effort to optimize, you should check the performance gains to see where you are making your major opti-
mization gains.

}
MMX assembly code processes 4 short values per iteration:

xor eax, eax

top_of_loop:
movq mm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movq mm1, [D + eax]
pand mm1, mm0; Drop elements where A<B
pandn mm0, [E + eax] ; Drop elements where A>B

por mm0, mm1; Crete single word
movq [C + eax], mm0
add eax, 8
cmp eax, MAX_ELEMENT*2
jle top_of_loop

SSE4.1 assembly processes 8 short values per iteration:
xor eax, eax

top_of_loop:
movdqq xmm0, [A + eax]
pcmpgtwxmm0, [B + eax]; Create compare mask
movdqa xmm1, [E + eax]
pblendv xmm1, [D + eax], xmm0;
movdqa [C + eax], xmm1;
add eax, 16
cmp eax, MAX_ELEMENT*2
jle top_of_loop

Example 5-26. Emulation of Conditional Moves (Contd.)

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

4. Updates to Chapter 20
Change bars and violet text show changes to Chapter 20 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Multicore and Hyper-Threading Technology.

--
Changes to this chapter:
• Section 20.5.3:

• Figures 20-3 and 20-4 were changed into tables due to illegibility. These tables are 20-3, 20-4, 20-5, and
20-6.

Ref#: 248966-048 20-1

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

CHAPTER 20
INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

This chapter aims to help low-level DL programmers optimally code to the metal on Intel® Xeon® Proces-
sors based on Sapphire Rapids SP microarchitecture. It extends the public documentation on Optimizing
DL code with DL Boost instructions in Section 20.8.

It explains how to detect processor support in Intel® Advanced Matrix Extensions (Intel® AMX) Architec-
ture (Section 20.1). It provides an overview of Intel AMX architecture (Section 20.2) and presents Intel
AMX instruction throughput and latency (Section 20.3). It also discusses software optimization opportu-
nities for Intel AMX (Section 20.5 through Section 20.17), TileConfig/TileRelease and compiler ABI
(Section 20.18), Intel AMX state management and system software aspects (Section 20.19), and the use
of Intel AMX for higher precision GEMMs (Section 20.20).

Table 20-1. Intel® AMX-Related Links

Description URL

Intel® AMX architecture definitions in the Intel®
64 and IA-32 Architecture Software
Developer’s Manual

https://www.intel.com/sdm

Buildable and executable templates of code
examples for this chapter.

https://github.com/intel/optimization-manual

Open VINO™ Optimization Guide
https://docs.openvino.ai/latest/openvino_docs_optimiza-
tion_guide_dldt_optimization_guide.html

oneDNN GitHub https://github.com/oneapi-src/oneDNN

oneDNN documentation https://oneapi-src.github.io/oneDNN/

Intel® Optimization TensorFlow Installation
Guide

https://www.intel.com/content/www/us/en/developer/arti-
cles/guide/optimization-for-tensorflow-installation-guide.html

PyTorch Landing Page https://pytorch.org/

PyTorch GitHub https://github.com/pytorch/pytorch

Intel® Neural Compressor (INC) GitHub https://github.com/intel/neural-compressor

Tips for measuring the performance of matrix
multiplication using Intel® MKL

https://www.intel.com/content/www/us/en/developer/articles/tech-
nical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-
function.html

Intel® AMX ABI https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/home

GitHub Repository https://github.com/intel/optimization-manual

Using dynamically enabled XSTATE features in
Linux user space applications

https://www.kernel.org/doc/html/latest/x86/xstate.html

https://www.intel.com/sdm
https://www.intel.com/sdm
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://intel.sharepoint.com/sites/MLPerformance/mlpc/SitePages/SPR%20Eagle%20Stream.aspx
https://github.com/intel/optimization-manual
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_optimization_guide_dldt_optimization_guide.html
https://github.com/oneapi-src/oneDNN
https://github.com/oneapi-src/oneDNN
https://oneapi-src.github.io/oneDNN/
https://oneapi-src.github.io/oneDNN/
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/optimization-for-tensorflow-installation-guide.html
https://pytorch.org/
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/intel/neural-compressor
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://gitlab.com/x86-psABIs/x86-64-ABI/-/wikis/home
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://github.com/intel/optimization-manual
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://www.kernel.org/doc/html/latest/x86/xstate.html

Ref#: 248966-048 20-2

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.1 DETECTING INTEL® AMX SUPPORT
Use the CPUID instruction described in Chapter 3.3 of the Intel® 64 and IA-32 Architecture Software
Developer’s Manual to find out whether the processor you are executing on supports Intel AMX at the
hardware level.

Specifically, when issuing the CPUID instruction with EAX register set to 7 and ECX register set to 0, the
instruction returns in the EDX register an indication on Intel AMX support of bits 22, 24, 25. They are all
set to 0 if Intel AMX is not supported and all set to 1 if it is supported by the processor.

Next step is check whether the OS has enabled Intel AMX state. For that you first need to issue the CPUID
instruction again to check whether the OS supports the XGETBV instruction, then use it to check whether
the OS has enabled the Intel AMX state save/restore.

When issuing the CPUID instruction with EAX register set to 1, the instruction returns an indication of
XGETBV support in bit 26 of the ECX register. If bit 26 is set, when issuing the XGETBV instruction with
ECX register set to 0, the instruction returns an indication on OS support in saving and restoring Intel
AMX state in bits 17 and 18 of the EAX register. Both bits should be set in order to use the Intel AMX
instructions. For additional CPUID information about Intel AMX, see Chapter 3.3 of the Intel® 64 and IA-
32 Architecture Software Developer’s Manual

Operating systems may require calling an OS API to allocate Intel AMX state. Visit LinuxAPI and Windows
APIs for more detailed information. Please see Section 20.19 for more information about Intel AMX state
management.

20.2 INTEL® AMX MICROARCHITECTURE OVERVIEW
General Intel AMX microarchitecture overview is available in Chapter 18 of Volume 1 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual.

20.2.1 INTEL® AMX FREQUENCIES
Discussion on the connection between max frequency, frequency license, and Instruction Set Architec-
ture covering Intel AVX technologies up to Intel® AVX-512 Instruction Set, is available in Section 2.5.3.
Intel AMX adds yet another license level whose max frequency is usually lower than that of the Intel AVX-
512 license.
When the Intel AMX unit utilization is lower than 15%, the processor may exceed the nominal max
frequency associated with Intel AMX license.

Using dynamically enabled XSTATE features in
Windows user space applications

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getenabledxstatefeatures

https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-
winbase-enableprocessoptionalxstatefeatures

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-
winbase-getthreadenabledxstatefeaturesv

https://docs.microsoft.com/en-us/windows/win32/api/process-
threadsapi/nf-processthreadsapi-updateprocthreadattribute

Table 20-1. Intel® AMX-Related Links

Description URL

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getenabledxstatefeatures
https://docs.microsoft.com/es-es/windows/win32/api/winbase/nf-winbase-enableprocessoptionalxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-getthreadenabledxstatefeatures
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.intel.com/sdm
https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute
https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671436

Ref#: 248966-048 20-3

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.3 INTEL® AMX INSTRUCTIONS THROUGHPUT AND LATENCY
Several Intel AMX instructions are available. Two instructions (TileLoad*) load data from the memory
hierarchy into the tile registers and one instruction (TileStore) stores the contents of a tile register into
the DCU (Data Cache Unit–first level cache). Other instructions (TDP*) execute the matrix multiplication,
operating on two input tile registers and writing the result into a third tile register. Additionally, there are
some less-frequently used instructions. The following table provides the instruction throughput and
latency counted in cycles.

NOTE
Due to the high latency of the LDTILECFG instruction we recommend issuing a single pair
of LDTILECFG and TILERELEASE operations per Intel AMX-based DL layer implemen-
tation.

20.4 DATA STRUCTURE ALIGNMENT
GEMM and Convolution input/output data structures must be 64-byte aligned for optimal performance
but should not be aligned to 128-byte, 256-byte, etc. For more details, see Tip 6 in Tips for Measuring the
Performance of Matrix Multiplication Using Intel® MKL.

Table 20-2. Intel® AMX Instruction Throughput and Latency

Instruction Throughput Latency

LDTILECFG Not Relevant 204

STTILECFG Not Relevant 19

TILETRELEASE Not Relevant 13

TDP/* 16 52

TILELOADD 8 45

TILELOADDT1 33 48

TILESTORED 16

TILEZERO 0 16

https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html
https://www.intel.com/content/www/us/en/developer/articles/technical/a-simple-example-to-measure-the-performance-of-an-intel-mkl-function.html

Ref#: 248966-048 20-4

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5 GEMMS / CONVOLUTIONS

20.5.1 NOTATION
The following notation is used for the matrices (A, B, C) and the dimensions (M, K, N) in matrix multipli-
cation (GEMM).

Figure 20-1. Matrix Notation

20.5.2 TILES IN THE INTEL® AMX ARCHITECTURE
The Intel AMX instruction set operates on tiles: large two-dimensional registers with configurable dimen-
sions. The configuration is dependent on the type of tile.

• A-tiles can have between 1-16 rows and 1-MAX_TILE_K columns.
• B-tiles can have between 1-MAX_TILE_K rows and 1–16 columns.
• C-tiles can have between 1-16 rows and 1–16 columns.

MAX_TILE_K=64/sizeof(type_t), and type_t is the type of the data being operated on. Therefore,
MAX_TILE_K=64 for (u)int8 data, and MAX_TILE_K=32 for bfloat16 data. The dimensions here are
mathematical/logical. For mapping to tile register configuration parameters, see the Intel® Architecture
Instruction Set Extensions Programming Reference.

The type of data residing in the tiles also varies depending on the type of tile.

A tiles and B tiles contain data of type_t, which can be (u)int8 or bfloat16.

• C tiles contain data of type res_type_t:
• int32 if type_t=(u)int8
• float if type_t=bfloat16

Thus, a maximum-sized tile multiplication operation for (u)int8 data type looks this way:

Ref#: 248966-048 20-5

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-2. Intel® AMX Multiplication with Max-sized int8 Tiles

TileLoad and TileStore Instructions

The tiles are loaded from memory with the TileLoad instruction and stored to memory with a TileStore
instruction. The TileLoad/TileStore instructions receive the following parameters:

• The destination/source tile of the TileLoad/TileStore.
• The source/destination location in memory for the TileLoad/TileStore.
• The stride (bytes) in memory between subsequent rows of the tile.

Ref#: 248966-048 20-6

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Lines 6—10 in Example 20-1 illustrate how a tile is loaded from memory.

For the sake of readability, a tile template class abstraction is introduced. The number of rows in the tile
and the number of column bytes per row parametrizes the abstraction.

20.5.3 B MATRIX LAYOUT
Like the Intel® DL Boost use case, the B matrix must undergo a re-layout before it can be used within the
corresponding Intel AMX multiply instruction. The re-layout procedure is as follows:

Example 20-2. B Matrix Re-Layout Procedure

The following tables illustrate the data re-layout process for a 64x16 int8 B matrix and a 32x16 bfloat16
B matrix (corresponding to the maximum-sized B-tile):

Example 20-1. Pseudo-Code for the Tilezero, TileLoad, and TileStore Instructions

template<size_t rows, size_t bytes_cols> class tile {
public:
 friend void tilezero(tile& t) {
 memset(t.v, 0, sizeof(v));
 }
 friend void tileload(tile& t, void* src, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 t.v[row][bcol] = static_cast<int8_t*>(src)[row*bytes_stride + bcol];
 }
friend void tilestore(tile& t, void* dst, size_t bytes_stride) {
 for (size_t row = 0; row < rows; ++row)
 for (size_t bcol = 0; bcol < bytes_cols; ++bcol)
 static_cast<int8_t*>(dst)[row*bytes_stride + bcol] = t.v[row][bcol];
 }
template <class TC, class TA, class TB>
friend void tdp(TC &tC, TA &tA, TB &tB);
private:
 int8_t v[rows][bytes_cols];
};

// clang-format on

template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB)
}

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N]; // Original B matrix
type_t B_mem[K/KPACK][N][KPACK]; // Re-laid B matrix

for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[k/KPACK][n][k%KPACK] = B_mem_orig[k][n];

Ref#: 248966-048 20-7

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Table 20-3. Original Layout of 32x16 bfloat16 B-Matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 95 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511

Ref#: 248966-048 20-8

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Table 20-4. Re-Layout of 32x16 bfloat16 B-Matrix

480

448

416

384

352

320

288

256

224

192

160

128

96 64 32 0

496

464

432

400

368

336

304

272

240

208

176

114

112

80 48 16

481

449

417

385

353

321

289

257

225

193

161

129

97 65 33 1

497

465

433

401

369

337

305

273

241

209

177

145

113

81 49 17

482

450

418

386

354

322

290

258

226

194

162

130

98 66 34 2

498

466

434

402

370

338

306

274

242

210

178

146

114

82 50 18

483

451

419

387

355

323

291

259

227

195

163

131

99 67 35 3

499

467

435

403

371

339

307

275

243

211

179

147

115

83 51 19

484

452

420

388

356

324

292

260

228

196

164

132

100

68 36 4

500

468

436

404

372

340

308

276

244

212

180

148

116

84 52 20

485

453

421

389

357

325

293

261

229

197

165

133

101

69 37 5

501

469

437

405

373

341

309

277

245

213

181

149

117

85 53 21

486

454

422

390

358

326

294

262

230

198

166

134

102

70 38 6

502

470

438

406

374

342

310

278

246

214

182

150

118

86 54 22

487

455

423

391

359

327

295

263

231

199

167

135

103

71 39 7

503

471

439

407

375

343

311

279

247

215

183

151

119

87 55 23

488

456

424

392

360

328

296

264

232

200

168

136

104

72 40 8

504

472

440

408

376

344

312

280

248

216

184

152

120

88 56 2 4

489

457

425

393

361

329

297

265

233

201

169

137

105

73 41 9

505

473

441

409

377

345

313

281

249

217

185

153

121

89 57 25

490

458

426

394

362

330

298

266

234

202

170

138

106

74 42 10

Ref#: 248966-048 20-9

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

506

474

442

410

378

346

314

282

250

218

186

154

122

90 58 26

491

459

427

395

363

331

299

267

235

203

171

139

107

75 43 11

507

475

443

411

379

347

315

283

251

219

187

155

123

91 59 27

492

460

428

396

364

332

300

268

236

204

172

140

108

76 44 12

508

476

444

412

380

348

316

284

252

220

188

156

124

92 60 28

493

461

429

397

365

333

301

269

237

205

173

141

109

77 45 13

509

477

445

413

381

349

317

285

253

221

189

157

125

93 61 29

494

462

430

398

366

334

302

270

238

206

174

142

110

78 46 14

510

478

446

414

382

350

318

286

254

222

190

158

126

9 5 62 30

495

463

431

399

367

335

303

271

239

207

175

143

111

79 47 15

511

479

447

415

383

351

319

287

255

223

191

159

127

95 63 31

Table 20-5. Original Layout of 64 x 16 unt8 B-Matrix

4 5 6 7 8 9 10 11 12 13 14 15

20 21 22 23 24 25 26 27 28 29 30 31

36 37 38 39 40 41 42 43 44 45 46 47

52 53 54 55 56 57 58 59 60 61 62 63

68 69 70 71 72 73 74 75 76 77 78 79

84 85 86 87 88 89 90 91 92 93 94 95

100 101 102 103 104 105 106 107 108 109 110 111

116 117 118 119 120 121 122 123 124 125 126 127

132 133 134 135 136 137 138 139 140 141 142 143

148 149 150 151 152 153 154 155 156 157 158 159

164 165 166 167 168 169 170 171 172 173 174 175

180 181 182 183 184 185 186 187 188 189 190 191

196 197 198 199 200 201 202 203 204 205 206 207

212 213 214 215 216 217 218 219 220 221 222 223

228 229 230 231 232 233 234 235 236 237 238 239

244 245 246 247 248 249 250 251 252 253 254 255

260 261 262 263 264 265 266 267 268 269 270 271

276 277 278 279 280 281 282 283 284 285 286 287

Table 20-4. (Contd.)Re-Layout of 32x16 bfloat16 B-Matrix

Ref#: 248966-048 20-10

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

292 293 294 295 296 297 298 299 300 301 302 303

308 309 310 311 312 313 314 315 316 317 318 319

324 325 326 327 328 329 330 331 332 333 334 335

340 341 342 343 344 345 346 347 348 349 350 351

356 357 358 359 360 361 362 363 364 365 366 367

372 373 374 375 376 377 378 379 380 381 382 383

388 389 390 391 392 393 394 395 396 397 398 399

404 405 406 407 408 409 410 411 412 413 414 415

420 421 422 423 424 425 426 427 428 429 430 431

436 437 438 439 440 441 442 443 444 445 446 447

452 453 454 455 456 457 458 459 460 461 462 463

468 469 470 471 472 473 474 475 476 477 478 479

484 485 486 487 488 489 490 491 492 493 494 495

500 501 502 503 504 505 506 507 508 509 510 511

516 517 518 519 520 521 522 523 524 525 526 527

532 533 534 535 536 537 538 539 540 541 542 543

548 549 550 551 552 553 554 555 556 557 558 559

564 565 566 567 568 569 570 571 572 573 574 575

580 581 582 583 584 585 586 587 588 589 590 591

596 597 598 599 600 601 602 603 604 605 606 607

612 613 614 615 616 617 618 619 620 621 622 623

628 629 630 631 632 633 634 635 636 637 638 639

644 645 646 647 648 649 650 651 652 653 654 655

660 661 662 663 664 665 666 667 668 669 670 671

676 677 678 679 680 681 682 683 684 685 686 687

692 693 694 695 696 697 698 699 700 701 702 703

708 709 710 711 712 713 714 715 716 717 718 719

724 725 726 727 728 729 730 731 732 733 734 735

740 741 742 743 744 745 746 747 748 749 750 751

756 757 758 759 760 761 762 763 764 765 766 767

772 773 774 775 776 777 778 779 780 781 782 783

788 789 790 791 792 793 794 795 796 797 798 799

804 805 806 807 808 809 810 811 812 813 814 815

820 821 822 823 824 825 826 827 828 829 830 831

836 837 838 839 840 841 842 843 844 845 846 847

852 853 854 855 856 857 858 859 860 861 862 863

868 869 870 871 872 873 874 875 876 877 878 879

884 885 886 887 888 889 890 891 892 893 894 895

900 901 902 903 904 905 906 907 908 909 910 911

916 917 918 919 920 921 922 923 924 925 926 927

Table 20-5. Original Layout of 64 x 16 unt8 B-Matrix

Ref#: 248966-048 20-11

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

932 933 934 935 936 937 938 939 940 941 942 943

948 949 950 951 952 953 954 955 956 957 958 959

964 965 966 967 968 969 970 971 972 973 974 975

980 981 982 983 984 985 986 987 988 989 990 991

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

Table 20-6. Re-Layout of 64 x 16 int8 B-Matrix

960

896

832

768

704

640

576

512

448

384

320

256

192

128

64 0

976

912

848

784

720

656

592

528

464

400

336

272

208

144

80 16

992

928

864

800

736

672

608

544

480

416

352

288

224

160

96 32

1008

944

880

816

752

688

624

560

496

432

368

304

240

176

112

48

961

897

833

769

705

641

577

513

449

385

321

257

193

129

65 1

977

913

849

785

721

657

593

529

465

401

337

273

209

145

81 17

993

929

865

801

737

673

609

545

481

417

353

289

225

161

97 33

1009

945

881

817

753

689

625

561

497

433

369

305

241

177

113

49

962

898

834

770

706

342

578

514

450

386

322

258

194

130

66 2

978

914

850

786

722

658

594

530

466

402

338

274

210

146

82 18

994

930

866

802

738

674

610

546

482

418

354

290

226

162

98 34

1010

946

882

818

754

690

626

562

498

434

370

306

242

178

114

50

963

899

835

771

707

643

579

515

451

387

323

259

195

131

67 3

979

915

851

787

723

659

595

531

467

403

339

275

211

147

83 19

995

931

867

803

739

675

611

547

483

419

355

291

227

163

99 35

1011

947

883

819

755

691

627

563

499

435

371

307

243

179

115

51

964

900

836

772

708

644

580

516

452

388

324

260

196

132

68 4

980

916

852

788

724

660

596

532

468

404

340

276

212

148

84 20

996

932

868

804

740

676

612

548

484

420

356

292

228

164

100

36

1012

948

884

820

756

692

628

564

500

436

372

308

244

180

116

52

965

901

837

773

709

645

581

517

453

389

325

261

197

133

69 5
Table 20-5. Original Layout of 64 x 16 unt8 B-Matrix

Ref#: 248966-048 20-12

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

981

917

853

789

725

661

597

533

469

405

341

277

213

149

85 21

997

933

869

805

741

677

613

549

485

421

357

293

229

165

101

37

1013

949

885

821

757

693

629

656

501

437

373

309

245

181

117

53

966

902

838

774

710

646

582

518

454

390

326

262

198

134

70 6

982

918

854

790

726

662

598

534

470

406

342

278

150

150

86 22

998

934

870

806

742

678

614

550

486

422

358

294

230

166

102

38

1014

950

886

822

758

694

630

566

502

438

374

310

246

182

118

54

967

903

839

775

711

647

583

519

455

391

327

263

199

135

71 7

983

919

855

791

727

663

599

535

571

407

343

279

215

151

87 23

999

935

871

807

743

679

615

551

487

423

359

295

231

167

103

39

1015

951

887

823

759

695

631

567

503

439

375

311

249

183

119

55

968

904

840

776

712

648

584

520

456

392

328

264

200

136

72 8

984

920

856

792

728

664

600

616

552

488

424

360

296

152

88 24

1000

936

872

808

744

680

616

552

488

424

260

296

232

168

104

40

1016

952

888

824

760

696

632

568

504

440

376

312

248

184

120

56

969

921

841

777

713

649

585

521

457

393

329

265

201

137

73 9

985

921

857

793

729

665

601

537

473

409

345

281

217

153

89 25

1001

937

873

809

745

681

617

553

489

425

361

297

233

169

105

41

1017

953

889

825

761

697

633

569

505

441

377

313

249

185

121

57

970

906

842

778

714

650

586

522

458

394

330

266

202

138

74 10

986

922

858

794

730

666

602

538

474

410

346

282

218

154

90 26

1002

938

874

810

746

682

618

554

490

426

362

298

234

170

106

42

1018

954

890

826

762

698

638

570

506

442

378

314

250

186

122

58

971

907

843

779

715

651

587

523

459

395

331

267

203

139

75 11

987

923

859

795

731

667

603

539

475

411

347

283

219

155

91 27
Table 20-6. (Contd.)Re-Layout of 64 x 16 int8 B-Matrix

Ref#: 248966-048 20-13

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

1003

939

875

811

747

683

619

555

491

427

363

299

235

171

107

43

1019

955

891

827

763

699

635

571

507

443

379

315

251

187

123

59

972

908

844

780

716

652

588

524

560

396

332

268

204

140

76 12

988

924

860

796

732

668

604

540

476

412

348

284

220

156

92 28

1004

940

876

812

748

684

620

556

492

428

364

300

236

172

108

44

1020

956

892

828

764

700

636

572

508

444

380

316

252

188

124

60

973

909

845

781

717

653

589

525

461

397

333

269

205

141

77 13

989

925

861

797

733

669

504

541

477

413

349

285

221

157

93 29

1005

941

877

813

749

685

621

557

493

429

365

301

237

173

109

45

1021

957

893

829

765

701

637

573

509

445

381

317

253

189

125

61

974

910

846

782

718

654

590

526

462

398

334

270

206

142

78 14

990

926

862

798

734

670

606

542

478

414

350

286

222

158

94 30

1006

942

878

814

750

686

622

558

494

430

366

302

238

174

110

46

1022

958

894

830

766

702

638

574

510

446

382

318

254

190

126

62

975

911

847

783

719

655

591

527

463

399

335

271

207

143

79 15

991

927

863

799

735

671

607

543

479

415

351

287

223

159

95 31

1007

943

879

815

751

687

623

559

495

431

367

303

239

175

111

47

1023

959

895

831

767

703

639

575

511

447

383

319

255

191

127

63
Table 20-6. (Contd.)Re-Layout of 64 x 16 int8 B-Matrix

Ref#: 248966-048 20-14

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.4 STRAIGHTFORWARD GEMM IMPLEMENTATION
This is GEMM reference code. Its performance is sub-optimal. Please refer to Section 20.5.5.3 for optimal
GEMM code. Begin implementation by defining the following:

Example 20-3. Common Defines

Data type_t is the type being operated upon, i.e., signed/unsigned int8 or bfloat16. For the description of
KPACK, see Section 20.5.5. The tile template class and the three functions that operate on it are the
same as the ones introduced in Example 20-3. tilezero (t) resets the contents of tile t to 0, tileload(t, src,
stride) and loads tile t with the contents of data at src with a stride of stride between consecutive rows.
tilestore(t, dst, stride) stores the contents of tile t to dst with a stride of stride between consecutive rows.
Additionally, tdp(tC,tA,tB) performs a matrix multiplication equivalent of tC=tC+tA×tB. In reality, tiles
are defined by known compile-time integers, and the actual code operating on tiles looks slightly
different. Please visit the GitHub Repository for proper usage.

1 #define M ... // Number of rows in the A or C matrices
2 #define K ... // Number of columns in the A or rows in the B matrices
3 #define N ... // Number of columns in the B or C matrices
4 #define M_ACC ... // Number of C accumulators spanning the M dimension
5 #define N_ACC ... // Number of C accumulators spanning the N dimension
6 #define TILE_M ... // Number of rows in an A or C tile
7 #define TILE_K ... // Number of columns in an A tile or rows in a B tile
8 #define TILE_N ... // Number of columns in a B or C tile
9
10 typedef ... type_t; // The type of data being operated on
11 typedef ... res_type_t; // The data type of the result
12
13 #define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword
14
15 type_t A_mem[M][K]; // A matrix
16 type_t B_mem[K/KPACK][N][KPACK]; // B matrix
17 res_type_t C_mem[M][N]; // C matrix
18
19 template<size_t rows, size_t bytes_cols> class tile;
20 template<class T> void tilezero (T& t);
21 template<class T> void tileload (T& t, void* src, size_t stride);
22 template<class T> void tilestore(T& t, void* dst, size_t stride);
23 template <class TC, class TA, class TB> void tdp(TC &tC, TA &tA, TB &tB) {
24 int32_t v;
25 for (size_t m = 0; m < TILE_M; m++) {
26 for (size_t k = 0; k < TILE_K / KPACK; k++) {
27 for (size_t n = 0; n < TILE_N; n++) {
28 memcpy(&v, &tC.v[m][n * 4], sizeof(v));
29 v += tA.v[m][k * 4] * tB.v[k][n * 4];
30 v += tA.v[m][k * 4 + 1] * tB.v[k][n * 4 + 1];
31 v += tA.v[m][k * 4 + 2] * tB.v[k][n * 4 + 2];
32 v += tA.v[m][k * 4 + 3] * tB.v[k][n * 4 + 3];
33 memcpy(&tC.v[m][n * 4], &v, sizeof(v));
34 }
35 }
36 }
37 }

https://github.com/intel/optimization-manual

Ref#: 248966-048 20-15

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The following is a simple implementation of GEMM of the matrices stored in A_mem and B_mem.

Example 20-4. Reference GEMM Implementation

This implementation is the reference point in the following discussions.

20.5.5 OPTIMIZATIONS

20.5.5.1 Minimizing Tile Loads
Redundant tile loads may severely impact performance due to the large size of the data loaded into the
tiles, unnecessary cache evictions, etc. To minimize tile loads, it is essential to utilize the data as
completely as possible once it has been loaded into the tile.

for (int n = 0; n < N; n += N_ACC*TILE_N) {
 for (int m = 0; m < M; m += M_ACC*TILE_M) {
 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
 tilezero(tC[m_acc][n_acc]);

 for (int k = 0; k < K; k += TILE_K) {
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
 }
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
 }
 }
 }
}

Ref#: 248966-048 20-16

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Location of the K Loop: Outside of the M_ACC and N_ACC Loops

The three loops in lines 8–18 of Example 20-4 could also have been written this way:

Example 20-5. K-Dimension Loop as Innermost Loop–A, a Highly Inefficient Approach

While both approaches yield correct results, there are K/TILE_K×N_ACC B tile loads in the reference
implementation. Additionally, K/TILE_K×N_ACC×M_ACC B tile loads in the implementation presented in
this section. The number of A tile loads is identical.

This approach is also characterized by excessive pressure on the memory along with an increased
number of tile loads.

Suppose the B_mem data resides in main memory. In the reference implementation, a new chunk of
TILE_K×TILE_N B data is read every M_ACC iteration of the inner loop. The inner loop then reuses the
read data. In the current implementation, when n_acc == m_acc == 0, a new chunk of TILE_K×TILE_N
B data is read every iteration of the inner loop. Then the same data is read (presumably from caches) on
subsequent iterations of n_acc, m_acc. This burst access pattern of reads from main memory results in
increased data latency and decreased performance.

Hence, keeping the K-dimension loop outside the M_ACC and N_ACC loops is recommended.

Pre-Loading Innermost Loop Tiles

Consider the following replacement code for the code in lines 8–18 of Example 20-4:

Example 20-6. Innermost Loop Tile Pre-Loading

The A-tile has been extended to an array of A-tiles (line 2) and pre-read the A tiles for the current K-loop
iteration (lines 3–4). A pre-read A-tile is used in the tile multiplication (line 9). There were

for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 for (int k = 0; k < K; k += TILE_K) {
 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 tdp(tC[m_acc][n_acc], tA, tB);
 }
 }
}

1 for (int k = 0; k < K; k += TILE_K) {
2 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
3 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
4 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
5 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
6 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
7 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
9 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
10 }
11 }
12 }

Ref#: 248966-048 20-17

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

K/TILE_K×N_ACC×M_ACC A-tile reads in the reference implementation, while there are only
K/TILE_K×M_ACC A-tile reads in the current implementation.

Hence, preallocation and pre-reading the tiles of the innermost loop (tA[M_ACC] in this case) is recom-
mended. The maximum number of tiles used at any given time in this scenario is
N_ACC×M_ACC+M_ACC+1 as opposed to N_ACC×M_ACC+2 in the reference implementation. Since this
optimization requires preallocation of an additional M_ACC-1 tiles, and since tiles are a scarce resource,
if N_ACC<M_ACC, it might prove beneficial to switch the order of the N_ACC and M_ACC loops. This way,
it is possible to allocate N_ACC-1<M_ACC-1 additional tiles:

Example 20-7. Switched Order of M_ACC and N_ACC Loops

2D Accumulator Array vs. 1D Accumulator Array

Consider Example 20-6 with the following scenarios:

• N_ACC=2,M_ACC=2

• N_ACC=4,M_ACC=1

As stated before, the number of A tile loads in lines 3–11 is M_ACC, and the number of B tile loads is
N_ACC. Thus, the total number of tile loads (M_ACC+N_ACC) is 4 in the first scenario vs. 5 in the second
one (an increase of 25%), even though both scenarios perform the same amount of work.

Hence, using 2D accumulator arrays is recommended. Selecting dimensions close to square is particu-
larly recommended (since x=y minimizes f(x,y)=x+y under the constraint x×y=const).

20.5.5.2 Software Pipelining of Tile Loads and Stores
It is a best practice to interleave instructions using different resources so they may be executed in
parallel, preventing a bottleneck involving a specific resource. Therefore, preventing sequential TileLoads
and TileStores (see lines 19–23 of Example 20-4 and lines 3–4 of Example 20-6) is recommended.
Instead, interleave them with the tdp instructions (see Example 20-8).

20.5.5.3 Optimized GEMM Implementation
Below is the original code from Example 20-4, augmented with the insights from Example 20-6, with tile
loads and stores interleaved with tdps:

for (int k = 0; k < K; k += TILE_K) {
 tile<TILE_K/KPACK, TILE_N*KPACK> tB[N_ACC];
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
 tileload(tB[n_acc], B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
 tile<TILE_M, TILE_K*sizeof(type_t)> tA;
 tileload(tA, &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
 tdp(tC[m_acc][n_acc], tA, tB[n_acc]);
 }
 }
}

Ref#: 248966-048 20-18

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-8. Optimized GEMM Implementation

While placing the tile loads and stores under conditions inside the main loop (lines 13, 16, 20), conditions
can be eliminated by sufficiently unrolling the loops.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (int m = 0; m < M; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
13 tileload(tB, B_mem[k/KPACK][n + n_acc*TILE_N], N*sizeof(type_t)*KPACK);
14 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
15 if (n_acc == 0)
16 tileload(tA[m_acc], &A_mem[m + m_acc*TILE_M][k], K*sizeof(type_t));
17 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
18 if (k == K - TILE_K) {
19 int mc = m + m_acc*TILE_M, nc = n + n_acc*TILE_N;
20 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
21 }
22 }
23 }
24 }
25 }
26}

Ref#: 248966-048 20-19

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The rest of this section presents a specific example of GEMM, implemented in low-level Intel AMX instruc-
tions. This is to show a full performance potential from using Intel AMX extensions.

Example 20-9. Dimension of Matrices, Data Types, and Tile Sizes

The following code is a specific example of the algorithm outlined in Example 20-8.

Example 20-10. Optimized GEMM Assembly Language Implementation

#define M 32
#define K 128
#define N 32
#define M_ACC 2
#define N_ACC 2
#define TILE_M 16
#define TILE_K 64
#define TILE_N 64

typedef int8_t type_t
typedef int32_t res_type_t

/*1 of 2*/
1 typedef struct {
2 uint8_t palette_id;
3 uint8_t startRow;
4 uint8_t reserved[14];
5 uint16_t cols[16];
6 uint8_t rows[16];
7 } __attribute__ ((__packed__)) tileconfig_t;
8
9 static const tileconfig_t tc = {
10 1, // palette_id
11 0, // startRow
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // reserved - must be
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // calls for 7 tiles used
14 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // rows for 7 tiles used
15 };
16
17
18 _asm {
19 ldtilecfg tc # Load tile config
20 mov r8, A_mem # Initialize register for A
21 mov r9, B_mem # Initialize register for B
22 mov r10, C_mem # Initialize register for C
23
24 mov r11, 128 # Initialize register for strides
25 tileloadd tmm6, [r9 + r11*1] # Load B for n_acc = 0, k_acc = 0
26 tileloadd tmm4, [r8 + r11*1] # Load A for m_acc = 0, k_acc = 0
27 tilezero tmm0 # Zero accumulator tile
28 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
29 tileloadd tmm5, [r8 + r11*1 + 2048] # Load A for m_acc = 1, k_acc = 0
30 tilezero tmm1 # Zero accumulator tile

Ref#: 248966-048 20-20

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Lines 1-12 in Example 20-10 define the tile configuration for this example, and contain information about
tile sizes. Tile configuration should be loaded prior to any execution of Intel AMX instructions (line 16).
Tile sizes are defined by the configuration at the load time and can’t be changed dynamically (unless
TileRelease is called). The ‘palette_id’ field in the configuration specifies the number of logical tiles avail-
able for use; palette_id == 1 means 8 logical tiles are available, named tmm0 through tmm7. This
particular example uses 7 logical tiles (tmm4, tmm5 for A, tmm6 for B, tmm0-tmm3 for C).

According to the dimensions specified, K-loop consists of 2 iterations (cf. code listing 8.1, line 11)
according to the dimensions specified in the example. Lines 23-34 implement the first iteration and lines
35-46 the second iteration. Note the interleaving of tdp and TileStore instructions to hide the high cost of
TileStore operation.

Variable Input Dimensions

The code in Example 20-8 and 20-10 process an entire matrix of inputs of size MxK. Sometimes, only
part of the input is significant, so it is beneficial to adapt the computation to the actual input size. Often,
topologies that use self-attention it is enough to process only the first m rows of the input that are signif-
icant, where m < M. For example, taking the GEMM dimensions described above with the choice of a 1D
accumulator array of N_ACC=2,M_ACC=1, when accepting data as input with at most sixteen significant
rows, we can degenerate the m loop (line 2 in Example 20-8) so as to effectively reduce the computation
by half.

It is worth noting that in variable M dimension use cases there is an advantage to 1D accumulators. Up
to N_ACC=6, M_ACC=1 dimensions are possible if N is 96 or larger, one tile for A, one tile for B and six
tiles for the accumulator.

20.5.5.4 Direct Convolution with Intel® AMX
Direct convolution is performed directly on the input data; no data replication is required. However, there
are some layout considerations.

/*2 of 2*/
31 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
32 tileloadd tmm6, [r9 + r11*1 + 64] # Load B for n_acc = 1, k_acc = 0
33 tilezero tmm2 # Zero accumulator tile
34 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
35 tilezero tmm3 # Zero accumulator tile
36 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
37 tileloadd tmm6, [r9 + r11*1 + 2048] # Load B for n_acc = 0, k_acc = 1
38 tileloadd tmm4, [r8 + r11*1 + 64] # Load A for m_acc = 0, k_acc = 1
39 tdpbssd tmm0, tmm4, tmm6 # Multiply-add tmm0 += tmm4 * tmm6
40 tilestored [r10 + r11*1], tmm0 # Store C for m_acc = 0, n_acc = 0
41 tileloadd tmm5, [r8 + r11*1 + 2112] # Load A for m_acc = 1, k_acc = 1
42 tdpbssd tmm1, tmm5, tmm6 # Multiply-add tmm1 += tmm5 * tmm6
43 tilestored [r10 + r11*1 + 2048], tmm1 # Store C for m_acc = 1, n_acc = 0
44 tileloadd tmm6, [r9 + r11*1 + 2112] # Load B for n_acc = 1, k_acc = 1
45 tdpbssd tmm2, tmm4, tmm6 # Multiply-add tmm2 += tmm4 * tmm6
46 tilestored [r10 + r11*1 + 64], tmm2 # Store C for m_acc = 0, n_acc = 1
47 tdpbssd tmm3, tmm5, tmm6 # Multiply-add tmm3 += tmm5 * tmm6
48 tilestored [r10 + r11*1 + 2112], tmm3 # Store C for m_acc = 1, n_acc = 1
49 }

Ref#: 248966-048 20-21

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Activations Layout

Similar to the Intel DL Boost use case, the activations are laid out in a layout obtained from the original
layout by the following procedure:

Example 20-11. Activations Layout Procedure

This procedure on the left side of the diagram below shows the conversion of a 3-dimensional tensor into
a 2-dimensional matrix:

Figure 20-3. Activations layout

The procedure shown on the right is identical for the outputs, e.g., the activations of the next layer in the
topology).

#define K C // K-dimension of the A matrix = channels
#define M H*W // M-dimension of the A matrix = spatial
type_t A_mem_orig[C][H][W]; // Original activations tensor
type_t A_mem[H][W][K]; // Re-laid A matrix7

for (int c = 0; c < C; ++c)
for (int h = 0; h < H; ++h)

for (int w = 0; w < W; ++w)
A_mem[h][w][c] = A_mem_orig[c][h][w];

Ref#: 248966-048 20-22

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Weights Layout

Similar to the Intel DL Boost use case, the weights are re-laid by the following procedure:

Example 20-12. Weights Re-Layout Procedure

The procedure transforms the original 4-dimensional tensor into a series of 2-dimensional matrices (a
single matrix is highlighted in orange in Example 20-12) as illustrated in the following diagram for
KH=KW=3, resulting in a series of 9 B-matrices:

Figure 20-4. Weights Re-Layout

#define KH ... // Vertical dimension of the weights
#define KW ... // Horizontal dimension of the weights
#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t B_mem_orig[K][N][KH][KW]; // Original weights
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // Re-laid B matrices

for (int kh = 0; kh < KH; ++kh)
 for (int kw = 0; kw < KW; ++kw)
 for (int k = 0; k < K; ++k)
 for (int n = 0; n < N; ++n)
 B_mem[kh][kw][k/KPACK][n][k%KPACK] = B_mem_orig[k][n][kh][kw];

Ref#: 248966-048 20-23

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.5.5 Convolution - Matrix-like Multiplications and Summations Equivalence
Figure 20-5 illustrates the equivalence between convolution and summation of a series of matrix-like
multiplications between subsets of the 2-dimensional A-matrix representing the 3-dimensional activa-
tions tensor. The 2-dimensional B-matrices correspond to the various spatial elements of the weights
filter.

Figure 20-5. Convolution-Matrix Multiplication and Summation Equivalence

The A-matrix subset participating in the matrix-like multiplication depends on the spatial weight element
in question (i.e., the kh,kw coordinates, or the index in the range 0–8 in the previous example). For each
weight element, the A-matrix’s participating rows will interact with the weight element when the filter is
slid over the activations. For example, when sliding the filter over the activations in the previous
example, weight element 0 will only interact with activation elements 0, 1, 2, 5, 6, 7, 10, 11, and 12. For
example, it will not interact with activation element four because when the filter is applied in such a
manner (i.e., weight element 0 interacts with activation element 4), weight elements 2, 5, and 8 leave
the activation frame entirely. The A-matrix subsets for several weight elements are illustrated in the
following figure.

Ref#: 248966-048 20-24

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-6. Matrix-Like Multiplications Part of a Convolution

Ref#: 248966-048 20-25

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.5.5.6 Optimized Convolution Implementation
Replace the common defines in Example 20-3 with the following:

Example 20-13. Common Defines for Convolution

#define H ... // The height of the activation frame
#define W ... // The width of the activation frame
#define MA (H*W) // The M dimension (rows) of the A matrix
#define K ... // Number of activation channels
#define N ... // Number of output channels
#define KH ... // The height of the weights kernel
#define KW ... // The width of the weights kernel
#define SH ... // The vertical stride of the convolution
#define SW ... // The horizontal stride of the convolution
#define M_ACC ... // Number of C accumulators spanning the M dimension
#define N_ACC ... // Number of C accumulators spanning the N dimension
#define TILE_M ... // Number of rows in an A or C tile
#define TILE_K ... // Number of columns in an A tile or rows in a B tile
#define TILE_N ... // Number of columns in a B or C tile

#define HC ((H-KH)/SH+1) // The height of the output frame
#define WC ((W-KW)/SW+1) // The width of the output frame
#define MC (HC*WC) // The M dimension (rows) of the C matrix

typedef ... type_t; // The type of the data being operated on
typedef... res_type_t; // The data type of the result

#define KPACK (4/sizeof(type_t)) // Vertical K packing into Dword

type_t A_mem[H][W][K]; // A matrix (equivalent to A_mem[H*W][K])
type_t B_mem[KH][KW][K/KPACK][N][KPACK]; // B matrices
res_type_t C_mem[MC][N]; // C matrix

template<size_t rows, size_t cols> class tile;

template<class T> void tilezero (T& t);
template<class T> void tileload (T& t, void* src, size_t stride);
template<class T> void tilestore(T& t, void* dst, size_t stride);
template<class TC, class TA, class TB> void tdp(TC& tC, TA& tA, TB& tB);

int mc_to_ha(int mc) {return mc / HC * SH;} // C matrix M -> A tensor h coord
int mc_to_wa(int mc) {return mc % HC * SW;} // C matrix M -> A tensor w coord

Ref#: 248966-048 20-26

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Replace the implementation in Example 20-8 with the following:

Example 20-14. Optimized Direct Convolution Implementation

The divergences highlighted in yellow in Example 20-8 include:

• The loop over M-dimension (line 2) references the M-dimension of the C-matrix (since the M-
dimensions of A and C no longer have to be the same). To get the corresponding A-matrix m index
from a C-matrix m index, one must employ the conversion functions mc_to_ha() and mc_to_wa()
(line 20).

• There are additional loops over the weights kernel dimensions KH and KW (lines 12–13), which define
the B-matrix to be used (line 16), enter into the condition for accumulator tile storing (line 24) and
computation of A-matrix coordinates (line 20).

• The stride of the A tile load must account for the convolutional horizontal stride (line 21).

Note that care should be taken to define TILE_M*M_ACC in such a way that it cleanly divides WC (the
width of the output frame), i.e., WC%(TILE_M*M_ACC)==0. Otherwise, some tiles will end up loading
data that should not be multiplied by the corresponding weight element (see Figure 20-6). Possible miti-
gations of this issue:

• An M_ACC loop with a dynamic upper limit depending on the current position in A.

1 for (int n = 0; n < N; n += N_ACC*TILE_N) {
2 for (int m = 0; m < MC; m += M_ACC*TILE_M) {
3 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
4 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
5 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
6
7 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
8 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
9 tilezero(tC[m_acc][n_acc]);
10
11 for (int k = 0; k < K; k += TILE_K) {
12 for (int kh = 0; kh < KH; ++kh) {
13 for (int kw = 0; kw < KW; ++kw) {
14 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
15 int nc = n + n_acc*TILE_N;
16 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
17 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
18 int mc = m + m_acc*TILE_M;
19 if (n_acc == 0) {
20 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
21 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
22 }
23 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
24 if (k + kh + kw == K - TILE_K + KH + KW - 2)
25 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc], N*sizeof(res_type_t));
26 }
27 }
28 }
29 }
30 }
31 }
32 }

Ref#: 248966-048 20-27

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• Use different sized A tiles (and correspondingly C tiles) depending on the current position in A (if
there are enough free tiles, performing TileConfig during the convolution is highly discouraged).

• Define TILE_M without consideration for WC and remove/disregard the “junk” data from the results at
the post-processing stage (code not shown). Care should be taken in this case concerning the
advancement of the m index (line 2) since the current assumption is that every row of every tile is
valid (corresponds to a row in the C matrix). If “junk” data is loaded, this is no longer the case: a C-
tile will have less than TILE_M rows of C.

Location of the KH, KW Loops

As shown in Example 20-5, it is ill-advised to put the loop over the K-dimension inside an inner M_ACC or
N_ACC loop. The same considerations hold in the case of the kh,kw loops. While there is no functional
obstacle precluding the positioning of the kh,kw loops further up (before lines 12-13), it is recommended
to keep them under the K loop and above the M_ACC, N_ACC loops because, during the traversal of
kh,kw with the same k value, the TileLoad of A-data (line 21) will have much overlap with A-data loaded
for previous values of kh,kw (with the same k value). This data will likely reside in the lowest-level cache.
Moving the kh,kw loops upward will reduce that likelihood.

20.6 CACHE BLOCKING

Data movement costs vary greatly depending on where the data lies in the cache hierarchy. When the
matrices involved in a GEMM or convolution are larger than the available cache, computations must
proceed in such a manner as to optimize data reuse from the cache. Here a simple cache-blocking
scheme is implemented to simultaneously process partial blocks of the A, B, and C matrices.

20.6.1 OPTIMIZED CONVOLUTION IMPLEMENTATION WITH CACHE BLOCKING
In the following example, the focus is on implementing cache blocking for the optimized convolution
implementation described in the Optimized Convolution Implementation <XREF> section. However, note
that similar changes can also be made to the optimized GEMM implementation. Alternatively, the GEMM
implementation can be derived as a special case of convolution with KH=KW=1 and SH=SW=1.

In addition to the common defines in Example 20-13, add the following:

Example 20-15. Additional Defines for Convolution with Cache Blocking

#define MC_CACHE ... // Extent of cache block along the M dimension of the C matrix
#define K_CACHE ... // Extent of cache block along the K dimension
#define N_CACHE ... // Extent of cache block along the N dimension
typedef ... acc_type_t; // The accumulation data type (either int32 or float)
acc_type_t aC_mem[M_ACC][N_ACC][TILE_M][TILE_N]; // Accumulator buffers of C

Ref#: 248966-048 20-28

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Replace the implementation in Example 20-14 with the following:

Example 20-16. Optimized Convolution Implementation with Cache Blocking

1 for (int nb = 0; nb < N; nb += N_CACHE) {
2 for (int mb = 0; mb < MC; mb += MC_CACHE) {
3 for (int kb = 0; kb < K; kb += K_CACHE) {
4 for (int n = nb; n < nb + N_CACHE; n += N_ACC*TILE_N) {
5 for (int m = mb; m < mb + MC_CACHE; m += M_ACC*TILE_M) {
6 tile<TILE_M, TILE_N*sizeof(res_type_t)> tC[M_ACC][N_ACC];
7 tile<TILE_M, TILE_K*sizeof(type_t)> tA[M_ACC];
8 tile<TILE_K/KPACK, TILE_N*KPACK> tB;
9
10 for (int n_acc = 0; n_acc < N_ACC; ++n_acc)
11 for (int m_acc = 0; m_acc < M_ACC; ++m_acc)
12 if (kb == 0)
13 tilezero(tC[m_acc][n_acc]);
14 else {
15 int m_aC = (m - mb) / TILE_M + m_acc;
16 int n_aC = (n - nb) / TILE_N + n_acc;
17 tileload(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
18 TILE_N*sizeof(acc_type_t));
19 }
20
21 for (int k = kb; k < kb + K_CACHE; k += TILE_K) {
22 for (int kh = 0; kh < KH; ++kh) {
23 for (int kw = 0; kw < KW; ++kw) {
24 for (int n_acc = 0; n_acc < N_ACC; ++n_acc) {
25 int nc = n + n_acc*TILE_N;
26 tileload(tB, B_mem[kh][kw][k/KPACK][nc], N*sizeof(type_t)*KPACK);
27 for (int m_acc = 0; m_acc < M_ACC; ++m_acc) {
28 int mc = m + m_acc*TILE_M;
29 if (n_acc == 0) {
30 int ha = mc_to_ha(mc)+kh, wa = mc_to_wa(mc)+kw;
31 tileload(tA[m_acc], &A_mem[ha][wa][k], K*SW*sizeof(type_t));
32 }
33 tdp(tC[m_acc][n_acc], tA[m_acc], tB);
34 if (k + kh + kw == K - TILE_K + KH + KW - 2)
35 tilestore(tC[m_acc][n_acc], &C_mem[mc][nc],
36 N*sizeof(res_type_t));
37 else if (k + kh + kw == kb + K_CACHE - TILE_K + KH + KW - 2) {
38 int m_aC = (m - mb) / TILE_M + m_acc;
39 int n_aC = (n - nb) / TILE_N + n_acc;
40 tilestore(tC[m_acc][n_acc], &aC_mem[m_aC][n_aC],
41 TILE_N*sizeof(acc_type_t));
42 }
43 }
44 }
45 }
46 }
47 }
48 }
49 }
50 }
51 }
52 }

Ref#: 248966-048 20-29

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The loops over the N, MC, and K dimensions are replaced by loops over cache blocks of N, MC, and K.

Additional loops over the entire N, MC, and K-dimensions are added at the outermost level. These loops
have a step size equal to the cache blocks of N, MC, and K.

In the case of cache blocking along the K-dimension, additional calls to TileLoad and TileStore are
required to load and store intermediate accumulation results. Note that this adds additional memory
traffic, especially for int8 output data types (as Accumulation data type is either int32_t or float). For this
reason, it is generally not advisable to block along the K dimension.

For simplicity, assume the following relationships:

• N is an integer multiple of N_CACHE: an integer multiple of N_ACC*TILE_N.
• MC is an integer multiple of MC_CACHE: an integer multiple of M_ACC*TILE_M. As before, the

condition WC%(TILE_M*M_ACC)==0 still holds.
• K is an integer multiple of K_CACHE: an integer multiple of TILE_K.

Define the following set of operations as the compute kernel of the optimized convolution implementa-
tion. First, initialize the accumulation tiles to zero (line 13) for an M_ACC*TILE_M x N_ACC*TILE_N
chunk of the C-matrix. Next, for each of the KH*KW B-matrices, the matrix multiplication of the corre-
sponding M_ACC*TILE_M x K chunk of the A-matrix by a K x N_ACC*TILE_N chunk of the B-matrix is
performed, each time accumulating to the same set of accumulation tiles (lines 18–30). Finally, the
results are stored in the C-matrix (line 32).

Continue with the computation of a full cache block of C-matrix, ignoring any blocking along the K-
dimension. First, the kernel is performed for the first chunks of the A, B, and C cache blocks. Next, the
chunks of A and C advance along the M dimension, and the kernel is repeated with the same chunk set of
the B-matrices. The above step is repeated until the last chunks of A and C in the current cache block
have been accessed. Next, the chunks of B and C are advanced along the N-dimension by N_ACC*TILE_N
and the chunk of A returns to the beginning of its cache block.

Observe the following from the above description of the computation of a full cache block of the C-
matrix:

• For each kernel iteration, it is better if the current chunk of matrix A (roughly
KH*M_ACC*TILE_M*K*sizeof(type_t)) fits into the DCU. This allows for maximal data reuse between
the partially overlapping regions of A that need to be accessed by the different B matrices.

• Advancing from one chunk of matrix A to the next, it is better if the current chunk set of the B
matrices (in total, KH*KW*K*N_ACC*TILE_N*sizeof(type_t)) fits into the DCU.

• Advancing from one chunk set of the B matrices to the next, it is better if the current cache block of
matrix A fits into the MLC.

• Advancing from one cache block of matrix A to the next, it is better if the current cache block of the
B matrices (in total, KH*KW*K*N_CACHE*sizeof(type_t)) fits into the MLC.

From these observations, a general cache blocking strategy is choosing MC_CACHE and N_CACHE to be as
large as possible while keeping the A, B, and C cache blocks in the MLC.

Intel® AMX-Specific Considerations

A specific feature of Intel AMX-accelerated kernels to keep in mind when applying the previous cache-
blocking recommendations is any post-processing of results from the Intel AMX unit (e.g., adding bias,
dequantizing, converting between data types) must occur by way of vector registers. Thus, a buffer is
needed to store results from the accumulation tiles and load them into vector registers for post-
processing. Note that if acc_type_t is the same as res_type_t, the C matrix itself can be used to store
intermediate results. However, the buffer is small (at most 4KB for the accumulation strategies described
in “2D Accumulator Array vs. 1D Accumulator Array”) and easily fits into the DCU. While it should still be
considered when determining the optimal cache block partitioning, it is unlikely to influence kernel
performance strongly.

Ref#: 248966-048 20-30

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.7 MINI-BATCHING IN LARGE BATCH INFERENCE
Layers have different sizes and shapes, which require different cache and memory-blocking strategies.
There are layers with a small spatial dimension (M) and relatively larger shared dimension (K) and SIMD
dimension (N). In such layers, the weights are significantly larger than the inputs. Therefore, most of the
load operations are weights matrix loads whose cost is high when the weights reside in memory or the
last level cache.

Running a large batch allows employing an optimization that amortizes the cost of loading the weight
matrix. The idea is to use the same weights for multiple inputs, e.g., execute the same layer with multiple
images. This optimization is highly applicable in CNNs where the inputs of the first layers are large while
the weights are relatively small but end with small input images and large weight matrices. Optimal
execution of the topology starts in the instance or image affinity, where a single input goes through one
layer after another before the next input is retrieved. At some point, the topology execution switches to
layer affinity, where the same layer processes several inputs (mini-batch) before moving forward to the
next layer.

For example, in ResNet-50, the conv-1 to conv-4 layers have relatively large IFMs and smaller weight
matrices. However, many weight matrices are larger than MLC size (mid-level cache) in the conv-5
layers. The switchover point from image affinity to layer affinity on a 4th Generation Intel® Xeon®
Processor microarchitecture is the first layer of conv-5.

The diagram below illustrates six layers with four instances per thread (mini-batch of four). Boxes with
identical colors identify the same layers in each column. Arrows flowing downward through each column’s
layers represent the data flow of a particular instance. Translucent red arrows identify the execution
order of layers with corresponding instances. The first four layers of the diagram have instance (aka
image) affinity, and the last two have layer affinity.

Figure 20-7. Batching Execution Using Six Layers with Four Instances Per Thread

On Resnet-50, this optimization can yield a 17% performance gain.

Ref#: 248966-048 20-31

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.8 NON-TEMPORAL TILE LOADS
When a regular tile load is issued, the data for the tile are placed in L2, L1, and then in the tile register
(DRAM/L3->L2->L1->tile register), as with any other register load. This has the well-known benefit of
reduced data read latency due to data proximity when recently accessed data are reaccessed after a
short time. However, indiscriminate application of this approach might sometimes prove detrimental.

Consider the code in Example 20-4, referring to the unoptimized, unblocked implementation for
simplicity. The five loops in the code listing alongside the total input (A) matrix data and weights (B)
matrix data accessed at each loop level is shown in the following table. The original row in the code listing
is provided for convenience:

20.8.1 PRIORITY INVERSION SCENARIOS WITH TEMPORAL LOADS
For the following discussion, assume:

• The data type is int8 (i.e., each element in the table above takes 1 byte).
• TILE_M=16, TILE_K=64, TILE_N=16 (i.e., all tiles are of size 1kB).
• L1 cache size is 32kB.
• M_AC=N_ACC=2.

Scenario One:

Consider the following scenario, including M=256, K=1024, and N=256.

Table 20-8 illustrates accessed data sizes:

At the k loop level, the combined sizes of A and B accessed data will overflow the L1 cache by a factor of
two. Proceeding to the m-level since m is progressing, new A-data are constantly read (a total of 256kB-
32kB=224kB new A data), while the same 32kB of B data are being accessed repeatedly. Thus, a priority
inversion occurs: new A-data placed in the L1 cache repeatedly are accessed only once. They evict the
32kB of B data that are accessed eight times. Placement of A data in the L1 cache is not beneficial: the

Table 20-7. Five Loops in Example 20-4

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N] M×K K×N

2 m [0:M:M_ACC×TILE_M] M×K
K×N_ACC×TILE_N

8 k [0:K:TILE_K] MC_CACHE×K

9 n acc [0:N_ACC:1]
M_ACC×TILE_M×TILE_K TILE_K×N_ACC×TILE_N

12 m ac [0:M_ACC:1]

Table 20-8. Accessed Data Sizes: Scenario One

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]
256kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K] 32kB

9 n acc [0:N_ACC:1]
32kB 2kB

12 m ac [0:M_ACC:1]

Ref#: 248966-048 20-32

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

next time the same data are accessed will be in the n loop after 256kB (x8 L1 cache size) of A data has
been read. Additionally, it is detrimental because it causes repeated eviction of 32kB of B data that could
have been read from the L1 cache eight times.

Scenario Two:

Consider the following scenario, including M=32, K=1024, and N=256. Here, the M-dimension is covered
in the m_acc loop, and the loop over m is redundant. The priority inversion is: as n advances, new B-data
(accessed only once) repeatedly evict 32kB of A-data that could have been read (8 times) from the L1
cache had it not been pushed out by B-data.

Here, the M-dimension is covered in the m_acc loop, and the loop over m is redundant. The priority
inversion is: as n advances, new B-data (accessed only once) repeatedly evict 32kB of A-data that
could have been read (8 times) from the L1 cache had it not been pushed out by B-data.

These two basic scenarios can be readily extended to the blocked code in Example 20-16.

NOTE
Due to the nature of convolution, the loops over kh, kw reuse most of the A-data.

The innermost loops m_acc, n_acc, kh,kw will access at most M_ACC kB of A data and KH×KW×N_ACC
kB of B-data, which, in some cases (e.g., KH=KW=3, N_ACC=4) might already overflow the L1 cache
size. Thus, several opportunities for priority inversions exist in this more complex loop structure,
depending on the parameters in the table above:

Table 20-9. Accessed Data Sizes: Scenario Two

Row Var Variable Range A Data Size B Data Size

1 n [0:N:N_ACC×TILE_N]

32kB

256kB

2 m [0:M:M_ACC×TILE_M]
32kB

8 k [0:K:TILE_K]

9 n acc [0:N_ACC:1]
2kB 2kB

12 m ac [0:M_ACC:1]

Table 20-10. Accessed Data Sizes Extended to Blocked Code

Row Var Variable Range A Data Size B Data Size

1 nb [0:N:N_CACHE] M×K

2 mb [0:MC:MC_CACHE] M×K

3 kb [0:K:K_CACHE] MC_CACHE×K

4 n [nb:nb+N_CACHE:N_ACC×TILE_N]

MC_CACHE×K_CACHE
K_CACHE×KH×KW×N_ACC×TILE_
N

5 m [mb:mb+MC_CACHE:M_ACC×TILE_M]

18 k [kb:kb+K_CACHE:TILE_K]

19 kh [0:KH:1] /*/*
TILE_K×KH×KW×N_ACC×TILE_N

20 kw [0:KW:1]

M_ACC×TILE_M×TILE_K21 n acc [0:N_ACC:1]
TILE_K×N_ACC×TILE_N

24 m ac [0:M_ACC:1]

Ref#: 248966-048 20-33

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• B-data evicting reusable A-data at the kh,kw loops level.
• A-data evicting reusable B-data at the m loop level.
• B-data evicting reusable A-data at the n loop level.
• A-data evicting reusable B-data at the mb loop level.
• B-data evicting reusable A-data at the nb loop level.

Solution to Priority Inversions: Non-Temporal Loads

Intel AMX architecture introduces a way to load tile registers bypassing the L1 cache via non-temporal
tile loads (TILELOADDT1). This allows the user to deal with priority inversions such as those described
above by loading the large, non-reusable data chunk with non-temporal loads. Thus, the larger chunk is
prevented from evicting the smaller, frequently used data chunk. In Table 20-8, the A-tiles are loaded
with non-temporal loads while loading B-tiles with temporal loads. This ensures the B-tile loads at the m
loop level will all come from the L1 cache. In Table 20-9, the B-tiles are loaded with non-temporal loads
while loading A-tiles with temporal loads, thus ensuring that the A-tile loads at the n loop level will all
come from the SL1 cache.

20.9 USING LARGE TILES IN SMALL CONVOLUTIONS TO MAXIMIZE DATA
REUSE

A convolution with a small-sized input frame can make the Intel AMX computation inefficient.

Consider the following example: a 7x7 input frame, with padding of 1 (size including padding is 9x9),
convolved with a 3x3 filter to produce a 7x7 output frame.

Figure 20-8 shows the pieces participating in the convolution (in yellow) interacting with the khaki=0,0
weight element.

Figure 20-8. A Convolution Example

Thus, the yellow parts of the input frame are the only ones that should be loaded into A-tiles when
processing weight element kh,kw=0,0. The white parts of the input frame should be ignored. This
requires the number of tile rows to be set at seven, utilizing less than half of the A-tile, reducing B
(weights) data reuse by a factor of two. Each A-tile is now half the size, and seven tiles are required to
cover the spatial dimension. Because there are not seven tiles, B-tiles must be loaded twice as many
times, potentially leading to significant performance degradation, depending on the size of the weights.
This is usually inversely proportional to the spatial size of the input frame).

Figure 20-9 shows three A-tiles with sixteen rows and one tile with seven rows to cover the entire spatial
dimension of the convolution.

Ref#: 248966-048 20-34

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-9. A Convolution Example with Large Tiles.

Each tile is highlighted differently. The green, blue, and orange tiles now load those two “extra” pieces
previously ignored. Those pieces will waste compute resources and take up two rows in the accumulator
tiles. The user may choose to ignore those rows in subsequent computations (e.g., int8-quantization,
RELU, etc.), complicating the implementation. The potential benefit of increased B-data reuse could be
dramatic, however.

20.10 HANDLING INCONVENIENTLY-SIZED ACTIVATIONS
Occasionally, the spatial dimensions of an activation might be ill-suited for efficient tiling with tiles.
Consider a GEMM with activations’ M=100. This poses a challenge: while the M dimension can be neatly
tiled by ten tiles, each with ten rows, this approach is inefficient since a larger M dimension of 112
requires only seven tiles with sixteen rows. This means that the data reuse for M=100 is 30% worse than
for M=112.

The following solutions will be useful:

1. Define two types of A- and C-tiles – tiles with 16 rows and one tile with four. Use tiles of the first type
for M=0..9 and the second type tile for M=96..99.

2. Allocate extra space in A and C buffers, as if M=112, and use tiles with 16 rows exclusively. The extra
space need not be zeroed out or otherwise prepared in any way. In this case, the last (seventh) tile
will load four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111). At the output,
tile C will have four meaningful rows (M=96..99) and twelve “garbage” rows (M=100..111) which the
user can then ignore.

The first solution does not require tampering with the A and C buffers and computes 100 tile rows,
producing a clean result. Still, it requires additional A- and C-tiles. unused throughout the computation
except at the very end. Since only eight tiles are available, this requirement can be costly and might
reduce the data reuse (e.g., to use a 2D accumulator array, you would need three x2 C-tiles, two A-tiles,
and two B-tiles, equaling ten tiles). The second solution avoids this requirement by complicating buffer
handling and paying with additional loads, compute, and storing (it loads, computes, and stores 112 tile
rows).

Ref#: 248966-048 20-35

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11 POST-CONVOLUTION OPTIMIZATIONS
Most Intel AMX-friendly applications are from the Deep Learning domain, where the data flows through
multiple layers. It is often necessary to process the convolution output before passing it as an input to the
next layer (processing operations depend on a specific application). This stage is called post-convolu-
tion.

20.11.1 POST-CONVOLUTION FUSION
As with Intel AVX-512 code, a critical optimization is the “fusion” of post-convolutional operations to the
convolutional data they operate upon. Fusion reduces the memory hierarchy thrashing. Additionally,
fusing the quantization step gains x2 (for bfloat16 data type) or x4 (for int8 data type) compute band-
width, and reduces memory bandwidth by x2 or x4, respectively.

Consider the code in Example 20-8. Lines 7-24 contain the entire GEMM operation for any M, N coordi-
nate in the output. Thus, the optimal location to post-process the data computed in lines 7-24 is right
before line 24 while it is still in the low-level cache.

In Example 20-17, blue code illustrates a fully unrolled example from line 7 through 24, for int8 GEMM
with K=192, N_ACC=M_ACC=2, TILE_M=2, TILE_K=64, TILE_N=16. The convolution code is fused with
post-convolution code (blue) that quantizes the output and ReLU. To keep the post-convolution code in
the example short, an unrealistically low value of TILE_M=2 was chosen.

In that example, an additional buffer, temporary_C, contains the convolutional results of M_ACCxN_ACC
tiles. The results are stored at the end of the convolutional part and loaded during the post-convolutional
part. A temporary buffer is required because the size of the post-processed data is four times smaller.
Hence, the convolutional output cannot be written directly to the output buffer.

The GPRs r8, r9, r10, r11, and r14 point to the current location in the A, B, C, temporary_C, and q_bias
(which holds the quantization factors and biases) buffers, respectively.

The macros A_OFFSET(m,k), B_OFFSET(k,n), C_OFFSET(m,n), C_TMP_OFFSET(m,n), Q_OFFSET(n),
and BIAS_OFFSET(n) receive as arguments m,k,n tile indices and return the offset of the data from
r8,r9,r10, r11, and r14, respectively.

Ref#: 248966-048 20-36

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-17. Convolution Code Fused with Post-Convolution Code

/*1 of 2*/
1 #define TILE_N_B (N)
2 #define A_OFFSET(m,k) ((m)*K*TILE_M + (k)*TILE_K)
3 #define B_OFFSET(k,n) ((k)*N*TILE_N*4 + (n)*TILE_N*4)
4 #define C_OFFSET(m,n) ((m)*N*TILE_M + (n)*TILE_N)
5 #define C_TMP_OFFSET(m,n) ((m)*N*TILE_M*4 + (n)*TILE_N*4)
6 #define Q_OFFSET(n) ((n)*TILE_N*4)
7 #define BIAS_OFFSET(n) ((n)*TILE_N*4 + N*4)
8
9 static const tileconfig_t tc = {
10 1, // Palette ID
11 0, // Start row
12 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Reserved – must be 0
13 64, 64, 64, 64, 64, 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Cols for 7 tiles used
14 2, 2, 2, 2, 2, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0 // Rows for tiles used: 2 for A, C,
15 // 16 for B
16 };
17
18 ldtilecfg tc // Load tile config
19 mov r12, 192 // A stride
20 mov r13, 128 // B, C_TMP stride
21 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
22 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
23 tilezero tmm0 // Zero acc [m,n] = [0,0]
24 tdpbusd tmm0, tmm4, tmm5
25 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
26 tilezero tmm2 // Zero acc [m,n] = [0,1]
27 tdpbusd tmm2, tmm4, tmm6
28 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
29 tilezero tmm1 // Zero acc [m,n] = [1,0]
30 tdpbusd tmm1, tmm4, tmm5
31 tilezero tmm3 // Zero acc [m,n] = [1,1]
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 tdpbusd tmm0, tmm4, tmm5
36 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
37 tdpbusd tmm2, tmm4, tmm6
38 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
39 tdpbusd tmm1, tmm4, tmm5
40 tdpbusd tmm3, tmm4, tmm6
41 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
42 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
43 tdpbusd tmm0, tmm4, tmm5
44 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
45 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]

Ref#: 248966-048 20-37

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 2*/
46 tdpbusd tmm2, tmm4, tmm6
47 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
48 tileloadd tmm4, [r8 + r12*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
49 tdpbusd tmm1, tmm4, tmm5
50 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
51 tdpbusd tmm3, tmm4, tmm6
52 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
53
54 vcvtdq2ps zmm0 , [r11 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
55 vmovups zmm1 , [r14 + Q_OFFSET(0)] // q-factors for N=0
56 vmovups zmm2 , [r14 + BIAS_OFFSET(0)] // biases for N=0
57 vfmadd213ps zmm0 , zmm1 , zmm2 // zmm0 = zmm0 * q + b
58 vcvtps2dq zmm0 , zmm0 // float -> int32
59 vpxord zmm3 , zmm3 , zmm3 // Prepare zero ZMM
60 vpmaxsd zmm0 , zmm0 , zmm3 // RELU (int32)
61 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
62 vcvtdq2ps zmm4 , [r11 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
63 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
64 vcvtps2dq zmm4 , zmm4 // float -> int32
65 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
66 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
67 vcvtdq2ps zmm5 , [r11 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
68 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
69 vcvtps2dq zmm5 , zmm5 // float -> int32
70 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
71 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
72 vcvtdq2ps zmm6 , [r11 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
74 vcvtps2dq zmm6 , zmm6 // float -> int32
75 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
76 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
77 vcvtdq2ps zmm7 , [r11 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
78 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
79 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
80 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
81 vcvtps2dq zmm7 , zmm7 // float -> int32
82 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
83 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
84 vcvtdq2ps zmm10, [r11 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
85 vfmadd213ps zmm10, zmm8 , zmm9 // zmm10 = zmm10 * q + b
86 vcvtps2dq zmm10, zmm10 // float -> int32
87 vpmaxsd zmm10, zmm10, zmm3 // RELU (int32)
88 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
89 vcvtdq2ps zmm11, [r11 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float
90 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
91 vcvtps2dq zmm11, zmm11 // float -> int32
92 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
93 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
94 vcvtdq2ps zmm12, [r11 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
95 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
96 vcvtps2dq zmm12, zmm12 // float -> int32
97 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
98 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8

Ref#: 248966-048 20-38

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.11.2 INTEL® AMX AND INTEL® AVX-512 INTERLEAVING (SW PIPELINING)
A modern CPU has multiple functional units that can execute different instructions simultaneously. For
example, a load instruction and an arithmetic instruction can execute in parallel. A commonly used
approach for maximizing the utilization of various resources in parallel is the out-of-order execution,
where the CPU might alter the order of the instructions to achieve higher resource utilization.

Intel AMX compute instructions are prime candidates for optimization because they utilize resources very
lightly (1/2 of the available ALU ports, 1/TILE_M of the time).

The blue post-convolutional code of one iteration could, theoretically, execute in parallel to the Bold code
in lines 3 through 25 (before the first TileStore) of the next iteration, where iteration is the execution of
the code in Example 20-17. Unfortunately, this cannot be done automatically and efficiently by the CPU:
since the convolution (Bold) and post-convolution (blue) parts of the code tend to be sizable, the CPU
can only overlap small portions of them efficiently before it runs out of resources in the out-of-order
machine. Thus, a manual (SW) solution is required.

As previously written, the blue code before the first TileStore can be run in parallel with the green code
of the next iteration. This would overwrite temporary_C memory, which the post-convolution code reads
from. To remove this dependency and maximize parallel execution, use double-buffering on tempo-
rary_C. Temporary_C would thus contain two buffers, interchanged every iteration.

In Example 20-28, the content deviates from the previous example by interleaving the current iteration’s
convolutional code with the previous iteration’s post-convolutional code. Temporary_C is double-buff-
ered, with r11 pointing to the buffer of the current iteration and r12 pointing to the previous iteration’s
buffer. They are exchanged at the end of the iteration.

Example 20-18. An Example of a Short GEMM Fused and Pipelined with Quantization and ReLU

/*1 of 3*/
1 ldtilecfg tc // Load tile config
2 mov r15, 192 // A stride
3 mov r13, 128 // B, C_TMP stride
4 tileloadd tmm5, [r9 + r13*1 + B_OFFSET(0,0)] // Load B [k,n] = [0,0]
5 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(0,0)] // Load A [m,k] = [0,0]
6 tilezero tmm0 // Zero acc [m,n] = [0,0]
7 vcvtdq2ps zmm0, [r12 + C_TMP_OFFSET(0,0) + 0*TILE_N_B] // int32 -> float
8 vmovups zmm1, [r14 + Q_OFFSET(0)] // q-factors for N=0
9 vmovups zmm2, [r14 + BIAS_OFFSET(0)] // biases for N=0
10 vfmadd213ps zmm0, zmm1, zmm2 // zmm0 = zmm0 * q + b
11 vcvtps2dq zmm0, zmm0 // float -> int32
12 vpxord zmm3, zmm3, zmm3 // Prepare zero ZMM
13 vpmaxsd zmm0, zmm0, zmm3 // RELU (int32)
14 tdpbusd tmm0, tmm4, tmm5
15 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(0,1)] // Load B [k,n] = [0,1]
16 tilezero tmm2 // Zero acc [m,n] = [0,1]
17 vpmovusdb [r10 + C_OFFSET(0,0) + 0*TILE_N_B], zmm0 // uint32 -> uint8
18 vcvtdq2ps zmm4 , [r12 + C_TMP_OFFSET(0,0) + 4*TILE_N_B] // int32 -> float
19 vfmadd213ps zmm4 , zmm1 , zmm2 // zmm4 = zmm4 * q + b
20 tdpbusd tmm2, tmm4, tmm6
21 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,0)] // Load A [m,k] = [1,0]
22 tilezero tmm1 // Zero acc [m,n] = [1,0]
23 vcvtps2dq zmm4 , zmm4 // float -> int32
24 vpmaxsd zmm4 , zmm4 , zmm3 // RELU (int32)
25 vpmovusdb [r10 + C_OFFSET(0,0) + 1*TILE_N_B], zmm4 // uint32 -> uint8
26 tdpbusd tmm1, tmm4, tmm5
27 tilezero tmm3 // Zero acc [m,n] = [1,1]

Ref#: 248966-048 20-39

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 3*/
28 vcvtdq2ps zmm5 , [r12 + C_TMP_OFFSET(1,0) + 0*TILE_N_B] // int32 -> float
29 vfmadd213ps zmm5 , zmm1 , zmm2 // zmm5 = zmm5 * q + b
30 vcvtps2dq zmm5 , zmm5 // float -> int32
31 vpmaxsd zmm5 , zmm5 , zmm3 // RELU (int32)
32 tdpbusd tmm3, tmm4, tmm6
33 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(1,0)] // Load B [k,n] = [1,0]
34 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,1)] // Load A [m,k] = [0,1]
35 vpmovusdb [r10 + C_OFFSET(1,0) + 0*TILE_N_B], zmm5 // uint32 -> uint8
36 vcvtdq2ps zmm6 , [r12 + C_TMP_OFFSET(1,0) + 4*TILE_N_B] // int32 -> float
37 vfmadd213ps zmm6 , zmm1 , zmm2 // zmm6 = zmm6 * q + b
38 tdpbusd tmm0, tmm4, tmm5
39 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(1,1)] // Load B [k,n] = [1,1]
40 vcvtps2dq zmm6 , zmm6 // float -> int32
41 vpmaxsd zmm6 , zmm6 , zmm3 // RELU (int32)
42 vpmovusdb [r10 + C_OFFSET(1,0) + 1*TILE_N_B], zmm6 // uint32 -> uint8
43 tdpbusd tmm2 , tmm4, tmm6
44 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(1,1)] // Load A [m,k] = [1,1]
45 vcvtdq2ps zmm7 , [r12 + C_TMP_OFFSET(0,1) + 0*TILE_N_B] // int32 -> float
46 vmovups zmm8 , [r14 + Q_OFFSET(1)] // q-factors for N=1
47 vmovups zmm9 , [r14 + BIAS_OFFSET(1)] // biases for N=1
48 vfmadd213ps zmm7 , zmm8 , zmm9 // zmm7 = zmm7 * q + b
49 vcvtps2dq zmm7 , zmm7 // float -> int32
50 vpmaxsd zmm7 , zmm7 , zmm3 // RELU (int32)
51 tdpbusd tmm1 , tmm4, tmm5
52 vpmovusdb [r10 + C_OFFSET(0,1) + 0*TILE_N_B], zmm7 // uint32 -> uint8
53 vcvtdq2ps zmm10 , [r12 + C_TMP_OFFSET(0,1) + 4*TILE_N_B] // int32 -> float
54 vfmadd213ps zmm10 , zmm8 , zmm9 // zmm10 = zmm10 * q + b
55 tdpbusd tmm3 , tmm4, tmm6
56 tileloadd tmm5 , [r9 + r13*1 + B_OFFSET(2,0)] // Load B [k,n] = [2,0]
57 tileloadd tmm4 , [r8 + r15*1 + A_OFFSET(0,2)] // Load A [m,k] = [0,2]
58 vcvtps2dq zmm10 , zmm10 // float -> int32
59 vpmaxsd zmm10 , zmm10, zmm3 // RELU (int32)
60 vpmovusdb [r10 + C_OFFSET(0,1) + 1*TILE_N_B], zmm10 // uint32 -> uint8
61 tdpbusd tmm0, tmm4, tmm5
62 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,0)], tmm0 // Store C tmp [m,n] = [0,0]
63 tileloadd tmm6, [r9 + r13*1 + B_OFFSET(2,1)] // Load B [k,n] = [2,1]
64 vcvtdq2ps zmm11, [r12 + C_TMP_OFFSET(1,1) + 0*TILE_N_B] // int32 -> float
65 vfmadd213ps zmm11, zmm8 , zmm9 // zmm11 = zmm11 * q + b
66 vcvtps2dq zmm11, zmm11 // float -> int32
67 vpmaxsd zmm11, zmm11, zmm3 // RELU (int32)
68 tdpbusd tmm2, tmm4, tmm6
69 tilestored [r11 + r13*1 + C_TMP_OFFSET(0,1)], tmm2 // Store C tmp [m,n] = [0,1]
70 tileloadd tmm4, [r8 + r15*1 + A_OFFSET(1,2)] // Load A [m,k] = [1,2]
71 vpmovusdb [r10 + C_OFFSET(1,1) + 0*TILE_N_B], zmm11 // uint32 -> uint8
72 vcvtdq2ps zmm12, [r12 + C_TMP_OFFSET(1,1) + 4*TILE_N_B] // int32 -> float
73 vfmadd213ps zmm12, zmm8 , zmm9 // zmm12 = zmm12 * q + b
74 tdpbusd tmm1, tmm4, tmm5
75 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,0)], tmm1 // Store C tmp [m,n] = [1,0]
76 vcvtps2dq zmm12, zmm12 // float -> int32
77 vpmaxsd zmm12, zmm12, zmm3 // RELU (int32)
78 vpmovusdb [r10 + C_OFFSET(1,1) + 1*TILE_N_B], zmm12 // uint32 -> uint8
79 tdpbusd tmm3, tmm4, tmm6

Ref#: 248966-048 20-40

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

With the exception of a larger TILE_M (N_ACC=M_ACC=2, TILE_M=16, TILE_K=64, TILE_N=16) on a
[256x192] x [192x256] GEMM, application of this algorithm with the parameters laid out in section
Section 20.8.1 yielded an 18.5% improvement in running time vs. the non-interleaved code described in
Section 20.11.1.

20.11.3 AVOIDING THE H/W OVERHEAD OF FREQUENT OPEN/CLOSE OPERATIONS IN
PORT FIVE

When the processor executes Intel AMX compute instructions (TDP*), it usually closes port five (one of
the two Intel AVX-512 FMA ports) to conserve power. When the processor senses no more Intel AMX
compute instructions in the pipeline, it opens port five. This open/close operation stalls the pipeline for
a few cycles. Up to 20% performance degradation may be observed when the Intel AVX-512 instruction
block contains 100 to 300 Intel AVX-512 instructions.
We recommend adding one or two TileZero instructions in the middle of the green block, roughly one
hundred Intel AVX-512 instructions apart. Such an addition ensures that port five remains closed during
blocks of up to three hundred Intel AVX-512 instructions. For longer blocks, it is preferable not to insert
TileZero since longer blocks execute faster on two open FMA ports. The processor does not open port
five for blocks shorter than one hundred Intel AVX-512 instructions, so no special handling is necessary.

NOTE

The TileZero instruction is considered an Intel AMX compute instruction for that matter.

Figure 20-10. Using TileZero to Solve Performance Degradation

20.11.4 POST-CONVOLUTION MULTIPLE OFM ACCUMULATION AND EFFICIENT DOWN-
CONVERSION

An important question arises concerning fused post-convolution optimization. What is the optimal block
of accumulators processed in a single post-convolution iteration? As a post-processing unit, it is conve-
nient to consider the M_ACC * N_ACC block of tiles accumulated in loops starting at lines 7-8 and 10-11
in Example 20-14 and Example 20-16, respectively. For simplicity, consider only multiples of these accu-
mulation blocks. There is a trade-off between using smaller and larger post-convolution blocks:

Using small post-convolution blocks may have a negative impact by interrupting the convolution flow too
often. Conversely, using big post-convolution blocks may also negatively impact by evicting part of the
accumulated tiles out of DCU.

/*3 of 3*/
80 tilestored [r11 + r13*1 + C_TMP_OFFSET(1,1)], tmm3 // Store C tmp [m,n] = [1,1]
81
82 xchg r11, r12 // Swap buffers for current/next iter

Ref#: 248966-048 20-41

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The optimal size, therefore, depends very much on the DL network topology and convolution-blocking
parameters. Performance studies show that the number of iterations of M_ACC * N_ACC blocks before
proceeding to post-convolution iteration may vary from 1 to 7.

As AMX instructions generate a higher precision output (32-bit integers or 32-bit floats) from lower preci-
sion inputs (8-bit integers or 16-bit bfloats, respectively), there is a need to convert 32-bit outputs to 8-
or 16-bit inputs to be fed to the next DL network layer.

Suppose a single high-precision cache line (512-bit) is processed for conversion at a time. In that case,
there will be two or four rounds of processing until a single low-precision cache line is generated for 8- or
16-bit inputs. Potential problems include:

• the number of loads and stores of the same cache line increases 4X or 2X, respectively.
• the next round of processing of the same cache line may occur after this cache line is evicted from

DCU.

One of the optimizations mitigating these performance issues is to collect enough high-precision outputs
to convert the full low-precision cache line in a single round.

The following drawing shows the conversion flow of 32-bit integers to 8-bit integers. Each colored block
at the top represents a single full TILE output. The horizontal dimension is OFMs the vertical dimension
is spatial).

Figure 20-11. A Conversion Flow of 32-bit Integers to 8-bit Integers

To generate full 512-bit cache lines of 8-bit inputs (bottom), a multiple of 64 OFMs should be collected
before conversion. Accordingly, to generate full cache lines with 16-bit inputs, a multiple of 32 OFMs
should be collected. This often produces better performance results, though it may be viewed as a
restriction to convolution blocking parameters (in particular, N_ACC).

Example 20-19 shows the conversion code for two blocks of sixteen cache lines of 32-bit floats converted
to a single block of sixteen cache lines of 16-bit bfloats. TMUL outputs are assumed to be placed into a
scratchpad spad, and the conversion result is placed in the next_inputs buffer.

Ref#: 248966-048 20-42

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-19. Two Blocks of 16 Cache Lines of 32-bit Floats Converted to One Block of 16 Cache Lines of 16-bit
BFloat

Example 20-20. Using Unsigned Saturation

20.12 INPUT AND OUTPUT BUFFERS REUSE (DOUBLE BUFFERING)
Due to the significant computational speedup achieved by the Intel AMX instructions, the performance
bottleneck of Intel AMX-enabled applications is usually memory access. The most straightforward way to
improve memory utilization is to reduce an application’s memory footprint. An application with a smaller
memory footprint will keep more of its essential data in the caches while reducing the number of costly
cache evictions. This usually improves performance.

In Deep Learning (DL), a simple, efficient way to reduce the memory footprint is to reuse the input and
output buffers of various layers in the topology.

The following simple topology illustrates where the previous layer feeds the next layer (left):

float* spad;
bfloat_16* next_inputs;
inline unsigned inputs_spatial_dim(void) {
 return /* number of pixels in map */
}
for (int i = 0; i < 16; i++)
{
__m512 f32_0 = _mm512_load_ps(spad);
 __m512 f32_1 = _mm512_load_ps(spad + 16*16);

__m512 bf16 = _mm512_castsi512_ps(_mm512_cvtne2ps_pbh(f32_1, f32_0));
_mm512_store_ps(next_inputs, bf16);

 spad += 16; /* Next TILE row */
 next_inputs += 32 * inputs_spatial_dim();
}

const int32_t db_sel[16] = { 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15 };
inline __m512i Pack_DwordsToBytes(__m512i dwords[4])
{
 const __m512i sel_reg = _mm512_load_si512(db_sel);
 const __m512i words_0 = _mm512_packs_epi32(dwords[0], dwords[1]);
 const __m512i words_1 = _mm512_packs_epi32(dwords[2], dwords[3]);
 __m512i bytes = _mm512_packus_epi16(words_0, words_1);
 bytes = _mm512_permutexvar_epi32(sel_reg, bytes);

 return bytes;
}

Ref#: 248966-048 20-43

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-12. Trivial Deep Learning Topology with Naive Buffer Allocation

A straightforward buffer allocation scheme is illustrated on the in Figure 20-12, in which the output of
layer N is placed into a dedicated memory buffer which is then consumed as input by layer N+1. In this
scheme, such topology with L-layers would require L+1 memory buffers, of which only the last is valuable
(containing the final results). The rest of the L memory buffers are single-use and disposable, signifi-
cantly increasing the application’s memory footprint.

The allocation scheme in Figure 20-13 offers an improved scheme whereby the entire topology only
requires two reusable memory buffers.

Figure 20-13. Minimal Memory Footprint Buffer Allocation Scheme for Trivial Deep Learning Topology

A more complex topology would require more reusable buffers, but this number is significantly smaller
than the naïve approach. ResNet-50, for example, requires only three reusable buffers (instead of 55).
Inception-ResNet-V2 requires only five reusable buffers (instead of over 250). This optimization resulted
in a 25% improved performance on the int8 end-to-end large batch throughput run of Resnet50 v1.5.

Ref#: 248966-048 20-44

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.13 SOFTWARE PREFETCHES
The CPU employs sophisticated HW prefetchers that predict future access and provide relevant data. This
works best when most memory accesses are sequential. For more details on processor hardware
prefetchers, see Section 20.13.1.2.

20.13.1 SOFTWARE PREFETCH FOR CONVOLUTION AND GEMM LAYERS
Since the Conv/GEMM kernel is centered around loops over the M, K, and N dimensions of the involved
matrices, the access will often be sequential. However, memory blocking, also recommended in this
guide, causes the CPU to re-use the same block in the A or B matrices (or both) multiple times during the
kernel execution. This means that sometimes the HW prefetcher cannot predict the subsequent access
correctly. This opens the opportunity for an SW prefetch algorithm tightly integrated into the Conv/GEMM
kernel and can bring in cache lines from future blocks based on the blocking strategy.

While the SW prefetch instruction enables selecting the target cache hierarchy level for the prefetch, this
document assumes that the prefetch will go to the MLC. The DCU is too small to prevent the prefetched
lines from being evicted before they can be used, and prefetching to LLC may not yield significant
improvement.

20.13.1.1 The Prefetch Strategy
The prefetch strategy is highly dependent on the Conv/GEMM kernel method of operation. Assuming the
“loops and blocking” design discussed earlier, the kernel operation can probably be split into multiple
phases where each phase manages a different part of the matrices (corner, middle, etc.). The developer
is encouraged to reduce the program’s size by reusing sections for repeatable matrix patterns to avoid
overflowing the instruction cache. This can be done by having each section work on relative addresses.
The SW prefetch instruction can be integrated into these sections and work on relative addresses. This
means that while one section of the code loads addresses for its use, it also prefetches memory for a
future section. The future section can be determined by looking at the future indices of any of the M/K/N
loop levels.

20.13.1.2 Prefetch Distance
One of the most important decisions when using SW prefetching is the distance between the current and
prefetched addresses. Supposing some blocking strategy is employed, it is more complex than adding an
offset to the current address. The prefetched address must be set based on the target block of the
matrix. If the target block is too close, the prefetched memory might still be in transit when the memory
is required, and the CPU will stall, waiting for it to arrive. The data might be evicted if prefetched memory
is too distant before it is used. The developer must tune the distance based on the layer/blocking param-
eters.

As an example heuristic:

• One or two loads for each TMUL operation.
• Where one matrix is already in a register.
• When two registers must be loaded.
• The recommended range between the prefetch time and the consumption time is between 100 and

500 TMUL operations.
• 100 TMUL operations should take about 1600 cycles.
• The maximum number of bytes loaded between prefetch and consumption is 1MB (500 TMUL ops /*

2 loads per ops /* 1K per tile).
• The optimum is probably closer to 100 TMUL ops. At any rate, the developer must check the current

CPU architecture and make sure that the MLC will not overflow.

Ref#: 248966-048 20-45

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.13.1.3 To Prefetch A or Prefetch B?
Whether to prefetch A, B, or both depends on the order of layer execution.

In general, the following approaches are available:

• Image affinity.
• Execute the next layer of the same image.
• Complete a single image end-to-end before continuing to the next image in the same mini-batch.

Layer affinity:

• Execute the same layer of the following image.
• Complete a layer for all images in the mini-batch before continuing to the next layer.

The activations (the result of the previous layer) in the CPU caches are seen when image affinity is used.
The weights in the caches are found when layer affinity is used. Generally, image affinity is recommended
when sizeof(A)>sizeof(B) and layer affinity otherwise. To maximize performance, the developer should
tune the switch point between the two methods. The choice between these two methods is also affected
by the target matrix for prefetching. If the developer is confident that one of the matrices will already be
present in the cache when the Conv/GEMM kernel begins execution, the potential benefit of SW
prefetching decreases dramatically.

The size of the A-matrix, B-matrix, and cache.

The developer should sum up the memory requirements of the Conv/GEMM kernel for the current layer
and compare it to the size of the cache (MLC). Combined with the previous step, it can indicate whether
SW prefetching can yield any performance benefit. When large matrices are involved, there is a greater
chance for improvement when prefetching the A- and the B-matrices.

20.13.1.4 To Prefetch or Not to Prefetch C?
It is not the C-matrix we might want to prefetch but rather the final output matrix of the layer, after its
post-convolution or post-GEMM phase, including quantization to a lower precision data type. Generally,
prefetch those cache lines ahead of time since, with double buffering, these might have been read by
previous layers, possibly executed in other cores.

Use the PREFETCHW instruction to read those cache lines into the DCU just in time for the store opera-
tions to find them in the DCU ready to be written, avoiding Read For Ownership latency that otherwise
delays store completion. The exact timing of issuing the PREFETCHW instruction depends on multiple
factors and requires careful tuning to get it right.

20.13.2 SOFTWARE PREFETCH FOR EMBEDDING LAYER
When the memory access pattern is semi-random, it is often impossible for the HW prefetcher to predict
since it is based on application logic. In this case, the application may benefit from “proactive”
prefetching using the SW prefetch instructions of addresses the application knows it will access soon.

An excellent example is Deep Learning, wherein the recommendation systems often use the embedding
layer. The core loop of the embedding algorithm loads indices from an index buffer, and for each index, it
loads the corresponding row from the embedding table for further processing. While the index buffer may
contain duplicate indices that benefit from CPU caching, the pattern is often considered random or semi-
random. This can make the HW prefetcher less efficient. Since the entire content of the index buffer is
already known, rows soon to be encountered can be prefetched to the DCU.

Ref#: 248966-048 20-46

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-21. Prefetching Rows to the DCU

20.14 STORE TO LOAD FORWARDING
Before it gets written to the DCU (first-level cache), store instructions copy data from general purpose,
vector, or tile registers into store buffers. All load instructions, other than TileLoad, can load the data they
are looking for from the store buffers and memory hierarchy.

The TileLoad instruction can’t load data from store buffers. It can only detect that the data is there and
must wait until it is written to the memory hierarchy. Once written, TileLoad can read it from the memory
hierarchy. This incurs a significant slowdown.

TileStore forwarding to non-TileLoad instructions via store buffers is supported under one restriction:
they must both be of cache line size (64 bytes).

Forwarding is generally not advised because this mechanism has outliers. To avoid store-to-load
forwarding, ensure enough distance between those two operations in the order of 10s of cycles in time.

20.15 MATRIX TRANSPOSE
This section describes the best-known SW implementations for several matrix transformations of BF16
data.

In this context, flat format means:

• Normal (i.e., non-VNNI).
• Unblocked rows (rows of matrices occupy a consecutive region in memory).

The first condition is essential. The second could be relaxed by changing the code in Example 20-22
accordingly. VNNI format implies only the second condition (non-blocking of rows). It is important to
note that the MxN matrix in flat format will be represented by a (M/2)x(N/*2) matrix in VNNI format.

1 void prefetched_embedding(uint32_t *a, float *e, float *c, size_t num_indices,
2 float scale, float bias, size_t lookahead)
3 {
4 __m512 s = _mm512_set1_ps(scale);
5 __m512 b = _mm512_set1_ps(bias);
6
7 for (size_t i = 0; i < num_indices; i++) {
8 _mm_prefetch(
9 (char const *)&e[a[i + lookahead] * FLOATS_PER_CACHE_LINE],
10 _MM_HINT_T0);
11 __m512 ereg =
12 _mm512_load_ps(&e[((size_t)a[i]) * FLOATS_PER_CACHE_LINE]);
13 __m512 creg = _mm512_fmadd_ps(ereg, s, b);
14 _mm512_store_ps(&c[i * FLOATS_PER_CACHE_LINE], creg);
15 }
16 }

Ref#: 248966-048 20-47

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.1 FLAT-TO-FLAT TRANSPOSE OF BF16 DATA
The primitive block transposed in this algorithm is 32x8 (i.e., 32 rows, eight BF16 numbers each), which
is transformed into an 8x32 block (i.e., eight rows of 32 BF16 numbers each).

The implementation uses sixteen ZMM registers and three mask registers.

Input parameters: MxN, sizes of the rectangular block to be transposed. Assuming M is a multiple of 32,
and N is a multiple of eight, we may also assume in Example 20-22:

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains starting address of the input matrix.
• r9 contains starting address of the output buffer.

Example 20-22. BF16 Matrix Transpose (32x8 to 8x32)

/*1 of 2 */
1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 32
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*8]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*16]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*24]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*9]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*17]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*25]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*10]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*18]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*26]
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*11]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+I_STRIDE*19]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+I_STRIDE*27]
25 vbroadcasti32x4 zmm4, xmmword ptr [r8+I_STRIDE*4]
26 vbroadcasti32x4 zmm4{k1}, xmmword ptr [r8+I_STRIDE*12]
27 vbroadcasti32x4 zmm4{k2}, xmmword ptr [r8+I_STRIDE*20]
28 vbroadcasti32x4 zmm4{k3}, xmmword ptr [r8+I_STRIDE*28]
29 vbroadcasti32x4 zmm5, xmmword ptr [r8+I_STRIDE*5]
30 vbroadcasti32x4 zmm5{k1}, xmmword ptr [r8+I_STRIDE*13]
31 vbroadcasti32x4 zmm5{k2}, xmmword ptr [r8+I_STRIDE*21]
32 vbroadcasti32x4 zmm5{k3}, xmmword ptr [r8+I_STRIDE*29]
33 vbroadcasti32x4 zmm6, xmmword ptr [r8+I_STRIDE*6]

Ref#: 248966-048 20-48

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/*2 of 2 */
34 vbroadcasti32x4 zmm6{k1}, xmmword ptr [r8+I_STRIDE*14]
35 vbroadcasti32x4 zmm6{k2}, xmmword ptr [r8+I_STRIDE*22]
36 vbroadcasti32x4 zmm6{k3}, xmmword ptr [r8+I_STRIDE*30]
37 vbroadcasti32x4 zmm7, xmmword ptr [r8+I_STRIDE*7]
38 vbroadcasti32x4 zmm7{k1}, xmmword ptr [r8+I_STRIDE*15]
39 vbroadcasti32x4 zmm7{k2}, xmmword ptr [r8+I_STRIDE*23]
40 vbroadcasti32x4 zmm7{k3}, xmmword ptr [r8+I_STRIDE*31]
41 vpunpcklwd zmm8, zmm0, zmm1
42 vpunpckhwd zmm9, zmm0, zmm1
43 vpunpcklwd zmm10, zmm2, zmm3
44 vpunpckhwd zmm11, zmm2, zmm3
45 vpunpcklwd zmm12, zmm4, zmm5
46 vpunpckhwd zmm13, zmm4, zmm5
47 vpunpcklwd zmm14, zmm6, zmm7
48 vpunpckhwd zmm15, zmm6, zmm7
49 vpunpckldq zmm0, zmm8, zmm10
50 vpunpckhdq zmm1, zmm8, zmm10
51 vpunpckldq zmm2, zmm9, zmm11
52 vpunpckhdq zmm3, zmm9, zmm11
53 vpunpckldq zmm4, zmm12, zmm14
54 vpunpckhdq zmm5, zmm12, zmm14
55 vpunpckldq zmm6, zmm13, zmm15
56 vpunpckhdq zmm7, zmm13, zmm15
57 vpunpcklqdq zmm8, zmm0, zmm4
58 vpunpckhqdq zmm9, zmm0, zmm4
59 vpunpcklqdq zmm10, zmm1, zmm5
60 vpunpckhqdq zmm11, zmm1, zmm5
61 vpunpcklqdq zmm12, zmm2, zmm6
62 vpunpckhqdq zmm13, zmm2, zmm6
63 vpunpcklqdq zmm14, zmm3, zmm7
64 vpunpckhqdq zmm15, zmm3, zmm7
65 vmovdqu16 zmmword ptr [r9], zmm8
66 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm9
67 vmovdqu16 zmmword ptr [r9+O_STRIDE*2], zmm10
68 vmovdqu16 zmmword ptr [r9+O_STRIDE*3], zmm11
69 vmovdqu16 zmmword ptr [r9+O_STRIDE*4], zmm12
70 vmovdqu16 zmmword ptr [r9+O_STRIDE*5], zmm13
71 vmovdqu16 zmmword ptr [r9+O_STRIDE*6], zmm14
72 vmovdqu16 zmmword ptr [r9+O_STRIDE*7], zmm15

73 add r9, 0x40
74 add r8, I_STRIDE*32
75 dec rdx
76 jnz L.M

77 add r9, (O_STRIDE*8 — (M/32) * 0X40)
78 sub r8, (I_STRIDE*M-0x10)
79 dec rax
80 jnz L.N

Ref#: 248966-048 20-49

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation discussion:

• Lines 1-6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9-72 implement the transpose of a primitive block 32x8. It uses 16 ZMM registers (zmm0-

zmm15).
• Lines 9-40 implement loading 32 quarter-cache lines into 8 ZMM registers, according to the following

picture (numbers are in bytes):

Figure 20-14. Loading 32 Quarter-Cache Lines into 8 ZMM Registers

• Lines 41-64 are transpose flow proper. It creates a transposed block 8x32 in registers zmm8-zmm15.
• Lines 65-72 store transposed block 8x32 to the output buffer.

Ref#: 248966-048 20-50

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.2 VNNI-TO-VNNI TRANSPOSE
The primitive block transposed in this algorithm is 8x8 (i.e., eight rows, eight BF16 numbers each), which
is transformed into a2x32 block (i.e., two rows of 32 BF16 numbers each).

The implementation uses five ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed (in VNNI format); it is assumed that M, N are
multiples of eight.

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains starting address to the input matrix.
• r9 contains starting address to the output buffer.
• zmm31 is preloading with four copies of the following constant: unsigned int shuflle_cntrl[4] =

{0x05040100, 0x07060302, 0x0d0c0908, 0x0f0e0b0a};

Example 20-23. BF16 VNNI-to-VNNI Transpose (8x8 to 2x32)

1 mov r10, 0xf0
2 kmovd k1, r10d
3 mov r10, 0xf00
4 kmovd k2, r10d
5 mov r10, 0xf000
6 kmovd k3, r10d
7 mov rax, N / 8
L.N:
8 mov rdx, M / 8
L.M:
9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*2]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*4]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*6]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*3]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*5]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*7]

17 vpshufb zmm2, zmm0, zmm31
18 vpshufb zmm3, zmm1, zmm31
19 vpunpcklqdq zmm0, zmm2, zmm3
20 vpunpckhqdq zmm1, zmm2, zmm3

21 vmovdqu16 zmmword ptr [r9], zmm0
22 vmovdqu16 zmmword ptr [r9+O_STRIDE], zmm1

23 add r9, 0x40
24 add r8, I_STRIDE*8
25 dec rdx
26 jnz L.M

27 add r9, (O_STRIDE*2 - (M/8) * 0x40)
28 sub r8, (I_STRIDE*M-0x10)
29 dec rax
30 jnz L.N

Ref#: 248966-048 20-51

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

BF16 VNNI-to-VNNI Transpose Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–22 implement the transpose of a primitive block 32x8. It uses five ZMM registers (zmm0-

zmm3, zmm31).
• Lines 9–16 implement loading eight quarter-cache lines into two ZMM registers, according to

Figure 20-15 (numbers are in bytes):

Figure 20-15. Loading Eight Quarter-Cache Lines into Two ZMM Registers

• Lines 17–20 implement simultaneous transpose of four 2x2 blocks of QWORDs (i.e., 2x8 blocks of
BF16). It creates a transposed block 2x32 in registers zmm2-zmm3.

• Lines 21–22 store transposed block 2x32 to the output buffer.

Ref#: 248966-048 20-52

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.15.3 FLAT-TO-VNNI TRANSPOSE
The algorithm below is based on: Flat-to-VNNI transpose of WORDs is equivalent to Flat-to-Flat trans-
pose of DWORDs. This is illustrated below (the header numbers are bytes):

Figure 20-16. Flat-to-VNNI Transpose of WORDs Equivalence to Flat-to-Flat Transpose of DWORDs

The primitive block transposed in this algorithm is 16x8 (i.e., 16 rows, 8 BF16 numbers each), which is
transformed into a 4x32 block (i.e., four rows of 32 BF16 numbers each).

The implementation uses eight ZMM registers and three mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 16, N multiple
of eight.

• I_STRIDE is the row size of the input matrix in bytes.
• O_STRIDE is the row size of the output buffer in bytes.
• r8 contains the starting address for the input matrix.
• r9 contains the starting address for the output buffer.

Ref#: 248966-048 20-53

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-24. BF16 Flat-to-VNNI Transpose (16x8 to 4x32)

 1 mov r10, 0xf0
 2 kmovd k1, r10d
 3 mov r10, 0xf00
 4 kmovd k2, r10d
 5 mov r10, 0xf000
 6 kmovd k3, r10d
 7 mov rax, N / 8
L.N:
 8 mov rdx, M / 16
L.M:
 9 vbroadcasti32x4 zmm0, xmmword ptr [r8]
10 vbroadcasti32x4 zmm0{k1}, xmmword ptr [r8+I_STRIDE*4]
11 vbroadcasti32x4 zmm0{k2}, xmmword ptr [r8+I_STRIDE*8]
12 vbroadcasti32x4 zmm0{k3}, xmmword ptr [r8+I_STRIDE*12]
13 vbroadcasti32x4 zmm1, xmmword ptr [r8+I_STRIDE*1]
14 vbroadcasti32x4 zmm1{k1}, xmmword ptr [r8+I_STRIDE*5]
15 vbroadcasti32x4 zmm1{k2}, xmmword ptr [r8+I_STRIDE*9]
16 vbroadcasti32x4 zmm1{k3}, xmmword ptr [r8+I_STRIDE*13]
17 vbroadcasti32x4 zmm2, xmmword ptr [r8+I_STRIDE*2]
18 vbroadcasti32x4 zmm2{k1}, xmmword ptr [r8+I_STRIDE*6]
19 vbroadcasti32x4 zmm2{k2}, xmmword ptr [r8+I_STRIDE*10]
20 vbroadcasti32x4 zmm2{k3}, xmmword ptr [r8+I_STRIDE*14]
21 vbroadcasti32x4 zmm3, xmmword ptr [r8+I_STRIDE*3]
22 vbroadcasti32x4 zmm3{k1}, xmmword ptr [r8+I_STRIDE*7]
23 vbroadcasti32x4 zmm3{k2}, xmmword ptr [r8+ I_STRIDE*11]
24 vbroadcasti32x4 zmm3{k3}, xmmword ptr [r8+ I_STRIDE*15]

25 vpunpckldq zmm4, zmm0, zmm1
26 vpunpckhdq zmm5, zmm0, zmm1
27 vpunpckldq zmm6, zmm2, zmm3
28 vpunpckhdq zmm7, zmm2, zmm3
29 vpunpcklqdq zmm0, zmm4, zmm6
30 vpunpckhqdq zmm1, zmm4, zmm6
31 vpunpcklqdq zmm2, zmm5, zmm7
32 vpunpckhqdq zmm3, zmm5, zmm7

33 vmovups zmmword ptr [r9], zmm0
34 vmovups zmmword ptr [r9+O_STRIDE], zmm1
35 vmovups zmmword ptr [r9+O_STRIDE*2], zmm2
36 vmovups zmmword ptr [r9+O_STRIDE*3], zmm3

37 add r9, 0x40
38 add r8, I_STRIDE*16
39 dec rdx
40 jnz L.M

41 add r9, (O_STRIDE*4 - (M/16)*0x40)
42 sub r8, (I_STRIDE*M-0x10)
43 dec rax
44 jnz L.N

Ref#: 248966-048 20-54

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Implementation Discussion

• Lines 1–6 set mask registers k1, k2, k3.
• Lines 7 and 8 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 9–36 implement the transpose of a primitive block 16x8. It uses eight ZMM registers (zmm0–

zmm7).
• Lines 9–24 implement loading 16 quarter-cache lines into four ZMM registers zmm0-zmm3,

according to Figure 20-17 (numbers are in bytes):

Figure 20-17. BF16 Flat-to-VNNI Transpose

• Lines 25–32 are the transpose flow proper. It creates a transposed block 4x32 in registers zmm0–
zmm3.

• Lines 33–36 store transposed block 4x32 to the output buffer.

20.15.4 FLAT-TO-VNNI RE-LAYOUT
The primitive block which is being re-layout in this algorithm is 2x32 (i.e., 2 rows, 32 BF16 numbers
each), which is transformed into a 1x64 block (i.e., 1 rows of 64 BF16 numbers each).

The implementation uses 5 ZMM registers and no mask registers.

Input parameters:

• MxN, sizes of the rectangular block to be transposed; it is assumed that M multiple of 2, N multiple
of 32.

• I_STRIDE is the row size of input matrix in bytes.
• O_STRIDE is the row size of output buffer in bytes.
• r8 contains starting address to input matrix.
• r9 contains starting address to output buffer.
• zmm30, zmm31 are preloaded with following constants, respectively:

Ref#: 248966-048 20-55

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

• const short perm_cntl_1[32] = {0x00, 0x20, 0x01, 0x21, 0x02, 0x22, 0x03, 0x23, 0x04, 0x24,
0x05, 0x25, 0x06, 0x26, 0x07, 0x27, 0x08, 0x28, 0x09, 0x29, 0x0a, 0x2a, 0x0b, 0x2b, 0x0c, 0x2c,
0x0d, 0x2d, 0x0e, 0x2e, 0x0f, 0x2f};

• const short perm_cntl_2[32] = {0x30, 0x10, 0x31, 0x11, 0x32, 0x12, 0x33, 0x13, 0x34, 0x14,
0x35, 0x15, 0x36, 0x16, 0x37, 0x17, 0x38, 0x18, 0x39, 0x19, 0x3a, 0x1a, 0x3b, 0x1b, 0x3c, 0x1c,
0x3d, 0x1d, 0x3e, 0x1e, 0x3f, 0x1f};

Example 20-25. BF16 Flat-to-VNNI Re-Layout

BF16 Flat-to-VNNI Re-Layout Implementation Discussion

• Lines 1, 2 put trip counts for primitive blocks in N- and M-dimensions, respectively.
• Lines 3, 4 implement loading two full cache lines into two ZMM registers zmm0-zmm1, from

consecutive rows of the input matrix.
• Lines 5 through 7 implement the re-layout of a primitive block 2x32. It uses five ZMM registers

(zmm0–zmm2, zmm30-zmm31).
• Lines 8, 9 implement storing two full cache lines in two ZMM registers zmm1-zmm2, into consecutive

columns of the output matrix.

1 mov rdx, M / 2
L.M:
 2 mov rax, N / 32
L.N:
 3 vmovups zmm0, zmmword ptr [r8]
 4 vmovups zmm1, zmmword ptr [r8+I_STRIDE]

 5 vmovups zmm2, zmm0
 6 vpermt2w zmm2, zmm30, zmm1
 7 vpermt2w zmm1, zmm31, zmm0

 8 vmovups zmmword ptr [r9], zmm2
 9 vmovups zmmword ptr [r9+0x40], zmm1

10 add r9, 0x80
11 add r8, 0x40
12 dec rax
13 jnz L.N

14 add r9, (O_STRIDE - (N/32)*0x80)
15 add r8, (I_STRIDE*2 – (N/32)*0x40)
16 dec rdx
17 jnz L.M

Ref#: 248966-048 20-56

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16 MULTI-THREADING CONSIDERATIONS

20.16.1 THREAD AFFINITY
As with Intel AVX-512 code, it is advised to fully define thread affinity and object affinity to process a
single object in the same physical core, thus keeping the activations in core caches (unless larger than
the size of the caches). This advice becomes imperative with Intel AMX code since those applications are
more sensitive to memory-related issues.

20.16.2 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT)
Running more than one Intel AMX thread on the same physical core may result in overall performance
loss due to the two threads competing for the same hardware resources. Scheduling a non-Intel AMX
thread next to an Intel AMX thread on the same core may decrease the thread performance more than
one expects due to normal competition for resources.

For optimum performance, please choose one of the following options in priority order:

1. Schedule one Intel AMX thread per physical core on one of its logical processors, while leaving the
other logical processors idle.

2. Affintize a software thread that executes an endless TPAUSE CO.2 loop next to the Intel AMX thread.

a. This prevents other threads from being scheduled on that logical processor.

1) All hardware resources within the physical core are therefore allocated to the Intel AMX
thread.

2) This endless loop thread must terminate when the Intel AMX thread is about to terminate.

3. Code pause loops of thread pool threads that are waiting for the next task to be assigned to them
with UMWAIT or TPAUSE C0.2 rather than with PAUSE, TPAUSE C0.1, or a non-pausing spin.

20.16.3 WORK PARTITIONING BETWEEN CORES
Deep Learning (DL) applications must often adhere to latency requirements that cannot be fulfilled within
a single core. In these cases, a single object’s processing must be partitioned between multiple cores.

Additionally, often the output of one layer is the input of the next layer. Due to the nature of the compu-
tations in DL applications, partitioning over different dimensions (N, M, K) will have different implications
for the data locality in the core’s caches. Minimize importing data from a different core’s caches if possible
as this can hamper performance.

Ref#: 248966-048 20-57

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.3.1 Partitioning Over M
Partitioning a DL layer over the M dimension has the advantage of nearly complete data locality. The
layer’s output is also partitioned by M between the cores and is, therefore, already in the cache of the
corresponding core at the beginning of the next layer. Figure 20-18 shows this schematically.

Figure 20-18. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the M-Dimension

Here the data read and written by each of the three cores is bound by a black rectangle.
It should be noted that in the case of convolutions, limited overlap in the M-dimension of the activations
occurs between neighboring cores. Due to the convolutions, a finite-sized filter is slid over the activa-
tions. Thus, the M-dimension overlaps (KH-1)/*W (refer to Example 20-13) between the two neighboring
cores.

• Advantages: When multiple layers in a chain are partitioned by the M-dimension between the same
number of cores, each core has its data in its local cache.

• Disadvantages: All the cores read the B-matrix (or weights in convolutions) entirely, which might
pose a bandwidth problem if the B-matrix is large.

20.16.3.2 Partitioning Over N
Partitioning a DL layer over the N-dimension reduces the read bandwidth in GEMMs with large B-matrices
or large weights in convolutions. Each core reads a portion of the B-matrix in this scenario:

Figure 20-19. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the N-Dimension

Unfortunately, the output of the layer is also partitioned by the N-dimension between the cores, which is
incompatible with M and N partitioning of the subsequent layer. For visualization, compare the right side

Ref#: 248966-048 20-58

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

of Figure 20-19 to the left side of Figures 20-18 and 20-19. In this scenario, a core in the subsequent
layer is guaranteed to have most of its data from outside its local caches. This is not the case in K-dimen-
sion partitioning (see Section 20.16.3.3), but it also comes at a price.

• Advantages: It may reduce read bandwidth significantly in case of large B / large weights.
• Disadvantages: If the next layer is partitioned by M or by N, most of the activations in the next layer

will not reside in the local caches of the corresponding cores.

20.16.3.3 Partitioning Over K
Partitioning a DL layer over the K-dimension reduces the read bandwidth in GEMMs with large K-dimen-
sions by reducing the amount of data being read from the A- and B-matrices (activations and weights in
convolutions). Each core reads a portion of the matrices in this scenario, as illustrated in Figure 20-20.

Figure 20-20. GEMM Data Partitioning Between Three Cores in a Layer Partitioned by the K-Dimension

Additionally, if a layer is partitioned by the N-dimension and the subsequent layer is partitioned by the K-
dimension, the activation data will reside in the local caches of the cores in layer partitioned by the K-
dimension. For visualization, compare the right side of Figure 20-19 with the left side of Figure 20-20.
Unfortunately, this comes at a price: each core prepares partial results of the entire C-matrix. To obtain
final results, either a mutex (or several mutexes) is required to guard the write operations into the C-
matrix, or a reduction operation is needed at the end of the layer. The mutex solution is not advised
because threads will be blocked for a significant time. A reduction runs the risk of being costly since it
entails the following:

• A synchronization barrier is required before the reduction.
• Reading a potentially large amount of data during the reduction:

— There are T copies of the C-matrix, where T is the number of threads (the example has three).

— The size of the matrices before the reduction is x2 (in case of a bfloat16 datatype) or x4 (in case
of int8 datatype) times larger than the output C-matrix.

— During the reduction, most of the cores’ data will come outside their local cache hierarchy.

Ref#: 248966-048 20-59

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.3.4 Memory Bandwidth Implications of Work Partitioning Over Multiple Dimensions
OpenMP offers a convenient interface for nested loop parallelization. For example, one could partition the
N, M, and K dimensions can be partitioned automatically between threads using Example 20-26.

Example 20-26. GEMM Parallelized with omp Parallel for Collapse

The collapse clause specifies how many loops within a nested loop should be collapsed into a single iter-
ation space and divided between the threads. The order of the iterations in the collapsed iteration space
is the same as though they were executed sequentially.

If there is no specified schedule, OpenMP automatically uses schedule(static,1), resulting in the sequen-
tial assignment of loop iterations to threads.

If we assume N=4*N_ACC*TILE_N and M=4*M_ACC*TILE_M wherein the K-dimension is deliberately excluded
from consideration due to its problematic nature, there would be 4*4=16 iterations in the two nested
loops. Now assume the division of iterations between three threads. As shown in Table 20-11, the code
in Example 20-26 would result in a partition of the iterations between threads.

Where every cell of the form n’,m’ contains the n’=n/N_ACC*TILE_N and m’=m/M_ACC*TILE_M indices
from the loops in Example 20-19.

It is clear from Table 20-11 that each of the three threads executes at least one iteration with n’=0,1,2,3
and at least one iteration with m’=0,1,2,3. This means that every thread reads all of A and all of B.

By rearranging the work between threads in the following partitioning, the size of the B read is reduced
by each thread by 50%, which might be significant in workloads where B is large. Similarly, the size of A
can be reduced by 50% by swapping m’ and n’ indices for workloads with a large A.

#pragma omp parallel for collapse(2)

for (int n = 0; n < N; n += N_ACC*TILE_N) {
for (int m = 0; m < M; m += M_ACC*TILE_M) {

 ...
 }
}

Table 20-11. A Simple Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.3 1.2 2.1 3.0 3.3 100% 100% 38%

Thread 1: 0.1 1.0 1.3 2.2 3.1 100% 100% 100%

Thread 2: 0.2 1.1 2.0 2.3 3.2 100% 100% 100%

Table 20-12. An Optimized Partition of Work Between Three Threads

A B C

Thread 0: 0.0 0.1 0.2 0.3 3.0 3.1 100% 50% 38%

Thread 1: 1.0 1.1 1.2 1.3 3.2 3.3 100% 50% 38%

Thread 2: 2.0 2.1 2.2 2.3 100% 25% 25%

Ref#: 248966-048 20-60

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.16.4 RECOMMENDATION SYSTEM EXAMPLE

Many recommendation systems are built from a few GEMM layers that follow each other, an Embedding
layer, and a layer connecting them. They are generally split into four distinct tasks:
1. Bottom GEMMs (MLPs).

2. Embedding.

3. Bottom MLP + Embedding Concat, GEMM, and Reshape.

4. Top GEMMs (MLPs).

The first two are independent so that they can execute in parallel. Their output feeds into the third task,
whose output, in turn, feeds into the fourth task.

A few notes:

• Recommendation systems usually use a large batch to rank a reasonably large set of options.
• The GEMM layers are usually compute- or cache-bandwidth limited, whereas the Embedding layer is

memory-bandwidth limited.
• Recommendation systems are real-time and therefore limited to a specific latency.

When the latency requirement is a few milliseconds, the recommendation system topology has to be
multi-threaded across several cores. The previous section discussed GEMM partitioning across multiple
cores. This section deals with work partition between the four different tasks.

Figure 20-21 proposes a way to split the three tasks across machine cores. The block sizes in the chart
are for illustration purposes only and do not represent any specific recommendation system.

Those three tasks can then be split into two tasks due to Bottom MLPs and Embedding independence.
Those two tasks feed the other tasks: Bottom MLP + Embedding Concat, GEMM, Reshape, and Top MLPs.
The latter tasks are merged into a single task. Choosing the number of cores for each task is a trial-and-
error exercise. It may involve a phase for analyzing time required to execute each task across different
cores.

Because of a dependency between the Bottom MLPs, Embedding tasks, and the third task, a barrier
exists between them, implying a potential wait-time immediately following the faster layers.

Ref#: 248966-048 20-61

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Figure 20-21. A Recommendation System Multi-Threading Model

20.17 SPARSITY OPTIMIZATIONS FOR INTEL® AMX
This section describes how Intel AMX can be further optimized for operations on sparse matrices. An
example use case can be the inference of sparse neural networks, where the sparse weights are known
to initially reside in DRAM due to the “online” usage model or large model capacity. In those cases, the
primary performance bottleneck would be bringing the weights from DRAM. A helpful optimization tech-
nique for this case is to get the weights from DRAM in a compressed format, decompress them into the
local caches using Intel AVX-512, and perform Intel AMX computations on the decompressed data.

The compressed matrix format can consist of the following components:

• compressed[]: an array of non-zero matrix entries.
• mask[]: a bit-per-element array for the full matrix. 0 signifies the corresponding element is 0. 1

signifies a non-zero value that exists in the compressed[] array mentioned above.

The compressed format can be computed off-line. The sparsity bitmask mask[] can be generated using
the Intel AVX-512 VPTESTMB instruction on the sparse data. The compressed[] array can be generated
using the Intel AVX-512 VPCOMPRESS instruction on the sparse data using the sparsity bitmask.

Ref#: 248966-048 20-62

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

The code in Example 20-27 uses Intel AVX-512 to generate num rows of decompressed data, assuming
8-bit elements and 64 elements per tile row.

Example 20-27. Byte Decompression Code with Intel® AVX-512 Intrinsics

The matrix multiplication code will load the decompressed matrix to tiles from decompressed[], an
array containing the decompressed matrix data.

The decompression code makes use of the Intel AVX-512 date expand operation is shown in
Figure 20-22.

Figure 20-22. Data Expand Operation

// uint8_t* compressed_ptr is a pointer to compressed data array
// __mmask64* compression_masks_ptr is a pointer to bitmask array
// uint8_t* decompressed_ptr is a pointer to decompressed data array

for (int i=0; i < num ; i++) {
 __m512i compressed = _mm512_loadu_epi32(compressed_ptr);
 __mmask64 mask = _load_mask64(compression_masks_ptr);
 __m512i decompressed_vec = _mm512_maskz_expand_epi8(mask, compressed);
 _mm512_store_epi32(decompressed_ptr, decompressed_vec);
 decompressed_ptr += 64; // 64 bytes per decompressed row
 compressed_ptr += _mm_countbits_64(mask); // advance compressed pointer by number of non-zero elements
 compression_masks_ptr ++; //64 bitmask bits per decompressed row
}

Ref#: 248966-048 20-63

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Decompression code for 16-byte elements can be designed in the same way.

For the best performance, apply the following optimizations:

• Interleaving: Fine-grained interleaving of decompression code and matrix multiplication to overlap
Intel AVX-512 decompression with Intel AMX computation.

• Decompress Early: Prepare the decompressed buffer before immediate Intel AMX use to avoid
store forwarding issues.

• Buffer Reuse: Decompressing the full sparse matrix could overflow the CPU caches. For best cache
reuse, it is recommended to have a decompressed buffer that can hold two decompressed panels of
the sparse matrix. While matrix is multiplying with one panel, decompress the next panel for the
subsequent iteration. In the subsequent iteration, decompress the next panel into the first half of the
decompressed buffer that is no longer used, and so on.

• Decompress Once: Coordinate the matrix multiplication blocking and loop structure with the
decompression scheme to minimize the number of times the same portion of the sparse matrix is
decompressed. For example, if the B-matrix is sparse, traversing the entire vertical M-dimension will
compress every vertical panel of the B-matrix only once.

20.18 TILECONFIG/TILERELEASE, CORE C-STATE, AND COMPILER ABI
For a function to use tile registers, it needs to configure them. For the LDTILECFG instruction definition,
see Section 20.2. LDTILECFG creates an Intel AMX state which is kept valid until the TILERELEASE
instruction is issued. TILERELEASE resets the Intel AMX state back to INIT. When the Intel AMX state is
valid, and the OS issues the MWAIT instruction trying to move the physical processor, it executes on to
Core C6 State. The 4th Generation Intel® Xeon® Scalable processor based on the Sapphire Rapids
microarchitecture will not enter Core C6 even if the sibling logical processor is idle. This is because it
lacks the dedicated backing store to keep the Intel AMX state until waking up. The Core C-State is
demoted to C1 instead.

This is not an issue in Linux and Windows, where only the idle process issues the MWAIT instruction. The
Idle Process in both operating systems does not use the Intel AMX ISA, so its Intel AMX tile state is
always invalid (INIT). If still valid, the Intel AMX tile state will have previously been saved in an OS-
defined area in memory while context-switching between a thread that uses Intel AMX and the Idle
Process thread.

20.18.1 ABI
The tile data registers (tmm0 – tmm7) are volatile. Their contents are passed back and forth between
functions through memory. No tile register is saved and restored by the callee. Tile configuration is also
volatile. The compiler saves and restores tile configuration and tile register contents if the register(s)
need to live across the function call. The compiler eliminates the save instruction because its content
remains the same on the stack. The compiler reuses the configured content saved on the stack before the
call. All functions need to configure the tile registers themselves; however, tile registers may not be
configured across functions.

Please download the System V Application Binary Interface: Intel386 Architecture Processor Supple-
ment, Version1.0.

https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf

Ref#: 248966-048 20-64

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.2 INTRINSICS

Example 20-28. Identification of Tile Shape Using Parameter m, n, k

The parameter m, n, k identifies the shape of the tile.

typedef int _tile1024i __attribute__((__vector_size__(1024), __aligned__(64)));
_tile1024i _tile_loadd_internal(unsigned short m, unsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_loaddt1_internal(unsigned short m, uunsigned short n, const void*base, __SIZE_TYPE__ stride);
_tile1024i _tile_dpbssd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbsud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbusd_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbuud_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
_tile1024i _tile_dpbf16ps_internal(unsigned short m, unsigned short n, unsigned short k, _tile1024i dst, _tile1024i
src1, _tile1024i src2);
void_tile_stored_internal(unsigned short m, unsigned short n, void*base, __SIZE_TYPE__ stride, _tile1024i tile);

Ref#: 248966-048 20-65

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.3 USER INTERFACE

Example 20-29. Intel® AMX Intrinsics Header File

/* 1 of 2 */
typedef struct __tile1024i_str {
 const unsigned short row;
const unsigned short col;
 _tile1024i tile;
} __tile1024i;

/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADD </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_loadd(__tile1024i *dst, const void *base, __SIZE_TYPE__ stride);
/// Load tile rows from memory specified by "base" address and "stride" into
/// destination tile "dst". This intrinsic provides a hint to the implementation
/// that the data will likely not be reused in the near future and the data
/// caching can be optimized accordingly.
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILELOADDT1 </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be loaded in memory.
void __tile_stream_loadd(__tile1024i* dst, const void* base, __SIZE_TYPE__ stride);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///

Ref#: 248966-048 20-66

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/* 2 of 3 */
/// This intrinsic corresponds to the <c> TDPBSSD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbssd(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of signed 8-bit integers in src0 with
/// corresponding unsigned 8-bit integers in src1, producing 4 intermediate
/// 32-bit results. Sum these 4 results with the corresponding 32-bit integer
/// in "dst", and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBSUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbsud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Compute dot-product of bytes in tiles with a source/destination accumulator.
/// Multiply groups of 4 adjacent pairs of unsigned 8-bit integers in src0 with
/// corresponding signed 8-bit integers in src1, producing 4 intermediate 32-bit
/// results. Sum these 4 results with the corresponding 32-bit integer in "dst",
/// and store the 32-bit result back to tile "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBUUD </c> instruction.
///
/// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbuud(__tile1024i *dst, __tile1024i src1, __tile1024i src2);
/// Zero the tile specified by "dst".
///
/// \headerfile <immintrin.h>
///

Ref#: 248966-048 20-67

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

/* 2of 2 */
/// This intrinsic corresponds to the <c> TILEZERO </c> instruction.
///
/// \param dst
/// The destination tile to be zero. Max size is 1024 Bytes.
void __tile_zero(__tile1024i* dst);
/// Compute dot-product of BF16 (16-bit) floating-point pairs in tiles src0 and
/// src1, accumulating the intermediate single-precision (32-bit) floating-point
/// elements with elements in "dst", and store the 32-bit result back to tile
/// "dst".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TDPBF16PS </c> instruction.
////// \param dst
/// The destination tile. Max size is 1024 Bytes.
/// \param src0
/// The 1st source tile. Max size is 1024 Bytes.
/// \param src1
/// The 2nd source tile. Max size is 1024 Bytes.
void __tile_dpbf16ps(__tile1024i* dst, __tile1024i src0, __tile1024i src1);
/// Store the tile specified by "src" to memory specified by "base" address and
/// "stride".
///
/// \headerfile <immintrin.h>
///
/// This intrinsic corresponds to the <c> TILESTORED </c> instruction.
///
/// \param dst
/// A destination tile. Max size is 1024 Bytes.
/// \param base
/// A pointer to base address.
/// \param stride
/// The stride between the rows' data to be stored in memory.
void __tile_stored(void *base, __SIZE_TYPE__ stride, __tile1024i src);

Ref#: 248966-048 20-68

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

20.18.4 INTEL® AMX INTRINSICS EXAMPLE
In Example 20-30, function foo is called in line 18, and the tile variable ‘a’ written in line 17 needs to live
up to line 21 across the function call. The compiler needs to save the tile data register allocated to ‘a’
before calling foo, then restore the tile configure register and tile data registers after calling foo. Lines 39,
42, and 46 in Example 20-31 are the save/restore code. Since the configure register doesn’t change, the
configure register in the stack does not require saving.

Example 20-30. Intel® AMX Intrinsics Usage

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables.

Notice the ldtilecfg instruction at the beginning of the function (line 34 in Example 20-31), which sets the
Intel AMX registers configuration within the CPU and the TileRelease instruction towards the end of the
function. This placement ensures that the Intel AMX state is initialized, thus avoiding the expensive Intel
AMX state save/restore in case of a software thread context-switch outside of the Intel AMX function.

 1 #include <immintrin.h>
 2
 3 char buf[1024];
 4 #define STRIDE 32
 5
 6 int count = 0;
 7 __attribute__((noinline))
 8 void foo() {
 9 count++;
 10 }
 11
 12 void test_api(int cond, unsigned short row, unsigned short col) {
 13 __tile1024i a = {row, col};
 14 __tile1024i b = {row, col};
 15 __tile1024i c = {row, col};
 16
 17 __tile_loadd(&a, buf, STRIDE);
 18 foo();
 19 __tile_loadd(&b, buf, STRIDE);
 20 __tile_loadd(&c, buf, STRIDE);
 21 __tile_dpbssd(&c, a, b);
 22 __tile_stored(buf, STRIDE, c);
 23 }

Ref#: 248966-048 20-69

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-31. Compiler-Generated Assembly-Level Code from Example 20-30

20.18.5 COMPILATION OPTION
The save/restore is sometimes unnecessary, e.g., when foo does not clobber any tile register. To avoid
unnecessary save/restore, compile with “-mllvm -enable-ipra”, which does an IPO analysis to get the
information on what physical registers are clobbered during the function call. Example 20-32 shows no
tile register save/restore across calling foo.

clang -O2 -S amx-across-func.c -mamx-int8 -mavx512f -fno-asynchronous-unwind-tables -mllvm -
enable-ipra

 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 pushq %rbp
 19 pushq %r15
 20 pushq %r14
 21 pushq %rbx
 22 subq $1096, %rsp # imm = 0x448
 23 movl %edx, %ebx
 24 movl %esi, %ebp
 25 vpxord %zmm0, %zmm0, %zmm0
 26 vmovdqu64 %zmm0, (%rsp)
 27 movb $1, (%rsp)
 28 movw %bx, 20(%rsp)
 29 movb %bpl, 50(%rsp)
 30 movw %bx, 18(%rsp)
 31 movb %bpl, 49(%rsp)
 32 movw %bx, 16(%rsp)
 33 movb %bpl, 48(%rsp)
 34 ldtilecfg (%rsp)
 35 movl $buf, %r14d
 36 movl $32, %r15d
 37 tileloadd (%r14,%r15), %tmm0
 38 movabsq $64, %rax
 39 tilestored %tmm0, 64(%rsp,%rax) # 1024-byte Folded Spill
 40 vzeroupper
 41 callq foo
 42 ldtilecfg (%rsp)
 43 tileloadd (%r14,%r15), %tmm0
 44 tileloadd (%r14,%r15), %tmm1
 45 movabsq $64, %rax
 46 tileloadd 64(%rsp,%rax), %tmm2 # 1024-byte Folded Reload
 47 tdpbssd %tmm0, %tmm2, %tmm1
 48 tilestored %tmm1, (%r14,%r15)
 49 addq $1096, %rsp # imm = 0x448
 50 popq %rbx
 51 popq %r14
 52 popq %r15
 53 popq %rbp
 54 tilerelease
 55 retq

Ref#: 248966-048 20-70

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Example 20-32. Compiler-Generated Assembly-Level Code Where Tile Register Save/Restore is Optimized Away

20.19 INTEL® AMX STATE MANAGEMENT
Intel AMX is XSAVE supported, meaning that it defines processor registers that can be saved and
restored using instructions of the XSAVE feature set. Intel AMX is also XSAVE enabled, meaning that
system software must enable it before it can be used.

The XSAVE feature set operates on state components, each a discrete set of processor registers (or parts
of registers). Intel AMX is associated with two state components, XTILECFG and XTILEDATA. The XSAVE
feature set organizes state components using state-component bitmaps. A state-component bitmap
comprises 64 bits; each bit in such a bitmap corresponds to a single state component. Intel AMX defines
bits 18:17 for its state components (collectively, these are called AMX state):

• State component 17 is used for the 64-byte TILECFG register (XTILECFG state).
• State component 18 is used for the 8192 bytes of tile data (XTILEDATA state).

These are both user-state components, meaning the entire XSAVE feature set can manage them. In
addition, it implies that setting bits 18:17 of extended control register XCR0 by system software enables
Intel AMX. If those bits are zero, an Intel AMX instruction execution results in an invalid-opcode excep-
tion (#UD).

About the XSAVE feature set’s INIT optimization, the Intel AMX state is in its initial configuration if the
TILECFG register is zero and all tile data are zero.

Enumeration and feature-enabling documentation can be found in Section 20.2.

 15 .type test_api,@function
 16 test_api: # @test_api
 17 # %bb.0: # %entry
 18 subq $72, %rsp
 19 vpxord %zmm0, %zmm0, %zmm0
 20 vmovdqu64 %zmm0, 8(%rsp)
 21 movb $1, 8(%rsp)
 22 movw %dx, 28(%rsp)
 23 movb %sil, 58(%rsp)
 24 movw %dx, 26(%rsp)
 25 movb %sil, 57(%rsp)
 26 movw %dx, 24(%rsp)
 27 movb %sil, 56(%rsp)
 28 ldtilecfg 8(%rsp)
 29 movl $buf, %eax
 30 movl $32, %ecx
 31 tileloadd (%rax,%rcx), %tmm0
 32 callq foo
 33 tileloadd (%rax,%rcx), %tmm1
 34 tileloadd (%rax,%rcx), %tmm2
 35 tdpbssd %tmm1, %tmm0, %tmm2
 36 tilestored %tmm2, (%rax,%rcx)
 37 addq $72, %rsp
 38 tilerelease
 39 vzeroupper
 40 retq
 41 .Lfunc_end1:
 42 .size test_api, .Lfunc_end1-test_api

Ref#: 248966-048 20-71

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

An execution of XRSTOR or XRSTORS initializes the TILECFG register (resulting in TILES_CONFIGURED =
0) in response to an attempt to load it with an illegal value. Moreover, an execution of XRSTOR or
XRSTORS that is not directed to load XTILEDATA leaves it unmodified, even if the execution is loading
XTILECFG.

It is highly recommended that developers execute TILERELEASE to initialize the tiles at the end of the
Intel AMX instructions code region. More on this is in Section 20.18.

If the system software does not initialize the Intel AMX state first (by executing TILERELEASE, for
example), it may disable Intel AMX by clearing XCR0[18:17], by clearing CR4.OSXSAVE, or by setting
IA32_XFD[18].

20.19.1 EXTENDED FEATURE DISABLE (XFD)
The XTILEDATA state component size is 8 KBytes, and an operating system may, by default, prefer not to
allocate memory for the XTILEDATA state for every user thread. An operating system that enables Intel
AMX might select a fault when user threads use the feature. That way, it can allocate a large enough state
save area only for the user threads using the feature. An operating system may offer an API for the user
threads to declare their intention to use Intel AMX and allow the OS to preallocate the state and avoid an
exception when Intel AMX is used for the first time.

See Linux API and Windows API for more details.

Extended feature disable (XFD) is added to the XSAVE feature set to support such usage. See the Intel®
AMX Architecture Definition for XFD documentation.

20.19.2 ALTERNATE SIGNAL HANDLER STACK IN LINUX OPERATING SYSTEM
When programs use an alternate signal handler stack, the stack size should be adjusted to accommodate
the additional Intel AMX state. See Using XSTATE Features in User-Space Applications for more details.

20.20 USING INTEL® AMX TO EMULATE HIGHER PRECISION GEMMS
Intel AMX/TMUL has instructions that enable matrix-matrix operations such as multiplication on small
precision elements. This section considers how to use the low-precision Intel AMX instructions to approx-
imate the answers to matrix-matrix multiplication of higher-precision terms. Even if low-precision inputs
are Bfloat16 or Integer8, one can still combine the transforms to approximate matrix-matrix multiplica-
tion in higher precisions.

Pay attention to the exponent range and mantissa bits when approximating higher precisions. There are
IEEE-754 double precision numbers (FP64) that aren’t representable as single precision (FP32) or lower
precisions. These are typically range-based issues in the exponent bits. FP64 has more exponent bits
than FP32. However, scaling factors can overcome most range-based problems. If A is a matrix of FP64
values, then A (as a sum of Bfloat16 matrices) cannot generally be represented. Scaling factors can,
however, be used to get around most issues. The A-matrix as s1*A1 + s2*A2 + … + sn*An can be written
where each matrix A_i is lower precision, and each si is a constant scaling factor.

For Bfloat16 decomposition of FP32, consider the following:

• Let A be a matrix of FP32 values.
• Let A1 = bfloat16(A), a matrix containing RNE-rounded Bfloat16 conversions of A.
• Let A2 = bfloat16(A – fp32(A1)).
• Let A3 = bfloat16(A – fp32(A1) – fp32(A2)).
• Now A is approximately A1 + A2 + A3.

https://www.kernel.org/doc/html/latest/x86/xstate.html
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://learn.microsoft.com/en-us/windows/win32/api/winbase/
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.intel.com/content/www/us/en/developer/technical-library/installation-guides.html
https://www.kernel.org/doc/html/latest/x86/xstate.html

Ref#: 248966-048 20-72

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Once one has written two matrices as a sum of lower precision matrices, one can run AMX/TMUL on the
product to approximate the higher precision. But to do this effectively, one needs to have higher precision
accumulation. There are tricks in the literature for doing higher precision all in a lower precision, such as
works on so-called double-double arithmetic. Still, these tend to vary too much from standard matrix-
matrix multiplication to be helpful with TMUL. In the case of Bfloat16, having 32-bit accumulation in the
product allows one to use Bfloat16 to approximate FP32 accuracy.

Therefore, if A = s1*A1 + s2*A2 + s3*A3, and B = t1*B1 + t2*B2 + t3*B3, then A*B can be computed
using AMX/TMUL on the projects Ai*Bj for 1<=i,j<=3, assuming scaling is done carefully to avoid denor-
mals. Assuming FP32 accumulation, the FP32 approximation of A*B can be made by writing out these
lower precision multiplies. Scaling factors can be chosen to avoid denormals at times, but they can also
be picked in a way that simplifies further steps in the algorithm. In some cases, scaling factors can be
chosen to be a power of two, for instance, without significantly reducing the accuracy of the resulting
matrix-matrix multiply.

The number of matrices for A or B are picked depending on the mantissa range to cover. If trying to
emulate FP32 which has 24 bits of mantissa (including the implicit mantissa bit), it is possible with three
Bfloat16 matrices (because each of the triples has 8 bits of mantissa, including the implicit bit.). Here the
range is less important because Bfloat16 and FP32 have the same exponent range. Use three Bfloat16
matrices to approximate FP32 precision by BF16x3. Range issues may still come up for BF16x3 cases
where A has values close to the maximum or minimum exponent for FP32, but that too can be circum-
vented by scaling constants. Scaling factors of 2^24 or 2^(-24) suffice to push it far enough away from
the boundary to make the computation feasible again. This is dependent upon the closest end of the
spectrum.

A few terms from an expansion can also be dropped. For instance, in the BF16x3 case, where there are
three As and three Bs, nine products may result. That is:

A*B = (A1+A2+A3)*(B1+B2+B3) = (A1*B1) + (A1*B2 + A2*B1) + (A1*B3 + A2*B2 + A3*B1) +
(A2*B3 + A3*B2) +(A3*B3).

The parentheses in the last equation are intentionally derived so that all entries in the same “bin” are put
together, and there are nine entries of the form Ai*Bj. This example has five bins, each with its own set
of parentheses. In the Bfloat16 case, |Ai| <= |A_i-1}| / 256. This shows the last two bins (with
A2*B3,A3*B2,A3*B3) are too small to contribute significantly to the answer, which is why if there are Y
terms on each side of A*B, only (Y+1)*Y/2 multiplies are required, not Y*Y multiplies. In this case, drop-
ping the last three (also the difference between Y*Y – (Y+1)*Y/2 when Y=3.) from the nine multiplies.
The last three multiplies in the last two bins have terms less than 2^(-24) as big as the first term. So,
A*B can be approximated (ignoring the scaling terms for now) as the sum of the first three most signifi-
cant bins: A1*B1 + (A1*B2+A2*B1)+(A1*B3+A2*B2*A3*B1). In this case, adding from the least signif-
icant bin to the most significant bin (A1*B1) is recommended.

Whenever A and B are each expanded out to Y-terms, computing only Y*(Y+1)/2 products works under
the condition that each term has the same number of mantissa bits. If some terms have a different
number of bits, then this guideline no longer applies. But for BF16x3, each term covers eight mantissa
bits and Y=3, so six products are needed.

Regarding accuracy, the worst-case relative error for BF16x3 may be worse than FP32. However, BF16x3
tends to cover a larger mantissa range due to implicit bits, which can be more accurate in many cases.
Nevertheless, accuracy is not offered by matrix-matrix multiplication. Even FP64 or FP128 can be bad for
component-wise relative errors. Take A = [1, -1] and B = [1; 1]. A*B is zero. Let eps be a small pertur-
bation to A and/or B. The solution may now be arbitrarily bad in terms of relative error. In general,
assume that the same mantissa range and exponent range is covered as a given higher-precision floating
point format, and the accumulation is at least as good as the higher-precision format. With such an
assumption, the answer will be approximately the same as the higher-precision floating point format. It
may or may not be identical. Performing the same operation in the higher precision format but changing
the order of the computations could yield slightly different results. In terms of matrix-matrix multiplica-
tion, it could yield vast differences in relative error.

Ref#: 248966-048 20-73

INTEL® ADVANCED MATRIX EXTENSIONS (INTEL® AMX)

Things get slightly more complicated if low precision is used to approximate matrix-matrix at FP64 accu-
racy or FP128 precision. Here the scalars aren’t just for avoiding denormals but are necessary to do the
initial matrix conversion. Nevertheless, converting to an integer is recommended in this case because the
FP32-rounded errors in each of the seven or fewer bins may introduce too many errors. An integer is
easier to get right because there are no floating-point errors in each bin.

Conversion to Integer functions in the same way as all of the previous Bfloat16 examples. The quantiza-
tion literature explains how to map floating point numbers into integers. The only difference is that these
integers are further broken down into 8-bit pieces for the use of Intel AMX. Constant factors are still
needed, but in this case they are primarily defined in the conversion itself.

One difficulty with quantization to integers is the notion of a shared exponent. All the numbers quantized
together with shared exponents must share the same range. The assumption is that all of A shares a joint
exponent range. Since this will also be true for B, each row of A and column of B can be quantized sepa-
rately.

Assuming that there is Integer32 accumulation with the Integer8 multiplies, a matrix may be broken
down into far more bits than required. This may significantly reduce the inaccuracy impact of picking a
shared exponent. Because Integer32 arithmetic will be precise, modulo overflow/underflow concerns,
then one can break up A or B into a huge number of 8-bit integer matrices, then do all the matrix-matrix
work with Intel AMX, and then convert back all the results to even get accuracies up to quad-precision.

Considering an extreme case of trying to get over 100-bits of accuracy in a matrix-matrix multiply. All A-
values can be quantified into 128-bit integers. The same holds true with B. Once broken down into 8-bit
quantities, this will have a significant expansion like: A = s1*A1 + s2*A2 + … + s14*A14 for when
attempting 112-bits of mantissa. The same can be done with B = t1*B1 + t2*B2 + … + t14*B14. A*B is
potentially 14*14=196 products, but only 105 products are needed because the last few products may
have scaling factors less than 2^(-112) times the most important terms. Each product term should be
added separately and computing into C from the least significant bits forward.

C15 = (s1*t14)*A1*B14 + (s2*t13)*A2*B13 + … + (s14*t1)*A14*B1

C14 = (s1*t13)*A1*B13 + (s2*t12)*A2*B12 + … + (s13*t1)*A13*B1

C13 = (s1*t12)*A1*B12 + (s2*t11)*A2*B11 + … + (s12*t1)*A12*B1

…

C02 = (s1*t1)*A1*B1

Sometimes choosing scalers is possible such that all the products in a given row can be computed with
the same scratch array. The converted sum of C02 gives the final product through C15, where terms like
C15 should be computed first.

Writing matrix-matrix multiplies in terms of an expansion like (A1+A2+A3)*(B1+B2+B3) is referred to
as “cascading GEMM.” Performance will vary depending on the TMUL/Intel AMX specification, and may
vary from generation to generation. Note that some computations may become bandwidth-bound. Since
there is no quad floating-point precision in hardware for Intel Architecture, the above algorithm may be
competitive performance-wise with other approaches like doing software double-double optimizations or
software-based quad precision.

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

5. Updates to Appendix E

Change bars and violet text show changes to Appendix E of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: The Optimization of Earlier Generations of Intel 64 and IA32 Processor Architectures.

--
Changes to this chapter:

• This chapter has been updated to comprise Chapters 1 through 5 of the new Volume 2 of the Intel® 64 and
IA-32 Architectures Optimization Reference Manual.

• Updated capitalization of headings throughout chapter.
• Updated branding throughout chapter.
• Typo and punctuation corrections as necessary.

CHAPTER 1
HASWELL MICROARCHITECTURE

1.1 INTRODUCTION
The Haswell microarchitecture builds on the successes of the Sandy Bridge and Ivy Bridge microarchitec-
tures. The basic pipeline functionality of the Haswell microarchitecture is depicted in Figure 1-1. In
general, most of the features described in Section 1.2 - Section 1.4 also apply to the Broadwell microar-
chitecture. Enhancements of the Broadwell microarchitecture are summarized in Section 1.6.

The Haswell microarchitecture offers the following innovative features:
• Support for Intel Advanced Vector Extensions 2 (Intel® AVX2), FMA.
• Support for general-purpose, new instructions to accelerate integer numeric encryption.
• Support for Intel® Transactional Synchronization Extensions (Intel® TSX).
• Each core can dispatch up to 8 micro-ops per cycle.
• 256-bit data path for memory operation, FMA, AVX floating-point and AVX2 integer execution units.
• Improved L1D and L2 cache bandwidth.
• Two FMA execution pipelines.
• Four arithmetic logical units (ALUs).
• Three store address ports.

Figure 1-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture

32K L1 Instruction Cache Pre-Decode Instruction Queue
MSROM

Decoder

Uop Cache (DSB)

Allocate/Rename/Retire/
MoveElimination/ZeroIdiom

Load Buffers, Store
Buffers, Reorder Buffers

Memory Control

32K L1 Data Cache

256K L2 Cache (Unified)

Line Fill Buffers

STD LD/STA LD/STA STA
ALU,
SHFT,

VEC LOG,
VEC SHFT,

FP mul,
FMA,
DIV,

STTNI,
Branch2

ALU,
Fast LEA,
VEC ALU,
VEC LOG,
FP mul,

FMA,
FP add,
Slow Int

ALU,
Fast LEA,
VEC ALU,
VEC LOG,

VEC SHUF,

ALU, Shft

Primary
Branch

Port 0 Port 5 Port 6 Port 4 Port 2 Port 3 Port 7Port 1

Scheduler

BPU

IDQ

Ref#: 248966-048 1-2

HASWELL MICROARCHITECTURE

• Two branch execution units.
• Advanced power management features for IA processor core and uncore sub-systems.
• Support for optional fourth level cache.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. An
example of the system integration view of four CPU cores with uncore components is illustrated in
Figure 1-2.

1.2 THE FRONT END
The front end of Haswell microarchitecture builds on that of the Sandy Bridge and Ivy Bridge microarchi-
tectures, see Section A.2.2 and Section A.2.7. Additional enhancements in the front end include:
• The uop cache (or decoded ICache) is partitioned equally between two logical processors.
• The instruction decoders will alternate between each active logical processor. If one sibling logical

processor is idle, the active logical processor will use the decoders continuously.
• The LSD in the micro-op queue (or IDQ) can detect small loops up to 56 micro-ops. The 56-entry

micro-op queue is shared by two logical processors if Hyper-Threading Technology is active (Sandy
Bridge microarchitecture provides duplicated 28-entry micro-op queue in each core).

1.3 THE OUT-OF-ORDER ENGINE
The key components and significant improvements to the out-of-order engine are summarized below:

Renamer: The Renamer moves micro-ops from the micro-op queue to bind to the dispatch ports in the
Scheduler with execution resources. Zero-idiom, one-idiom and zero-latency register move operations
are performed by the Renamer to free up the Scheduler and execution core for improved performance.

Figure 1-2. Four Core System Integration of the Haswell Microarchitecture

CPU Core

DMI

CPU Core

System Agent

Legend: Uncore

PCIe DMI
DRAM

Disp

CPU Core

CPU Core

CPU Core

Processor Graphics/
Media Engine

L3 Slice

L3 Slice

L3 Slice

L3 Slice

Eng
PEG PCIe

Brdg
IMc

Ref#: 248966-048 1-3

HASWELL MICROARCHITECTURE

Scheduler: The Scheduler controls the dispatch of micro-ops onto the dispatch ports. There are eight
dispatch ports to support the out-of-order execution core. Four of the eight ports provided execution
resources for computational operations. The other 4 ports support memory operations of up to two 256-
bit load and one 256-bit store operation in a cycle.

Execution Core: The scheduler can dispatch up to eight micro-ops every cycle, one on each port. Of the
four ports providing computational resources, each provides an ALU, two of these execution pipes
provided dedicated FMA units. With the exception of division/square-root, STTNI/AESNI units, most
floating-point and integer SIMD execution units are 256-bit wide. The four dispatch ports servicing
memory operations consist with two dual-use ports for load and store-address operation. Plus a dedi-
cated 3rd store-address port and one dedicated store-data port. All memory ports can handle 256-bit
memory micro-ops. Peak floating-point throughput, at 32 single-precision operations per cycle and 16
double-precision operations per cycle using FMA, is twice that of Sandy Bridge microarchitecture.

The out-of-order engine can handle 192 uops in flight compared to 168 in Sandy Bridge microarchitec-
ture.

1.3.1 Execution Engine
Table 1-1 summarizes which operations can be dispatched on which port.

Table 1-2 lists execution units and common representative instructions that rely on these units. Table 1-2
also includes some instructions that are available only on processors based on the Broadwell microarchi-
tecture.

Table 1-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,

Shift

ALU,

Fast LEA,

BM

Load_Addr,

Store_addr

Store_data ALU,

Fast LEA,

BM

ALU,

Shift,

JEU

Store_addr,
Simple_AGU

SIMD_Log,
SIMD misc,
SIMD_Shifts

SIMD_ALU,
SIMD_Log

SIMD_ALU,
SIMD_Log,

FMA/FP_mul,
Divide

FMA/FP_mul,
FP_add

Shuffle

2nd_Jeu slow_int, FP mov,

AES

Ref#: 248966-048 1-4

HASWELL MICROARCHITECTURE

The reservation station (RS) is expanded to 60 entries deep (compared to 54 entries in Sandy Bridge
microarchitecture). It can dispatch up to eight micro-ops in one cycle if the micro-ops are ready to
execute. The RS dispatch a micro-op through an issue port to a specific execution cluster, arranged in
several stacks to handle specific data types or granularity of data.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
delay can occur. The delay occurs also for transitions between Intel SSE integer and Intel SSE floating-
point operations. In some of the cases the data transition is done using a micro-op that is added to the
instruction flow. Table A-25 describes how data, written back after execution, can bypass to micro-op
execution in the following cycles.

Table 1-2. Haswell Microarchitecture Execution Units and Representative Instructions

Execution
Unit

of
Ports

Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa

SHFT 2 sal, shl, rol, adc, sarx, (adcx, adox)1 etc.

NOTES:
1. Only available in processors based on the Broadwell microarchitecture and support CPUID ADX feature flag.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

SIMD Log 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)blendp*, vpblendd

SIMD_Shft 1 (v)psl*, (v)psr*

SIMD ALU 2 (v)padd*, (v)psign, (v)pabs, (v)pavgb, (v)pcmpeq*, (v)pmax, (v)pcmpgt*

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr, (v)pmovzx*,
vbroadcast*, (v)pslldq, (v)pblendw

SIMD Misc 1 (v)pmul*, (v)pmadd*, STTNI, (v)pclmulqdq, (v)psadw, (v)pcmpgtq, vpsllvd, (v)bendv*, (v)plendw,

FP Add 1 (v)addp*, (v)cmpp*, (v)max*, (v)min*,

FP Mov 1 (v)movap*, (v)movup*, (v)movsd/ss, (v)movd gpr, (v)andp*, (v)orp*

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

Ref#: 248966-048 1-5

HASWELL MICROARCHITECTURE

1.4 CACHE AND MEMORY SUBSYSTEM
The cache hierarchy is similar to prior generations, including an instruction cache, a first-level data cache
and a second-level unified cache in each core, and a 3rd-level unified cache with size dependent on
specific product configuration. The 3rd-level cache is organized as multiple cache slices, the size of each
slice may depend on product configurations, connected by a ring interconnect. The exact details of the
cache topology is reported by CPUID leaf 4. The 3rd level cache resides in the “uncore” sub-system that
is shared by all the processor cores. In some product configurations, a fourth level cache is also
supported. Table A-23 provides more details of the cache hierarchy.

Table 1-3. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

From/To INT SSE-INT/
AVX-INT

SSE-FP/
AVX-FP_LOW

X87/
AVX-FP_High

INT • micro-op (port 5)
• micro-op (port 6) +

1 cycle

• micro-op (port 5)
• micro-op (port 6) + 1

cycle

micro-op (port 5) + 3
cycle delay

SSE-INT/
AVX-INT

micro-op (port 1) 1 cycle delay

SSE-FP/
AVX-FP_LOW

micro-op (port 1) 1 cycle delay micro-op (port 5) +
1cycle delay

X87/
AVX-FP_High

micro-op (port 1) + 3
cycle delay

micro-op (port 5) +
1cycle delay

Load 1 cycle delay 1 cycle delay 2 cycle delay

Table 1-4. Cache Parameters of the Haswell Microarchitecture

Level
Capacity /
Associativity

Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors. L3 latency can vary due to clock ratios

between the processor core and uncore.

Throughput
(clocks)

Peak Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 0.52

2. First level data cache supports two load micro-ops each cycle; each micro-op can fetch up to 32-bytes of data.

64 (Load) + 32
(Store)

Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/8 64 11 cycle Varies 64 Writeback

Third Level (Shared
L3)

Varies 64 ~34 Varies Writeback

Ref#: 248966-048 1-6

HASWELL MICROARCHITECTURE

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2.

1.4.1 Load and Store Operation Enhancements
The L1 data cache can handle two 256-bit load and one 256-bit store operations each cycle. The unified
L2 can service one cache line (64 bytes) each cycle. Additionally, there are 72 load buffers and 42 store
buffers available to support micro-ops execution in-flight.

1.4.2 Unlamination
Some micro-fused instructions cannot be allocated as a single uop, and therefore they break into two
uops in the micro-op queue. The process of breaking a fused instruction into its uops is called unlamina-
tion.

Unlamination will take place if the number of fused instruction sources is greater than three.

Instruction sources in the context of unlamination are considered to be one of the following: memory
address base, memory address index, source register, destination register (including flags), or a source
and destination register.

A memory operand in the context of unlamination can have up to two sources. A memory address in the
x86 instruction set is constructed from: base + index*scale + displacement.

Only a base and an index are counted as instruction sources. Notice that if an index exists, the base is
counted as a source even if it's not present.

In addition, source and destination registers are counted as two sources; this is also true in the case
where the source and destination register are the same.

The following table shows examples of micro-fused instructions and details of unlamination.

Table 1-5. TLB Parameters of the Haswell Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1024 8 fixed

Table A-6. Components of the Front End
Instruction Example Source Destination Source and

Destination
Index Base Number of

Sources1

NOTES:
1. Recommendation: to avoid unlamination, keep the number of micro-fused instruction sources under 4.

Unlaminated

mulss xmm1,
[4*rax+100]

- - xmm1 rax 0 3 no

vmulss xmm1, xmm1,
[rax +100]

xmm1 xmm1 - - rax 3 no

vmulss xmm1, xmm1,
[4*rax+100]

xmm1 xmm1 - rax 0 4 yes

cmp rax,
[rbx+4*rax+4]

rax flags - rax rbx 4 yes

cmp rax, [rbx+4] rax flags - - rbx 3 no

Ref#: 248966-048 1-7

HASWELL MICROARCHITECTURE

1.5 HASWELL-E MICROARCHITECTURE
Intel processors based on the Haswell-E microarchitecture comprises the same processor cores as
described in the Haswell microarchitecture, but provides more advanced uncore and integrated I/O capa-
bilities. Processors based on the Haswell-E microarchitecture support platforms with multiple sockets.

The Haswell-E microarchitecture supports versatile processor architectures and platform configurations
for scalability and high performance. Some of capabilities provided by the uncore and integrated I/O sub-
system of the Haswell-E microarchitecture include:
• Support for multiple Intel QPI interconnects in multi-socket configurations.
• Up to two integrated memory controllers per physical processor.
• Up to 40 lanes of Intel® PCI Express* 3.0 links per physical processor.
• Up to 18 processor cores connected by two ring interconnects to the L3 in each physical processor.

An example of a possible 12-core processor implementation using the Haswell-E microarchitecture is
illustrated in Figure 1-3. The capabilities of the uncore and integrated I/O sub-system vary across the
processor family implementing the Haswell-E microarchitecture. For details, please consult the data
sheets of respective Intel Xeon E5 v3 processors.

1.6 BROADWELL MICROARCHITECTURE
Intel Core M processors are based on the Broadwell microarchitecture. The Broadwell microarchitecture
builds from the Haswell microarchitecture and provides several enhancements. This section covers
enhanced features of the Broadwell microarchitecture.
• Floating-point multiply instruction latency is improved from five cycles in prior generation to three

cycles in the Broadwell microarchitecture. This applies to Intel AVX, Intel SSE and FP instruction sets.
• The throughput of gather instructions has been improved significantly, see Table D-5.
• The PCLMULQDQ instruction implementation is a single uop in the Broadwell microarchitecture with

improved latency and throughput.

Figure 1-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores

Core

QPII Links
CPU Core

Legend: Uncore
PCIe QPI

DRAMHome Agent
Memory Controller

L3 Slice

Integrated I/O

Sbox

Core L3 Slice

Core L3 Slice

Core L3 Slice

DRAM DRAMHome Agent
Memory Controller

DRAM

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Sbox

Ref#: 248966-048 1-8

HASWELL MICROARCHITECTURE

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB
for L2.

Table 1-7. TLB Parameters of the Broadwell Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2MB pages 1536 6 fixed

Second Level 1GB pages 16 4 fixed

CHAPTER 2
SANDY BRIDGE MICROARCHITECTURE

Sandy Bridge microarchitecture builds on the successes of Intel® Core™ microarchitecture and Nehalem
microarchitecture. It offers the following innovative features:
• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel SSE, providing up to 2X
performance benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and
legacy 128-bit SSE code.

• Enhanced front end and execution engine

— New decoded ICache component that improves front end bandwidth and reduces branch mispre-
diction penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial
stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.
• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory operation.

— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.

— Internal bandwidth of two loads and one store each cycle.

— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.
• System-on-a-chip support

— Integrated graphics and media engine in second generation Intel Core processors.

— Integrated Intel® PCIe controller.

— Integrated memory controller.
• Next generation Intel Turbo Boost Technology

— Leverage TDP headroom to boost performance of CPU cores and integrated graphic unit.

2.1 SANDY BRIDGE MICROARCHITECTURE PIPELINE OVERVIEW
Figure 2-1 depicts the pipeline and major components of a processor core that’s based on Sandy Bridge
microarchitecture. The pipeline consists of:

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-2

• An in-order issue front end that fetches instructions and decodes them into micro-ops (micro-opera-
tions). The front end feeds the next pipeline stages with a continuous stream of micro-ops from the
most likely path that the program will execute.

• An out-of-order, superscalar execution engine that dispatches up to six micro-ops to execution, per
cycle. The allocate/rename block reorders micro-ops to "dataflow" order so they can execute as soon
as their sources are ready and execution resources are available.

• An in-order retirement unit that ensures that the results of execution of the micro-ops, including any
exceptions they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The
processor searches for the code in the following resources, in this order:

a. Decoded ICache.

b. Instruction Cache, via activating the legacy decode pipeline.

c. L2 cache, last level cache (LLC) and memory, as necessary.

2. The micro-ops corresponding to this code are sent to the Rename/retirement block. They enter into
the scheduler in program order, but execute and are de-allocated from the scheduler according to
data-flow order. For simultaneously ready micro-ops, FIFO ordering is nearly always maintained.
Micro-op execution is executed using execution resources arranged in three stacks. The execution
units in each stack are associated with the data type of the instruction.
Branch mispredictions are signaled at branch execution. It re-steers the front end which delivers
micro-ops from the correct path. The processor can overlap work preceding the branch mispre-
diction with work from the following corrected path.

Figure 2-1. Sandy Bridge Microarchitecture Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

Ref#: 248966-048 2-3

SANDY BRIDGE MICROARCHITECTURE

3. Memory operations are managed and reordered to achieve parallelism and maximum performance.
Misses to the L1 data cache go to the L2 cache. The data cache is non-blocking and can handle
multiple simultaneous misses.

4. Exceptions (Faults, Traps) are signaled at retirement (or attempted retirement) of the faulting
instruction.

Each processor core based on Sandy Bridge microarchitecture can support two logical processor if Intel®
Hyper-Threading Technology (Intel® HT) is enabled.

2.1.1 The Front End
This section describes the key characteristics of the front end. Table B-1 lists the components of the front
end, their functions, and the problems they address.

2.1.1.1 Legacy Decode Pipeline
The Legacy Decode Pipeline comprises the instruction translation lookaside buffer (ITLB), the instruction
cache (ICache), instruction predecode, and instruction decode units.

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB and into the instruction cache. The
instruction cache can deliver every cycle 16 bytes to the instruction pre-decoder. Table B-1 compares the
ICache and ITLB with prior generation.

Table 2-1. Components of the Front End of Sandy Bridge Microarchitecture
Component Functions Performance Challenges

Instruction Cache 32-Kbyte backing store of instruction bytes Fast access to hot code instruction bytes

Legacy Decode Pipeline
Decode instructions to micro-ops, delivered to
the micro-op queue and the Decoded ICache.

Provides the same decode latency and
bandwidth as prior Intel processors.

Decoded ICache warm-up

Decoded ICache
Provide stream of micro-ops to the micro-op
queue.

Provides higher micro-op bandwidth at
lower latency and lower power than the
legacy decode pipeline

MSROM
Complex instruction micro-op flow store,
accessible from both Legacy Decode Pipeline
and Decoded ICache

Branch Prediction Unit
(BPU)

Determine next block of code to be executed
and drive lookup of Decoded ICache and legacy
decode pipelines.

Improves performance and energy
efficiency through reduced branch
mispredictions.

Micro-op queue
Queues micro-ops from the Decoded ICache
and the legacy decode pipeline.

Hide front end bubbles; provide execution
micro-ops at a constant rate.

Table 2-2. ICache and ITLB of Sandy Bridge Microarchitecture
Component Sandy Bridge Microarchitecture Nehalem Microarchitecture

ICache Size 32-Kbyte 32-Kbyte

ICache Ways 8 4

ITLB 4K page entries 128 128

ITLB large page (2M or
4M) entries

8 7

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-4

Upon ITLB miss there is a lookup to the Second level TLB (STLB) that is common to the DTLB and the
ITLB. The penalty of an ITLB miss and a STLB hit is seven cycles.

Instruction PreDecode

The predecode unit accepts the 16 bytes from the instruction cache and determines the length of the
instructions.

The following length changing prefixes (LCPs) imply instruction length that is different from the default
length of instructions. Therefore they cause an additional penalty of three cycles per LCP during length
decoding. Previous processors incur a six-cycle penalty for each 16-byte chunk that has one or more
LCPs in it. Since usually there is no more than one LCP in a 16-byte chunk, in most cases, Sandy Bridge
microarchitecture introduces an improvement over previous processors.
• Operand Size Override (66H) preceding an instruction with a word/double immediate data. This

prefix might appear when the code uses 16 bit data types, unicode processing, and image
processing.

• Address Size Override (67H) preceding an instruction with a modr/m in real, big real, 16-bit
protected or 32-bit protected modes. This prefix may appear in boot code sequences.

• The REX prefix (4xh) in the Intel® 64 instruction set can change the size of two classes of instruc-
tions: MOV offset and MOV immediate. Despite this capability, it does not cause an LCP penalty and
hence is not considered an LCP.

Instruction Decode

There are four decoding units that decode instruction into micro-ops. The first can decode all IA-32 and
Intel 64 instructions up to four micro-ops in size. The remaining three decoding units handle single-
micro-op instructions. All four decoding units support the common cases of single micro-op flows
including micro-fusion and macro-fusion.

Micro-ops emitted by the decoders are directed to the micro-op queue and to the Decoded ICache.
Instructions longer than four micro-ops generate their micro-ops from the MSROM. The MSROM band-
width is four micro-ops per cycle. Instructions whose micro-ops come from the MSROM can start from
either the legacy decode pipeline or from the Decoded ICache.

MicroFusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core as many times as it would if it were
not micro-fused.

Micro-fusion enables you to use memory-to-register operations, also known as the complex instruction
set computer (CISC) instruction set, to express the actual program operation without worrying about a
loss of decode bandwidth. Micro-fusion improves instruction bandwidth delivered from decode to retire-
ment and saves power.

Coding an instruction sequence by using single-uop instructions will increases the code size, which can
decrease fetch bandwidth from the legacy pipeline.

The following are examples of micro-fused micro-ops that can be handled by all decoders.
• All stores to memory, including store immediate. Stores execute internally as two separate functions,

store-address and store-data.
• All instructions that combine load and computation operations (load+op), for example:

• ADDPS XMM9, OWORD PTR [RSP+40]

• FADD DOUBLE PTR [RDI+RSI*8]

• XOR RAX, QWORD PTR [RBP+32]
• All instructions of the form "load and jump," for example:

• JMP [RDI+200]

• RET
• CMP and TEST with immediate operand and memory

An instruction with RIP relative addressing is not micro-fused in the following cases:

Ref#: 248966-048 2-5

SANDY BRIDGE MICROARCHITECTURE

• An additional immediate is needed, for example:

• CMP [RIP+400], 27

• MOV [RIP+3000], 142
• The instruction is a control flow instruction with an indirect target specified using RIP-relative

addressing, for example:

• JMP [RIP+5000000]

In these cases, an instruction that can not be micro-fused will require decoder 0 to issue two micro-ops,
resulting in a slight loss of decode bandwidth.

In 64-bit code, the usage of RIP Relative addressing is common for global data. Since there is no micro-
fusion in these cases, performance may be reduced when porting 32-bit code to 64-bit code.

Macro-Fusion

Macro-fusion merges two instructions into a single micro-op. In Intel Core microarchitecture, this hard-
ware optimization is limited to specific conditions specific to the first and second of the macro-fusable
instruction pair.
• The first instruction of the macro-fused pair modifies the flags. The following instructions can be

macro-fused:

— In Nehalem microarchitecture: CMP, TEST.

— In Sandy Bridge microarchitecture: CMP, TEST, ADD, SUB, AND, INC, DEC

— These instructions can fuse if

• The first source / destination operand is a register.

• The second source operand (if exists) is one of: immediate, register, or non RIP-relative
memory.

• The second instruction of the macro-fusable pair is a conditional branch. Table 3-1 describes, for each
instruction, what branches it can fuse with.

Macro fusion does not happen if the first instruction ends on byte 63 of a cache line, and the second
instruction is a conditional branch that starts at byte 0 of the next cache line.

Since these pairs are common in many types of applications, macro-fusion improves performance even
on non-recompiled binaries.

Each macro-fused instruction executes with a single dispatch. This reduces latency and frees execution
resources. You also gain increased rename and retire bandwidth, increased virtual storage, and power
savings from representing more work in fewer bits.

2.1.2 Decoded ICache
The Decoded ICache is essentially an accelerator of the legacy decode pipeline. By storing decoded
instructions, the Decoded ICache enables the following features:
• Reduced latency on branch mispredictions.
• Increased micro-op delivery bandwidth to the out-of-order engine.
• Reduced front end power consumption.

The Decoded ICache caches the output of the instruction decoder. The next time the micro-ops are
consumed for execution the decoded micro-ops are taken from the Decoded ICache. This enables skip-
ping the fetch and decode stages for these micro-ops and reduces power and latency of the Front End.
The Decoded ICache provides average hit rates of above 80% of the micro-ops; furthermore, "hot spots"
typically have hit rates close to 100%.

Typical integer programs average less than four bytes per instruction, and the front end is able to race
ahead of the back end, filling in a large window for the scheduler to find instruction level parallelism.
However, for high performance code with a basic block consisting of many instructions, for example, Intel

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-6

SSE media algorithms or excessively unrolled loops, the 16 instruction bytes per cycle is occasionally a
limitation. The 32-byte orientation of the Decoded ICache helps such code to avoid this limitation.

The Decoded ICache automatically improves performance of programs with temporal and spatial locality.
However, to fully utilize the Decoded ICache potential, you might need to understand its internal organi-
zation.

The Decoded ICache consists of 32 sets. Each set contains eight Ways. Each Way can hold up to six
micro-ops. The Decoded ICache can ideally hold up to 1536 micro-ops.

The following are some of the rules how the Decoded ICache is filled with micro-ops:
• All micro-ops in a Way represent instructions which are statically contiguous in the code and have

their EIPs within the same aligned 32-byte region.
• Up to three Ways may be dedicated to the same 32-byte aligned chunk, allowing a total of 18 micro-

ops to be cached per 32-byte region of the original IA program.
• A multi micro-op instruction cannot be split across Ways.
• Up to two branches are allowed per Way.
• An instruction which turns on the MSROM consumes an entire Way.
• A non-conditional branch is the last micro-op in a Way.
• Micro-fused micro-ops (load+op and stores) are kept as one micro-op.
• A pair of macro-fused instructions is kept as one micro-op.
• Instructions with 64-bit immediate require two slots to hold the immediate.

When micro-ops cannot be stored in the Decoded ICache due to these restrictions, they are delivered
from the legacy decode pipeline. Once micro-ops are delivered from the legacy pipeline, fetching micro-
ops from the Decoded ICache can resume only after the next branch micro-op. Frequent switches can
incur a penalty.

The Decoded ICache is virtually included in the Instruction cache and ITLB. That is, any instruction with
micro-ops in the Decoded ICache has its original instruction bytes present in the instruction cache.
Instruction cache evictions must also be evicted from the Decoded ICache, which evicts only the neces-
sary lines.

There are cases where the entire Decoded ICache is flushed. One reason for this can be an ITLB entry
eviction. Other reasons are not usually visible to the application programmer, as they occur when
important controls are changed, for example, mapping in CR3, or feature and mode enabling in CR0 and
CR4. There are also cases where the Decoded ICache is disabled, for instance, when the CS base address
is NOT set to zero.

2.1.3 Branch Prediction
Branch prediction predicts the branch target and enables the processor to begin executing instructions
long before the branch true execution path is known. All branches utilize the branch prediction unit (BPU)
for prediction. This unit predicts the target address not only based on the EIP of the branch but also
based on the execution path through which execution reached this EIP. The BPU can efficiently predict the
following branch types:
• Conditional branches.
• Direct calls and jumps.
• Indirect calls and jumps.
• Returns.

2.1.4 Micro-op Queue and the Loop Stream Detector (LSD)
The micro-op queue decouples the front end and the out-of order engine. It stays between the micro-op
generation and the renamer as shown in Figure 2-1. This queue helps to hide bubbles which are intro-

Ref#: 248966-048 2-7

SANDY BRIDGE MICROARCHITECTURE

duced between the various sources of micro-ops in the front end and ensures that four micro-ops are
delivered for execution, each cycle.

The micro-op queue provides post-decode functionality for certain instructions types. In particular, loads
combined with computational operations and all stores, when used with indexed addressing, are repre-
sented as a single micro-op in the decoder or Decoded ICache. In the micro-op queue they are frag-
mented into two micro-ops through a process called un-lamination, one does the load and the other does
the operation. A typical example is the following "load plus operation" instruction:

ADD RAX, [RBP+RSI]; rax := rax + LD(RBP+RSI)

Similarly, the following store instruction has three register sources and is broken into "generate store
address" and "generate store data" sub-components.

MOV [ESP+ECX*4+12345678], AL

The additional micro-ops generated by unlamination use the rename and retirement bandwidth.
However, it has an overall power benefit. For code that is dominated by indexed addressing (as often
happens with array processing), recoding algorithms to use base (or base+displacement) addressing can
sometimes improve performance by keeping the load plus operation and store instructions fused.

The Loop Stream Detector (LSD)

The Loop Stream Detector was introduced in Intel® Core microarchitectures. The LSD detects small loops
that fit in the micro-op queue and locks them down. The loop streams from the micro-op queue, with no
more fetching, decoding, or reading micro-ops from any of the caches, until a branch mis-prediction
inevitably ends it.

The loops with the following attributes qualify for LSD/micro-op queue replay:

• Up to eight chunk fetches of 32-instruction-bytes.

• Up to 28 micro-ops (~28 instructions).

• All micro-ops are also resident in the Decoded ICache.

• Can contain no more than eight taken branches and none of them can be a CALL or RET.

• Cannot have mismatched stack operations. For example, more PUSH than POP instructions.

Many calculation-intensive loops, searches and software string moves match these characteristics.

Use the loop cache functionality opportunistically. For high performance code, loop unrolling is generally
preferable for performance even when it overflows the LSD capability.

2.2 THE OUT-OF-ORDER ENGINE
The Out-of-Order engine provides improved performance over prior generations with excellent power
characteristics. It detects dependency chains and sends them to execution out-of-order while main-
taining the correct data flow. When a dependency chain is waiting for a resource, such as a second-level
data cache line, it sends micro-ops from another chain to the execution core. This increases the overall
rate of instructions executed per cycle (IPC).

The out-of-order engine consists of two blocks, shown in Figure 2-1: Core Functional Diagram, the
Rename/retirement block, and the Scheduler.

The Out-of-Order (OOO) engine contains the following major components:

Renamer. The Renamer component moves micro-ops from the front end to the execution core. It elimi-
nates false dependencies among micro-ops, thereby enabling out-of-order execution of micro-ops.

Scheduler. The Scheduler component queues micro-ops until all source operands are ready. Schedules
and dispatches ready micro-ops to the available execution units in as close to a first in first out (FIFO)
order as possible.

Retirement. The Retirement component retires instructions and micro-ops in order and handles faults
and exceptions.

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-8

2.2.1 Renamer
The Renamer is the bridge between the in-order part in Figure 2-1, and the dataflow world of the Sched-
uler. It moves up to four micro-ops every cycle from the micro-op queue to the out-of-order engine.
Although the renamer can send up to 4 micro-ops (unfused, micro-fused, or macro-fused) per cycle, this
is equivalent to the issue port can dispatch six micro-ops per cycle. In this process, the out-of-order core
carries out the following steps:
• Renames architectural sources and destinations of the micro-ops to micro-architectural sources and

destinations.
• Allocates resources to the micro-ops. For example, load or store buffers.
• Binds the micro-op to an appropriate dispatch port.

Some micro-ops can execute to completion during rename and are removed from the pipeline at that
point, effectively costing no execution bandwidth. These include:
• Zero idioms (dependency breaking idioms).
• NOP.
• VZEROUPPER.
• FXCHG.

The renamer can allocate two branches each cycle, compared to one branch each cycle in the previous
microarchitecture. This can eliminate some bubbles in execution.

Micro-fused load and store operations that use an index register are decomposed to two micro-ops,
hence consume two out of the four slots the Renamer can use every cycle.

Dependency Breaking Idioms

Instruction parallelism can be improved by using common instructions to clear register contents to zero.
The renamer can detect them on the zero evaluation of the destination register.

Use one of these dependency breaking idioms to clear a register when possible.
• XOR REG,REG
• SUB REG,REG
• PXOR/VPXOR XMMREG,XMMREG
• PSUBB/W/D/Q XMMREG,XMMREG
• VPSUBB/W/D/Q XMMREG,XMMREG
• XORPS/PD XMMREG,XMMREG
• VXORPS/PD YMMREG, YMMREG

Since zero idioms are detected and removed by the renamer, they have no execution latency.

There is another dependency breaking idiom - the "ones idiom".
• CMPEQ XMM1, XMM1; "ones idiom" set all elements to all "ones"

In this case, the micro-op must execute, however, since it is known that regardless of the input data the
output data is always "all ones" the micro-op dependency upon its sources does not exist as with the zero
idiom and it can execute as soon as it finds a free execution port.

2.2.2 Scheduler
The scheduler controls the dispatch of micro-ops onto their execution ports. In order to do this, it must
identify which micro-ops are ready and where its sources come from: a register file entry, or a bypass
directly from an execution unit. Depending on the availability of dispatch ports and writeback buses, and
the priority of ready micro-ops, the scheduler selects which micro-ops are dispatched every cycle.

Ref#: 248966-048 2-9

SANDY BRIDGE MICROARCHITECTURE

2.2.3 The Execution Core
The execution core is superscalar and can process instructions out of order. The execution core optimizes
overall performance by handling the most common operations efficiently, while minimizing potential
delays.

The out-of-order execution core improves execution unit organization over prior generation in the
following ways:
• Reduction in read port stalls.
• Reduction in writeback conflicts and delays.
• Reduction in power.
• Reduction of SIMD FP assists dealing with denormal inputs and underflow outputs.

Some high precision FP algorithms need to operate with FTZ=0 and DAZ=0, i.e. permitting underflow
intermediate results and denormal inputs to achieve higher numerical precision at the expense of
reduced performance on prior generation microarchitectures due to SIMD FP assists. The reduction of
SIMD FP assists in Sandy Bridge microarchitecture applies to the following Intel SSE instructions (and
Intel AVX variants): ADDPD/ADDPS, MULPD/MULPS, DIVPD/DIVPS, and CVTPD2PS.

The out-of-order core consist of three execution stacks, where each stack encapsulates a certain type of
data. The execution core contains the following execution stacks:
• General purpose integer.
• SIMD integer and floating-point.
• X87.

The execution core also contains connections to and from the cache hierarchy. The loaded data is fetched
from the caches and written back into one of the stacks.

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The following table
summarizes which operations can be dispatched on which port.

After execution, the data is written back on a writeback bus corresponding to the dispatch port and the
data type of the result. Micro-ops that are dispatched on the same port but have different latencies may
need the write back bus at the same cycle. In these cases the execution of one of the micro-ops is
delayed until the writeback bus is available. For example, MULPS (five cycles) and BLENDPS (one cycle)
may collide if both are ready for execution on port 0: first the MULPS and four cycles later the BLENDPS.
Sandy Bridge microarchitecture eliminates such collisions as long as the micro-ops write the results to

Table 2-3. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift

ALU,

Fast LEA,

Slow LEA,

MUL

Load_Addr,

Store_addr

Load_Addr

Store_addr
Store_data

ALU,

Shift,

Branch,

Fast LEA

SSE-Int,

AVX-Int,

MMX

Mul, Shift,
STTNI, Int-Div,

128b-Mov

ALU, Shuf,
Blend, 128b-
Mov

Store_data
ALU, Shuf,
Shift, Blend,
128b-Mov

SSE-FP,

AVX-FP_low
Mul, Div, Blend,
256b-Mov

Add, CVT Store_data
Shuf, Blend,
256b-Mov

X87,

AVX-FP_High
Mul, Div, Blend,
256b-Mov

Add, CVT Store_data
Shuf, Blend,
256b-Mov

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-10

different stacks. For example, integer ADD (one cycle) can be dispatched four cycles after MULPS (five
cycles) since the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a
one- or two-cycle delay can occur. The delay occurs also for transitions between Intel SSE integer and
Intel SSE floating-point operations. In some of the cases the data transition is done using a micro-op that
is added to the instruction flow. The following table describes how data, written back after execution, can
bypass to micro-op execution in the following cycles.

2.3 CACHE HIERARCHY
The cache hierarchy contains a first level instruction cache, a first level data cache (L1 DCache) and a
second level (L2) cache, in each core. The L1D cache may be shared by two logical processors if the
processor support Intel HT. The L2 cache is shared by instructions and data. All cores in a physical
processor package connect to a shared last level cache (LLC) via a ring connection.

The caches use the services of the Instruction Translation Lookaside Buffer (ITLB), Data Translation
Lookaside Buffer (DTLB) and Shared Translation Lookaside Buffer (STLB) to translate linear addresses to
physical address. Data coherency in all cache levels is maintained using the MESI protocol. For more
information, see the Intel® 64 IA-32 Architectures Software Developer's Manual, Volume 3. Cache hier-
archy details can be obtained at run-time using the CPUID instruction. see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A.

Table 2-4. Execution Core Writeback Latency (cycles)

Integer
SSE-Int, AVX-Int,

MMX

SSE-FP,

AVX-FP_low

X87,

AVX-FP_High

Integer 0 micro-op (port 0) micro-op (port 0)
micro-op (port 0) +
1 cycle

SSE-Int, AVX-Int,
MMX

micro-op (port 5) or
micro-op (port 5) +1
cycle

0 1 cycle delay 0

SSE-FP,

AVX-FP_low

micro-op (port 5) or
micro-op (port 5) +1
cycle

1 cycle delay
0

micro-op (port 5) +1
cycle

X87,

AVX-FP_High
micro-op (port 5) +1
cycle

0
micro-op (port 5)
+1 cycle

0

Load 0 1 cycle delay 1 cycle delay 2 cycle delay

Table 2-5. Cache Parameters

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Write Update
Policy

Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC)
Varies, query
CPUID leaf 4

Varies with cache
size

64 Writeback Yes

Ref#: 248966-048 2-11

SANDY BRIDGE MICROARCHITECTURE

2.3.1 Load and Store Operation Overview
This section provides an overview of the load and store operations.

Loads

When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for it in the caches and memory. Table 2-6 shows the access lookup order and best case latency.
The actual latency can vary depending on the cache queue occupancy, LLC ring occupancy, memory
components, and their parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches must also reside in the
LLC. Each cache line in the LLC holds an indication of the cores that may have this line in their L2 and L1
caches. If there is an indication in the LLC that other cores may hold the line of interest and its state
might have to modify, there is a lookup into the L1 DCache and L2 of these cores too. The lookup is called
“clean” if it does not require fetching data from the other core caches. The lookup is called “dirty” if modi-
fied data has to be fetched from the other core caches and transferred to the loading core.

The latencies shown above are the best-case scenarios. Sometimes a modified cache line has to be
evicted to make space for a new cache line. The modified cache line is evicted in parallel to bringing the
new data and does not require additional latency. However, when data is written back to memory, the
eviction uses cache bandwidth and possibly memory bandwidth as well. Therefore, when multiple cache
misses require the eviction of modified lines within a short time, there is an overall degradation in cache
response time. Memory access latencies vary based on occupancy of the memory controller queues,
DRAM configuration, DDR parameters, and DDR paging behavior (if the requested page is a page-hit,
page-miss or page-empty).

Stores

When an instruction writes data to a memory location that has a write back memory type, the processor
first ensures that it has the line containing this memory location in its L1 DCache, in Exclusive or Modified
MESI state. If the cache line is not there, in the right state, the processor fetches it from the next levels
of the memory hierarchy using a Read for Ownership request. The processor looks for the cache line in
the following locations, in the specified order:

1. L1 DCache

2. L2

3. Last Level Cache

4. L2 and L1 DCache in other cores, if applicable

5. Memory

Once the cache line is in the L1 DCache, the new data is written to it, and the line is marked as Modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
store instruction retirement. Therefore, the store latency usually does not affect the store instruction
itself. However, several sequential stores that miss the L1 DCache may have cumulative latency that can

Table 2-6. Lookup Order and Load Latency

Level Latency (cycles) Bandwidth (per core per cycle)

L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel Core processor families.

1 x 32 bytes

L2 and L1 DCache in other cores
if applicable

43- clean hit;

60 - dirty hit

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-12

affect performance. As long as the store does not complete, its entry remains occupied in the store
buffer. When the store buffer becomes full, new micro-ops cannot enter the execution pipe and execution
might stall.

2.3.2 L1 DCache
The L1 DCache is the first level data cache. It manages all load and store requests from all types through
its internal data structures. The L1 DCache:
• Enables loads and stores to issue speculatively and out of order.
• Ensures that retired loads and stores have the correct data upon retirement.
• Ensures that loads and stores follow the memory ordering rules of the IA-32 and Intel 64 instruction

set architecture.

The DCU is organized as 32 KBytes, eight-way set associative. Cache line size is 64-bytes arranged in
eight banks.

Internally, accesses are up to 16 bytes, with 256-bit Intel AVX instructions utilizing two 16-byte
accesses. Two load operations and one store operation can be handled each cycle.

The L1 DCache maintains requests which cannot be serviced immediately to completion. Some reasons
for requests that are delayed: cache misses, unaligned access that splits across cache lines, data not
ready to be forwarded from a preceding store, loads experiencing bank collisions, and load block due to
cache line replacement.

The L1 DCache can maintain up to 64 load micro-ops from allocation until retirement. It can maintain up
to 36 store operations from allocation until the store value is committed to the cache, or written to the
line fill buffers (LFB) in the case of non-temporal stores.

The L1 DCache can handle multiple outstanding cache misses and continue to service incoming stores
and loads. Up to 10 requests of missing cache lines can be managed simultaneously using the LFB.

The L1 DCache is a write-back write-allocate cache. Stores that hit in the DCU do not update the lower
levels of the memory hierarchy. Stores that miss the DCU allocate a cache line.

Table 2-7. L1 Data Cache Components

Component Sandy Bridge Microarchitecture Nehalem Microarchitecture

Data Cache Unit (DCU) 32KB, 8 ways 32KB, 8 ways

Load buffers 64 entries 48 entries

Store buffers 36 entries 32 entries

Line fill buffers (LFB) 10 entries 10 entries

Ref#: 248966-048 2-13

SANDY BRIDGE MICROARCHITECTURE

Loads

The L1 DCache architecture can service two loads per cycle, each of which can be up to 16 bytes. Up to
32 loads can be maintained at different stages of progress, from their allocation in the out of order engine
until the loaded value is returned to the execution core.

Loads can:
• Read data before preceding stores when the load address and store address ranges are known not to

conflict.
• Be carried out speculatively, before preceding branches are resolved.
• Take cache misses out of order and in an overlapped manner.

Loads cannot:
• Speculatively take any sort of fault or trap.
• Speculatively access uncacheable memory.

The common load latency is five cycles. When using a simple addressing mode, base plus offset that is
smaller than 2048, the load latency can be four cycles. This technique is especially useful for pointer-
chasing code. However, overall latency varies depending on the target register data type due to stack
bypass. See Section 2.2.3 for more information.

The following table lists overall load latencies. These latencies assume the common case of flat segment,
that is, segment base address is zero. If segment base is not zero, load latency increases.

Stores

Stores to memory are executed in two phases:
• Execution phase. Fills the store buffers with linear and physical address and data. Once store address

and data are known, the store data can be forwarded to the following load operations that need it.
• Completion phase. After the store retires, the L1 DCache moves its data from the store buffers to the

DCU, up to 16 bytes per cycle.

Address Translation

The DTLB can perform three linear to physical address translations every cycle, two for load addresses
and one for a store address. If the address is missing in the DTLB, the processor looks for it in the STLB,
which holds data and instruction address translations. The penalty of a DTLB miss that hits the STLB is
seven cycles. Large page support include 1G byte pages, in addition to 4K and 2M/4M pages.

The DTLB and STLB are four way set associative. The following table specifies the number of entries in
the DTLB and STLB.

Table 2-8. Effect of Addressing Modes on Load Latency

Data Type/Addressing Mode
Base + Offset > 2048;
Base + Index [+ Offset] Base + Offset < 2048

Integer 5 4

MMX, SSE, 128-bit AVX 6 5

X87 7 6

256-bit AVX 7 7

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-14

Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the data can forward
directly from the store operation to the load. This process, called store to load forwarding, saves cycles
by enabling the load to obtain the data directly from the store operation instead of through memory. You
can take advantage of store forwarding to quickly move complex structures without losing the ability to
forward the subfields. The memory control unit can handle store forwarding situations with less restric-
tions compared to previous micro-architectures.

The following rules must be met to enable store to load forwarding:
• The store must be the last store to that address, prior to the load.
• The store must contain all data being loaded.
• The load is from a write-back memory type and neither the load nor the store are non-temporal

accesses.

Stores cannot forward to loads in the following cases:
• Four byte and eight byte loads that cross eight byte boundary, relative to the preceding 16- or 32-

byte store.
• Any load that crosses a 16-byte boundary of a 32-byte store.

Table 2-10 to Table 2-13 detail the store to load forwarding behavior. For a given store size, all the loads
that may overlap are shown and specified by ‘F’. Forwarding from 32 byte store is similar to forwarding
from each of the 16 byte halves of the store. Cases that cannot forward are shown as ‘N’.

Table 2-9. DTLB and STLB Parameters

TLB Page Size Entries

DTLB 4KB 64

2MB/4MB 32

1GB 4

STLB 4KB 512

Table 2-10. Store Forwarding Conditions (1 and 2 byte stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2 1 F F

2 F N

Ref#: 248966-048 2-15

SANDY BRIDGE MICROARCHITECTURE

Table 2-11. Store Forwarding Conditions (4-16 byte stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 F F F F

2 F F F N

4 F N N N

8 1 F F F F F F F F

2 F F F F F F F N

4 F F F F F N N N

8 F N N N N N N N

16 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

Table 2-12. 32-byte Store Forwarding Conditions (0-15 byte alignment)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 F N N N N N N N N N N N N N N N

Table 2-13. 32-byte Store Forwarding Conditions (16-31 byte alignment)

Load Alignment

Store
Size

Load
Size

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 N N N N N N N N N N N N N N N N

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-16

Memory Disambiguation

A load operation may depend on a preceding store. Many microarchitectures block loads until all
preceding store addresses are known. The memory disambiguator predicts which loads will not depend
on any previous stores whose addresses aren’t yet known. When the disambiguator predicts that a load
does not have such a dependency, the load takes its data from an earlier store to the same address. This
hides the load latency. Eventually, the prediction is verified. If the load did indeed depend on a store
whose address was unknown at the time the load executed, this conflict is detected and the load and all
succeeding instructions are re-executed.

The following loads are not disambiguated. The execution of these loads is stalled until addresses of all
previous stores are known.
• Loads that cross the 16-byte aligned boundary, other than 32-byte loads.
• 32-byte Intel AVX loads that are not 32-byte aligned.

Bank Conflict

Since 16-byte loads can cover up to three banks, and two loads can happen every cycle, it is possible that
six of the eight banks may be accessed per cycle, for loads. A bank conflict happens when two load
accesses need the same bank (their address has the same 2-4 bit value) in different sets, at the same
time. When a bank conflict occurs, one of the load accesses is recycled internally.

In many cases two loads access exactly the same bank in the same cache line, as may happen when
popping operands off the stack, or any sequential accesses. In these cases, conflict does not occur and
the loads are serviced simultaneously.

2.3.2.1 Ring Interconnect and Last Level Cache
The system-on-a-chip design provides a high bandwidth bi-directional ring bus to connect between the
IA cores and various sub-systems in the uncore. In the second generation Intel Core processor 2xxx
series, the uncore subsystem include a system agent, the graphics unit (GT) and the last level cache
(LLC).

The LLC consists of multiple cache slices. The number of slices is equal to the number of IA cores. Each
slice has logic portion and data array portion. The logic portion handles data coherency, memory
ordering, access to the data array portion, LLC misses and writeback to memory, and more. The data
array portion stores cache lines. Each slice contains a full cache port that can supply 32 bytes/cycle.

The physical addresses of data kept in the LLC data arrays are distributed among the cache slices by a
hash function, such that addresses are uniformly distributed. The data array in a cache block may have
4/8/12/16 ways corresponding to 0.5M/1M/1.5M/2M block size. However, due to the address distribution
among the cache blocks from the software point of view, this does not appear as a normal N-way cache.

From the processor cores and the GT view, the LLC act as one shared cache with multiple ports and band-
width that scales with the number of cores. The LLC hit latency, ranging between 26-31 cycles, depends
on the core location relative to the LLC block, and how far the request needs to travel on the ring.

The number of cache-slices increases with the number of cores, therefore the ring and LLC are not likely
to be a bandwidth limiter to core operation.

The GT sits on the same ring interconnect, and uses the LLC for its data operations as well. In this respect
it is very similar to an IA core. Therefore, high bandwidth graphic applications using cache bandwidth and
significant cache footprint, can interfere, to some extent, with core operations.

All the traffic that cannot be satisfied by the LLC, such as LLC misses, dirty line writeback, non-cacheable
operations, and MMIO/IO operations, still travels through the cache-slice logic portion and the ring, to
the system agent.

In the Intel Xeon Processor E5 Family, the uncore subsystem does not include the graphics unit (GT).
Instead, the uncore subsystem contains many more components, including an LLC with larger capacity
and snooping capabilities to support multiple processors, Intel® QuickPath Interconnect interfaces that
can support multi-socket platforms, power management control hardware, and a system agent capable
of supporting high-bandwidth traffic from memory and I/O devices.

Ref#: 248966-048 2-17

SANDY BRIDGE MICROARCHITECTURE

In the Intel Xeon processor E5 2xxx or 4xxx families, the LLC capacity generally scales with the number
of processor cores with 2.5 MBytes per core.

2.3.2.2 Data Prefetching
Data can be speculatively loaded to the L1 DCache using software prefetching, hardware prefetching, or
any combination of the two.

You can use the four Streaming SIMD Extensions (SSE) prefetch instructions to enable software-
controlled prefetching. These instructions are hints to bring a cache line of data into the desired levels of
the cache hierarchy. The software-controlled prefetch is intended for prefetching data, but not for
prefetching code.

The rest of this section describes the various hardware prefetching mechanisms provided by Sandy
Bridge microarchitecture and their improvement over previous processors. The goal of the prefetchers is
to automatically predict which data the program is about to consume. If this data is not close-by to the
execution core or inner cache, the prefetchers bring it from the next levels of cache hierarchy and
memory. Prefetching has the following effects:
• Improves performance if data is arranged sequentially in the order used in the program.
• May cause slight performance degradation due to bandwidth issues, if access patterns are sparse

instead of local.
• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded

prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

Data Prefetch to L1 Data Cache

Data prefetching is triggered by load operations when the following conditions are met:
• Load is from writeback memory type.
• The prefetched data is within the same 4K byte page as the load instruction that triggered it.
• No fence is in progress in the pipeline.
• Not many other load misses are in progress.
• There is not a continuous stream of stores.

Two hardware prefetchers load data to the L1 DCache:
• Data cache unit (DCU) prefetcher. This prefetcher, also known as the streaming prefetcher, is

triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

• Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps track of individual load
instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to the
next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to 2K bytes.

Data Prefetch to the L2 and Last Level Cache

The following two hardware prefetchers fetched data from memory to the L2 cache and last level cache:

Spatial Prefetcher: This prefetcher strives to complete every cache line fetched to the L2 cache with
the pair line that completes it to a 128-byte aligned chunk.

Streamer: This prefetcher monitors read requests from the L1 cache for ascending and descending
sequences of addresses. Monitored read requests include L1 DCache requests initiated by load and store
operations and by the hardware prefetchers, and L1 ICache requests for code fetch. When a forward or
backward stream of requests is detected, the anticipated cache lines are prefetched. Prefetched cache
lines must be in the same 4K page.

The streamer and spatial prefetcher prefetch the data to the last level cache. Typically data is brought
also to the L2 unless the L2 cache is heavily loaded with missing demand requests.

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-18

Enhancement to the streamer includes the following features:
• The streamer may issue two prefetch requests on every L2 lookup. The streamer can run up to 20

lines ahead of the load request.
• Adjusts dynamically to the number of outstanding requests per core. If there are not many

outstanding requests, the streamer prefetches further ahead. If there are many outstanding
requests it prefetches to the LLC only and less far ahead.

• When cache lines are far ahead, it prefetches to the last level cache only and not to the L2. This
method avoids replacement of useful cache lines in the L2 cache.

• Detects and maintains up to 32 streams of data accesses. For each 4K byte page, you can maintain
one forward and one backward stream can be maintained.

2.3.3 System Agent
The system agent implemented in the second generation Intel Core processor family contains the
following components:
• An arbiter that handles all accesses from the ring domain and from I/O (PCIe* and DMI) and routes

the accesses to the right place.
• PCIe controllers connect to external PCIe devices. The PCIe controllers have different configuration

possibilities the varies with product segment specifics: x16+x4, x8+x8+x4, x8+x4+x4+x4.
• DMI controller connects to the PCH chipset.
• Integrated display engine, Flexible Display Interconnect, and Display Port, for the internal graphic

operations.
• Memory controller.

All main memory traffic is routed from the arbiter to the memory controller. The memory controller in the
second generation Intel Core processor 2xxx series support two channels of DDR, with data rates of
1066MHz, 1333MHz and 1600MHz, and 8 bytes per cycle, depending on the unit type, system configura-
tion and DRAMs. Addresses are distributed between memory channels based on a local hash function
that attempts to balance the load between the channels in order to achieve maximum bandwidth and
minimum hotspot collisions.

For best performance, populate both channels with equal amounts of memory, preferably the exact same
types of DIMMs. In addition, using more ranks for the same amount of memory, results in somewhat
better memory bandwidth, since more DRAM pages can be open simultaneously. For best performance,
populate the system with the highest supported speed DRAM (1333MHz or 1600MHz data rates,
depending on the max supported frequency) with the best DRAM timings.

The two channels have separate resources and handle memory requests independently. The memory
controller contains a high-performance out-of-order scheduler that attempts to maximize memory band-
width while minimizing latency. Each memory channel contains a 32 cache-line write-data-buffer. Writes
to the memory controller are considered completed when they are written to the write-data-buffer. The
write-data-buffer is flushed out to main memory at a later time, not impacting write latency.

Partial writes are not handled efficiently on the memory controller and may result in read-modify-write
operations on the DDR channel if the partial-writes do not complete a full cache-line in time. Software
should avoid creating partial write transactions whenever possible and consider alternative, such as buff-
ering the partial writes into full cache line writes.

The memory controller also supports high-priority isochronous requests (such as USB isochronous, and
Display isochronous requests). High bandwidth of memory requests from the integrated display engine
takes up some of the memory bandwidth and impacts core access latency to some degree.

Ref#: 248966-048 2-19

SANDY BRIDGE MICROARCHITECTURE

2.3.4 Ivy Bridge Microarchitecture
3rd generation Intel Core processors are based on Ivy Bridge microarchitecture. Most of the features
described in Section 2.1 - Section 2.3.3 also apply to Ivy Bridge microarchitecture. This section covers
feature differences in microarchitecture that can affect coding and performance.

Support for new instructions enabling include:
• Numeric conversion to and from half-precision floating-point values.
• Hardware-based random number generator compliant to NIST SP 800-90A.
• Reading and writing to FS/GS base registers in any ring to improve user-mode threading support.

For details about using the hardware based random number generator instruction RDRAND, please refer
to the article available from Intel Software Network at https://software.intel.com/en-us/articles/intel-
digital-random-number-generator-drng-software-implementation-guide/.

A small number of microarchitectural enhancements that can be beneficial to software:
• Hardware prefetch enhancement: A next-page prefetcher (NPP) is added in Ivy Bridge microarchi-

tecture. The NPP is triggered by sequential accesses to cache lines approaching the page boundary,
either upwards or downwards.

• Zero-latency register move operation: A subset of register-to-register MOV instructions are executed
at the front end, conserving scheduling and execution resource in the out-of-order engine.

• Front end enhancement: In Sandy Bridge microarchitecture, the micro-op queue is statically
partitioned to provide 28 entries for each logical processor, irrespective of software executing in
single thread or multiple threads. If one logical processor is not active in Ivy Bridge microarchi-
tecture, then a single thread executing on that processor core can use the 56 entries in the micro-op
queue. In this case, the LSD can handle larger loop structure that would require more than 28
entries.

• The latency and throughput of some instructions have been improved over those of Sandy Bridge
microarchitecture. For example, 256-bit packed floating-point divide and square root operations are
faster; ROL and ROR instructions are also improved.

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/

SANDY BRIDGE MICROARCHITECTURE

Ref#: 248966-048 2-20

Ref#: 248966-048 3-21

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

CHAPTER 3
INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL®

CORE™ MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high performance and power-
efficient performance for single-threaded as well as multi-threaded workloads:
• Intel® Wide Dynamic Execution enables each processor core to fetch, dispatch, execute with high

bandwidths and retire up to four instructions per cycle. Features include:

— Fourteen-stage efficient pipeline.

— Three arithmetic logical units.

— Four decoders to decode up to five instruction per cycle.

— Macro-fusion and micro-fusion to improve front end throughput.

— Peak issue rate of dispatching up to six micro-ops per cycle.

— Peak retirement bandwidth of up to four micro-ops per cycle.

— Advanced branch prediction.

— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.
• Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core,

optimal performance and flexibility for single-threaded and multi-threaded applications. Features
include:

— Optimized for multicore and single-threaded execution environments.

— 256 bit internal data path to improve bandwidth from L2 to first-level data cache.

— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way).
• Intel® Smart Memory Access prefetches data from memory in response to data access patterns

and reduces cache-miss exposure of out-of-order execution. Features include:

— Hardware prefetchers to reduce effective latency of second-level cache misses.

— Hardware prefetchers to reduce effective latency of first-level data cache misses.

— Memory disambiguation to improve efficiency of speculative execution engine.
• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle

throughput and floating-point operations. Features include:

— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit shuffle, pack, unpack
operations)

— Up to eight floating-point operations per cycle

— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core microarchitecture
and provides a comprehensive set of enhancements.
• Intel® Wide Dynamic Execution includes several enhancements:

— A radix-16 divider replacing previous radix-4 based divider to speedup long-latency operations
such as divisions and square roots.

— Improved system primitives to speedup long-latency operations such as RDTSC, STI, CLI, and VM
exit transitions.

• Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache shared between two
processor cores (quad-core processors have up to 12 MBytes of L2); up to 24 way/set associativity.

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-22

• Intel® Smart Memory Access supports high-speed system bus up 1600 MHz and provides more
efficient handling of memory operations such as split cache line load and store-to-load forwarding
situations.

• Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to speedup shuffle, pack,
unpack operations; adds support for forty-seven Intel SSE4.1 instructions.

In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture also applies to
Enhanced Intel Core microarchitecture. Differences between them are note explicitly.

3.1 INTEL® CORE™ MICROARCHITECTURE PIPELINE OVERVIEW
The pipeline of the Intel Core microarchitecture contains:
• An in-order issue front end that fetches instruction streams from memory, with four instruction

decoders to supply decoded instruction (micro-ops) to the out-of-order execution core.
• An out-of-order superscalar execution core that can issue up to six micro-ops per cycle (see

Table 3-2) and reorder micro-ops to execute as soon as sources are ready and execution resources
are available.

• An in-order retirement unit that ensures the results of execution of micro-ops are processed and
architectural states are updated according to the original program order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon processor 3000, 5100
series implement two processor cores based on the Intel Core microarchitecture. Intel Core 2 Extreme
quad-core processor, Intel Core 2 Quad processors and Intel Xeon processor 3200 series, 5300 series
implement four processor cores. Each physical package of these quad-core processors contains two
processor dies, each die containing two processor cores. The functionality of the subsystems in each core
are depicted in Figure 3-1.

Figure 3-1. Intel® Core™ Microarchitecture Pipeline Functionality

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store

OM19808

Ref#: 248966-048 3-23

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.1.1 Front End
The front ends needs to supply decoded instructions (micro-ops) and sustain the stream to a six-issue
wide out-of-order engine. The components of the front end, their functions, and the performance chal-
lenges to microarchitectural design are described in Table 3-1.

3.1.1.1 Branch Prediction Unit
Branch prediction enables the processor to begin executing instructions long before the branch outcome
is decided. All branches utilize the BPU for prediction. The BPU contains the following features:
• 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET instructions.
• Front end queuing of BPU lookups. The BPU makes branch predictions for 32 bytes at a time, twice

the width of the fetch engine. This enables taken branches to be predicted with no penalty.
Even though this BPU mechanism generally eliminates the penalty for taken branches, software
should still regard taken branches as consuming more resources than do not-taken branches.

The BPU makes the following types of predictions:
• Direct Calls and Jumps. Targets are read as a target array, without regarding the taken or not-taken

prediction.
• Indirect Calls and Jumps. These may either be predicted as having a monotonic target or as having

targets that vary in accordance with recent program behavior.
• Conditional branches. Predicts the branch target and whether or not the branch will be taken.

For information about optimizing software for the BPU, see Section 3.4, “Optimizing the Front End.”

Table 3-1. Components of the Front End
Component Functions Performance Challenges

Branch Prediction Unit
(BPU)

• Helps the instruction fetch unit fetch the
most likely instruction to be executed by
predicting the various branch types:
conditional, indirect, direct, call, and
return. Uses dedicated hardware for each
type.

• Enables speculative execution.
• Improves speculative execution

efficiency by reducing the amount of
code in the “non-architected path”1
to be fetched into the pipeline.

NOTES:
1. Code paths that the processor thought it should execute but then found out it should go in another path and therefore

reverted from its initial intention.

Instruction Fetch Unit

• Prefetches instructions that are likely to
be executed

• Caches frequently-used instructions
• Predecodes and buffers instructions,

maintaining a constant bandwidth despite
irregularities in the instruction stream

• Variable length instruction format
causes unevenness (bubbles) in
decode bandwidth.

• Taken branches and misaligned
targets causes disruptions in the
overall bandwidth delivered by the
fetch unit.

Instruction Queue and
Decode Unit

• Decodes up to four instructions, or up to
five with macro-fusion

• Stack pointer tracker algorithm for
efficient procedure entry and exit

• Implements the Macro-Fusion feature,
providing higher performance and
efficiency

• The Instruction Queue is also used as a
loop cache, enabling some loops to be
executed with both higher bandwidth
and lower power

• Varying amounts of work per
instruction requires expansion into
variable numbers of micro-ops.

• Prefix adds a dimension of decoding
complexity.

• Length Changing Prefix (LCP) can
cause front end bubbles.

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-24

3.1.1.2 Instruction Fetch Unit
The instruction fetch unit comprises the instruction translation lookaside buffer (ITLB), an instruction
prefetcher, the instruction cache and the predecode logic of the instruction queue (IQ).

Instruction Cache and ITLB

An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction cache and instruc-
tion prefetch buffers. A hit in the instruction cache causes 16 bytes to be delivered to the instruction
predecoder. Typical programs average slightly less than 4 bytes per instruction, depending on the code
being executed. Since most instructions can be decoded by all decoders, an entire fetch can often be
consumed by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset into the 16 byte
fetch quantity. A taken branch reduces the number of instruction bytes delivered to the decoders since
the bytes after the taken branch are not decoded. Branches are taken approximately every 10 instruc-
tions in typical integer code, which translates into a “partial” instruction fetch every 3 or 4 cycles.

Due to stalls in the rest of the machine, front end starvation does not usually cause performance degra-
dation. For extremely fast code with larger instructions (such as Intel SSE2 integer media kernels), it
may be beneficial to use targeted alignment to prevent instruction starvation.

Instruction PreDecode

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch buffers and carries
out the following tasks:
• Determine the length of the instructions.
• Decode all prefixes associated with instructions.
• Mark various properties of instructions for the decoders (for example, “is branch.”).

The predecode unit can write up to six instructions per cycle into the instruction queue. If a fetch contains
more than six instructions, the predecoder continues to decode up to six instructions per cycle until all
instructions in the fetch are written to the instruction queue. Subsequent fetches can only enter prede-
coding after the current fetch completes.

For a fetch of seven instructions, the predecoder decodes the first six in one cycle, and then only one in
the next cycle. This process would support decoding 3.5 instructions per cycle. Even if the instruction per
cycle (IPC) rate is not fully optimized, it is higher than the performance seen in most applications. In
general, software usually does not have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These prefixes can dynami-
cally change the length of instructions and are known as length changing prefixes (LCPs):
• Operand Size Override (66H) preceding an instruction with a word immediate data.
• Address Size Override (67H) preceding an instruction with a mod R/M in real, 16-bit protected or 32-

bit protected modes.

When the predecoder encounters an LCP in the fetch line, it must use a slower length decoding algorithm.
With the slower length decoding algorithm, the predecoder decodes the fetch in 6 cycles, instead of the
usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size of two classes of
instruction: MOV offset and MOV immediate. Nevertheless, it does not cause an LCP penalty and hence is
not considered an LCP.

3.1.1.3 Instruction Queue (IQ)
The instruction queue is 18 instructions deep. It sits between the instruction predecode unit and the
instruction decoders. It sends up to five instructions per cycle, and supports one macro-fusion per cycle.
It also serves as a loop cache for loops smaller than 18 instructions. The loop cache operates as described
below.

Ref#: 248966-048 3-25

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops which are candidates
for streaming from the instruction queue (IQ). When such a loop is detected, the instruction bytes are
locked down and the loop is allowed to stream from the IQ until a misprediction ends it. When the loop
plays back from the IQ, it provides higher bandwidth at reduced power (since much of the rest of the
front end pipeline is shut off).

The LSD provides the following benefits:
• No loss of bandwidth due to taken branches.
• No loss of bandwidth due to misaligned instructions.
• No LCP penalties, as the pre-decode stage has already been passed.
• Reduced front end power consumption, because the instruction cache, BPU and predecode unit can

be idle.

Software should use the loop cache functionality opportunistically. Loop unrolling and other code optimi-
zations may make the loop too big to fit into the LSD. For high performance code, loop unrolling is gener-
ally preferable for performance even when it overflows the loop cache capability.

3.1.1.4 Instruction Decode
The Intel Core microarchitecture contains four instruction decoders. The first, Decoder 0, can decode
Intel 64 and IA-32 instructions up to 4 micro-ops in size. Three other decoders handle single micro-op
instructions. The microsequencer can provide up to 3 micro-ops per cycle, and helps decode instructions
larger than 4 micro-ops.

All decoders support the common cases of single micro-op flows, including: micro-fusion, stack pointer
tracking and macro-fusion. Thus, the three simple decoders are not limited to decoding single micro-op
instructions. Packing instructions into a 4-1-1-1 template is not necessary and not recommended.

Macro-fusion merges two instructions into a single micro-op. Intel Core microarchitecture is capable of
one macro-fusion per cycle in 32-bit operation (including compatibility sub-mode of the Intel 64 architec-
ture), but not in 64-bit mode because code that uses longer instructions (length in bytes) more often is
less likely to take advantage of hardware support for macro-fusion.

3.1.1.5 Stack Pointer Tracker
The Intel 64 and IA-32 architectures have several commonly used instructions for parameter passing and
procedure entry and exit: PUSH, POP, CALL, LEAVE and RET. These instructions implicitly update the
stack pointer register (RSP), maintaining a combined control and parameter stack without software
intervention. These instructions are typically implemented by several micro-ops in previous microarchi-
tectures.

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in the decoders them-
selves. The feature provides the following benefits:
• Improves decode bandwidth, as PUSH, POP and RET are single micro-op instructions in Intel Core

microarchitecture.
• Conserves execution bandwidth as the RSP updates do not compete for execution resources.
• Improves parallelism in the out of order execution engine as the implicit serial dependencies between

micro-ops are removed.
• Improves power efficiency as the RSP updates are carried out on small, dedicated hardware.

3.1.1.6 Micro-fusion
Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The
complex micro-op is dispatched in the out-of-order execution core. Micro-fusion provides the following
performance advantages:
• Improves instruction bandwidth delivered from decode to retirement.

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-26

• Reduces power consumption as the complex micro-op represents more work in a smaller format (in
terms of bit density), reducing overall “bit-toggling” in the machine for a given amount of work and
virtually increasing the amount of storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a memory operand
will decode into a longer flow of micro-ops than the register version. Micro-fusion enables software to use
memory to register operations to express the actual program behavior without worrying about a loss of
decode bandwidth.

3.1.2 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of
order. When a dependency chain causes the machine to wait for a resource (such as a second-level data
cache line), the execution core executes other instructions. This increases the overall rate of instructions
executed per cycle (IPC).

The execution core contains the following three major components:
• Renamer — Moves micro-ops from the front end to the execution core. Architectural registers are

renamed to a larger set of microarchitectural registers. Renaming eliminates false dependencies
known as read-after-read and write-after-read hazards.

• Reorder buffer (ROB) — Holds micro-ops in various stages of completion, buffers completed micro-
ops, updates the architectural state in order, and manages ordering of exceptions. The ROB has 96
entries to handle instructions in flight.

• Reservation station (RS) — Queues micro-ops until all source operands are ready, schedules and
dispatches ready micro-ops to the available execution units. The RS has 32 entries.

The initial stages of the out of order core move the micro-ops from the front end to the ROB and RS. In
this process, the out of order core carries out the following steps:
• Allocates resources to micro-ops (for example: these resources could be load or store buffers).
• Binds the micro-op to an appropriate issue port.
• Renames sources and destinations of micro-ops, enabling out of order execution.
• Provides data to the micro-op when the data is either an immediate value or a register value that has

already been calculated.

The following list describes various types of common operations and how the core executes them effi-
ciently:
• Micro-ops with single-cycle latency — Most micro-ops with single-cycle latency can be executed

by multiple execution units, enabling multiple streams of dependent operations to be executed
quickly.

• Frequently-used ops with longer latency — These micro-ops have pipelined execution units so
that multiple micro-ops of these types may be executing in different parts of the pipeline simultane-
ously.

• Operations with data-dependent latencies — Some operations, such as division, have data
dependent latencies. Integer division parses the operands to perform the calculation only on
significant portions of the operands, thereby speeding up common cases of dividing by small
numbers.

• Floating-point operations with fixed latency for operands that meet certain restrictions —
Operands that do not fit these restrictions are considered exceptional cases and are executed with
higher latency and reduced throughput. The lower-throughput cases do not affect latency and
throughput for more common cases.

• Memory operands with variable latency, even in the case of an L1 cache hit — Loads that are
not known to be safe from forwarding may wait until a store-address is resolved before executing.
The memory order buffer (MOB) accepts and processes all memory operations. See Section 3.1.3 for
more information about the MOB.

Ref#: 248966-048 3-27

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.1.2.1 Issue Ports and Execution Units
The scheduler can dispatch up to six micro-ops per cycle through the issue ports. The issue ports of Intel
Core microarchitecture and Enhanced Intel Core microarchitecture are depicted in Table 3-2, the former
is denoted by its CPUID signature of DisplayFamily_DisplayModel value of 06_0FH, the latter denoted by
the corresponding signature value of 06_17H. The table provides latency and throughput data of
common integer and floating-point (FP) operations for each issue port in cycles.

In each cycle, the RS can dispatch up to six micro-ops. Each cycle, up to 4 results may be written back to
the RS and ROB, to be used as early as the next cycle by the RS. This high execution bandwidth enables
execution bursts to keep up with the functional expansion of the micro-fused micro-ops that are decoded
and retired.

Table 3-2. Issue Ports of Intel® Core™ and Enhanced Intel® Core™ Microarchitectures

Executable operations
Latency, Throughput

Comment1

NOTES:
1. Mixing operations of different latencies that use the same port can result in writeback bus conflicts; this can reduce over-

all throughput.

Signature =
06_0FH

Signature =
06_17H

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Includes 64-bit mode integer MUL;

Issue port 0; Writeback port 0;

Single-precision (SP) FP MUL

Double-precision FP MUL

4, 1

5, 1

4, 1

5, 1
Issue port 0; Writeback port 0

FP MUL (X87)

FP Shuffle

DIV/SQRT

5, 2

1, 1

5, 2

1, 1
Issue port 0; Writeback port 0

FP shuffle does not handle QW shuffle.

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Excludes 64-bit mode integer MUL;

Issue port 1; Writeback port 1;

FP ADD

QW Shuffle

3, 1

1, 12

2. 128-bit instructions executes with longer latency and reduced throughput.

3, 1

1, 13

3. Uses 128-bit shuffle unit in port 5.

Issue port 1; Writeback port 1;

Integer loads

FP loads

3, 1

4, 1

3, 1

4, 1

Issue port 2; Writeback port 2;

Store address4

4. Prepares the store forwarding and store retirement logic with the address of the data being stored.

3, 1 3, 1 Issue port 3;

Store data5.

5. Prepares the store forwarding and store retirement logic with the data being stored.

Issue Port 4;

Integer ALU

Integer SIMD ALU

FP/SIMD/SSE2 Move and Logic

1, 1

1, 1

1, 1

1, 1

1, 1

1, 1

Issue port 5; Writeback port 5;

QW shuffles

128-bit Shuffle/Pack/Unpack

1, 12

2-4, 2-46

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units.

1, 13

1-3, 17

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitecture.

Issue port 5; Writeback port 5;

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-28

The execution core contains the following three execution stacks:
• SIMD integer.
• Regular integer.
• x87/SIMD floating-point.

The execution core also contains connections to and from the memory cluster. See Figure 3-2.

Notice that the two dark squares inside the execution block (in grey color) and appear in the path
connecting the integer and SIMD integer stacks to the floating-point stack. This delay shows up as an
extra cycle called a bypass delay. Data from the L1 cache has one extra cycle of latency to the floating-
point unit. The dark-colored squares in Figure 3-2 represent the extra cycle of latency.

3.1.3 Intel® Advanced Memory Access
The Intel Core microarchitecture contains an instruction cache and a first-level data cache in each core.
The two cores share a 2 or 4-MByte L2 cache. All caches are writeback and non-inclusive. Each core
contains:
• L1 data cache, known as the data cache unit (DCU) — The DCU can handle multiple outstanding

cache misses and continue to service incoming stores and loads. It supports maintaining cache
coherency. The DCU has the following specifications:

— 32-KBytes size.

— 8-way set associative.

— 64-bytes line size.
• Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microarchitecture

implements two levels of hierarchy. Each level of the DTLB have multiple entries and can support
either 4-KByte pages or large pages. The entries of the inner level (DTLB0) is used for loads. The
entries in the outer level (DTLB1) support store operations and loads that missed DTLB0. All entries
are 4-way associative. Here is a list of entries in each DTLB:

Figure 3-2. Execution Core of Intel Core Microarchitecture

Data Cache
Unit

dtlb
Memory ordering
store forwarding

0,1,5
SIMD
Integer

0,1,5

Integer

0,1,5
Floating
Point

Load 2
Store (address) 3
Store (data) 4

Integer/
SIMD
MUL

EXE

Ref#: 248966-048 3-29

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

— DTLB1 for large pages: 32 entries.

— DTLB1 for 4-KByte pages: 256 entries.

— DTLB0 for large pages: 16 entries.

— DTLB0 for 4-KByte pages: 16 entries.

An DTLB0 miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays this penalty if the
DTLB0 is used in some dispatch cases. The delays associated with a miss to the DTLB1 and PMH are
largely non-blocking due to the design of Intel Smart Memory Access.

• Page miss handler (PMH)
• A memory ordering buffer (MOB) — Which:

— Enables loads and stores to issue speculatively and out of order.

— Ensures retired loads and stores have the correct data upon retirement.

— Ensures loads and stores follow memory ordering rules of the Intel 64 and IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed up memory opera-
tions:
• 128-bit load and store operations.
• Data prefetching to L1 caches.
• Data prefetch logic for prefetching to the L2 cache.
• Store forwarding.
• Memory disambiguation.
• 8 fill buffer entries.
• 20 store buffer entries.
• Out of order execution of memory operations.
• Pipelined read-for-ownership operation (RFO).

For information on optimizing software for the memory cluster, see Section 3.6, “Optimizing Memory
Accesses.”

3.1.3.1 Loads and Stores
The Intel Core microarchitecture can execute up to one 128-bit load and up to one 128-bit store per
cycle, each to different memory locations. The microarchitecture enables execution of memory opera-
tions out of order with respect to other instructions and with respect to other memory operations.

Loads can:
• Issue before preceding stores when the load address and store address are known not to conflict.
• Be carried out speculatively, before preceding branches are resolved.
• Take cache misses out of order and in an overlapped manner.
• Issue before preceding stores, speculating that the store is not going to be to a conflicting address.

Loads cannot:
• Speculatively take any sort of fault or trap.
• Speculatively access the uncacheable memory type.

Faulting or uncacheable loads are detected and wait until retirement, when they update the programmer
visible state. x87 and floating-point SIMD loads add 1 additional clock latency.

Stores to memory are executed in two phases:
• Execution phase — Prepares the store buffers with address and data for store forwarding.

Consumes dispatch ports, which are ports 3 and 4.

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-30

• Completion phase — The store is retired to programmer-visible memory. It may compete for cache
banks with executing loads. Store retirement is maintained as a background task by the memory
order buffer, moving the data from the store buffers to the L1 cache.

3.1.3.2 Data Prefetch to L1 caches
Intel Core microarchitecture provides two hardware prefetchers to speed up data accessed by a program
by prefetching to the L1 data cache:
• Data cache unit (DCU) prefetcher — This prefetcher, also known as the streaming prefetcher, is

triggered by an ascending access to very recently loaded data. The processor assumes that this
access is part of a streaming algorithm and automatically fetches the next line.

• Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps track of individual
load instructions. If a load instruction is detected to have a regular stride, then a prefetch is sent to
the next address which is the sum of the current address and the stride. This prefetcher can prefetch
forward or backward and can detect strides of up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:
• Load is from writeback memory type.
• Prefetch request is within the page boundary of 4 Kbytes.
• No fence or lock is in progress in the pipeline.
• Not many other load misses are in progress.
• The bus is not very busy.
• There is not a continuous stream of stores.

DCU Prefetching has the following effects:
• Improves performance if data in large structures is arranged sequentially in the order used in the

program.
• May cause slight performance degradation due to bandwidth issues if access patterns are sparse

instead of local.
• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded

prefetches evict lines required by the program, hardware prefetcher may cause severe performance
degradation due to cache capacity of L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic, software prefetch
instructions relies on the programmer to anticipate cache miss traffic, software prefetch act as hints to
bring a cache line of data into the desired levels of the cache hierarchy. The software-controlled prefetch
is intended for prefetching data, but not for prefetching code.

C.1.3.3 Data Prefetch Logic
Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on past request patterns
of the DCU from the L2. The DPL maintains two independent arrays to store addresses from the DCU: one
for upstreams (12 entries) and one for down streams (4 entries). The DPL tracks accesses to one 4K byte
page in each entry. If an accessed page is not in any of these arrays, then an array entry is allocated.

The DPL monitors DCU reads for incremental sequences of requests, known as streams. Once the DPL
detects the second access of a stream, it prefetches the next cache line. For example, when the DCU
requests the cache lines A and A+1, the DPL assumes the DCU will need cache line A+2 in the near
future. If the DCU then reads A+2, the DPL prefetches cache line A+3. The DPL works similarly for
“downward” loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture added the following
features to DPL:
• The DPL can detect more complicated streams, such as when the stream skips cache lines. DPL may

issue 2 prefetch requests on every L2 lookup. The DPL in the Intel Core microarchitecture can run up
to 8 lines ahead from the load request.

Ref#: 248966-048 3-31

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

• DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and the number of
requests. DPL prefetches far ahead if the bus is not busy, and less far ahead if the bus is busy.

• DPL adjusts to various applications and system configurations.

Entries for each core in a multi-core processor are handled separately.

3.1.3.4 Store Forwarding
If a load follows a store and reloads the data that the store writes to memory, the Intel Core microarchi-
tecture can forward the data directly from the store to the load. This process, called store to load
forwarding, saves cycles by enabling the load to obtain the data directly from the store operation instead
of through memory.

The following rules must be met for store to load forwarding to occur:
• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load cannot cross a cache line boundary.
• The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this rule.
• The load must be aligned to the start of the store address, except for the following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves.

— An aligned 128-bit store may forward any of its 32-bit quarters.

— An aligned 128-bit store may forward either of its 64-bit halves.

Software can use the exceptions to the last rule to move complex structures without losing the ability to
forward the subfields.

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store forwarding to
proceed have been relaxed. Enhanced Intel Core microarchitecture permits store-forwarding to proceed
in several situations that the succeeding load is not aligned to the preceding store. Figure 3-3 shows six
situations (in gradient-filled background) of store-forwarding that are permitted in Enhanced Intel Core
microarchitecture but not in Intel Core microarchitecture. The cases with backward slash background
depicts store-forwarding that can proceed in both Intel Core microarchitecture and Enhanced Intel Core
microarchitecture.

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-32

3.1.3.5 Memory Disambiguation
Refer to the “Memory Disambiguation” details in Section 2.3.2.

3.1.4 Intel® Advanced Smart Cache
The Intel Core microarchitecture optimized a number of features for two processor cores on a single die.
The two cores share a second-level cache and a bus interface unit, collectively known as Intel Advanced
Smart Cache. This section describes the components of Intel Advanced Smart Cache. Figure 3-4 illus-
trates the architecture of the Intel Advanced Smart Cache.

Figure 3-3. Store-Forwarding Enhancements in Enhanced Intel Core Microarchitecture

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

8 byte boundary8 byte boundary

Store 32 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store-forwarding (SF) can not proceed

Store

Example: 7 byte misalignment

Example: 1 byte misalignment

SF proceed in Enhanced Intel Core microarchitectu

SF proceed

Ref#: 248966-048 3-33

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Table 3-3 details the parameters of caches in the Intel Core microarchitecture. For information on
enumerating the cache hierarchy identification using the deterministic cache parameter leaf of CPUID
instruction, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

3.1.4.1 Loads
When an instruction reads data from a memory location that has write-back (WB) type, the processor
looks for the cache line that contains this data in the caches and memory in the following order:

1. DCU of the initiating core.

Figure 3-4. Intel Advanced Smart Cache Architecture

Table 3-3. Cache Parameters of Processors based on Intel Core Microarchitecture

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level 32 KB 8 64 3 1 Writeback

Instruction 32 KB 8 N/A N/A N/A N/A

Second Level
(Shared L2)1

NOTES:
1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 0FH).

2, 4 MB 8 or 16 64 142

2. Software-visible latency will vary depending on access patterns and other factors.

2 Writeback

Second Level
(Shared L2)3

3. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 17H or 1DH).

3, 6MB 12 or 24 64 152 2 Writeback

Third Level4

4. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 1DH).

8, 12, 16 MB 16 64 ~110 12 Writeback

Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 1
Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 0

L2 Cache

Bus Interface Unit

System Bus

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

Ref#: 248966-048 3-34

2. DCU of the other core and second-level cache.

3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache.

Table 3-4 shows the characteristics of fetching the first four bytes of different localities from the memory
cluster. The latency column provides an estimate of access latency. However, the actual latency can vary
depending on the load of cache, memory components, and their parameters.

Sometimes a modified cache line has to be evicted to make space for a new cache line. The modified
cache line is evicted in parallel to bringing the new data and does not require additional latency. However,
when data is written back to memory, the eviction uses cache bandwidth and possibly bus bandwidth as
well. Therefore, when multiple cache misses require the eviction of modified lines within a short time,
there is an overall degradation in cache response time.

3.1.4.2 Stores
When an instruction writes data to a memory location that has WB memory type, the processor first
ensures that the line is in Exclusive or Modified state in its own DCU. The processor looks for the cache
line in the following locations, in the specified order:

1. DCU of initiating core.

2. DCU of the other core and L2 cache.

3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line avail-
ability or state in the L2 cache. After reading for ownership is completed, the data is written to the first-
level data cache and the line is marked as modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of
retirement. Therefore, the store latency does not effect the store instruction itself. However, several
sequential stores may have cumulative latency that can affect performance. Table 3-4 presents store
latencies depending on the initial cache line location.

Table 3-4. Characteristics of Load and Store Operations in Intel Core Microarchitecture

Data Locality
Load Store

Latency Throughput Latency Throughput

DCU 3 1 2 1

DCU of the other core in
modified state

14 + 5.5 bus cycles 14 + 5.5 bus cycles 14 + 5.5 bus cycles

2nd-level cache 14 3 14 3

Memory
14 + 5.5 bus cycles +
memory

Depends on bus read
protocol

14 + 5.5 bus cycles +
memory

Depends on bus
write protocol

Ref#: 248966-048 4-35

NEHALEM MICROARCHITECTURE

CHAPTER 4
NEHALEM MICROARCHITECTURE

Nehalem microarchitecture provides the foundation for many innovative features of Intel Core i7 proces-
sors and Intel Xeon processor 3400, 5500, and 7500 series. It builds on the success of 45 nm enhanced
Intel Core microarchitecture and provides the following feature enhancements:
• Enhanced processor core

— Improved branch prediction and recovery from misprediction.

— Enhanced loop streaming to improve front end performance and reduce power consumption.

— Deeper buffering in out-of-order engine to extract parallelism.

— Enhanced execution units to provide acceleration in CRC, string/text processing and data
shuffling.

• Hyper-Threading Technology

— Provides two hardware threads (logical processors) per core.

— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.
• Smart Memory Access

— Integrated memory controller provides low-latency access to system memory and scalable
memory bandwidth.

— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.

— Two level TLBs and increased TLB size.

— Fast unaligned memory access.
• Dedicated Power management Innovations

— Integrated microcontroller with optimized embedded firmware to manage power consumption.

— Embedded real-time sensors for temperature, current, and power.

— Integrated power gate to turn off/on per-core power consumption.

— Versatility to reduce power consumption of memory, link subsystems.

Westmere microarchitecture is a 32 nm version of Nehalem microarchitecture. All of the features of latter
also apply to the former.

4.0.1 Microarchitecture Pipeline
Nehalem microarchitecture continues the four-wide microarchitecture pipeline pioneered by the 65nm
Intel Core microarchitecture. Figure 4-1 illustrates the basic components of the pipeline of Nehalem
microarchitecture as implemented in Intel Core i7 processor, only two of the four cores are sketched in
the Figure 4-1 pipeline diagram.

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-36

The length of the pipeline in Nehalem microarchitecture is two cycles longer than its predecessor in the
45 nm Intel Core 2 processor family, as measured by branch misprediction delay. The front end can
decode up to 4 instructions in one cycle and supports two hardware threads by decoding the instruction
streams between two logical processors in alternate cycles. The front end includes enhancement in
branch handling, loop detection, MSROM throughput, etc. These are discussed in subsequent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle through six issue
ports (five issue ports are shown in Figure 4-1; store operation involves separate ports for store address
and store data but is depicted as one in the diagram).

The out-of-order engine has many execution units that are arranged in three execution clusters shown in
Figure 4-1. It can retire four micro-ops in one cycle, same as its predecessor.

Figure 4-1. Nehalem Microarchitecture Pipeline Functionality

L2 Cache

OM19808p

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Inclusive L3 Cache by all cores

Intel QPI Link Logic

Other L2

L2 Cache

Ref#: 248966-048 4-37

NEHALEM MICROARCHITECTURE

D.1 FRONT END OVERVIEW
Figure 4-2 depicts the key components of the front end of the microarchitecture. The instruction fetch
unit (IFU) can fetch up to 16 bytes of aligned instruction bytes each cycle from the instruction cache to
the instruction length decoder (ILD). The instruction queue (IQ) buffers the ILD-processed instructions
and can deliver up to four instructions in one cycle to the instruction decoder.

The instruction decoder has three decoder units that can decode one simple instruction per cycle per
unit. The other decoder unit can decode one instruction every cycle, either simple instruction or complex
instruction made up of several micro-ops. Instructions made up of more than four micro-ops are deliv-
ered from the MSROM. Up to four micro-ops can be delivered each cycle to the instruction decoder queue
(IDQ).

The loop stream detector is located inside the IDQ to improve power consumption and front end effi-
ciency for loops with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput, increase the effective
size of queues in the scheduler and re-order buffer (ROB). The rules for micro-fusion are similar to those
of Intel Core microarchitecture.

The instruction queue also supports macro-fusion to combine adjacent instructions into one micro-ops
where possible. In previous generations of Intel Core microarchitecture, macro-fusion support for
CMP/Jcc sequence is limited to the CF and ZF flag, and macro-fusion is not supported in 64-bit mode.

In Nehalem microarchitecture, macro-fusion is supported in 64-bit mode, and the following instruction
sequences are supported:
• CMP or TEST can be fused when comparing (unchanged):

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps (unchanged).

Figure 4-2. Front End of Nehalem Microarchitecture

Instr. Decoder

ILD

Instr. Queue

Instr. Decoder

ICache

Instr.

I Fetch U

Br. Predict U

Length
Decoder

4

1

1

1
LSD

MSROM

Queue

IQ

IDQ
4 micro-ops
per cycle
max

4 micro-ops per cycle

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-38

• CMP can be fused with the following conditional jumps. These conditional jumps check carry flag (CF)
or zero flag (ZF). The list of macro-fusion-capable conditional jumps are (unchanged):

JA or JNBE
JAE or JNB or JNC
JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

• CMP can be fused with the following conditional jumps in Nehalem microarchitecture (this is an
enhancement):

JL or JNGE
JGE or JNL
JLE or JNG
JG or JNLE

The hardware improves branch handling in several ways. Branch target buffer has increased to increase
the accuracy of branch predictions. Renaming is supported with return stack buffer to reduce mispredic-
tions of return instructions in the code. Furthermore, hardware enhancement improves the handling of
branch misprediction by expediting resource reclamation so that the front end would not be waiting to
decode instructions in an architected code path (the code path in which instructions will reach retire-
ment) while resources were allocated to executing mispredicted code path. Instead, new micro-ops
stream can start forward progress as soon as the front end decodes the instructions in the architected
code path.

4.2 EXECUTION ENGINE
The IDQ (Figure 4-2) delivers micro-op stream to the allocation/renaming stage (Figure 4-1) of the pipe-
line. The out-of-order engine supports up to 128 micro-ops in flight. Each micro-ops must be allocated
with the following resources: an entry in the re-order buffer (ROB), an entry in the reservation station
(RS), and a load/store buffer if a memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input data associated
with a micro-op are generally either read from the ROB or from the retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous generation). It can dispatch up
to six micro-ops in one cycle if the micro-ops are ready to execute. The RS dispatch a micro-op through
an issue port to a specific execution cluster, each cluster may contain a collection of integer/FP/SIMD
execution units.

The result from the execution unit executing a micro-op is written back to the register file, or forwarded
through a bypass network to a micro-op in-flight that needs the result. Nehalem microarchitecture can
support write back throughput of one register file write per cycle per port. The bypass network consists
of three domains of integer/FP/SIMD. Forwarding the result within the same bypass domain from a
producer micro-op to a consumer micro is done efficiently in hardware without delay. Forwarding the
result across different bypass domains may be subject to additional bypass delays. The bypass delays
may be visible to software in addition to the latency and throughput characteristics of individual execu-
tion units. The bypass delays between a producer micro-op and a consumer micro-op across different
bypass domains are shown in Table 4-1.

Ref#: 248966-048 4-39

NEHALEM MICROARCHITECTURE

4.2.1 Issue Ports and Execution Units
Table 4-2 summarizes the key characteristics of the issue ports and the execution unit latency/through-
puts for common operations in the microarchitecture.

Table 4-1. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD

FP 0 2 2

Integer 2 0 1

SIMD 2 1 0

Table 4-2. Issue Ports of Nehalem Microarchitecture
Port Executable

operations
Latency Throughput Domain Comment

Port 0 Integer ALU

Integer Shift

1

1

1

1

Integer

Port 0 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

Port 0 Single-precision (SP)
FP MUL

Double-precision FP MUL

FP MUL (X87)

FP/SIMD/SSE2 Move and
Logic

FP Shuffle

DIV/SQRT

4

5

5

1

1

1

1

1

1

1

FP

Port 1 Integer ALU

Integer LEA

Integer Mul

1

1

3

1

1

1

Integer

Port 1 Integer SIMD MUL

Integer SIMD Shift

PSAD

StringCompare

1

1

3

1

1

1

SIMD

Port 1 FP ADD 3 1 FP

Port 2 Integer loads 4 1 Integer

Port 3 Store address 5 1 Integer

Port 4 Store data Integer

Port 5 Integer ALU

Integer Shift

Jmp

1

1

1

1

1

1

Integer

Port 5 Integer SIMD ALU

Integer SIMD Shuffle

1

1

1

1

SIMD

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-40

4.3 CACHE AND MEMORY SUBSYSTEM
Nehalem microarchitecture contains an instruction cache, a first-level data cache and a second-level
unified cache in each core (see Figure 4-1). Each physical processor may contain several processor cores
and a shared collection of sub-systems that are referred to as “uncore“. Specifically in Intel Core i7
processor, the uncore provides a unified third-level cache shared by all cores in the physical processor,
Intel QuickPath Interconnect links and associated logic. The L1 and L2 caches are writeback and non-
inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in either L1 data cache,
L1 instruction cache, unified L2 cache also exists in L3. The L3 is designed to use the inclusive nature to
minimize snoop traffic between processor cores. Table 4-3 lists characteristics of the cache hierarchy.
The latency of L3 access may vary as a function of the frequency ratio between the processor and the
uncore sub-system.

Nehalem microarchitecture implements two levels of translation lookaside buffer (TLB). The first level
consists of separate TLBs for data and code. DTLB0 handles address translation for data accesses, it
provides 64 entries to support 4KB pages and 32 entries for large pages. The ITLB provides 64 entries
(per thread) for 4KB pages and 7 entries (per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It support 4KB page
translation operation that missed DTLB0 or ITLB. All entries are 4-way associative. Here is a list of entries
in each DTLB:
• STLB for 4-KByte pages: 512 entries (services both data and instruction look-ups).
• DTLB0 for large pages: 32 entries.
• DTLB0 for 4-KByte pages: 64 entries.

An DTLB0 miss and STLB hit causes a penalty of 7cycles. Software only pays this penalty if the DTLB0 is
used in some dispatch cases. The delays associated with a miss to the STLB and PMH are largely non-
blocking.

Port 5 FP/SIMD/SSE2 Move and
Logic

1 1 FP

Table 4-3. Cache Parameters of Intel Core i7 Processors

Level Capacity
Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput
(clocks)

Write Update
Policy

First Level Data 32 KB 8 64 4 1 Writeback

Instruction 32 KB 4 N/A N/A N/A N/A

Second Level 256KB 8 64 101

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Varies Writeback

Third Level
(Shared L3)2

2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

8MB 16 64 35-40+2 Varies Writeback

Table 4-2. Issue Ports of Nehalem Microarchitecture (Contd.)
Port Executable

operations
Latency Throughput Domain Comment

Ref#: 248966-048 4-41

NEHALEM MICROARCHITECTURE

4.3.1 Load and Store Operation Enhancements
The memory cluster of Nehalem microarchitecture provides the following enhancements to speed up
memory operations:
• Peak issue rate of one 128-bit load and one 128-bit store operation per cycle.
• Deeper buffers for load and store operations: 48 load buffers, 32 store buffers and 10 fill buffers.
• Fast unaligned memory access and robust handling of memory alignment hazards.
• Improved store-forwarding for aligned and non-aligned scenarios.
• Store forwarding for most address alignments.

4.3.1.1 Efficient Handling of Alignment Hazards
The cache and memory subsystems handles a significant percentage of instructions in every workload.
Different address alignment scenarios will produce varying performance impact for memory and cache
operations. For example, 1-cycle throughput of L1 (see Table 4-4) generally applies to naturally-aligned
loads from L1 cache. But using unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc.) to
access data from L1 will experience varying amount of delays depending on specific microarchitectures
and alignment scenarios.

Table 4-4 lists approximate throughput of issuing MOVDQU instructions with different address alignment
scenarios to load data from the L1 cache. If a 16-byte load spans across cache line boundary, previous
microarchitecture generations will experience significant software-visible delays.

Nehalem microarchitecture provides hardware enhancements to reduce the delays of handling different
address alignment scenarios including cache line splits.

4.3.1.2 Store Forwarding Enhancement
When a load follows a store and reloads the data that the store writes to memory, the microarchitecture
can forward the data directly from the store to the load in many cases. This situation, called store to load
forwarding, saves several cycles by enabling the load to obtain the data directly from the store operation
instead of through the memory system.

Several general rules must be met for store to load forwarding to proceed without delay:
• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load data must be completely contained in the preceding store.

Specific address alignment and data sizes between the store and load operations will determine whether
a store-forward situation may proceed with data forwarding or experience a delay via the cache/memory
sub-system. The 45 nm Enhanced Intel Core microarchitecture offers more flexible address alignment
and data sizes requirement than previous microarchitectures. Nehalem microarchitecture offers addi-
tional enhancement with allowing more situations to forward data expeditiously.

Table 4-4. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle)
Intel Core i7
Processor

45 nm Intel Core
Microarchitecture

65 nm Intel Core
Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_0FH

16B aligned 1 2 2

Not-16B aligned, not cache split 1 ~2 ~2

Split cache line boundary ~4.5 ~20 ~20

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-42

The store-forwarding situations for with respect to store operations of 16 bytes are illustrated in
Figure 4-3.

Figure 4-3. Store-Forwarding Scenarios of 16-Byte Store Operations

Nehalem microarchitecture allows store-to-load forwarding to proceed regardless of store address align-
ment (The white space in the diagram does not correspond to an applicable store-to-load scenario).
Figure 4-4 illustrates situations for store operation of 8 bytes or less.

Ref#: 248966-048 4-43

NEHALEM MICROARCHITECTURE

Figure 4-4. Store-Forwarding Enhancement in Nehalem Microarchitecture

4.4 REP STRING ENHANCEMENT
REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are frequently used to
implement library functions such as memcpy()/memset(). These are referred to as "REP string" instruc-
tions. Each iteration of these instruction can copy/write constant a value in byte/word/dword/qword
granularity The performance characteristics of using REP string can be attributed to two components:
startup overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further depending on granu-
larity, alignment, and/or count values. Generally, MOVSB is used to handle very small chunks of data.
Therefore, processor implementation of REP MOVSB is optimized to handle ECX < 4. Using REP MOVSB
with ECX > 3 will achieve low data throughput due to not only byte-granular data transfer but also addi-
tional startup overhead. The latency for MOVSB, is 9 cycles if ECX < 4; otherwise REP MOVSB with ECX
>9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup overhead of REP
String exhibit step-wise increase:
• Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about 20 cycles.
• Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation provides hardware

optimization by moving as many pieces of data in 16 bytes as possible. The latency of REP string
latency will vary if one of the 16-byte data transfer spans across cache line boundary:

— Split-free: the latency consists of a startup cost of about 40 cycles and each 64 bytes of data adds
4 cycles.

— Cache splits: the latency consists of a startup cost of about 35 cycles and each 64 bytes of data
adds 6cycles.

• Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a startup cost of about
15 cycles plus one cycle for each iteration of the data movement in word/dword/qword.

Nehalem microarchitecture improves the performance of REP strings significantly over previous microar-
chitectures in several ways:
• Startup overhead have been reduced in most cases relative to previous microarchitecture.
• Data transfer throughput are improved over previous generation.

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-44

• In order for REP string to operate in “fast string” mode, previous microarchitectures requires address
alignment. In Nehalem microarchitecture, REP string can operate in “fast string” mode even if the
address is not aligned to 16 bytes.

4.4.1 Enhancements for System Software
In addition to microarchitectural enhancements that can benefit both application-level and system-level
software, Nehalem microarchitecture enhances several operations that primarily benefit system soft-
ware.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG, CMPXCHG8B) executes
with significantly reduced latency than previous microarchitectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and its supervisor (the
VMM) can take thousands of cycle each time on previous microarchitectures. The latency of VMX transi-
tions has been reduced in processors based on Nehalem microarchitecture.

4.4.2 Efficiency Enhancements for Power Consumption
Nehalem microarchitecture is not only designed for high performance and power-efficient performance
under wide range of loading situations, it also features enhancement for low power consumption while
the system idles. Nehalem microarchitecture supports processor-specific C6 states, which have the
lowest leakage power consumption that OS can manage through ACPI and OS power management
mechanisms.

4.4.3 Intel® Hyper-Threading Technology (Intel® HT) Support in Nehalem
Microarchitecture

Nehalem microarchitecture supports Intel® Hyper-Threading Technology (Intel® HT). Its implementation
of Intel HT provides two logical processors sharing most execution/cache resources in each core. The HT
implementation in Nehalem microarchitecture differs from previous generations of HT implementations
using Intel NetBurst microarchitecture in several areas:
• Nehalem microarchitecture provides four-wide execution engine, more functional execution units

coupled to three issue ports capable of issuing computational operations.
• Nehalem microarchitecture supports integrated memory controller that can provide peak memory

bandwidth of up to 25.6 GB/sec in Intel Core i7 processor.
• Deeper buffering and enhanced resource sharing/partition policies:

— Replicated resource for HT operation: register state, renamed return stack buffer, large-page
ITLB.

— Partitioned resources for HT operation: load buffers, store buffers, re-order buffers, small-page
ITLB are statically allocated between two logical processors.

— Competitively-shared resource during HT operation: the reservation station, cache hierarchy, fill
buffers, both DTLB0 and STLB.

— Alternating during Intel HT operation: front end operation generally alternates between two
logical processors to ensure fairness.

— HT unaware resources: execution units.

Ref#: 248966-048 4-45

NEHALEM MICROARCHITECTURE

NEHALEM MICROARCHITECTURE

Ref#: 248966-048 4-46

Ref#: 248966-048 5-47

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

CHAPTER 5
KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Intel® Xeon PhiTM Processors 7200/5200/3200 Series are based on the Knights Landing microarchitec-
ture. Coding techniques for software targeting the Knights Landing microarchitecture are described in
this chapter. Processors based on the Knights Landing microarchitecture can be identified using CPUID’s
DisplayFamily_DisplayModel signature, which can be found in Table 2-1 of Chapter 2, “Intel® 64 and IA-
32 Processor Architectures” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
4.

The Knights Landing microarchitecture is designed for processors and co-processor product families that
target highly-parallel, high-performance applications. An Intel Xeon Phi processor based on the Knights
Landing microarchitecture is comprised of:
• A large number of tiles.
• A two-dimensional mesh interconnect connecting the tiles.

Figure 5-1. Tile-Mesh Topology of the Knights Landing Microarchitecture

Tile

PCIe
Gen 3 DMI

Core

CHA

EDC EDC EDC EDC

EDC EDC EDC EDCMISC

DDR MC DDR MC

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

2 x 16
 x 4

x 4
DM

D
D
R

C
H
A
N
N
E
L
S

D
D
R

C
H
A
N
N
E
L
S

 Multiple Tiles
 Connected by
 2-D Mesh
 Interconnect

 Physical
 Package

Core
 1MB
 L 2

2 VPU 2 VPU

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-48

• An advanced memory sub-system supplying data to all the tiles containing IA-compatible processor
cores and cache hierarchy.

Figure 5-1 depicts a collection of “tile” units (or pairs of processor cores) connected by a two-dimensional
mesh network, offering I/O capabilities via PCIe and DMI interfaces, a memory sub-system supporting
high-bandwidth optimized MCDRAM, and capacity-optimized DDR memory channels.

Figure 5-1 also illustrates each tile comprising:
• Two out-of-order IA processor cores supporting Intel® Hyper-Threading Technology (Intel® HT)with

4 logical processors per core.
• A 1 MByte L2 cache shared between the two processor cores in the tile.
• A Caching Homing Agent (CHA) connecting each tile to the 2-D mesh interconnect.
• Each processor core also provides a dedicated vector processing unit (VPU) capable of executing 512-

bit, 256-bit, 128-bit and scalar SIMD instructions.

Figure 5-2 illustrates the microarchitectural pipelines of a processor core (including the VPU pipelines)
inside a tile.

The processor core in the Knights Landing microarchitecture provides the following features:
• An out-of-order (OOO) execution engine with 6-wide execution (2 VPU, 2 memory, 2 integer)

pipeline. Specifically, the out-of-order engine is supported by:

Figure 5-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture

ITLB

Fetch &
Instruction
Cache

branch
predict

Allocate
Rename

Integer Rename Buffer

 Integer RF .

ALU
 RS

FP

FP Register File

X87

Vec ALUVec ALU
ALUALU

L1 Data
Cache.

 MEM
 RS .

Decode

Retire

ALU
 RS

 Recycle
 Buffer.

 TLBs

RS
FP
RS

FP Rename Buffer

SHUFFLE
VECINTMUL

Ref#: 248966-048 5-49

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

— The front end can decode two instructions per-cycle into micro-ops (uops).

— The allocate/rename stage is also two-wide.

— The out-of-order engine has distributed reservation stations (72-entry deep) feeding the integer,
memory, and VPU pipelines.

• The VPU can execute Intel AVX-512F, Intel AVX-512CD, Intel AVX-512ER, Intel AVX-512PF, Intel AVX,
and 128-bit SIMD/FP instructions.

• The VPU can perform two 512-bit FMA operations per cycle; x87 and MMX instructions throughput is
limited to one per cycle.

• Each processor core supports 4 logical processors via Intel HT.
• Two processor cores share a 1 MByte L2 cache and form a tile.

5.1 FRONT END
The front end can fetch 16 bytes of instructions per cycle. The decoders can decode up to two instructions
of not more than 24 bytes in a cycle. The decoders can only provide a single uop per instruction. If an
instruction decodes into multiple uops (e.g., VSCATTER*), the microcode sequencer (MS) will supply the
uop flow with a performance bubble of three to seven cycles, depending on instruction alignment in the
decoder and length of the MS flow. The decoder will also have a small delay if a taken branch is encoun-
tered. If an instruction has more than three prefixes, there will be a multi-cycle bubble.

The front end is connected to the OOO execution engine through the Allocation, Renaming and Retire-
ment cluster. Scheduling of uops is handled with distributed reservation stations across the integer,
memory and VPU pipelines.

5.1.1 Out-of-Order Engine
The reorder buffer (ROB) is 72 uops deep. There are 16 store buffers (for both address and data).
Distributed scheduling of uops include (see Figure 5-2):
• Two integer reservation stations (one per dispatch port) are 12 entries each.
• The single MEC reservation station has 12 entries, and dispatches up to 2 uops per cycle.
• The two VPU reservation stations (one per dispatch port) are 20 entries each.

The reservation stations, ROB, and store data buffers are hard partitioned per logical processor
(depending on the processor core operating with one, two, or four active logical processors). Hard parti-
tioning of resources changes as logical processors wake up and go to sleep. The store address buffers
have two entries reserved per logical processor, with the remaining entries shared among the logical
processors.

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-50

The integer reservation stations can dispatch 2 uops per cycle each, and are able to do so out-of-order.
The memory execution reservation station dispatches 2 uops from its scheduler in-order, but uops can
complete in any order. The data cache can read two 64B cache lines and write one cache line per cycle.
The VPU reservation stations can dispatch 2 uops per cycle each and complete out-of-order.

The OOO engine in the Knights Landing microarchitecture is optimized to favor execution throughput
over latency. Loads to integer registers (e.g., RAX) are 4 cycles, and loads to VPU registers (e.g., XMM0,
YMM1, ZMM2, or MM0) are 5 cycles. Only one integer load is possible per cycle, but the other memory
operations (store address, vector load, and prefetch) can dispatch two per cycle. Stores commit post-
retirement, at a rate of 1 per cycle. The data cache and instruction caches are each 32 KB in size.

Most commonly-used integer math instructions (e.g. add, sub, cmp, test) have a throughput of 2 per
cycle with latency of a single cycle. The integer pipeline has only one integer multiplier with a latency of
3 or 5 cycles depending on the operand size. Latency of integer division will vary depending on the
operand size and input value; its throughput is expected to be not faster than one every ~20 cycles.
Store to load forwarding has a cost of 2 cycles and can forward one per cycle if the store-forwarding
restrictions are met.

Many VPU math operations can dispatch on either VPU port with a latency of either 2 cycles or 6 cycles;
see Table 5-2. The following instructions can only dispatch on a single port:
• All x87 math operations.
• FP divisions and square roots.
• Intel AVX-512ER.
• Vector permute / shuffle operations.
• Vector to integer moves.
• Intel AVX-512CD conflict instructions.
• AESNI.
• The store data operation of a vector instruction with store semantics.

The above operations are limited to one of the two VPU dispatch pipes. Vector store data and vector to
integer moves are on one dispatch pipe. The remaining single pipe instructions are on the other dispatch
pipe.

Table 5-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture

Integer Instruction/operations Latency (cycle) Throughput (cycles per instruction)

Simple Integer 1 0.5

Integer Multiply 3 or 5 1

Integer Divide Varies > 20

Store to Load Forward 2 1

Integer Loads 4 1

Ref#: 248966-048 5-51

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Additionally, some instructions in the Knights Landing microarchitecture will be decoded as one uop by
the front end but need to expand to two operations for execution. These complex uops will have an allo-
cation throughput of one per cycle. Examples of these instructions are:
• POP: integer load data + ESP update
• PUSH: integer store data + ESP update
• INC: add to register + update partial flags
• Gather: two VPU uops
• RET: JMP + ESP update
• CALL, DEC, LEA with 3 sources

Table 5-3 lists characteristics of the caching resources in the Knights Landing microarchitecture.

Table 5-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture

Vector Instructions Latency (cycle) Throughput (cycles per instruction)

Simple Integer 2 0.5

Most Vector Math (including FMA) 6 0.5

Mask Instructions (operating on opmask) 2 0.5

AVX-512ER (64-bit element) 7 2

AVX-512ER (32-bit element) 8 3

Vector Loads 5 0.5

Store to Load Forward 2 0.5

Gather (8 elements) 15 5

Gather (16 elements) 19 10

Register Move (GPR -> XMM/YMM/ZMM) 2 1

Register Move (XMM/YMM/ZMM -> GPR) 4 1

DIVSS/SQRTSS1

NOTES:
1. The physical units executing these instructions may experience additional scheduling delay due to the physical layout of

the units in the VPU.

25 ~20

DIVSD/SQRTSD1 40 ~33

DIVP*/SQRTP*1 38 ~10

Shuffle/Permute (1 source operand)1 2 1

Shuffle/Permute (2 source operands)1 3 2

Convert (from/to same width)1 2 1

Convert (from/to different width)1 6 5

Common x87/MMX Instructions1 6 1

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-52

5.1.2 UnTile
In the Knights Landing microarchitecture, many tiles are connected by a mesh interconnect into a phys-
ical package; see Figure 5-1. The mesh and associated on-package components are referred to as
“untile”. At each mesh stop, there is a connection to the tile and a tag directory that identifies which L2
cache (if any) holds a particular cache line. There is no shared L3 cache within a physical package.
Memory accesses that miss in the tile must go over the mesh to the tag directory to identify any cached
copies in another tile. Cache coherence uses the MESIF protocol. If the cache line is not cached in another
tile, then a request goes to memory.

MCDRAM is an on-package, high bandwidth memory subsystem that provides peak bandwidth for read
traffic, but lower bandwidth for write traffic (compared to reads). The aggregate bandwidth provided by
MCDRAM is higher than the off-package memory subsystem (i.e., DDR memory). DDR memory band-
width can potentially be saturated by writes or reads alone. The achievable memory bandwidth for
MCDRAM is approximately 4x - 6x of what DDR can do, depending on the mix of read and write traffic.

MCDRAM capacity supported by the Knights Landing microarchitecture is either 8 or 16 GB, depending on
product-specific features. The peak MCDRAM bandwidth will vary according to the size of the installed
MCDRAM. MCDRAM has higher bandwidth but lower capacity than DDR. The Maximum DDR capacity is
384 GB for the Knights Landing microarchitecture.

The physical memory in a platform comprises both MCDRAM and DDR memory; they can be partitioned
in a number of different modes of operation. The commonly-used modes are summarized below.
• Cache mode: MCDRAM as a direct mapped cache and DDR is used as system memory addressable by

software.
• Flat mode: MCDRAM and DDR map to disjoint addressable, system memory.
• Hybrid mode: MCDRAM is partitioned; parts of MCDRAM act as direct mapped cache, the rest of

MCDRAM is directly addressable. DDR map to addressable system memory.

Table 5-3. Characteristics of Caching Resources

Sets Ways Latency Capacity/Comments

uTLB 8 8 1 64 4KB pages (fractured)1

NOTES:
1. The uTLB and ITLB can only hold translations for 4 KB memory regions. If the relevant page is larger than 4 KB (such as

2MB or 1 GB), then the buffer holds the translation for the portion of the page that is being accessed. This smaller trans-
lation is referred to as a fractured page.

DTLB (4KB page) 32 8 4 256 4KB pages

DTLB (2M/4M page) 16 8 4 128 2MB/4MB pages

DTLB (1GB page) 1 16 4 16 1GB pages

ITLB 1 48 4 48 4KB pages (fractured)

PDE 8 4 1 Page descriptors

L1 Data Cache 64 8 4 or 5 32 KB

Instruction Cache 64 8 4 32 KB

Shared L2 Cache 1024 16 13+L1 latency 1 MB

Ref#: 248966-048 5-53

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

The configuration between tiles, tag directories and the mesh support the following modes of clustering
operation for cache coherent traffic:
• All-to-All: the requesting core, tag directory and memory controller for a cache line can be anywhere

in the mesh.
• Quadrant: the tag directory and memory that it monitors are in the same quadrant of the mesh, but

the requesting core can be anywhere in the mesh.
• Sub-NUMA Clustering (SNC): In SNC mode, BIOS expose each quadrant as a NUMA node. This

requires software to recognize the NUMA domains and co-locate the requesting core, tag directory,
and memory controller in the same quadrant of the mesh to realize the benefit of optimal cache miss
latency.

If critical portions of an application working set fit in the capacity of MCDRAM, performance could benefit
greatly by allocating it into the MCDRAM and using flat or hybrid mode. Cache mode is generally best for
code that has not yet been optimized for the Knights Landing microarchitecture, and has a working set
that MCDRAM can cache.

In general, cache miss latency in All-to-All mode will be worse than it is in Quadrant mode; SNC mode
can achieve the best latency. Quadrant mode is the default mesh configuration. SNC clustering requires
some support from software to recognize the different NUMA nodes. If DDR is not populated evenly (e.g.,
missing DIMMs), the mesh will need to use the All-to-All clustering mode.

When multiple tiles read the same cache line, each tile might have a copy of the cache line. If both cores
in the same tile read a cache line, there will only be a single copy in the L2 cache of that tile.

If MCDRAM is configured as a cache, it can hold data or instructions accessed by the cores in a single
place. If multiple tiles request the same line, only one MCDRAM cacheline will be used.

L1 data cache has higher bandwidth and lower latency than L2 cache. Cache line access from L2 has
higher bandwidth and lower latency than access from memory.

MCDRAM and DDR memory have different latency and throughput profiles. This becomes important
when choosing between cache vs. flat or other memory modes. In most memory configurations, the DDR
capacity will be substantially larger than MCDRAM capacity. Likewise, MCDRAM capacity should be much
larger than the combined L2 cache.

Working sets that fit in MCDRAM capacity, but not in the L2 cache, should be in MCDRAM. Large or rarely
accessed structures should migrate to DDR. In Knights Landing microarchitecture, hardware will try to do
this dynamically if MCDRAM is put in cache or hybrid memory modes. If memory is in the flat memory
mode, data structures are bound to one memory or the other (MCDRAM or DDR) at allocation time. The
programmer should strive to maximize the number of memory access that go to MCDRAM. One possible
algorithm would allocate data structures into MCDRAM if they are frequently accessed, and have working
sets that do not fit into the tile caches.

In cache memory mode, the MCDRAM access is done first. If the cacheline is not in MCDRAM, the DDR
access begins. Because of this, the perceived memory access latency of DDR in cache memory mode is
higher than in flat memory mode.

5.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS
LANDING MICROARCHITECTURE

The Intel AVX-512 family comprises a collection of instruction set extensions. For an overview and de-
tailed features (EVEX prefix encoding, opmask support, etc.) of the Intel AVX-512 family of instruc-
tions, see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1. Intel Xeon
Phi processors (7200, 5200, 3100 series) based on the Knights Landing microarchitecture support AVX-
512 Foundation (AVX-512F), AVX-512 Exponential and Reciprocal (AVX-512ER), AVX-512 Conflict
(AVX-512CD), and AVX-512 Prefetch extensions. Intel AVX and Intel AVX2 instructions are also sup-
ported on processors based on the Knights Landing microarchitecture. Prior generation Intel Xeon Phi
processors (7100, 5100, 3100 series) do not support Intel AVX-512, Intel AVX2, nor Intel AVX instruc-
tions.

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-54

5.2.1 Using Gather and Scatter Instructions
Gather instructions in Intel AVX-512F are enhanced over those in Intel AVX2, performing 512-bit opera-
tions (either 16 elements of 32-bit data or 8 elements of 64-bit data) and using an opmask register as
writemask for conditional updates of fetched elements to the destination ZMM register.

Scatter instructions in Intel AVX-512F selectively store elements in a ZMM register to memory locations
expressed via an index vector. Conditional store to the destination location is selected using an opmask
register. Scatter instructions are not supported in Intel AVX or Intel AVX2.

Consider the following C code fragment:

for (uint32 i = 0; i < 16; i ++) {

b[i] = a[indirect[i]];

// vector compute sequence

}

When using VGATHER and VSCATTER, you often need to set a mask to all ones. An efficient instruction to
do this is KXNOR of a mask register with itself. Since VSCATTER and VGATHER clear their mask as the last
thing they do, a loop carried dependence from the VGATHER to KXNOR can be generated. Because of
this, it is wise to avoid using the same mask for source and destination in KXNOR. Since it is rare for the
k0 mask to be used as a destination, it is likely that “KXNORW k1, k0, k0” will be faster than “KXNOR k1,
k1, k1”.

Gather and Scatter instructions in AVX-512F are different from those in prior generation Intel Xeon Phi
processors (abbreviated by “Previous Generation” in Example 5-2).

5.2.2 Using Enhanced Reciprocal Instructions
The Intel AVX-512ER instructions provide high precision approximations of exponential, reciprocal, and
reciprocal square root functions. The approximate math instructions in Intel AVX-512ER provide 28 bits
of accuracy, compared to 11 bits in RCPSS or 14 bits with VRCP14SS. Intel AVX-512ER can reduce execu-
tion time for iterative algorithms like Newton-Raphson. Example 5-3 contains sample code using the
Newton-Raphson algorithm to compute a single 32b float division with VRCP28SS. Both values are read
off the stack. Note the use of rounding mode overrides on some of the math operations.

Example 5-1. Gather Comparison Between Intel® AVX-512F and Intel® AVX2
AVX-512F AVX2
vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu ymm0, [rsp+0x1000] ; load half of index vector
vmovdqu ymm3, [rsp+0x1020] ; 2nd half of indirect[]
vpcmpeqdd ymm4, ymm4, ymm4 ; prepare mask
vmovdqa ymm1, ymm4
vpgatherdd ymm2, [rax+ymm0*4], ymm1
vpgatherdd ymm5, [rax+ymm3*4], ymm4
; compute sequence using vector register

Example 5-2. Gather Comparison Between Intel® AVX-512F and Previous Generation Equivalent
AVX-512F Previous Generation Equivalent Sequence
vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k1 ; prepare mask
g_loop: ; verify gathered elements are complete
vpgatherdd zmm2{k1}, [rax+zmm0*4]
jknzd k1, g_loop ; gather latency exposure
; compute sequence using vector register

Ref#: 248966-048 5-55

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.3 USING AVX-512CD INSTRUCTIONS
Refer to Section 18.16, “Conflict Detection” for details on using the Intel AVX-512 Conflict Detection
instructions.

5.3.1 Using Intel® Hyper-Threading Technology (Intel® HT)
The Knights Landing microarchitecture supports 4 logical processors with each processor core. There are
choices that highly-threaded software may need to consider with respect to:
• Maximizing per-thread performance by providing maximum per-core resources to one logical

processor per core.
• Maximizing per-core throughput by allowing multiple logical processors to execute on a processor

core.

As thread count per core grows to 2 or 4, some applications will have higher per core performance, but
lower per thread performance. If an application can perfectly scale its performance to an arbitrary
number of threads, 4 threads per core is likely to have the highest instruction throughput. Practical
limitations on memory capacity or parallelism may limit the number of threads per core.

In Knights Landing microarchitecture, some per core resources (like the ROB or scheduler) are parti-
tioned to one for each of 4 logical processors. Because of this, a 3 thread configuration will have fewer
aggregate resources available than 1, 2, or 4 threads per core. Placing 3 threads on a processor core is
unlikely to perform better than 2 or 4 threads per core.

5.3.2 Front End Considerations
To ensure front end restrictions are not typically a performance limiter, software should consider the
following:
• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near

indirect. It will often be better to perform a load into a register and then perform the register version
of CALL. Additional examples are shown in Table 5-4.

• The total length of the instruction bytes that can be decoded each cycle is at most 16 bytes per cycle
with instructions not more than 8 bytes in length. For instruction length exceeding 8 bytes, only one
instruction per cycle is decoded on decoder 0. Vector instructions which address memory using 32-bit
displacement can cause the decoder to limit performance.

• Instructions with multiple prefixes can restrict decode throughput. The restriction is on the length of
bytes combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix count

Example 5-3. Using VRCP28SS for 32-bit Floating-Point Division

vgetmantss xmm18, xmm18, [rsp+0x10], 0
vgetmantss xmm20, xmm20, [rsp+0x8], 0
vrcp28ss xmm19, xmm18, xmm18
vgetexpss xmm16, xmm16, [rsp+0x8]
vgetexpss xmm17, xmm17, [rsp+0x10]
vsubss xmm22, xmm16, xmm17
vmulss xmm21{rne-sae}, xmm19, xmm20
vfnmadd231ss xmm20{rne-sae}, xmm21, xmm18
vfmadd231ss xmm21, xmm19, xmm20
vscalefss xmm0, xmm21, xmm22

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-56

exceeds 3 with the Knights Landing microarchitecture. Only decoder 0 can decode an instruction
exceeding the limit of a prefix/escape byte restriction.

• Maximum number of branches that can be decoded each cycle is 1.

5.3.3 Instruction Decoder
Some IA instructions require a lookup in the microcode sequencer ROM (MSROM) to decode into a
multiple uop flow. Choosing an alternative sequence of instructions which does not require MSROM will
improve performance.

Table 5-4 provides alternate non-MSROM instruction sequences that can replace an instruction that
decodes from MSROM.

5.3.4 Branching Indirectly Across a 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction for indi-
rect branches (indirect branch or call, or ret). For 64-bit applications, indirect branch prediction fails
when the target of a branch is in a different 4GB chunk of the address space from the source. (I.e. the
top 32 bits of the virtual addresses of the source and target are different). This is more likely to happen
when the application is split into shared libraries. Developers can build statically to improve the locality
in their code, particularly for latency-sensitive library calls that are accessed frequently. Another option
is to use glibc 2.23 or later, and set the LD_PREFER_MAP_32BIT_EXEC environment variable which
requests that the dynamic linker place all shared libraries at the bottom of the address space.

5.4 INTEGER EXECUTION CONSIDERATIONS

5.4.1 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be
consumed by a variety of instructions such as conditional moves (cmovs), branches, and even a variety
of logic/arithmetic operations (such as rcl). The most common instructions used in computing branch
conditions are compare instructions (CMP). Branches dependent on the CMP instruction can execute in
the next cycle. The same is true for branch instructions dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As
a result, an INC or a DEC instruction should be replaced by “ADD reg, 1” or “SUB reg, 1” to avoid a partial
flag penalty.

Instructions that operate on 8-bit or 16-bit registers are not optimized in hardware in the Knights
Landing microarchitecture. In general, it is faster to use integer instructions operating on 32-bit or 64-bit
general purpose registers than 8-bit or 16-bit registers.

Table 5-4. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Knights Landing

CALL m16/m32/m64 Load + CALL reg

PUSH m16/m32/m64 Store + RSP update

(I)MUL r/m16 (Result DX:AX) Use (I)MUL r16, r/m16 if extended precision not required, or (I)MUL r32, r/m32

(I)MUL r/m32 (Result EDX:EAX) Use (I)MUL r32, r/m32 if extended precision not required, or (I)MUL r64, r/m64

(I)MUL r/m64 (Result RDX:RAX) Use (I)MUL r64, r/m64 if extended precision not required

Ref#: 248966-048 5-57

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.4.2 Integer Division
Integer division can be a common operation in some mathematical expressions. However, using hard-
ware integer divide instructions is often less than optimal in performance. If the divisor is known to be
relatively small (16 bits or less), there are fast SW sequences to emulate the division. If the divisor is
known to be a power of 2, use SHR (division) and/or AND (remainder) instead of DIV. Division by a
constant can be replaced by MUL with a constant. If the input values are highly constrained, a pre-
computed lookup table is likely to provide better performance. Some examples of the techniques can be
found in Section 13.2.4, “Replace 128-bit Integer Division with 128-bit Multiplication,” and Section 14.5,
“Numerical Data Conversion to ASCII Format.”

Division instructions should be aggressively minimized by the compiler, either using the techniques
mentioned earlier, or by hoisting redundant divisions out of inner loops.

5.5 OPTIMIZING FP AND VECTOR EXECUTION

5.5.1 Instruction Selection Considerations
In general, using 512-bit instructions are more favorable to achieve higher throughput than 256-bit
instructions. The same applies relative to 256-bit vs. 128-bit vector instructions. 128-bit SSE instructions
are likely to achieve higher throughput than using X87 instruction equivalents. Often, X87 instruction
functionality (transcendental) not present in vector instruction extensions natively can be replaced by
library implementations using vector instructions.

In the Knights Landing microarchitecture, COMIS* and UCOMIS* instructions (legacy, VEX, or EVEX
encoding) that update EFLAGS are slow. These should be replaced by a more optimal sequence of the
Intel AVX-512F version of VCMPS* and KORTEST.

Some instructions, like VCOMPRESS*, are single uop when writing a register, but an MS flow when
writing memory. Where possible, it is much better to do a VCOMPRESS to register and then store it.
Similar optimizations apply to all vector instructions that do some sort of operation followed by a store
(e.g., PEXTRACT).

In the Knights Landing microarchitecture, mixing SSE instructions and Intel AVX instructions require a
different set of considerations to avoid loss of performance due to intermixing of SSE and Intel AVX
instructions. Replace SSE code with AVX-128 equivalents, whenever possible.

Situations that can result in a performance penalty are:
• If an Intel AVX instruction encoded with a vector length of more than 128 bits is allocated before the

retirement of previous in-flight SSE instructions.
• VZEROUPPER instruction throughput is slow, and is not recommended to preface a transition to AVX

code after SEE code execution. The throughput of VZEROALL is also slow. Using either the
VZEROUPPER or the VZEROALL instruction is likely to result in performance loss.

Conditional packed load/store instructions, like MASKMOVDQU and VMASKMOV, use a vector register for
element selection. AVX-512F instructions provide alternatives using an opmask register for element
selection and are preferred over using a vector register for element selection.

Some vector math instructions require multiple uops to implement in the VPU. This increases the latency
of the individual instruction beyond the standard math latencies of 2 and 6. In general, instructions that
alter output/input element width (e.g., VCVTSD2SI) fall into this category. Many Intel AVX2 instructions

Example 5-4. Replace VCOMIS* with VCMPSS/KORTEST

vcmpss k1, xmm1, xmm2, imm8 ; specify imm8 according to desired primitive
kortest k1, k1

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-58

that operate on byte and word quantities have reduced performance compared to the equivalents that
operate on 32b or 64b quantities.

Some execution units in the VPU may incur scheduling delay if a sequence of dependent uop flow needs
to use these execution units. When this happens, it will have an additional cost of a 2-cycle bubble. Code
that frequently transition between the outlier units with other units in the VPU can experience a perfor-
mance issue due to these bubbles.

Most of the Intel AVX-512 instructions support using an opmask register to make conditional updates to
the destination. In general, using an opmask with all 1’s will be the fastest relative to using an opmask
with other non-zero values. Using a non-zero opmask value, the instruction will be similar in speed rela-
tive to an opmask with all 1s, if zeroing-the-non-updated element is selected. Using a non-zero opmask
value with merging (preserving) non-updated elements of the destination will likely be slower.

Horizontal add/subtraction instructions in Intel AVX2 do not have promoted equivalents in Intel AVX-512.
Horizontal reduction is best implemented using software sequences; see Example E-5.

In situations where an algorithm needs to perform reduction, reduction can often be implemented
without horizontal addition.

Example E-6 shows code fragment for the inner loop of a DGEMM matrix multiplication routine, which
computes the dense matrix operation of C = A * B.

In Example E-6, there are 16 partial sums. The sequence of FMA instructions make use of the two VPU
capability of 2 FMAs per cycle throughput, 6 cycles latency. The FMA code snippet in Example E-6 is
presented using uncompressed addressing form for the memory operand. It is important for code gener-
ators to ensure optimal code generation will make use of compressed disp8 addressing form, so that the
length of each FMA instruction will be less than 8 bytes. At the end of the inner loop, the partial sums will
need to be aggregated and store the result matrix C to memory.

Example E-5. Using Software Sequence for Horizontal Reduction

vextractf64x4 ymm1, zmm6, 1; reduction of 16
elements

vaddps ymm1, ymm6, ymm1
vpermpd ymm4, ymm1,0xff
vpermpd ymm5, ymm1,0xaa
vpermpd ymm3, ymm1,0x44
vaddps xmm1, xmm1, xmm4
vaddps xmm3, xmm5, xmm3
vaddps xmm3, xmm1, xmm3
vpsrlq xmm1, xmm3, 32
vaddss xmm3, xmm1, xmm3

vextractf64x4 ymm1, zmm6, 1; reduction of 8
elements

vaddps ymm1, ymm6, ymm1
valignq ymm4, ymm1,0x3
valignq ymm5, ymm1,0x2
valignq ymm3, ymm1,0x1
vaddsd ymm1, ymm1, ymm4
vaddsd ymm3, ymm5, ymm3
vaddsd ymm3, ymm1, ymm3

Ref#: 248966-048 5-59

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.5.2 Porting Intrinsics from Previous Generation
Most intrinsics map to individual instructions of the native hardware. Some 512-bit intrinsics may provide
syntax that hides the difference between AVX-512F and the 512-bit incompatible previous generation
instruction set.

However, intrinsic code that is optimized to run on previous generations will likely not run optimized on
the Knights Landing microarchitecture, due to differences in the underlying microarchitecture (e.g.,
unaligned memory access, cost differences of permutes, limitations of previous generations).

It is likely that coding an algorithm in a high level language (C/Fortran) to compile with Intel Compilers
supporting Intel AVX-512F will generate more optimal code than using previous generation intrinsics.

5.5.3 Vectorization Trade-Off Estimation
Profitability of vectorization of loops written in a high-level language to use AVX-512 is an important part
of optimization for compilers as well as for hand coding assembly. Estimating this for the simplest type of
loop construct can be based on trip count alone. For example, a trip count of 4 or less may be difficult to
realize performance gain over scalar code. With Intel AVX-512, a trip count of 16 may be the minimum
to consider vectorization.

Estimation of vectorization trade-off for more elaborate loop construct requires more sophistication. The
rest of this section provides an analytic approach of examining the composition within the loop body and
makes use of a table of cost estimates of basic operations, Table 5-5,to derive the trade-off comparison
between vectorization versus scalar code.

Example E-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture

;; matrix - matrix dense multiplication
prefetcht0 [rdi+0x400] ;; get A matrix element into L1$
vmovapd zmm30, [rdi]
prefetcht0 [rsi+0x400] ;; get B matrix element into L1$
vfmadd231pd zmm1, zmm30, [rsi+r12]{b} ;; broadcast B elements
vfmadd231pd zmm2, zmm30, [rsi+r12+0x08]{b} ;; displacement shown in un-compressed form
vfmadd231pd zmm3, zmm30, [rsi+r12+0x10]{b}
vfmadd231pd zmm4, zmm30, [rsi+r12+0x18]{b}
vfmadd231pd zmm5, zmm30, [rsi+r12+0x20]{b}
vfmadd231pd zmm6, zmm30, [rsi+r12+0x28]{b}
vfmadd231pd zmm7, zmm30, [rsi+r12+0x30]{b}
vfmadd231pd zmm8, zmm30, [rsi+r12+0x38]{b}

prefetcht0 [rsi+0x440] ;; pull line into the L1$
vfmadd231pd zmm9, zmm30, [rsi+r12+0x40]{b}
vfmadd231pd zmm10, zmm30, [rsi+r12+0x48]{b}
vfmadd231pd zmm11, zmm30, [rsi+r12+0x50]{b}
vfmadd231pd zmm12, zmm30, [rsi+r12+0x58]{b}
vfmadd231pd zmm13, zmm30, [rsi+r12+0x60]{b}
vfmadd231pd zmm14, zmm30, [rsi+r12+0x68]{b}
vfmadd231pd zmm15, zmm30, [rsi+r12+0x70]{b}
vfmadd231pd zmm16, zmm30, [rsi+r12+0x78]{b}

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-60

To illustrate the cost build-up approach, consider the simple loop:

for (i=0; i<N; i++) { sum += a[i]*K + b[i]; }

Within the loop body, the basic operations consist of:
• Two loads (a[i], b[i]) per iteration.
• An FMA per iteration.
• For scalar version: an accumulate per loop iteration; for vectorization: a horizontal reduction at the

end of the loop.

The total cost of N trips for scalar code is 4N. By comparison, the total cost for vectorized code using AVX-
512 on a 64-bit data element would be 3 * Ceiling(N/8) + 30, assuming both the main loop and
remainder loop (if N is not multiples of 8) are vectorized. Therefore, profitable vectorization will need a
trip count of at least 9.

Consider another example involving fetching data from irregular access patterns which might take
advantage of GATHER instructions:

for (i=0; i<N; i++) {c[i] = a[indir[i]] * K + b[i]; }

Within the loop body, the basic operations consist of:
• Two loads (indir[i], b[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: a 3rd load per loop iteration; for vectorization: one GATHER per 8 iteration.

The total cost of N trips for scalar code is 5N. By comparison, the total cost for vectorized code would be
19* Ceiling(N/8). Scalar would be faster if N < 4.

Table 5-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing Microarchitecture

Operation Cost (cycles) Example Code Construct

Simple scalar math 1 A*B+C, or A+B, or A*B

Load (split cacheline) 1 (2) A[i] /* load reference to an array element */

Store (split cacheline) 1(2) A[i] = 2;

Gather (Scatter) 8 elements 15 (20) A[key[i]]

Gather (Scatter) 16elements 20 (25) A[key[i]] ;

Horizontal reduction 30 sum += A[i]

Division or Square root 15 A/B

Ref#: 248966-048 5-61

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Consider an example involving fetching data from twice irregular access patterns than the previous
example:

for (i=0; i<N; i++) {c[i] = a[ind[i]]*K + b[ind[i]]; }

• One load (ind[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: two more loads per loop iteration; for vectorization: two GATHERs per 8 iteration.

The total cost of N trips for scalar code is still 5N. By comparison, the total cost for vectorized code would
be (15*2 + 3)* Ceiling(N/8) = 33* Ceiling(N/8). Even a relatively small profitability of vectorization will
require a significantly larger trip count.

Consider the next example involving fetching data from one irregular access pattern and horizontal
reduction:

for (i=0; i<N; i++) {sum += a[ind[i]]*K + b[i]; }

Scalar cost is still 5N. Cost of vectorization is now 19*Ceiling(N/8) + 30. Scalar code would be faster for
N <= 13.

Consider an example of scatter with division:

for (i=0; i<N; i++) {c[ind[i]] = a[i] / b[i]; }

The scalar cost is (15+4)*N. Cost of vectorization would be (15+20+3)*Ceiling(N/8). Vectorization
would be profitable for N > 2.

In the case of gather followed by scatter:

for (i=0; i<N; i++) {b[ind[i]] = a[ind[i]]; }

The cost of scalar code is 3*N, and vector code will cost (15+20+1)*Ceiling(N/8). Vectorization will not
be profitable.

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-62

For a loop body that is more complex, consider the code below from a workload known as miniMD:

for (int k = 0; k < numneigh; k++) {

 int j = neighs[k];

 double rsq = (xtmp - x[3*j])^2 +

 (ytmp - x[3*j+1])^2 +

 (ztmp - x[3*j+2])^2;

 if (rsq < cutforcesq) {

 double sr2 = 1.0/rsq;

 double sr6 = sr2*sr2*sr2;

 double force = sr6*(sr6-0.5)*sr2;

 res1 += delx*force;

 res2 += dely*force;

 res3 += delz*force;

 }

}

Before considering the IF clause, there is one load, 3 gathers (strided loads of x[]), 3 subtractions and 3
multiplies. Inside the IF clause, there is one division, 8 math operations, and 3 horizontal reductions. The
scalar cost is 10*numneigh + 23 * numneigh * percent_rsq_less_than_cutforcesq. The vector cost is
(52+23) * Ceiling(numneigh / 8) + 3 * 30. Scalar code makes sense if numneigh < 6 or if the compiler
is highly confident that the if clause is almost never taken.

For many compilers, a vectorized loop is generated, and a remainder loop is used to take care of the rest
of the operations. In other words, the vectorized loop is executed floor(N/8) times, and the remainder
loop is executed N mod 8 times. In that case, modify the equations above to use floor instead of ceiling
to determine whether the primary loop should be vectorized. For the remainder loop, the maximum value
of the loop trip count is known. If N is unknown, it is simplest to set N to half the maximum value (4 for
a ZMM vector of doubles).

More sophisticated analysis is possible. For example, the building block simple math operation of 1-cycle
cost in Table 5-5 covers common instruction sequences that are not blocked by a dependency chain or
long latency operations. Expanding entries of the cost table can cover more complex situations.

5.6 MEMORY OPTIMIZATION

5.6.1 Data Alignment
Data access to address spanning a cache line boundary will experience a small performance hit. Access
patterns that stream through memory can avoid cache line splits to make sure each 64-byte access is
aligned to a cache line boundary. When loading 32-bytes of memory to YMM, do not access 64-bytes of
memory with an opmask value to mask off the high 32 bytes.

Memory references crossing a 4-Kbytes boundary will incur significant cost in performance. Access
patterns that stream throughput memory using 512-bit instructions have a higher rate of crossing a 4-
KBytes boundary. So alignment to 64 byte will also avoid the penalty of a page split.

If possible to predict the distance in code space of the next crossing of page boundary, it can be helpful
to insert a PREFETCHT1 (to L2) a few iterations ahead of the current read stream. This can also start the
page translation early and permit the L2 hardware prefetcher to start fetching on the next page.

Some access patterns which might intend to use gather and scatter will always have pairs of consecutive
addresses. One common example is complex numbers, where the real and imaginary parts are laid out

Ref#: 248966-048 5-63

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

contiguously. It is also common when w, x, y, and z information is contiguous. If the values are 32b, it is
faster to gather and scatter the 32-bit elements as half as many 64-bit elements. If the numbers are 64
bits, then it is usually faster to load and insert a 128-bit element instead of gathering 64-bit elements.

5.6.2 Hardware Prefetcher
There are two types of HW prefetchers in a tile. The Instruction Pointer Prefetcher (IPP) resides in a
processor core and analyzes all the accesses in the data cache and the instructions that generated the
access. The prefetcher will then attempt to insert HW prefetches to the L1 cache if a strided access
pattern is detected on a cacheable page. The IPP will not cross a 4k page boundary. The IPP uses the
instruction address and logical processor to index into a table. For this reason, the compiler may insert
NOPs into large loops (>256 B) to make instructions that access memory go into different table entries.

The L2 HW prefetcher tries to identify streaming access patterns, and can track up to 48 access patterns.
A streaming access pattern touches consecutive cache lines in increasing or decreasing order - the stride
detected in the L2 is always +/-1 cacheline. The 48 detectors are allocated independently of the logical
processor that originated the request. Each detector looks at the accesses done within a 4 KB region. If
a stream is detected, HW prefetches for later elements of the stream will be sent to the L2 cache, and if
they miss, to memory. The HW prefetcher will not stream across a 4 KB boundary. If multiple access
patterns are done within the same 4 KB region, the detector can get confused, and fail to detect the
stream.

5.6.3 Software Prefetch
Knights Landing microarchitecture supports out-of-order execution. In general, it can hide cache miss
latency better than previous generation in-order microarchitecture. Hence, programmers should not use
the same aggressive approach to insert software prefetches.

With the two hardware prefetchers described in Section 5.6.2, most streaming and short stride access
patterns should be detected by the hardware prefetchers. If the access pattern is streaming, a
programmer might benefit from adding software prefetches beyond the current 4-KBytes page. If the
access pattern is known, but non-streaming, software prefetches can be beneficial in some situations.
This is especially true if the access pattern is a relatively large stride (>256 bytes), since the IPP will not
fetch across a 4 KB boundary. The software prefetch will do the PMH walk to fill the TLB, and to start the
memory reference early.

Generally, software prefetching into the L2 will show more benefit than L1 prefetches. A software
prefetch into L1 will consume critical hardware resources (fill buffer) until the cacheline fill completes. A
software prefetch into L2 does not hold those resources, and it is less likely to have a negative perfor-
mance impact. If you do use L1 software prefetches, it is best if the software prefetch is serviced by hits
in the L2 cache, so the length of time that the hardware resources are held is minimized.

Software prefetch instructions that are dropped will have a negative performance impact due to
consuming retirement slots from an invalid address. The performance penalty of prefetching an invalid
address or requiring OS privilege from user code can be very large. The performance monitoring event
NUKE.ALL provides an indication of when this might be affecting your code.

5.6.4 Memory Execution Cluster
The MEC has limited capability in executing uops out-of-order. Specifically, memory uops are dispatched
from the scheduler in-order, but can complete in any order. By re-arranging the order of memory instruc-
tions, performance may be improved if they make good use of the MEC’s capability.

Example 5-7 illustrates the effect of ordering the sequence of memory instructions of two read streams
accessing two arrays, a[] and b[]. The left side of Example 5-7 is the optimal sequence with the 2nd
vector load from b[] dispatched on cycle N+5, assuming an L1 cache hit. The right side of Example 5-7 is
a naive ordering of the memory instructions, resulting in the second vector load dispatched on cycle N+8.

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-64

The right side sequence uses one more register than the left side. If the pointer loads would miss L1, the
benefit of left side will be greater than what is shown in the comment.

If there are many loads in the machine, it might be possible to hoist up the pointer loads, so that there
are several memory references between the pointer load and de-reference, without requiring more
integer registers to be reserved.

5.6.5 Store Forwarding
Store forwarding restriction for integer execution and the MEC in the Knights Landing microarchitecture
is similar to those of the Silvermont microarchitecture. The following paragraphs describes the
forwarding restrictions with the VPU.

Vector, X87, and MMX loads and stores can forward (ZMM0, YMM1, XMM2, MM3, and ST4) if the stores
and loads have the same memory address and the load is not larger than the store. VPU stores cannot
forward to integer loads, and integer stores cannot forward to VPU loads. In either case, the load must
wait until the store is post-retirement to get the value from memory.

Vector stores that use an opmask cannot be forwarded from. If your algorithm requires such behavior,
you may benefit if you merge the value in a register, and then store to memory without a conditional
opmask. Later loads can then forward from the merged value.

5.6.6 Way, Set Conflicts
The memory hierarchy determines forwarding requirements based on the address of the access. The L1
data cache uses address bits 11:6 to identify which cache set to use. Forwarding logic uses bits 11:0 and
the size of the access to identify potential forwarding or conflicts between loads and stores. If there are
many conflicts, performance could be degraded.

Many dynamic memory allocation routines (may vary by OS and compiler) will start large memory
regions with the same pattern in the least significant 12 bits. If your access patterns touch many arrays
with identical shapes (element size and dimensions) and similar indices, performance could degrade
significantly due to set conflict. To void these set conflicts, it is beneficial for bits [11..6] of memory
accesses to be different. For example, consider:

a = malloc(sizeof(double) * 10000);

b = malloc(sizeof(double) * 10000);

for (i=0; i < 10000; i++) {

a[i] = b[i] + 0.5 * b[i-1]);

}

Very likely, in most OSes, the effective address of a[] and b[] will have identical lowest 12 bits, i.e., (a &
0xfff) == (b & 0xfff). Some intra-loop conflict may occur with:
• a[i] and b[i] of iteration N collide.
• a[i] of iteration N-1 and b[i-1] of iteration N collide.

Example 5-7. Ordering of Memory Instruction for MEC

movq r15, [rsp+0x40] ; cycle N (load &a[0])
movq r14, [rsp+0x48] ; cycle N+1 (load &b[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
vmovups zmm2, [r14+rax*8] ; cycle N+5

movq r15, [rsp+0x40] ; cycle N (load &a[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
movq r15, [rsp+0x48] ; cycle N+4 (load &b[0])
vmovups zmm2, [r15+rax*8] ; cycle N+8

Ref#: 248966-048 5-65

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

There are multiple ways to offset dynamic arrays. Examples include:
• Offset the working base pointer from the malloc result by an amount of several cache lines,
• Use customized malloc() routine,
• Use posix_memalign() routine with alignment directives for each dynamic allocation to have different

alignments (powers of 2 bytes: 64, 128, 256, 512, etc.) .

The HPC workload known as Leslie3D can be affected by alignment issue.

5.6.7 Streaming Store Versus Regular Store
When writing to memory and data is not expected to be consumed by loads immediately, it may be desir-
able to choose between streaming stores or regular stores (writeback). On Knights Landing microarchi-
tecture, streaming stores may be preferable if in flat memory mode; see Section 5.1.2.

If MCDRAM is configured as cache mode, and the data being written fits in the MCDRAM cache, it is likely
that standard stores will perform better. Experimenting with both options may yield non-trivial perfor-
mance for your application.

5.6.8 Compiler Switches and Directives
When using Fortran 90 syntax, Fortran programmers should use the CONTIGUOUS attribute when appro-
priate. If not, the compiler may assume that incoming arrays are not contiguous, and will (potentially)
replace vector load and store instructions with VGATHER and VSCATTER instructions. This can have a
negative impact on performance.

Expert coders compiling with the Intel compiler can annotate their code with various pragmas. Some of
the more useful ones are LOOP_COUNT, SIMD, and UNROLL. Read the documentation for these pragmas,
and use them where appropriate. The compiler can produce better code when it is given more informa-
tion to evaluate the cost of vectorization.

When using the Intel compilers, the compiler switch “-xMIC-AVX512” targets Knights Landing microar-
chitecture.

5.6.9 Direct Mapped MCDRAM Cache
When MCDRAM is configured in cache mode, the MCDRAM cache is a convenient way to increase memory
bandwidth. As a memory side cache, it can automatically cache recently used data, and provide much
higher bandwidth than what DDR memory can achieve.

The MCDRAM cache is a direct mapped cache. This means that multiple memory locations can map to a
single place in the cache. Because of this, a simple optimization for a program to evaluate its memory
bandwidth sensitivity is to turn on the MCDRAM cache. Some applications that heavily utilize only a few
GBytes of memory footprint could see performance improvements of up to 4x. Because of the simplicity
of this - no source code changes, and the large possible performance benefits, moving from DDR only to
MCDRAM cache mode should be one of the first performance optimizations to try.

There are a few scenarios where enabling the cache could reduce performance. One case is when the
MCDRAM cache is not able to hold the accessed working set. If an application streams through 64 GB of
memory without reuse, the cost of memory access will increase due to checking the MCDRAM cache (and
missing), relative to accessing DDR memory.

The caching of data in the MCDRAM direct mapped cache uses the physical address, not the linear ad-
dress. Even if an address is contiguous in the linear/virtual address space, the physical addresses that
the OS allocates and manages are not required to be. This can cause cache contention when a significant
portion of the MCDRAM cache are used. These contentions are likely to reduce the peak memory band-
width achievable, and vary from run to run; as how the OS allocates pages can change from run to run.
The performance monitoring hardware in the Knights Landing microarchitecture provides the
UNC_E_EDC_ACCESS event to compute the MCDRAM cache hit rate. It can be instructive in diagnosing
this problem.

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Ref#: 248966-048 5-66

If MCDRAM cache is enabled, every modified line in the tile caches (L1 or L2 cache) must have an entry
in the MCDRAM cache. If a line is evicted from the MCDRAM cache, any modified version of that line in the
tile caches will writeback its data to memory, and transition to a shared state. There is a very small prob-
ability that a pair of lines that are frequently read and written will alias to the same MCDRAM set. This
could cause a pair of writes that would normally hit in the tile caches to generate extra mesh traffic when
using MCDRAM in cache mode. Due to this, a pair of threads could become substantially slower than the
other threads in the chip. Linear to physical mapping can vary from run to run, making it difficult to diag-
nose.

One case in point is when two threads read and write their private stacks. Conceptually, any data location
that is commonly read and written to would work, but register spills to the stack are the most frequent
case. If the stacks are offset by a multiple of 16 GB (or the total MCDRAM cache size) in physical memory,
they would collide into the same MCDRAM cache set. A run-time that forced all thread stacks to allocate
into a contiguous physical memory region would avoid this case from occurring.

There is hardware in the Knights Landing microarchitecture to reduce the frequency of set conflicts from
occurring. The probability of hitting this scenario on a given node is extremely small. The best clue to
detecting this, is that a pair of threads on the same chip are significantly slower than all other threads
during a program phase. Which exact threads cores in a package would experience set collision should
vary from run to run, happen rarely, and only when the cache memory mode is enabled. It is very likely
that a user may never encounter this on their system.

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

6. Updates to Appendix F
Change bars and violet text show changes to Appendix F of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Earlier Generations of Intel Atom® Microarchitecture and Software Optimization.

--
Changes to this chapter:

• This chapter has been updated to be Volume 2, Chapter 6.
• Updated capitalization of headings throughout chapter.
• Updated branding throughout chapter.
• Typo and punctuation corrections as necessary.

CHAPTER 6
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE

AND SOFTWARE OPTIMIZATION

6.1 OVERVIEW
45 nm Intel Atom processors introduced Intel Atom microarchitecture. The same microarchitecture also
used in 32 nm Intel Atom processors. This chapter covers a brief overview the Intel Atom microarchitec-
ture, and specific coding techniques for software whose primary targets are processors based on the
Intel Atom microarchitecture. The key features of Intel Atom processors to support low power consump-
tion and efficient performance include:
• Enhanced Intel SpeedStep® Technology enables operating system (OS) to program a processor to

transition to lower frequency and/or voltage levels while executing a workload.
• Support deep power down technology to reduces static power consumption by turning off power to

cache and other sub-systems in the processor.
• Intel Hyper-Threading Technology providing two logical processor for multi-tasking and multi-

threading workloads.
• Support Single-instruction multiple-data extensions up to SSE3 and SSSE3.
• Support for Intel 64 and IA-32 architecture.

The Intel Atom microarchitecture is designed to support the general performance requirements of
modern workloads within the power-consumption envelop of small form-factor and/or thermally-
constrained environments.

6.2 INTEL ATOM® MICROARCHITECTURE
Intel Atom microarchitecture achieves efficient performance and low power operation with a two-issue
wide, in-order pipeline that support Hyper-Threading Technology. The in-order pipeline differs from out-
of-order pipelines by treating an IA-32 instruction with a memory operand as a single pipeline operation
instead of multiple micro-operations.

The basic block diagram of the Intel Atom microarchitecture pipeline is shown in Figure 6-1.

Ref#: 248966-048 6-2

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The front end features a power-optimized pipeline, including:
• 32KB, 8-way set associative, first-level instruction cache.
• Branch prediction units and ITLB.
• Two instruction decoders, each can decode up to one instruction per cycle.

The front end can deliver up to two instructions per cycle to the instruction queue for scheduling. The
scheduler can issue up to two instructions per cycle to the integer or SIMD/FP execution clusters via two
issue ports.

Each of the two issue ports can dispatch an instruction per cycle to the integer cluster or the SIMD/FP
cluster to execute. The port-bindings of the integer and SIMD/FP clusters have the following features:
• Integer execution cluster:

— Port 0: ALU0, Shift/Rotate unit, Load/Store.

— Port 1: ALU1, Bit processing unit, jump unite and LEA.

— Effective “load-to-use” latency of 0 cycle.
• SIMD/FP execution cluster:

— Port 0: SIMD ALU, Shuffle unit, SIMD/FP multiply unit, Divide unit, (support IMUL, IDIV).

— Port 1: SIMD ALU, FP Adder.

— The two SIMD ALUs and the shuffle unit in the SIMD/FP cluster are 128-bit wide, but 64-bit
integer SIMD computation is restricted to port 0 only.

— FP adder can execute ADDPS/SUBPS in 128-bit data path, data path for other FP add operations
are 64-bit wide.

Figure 6-1. Intel Atom® Microarchitecture Pipeline

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst.
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

Ref#: 248966-048 6-3

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

— Safe Instruction Recognition algorithm for FP/SIMD execution allow younger, short-latency
integer instruction to execute without being blocked by older FP/SIMD instruction that might
cause exception.

— FP multiply pipe also supports memory loads.

— FP ADD instructions with memory load reference can use both ports to dispatch.

The memory execution sub-system (MEU) can support 48-bit linear address for Intel 64 Architecture,
either 32-bit or 36-bit physical addressing modes. The MEU provides:
• 24KB first level data cache.
• Hardware prefetching for L1 data cache.
• Two levels of DTLB for 4KByte and larger paging structure.
• Hardware pagewalker to service DTLB and ITLB misses.
• Two address generation units (port 0 supports loads and stores, port 1 supports LEA and stack opera-

tions).
• Store-forwarding support for integer operations.
• 8 write combining buffers.

The bus logic sub-system provides:
• 512KB, 8-way set associative, unified L2 cache.
• Hardware prefetching for L2 and interface logic to the front side bus.

6.2.1 Hyper-Threading Technology Support in Intel Atom® Microarchitecture
The instruction queue is statically partitioned for scheduling instruction execution from two threads. The
scheduler is able to pick one instruction from either thread and dispatch to either of port 0 or port 1 for
execution. The hardware makes selection choice on fetching/decoding/dispatching instructions between
two threads based on criteria of fairness as well as each thread’s readiness to make forward progress.

6.3 CODING RECOMMENDATIONS FOR INTEL ATOM®
MICROARCHITECTURE

Instruction scheduling heuristics and coding techniques that apply to out-of-order microarchitectures
may not deliver optimal performance on an in-order microarchitecture. Likewise instruction scheduling
heuristics and coding techniques for an in-order pipeline like Intel Atom microarchitecture may not
achieve optimal performance on out-of-order microarchitectures. This section covers specific coding
recommendations for software whose primary deployment targets are processors based on Intel Atom
microarchitecture.

6.3.1 Optimization for Front End of Intel Atom® Microarchitecture
The two decoders in the front end of Intel Atom microarchitecture can handle most instructions in the
Intel 64 and IA-32 architecture. Some instructions dealing with complicated operations require the use of
an MSROM in the front end. Instructions that go through the two decoders generally can be decoded by
either decoder unit of the front end in most cases. Instructions the must use the MSROM or conditions
that cause the front end to re-arrange decoder assignments will experience a delay in the front end.

Software can use specific performance monitoring events to detect instruction sequences and/or condi-
tions that cause front end to re-arrange decoder assignment.

Ref#: 248966-048 6-4

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 1. (MH impact, ML generality) For Intel Atom processors,
minimize the presence of complex instructions requiring MSROM to take advantage the optimal decode
bandwidth provided by the two decode units.

Using the performance monitoring events “MACRO_INSTS.NON_CISC_DECODED” and
“MACRO_INSTS.CISC_DECODED” can be used to evaluate the percentage instructions in a workload that
required MSROM.
Assembly/Compiler Coding Rule 2. (M impact, H generality) For Intel Atom processors, keeping
the instruction working set footprint small will help the front end to take advantage the optimal decode
bandwidth provided by the two decode units.
Assembly/Compiler Coding Rule 3. (MH impact, ML generality) For Intel Atom processors,
avoiding back-to-back X87 instructions will help the front end to take advantage the optimal decode
bandwidth provided by the two decode units.

Using the performance monitoring events “DECODE_RESTRICTION“ can count the number of occur-
rences in a workload that encountered delays causing reduction of decode throughput.

In general the front end restrictions are not typical a performance limiter until the retired “cycle per
instruction” becomes less than unity (maximum theoretical retirement throughput corresponds to CPI of
0.5). To reach CPI below unity, it is important to generate instruction sequences that go through the front
end as instruction pairs decodes in parallel by the two decoders. After the front end, the scheduler and
execution hardware do not need to dispatch the decode pairings through port 0 and port 1 in the same
order.

The decoders cannot decode past a jump instruction, so jumps should be paired as the second instruction
in a decoder-optimized pairing. The front end can only handle one X87 instruction per cycle, and only
decoder unit 0 can request a transfer to use MSROM. Instructions that are longer than 8 bytes or having
more than three prefixes will results in a MSROM transfer, experiencing two cycles of delay in the front
end.

Instruction lengths and alignment can impact decode throughput. The prefetching buffers inside the
front end imposes a throughput limit that if the number of bytes being decoded in any 7-cycle window
exceeds 48 bytes, the front end will experience a delay to wait for a buffer. Additionally, every time an
instruction pair crosses 16 byte boundary, it requires the front end buffer to be held on for at least one
more cycle. So instruction alignment crossing 16 byte boundary is highly problematic.

Instruction alignment can be improved using a combination of an ignore prefix and an instruction.

Example 6-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture

Address Instruction Bytes Disassembly

7FFFFDF0 0F594301 mulps xmm0, [ebx+ 01h]

7FFFFDF4 8341FFFF add dword ptr [ecx-01h], -1

7FFFFDF8 83C2FF add edx, , -1

7FFFFDFB 64 ; FS prefix override is ignored, improves code alignment

7FFFFDFC F20f58E4 add xmm4, xmm4

7FFFFE00 0F594B11 mulps xmm1, [ebx+ 11h]

7FFFFE04 8369EFFF sub dword ptr [ecx- 11h], -1

7FFFFE08 83EAFF sub edx, -1

7FFFFE0B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE0C F20F58ED addsd xmm5, xmm5

7FFFFE10 0F595301 mulps xmm2, [ebx +1]

Ref#: 248966-048 6-5

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

When a small loop contains some long-latency operation inside, loop unrolling may be considered as a
technique to find adjacent instruction that could be paired with the long-latency instruction to enable that
adjacent instruction to make forward progress. However, loop unrolling must also be evaluated on its
impact to increased code size and pressure to the branch target buffer.

The performance monitoring event “BACLEARS” can provide a means to evaluate whether loop unrolling
is helping or hurting front end performance. Another event “ICACHE_MISSES” can help evaluate if loop
unrolling is increasing the instruction footprint.

Branch predictors in Intel Atom processor do not distinguish different branch types. Sometimes mixing
different branch types can cause confusion in the branch prediction hardware.

The performance monitoring event “BR_MISSP_TYPE_RETIRED“ can provide a means to evaluate branch
prediction issues due to branch types.

6.3.2 Optimizing the Execution Core
This section covers several items that can help software use the two-issue-wide execution core to make
forward progress with two instructions more frequently.

6.3.2.1 Integer Instruction Selection
In an in-order machine, instruction selection and pairing can have an impact on the machine’s ability to
discover instruction-level-parallelism for instructions that have data ready to execute. Some examples
are:
• EFLAG: The consumer instruction of any EFLAG flag bit can not be issued in the same cycle as the

producer instruction of the EFLAG register. For example, ADD could modify the carry bit, so it is a
producer; JC (or ADC) reads the carry bit and is a consumer.

— Conditional jumps are able to issue in the following cycle after the consumer.

— A consumer instruction of other EFLAG bits must wait one cycle to issue after the producer (two
cycle delay).

Assembly/Compiler Coding Rule 4. (M impact, H generality) For Intel Atom processors, place a
MOV instruction between a flag producer instruction and a flag consumer instruction that would have
incurred a two-cycle delay. This will prevent partial flag dependency.
• Long-latency Integer Instructions: They will block shorter latency instruction on the same thread

from issuing (required by program order). Additionally, they will also block shorter-latency
instruction on both threads for one cycle to resolve writeback resource.

• Common Destination: Two instructions that produce results to the same destination can not issue
in the same cycle.

7FFFFE14 8341DFFF add dword ptr [ecx-21H], -1

7FFFFE18 83C2FF add edx, -1

7FFFFE1B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE1C F20F58F6 addssd xmm6, xmm6

7FFFFE20 0F595B11 mulps xmm3, [ebx+ 11h]

7FFFFE24 8369CFFF sub dword ptr [ecx- 31h], -1

7FFFFE28 83EAFF sub edx, -1

Example 6-1. Instruction Pairing and Alignment to Optimize Decode Throughput on Intel Atom® Microarchitecture

Address Instruction Bytes Disassembly

Ref#: 248966-048 6-6

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• Expensive Instructions: Some instructions have special requirements and become expensive in
consuming hardware resources for an extended period during execution. It may be delayed in
execution until it is the oldest in the instruction queue; it may delay the issuing of other younger
instructions. Examples of these include FDIV, instructions requiring execution units from both ports,
etc.

6.3.2.2 Address Generation
The hardware optimizes the general case of instruction ready to execute must have data ready, and
address generation precedes data being ready. If address generation encounters a dependency that
needs data from another instruction, this dependency in address generation will incur a delay of 3 cycles.

The address generation unit (AGU) may be used directly in three situations that affect execution
throughput of the two-wide machine. The situations are:
• Implicit ESP updates: When the ESP register is not used as the destination of an instruction

(explicit ESP updates), an implicit ESP update will occur with instructions like PUSH, POP, CALL,
RETURN. Mixing explicit ESP updates and implicit ESP updates will also lead to dependency between
address generation and data execution.

• LEA: The LEA instruction uses the AGU instead of the ALU. If one of the source register of LEA must
come from an execution unit. This dependency will also cause a 3 cycle delay. Thus, LEA should not
be used in the technique of adding two values and produce the result in a third register. LEA should
be used for address computation.

• Integer-FP/SIMD transfer: Instructions that transfer integer data to the FP/SIMD side of the
machine also uses AGU. Examples of these instructions include MOVD, PINSRW. If one of the source
register of these instructions depends on the result of an execution unit, this dependency will also
cause a delay of 3 cycles.

Assembly/Compiler Coding Rule 5. (MH impact, H generality) For Intel Atom processors, LEA
should be used for address manipulation; but software should avoid the following situations which
creates dependencies from ALU to AGU: an ALU instruction (instead of LEA) for address manipulation or
ESP updates; a LEA for ternary addition or non-destructive writes which do not feed address
generation. Alternatively, hoist producer instruction more than 3 cycles above the consumer instruction
that uses the AGU.

6.3.2.3 Integer Multiply
Integer multiply instruction takes several cycles to execute. They are pipelined such that an integer
multiply instruction and another long-latency instruction can make forward progress in the execution
phase. However, integer multiply instructions will block other single-cycle integer instructions from
issuing due to requirement of program order.

Example 6-2. Alternative to Prevent AGU and Execution Unit Dependency

a) Three cycle delay when using LEA in ternary operations
mov eax, 0x01
lea eax, 0x8000[eax+ebp]; values in eax comes from execution of previous instruction
; 3 cycle delay due to lea and execution dependency

b) Dependency handled in execution, avoiding AGU and execution dependency
mov eax, 0x01
add eax, 0x8000
add eax, ebp

Ref#: 248966-048 6-7

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 6. (M impact, M generality) For Intel Atom processors,
sequence an independent FP or integer multiply after an integer multiply instruction to take advantage
of pipelined IMUL execution.

6.3.2.4 Integer Shift Instructions
Integer shift instructions that encodes shift count in the immediate byte have one-cycle latency. In
contrast, shift instructions using shift count in the ECX register may need to wait for the register count
are updated. Thus shift instruction using register count has 3-cycle latency.
Assembly/Compiler Coding Rule 7. (M impact, M generality) For Intel Atom processors, hoist the
producer instruction for the implicit register count of an integer shift instruction before the shift
instruction by at least two cycles.

6.3.2.5 Partial Register Access
Although partial register access does not cause additional delay, the in-order hardware tracks depen-
dency on the full register. Thus 8-bit registers like AL and AH are not treated as independent registers.
Additionally some instructions like LEA, vanilla loads, and pop are slower when the input is smaller than
4 bytes.
Assembly/Compiler Coding Rule 8. (M impact, MH generality) For Intel Atom processors, LEA,
simple loads and POP are slower if the input is smaller than 4 bytes.

6.3.2.6 FP/SIMD Instruction Selection
Table 6-1 summarizes the characteristics of various execution units in Intel Atom microarchitecture that
are likely used most frequently by software.

Example 6-3. Pipeling Instruction Execution in Integer Computation

a) Multi-cycle Imul instruction can block 1-cycle integer instruction
imul eax, eax
add ecx, ecx ; 1 cycle int instruction blocked by imul for 4 cycles
imul ebx, ebx ; instruction blocked by in-orer issue

b) Back-to-back issue of independent imul are pipelined
imul eax, eax
imul ebx, ebx ; 2nd imul can issue 1 cycle later
add ecx, ecx ; 1 cycle int instruction blocked by imul

Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture

Instruction Category Latency (cycles) Throughput # of Execution Unit

SIMD Integer ALU

128-bit ALU/logical/move 1 1 2

64-bit ALU/logical/move 1 1 2

SIMD Integer Shift

128-bit 1 1 1

64-bit 1 1 1

Ref#: 248966-048 6-8

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

SIMD/FP instruction selection generally should favor shorter latency first, then favor faster throughput
alternatives whenever possible. Note that packed double-precision instructions are not pipelined, using
two scalar double-precision instead can achieve higher performance in the execution cluster.
Assembly/Compiler Coding Rule 9. (MH impact, H generality) For Intel Atom processors, prefer
SIMD instructions operating on XMM register over X87 instructions using FP stack. Use Packed single-
precision instructions where possible. Replace packed double-precision instruction with scalar double-
precision instructions.
Assembly/Compiler Coding Rule 10. (M impact, ML generality) For Intel Atom processors, library
software performing sophisticated math operations like transcendental functions should use SIMD
instructions operating on XMM register instead of native X87 instructions.
Assembly/Compiler Coding Rule 11. (M impact, M generality) For Intel Atom processors, enable
DAZ and FTZ whenever possible.

Several performance monitoring events may be useful for SIMD/FP instruction selection tuning:
“SIMD_INST_RETIRED.{PACKED_SINGLE, SCALAR_SINGLE, PACKED_DOUBLE, SCALAR_DOUBLE}” can
be used to determine the instruction selection in the program. “FP_ASSIST” and “SIR” can be used to see
if floating exceptions (or false alarms) are impacting program performance.

The latency and throughput of divide instructions vary with input values and data size. Intel Atom
microarchitecture implements a radix-2 based divider unit. So, divide/sqrt latency will be significantly
longer than other FP operations. The issue throughput rate of divide/sqrt will be correspondingly lower.

SIMD Shuffle

128-bit 1 1 1

64-bit 1 1 1

SIMD Integer Multiply

128-bit 5 2 1

64-bit 4 1 1

FP Adder

X87 Ops (FADD) 5 1 1

Scalar SIMD (addsd, addss) 5 1 1

Packed single (addps) 5 1 1

Packed double (addpd) 6 5 1

FP Multiplier

X87 Ops (FMUL) 5 2 1

Scalar single (mulss) 4 1 1

Scalar double (mulsd) 5 2 1

Packed single (mulps) 5 2 1

Packed double (mulpd) 9 9 1

IMUL

IMUL r32, r/m32 5 1 1

IMUL r12, r/m16 6 1 1

Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture (Contd.)

Instruction Category Latency (cycles) Throughput # of Execution Unit

Ref#: 248966-048 6-9

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The divide unit is shared between two logical processors, so software should consider all alternatives to
using the divide instructions.
Assembly/Compiler Coding Rule 12. (H impact, L generality) For Intel Atom processors, use
divide instruction only when it is absolutely necessary, and pay attention to use the smallest data size
operand.

The performance monitoring events “DIV” and “CYCLES_DIV_BUSY” can be used to see if the divides are
a bottleneck in the program.

FP operations generally have longer latency than integer instructions. Writeback of results from FP oper-
ation generally occur later in the pipe stages than integer pipeline. Consequently, if an instruction has
dependency on the result of some FP operation, there will be a two-cycle delay. Examples of these type
of instructions are FP-to-integer conversions CVTxx2xx, MOVD from XMM to general purpose registers.

In situations where software needs to do computation with consecutive groups 4 single-precision data
elements, PALIGNR+MOVAPS is preferred over MOVUPS. Loading 4 data elements with unconstrained
array index k, such as MOVUPS xmm1, _pArray[k], where the memory address _pArray is aligned on 16-
byte boundary, will periodically causing cache line split, incurring a 14-cycle delay.

The optimal approach is for each k that is not a multiple of 4, round down k to multiples of 4 with j =
4*(k/4), do a MOVAPS MOVAPS xmm1, _pArray[j] and MOVAPS xmm1, _pArray[j+4], and use PALIGNR
to splice together the four data elements needed for computation.
Assembly/Compiler Coding Rule 13. (MH impact, M generality) For Intel Atom processors, prefer
a sequence MOVAPS+PALIGN over MOVUPS. Similarly, MOVDQA+PALIGNR is preferred over MOVDQU.

6.3.3 Optimizing Memory Access
This section covers several items that can help software optimize the performance of the memory sub-
system.

Memory access to system memory of cache access that encounter certain hazards can cause the memory
access to become an expensive operation, blocking short-latency instructions to issue even when they
have data ready to execute.

The performance monitoring events “REISSUE” can be used to assess the impact of re-issued memory
instructions in the program.

6.3.3.1 Store Forwarding
In a few limited situations, Intel Atom microarchitecture can forward data from a preceding store opera-
tion to a subsequent load instruction. The situations are:
• Store-forwarding is supported only in the integer pipeline, and does not apply to FP nor SIMD data.

Furthermore, the following conditions must be met:

a. The store and load operations must be of the same size and to the same address.

b. Data size larger than 8 bytes do not forward from a store operation.
• When data forwarding proceeds, data is forwarded base on the least significant 12 bits of the

address. So software must avoid the address aliasing situation of storing to an address and then
loading from another address that aliases in the lowest 12-bits with the store address.

6.3.3.2 First-level Data Cache
Intel Atom microarchitecture handles each 64-byte cache line of the first-level data cache in 16 4-byte
chunks. This implementation characteristic has a performance impact to data alignment and some data
access patterns.

Ref#: 248966-048 6-10

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 14. (MH impact, H generality) For Intel Atom processors,
ensure data are aligned in memory to its natural size. For example, 4-byte data should be aligned to 4-
byte boundary, etc. Additionally, smaller access (less than 4 bytes) within a chunk may experience
delay if they touch different bytes.

6.3.3.3 Segment Base
In Intel Atom microarchitecture, the address generation unit assumes that the segment base will be 0 by
default. Non-zero segment base will cause load and store operations to experience a delay.
• If the segment base isn’t aligned to a cache line boundary, the max throughput of memory operations

is reduced to one very 9 cycles.

If the segment base is non-zero but cache line aligned the penalty varies by segment base.
• DS will have a max throughput of one every two cycles.
• FS, and GS will have a max throughput of one every two cycles. However, FS and GS are anticipated

to be used only with non-zero bases and therefore have a max throughput of one every two cycles
even if the segment base is zero.

• ES:

— If used as the implicit segment base for the destination of string operation, will have a max
throughput of one every two cycles for non-zero but cacheline aligned bases.

— Otherwise, only do one operation every nine cycles.
• CS and SS will always have a max throughput of one every nine cycles if its segment base is non-zero

but cache line aligned.
Assembly/Compiler Coding Rule 15. (H impact, ML generality) For Intel Atom processors, use
segments with base set to 0 whenever possible; avoid non-zero segment base address that is not
aligned to cache line boundary at all cost.
Assembly/Compiler Coding Rule 16. (H impact, L generality) For Intel Atom processors, when
using non-zero segment bases, Use DS, FS, GS; string operation should use implicit ES.
Assembly/Compiler Coding Rule 17. (M impact, ML generality) For Intel Atom processors, favor
using ES, DS, SS over FS, GS with zero segment base.

6.3.3.4 String Moves
Using MOVS/STOS instruction and REP prefix on Intel Atom processor should recognize the following
items:
• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the

hardware does have small REP count optimization.
• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the

hardware does have small REP count optimization.
• For large count values, using REP prefix will be less efficient than using 16-byte SIMD instructions.
• Incrementing address in loop iterations should favor LEA instruction over explicit ADD instruction.
• If data footprint is such that memory operation is accessing L2, use of software prefetch to bring data

to L1 can avoid memory operation from being re-issued.
• If string/memory operation is accessing system memory, using non-temporal hints of streaming

store instructions can avoid cache pollution.

Ref#: 248966-048 6-11

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.3.3.5 Parameter Passing
Due to the limited situations of load-to-store forwarding support in Intel Atom microarchitecture, param-
eter passing via the stack places restrictions on optimal usage by the callee function. For example, “bool”
and “char” data usually are pushed onto the stack as 32-bit data, a callee function that reads “bool” or
“char” data off the stack will face store-forwarding delay and causing the memory operation to be re-
issued.

Compiler should recognize this limitation and generate prolog for callee function to read 32-bit data
instead of smaller sizes.
Assembly/Compiler Coding Rule 18. (MH impact, M generality) For Intel Atom processors, “bool”
and “char” value should be passed onto and read off the stack as 32-bit data.

6.3.3.6 Function Calls
In Intel Atom microarchitecture, using PUSH/POP instructions to manage stack space and address
adjustment between function calls/returns will be more optimal than using ENTER/LEAVE alternatives.
This is because PUSH/POP will not need MSROM flows and stack pointer address update is done at AGU.

When a callee function need to return to the caller, the callee could issue POP instruction to restore data
and restore the stack pointer from the EBP.
Assembly/Compiler Coding Rule 19. (MH impact, M generality) For Intel Atom processors, favor
register form of PUSH/POP and avoid using LEAVE; Use LEA to adjust ESP instead of ADD/SUB.

6.3.3.7 Optimization of Multiply/Add Dependent Chains
Computations of dependent multiply and add operations can illustrate the usage of several coding tech-
niques to optimize for the front end and in-order execution pipeline of the Intel Atom microarchitecture.

Example 6-5a shows a code sequence that may be used on out-of-order microarchitectures. This
sequence is far from optimal on Intel Atom microarchitecture. The full latency of multiply and add oper-
ations are exposed and it is not very successful at taking advantage of the two-issue pipeline.

Example 6-5b shows an improved code sequence that takes advantage of the two-issue in-order pipeline
of Intel Atom microarchitecture. Because the dependency between multiply and add operations are
present, the exposure of latency are only partially covered.

Example 6-4. Memory Copy of 64-byte

T1: prefetcht0 [eax+edx+0x80] ; prefetch ahead by two iterations
movdqa xmm0, [eax+ edx] ; load data from source (in L1 by prefetch)
movdqa xmm1, [eax+ edx+0x10]
movdqa xmm2, [eax+ edx+0x20]
movdqa xmm3, [eax+ edx+0x30]
movdqa [ebx+ edx], xmm0; store data to destination
movdqa [ebx+ edx+0x10], xmm1
movdqa [ebx+ edx+0x30], xmm2
movdqa [ebx+ edx+0x30], xmm3
lea edx, 0x40 ; use LEA to adjust offset address for next iteration
dec ecx
jnz T1

Ref#: 248966-048 6-12

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Example 6-5. Examples of Dependent Multiply and Add Computation

a) Instruction sequence that encounters stalls
; accumulator xmm2 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

movaps xmm1, [edi] ; vector stored in 16-byte aligned memory
mulps xmm0, xmm1
addps xmm2, xmm0 ; dependency and branch exposes latency of mul and add
add esi, 16 ;
add edi, 16
sub ecx, 1
jnz top

b) Improved instruction sequence to increase execution throughput
; accumulator xmm4 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; latency exposures partially covered by independent instructions
dec ecx ;
jnz top

c) Improving instruction sequence further by unrolling and interleaving
; accumulator xmm0, xmm1, xmm2, xmm3 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm5, xmm1 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm1, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm1, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm6, xmm2 ; dependent multiply hoisted by unrolling and interleaving

(continue)

movaps xmm2, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm2, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm7, xmm3 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm3, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm3, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; dependent multiply hoisted by unrolling and interleaving
sub ecx, 4;
jnz top
; sum up accumulators xmm0, xmm1, xmm2, xmm3 to reduce dependency inside the loop

Ref#: 248966-048 6-13

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Example 6-5c illustrates a technique that increases instruction-level parallelism and further reduces
latency exposures of the multiply and add operations. By unrolling four times, each ADDPS instruction
can be hoisted far from its dependent producer instruction MULPS. Using an interleaving technique, non-
dependent ADDPS and MULPS can be placed in close proximity. Because the hardware that executes
MULPS and ADDPS is pipelined, the associated latency can be covered much more effectively by this
technique relative to Example 6-5b.

6.3.3.8 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. a show one tech-
nique to put the value of IP into the ECX register by issuing a CALL without a matching RET.
Example 6-5b show an alternative technique to put the value of IP into the ECX register using a matched
pair of CALL/RET.

6.4 INSTRUCTION LATENCY
This section lists the port-binding and latency information of Intel Atom microarchitecture. The port-
binding information for each instruction may show one of 3 situations:
• ‘Single digit’ - the specific port that must be issued.
• (0, 1) - either port 0 or port 1.
• ‘B’ - both ports are required.

In the “Instruction” column:
• If different operand syntax of the same instruction have the same port-binding and latency, operand

syntax is omitted.
• When different operand syntax may produce different latency or port binding, the operand syntax is

listed; but instruction syntax of different operand sizes may be compacted and abbreviated with a
footnote.

Instruction that required decoder assistance from MSROM are marked in the “Comment” column (should
be used minimally if more decode-efficient alternatives are available).

Example 6-6. Instruction Pointer Query Techniques

a) Using call without return to obtain IP
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

Ref#: 248966-048 6-14

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

ADD/AND/CMP/OR/SUB/XOR/TEST1 (E)AX/AL, imm; (0, 1) 1 0.5

ADD/AND/CMP/OR/SUB/XOR2 mem, Imm8;
ADD/AND/CMP/OR/SUB/XOR/TEST4 mem, imm; TEST m8, imm8

0 1 1

ADD/AND/CMP/OR/SUB/XOR/TEST2 mem, reg; ADD/AND/CMP/OR/SUB/XOR2
reg, mem;

0 1 1

ADD/AND/CMP/OR/SUB/XOR2 reg, Imm8; ADD/AND/CMP/OR/SUB/XOR4 reg,
imm

(0, 1) 1 0.5

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, mem B 7 6

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, xmm B 6 5

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, mem B 5 1

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, xmm 1 5 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm, mem 0 1 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm, xmm (0, 1) 1 1

BSF/BSR r16, m16 B 17 16

BSF/BSR3 reg, mem B 16 15

BSF/BSR4 reg, reg B 16 15

BT m16, imm8; BT3 mem, imm8 (0, 1) 2; 1 1

BT m16, r16; BT3 mem, reg B 10, 9 8

BT4 reg, imm8; BT4 reg, reg 1 1 1

BTC m16, imm8; BTC3 mem, imm8 B 3; 2 2

BTC/BTR/BTS m16; r16 B 12 11

 BTC/BTR/BTS3 mem, reg B 11 10

BTC/BTR/BTS4 reg, imm8; BTC/BTR/BTS4 reg, reg 1 1 1

CALL mem (0, 1) 2 2

CALL reg; CALL rel16; CALL rel32 B 1 1

CMOV4 reg, mem; MOV1 (E)AX/AL, MOFFS; MOV2 mem, imm 0 1 1

CMOV4 reg, reg; MOV2 reg, imm; MOV2 reg, reg; ; SETcc r8 (0, 1) 1 0.5

CMPPD/CMPPS xmm, mem, imm; CVTTPS2DQ xmm, mem B 7 6

CMPPD/CMPPS xmm, xmm, imm; CVTTPS2DQ xmm, xmm B 6 5

CMPSD/CMPSS xmm, mem, imm B 5 1

CMPSD/CMPSS xmm, xmm, imm 1 5 1

(U)COMISD/(U)COMISS xmm, mem; B 10 9

(U)COMISD/(U)COMISS xmm, xmm; B 9 8

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, mem B 8 7

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, xmm B 7 6

CVTDQ2PS/CVTSD2SS/CVTSI2SS/CVTSS2SD xmm, mem B 7 6

Ref#: 248966-048 6-15

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

CVTDQ2PS/CVTSD2SS/CVTSS2SD xmm, xmm B 6 5

CVT(T)PD2PI mm, mem; CVTPI2PD xmm, mem B 8 7

CVT(T)PD2PI mm, xmm; CVTPI2PD xmm, mm B 7 6

CVTPI2PS/CVTSI2SD xmm, mem; B 5 4

CVTPI2PS xmm, mm; 1 5 1

CVTPS2DQ xmm, mem; B 7 6

CVTPS2DQ xmm, xmm; B 6 5

CVT(T)PS2PI mm, mem; B 5 5

CVT(T)PS2PI mm, xmm; 1 5 1

CVT(T)SD2SI3 reg, mem; CVT(T)SS2SI r32, mem B 9 8

CVT(T)SD2SI3 reg, xmm; CVT(T)SS2SI r32, xmm B 8 7

CVTSI2SD xmm, r32; CVTSI2SS xmm, r32 B 7; 6 5

CVTSI2SD xmm, r64; CVTSI2SS xmm, r64 B 6; 7 5

CVT(T)SS2SI r64, mem; RCPPS xmm, mem B 10 9

CVT(T)SS2SI r64, xmm; RCPPS xmm, xmm B 9 8

CVTTPD2DQ xmm, mem B 8 7

CVTTPD2DQ xmm, xmm B 7 6

DEC/INC2 mem; MASKMOVQ; MOVAPD/MOVAPS mem, xmm 0 1 1

DEC/INC2 reg; FLD ST; FST/FSTP ST; MOVDQ2Q mm, xmm (0, 1) 1 0.5

DIVPD; DIVPS B 125; 70 124; 69

DIVSD; DIVSS B 62; 34 61; 33

EMMS; LDMXCSR B 5 4

FABS/FCHS/FXCH; MOVQ2DQ xmm, mm; MOVSX/MOVZX r16, r16 (0, 1) 1 0.5

FADD/FSUB/FSUBR3 mem B 5 4

FADD/FADDP/FSUB/FSUBP/FSUBR/FSUBRP ST; 1 5 1

FCMOV B 6 5

FCOM/FCOMP3 mem B 1 1

FCOM/FCOMP/FCOMPP/FUCOM/FUCOMP ST; FTST 1 1 1

FCOMI/FCOMIP/FUCOMI/FUCOMIP ST B 9 8

FDIV/FSQRT3 mem; FDIV/FSQRT ST 0 25-65 24-64

FIADD/FIMUL5 mem B 11 10

FICOM/FICOMP mem B 7 6

FILD4 mem B 5 4

FLD3 mem; FXAM; MOVAPD/MOVAPS/MOVD xmm, mem 0 1 1

FLDCW B 5 4

FMUL/FMULP ST; FMUL3 mem 0 5 1

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Ref#: 248966-048 6-16

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

FNSTSW AX; FNSTSW m16 B 10; 14 9; 13

FST/FSTP3 mem B 2 1

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, mem B 9 8

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, xmm B 8 7

IDIV r/m8; IDIV r/m16; IDIV r/m32; IDIV r/m64; B
33;42;57;1
97

32;41;56;19
6

IMUL/MUL6 EAX/AL, mem; IMUL/MUL AX, m16 B 7; 8 6; 7

IMUL/MUL7 AX/AL, reg; IMUL/MUL EAX, r32 B 7; 6 6; 5

IMUL m16, imm8/imm16; IMUL r16, m16 B 7; 6

IMUL r/m32, imm8/imm32; IMUL r32, r/m32 0 5 1

IMUL r/m64, imm8/imm32; B 14 13

IMUL r16, r16; IMUL r16, imm8/imm16 B 6 5

IMUL r64, r/m64; IMUL/MUL RAX, r/m64 B 11; 12 10; 11

JCC1; JMP4 reg; JMP1 1 1 1

JCXZ; JECXZ; JRCXZ B 4 1

JMP mem4; B 2 1

LDDQU; MOVDQU/MOVUPD/MOVUPS xmm, mem; B 3 2

LEA r16, mem; MASKMOVDQU; SETcc m8 (0, 1) 2 1

LEA, reg, mem 1 1 1

LEAVE; B 2; 2

MAXSD/MAXSS/MINSD/MINSS xmm, mem B 5 1

MAXSD/MAXSS/MINSD/MINSS xmm, xmm 1 5 1

MOV2 MOFFS, (E)AX/AL; MOV2 reg, mem; MOV2 mem, reg 0 1 1

MOVD mem3, mm; MOVD xmm, reg3; MOVD mm, mem3 0 1 1

MOVD reg3, mm; MOVD reg3, xmm; PMOVMSK reg3, mm 0 3 1

MOVDQA/MOVQ xmm, mem; MOVDQA/MOVD mem, xmm; 0 1 1

MOVDQA/MOVDQU/MOVUPD xmm, xmm; MOVQ mm, mm (0, 1) 1 0.5

MOVDQU/MOVUPD/MOVUPS mem, xmm; B 2 2

MOVHLPS;MOVLHPS;MOVHPD/MOVHPS/MOVLPD/MOVLPS 0 1 1

MOVMSKPD/MOVSKPS/PMOVMSKB reg3, xmm 0 3 1

MOVNTI3 mem, reg; MOVNTPD/MOVNTPS; MOVNTQ 0 1 1

MOVQ mem, mm; MOVQ mm, mem; MOVDDUP 0 1 1

MOVSD/MOVSS xmm, xmm; MOVSXD5 reg, reg (0, 1) 1 0.5

MOVSD/MOVSS xmm, mem; PALIGNR 0 1 1

MOVSD/MOVSS mem, xmm; PINSRW 0 1 1

MOVSHDUP/MOVSLDUP xmm, mem 0 1 1

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Ref#: 248966-048 6-17

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

MOVSHDUP/MOVSLDUP/MOVUPS xmm, xmm (0, 1) 1 0.5

MOVSX/MOVZX r16, m8; MOVSX/MOVZX r16, r8 0 3; 2 1

MOVSX/MOVZX reg3, r/m8; MOVSX/MOVZX reg3, r/m16 0 1 1

MOVSXD5 reg, mem; MOVSXD r64, r/m32 0 1 1

MULPS/MULSD xmm, mem; MULSS xmm, mem; 0 5; 4 2

MULPS/MULSD xmm, xmm; MULSS xmm, xmm 0 5; 4 2

MULPD B 5; 4 2

NEG/NOT2 mem; PREFETCHNTA; PREFETCHTx 0 10 9

NEG/NOT2 reg; NOP (0, 1) 1 0.5

PABSB/D/W mm, mem; PABSB/D/W xmm, mem 0 1 1

PABSB/D/W mm, mm; PABSB/D/W xmm, xmm (0, 1) 1 0.5

PACKSSDW/WB mm, mem; PACKSSDW/WB xmm, mem 0 1 1

PACKSSDW/WB mm, mm; PACKSSDW/WB xmm, xmm 0 1 1

PACKUSWB mm, mem; PACKUSWB xmm, mem 0 1 1

PACKUSWB mm, mm; PACKUSWB xmm, xmm 0 1 1

PADDB/D/W/Q mm, mem; PADDB/D/W/Q xmm, mem 0 1 1

PADDB/D/W/Q mm, mm; PADDB/D/W/Q xmm, xmm (0, 1) 1 0.5

PADDSB/W mm, mem; PADDSB/W xmm, mem 0 1 1

PADDSB/W mm, mm; PADDSB/W xmm, xmm (0, 1) 1 0.5

PADDUSB/W mm, mem; PADDUSB/W xmm, mem 0 1 1

PADDUSB/W mm, mm; PADDUSB/W xmm, xmm (0, 1) 1 0.5

PAND/PANDN/POR/PXOR mm, mem; PAND/PANDN/POR/PXOR xmm, mem 0 1 1

PAND/PANDN/POR/PXOR mm, mm; PAND/PANDN/POR/PXOR xmm, xmm (0, 1) 1 0.5

PAVGB/W mm, mem; PAVGB/W xmm, mem 0 1 1

PAVGB/W mm, mm; PAVGB/W xmm, xmm (0, 1) 1 0.5

PCMPEQB/D/W mm, mem; PCMPEQB/D/W xmm, mem 0 1 1

PCMPEQB/D/W mm, mm; PCMPEQB/D/W xmm, xmm (0, 1) 1 0.5

PCMPGTB/D/W mm, mem; PCMPGTB/D/W xmm, mem 0 1 1

PCMPGTB/D/W mm, mm; PCMPGTB/D/W xmm, xmm (0, 1) 1 0.5

PEXTRW; B 4 1

PHADDD/PHSUBD mm, mem; PHADDD/PHSUBD xmm, mem B 4 3

PHADDD/PHSUBD mm, mm; PHADDD/PHSUBD xmm, xmm B 3 2

PHADDW/PHADDSW mm, mem; PHADDW/PHADDSW xmm, mem B 6; 8 5;7

PHADDW/PHADDSW mm, mm; PHADDW/PHADDSW xmm, xmm B 5; 7 M

PHSUBW/PHSUBSW mm, mem; PHSUBW/PHSUBSW xmm, mem B 6; 8 M

PHSUBW/PHSUBSW mm, mm; PHSUBW/PHSUBSW xmm, xmm B 5; 7 M

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Ref#: 248966-048 6-18

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mem

0 4 1

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, xmm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, mem

0 5 1

PMAXSW/UB mm, mem; PMAXSW/UB xmm, mem 0 1 1

PMAXSW/UB mm, mm; PMAXSW/UB xmm, xmm (0, 1) 1 0.5

PMINSW/UB mm, mem; PMINSW/UB xmm, mem 0 1 1

PMINSW/UB mm, mm; PMINSW/UB xmm, xmm (0, 1) 1 0.5

PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mm;
PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mem

0 4 1

PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, xmm;
PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, mem

0 5 1

POP mem5; PSLLD/Q/W mm, mem; PSLLD/Q/W xmm, mem B 3 2

POP r16; PUSH mem4; PSLLD/Q/W mm, mm; PSLLD/Q/W xmm, xmm B 2 1

POP reg3; PUSH reg4; PUSH imm B 1 1

POPA ; POPAD B 9 8

PSHUFB mm, mem; PSHUFD; PSHUFHW; PSHUFLW; PSHUFW 0 1 1

PSHUFB mm, mm; PSLLD/Q/W mm, imm; PSLLD/Q/W xmm, imm 0 1 1

PSHUFB xmm, mem B 5 4

PSHUFB xmm, xmm B 4 3

PSIGNB/D/W mm, mem; PSIGNB/D/W xmm, mem 0 1 1

PSIGNB/D/W mm, mm; PSIGNB/D/W xmm, xmm (0, 1) 1 0.5

PSRAD/W mm, imm; PSRAD/W xmm, imm; 0 1 1

PSRLD/Q/W mm, mem; PSRLD/Q/W xmm, mem B 3 2

PSRLD/Q/W mm, mm; PSRLD/Q/W xmm, xmm B 2 1

PSRLD/Q/W mm, imm; PSRLD/Q/W xmm, imm; 0 1 1

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0 1 1

PSUBB/D/W/Q mm, mem; PSUBB/D/W/Q xmm, mem 0 1 1

PSUBB/D/W/Q mm, mm; PSUBB/D/W/Q xmm, xmm (0, 1) 1 0.5

PSUBSB/W mm, mem; PSUBSB/W xmm, mem 0 1 1

PSUBSB/W mm, mm; PSUBSB/W xmm, xmm (0, 1) 1 0.5

PSUBUSB/W mm, mem; PSUBUSB/W xmm, mem 0 1 1

PSUBUSB/W mm, mm; PSUBUSB/W xmm, xmm (0, 1) 1 0.5

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0 1 1

PUNPCKHQDQ; PUNPCKLQDQ 0 1 1

PUSHA ; PUSHAD B 8 7

RCL mem2, 1; RCL reg2, 1 0 1 1

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Ref#: 248966-048 6-19

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.5 SILVERMONT MICROARCHITECTURE
The Intel Atom processor E3000 and C2000 Series are based on the Silvermont microarchitecture. The
Silvermont microarchitecture spans a wide range of computing devices from tablets, phones, and PCs to
microservers. In addition to support for Intel 64 and IA-32 architecture, major enhancements of the
Silvermont microarchitecture include:

RCL m8, CL; RCL m16, CL; RCL mem3, CL; B 18;16; 14 17;15;13

RCL m8, imm; RCL m16, imm; RCL mem3, imm; B 18; 17; 14 17;16;13

RCL r8, CL; RCL r16, CL; RCL reg3, CL; B 17; 16; 14 16;15;14

RCL r8, imm; RCL r16, imm; RCL reg3, imm; B 18;16; 14 17;15;13

RCPSS 0 4 1

RCR mem2, 1; RCR reg2, 1 B 7; 5 6;4

RCR m8, CL; RCR m16, CL; RCR mem3, CL; B 15; 13; 12 14;12;11

RCR m8, imm; RCR m16, imm; RCR mem3, imm; B 16,;14; 12 15;13;11

RCR r8, CL; RCR r16, CL; RCR reg3, CL; B 14; 13; 12 13;12;11

RCR r8, imm; RCR r16, imm; RCR reg3, imm; B 15, 14, 12 14;13;11

RET imm16 B 1 1

RET (far) B 79

ROL; ROR; SAL; SAR; SHL; SHR 0 1 1

SETcc 1 1

SHLD8 mem, reg, imm; SHLD r64, r64, imm; SHLD m64, r64, CL B 11 10

SHLD m32, r32; SHLD r32, r32 B 4; 2 3; 1

SHLD m16, r16, CL; SHLD r16, r16, imm; SHLD r64, r64, CL B 10 9

SHLD r16, r16, CL; SHRD m64, r64; SHRD r64, r64, imm B 9 8

SHRD m32, r32; SHRD r32, r32 B 4; 2 3; 1

SHRD m16, r16; SHRD r16, r16 B 6 5

SHRD r64, r64, CL B 8 7

STMXCSR B 15 14

TEST2 reg, reg; TEST4 reg, imm (0, 1) 1 0.5

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0 1 1

Notes on operand size (osize) and address size (asize):
1. osize = 8, 16, 32 or asize = 8, 16, 32
2. osize = 8, 16, 32, 64
3. osize = 32, 64
4. osize = 16, 32, 64 or asize = 16, 32, 64
5. osize = 16, 32
6. osize = 8, 32
7. osize = 8, 16
8. osize = 16, 64

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughput

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Ref#: 248966-048 6-20

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• Out-of-order execution for integer instructions and de-coupled ordering between non-integer and
memory instructions. In contrast, the 45nm and 32nm Intel Atom microarchitecture was strictly in-
order with limited ability to exploit available instruction-level parallelism.

• Non-blocking memory instructions allowing multiple (8) outstanding misses. In previous generation
processors, problems in a single memory instruction (for example, a cache miss) caused all
subsequent instructions to stall until the problem was resolved. The new microarchitecture allows up
to 8 unique outstanding references.

• Modular system design with two cores sharing an L2 cache connected to a new integrated memory
controller using a point-to-point interface instead of the Front Side Bus.

• Instruction set enhancements to include SSE 4.1, SSE 4.2, AESNI and PCLMULQDQ.

The block diagram for the Silvermont microarchitecture is depicted in Figure 6-1. While the memory and
execute clusters were significantly redesigned for improved single thread performance, the primary
focus is still a highly efficient design in a small form factor power envelope. Each pipeline is accompanied
with a dedicated scheduling queue called a reservation station. While floating-point and memory
instructions schedule from their respective queues in program order, integer execution instructions
schedule from their respective queues out of order.

Integer instructions can be scheduled from their queues out of order in contrast to in-order execution in
previous generations. Out of order scheduling allows these instructions to tolerate stalls caused by
unavailable (re)sources. Memory instructions must generate their addresses (AGEN) in-order and
schedule from the scheduling queue in-order but they may complete out-of-order.

Non-integer instructions (including SIMD integer, SIMD floating-point, and x87 floating-point) also
schedule from their respective scheduling queue in program order. However, these separate scheduling
queues allow their execution to be decoupled from instructions in other scheduling queues.

Figure 6-2. Silvermont Microarchitecture Pipeline

Ref#: 248966-048 6-21

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The design of the microarchitecture takes into account maximizing platform performance of multiple
form factors (e.g. phones, tablets, to micro-servers) and minimizing the power and area cost due to out
of order scheduling (i.e. maximizing performance/power/cost efficiency). Intel Hyper-Threading
Technology is not supported in favor of a multi-core architecture with a shared L2 cache. The rest of this
section will cover some of the cluster-level features in more detail.

The front end cluster (FEC), shown in yellow in Figure 6-1, features a power optimized 2-wide decode
pipeline. FEC is responsible for fetching and decoding instructions from instruction memory. FEC utilizes
predecode hints from the icache to avoid costly on-the-fly instruction length determination. The front end
contains a Branch Target Buffer (BTB), plus advanced branch predictor hardware.

The front end is connected to the execution units through the Allocation, Renaming and Retirement
(ARR) cluster (lavender color in Figure 6-1). ARR receives uops from the FEC and is responsible for
resource checks. The Register Alias Table (RAT) renames the logical registers to the physical registers.
The Reorder Buffer (ROB) puts the operations back into program order and completes (retires) them. It
also stops execution at interrupts, exceptions and assists and runs program control over microcode.

Scheduling in the Silvermont microarchitecture is distributed, so after renaming, uops are sent to various
clusters (IEC: integer execution cluster; MEC: memory execution cluster; FPC: floating-point cluster) for
scheduling (shown as RSV for FP, IEC, and MEC in Figure 6-1).

There are 2 sets of reservation stations for FPC and IEC (one for each port) and a single set of reservation
stations for MEC. Each reservation station is responsible for receiving up to 2 ops from the ARR cluster in
a cycle and selecting one ready op for dispatching to execution as soon as the op becomes ready.

To support the distributed reservation station concept, load-op and load-op-store macro-instructions
requiring integer execution must be split into a memory sub-op that is sent to the MEC and resides in the
memory reservation station and an integer execution sub-op that is sent to the integer reservation
station. The IEC schedulers pick the oldest ready instruction from each of its RSVs while the MEC and the
FPC schedulers only look at the oldest instruction in their respective RSVs. Even though the MEC and FPC
clusters employ in-order schedulers, a younger instruction from a particular FPC RSV can execute before
an older instruction in the other FPC RSV for example (or the IEC or MEC RSVs).

Each execution port has specific functional units available. Table 6-3 shows the mapping of functional
units to ports for IEC (the orange units in Figure 6-1), MEC (the green units in Figure 6-1), and the FPC
(the red units in Figure 6-1). Compared to the previous Intel Atom microarchitecture, the Silvermont
microarchitecture adds an integer multiply unit (IMUL) in IEC.

Table 6-3. Function Unit Mapping of the Silvermont Microarchitecture

Cluster Port 0 Port 1

IEC ALU0, Shift/Rotate Unit, LEA with no index ALU1, Bit processing unit, Jump unit, IMUL, POPCNT,
CRC32, LEA1

NOTES:
1. LEAs with valid index and displacement are split into multiple UOPs and use both ports. LEAs with valid index execute on

port 1.

FPC SIMD ALU, SIMD shift/Shuffle unit, SIMD FP
mul/div/cvt unit, STTNI/AESNI/PCLMULQDQ
unit, RCP/RSQRT unit, F2I convert unit

SIMD ALU, SIMD FPadd unit, F2I convert unit

MEC Load/Store

Ref#: 248966-048 6-22

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The Memory Execution Cluster (MEC) (shown in green in Figure 6-1) can support both 32-bit and 36-bit
physical addressing modes. The Silvermont microarchitecture has a 2 level Data TLB hierarchy with
support for both large (2MB or 4MB) and small page structures. A small micro TLB (referred to as uTLB)
is backed up by a larger 2nd level TLB (referred to as DTLB). A hardware page walker services misses
from both the Instruction and Data TLBs.

The MEC also owns the MEC RSV, which is responsible for scheduling of all loads and stores. Load and
store instructions go through addresses generation phase in program order to avoid on-the-fly memory
ordering later in the pipeline. Therefore, an unknown address will stall younger memory instructions.
Memory operations that incur problems (e.g. uTLB misses, unavailable resources, etc.) are put in a
separate queue called the RehabQ. This allows younger instructions (that do not incur problems) to
continue execution rather than stalling all younger instructions. The problematic instruction is later
reissued from the RehabQ when the problem is resolved. Note that load misses are not considered
problematic as the Silvermont microarchitecture features a non-blocking data cache that can sustain 8
outstanding misses.

The Bus Cluster (BIU) includes the second-level cache (L2) and is responsible for all communication with
components outside the processor core. The L2 cache supports up to 1MB with an optimized latency less
than the previous Intel Atom microarchitecture. The Front-Side Bus from earlier Intel Atom processors
has been replaced by an intra-die interconnect (IDI) fabric connecting to a newly optimized memory
controller. The BIU also houses the L2 data prefetcher.

The new core level multi-processing (or CMP) system configuration features two processor cores making
requests to a single BIU, which will handle the multiplexing between cores. This basic CMP module can be
replicated to create a quad-core configuration, or one core chopped off to create a single-core
configuration.

6.5.1 Integer Pipeline
Load pipeline stages are no longer inlined with the rest of the integer pipeline. As a result, non-load ops
can reach execute faster, and the branch misprediction penalty is effectively 3 cycles less compared to
earlier Intel Atom processors. Front end pipe stages are the same as earlier Intel Atom processors
(3 cycles for fetch, 3 cycles for decode). ARR pipestages perform out-of-order allocation and register
renaming, split the uop into parts if necessary, and send them to the distributed reservation stations.
RSV stage is where the distributed reservation station performs its scheduling. The execution pipelines
are very similar to earlier Intel Atom processors. When all parts of a uop are marked as finished, the ROB
handles final completion in-order.

6.5.2 Floating-Point Pipeline
Compared to the INT pipeline, the FP pipeline is longer. The execution stages can vary between one and
five depending on the instruction. Like other Intel microarchitectures, the Silvermont microarchitecture
needs to limit the number of FP assists (when certain floating-point operations cannot be handled
natively by the execution pipeline, and must be performed by microcode) to the bare minimum to
achieve high performance. To do this the processor should be run with exceptions masked and the DAZ
(denormal as zero) and FTZ (flush to zero) flags set whenever possible.

As mentioned, while each FPC RSV schedules instructions in-order, the RSVs can get out of order with
respect to each other.

Ref#: 248966-048 6-23

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.6 GOLDMONT MICROARCHITECTURE
The Goldmont microarchitecture builds on the success of the Silvermont microarchitecture (see Section
6.5), and provides the following enhancements:
• An out-of-order execution engine with a 3-wide superscalar pipeline. Specifically:

— The decoder can decode 3 instructions per cycle.

— The microcode sequencer can send 3 uops per cycle for allocation into the reservation stations.

— Retirement supports a peak rate of 3 per cycle.
• Enhancement in branch prediction which de-couples the fetch pipeline from the instruction decoder.
• Larger out-of-order execution window and buffers that enable deeper out-of-order execution across

integer, FP/SIMD, and memory instruction types.
• Fully out-of-order memory execution and disambiguation. The Goldmont microarchitecture can

execute one load and one store per cycle (compared to one load or one store per cycle in the
Silvermont microarchitecture). The memory execution pipeline also includes a second level TLB
enhancement with 512 entries for 4KB pages.

• Integer execution cluster in the Goldmont microarchitecture provides three pipelines and can execute
up to three simple integer ALU operations per cycle.

• SIMD integer and floating-point instructions execute in a 128-bit wide engine. Throughput and
latency of many instructions have improved, including PSHUFB with 1-cycle throughput (versus 5
cycles for Silvermont microarchitecture) and many other SIMD instructions with doubled throughput;
see Table 6-19 for details.

• Throughput and latency of instructions for accelerating encryption/description (AES) and carry-less
multiplication (PCLMULQDQ) have been improved significantly in the Goldmont microarchitecture.

• The Goldmont microarchitecture provides new instructions with hardware accelerated secure hashing
algorithm, SHA1 and SHA256.

• The Goldmont microarchitecture also adds support for the RDSEED instruction for random number
generation meeting the NIST SP800-90C standard.

• PAUSE instruction latency is optimized to enable better power efficiency.

Ref#: 248966-048 6-24

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The front end cluster (FEC) of the Goldmont microarchitecture provides a number of enhancements over
the FEC of the Silvermont microarchitecture. The enhancements are summarized in Table 6-4.

Figure 6-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture

1st Level Branch
Predict

Instruction Cache

ITLB
2nd Level Branch

Predict

Decode MSROM

Allocate RenameInstruction Queue

Ld/St
Sched

ALU
Sched

ALU
Sched

ALU
Sched

Ld/St
Buffers

TLB
L1 Data
Cache

FP/SIMD Sched

Phy Register File

Addr
Gen

ALU ALUALU

L2 Cache XQ Queue

Phy Register File

FP ALUFP ALU

IDI

Ref#: 248966-048 6-25

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR)
cluster. Scheduling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR. Table
6-5 compares the out-of-order scheduling characteristics between the Goldmont microarchitecture and
Silvermont microarchitecture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent
to the MEC cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can
commence according to the heuristic described in Table 6-5 and when resources are available. Table 6-6
shows the mapping of execution units across each port for respective clusters.

Table 6-4. Comparison of Front End Cluster Features

Feature Goldmont Microarchitecture Silvermont Microarchitecture

Number of Decoders 3 2

Max Throughput of Decoders 20 Bytes per cycle 16 Bytes per cycle

Fetch and Icache Pipeline Decoupled Coupled

ITLB 48 entries, large page support 48 entries

Branch Mispredict Penalty 12 cycles 10 cycles

L2 Predecode Cache 16K NA

Table 6-5. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Microarchitecture Silvermont Microarchitecture

IEC Reservation 3x distributed for each port 2x distributed for each port

Out-of-order within each IEC RSV and
between IEC, across FPC, MEC

Out-of-order within each IEC RSV and between IEC,
across FPC, MEC

FPC Reservation 1x unified to ports 0, 1 2x distributed for each port

Out-of-order within FPC RSV and across
IEC, MEC

In order within each FPC RSV; out-of-order between
FPC, across IEC, MEC

MEC Reservation 1x unified to ports 0, 1 1x to port 0

Out-of-order within MEC RSV and across
IEC, FPC

In order within each MEC RSV; out-of-order across
IEC, FPC

Table 6-6. Function Unit Mapping of the Goldmont Microarchitecture

Cluster Port 0 Port 1 Port 2

IEC
ALU0, Shift/Rotate, LEA with no
index, F2I, converts/cmp, store_data

ALU1, Bit processing, JEU, IMUL,
IDIV,POPCNT, CRC32, LEA, I2F, store_data

ALU2, LEA1, I2F,
flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with valid index and displacement are split into multiple UOPs and

use both port 1 and 2. LEAs with valid index execute on port 1.

FPC
SIMD ALU, SIMD shift/Shuffle, SIMD
mul, STTNI/AESNI/PCLMULQDQ/SHA ;
FP_mul, Converts, F2I convert

SIMD ALU, SIMD shuffle,
FP_add, F2I compare

MEC Load_addr Store_addr

Ref#: 248966-048 6-26

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load
and store instructions can go through the address generation phase in order or out-of-order. When
out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from
the address generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory
order issues if the load eventually depended on the unknown store and would require a pipeline flush
when the store ad-dress is known. The Goldmont microarchitecture keeps track of and minimizes such
potentially problematic load executions.

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go
back to load or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction
is later re-issued (in some cases, re-issued at retirement) from the load/store buffer when the problem
is resolved. Note that load misses are considered problematic as the data cache is non-blocking and can
sustain multiple outstanding misses using write-combining buffers (WCB).

6.7 GOLDMONT PLUS MICROARCHITECTURE
The Goldmont Plus microarchitecture builds on the success of the Goldmont microarchitecture (see
Section 6.6), and provides the following enhancements:
• Widen previous generation Intel Atom processor back-end pipeline to 4-wide allocation to 4-wide

retire, while maintaining 3-wide fetch and decode pipeline.
• Enhanced branch prediction unit.
• 64KB shared second level pre-decode cache (16KB in Goldmont microarchitecture).
• Larger reservation station and ROB entries to support large out-of-order window.
• Wider integer execution unit. New dedicated JEU port with support for faster branch redirection.
• Radix-1024 floating point divider for fast scalar/packed single, double and extended precision

floating point divides.
• Improved AES-NI instruction latency and throughput.
• Larger load and store buffers. Improved store-to-load forwarding latency store data from register.
• Shared instruction and data second level TLB. Paging Cache Enhancements (PxE/ePxE caches).
• Modular system design with four cores sharing up to 4MB L2 cache.

Table 6-7. Comparison of MEC Resources

MEC Resource Goldmont Microarchitecture Silvermont Microarchitecture

L1 Data Cache 24KB 24 KB

uTLB 32 entries 32 entries

DTLB (4KB page) 512 entries 128 entries

DTLB (2M/4M page) 32 entries 16 entries

Load-use Latency 3 cycles 3 cycles

Pipeline 1x load + 1x store 1x share by load/store

AGEN Out-of-order In order

WCBs 8 8

Addressing 39-bit physical, 48-bit linear 36-bit physical, 48-bit linear

Ref#: 248966-048 6-27

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• Support for Read Processor ID (RDP) new instruction.

The front end cluster (FEC) of the Goldmont Plus microarchitecture provides a number of enhancements
over the FEC of the Goldmont microarchitecture. The enhancements are summarized in Table 6-8.

Figure 6-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture

Table 6-8. Comparison of Front End Cluster Features

Feature Goldmont Plus Microarchitecture Goldmont Microarchitecture

Number of Decoders 3 3

Max. Throughput Decoders 20 Bytes per cycle 20 Bytes per cycle

Fetch and Icache Pipeline Decoupled Decoupled

ITLB 48 entries, large page support 48 entries, large page support

2nd Level ITLB Shared with DTLB

Branch Mispredict Penalty 13 cycles (12 cycles for certain Jcc) 12 cycles

L2 Predecode Cache 64K 16K

Ref#: 248966-048 6-28

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR)
cluster. Scheduling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR.
Table 6-9 compares the out-of-order scheduling characteristics between the Goldmont Plus
microarchitecture and Goldmont microarchitecture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent
to the MEC cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can
commence according to the heuristic described in Table 6-9 when resources are available. Table 6-10
shows the mapping of execution units across each port for respective clusters.

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load
and store instructions can go through the address generation phase in order or out-of-order. When
out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from
the address generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory
order issues if the load eventually depended on the unknown store and would require a pipeline flush
when the store address is known. The Goldmont Plus microarchitecture keeps track of and minimizes
such potentially problematic load executions.

Table 6-9. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Plus Microarchitecture Goldmont Microarchitecture

IEC Reservation 4x distributed for each port 3x distributed for each port

Out-of-order within each IEC RSV and
between IEC, across FPC, MEC

Out-of-order within each IEC RSV and between IEC,
across FPC, MEC

FPC Reservation 1x unified to ports 0, 1 1x unified to ports 0, 1

Out-of-order within FPC RSV and across
IEC, MEC

Out-of-order within FPC RSV and across IEC, MEC

MEC Reservation 1x unified to ports 0, 1 1x unified to ports 0, 1

Out-of-order within MEC RSV and across
IEC, FPC

Out-of-order within MEC RSV and across IEC, FPC

Table 6-10. Function Unit Mapping of the Goldmont Plus Microarchitecture

Cluster Port 0 Port 1 Port 2 Port 3

IEC
ALU0, Shift/Rotate, LEA
with no index, F2I,
converts/cmp, store_data

ALU1, Bit processing, IMUL,
IDIV,POPCNT, CRC32, LEA,
I2F, store_data

ALU2, LEA1, I2F,
flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with a valid index and displacement are split into multiple UOPs

and use both port 1 and 2. LEAs with a valid index execute on port 1.

 JEU

FPC

SIMD ALU, SIMD
shift/Shuffle, SIMD mul,
STTNI/AESNI/PCLMULQDQ/
SHA ;
FP_mul, Converts, F2I
convert

SIMD ALU, SIMD shuffle,
FP_add, F2I compare

MEC Load_addr Store_addr

Ref#: 248966-048 6-29

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go
back to the load or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction
is later re-issued from the load/store buffer when the problem is resolved. Note that load misses are
considered problematic as the data cache is non-blocking and can sustain multiple outstanding misses
using write-combining buffers (WCB).

Goldmont Plus microarchitecture includes secondary level TLB changes to support both data and instruc-
tion side translations (Goldmont microarchitecture secondary level TLB only supports data).

6.8 CODING RECOMMENDATIONS
Most of the general coding recommendations described in Volume 1, Chapter 3, “General Optimization
Guidelines” also apply to the Intel Atom microarchitectures. The rest of this chapter describes techniques
that
supplement the general recommendations and are specific to the Intel Atom microarchitectures.

6.8.1 Optimizing The Front End

6.8.1.1 Instruction Decoder
Some IA instructions that perform complex tasks require a lookup in the microcode sequencer ROM
(MSROM) to decode them into a multiple uop flow. To determine which instructions require an MSROM
lookup, see the instruction latency/bandwidth table in Section 6.9.

Fewer instructions require MSROM lookup in the Goldmont Plus and Goldmont microarchitecture than in
the Silvermont microarchitecture, though the Silvermont microarchitecture also improved significantly
over prior generations in this area; Section 6.9 provides more details. It is advisable to avoid ucode flows
where possible. Table 6-11 provides alternate non-MSROM instruction sequences that can replace an
instruction that decodes from MSROM.

Table 6-11. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Silvermont
Recommendation for Goldmont Plus and
Goldmont

CALL m16/m32/m64 Load + CALL reg Load + CALL reg

PUSH m16/m32/m64 Load + PUSH reg Use as is (non MSROM)

LEAVE No recommended replacement Use as is (non MSROM)

FLD/FST/FSTP m80fp No recommended replacement Use as is (non MSROM)

FCOM+FNSTSW FCOMI FCOMI

(I)MUL r/m16 (Result DX:AX)
Use (I)MUL r16, r/m16 if extended precision
not required, or (I)MUL r32, r/m32

Use (I)MUL r16, r/m16 if extended precision
not required, or (I)MUL r32, r/m32

(I)MUL r/m32 (Result EDX:EAX)
Use (I)MUL r32, r/m32 if extended precision
not required, or (I)MUL r64, r/m64

Use as is (non MSROM)

(I)MUL r/m64 (Result RDX:RAX)
Use (I)MUL r64, r/m64 if extended precision
not required

Use as is (non MSROM)

PEXTRB/D/Q No recommended replacement Use as is (non MSROM)

PMULLD No recommended replacement Use as is (non MSROM)

Ref#: 248966-048 6-30

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Tuning Suggestion 1. Use the perfmon counter MS_DECODED.MS_ENTRY to find the number of
instructions that need the MSROM (the count will include any assist or fault that occurred).
Assembly/Compiler Coding Rule 1. (M impact, M generality) Try to keep the I-footprint small to
get the best reuse of the predecode bits.

Avoid I-cache aliasing/thrashing since the incorrect predecode bits result in reduction of decode
throughput in one instruction every 3 cycles.
Tuning Suggestion 2. Use the perfmon counter DECODE_RESTRICTION.PREDECODE_WRONG to
count the number of times that a decode restriction reduced instruction decode throughput because
predecoded bits are incorrect.

6.8.1.2 Front End High IPC Considerations
In general front end restrictions are not typically a performance limiter until you reach higher (>1)
Instructions Per Cycle (IPC) levels.

The decode restrictions that must be followed to get full decode bandwidth per cycle through the
decoders include:
• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near

indirect. It will often be better to perform a load into a register and then perform the register version
of CALL.

• The total length of the instruction bytes that can be decoded each cycle varies by microarchitecture.

— Silvermont microarchitecture: up to 16 bytes per cycle with instruction not more than 8 bytes in
length. For an instruction length exceeding 8 bytes, only one instruction per cycle is decoded on
decoder 0.

— Goldmont and later microarchitecture: up to 20 bytes per cycle depending on alignment
(for example, if the first instruction of three consecutive instructions is aligned on 4-Byte
boundary and the 3 instruction sequence meets decode restrictions. For an instruction length
exceeding 8 bytes, it is not restricted to decoder 0 or one per cycle.

• An instruction with multiple prefixes can restrict decode throughput. The restriction is on the length
of bytes combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix
count exceeds the following limits as specified per microarchitectures.

— Silvermont microarchitecture: the limit is 3 bytes.

— Goldmont and later microarchitecture: the limit is 4 bytes. Thus, SSE4 or AES instruction that
accesses one of the upper 8 registers do not incur a penalty.

— Only decoder 0 can decode an instruction exceeding the limit of prefix/escape byte restriction on
the Silvermont and Goldmont microarchitectures.

• The maximum number of branches that can be decoded each cycle is 1 for the Silvermont
microarchitecture and 2 for the Goldmont microarchitecture. Prevent a re-steer penalty by avoiding
back-to-back conditional branches.

Unlike the previous generation, the Silvermont and later microarchitectures can decode two x87
instructions in the same cycle without incurring a 2-cycle penalty. Branch decoder restrictions are also
relaxed. In earlier Intel Atom processors, decoding past a conditional or indirect branch in decoder 0
resulted in a 2-cycle penalty.

The Silvermont microarchitecture can decode past conditional and indirect branch instructions in decoder
0. However, if the next instruction (on decoder 1) is also a branch, there is a 3-cycle penalty for the
second branch instruction.

The Goldmont and later microarchitecture can decode one predicted not-taken branches in decoder 0 or
decoder 1, plus another branch in decoder 2 without the 3-cycle re-steer penalty. However, if there are
two predicted not-taken branches at decoder 0 and 1, the second branch at decoder 1 will incur a 3-cycle
penalty.

For a branch target that is a predicted taken conditional branch or unconditional branch, it is decoded
with a one cycle bubble across all generations of Intel Atom processors.

Ref#: 248966-048 6-31

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 2. (MH impact, H generality) Minimize the use of instructions
that have the following characteristics to achieve more than one instruction per cycle throughput:
(i) using the MSROM, (ii) exceeding the limit of escape/prefix bytes, (iii) more than 8 bytes long, or
(iv) have back to back branches.

For example, an instruction with 3 bytes of prefix/escape and accessing the lower 8 registers can decode
normally in the Silvermont, Goldmont and later microarchitectures. For instance:

PCLMULQDQ 66 0F 3A 44 C7 01 pclmulqdq xmm0, xmm7, 0x1

To access any of the upper 8 XMM registers, XMM8-15, an additional byte with REX prefix is necessary.
Consequently, it will decode normally in the Goldmont and later microarchitecture, but incur a decode
penalty in the Silvermont microarchitecture. For instance:

PCLMULQDQ 66 41 0F 3A 44 C0 01 pclmulqdq xmm0, xmm8, 0x1

(Note the REX byte 41, in between the 66 and the 0F 3A.)

The 3-cycle penalty applies whenever the combined prefix/escape bytes exceed the decode restriction
limit. Also, it forces the instruction to be decoded on decoder 0. Additionally, when decoding an
instruction exceeding the prefix/escape length limit, not on decoder 0, there is an extra delay to re-steer
to decoder 0 (for a total of a 6 cycle penalty for the decoder). Therefore, when hand writing high
performance assembly, be aware of these cases. It would be beneficial to pre-align these cases to
decoder 0 if they occur infrequently using a taken branch target or MS entry point as a decoder 0
alignment vehicle. NOP insertion should be used only as a last resort as NOP instructions consume
resources in other parts of the pipeline. Similar alignment is necessary for MS entry points which suffer
the additional 3 cycle penalty if they align originally to decoder 1. The penalty associated with a
prefix/escape length limit and re-steer apply to both Silvermont, Goldmont and later microarchitectures.

Table 6-12 compares decoder capabilities between microarchitectures.

6.8.1.3 Branching Across 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction. For
64-bit applications, branch prediction performance can be negatively impacted when the target of a
branch is more than 4GB away from the branch. This is more likely to happen when the application is split
into shared libraries. Newer glibc versions can put the shared libraries into the first 2GB to avoid this
problem (since 2.23). The environment variable LD_PREFER_MAP_32BIT_EXEC=1 has to be set.
Developers can build statically to improve the locality in their code. Building with LTO should further
improve performance.

6.8.1.4 Loop Unrolling and Loop Stream Detector
The Silvermont and later microarchitectures include a Loop Stream Detector (LSD) that provides the
back end with uops that are already decoded. This provides performance and power benefits. When the
LSD is engaged, front end decode restrictions, such as number of prefix/escape bytes and instruction
length, no longer apply.

One way to reduce the overhead of loop maintenance code and increase the amount of independent work
in a loop is software loop unrolling. Unfortunately care must be taken on where it is utilized because loop

Table 6-12. Comparison of Decoder Capabilities

Goldmont Plus and Goldmont
Microarchitecture

Silvermont Microarchitecture

Width 3 2

Max Throughput
20 bytes per cycle (1st instr. aligned to 4B
boundary and decoder 1 and 2 restrictions)

16 bytes per cycle (1st instr. <= 8 bytes))

Prefix/Escape Limit 4 bytes 3 bytes

Branch 2 1

Ref#: 248966-048 6-32

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

unrolling has both positive and negative performance effects. The negative performance effects are
caused by the increased code size and increased BTB and register pressure. Furthermore, loop unrolling
can increase the loop size beyond the limits of the LSD. The LSD loop size limit varies with
microarchitecture; it is 27 for the Goldmont and later microarchitecture with a three-wide decoder, and
28 for the Silvermont microarchitecture. Care must be taken to keep the loop size under the LSD limit.
User/Source Coding Rule 1. (M impact, M generality) Keep per-iteration instruction count below
28 when considering loop unrolling technique on short loops with high iteration count.
Tuning Suggestion 3. Use the BACLEARS.ANY perfmon counter to see if the loop unrolling is causing
too much pressure. Use the ICACHE.MISSES perfmon counter to see if loop unrolling is having an
excessive negative effect on the instruction footprint.

6.8.1.5 Mixing Code and Data
Intel Atom processors perform best when code and data are on different pages. Software should avoid
sharing code and data in the same page to avoid false SMC conditions. This recommendation applies to
all page sizes.

6.8.2 Optimizing The Execution Core

6.8.2.1 Scheduling
The Silvermont microarchitecture is less sensitive to instruction ordering than its predecessors due to the
introduction of out-of-order execution for integer instructions. FP instructions have their own reservation
stations but still execute in order with respect to each other. Memory instructions also issue in order but
with the addition of the Rehab Queue, they can complete out of order and memory system delays are no
longer blocking.

The Goldmont and later microarchitecture features fully out-of-order execution across the IEC, FPC, and
MEC pipelines, and is supported by enhancements ranging from 3 ports for IEC, 128-bit data path of FPC
units, dedicated load address and store address pipelines.
Tuning Suggestion 4. Use the perfmon counter UOPS_NOT_DELIVERED.ANY (NO_ALLOC_CYCLE.ANY
on Silvermont microarchitecture) as an indicator of performance bottlenecks in the back end. This
includes delays in the memory system and execution delays.

6.8.2.2 Address Generation
The Silvermont microarchitecture eliminated address generation limitations in previous generations. As
such, using LEA or ADD instructions to generate addresses are equally effective on the Silvermont and
later microarchitectures.

The rule of thumb for ADDs and LEAs is that it is justified to use LEA with a valid index and/or
displacement for non-destructive destination purposes (especially useful for stack offset cases), or to use
a SCALE. Otherwise, ADD(s) are preferable.

6.8.2.3 FP Multiply-Accumulate-Store Execution
With Goldmont and later microarchitectures, a unified FPC reservation station eliminates the
performance issue that can happen in the Silvermont microarchitecture due to intra-port dependence of
in-order scheduling of FPC uops. The paragraphs below and Example 6-7 illustrate the problem.

FP arithmetic instructions executing on different ports can execute out-of-order with respect to each
other in the Silvermont microarchitecture. As a result, in unrolled loops with multiplication results feeding
into add instructions which in turn produce results for store instructions, grouping the store instructions
at the end of the loop will improve performance. This allows it to overlap the execution of the multiplies
and the adds. Consider the example shown in Example 6-7.

Ref#: 248966-048 6-33

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Due to the data dependence, the add instructions cannot start executing until the corresponding multiply
instruction is executed. Because multiplies and stores use the same port, they have to execute in
program order. This means the second multiply instruction cannot start execution even though it is
independent from the first multiply and add instructions. If you group the store instructions together at
the end of the loop as shown below, the second multiply instruction can execute in parallel with the first
multiply instruction (note the one-cycle bubble when multiplies are overlapped).

6.8.2.4 Integer Multiply Execution
The Silvermont and later microarchitectures have a dedicated integer multiplier to accelerate
commonly-used forms of integer multiply flows. Table 6-13 shows the latency and instruction forms of
mul/imul instructions that are accelerated and not using MSROM.

Example 6-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict

Instruction 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

mulps, xmm1, xmm1
E
X
1

E
X
2

E
X
3

E
X
4

E
X
5

addps xmm1, xmm1
E
X
1

E
X
2

E
X
3

movaps mem, xmm1
E
X
1

mulps, xmm2, xmm2
E
X
1

E
X
2

E
X
3

E
X
4

E
X
5

addps xmm2, xmm2
E
X
1

E
X
2

E
X
3

movaps mem, xmm2
E
X
1

Example 6-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC

Instruction 1 2 3 4 5 6 7 8 9 10 11

mulps, xmm1, xmm1 EX1 EX2 EX3 EX4 EX5

addps xmm1, xmm1 EX1 EX2 EX3

mulps, xmm2, xmm2 bubble EX1 EX2 EX3 EX4 EX5

addps xmm2, xmm2 EX1 EX2 EX3

movaps mem, xmm1 EX1

movaps mem, xmm2 EX1

Ref#: 248966-048 6-34

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The multiply forms with microcode flows should be avoided.

6.8.2.5 Zeroing Idioms
XOR / PXOR / XORPS / XORPD instructions are commonly used to force register values to zero when the
source and the destination register are the same (e.g. XOR eax, eax).

This method of zeroing is preferred by compilers instead of the equivalent MOV eax, 0x0 instructions as
the MOV encoding is larger than the XOR in code bytes.

The Silvermont and later microarchitectures have special hardware support to recognize these cases and
mark both the sources as valid in the architectural register file. This helps the XOR execute faster since
any value XORed with itself will accomplish the necessary zeroing.

The logic will also support PXOR, XORPS, and XORPD idioms.

In Silvermont microarchitecture, zero-idiom, a 64-bit general purpose operand using REX.W, will
experience delay. However, zero-idiom is supported with XMM8-XMM15 or the upper 8 general purpose
registers without REX.W. To clear r8, it is sufficient to use XOR r8d, r8d.

Goldmont and later microarchitecture supports these zero-idioms for 64-bit operands.

6.8.2.6 NOP Idioms
NOP instruction is often used for padding or alignment purposes. The Goldmont and later
microarchitecture has hardware support for NOP handling by marking the NOP as completed without
allocating it into the reservation station. This saves execution resources and bandwidth. Retirement
resource is still needed for the eliminated NOP.

6.8.2.7 Move Elimination and ESP Folding
Move elimination is supported in Goldmont and later microarchitecture. When move elimination is in
effect, these instructions can execute with higher throughput in addition to zero-cycle latency. Specifi-
cally, 32-bit and 64-bit operand size of MOV, and
MOVAPS/MOVAPD/MOVDQA/MOVDQU/MOVUPS/MOVUPD with XMM are supported and have throughput
of 0.33 cycle if move elimination is in effect. MOVSX and MOVZX do not support move elimination.

Stack operation using PUSH/POP/CALL/RET is more efficient with the Goldmont and later
microarchitecture than with the Silvermont microarchitecture. Computing the stack pointer address does

Table 6-13. Integer Multiply Operation Latency

Integer Multiply Operations Output
Goldmont Plus and
Goldmont Latency

Silvermont Latency

imul/mul r/m8 16 4u 5u

imul/mul r/m16 32 4u 5u

imul/mul r/32 64 3 4u

imul/mul r/m64 128 5 7u

imul/mul r16, r/m16; r16, r/m16, imm 16 4u 4u

imul/mul r32, r/m32; r32, r/m32, imm 32 3 3

imul/mul r64, r/m64; r64, r/m64, imm8 64 5 5

u: ucode flow from MSROM

Ref#: 248966-048 6-35

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

not consume allocation and execution resources in the Goldmont and later microarchitecture.
Additionally, throughput of PUSH/POP is increased from one to three per cycle.

6.8.2.8 Stack Manipulation Instruction
The memory forms of indirect CALL m16/m32/m64 are decoded into a uop flow from MSROM. Indirect
CALL with target specified in a register can avoid the delays. Thus, loading the target address to a
register, followed by an indirect CALL via register operand is recommended.

In the Goldmont and later microarchitecture, PUSH m16/m32/m64 do not require MSROM to decode.
The same is also true with the LEAVE instruction.

In the Silvermont microarchitecture, PUSH m16/m32/m64 and LEAVE require MSROM to decode.

6.8.2.9 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be
consumed by a variety of instructions such as conditional moves (cmovs), branches and even a variety of
logic/arithmetic operations (such as rcl). The most common instructions used in computing branch
conditions are compare instructions (CMP). Branches dependent on the CMP instruction can execute in
the next cycle. The same is true for branch instructions dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As
a result, a branch instruction depending on an INC or a DEC instruction incurs a 1 cycle penalty.
Note that this penalty only applies to branches that are directly dependent on the INC or DEC instruction.
Assembly/Compiler Coding Rule 3. (M impact, M generality) Use CMP/ADD/SUB instructions to
compute branch conditions instead of INC/DEC instructions whenever possible.

6.8.2.10 SIMD Floating-Point and X87 Instructions
In the Silvermont microarchitecture, only a subset of the SIMD FP execution units are implemented with
a 128-bit wide data path. In Goldmont and later microarchitecture, SIMD FP units are implemented with
a 128-bit data path. In general, packed SIMD instructions complete with one cycle less in latency and
twice the throughput in the Goldmont and later microarchitecture, compared to the Silvermont
microarchitecture.

In particular, MULPD latency is accelerated from 7 to 4 cycles, with 4-fold throughput from every 4 cycles
to 1 per cycle.

Latency and throughput of X87 extended precision load and store, FLD m80fp, and FST/FSTP m80fp are
also improved in the Goldmont and later microarchitecture. See Table 6-19 for more details.

In the Goldmont Plus microarchitecture, Floating point divider is upgraded to radix-1024 based design.
Floating point divide and square root latency and bandwidth are significantly improved.

6.8.2.11 SIMD Integer Instructions
In the Silvermont microarchitecture, a relatively small subset of the SIMD integer instructions can
execute with throughput of two instructions per cycle. In the Goldmont and later microarchitecture,
many more SIMD integer instructions can complete at a rate of two instructions per cycle.

Latency and/or throughput improvements in the Goldmont and later microarchitecture include other
SIMD integer instructions that execute only one port. For example, PMULLD has an eleven-cycle latency
and throughput of one every eleven cycles in the Silvermont microarchitecture. It has five-cycle latency
and throughput of one every two cycles in the Goldmont and later microarchitectures.

In general, SIMD integer multiply hardware is significantly faster (four-cycle latency) and higher
throughput (one cycle throughput) than in the Silvermont microarchitecture. Additionally,
PADDQ/PSUBQ has two-cycle latency and throughput of every two cycles, compared to four-cycle
latency and throughput every four cycles in the Silvermont microarchitecture. PSHUFB has one-cycle

Ref#: 248966-048 6-36

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

latency and throughput in the Goldmont and later microarchitectures, compared to five-cycle latency and
throughput of every five cycles. See Table 6-19 for more details.

6.8.2.12 Vectorization Considerations
In the Silvermont microarchitecture, opportunity for profitable vectorization may be limited by the
availability of high-throughput implementation SIMD execution units or SIMD instructions that require
MSROM to decode into longer flows.

The Goldmont and later microarchitectures allows compiler, as well as direct programming, to profit from
vectorization due to improvement in latency and throughput across a wide variety of SIMD instructions.
Assembly/Compiler Coding Rule 4. (M impact, M generality) Avoid MSROM instructions for code
vectorization.

6.8.2.13 Other SIMD Instructions
The Silvermont microarchitecture supports AESNI and PCLMULQDQ to accelerate performance of various
cryptographic algorithms like AES and AES-GCM for block encryption/decryption.

In the Goldmont and later microarchitectures, the execution hardware is improved from execution
latency, throughput to decode throughput. For example, PCLMULQDQ has latency of 6 cycles with
throughput of every four cycles in the Goldmont microarchitecture, compared to ten-cycle latency and
throughput of every ten cycles in the Silvermont microarchitecture.

Additionally, the Goldmont and later microarchitecture supports SHANI to accelerate the performance of
secure hashing algorithms like SHA1 and SHA256. More details about the secure hashing algorithms and
SHANI can be found at

https://software.intel.com/en-us/articles/intel-sha-extensions.

Examples and reference implementation of using the Intel SHA extensions can be found at:

https://software.intel.com/en-us/articles/intel-sha-extensions-implementations.

6.8.2.14 Instruction Selection
Table 6-14 summarizes the latency for floating-point and SIMD integer operations in the Silvermont
microarchitecture. The throughput column is expressed in number of cycles per instruction that
execution can complete with all available execution units employed (for example, 4 indicates the same
instruction can complete execution every four cycles; 0.33 indicates three identical instructions can
complete execution each cycle).

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions-implementations

Ref#: 248966-048 6-37

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Table 6-14. Floating-Point and SIMD Integer Latency

Goldmont Plus Goldmont Silvermont

Latency
Through
put

Latency
Through
put

Latency
Throughp
ut

SIMD integer ALU

128-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

64-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

SIMD integer shift

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD shuffle

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD integer multiplier

128-bit 4 1 4 1 5 2

64-bit 4 1 4 1 4 1

FP Adder

x87 (fadd) 3 1 3 1 3 1

scalar (addsd, addss) 3 1 3 1 3 1

packed (addpd, addps) 3 1 3 1 4 2

FP Multiplier

x87 (fmul) 5 2 5 2 5 2

scalar single-precision (mulss) 4 1 4 1 4 1

scalar double-precision (mulsd) 4 1 4 1 5 2

packed single-precision (mulps) 4 1 4 1 5 2

packed double-precision (mulpd) 4 1 4 1 7 4

Converts

CVTDQ2PD, CVTDQ2PS, CVTPD2DQ,
CVTPD2PI, CVTPD2PS, CVTPI2PD,

CVTPS2DQ, CVTPS2PD, CVTTPD2DQ,
CVTPD2PI, CVTPS2DQ

4 1 4 1 5 2

CVTPI2PS, CVTPS2PI, CVTSD2SI,
CVTSD2SS, CVTSI2SD,

CVTSI2SS, CVTSS2SD, CVTSS2SI,
CVTTPS2PI, CVTTSD2SI, CVTTSS2SI

4 1 4 1 4 1

Ref#: 248966-048 6-38

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Note that scalar SSE single precision multiples are one cycle faster than most FP operations. From
inspection of the table you can also see that packed SSE doubles have a slightly larger latency and
smaller throughput compared to their scalar counterparts.
Assembly/Compiler Coding Rule 5. (M impact, M generality) Favor SSE floating-point
instructions over x87 floating point instructions.
Assembly/Compiler Coding Rule 6. (MH impact, M generality) Run with exceptions masked and
the DAZ and FTZ flags set (whenever possible).
Tuning Suggestion 5. Use the perfmon counters MACHINE_CLEARS.FP_ASSIST to see if floating
exceptions are impacting program performance.

6.8.2.15 Integer Division
In Silvermont microarchitecture, integer division requires microcode flows that are relatively long and
slow. Its latency can vary profoundly on the input value and data sizes. In Goldmont and later
microarchitecture, there is hardware enhancement for short-precision forms of DIV/IDIV without using
MSROM. DIV/IDIV forms needing higher precision do use MSROM, but are also accelerated from the
hardware enhancement. Table 6-15 and Table 6-16 show the latency range for divide instructions, and
the instructions that require MSROM are noted with the superscript ‘u’.

FP Divider

x87 fdiv (extended-precision) 15 11 39 39 39 39

x87 fdiv (double-precision) 14 10 34 34 34 34

x87 fdiv (single-precision) 11 7 19 19 19 19

scalar single-precision (divss) 11 7 19 18 19 17

scalar double-precision (divsd) 14 10 34 33 34 32

packed single-precision (divps) 16 12 36 35 39 39

packed double-precision (divpd) 22 18 66 65 69 69

Table 6-15. Unsigned Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont
Plus/Goldmont

DIV r8 AX r8 AL AH 25 11-12

DIV r16 DX:AX r16 AX DX 26-30 12-17u

DIV r32 EDX:EAX r32 EAX EDX 26-38 12-25u

DIV r64 RDX:RAX r64 RAX RDX 38-123 12-41u

Table 6-14. Floating-Point and SIMD Integer Latency (Contd.)

Goldmont Plus Goldmont Silvermont

Latency
Through
put

Latency
Through
put

Latency
Throughp
ut

Ref#: 248966-048 6-39

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

User/Source Coding Rule 2. (M impact, L generality) Use divides only when really needed and
take care to use the correct data size and sign so that you get the most efficient execution.
Tuning Suggestion 6. Use the perfmon counter CYCLES_DIV_BUSY.ANY to see if the divides are a
bottleneck in the program.

If one needs unaligned groups of packed singles where the whole array is aligned, the use of PALIGNR is
recommend over MOVUPS. For instance, load A[x+y+3:x+y] where x and y are loop variables; it is
better to calculate x+y, round down to a multiple of 4 and use a MOVAPS and PALIGNR to get the
elements (rather than a MOVUPS at x+y). While this may look longer, the integer operations can execute
in parallel to FP ones. This will also avoid the periodic MOVUPS that splits a line at the cost of
approximately 6 cycles.
User/Source Coding Rule 3. (M impact, M generality) Use PALIGNR when stepping through
packed single elements

6.8.2.16 Integer Shift
When using an integer shift instruction with shift count in a register (i.e., CL), there is a one cycle bubble
for scheduling if the count register is produced by the preceding instruction in the execution pipeline.
Thus, the instruction producing the shift count should be hoisted whenever possible.

Additionally, double shift instructions (SHLD/SHRD) operating on 64-bit input data require long MSROM
flows. In the Silvermont microarchitecture, SHRD with a 32-bit destination register and immediate shift
count is decoded from the MSROM but the corresponding SHLD is not. In the Goldmont and later
microarchitecture, SHLD/SHRD with 32-bit destination register and immediate shift count are not
decoded from the MSROM. SHLD/SHRD with 32-bit destination memory operand or with CL shift count
are decoded from the MSROM on both Silvermont and Goldmont.

F.8.2.17 Pause Instruction
In the Goldmont and later microarchitecture, the latency of the PAUSE instruction is similar to that of the
Skylake microarchitecture to achieve better power saving with thread synchronization primitives.

6.8.3 Optimizing Memory Accesses

6.8.3.1 Reduce Unaligned Memory Access with PALIGNR
When working with single-precision FP or dword data arrays, loading 4 consecutive elements often
encounter memory accesses that are not 16-Byte aligned. For example, a nested loop iteration with an
array using two iterating indices, ‘i’, ‘j’ in A[i + j]. When loading 16 bytes from memory using “i+j” as the
effective index that increments by 1 in an inner loop, unaligned access will occur 3 of 4 accesses.

These unaligned memory access can be avoided. Assuming the base of the array is 16-Bytes aligned,
loading 16 bytes should be done with an effective index that is a multiple of 4, followed by PALIGNR with
two consecutive 16-byte chunks already loaded in XMM, with the imm8 constant derived from 4*
remainder of the original “i+j”.

Table 6-16. Signed Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont
Plus/Goldmont

IDIV r8 AX r8 AL AH 34 11-12

IDIV r16 DX:AX r16 AX DX 35-40 12-17u

IDIV r32 EDX:EAX r32 EAX EDX 35-47 12-25u

IDIV r64 RDX:RAX r64 RAX RDX 49-135 12-41u

Ref#: 248966-048 6-40

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 7. (M impact, M generality) Use PALIGNR when stepping
through packed single-precision FP or dword elements.

6.8.3.2 Minimize Memory Execution Issues
In the Goldmont and later microarchitecture, fully out-of-order execution in the MEC allows loads to pass
older stores which have not yet resolved their address. If the load did depend on the older store, the
hardware detects this situation and the load and subsequent operations need to be re-executed. The
programmer can use a performance counter event to assess and locate the cause of such re-execution.

In the Silvermont microarchitecture, its RehabQ needs to deal with several types of execution problems
in the MEC. The issues include: load blocks, load/store splits, locks, TLB misses, unknown addresses, and
too many stores. The perfmon counter’s REHABQ in the Silvermont microarchitecture can be used to
assess problems specific to the Silvermont microarchitecture.
Tuning Suggestion 7. Use the perfmon counters MACHINE_CLEAR.DISAMBIGUATION to assess the
impact of loads passing older unknown stores on application performance with the Goldmont
microarchitecture and its descendants.

6.8.3.3 Store Forwarding
Forwarding is significantly improved in the Silvermont and later microarchitectures compared to prior
generations. A store instruction will forward its data to a receiving load instruction if the following are
true:
• The forwarding store and the receiving load start at the same address.
• The receiving load is smaller than or equal to the forwarding store in terms of width.
• The forwarding store or the receiving load do not incur cache line splits.

Table 6-17 and Table 6-18 illustrate various situations of successful forwarding versus situations where
preceding stores cannot be forwarded.

Table 6-17. Store Forwarding Conditions (1 and 2 Byte Stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2 1 F N

2 F N

Table 6-18. Store Forwarding Conditions (4-16 Byte Stores)

Load Alignment

Store
Size

Load
Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 F N F N

2 F N F N

4 F N N N

Ref#: 248966-048 6-41

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

If one (or more) of these conditions is not satisfied, the load is blocked and put into the RehabQ to reissue
again.

To eliminate/avoid store forwarding problems, use the guidelines below (in order of preference):
• Use registers instead of memory.
• Hoist the store as early as possible (stores happen later in the pipeline than loads, so the store needs

to be hoisted many instructions earlier than the load).

The cost of a successful forwarding varies with microarchitectures. The cost is 3 cycles in the Silvermont
microarchitecture (that is, if the store executes at cycle n, the load will execute at cycle n+3). The cost is
4 cycles in the Goldmont microarchitecture. Intel Goldmont Plus microarchitecture optimizes certain
store data from register operation to reduce store to load forwarding latency to 3 cycle.

6.8.3.4 PrefetchW Instruction
The Silvermont and later microarchitectures support the PrefetchW instruction (0f 0d /1). This instruction
is a hint to the hardware to prefetch the specified line into the cache with a read-for-ownership request.
This can allow later stores to that line to complete faster than they would if the line was not prefetched
or was prefetched with a different instruction. All prefetch instructions may cause performance loss if
misused. Care should be used to ensure that prefetch instructions, including PrefetchW, actually improve
performance. The instruction opcode 0f 0d /0 continues to be a NOP. It does not prefetch the indicated
line.

6.8.3.5 Cache Line Splits and Alignment
Cache line splits cause load and store instructions to operate at reduced bandwidth. As a result, they
should be avoided where possible.
Tuning Suggestion 8. Use the REHABQ.ST_SPLIT and REHABQ.LD_SPLIT perfmon counters to locate
splits, and to count the number of split operations.

While aligned accesses are preferred, the Silvermont microarchitecture has hardware support for
unaligned references. As such, MOVUPS/MOVUPD/MOVDQU instructions are all single UOP instructions in
contrast to previous generation Intel Atom processors.

6.8.3.6 Segment Base
For simplicity, the AGU in the Silvermont microarchitecture assumes that the segment base will be zero.
However, while studies have shown that this is overwhelmingly true, there are times when a non-zero
segment base (NZB) must be used. When using NZBs, keep the segment base cache line (0x40) aligned
if at all possible. NZB address generation involves a 1 cycle penalty in the Silvermont microarchitecture.
In Goldmont and later microarchitecture, NZB address generation can maintain one per cycle.

8 1 F N N N N N N N

2 F N N N N N N N

4 F N N N N N N N

8 F N N N N N N N

16 1 F N N N N N N N N N N N N N N N

2 F N N N N N N N N N N N N N N N

4 F N N N N N N N N N N N N N N N

8 F N N N N N N N N N N N N N N N

16 F N N N N N N N N N N N N N N N

Table 6-18. Store Forwarding Conditions (4-16 Byte Stores)

Load Alignment

Ref#: 248966-048 6-42

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.3.7 Copy and String Copy
Compilers typically provide libraries with memcpy/memset routines that provide good performance while
managing code size and alignment issues.

Memcpy and memset operation can be accomplished using REP MOVS/STOS instructions with length of
operation decomposed for optimized byte/dword granular operations and alignment considerations. This
usually provides a decent copy/set solution for the general case. The REP MOVS/STOS instructions have
a fixed overhead. REP STOS should be able to cope with line splits for long strings; but REP MOVS cannot
due to the complexity of the possible alignment matches between source and destination.

For specific copy/set needs, macro code sequence using SIMD instruction can provide modest gains
(on the order of a dozen clocks or so), depending on the alignment, buffer length, and cache residency of
the buffers. Large memory copies with cache line splits are a notable exception to this rule, where careful
macrocode might avoid the cache lines splits and substantially improve on REP MOV.

Processors based on the Silvermont microarchitecture support the Enhanced REP MOVSB and STOSB
operation feature. REP string operations using MOVSB and STOSB can provide the smallest code size with
both flexible and high performance REP string operations for software in common situations like memory
copy and set operations. Processors that provide enhanced MOVSB/STOSB operations are enumerated
by the CPUID feature flag: CPUID:(EAX=7H, ECX=0H):EBX.[bit 9] = 1.

Software wishing to have a simple default string copy or store routine that will work well on a range of
implementations (including future implementations) should consider using REP MOVSB or REP STOSB on
implementations that support Enhanced REP MOVSB and STOSB. Although these instructions may not be
as fast on a specific implementation as a more specialized copy/store routine, such specialized routines
may not perform as well on future processors and may not take advantage of future enhancements.
REP MOVSB and REP STOSB will continue to perform reasonably well on future processors.

6.9 INSTRUCTION LATENCY AND THROUGHPUT
This section lists the throughput and latency information of recent microarchitectures for Intel Atom
processor generations. Instructions that require decoder assistance from MSROM are marked in the
“Comment” column (instructions marked with ‘Y’ should be used minimally if more decode-efficient
alternatives are available). Throughput and latency values for various instructions are grouped by the
respective microarchitecture according to its CPUID DisplayFamily_DisplayModel. When a large number
of DisplayModels of the same DisplayFamily have the same time timing characteristics, the DisplayFamily
may be listed only once.

The microarchitectures and corresponding DisplayFamily_DisplayModel signature covered in this section
are:
• Goldmont Plus microarchitecture: 06_7AH. Note that if Goldmont Plus microarchitecture differs from

Goldmont in value, this will be indicated by the addition of “(GLP)” next to the value in the table
below.

• Goldmont microarchitecture: 06_5CH, 06_5FH.
• Silvermont or Airmont microarchitecture: 06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 06_5DH

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

ADC/SBB r32, imm8 1 2 2 2 N N

ADC/SBB r32, r32 1 2 2 2 N N

ADC/SBB r64, r64 1 2 2 2 N N

Ref#: 248966-048 6-43

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

ADD/AND/CMP/OR/SUB/XOR/TEST r32, r32 0.33 0.5 1 1 N N

ADD/AND/CMP/OR/SUB/XOR/TEST r64, r64 0.33 0.5 1 1 N N

ADDPD/ADDSUBPD/MAXPD/MINPD/SUBPD xmm,
xmm

1 2 3 4 N N

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/
SUBSS

1 1 3 3 N N

MAXPS/MAXSD/MAXSS/MINPS/MINSD/MINSS
xmm, xmm

1 1 3 3 N N

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XO
RPD/XORPS

0.5 0.5 1 1 N N

AESDEC/AESDECLAST/AESENC/AESENCLAST 2
1 (GLP)

5 6
4 (GLP)

8 N Y

AESIMC/AESKEYGEN 2
1 (GLP)

5 5
4 (GLP)

8 N Y

BLENDPD/BLENDPS xmm, xmm, imm8 0.5 1 1 1 N N

BLENDVPD/BLENDVPS xmm, xmm 4 4 4 4 Y Y

BSF/BSR r32, r32 8 10 10 10 Y Y

BSWAP r32 1 1 1 1 N N

BT/BTC/BTR/BTS r32, r32 1 1 1 1 N N

CBW 4 4 4 4 Y Y

CDQ/CLC/CMC 1 1 1 1 N N

CMOVxx r32; r32 1 1 2 2 N N

CMPPD xmm, xmm, imm 1 2 3 4 N N

CMPSD/CMPPS/CMPSS xmm, xmm, imm 1 1 3 3 N N

CMPXCHG r32, r32 5 6 5 6 Y Y

CMPXCHG r64, r64 5 6 5 6 Y Y

(U)COMISD/(U)COMISS xmm, xmm; 1 1 4 4 N N

CPUID 58 60 58 60 Y Y

CRC32 r32, r32 1 1 3 3 N N

CRC32 r64, r64 1 1 3 3 N N

CVTDQ2PD/CVTDQ2PS/CVTPD2DQ/CVTPD2PS
xmm, xmm

1 2 4 5 N N

CVT(T)PD2PI/CVT(T)PI2PD 1 2 4 5 N N

CVT(T)PS2DQ/CVTPS2PD xmm, xmm; 1 2 4 5 N N

CVT(T)SD2SS/CVTSS2SD xmm, xmm 1 1 4 4 N N

CVTSI2SD/SS xmm, r32 1 1 7 6 N N

CVTSD2SI/SS2SI r32, xmm 1 1 4 4 N N

DEC/INC r32 1 1 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

Ref#: 248966-048 6-44

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

DIV r8 11-12 25 11-12 25 N Y

DIV r16 12-17 26-30 12-17 26-30 Y Y

DIV r32 12-25 26-38 12-25 26-38 Y Y

DIV r64 12-41 38-123 12-41 38-123 Y Y

DIVPD1 12, 65
18 (GLP)

27-69 13, 66
22 (GLP)

27-69 N Y

DIVPS1 12,35
12 (GLP)

27-39 13, 36
16 (GLP)

27-39 N Y

DIVSD1 12,33
10 (GLP)

11-32 13,34
14 (GLP)

13-34 N N

DIVSS1 12,18
7 (GLP)

11-17 13,19
11 (GLP)

13-19 N N

DPPD xmm, xmm, imm 5 8 8 12 Y Y

DPPS xmm, xmm, imm 11 12 14 15 Y Y

EMMS 23 10 23 10 Y Y

EXTRACTPS 1 4 4 5 N Y

F2XM1 87 88 87 88 Y Y

FABS/FCHS 0.5 1 1 1 N N

FCOM 1 1 4 4 N N

FADD/FSUB 1 1 3 3 N N

FCOS 154 168 154 168 Y Y

FDECSTP/FINCSTP 0.5 0.5 1 1 N N

FDIV 39
11 (EP
GLP)

39 39
15 (EP
GLP)

39 N N

FLDZ 280 277 280 277 Y Y

FMUL 2 2 5 5 N N

FPATAN/FYL2X/FYL2XP1 303 296 303 296 Y Y

FPTAN/FSINCOS 287 281 287 281 Y Y

FRNDINT 41 25 41 25 Y Y

FSCALE 32 74 32 74 Y Y

FSIN 140 150 140 150 Y Y

FSQRT 40 40 40 40 N N

HADDPD/HSUBPD xmm, xmm 5 5 5 6 Y Y

HADDPS/HSUBPS xmm, xmm 6 6 6 6 Y Y

IDIV r8 11-12 34 11-12 34 N Y

IDIV r16 12-17 35-40 12-17 35-40 Y Y

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

Ref#: 248966-048 6-45

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

IDIV r32 12-25 35-47 12-25 35-47 Y Y

IDIV r64 12-41 49-135 12-41 49-135 Y Y

IMUL r32, r32 (single dest) 1 1 3 3 N N

IMUL r32 (dual dest) 2 5 3 (4, EDX) 4 N Y

IMUL r64, r64 (single dest) 2 2 5 5 N N

IMUL r64 (dual dest) 2 4 5 (6,RDX) 5 (7,RDX) N Y

INSERTPS 0.5 1 1 1 N N

MASKMOVDQU 4 5 4 5 Y Y

MOVAPD/MOVAPS/MOVDQA/MOVDQU/MOVUPD/M
OVUPS xmm, xmm;

0.332/0.
5

0.5 0/1 1 N N

MOVD r32, xmm; MOVQ r64, xmm 1 1 4 4 N N

MOVD xmm, r32 ; MOVQ xmm, r64 1 1 4 3 N N

MOVDDUP/MOVHLPS/MOVLHPS/MOVSHDUP/MOV
SLDUP

0.5 1 1 1 N N

MOVDQ2Q/MOVQ/MOVQ2DQ 0.5 0.5 1 1 N N

MOVSD/MOVSS xmm, xmm; 0.5 0.5 1 1 N N

MPSADBW 4 5 5 7 Y Y

MULPD 1 4 4 7 N N

MULPS; MULSD 1 2 4 5 N N

MULSS 1 1 4 4 N N

NEG/NOT r32 0.33 0.5 1 1 N N

PACKSSDW/WB xmm, xmm; PACKUSWB xmm, xmm 0.5 1 1 1 N N

PABSB/D/W xmm, xmm 0.5 0.5 1 1 N N

PADDB/D/W xmm, xmm; PSUBB/D/W xmm, xmm 0.5 0.5 1 1 N N

PADDQ/PSUBQ/PCMPEQQ xmm, xmm 1 4 2 4 N Y

PADDSB/W; PADDUSB/W; PSUBSB/W; PSUBUSB/W 0.5 0.5 1 1 N N

PALIGNR xmm, xmm 0.5 1 1 1 N N

PAND/PANDN/POR/PXOR xmm, xmm 0.5 0.5 1 1 N N

PAVGB/W xmm, xmm 0.5 0.5 1 1 N N

PBLENDW xmm, xmm, imm 0.5 0.5 1 1 N N

PBLENDVB xmm, xmm 4 4 4 4 Y Y

PCLMULQDQ xmm, xmm, imm 4 10 6 10 Y Y

PCMPEQB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPESTRI xmm, xmm, imm 13 21 19(C)/
26(F)3

21(C)/
28(F)

Y Y

PCMPESTRM xmm, xmm, imm 14 17 15(X)/
25(F)1

17(X)/
24(F)

Y Y

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

Ref#: 248966-048 6-46

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

PCMPGTB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPGTQ/PHMINPOSUW xmm, xmm 2 2 5 5 N N

PCMPISTRI xmm, xmm, imm 8 17 14(C)/
21(F)1

17(C)/
24(F)

Y Y

PCMPISTRM xmm, xmm, imm 7 13 10(X)/
20(F)1

13(X)/
20(F)

Y Y

PEXTRB/WD r32, xmm, imm 1 4 4 5 N Y

PINSRB/WD xmm, r32, imm 1 1 4 3 N N

PHADDD/PHSUBD xmm, xmm 4 6 4 6 Y Y

PHADDW/PHADDSW xmm, xmm 6 9 6 9 Y Y

PHSUBW/PHSUBSW xmm, xmm 6 9 6 9 Y Y

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW
xmm, xmm

1 2 4 5 N N

PMAXSB/W/D xmm, xmm; PMAXUB/W/D xmm,
xmm

0.5 0.5 1 1 N N

PMINSB/W/D xmm, xmm; PMINUB/W/D xmm, xmm 0.5 0.5 1 1 N N

PMOVMSKB r32, xmm 1 1 4 4 N N

PMOVSXBW/BD/BQ/WD/WQ/DQ xmm, xmm 0.5 1 1 1 N N

PMOVZXBW/BD/BQ/WD/WQ/DQ xmm, xmm 0.5 1 1 1 N N

PMULDQ/PMULUDQ xmm, xmm 1 2 4 5 N N

PMULHUW/PMULHW/PMULLW xmm, xmm 1 2 4 5 N N

PMULLD xmm, xmm 2 11 5 11 N Y

POPCNT r32, r32 1 1 3 3 N N

POPCNT r64, r64 1 1 3 3 N N

PSHUFB xmm, xmm 1 5 1 5 N Y

PSHUFD xmm, mem, imm 0.5 1 1 1 N N

PSHUFHW; PSHUFLW; PSHUFW 0.5 1 1 1 N N

PSIGNB/D/W xmm, xmm 0.5 1 1 1 N N

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0.5 1 1 1 N N

PSLLD/Q/W xmm, xmm 1 2 2 2 N N

PSRAD/W xmm, imm; 0.5 1 1 1 N N

PSRAD/W xmm, xmm; 1 2 2 2 N N

PSRLD/Q/W xmm, imm; 0.5 1 1 1 N N

PSRLD/Q/W xmm, xmm 1 2 2 2 N N

PTEST xmm, xmm 1 1 4 4 N N

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0.5 1 1 1 N N

PUNPCKHQDQ; PUNPCKLQDQ 0.5 1 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

Ref#: 248966-048 6-47

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

RCPPS/RSQRTPS 6 8 9 9 Y Y

RCPSS/RSQRTSS 1 1 4 4 N N

RDTSC 20 30 20 30 Y Y

ROUNDPD/PS 1 2 4 5 N N

ROUNDSD/SS 1 1 4 4 N N

ROL; ROR; SAL; SAR; SHL; SHR (count in CL) 1 1 1 (2 for
CL
source)

1 (2 for CL
source)

N N

ROL; ROR; SAL; SAR; SHL; SHR (count in imm8) 1 1 1 1 N N

SAHF 1 1 1 1 N N

SHLD r32, r32, imm 2 2 2 2 N N

SHRD r32, r32, imm 2 4 2 4 N Y

SHLD/SHRD r64, r64, imm 12 10 12 10 Y Y

SHLD/SHRD r64, r64, CL 14 10 14 10 Y Y

SHLD/SHRD r32, r32, CL 4 4 4 4 Y Y

SHUFPD/SHUFPS xmm, xmm, imm 0.5 1 1 1 N N

SQRTPD 67
26 (GLP)

70 68
30 (GLP)

71 N Y

SQRTPS 37
14 (GLP)

40 38
18 (GLP)

41 N Y

SQRTSD 34
14 (GLP)

35 35
18 (GLP)

35 N Y

SQRTSS 19
8 (GLP)

20 20
12 (GLP)

20 N Y

TEST r32, r32 0.33 0.5 1 1 N N

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0.5 1 1 1 N N

XADD r32, r32 2 5 4 5 Y Y

XCHG r32, r32 2 5 4 5 Y Y

XCHG r64, r64 2 5 4 5 Y Y

SHA1MSG1/SHA1MSG2/SHA1NEXTE 1 NA 3 NA N NA

SHA1RNDS4 xmm, xmm, imm 2 NA 5 NA N NA

SHA256MSG1/SHA256MSG2 1 NA 3 NA N NA

SHA256RNDS2 4 NA 7 NA N NA

NOTES:
1. DIVPD/DIVPS/DIVSD/DIVSS list early-exit value first and common-case value second. Early-exit case applies to a special

input value such as QNAN. Common case applies to normal numeric values.
2. Throughput is 0.33 cycles if move elimination is effect, otherwise 0.5 cycle.
3. Latency values are for ECX/EFLAGS/XMM0 dependency: (C/F/X)

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom® Processors (Contd.)

Instruction Throughput Latency MSROM

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH
,4DH,5A
H,5DH

06_5CH,
5FH,
7AH

06_37H,
4AH,4CH,
4DH,5AH,
5DH

06_5CH
,5FH,
7AH

06_37H,
4AH,4C
H,4DH,5
AH,5DH

Intel® 64 and IA-32 Architectures Optimization Reference Manual Documentation Changes 13

7. Updates to Appendix D
Change bars and violet text show changes to Appendix D of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Instruction Latency and Throughput.

--
Changes to this chapter:

• This chapter has been updated to be Volume 2, Chapter 7: Instruction Latency and Throughput.
• Updated capitalization of headings throughout chapter.
• Updated branding throughout chapter.
• Typo and punctuation corrections as necessary.

CHAPTER 7
INSTRUCTION LATENCY AND THROUGHPUT

NOTE
All recent processors have latency and throughput information posted on the Intel® 64
and IA-32 Architectures Software Developer Manuals Page.

This appendix contains tables showing the latency and throughput are associated with commonly used
instructions1. The instruction timing data varies across processors family/models. It contains the
following sections:
• Chapter 7.1, “Overview” — Provides an overview of issues related to instruction selection and

scheduling.
• Chapter 7.2, “Definitions” — Presents definitions.
• Chapter 7.3, “Latency and Throughput” — Lists instruction throughput, latency associated with

commonly-used instructions.

7.1 OVERVIEW
This appendix provides information to assembly language programmers and compiler writers. The infor-
mation aids in the selection of instruction sequences (to minimize chain latency) and in the arrangement
of instructions (assists in hardware processing). The performance impact of applying the information has
been shown to be on the order of several percent. This is for applications not dominated by other perfor-
mance factors, such as:
• Cache miss latencies.
• Bus bandwidth.
• I/O bandwidth.

Instruction selection and scheduling matters when the programmer has already addressed the perfor-
mance issues discussed in Chapter 2:
• Observe store forwarding restrictions.
• Avoid cache line and memory order buffer splits.
• Do not inhibit branch prediction.
• Minimize the use of xchg instructions on memory locations.

While several items on the above list involve selecting the right instruction, this appendix focuses on the
following issues. These are listed in priority order, though which item contributes most to performance
varies by application:
• Maximize the flow of ops into the execution core. Instructions which consist of more than four ops

require additional steps from microcode ROM. Instructions with longer micro-op flows incur a delay
in the front end and reduce the supply of micro-ops to the execution core.
In Pentium 4 and Intel Xeon processors, transfers to microcode ROM often reduce how efficiently
ops can be packed into the trace cache. Where possible, it is advisable to select instructions with
four or fewer ops. For example, a 32-bit integer multiply with a memory operand fits in the trace
cache without going to microcode, while a 16-bit integer multiply to memory does not.

1. Although instruction latency may be useful in some limited situations (e.g., a tight loop with a dependency chain that
exposes instruction latency), software optimization on super-scalar, out-of-order microarchitecture, in general, will ben-
efit much more on increasing the effective throughput of the larger-scale code path. Coding techniques that rely on
instruction latency alone to influence the scheduling of instruction is likely to be sub-optimal as such coding technique is
likely to interfere with the out-of-order machine or restrict the amount of instruction-level parallelism.

https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#optimization
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#optimization

INSTRUCTION LATENCY AND THROUGHPUT

7-2

• Avoid resource conflicts. Interleaving instructions so that they don’t compete for the same port or
execution unit can increase throughput. For example, alternate PADDQ and PMULUDQ (each has a
throughput of one issue per two clock cycles). When interleaved, they can achieve an effective
throughput of one instruction per cycle because they use the same port but different execution units.
Selecting instructions with fast throughput also helps to preserve issue port bandwidth, hide latency
and allows for higher software performance.

• Minimize the latency of dependency chains that are on the critical path. For example, an operation to
shift left by two bits executes faster when encoded as two adds than when it is encoded as a shift. If
latency is not an issue, the shift results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction data provided in this
manual, you can take advantage of the software performance analysis and tuning toolset available at
http://developer.intel.com/software/products/index.htm. The tools include the Intel VTune Performance
Analyzer, with its performance-monitoring capabilities.

7.2 DEFINITIONS
The data is listed in several tables. The tables contain the following:
• Instruction Name — The assembly mnemonic of each instruction.
• Latency — The number of clock cycles that are required for the execution core to complete the

execution of all of the ops that form an instruction.
• Throughput — The number of clock cycles required to wait before the issue ports are free to accept

the same instruction again. For many instructions, the throughput of an instruction can be signifi-
cantly less than its latency.

• The case of RDRAND instruction latency and throughput is an exception to the definitions above,
because the hardware facility that executes the RDRAND instruction resides in the uncore and is
shared by all processor cores and logical processors in a physical package. The software observable
latency and throughput using the sequence of “rdrand followby jnc” in a single-thread scenario can
be as low as ~100 cycles. In third generation Intel Core processors based on Ivy Bridge microarchi-
tecture, the total bandwidth to deliver random numbers via RDRAND by the uncore is about 500
MBytes/sec. Within the same processor core microarchitecture and different uncore implementa-
tions, RDRAND latency/throughput can vary across Intel Core and Intel Xeon processors.

7.3 LATENCY AND THROUGHPUT
This section presents the latency and throughput information for commonly-used instructions including:
MMX technology, Streaming SIMD Extensions, subsequent generations of SIMD instruction extensions,
and most of the frequently used general-purpose integer and x87 floating-point instructions.

Due to the complexity of dynamic execution and out-of-order nature of the execution core, the instruc-
tion latency data may not be sufficient to accurately predict realistic performance of actual code
sequences based on adding instruction latency data.
• Instruction latency data is useful when tuning a dependency chain. However, dependency chains limit

the out-of-order core’s ability to execute micro-ops in parallel. Instruction throughput data are useful
when tuning parallel code unencumbered by dependency chains.

• Numeric data in the tables is:

— Approximate and subject to change in future implementations of the microarchitecture.

— Not meant to be used as reference for instruction-level performance benchmarks. Comparison of
instruction-level performance of microprocessors that are based on different microarchitectures
is a complex subject and requires information that is beyond the scope of this manual.

Comparisons of latency and throughput data between different microarchitectures can be misleading.

Chapter 7.3.1 provides latency and throughput data for the register-to-register instruction type.

http://developer.intel.com/software/products/index.htm

7-3

INSTRUCTION LATENCY AND THROUGHPUT

Chapter 7.3.3 discusses how to adjust latency and throughput specifications for the register-to-memory
and memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half of a clock. This occurs only for
the double-speed ALUs.

7.3.1 Latency and Throughput with Register Operands
Instruction latency and throughput data are presented in Table 7-4 through Table 7-18. Tables include
AESNI, SSE4.2, SSE4.1, Supplemental Streaming SIMD Extension 3, Streaming SIMD Extension 3,
Streaming SIMD Extension 2, Streaming SIMD Extension, MMX technology and most common Intel 64
and IA-32 instructions. Instruction latency and throughput for different processor microarchitectures are
in separate columns.

Processor instruction timing data is implementation specific; it can vary between model encodings within
the same family encoding (e.g. model = 3 vs model < 2). Separate sets of instruction latency and
throughput are shown in the columns for CPUID signature 0xF2n and 0xF3n. The column represented by
0xF3n also applies to Intel processors with CPUID signature 0xF4n and 0xF6n. The notation 0xF2n
represents the hex value of the lower 12 bits of the EAX register reported by CPUID instruction with input
value of EAX = 1; ‘F’ indicates the family encoding value is 15, ‘2’ indicates the model encoding is 2, ‘n’
indicates it applies to any value in the stepping encoding.

Intel Core Solo and Intel Core Duo processors are represented by 06_0EH. Processors bases on 65 nm
Intel Core microarchitecture are represented by 06_0FH. Processors based on Enhanced Intel Core
microarchitecture are represented by 06_17H and 06_1DH. CPUID family/Model signatures of proces-
sors based on Nehalem microarchitecture are represented by 06_1AH, 06_1EH, 06_1FH, and 06_2EH.
Processors based on Westmere microarchitecture are represented by 06_25H, 06_2CH and 06_2FH.
Processors based on Sandy Bridge microarchitecture are represented by 06_2AH, 06_2DH. Processors
based on Ivy Bridge microarchitecture are represented by 06_3AH, 06_3EH. Processors based on
Haswell microarchitecture are represented by 06_3CH, 06_45H and 06_46H.

Instruction latency varies by microarchitectures. Table 7-2 lists SIMD extensions introduction in recent
microarchitectures. Each microarchitecture may be associated with more than one signature value given
by the CPUID’s “display_family” and “display_model”. Not all instruction set extensions are enabled in all
processors associated with a particular family/model designation. To determine whether a given
instruction set extension is supported, software must use the appropriate CPUID feature flag as
described in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

Table 7-1. CPUID Signature Values of Of Recent Intel Microarchitectures
DisplayFamily_DisplayModel Recent Intel Microarchitectures

06_4EH, 06_5EH Skylake microarchitecture

06_3DH, 06_47H, 06_56H Broadwell microarchitecture

06_3CH, 06_45H, 06_46H, 06_3FH Haswell microarchitecture

06_3AH, 06_3EH Ivy Bridge microarchitecture

06_2AH, 06_2DH Sandy Bridge microarchitecture

06_25H, 06_2CH, 06_2FH Intel microarchitecture Westmere

06_1AH, 06_1EH, 06_1FH, 06_2EH Intel microarchitecture Nehalem

06_17H, 06_1DH Enhanced Intel Core microarchitecture

06_0FH Intel Core microarchitecture

INSTRUCTION LATENCY AND THROUGHPUT

7-4

.

Table 7-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature)
SIMD Instruction

Extensions DisplayFamily_DisplayModel

06_4EH,
06_5EH

06_3DH,
06_47H,
06_56H

06_3CH,
06_45H,
06_46H,
06_3FH

06_3AH,
06_3EH

06_2AH,
06_2DH

06_25H,
06_2CH,
06_2FH

06_1AH,
06_1EH,
06_1FH,
06_2EH

06_17H,
06_1DH

CLFLUSHOPT Yes No No No No No No No

ADX, RDSEED Yes Yes No No No No No No

AVX2, FMA, BMI1,
BMI2

Yes Yes Yes No No No No No

F16C, RDRAND,
RWFSGSBASE

Yes Yes Yes Yes No No No No

AVX Yes Yes Yes Yes Yes No No No

AESNI, PCLMULQDQ Yes Yes Yes Yes Yes Yes No No

SSE4.2, POPCNT Yes Yes Yes Yes Yes Yes Yes No

SSE4.1 Yes Yes Yes Yes Yes Yes Yes Yes

SSSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE2 Yes Yes Yes Yes Yes Yes Yes Yes

SSE Yes Yes Yes Yes Yes Yes Yes Yes

MMX Yes Yes Yes Yes Yes Yes Yes Yes

Table 7-3. BMI1, BMI2 and General Purpose Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E, 06_5E 06_3D,
06_47, 06_56 06_4E, 06_5E 06_3D, 06_47,

06_56

ADCX 1 1 1 1

ADOX 1 1 1 1

RESEED Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

7-5

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-4. 256-bit Intel® AVX2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

VEXTRACTI128 xmm1, ymm2, imm 1 1 1 1 1 1

VMPSADBW 4 6 6 2 2 2

VPACKUSDW/SSWB 1 1 1 1 1 1

VPADDB/D/W/Q 1 1 1 0.33 0.5 0.5

VPADDSB 1 1 1 0.5 0.5 0.5

VPADDUSB 1 1 1 0.5 0.5 0.5

VPALIGNR 1 1 1 1 1 1

VPAVGB 1 1 1 0.5 0.5 0.5

VPBLENDD 1 1 1 0.33 0.33 0.33

VPBLENDW 1 1 1 1 1 1

VPBLENDVB 1 2 2 1 2 2

VPBROADCASTB/D/SS/SD 3 3 3 1 1 1

VPCMPEQB/W/D 1 1 1 0.5 0.5 0.5

VPCMPEQQ 1 1 1 0.5 0.5 0.5

VPCMPGTQ 3 5 5 1 1 1

VPHADDW/D/SW 3 3 3 2 2 2

VINSERTI128 ymm1, ymm2, xmm, imm 3 3 3 1 1 1

VPMADDWD 5b 5 5 0.5 1 1

VPMADDUBSW 5b 5 5 0.5 1 1

VPMAXSD 1 1 1 0.5 0.5 0.5

VPMAXUD 1 1 1 0.5 0.5 0.5

VPMOVSX 3 3 3 1 1 1

VPMOVZX 3 3 3 1 1 1

VPMULDQ/UDQ 5b 5 5 0.5 1 1

VPMULHRSW 5b 5 5 0.5 1 1

VPMULHW/LW 5b 5 5 0.5 1 1

VPMULLD 10b 10 10 1 2 2

VPOR/VPXOR 1 1 1 0.33 0.33 0.33

VPSADBW 3 5 5 1 1 1

VPSHUFB 1 1 1 1 1 1

VPSHUFD 1 1 1 1 1 1

VPSHUFLW/HW 1 1 1 1 1 1

VPSIGNB/D/W/Q 1 1 1 0.5 0.5 0.5

VPERMD/PS 3 3 3 1 1 1

VPSLLVD/Q 2 2 2 0.5 2 2

INSTRUCTION LATENCY AND THROUGHPUT

7-6

VPSRAVD 2 2 2 0.5 2 2

VPSRAD/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLDQ ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm, ymm, ymm 4 4 4 1 1 1

VPUNPCKHBW/WD/DQ/QDQ 1 1 1 1 1 1

VPUNPCKLBW/WD/DQ/QDQ 1 1 1 1 1 1

ALL VFMA 4 5 5 0.5 0.5 0.5

VPMASKMOVD/Q mem, ymmd, ymm 1 2 2

VPMASKMOVD/Q NUL, msk_0, ymm >200e 2 2

VPMASKMOVD/Q ymm, ymmd, mem 11 8 8 1 2 2

VPMASKMOVD/Q ymm, msk_0, [base+index]f >200 ~200 ~200 >200 ~200 ~200

b: includes 1-cycle bubble due to bypass.
c: includes two 1-cycle bubbles due to bypass
d: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more elements.
e: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL) incurs delay
due to assist.
f: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay due to
assist.

Table 7-5. Gather Timing Data from L1D*

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel
06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45/
46/3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45/
46/3F

VPGATHERDD/PS xmm, [vi128], xmm ~20 ~17 ~14 ~4 ~5 ~7

VPGATHERQQ/PD xmm, [vi128], xmm ~18 ~15 ~12 ~3 ~4 ~5

VPGATHERDD/PS ymm, [vi256], ymm ~22 ~19 ~20 ~5 ~6 ~10

VPGATHERQQ/PD ymm, [vi256], ymm ~20 ~16 ~15 ~4 ~5 ~7

* Gather Instructions fetch data elements via memory references. The timing data shown applies to memory references
that reside within the L1 data cache and all mask elements selected

Table 7-4. 256-bit Intel® AVX2 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C,
06_45,
06_46,
06_3F

7-7

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-6. BMI1, BMI2 and General Purpose Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel
06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

ANDN 1 1 1 0.5 0.5 0.5

BEXTR 2 2 2 0.5 0.5 0.5

BLSI/BLSMSK/BLSR 1 1 1 0.5 0.5 0.5

BZHI 1 1 1 0.5 0.5 0.5

MULX r64, r64, r64 4 4 4 1 1 1

PDEP/PEXT r64, r64, r64 3 3 3 1 1 1

RORX r64, r64, r64 1 1 1 0.5 0.5 0.5

SALX/SARX/SHLX r64, r64, r64 1 1 1 0.5 0.5 0.5

LZCNT/TZCNT 3 3 3 1 1 1

Table 7-7. F16C,RDRAND Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel
06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/
45/46/
3F

06_3A/
3E

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/
45/46/
3F

06_3A/
3E

RDRAND* r64 Varies Varies Varies <200 <300 ~250 ~250 <200

VCVTPH2PS ymm1, xmm2 7 6 6 7 1 1 1 1

VCVTPH2PS xmm1, xmm2 5 4 4 6 1 1 1 1

VCVTPS2PH ymm1, xmm2, imm 7 6 6 10 1 1 1 1

VCVTPS2PH xmm1, xmm2, imm 5 4 4 9 1 1 1 1

* See Section 7.2

Table 7-8. 256-bit Intel® AVX Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

VADDPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VADDSUBPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VANDNPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VANDPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VBLENDPD/PS ymm1, ymm2, ymm3,
imm

1 1 1 1 0.33 0.33 0.33 0.5

VBLENDVPD/PS ymm1, ymm2, ymm3,
ymm

1 2 2 1 1 2 2 1

VCMPPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

INSTRUCTION LATENCY AND THROUGHPUT

7-8

VCVTDQ2PD ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTDQ2PS ymm1, ymm2 4 3 3 3 0.5 1 1 1

VCVT(T)PD2DQ ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTPD2PS ymm1, ymm2 7 6 6 4 1 1 1 1

VCVT(T)PS2DQ ymm1, ymm2 4 3 3 3 1 1 1 1

VCVTPS2PD ymm1, xmm2 7 4 4 2 1 1 1 1

VDIVPD ymm1, ymm2, ymm3 14 16-23 25-35 27-35 8 16 27 28

VDIVPS ymm1, ymm2, ymm3 11 13-17 17-21 18-21 5 10 13 14

VDPPS ymm1, ymm2, ymm3 13 12 14 12 1.5 2 2 2

VEXTRACTF128 xmm1, ymm2, imm 3 3 3 3 1 1 1 1

VINSERTF128 ymm1, xmm2, imm 3 3 3 3 1 1 1 1

VMAXPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VMINPD/PS ymm1, ymm2, ymm3 4 3 3 3 0.5 1 1 1

VMOVAPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMOVDDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVDQA/U ymm1, ymm2 1 1 1 1 0.25 0.25 0.25 0.5

VMOVMSKPD/PS ymm1, ymm2 2 2 2 1 1 1 1 1

VMOVQ xmm1, xmm2 1 1 1 1 0.33 0.33 0.33 0.33

VMOVD/Q xmm1, r32/r64 2 1 1 1 1 1 1 1

VMOVD/Q r32/r64, xmm 2 1 1 1 1 1 1 1

VMOVNTDQ/PS/PD 1 1 1 1

VMOVSHDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVSLDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVUPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMULPD/PS ymm1, ymm2, ymm3 4 3 5 5 0.5 0.5 0.5 1

VORPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VPERM2F128 ymm1, ymm2, ymm3,
imm

3 3 3 2 1 1 1 1

VPERMILPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VRCPPS ymm1, ymm2 4 7 7 7 1 2 2 2

VROUNDPD/PS ymm1, ymm2, imm 8 6 6 3 1 2 2 1

VRSQRTPS ymm1, ymm2 4 7 7 7 1 2 2 2

VSHUFPD/PS ymm1, ymm2, ymm3,
imm

1 1 1 1 1 1 1 1

VSQRTPD ymm1, ymm2 <18 19-35 19-35 19-35 <12 16-27 16-27 28

VSQRTPS ymm1, ymm2 12 18-21 18-21 18-21 <6 13 13 14

VSUBPD/PS ymm1, ymm2, imm 4 3 3 3 0.5 1 1 1

Table 7-8. 256-bit Intel® AVX Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

7-9

INSTRUCTION LATENCY AND THROUGHPUT

Latency of VEX.128 encoded AVX instructions should refer to corresponding legacy 128-bit instructions.

VTESTPS ymm1, ymm2 3 2 2 2 1 1 1 1

VUNPCKHPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VUNPCKLPD/PS ymm1, ymm2, ymm3 1 1 1 1 1 1 1 1

VXORPD/PS ymm1, ymm2, ymm3 1 1 1 1 0.33 1 1 1

VZEROUPPER 0 0 0 0 1 1 1 1

VZEROALL 12 8 8 9

VEXTRACTPS reg, xmm2, imm 3 2 2 2 1 1 1 1

VINSERTPS xmm1, xmm2, reg, imm 1 1 1 1 1 1 1 1

VMASKMOVPD/PS mema, ymm, ymm 1 2 2 2

VMASKMOVPD/PS NUL, msk_0, ymm >200b 2 2 2

VMASKMOVPD/PS ymm, ymma, mem 11 8 8 9 1 2 2 2

VMASKMOVPD/PS ymm, msk_0,
[base+index]c

>200 ~200 ~200 ~200 >200 ~200 ~200 ~200

Latency and Throughput data for CPUID signature 06_3AH are generally the same as those of 06_2AH, only those that
differ from 06_2AH are shown in the 06_3AH column.
a: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more elements.
b: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL) incurs delay due
to assist.
c: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay due to
assist.

Table 7-9. AESNI and PCLMULQDQ Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

AESDEC/AESDECLAST xmm1, xmm2 4 7 7 8 1 1 1 1

AESENC/AESENCLAST xmm1, xmm2 4 7 7 8 1 1 1 1

AESIMC xmm1, xmm2 8 14 14 14 2 2 2 2

AESKEYGENASSIST xmm1, xmm2, imm 12 10 10 10 12 8 8 8

PCLMULQDQ xmm1, xmm2, imm 7b 5 7 14 1 1 2 8

b: includes 1-cycle bubble due to bypass.

Table 7-8. 256-bit Intel® AVX Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

06_4E,
06_5E

06_3D/
47/56

06_3C/4
5/46/3F

06_3A
/3E

INSTRUCTION LATENCY AND THROUGHPUT

7-10

Table 7-10. Intel® SSE4.2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C
/45/46
/3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

CRC32 r32, r32 3 3 3 3 1 1 1 1

PCMPESTRI xmm1, xmm2, imm 15 10 10 11 5 4 4 4

PCMPESTRM xmm1, xmm2, imm 10 10 10 11 6 5 5 4

PCMPISTRI xmm1, xmm2, imm 15 10 10 11 3 3 3 3

PCMPISTRM xmm1, xmm2, imm 15 11 11 11 3 3 3 3

PCMPGTQ xmm1, xmm2 3 5 5 5 0.33 1 1 1

POPCNT r32, r32 3 3 3 3 1 1 1 1

POPCNT r64, r64 3 3 3 3 1 1 1 1

Table 7-11. Intel® SSE4.1 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

BLENDPD/S xmm1, xmm2, imm 1 1 1 1 0.33 0.33 0.33 0.5

BLENDVPD/S xmm1, xmm2 1 2 2 2 1 2 2 1

DPPD xmm1, xmm2 9 7 9 9 1 1 1 1

DPPS xmm1, xmm2 13 12 14 13 2 2 2 2

EXTRACTPS xmm1, xmm2, imm 3 2 2 2 1 1 1 1

INSERTPS xmm1, xmm2, imm 1 1 1 1 1 1 1 1

MPSADBW xmm1, xmm2, imm 4 6 6 6 2 2 2 1

PACKUSDW xmm1, xmm2 1 1 1 1 1 1 1 0.5

PBLENVB xmm1, xmm2 2 2 2 2 2 2 2 1

PBLENDW xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PCMPEQQ xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PEXTRB/W/D reg, xmm1, imm 3 3 3 3 1 1 1 1

PHMINPOSUW xmm1,xmm2 4 5 5 5 1 1 1 1

PINSRB/W/D xmm1,reg, imm 2 2 2 2 1 1 1 1

PMAXSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMAXUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMOVSXBD/BW/BQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMOVSXWD/WQ/DQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

7-11

INSTRUCTION LATENCY AND THROUGHPUT

PMOVZXBD/BW/BQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMOVZXWD/WQ/DQ xmm1, xmm2 1 1 1 1 1 1 1 0.5

PMULDQ xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULLD xmm1, xmm2 10c 10 10 5 2 2 2 1

PTEST xmm1, xmm2 3 2 2 2 1 1 1 1

ROUNDPD/PS xmm1, xmm2, imm 6 6 6 3 2 2 2 1

ROUNDSD/SS xmm1, xmm2, imm 6 6 6 3 2 2 2 1

b: includes 1-cycle bubble due to bypass
c: includes two 1-cycle bubbles due to bypass

Table 7-12. Intel® SSE3 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A/
3E/2A/
2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A/
3E/2A/
2D

PALIGNR xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PHADDD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PMADDUBSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULHRSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PSHUFB xmm1, xmm2 1 1 1 1 1 1 1 0.5

PSIGNB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PABSB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

b: includes 1-cycle bubble due to bypass

Table 7-11. Intel® SSE4.1 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D
/47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

06_4E,
06_5E

06_3D/
47/56

06_3C/
45/46/
3F

06_3A
/3E/2A
/2D

INSTRUCTION LATENCY AND THROUGHPUT

7-12

Table 7-13. Intel® SSE3 SIMD Floating-point Instructions
Instruction Latency1 Throughput

DisplayFamily_DisplayMo
del

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

ADDSUBPD/ADDSUBPS 4 3 3 3 0.5 1 1 1

HADDPD xmm1, xmm2 6 5 5 5 2 2 2 2

HADDPS xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPD xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPS xmm1, xmm2 6 5 5 5 2 2 2 2

MOVDDUP xmm1, xmm2 1 1 1 1 1 1 1 1

MOVSHDUP xmm1, xmm2 1 1 1 1 1 1 1 1

MOVSLDUP xmm1, xmm2 1 1 1 1 1 1 1 1

Table 1-14. Intel® SIM SSE2 128-bit Integer Instructions
Instruction Latency1 Throughput

CPUID
06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

CVTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

CVTTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

MASKMOVDQU xmm, xmm 7 6 6 6

MOVD xmm, r64/r32 2 1 1 1 1 1 1 1

MOVD r64/r32, xmm 2 1 1 1 1 1 1 1

MOVDQA xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVDQU xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVQ xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm

1 1 1 1 1 1 1 0.5

PADDB/PADDW/PADDD
xmm, xmm

1 1 1 1 0.33 0.5 0.5 0.5

PADDSB/PADDSW/
PADDUSB/PADDUSW
xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PADDQ/ PSUBQ3 xmm, xmm 1 1 1 1 0.33 0.5 0.5 0.5

PAND xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PANDN xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PAVGB/PAVGW xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PCMPGTB/PCMPGTD/PCMP
GTW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PEXTRW r32, xmm, imm8 3 3 3 3 1 1 1 1

PINSRW xmm, r32, imm8 2 2 2 2 2 2 2 1

7-13

INSTRUCTION LATENCY AND THROUGHPUT

PMADDWD xmm, xmm 5b 5 5 5 0.5 1 1 1

PMAX xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMIN xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMOVMSKB3 r32, xmm 2 2 2 2 1 1 1 1

PMULHUW/PMULHW/
PMULLW xmm, xmm

5b 5 5 5 0.5 1 1 1

PMULUDQ xmm, xmm 5b 5 5 5 0.5 1 1 1

POR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PSADBW xmm, xmm 3 5 5 5 1 1 1 1

PSHUFD xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSHUFHW xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSHUFLW xmm, xmm, imm8 1 1 1 1 1 1 1 0.5

PSLLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSLLW/PSLLD/PSLLQ xmm,
imm8

1 1 1 1 1 1 1 1

PSLL/PSRL xmm, xmm 2 2 2 2 1 1 1 1

PSRAW/PSRAD xmm, imm8 1 1 1 1 1 1 1 1

PSRAW/PSRAD xmm, xmm 2 2 2 2 1 1 1 1

PSRLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSRLW/PSRLD/PSRLQ xmm,
imm8

1 1 1 1 1 1 1 1

PSUBB/PSUBW/PSUBD
xmm, xmm

1 1 1 1 0.33 0.5 0.5 0.5

PSUBSB/PSUBSW/PSUBUSB
/PSUBUSW xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PUNPCKHBW/PUNPCKHWD/
PUNPCKHDQ xmm, xmm

1 1 1 1 1 1 1 0.5

PUNPCKHQDQ xmm, xmm 1 1 1 1 1 1 1 0.5

PUNPCKLBW/PUNPCKLWD/
PUNPCKLDQ xmm, xmm

1 1 1 1 1 1 1 0.5

PUNPCKLQDQ xmm, xmm 1 1 1 1 1 1 1 0.5

PXOR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

b: includes 1-cycle bubble due to bypass

Table 1-14. Intel® SIM SSE2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID
06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A/3
E/2A/2D

INSTRUCTION LATENCY AND THROUGHPUT

7-14

Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions
Instruction Latency1 Throughput

CPUID 06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

ADDPD xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSD xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPD xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPD xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPD xmm, xmm, imm8 4 3 3 3 0.5 1 1 1

CMPSD xmm, xmm, imm8 4 3 3 3 0.5 1 1 1

COMISD xmm, xmm 2 2 2 2 1 1 1 1

CVTDQ2PD xmm, xmm 5 4 4 4 1 1 1 1

CVTDQ2PS xmm, xmm 4 3 3 3 1 1 1 1

CVTPD2DQ xmm, xmm 5 4 4 4 1 1 1 1

CVTPD2PS xmm, xmm 5 4 4 4 1 1 1 1

CVT[T]PS2DQ xmm, xmm 4 3 3 3 1 1 1 1

CVTPS2PD xmm, xmm 5 2 2 2 1 1 1 1

CVT[T]SD2SI r64/r32, xmm 6 4 4 5 1 1 1 1

CVTSD2SS xmm, xmm 5 4 4 4 1 1 1 1

CVTSI2SD xmm, r64/r32 5 3 3 4 1 1 1 1

CVTSS2SD xmm, xmm 5 2 2 2 1 1 1 1

CVTTPD2DQ xmm, xmm 5 4 4 4 1 1 1 1

CVTTSD2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPD xmm, xmm1 14 <14 14-20 16-22
(15-20)

4 8 13 22(14)

DIVSD xmm, xmm 14 <14 14-20 16-22
(15-20)

4 5 13 22(14)

MAXPD xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSD xmm, xmm 4 3 3 3 0.5 1 1 1

MINPD xmm, xmm 4 3 3 3 0.5 1 1 1

MINSD xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MOVMSKPD r64/r32, xmm 2 2 2 2 1 1 1 1

MOVSD xmm, xmm 1 1 1 1 1 1 1 1

MOVUPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MULPD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

MULSD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

ORPD xmm, xmm 1 1 1 1 0.33 1 1 1

SHUFPD xmm, xmm, imm8 1 1 1 1 1 1 1 1

SQRTPD xmm, xmm2 18 20 20 22(21) 6 13 13 22(14)

SQRTSD xmm, xmm 18 20 20 22(21) 6 7 13 22(14)

SUBPD xmm, xmm 4 3 3 3 0.5 1 1 1

7-15

INSTRUCTION LATENCY AND THROUGHPUT

SUBSD xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISD xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPD xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPD xmm, xmm 1 1 1 1 1 1 1 1

XORPD3 xmm, xmm 1 1 1 1 0.33 1 1 1

NOTES:
1. The latency and throughput of DIVPD/DIVSD can vary with input values. For certain values, hardware can complete

quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles.

2. The latency throughput of SQRTPD/SQRTSD can vary with input value. For certain values, hardware can complete quickly,
throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than10 cycles.

Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions
Instruction Latency1 Throughput

CPUID

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

ADDPS xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSS xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPS xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPS xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPS xmm, xmm 4 3 3 3 0.5 1 1 1

CMPSS xmm, xmm 4 3 3 3 0.5 1 1 1

COMISS xmm, xmm 2 2 2 2 1 1 1 1

CVTSI2SS xmm, r32 6 4 4 5 1 1 1 1

CVTSS2SI r32, xmm 6 4 4 5 1 1 1 1

CVT[T]SS2SI r64, xmm 6 4 4 5 1 1 1 1

CVTTSS2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPS xmm, xmm1 11 <11 <13 10-14 3 4 6 14(6)

DIVSS xmm, xmm 11 <11 <13 10-14 3 2.5 6 14(6)

MAXPS xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSS xmm, xmm 4 3 3 3 0.5 1 1 1

MINPS xmm, xmm 4 3 3 3 0.5 1 1 1

MINSS xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MOVHLPS xmm, xmm 1 1 1 1 1 1 1 1

MOVLHPS xmm, xmm 1 1 1 1 1 1 1 1

MOVMSKPS r64/r32, xmm 2 2 2 2 1 1 1 1

Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID 06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

INSTRUCTION LATENCY AND THROUGHPUT

7-16

MOVSS xmm, xmm 1 1 1 1 1 1 1 1

MOVUPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MULPS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

MULSS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

ORPS xmm, xmm 1 1 1 1 0.33 1 1 1

RCPPS xmm, xmm 4 5 5 5 1 1 1 1

RCPSS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTPS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTSS xmm, xmm 4 5 5 5 1 1 1 1

SHUFPS xmm, xmm, imm8 1 1 1 1 1 1 1 1

SQRTPS xmm, xmm2 13 13 13 14 3 7 7 14(7)

SQRTSS xmm, xmm 13 13 13 14 3 4 7 14(7)

SUBPS xmm, xmm 4 3 3 3 0.5 1 1 1

SUBSS xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISS xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPS xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPS xmm, xmm 1 1 1 1 1 1 1 1

XORPS xmm, xmm 1 1 1 1 1 1 1 1

LFENCE3 6 5 5 4

MFENCE3 ~40 ~35 ~35 ~35

SFENCE3 7 6 6 5

STMXCSR3 1 1 1 1

FXSAVE3 ~90 ~71 ~75 ~78

NOTES:
1. The latency and throughput of DIVPS/DIVSS can vary with input values. For certain values, hardware can complete

quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles.

2. The latency and throughput of SQRTPS/SQRTSS can vary with input values. For certain values, hardware can complete
quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less than 10
cycles

3. The throughputs of FXSAVE/LFENCE/MFENCE/SFENCE/STMXCSR are measured with the destination in L1 Data Cache.

Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

06_4E,
06_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_2A/2
D(06_3A/
3E)

7-17

INSTRUCTION LATENCY AND THROUGHPUT

Table 1-17. General Purpose Instructions
Instruction Latency1 Throughput

CPUID 06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

ADC/SBB reg, reg 1 2 2 2 0.5 1 1 1

ADC/SBB reg, imm 1 2 2 2 0.5 1 1 1

ADD/SUB 1 1 1 1 0.25 0.25 0.25 0.33

AND/OR/XOR 1 1 1 1 0.25 0.25 0.25 0.33

BSF/BSR 3 3 3 3 1 1 1 1

BSWAP 2 2 2 2 0.5 0.5 0.5 1

BT 1 1 1 1 0.5 0.5 0.5 0.5

BTC/BTR/BTS 1 1 1 1 0.5 0.5 0.5 0.5

CBW/CWDE/CDQE 1 1 1 1 1 1 1 1

CDQ 1 1 1 1 1 1 1 1

CQO 1 1 1 1 0.5 0.5 0.5 0.5

CLC 0.25 0.33 0.33 0.33

CMC 0.25 0.33 0.33 0.33

STC 0.25 0.33 0.33 0.33

CLFLUSH12 ~2 to 50 ~3 to 50 ~3 to 50 ~5 to 50

CLFLUSHOPT13 ~2to 10 NA NA NA

CMOVE/CMOVcc 1 1 2 2 0.5 0.5 0.5 0.5

CMOVBE/NBE/A/NA 2 2 3 3 1 1 1 1

CMP/TEST 1 1 1 1 0.25 0.25 0.25 0.33

CPUID (EAX = 0) ~100 ~100 ~100 ~95

CPUID (EAX != 0) >200 >200 >200 >200

CMPXCHG r64, r64 5 5 5 5 5 5 5 5

CMPXCHG8B m64 15 8 8 8 15 8 8 8

CMPXCHG16B m128 19 10 10 10 19 10 10 10

Lock CMPXCHG8B m64 22 19 19 24 22 19 19 24

Lock CMPXCHG16B m128 32 28 28 29 32 28 28 29

DEC/INC 1 2 2 2 0.25 0.25 0.25 0.33

IMUL r64, r64 3 3 3 3 1 1 1 1

IMUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

IMUL r32 5 4 4 4 1 1 1 1

IDIV r64 (RDX!= 0)8 ~85-100 ~85-100 ~85-100 ~85-100

IDIV r329 ~20-26 ~20-26 ~20-26 ~19-25

LEA 1 1 1 1 0.5 0.5 0.5 0.5

LEA [base+index]disp 3 3 3 3 1 1 1 1

MOVSB/MOVSW 1 1 1 1 0..25 0..25 0..25 0.33

MOVZB/MOVZW 1 1 1 1 0.25 0.25 0.25 0.33

DIV r64 (RDX!= 0)8 ~80-95 ~80-95 ~80-95 ~80-95

DIV r329 ~20-26 ~20-26 ~20-26 ~19-25

INSTRUCTION LATENCY AND THROUGHPUT

7-18

7.3.2 Table Footnotes
The following footnotes refer to all tables in this appendix.

1. Latency information for many instructions that are complex (> 4 ops) are estimates based on
conservative (worst-case) estimates. Actual performance of these instructions by the out-of-order
core execution unit can range from somewhat faster to significantly faster than the latency data
shown in these tables.

2. Latency and Throughput of transcendental instructions can vary substantially in a dynamic execution
environment. Only an approximate value or a range of values are given for these instructions.

3. It may be possible to construct repetitive calls to some Intel 64 and IA-32 instructions in code
sequences to achieve latency that is one or two clock cycles faster than the more realistic number
listed in this table.

4. The FXCH instruction has 0 latency in code sequences. However, it is limited to an issue rate of one
instruction per clock cycle.

5. The load constant instructions, FINCSTP, and FDECSTP have 0 latency in code sequences.

6. Selection of conditional jump instructions should be based on the recommendation of Section 3.4.1,
“Branch Prediction Optimization,” to improve the predictability of branches. When branches are
predicted successfully, the latency of jcc is effectively zero.

MUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

NEG/NOT 1 2 2 2 0.25 0.25 0.25 0.33

PAUSE ~140 ~10 ~10 ~10

RCL/RCR reg, 1 2 2 2 2 2 1.5 1.5 1.5

RCL/RCR 6 6 6 6 6 6 6 6

RDTSC ~13 ~10 ~10 ~20

RDTSCP ~20 ~30 ~30 ~30

ROL/ROR reg 1 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 1 1 1

ROL/ROR reg imm 1 1 1 1 0.5 0.5 0.5 0.5

ROL/ROR reg, cl 2 2 2 2 1.5 1.5 1.5 1.5

LAHF/SAHF 3 2 2 2

SAL/SAR/SHL/SHR reg, imm 1 1 1 1 0.5 0.5 0.5 0.5

SAL/SAR/SHL/SHR reg, cl 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

SETBE 2 2 2 2 1 1 1 1

SETE 1 1 1 1 0.5 0.5 0.5 0.5

SHLD/RD reg, reg, cl 6 4 4 2 (4 flg) 1.5 1 1 1.5

SHLD/RD reg, reg, imm 3 3 3 1 0.5 0.5 0.5 0.5

XSAVE11 ~98 ~100 ~100 ~100

XSAVEOPT11 ~86 ~90 ~90 ~90

XADD 2 2 2 2 1 1 1 1

XCHG reg, reg 1 1 1 2 1 1 1 1

XCHG reg, mem 22 19 19 19 22 19 19 19

Table 1-17. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput

CPUID 06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

06_4E,06
_5E

06_3D/4
7/56

06_3C/4
5/46/3F

06_3A,
06_3E

7-19

INSTRUCTION LATENCY AND THROUGHPUT

7. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count other than 1 will be
executed more slowly. This applies to the Pentium 4 and Intel Xeon processors.

8. The throughput of “DIV/IDIV r64” varies with the number of significant digits in the input RDX:RAX.
The throughput is significantly higher if RDX input is 0, similar to those of “DIV/IDIV r32”. If RDX is
not zero, the throughput is significantly lower, as shown in the range. The throughput decreases
(increasing numerical value in cycles) with increasing number of significant bits in the input RDX:RAX
(relative to the number of significant bits of the divisor) or the output quotient. The latency of
“DIV/IDIV r64” also varies with the significant bits of input values. For a given set of input values, the
latency is about the same as the throughput in cycles.

9. The throughput of “DIV/IDIV r32” varies with the number of significant digits in the input EDX:EAX
and/or of the quotient of the division for a given size of significant bits in the divisor r32. The
throughput decreases (increasing numerical value in cycles) with increasing number of significant
bits in the input EDX:EAX or the output quotient. The latency of “DIV/IDIV r32” also varies with the
significant bits of the input values. For a given set of input values, the latency is about the same as
the throughput in cycles.

10. The latency of MUL r64 into 128-bit result has two sets of numbers, the read-to-use latency of the
low 64-bit result (RAX) is smaller. The latency of the high 64-bit of the 128 bit result (RDX) is larger.

11. The throughputs of XSAVE and XSAVEOPT are measured with the destination in L1 Data Cache and
includes the YMM states.

12. CLFLUSH throughput is representative from clean cache lines for a range of buffer sizes. CLFLUSH
throughput can decrease significantly by factors including: (a) the number of back-to-back CLFLUSH
being executed, (b) flushing modified cache lines incurs additional cost than cache lines in other
coherent state. See Section 9.4.6.

13. CLFLUSHOPT throughput is representative from clean cache lines for a range of buffer sizes.
CLFLUSHOPT throughput can decrease by factors including: (a) flushing modified cache lines incurs
additional cost than cache lines in other coherent state, (b) the number of cache lines back-to-back.
See Section 9.4.7.

7.3.3 Instructions with Memory Operands
The latency of an Instruction with memory operand can vary greatly due to a number of factors, including
data locality in the memory/cache hierarchy and characteristics that are unique to each
microarchitecture. Generally, software can approach tuning for locality and instruction selection
independently. Thus Table 7-4 through Table 7-18 can be used for the purpose of instruction selection.
Latency and throughput of data movement in the cache/memory hierarchy can be dealt with indepen-
dent of instruction latency and throughput. Load-to-use Latency of the cache hierarchy can be found in
Chapter 2.

7.3.3.1 Software Observable Latency of Memory References
When measuring latency of memory references of individual instructions, many factors can influence the
observed latency exposure. Aside from access patterns, cache locality, effect of the hardware
prefetchers, different microarchitectures may expose variability such register domains of the destination
or memory addressing form with respect to the instruction encoding.

Table 7-18 gives a few selected sampling of the variability of L1D cache hit latency that software may
observe using pointer-chasing constructs, due to memory reference encoding details, on recent Intel
microarchitectures.

INSTRUCTION LATENCY AND THROUGHPUT

7-20

Table 7-18. Pointer-Chasing Variability of Software Measurable Latency of L1 Data Cache Latency

Pointer Chase Construct L1D latency Observation

MOV rax, [rax] 4

MOV rax, disp32[rax] , disp32 < 2048 4

MOV rax, [rcx+rax] 5

MOV rax, disp32[rcx+rax] , disp32 < 2048 5

	Revision History
	Preface
	1. Updates to Chapter 2
	Chapter 2 Intel® 64 and IA-32 Processor Architectures
	2. Updates to Chapter 3
	Chapter 3 General Optimization Guidelines
	5. Updates to Chapter 5
	Chapter 5 Coding for SIMD Architectures
	4. Updates to Chapter 20
	Chapter 20 Intel® Advanced Matrix Extensions (Intel® AMX)
	5. Updates to Appendix E
	Chapter 1 Haswell Microarchitecture
	Chapter 2 Sandy Bridge Microarchitecture
	Chapter 3 Intel® Core™ Microarchitecture and Enhanced Intel® Core™ Microarchitecture
	Chapter 4 Nehalem Microarchitecture
	Chapter 5 Knights landing Microarchitecture Optimization
	6. Updates to Appendix F
	Chapter 6 Earlier Generations of Intel Atom® Microarchitecture and Software Optimization
	7. Updates to Appendix D
	Chapter 7 Instruction Latency and Throughput

