
Intel® 64 and IA-32 Architectures
Optimization Reference Manual

Documentation Changes

Document Number: 355308-003US

January 2024

Document Number: 355308-050US 2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any
patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document, with the sole exception that a) you may publish an unmodified copy and b) code included in this
document is licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/
licenses/0BSD. You may create software implementations based on this document and in compliance with the
foregoing that are intended to execute on the Intel product(s) referenced in this document. No rights are granted
to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

Document Number: 355308-050US 3

Contents

Revision History. 4

Preface . 5

Nomenclature . 5

Summary Tables of Changes . 5

Documentation Changes . 5

Document Number: 355308-050US 4

Revision History
Date Revision Description

August 2023 048 Initial release of document.

January 2024 049 Q1 Release

April 2024 050 Q2 Release

Document Number: 355308-003US 5

Preface

This document is an update to the optimization recommendations contained in the Intel® 64 and IA-32 Architectures
Optimization Reference Manual, also known as:
• Software Optimization Manual (SOM)
• Optimization Manual
• Optimization Reference Manual (ORM)
This document is a compilation of device and documentation errata, specification clarifications and changes. It is intended for
hardware system manufacturers and software developers of applications, operating systems, or tools.

Nomenclature
Documentation Changes include gross content changes or omissions from the current published specifications . These
changes are those beyond typos, capitalization, or basic edits. These will be incorporated in any new release of the
specification upon approval.

Summary Tables of Changes
The following table indicates documentation changes which apply to the Intel® 64 and IA-32 Architecture software
optimization topics covered by this reference manual.

Documentation Changes
Changes to the Intel® 64 and IA-32 Architectures Optimization Reference Manual volumes follow, and are listed by chapter.
Only chapters with changes are included in this document.

No. DOCUMENTATION CHANGES

1 Updates to Chapter 1

2 Updates to Chapter 2

3 Updates to Chapter 4

4 Updates to Chapter 17

5 Chapter 16 is now Chapter 8 in Volume 2.

Document #: 248966-050US -1

1. Updates to Chapter 1
Change bars and violet text show changes to Chapter 1 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Introduction.

--
Changes to this chapter:

• Section 1.3: Updated Table 1-1 with Redwood Cove and Crestmont microarchitectures.

• Section 1.5: Added Definitions

• Section 1.6: Added links.

Document #: 248966-050US 1-1

INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 ABOUT THIS MANUAL
The Intel® 64 and IA-32 Architectures Optimization Reference Manual describes how to optimize software to take
advantage of the performance characteristics of IA-32 and Intel 64 architecture processors.

The target audience for this manual includes software programmers and compiler writers. This manual assumes that
the reader is familiar with the basics of the IA-32 architecture and has access to the Intel® 64 and IA-32 Architectures
Software Developer’s Manual. A detailed understanding of Intel 64 and IA-32 processors is often required. In many
cases, knowledge of the underlying microarchitectures is required.

The design guidelines discussed in this manual for developing high-performance software generally apply to current
and future IA-32 and Intel 64 processors. In most cases, coding rules apply to software running in 64-bit mode of Intel
64 architecture, compatibility mode of Intel 64 architecture, and IA-32 modes (IA-32 modes are supported in IA-32
and Intel 64 architectures). Coding rules specific to 64-bit modes are noted separately.

NOTE
A public repository is available with open source code samples from select chapters of this manual.
These code samples are released under a 0-Clause BSD license. Intel provides additional code
samples and updates to the repository as the samples are created and verified.
Public repository: https://github.com/intel/optimization-manual.
Link to license: https://github.com/intel/optimization-manual/blob/master/COPYING.

1.2 TUNING YOUR APPLICATION
Tuning an application for high performance on any Intel 64 or IA-32 processor requires understanding and basic skills
in:

• Intel 64 and IA-32 architecture.

• C and Assembly language.

• Hot-spot regions in the application that impact performance.

• Optimization capabilities of the compiler.

• Techniques used to evaluate application performance.

The Intel® VTune™ Profiler can help you analyze and locate hot-spot regions in your applications.

On many Intel processors, this tool can monitor an application through a selection of performance monitoring events
and analyze the performance event data that is gathered during code execution.

This manual also describes data that can be gathered using the performance counters through the processor’s
performance monitoring events.

https://github.com/intel/optimization-manual
https://github.com/intel/optimization-manual/blob/master/COPYING
https://github.com/intel/optimization-manual/blob/master/COPYING

Document #: 248966-050US 1-2

INTRODUCTION

1.3 INTEL PROCESSORS SUPPORTING THE INTEL® 64
ARCHITECTURE

The following is a list of Intel processors, series, and product families that support the Intel 64 Architecture1. The list
is organized by microarchitecture.

1. For more about this architecture, visit: https://www.intel.com/content/www/us/en/architecture-and-technology/microar-
chitecture/intel-64-architecture-general.html

Table 1-1. Intel Processors Organized by Microarchitecture

Microarchitecture Processor(s), Series, Product(s)

Nehalem microarchitecture (45nm) •The Intel® Core™ i7 processor
•Intel® Xeon® processor 3400, 5500, 7500 series

Westmere microarchitecture (32nm)
•Intel® Xeon® processor 5600 series
•Intel® Xeon® processor E7
•Various Intel® Core™ i7, i5, i3 processors

Sandy Bridge microarchitecture

•Intel® Xeon® processor E5 family
•Intel® Xeon® processor E3-1200 family
•Intel® Xeon® processor E7-8800/4800/2800 product families
•Intel® Core™ i7-3930K processor
•2nd generation Intel® Core™ i7-2xxx processor series
•Intel® Core™ i3-2xxx processor series

Ivy Bridge microarchitecture
•Intel® Xeon®processor E7-8800/4800/2800 v2 product families
•Intel® Xeon® processor E3-1200 v2 product family
•3rd generation Intel® Core™ processors

Ivy Bridge-E microarchitecture
•Intel® Xeon® processor E5-4600/2600/1600 v2 product families
•Intel® Xeon® processor E5-2400/1400 v2 product families
•Intel® Core™ i7-49xx Processor Extreme Edition

Haswell microarchitecture •Intel® Xeon® processor E3-1200 v3 product family
•4th Generation Intel® Core™ processors

Haswell-E microarchitecture •Intel® Xeon® processor E5-2600/1600 v3 product families
•Intel® Core™ i7-59xx Processor Extreme Edition

Airmont microarchitecture Intel® Atom® processor Z8000 series

Silvermont microarchitecture Intel® Atom® processor Z3400 series

Broadwell microarchitecture

•Intel® Core™ M processor family
•5th generation Intel® Core™ processors
• Intel® Xeon® processor D-1500 product family
• Intel® Xeon® processor E5 v4 family

Skylake microarchitecture
•Intel® Xeon® Scalable processor family
•Intel® Xeon® processor E3-1500m v5 product family
•6th generation Intel® Core™ processors

Kaby Lake microarchitecture 7th generation Intel® Core™ processors

https://www.intel.com/content/www/us/en/architecture-and-technology/microarchitecture/intel-64-architecture-general.html

Document #: 248966-050US 1-3

INTRODUCTION

Goldmont microarchitecture

•Intel Atom® processor C series
•Intel Atom® processor X series
•Intel® Pentium® processor J series
•Intel® Celeron® processor J series
•Intel® Celeron® processor N series

Knights Landing microarchitecture Intel® Xeon Phi™ Processor 3200, 5200, 7200 series

Goldmont Plus microarchitecture
•Intel® Pentium® Silver processor series
•Intel® Celeron® processor J series
•Intel® Celeron® processor N series

Coffee Lake microarchitecture
•Intel® Xeon® E processors
•8th generation Intel® Core™ processors
•9th generation Intel® Core™ processors

Knights Mill microarchitecture Intel® Xeon® Phi™ Processor 7215, 7285, 7295 Series

Cascade Lake microarchitecture 2nd generation Intel® Xeon® Scalable processor family

Ice Lake microarchitecture •Some of the 3rd generation Intel® Xeon® Scalable processor family
•Some 10th generation Intel® Core™ processors

Comet Lake microarchitecture Some 10th generation Intel® Core™ processors

Tiger Lake microarchitecture Some 11th generation Intel® Core™ processors

Rocket Lake microarchitecture Some 11th generation Intel® Core™ processors

Cooper Lake microarchitecture Some of the 3rd generation Intel® Xeon® Scalable processor family

Gracemont microarchitecture Intel N-Series processors

Alder Lake microarchitecture 12th generation Intel® Core™ processors

Raptor Lake microarchitecture •13th generation Intel® Core™ processors
•14th generation Intel® Core™ processors

Sapphire Rapids microarchitecture 4th generation Intel® Xeon® Scalable processor family

Emerald Rapids microarchitecture 5th generation Intel® Xeon® Scalable processor family

Granite Lake microarchitecture 6th generation Intel® Xeon® Scalable processor family

Meteor Lake microarchitecture 1st generation Intel® Core™ Ultra processors

Table 1-1. (Contd.)Intel Processors Organized by Microarchitecture

Microarchitecture Processor(s), Series, Product(s)

Document #: 248966-050US 1-4

INTRODUCTION

1.4 ORGANIZATION OF THIS MANUAL
This manual is divided into two volumes. The first considers the optimization of newer products and technologies.
Volume Two considers older technology that may not currently be supported.

1.4.1 CHAPTER SUMMARIES

1.4.1.1 Volume 1
• Chapter 1: Introduction: Defines the purpose and outlines the contents of this manual.

• Chapter 2: Intel® 64 and IA-32 Processor Architectures: Describes the microarchitecture of recent Intel 64 and IA-
32 processor families, and other features relevant to software optimization.

• Chapter 3: General Optimization Guidelines: Describes general code development and optimization techniques
that apply to all applications designed to take advantage of the common features of current Intel processors.

• Chapter 4: Intel Atom® Processor Architecture: Describes the microarchitecture of recent Intel Atom processor
families, and other features relevant to software optimization.

• Chapter 5: Coding for SIMD Architectures: Describes techniques and concepts for using the SIMD integer and
SIMD floating-point instructions provided by the MMX™ technology, Streaming SIMD Extensions, Streaming
SIMD Extensions 2, Streaming SIMD Extensions 3, SSSE3, and SSE4.1.

• Chapter 6: Optimizing for SIMD Integer Applications: Provides optimization suggestions and common building
blocks for applications that use the 128-bit SIMD integer instructions.

• Chapter 7: Optimizing for SIMD Floating-point Applications: Provides optimization suggestions and common
building blocks for applications that use the single-precision and double-precision SIMD floating-point
instructions.

• Chapter 8: INT8 Deep Learning Inference: Describes INT8 as a data type for Deep learning Inference on Intel
technology. The document covers both AVX-512 implementations and implementations using the new Intel® DL
Boost Instructions.

• Chapter 9: Optimizing Cache Usage: Describes how to use the PREFETCH instruction, cache control
management instructions to optimize cache usage, and the deterministic cache parameters.

• Chapter 10: Introducing Sub-NUMA Clustering: Describes Sub-NUMA Clustering (SNC), a mode for improving
average latency from last level cache (LLC) to local memory.

• Chapter 11: Multicore and Intel® Hyper-Threading Technology: Describes guidelines and techniques for
optimizing multithreaded applications to achieve optimal performance scaling. Use these when targeting
multicore processor, processors supporting Hyper-Threading Technology, or multiprocessor (MP) systems.

• Chapter 12: Intel® Optane™ DC Persistent Memory: Provides optimization suggestions for applications that use
Intel® Optane™ DC Persistent Memory.

• Chapter 13: 64-Bit Mode Coding Guidelines: This chapter describes a set of additional coding guidelines for
application software written to run in 64-bit mode.

• Chapter 14: SSE4.2 and SIMD Programming for Text-Processing/Lexing/Parsing: Describes SIMD techniques of
using SSE4.2 along with other instruction extensions to improve text/string processing and lexing/parsing
applications.

• Chapter 15: Optimizations for Intel® AVX, FMA, and Intel® AVX2: Provides optimization suggestions and
common building blocks for applications that use Intel® Advanced Vector Extensions, FMA, and Intel® Advanced
Vector Extensions 2 (Intel® AVX2).

Document #: 248966-050US 1-5

INTRODUCTION

• Chapter 16: Intel Transactional Synchronization Extensions: Tuning recommendations to use lock elision
techniques with Intel Transactional Synchronization Extensions to optimize multi-threaded software with
contended locks.

• Chapter 16: Power Optimization for Mobile Usages: This chapter provides background on power saving
techniques in mobile processors and makes recommendations that developers can leverage to provide longer
battery life.

• Chapter 17: Software Optimization for Intel® AVX-512 Instructions: Provides optimization suggestions and
common building blocks for applications that use Intel® Advanced Vector Extensions 512.

• Chapter 18: Intel® Advanced Vector Extensions 512-FP16 Instruction Set for Intel® Xeon® Processors: Describes
the addition of the FP16 ISA for Intel AVX-512 to handle IEEE 754-2019 compliant half-precision floating-point
operations.

• Chapter 19: Cryptography & Finite Field Arithmetic Enhancements: Describes the new instruction extensions
designated for acceleration of cryptography flows and finite field arithmetic.

• Chapter 20: Intel® Advanced Matrix Extensions (Intel® AMX): Describes best practices to optimally code to the
metal on Intel® Xeon® Processors based on Sapphire Rapids SP microarchitecture. It extends the public
documentation on Optimizing DL code with DL Boost instructions.

• Chapter 21: Intel® QuickAssist Technology (Intel® QAT): Describes software development guidelines for the
Intel® QuickAssist Technology (Intel® QAT) API. This API supports both the Cryptographic and Data Compression
services.

• Appendix A: Application Performance Tools: Introduces tools for analyzing and enhancing application
performance without having to write assembly code.

• Appendix B: Using Performance Monitoring Events: Provides information on the Top-Down Analysis Method
and information on how to use performance events specific to the Intel Xeon processor 5500 series, processors
based on Sandy Bridge microarchitecture, and Intel Core Solo and Intel Core Duo processors.

• Appendix C: Intel Architecture Optimization with Large Code Pages: Provides information on how the
performance of runtimes can be improved by using large code pages.

1.4.1.2 Volume 2: Earlier Generations of Intel® 64 and IA-32 Processor Architectures
• Chapter 1: Haswell Microarchitecture: Describes the Haswell microarchitecture.

• Chapter 2: Sandy Bridge Microarchitecture: Describes the Sandy Bridge microarchitecture and associated
considerations.

• Chapter 3: Intel® Core™ Microarchitecture and Enhanced Intel® Core™ Microarchitecture: Describes the Intel®
Core™ and Enhanced Intel® Core ™microarchitectures and associated considerations.

• Chapter 4: Nehalem Microarchitecture: Describes the Sandy Bridge microarchitecture and associated
considerations.

• Chapter 5: Knights Landing Microarchitecture Optimization: Describes the Sandy Bridge microarchitecture and
associated considerations, including Multithreading and Intel® HyperThreading Technology (Intel® HT).

• Chapter 6: Earlier Generations of Intel Atom® Microarchitecture and Software Optimization: Describes the
microarchitecture of earlier generations of processor families based on Intel Atom microarchitecture, and
software optimization techniques targeting Intel Atom microarchitecture.

Document #: 248966-050US 1-6

INTRODUCTION

1.5 GLOSSARY
Table 1-2 provides definitions of commonly used terms throughout this volume.

Table 1-2. Term Definitions

Term Description

Arithmetic formats
Sets of binary and decimal floating-point data, which consist of finite numbers
(including signed zeros and subnormal numbers), infinities, and special "not a
number” values.

CFP16
Complex-valued floating-point format comprising two FP16 values representing the
real and imaginary values respectively. When used in SIMD, the individual
real/imaginary values from each complex value are interleaved in the register.

Denormal A subset of denormalized numbers that fill the underflow gap around zero in
floating-point arithmetic.

FP16 Half precision 16-bit floating-point data format.

FP32 Single precision 32-bit floating-point data format.

FP64 Double precision 64-bit floating-point data format.

FFT Fast Fourier Transform.

IEEE 754-2019 The current IEEE Standard for Floating-Point Arithmetic used in Intel® AVX-512 FP16
instructions.

Intel® AVX Intel® Advanced Vector Extensions.

Intel® AVX2 Intel® Advanced Vector Extensions 2.

Intel® AVX-512 Intel® Advanced Vector Extensions 512.

Intel® AVX-512 FP16 ISA for handling half precision floating-point, added as an extension to Intel AVX-512.

Intrinsic
A function that can be called from a high-level language, like C/C++, which gives
direct access to the underlying ISA. Intrinsics allow the programmer to bypass the
compiler and directly specify that a particular instruction be used.

ISA Instruction Set Architecture1: a part of the abstract model of a computer, which
generally defines how software controls the CPU2.

MMSE Minimum Mean Squared Error.

NaN Not A Number. A way to represent a value that is undefined or unrepresentable. For
example, the square root of a negative number would generate a NaN value.

Normal A floating-point number that can be represented without leading zeros in its
significand.

SIMD Single instruction, multiple data. A way of packing several data elements into a single
container and operating on them all at once.3

SINR Signal-to-Interference-plus-Noise Ratio.

SSE SIMD Streaming Extensions4.

Document #: 248966-050US 1-7

INTRODUCTION

1.6 RELATED INFORMATION
For more information on the Intel® architecture, techniques, and the processor architecture terminology, the
following are of particular interest. Intel publishes new and updated content continuously.

µop

Also uop. Refers to micro-operations (micro-ops) and is usually identified in code as
UOP. Micro-operations are detailed low-level instructions used in some designs to
implement complex machine instructions (sometimes referred to as macro-
instructions in this context).5

NOTES:
1. See Intel’s Instruction Set Architecture landing page.
2. See Wikipedia.
3. See Chapter 5, “Coding for SIMD Architectures”
4. See Intel’s Instruction Set Extensions Technology Support landing page.
5. See Wikipedia for a deep dive.

Table 1-3. Additional References in and Beyond this Document

Title Description

Intel® 64 and IA-32 Architectures Software Developer’s
Manual

These manuals describe the architecture and
programming environment of the Intel® 64 and IA-32
architectures. This links directly to the PDF containing
all 4 columns of the content.

CPU Tuning and Optimization Guides This page includes guides covering specific Processors
and technologies.

Intel® 64 Architecture Processor Topology Enumeration
Covers the topology enumeration algorithm for
single-socket to multiple-socket platforms using Intel®
64 and IA-32 processors.

Intel® Artificial Intelligence (Intel® AI) Solutions landing
page

The official source for development using Intel® AI
solutions supporting Deep Learning (DL) and Machine
Learning (ML). Includes a section with documentation.

Support for Intel® Processors
Landing page for support information for Intel®
processors including featured content, downloads,
specifications, warranty, and community posts.

Get Started with Intel® Fortran Compiler Classic and
Intel® Fortran Compiler

A guide to the basics of using Intel® Fortran Compilers:
ifort and ifx. Please note: IFORT will be discontinued in
October 2024.

Intel® C++ Compiler Classic (ICC) Developer Guide and
Reference

Contains information about the Intel® C++ Compiler
Classic (icc for Linux* and icl for Windows*) compiler
and runtime environment.

Intel® Data Streaming Accelerator User Guide

Table 1-2. Term Definitions

Term Description

https://www.intel.com/content/www/us/en/content-details/775917/intel-64-architecture-processor-topology-enumeration-technical-paper.html
https://www.intel.com/content/www/us/en/artificial-intelligence/overview.html
https://www.intel.com/content/www/us/en/developer/technical-library/cpu-tuning-guides.html
https://en.wikipedia.org/wiki/Micro-operation
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#inpage-nav-4
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/get-started-guide/2024-0/overview.html
https://cdrdv2.intel.com/v1/dl/getContent/671200

Document #: 248966-050US 1-8

INTRODUCTION

Intel® Developer Zone Landing Page The official source for developing on Intel® hardware
and software. Includes documentation.

Intel® Developer Catalog Find software and tools to develop and deploy
solutions optimized for Intel® architecture.

Intel® Development Topics & Technologies landing
page

A landing page devoted to everything from storage to
computer vision (CV).

Intel® Distribution of OpenVino™ Toolkit landing page
The official source for the Intel® distribution of
OpenVINO™, an open source toolkit that simplifies
deployment. Includes a section with documentation.

Intel® Hyper-Threading Technology
(Intel® HT Technology)

An overview of Intel® HT Technology. This links directly
to the PDF.

Intel® In-Memory Analytics Accelerator Architecture
Specification

Describes the architecture of the Intel® In-Memory
Analytics Accelerator (Intel® IAA). This links directly to
the PDF.

Intel® Instruction Set Extensions Technology Support
A landing page dedicated to all content related to
supporting the Intel® ISE technologies. Includes the
Intel® SSE4 Programming Reference.

Intel® oneAPI Data Analytics Library Landing Page
The official source for development using Intel® one
API Data Analytics Library (oneDAL). Includes a section
with documentation.

Intel® oneAPI DPD++/C++ Compiler
Intel® oneAPI DPC++/C++ Compile, a standards-based,
cross-architecture compiler and update to both ifort
and ifx.

Intel® QuickAssist Technology (Intel® QAT)
The official source for the Intel® QuickAssist
Technology (Intel® QAT). Includes a section with
documentation.

Intel® VTune™ Profiler User Guide

 A comprehensive overview of the product
functionality, tuning methodologies, workflows, and
instructions to use the Intel® VTune™ Profiler
performance analysis tool. This links directly to the
PDF.

Intel® Xeon® Processors Technical Resources Page A landing page including technical resources for all
Intel® Xeon® Scalable processors.

C2C - False Sharing Detection in Linux Perf An introduction to perf c2c in Linux.

Developing Multi-Threaded Applications: A Platform
Consistent Approach

The objective of the Multithreading Consistency Guide
is to provide guidelines for developing efficient
multithreaded applications across Intel-based
symmetric multiprocessors (SMP) and/or systems with
Intel® Hyper-Threading Technology (Intel® HT). (2005)

Table 1-3. Additional References in and Beyond this Document

Title Description

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onedal.html#gs.2oubpj
https://joemario.github.io/blog/2016/09/01/c2c-blog/
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/quick-assist-technology/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html#gs.2otyli
https://www.intel.com/content/www/us/en/developer/tools/software-catalog/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/overview.html?wapkw=Development%20Topics%20%26%20Technologies#gs.2orxhw
https://cdrdv2.intel.com/v1/dl/getContent/671200

Document #: 248966-050US -1

2. Updates to Chapter 2
Change bars and violet text show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Intel® 64 and IA-32 Processor Architectures.

--
Changes to this chapter:

• Section 2.1

— Section 2.1.1: New section: The Redwood Cove Microarchitecture.

— Figure 2-1: New additional image.

• Section 2.8: Added new heading: Intel® 64 and IA-32 Instruction Best Practices.

— 2.8.1: New section: Non-Privileged Instruction Serialization.

Document #: 248966-050US 2-1

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

CHAPTER 2
INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

This chapter overviews features relevant to software optimization for current generations of Intel® 64 and IA-32
processors1. These features include:

• Microarchitectures that enable executing instructions with high throughput at high clock speeds, a high-speed
cache hierarchy, and a high-speed system bus.

• Intel® Hyper-Threading Technology2 (Intel® HT Technology) support.

• Intel 64 architecture on Intel 64 processors.

• Single Instruction Multiple Data (SIMD) instruction extensions: MMX™ technology, Streaming SIMD Extensions
(Intel® SSE), Streaming SIMD Extensions 2 (Intel® SSE2), Streaming SIMD Extensions 3 (Intel® SSE3), Supplemental
Streaming SIMD Extensions 3 (SSSE3), Intel® SSE4.1, and Intel® SSE4.2.

• Intel® Advanced Vector Extensions (Intel® AVX).

• Half-precision floating-point conversion and RDRAND.

• Fused Multiply Add Extensions.

• Intel® Advanced Vector Extensions 2 (Intel® AVX2).

• ADX and RDSEED.

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512).

• Intel® Thread Director.

2.1 6TH GENERATION INTEL® XEON® SCALABLE PROCESSOR
FAMILY

2.1.1 THE REDWOOD COVE MICROARCHITECTURE
The Redwood Cove microarchitecture is the successor of the Golden Cove microarchitecture. The Redwood Cove
microarchitecture introduces the following enhancements:

• Improvements for larger code footprint workloads.

• Larger instruction cache: 32K→64K.

• Branch Hint x86 architecture extension.

• Code Software Prefetch x86 architecture extension (Granite Rapids only).

• Improved LSD coverage: the IDQ can hold 192 uops per logical processor in single-thread mode or 96 uops per
thread when SMT is active.

• Improved branch prediction and reduced average branch misprediction recovery latency.

• New LD+OP and MOV+OP macro fusions.

1. Intel® Atom® processors are covered in Chapter 4, “Intel Atom® Processor Architectures.”
2. Intel® HT Technology requires a computer system with an Intel processor supporting hyper-threading and an

Intel® HT Technology-enabled chipset, BIOS, and operating system. Performance varies depending on the hard-
ware and software used.

Document #: 248966-050US 2-2

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• EXE: 3-cycle Floating Point multiplication.

• Improved SMT performance and efficiency.

• Improved load lock performance.

• New HW data prefetcher to recognize and prefetch the “Array of Pointers” pattern.

• Mid-level-cache size increased to 2MBs for Client.

• Improved Memory Bandwidth.

— Increased number of outstanding misses (48→64 Deeper MLC miss queues).

— LLC Page Prefetcher.

• AMX supports FP16 for AI/ML (Granite Rapids only).

2.1.1.1 Branch Hint
If the branch predictor has stored information about a conditional branch, the predictor should use this information
to predict the branch. If the predictor does not have stored information, the predictor predicts the branch to be
not-taken. This is usually, but not always, correct.

Starting with the Redwood Cove microarchitecture, if the predictor has no stored information about a branch, the
branch has the Intel® SSE2 branch taken hint (i.e., instruction prefix 3EH),

When the codec decodes the branch, it flips the branch’s prediction from not-taken to taken. It then flushes the
pipeline in front of it and steers this pipeline to fetch the taken path of the branch.

If the branch is taken when executed, the hint reduces the misprediction penalty by replacing an execution time
pipeline flush and re-steer with a decode time of one. Alternatively, if the branch is not-taken, the hint increases the
branch misprediction penalty by introducing a new decode time and a new execution time flush and re-steer.
Consequently, the hint should not be added to a not-taken branch since this increases the program’s run time (see
Section 2.1.1.3).

The hint is only used when the predictor does not have stored information about the branch. To avoid code bloat and
reducing the instruction fetch bandwidth, don’t add the hint to a branch in hot code—for example, a branch inside a
loop with a high iteration count—because the predictor will likely have stored information about that branch. Ideally,
the hint should only be added to infrequently executed branches that are mostly taken, but identifying those
branches may be difficult. Compilers are advised to add the hints as part of profile-guided optimization, where the
one-sided execution path cannot be laid out as a fall-through. The Redwood Cove microarchitecture introduces new
performance monitoring events to guide hint placement (see Section 2.1.1.3).

Judiciously adding hints can reduce the program’s run time by reducing the branch misprediction penalty. Hints are
especially useful for large code footprint workloads where the number of branches exceeds the predictor's capacity.

Details include:

• The hint only applies to JCCs, not CXZ and LOOP/LOOPCC1.

• The microarchitecture is obliged to decode the Intel® SSE2 branch not-taken hint (i.e., instruction prefix 2EH), but
otherwise ignores it.

— There’s no need to hint that a branch is not-taken since, by default, it’s predicted not-taken if the predictor
doesn’t have stored information about it.

• An instruction has the taken hint if it has at least one instruction prefix 3EH.

— Example: If an instruction has the 3EH and 2EH prefixes, regardless of order, it still has the taken the hint.

1. As specified in section 2.1.1 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A
Chapter 2, “Instruction Format”.

Document #: 248966-050US 2-3

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.1.1.2 Profiling Support for Branch Hints
The following performance monitoring events may be used to identify branches that may benefit from adding the
previous hint:

• FRONTEND_RETIRED.MISP_ANT (Event Code = C6H, Unit Mask = 02H): Always Not-Taken conditional branch
instructions retired that were miss-predicted.

• FRONTEND_RETIRED.ANY_ANT (Event Code = C6H, Unit Mask = 03H): Always Not-Taken conditional branch
instructions retired.

• BR_INST_RETIRED.COND (Event Code = C4H, Unit Mask = 11H): conditional branch instructions retired.

Note that collecting Last Branch Records (LBR) when sampling on the last two events is instrumental to determining
the polarity of the branch (e.g., was the branch mostly taken or mostly not taken).

2.1.1.3 New Redwood Cove Macro-Fusions
The Redwood Cove microarchitecture supports two new types of instruction macro-fusion: MOV-OP and LOAD-OP.
The new macro-fusions are only supported out of the μop-Cache (not supported on the legacy decode pipeline).

With a new MOV+OP macro-fusion, a register MOV instruction can be fused with following an OP instruction to form
the non-destructive source operation form: c ← a op b, preserving both source operands.

For example:

The two instructions are macro-fused to a single micro-operation cached in the μop-Cache. The macro-fused
operation takes a single slot in IDQ and during allocation, execution, and retirement.

Similarly, with a new LOAD+OP macro-fusion, a LOAD instruction could be macro-fused by following an OP instruction
to form a fused load-op micro-operation, which often cannot be encoded within the x86 instruction set.

For example:

Table 2-1. MOV+OP Macro-Fusion Example

Class Example Macro-Fused To:

MOV+OP
mov rax, rbx
sub rax, rcx

rax = sub rbx, rcx

Table 2-2. LD+OP Macro-Fusion Example

Class Example Macro-Fused To:

LD+OP mov eax, [mem]
sub eax, ebx

eax = sub [mem], ebx1

NOTES:
1. Note that only sub reg, [mem] is encodable within x86 instruction set.

Document #: 248966-050US 2-4

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Limitations of LOAD+OP Macro-Fusion
The following instruction pair can be macro-fused to the single DST:= OP [mem], SRC_REG micro-operation.

(1) MOV DST, [mem]

(2)OP DST, SRC_REG // SRC_REG cannot be immediate and must be different from DST

• LOAD and OP operations must be the same Operand Size 32/64 matching load data size.

• Load cannot be encoded using RIP-Relative form or have Index operand.

• Only integer and packed SIMD/floating point 128-bit vector operations are supported.

• The LOAD must be:

— An integer load operation without sign-extension (opcode 0x8B).

— SSE packed load instructions (movaps/pd, movups/pd, movdqa/u).

• No VEX or EVEX forms are supported.

2.1.1.4 Improved Memory BW
The Redwood Cove microarchitecture improves the peak memory bandwidth that a core can consume over the
Golden Cove microarchitecture. This significantly increases the depth of the MLC miss queue (4864 outstanding
MLC misses) and introduces new hardware prefetcher algorithms.

2.1.1.5 Array of Pointers Prefetcher
An array of pointers is an array whose elements are pointers. The data associated with each element of the array is
usually dynamically allocated elsewhere and can be accessed by dereferencing the pointer pointing to it. For example:

Figure 2-1. Layout of Array of Pointers Prefetchers

The Redwood Cove microarchitecture adds a new Array of Pointers (AOP) hardware prefetcher for detecting and
prefetching an array of pointers references into the cache hierarchy. The AOP prefetcher treats the data prefetched
for a constant stride load as a pointer and may issue prefetch requests to the memory addresses corresponding to the
pointer’s value.

Successful detection of the pattern allows AOP Prefetch to bring data to be accessed by the program in advance,
saving costly cache misses.

To benefit most from the AOP Prefetching capabilities, we recommend the following:

ptr_arr

ptr_arr[2]ptr_arr[0] ptr_arr[1]

……...…..

var 1

33

0x55ffacca568c

var 0

0x7fffacca5600

55

var n

94

0x7aaaacca5604

Document #: 248966-050US 2-5

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The array of pointers pattern, in a nutshell, may look like this:

for (i=0; i<array_length; i++) {

(1)mov rax, array[i]

(2)mov rbx, [rax + offset]; data of rax used as a pointer

}

In the Redwood Cove microarchitecture, to benefit from AOP Prefetch, software must ensure that:

• 1st load operation is a regular integer load, naturally aligned to its data size (64-bit or 32-bit in legacy or
compatibility mode)

• 2nd load operation depends upon the first load through the base operand and has no index operand.

— The AOP Prefetcher does not track and would issue a prefetch ignoring the offset. Therefore, it is
recommended to use small offsets or avoid using offsets at all.

— The AOP Prefetcher avoids triggering prefetch if the offset exceeds 32 bytes.

Software that observes any issue with the AOP Prefetcher engine (for example, exceeded memory bandwidth due to
redundant prefetch requests) can deactivate it through bit 7 of MSR 0x1A4 (MSR_PREFETCH_CTRL). The AOP Prefetch
is a data-dependent prefetcher. Security implications of data-dependent prefetching are discussed separately at:

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-
documentation/data-dependent-prefetcher.html

2.1.1.6 LLC Page Prefetcher (LLCPP)
The LLC Page Prefetcher extends the Next-Page-Prefetcher algorithm, which detects a sequence of accesses that are
about to reach the end of a page (either going up towards the next page in memory or down towards the previous
page in memory) and triggers a linear prefetch to the start of the next predicted page. NPP’s intends to prefetch the
translation of the next page and initiate prefetching of the first few cache lines from that predicted page.

The LLC Page Prefetch enhances Next-Page Prefetcher in two significant ways:

• It issues prefetches two pages ahead in linear address space.

• The prefetch attempts to bring the entire 4Kb page to the last level cache using opportunistic IDI request slots
without the DCU or MLC buffers.

LLCPP is effective when streaming through memory over a buffer greater than 8KB. Smaller buffer access might result
in redundant prefetching to the last level cache.

Software that observes any issue with the LLC Page Prefetcher engine (for example, exceeded memory bandwidth
due to redundant prefetch requests) can disable LLC Page Prefetcher through bit 6 of MSR 0x1A4
(MSR_PREFETCH_CTRL).

2.2 THE SAPPHIRE RAPIDS MICROARCHITECTURE
Intel processors based on Sapphire Rapids microarchitecture use Golden Cove cores and support the following
additional features:

• Intel® Advanced Matrix Extensions (Intel® AMX) (Chapter 20).

• Intel® Advanced Vector Extensions 512 (Intel® AVX-512) (Chapter 18).

• Intel® Data Streaming Accelerator (Intel® DSA)1.

1. Please see the Intel® DSA Specification and Intel® DSA User Guide.

https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://cdrdv2.intel.com/v1/dl/getContent/671116
https://cdrdv2.intel.com/v1/dl/getContent/759709
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/data-dependent-prefetcher.html

Document #: 248966-050US 2-6

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Intel® In-Memory Analytics Accelerator (Intel® IAA)1.

• Intel® Quick Assist Technology (Intel® QAT)(Chapter 21)

2.2.1 4TH GENERATION INTEL® XEON® SCALABLE FAMILY OF PROCESSORS
Intel's fourth generation Xeon® Scalable Family of Processors changes from a single-die monolithic design to multi-die
Tiles.

• The server products are scalable from dual-socket to eight-socket configurations.

• The I/O is increased with PCI Express 5.0, DDR5 memory, and Compute Express Link 1.1.

• Packaging includes a multi-die chip with up to 4 tiles. Each tile is a 400mm2 SoC, providing compute cores and I/O.

• Each tile contains 15 Golden Cove cores (see Section 2.4). Its memory controller provides two channels of DDR5,
up to eight channels across four tiles, and 28 PCIe 5.0 lanes, up to a maximum of 112 across four tiles.

2.3 THE ALDER LAKE PERFORMANCE HYBRID ARCHITECTURE
The Alder Lake performance hybrid architecture combines two Intel architectures, combining the Golden Cove
performant cores and the Gracemont efficient Atom cores onto a single SoC. For details on the Golden Cove
microarchitecture, see Section 2.4. For details on the Crestmont microarchitecture, see Section 4.1

2.3.1 12TH GENERATION INTEL® CORE™ PROCESSORS SUPPORTING
PERFORMANCE HYBRID ARCHITECTURE

12th Generation Intel® Core™ processors supporting performance hybrid architecture compriseup to eight
Performance cores (P-cores) and eight Efficient cores (E-cores). These processors also include a 3MBs Last Level Cache
(LLC) per IDI module, where a module is one P-core or four E-cores. It has a symmetrical ISA and comes in a variety of
configurations.

P-cores provide single or limited thread performance, while E-cores help provide improved scaling and multithreaded
efficiency. These processors' P-cores can also have Intel Hyper-Threading Technology enabled. When the operating
system (OS) decides to schedule all processors, all cores can be active simultaneously.

A key OSV requirement for enabling hybrid is symmetric ISA across different core types in a performance hybrid
architecture. In 12th Generation Intel Core processors supporting performance hybrid architecture, ISA is converged
to a common baseline between the P-cores and E-cores. To maintain symmetric ISA, the E-cores do not support the
following features: Intel AVX-512, Intel AVX-512 FP-16, and Intel® TSX. The E-cores do support Intel AVX2 and Intel
AVX-VNNI.

2.3.2 HYBRID SCHEDULING

2.3.2.1 Intel® Thread Director
Intel® Thread Director monitors software in real-time, giving hints to the operating system's scheduler, allowing it to
make more intelligent and data-driven decisions on thread scheduling. With Intel Thread Director, the hardware
provides runtime feedback to the OS per thread based on various IPC performance characteristics in the form of:

1. Please see the Intel® IAA Specification.

https://cdrdv2.intel.com/v1/dl/getContent/721858
https://cdrdv2.intel.com/v1/dl/getContent/721858

Document #: 248966-050US 2-7

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Dynamic performance and energy efficiency capabilities of P-cores and E-cores based on power/thermal limits.

• Idling hints when power and thermal are constrained.

Intel Thread Director was first introduced in desktop and mobile variants of the 12th generation Intel Core processor
based on Alder Lake performance hybrid architecture.

A processor containing P-cores and E-cores with different performance characteristics challenges the operating
system’s scheduler. Additionally, different software threads see different performance ratios between the P-cores and
E-cores. For example, the performance ratio between the P-cores and E-cores for highly vectorized floating-point
code is higher than that for scalar integer code. So, when the operating system must make an optimal scheduling
decision, it must be aware of the characteristics of the software threads that are candidates for scheduling. Suppose
there are insufficient P-cores and a mix of software threads with different characteristics. In that case, the operating
system should schedule those threads that benefit most from the P-cores onto those cores and schedule the others
on the E-cores.

Intel Thread Director provides the necessary hint to the operating system about the characteristics of the software
thread executing on each of the logical processors. The hint is dynamic and reflects the recent characteristics of the
thread, i.e., it may change over time based on the dynamic instruction mix of the thread. The processor also considers
microarchitecture factors to define the dynamic software thread characteristics.

Thread specific hardware support is enumerated via the CPUID instruction and enabled by the operating system via
writing to configuration MSRs. The Intel Thread Director implementation on processors based on Alder Lake
performance hybrid architecture defines four thread classes:

1. Non-vectorized integer or floating-point code.

2. Integer or floating-point vectorized code, excluding Intel® Deep Learning Boost (Intel® DL Boost) code.

3. Intel DL Boost code.

4. Pause (spin-wait) dominated code.

The dynamic code need not be 100% of the class definition. It should be large enough to be considered belonging to
that class. Also, dynamic microarchitectural metrics such as consumed memory bandwidth or cache bandwidth may
move software threads between classes. Example pseudo-code sequences for the Intel Thread Director classes
available on processors based on Alder Lake performance hybrid architecture are provided in Examples 2-1 through
2-4.

Intel Thread Director also provides a table in system memory, only accessible to the operating system, that defines
the P-core vs. E-core performance ratio per class. This allows the operating system to pick and choose the correct
software thread for the correct logical processor.

In addition to the performance ratio between P-cores and E-cores, Intel Thread Director provides the energy
efficiency ratio between those cores. The operating system can use this information when it prefers energy savings
over maximum performance. For example, a background task such as indexing can be scheduled on the most energy-
efficient core since its performance is less critical.

Example 2-1. Class 0 Pseudo-code Snippet

while (1)
{

asm(“xor rax, rax;”
“add rax, 5;”
“inc rax;”

);
}

Document #: 248966-050US 2-8

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Example 2-2. Class 1 Pseudo-code Snippet

while (1)
{

asm(“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm3;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm4;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm5;”
“vfmaddsub213ps %ymm0, %ymm1, %ymm6;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm7;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm8;”

“vfmaddsub213ps %ymm0, %ymm1, %ymm9;”
“vfmaddsub231ps %ymm0, %ymm1, %ymm10;”
“vfmaddsub132ps %ymm0, %ymm1, %ymm2;”

);
}

Document #: 248966-050US 2-9

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.2.2 Scheduling with Intel® Hyper-Threading Technology-Enabled on Processors
Supporting x86 Hybrid Architecture

E-cores are designed to provide better performance than a logical P-core with both hardware sibling hyper-threads
busy.

Example 2-3. Class 2 Pseudo-code Snippet

while (1)
{

__asm(
vpdpbusd ymm2, ymm0, ymm1
vpdpbusd ymm3, ymm0, ymm1
vpdpbusd ymm4, ymm0, ymm1
vpdpbusd ymm5, ymm0, ymm1
vpdpbusd ymm6, ymm0, ymm1
vpdpbusd ymm7, ymm0, ymm1
vpdpbusd ymm8, ymm0, ymm1
vpdpbusd ymm9, ymm0, ymm1
vpdpbusd ymm10, ymm0, ymm1
vpdpbusd ymm11, ymm0, ymm1
vpdpbusd ymm12, ymm0, ymm1
vpdpbusd ymm13, ymm0, ymm1

);
}

Example 2-4. Class 3 Pseudo-code Snippet

while (1)
{

asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)
asm(“PAUSE;”)

);
}

Document #: 248966-050US 2-10

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.3.2.3 Scheduling with a Multi-E-Core Module
E-cores within an idle module help improve performance than E-cores in a busy module.

2.3.2.4 Scheduling Background Threads on x86 Hybrid Architecture
In most scenarios, background threads can leverage the scalability and multithread efficiency of E-cores.

2.3.3 RECOMMENDATIONS FOR APPLICATION DEVELOPERS
The following are recommendations when using processors supporting performance hybrid architecture:

• Stay up to date on updates on operating systems and optimized libraries.

• Software must avoid setting hard affinities on either threads or processes to allow the operating system to
provide the optimal core selection for Intel Hybrid.

• Software should replace active spin-waits with lightweight waits, ideally using the new UMWAIT/TPAUSE and
older PAUSE instructions. This will allow the scheduler to get better hints on time spinning.

• Software can utilize the Windows Power Throttling information using process and thread information APIs to give
the scheduler hints on the Quality of Service (QoS) required for a particular thread or process, improving
performance and energy efficiency.

• Leverage Windows frameworks and media APIs for multimedia application development. Windows Media
Foundation framework is optimized for hybrid architecture, enabling media applications to run efficiently while
preventing glitches.

• The Windows IrqPolicyMachineDefault policy enables Windows to target interrupts to the right core optimally,
and more so on hybrid architecture.

For additional recommendations and information on performance hybrid architecture, refer to the white papers on
the Performance Hybrid Architecture page.

2.4 THE GOLDEN COVE MICROARCHITECTURE
The Golden Cove microarchitecture is the successor of the Ice Lake microarchitecture. The Golden Cove
microarchitecture introduces the following enhancements:

• Wider machine: 56 wide allocation, 1012 execution ports, and 48 wide retirement.

• Significant increases in the size of key structures enable deeper OOO execution and expose more instruction-level
parallelism.

• Greater capabilities per execution port, e.g., 5th integer ALU execution ports with expanded capability and a new
fast floating-point adder.

• Intel® Advanced Matrix Extensions (Intel® AMX)1: Built-in integrated Tiled Matrix Multiplication / Machine
Learning Accelerator.

• Improved branch prediction.

• Improvements for large code footprint workloads, for example, larger branch prediction structures, enhanced
code prefetcher, and larger instruction TLB.

• Wider fetch: legacy decode pipeline fetch bandwidth increase to 32B/cycles, 46 decoders, increased micro-op
cache size, and increased micro-op cache bandwidth.

1. Intel AMX are unavailable on client parts.

https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hybrid-architecture.html

Document #: 248966-050US 2-11

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Maximum load bandwidth increased from two loads/cycle to three loads/cycle.

• Larger 4K Pages DTLB, increase of outstanding Page Miss handlers.

• Increase of outstanding misses (16 FB, 3248 Deeper MLC miss queues).

• Enhanced data prefetchers for increased memory parallelism.

• Mid-level cache size increased to 2MB on server parts; remains 1.25MB on client parts.

2.4.1 GOLDEN COVE MICROARCHITECTURE OVERVIEW
The basic pipeline functionality of the Golden Cove microarchitecture is depicted in Figure 2-2.

The Golden Cove front end is depicted in Figure 2-3. The front end is built to feed the wider and deeper out-of-order
core:

• Legacy decode pipeline fetch bandwidth increased from 16 to 32 bytes/cycle.

• The number of decoders increased from four to six, allowing the decode of up to six instructions per cycle.

• The micro-op cache size increased, and its bandwidth increased to deliver up to eight micro-ops per cycle.

• Improved branch prediction.

Figure 2-2. Processor Core Pipeline Functionality of the Golden Cove Microarchitecture

ITLB + 32KB Instruction CacheITLB + 32KB Instruction Cache BPU

Scheduler / Reservation Station

BPU

DecodeMSROM

Allocate / Rename / Move Elimination / Zero Idiom

Scheduler / Reservation Station

48KB DCU

1.25MB Client / 2MB Server MLC

SOC

LD DTLB STA DTLB

Load Buffer Store Buffer

3x256
2x512

3x256
2x512

2x256
1x512

VEC

FMA

ALU

Shift

FastADD

FMA

ALU

Shift

Shuffle

FastADD

FMA512

ALU

AMX

Shuffle

INT

*H

LEA LEA LEA LEA LEA

ALU ALU ALU ALU ALU

Shift MUL MULHi Shift

JMP1 IDIV JMP2

P0 P1 P5 P6 P10
P2

AGU
P3

AGU
P11
AGU

P4
STD

P9
STD

P7
AGU

P8
AGU

Document #: 248966-050US 2-12

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Improvements for large code footprint workloads:

• Double the size of the instruction TLB: 128256 entries for 4K pages, 1632 entries for 2M/4M pages.

• Bigger branch prediction structures.

• Enhanced code prefetcher.

• Improved LSD coverage.

• The IDQ can hold 144 uops per logical processor in single-thread mode, or 72 uops per thread when SMT is active.

Additional improvements include:

• The significant increase in the size of key buffer structures to enable deeper OOO execution and expose more
instruction-level parallelism.

• Wider machine:

— Wider allocation (56 uops per cycle) and retirement (48 uops per cycle) width.

— Increased execution ports (1012).

— Greater capabilities per execution port.

Table 2-3 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Figure 2-3. Processor Front End of the Golden Cove Microarchitecture

Table 2-3. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture

Port 0 Port 11 Port
2

Port
3

Port
4 Port 52 Port 6 Ports 7,

8
Port

9
Port
10

Port
11

INT ALU
LEA
INT

Shift
Jump1

INT
ALU3

LEA
INT Mul
INT Div

Load Load Store
Data

INT
ALU
LEA
INT

MUL Hi

INT ALU
LEA
INT

Shift
Jump2

Store
Address

Store
Data

INT
ALU
LEA

Load

BPU

MSROM

Document #: 248966-050US 2-13

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-4 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the Intel® SSE, Intel AVX, and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a particular unit.

FMA
Vec ALU

Vec
Shift

FP Div

FMA*
Fast

Adder*
Vec

ALU*
Vec

Shift*
Shuffle

*

FMA**
Fast

Adder
Vec
ALU

Shuffle

NOTES:
1. “*” in this table indicates that these features are unavailable for 512-bit vectors.
2. “**” in this table indicates that these features are unavailable for 512-bit vectors in Client parts.
3. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-

ops which use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

Table 2-4. Golden Cove Microarchitecture Execution Units and Representative Instructions1

Execution
Unit # of Unit Instructions

ALU 52 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa,
(v)movap*, (v)movup*

SHFT 23 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU

2x256-bit
1x512-bit

(v)add, (v)cmp. (v)max, (v)min, (v)sub, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2sl,
(v)cvtss2sl

3x256-bit
2x512-bit

(v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*,
(v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2x256-bit
1x512-bit (v)psllv*, (v)psrlv*, vector shift count in imm8

VEC Add (in
VEC FMA)

2x256-bit
1x512-bit

(v)add*, (v)cmp*, (v)max*, (v)min*, (v)sub*, (v)padds*, (v)paddus*, (v)psign,
(v)pabs, (v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si,
(v)cvtss2si

VEC Fast
Add

2x256-bit
1x512-bit (v)add*, (v)addsub*, (v)sub*

Table 2-3. Dispatch Port and Execution Stacks of the Golden Cove Microarchitecture (Contd.)

Port 0 Port 11 Port
2

Port
3

Port
4 Port 52 Port 6 Ports 7,

8
Port

9
Port
10

Port
11

Document #: 248966-050US 2-14

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-5 describes bypass delay in cycles between producer and consumer operations.

The attributes relevant to the producer/consumer micro-ops for bypass are a triplet of abbreviation/one or more port
number/latency cycle of the uop. For example:

• “SIMD/0,1/1” applies to a 1-cycle vector SIMD uop dispatched to either port 0 or port 1.

• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

Shuffle 2x256-bit
1x512-bit

(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq,
(v)alignr, (v)pmovzx*, vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw (new cross
lane shuffle on both ports)

Vec
Mul/FMA

2x256-bit
(1 or 2)x512-

bit
(v)mul*, (v)pmul*, (v)pmadd*

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruc-

tion throughput remedy.
2. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-

ops which use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.
3. Ibid.

Table 2-5. Bypass Delay Between Producer and Consumer Micro-Ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latenc

y]

SIMD/0,1/
1

FMA/0,1/
4

MUL/0,1/
4

Fast
Adder/1,5/

3

SIMD/5/1,
3

SHUF
/1,5/1

,3
V2I/0/3

SIMD/0,1/1 0 1 1 1 0 0 0

FMA/0,1/4 1 0 1 0 0 0 0

MUL/0,1/4 1 0 1 0 0 0 0

Fast Adder/0,1/3 1 0 1 -1 0 0 0

SIMD/5/1,3 0 1 1 1 0 0 0

SHUF/1,5/1,3 0 0 1 0 0 0 0

V2I/0/3 0 0 1 0 0 0 0

I2V/5/1 0 1 1 0 0 0 0

Table 2-4. Golden Cove Microarchitecture Execution Units and Representative Instructions1

Execution
Unit # of Unit Instructions

Document #: 248966-050US 2-15

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• “V2I/0/3” applies to a three-cycle vector-to-integer uop dispatched to port 0.

• “I2V/5/1” applies to a one-cycle integer-to-vector uop dispatched to port 5.

• “Fast Adder/1,5/3” applies to either a three-cycle 256-bit uop dispatched to port 1 or port 5, or a 512-bit uop
dispatched to port 5. This operation supports two cycles back-to-back between a pair of Fast Adder operations.

A new Fast Adder1 unit is added as 512-bit on port 5 in the VEC stack and as 256-bit on ports 1 and 5. The Fast Adder
performs floating-point ADD/SUB operations in three cycles.

Back-to-back ADD/SUB operations, both executed on the Fast Adder unit, perform the operations in two cycles.

• In 128/256-bit, back-to-back ADD/SUB operations executed on the Fast Adder unit perform the operations in two
cycles.

• In 512-bit, back-to-back ADD/SUB operations are executed in two cycles if both operations use the Fast Adder
unit on port 5.

The following instructions are executed by the Fast Adder unit:

• (V)ADDSUBSS/SD/PS/PD

• (V)ADDSS/SD/PS/PD

• (V)SUBSS/SD/PS/PD

2.4.1.1 Cache Subsystem and Memory Subsystem
Changes in the cache subsystem and memory subsystem within the Golden Cove microarchitecture include:

• Maximum load bandwidth increased from two to three loads per cycle. Bandwidth of Intel AVX-512 loads, Intel
AMX loads, and MMX/x87 loads remain at a maximum of two loads per cycle.

• Simultaneous handling of more loads and stores enabled by enlarged buffers.

• Number of entries for 4K pages in the load DTLB increased from 64 to 96.

• The Page Miss handler can handle up to four D-side page walks in parallel instead of two.

• Increased outstanding DCU and MLC misses.

• Enhanced data prefetchers for increased memory parallelism.

• Partial store forwarding allowing forwarding data from store to load also when only part of the load was covered
by the store (in case the load's offset matches the store's offset).

2.4.1.2 Avoiding Destination False Dependency
Some SIMD instructions incur false dependencies on the destination operand. The following instructions are affected:

• VFMULCSH, VFMULCPH

• VFCMULCSH, VFCMULCPH

• VPERMD, VPERMQ, VPERMPS, VPERMPD

• VRANGE[SS,PS,SD,PD]

• VGETMANTSH, VGETMANTSS, VGETMANTSD

• VGETMANTPS, VGETMANTPD (memory versions only)

• VPMULLQ

1. The Fast Adder unit is unavailable on 512-bit vectors in Client parts.

Document #: 248966-050US 2-16

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Recommendation: Use dependency breaking zero idioms on the destination register before the affected instructions
to avoid potential slowdown from the false dependency.

2.5 ICE LAKE CLIENT MICROARCHITECTURE
The Ice Lake client microarchitecture introduces the following new features that allow optimizations of applications
for performance and power consumption:

• Targeted vector acceleration.

• Crypto acceleration.

• Intel® Software Guard Extensions (Intel® SGX) enhancements.

• Cache line writeback instruction (CLWB).

2.5.1 ICE LAKE CLIENT MICROARCHITECTURE OVERVIEW
The Ice Lake client microarchitecture builds on the successes of the Skylake client microarchitecture. The basic
pipeline functionality of the Ice Lake Client microarchitecture is depicted in Figure 2-4.

Example 2-5. Breaking False Dependency through Zero Idiom

Code with False Dependency Impact Mitigation: Break False Dependency with Zero
Idiom

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vfmulcph zmm3, zmm2, zmm1 ;False dependency on
zmm3.
//Will not execute out-of-order until vaddps writes
zmm3.

vaddps zmm3, zmm4, zmm5
vmovaps [rsi], zmm3
vpxord zmm3, zmm3, zmm3
//Dependency-breaking zero idiom.
vfmulcph zmm3, zmm2, zmm1
//Execute out-of-order
without waiting for vaddps result.

Document #: 248966-050US 2-17

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The Ice Lake client microarchitecture introduced the following features:

• Significant increase in size of key structures enable deeper OOO execution.

• Wider machine: 4 5 wide allocation, 8 10 execution ports.

• Intel AVX-512 (new for client processors): 512-bit vector operations, 512-bit loads and stores to memory, and 32
new 512-bit registers.

• Greater capabilities per execution port (e.g., SIMD shuffle, LEA), reduced latency Integer Divider.

• 2×BW for AES-NI peak throughput for existing binaries (microarchitectural).

Figure 2-4. Processor Core Pipeline Functionality of the Ice Lake Client Microarchitecture1
NOTES:
1. “*” in the figure above indicates these features are unavailable for 512-bit vectors.
2. “INT” represents GPR scalar instructions.
3. “VEC” represents floating-point and integer vector instructions.
4. “MULHi” produces the upper 64 bits of the result of an iMul operation that multiplies two 64-bit registers and

places the result into two 64-bits registers.
5. The “Shuffle” on port 1 is new, and supports only in-lane shuffles that operate within the same 128-bit sub-vector.
6. The “IDIV” unit on port 1 is new, and performs integer divide operations at a reduced latency.
7. The Golden Cove microarchitecture implemented performance improvements requiring constraint of the micro-

ops which use *H partial registers (i.e. AH, BH, CH, DH). See Section 3.5.2.3 for more details.

BPU

Port 0 Port 1

*H

Port 5

*H

Port 6

Document #: 248966-050US 2-18

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Rep move string acceleration.

• 50% increase in size of the L1 data cache.

• Reduced effective load latency.

• 2×L1 store bandwidth: 1 2 stores per cycle.

• Enhanced data prefetchers for increased memory parallelism.

• Larger 2nd level TLB.

• Larger uop cache.

• Improved branch predictor.

• Large page ITLB size in single thread mode doubled.

• Larger L2 cache.

The Ice Lake client microarchitecture supports flexible integration of multiple processor cores with a shared uncore
sub-system consisting of some components including a ring interconnect to multiple slices of L3, processor graphics,
integrated memory controller, interconnect fabrics, and more.

2.5.1.1 The Front End
The front end changes in Ice Lake Client microarchitecture included:

• Improved branch predictor.

• Large page ITLB in single thread mode increased from 8 to 16 entries.

• Larger uop cache.

• The IDQ can hold 70 uops per logical processor vs. 64 uops per logical processor in previous generations when
two sibling logical processors in the same core are active (2×70 vs. 2×64 per core). If only one logical processor is
active in the core, the IDQ can hold 70 uops vs. 64 uops.

• The LSD in the IDQ can detect loops of up to 70 uops per logical processor irrespective single thread or multi
thread operation.

2.5.1.2 The Out of Order and Execution Engines
The Out of Order and execution engines changes in Ice Lake client microarchitecture include:

• A significant increase in size of reorder buffer, load buffer, store buffer, and reservation stations enable deeper
OOO execution and higher cache bandwidth.

• Wider machine: 4 5 wide allocation, 8 10 execution ports.

• Greater capabilities per execution port (e.g., SIMD shuffle, LEA).

• Reduced latency Integer Divider.

• A new iDIV unit was added, significantly reducing the latency and improving the throughput of integer divide
operations.

Document #: 248966-050US 2-19

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-6 summarizes the OOO engine's capability to dispatch different types of operations to ports.

Table 2-7 lists execution units and common representative instructions that rely on these units.

Throughput improvements across the Intel SSE, Intel AVX, and general-purpose instruction sets are related to the
number of units for the respective operations, and the varieties of instructions that execute using a particular unit.

Table 2-6. Dispatch Port and Execution Stacks of the Ice Lake Client Microarchitecture

Port 0 Port 11

NOTES:
1. “*” in this table indicates these features are unavailable for 512-bit vectors.

Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 Port 8 Port 9

INT ALU
LEA
INT

Shift
Jump1

INT ALU
LEA

INT Mul
INT Div

Load Load Store
Data

INT ALU
LEA
INT

MUL Hi

INT ALU
LEA
INT

Shift
Jump2

Store
Address

Store
Address

Store
Data

FMA
Vec ALU

Vec
Shift

FP Div

FMA*
Vec

ALU*
Vec

Shift*
Vec

Shuffle*

Vec ALU
Vec

Shuffle

Table 2-7. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*,
(v)movup*

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc.

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*, (v)andp*, (v)orp*,
(v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2
(v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs,
(v)pavgb,
(v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 2
(v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*,
vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*

Document #: 248966-050US 2-20

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-8 describes bypass delay in cycles between producer and consumer operations.

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbreviation/one or
more port number/latency cycle of the uop. For example:

• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.

• “SIMD/5/1,3” applies to either a 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

• “V2I/0/3” applies to a 3-cycle vector-to-integer uop dispatched to port 0.

• “I2V/5/1” applies to a 1-cycle integer-to-vector uop to port 5.

2.5.1.3 Cache and Memory Subsystem
The cache hierarchy changes in Ice Lake Client microarchitecture include:

• 50% increase in size of the L1 data cache.

• 2×L1 store bandwidth: 3 4 AGUs, 1 2 store data.

• Simultaneous handling of more loads and stores enabled by enlarged buffers.

• Higher cache bandwidth compared to previous generations.

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm

FP Mov 1 (v)movsd/ss, (v)movd gpr

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruc-

tion throughput remedy.

Table 2-8. Bypass Delay Between Producer and Consumer Micro-ops

TO [EU/PORT/Latency]

FROM
[EU/Port/Latenc

y]

SIMD/0,1/
1

FMA/0,1/
4

VIMUL/0,1/
4

SIMD/5/1,
3

SHUF/5/1,
3

V2I/0/
3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 0 0 1 0 0 0 NA

I2V/5/1 0 1 1 0 0 0 NA

Table 2-7. Ice Lake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit Instructions

Document #: 248966-050US 2-21

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Larger 2nd level TLB: 1.5K entries  2K entries.

• Enhanced data prefetchers for increased memory parallelism.

• L2 cache size increased from 256KB to 512KB.

• L2 cache associativity increased from 4 ways to 8 ways.

• Significant reduction in effective load latency.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, shared L2 TLB for 4K and 4MB
pages and a dedicated L2 TLB for 1GB pages.

Table 2-9. Cache Parameters of the Ice Lake Client Microarchitecture

Level Capacity /
Associativity

Line
Size

(bytes)

Latency
1

(cycles
)

NOTES:
1. Software-visible latency/bandwidth will vary depending on access patterns and other factors.

Peak Bandwidth
(bytes/cycles)

Sustained
Bandwidth

(bytes/cycles)

Update
Policy

First
Level
(DCU)

48KB/8 64 5
2×64B loads +

1x64B or 2x32B
stores

Same as peak Writeba
ck

Second
Level
(MLC)

512KB/8 64 13 64 48 Writeba
ck

Third
Level
(LLC)

Up to 2MB per
core/up to 16

ways
64 xx2

2. This number depends on core count.

32 21 Writeba
ck

Table 2-10. TLB Parameters of the Ice Lake Client Microarchitecture

Level Page Size Entries ST Per-thread Entries MT
Latency Associativity

Instruction 4KB 128 64 8

Instruction 2MB/4MB 16 8 8

First Level Data
(loads) 4KB 64 64 competitively shared 4

First Level Data
(loads) 2MB/4MB 32 32 competitively shared 4

First Level Data
(loads) 1GB 8 8 competitively shared 8

Document #: 248966-050US 2-22

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Paired Stores

Ice Lake Client microarchitecture includes two store pipelines in the core, with the following features:

• Two dedicated AGU for LDs on ports 2 and 3.

• Two dedicated AGU for STAs on ports 7 and 8.

• Two fully featured STA pipelines.

• Two 256-bit wide STD pipelines (Intel AVX-512 store data takes two cycles to write).

• Second senior store pipeline to the DCU via store merging.

Ice Lake Client microarchitecture can write two senior stores to the cache in a single cycle if these two stores can be
paired together. That is:

• The stores must be to the same cache line.

• Both stores are of the same memory type, WB or USWC.

• None of the stores cross cache line or page boundary.

To maximize performance from the second store port try to:

• Align store operations whenever possible.

• Place consecutive stores in the same cache line (not necessarily as adjacent instructions).

As seen in Example 2-6, it is important to take into consideration all stores, explicit or not.

First Level Data
(stores)

Shared for all page
sizes 16 16 competitively shared 16

Second Level Shared for all page
sizes 20481 2048 competitively

shared 16

NOTES:
1. 4K pages can use all 2048 entries. 2/4MB pages can use 1024 entries (in 8 ways), sharing them with 4K pages.

1GB pages can use the other 1024 entries (in 8 ways), also sharing them with 4K pages.

Example 2-6. Considering Stores

Stores are Paired Across Loop Iterations Stores Not Paired Due to Stack Update in Between

Loop:
compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop can be paired all together because they usually
would be same line

Loop:
call function to compute reg
…
store [X], reg
add X, 4
jmp Loop ; stores from different iterations of the

loop cannot be paired anymore because of the call
store to stack

; the call is disturbing pairing

Table 2-10. TLB Parameters of the Ice Lake Client Microarchitecture (Contd.)

Level Page Size Entries ST Per-thread Entries MT
Latency Associativity

Document #: 248966-050US 2-23

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

In some cases it is possible to rearrange the code to achieve store pairing. Example 2-7 provides details.

2.5.1.4 Fast Store Forwarding Prediction (FSFP)
This section includes recommendations for effective use of Fast Store Forwarding Prediction (FSFP) introduced in Ice
Lake microarchitecture. Extrapolated from previous behavior, FSFP enables the processor to predict that a store will
forward data to a younger load and optimize that case. The optimization allows the load to complete using the data of
predicted store but without accessing the memory. Only integer loads support FSFP in the Ice Lake microarchitecture.

The Fast Store Forwarding Prediction has limitations. to maximize performance gain on Ice Lake microarchitecture it
is recommended to follow these recommendations:

• Only loads and stores without Index (encoded with no SIB byte) are supported. LEA operation can be used to
avoid Index register usage during memory address computations.

• Loads and stores using RIP-relative addressing do not support FSFP. We recommend using the LEA operation to
pre-compute address to enable FSFP for such cases.

• Loads and stores operating with 16-bit General Purpose Registers (AX/BX/CX/DX and etc) or *H 8-bit registers do
not support FSFP optimization. We recommend using movzx instruction instead of unsupported registers.

Example 2-7. Rearranging Code to Achieve Store Pairing

Stores to Different Cache Lines - Not Paired Unrolling May Solve the Problem

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute ymm2 …
vmovaps [y], ymm2
add x, 32
add y, 32
jmp Loop

//this loop cannot pair any store because of alternating
store to different cache lines [x] and [y]

Loop:
... compute ymm1 …
vmovaps [x], ymm1
... compute new ymm1 …
vmovaps [x+32], ymm1
... compute ymm2 …
vmovaps [y], ymm2
... compute new ymm2 …
vmovaps [y+32], ymm2
add x, 64
add y, 64
jmp Loop

//the loop was unrolled 2 times and stores rearranged
to make sure two stores to the same cache line are
placed one after another. Now stores to addresses [x]
and [x+32] are to the same cache line and could be
paired together and executed in same cycle.

Document #: 248966-050US 2-24

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Example 2-8. FSFP Optimization

2.5.1.5 New Instructions
New instructions and architectural changes in Ice Lake Client microarchitecture are listed below. Actual support may
be product dependent.

• Crypto acceleration

— SHA NI for acceleration of SHA1 and SHA256 hash algorithms.

— Big-Number Arithmetic (IFMA): VPMADD52 - two new instructions for big number multiplication for acceler-
ation of RSA vectorized SW and other Crypto algorithms (Public key) performance.

— Galois Field New Instructions (GFNI) for acceleration of various encryption algorithms, error correction
algorithms, and bit matrix multiplications.

— Vector AES and Vector Carry-less Multiply (PCLMULQDQ) instructions to accelerate AES and AES-GCM.

• Security Technologies

— Intel® SGX enhancements to improve usability and applicability: EDMM, multi-package server support,
support for VMM memory oversubscription, performance, larger secure memory.

• Sub Page protection for better performance of security VMMs.

• Targeted Acceleration

— Vector Bit Manipulation Instructions: VBMI1 (permutes, shifts) and VBMI2 (Expand, Compress, Shifts)- used
for columnar database access, dictionary based decompression, discrete mathematics, and data-mining
routines (bit permutation and bit-matrix-multiplication).

— VNNI with support for integer 8 and 16 bits data types- CNN/ML/DL acceleration.

— Bit Algebra (POPCNT, Bit Shuffle).

— Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while retaining clean
copy in cache.

• Platform analysis features for more efficient performance software tuning and debug.

— AnyThread removal.

— 2x general counters (up to 8 per-thread).

— Fixed Counter 3 for issue slots.

Slow Version Not Enabling PFSP Enabling FSFP Using LEA Operation

Loop:
 mov r10,[rsi+r8*8]
 inc qword[rdi+r10*8]
 mov r11,[rsi+r8*8]
 inc r8
 inc qword[rdi+r11*8]

… jmp Loop

Loop:
 mov r10,[rsi+r8*8]
 lea r12,[rdi+r10*8] ; using LEA to avoid

;Index register
for ;inc below

 inc qword[r12]
 mov r11,[rsi+r8*8]
 inc r8
 lea r13,[rdi+r11*8] ; another similar case
 inc qword [r13]

…. jmp Loop

Document #: 248966-050US 2-25

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

— New performance metrics for built-in support for Level 1 Top-Down method (% of Issue slots that are front-
end bound, back-end bound, bad speculation, retiring) while leaving the 8 general purpose counters free for
software use.

2.5.1.6 Ice Lake Client Microarchitecture Power Management
Processors based on Ice Lake client microarchitecture are the first client processors whose cores may execute at a
different frequency from one another. The frequency is selected based on the specific instruction mix; the type, width
and number of vector instructions of the program that executes on each core, the ratio between active time and idle
time of each core, and other considerations such as how many cores share similar characteristics.

Most of the power management features of Skylake Server Microarchitecture (see Section 2.6) is applicable to Ice
Lake Client microarchitecture as well. The main differences are the following:

• The typical P0n max frequency difference between Intel® Advanced Vector Extensions (Intel® AVX-512) and Intel®
Advanced Vector Extensions 2 (Intel® AVX2) on Ice Lake Client microarchitecture is much lower than on Skylake
Server microarchitecture. Therefore, the negative impact on overall application performance is much smaller.

• All processors based on Ice Lake Client microarchitecture contain a single 512-bit FMA unit, whereas some of the
processors based on Skylake Server microarchitecture contain two such units. Both processors contain two 256-
bit FMA units. The power consumed by Ice Lake Client FMA units is the same, whereas on Skylake Server the 512-
bit units consume twice as much.

Compute heavy workloads, especially those that span multiple Ice Lake client cores, execute at a lower frequency
than P0n, under Intel AVX-512 and under Intel AVX2 instruction sets, due to power limitations. In this scenario, Intel
AVX-512 architecture, which requires less dynamic instructions to complete the same task than Intel AVX2
architecture, consumes less power and thus may achieve higher frequency. The net result may be higher performance
due to the shorter path length and a bit higher frequency.

There are still some cases where coding to the Intel AVX-512 instruction set yields lower performance than when
coding to the Intel AVX2 instruction set. Sometimes it is due to microarchitecture artifacts of longer vectors, in other
cases the natural vectors are just not long enough. Most compilers are still maturing their Intel AVX-512 support, and
it may take them a few more years to generate optimal code.

The general recommendation in the Skylake Server Power Management section (see Section 2.6.3) still holds.
Developers should code to the Intel AVX-512 instruction set and compare the performance to their Intel AVX2
workload on Ice Lake client microarchitecture, before making the decision to proceed with a complete port.

2.6 SKYLAKE SERVER MICROARCHITECTURE
The Intel® Xeon® Processor scalable processors based on the Skylake microarchitecture can be identified using
CPUID’s DisplayFamily_DisplayModel signature, which can be found in Table 2-1 of CHAPTER 2 of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 4.

The Skylake Server microarchitecture introduces the following new features1 that allow you to optimize your
application for performance and power consumption.

• A new core based on the Skylake Server microarchitecture with process improvements based on the Kaby Lake
microarchitecture.

• Intel AVX-512 support.

• More cores per socket (max 28 vs. max 22).

• 6 memory channels per socket in Skylake microarchitecture vs. 4 in the Broadwell microarchitecture.

1. Some features may not be available on all products.

https://cdrdv2.intel.com/v1/dl/getContent/671098

Document #: 248966-050US 2-26

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• Bigger L2 cache, smaller non inclusive L3 cache.

• Intel® Optane™ support.

• Intel® Omni-Path Architecture (Intel® OPA).

• Sub-NUMA Clustering (SNC) support.

The gray rectangles in Figure 2-5 represent features different in Skylake Server microarchitecture compared to
Skylake microarchitecture for client;

• A 1MB L2 cache.

• An additional Intel AVX-512 FMA unit on port 5 which is available on some parts.

In this figure:

• INTEGER represents GPR scalar instructions.

• VEC represents floating point and integer vector instructions.

• SLOW LEA represents a lea with two registers and displacement, all other lea versions considered as FAST LEA.

• BRANCH1 is the primary branch and more capable than BRANCH2.

Since port 0 and port 1 are 256-bits wide, Intel AVX-512 operations that will be dispatched to port 0 will execute on
port 0 and port 1; however, other operations such as LEA can still execute on port 1 in parallel. See the red block in
Figure 2-9 for the fusion of ports 0 and 1.

Notice that, unlike Skylake microarchitecture for client, the Skylake Server microarchitecture has its front end loop
stream detector (LSD) disabled.

Figure 2-5. Processor Core Pipeline Functionality of the Skylake Server Microarchitecture

1M L2 Cache

32K Data
Cache

Port 2 LD/STA

Scheduler

Allocate/Rename/Retire/Move Elimination/Zero Idiom

Micro-Op Queue

uncore

Port 3 LD/STA

Port 4 STD

Port 7 STA

Port 6
INTEGER ALU
INTEGER

SHIFT
BRANCH 1

Port 0
INTEGER ALU

DIVIDE
BRANCH 2

VEC FMA
VEC MUL
VEC ADD
VEC ALU

VEC SHIFTER

Port 1
INTEGER ALU
INTEGER MUL
SLOW LEA
FAST LEA

Port 5
INTEGER ALU
FAST LEA

VEC SHUFFLE

VEC FMA
VEC MUL
VEC ADD
VEC ALU

VEC SHIFTER

VEC FMA
VEC MUL
VEC ADD
VEC ALU

Legacy Decode
Pipeline

Decoded
ICache MSROM

32K
Instruction Cache BPU

Dedicated AVX-512 unit

AVX-512 Port Fusion

Document #: 248966-050US 2-27

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.6.1 SKYLAKE SERVER MICROARCHITECTURE CACHE
Intel Xeon scalable processors based on Skylake server microarchitecture has significant changes in core and uncore
architecture to improve performance and scalability of several components compared with the previous generation
of the Intel Xeon processors based on the Broadwell microarchitecture.

2.6.1.1 Larger Mid-Level Cache
Skylake server microarchitecture implements a mid-level (L2) cache of 1 MB capacity with a minimum load-to-use
latency of 14 cycles. The mid-level cache capacity is four times larger than the capacity in previous Intel Xeon
processor family implementations. The line size of the mid-level cache is 64B and it is 16-way associative. The mid-
level cache is private to each core.

Software that has been optimized to place data in mid-level cache may have to be revised to take advantage of the
larger mid-level cache available in Skylake server microarchitecture.

2.6.1.2 Non-Inclusive Last Level Cache
The last level cache (LLC) in Skylake is a non-inclusive, distributed, shared cache. The size of each of the banks of last
level cache has shrunk to 1.375 MBs per bank. Because of the non-inclusive nature of the last level cache, blocks that
are present in the mid-level cache of one of the cores may not have a copy resident in a bank of last level cache. Based
on the access pattern, size of the code and data accessed, and sharing behavior between cores for a cache block, the
last level cache may appear as a victim cache of the mid-level cache and the aggregate cache capacity per core may
appear to be a combination of the private mid-level cache per core and a portion of the last level cache.

2.6.1.3 Skylake Server Microarchitecture Cache Recommendations
A high-level comparison between Skylake server microarchitecture cache and the previous generation Broadwell
microarchitecture cache is available in the table below.

Table 2-11. Cache Comparison Between Skylake Microarchitecture and Broadwell
Microarchitecture

Cache level Category Broadwell
Microarchitecture

Skylake Server
Microarchitecture

L1 Data Cache
Unit (DCU)

Size [KB] 32 32

Latency [cycles] 4-6 4-6

Max bandwidth [bytes/cycles] 96 192

Sustained bandwidth [bytes/cycles] 93 133

Associativity [ways] 8 8

Document #: 248966-050US 2-28

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The figure below shows how Skylake server microarchitecture shifts the memory balance from shared-distributed
with high latency, to private-local with low latency.

The potential performance benefit from the cache changes is high, but software will need to adapt its memory tiling
strategy to be optimal for the new cache sizes.

Recommendation: Rebalance application shared and private data sizes to match the smaller,
non-inclusive L3 cache, and larger L2 cache.

Choice of cache blocking should be based on application bandwidth requirements and changes from one application
to another. Having four times the L2 cache size and twice the L2 cache bandwidth compared to the previous
generation Broadwell microarchitecture enables some applications to block to L2 instead of L1 and thereby improves
performance.

L2 Mid-level
Cache (MLC)

Size [KB] 256 1024 (1MB)

Latency [cycles] 12 14

Max bandwidth [bytes/cycles] 32 64

Sustained bandwidth [bytes/cycles] 25 52

Associativity [ways] 8 16

L3 Last-level
Cache (LLC)

Size [MB] Up to 2.5 per core up to 1.3751 per core

Latency [cycles] 50-60 50-70

Max bandwidth [bytes/cycles] 16 32

Sustained bandwidth [bytes/cycles] 14 15

NOTES:
1. Some Skylake server parts have some cores disabled and hence have more than 1.375 MBs per core of L3 cache.

Figure 2-6. Broadwell Microarchitecture and Skylake Server Microarchitecture Cache Structures

Table 2-11. Cache Comparison Between Skylake Microarchitecture and Broadwell
Microarchitecture (Contd.)

Cache level Category Broadwell
Microarchitecture

Skylake Server
Microarchitecture

Skylake Server Cache Structure

Shared L3 Cache (Non inclusive): 1.375MB * N

1MB L2 Cache

32KB L1 Cache

Core N

32KB L1 Cache

Core 1

1MB L2 Cache

32KB L1 Cache

Core 0

1MB L2 Cache

Broadwell Server Cache Structure

Shared L3 Cache (Inclusive): 2.5MB * N

32KB L1 Cache

Core N

256KB L2 Cache

32KB L1 Cache

256KB L2 Cache

Core 1

32KB L1 Cache

Core 0

256KB L2 Cache

Document #: 248966-050US 2-29

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Recommendation: Consider blocking to L2 on Skylake Server microarchitecture if L2 can sustain the application’s
bandwidth requirements.

The change from inclusive last level cache to non-inclusive means that the capacity of mid-level and last level cache
can now be added together. Programs that determine cache capacity per core at run time should now use a
combination of mid-level cache size and last level cache size per core to estimate the effective cache size per core.
Using just the last level cache size per core may result in non-optimal use of available on-chip cache; see Section 2.6.2
for details.

Recommendation: In case of no data sharing, applications should consider cache capacity per core as L2 and L3 cache
sizes and not only L3 cache size.

2.6.2 NON-TEMPORAL STORES ON SKYLAKE SERVER MICROARCHITECTURE
Because of the change in the size of each bank of last level cache on Skylake server microarchitecture, if an
application, library, or driver only considers the last level cache to determine the size of on-chip
cache-per-core, it may see a reduction with Skylake server microarchitecture and may use non-temporal store with
smaller blocks of memory writes. Since non-temporal stores evict cache lines back to memory, this may result in an
increase in subsequent cache misses and memory bandwidth demands on Skylake Server microarchitecture,
compared to the previous Intel Xeon processor family.

Also, because of a change in the handling of accesses resulting from non-temporal stores by Skylake Server
microarchitecture, the resources within each core remain busy for a longer duration compared to similar accesses on
the previous Intel Xeon processor family. As a result, if a series of such instructions are executed, there is a potential
that the processor may run out of resources and stall, thus limiting the memory write bandwidth from each core.

The increase in cache misses due to overuse of non-temporal stores and the limit on the memory write bandwidth per
core for non-temporal stores may result in reduced performance for some applications.

To avoid the performance condition described above with Skylake server microarchitecture, include
mid-level cache capacity per core in addition to the last level cache per core for applications, libraries, or drivers that
determine the on-chip cache available with each core. Doing so optimizes the available
on-chip cache capacity on Skylake server microarchitecture as intended, with its non-inclusive last level cache
implementation.

2.6.3 SKYLAKE SERVER POWER MANAGEMENT
This section describes the interaction of Skylake Server's Power Management and its Vector ISA.

Skylake Server microarchitecture dynamically selects the frequency at which each of its cores executes. The selected
frequency depends on the instruction mix; the type, width, and number of vector instructions that execute over a
given period of time. The processor also takes into account the number of cores that share similar characteristics.

Intel® Xeon® processors based on Broadwell microarchitecture work similarly, but to a lesser extent since they only
support 256-bit vector instructions. Skylake Server microarchitecture supports Intel® AVX-512 instructions, which can
potentially draw more current and more power than Intel® AVX2 instructions.

The processor dynamically adjusts its maximum frequency to higher or lower levels as necessary, therefore a program
might be limited to different maximum frequencies during its execution.

Document #: 248966-050US 2-30

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Table 2-12 includes information about the maximum Intel® Turbo Boost technology core frequency for each type of
instruction executed. The maximum frequency (P0n) is an array of frequencies which depend on the number of cores
within the category. The more cores belonging to a category at any given time, the lower the maximum frequency.

For per SKU max frequency details (reference figure 1-15), refer to the Intel® Xeon® Scalable Processor Family
Technical Resources page.

Figure 2-7 is an example for core frequency range in a given system where each core frequency is determined
independently based on the demand of the workload.

The following performance monitoring events can be used to determine how many cycles were spent in each of the
three frequency levels.

• CORE_POWER.LVL0_TURBO_LICENSE: Core cycles where the core was running in a manner where the maximum
frequency was P0n.

• CORE_POWER.LVL1_TURBO_LICENSE: Core cycles where the core was running in a manner where the maximum
frequency was P0n-AVX2.

• CORE_POWER.LVL2_TURBO_LICENSE: Core cycles where the core was running in a manner where the maximum
frequency was P0n-AVX-512.

Table 2-12. Maximum Intel® Turbo Boost Technology Core Frequency Levels

Level Category Frequency Level Max Frequency
(P0n) Instruction Types

0 Intel® AVX2 light
instructions Highest Max Scalar, AVX128, SSE, Intel® AVX2 w/o

FP or INT MUL/FMA

1

Intel® AVX2 heavy
instructions +

Intel® AVX-512
light instructions

Medium Max Intel® AVX2 Intel® AVX2 FP + INT MUL/FMA, Intel®
AVX-512 without FP or INT MUL/FMA

2 Intel® AVX-512
heavy instructions Lowest Max Intel® AVX-512 Intel® AVX-512 FP + INT MUL/FMA

Figure 2-7. Mixed Workloads

Fr
eq

ue
nc

y

P0n

P0n-AVX2

P0n-AVX-512

P1

P1-AVX2

P1-AVX-512

Cores

AV
X2

AV
X5

12

N
on

-A
VX

AV
X2 N
on

-A
VX

...
Cores using Intel® AVX2AVX2

Cores using Intel®AVX-512AVX512

Cores not using Intel®AVXNon-AVX

https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html
https://www.intel.com/content/www/us/en/processors/xeon/xeon-technical-resources.html

Document #: 248966-050US 2-31

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

When the core requests a higher license level than its current one, it takes the PCU up to 500 micro-seconds to grant
the new license. Until then the core operates at a lower peak capability. During this time period the PCU evaluates
how many cores are executing at the new license level and adjusts their frequency as necessary, potentially lowering
the frequency. Cores that execute at other license levels are not affected.

A timer of approximately 2ms is applied before going back to a higher frequency level. Any condition that would have
requested a new license resets the timer.

NOTES
A license transition request may occur when executing instructions on a mis-speculated path.

A large enough mix of Intel AVX-512 light instructions and Intel AVX2 heavy instructions drives the
core to request License 2, despite the fact that they usually map to License 1. The same is true for
Intel AVX2 light instructions and Intel SSE heavy instructions that may drive the core to License 1
rather than License 0. For example, The Intel® Xeon® Platinum 8180 processor moves from license 1
to license 2 when executing a mix of 110 Intel AVX-512 light instructions and 20 256-bit heavy
instructions over a window of 65 cycles.

Some workloads do not cause the processor to reach its maximum frequency as these workloads are bound by other
factors. For example, the LINPACK benchmark is power limited and does not reach the processor's maximum
frequency. The following graph shows how frequency degrades as vector width grows, but, despite the frequency
drop, performance improves. The data for this graph was collected on an Intel Xeon Platinum 8180 processor.

Workloads that execute Intel AVX-512 instructions as a large proportion of their whole instruction count can gain
performance compared to Intel AVX2 instructions, even though they may operate at a lower frequency. For example,
maximum frequency bound Deep Learning workloads that target Intel AVX-512 heavy instructions at a very high
percentage can gain 1.3x-1.5x performance improvement vs. the same workload built to target Intel AVX2 (both
operating on Skylake Server microarchitecture).

Figure 2-8. LINPACK Performance

2.5

2.0

0

3500

3000

2500

2000

1500

1000

500

0

3.5

3.0

760

1178

2034

3259

669 768 791 767

2.1

SSE4.2 AVX AVX2 AVX512

C
or

e
Fr

eq
ue

nc
y

G
FL

O
Ps

, S
ys

te
m

 P
ow

er 2.5

2.8

3.1

.5

1

1.5

Frequency (GHz)GFLOPs Power (W)

Document #: 248966-050US 2-32

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

It is not always easy to predict whether a program's performance will improve from building it to target Intel AVX-512
instructions. Programs that enjoy high performance gains from the use of xmm or ymm registers may expect
performance improvement by moving to the use of zmm registers. However, some programs that use zmm registers
may not gain as much, or may even lose performance. It is recommended to try multiple build options and measure
the performance of the program.

Recommendation: To identify the optimal compiler options to use, build the application with each of the following
set of options and choose the set that provides the best performance.

• -xCORE-AVX2 -mtune=skylake-avx512 (Linux* and macOS*)

/QxCORE-AVX2 /tune=skylake-avx512 (Windows*)

• -xCORE-AVX512 -qopt-zmm-usage=low (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:low (Windows*)

• -xCORE-AVX512 -qopt-zmm-usage=high (Linux* and macOS*)

/QxCORE-AVX512 /Qopt-zmm-usage:high (Windows*)

See Section 17.26 for more information about these options.

The GCC Compiler has the option -mprefer-vector-width=none|128|256|512 to control vector width preference.
While -march=skylake-avx512 is designed to provide the best performance for the Skylake Server microarchitecture
some programs can benefit from different vector width preferences. To identify the optimal compiler options to use,
build the application with each of the following set of options and choose the set that provides the best performance.
-mprefer-vector-width=256 is the default for skylake-avx512.

• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512

• -march=skylake-avx512 -mprefer-vector-width=512

Clang/LLVM is currently implementing the option -mprefer-vector-width=none|128|256|512, similar to GCC. To
identify the optimal compiler options to use, build the application with each of the following set of options and
choose the set that provides the best performance.

• -march=skylake -mtune=skylake-avx512

• -march=skylake-avx512 (plus -mprefer-vector-width=256, if available)

• -march=skylake-avx512 (plus -mprefer-vector-width=512, if available)

Document #: 248966-050US 2-33

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7 SKYLAKE CLIENT MICROARCHITECTURE
The Skylake client microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures. The
basic pipeline functionality of the Skylake client microarchitecture is depicted in Figure 2-9.

The Skylake Client microarchitecture offers the following enhancements:

• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.

• Improved front end throughput.

• Improved branch predictor.

• Improved divider throughput and latency.

• Lower power consumption.

• Improved SMT performance with Hyper-Threading Technology.

• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-system
consisting of a number of components including a ring interconnect to multiple slices of L3 cache (an off-die L4 is
optional), processor graphics, integrated memory controller, interconnect fabrics, etc.

Figure 2-9. CPU Core Pipeline Functionality of the Skylake Client Microarchitecture

256k L2 Cache
(Unified)

32K L1 Data
Cache

32K L1
Instruction Cache

Legacy Decode
Pipeline

BPU

Decoded
Icache (DSB)

Port 2 LD/STA

Scheduler

Allocate/Rename/Retire/Move Elimination/Zero Idiom

MSROM

Port 3 LD/STA

Port 4 STD

Port 6
INTEGER ALU

Int Shft
Branch 1

Port 0
INTEGER ALU

VEC FMA
VEC MUL
VEC Add
VEC ALU
VEC Shft

Divide
Branch2

Port 1
INTEGER ALU

Fast LEA

VEC FMA
VEC MUL
VEC Add
VEC ALU
VEC Shft
Int MUL

Slow LEA

Port 5
INTEGER ALU

Fast LEA
VEC SHUFFLE

VEC SHUF
VEC ALU

CVT

Instruction Decode Queue (IDQ, or Micro-Ops Queue)

Port 7 STD

Document #: 248966-050US 2-34

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.7.1 THE FRONT END
The front end in the Skylake Client microarchitecture provides the following improvements over previous generation
microarchitectures:

• Legacy Decode Pipeline delivery of 5 uops per cycle to the IDQ compared to 4 uops in previous generations.

• The DSB delivers 6 uops per cycle to the IDQ compared to 4 uops in previous generations.

• The IDQ can hold 64 uops per logical processor vs. 28 uops per logical processor in previous generations when
two sibling logical processors in the same core are active (2x64 vs. 2x28 per core). If only one logical processor is
active in the core, the IDQ can hold 64 uops (64 vs. 56 uops in ST operation).

• The LSD in the IDQ can detect loops up to 64 uops per logical processor irrespective ST or SMT operation.

• Improved Branch Predictor.

2.7.2 THE OUT-OF-ORDER EXECUTION ENGINE
The Out of Order and execution engine changes in Skylake Client microarchitecture include:

• Larger buffers enable deeper OOO execution compared to previous generations.

• Improved throughput and latency for divide/sqrt and approximate reciprocals.

• Identical latency and throughput for all operations running on FMA units.

• Longer pause latency enables better power efficiency and better SMT performance resource utilization.

Table 2-13 summarizes the OOO engine’s capability to dispatch different types of operations to various ports.

Table 2-14 lists execution units and common representative instructions that rely on these units. Throughput
improvements across the SSE, AVX and general-purpose instruction sets are related to the number of units for the
respective operations, and the varieties of instructions that execute using a particular unit.

Table 2-13. Dispatch Port and Execution Stacks of the Skylake Client Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

ALU,
Vec ALU

ALU,
Fast LEA,
Vec ALU

LD
STA STD

ALU,
Fast LEA,
Vec ALU,

ALU,
Shft, STA

Vec Shft,
Vec Add,

Vec Shft,
Vec Add, Vec Shuffle, Branch1

Vec Mul,
FMA,

Vec Mul,
FMA

DIV, Slow Int

Branch2 Slow LEA

Table 2-14. Skylake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa, (v)movap*,
(v)movup*

Document #: 248966-050US 2-35

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

A significant portion of the Intel SSE, Intel AVX and general-purpose instructions also have latency improvements.
Appendix C lists the specific details. Software-visible latency exposure of an instruction sometimes may include
additional contributions that depend on the relationship between micro-ops flows of the producer instruction and
the micro-op flows of the ensuing consumer instruction. For example, a two-uop instruction like VPMULLD may
experience two cumulative bypass delays of 1 cycle each from each of the two micro-ops of VPMULLD.

Table 2-15 describes the bypass delay in cycles between a producer uop and the consumer uop. The
left-most column lists a variety of situations characteristic of the producer micro-op. The top row lists a variety of
situations characteristic of the consumer micro-op.

SHFT 2 sal, shl, rol, adc, sarx, adcx, adox, etc.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

Vec ALU 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)movap*, (v)movup*,
(v)andp*, (v)orp*, (v)paddb/w/d/q, (v)blendv*, (v)blendp*, (v)pblendd

Vec_Shft 2 (v)psllv*, (v)psrlv*, vector shift count in imm8

Vec Add 2 (v)addp*, (v)cmpp*, (v)max*, (v)min*, (v)padds*, (v)paddus*, (v)psign, (v)pabs,
(v)pavgb, (v)pcmpeq*, (v)pmax, (v)cvtps2dq, (v)cvtdq2ps, (v)cvtsd2si, (v)cvtss2si

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*, vbroadcast*, (v)pslldq, (v)psrldq, (v)pblendw

Vec Mul 2 (v)mul*, (v)pmul*, (v)pmadd*,

SIMD Misc 1 STTNI, (v)pclmulqdq, (v)psadw, vector shift count in xmm,

FP Mov 1 (v)movsd/ss, (v)movd gpr,

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

NOTES:
1. Execution unit mapping to MMX instructions are not covered in this table. See Section 15.16.5 on MMX instruc-

tion throughput remedy.

Table 2-15. Bypass Delay Between Producer and Consumer Micro-ops

SIMD/0,1/
1

FMA/0,1/
4

VIMUL/0,1
/4 SIMD/5/1,3 SHUF/5/1,

3 V2I/0/3 I2V/5/1

SIMD/0,1/1 0 1 1 0 0 0 NA

FMA/0,1/4 1 0 1 0 0 0 NA

VIMUL/0,1/4 1 0 1 0 0 0 NA

SIMD/5/1,3 0 1 1 0 0 0 NA

Table 2-14. Skylake Client Microarchitecture Execution Units and Representative Instructions1

Execution
Unit

of
Unit Instructions

Document #: 248966-050US 2-36

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The attributes that are relevant to the producer/consumer micro-ops for bypass are a triplet of abbreviation/one or
more port number/latency cycle of the uop. For example:

• “SIMD/0,1/1” applies to 1-cycle vector SIMD uop dispatched to either port 0 or port 1.

• “VIMUL/0,1/4” applies to 4-cycle vector integer multiply uop dispatched to either port 0 or port 1.

• “SIMD/5/1,3” applies to either 1-cycle or 3-cycle non-shuffle uop dispatched to port 5.

2.7.3 CACHE AND MEMORY SUBSYSTEM
The cache hierarchy of the Skylake Client microarchitecture has the following enhancements:

• Higher Cache bandwidth compared to previous generations.

• Simultaneous handling of more loads and stores enabled by enlarged buffers.

• Processor can do two page walks in parallel compared to one in Haswell microarchitecture and earlier
generations.

• Page split load penalty down from 100 cycles in previous generation to 5 cycles.

• L3 write bandwidth increased from 4 cycles per line in previous generation to 2 per line.

• Support for the CLFLUSHOPT instruction to flush cache lines and manage memory ordering of flushed data using
SFENCE.

• Reduced performance penalty for a software prefetch that specifies a NULL pointer.

• L2 associativity changed from 8 ways to 4 ways.

SHUF/5/1,3 0 0 1 0 0 0 NA

V2I/0/3 NA NA NA NA NA NA NA

I2V/5/1 0 0 1 0 0 0 NA

Table 2-16. Cache Parameters of the Skylake Client Microarchitecture

Level
Capacity /
Associativit

y

Line
Size

(bytes)

Fastest
Latency

1

Peak
Bandwidth
(bytes/cyc)

Sustained
Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 96 (2x32B Load
+ 1*32B Store) ~81 Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/4 64 12 cycle 64 ~29 Writeback

Third Level
(Shared L3)

Up to 2MB
per core/Up
to 16 ways

64 44 32 ~18 Writeback

Table 2-15. Bypass Delay Between Producer and Consumer Micro-ops (Contd.)

SIMD/0,1/
1

FMA/0,1/
4

VIMUL/0,1
/4 SIMD/5/1,3 SHUF/5/1,

3 V2I/0/3 I2V/5/1

Document #: 248966-050US 2-37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB for L2. The
partition column of Table 2-17 indicates the resource sharing policy when Hyper-Threading Technology is active.

2.7.4 PAUSE LATENCY IN SKYLAKE CLIENT MICROARCHITECTURE
The PAUSE instruction is typically used with software threads executing on two logical processors located in the same
processor core, waiting for a lock to be released. Such short wait loops tend to last between tens and a few hundreds
of cycles, so performance-wise it is better to wait while occupying the CPU than yielding to the OS. When the wait
loop is expected to last for thousands of cycles or more, it is preferable to yield to the operating system by calling an
OS synchronization API function, such as WaitForSingleObject on Windows* OS or futex on Linux.

The PAUSE instruction is intended to:

• Temporarily provide the sibling logical processor (ready to make forward progress exiting the spin loop) with
competitively shared hardware resources. The competitively-shared microarchitectural resources that the sibling
logical processor can utilize in the Skylake Client microarchitecture are listed below.

— Front end slots in the Decode ICache, LSD and IDQ.

— Execution slots in the RS.

• Save power consumed by the processor core compared with executing equivalent spin loop instruction sequence
in the following configurations.

— One logical processor is inactive (e.g., entering a C-state).

— Both logical processors in the same core execute the PAUSE instruction.

— HT is disabled (e.g. using BIOS options).

The latency of the PAUSE instruction in prior generation microarchitectures is about 10 cycles, whereas in Skylake
Client microarchitecture it has been extended to as many as 140 cycles.

The increased latency (allowing more effective utilization of competitively-shared microarchitectural resources to the
logical processor ready to make forward progress) has a small positive performance impact of 1-2% on highly
threaded applications. It is expected to have negligible impact on less threaded applications if forward progress is not

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Table 2-17. TLB Parameters of the Skylake Client Microarchitecture

Level Page Size Entries Associativity Partition

Instruction 4KB 128 8 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB
pages 1536 12 fixed

Second Level 1GB 16 4 fixed

Document #: 248966-050US 2-38

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

blocked executing a fixed number of looped PAUSE instructions. There's also a small power benefit in 2-core and 4-
core systems.

As the PAUSE latency has been increased significantly, workloads that are sensitive to PAUSE latency will suffer some
performance loss.

The following is an example of how to use the PAUSE instruction with a dynamic loop iteration count.

Notice that in the Skylake Client microarchitecture the RDTSC instruction counts at the machine's guaranteed P1
frequency independently of the current processor clock (see the INVARIANT TSC property), and therefore, when
running in Intel® Turbo-Boost-enabled mode, the delay will remain constant, but the number of instructions that
could have been executed will change.

Use Poll Delay function in your lock to wait a given amount of guaranteed P1 frequency cycles, specified in the
“clocks” variable.

For contended spinlocks of the form shown in the baseline example below, we recommend an exponential back off
when the lock is found to be busy, as shown in the improved example, to avoid significant performance degradation
that can be caused by conflicts between threads in the machine. This is more important as we increase the number of
threads in the machine and make changes to the architecture that might aggravate these conflict conditions. In multi-
socket Intel server processors with shared memory, conflicts across threads take much longer to resolve as the
number of threads contending for the same lock increases. The exponential back off is designed to avoid these
conflicts between the threads thus avoiding the potential performance degradation. Note that in the example below,

Example 2-9. Dynamic Pause Loop Example
#include <x86intrin.h>
#include <stdint.h>

/* A useful predicate for dealing with timestamps that may wrap.
 Is a before b? Since the timestamps may wrap, this is asking whether it's
 shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
 Times where going clockwise is less distance than going anti-clockwise
 are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
 then a > b (true) does not mean a reached b; whereas signed(a) = -2,
 signed(b) = 0 captures the actual difference */

static inline bool before(uint64_t a, uint64_t b)
{
 return ((int64_t)b - (int64_t)a) > 0;
}

void pollDelay(uint32_t clocks)
{
 uint64_t endTime = _rdtsc()+ clocks;

 for (; before(_rdtsc(), endTime);)
 _mm_pause();
}

Document #: 248966-050US 2-39

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

the number of PAUSE instructions are increased by a factor of 2 until some MAX_BACKOFF is reached which is subject
to tuning.

2.8 INTEL® 64 AND IA-32 INSTRUCTION BEST PRACTICES

2.8.1 NON-PRIVILEGED INSTRUCTION SERIALIZATION
Software may be required to serialize the execution pipeline of the current processor for various reasons in parallel
execution environments. Several defined instructions, privileged and non-privileged, are classified as serializing
instructions.

The concept of serializing instructions was introduced into the IA-32 architecture with the Pentium processor to
support parallel instruction execution. Serializing instructions have no meaning for the Intel486 and earlier
processors that do not implement parallel instruction execution. It is important to note that executing serializing
instructions on P6 and more recent processor families constrains speculative execution because the results of
speculatively executed instructions are discarded.

Example 2-10. Contended Locks with Increasing Back-off Example
/*******************/
/*Baseline Version */
/*******************/

// atomic {if (lock == free) then change lock state to busy}
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 __asm__ (“pause”);
 }
}

/*******************/
/*Improved Version */
/*******************/

int mask = 1;
int const max = 64; //MAX_BACKOFF
while (cmpxchg(lock, free, busy) == fail)
{
 while (lock == busy)
 {
 for (int i=mask; i; --i){
 __asm__ (“pause”);
 }

 mask = mask < max ? mask<<1 : max;
 }
}

Document #: 248966-050US 2-40

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

These instructions ensure the processor completes all modifications to flags, registers, and memory by previous
instructions and drains all buffered writes to memory before the next instruction is fetched and executed. The non-
privileged serialization instructions are:

• SERIALIZE

• CPUID

• IRET

• RSM

The SERIALIZE instruction was introduced in the Sapphire Rapids and Alder Lake platforms as a purpose-specific
method of providing serialization to supersede the current typical usages such as CPUID.(EAX=0H). For example,
CPUID usage for serialization has issues such that registers [EAX, EBX, ECX, EDX] are modified and, when executed on
top of a VMM, will always incur the latency of a VM exit/VM entry round trip. SERIALIZE does not modify registers,
arithmetic flags, or memory and does not incur a VM exit. The SERIALIZE instruction is enumerated via
CPUID.(EAX=07H,ECX=0):EDX[14]=1, and software must verify support before usage.

Software that uses CPUID for serialization is recommended to use Leaf 0 [CPUID.(EAX=0H)] CPUID. CPUID leaves have
variable performance with Leaf 0 providing the lowest latency when executed natively.

2.8.2 INTEL® HYPER-THREADING TECHNOLOGY (INTEL® HT TECHNOLOGY)
Intel® Hyper-Threading Technology (Intel® HT Technology) enables software to take advantage of task-level, or
thread-level parallelism by providing multiple logical processors within a physical processor package, or within each
processor core in a physical processor package. In its first implementation in the Intel® Xeon® processor, Intel HT
Technology makes a single physical processor (or a processor core) appear as two or more logical processors.

Most Intel Architecture processor families support Intel HT Technology with two logical processors in each processor
core, or in a physical processor in early implementations. The rest of this section describes features of the early
implementation of Intel HT Technology. Most of the descriptions also apply to later implementations supporting two
logical processors. The microarchitecture sections in this chapter provide additional details to individual
microarchitecture and enhancements to Intel HT Technology.

The two logical processors each have a complete set of architectural registers while sharing one single physical
processor's resources. By maintaining the architecture state of two processors, an Intel HT Technology-capable
processor looks like two processors to software, including operating system and application code.

By sharing resources needed for peak demands between two logical processors, Intel HT Technology is well suited for
multiprocessor systems to provide an additional performance boost in throughput when compared to traditional MP
systems.

Figure 2-10 shows a typical bus-based symmetric multiprocessor (SMP) based on processors supporting Intel HT
Technology. Each logical processor can execute a software thread, allowing a maximum of two software threads to
execute simultaneously on one physical processor. The two software threads execute simultaneously, meaning that in
the same clock cycle an “add” operation from logical processor 0 and another “add” operation and load from logical
processor 1 can be executed simultaneously by the execution engine.

In the first implementation of Intel HT Technology, the physical execution resources are shared and the architecture
state is duplicated for each logical processor. This minimizes the die area cost of implementing Intel HT Technology
while still achieving performance gains for multithreaded applications or multitasking workloads.

Document #: 248966-050US 2-41

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The performance potential due to Intel HT Technology is due to:

• The fact that operating systems and user programs can schedule processes or threads to execute simultaneously
on the logical processors in each physical processor.

• The ability to use on-chip execution resources at a higher level than when only a single thread is consuming the
execution resources; higher level of resource utilization can lead to higher system throughput.

2.8.2.1 Processor Resources and Intel® HT Technology
Most microarchitecture resources in a physical processor are shared between the logical processors. Only a few small
data structures were replicated for each logical processor. This section describes how resources are shared,
partitioned or replicated.

Replicated Resources
The architectural state is replicated for each logical processor. The architecture state consists of registers that are used
by the operating system and application code to control program behavior and store data for computations. This state
includes the eight general-purpose registers, the control registers, machine state registers, debug registers, and
others. There are a few exceptions, most notably the memory type range registers (MTRRs) and the performance
monitoring resources. For a complete list of the architecture state and exceptions, see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 3A, 3B, 3C, & 3D.

Other resources such as instruction pointers and register renaming tables were replicated to simultaneously track
execution and state changes of the two logical processors. The return stack predictor is replicated to improve branch
prediction of return instructions.

In addition, a few buffers (for example, the two-entry instruction streaming buffers) were replicated to reduce
complexity.

Partitioned Resources
Several buffers are shared by limiting the use of each logical processor to half the entries. These are referred to as
partitioned resources. Reasons for this partitioning include:

• Operational fairness.

• Permitting the ability to allow operations from one logical processor to bypass operations of the other logical
processor that may have stalled.

Figure 2-10. Intel® Hyper-Threading Technology on an SMP System

Execution EngineExecution Engine

Local APICLocal APIC

Architectural
State

Architectural
State

Bus Interface
Local APICLocal APIC

Architectural
State

Architectural
State

Bus Interface

System Bus

Document #: 248966-050US 2-42

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

For example: a cache miss, a branch misprediction, or instruction dependencies may prevent a logical processor from
making forward progress for some number of cycles. The partitioning prevents the stalled logical processor from
blocking forward progress.

In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers include µop
queues after the execution trace cache, the queues after the register rename stage, the reorder buffer which stages
instructions for retirement, and the load and store buffers.

In the case of load and store buffers, partitioning also provided an easier implementation to maintain memory
ordering for each logical processor and detect memory ordering violations.

Shared Resources
Most resources in a physical processor are fully shared to improve the dynamic utilization of the resource, including
caches and all the execution units. Some shared resources which are linearly addressed, like the DTLB, include a
logical processor ID bit to distinguish whether the entry belongs to one logical processor or the other.

2.8.2.2 Microarchitecture Pipeline and Intel® HT Technology
This section describes the Intel HT Technology microarchitecture and how instructions from the two logical
processors are handled between the front end and the back end of the pipeline.

Although instructions originating from two programs or two threads execute simultaneously and not necessarily in
program order in the execution core and memory hierarchy, the front end and back end contain several selection
points to select between instructions from the two logical processors. All selection points alternate between the two
logical processors unless one logical processor cannot make use of a pipeline stage. In this case, the other logical
processor has full use of every cycle of the pipeline stage. Reasons why a logical processor may not use a pipeline
stage include cache misses, branch mispredictions, and instruction dependencies.

2.8.2.3 Execution Core
The core can dispatch up to six µops per cycle, provided the µops are ready to execute. Once the µops are placed in
the queues waiting for execution, there is no distinction between instructions from the two logical processors. The
execution core and memory hierarchy is also oblivious to which instructions belong to which logical processor.

After execution, instructions are placed in the re-order buffer. The re-order buffer decouples the execution stage from
the retirement stage. The re-order buffer is partitioned so each uses half the entries.

2.8.2.4 Retirement
The retirement logic tracks when instructions from the two logical processors are ready to be retired. It retires the
instruction in program order for each logical processor by alternating between the two logical processors. If one
logical processor is not ready to retire any instructions, then all retirement bandwidth is dedicated to the other logical
processor.

Once stores have retired, the processor must write the store data into the level-one data cache. Selection logic
alternates between the two logical processors to commit store data to the cache.

2.8.3 SIMD TECHNOLOGY
SIMD computations (see Figure 2-11) were introduced to the architecture with MMX technology. MMX technology
allows SIMD computations to be performed on packed byte, word, and doubleword integers. The integers are
contained in a set of eight 64-bit registers called MMX registers (see Figure 2-12).

Document #: 248966-050US 2-43

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

Earlier processors extended the SIMD computation model with the introduction of the Streaming SIMD Extensions
(SSE). SSE allows SIMD computations to be performed on operands that contain four packed single-precision floating-
point data elements. The operands can be in memory or in a set of eight 128-bit XMM registers (see Figure 2-12). SSE
also extended SIMD computational capability by adding additional 64-bit MMX instructions.

Figure 2-11 shows a typical SIMD computation. Two sets of four packed data elements (X1, X2, X3, and X4, and Y1, Y2,
Y3, and Y4) are operated on in parallel, with the same operation being performed on each corresponding pair of data
elements (X1 and Y1, X2 and Y2, X3 and Y3, and X4 and Y4). The results of the four parallel computations are sorted as
a set of four packed data elements.

The Pentium 4 processor further extended the SIMD computation model with the introduction of Streaming SIMD
Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), and Intel Xeon processor 5100 series introduced
Supplemental Streaming SIMD Extensions 3 (SSSE3).

SSE2 works with operands in either memory or in the XMM registers. The technology extends SIMD computations to
process packed double-precision floating-point data elements and 128-bit packed integers. There are 144
instructions in SSE2 that operate on two packed double-precision floating-point data elements or on 16 packed byte,
8 packed word, 4 doubleword, and 2 quadword integers.

SSE3 enhances x87, SSE and SSE2 by providing 13 instructions that can accelerate application performance in specific
areas. These include video processing, complex arithmetics, and thread synchronization. SSE3 complements SSE and
SSE2 with instructions that process SIMD data asymmetrically, facilitate horizontal computation, and help avoid
loading cache line splits. See Figure 2-12.

SSSE3 provides additional enhancement for SIMD computation with 32 instructions on digital video and signal
processing.

SSE4.1, SSE4.2 and AESNI are additional SIMD extensions that provide acceleration for applications in media
processing, text/lexical processing, and block encryption/decryption.

The SIMD extensions operates the same way in Intel 64 architecture as in IA-32 architecture, with the following
enhancements:

• 128-bit SIMD instructions referencing XMM register can access 16 XMM registers in 64-bit mode.

• Instructions that reference 32-bit general purpose registers can access 16 general purpose registers in 64-bit
mode.

Figure 2-11. Typical SIMD Operations

X1X2X3X4

Y1Y2Y3Y4

OP OP OP OP

X1 op Y1X2 op Y2X3 op Y3X4 op Y4

Document #: 248966-050US 2-44

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

SIMD improves the performance of 3D graphics, speech recognition, image processing, scientific applications and
applications that have the following characteristics:

• Inherently parallel.

• Recurring memory access patterns.

• Localized recurring operations performed on the data.

• Data-independent control flow.

2.8.4 SUMMARY OF SIMD TECHNOLOGIES AND APPLICATION LEVEL
EXTENSIONS

SIMD floating-point instructions fully support the IEEE Standard 754 for Binary Floating-Point Arithmetic. They are
accessible from all IA-32 execution modes: protected mode, real address mode, and Virtual 8086 mode.

SSE, SSE2, and MMX technologies are architectural extensions. Existing software will continue to run correctly,
without modification on Intel microprocessors that incorporate these technologies. Existing software will also run
correctly in the presence of applications that incorporate SIMD technologies.

SSE and SSE2 instructions also introduced cacheability and memory ordering instructions that can improve cache
usage and application performance.

For more on SSE, SSE2, SSE3 and MMX technologies, see the following chapters in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1

• Chapter 9, “Programming with Intel® MMX™ Technology.”

• Chapter 10, “Programming with Intel® Streaming SIMD Extensions (Intel® SSE).”

• Chapter 11, “Programming with Intel® Streaming SIMD Extensions 2 (Intel® SSE2).”

• Chapter 12, “Programming with Intel® SSE3, SSSE3, Intel® SSE4, and Intel® AES-NI.”

• Chapter 14, “Programming with Intel® AVX, FMA, and Intel® AVX2.”

• Chapter 15, “Programming with Intel® AVX-512.”

Figure 2-12. SIMD Instruction Register Usage

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0

XMM7

XMM6

XMM5

XMM4

XMM3

XMM2

XMM1

XMM0

64-bit MMX Registers 128-bit XMM Registers

Document #: 248966-050US 2-45

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2.8.4.1 MMX™ Technology
MMX Technology introduced:

• 64-bit MMX registers.

• Support for SIMD operations on packed byte, word, and doubleword integers.

Recommendation: Integer SIMD code written using MMX instructions should consider more efficient
implementations using SSE/Intel AVX instructions.

2.8.4.2 Streaming SIMD Extensions
Streaming SIMD extensions introduced:

• 128-bit XMM registers.

• 128-bit data type with four packed single-precision floating-point operands.

• Data prefetch instructions.

• Non-temporal store instructions and other cacheability and memory ordering instructions.

• Extra 64-bit SIMD integer support.

SSE instructions are useful for 3D geometry, 3D rendering, speech recognition, and video encoding and decoding.

2.8.4.3 Streaming SIMD Extensions 2
Streaming SIMD extensions 2 add the following:

• 128-bit data type with two packed double-precision floating-point operands.

• 128-bit data types for SIMD integer operation on 16-byte, 8-word, 4-doubleword, or 2-quadword integers.

• Support for SIMD arithmetic on 64-bit integer operands.

• Instructions for converting between new and existing data types.

• Extended support for data shuffling.

• Extended support for cacheability and memory ordering operations.

SSE2 instructions are useful for 3D graphics, video decoding/encoding, and encryption.

2.8.4.4 Streaming SIMD Extensions 3
Streaming SIMD extensions 3 add the following:

• SIMD floating-point instructions for asymmetric and horizontal computation.

• A special-purpose 128-bit load instruction to avoid cache line splits.

• An x87 FPU instruction to convert to integer independent of the floating-point control word (FCW).

• Instructions to support thread synchronization.

SSE3 instructions are useful for scientific, video and multi-threaded applications.

2.8.4.5 Supplemental Streaming SIMD Extensions 3
The Supplemental Streaming SIMD Extensions 3 introduces 32 new instructions to accelerate eight types of
computations on packed integers. These include:

• 12 instructions that perform horizontal addition or subtraction operations.

Document #: 248966-050US 2-46

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

• 6 instructions that evaluate the absolute values.

• 2 instructions that perform multiply and add operations and speed up the evaluation of dot products.

• 2 instructions that accelerate packed-integer multiply operations and produce integer values with scaling.

• 2 instructions that perform a byte-wise, in-place shuffle according to the second shuffle control operand.

• 6 instructions that negate packed integers in the destination operand if the signs of the corresponding element in
the source operand is less than zero.

• 2 instructions that align data from the composite of two operands.

2.8.5 SSE4.1
SSE4.1 introduces 47 new instructions to accelerate video, imaging and 3D applications. SSE4.1 also improves
compiler vectorization and significantly increase support for packed dword computation. These include:

• Two instructions perform packed dword multiplies.

• Two instructions perform floating-point dot products with input/output selects.

• One instruction provides a streaming hint for WC loads.

• Six instructions simplify packed blending.

• Eight instructions expand support for packed integer MIN/MAX.

• Four instructions support floating-point round with selectable rounding mode and precision exception override.

• Seven instructions improve data insertion and extractions from XMM registers

• Twelve instructions improve packed integer format conversions (sign and zero extensions).

• One instruction improves SAD (sum absolute difference) generation for small block sizes.

• One instruction aids horizontal searching operations of word integers.

• One instruction improves masked comparisons.

• One instruction adds qword packed equality comparisons.

• One instruction adds dword packing with unsigned saturation.

2.8.5.1 SSE4.2
SSE4.2 introduces 7 new instructions. These include:

• A 128-bit SIMD integer instruction for comparing 64-bit integer data elements.

• Four string/text processing instructions providing a rich set of primitives, these primitives can accelerate:

— Basic and advanced string library functions from strlen, strcmp, to strcspn.

— Delimiter processing, token extraction for lexing of text streams.

— Parser, schema validation including XML processing.

• A general-purpose instruction for accelerating cyclic redundancy checksum signature calculations.

• A general-purpose instruction for calculating bit count population of integer numbers.

2.8.5.2 AESNI and PCLMULQDQ
AESNI introduces seven new instructions, six of them are primitives for accelerating algorithms based on AES
encryption/decryption standard, referred to as AESNI.

Document #: 248966-050US 2-47

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

The PCLMULQDQ instruction accelerates general-purpose block encryption, which can perform carry-less
multiplication for two binary numbers up to 64-bit wide.

Typically, algorithm based on AES standard involve transformation of block data over multiple iterations via several
primitives. The AES iteration.

AES encryption involves processing 128-bit input data (plain text) through a finite number of iterative operation,
referred to as “AES round”, into a 128-bit encrypted block (ciphertext). Decryption follows the reverse direction of
iterative operation using the “equivalent inverse cipher” instead of the “inverse cipher”.

The cryptographic processing at each round involves two input data, one is the “state”, the other is the “round key”.
Each round uses a different “round key”. The round keys are derived from the cipher key using a “key schedule”
algorithm. The “key schedule” algorithm is independent of the data processing of encryption/decryption, and can be
carried out independently from the encryption/decryption phase.

The AES extensions provide two primitives to accelerate AES rounds on encryption, two primitives for AES rounds on
decryption using the equivalent inverse cipher, and two instructions to support the AES key expansion procedure.

2.8.5.3 Intel® Advanced Vector Extensions (Intel® AVX)
Intel® Advanced Vector Extensions (Intel® AVX) offers comprehensive architectural enhancements over previous
generations of Streaming SIMD Extensions. Intel AVX introduces the following architectural enhancements:

• Support for 256-bit wide vectors and SIMD register set.

• 256-bit floating-point instruction set enhancement with up to 2X performance gain relative to 128-bit Streaming
SIMD extensions.

• Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility
and efficient encoding of new instruction extensions.

• Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to simplify
compiler vectorization of high-level language expressions.

• Support flexible deployment of 256-bit AVX code, 128-bit AVX code, legacy 128-bit code and scalar code.

Intel AVX instruction set and 256-bit register state management detail are described in Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D. Optimization techniques for Intel AVX are
discussed in Chapter 15, “Programming with Intel® AVX-512.”

2.8.5.4 Half-Precision Floating-Point Conversion (F16C)
VCVTPH2PS and VCVTPS2PH are two instructions supporting half-precision floating-point data type conversion to and
from single-precision floating-point data types. These two instruction extends on the same programming model as
Intel AVX.

2.8.5.5 RDRAND
The RDRAND instruction retrieves a random number supplied by a cryptographically secure, deterministic random bit
generator (DBRG). The DBRG is designed to meet NIST SP 800-90A standard.

2.8.5.6 Fused-Multiply-ADD (FMA) Extensions
FMA extensions enhances Intel AVX with high-throughput, arithmetic capabilities covering fused multiply-add, fused
multiply-subtract, fused multiply add/subtract interleave, signed-reversed multiply on fused multiply-add and

Document #: 248966-050US 2-48

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

multiply-subtract operations. FMA extensions provide 36 256-bit floating-point instructions to perform computation
on 256-bit vectors and additional 128-bit and scalar FMA instructions.

2.8.5.7 Intel® Advanced Vector Extensions 2 (Intel® AVX2)
Intel® AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. Intel AVX2 instructions follow the same programming model as AVX instructions.

In addition, Intel AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch
non-contiguous data elements from memory.

2.8.5.8 General-Purpose Bit-Processing Instructions
The fourth generation Intel Core processor family introduces a collection of bit processing instructions that operate
on the general purpose registers. Most of these instructions uses the VEX-prefix encoding scheme to provide non-
destructive source operand syntax.

There instructions are enumerated by three separate feature flags reported by CPUID. For details, see Section 5.1 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1 and chapters 3, 4 and 5 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volumes 2A, 2B, 2C, & 2D.

2.8.5.9 RDSEED
The RDSEED instruction retrieves a random number supplied by a cryptographically secure, enhanced deterministic
random bit generator Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-90B and NIST SP 800-90C
standards.

2.8.5.10 ADCX and ADOX Instructions
The ADCX and ADOX instructions, in conjunction with MULX instruction, enable software to speed up calculations
that require large integer numerics.

https://cdrdv2.intel.com/v1/dl/getContent/671436
https://cdrdv2.intel.com/v1/dl/getContent/671110

Document #: 248966-050US -1

3. Updates to Chapter 4
Change bars and violet text show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Optimization
Resource Manual: Intel Atom® Processor Architectures.

--
Changes to this chapter:

• Section 4.1: All content updated to Crestmont microarchitecture from Gracemont microarchitecture.

— This includes new instructions and updated features and values.

— Figures 4-1 to 4-3 were updated with Crestmont information.

• Section 4.2:

— Figure 4-4 was edited with style guidelines.

Document #: 248966-050US 4-1

INTEL ATOM® PROCESSOR ARCHITECTURES

CHAPTER 4
INTEL ATOM® PROCESSOR ARCHITECTURES

This chapter gives an overview of features relevant to software optimization for current generations of Intel Atom®
processors.

4.1 THE CRESTMONT MICROARCHITECTURE
The Crestmont microarchitecture builds on the success of the Gracemont microarchitecture. Listed below are some
of the many enhancements provided by the Gracemont microarchitecture.

• Increased Branch Prediction Bandwidth (128B/cycle max from 32B/cycle on Gracemont).

• Larger Branch Target Buffer (6K entry from 5K) with Enhanced Path Based Branch Prediction.

• Wider allocation width (6-wide from 5-wide).

• Larger second-level TLB and larger dedicated 1GB page TLB.

• 48-bit VA with 52-bit PA used for MKTME keys.

• 2x SIMD integer multiply units, faster integer divide units.

• VEX-based AVX-NE-CONVERT convert, AVX-VNNI-INT8 and AVX-IFMA ISA extension.

• ECC protected Data Cache (in server products).

• Linear address masking (LAM)1, Linear Address Space Separation (LASS)2, Secure Arbitration Mode (SEAM), and
Trust Domain Extensions (TDX) ISA extensions.

• Performance Monitoring enhancements include eight general-purpose counters (from six), precise distribution
support for general-purpose counter 1 (totaling three counters), timed PEBS support, LBR event logging support,
and multiple new events.

1. Not available in the Meteor Lake microarchitecture.
2. ibid.

Document #: 248966-050US 4-2

INTEL ATOM® PROCESSOR ARCHITECTURES

4.1.1 CRESTMONT MICROARCHITECTURE OVERVIEW
The basic pipeline functionality of the Crestmont microarchitecture is depicted in Figure 4-1.

The Crestmont microarchitecture supports flexible integration of multiple processor cores with a shared un-core
subsystem consisting of a number of components including a ring interconnect to multiple slices of L3, processor
graphics, integrated memory controller, interconnect fabrics, and more.

Figure 4-1. Processor Core Pipeline Functionality of the Crestmont Microarchitecture

Allocation/Rename (6-wide)

OD-ILD
16B/cyc

Instruction Data

128B

Predict

32B

Fetch

OD-ILD
16B/cyc

32B

Instruction Data

ROM Decode (3-wide)Decode (3-wide)

64KB I$

Memory Vector/Float

Integer Registers Vector/Float Registers

SHIFT
ALU

ALU
ALU

SHIFT
ALU

DIV
MUL

SHIFT
ALU

DIV
MUL

LLB

SHIFT
ALU

TLB

32KB D$

AGUAGU AGUAGU

SDB

JMPJMP STDSTD STDSTD SALU

FMUL
SIMUL

FADD

SALU

Port
00

Port
01

Port
02

Ports
10/11 12/13

Ports
30/31 08/09

Port
03

Port
28/29

Ports
20, 21, 22

SALU

FADD
FMUL
SIMUL

SHA

Document #: 248966-050US 4-3

INTEL ATOM® PROCESSOR ARCHITECTURES

4.1.2 PREDICT AND FETCH
Crestmont features a front end with up to 128 bytes per cycle prediction. This is dramatically larger than the 32B/cycle
from the Gracemont generation. To process all 128 bytes, the address must be aligned such that an even 64B line plus
an odd 64B line can be processed together based on bit 7 of the linear address. If there is a taken branch to an odd 64B
line, that prediction cycle will process only the 64B line. 128B/cycle processing will resume the following cycle,
assuming no taken branches were detected.

Each cycle, the predicted IP is sent down the instruction fetch pipeline. These predictions can look up the Instruction
TLB (ITLB) and the instruction cache tag to determine the physical address and instruction cache hit or miss. Upon
successful translation, and depending on resource availability, these accesses are stored into the instruction pointer
(IP) queues. This enables the decoupling instruction cache hit/miss from delivering raw instruction bytes to the rest of
the front end. In the case of an instruction cache miss, the IP queue holds the address but signals that the data cannot
be read until it is returned from the memory subsystem. The stream of IPs generated at fetch can handle up to eight
concurrent instruction cache misses. There are two independent IP queues, each with its instruction data buffers.
Combined with their associated decoders, these are referred to as clusters. For each taken branch or inserted toggle
point, the prediction will toggle back and forth between each IP queue and cluster. This toggling enables out-of-order
decode, which is the key feature that enables this microarchitecture to fetch and decode up to 6 variable length x86
instructions per cycle.

Performance debug of prediction or fetch can be done utilizing the front-end bound events in the top-down category
of performance monitoring events1. Front-end bound events count slots at allocation only when slots are available,
but no μops are present. If bubbles caused by the three-cycle predictor percolate to allocation, for example, these will
be represented by TOPDOWN_FE_BOUND.BRANCH_RESTEER. You can precisely tag the instruction following such a
bubble via FRONTEND_RETIRED.BRANCH_RESTEER. If the predictor failed to cache a branch target and redirection
occurred during decode, those slots are counted by TOPDOWN_FE_BOUND.BRANCH_DETECT. If μops are not
delivered due to misses in the Instruction Cache or Instruction TLB, these appear as TOPDOWN_FE_BOUND.ICACHE
and TOPDOWN_FE_BOUND.ITLB, respectively. Like BRANCH_RESTEER, all front-end bound slot-based accounting can
be tracked precisely via the corresponding FRONTEND_RETIRED set of events. The instruction code can often be

Figure 4-2. Front-End Pipeline Functionality of the Crestmont Microarchitecture

1. Please see https://perfmon-events.intel.com.

OD-ILD
16B/cyc

Instruction Data

128B

Predict

32B

Fetch

OD-ILD
16B/cyc

32B

Instruction Data

ROM Decode (3-wide)Decode (3-wide)

64KB I$

Document #: 248966-050US 4-4

INTEL ATOM® PROCESSOR ARCHITECTURES

rearranged to optimize such a bottleneck away. Multiple event classes can be tracked simultaneously (e.g., mark both
ICACHE and ITLB events) on the same general-purpose performance counter or with different events across multiple
performance counters.

Sometimes, a code loop is too short and/or poorly aligned within the cache to enable the machine to decode
sufficiently fast. In this situation you could be fetching every cycle and never inserting bubbles, but still unable to keep
the back-end fed. When this happens, the event class that detects this is TOPDOWN_FE_BOUND.OTHER. The “other”
event class catches front-end bound behavior that cannot be pinpointed to other specific sources.

4.1.3 DYNAMIC LOAD BALANCING
Because Crestmont increased the prediction rate in many cases, it is expected to report fewer FE_BOUND.OTHER
cases compared to Gracemont in general. However, since Crestmont also increased the allocation width by 20%, there
are now more SLOTS that must be accounted for. Additional toggle points can be created based on internal heuristics
when the hardware detects long basic blocks. These toggle points are added to the predictors, guiding the machine to
toggle within the basic block and keeping both decode clusters busy.

4.1.4 INSTRUCTION DECODE AND THE ON-DEMAND INSTRUCTION LENGTH
DECODER (OD-ILD)

Crestmont maintains the Gracemont on-demand instruction length decoding blocks. These blocks are typically only
active when new instruction bytes are brought into the instruction cache due to a miss. When this happens, two extra
cycles are added to the fetch pipeline of the affected decode cluster to generate pre-decode bits on the fly. Each block
process is done across 16 bytes per cycle. With clustering, this means Crestmont is capable of 32 bytes per cycle
across the two independent OD-ILDs (as in Gracemont).

Like Gracemont, Crestmont has two 3-wide instruction decode clusters capable of 6 instruction decode per cycle.
Each instruction decoder generates a single μop yet can generate most x86 code as measured by dynamic instruction
count. Load-op-stores, complicated addressing forms, Control Enforcement Technology (CET) instructions, and many
more types are generated in a single internal μop format. Each decoder is also capable of detecting a microcode entry
point. The most common short microcode flows can be executed out of order between the clusters, enabling
additional performance. All μops are written into two parallel μop queues (one queue per 3-wide cluster), designed
to allow the front and back end of the core to execute independently. The allocation and rename pipeline reads both
μop queues in parallel and returns the instruction stream for register renaming and resource allocation.

The low-level characteristics of the microarchitecture within each decode cluster have remained identical since the
Tremont microarchitecture1.

If you are doing performance debugging and think load balancing or other decode restrictions may be an issue, this
will often be indicated by TOPDOWN_FE_BOUND.DECODE. If the decoder struggled due to not having the correct pre-
decode bits OR there were too many prefixes or escapes on the instructions, this would be represented by
TOPDOWN_FE_BOUND.PREDECODE. If the machine is stuck waiting on lengthy microcode sequences, this will be
represented by TOPDOWN_FE_BOUND.CISC. As with all other allocation slot-based FE_BOUND events, there are
corresponding FRONTEND_RETIRED events that mark an instruction after the designated event class occurred.
However, there is a difference in how this is reported for CISC events. As slot-based bottlenecks due to executing long
microcode instructions are typically seen “within” an instruction, FRONTEND_RETIRED.CISC will often tag the CISC
instruction itself, not the following instruction. When microcode is invoked to handle external interrupts, faults, traps,
or other types of assists, FRONTEND_RETIRED.CISC will mark the next instruction that follows.

1. Refer to Chapter 6, “Earlier Generations of Intel Atom® Microarchitecture and Software Optimization” in the Intel® 64 and IA-
32 Architectures Optimization Reference Manual Documentation Volume 2: Earlier Generations of Intel® 64 and IA-32 Pro-
cessor Architectures, Throughput, and Latency.

https://cdrdv2.intel.com/v1/dl/getContent/787036
https://cdrdv2.intel.com/v1/dl/getContent/787036
https://cdrdv2.intel.com/v1/dl/getContent/787036

Document #: 248966-050US 4-5

INTEL ATOM® PROCESSOR ARCHITECTURES

4.1.5 ALLOCATION AND RETIREMENT
Crestmont can allocate up to six μops per cycle, compared to five μops in Gracemont. Allocation reads the μop queues
of all front-end clusters simultaneously and generates an in-order stream splicing across clustering boundaries within
the same cycle as necessary. In some cases, there can be an expansion between the format inside the μop queue and
the format allocated to the machine. For example, for a 256-bit AVX instruction, the front-end decodes the instruction
as a single μop, subdivided into 128-bit operations at allocation time. In this case, two allocation lanes allocate the
two 128-bit halves of the instruction. The most common μops that use this method besides 256-bit AVX μops are
integer μops that require multiple logical register destinations, like integer multiplies and divides. Another example is
PUSH memory, which loads a value from memory from one address, stores the value into memory at the location of
the stack pointer, and updates the stack pointer. MOV elimination, NOP detection, idiom detection (for example, XOR,
a register by itself, producing all zeros), and memory renaming are performed at allocation time. This can reduce
dependency chains and, in some situations, eliminate μops from execution.

For the 256-entry retirement buffer, retirement can be up to eight instructions per cycle. Retirement is wider than
allocation to improve performance for store deallocation and other less common flushing conditions.

4.1.6 THE OUT-OF-ORDER AND EXECUTION ENGINES
The Out-of-Order and execution engines in the Crestmont microarchitecture remain mostly unchanged from the
Gracemont microarchitecture with enhancements in:

• Integer divide units.

• Double SIMD integer multiply units supporting VNNI and new INT8 VNNI for 2x throughput.

• Support for AVX-IFMA in FMUL unit.

The execution pipeline functionality of the Crestmont microarchitecture is shown in Figure 4-3.

Allocation delivers μops to three types of structures. Each μop is written into one or more of five reservation stations
for pure integer operations. These hold instructions, track their dependencies, and schedule them for execution.

• Four are for ALU operations, labeled ports 00 to 03.

Figure 4-3. Execution Pipeline Functionality of the Crestmont Microarchitecture

Allocation/Rename (6-wide)

Memory Vector/Float

Integer Registers Vector/Float Registers

SHIFT
ALU

ALU
ALU

SHIFT
ALU

DIV
MUL

SHIFT
ALU

DIV
MUL

LLB

SHIFT
ALU

TLB

32KB D$

AGUAGU AGUAGU

SDB

L2 QUEUE

JMPJMP STDSTD STDSTD
SHUFFLE
SALU

FMUL

AES

SIMUL

FADD

SHUFFLE
SALU

Port
00

Port
01

Port
02

Ports
10/11 12/13

Ports
30/31 08/09

Port
03

Port
28/29

Ports
20, 21, 22

SHUFFLE
SALU

FADD
FMUL
SIMUL

SHA
AES

Document #: 248966-050US 4-6

INTEL ATOM® PROCESSOR ARCHITECTURES

— These execution units are mostly symmetric for single-cycle operations.

• Two of the four ports (01 and 02) can execute longer latency operations like multiplies and divides.

• The fifth integer reservation station holds jump and store data operations.

— This structure is banked and can schedule two μops of each type every cycle

• Two store data on ports 08 and 09.

• Two jumps on ports 30 and 31.

• Complex instructions like an ADD, where one source and the destination are in memory, are decoded by the front
end and allocated as a single μop.

The Crestmont microarchitecture can allocate five to six instructions like these per cycle. However, such μops
separate into multiple pieces as they enter the back end. In this example, this single complex μop generates:

• A load.

• An add.

• A store address operation.

• A store data operation.

These pieces execute independently in the out-of-order machine, requiring four different dispatch ports.

Load Effective Address Operations (LEAs) are special and deserve extra attention.

The ALU ports are optimized to execute standard two-source arithmetic/logical operations, while the AGUs are
optimized to handle the complexities of x86 memory addressing.

• LEAs are ALU operations that can have the same complex characteristics as AGU operations.

• LEAs without a scaled index and with only two sources among base, index, and displacement execute as a normal
ALU operation on any port (00 through 03).

• LEAs with three sources fracture into two operations and take an additional cycle of latency.

• LEAs with a scaled index without a displacement execute as a single operation but are statically bound to port 02.

Allocation can also write into a memory queue.

This FIFO queue enables deeper buffering of the microarchitecture at a very low implementation cost. The memory
queue can then write into a unified reservation station that holds load and store address generation operations. This
reservation station can generate two load (ports 10 and 11) and store address calculations (ports 12 and 13)per cycle.
The memory queue also writes the load and stores μops into the memory subsystem to perform translation and data
cache access.

Finally, allocation can write the vector queue. This is where all vector SIMD and floating-point ALU operations go. This
FIFO queue can then write into a unified reservation with three scheduling pipelines (ports 20, 21, and 22) or a store
data reservation station capable of dispatching two store data per cycle (ports 28 and 29). The vector unit can execute
any combination of two floating-point multiplies, adds, or multiply-add operations. This enables a peak of sixteen
single-precision or eight double-precision FLOPS per cycle. It can also execute up to three SIMD integer ALU or shuffle
operations along with dedicated AES and SHA units.

4.1.7 CACHE AND MEMORY SUBSYSTEM
The cache and memory subsystem remain largely unchanged from Gracemont other than the following
enhancements:

• Enhanced store-to-load forwarding to cover more partial forwarding conditions.

• Larger second-level TLB.

Document #: 248966-050US 4-7

INTEL ATOM® PROCESSOR ARCHITECTURES

• Larger and dedicated 1GB page TLB.

• Faster handling of locked loads.

• Support for Page Modification Logging and LAM.

• Faster eviction protocol.

• Dead Block Prediction to optimize last-level cache usage in some SoCs.

• Server SKU-specific features, including support for “end-to-end” parity and ECC in the L1 data cache.

• New performance monitoring events.

• Enhancements to the Memory Bandwidth Enforcement (MBE) QoS feature.

The Crestmont microarchitecture’s memory subsystem is designed to handle two 16 byte loads and two 16 byte
stores per cycle, providing simultaneous 32 bytes of read bandwidth and 32 bytes of write bandwidth per cycle. The
load-to-use latency for loads is typically four cycles. Suppose you are doing a pointer-chasing operation where the
computed address results from a single prior load and a positive displacement of no more than +1023. In that case,
the load-to-use latency observed can be reduced to three cycles. The L1 data cache is dual-ported to eliminate
potential bank conflicts.

Memory disambiguation is supported, which allows loads to execute while older stores have unresolved addresses.
Loads that forward from stores can do so in the same load to use latency as cache hits for cases where the store’s
address is known, and the store data is available. Precise blocking and scheduling are done for cases where the store
address or data is not immediately available and the hardware has determined that these are likely to be related
addresses.

Address translations are performed through the first level DTLB, which is fully associative. On Crestmont, 2MB
translations are natively cached within the first-level DTLB. The DTLB is backed by two second-level TLB (STLB)
structures shared between code and data requests. The main STLB is 3072 entries 6-way set associative and caches
4KB and 2MB translations. Additionally, Crestmont has a 16-entry fully associative structure for 1 GB translations.
STLB misses are sent to the page miss handler (PMH) which is pipelined such that it can perform up to four walks in
parallel.

There are three independent L1 prefetchers. One does a simple next-line fetch on DL1 load misses. An instruction
pointer-based prefetcher capable of detecting striding access patterns of various sizes. This prefetcher works in the
linear address space; it can, therefore, cross page boundaries and start translations for TLB misses. The final
prefetcher is a next-page prefetcher that detects accesses likely to cross a page boundary and starts the access early.
L1 data misses generated by these prefetchers communicate additional information to the L2 prefetchers, which
helps them work together.

The L2 cache delivers 64 bytes of data per cycle at a latency of 17 cycles, and that bandwidth is shared amongst 4
cores. The L2 cache subsystem also contains multiple prefetchers, including a streaming prefetcher that detects
striding access patterns. An additional L2 prefetcher attempts to detect more complicated access patterns. These

Table 4-1. Paging Cache Parameters of the Crestmont Microarchitecture

Level Entries Associativity Architectural Page Size Cached Translation Size

ITLB 64 Fully associative All 4KB, 256KB

DTLB 32 Fully associative All 4KB, 2MB

STLB 3072 6-Way 4K/2M/4M 4KB, 2MB

STLB 16 Fully associative 1GB 1GB

Document #: 248966-050US 4-8

INTEL ATOM® PROCESSOR ARCHITECTURES

prefetches can also be generated such that they only fill the LLC but do not fill into the L2 to help reduce DRAM
latency.

The L2 cache subsystem of a single 4-core module can have 64 requests and 32 L2 data evictions outstanding on the
fabric. To ensure fairness, these are competitively shared amongst the cores with per-core reservations.

4.1.8 CRESTMONT NEW INSTRUCTION SUPPORT

4.1.8.1 AVX-NE-CONVERT Instructions
The AVX-NE-CONVERT includes an instruction set that converts low-precision floating points like BF16/FP16 to
high-precision floating point FP32. It can also convert FP32 elements to BF16. These instructions allow the platform to
have improved AI capabilities and better compatibility. Crestmont implements BF16/FP16 up-conversion in the load
pipelines, which do not consume FPC execution resources. This allows for low latency conversions with simultaneous
floating point compute.

4.1.8.2 AVX-IFMA
AVX-IFMA includes two instructions, VPMADD52LUQ and VPMADD52HUQ. They are designed to accelerate Big
Integer Arithmetic (BIA). These instructions can multiply eight 52-bit unsigned integers residing in YMM registers,
produce the low (VPMADD52LUQ) and high (VPMADD52HUQ) halves of the 104-bit products, and add the results to
64-bit accumulators (i.e., SIMD elements), placing them in the destination register.

4.1.8.3 AVX-VNNI-INT8 Instructions
For more flexibility within a convolutional neural network for INT8 sofrware, add all signed/unsigned INT8 data type
support combinations to VNNI.

4.1.9 LEGACY INTEL® AVX1/INTEL® AVX2 INSTRUCTION SUPPORT
The Crestmont microarchitecture continues to support Intel® AVX and Intel® AVX2 instructions.

Most 256-bit Intel AVX and Intel AVX2 instructions are decoded as a single instruction and stored as a single μop in the
front-end pipeline. To execute 256-bit instructions on native 128-bit vector execution and load data paths, most
256-bit μops are further subdivided into two independent 128-bit μops at allocation before insertion into the MEC
and FPC reservation stations. These two independent μops are usually assigned to different execution ports, so both
may execute in parallel. In general, 256-bit μops consume twice the allocation, execution, and retirement resources
compared to 128-bit μops.

While most 256-bit Intel AVX2 instructions can be decomposed into two independent 128-bit micro-operations, a
subset of Intel AVX2 instructions, known as cross-lane operations, can only compute the result for an element by
utilizing one or more sources belonging to other elements. For example, when some or all of the upper 128-bit result
[255:128] depends upon one or all of a lower element segment [127:0]. For example, when some or all of the upper
128-bit result [255:128] depends on one or all of a lower element segment [127:0]. These 256-bit cross-lane
instructions execute with longer latency and/or reduced throughput than their 256-bit non-cross-lane counterparts.

4.1.9.1 256-bit Permute Operations
The instructions listed below use more operand sources than can be natively supported by a single reservation station
within these microarchitectures. They are decomposed into two μops, where the first μop resolves a subset of

Document #: 248966-050US 4-9

INTEL ATOM® PROCESSOR ARCHITECTURES

operand dependencies across two cycles. The dependent second μop executes the 256-bit operation by using a single
128-bit execution port for two consecutive cycles with a five-cycle latency for a total latency of seven cycles.

• VPERM2I128 ymm1, ymm2, ymm3/m256, imm8

• VPERM2F128 ymm1, ymm2, ymm3/m256, imm8

• VPERMPD ymm1, ymm2/m256, imm8

• VPERMPS ymm1, ymm2, ymm3/m256

• VPERMD ymm1, ymm2, ymm3/m256

• VPERMQ ymm1, ymm2/m256, imm8

4.1.9.2 256-bit Broadcast with 128-bit Memory Operand
The memory versions of the broadcast instructions listed below have a single 128-bit or less memory source operand,
a single SIMD ALU μop, and a load operand. The register version of the same instructions is decomposed into two
SIMD ALU μops.

Operation portion latency is one cycle in addition to load operation latency.

• VBROADCASTSD ymm1, m64

• VBROADCASTSS ymm1, m32

4.1.9.3 256-bit Insertion, Up-Conversion Instructions with 128-bit Memory Operand
The memory versions of the instructions listed below have a single 128-bit or less memory source operand. They are
decomposed into two μops. However, the second micro-operation for the memory version depends on the first
micro-operation, while the second micro-operation of the register version of the same instruction does not. The
register version of the same instructions can execute the upper and lower 128-bit segments in parallel.

Operation portion latency is two cycles in addition to load operation latency for the 256-bit insert, packed move with
zero, and sign extension instructions listed below.

• VPMOVZX ymm1, m128/64/32

• VPMOVSX ymm1, m128/64/32

• VINSERTI128 ymm1, ymm2, m128, imm8

• VINSERTF128 ymm1, ymm2, m128, imm8

Operation portion latency is six cycles in addition to load operation latency for the up-convert instructions listed
below.

• VCVTPS2PD ymm1, m128

• VCVTDQ2PD ymm1, m128

• VCVTPH2PS ymm1, m128

4.1.9.4 256-bit Variable Blend Instructions
The VBLENDVPD and VBLENDVPS instructions listed below are implemented as a micro-coded flow. Throughput is
one every four cycles, and latency is three cycles.

• VBLENDVPD ymm1, ymm2, ymm3/m256, ymm4

• VBLENDVPS ymm1, ymm2, ymm3/m256, ymm4

Document #: 248966-050US 4-10

INTEL ATOM® PROCESSOR ARCHITECTURES

4.1.9.5 256-bit Vector TEST Instructions
The 256-bit vector TEST instructions listed below are decomposed into two μops with dependence between them.
The operation result is written in the GPR arithmetic flags. Throughput is one per cycle, and latency is seven cycles.

• VTESTPS ymm1, ymm2/m256

• VTESTPD ymm1, ymm2/m256

• VPTEST ymm1, ymm2/m256

4.1.9.6 The GATHER Instruction
The VGATHER instructions are implemented as micro-coded flow. Latency is ~50 cycles.

4.1.9.7 Masked Load and Store Instructions
The throughput of 256-bit VMASKMOV load and store is once every two cycles and that of the 128-bit VMASKMOV
load and store is one per cycle.

A masked load or store with a masked element may encounter performance degradation if the masked element
memory access causes an exception or a fault.

4.1.9.8 ADX Instructions
ADX instructions are supported. ADCX and ADOX are partial arithmetic flag-updating instructions. Intel Core
microarchitecture renames and tracks arithmetic flags differently than Intel Atom. The carry flag (CF), overflow flag
(OF), and other flags (ZF, AF, PF, SF) are renamed as independent registers on Core while they remain as a single
register on Atom.

Unless there is a non-flag consuming full flag updating instruction between ADCX/ADOX instructions, on Crestmont,
there is an operand dependency between the ADCX and ADOX instructions as the arithmetic flag register is a source
operand of both. As this dependence between ADCX and ADOX instructions does not exist in the Intel Core
microarchitecture, hand-tuned binaries exploiting this parallelism exist. While Crestmont supports the ISA, the
parallelism will be lower on this microarchitecture.

4.2 THE TREMONT MICROARCHITECTURE
The Tremont microarchitecture builds on the success of the Goldmont Plus microarchitecture and provides the
following enhancements:

• Enhanced branch prediction unit.

— Increased capacity with improved path-based conditional and indirect prediction.

— New committed Return Stack Buffer.

• Novel clustered 6-wide out-of-order front-end fetch and decode pipeline.

— Banked ICache with dual 16B reads.

— Two 3-wide decode clusters enabling up to 6 instructions per cycle.

• Deeper back-end out-of-order windows.

• 32KB data cache.

• Larger load and store buffers.

Document #: 248966-050US 4-11

INTEL ATOM® PROCESSOR ARCHITECTURES

• Dual generic load and store execution pipes capable of two loads, two stores, or one load and store per cycle.

• Dedicated integer and vector integer/floating point store data ports.

• New and improved cryptography.

— New Galois-field instructions (GFNI).

— Dual AES units.

— Enhanced SHA-NI implementation.

— Faster PCLMULQDQ.

• Support for user-level low-power and low-latency spin-loop instructions UMWAIT/UMONITOR and TPAUSE.

Document #: 248966-050US 4-12

INTEL ATOM® PROCESSOR ARCHITECTURES

4.2.1 TREMONT MICROARCHITECTURE OVERVIEW
The basic pipeline functionality of the Tremont microarchitecture is depicted in Figure 4-4.

The Tremont microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of several components, including a ring interconnect to multiple slices of L3, processor graphics,
integrated memory controller, interconnect fabrics, and more.

Figure 4-4. Processor Core Pipeline Functionality of the Tremont Microarchitecture

Allocation/Renama (6-wide)

Predict

Fetch

ROM

32KB ICache

IP Queue IP Queue

Memory Vector/Float

Integer Registers Vector/Float Registers

Up to 4.5MB L2 Cache

ALU

LLB

JMP

TLB

32KB DCache

SDB

L2 QUEUE

STD STD

Port
00

Port
01

Port
02

Ports
10 & 11

Port
09

Port
03

Port
29

Ports
20 & 21

AGU AGUALU

DIV
MULSHIFT

ALU

Instruction Data

Decode (3-wide)

Instruction Data

Decode (3-wide)

ALU
AES

FADD

ALU

FMUL
IMUL
SHA
AES

FDIV

Document #: 248966-050US 4-13

INTEL ATOM® PROCESSOR ARCHITECTURES

4.2.2 THE FRONT END
Tremont microarchitecture introduces parallel out-of-order instruction decode. Instruction pointers access the ITLB,
check the ICache tag array, and access the branch predictor. When the branch predictor produces a taken branch
target, the new block of code advances the decode cluster assignment.

Tremont microarchitecture has a 32B predict pipeline that feeds dual 3-wide decode clusters capable of 6 instruction
decode per cycle. Each cluster can access a banked 32KB instruction cache at 16B/cycle for a maximum of 32B/cycle.
Due to differences in the number of instructions per block and other decode latency differences, younger blocks of
code can decode before older blocks. At the end of each decode cluster is a queue of decoded instructions (µop
queue).

The allocation and rename pipeline reads both µop queues in parallel and puts the instruction stream back in order
for register renaming and resource allocation. Whereas increasing decode width for x86 traditionally requires
exponential resources and triggers efficiency loss, clustering allows for x86 decode to be built with linear resources
and little efficiency loss.

As the clustering algorithm is dependent on the ability to predict taken branches within the branch predictor, very
long assembly sequences that lack taken branches (long unrolled code utilizing the floating point unit, for example)
can be bottlenecked due to being unable to utilize both decode clusters simultaneously. Inserting unconditional JMP
instructions to the next sequential instruction pointer at intervals between 16 to 32 instructions may relieve this
bottleneck if encountered.

While Tremont microarchitecture did not build a dynamic mechanism to load balance the decode clusters, future
generations of Intel Atom processors will include hardware to recognize and mitigate these cases without the need
for explicit insertions of taken branches into the assembly code.

In addition to the novel clustered decode scheme, Tremont microarchitecture enhanced the branch predictor and
doubled the size of the L2 Predecode cache from 64KB on the Goldmont Plus microarchitecture to 128 KB.

The low level characteristics of the microarchitecture within each decode cluster remain the same as in the Goldmont
Plus microarchitecture. For example, instructions should avoid more than 4 Bytes of prefixes and escapes.

4.2.3 THE OUT-OF-ORDER AND EXECUTION ENGINES
The Out of Order and execution engines changes in the Tremont microarchitecture include:

• A significant increase in size of

— Reorder buffer.

— Load buffer.

— Store buffer.

— Reservation stations which enable deeper OOO execution and higher cache bandwidth.

• Wider machine: 8  10 execution ports.

• Greater capabilities per execution port.

Document #: 248966-050US 4-14

INTEL ATOM® PROCESSOR ARCHITECTURES

Table 4-2 summarizes the OOO engine's capability to dispatch different types of operations to ports.

4.2.4 CACHE AND MEMORY SUBSYSTEM
The cache hierarchy changes in Tremont microarchitecture include:

• 33% increase in size of the L1 data cache from 24KB to 32KB.

• 2×L1 load bandwidth:

— 1 dedicated load port

— 2 generic AGUs, shared between loads and stores.

• 2×L1 store bandwidth:

— 1 dedicated store port

— 2 generic AGUs, shared between loads and stores.

• Simultaneous handling of more loads and stores enabled by enlarged buffers.

• Maintains a 3-cycle load-to-use latency.

• Larger 2nd level TLB:

— 512 4K entries  1K 4K entries

— 32 2M/4M entries  64 2M/4M entries

• L2 cache size from 1MBs to 4.5MBs depending on SoC design choice:

— The L2 size on Snow Ridge products is 4.5MBs, whereas the L2 size on Lakefield products is 1.5MBs.

Table 4-2. Dispatch Port and Execution Stacks of the Tremont Microarchitecture

Port 00
INT

Port 01
INT

Port 02
INT

Port 08
INT

Port
09
INT

Port 10 Port 11 Port 20
FP/VEC

Port 21
FP/VEC

Port 29
FP/VEC

ALU
LEA1

Shift

NOTES:
1. LEAs without a scaled index and only two sources (among base, index, and displacement inputs) execute as one

operation on any ALU port (00, 01, or 02).

ALU
LEA2

Bit Ops
IMUL
IDIV

POPCNT
CRC32

2. LEAs with three sources fracture into two operations and take an additional cycle of latency. Index consuming por-
tion, regardless of scale value, will bind to port 02 while second operation binds to either port 00 or 01.

ALU
LEA3

3. LEAs with a scaled index but without a displacement execute as one operation on port 02.

JUMP Store
Data

Load

Store
Address

Load

Store
Address

ALU
AES
SHA-
RND

FMUL
FDIV

Shuffle
Shift

SIMUL
GFNI

Converts

ALU
AES
SHA-
MSG
FADD

Shuffle

Store
Data

Document #: 248966-050US 4-15

INTEL ATOM® PROCESSOR ARCHITECTURES

The TLB hierarchy consists of a dedicated level one TLB for instruction cache and data cache with a shared second-
level TLB for all page translations.

4.2.5 NEW INSTRUCTIONS
New instructions and architectural changes in Tremont microarchitecture are listed below. Actual support may be
product dependent.

• Galois Field New Instructions (GFNI) for

— Acceleration of various encryption algorithms,

— Error correction algorithms, and

— Bit matrix multiplications.

• UMWAIT/UMONITOR/TPAUSE instructions enable power savings in user level spin loops.

• Cache line writeback instruction (CLWB) enables fast cache-line update to memory, while retaining clean copy in
cache.

• Performance debugging benefits can be realized from the Tremont microarchitecture skidless PEBS
implementation on both PMC0 and the fixed instruction counter. This enables a precise distribution via sampling
on instructions and/or any of the precise general purpose events. As PEBS is triggered on the event after the
overflow is signaled, counters should be programmed to large numbers that are (PRIME-1).

4.2.6 TREMONT MICROARCHITECTURE POWER MANAGEMENT
Tremont microarchitecture supports many of the same features as those found on the Ice Lake Client
microarchitecture. Processors based on Tremont microarchitecture are the first Intel Atom processors with support
for Intel® Speed Shift Technology. Power management features sometimes differ depending on the needs of the SoC.

Table 4-3. Cache Parameters of the Tremont Microarchitecture

Level Page Size Entries Associativity

Instruction 4KB/2M/4M1

NOTES:
1. The first level instruction TLB (ITLB) caches small and large page translations but large pages are cached as 256KB

regions per ITLB entry.

48 Fully associative

First Level Data (loads and stores) 4KB/2M/4M2

2. The first level data TLB (uTLB) caches small and large page translations but large pages are fully fractured into
4KB regions per uTLB entry.

32 Fully associative

Second Level 4KB 1024 4

Second Level 2M/4M 64 4

Document #: 248966-050US -1

4. Updates to Chapter 17
Change bars and violet text show changes to Chapter 17 of the Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Software Optimization for Intel® AVX-512 Instructions

--
Changes to this chapter:

• Replaced Figure 17-1 with Table 17-1.

• Section 17.2

— Added title

Document #: 248966-050US 17-1

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

CHAPTER 17
SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

As part of the family of Intel® Accelerator Engines in Intel® Xeon® Scalable processors, Intel® Advanced Vector
Extensions 512 (Intel® AVX-512) provides built-in acceleration for demanding workloads that involve heavy vector-
based processing. They are the following set of 512-bit instruction set extensions:

• Intel® AVX-512 Foundation (F)

— 512-bit vector width.

— 32 512-bit long vector registers.

— Data expand and data compress instructions.

— Ternary logic instruction.

— 8 new 64-bit long mask registers.

— Two source cross-lane permute instructions.

— Scatter instructions.

— Embedded broadcast/rounding.

— Transcendental support.

• Intel® AVX-512 Conflict Detection Instructions (CD)

• Intel® AVX-512 Exponential and Reciprocal Instructions (ER)

• Intel® AVX-512 Prefetch Instructions (PF)

• Intel® AVX-512 Byte and Word Instructions (BW)

• Intel® AVX-512 Double Word and Quad Word Instructions (DQ)

— New QWORD and Compute and Convert Instructions.

• Intel® AVX-512 Vector Length Extensions (VL)

Performance reports in this chapter are based on Data Cache Unit (DCU) resident data measurements on the Skylake
Server System with Intel® Turbo-Boost technology disabled, Intel® SpeedStep® Technology disabled, core and uncore
frequency set to 1.8GHz, unless otherwise specified. This fixed frequency configuration is used to isolate code change
impacts from other factors.

Table 17-1. Intel® AVX-512 Feature Flags Across Intel® Xeon® Processor Generations

Intel® Xeon®
Scalable

Processors

Intel® Core™
Processors

2nd Generation
Intel® Xeon®

Scalable
Processors

3rd Generation
Intel® Xeon®

Scalable
Processors

4th/5th
Generation Intel®

Xeon® Scalable
Processors

AVX/AVX2 AVX/AVX2 AVX/AVX2 AVX/AVX2 AVX/AVX2

AVX512F,
AVX512CD,
AVX512BW,
AVX512DQ

AVX512F,
AVX512CD,
AVX512BW,
AVX512DQ

AVX512F,
AVX512CD,
AVX512BW,
AVX512DQ

AVX512F,
AVX512CD,
AVX512BW,
AVX512DQ

AVX512F,
AVX512CD,
AVX512BW,
AVX512DQ

NA AVX512_VBMI,
AVX512_IFMA

AVX512_VBMI,
AVX512_IFMA

AVX512_VBMI,
AVX512_IFMA

AVX512_VBMI,
AVX512_IFMA

Document #: 248966-050US 17-2

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.1 BASIC INTEL® AVX-512 VS. INTEL® AVX2 CODING
In most cases, the main performance driver for Intel AVX-512 will be the 512-bit register width. This section
demonstrates the similarity and differences between basic Intel AVX2 and Intel AVX-512 code and explains how to
convert code from Intel AVX2 to Intel AVX-512 easily. The first sub section demonstrates the conversion of intrinsic
code and the second sub-section of assembly code. The following sections highlight advanced aspects that require
consideration and treatment when doing such conversions.

The examples in the following subsections implement a Cartesian coordinate system rotation. A point in a Cartesian
coordinate system is described by the pair (x,y). The following picture demonstrates a Cartesian rotation of (x,y) by
angle  to (x',y').

NA NA AVX512_VNNI AVX512_VNNI AVX512_VNNI

NA NA NA AVX512_BF16 AVX512_BF16

NA NA NA NA

AVX512_VPOPCNTD,
AVX512_VBM12,

VAES, GFNI,
VPCLMULQDQ,
AVX512_BITALG

NA NA NA NA AVX512_FP16

Table 17-1. (Contd.)Intel® AVX-512 Feature Flags Across Intel® Xeon® Processor Generations

Intel® Xeon®
Scalable

Processors

Intel® Core™
Processors

2nd Generation
Intel® Xeon®

Scalable
Processors

3rd Generation
Intel® Xeon®

Scalable
Processors

4th/5th
Generation Intel®

Xeon® Scalable
Processors

Document #: 248966-050US 17-3

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.1.1 INTRINSIC CODING
The following comparison of Intel AVX2 and Intel AVX-512 shows how to convert a simple intrinsic Intel AVX2 code
sequence to Intel AVX-512. This example demonstrates the Intel AVX Instruction format, 64 byte ZMM registers,
dynamic and static memory allocation with data alignment of 64bytes, and the C data type representing 16 floating
point elements in a ZMM register. Follow these guidelines when doing this transformation.

• Align statically and dynamically allocated buffers to 64-bytes.

• Use a double supplemental buffer size for constants.

• Change __mm256_ intrinsic name prefix with __mm512_.

• Change variable data types names from __m256 to __m512.

Figure 17-1. Cartesian Rotation

Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5 Y5 X5... : In Buffer

s*X5
+

c*Y5

s*X5
-

c*Y5

s*X4
+

c*Y4

s*X4
-

c*Y4

s*X3
+

c*Y3

s*X3
-

c*Y3

s*X2
+

c*Y2

s*X2
-

c*Y2

s*X1
+

c*Y1

s*X1
-

c*Y1

s*X0
+

c*Y0

s*X0
-

c*Y0
...

Y’5 X’5 Y’4 X’4 Y’3 X’3 Y’2 X’2 Y’1 X’1 Y’0 X’0

: Out Buffer

SOM00002

*c = cosθ
s = sinθ

x‘ = xcosθ - ysinθ
y‘ = xsinθ + ycosθ

θ

Y’

Y

X’

X

Document #: 248966-050US 17-4

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• Divide by 2 iteration count (double stride length).

Example 17-1. Cartesian Coordinate System Rotation with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 8 floats with 32byte
alignments
 __declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta};

 __declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta};

 //__m256 data type represents a Ymm
 // register with 8 float elements
 __m256 Ymm_cos_sin =
_mm256_load_ps(cos_sin_theta_vec);

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte
 //alignment
float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 16 floats with 64byte
alignments
 __declspec(align(64)) float cos_sin_theta_vec[16] =
{cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta};

 __declspec(align(64)) float sin_cos_theta_vec[16] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta};

 //__m512 data type represents a Zmm
 // register with 16 float elements
 __m512 Zmm_cos_sin =
_mm512_load_ps(cos_sin_theta_vec);

Document #: 248966-050US 17-5

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.1.2 ASSEMBLY CODING
Similar to the intrinsic porting guidelines, assembly porting guidelines are listed below:

• Align statically and dynamically allocated buffers to 64-bytes.

• Double the supplemental buffer sizes if needed.

• Add a “v” prefix to instruction names.

• Change register names from ymm to zmm.

• Divide the iteration count by two (or double stride length).

 //Intel® AVX2 256bit packed single load
 __m256 Ymm_sin_cos =
_mm256_load_ps(sin_cos_theta_vec);

 __m256 Ymm0, Ymm1, Ymm2, Ymm3;
 //processing 16 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=16)
 {
 Ymm0 = _mm256_load_ps(pInVector+i);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2,Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector + i,Ymm3);

 Ymm0 = _mm256_load_ps(pInVector+i+8);
 Ymm1 = _mm256_moveldup_ps(Ymm0);
 Ymm2 = _mm256_movehdup_ps(Ymm0);
 Ymm2 = _mm256_mul_ps(Ymm2, Ymm_sin_cos);
 Ymm3 =
_mm256_fmaddsub_ps(Ymm1,Ymm_cos_sin,Ymm2);
 _mm256_store_ps(pOutVector+i+8,Ymm3);
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

 //Intel® AVX-512 512bit packed single load
 __m512 Zmm_sin_cos =
_mm512_load_ps(sin_cos_theta_vec);
__m512 Zmm0, Zmm1, Zmm2, Zmm3;
 //processing 32 elements in an unrolled
 //twice loop
 for(int i=0; i<len; i+=32)
 {
 Zmm0 = _mm512_load_ps(pInVector+i);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2,Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
 _mm512_store_ps(pOutVector + i,Zmm3);

 Zmm0 = _mm512_load_ps(pInVector+i+16);
 Zmm1 = _mm512_moveldup_ps(Zmm0);
 Zmm2 = _mm512_movehdup_ps(Zmm0);
 Zmm2 = _mm512_mul_ps(Zmm2, Zmm_sin_cos);
 Zmm3 =
_mm512_fmaddsub_ps(Zmm1,Zmm_cos_sin,Zmm2);
_mm512_store_ps(pOutVector+i+16,Zmm3);
 }
 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 17-1. Cartesian Coordinate System Rotation with Intrinsics (Contd.)

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

Document #: 248966-050US 17-6

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-2. Cartesian Coordinate System Rotation with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 32byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),32);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),32);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 8 floats with 32byte
alignments
 __declspec(align(32)) float cos_sin_theta_vec[8] =
{cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta};

 __declspec(align(32)) float sin_cos_theta_vec[8] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta};

 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a ymm register of 32 bytes
 vmovups ymm3, ymmword ptr[cos_sin_theta_vec]
 vmovups ymm4, ymmword ptr[sin_cos_theta_vec]

mov edx, len
 shl edx, 2
 xor ecx, ecx

#include <immintrin.h>
int main()
{
 int len = 3200;
 //Dynamic memory allocation with 64byte alignment
 float* pInVector = (float *)
_mm_malloc(len*sizeof(float),64);
 float* pOutVector = (float *)
_mm_malloc(len*sizeof(float),64);

 //init data
 for (int i=0; i<len; i++)
 pInVector[i] = 1;

 float cos_theta = 0.8660254037;
 float sin_theta = 0.5;

 //Static memory allocation of 16 floats with 64byte
alignments
 __declspec(align(64)) float cos_sin_theta_vec[16] =
{cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta, cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta};

 __declspec(align(64)) float sin_cos_theta_vec[16] =
{sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta, sin_theta cos_theta, sin_theta, cos_theta,
sin_theta, cos_theta, sin_theta, cos_theta, sin_theta,
cos_theta};
 __asm
 {
 mov rax,pInVector
 mov r8,pOutVector
 // Load into a zmm register of 64 bytes
 vmovups zmm3, zmmword ptr[cos_sin_theta_vec]
 vmovups zmm4, zmmword ptr[sin_cos_theta_vec]

mov edx, len
 shl edx, 2
 xor ecx, ecx

Document #: 248966-050US 17-7

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.2 MASKING
Intel AVX-512 instructions which use the Extended VEX coding scheme (EVEX) encode a predicate operand to
conditionally control per-element computational operation and update the result to the destination operand. The
predicate operand is known as the opmask register. The opmask is a set of eight architectural registers, 64 bits each.
From this set of 8 architectural registers, only k1 through k7 can be addressed as the predicate operand; k0 can be
used as a regular source or destination but cannot be encoded as a predicate operand.

A predicate operand can be used to enable memory fault-suppression for some instructions with a memory source
operand.

As a predicate operand, the opmask registers contain one bit to govern the operation / update of each data element
of a vector register. Masking is supported on Skylake microarchitecture for instructions with all data sizes:

• Byte (int8)

• Word (int16)

• Single-precision floating-point (float32)

• Integer doubleword (int32)

loop1:
 vmovsldup ymm0, [rax+rcx]
 vmovshdup ymm1, [rax+rcx]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // 32 byte store from a ymm register
 vmovaps [r8+rcx], ymm0

vmovsldup ymm0, [rax+rcx+32]
 vmovshdup ymm1, [rax+rcx+32]
 vmulps ymm1, ymm1, ymm4
 vfmaddsub213ps ymm0, ymm3, ymm1
 // offset 32 bytes from previous store
 vmovaps [r8+rcx+32], ymm0

 // Processed 64bytes in this loop
 // (the code is unrolled twice)
 add ecx, 64
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

loop1:
 vmovsldup zmm0, [rax+rcx]
 vmovshdup zmm1, [rax+rcx]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // 64 byte store from a zmm register
 vmovaps [r8+rcx], zmm0

vmovsldup zmm0, [rax+rcx+64]
 vmovshdup zmm1, [rax+rcx+64]
 vmulps zmm1, zmm1, zmm4
 vfmaddsub213ps zmm0, zmm3, zmm1
 // offset 64 bytes from previous store
 vmovaps [r8+rcx+64], zmm0

 // Processed 128bytes in this loop
 // (the code is unrolled twice)
 add ecx, 128
 cmp ecx, edx
 jl loop1
 }

 _mm_free(pInVector);
 _mm_free(pOutVector);

 return 0;
}

Baseline Speedup: 1.95x

Example 17-2. Cartesian Coordinate System Rotation with Assembly (Contd.)

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

Document #: 248966-050US 17-8

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• Double precision floating-point (float64)

• Integer quadword (int64)

Therefore, a vector register holds either 8, 16, 32 or 64 elements; accordingly, the length of a vector mask register is
64 bits. Masking on Skylake microarchitecture is also enabled for all vector length values: 128-bit, 256-bit and 512-bit.
Each instruction accesses only the number of least significant mask bits needed based on its data type and vector
length. For example, Intel AVX-512 instructions operating on 64-bit data elements with a 512-bit vector length, only
use the 8 (i.e., 512/64) least significant bits of the opmask register.

An opmask register affects an Intel AVX-512 instruction at per-element granularity. So, any numeric or non-numeric
operation of each data element and per-element updates of intermediate results to the destination operand are
predicated on the corresponding bit of the opmask register.

An opmask serving as a predicate operand in Intel AVX-512 has the following properties:

• The instruction's operation is only performed for an element if the corresponding opmask bit is set. This implies
that no exception or violation can be caused by an operation on a masked-off element. Consequently, no MXCSR
exception flag is updated as a result of a masked-off operation.

• A destination element is not updated with the result of the operation if the corresponding writemask bit is not
set. Instead, the destination element value may be preserved (merging-masking) or zeroed out (zeroing-
masking).

• For some instructions with a memory operand, memory faults are suppressed for elements with a mask bit of 0.

Note that this feature provides a powerful construct to implement control-flow predication, since the mask provides
a merging behavior for Intel AVX-512 vector register destinations. As an alternative the masking can be used for
zeroing instead of merging, so that the masked out elements are updated with 0 instead of preserving the old value.
The zeroing behavior removes the implicit dependency on the old value when it is not needed.

Most instructions with masking enabled accept both forms of masking. Instructions that must have EVEX.aaa bits
different than 0 (gather and scatter) and instructions that write to memory, only accept merging-masking.

The per-element destination update rule also applies when the destination operand is a memory location. Vectors are
written on a per element basis, based on the opmask register used as a predicate operand.

The value of an opmask register can be:

• Generated as a result of a vector instruction (CMP, FPCLASS, etc.).

• Loaded from memory.

• Loaded from GPR register.

• Modified by mask-to-mask operations.

17.2.1 MASKING EXAMPLE
The masked instructions conditionally operate with packed data elements, depending on the mask bits associated
with each data element. The mask bit for each data element is the corresponding bit in the mask register.

When performing a mask instruction, the returned value is 0 for elements which have a corresponding mask value of
0. The corresponding value in the destination register depends on the zeroing flag:

• If the flag is set, the memory location is filled with zeros.

• If the flag is not set, the values in memory location can are preserved.

The following figures show an example for a mask move from one register to another when using merging masking.

vmovaps zmm1 {k1}, zmm0

Document #: 248966-050US 17-9

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The destination register before instruction execution is shown in Figure 17-2, 17-3 and 17-4.

The operation is as follows.

The result of the execution with zeroing masking is (notice the {z} in the instruction):

vmovaps zmm1 {k1}{z}, zmm0
.

Notice that merging masking operations has a dependency on the destination, but zeroing masking is free of such
dependency.

The following example shows how masking could be done with Intel AVX-512 in contrast to Intel AVX2.

Figure 17-2. Mask Move When Using Merging Masking

Figure 17-3. Mask Move Operation When Using Merging Masking

Figure 17-4. Result of Execution with Zeroing Masking

SOM00003

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

0313263... bits

ZMM1

a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM0

0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 K1

SOM00004

b15 a14 b13 b12 b11 b10 b9 b8 a7 a6 a5 a4 b3 b2 a1 a0 ZMM1

… 63 32 31 0 bits

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00005

0 a14 0 0 0 0 0 0 a7 a6 a5 a4 0 0 a1 a0 ZMM1

… 63 32 31 0 bits

Document #: 248966-050US 17-10

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

C Code:

const int N = miBufferWidth;

const double* restrict a = A;

const double* restrict b = B;

double* restrict c = Cref;

for (int i = 0; i < N; i++){

double res = b[i];

if(a[i] > 1.0){

res = res * a[i];

}

c[i] = res;

}

Example 17-3. Masking with Intrinsics

Intel® AVX2 Intrinsics Code Intel® AVX-512 Intrinsics Code

for (int i = 0; i < N; i+=32){
__m256d aa, bb, mask;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_pd(a+i+j*4);
bb = _mm256_loadu_pd(b+i+j*4);
mask =

_mm256_cmp_pd(_mm256_set1_pd(1.0), aa, 1);
aa = _mm256_and_pd(aa, mask); // zero the false

values
aa = _mm256_mul_pd(aa, bb);
bb = _mm256_blendv_pd(bb, aa, mask);
_mm256_storeu_pd(c+4*j, bb);

}

c += 32;
}

for (int i = 0; i < N; i+=32){
__m512d aa, bb;
__mmask8 mask;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_pd(a+i+j*8);
bb = _mm512_loadu_pd(b+i+j*8);
mask =

_mm512_cmp_pd_mask(_mm512_set1_pd(1.0), aa, 1);
bb = _mm512_mask_mul_pd(bb, mask, aa, bb);
_mm512_storeu_pd(c+8*j, bb);

}

c += 32;
}

Baseline Speedup: 2.9x

Document #: 248966-050US 17-11

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-4. Masking with Assembly

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9

loop:
vmovupd ymm1, ymmword ptr [rax+rcx*8]
inc r9d
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x20]
vmovupd ymm2, ymmword ptr [r11+rcx*8]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x20]
vmovupd ymm11, ymmword ptr [rax+rcx*8+0x40]
vmovupd ymm12, ymmword ptr [r11+rcx*8+0x40]
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vcmppd ymm14, ymm0, ymm11, 0x1
vandpd ymm16, ymm1, ymm4
vandpd ymm17, ymm6, ymm9
vmulpd ymm3, ymm16, ymm2
vmulpd ymm8, ymm17, ymm7
vmovupd ymm1, ymmword ptr [rax+rcx*8+0x60]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0x80]
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm2, ymmword ptr [r11+rcx*8+0x60]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0x80]
vmovupd ymmword ptr [rsi], ymm5
vmovupd ymmword ptr [rsi+0x20], ymm10
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm18, ymm11, ymm14
vandpd ymm19, ymm1, ymm4
vandpd ymm20, ymm6, ymm9
vmulpd ymm13, ymm18, ymm12
vmulpd ymm3, ymm19, ymm2
vmulpd ymm8, ymm20, ymm7
vmovupd ymm11, ymmword ptr [rax+rcx*8+0xa0]
vmovupd ymm1, ymmword ptr [rax+rcx*8+0xc0]
vmovupd ymm6, ymmword ptr [rax+rcx*8+0xe0]
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymm12, ymmword ptr [r11+rcx*8+0xa0]
vmovupd ymm2, ymmword ptr [r11+rcx*8+0xc0]
vmovupd ymm7, ymmword ptr [r11+rcx*8+0xe0]
vmovupd ymmword ptr [rsi+0x40], ymm15

mov rax, a
mov r11, b
mov r8, N
shr r8, 5
mov rsi, c

xor rcx, rcx
xor r9, r9
mov rdi, 1
cvtsi2sd xmm8, rdi
vbroadcastsd zmm8, xmm8

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm2, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm4, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm6, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm3, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm5, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm7, zmmword ptr [r11+rcx*8+0xc0]
vcmppd k1, zmm8, zmm0, 0x1
vcmppd k2, zmm8, zmm2, 0x1
vcmppd k3, zmm8, zmm4, 0x1
vcmppd k4, zmm8, zmm6, 0x1
vmulpd zmm1{k1}, zmm0, zmm1
vmulpd zmm3{k2}, zmm2, zmm3
vmulpd zmm5{k3}, zmm4, zmm5
vmulpd zmm7{k4}, zmm6, zmm7
vmovups zmmword ptr [rsi], zmm1
vmovups zmmword ptr [rsi+0x40], zmm3
vmovups zmmword ptr [rsi+0x80], zmm5
vmovups zmmword ptr [rsi+0xc0], zmm7
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Document #: 248966-050US 17-12

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.2.2 MASKING COST
Using masking may result in lower performance than the corresponding non-masked code. This may be caused by one
of the following situations:

• An additional blend operation on each load.

• Dependency on the destination when using merge masking. This dependency does not exist when using zero
masking.

• More restrictive masking forwarding rules (see Forwarding and Memory Masking for more information).

The following example shows how using merge masking creates a dependency on the destination register.

With no masking, the processor executes 2 multiplies per cycle on a 2 FMA server.

vmovupd ymmword ptr [rsi+0x60], ymm5
vmovupd ymmword ptr [rsi+0x80], ymm10
vcmppd ymm14, ymm0, ymm11, 0x1
vcmppd ymm4, ymm0, ymm1, 0x1
vcmppd ymm9, ymm0, ymm6, 0x1
vandpd ymm21, ymm11, ymm14
add rcx, 0x20
vandpd ymm22, ymm1, ymm4
vandpd ymm23, ymm6, ymm9
vmulpd ymm13, ymm21, ymm12
vmulpd ymm3, ymm22, ymm2
vmulpd ymm8, ymm23, ymm7
vblendvpd ymm15, ymm12, ymm13, ymm14
vblendvpd ymm5, ymm2, ymm3, ymm4
vblendvpd ymm10, ymm7, ymm8, ymm9
vmovupd ymmword ptr [rsi+0xa0], ymm15
vmovupd ymmword ptr [rsi+0xc0], ymm5
vmovupd ymmword ptr [rsi+0xe0], ymm10
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline Speedup: 2.9x

Example 17-5. Masking Example

No Masking Merge Masking Zero Masking

mov rbx, iter
loop:

vmulps zmm0, zmm9, zmm8
vmulps zmm1, zmm9, zmm8
dec rbx
jnle loop

mov rbx, iter
loop:

vmulps zmm0{k1}, zmm9, zmm8
vmulps zmm1{k1}, zmm9, zmm8
dec rbx
jnle loop

mov rbx, iter
loop:

vmulps zmm0{k1}{z}, zmm9, zmm8
vmulps zmm1{k1}{z}, zmm9, zmm8
dec rbx
jnle loop

Baseline Slowdown: 4x Slowdown: Equal to baseline.

Example 17-4. Masking with Assembly (Contd.)

Intel® AVX2 Assembly Code Intel® AVX-512 Assembly Code

Document #: 248966-050US 17-13

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

With merge masking, the processor executes 2 multiplies every 4 cycles as the multiplies in iteration N depend on the
output of the multiplies in iteration N-1.

Zero masking does not have a dependency on the destination register and therefore can execute 2 multiplies per cycle
on a 2 FMA server.

Recommendation: Masking has a cost, so use it only when necessary. When possible, use zero masking rather than
merge masking.

17.2.3 MASKING VS. BLENDING
This section discusses the advantages and disadvantages of using blending vs. masking for conditional code.

Consider the following code:

for (i=0; i<SIZE; i++)

{

if (a[i] > 0)

{

b[i] *= 2;

}

else

{

b[i] /= 2;

}

}

Example 17-6 shows two possible compilation alternatives of the code.

• Alternative 1 uses masked code and straight-forward arithmetic processing of data.

• Alternative 2 splits code to two independent unmasked flows that are processed one after another, and then a
masked move (blending), just before storing to memory.

Example 17-6. Masking vs. Blending Example 1

Alternative 1 Alternative 2

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
knotw k2, k1

mov rax, pImage
mov rbx, pImage1
mov rcx, pOutImage
mov rdx, len
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm2, [rax+rdx*4-0x40]
vmovdqa32 zmm1, [rbx+rdx*4-0x40]
vpcmpgtd k1, zmm1, zmm0
vmovdqa32 zmm3, zmm2
vpslld zmm2, zmm2, 1
vpsrld zmm3, zmm3, 1

Document #: 248966-050US 17-14

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3). That means that instruction
(2) has to wait for the result of the blending of instruction (1), before starting execution, and instruction (3) needs to
wait for instruction (2).

In Alternative 2, there is only one such dependency because each branch of conditional code is executed in parallel on
all the data, and a mask is used for blending back to one register only before writing data back to the memory.

Blending is faster, but it does not mask exceptions, which may occur on the unmasked data.

Alternative 2 executes 11% more instructions; it provides 23% speedup in overall execution. Alternative 2 uses an
extra register (zmm3). This extra register usage may cause extra latency in case of register pressure (freeing register
to memory and loading it afterwards).

The following code is another example of masking vs. blending.

for (int i = 0;i<len;i++)

{

if (a[i] > b[i]){

a[i] += b[i];

}

}

(1)vpslld zmm2 {k1}, zmm2, 1
(2)vpsrld zmm2 {k2}, zmm2, 1
(3)vmovdqa32 [rcx+rdx*4-0x40], zmm2

sub rdx, 16
jne mainloop

(1)vmovdqa32 zmm3 {k1}, zmm2
(2)vmovdqa32 [rcx+rdx*4-0x40], zmm3

sub rdx, 16
jne mainloop

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.23x
Instructions: 1.11x

Example 17-7. Masking vs. Blending Example 2

Alternative 1 Alternative 2

mov rax,a
mov rbx,b
mov rdx,size2

loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]

(1) vpcmpgtd k1,zmm1,zmm2
(2) vmovdqa32 zmm3{k1}{z},zmm2
(3) vpaddd zmm1,zmm1,zmm3

vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

mov rax,a
mov rbx,b
mov rdx,size2

loop1:
vmovdqa32 zmm1,[rax +rdx*4 -0x40]
vmovdqa32 zmm2,[rbx +rdx*4 -0x40]

(1)vpcmpgtd k1,zmm1,zmm2
(2)vpaddd zmm1{k1},zmm1,zmm2

vmovdqa32 [rax +rdx*4 -0x40],zmm1
sub rdx,16
jne loop1

Baseline cycles 1x
Baseline instructions 1x

Speedup: 1.05x
Instructions: 0.87x

Example 17-6. Masking vs. Blending Example 1 (Contd.)

Alternative 1 Alternative 2

Document #: 248966-050US 17-15

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

In Alternative 1, there is a dependency between instructions (1) and (2), and (2) and (3).

In Alternative 2, there are only 2 instructions in the dependency chain: (1) and (2).

17.2.4 NESTED CONDITIONS / MASK AGGREGATION
Intel AVX-512 contains a set of instructions for mask operation, which enable executing all bitwise logical operators
on a mask register, facilitating implementation of nested and/or multiply conditions.

In the following example, logical and (&&) is executed using a kandw instruction.

for(int iX = 0; iX < iBufferWidth; iX++)

{

if ((*pInImage)>0 && ((*pInImage)&3)==3)

{

*pRefImage = (*pInImage)+5;

}

else

{

*pRefImage = (*pInImage);

}

pRefImage++;

pInImage++;

}

Example 17-8. Multiple Condition Execution

Scalar Intel® AVX2 Intel® AVX-512

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
mainloop:
mov r8d, dword ptr [rsi+rax*4]
mov r9d, r8d
cmp r8d, 0
jle label1
and r9d, 0x3
cmp r9d, 3
jne label1
add r8d, 5
label1:
mov dword ptr [rdi+rax*4], r8d
add rax, 1
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd ymm1, [five]
vpbroadcastd ymm7, [three]
vpxor ymm3, ymm3, ymm3
mainloop:
vmovdqa ymm0, [rsi+rax*4]
vmovaps ymm6, ymm0
vpcmpgtd ymm5, ymm0, ymm3
vpand ymm6, ymm6, ymm7
vpcmpeqd ymm6, ymm6, ymm7
vpand ymm5, ymm5, ymm6
vpaddd ymm4, ymm0, ymm1
vblendvps ymm4, ymm0, ymm4,
cmp rax, rbx
jne mainloop

mov rsi, pImage
mov rdi, pOutImage
mov rbx, len
xor rax, rax
vpbroadcastd zmm1, [five]
vpbroadcastd zmm5, [three]
vpxord zmm3, zmm3, zmm3
mainloop:
vmovdqa32 zmm0, [rsi+rax*4]
vpcmpgtd k1, zmm0, zmm3
vpandd zmm6, zmm5, zmm0
vpcmpeqd k2, zmm6, zmm5
kandw k1, k2, k1
vpaddd zmm0 {k1}, zmm0, zmm1
vmovdqa32 [rdi+rax*4], zmm0
add rax, 16
cmp rax, rbx
jne mainloop

Document #: 248966-050US 17-16

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.2.5 MEMORY MASKING MICROARCHITECTURE IMPROVEMENTS
Masking improvements since Broadwell microarchitecture are detailed in Example 17-2

17.2.6 PEELING AND REMAINDER MASKING
Accessing cache line aligned data gives better performance than accessing non-aligned data. In many cases, the
address is not known in compile time, or known and not-aligned. In these cases a peeling algorithm may be proposed,
to process first elements in masked mode, up to first aligned address, and then process unmasked body and masked
remainder. This method increases code size, but improves data processing overall.

The following code is an example of peeling and remainder masking.

for (size_t i = 0; i < len; i++)

pOutImage[i] = (pInImage[i] * alfa) + add_value;

Baseline 1x Speedup: 5x Speedup: 11x

Table 17-2. Cache Comparison Between Skylake Server Microarchitecture and Broadwell
Microarchitecture

Item Broadwell Microarchitecture Skylake Server Microarchitecture

1

•Address of a vmaskmov store is considered as
resolved only after the mask is known.

•Loads following a masked store may be blocked,
depending on the memory disambiguation predictor,
until the mask value is known.

•Issue is resolved.
•Address of a vmaskmov store can be resolved

before mask is known.

2

• If mask is not all 1 or all 0: loads depending upon the
masked store must wait until the store data is written
to the cache.

• If mask is all 1: the data can be forwarded from the
masked store to the dependent loads.

• If mask is all 0: loads do not depend on the masked
store.

• If mask is not all 1 or all 0: loads that depend on
the masked store must wait until store data is
written tocache.

• If mask is all 1: data can be forwarded from the
masked store to the dependent loads.

• If mask is all 0: loads do not depend on the
masked store.

3

•When including an illegal memory address range with
masked loads (using the vmaskmov instruction):
processor might take a multi-cycle "assist" to
determine if any part of the illegal range has a one
mask value.

•Assist might occur even when mask was "all-zero" and
seemed obvious that the load should not be executed.

For Intel AVX-512 masking: if mask is all-zeros
then memory faults will be ignored and no assist
will be issued.

Example 17-8. Multiple Condition Execution (Contd.)

Scalar Intel® AVX2 Intel® AVX-512

Document #: 248966-050US 17-17

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The table below shows the difference in implementation and execution speed of two versions of the code, both
working on unaligned output data array.

Example 17-9. Peeling and Remainder Masking

No peeling, unmasked body, masked remainder Peeling, unmasked body, masked remainder

mov rbx, pOutImage // Output
mov rax, pImage // Input
mov rcx, len
mov edx, addValue
vpbroadcastd zmm0, edx
mov edx, alfa
vpbroadcastd zmm3, edx
mov rdx, rcx
sar rdx, 4 // 16 elements per iteration, RDX - number

of full iterations
jz remainder // no full iterations
xor r8, r8
vmovups zmm10, [indices]

mainloop:
vmovups zmm1, [rax + r8]
vfmadd213ps zmm1, zmm3, zmm0
vmovups [rbx + r8], zmm1
add r8, 0x40
sub rdx, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower

vmovups zmm1 {k2}{z}, [rax + r8]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx + r8] {k2}, zmm1

end:

mov rax, pImage // Input
mov rbx, pOutImage // Output
mov rcx, len
movss xmm0, addValue
vpbroadcastd zmm0, xmm0
movss xmm1, alfa
vpbroadcastd zmm3, xmm1
xor r8, r8
xor r9, r9
vmovups zmm10, [indices]
vpbroadcastd zmm12, ecx

peeling:
mov rdx, rbx
and rdx, 0x3F
jz endofpeeling //nothing to peel
neg rdx
add rdx, 64 // 64 - X
// now rdx contains the number of bytes to the closest

alignment
mov r9, rdx
sar r9, 2 // now r9 contains number of elements in

peeling

vpbroadcastd zmm12, r9d
vpcmpd k2, zmm10, zmm12, 1 //compare lower to

produce mask for peeling

vmovups zmm1 {k2}{z}, [rax]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovups [rbx] {k2}, zmm1 //unaligned store

endofpeeling:
sub rcx, r9
mov r8, rcx
sar r8, 4 //number of full iterations
jz remainder //no full iterations

Document #: 248966-050US 17-18

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

mainloop:
vmovups zmm1, [rax + rdx]
vfmadd213ps zmm1, zmm3, zmm0
vmovaps [rbx + rdx], zmm1 // aligned store is safe here

!!
add rdx, 0x40
sub r8, 1
jne mainloop

remainder:
// produce mask for remainder
and rcx, 0xF // number of elements in remainder
jz end // no elements in remainder
vpbroadcastd zmm2, ecx

 vpcmpd k2, zmm10, zmm2, 1 //compare lower
vmovups zmm1 {k2}{z}, [rax + rdx]
vfmadd213ps zmm1 {k2}{z}, zmm3, zmm0
vmovaps [rbx + rdx] {k2}, zmm1 //aligned

end:

Baseline 1x Speedup: 1.04x

Example 17-9. Peeling and Remainder Masking (Contd.)

No peeling, unmasked body, masked remainder Peeling, unmasked body, masked remainder

Document #: 248966-050US 17-19

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.3 FORWARDING AND UNMASKED OPERATIONS
When using an unmasked store instruction, and load instruction after it, data forwarding depends on load type, size
and address offset from store address, and does not depend on the store address itself (i.e., the store address does
not have to be aligned to or fit into cache line, forwarding will occur for non-aligned and even line-split stores).

The figure below describes all possible cases when data forwarding will occur.

There are two important points to be considered when using data forwarding.

1. Data forwarding to GPR is possible only from the lower 256 bits of store instruction. Note this when loading GPR
with data that has recently been written.

2. Do not use masks, as forwarding is supported only for certain masks.

17.4 FORWARDING AND MEMORY MASKING
When using masked store and load, consider the following:

• When the mask is not all-ones or all-zeroes, the load operation, following the masked store operation from the
same address is blocked, until the data is written to the cache.

• Unlike GPR forwarding rules, vector loads whether or not they are masked, do not forward unless load and store
addresses are exactly the same.

— st_mask = 10101010, ld_mask = 01010101, can forward: no, should block: yes

— st_mask = 00001111, ld_mask = 00000011, can forward: no, should block: yes

• When the mask is all-ones, blocking does not occur, because the data may be forwarded to the load operation.

— st_mask = 11111111, ld_mask = don’t care, can forward: yes, should block: no

Figure 17-5. Data Forwarding Cases

SOM00006

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 Y

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y N N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N
8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

General Purpose Registers (GPR)

32..63

N

N

N

N

Load
size

Offset from store address (in bytes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 Y N

X87, MMX, XMM, YMM, ZMM

Load
size

Offset from store address (in bytes)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

2 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

4 Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N Y Y Y Y Y N N N

8 Y N N N N N N N Y N N N N N N N Y N N N N N N N Y N N N N N N N

16 Y N N N N N N N N N N N N N N N Y N N N N N N N N N N N N N N N

32 Y N

64 N

X87, MMX, XMM, YMM, ZMM

Document #: 248966-050US 17-20

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• When mask is all-zeroes, blocking does not occur, though neither does forwarding.

— st_mask = 00000000, ld_mask = don’t care, can forward: no, should block: no

In summary, a masked store should be used carefully, for example, if the remainder size is known at compile time to
be 1, and there is a load operation from the same cache line after it (or there is an overlap in addresses + vector
lengths), it may be better to use scalar remainder processing, rather than a masked remainder block.

17.5 DATA COMPRESS
The data compress operation reads elements from an input buffer on indices specified by mask register 1's bits. The
elements which have been read, are then written to the destination buffer. If the number of elements is less than the
destination register size, the rest of the space is filled with zeros.

The following figure describes the data compress operation.

if (k[i] == 1)

{

dest[a] = src[i];

a++;

}

Figure 17-6. Data Compress Operation

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

… 5 4 3 2 1 0 bits

SOM00007

... 0 0 0 0 0 0 0 0 a11 a10 a9 a6 a5 a1 Destination

… 63 32 31 0 bits

Document #: 248966-050US 17-21

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.5.1 DATA COMPRESS EXAMPLE
The following snippet shows collection of all positive elements from one array to another array.

for (int i=0; i<SIZE; i++)

{

 if (a[i] > 0)

b[j++] = a[i];

}

Following are four implementations for the compress operation from an array of dword elements.

• Alternative 1: uses scalar data access and checks each element separately. If it is greater than 0 it is written to the
destination array.

• Alternative 2: Intel AVX code that uses a shuffle instruction together with the pre-allocated and pre-initialized
table with shuffle keys. The compare instruction provides the entry point number to the shuffle-key table. Then
the key is loaded and the original array is shuffled according to the keys. Four elements are processed in each
iteration.

• Alternative 3: uses the same algorithm as in Alternative 2, but uses Intel AVX2 256-bit registers, and a
permutation on the dword instruction instead of using byte shuffle. Eight elements are processed in each
iteration.

• Alternative 4: an Intel AVX-512 algorithm, which uses the vpcompress instruction together with the mask register
as a compress key. 16 elements are processed in each iteration

Example 17-10. Comparing Intel® AVX-512 Data Compress with Alternative 1

Alternative 1: Scalar

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr [rsi+r8*4]
test r11d, r11d
jle m1
mov dword ptr [rdi+r10*4], r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

Baseline 1x

Speedup: 2.87x

Document #: 248966-050US 17-22

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-11. Comparing Intel® AVX-512 Data Compress with Alternative 2

Alternative 2: Intel® AVX

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor xmm0, xmm0, xmm0

mainloop:
vmovdqa xmm1, [rsi+r8*4]
vpcmpgtd xmm2, xmm1, xmm0
mov r10, 4
vmovmskps r13, xmm2
shl r13, 4
vmovdqu xmm3, [r14+r13]
vpshufb xmm2, xmm1, xmm3
popcnt r13, r13
sub r10, r13
vmovdqu xmm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], xmm3, xmm2
add r11, r13
add r8, 4
cmp r8, r9
jne mainloop

shuffle_LUT:
.int 0x80808080, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x80808080, 0x80808080, 0x80808080
.int 0x07060504, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x80808080, 0x80808080
.int 0x0b0A0908, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x80808080
.int 0x0F0E0D0C, 0x80808080, 0x80808080, 0x80808080
.int 0x03020100, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x07060504, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x07060504, 0x0F0E0D0C, 0x80808080
.int 0x0b0A0908, 0x0F0E0D0C, 0x80808080, 0x80808080
.int 0x03020100, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x07060504, 0x0b0A0908, 0x0F0E0D0C, 0x80808080
.int 0x03020100, 0x07060504, 0x0b0A0908, 0x0F0E0D0C

write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 2.87x

Document #: 248966-050US 17-23

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-12. Comparing Intel® AVX-512 Data Compress with Alternative 3

Alternative 3: Intel® AVX2

mov rsi, source
mov rdi, dest
mov r14, shuffle_LUT
mov r15, write_mask
mov r9, len

xor r8, r8
xor r11, r11
vpxor ymm0, ymm0, ymm0

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpcmpgtd ymm2, ymm1, ymm0
mov r10, 8
vmovmskps r13, ymm2
shl r13, 5
vmovdqu ymm3, [r14+r13]
vpermd ymm2, ymm3, ymm1
popcnt r13, r13
sub r10, r13
vmovdqu ymm3, [r15+r10*4]
vmaskmovps [rdi+r11*4], ymm3, ymm2
add r11, r13
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to reproduce in the document. It consists of 256 rows of 8 32 bit integers.
//The first 8 and the last 8 rows are shown below.

shuffle_LUT:
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0
.int 0x0, 0x1, 0x2, 0x0, 0x0, 0x0, 0x0, 0x0
// Skipping 240 lines
.int 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0, 0x0
.int 0x0, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x1, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0, 0x0
.int 0x0, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x0
.int 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
write_mask:
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000
.int 0x80000000, 0x80000000, 0x80000000, 0x80000000

Document #: 248966-050US 17-24

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.6 DATA EXPAND

Data expand operations read elements from the source array (register) and put them in the destination register in the
places indicated by enabled bits in the mask register. If the number of enabled bits is less than destination register
size, the extra values are ignored.

if (k[i] == 1)

{

dest[i] = src[a];

a++;

}

.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

.int 0x00000000, 0x00000000, 0x00000000, 0x00000000

Speedup: 5.27x

Example 17-13. Comparing Intel® AVX-512 Data Compress with Alternative 4

Alternative 4: Intel® AVX-512

mov rsi, source
mov rdi, dest
mov r9, len

xor r8, r8
xor r10, r10
vpxord zmm0, zmm0, zmm0

mainloop:
vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vpcompressd zmm2 {k1}, zmm1
vmovdqu32 [rdi+r10*4], zmm2
kmovd r11d, k1
popcnt r12, r11
add r8, 16
add r10, r12
cmp r8, r9
jne mainloop

Speedup: 11.9x

Example 17-12. (Contd.)Comparing Intel® AVX-512 Data Compress with Alternative 3 (Contd.)

Alternative 3: Intel® AVX2

Document #: 248966-050US 17-25

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.6.1 DATA EXPAND EXAMPLE
The following snippet shows an example of using the expand operation. For every positive number in an array, the
code sets its consecutive number among positives.

for (int i=0; i<SIZE; i++)

{

if (a[i] > 0)

dest[i] = a[count++];

else

dest[i] = 0;

}

Here are three implementations for the expand operation from an array of 16 dword elements.

• Alternative 1: uses scalar data access and checks each element separately. If it is greater than 0 then the
corresponding element in the destination array is rewritten with the value from source value at index count, and
the counter is incremented.

• Alternative 2: shows Intel AVX2 code that uses a shuffle instruction together with the preallocated and
preinitialized table with shuffle keys.

— The compare instruction provides the entry point number to the shuffle-key table.

— The key is then loaded and the original array is shuffled according to the keys.

Figure 17-7. Data Expand Operation

… 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bits

... a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
Input
Buffer

… 63 32 31 0 bits

SOM00008

... 0 0 a5 a4 a3 0 0 a2 a1 0 0 0 a0 0 Destination

… 63 32 31 0 bits

... 0 0 1 1 1 0 0 1 1 0 0 0 1 0 Mask
Register

Document #: 248966-050US 17-26

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

— Four elements are processed in each iteration.

• Alternative 3: shows Intel AVX-512 code, which uses the vpexpandd instruction together with the mask register
as an expand key. Sixteen elements are processed in each iteration.

Example 17-14. Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives

Alternative 1: Scalar Alternative 2: Intel® AVX2 Alternative 3: Intel® AVX-512

mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10

mainloop:
mov r11d, dword ptr [rsi+r8*4]
test r11d, r11d
jle m1
mov r11d, dword ptr

[rsi+r10*4]
mov dword ptr [rdi+r8*4], r11d
inc r10

m1:
inc r8
cmp r8, r9
jne mainloop

 mov rsi, input
mov rdi, output
mov r9, len
xor r8, r8
xor r10, r10
vpxor ymm0, ymm0, ymm0
mov r14, shuf2

mainloop:
vmovdqa ymm1, [rsi+r8*4]
vpxor ymm4, ymm4, ymm4
vpcmpgtd ymm2, ymm1,

ymm0
vmovdqu ymm1, [rsi+r10*4]
vmovmskps r13, ymm2
shl r13, 5
vmovdqa ymm3, [r14+r13]
vpermd ymm4, ymm3, ymm1
popcnt r13, r13
add r10, r13
vmaskmovps [rdi+r8*4],

ymm2, ymm4
add r8, 8
cmp r8, r9
jne mainloop

// The lookup table is too large to
// reproduce in the document. It
// consists of 256 rows of 8 32-bit
// integers. The first 8 and the last 8
// rows are shown below. The table
// needs to be 32-byte aligned.
shuf2:

.int 0, 0, 0, 0, 0, 0, 0, 0

.int 0, 0, 0, 0, 0, 0, 0, 0

.int 0, 0, 0, 0, 0, 0, 0, 0

.int 0, 1, 0, 0, 0, 0, 0, 0

.int 0, 0, 0, 0, 0, 0, 0, 0

.int 0, 0, 1, 0, 0, 0, 0, 0

.int 0, 0, 1, 0, 0, 0, 0, 0

.int 0, 1, 2, 0, 0, 0, 0, 0

 vpxord zmm0, zmm0, zmm0
mainloop:

vmovdqa32 zmm1, [rsi+r8*4]
vpcmpgtd k1, zmm1, zmm0
vmovdqu32 zmm1, [rsi+r10*4]
vpexpandd zmm2 {k1}{z},

zmm1
vmovdqu32 [rdi+r8*4], zmm2
add r8, 16
kmovd r11d, k1
popcnt r12, r11
add r10, r12
cmp r8, r9
jne mainloop

Document #: 248966-050US 17-27

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.7 TERNARY LOGIC
A ternary logic vpternlog operation executes any bitwise logical function between three operands in one instruction.
The instruction requires three operands and an immediate value, which is the truth table of this logical expression.
The first operand is used as destination, and, therefore, destroyed after the execution.

17.7.1 TERNARY LOGIC EXAMPLE 1
The following example shows a bitwise logic function of three variables. The function in this example is defined by the
following truth table.

Using Karnaugh maps on this truth table, we can define the function as:

f(X,Y,Z) = y(z ⊕ x)Vxyz

The C code for the function above is as follows:

for (int i=0; i<SIZE; i++)

{

 Dst[i] = ((~Src2[i]) & (Src1[i] ^ Src3[i])) | (Src1[i] & Src2[i] & Src3[i]);

}

The value of the function for each combination of X, Y and Z gives an immediate value that is used in the instruction.

Here are three implementations for this logical function applied to all values in X, Y and Z arrays.

• Alternative 1: an Intel AVX2 256-bit vector computation, using bitwise logical functions available in Intel AVX2.

Baseline 1x

// Skipping 240 lines
.int 0, 0, 0, 0, 1, 2, 3, 4
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 1, 0, 2, 3, 4, 5, 6
.int 0, 0, 0, 1, 2, 3, 4, 5
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 0, 1, 2, 3, 4, 5, 6
.int 0, 1, 2, 3, 4, 5, 6, 7

Speedup: 4.23x Speedup: 8.58x

Figure 17-8. Ternary Logic Example 1 Truth Table

Example 17-14. (Contd.)Comparing Intel® AVX-512 Data Expand Operation with Other Alternatives

Alternative 1: Scalar Alternative 2: Intel® AVX2 Alternative 3: Intel® AVX-512

SOM00009

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 1 0 0 1 0 0 1 0 0x92

Immediate value
that is used.

Document #: 248966-050US 17-28

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• Alternative 2: a 512-bit vector computation, using bitwise logical functions available in Intel AVX-512, without
using the vpternlog instruction.

• Alternative 3: an Intel AVX-512 512-bit vector computation, using the vpternlog instruction.

All alternatives in the table are unrolled by factor 2.

Example 17-15. Comparing Ternary Logic to Alternative 1

Alternative 1: Intel® AVX2

mov rax, src1
mov rbx, src2
mov rcx, src3
mov r11, dst
mov r8, len
xor r10, r10

mainloop:
vmovdqu ymm1, ymmword ptr [rax+r10*4]
vmovdqu ymm3, ymmword ptr [rdx+r10*4]
vmovdqu ymm2, ymmword ptr [rcx+r10*4]
vmovdqu ymm10, ymmword ptr [rcx+r10*4+0x20]
vpand ymm0, ymm1, ymm3

vpxor ymm4, ymm1, ymm2
vpand ymm5, ymm0, ymm2
vpandn ymm6, ymm3, ymm4

vpor ymm7, ymm5, ymm6
vmovdqu ymmword ptr [r11+r10*4], ymm7
vmovdqu ymm9, ymmword ptr [rax+r10*4+0x20]
vmovdqu ymm11, ymmword ptr [rdx+r10*4+0x20]
vpxor ymm12, ymm9, ymm10
vpand ymm8, ymm9, ymm11
vpandn ymm14, ymm11, ymm12
vpand ymm13, ymm8, ymm10
vpor ymm15, ymm13, ymm14
vmovdqu ymmword ptr [r11+r10*4+0x20], ymm15

add r10, 0x10
cmp r10, r8
jb mainloop

Baseline 1x

Document #: 248966-050US 17-29

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.7.2 TERNARY LOGIC EXAMPLE 2
The next example is a sign change operation, frequently used in Fortran. Consider the following code, running on two
arrays of floating point numbers.

for (int i=0; i<SIZE; i++)

{

 b[i] = a[i] > 0 ? b[i] : -b[i];

}

Example 17-16. Comparing Ternary Logic to Alternatives 2 and 3

Alternative 2: Intel® AVX-512 Logic Instructions Alternative 3: Intel® AVX-512 using vpternlog
Instruction

mov rdi, src1
mov rsi, src2
mov rdx, src3
mov r11, dst
mov r8, len

xor r10, r10

mainloop:
vmovups zmm2, zmmword ptr [rdi+r10*4]
vmovups zmm4, zmmword ptr [rdi+r10*4+0x40]
vmovups zmm6, zmmword ptr [rsi+r10*4]
vmovups zmm8, zmmword ptr [rsi+r10*4+0x40]
vmovups zmm3, zmmword ptr [rdx+r10*4]
vmovups zmm5, zmmword ptr [rdx+r10*4+0x40]
vpandd zmm0, zmm2, zmm6
vpandd zmm1, zmm4, zmm8
vpxord zmm7, zmm2, zmm3
vpxord zmm9, zmm4, zmm5
vpandd zmm10, zmm0, zmm3
vpandd zmm12, zmm1, zmm5
vpandnd zmm11, zmm6, zmm7
vpandnd zmm13, zmm8, zmm9
vpord zmm14, zmm10, zmm11

mov r9, src1
mov r8, src2
mov r10, src3
mov r11, dst
mov rsi, len

xor rax rax

mainloop:
vmovaps zmm1, [r8+rax*4]
vmovaps zmm0, [r9+rax*4]
vpternlogd zmm0,zmm1,[r10], 0x92
vmovaps [r11], zmm0
vmovaps zmm1, [r8+rax*4+0x40]
vmovaps zmm0, [r9+rax*4+0x40]
vpternlogd zmm0,zmm1, [r10+0x40], 0x92
vmovaps [r11+0x40], zmm0
addrax, 32
add r10, 0x80
add r11, 0x80
cmp rax, rsi
jne mainloop

vpord zmm15, zmm12, zmm13
vmovups zmmword ptr [r11+r10*4], zmm14
vmovups zmmword ptr [r11+r10*4+0x40], zmm15
add r10, 0x20
cmp r10, r9
jb mainloop

Speedup: 1.94x Speedup: 2.36x
(1.22x vs Intel® AVX-512 with logic instructions)

Document #: 248966-050US 17-30

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

This code is equivalent to:

for (int i=0; i<SIZE; i++)

{

 b[i] = (a[i] & 0x80000000) ^ b[i];

}
Or, in other words:

This logic expression gives the following truth table.

Therefore one vpternlog instruction can be used instead of using two logic instructions (vpand and vpxor):

vpternlog x,y,z,0x78

Figure 17-9. Ternary Logic Example 2 Truth Table

SOM00010

X 1 1 1 1 0 0 0 0

Y 1 1 0 0 1 1 0 0

Z 1 0 1 0 1 0 1 0

f(X, Y, Z) 0 1 1 1 1 0 0 0 0x78

Immediate value
that is used in the
vpternlog instruction.

Document #: 248966-050US 17-31

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.8 NEW SHUFFLE INSTRUCTIONS
Intel AVX-512 added 3 new shuffle operations.

• vpermw: a new single source any-to-any word permute.

• permt2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding src register).

• permi2[w/d/q/ps/pd]: a new any to any 2 source permute (overriding control register).

The following figure shows how vpermi2ps is used. Notice that in the following example zmm0 is the shuffle control
but also the output register (the control register is overridden).

vpermi2ps zmm0, zmm1, zmm2

Note that the index register values must have the same resolution as the instruction and source registers (word when
working on words, dword when working on dwords, etc.).

Figure 17-10. VPERMI2PS Instruction Operation

SOM00011

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 index

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 ZMM2

… 63 32 31 0 bits

b15

... ... b15 b13 a7 a1 a3 ZMM0

… 63 32 31 0 bits

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 index

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 ZMM1

… 63 32 31 0 bits

a15

... ... 31 29 7 1 3 ZMM0

… 63 32 31 0 bits

Document #: 248966-050US 17-32

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.8.1 TWO SOURCE PERMUTE EXAMPLE
In this example we will show the use of the two source permute instructions in a matrix transpose operation. The
matrix we want to transpose is square 8x8 matrix of word elements.

The corresponding C code is as follows (assuming each matrix occupies a continuous block of 8*8*2 = 128 bytes):

for(int iY = 0; iY < 8; iY++)
{

for(int iX = 0; iX < 8; iX++)

{

trasposedMatrix[iY*8+iX] = originalMatrix[iX*8+iY];

}

}

Here are three implementations for this matrix transpose.

• Alternative 1 is scalar code, which accesses each element of the source matrix and puts it to the corresponding
place in the destination matrix. This code does 64 (8x8) iterations per 1 matrix.

• Alternative 2 is Intel AVX2 code, which uses Intel AVX2 permutation and shuffle (unpack) instructions. Only 1
iteration per 8x8 matrix is required.

• Alternative 3 Intel AVX-512 code which uses the Two Source Permutation instructions. Note that this code first
loads permutation masks, and then matrix data. The mask used to perform the permutation is stored in the
following array:

short permMaskBuffer [8*8] = { 0, 8, 16, 24, 32, 40, 48, 56,

 1, 9, 17, 25, 33, 41, 49, 57,

2, 10, 18, 26, 34, 42, 50, 58,

3, 11, 19, 27, 35, 43, 51, 59,

4, 12, 20, 28, 36, 44, 52, 60,

5, 13, 21, 29, 37, 45, 53, 61,

6, 14, 22, 30, 38, 46, 54, 62,

 7, 15, 23, 31, 39, 47, 55, 63 };

 →

Figure 17-11. Two-Source Permute Instructions in a Matrix Transpose Operation

Document #: 248966-050US 17-33

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Each alternative transposes 50 matrixes, 8x8 2-byte elements each.

Example 17-17. Matrix Transpose Alternatives

Alternative 1: Scalar code Alternative 2: Intel® AVX2 Code Alternative 3: Intel® AVX-512
Code

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
xor rax, rax

outerloop:
xor rbx, rbx

innerloop:
mov rcx, rax
shl rcx, 3
add rcx, rbx
mov r8w, word ptr [rsi+rcx*2]
mov rcx, rbx
shl rcx, 3
add rcx, rax
mov word ptr [rdi+rcx*2], r8w
add rbx, 1
cmp rbx, 8
jne innerloop
add rax, 1
cmp rax, 8
jne outerloop
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa xmm0, [rsi]
vmovdqa xmm1, [rsi+0x10]
vmovdqa xmm2, [rsi+0x20]
vmovdqa xmm3, [rsi+0x30]

vinserti128 ymm0, ymm0,
[rsi+0x40], 0x1

vinserti128 ymm1, ymm1,
[rsi+0x50], 0x1

vinserti128 ymm2, ymm2,
[rsi+0x60], 0x1

vinserti128 ymm3, ymm3,
[rsi+0x70], 0x1

vpunpcklwd ymm4, ymm0, ymm1
vpunpckhwd ymm5, ymm0, ymm1
vpunpcklwd ymm6, ymm2, ymm3
vpunpckhwd ymm7, ymm2, ymm3

vpunpckldq ymm0, ymm4, ymm6
vpunpckhdq ymm1, ymm4, ymm6
vpunpckldq ymm2, ymm5, ymm7
vpunpckhdq ymm3, ymm5, ymm7

vpermq ymm0, ymm0, 0xD8
vpermq ymm1, ymm1, 0xD8
vpermq ymm2, ymm2, 0xD8
vpermq ymm3, ymm3, 0xD8

vmovdqa [rdi], ymm0
vmovdqa [rdi+0x20], ymm1
vmovdqa [rdi+0x40], ymm2
vmovdqa [rdi+0x60], ymm3
add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

mov rax, permMaskBuffer
vmovdqa32 zmm10, [rax]
vmovdqa32 zmm11, [rax+0x40]

 mov rsi, pImage
mov rdi, pOutImage
xor rdx, rdx

matrix_loop:
vmovdqa32 zmm2, [rsi]
vmovdqa32 zmm3, [rsi+0x40]
vmovdqa32 zmm0, zmm10
vmovdqa32 zmm1, zmm11
vpermi2w zmm0, zmm2, zmm3
vpermi2w zmm1, zmm2, zmm3
vmovdqa32 [rdi], zmm0
vmovdqa32 [rdi+0x40], zmm1

add rdx, 1
add rsi, 64*2
add rdi, 64*2
cmp rdx, 50
jne matrix_loop

Baseline 1x Speedup: 13.7x Speedup: 37.3x
(2.7x vs Intel® AVX2 code)

Document #: 248966-050US 17-34

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.9 BROADCAST

17.9.1 EMBEDDED BROADCAST
Intel AVX-512 introduces embedded broadcast operations, in which a broadcast operation is implied within the syntax
of a non-broadcast instruction. A source from memory can be broadcast, that is, repeated, across all the elements of
the effective source operand, up to 16 times for a 32-bit data element, and up to 8 times for a 64-bit data element,
without using an additional source register. This is useful when we want to reuse the same scalar operand for all the
operations in a vector instruction.

Embedded broadcast is only enabled on instructions with an element size of 32 or 64 bits; however, new FP16
instructions allow embedded broadcast. In the case of older technologies, byte and word element broadcasts do not
support embedded broadcast. Use a broadcast instruction, rather than embedded broadcast, to broadcast a byte or
word.

Using embedded broadcast can reduce the number of registers used in the code, which may be helpful when register
pressure exists.

In addition, when using embedded broadcast the load micro-op is in the same instruction as the operation micro-op,
and therefore can benefit from micro fusion.

For example, replace the following code:

vbroadcastss zmm3, [rax]

vmulps zmm1, zmm2, zmm3

with:

vmulps zmm1, zmm2, [rax] {1to16}
The {1to16} primitive does the following:

1. Loads one float32 (single precision) element from memory.

2. Replicates it 16 times to form a vector of 16 32-bit floating point elements.

Intel AVX-512 instructions with store semantics and pure load instructions do not support broadcast primitives.

17.9.2 BROADCAST EXECUTED ON LOAD PORTS
In Skylake Server microarchitecture, a broadcast instruction with a memory operand of 32 bits or above is executed
on the load ports; it is not executed on port 5 as other shuffles are. Alternative 2 in the following example shows how

Document #: 248966-050US 17-35

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

executing the broadcast on the load ports reduces the workload on port 5 and increases performance. Alternative 3
shows how embedded broadcast benefits from both executing the broadcast on the load ports and micro fusion.

The following example shows that on Skylake Server microarchitecture, 16-bit broadcast is executed on port 5 and
therefore does not gain from the memory operand broadcast.

Notice that embedded broadcast is not supported for 16-bit memory operands.

17.10 EMBEDDED ROUNDING
By default, the Rounding Mode is set by bits 13:14 of the MXCSR register.

Intel AVX-512 introduces a new instruction attribute called Static (per instruction) Rounding Mode (RM) or Rounding
Mode override. This attribute allows a specific arithmetic rounding mode to be applied, ignoring the value of the RM
bits in the MXCSR. In combination with the rounding-mode, Intel AVX-512 also has an SAE (“suppress-all-exceptions”)
attribute, to disable reporting any floating-point exception flag in the MXCSR. SAE is always implied when rounding-
mode is enabled.

Static Rounding Mode and SAE control can be enabled in the encoding of the instruction by setting the EVEX.b bit to
1 in a register-register vector instruction. In this case, vector length is assumed to be the maximal possible vector
length (512-bit in case of Intel AVX-512). The table below summarizes the possible static rounding-mode assignments
in Intel AVX-512. Note that some instructions already allow the rounding mode to be statically specified via

Example 17-18. Broadcast Executed on Load Ports Alternatives

Alternative 1: 32-bit Load and
Register Broadcast

Alternative 2: Broadcast with
a 32-bit Memory Operand

Alternative 3: 32-bit Embedded
Broadcast

loop:
vmovd xmm0, [rax]
vpbroadcastd zmm0, xmm0
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastd zmm0, [rax]
vpaddd zmm2, zmm1, zmm0
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpaddd zmm2, zmm1, [rax]{1to16}
vpermd zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

Baseline 1x Speedup: 1.57x Speedup: 1.9x

Example 17-19. 16-bit Broadcast Executed on Port 5

Alternative 1: 16-bit Load and Register Broadcast Alternative 2: Broadcast with a 16-bit Memory
Operand

loop:
vmovd xmm0, [rax]
vpbroadcastw zmm0, xmm0
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x4
sub rdx, 0x1
jnz loop

loop:
vpbroadcastw zmm0, [rax]
vpaddw zmm2, zmm1, zmm0
vpermw zmm2, zmm3, zmm2
add rax, 0x2
sub rdx, 0x1
jnz loop

Baseline 1x Speedup: equal to baseline

Document #: 248966-050US 17-36

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

immediate bits. In such case, the immediate bits take precedence over the embedded rounding mode in the same
way as they take precedence over the bits in MXCSR.RM

17.10.1 STATIC ROUNDING MODE
Static rounding mode functions and descriptions are listed below.

The following code snippet shows a usage example.

This piece of code would perform the single-precision floating point addition of vectors zmm2 and zmm4 with round-
towards-plus-infinity, leaving the result in vector zmm7 using k6 as a conditional writemask. Note that MXCSR.RM bits
are ignored and unaffected by the outcome of this instruction.

Table 17-3. Static Rounding Mode Functions

Function Description

{rn-sae} Round to nearest (even) + SAE

{rd-sae} Round down (toward -infinity) + SAE

{ru-sae} Round up (toward +infinity) + SAE

{rz-sae} Round toward zero (Truncate) + SAE

Example 17-20. Embedded vs Non-Embedded Rounding

Using Embedded Rounding Without Embedded Rounding

vaddps zmm7 {k6}, zmm2, zmm4, {ru-sae}

;rax & rcx point to temporary dword values in memory
used to load and save (for restoring) MXCSR value

vstmxcsr [rax] ;load mxcsr value to memory
mov ebx, [rax] ;move to register
and ebx, 0xFFFF9FFF ;zero RM bits
or ebx, 0x5F80 ;put {ru} to RM bits and suppress all
exceptions
mov [rcx], ebx ;move new value to the memory
vldmxcsr [rcx] ;save to MXCSR

vaddps zmm7 {k6}, zmm2, zmm4 ;operation itself

vldmxcsr [rax] ;restore previous MXCSR value

Document #: 248966-050US 17-37

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following are examples of instructions instances where the static rounding-mode is not allowed.

; rounding-mode already specified in the instruction immediate

vrndscaleps zmm7 {k6}, zmm2 {rd}, 0x00

; instructions with memory operands

vmulps zmm7 {k6}, zmm2, [rax] {rd}

; instructions with vector length different than maximal vector length (512-bit)

vaddps ymm7 {k6}, ymm2, ymm4 {rd}

; non-floating point instructions

vpaddd zmm7 {k6}, zmm2, zmm4 {rd}

17.11 SCATTER INSTRUCTION
This instruction performs a non-continuous store of data (scatter). Given a base address, a set of signed offsets and a
data item, the instruction writes each element in the data register to the memory location computed from the base
address and corresponding offset. The instruction stores up to 16 elements (8 elements for qword indices) in a
doubleword vector or 8 elements in a quadword vector, to the memory locations pointed to by the base address and
index vector. Elements are stored only if their corresponding mask bit is one. The figure below describes the following
operation.

vscatterdpd [rax + zmm0]{k1} , zmm1
In this example, rax contains the base address, zmm0 contains a set of offsets, and zmm1 contains data to be
written.

Document #: 248966-050US 17-38

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.11.1 DATA SCATTER EXAMPLE
Given an array of unique indexes, ranging from 0 to N, we want to sort the array of N values, according to the
corresponding index, while converting the values from long long integers (64 bits) to floating point numbers (32 bits).

for (int i=0; i < N; i++)

{

dst[ind [i]] = (float)src[i];

}

Here are three implementations of the code above.

• Alternative 1: pure scalar code.

• Alternative 2: a software sequence for scatter.

• Alternative 3: a hardware scatter.

Figure 17-12. VSCATTERDPD Instruction Operation

Base
Address

(BA)

GPR

a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0 Data

… 63 32 31 0 bits

a15

b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Offset

… 63 32 31 0 bits

b15

a0
Mem at
[BA+b0]

a1
Mem at
[BA+b1]

ax
Mem at
[BA+bx]

...

Document #: 248966-050US 17-39

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

NOTE
A hardware Scatter operation issues as many store operations, as the number of elements in the
vector. Do not use a scatter operation to store sequential elements, which can be stored with one
vmov instruction.

Example 17-21. Scalar Scatter

Scalar

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length

xor r9, r9
mainloop:

mov r9d, [rbx+rdx-0x4]
vcvtsi2ss xmm0, xmm0, qword ptr [rax+rdx*2-0x8]
vmovss [rcx+r9*4], xmm0
sub rdx, 4
jnz mainloop

Baseline 1x

Table 17-4. Software Sequence and Hardware Scatter

Software Sequence Hardware Scatter

shufMaskP:
 .quad·0x0000000200000001
 .quad·0x0000000400000003
 .quad·0x0000000600000005
 .quad·0x0000000800000007

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length
mov r9, shufMaskP
vmovaps ymm2, [r9]

mainloop:
vmovaps zmm1, [rax + rdx*2 - 0x80] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x40] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x3c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x38] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x34] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0

mov rax, pImage //input
mov rcx, pOutImage //output
mov rbx, pIndex //indexes
mov rdx, len //length

mainloop:
vmovdqa32 zmm0, [rbx+rdx-0x40]
vmovdqa32 zmm1, [rax+rdx*2-0x80]
vcvtuqq2ps ymm1, zmm1

 vmovdqa32 zmm2, [rax+rdx*2-0x40]
vcvtuqq2ps ymm2, zmm2

 vshuff32x4 zmm1, zmm1, zmm2, 0x44
kxnorw k1,k1,k1
vscatterdps [rcx+4*zmm0] {k1}, zmm1
sub rdx, 0x40
jnz mainloop

Document #: 248966-050US 17-40

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

movsxd r9, [rbx + rdx - 0x30] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x2c] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0

movsxd r9, [rbx + rdx - 0x28] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x24] //load 1st index
vmovss [rcx + 4*r9], xmm0
vmovaps zmm1, [rax + rdx*2 - 0x40] //load data
vcvtuqq2ps ymm0, zmm1 //convert to float
movsxd r9, [rbx + rdx - 0x20] //load 8th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x1c] //load 7th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x18] //load 6th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0

movsxd r9, [rbx + rdx - 0x14] //load 5th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x10] //load 4th index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0xc] //load 3rd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x8] //load 2nd index
vmovss [rcx + 4*r9], xmm0
vpermd ymm0, ymm2, ymm0
movsxd r9, [rbx + rdx - 0x4] //load 1st index
vmovss [rcx + 4*r9], xmm0
sub rdx, 0x40
jnz mainloop

Speedup: 1.48x Speedup: 1.53x

Table 17-4. (Contd.)Software Sequence and Hardware Scatter

Software Sequence Hardware Scatter

Document #: 248966-050US 17-41

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.12 STATIC ROUNDING MODES, SUPPRESS-ALL-EXCEPTIONS (SAE)
The Suppress-all-exceptions (SAE) feature was added to Intel AVX-512 floating-point instructions. This feature is
helpful when spurious flag settings are undesirable. Although current implementations of vector math functions
usually allow spurious flag settings, they can cause problems for applications that run with exceptions enabled.
Standard-compliant code does not allow spurious flag settings.

In addition to standard-mandated uses (IEEE, OpenCL), static rounding modes have applications in math libraries that
operate under the default rounding mode (which can be dynamically set).

17.13 QWORD INSTRUCTION SUPPORT
Intel AVX-512 extends QWORD support to many instructions introduced in Intel AVX and Intel AVX2. QWORD support
was added to the instructions as detailed in the following sections.

17.13.1 QUADWORD SUPPORT IN ARITHMETIC INSTRUCTIONS
Intel AVX-512 adds new quadword extension to vpmaxsq, vpmaxuq, vpminsq, vpminuq, and vpmullq.

The following example will store to array c the max value between the sum and the multiply of two 64bit numbers.

const int N = miBufferWidth;

const __int64* restrict a = A;

const __int64* restrict b = B;

__int64* restrict c = Cref;

for (int i = 0; i < N; i++){

 __int64 sum = a[i] + b[i];

 __int64 mul = a[i] * b[i];

 c[i] = mul > sum ? mul : sum;

}
The code below shows how the new support reduces instruction count from 118 in Intel AVX2 to 30 in Intel AVX-512
and results in a 3.1x speedup.

Example 17-22. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 Intrinsics

Intel® AVX2 Intrinsics Intel® AVX-512 Intrinsics

for (int i = 0; i < N; i+= 32){
__m256i aa, bb, aah, bbh, mul, sum;
#pragma unroll(8)
for (int j = 0; j < 8; j++){

aa = _mm256_loadu_si256((const
__m256i*)(a+i+4*j));

bb = _mm256_loadu_si256((const
__m256i*)(b+i+4*j));

for (int i = 0; i < N; i+= 32){
__m512i aa, bb, mul, sum;
#pragma unroll(4)
for (int j = 0; j < 4; j++){

aa = _mm512_loadu_si512((const
__m512i*)(a+i+8*j));

bb = _mm512_loadu_si512((const
__m512i*)(b+i+8*j));

Document #: 248966-050US 17-42

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

sum = _mm256_add_epi64(aa, bb);
mul = _mm256_mul_epu32(aa, bb);
aah = _mm256_srli_epi64(aa, 32);
bbh = _mm256_srli_epi64(bb, 32);
aah = _mm256_mul_epu32(aah, bb);
bbh = _mm256_mul_epu32(bbh, aa);
aah = _mm256_add_epi32(aah, bbh);
aah = _mm256_slli_epi64(aah, 32);
mul = _mm256_add_epi64(mul, aah);
aah = _mm256_cmpgt_epi64(mul, sum);
aa = _mm256_castpd_si256 (

_mm256_blendv_pd(_mm256_castsi256_pd (sum),
_mm256_castsi256_pd(mul), _mm256_castsi256_pd(
aah)));

_mm256_storeu_si256((__m256i*)(c+4*j), aa);
}
c += 32;

}

sum = _mm512_add_epi64(aa, bb);
mul = _mm512_mullo_epi64(aa, bb);
aa = _mm512_max_epi64(sum, mul);
_mm512_storeu_si512((__m512i*)(c+8*j), aa);

}

c += 32;
}

Baseline 1x Speedup: 3.1x

Example 17-23. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 Assembly

Intel® AVX2 Assembly Intel® AVX-512 Assembly

loop:
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0x20]
inc r9d
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0x20]
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8]
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8]
vmovdqu ymm13, ymmword ptr [rax+rcx*8+0x40]
vmovdqu ymm11, ymmword ptr [r11+rcx*8+0x40]
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm27, ymm26, 0x20
vpsrlq ymm16, ymm19, 0x20
vpsrlq ymm18, ymm17, 0x20
vpaddq ymm6, ymm28, ymm26
vpsrlq ymm10, ymm13, 0x20
vpsrlq ymm12, ymm11, 0x20
vpaddq ymm0, ymm19, ymm17
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpaddd ymm31, ymm29, ymm30
vmovdqu32 ymm29, ymmword ptr [r11+rcx*8+0x80]
vpsllq ymm5, ymm31, 0x20
vmovdqu32 ymm31, ymmword ptr [rax+rcx*8+0x80]
vpsrlq ymm30, ymm29, 0x20
vpmuludq ymm20, ymm16, ymm17

loop:
vmovups zmm0, zmmword ptr [rax+rcx*8]
inc r9d
vmovups zmm5, zmmword ptr [rax+rcx*8+0x40]
vmovups zmm10, zmmword ptr [rax+rcx*8+0x80]
vmovups zmm15, zmmword ptr [rax+rcx*8+0xc0]
vmovups zmm1, zmmword ptr [r11+rcx*8]
vmovups zmm6, zmmword ptr [r11+rcx*8+0x40]
vmovups zmm11, zmmword ptr [r11+rcx*8+0x80]
vmovups zmm16, zmmword ptr [r11+rcx*8+0xc0]
vpaddq zmm2, zmm0, zmm1
vpmullq zmm3, zmm0, zmm1
vpaddq zmm7, zmm5, zmm6
vpmullq zmm8, zmm5, zmm6
vpaddq zmm12, zmm10, zmm11
vpmullq zmm13, zmm10, zmm11
vpaddq zmm17, zmm15, zmm16
vpmullq zmm18, zmm15, zmm16
vpmaxsq zmm4, zmm2, zmm3
vpmaxsq zmm9, zmm7, zmm8
vpmaxsq zmm14, zmm12, zmm13
vpmaxsq zmm19, zmm17, zmm18
vmovups zmmword ptr [rsi], zmm4

Example 17-22. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 Intrinsics (Contd.)

Intel® AVX2 Intrinsics Intel® AVX-512 Intrinsics

Document #: 248966-050US 17-43

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

vpmuludq ymm21, ymm18, ymm19
vpmuludq ymm4, ymm28, ymm26
vpaddd ymm22, ymm20, ymm21
vpaddq ymm7, ymm4, ymm5
vpsrlq ymm28, ymm31, 0x20
vmovdqu32 ymm20, ymmword ptr [r11+rcx*8+0x60]
vpsllq ymm24, ymm22, 0x20
vmovdqu32 ymm22, ymmword ptr [rax+rcx*8+0x60]
vpsrlq ymm21, ymm20, 0x20
vpaddq ymm4, ymm22, ymm20
vpcmpgtq ymm8, ymm7, ymm6
vblendvpd ymm9, ymm6, ymm7, ymm8
vmovups ymmword ptr [rsi+0x20], ymm9
vpmuludq ymm14, ymm10, ymm11
vpmuludq ymm15, ymm12, ymm13
vpmuludq ymm8, ymm28, ymm29
vpmuludq ymm9, ymm30, ymm31
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm16, ymm14, ymm15
vpsrlq ymm19, ymm22, 0x20
vpaddd ymm10, ymm8, ymm9
vpaddq ymm1, ymm23, ymm24
vpsllq ymm18, ymm16, 0x20
vmovdqu32 ymm28, ymmword ptr [rax+rcx*8+0xc0]
vpsllq ymm12, ymm10, 0x20
vpmuludq ymm23, ymm19, ymm20
vpmuludq ymm24, ymm21, ymm22
vpaddd ymm25, ymm23, ymm24
vmovdqu32 ymm19, ymmword ptr [rax+rcx*8+0xa0]
vpsllq ymm27, ymm25, 0x20
vpsrlq ymm25, ymm28, 0x20
vpsrlq ymm16, ymm19, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm3, ymm0, ymm1, ymm2
vpaddq ymm0, ymm13, ymm11
vmovups ymmword ptr [rsi], ymm3
vpmuludq ymm17, ymm13, ymm11
vpmuludq ymm11, ymm31, ymm29
vpaddq ymm1, ymm17, ymm18
vpaddq ymm13, ymm31, ymm29
vpaddq ymm14, ymm11, ymm12
vmovdqu32 ymm17, ymmword ptr [r11+rcx*8+0xa0]
vmovdqu ymm12, ymmword ptr [r11+rcx*8+0xe0]
vpsrlq ymm18, ymm17, 0x20
vpcmpgtq ymm2, ymm1, ymm0
vpmuludq ymm26, ymm22, ymm20
vpcmpgtq ymm15, ymm14, ymm13
vblendvpd ymm3, ymm0, ymm1, ymm2
vblendvpd ymm0, ymm13, ymm14, ymm15
vmovdqu ymm14, ymmword ptr [rax+rcx*8+0xe0]

vmovups zmmword ptr [rsi+0x40], zmm9
vmovups zmmword ptr [rsi+0x80], zmm14
vmovups zmmword ptr [rsi+0xc0], zmm19
add rcx, 0x20
add rsi, 0x100
cmp r9d, r8d
jb loop

Example 17-23. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 Assembly (Contd.)

Intel® AVX2 Assembly Intel® AVX-512 Assembly

Document #: 248966-050US 17-44

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

vmovups ymmword ptr [rsi+0x40], ymm3
vmovups ymmword ptr [rsi+0x80], ymm0
vpaddq ymm5, ymm26, ymm27
vpsrlq ymm11, ymm14, 0x20
vpsrlq ymm13, ymm12, 0x20
vpaddq ymm1, ymm19, ymm17
vpaddq ymm0, ymm14, ymm12
vmovdqu32 ymm26, ymmword ptr [r11+rcx*8+0xc0]
vpmuludq ymm20, ymm16, ymm17
add rcx, 0x20
vpmuludq ymm21, ymm18, ymm19
vpaddd ymm22, ymm20, ymm21
vpsrlq ymm27, ymm26, 0x20
vpsllq ymm24, ymm22, 0x20
vpmuludq ymm29, ymm25, ymm26
vpmuludq ymm30, ymm27, ymm28
vpmuludq ymm15, ymm11, ymm12
vpmuludq ymm16, ymm13, ymm14
vpmuludq ymm23, ymm19, ymm17
vpaddd ymm31, ymm29, ymm30
vpaddd ymm17, ymm15, ymm16
vpaddq ymm2, ymm23, ymm24
vpsllq ymm19, ymm17, 0x20
vpcmpgtq ymm6, ymm5, ymm4
vblendvpd ymm7, ymm4, ymm5, ymm6
vpsllq ymm6, ymm31, 0x20
vmovups ymmword ptr [rsi+0x60], ymm7
vpaddq ymm7, ymm28, ymm26
vpcmpgtq ymm3, ymm2, ymm1
vpmuludq ymm5, ymm28, ymm26
vpmuludq ymm18, ymm14, ymm12
vblendvpd ymm4, ymm1, ymm2, ymm3
vpaddq ymm8, ymm5, ymm6
vpaddq ymm1, ymm18, ymm19
vmovups ymmword ptr [rsi+0xa0], ymm4
vpcmpgtq ymm9, ymm8, ymm7
vpcmpgtq ymm2, ymm1, ymm0
vblendvpd ymm10, ymm7, ymm8, ymm9
vblendvpd ymm3, ymm0, ymm1, ymm2
vmovups ymmword ptr [rsi+0xc0], ymm10
vmovups ymmword ptr [rsi+0xe0], ymm3
add rsi, 0x100
cmp r9d, r8d
jb loop

Baseline 1x Speedup: 3.1x

Example 17-23. QWORD Example, Intel® AVX2 vs. Intel® AVX-512 Assembly (Contd.)

Intel® AVX2 Assembly Intel® AVX-512 Assembly

Document #: 248966-050US 17-45

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.13.2 QUADWORD SUPPORT IN CONVERT INSTRUCTIONS
The following tables demonstrate the new quadword extension in convert instructions.

17.13.3 QUADWORD SUPPORT FOR CONVERT WITH TRUNCATION
INSTRUCTIONS

The following tables demonstrate the new quadword extension in convert with truncate instructions.

Table 17-5. Vector Quadword Extensions

From / To Vector SP Vector DP Vector int64 Vector uint64

Vector SP - vcvtps2qq vcvtps2uqq

Vector DP - vcvtpd2qq vcvtpd2qq

Vector int64 vcvtqq2ps vcvtqq2pd -

Vector uint64 vcvtqq2ps vcvtuqq2pd -

Table 17-6. Scalar Quadword Extensions

From / To Scalar SP Scalar DP Scalar int64 Scalar uint64

Scalar SP - - vcvtss2si vcvtss2usi

Scalar DP - - vcvtsd2si vcvtsd2usi

Scalar int64 vcvtsi2sd vcvtsi2sd - -

Scalar uint64 vcvtusi2sd vcvtusi2sd - -

Table 17-7. Vector Quadword Extensions

From / To Vector int64 Vector uint64

Vector SP vcvttps2qq vcvttps2uqq

Vector DP vcvttpd2qq vcvttpd2qq

Table 17-8. Scalar Quadword Extensions

From / To Scalar int64 Scalar uint64

Scalar SP vcvttss2si vcvttss2usi

Scalar DP vcvttsd2si vcvttsd2usi

Document #: 248966-050US 17-46

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.14 VECTOR LENGTH ORTHOGONALITY
All Intel AVX-512 instructions, in processors that support Vector Length Extensions (VL), can operate at three vector
lengths: 128-bit, 256-bit and 512-bit. All of these vector lengths are supported by all Intel AVX-512 instructions,
except instructions with Embedded Rounding.

In the instruction encoding, the same two bits are used for encoding vector length and embedded rounding control,
therefore when embedded rounding is used, the vector length is automatically assumed to be 512 bits (maximum
vector length in Intel AVX-512).

See also Section 17.10.

17.15 INTEL® AVX-512 INSTRUCTIONS FOR TRANSCENDENTAL
SUPPORT

This section lists and describes the new instructions introduced by Intel AVX-512 for transcendental support.

17.15.1 VRCP14, VRSQRT14 - SOFTWARE SEQUENCES FOR 1/X, X/Y, SQRT(X)
Syntax:

VRCP14PD/PS dest, src

VRSQRT14PD/PS dest, src

17.15.1.1 Application Examples
There are software sequences for Reciprocal, Division, Square Root, and Inverse Square Root instructions.

Software sequences for 1/x, x/y, sqrt(x) are beneficial for throughput (not so much for latency, unless the accuracy is
quite low). They are typically implemented via Newton-Raphson approximations, or polynomial approximations.

One advantage of VRCP14 and VRSQRT14 is the improved accuracy, compared with the legacy RCPPS, RSQRTPS. This
helps shorten the computation, in particular for double precision (which requires two instead of three Newton-
Raphson iterations for a 50-52 bit approximation).

Another advantage of these instructions is that they have double-precision versions (while the legacy RCP/RSQRT
instructions did not). This further boosts double-precision performance. On Skylake Server microarchitecture, double
precision reciprocal and square root software sequences have significantly better throughput than the VDIV and
VSQRT instructions in 512-bit vector mode Double Precision Transcendental Argument Reductions (e.g., log, cbrt).

In functions such as log() or the cube root (cbrt), a rounded VRCP14PD result can be used in place of an expensive
reciprocal table lookup. The same technique could be used before via RCPPS, but was less efficient for double-
precision.

See Section 17.15.3 for a log() argument reduction example.

Document #: 248966-050US 17-47

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.15.2 VGETMANT VGETEXP - VECTOR GET MANTISSA AND VECTOR GET
EXPONENT

Syntax:

VGETMANTPD/PS dest_mant, src, imm

VGETEXPPD/PS dest_exp, src

17.15.2.1 Application Examples
Logarithm Function

log2(x) = VGETEXP(x) + log2(VGETMANT(x,8))

log(x) = VGETEXP(x)*log(2.0) + log(VGETMANT(x,8))
As seen above, the computation is reduced to computing log(VGETMANT(x,8)), where VGETMANT(x,8) is guaranteed
to be in [1,2) for all valid function inputs, and NaN for invalid inputs (x<0).

A variety of algorithms can be applied to compute the logarithm of the mantissa. The selection of a particular
algorithm may depend on the desired accuracy, on optimization goals (latency or throughput optimized), or on
specifics of the microarchitecture. Some algorithms may use other normalization options for the mantissa: [0.5, 1) or
[0.75, 1.5); however, the basic identity underlying the computation is shown above.

See Section 17.15.5 for details on Xalpha (constant alpha) and division.

17.15.3 VRNDSCALE - VECTOR ROUND SCALE
Syntax:

VRNDSCALEPD/PS dest, src, imm

17.15.3.1 Application Examples
Lookup tables are frequently used in transcendental function implementations. The table index is most often based
on a few leading bits of the input. VRNDSCALE can be used as part of the argument reduction process, to form the
floating-point input value corresponding to the table index. The following example implements the argument
reduction for log(x), where 1  x < 2:

y = RCP14(x); // y is in (0.5, 1]

y0=RNDSCALE(y, k*16); // y0 has k mantissa bits (leading 1

 // included)

R = x?y0 - 1; // |R|<2-14+2-k.

Therefore log(x) = -log(y0) + log(1+R).

log(1+R)can be computed via a polynomial, and log(y0) can be retrieved from a lookup table of 2k-1+1 elements, or
2k-1 elements, at the expense of an additional check.

Document #: 248966-050US 17-48

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.15.4 VREDUCE - VECTOR REDUCE
Syntax:

VREDUCEPD/PS dest, src, imm

17.15.4.1 Application Examples
The most significant benefit of VREDUCE is latency reduction in common transcendental operations such as exp2 and
pow (which includes an exp2 operation). Uses in other transcendental functions such as atan() are also possible.

17.15.5 VSCALEF - VECTOR SCALE
Syntax:

VSCALEFPD/PS dest, src1, src2

17.15.5.1 Application Examples
exp2 (2x)

exp2(x) = VSCALEF(2VREDUCE(x, RD_mode), x)
R(x) = VREDUCE(x, RD_mode) = x - floor(x) is in [0, 1). 2R(x) is computed by other means, such as polynomial
approximation, or table lookup with polynomial approximation. VSCALEF correctly handles overflow and underflow.
It is also defined to handle exp() special cases correctly (such as when the input is an Infinity), so there is no need for
special paths in a vector implementation. In the absence of VSCALEF, inputs that are very large in magnitude require
a separate path.

Since explicit exponent manipulation is no longer needed, VSCALEF also helps improve throughput.

Exp(x)

Exp(x) = VSCALEF(2R(x), x*(1/log(2.0)),
where,

R(x) = x - log(2.0)*floor(x*(1/log(2.0));
R(x) is accurately computed by using a sufficiently long log(2.0) approximation (longer than the native floating-point
format).

As with exp2(), the advantages of using VSCALEF are better throughput and elimination of secondary branches.

xalpha (constant alpha)
For example, alpha=1/3 (the cube root function, cbrt).

The basic reduction for this computation is:

xalpha = VSCALEF((VGETMANT(x, imm))alpha?2VREDUCE (VGETEXP(x)*alpha, RD_mode),
VGETEXP(x)*alpha)

selecting the immediate (imm) is based on the value of the alpha constant.

Division:

a/b = VSCALEF(VGETMANT(a,0)/VGETMANT(b,0), VGETEXP(a)-VGETEXP(b))

Document #: 248966-050US 17-49

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

This reduction allows for a branch-free implementation of divide, that covers overflow, underflow, and special inputs
(zeroes, Infinities, or denormals).

|VGETMANT(x,0)| is in [1,2) for all non-NaN inputs.

VGETMANT(a,0)/VGETMANT(b,0) can be computed to the desired accuracy.
The suppress-all-exceptions (SAE) feature available in Intel AVX-512 can help ensure spurious flag settings do not
occur. Flags can be set correctly as part of the computation (except for divide-by-zero, which requires an additional
step).

For high accuracy or IEEE compliance, the hardware instruction typically provides better performance, especially in
terms of latency.

17.15.6 VFPCLASS - VECTOR FLOATING POINT CLASS
Syntax:

VFPCLASSPD/PS dest_mask, src, imm

17.15.6.1 Application Examples
The VFPCLASS instruction is used to detect special cases so they can be directed to a special path, or alternatively,
handled with masked operations in the main path. See two examples below.

Reciprocal Sequence, Square Root Sequence:

• The reduced argument for the 1/x computation is e=1-x*RCP14(x).

— This expression evaluates to NaN when x is ±0 or ±Inf, as RCP14 returns the correct result for these special
cases.

— VFPCLASS enables you to set mask=1 for x=±0 or ±Inf, and mask=0 for all other x.

• This mask can then be used to select between the RCP14 output (result for special cases), or the result
of a reciprocal refinement computation starting with RCP14 (for typical inputs).

• In a similar manner, a square root computation based on RSQRT14 can use the VFPCLASS instruction to create a
mask for =±0 or x=+Inf.

Pow(x,y) function:

• The main path of pow(x,y)=2y*log2(x) does not operate on x?0, x=Inf/NaN, or y=Inf/NaN.

• One VFPCLASS op can be used to set special_x_mask=1 for x?0 or x=Inf/NaN.

• A second VFPCLASS op would be used to set special_y_mask=1 for y=Inf/NaN.

• A branch to a secondary path is taken if either mask is set.

17.15.7 VPERM, VPERMI2, VPERMT2 - SMALL TABLE LOOKUP
IMPLEMENTATION

17.15.7.1 Application Examples
Math library functions are frequently implemented using table lookups. In vector mode, large table lookups would
use vector gather. Small table lookups can be implemented via the VPERM* instructions, which are significantly faster.

Examples of common transcendental functions that achieved very significant speedup using VPERM* for table
lookups: exp(), log(), pow() - both single and double precision.

Document #: 248966-050US 17-50

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.16 CONFLICT DETECTION
The Intel AVX-512 Conflict Detection instructions are instructions that, together with Intel AVX-512 Foundation
instructions, enable efficient vectorization of loops with possible vector dependencies (i.e., conflicts) through
memory. VPCONFLICT performs horizontal comparisons of elements within a single vector register. VPCONFLICT
compares each element of a vector register with all previous elements in that register, and outputs the results of all of
the comparisons. These horizontal comparisons can be used for other purposes.

Other conflict detection instructions allow for efficient manipulation of the comparison results. The VPLZCNT
instruction lets us generate controls for in-register permute operations used to combine vector elements with
matching values.

17.16.1 VECTORIZATION WITH CONFLICT DETECTION
The Intel AVX-512CD instructions allow efficient vectorization of loops with reads and writes through an array of
pointers

For example:

*ptr[i] += val[i]) or an indirectly addressed array (e.g., A[B[i]] += val[i]).
Consider the following histogram computation:

for(int i = 0; i < num_inputs; i++)
{

histogram[input[i] & (num_bins - 1)]++;

}

If input[0] = input[1] = 3, we will get an incorrect answer if we use SIMD instructions to read histogram[input[0]] and
histogram[input[1]] into a register (with a gather), increment them, and then write them back (with a scatter). After
this sequence, the value in histogram[3] will be 1, when it should be 2.

The problem occurs because we have duplicate indices; this creates a dependence between the write to the
histogram in iteration 0 and the read from the histogram in iteration 1 - the read should get the value of the previous
write.

To detect this scenario, look for duplicate indices (or pointer values), using the VPCONFLICT instruction. This
instruction compares each element of a vector register with all previous elements in that register.

Example:

vpconflictd zmm0, zmm1
The figure below is an example that shows the execution of a VPCONFLICTD instruction. The input, ZMM1, contains
16 integers, shown in the light grey boxes. ZMM1 is at the top of the figure, and also visually transposed along the left-
hand side of the figure. The white boxes show the equality comparisons that the hardware performs between
different elements of ZMM1, and the outcome of each comparison (0 = not equal, 1 = equal). Each comparison output
is a single bit in the output of the instruction. Comparisons that are not performed (i.e., the dark grey boxes) produce
a single '0' bit in the output. Finally, the output register, ZMM0, is shown at the bottom of the figure. Each element is
shown as a decimal representation of the bits above it.

Use VPCONFLICT in different ways to help vectorize loops.

The simplest option is to check for any duplicate indices in a given SIMD register. If there are none, SIMD instructions
can be used to compute all elements simultaneously. If conflicts are present, execute a scalar loop for that group of
elements.

Document #: 248966-050US 17-51

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Branching to a scalar version of the loop on any duplicate indices can work well if duplicates are extremely rare.
However, if the chance of getting even one duplicate in a given iteration of the vectorized loop is large enough, then
it is better to use SIMD as much as possible, to exploit as much parallelism as possible.

For loops performing updates to memory locations, such as in the histogram example, minimize store-load
forwarding by merging the updates to each distinct index while the data is in registers, and only perform a single write
to each memory location. Further, the merge can be performed in a parallel fashion.

Figure 17-13. VPCONFLICTD Instruction Execution

Figure 17-14. VPCONFLICTD Merging Process

5

0

0

0

1

0

0

0

0

8

0

0

0

0

0

2

0

0

0

0

0

0

50

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

0

7

0

0

0

0

0

0

0

0

0

0

6

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

0

0

0

0

0

0

0

0

0

9

0

1

0

0

0

1

0

0

0

0

0

0

0

3

5 00000

3 001

50 000

6 00

4 00

3 01

10 0

3

3

1

8

2

1

0

7

9

3

10

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

33010

0020000800000608198

… 63 32 31 0 bitsZMM1

ZMM1

ZMM0

… 63 32 31 0 bits

…

63

32

31

0
bits

… 63 32 31 0 bitsZMM1

533182501076493103

Step 1

Step 2

Document #: 248966-050US 17-52

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The figure above shows the merging process for the example set of indices. While the figure shows only the indices, it
actually merges the values. Most of the indices are unique, and thus require no merging. Step 1 combines three pairs
of indices: two pairs of '3's and one pair of '1's. Step 2 combines the intermediate results for the '3's from step 1, so
that there is now a single value for each distinct index. Notice that in only two steps, the four elements with an index
value of 3 are merged, because we performed a tree reduction; we merged pairs of results or intermediate results at
each step.

The merging (combining or reduction) process shown above is done with a set of permute operations. The initial
permute control is generated with a VPLZCNT+VPSUB sequence. VPLZCNT provides the number of leading zeros for
each vector element (i.e., contiguous zeros in the most significant bit positions). Subtracting the results of VPLZCNT
from the number of bits in each vector element, minus one, provides the bit position of the most significant '1' bit in
the result of the VPCONFLICT instruction, or results in a '-1' for an element if it has no conflicts. In the example above
this sequence results in the following permute control.

The permute loop for merging matching indices and generating the next set of permute indices repeats until all values
in the permute control become equal to ‘-1’.

The assembly code below shows both the scalar version of a histogram loop, and the vectorized version with a tree
reduction. Speedups are modest because the loop contains little computation; the SIMD benefit comes almost
entirely from vectorizing just the logical AND operation and the increment. SIMD speedups can be much higher for
loops containing more vectorizable computation.

Figure 17-15. VPCONFLICTD Permute Control

13 -1 -2 -1 -1 -1 -1 -1 -3 -1 -1 -1 -1 -1 -1 -1

Document #: 248966-050US 17-53

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Notice that the end result of the conflict loop (i.e., the resulting vector after all merging is done, ZMM2 in the above
sequence) holds the complete set of partial sums. That is, for each element, the result contains the value of that
element merged with all earlier elements with the same index value. Using the earlier example values, ZMM2
contains the result shown in Figure 17-16.

Example 17-24. Scatter Implementation Alternatives

Scalar Code (Unrolled Two Times) Intel® AVX-512 Code

mov r9d, bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rax, rax

histogram_loop:
lea ecx, [rax + rax]
inc eax
movsxd rcx, ecx
mov esi, [r10+rcx*4]
and esi, r9d
mov r8d, [r10+rcx*4+4]
movsxd rsi, esi
and r8d, r9d
movsxd r8, r8d
inc dword ptr [r15+rsi*4]
inc dword ptr [r15+r8*4]
cmp eax, ebx
jb histogram_loop

vmovaps zmm4, all_1 // {1, 1, …, 1}
vmovaps zmm5, all_negative_1
vmovaps zmm6, all_31
vmovaps zmm7, all_bins_minus_1
mov ebx, num_inputs
mov r10, pInput
mov r15, pHistogram
xor rcx, rcx

histogram_loop:
vpandd zmm3, zmm7, [r10+rcx*4]
vpconflictd zmm0, zmm3
kxnorw k1, k1, k1
vmovaps zmm2, zmm4
vpxord zmm1, zmm1, zmm1
vpgatherdd zmm1{k1}, [r15+zmm3*4]
vptestmd k1, zmm0, zmm0
kortestw k1, k1
je update

vplzcntd zmm0, zmm0
vpsubd zmm0, zmm6, zmm0

conflict_loop:
vpermd zmm8{k1}{z}, zmm0, zmm2
vpermd zmm0{k1}, zmm0, zmm0
vpaddd zmm2{k1}, zmm2, zmm8
vpcmpned k1, zmm5, zmm0
kortestw k1, k1
jne conflict_loop

update:
vpaddd zmm0, zmm2, zmm1
kxnorw k1, k1, k1
add rcx, 16
vpscatterdd [r15+zmm3*4]{k1}, zmm0
cmp ecx, ebx
jb histogram_loop

Scalar, Baseline, 1x Speedup: 1.11x (random inputs); 1.34x (input values
identical)

Document #: 248966-050US 17-54

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

While the above sequence does not take advantage of this, other use cases might.

17.16.2 SPARSE DOT PRODUCT WITH VPCONFLICT
A sparse vector may be stored as a pair of arrays: one containing non-zero values, and one containing the original
locations of those values in the vector. Note that the indices are sorted in increasing order.

To perform a dot product of two sparse vectors efficiently, we need to find elements with matching indices; those are
the only ones on which we should perform the multiply and accumulation. The scalar method for doing this is to start
at the beginning of the two index arrays, compare those indices, and if there is a match, do the multiply and
accumulate, then advance the indices of both vectors. If there is no match, we advance the index of the lagging vector.

A_offset = 0; B_offset = 0; sum = 0;

while ((A_offset < A_length) && (B_offset < B_length))
{

if (A_index[A_offset] == B_index[B_offset]) // match

{

sum += A_value[A_offset] * B_value[B_offset];

A_offset++;

B_offset++;

}

Figure 17-16. VPCONFLICTD ZMM2 Result

Figure 17-17. Sparse Vector Example

4 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1

SOM00017

A_index87 41 32 15 10 4 3 0

A_value1.0 5.0 -2.0 8.0 0.1 3.5 3.1 5.0

… 127 64 63 0 bits

… 63 32 31 0 bits

Document #: 248966-050US 17-55

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

else if (A_index[A_offset] < B_index[B_offset])

{

A_offset++;

}

else

{

B_offset++;

}

}

The Intel AVX-512CD instructions provide an efficient way to vectorize this loop. Instead of comparing one index from
each vector at a time, we can compare eight of them. First we combine eight indices from each vector into a single
vector register. Then, the VPCONFLICT instruction compares the indices. We use the output to create a mask of
elements in vector A that have a match, and also to create permute controls to move the corresponding values of B to
the same location, so that we can use a vector FMA instruction.

Example 17-25 shows the assembly code for both the scalar and vector versions of a single comparison and FMA. For
brevity, the offset updates and looping are omitted.

Example 17-25. Scalar vs. Vector Update Using AVX-512CD

Scalar Code Intel® AVX-512 Code

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value

mov r10d, [rdx+rcx*4]
mov r11d, [r12+r13*4]
cmp r10d, r11d
jne skip_fma

// do the fma on a match
movsd xmm5, [rbx+r13*8]
mulsd xmm5, [rax+rcx*8]
addsd xmm4, xmm5

skip_fma:

mov rdx, A_index
mov rcx, A_offset
mov rax, A_value
mov r12, B_index
mov r13, B_offset
mov rbx, B_value
mov r14, all_31s // array of {31, 31, …}
vmovaps zmm2, [r14]
mov r15, upconvert_control // array of {0, 7, 0, 6, 0, 5,

0, 4, 0, 3, 0, 2, 0, 1, 0, 0}
vmovaps zmm1, [r15]
vpternlogd zmm0, zmm0, zmm0, 255
movl esi, 21845
kmovw k1, esi // odd bits set

/ read 8 indices for A
vmovdqu ymm5, [rdx+rcx*4]
// read 8 indices for B, and put

// them in the high part of zmm6
vinserti64x4 zmm6, zmm5, [r12+r13*4], 1
vpconflictd zmm7, zmm6
// extract A vs. B comparisons

//vextracti64x4 ymm8, zmm7, 1
// convert comparison results to

Document #: 248966-050US 17-56

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.17 INTEL® AVX-512 VECTOR BYTE MANIPULATION INSTRUCTIONS
(VBMI)

Intel® AVX-512 VBMI instructions are a set of 512-bit instructions that are designed to speed up bit manipulation
operations. The following sections describe the new instructions and show simple usage examples.

See Chapter 15, “Programming with Intel® AVX-512” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1 for complete instruction definitions.

Processors that provide VBMI1 and VBMI2 are enumerated by the CPUID feature flags CPUID:(EAX=07H,
ECX=0):ECX[bit 01] = 1 and CPUID:(EAX=07H, ECX=0):ECX[bit 06] = 1, respectively.

17.17.1 PERMUTE PACKET BYTES ELEMENTS ACROSS LANES (VPERMB)
The VPERMB instruction is a single source, any-to-any byte permute instruction. The following figure shows a
VPERMB instruction operation example.

// permute control
vplzcntd zmm9, zmm8
vptestmd k2, zmm8, zmm0
vpsubd zmm10, zmm2, zmm9
// upconvert permute controls from
// 32b to 64b, since data is 64b
vpermd zmm11{k1}, zmm1, zmm10
// Move A values to corresponding
// B values, and do FMA
vpermpd zmm12{k2}{z}, zmm11, [rax+rcx*8]
vfmadd231pd zmm4, zmm12, [rbx+r13*8]

Baseline, 1x Speedup, 4.4x

Figure 17-18. VPERMB Instruction Operation

Example 17-25. Scalar vs. Vector Update Using AVX-512CD (Contd.)

Scalar Code Intel® AVX-512 Code

A0 A1 A2 A3 A4 ... A63zmm2 src2:

0 4 1 3 63 ... 4zmm1 src1:

A0 A4 A1 A3 A63 ... A4zmm0 dst:

VPERMB zmm0, zmm1, zmm2

Document #: 248966-050US 17-57

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

VPERMB Operation:

// vpermb zmm Dst {k1}, zmm Src1, zmm Src2

bool zero_masking=false;

unsigned char *Dst, *Src1, *Src2;

for(int i=0;i<64;i++){

if(k1[i]){

Dst[i]= Src2[Src1[i]];

}else{

Dst[i]= zero_masking? 0 : Dst[i];

}

}
The following example shows a 64-byte lookup table implementation.

Scalar code:

void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int
numOfElements){

 for(int i = 0; i < numOfElements; i++) {

 out_bytes[i] = dictionary_bytes[in_bytes[i] & 63];

 }

}

Example 17-26. Improvement with VPERMB Implementation

Alternative 1: Vector Implementation Without
VBMI Alternative 2: VPERMB Implementation

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vpmovzxbw zmm3, [rsi]
vpmovzxbw zmm4, [rsi+32]

loop:
vpmovzxbw zmm1, [r11+r8*1]
vpmovzxbw zmm2, [r11+r8*1+32]
vpermi2w zmm1, zmm3, zmm4
vpermi2w zmm2, zmm3, zmm4
vpmovwb [rax+r8*1], zmm1
vpmovwb [rax+r8*1+32], zmm2
add r8, 64
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]

loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermb zmm1, zmm1, zmm2
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 6.5x

Document #: 248966-050US 17-58

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.17.2 TWO-SOURCE BYTE PERMUTE ACROSS LANES (VPERMI2B, VPERMT2B)
The VPERMI2B and VPERMT2B instructions are two-source byte, permute instructions. The destination is also an
operation source; in VPERMI2B the destination is the operation index, and in VPERMT2B the destination is one of the
data sources.

The Figure 17-19 shows a VPERMI2B instruction operation example.

VPERMI2B Operation:

/// vpermi2b Dst{k1}, Src1, Src2

bool zero_masking=false;

unsigned char *Dst, *Src1, *Src2;

for(int i=0;i<64;i++){

if(k1[i]){

Dst[i]= Dst [i]>63 ? Src1[Dst [i] & 63] : Src2[Dst [i] & 63] ;

}else{

Dst[i]= zero_masking? 0 : Dst[i];

}

}

Figure 17-19. VPERMI2B Instruction Operation

B0 B1 B2 B3 B4 ... B63zmm2 src2:

0 2 65 4 68 ... 63zmm0 (index and source):

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

Document #: 248966-050US 17-59

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following figure shows a VPERMT2B instruction operation example.

VPERMT2B Operation:

// vpermt2b Dst{k1}, Src1, Src2

bool zero_masking=false;

unsigned char *Dst, *Src1, * Src2;

data2= copy(Dst);

for(int i=0;i<64;i++){

if(k1[i]){

Dst[i]= Src2[i]>63 ? Src1[Src2 [i] & 63] : Dst[Src2[i] & 63] ;

}else{

Dst[i]= zero_masking? 0 : Dst[i];

}

}

The following example shows a 128-byte lookup table implementation.

Figure 17-20. VPERMT2B Instruction Operation

B0 B1 B2 B3 B4 ... B63
zmm0

data source:

0 2 65 4 68 ... 63zmm2 src2:

A0 A2 B1 A4 B4 ... A63zmm0 (dst):

 64 65 66 67 68 … 127

A0 A1 A2 A3 A4 ... A63zmm1 src1:

Index: 0 1 2 3 4 … 63

Document #: 248966-050US 17-60

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

C Code:

void lookup(unsigned char* in_bytes, unsigned char* out_bytes, unsigned char* dictionary_bytes, int
numOfElements){

for(int i = 0; i < numOfElements; i++) {

out_bytes[i] = dictionary_bytes[in_bytes[i] & 127];

}

}

Example 17-27. Improvement with VPERMI2B Implementation

Alternative 1: Vector Implementation Without
VBMI Alternative 2: VPERMI2B Implementation

//get data sent to function
mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
//Reorganize dictionary
vpmovzxbw zmm10, [rsi]
vpmovzxbw zmm15, [rsi+64]
vpsllw zmm15, zmm15, 8
vpord zmm10, zmm15, zmm10
vpmovzxbw zmm11, [rsi+32]
vpmovzxbw zmm15, [rsi+96]
vpsllw zmm15, zmm15, 8
vpord zmm11, zmm15, zmm11
//initialize constants
mov r10, 0x00400040
vpbroadcastw zmm12, r10d
mov r10, 0
vpbroadcastd zmm13, r10d
mov r10, 0x00ff00ff
vpbroadcastd zmm14, r10d
//start iterations
loop:
vpmovzxbw zmm1, [r11+r8*1]
vpandd zmm2, zmm1, zmm12
vpcmpw k1, zmm2, zmm13, 4
vpermi2w zmm1, zmm10, zmm11
vpsrlw zmm1{k1}, zmm1, 8
vpandd zmm1, zmm1, zmm14
vpmovwb [rax+r8*1], zmm1
add r8, 32
cmp r8, r9
jl loop

mov rsi, dictionary_bytes
mov r11, in_bytes
mov rax, out_bytes
mov r9d, numOfElements
xor r8, r8
vmovdqu32 zmm2, [rsi]
vmovdqu32 zmm3, [rsi+64]
loop:
vmovdqu32 zmm1, [r11+r8*1]
vpermi2b zmm1, zmm2, zmm3
vmovdqu32 [rax+r8*1], zmm1
add r8, 64
cmp r8, r9
jl loop

Base Measurement: 1x Speedup: 5.3x

Document #: 248966-050US 17-61

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.17.3 SELECT PACKED UNALIGNED BYTES FROM QUADWORD SOURCES
(VPMULTISHIFTQB)

The VPMULTISHIFTQB instruction selects eight unaligned bytes from each input qword element of the second source
operand and writes eight assembled bytes for each qword element in the destination operand.

The following figure shows a VPMULTISHIFTQB instruction operation example.

VPMULTISHIFTQB Operation:

// vpmultishiftqb Dst{k1},Src1,Src2

bool zero_masking=false;

unsigned char *Dst, * Src1;

unsigned __int64 *Src2;

bit * k1;

for(int i=0;i<8;i++){

for(int j=0;j<8;j++){

if(k1[i*8 +j]){

Dst[i*8 +j]= (src2[i]>> Src1[i*8 +j]) &0xFF ;

}else{

Dst[i*8 +j]= zero_masking? 0 : Dst[i*8 +j];

}

}

}

The following example converts a 5-bit unsigned integer array to a 1-byte unsigned integer array.

Figure 17-21. VPMULTISHIFTQB Instruction Operation

zmm2 src2:

zmm1 src1:

0 1 2 3 4 5 6 7 8 9 10 11 ... 63 ...

A1-8

12 13 14 15

A8-15

0 1 2 3 4 5 6 7 8 9 10 11 ... 6312 13 14 15

1 8 ...

Index: 0 Index: 1

7 2 ...

B7-14A8-15 B2-9

Index: 8 Index: 9

A1-8 A8-15 ... B2-9 B7-14 ...zmm0 dst:

qword1 qword2 ...

0 1 2 3 4 5 6 7 8 9 10 11 ... 63

H0-7

12 13 14 15

H9-16

qword8

...

... 0 9... ...

H0-7 H9-16

Document #: 248966-050US 17-62

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

C code:

void decompress (unsigned char* compressedData, unsigned char* decompressedData, int
numOfElements){

for(int i = 0; i < numOfElements; i += 8){

unsigned __int64 * data = (unsigned __int64 *)compressedData;

decompressedData[i+0] = * data & 0x1f;

decompressedData[i+1] = (*data >> 5) & 0x1f;

decompressedData[i+2] = (*data >> 10) & 0x1f;

decompressedData[i+3] = (*data >> 15) & 0x1f;

decompressedData[i+4] = (*data >> 20) & 0x1f;

decompressedData[i+5] = (*data >> 25) & 0x1f;

decompressedData[i+6] = (*data >> 30) & 0x1f;

decompressedData[i+7] = (*data >> 35) & 0x1f;

compressedData += 5;

}

}

Document #: 248966-050US 17-63

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-28. Improvement with VPMULTISHIFTQB Implementation

Alternative 1: Vector Implementation Without
VBMI Alternative 2: VPMULTISHIFTQB Implementation

mov rdx, compressedData
mov r9, decompressedData
mov eax, numOfElements
shr eax,3
xor rsi, rsi
loop:
mov rcx, qword ptr [rdx]
mov r10, rcx
and r10, 0x1f
mov r11, rcx
mov byte ptr [r9+rsi*8], r10b
mov r10, rcx
shr r10, 0xa
add rdx, 0x5
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x2], r10b
mov r10, rcx
shr r10, 0xf
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x3], r10b
mov r10, rcx
shr r10, 0x14
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x4], r10b
mov r10, rcx
shr r10, 0x19
and r10, 0x1f
mov byte ptr [r9+rsi*8+0x5], r10b
mov r10, rcx
shr r11, 0x5
shr r10, 0x1e
and r11, 0x1f

//constants :
__declspec (align(64)) const unsigned __int8
permute_ctrl[64] = {

0, 1, 2, 3, 4, 0, 0, 0
5, 6, 7, 8, 9, 0, 0, 0
10, 11, 12, 13, 14, 0, 0, 0
15, 16, 17, 18, 19, 0, 0, 0
20, 21, 22, 23, 24, 0, 0, 0
25, 26, 27, 28, 29, 0, 0, 0
30, 31, 32, 33, 34, 0, 0, 0
35, 36, 37, 38, 39, 0, 0, 0

};
__declspec (align(64)) const unsigned __int8
multishift_ctrl[64] = {

0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35
0, 5, 10, 15, 20, 25, 30, 35

};
//asm:
mov rsi, compressedData
mov rdi, decompressedData
mov r8d, numOfElements
lea r8, [rdi+r8]
mov r9, 0x1F1F1F1F
vpbroadcastd zmm12, r9d
vmovdqu32 zmm10, permute_ctrl
vmovdqu32 zmm11, multishift_ctrl

shr rcx, 0x23
and r10, 0x1f
and rcx, 0x1f
mov byte ptr [r9+rsi*8+0x1], r11b
mov byte ptr [r9+rsi*8+0x6], r10b
mov byte ptr [r9+rsi*8+0x7], cl
inc rsi
cmp rsi, rax
jb loop

loop:
vmovdqu32 zmm1, [rsi]
vpermb zmm2, zmm10, zmm1
vpmultishiftqb zmm2, zmm11, zmm2
vpandq zmm2, zmm12, zmm2
vmovdqu32 [rdi], zmm2
add rdi, 64
add rsi, 40
cmp rdi, r8
jl loop

Base Measurement: 1x Speedup: 26x

Document #: 248966-050US 17-64

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.18 FMA LATENCY
When executing in 512-bit register port scheme, Port 0 FMA has a latency of four cycles, and Port 5 FMA has a latency
of six cycles. Bypass can have a -2 (fast bypass) to +1 cycle delay. Therefore, instructions that execute on the Skylake
microarchitecture FMA have a latency of four to seven cycles.

The instructions are divided into the following two groups.

• Group A Instructions: vadd*; vfmadd*; vfnmsub*; vfnmadd*; vfnmsub*; vmax*; vmin*; vmul*; vscalef*; vsub*;
vcvt*; vgetexp*; vfixupimm*; vrange*; vgetmant*; vreduce*; vcmp*, vcomi*, vdpp*, vhadd*, vhsub*,
vrndscale*, vround*

• Group B Instructions: vpmaddubsw; vpmaddwd; vpmuldq; vpmulhrsw; vpmulhuw; vpmulhw; vpmullw;
vpmuludq

The FMA unit supports fast bypass when all instruction sources come from the FMA unit. In this case Group A has a
latency of four cycles for both ports 0 and 5, and Group B has a latency of five cycles for both ports 0 and 5.

The figure below explains fast bypass when all sources come from the FMA unit.

The gray boxes represent compute cycles. The white boxes represent data transfer for the port5 FMA unit.

If fast bypass is not used, that is, when not all sources come from the FMA unit, group A instructions have a latency of
four cycles on Port0 and six cycles on port5, while group B instructions have an additional cycle and hence have a
latency of five cycles on Port0 and seven cycles on port5.

Figure 17-22. Fast Bypass When All Sources Come from FMA Unit

1 2 3 4

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4

FMA port0

FMA port5

FMA port5

FMA port5

FMA port5

FMA port0

Document #: 248966-050US 17-65

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following table summarizes the FMA unit latency for the various options.

17.19 MIXING INTEL® AVX OR INTEL® AVX-512 EXTENSIONS WITH
INTEL® STREAMING SIMD EXTENSIONS (INTEL® SSE) CODE

There are two main instruction groups that affect the processor states:

• Group A: Instruction types that either set bits 128-511 of vector registers 0-15 to zero, or do not modify them at
all.

— Intel SSE instructions.

— 128-bit Intel AVX instructions, 128-bit Intel AVX-512 instructions.

— 256-bit (ymm16-ymm31) Intel AVX-512 instructions.

— 512-bit (zmm16-zmm31) Intel AVX-512 instructions.

— AVX-512 instructions that write to mask registers k0-k7.

— GPR instructions.

• Group B: Instructions types that modify bits 128-511 of vector registers 0-15.

— 256-bit (ymm0-ymm15) Intel AVX instructions, Intel AVX-512 instructions.

— 512-bit (zmm0-zmm15) Intel AVX-512 instructions.

The following figure illustrates Skylake Server microarchitecture's model for mixing Intel AVX instructions or Intel AVX-
512 instructions with Intel SSE instructions.

The implementation is similar to Skylake client microarchitecture, where every Intel SSE instruction executed in Dirty
Upper State (2) needs to preserve bits 128-511 of the destination register, and therefore the operation has an
additional dependency on the destination register and a blend operation with bits 128-511.

Table 17-9. FMA Unit Latency

Fast Bypass (FMA Data Reuse) No Fast Bypass (No FMA Data Reuse)

Instruction Group Port 0 Port 5 Port 0 Port 5

Group A 4 4 4 6

Group B 5 5 5 7

Document #: 248966-050US 17-66

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Recommendations:

• When mixing group B instructions with Intel SSE instructions, or suspecting that such a mixture might occur, use
the VZEROUPPER instruction whenever a transition is expected.

• Add VZEROUPPER after group B instructions were executed and before any function call that might lead to an
Intel SSE instruction execution.

• Add VZEROUPPER at the end of any function that uses group B instructions.

• Add VZEROUPPER before thread creation if not already in a clean state so that the thread does not inherit a Dirty
Upper State.

17.20 MIXING ZMM VECTOR CODE WITH XMM/YMM
Skylake microarchitecture has two port schemes, one for using 256-bit or less registers, and another for using 512-bit
registers.

When using registers up to or including 256 bits, FMA operations dispatch to ports 0 and 1 and SIMD operations
dispatch to ports 0, 1 and 5. When using 512-bit register operations, both FMA and SIMD operations dispatch to ports
0 and 5.

The maximum register width in the reservation station (RS) determines the 256 or 512 port scheme.

Notice that when using AVX-512 encoded instructions with YMM registers, the instructions are considered to be 256-
bit wide.

Figure 17-23. Mixing Intel AVX Instructions or Intel AVX-512 Instructions with Intel SSE Instructions

Document #: 248966-050US 17-67

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The result of the 512-bit port scheme is that XMM or YMM code dispatches to two ports (0 and 5) instead of three
ports (0, 1, and 5) and may have lower throughput and longer latency compared to the 256-bit port scheme.

In the 256-bit code only example, the FMAs are dispatched to ports 0 and 1, and permd is dispatched to port 5 as the
broadcast instruction is 256 bits wide. In the 256-bit and 512-bit mixed code example, the broadcast is 512 bits wide;
therefore, the processor uses the 512-bit port scheme where the FMAs dispatch to ports 0 and 5 and permd to port 5,
thus increasing the pressure on port 5.

17.21 SERVERS WITH A SINGLE FMA UNIT
Some processors based on Skylake microarchitecture have two Intel AVX-512 FMA units, on ports 0 and 5, while other
processors based on Skylake microarchitecture have a single Intel AVX-512 FMA unit, which is located on port 0.

Code that is optimized to run on a processor with two FMA units might not be optimal when run on a processor with
one FMA unit.

The following example code shows how to detect whether a system has one or two Intel AVX-512 FMA units. It
includes the following:

• An Intel AVX-512 warmup.

• A function that executes only FMA instructions.

• A function that executes both FMA and shuffle instructions.

• Code that, based on the results of these two tests, identifies whether the processor has one or two FMA units.

Example 17-29. 256-bit Code vs. 256-bit Code Mixed with 512-bit Code

256-bit Code Only 256-bit Code Mixed with 512-bit Code

Loop:
vpbroadcastd ymm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Loop:
vpbroadcastd zmm0, dword ptr [rsp]
vfmadd213ps ymm7, ymm7, ymm7
vfmadd213ps ymm8, ymm8, ymm8
vfmadd213ps ymm9, ymm9, ymm9
vfmadd213ps ymm10, ymm10, ymm10
vfmadd213ps ymm11, ymm11, ymm11
vfmadd213ps ymm12, ymm12, ymm12
vfmadd213ps ymm13, ymm13, ymm13
vfmadd213ps ymm14, ymm14, ymm14
vfmadd213ps ymm15, ymm15, ymm15
vfmadd213ps ymm16, ymm16, ymm16
vfmadd213ps ymm17, ymm17, ymm17
vfmadd213ps ymm18, ymm18, ymm18
vpermd ymm1, ymm1, ymm1
vpermd ymm2, ymm2, ymm2
vpermd ymm3, ymm3, ymm3
vpermd ymm4, ymm4, ymm4
vpermd ymm5, ymm5, ymm5
vpermd ymm6, ymm6, ymm6
dec rdx
jnle Loop

Baseline 1x Slowdown: 1.3x

Document #: 248966-050US 17-68

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Notice that each test is executed three times to improve test accuracy.

To reduce the program overhead, it is highly recommended not to execute this test in every function call, but as part
of installation, or once at startup.

The differentiation between the two processors is based on the ratio between the two throughput tests. Processors
with two FMA units are able to run the FMA-only test twice as fast as the FMA and shuffle test. However, a processor
with one FMA unit will run both tests at the same speed.

Example 17-30. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture
#include <string.h>
#include <stdlib.h>
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>

static uint64_t rdtsc(void) {
 unsigned int ax, dx;

 __asm__ __volatile__ ("rdtsc" : "=a"(ax), "=d"(dx));

 return ((((uint64_t)dx) << 32) | ax);
}

uint64_t fma_shuffle_tpt(uint64_t loop_cnt){
uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};
__declspec(align(64)) int shuf_vec[16] = {0, 1, 2, 3,4, 5, 6, 7,8, 9, 10, 11,12, 13, 14, 15};
 __asm

 {
vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]
vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]

vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
vmovups zmm12, [shuf_vec]
vmovups zmm13, [shuf_vec]
vmovups zmm14, [shuf_vec]
vmovups zmm15, [shuf_vec]
vmovups zmm16, [shuf_vec]
vmovups zmm17, [shuf_vec]
vmovups zmm18, [shuf_vec]
vmovups zmm19, [shuf_vec]
vmovups zmm20, [shuf_vec]
vmovups zmm21, [shuf_vec]

Document #: 248966-050US 17-69

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

vmovups zmm22, [shuf_vec]
vmovups zmm23, [shuf_vec]
vmovups zmm30, [shuf_vec]
mov rdx, loops

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3
vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
vpermd zmm12, zmm30, zmm30
vpermd zmm13, zmm30, zmm30
vpermd zmm14, zmm30, zmm30
vpermd zmm15, zmm30, zmm30
vpermd zmm16, zmm30, zmm30
vpermd zmm17, zmm30, zmm30
vpermd zmm18, zmm30, zmm30
vpermd zmm19, zmm30, zmm30
vpermd zmm20, zmm30, zmm30
vpermd zmm21, zmm30, zmm30
vpermd zmm22, zmm30, zmm30
vpermd zmm23, zmm30, zmm30
dec rdx
jg loop1

 }
}
uint64_t fma_only_tpt(int loop_cnt){

uint64_t loops = loop_cnt;
__declspec(align(64)) double one_vec[8] = {1, 1, 1, 1,1, 1, 1, 1};

 __asm
 {

vmovups zmm0, [one_vec]
vmovups zmm1, [one_vec]
vmovups zmm2, [one_vec]
vmovups zmm3, [one_vec]
vmovups zmm4, [one_vec]
vmovups zmm5, [one_vec]
vmovups zmm6, [one_vec]
vmovups zmm7, [one_vec]
vmovups zmm8, [one_vec]
vmovups zmm9, [one_vec]
vmovups zmm10, [one_vec]
vmovups zmm11, [one_vec]
mov rdx, loops

Example 17-30. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture

Document #: 248966-050US 17-70

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

loop1:
vfmadd231pd zmm0, zmm0, zmm0
vfmadd231pd zmm1, zmm1, zmm1
vfmadd231pd zmm2, zmm2, zmm2
vfmadd231pd zmm3, zmm3, zmm3

vfmadd231pd zmm4, zmm4, zmm4
vfmadd231pd zmm5, zmm5, zmm5
vfmadd231pd zmm6, zmm6, zmm6
vfmadd231pd zmm7, zmm7, zmm7
vfmadd231pd zmm8, zmm8, zmm8
vfmadd231pd zmm9, zmm9, zmm9
vfmadd231pd zmm10, zmm10, zmm10
vfmadd231pd zmm11, zmm11, zmm11
dec rdx
jg loop1

 }
}

int main()
{

int i;
uint64_t fma_shuf_tpt_test[3];
uint64_t fma_shuf_tpt_test_min;
uint64_t fma_only_tpt_test[3];
uint64_t fma_only_tpt_test_min;
uint64_t start = 0;
uint64_t number_of_fma_units_per_core = 2;

/***/
/* Step 1: Warmup */
/***/
fma_only_tpt(100000);

/***/
/* Step 2: Execute FMA and Shuffle TPT Test */
/***/

for(i = 0; i < 3; i++){
start = rdtsc();
fma_shuffle_tpt(1000);
fma_shuf_tpt_test[i] = rdtsc() - start;

}

/***/
/* Step 3: Execute FMA only TPT Test */
/***/
for(i = 0; i < 3; i++){

start = rdtsc();
fma_only_tpt(1000);
fma_only_tpt_test[i] = rdtsc() - start;

}

Example 17-30. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture

Document #: 248966-050US 17-71

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.22 GATHER/SCATTER TO SHUFFLE (G2S/STS)

17.22.1 GATHER TO SHUFFLE IN STRIDED LOADS
In cases where there is data locality between gathered elements in memory, performance can be improved by
replacing the gather instruction with a software sequence.

This section discusses the very common strided load pattern. Strided loads are sets of loads where the offset in
memory between two consecutive loads is constant.

The following examples show three different code variations performing an Array of Structures (AOS) to Structure of
Arrays (SOA) transformation. The code separates the real and imaginary elements in a complex array into two
separate arrays.

Consider the following C code:

for(int i=0;i<len;i++){

Real_buffer[i] = Complex_buffer[i].real;

Imaginary_buffer[i] = Complex_buffer[i].imag;
}

/***/
/* Step 4: Decide if 1 FMA server or 2 FMA server */
/***/
fma_shuf_tpt_test_min = fma_shuf_tpt_test[0];
fma_only_tpt_test_min = fma_only_tpt_test[0];
for(i = 1; i < 3; i++){

if ((int)fma_shuf_tpt_test[i] < (int)fma_shuf_tpt_test_min) fma_shuf_tpt_test_min = fma_shuf_tpt_test[i];
if ((int)fma_only_tpt_test[i] < (int)fma_only_tpt_test_min) fma_only_tpt_test_min = fma_only_tpt_test[i];

}

if(((double)fma_shuf_tpt_test_min/(double)fma_only_tpt_test_min) < 1.5){
number_of_fma_units_per_core = 1;

}

printf("%d FMA server\n", number_of_fma_units_per_core);
return 0;

}

Example 17-31. Gather to Shuffle in Strided Loads Example

Alternative 1: Intel® AVX-512 vpgatherdd Alternative 2: G2S Using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
vpcmpeqb k2, xmm0, xmm0
movsxd rdx, edx
movsxd rdi, esi
inc esi

vmovups zmm4, [rdx+r9*8]
vmovups zmm0, [rdx+r9*8+0x40]
vmovups zmm5, [rdx+r9*8+0x80]
vmovups zmm1, [rdx+r9*8+0xc0]
vmovaps zmm2, zmm7
vmovaps zmm3, zmm7

Example 17-30. Identifying One or Two FMA Units in a Processor Based on Skylake Microarchitecture

Document #: 248966-050US 17-72

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were loaded into zmm registers and used as gather and permute indices:

Zmm0 (Alternative 1), zmm6 (Alternative 2)

__declspec (align(64)) const __int32 gather_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27,
29, 31};

Zmm1 (Alternative 1), zmm7 (Alternative 2)

__declspec (align(64)) const __int32 gather_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30};

shl rdi, 0x7
vpxord zmm2, zmm2, zmm2
lea rax, [r8+rdx*8]
add edx, 0x20
vpgatherdd zmm2{k1}, [rax+zmm1*4]
vpxord zmm3, zmm3, zmm3
vpxord zmm4, zmm4, zmm4
vpxord zmm5, zmm5, zmm5
vpgatherdd zmm3{k2}, [rax+zmm0*4]
vpcmpeqb k3, xmm0, xmm0
vpcmpeqb k4, xmm0, xmm0
vmovups [r9+rdi*1], zmm2
vmovups [rcx+rdi*1], zmm3
vpgatherdd zmm4{k3}, [rax+zmm1*4+0x80]
vpgatherdd zmm5{k4}, [rax+zmm0*4+0x80]
vmovups [r9+rdi*1+0x40], zmm4
vmovups [rcx+rdi*1+0x40], zmm5
cmp esi, r14d
jb loop

vpermi2d zmm2, zmm4, zmm0
vpermt2d zmm4, zmm6, zmm0
vpermi2d zmm3, zmm5, zmm1
vpermt2d zmm5, zmm6, zmm1
vmovdqu32 [rcx+r9*4], zmm2vmovdqu32
[rcx+r9*4+0x40], zmm3
vmovdqu32 [r8+r9*4], zmm4
vmovdqu32 [r8+r9*4+0x40], zmm5add r9, 0x20
cmp r9, r10
jb loop

Baseline 1x Speedup: 4.8x

Example 17-31. Gather to Shuffle in Strided Loads Example (Contd.)

Alternative 1: Intel® AVX-512 vpgatherdd Alternative 2: G2S Using Intel® AVX-512 vpermi2d

Document #: 248966-050US 17-73

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Recommendation: For best performance, replace strided loads where the stride is short, with a sequence of loads
and permutes.

17.22.2 SCATTER TO SHUFFLE IN STRIDED STORES
The following is an Scatter to Shuffle example that replaces scatter with permute and store instructions

Consider the following C code:

for(int i=0;i<len;i++){

Complex_buffer[i].real = Real_buffer[i];

Complex_buffer[i].imag = Imaginary_buffer[i];}

The following constants were used as scatter indices:

Zmm1:

__declspec (align(64)) const __int32 scatter_real_index[16] = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30};

Zmm0:

__declspec (align(64)) const __int32 scatter_imag_index[16] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23,
25, 27, 29, 31};

The following constants were used as permute indices:

Zmm1:

__declspec (align(64)) const __int32 first_half[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};

Zmm0:

__declspec (align(64)) const __int32 second_half[16] = {8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14,
30, 15, 31};

Example 17-32. Gather to Shuffle in Strided Stores Example

Alternative 1: Intel® AVX-512 vscatterdps Alternative 2: S2S using Intel® AVX-512 vpermi2d

loop:
vpcmpeqb k1, xmm0, xmm0
lea r11, [r8+rcx*4]
vpcmpeqb k2, xmm0, xmm0
vmovups zmm2, [rax+rsi*4]
vmovups zmm3, [r9+rsi*4]
vscatterdps [r11+zmm1*4]{k1}, zmm2
vscatterdps [r11+zmm0*4]{k2}, zmm3
add rsi, 0x10
add rcx, 0x20
cmp rsi, r10
jl loop

loop:
vmovups zmm4, [rax+r8*4]
vmovups zmm2, [r10+r8*4]
vmovaps zmm3, zmm1
add r8, 0x10
vpermi2d zmm3, zmm4, zmm2
vpermt2d zmm4, zmm0, zmm2
vmovups [r9+rsi*4], zmm3
vmovups [r9+rsi*4+0x40], zmm4
add rsi, 0x20
cmp r8, r11
jl loop

Baseline 1x Speedup: 4.4x

Document #: 248966-050US 17-74

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.22.3 GATHER TO SHUFFLE IN ADJACENT LOADS
In cases where the gathered elements are grouped into adjacent sequences, the gather instruction can be replaced by
a software sequence to improve performance.

The following example shows how to load vectors when elements are adjacent.

Notice that in this case the order of the elements in the arrays is set according to an index buffer and therefore the
software optimization discussed in Section 17.22.1 is not applicable in this case.

Consider the following C code:

typedef struct{

 double var[4];

} ElemStruct;

const int* indices = Indices;

const ElemStruct *in = (const ElemStruct*) InputBuffer;

double* restrict out = OutputBuffer;

for (int i = 0; i < width; i++){

for (int j = 0; j < 4; j++){

out[i*4+j] = in[indices[i]].var[j];

}

}

Example 17-33. Gather to Shuffle in Adjacent Loads Example

Alternative 1: vgatherdpd Implementation Alternative 2: Load and Masked broadcast

loop:
vpbroadcastd ymm3, [r9+rsi*4]
mov r15d, esi
vpbroadcastd xmm2, [r9+rsi*4+0x4]
add rsi, 0x2
vpbroadcastd ymm3{k1}, xmm2
vpmulld ymm4, ymm3, ymm1
vpaddd ymm5, ymm4, ymm0
vpcmpeqb k2, xmm0, xmm0
shl r15d, 0x2
movsxd r15, r15d
vpxord zmm6, zmm6, zmm6
vgatherdpd zmm6{k2}, [r10+ymm5*1]
vmovups [r11+r15*8], zmm6
cmp rsi, rdi
jl loop

loop:
movsxd r11, [r10+rcx*4]
shl r11, 0x5
vmovupd ymm0, [r9+r11*1]
movsxd r11, [r10+rcx*4+0x4]
shl r11, 0x5
vbroadcastf64x4 zmm0{k1}, [r9+r11*1]
mov r11d, ecx
shl r11d, 0x2
add rcx, 0x2
movsxd r11, r11d
vmovups [r8+r11*8], zmm0
cmp rcx, rsi
jl loop

Baseline 1x Speedup: 2.2x

Document #: 248966-050US 17-75

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following constants were used in the vgatherdpd implementation:

ymm0:

__declspec (align(64)) const __int32 index_inc[8] = {0, 8, 16, 24, 0, 8, 16, 24};

ymm1:

__declspec (align(64)) const __int32 index_scale[8] = {32, 32, 32, 32, 32, 32, 32, 32};

K1 register value is 0xF0.

17.23 DATA ALIGNMENT
This section explains the benefit of aligning data when using the Intel AVX-512 instructions and proposes some
methods to improve performance when such alignment is not possible. Most examples in this section are variations
of the SAXPY kernel. SAXPY is the Scalar Alpha * X + Y algorithm.

The C code below is a C implementation of SAXPY.

for (int i = 0; i < n; i++)

{

c[i] = alpha * a[i] + b[i];

}

17.23.1 ALIGN DATA TO 64 BYTES
Aligning data to vector length is recommended. For best results, when using Intel AVX-512 instructions, align data to
64 bytes.

When doing a 64-byte Intel AVX-512 unaligned load/store, every load/store is a cache-line split, since the cache-line
is 64 bytes. This is double the cache line split rate of Intel AVX2 code that uses 32-byte registers. A high cache-line split
rate in memory-intensive code can cause poor performance.

Document #: 248966-050US 17-76

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The following table shows how the performance of the memory intensive SAXPY code is affected by misaligning input
and output buffers. The data in the table is based on the following code.

The Table 17-10 summarizes the data alignment effects on SAXPY performance with speedup values for the various
options.

Example 17-34. Data Alignment
__asm {

mov rax, src1
mov rbx, src2
mov rcx, dst
mov rdx, len
xor rdi, rdi
vbroadcastss zmm0, alpha

mainloop:
vmovups zmm1, [rax]
vfmadd213ps zmm1, zmm0, [rbx]
vmovups [rcx], zmm1

vmovups zmm1, [rax+0x40]
vfmadd213ps zmm1, zmm0, [rbx+0x40]
vmovups [rcx+0x40], zmm1

vmovups zmm1, [rax+0x80]
vfmadd213ps zmm1, zmm0, [rbx+0x80]
vmovups [rcx+0x80], zmm1

vmovups zmm1, [rax+0xC0]
vfmadd213ps zmm1, zmm0, [rbx+0xC0]
vmovups [rcx+0xC0], zmm1

add rax, 256
add rbx, 256
add rcx, 256
add rdi, 64
cmp rdi, rdx
jl mainloop

}

Table 17-10. Data Alignment Effects on SAXPY Performance vs. Speedup Value

Data Alignment Effects on SAXPY Performance Speedup

Alternative 1: Both sources and the destination are 64-byte aligned. Baseline, 1.0

Alternative 2: Both sources are 64-byte aligned, destination has a 4 byte offset from the
alignment. 0.66x

Alternative 3: Both sources and the destinations have 4 bytes offset from the alignment. 0.59x

Alternative 4: One source has a 4 byte offset from the alignment, the other source and the
destination are 64-byte aligned. 0.77x

Document #: 248966-050US 17-77

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.24 DYNAMIC MEMORY ALLOCATION AND MEMORY ALIGNMENT
Consider the following structure:

float3_SOA {

 __declspec(align(64)) float x[16];

 __declspec(align(64)) float y[16];

 };
The memory allocated for the structure is aligned to 64 bytes if you use this structure as follows:

float3_SOA f;
However, if you use dynamic memory allocation as follows, the declspec directive is ignored and the 64-byte memory
alignment is not guaranteed:

float3_SOA* stPtr = new float3_SOA();
In this case, you should use dynamic aligned memory allocation and/or redefine operator new.

Recommendation: Align data to 64 bytes, when possible, using the following guidelines.

• Use dynamic data alignment using the _mm_malloc intrinsic instruction with the Intel® Compiler, or
_aligned_malloc of the Microsoft* Compiler.

— For example:

//dynamically allocating 64byte aligned buffer with 2048 float elements.

InputBuffer = (float*) _mm_malloc (2048*sizeof(float), 64);
• Use static data alignment using __declspec(align(64)).

— For example:

//Statically allocating 64byte aligned buffer with 2048 float elements.

__declspec(align(64)) float InputBuffer[2048];

17.25 DIVISION AND SQUARE ROOT OPERATIONS
It is possible to speed up single-precision divide and square root calculations using the VRSQRT14PS/VRSQRT14PD
and VRCP14PS/VRCP14PD instructions. These instructions yield an approximation (with 14 bits accuracy) of the
Reciprocal Square Roots / Reciprocal Divide of their input.

The Intel AVX-512 implementation of these instructions is pipelined and has:

• For 256-bit vectors: latency of four cycles with a throughput of one instruction every cycle.

• For 512-bit vectors: latency of six cycles with a throughput of one instruction every two cycles.

Skylake microarchitecture introduces the packed-double (PD) variants of reciprocal square-root and reciprocal divide:
VRSQRT14PD and VRCP14PD (respectively).

The VRSQRT14PS/VRSQRT14PD and VRCP14PS/VRCP14PD instructions can be used with a single Newton-Raphson
iteration or other polynomial approximation to achieve almost the same precision as the VDIVPS and VSQRTPS
instructions (see the Intel® 64 and IA-32 Architectures Software Developer’s Manual for more information on these
instructions), and may yield a much higher throughput.

If the full precision (IEEE) must be maintained, a low latency and high throughput can be achieved due to the
significant performance improvement of the Skylake microarchitecture to DIVPS and SQRTPS, comparing to their
performance on previous microarchitectures. This is illustrated in Figure 17-13.

Document #: 248966-050US 17-78

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

NOTE
In some cases, when the divide or square root operations are part of a larger algorithm that hides
some of the latency of these operations, the approximation with Newton-Raphson can slow down
execution, because more micro-ops, coming from the additional instructions, fill the pipe.

The following sections show the operations with recommended calculation methods depending on the desired
accuracy level.

NOTE
There are two definitions for approximation error of a value and it's approximation approx:

Absolute error = | - approx|

Relative error = | - approx| / ||

In this chapter, the “number of bits” error is relative, and not the error of absolute values.
The value  to which we compare our approximation should be as accurate as possible, better
double accuracy.

Document #: 248966-050US 17-79

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.25.1 DIVIDE AND SQUARE ROOT APPROXIMATION METHODS

17.25.2 DIVIDE AND SQUARE ROOT PERFORMANCE
Performance of vector divide and square root operations on Broadwell and Skylake microarchitectures is shown

Table 17-11. Skylake Microarchitecture Recommendations for DIV/SQRT Based Operations
(Single Precision)

Operation Accuracy Recommended Method

Divide

24 bits (IEEE) DIVPS

23 bits RCP14PS + MULPS + 1 Newton-Raphson iteration

14 bits RCP14PS + MULPS

Reciprocal Square Root

22 bits SQRTPS + DIVPS

23 bits RSQRT14PS + 1 Newton-Raphson iteration

14 bits RSQRT14PS

Square Root

24 bits (IEEE) SQRTPS

23 bits RSQRT14PS + MULPS + 1 Newton-Raphson iteration

14 bits RSQRT14PS + MULPS

Table 17-12. Skylake Microarchitecture Recommendations for DIV/SQRT
Based Operations (Double Precision)

Operation Accuracy Recommended Method

Divide

53 bits (IEEE) DIVPD

52 bits RCP14PD + MULPD + 2 Newton-Raphson iterations

26 bits RCP14PD + MULPD + 1 Newton-Raphson iterations

14 bits RCP14PD + MULPD

Reciprocal Square Root

53 bits (IEEE) SQRTPD + DIVPD

52 bits RSQRT14PD+2 N-R + error correction or SQRTPD + DIVPD

50 bits RSQRT14PD + Polynomial approximation

26 bits RSQRT14PD+1 N-R

14 bits RSQRT14PD

Square Root

51 bits (IEEE) SQRTPD

52 bits RSQRT14PD + MULPD + Polynomial approximation

26 bits RSQRT14PD + MULPD + 1 N-R

14 bits RSQRT14PD + MULPD

Document #: 248966-050US 17-80

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

below.

17.25.3 APPROXIMATION LATENCIES
This section shows the latency and throughput for the approximation methods, and DIV and SQRT instructions. The
tables below show that in most cases the throughput gain of the approximation methods is (at least) double that of
their IEEE counterparts, in simple loops that compute division or square root.

The throughput benefits of approximation sequences are diminished when the loop iterations contain a lot of other
computation (besides divide or square root).

As a rule of thumb, approximations of near-IEEE accuracy are recommended when the loop iteration contains no
more than eight to ten additional single precision operations, or no more than twelve to fifteen additional double
precision operations. The tables below show that these accurate approximations are beneficial for throughput
optimizations only. The less accurate approximations can help with latency, as well as throughput.

It should also be mentioned that Newton-Raphson approximations do not handle the following special cases
correctly: denormal inputs, zeros, or Infinities. Some sequences also lose accuracy for nearly denormal inputs, due to
underflow in intermediate steps. While zero and Infinity inputs are relatively easy to fix with a few additional
operations (as done in some of the sequences below), denormal divisors cannot be addressed without significant
performance impact. The approximation sequences work best for “middle-of-the-range” inputs that are not close to
overflow or underflow thresholds.

Table 17-13. 256-bit Intel AVX2 Divide and Square Root Instruction Performance

Broadwell
Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 21 23 35

Throughput 10 14 16 28

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 11 12 14 18

Throughput 5 6 8 12

Table 17-14. 512-bit Intel AVX-512 Divide and Square Root Instruction Performance

Skylake Microarchitecture DIVPS SQRTPS DIVPD SQRTPD

Latency 17 19 23 31

Throughput 10 12 16 24

Document #: 248966-050US 17-81

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The table below shows the latency and throughput of single precision Intel AVX-512 divide and square root
instructions, compared to the approximation methods on Skylake microarchitecture.

Table 17-15. Latency/Throughput of Different Methods of Computing Divide and Square Root
on Skylake Microarchitecture for Different Vector Widths, on Single Precision

Operation Method Accurac
y

256-bit Intel® AVX-512
Instructions

512-bit Intel® AVX-512
Instructions

Throughpu
t Latency Throughp

ut Latency

Divide (a/b)

DIVPS 24 bits
(IEEE) 5 11 10 17

RCP14PS + MULPS + 1
Newton-Raphson Iteration 23 bits 2 16 3 20

RCP14PS + MULPS 14 bits 1 8 2 10-12

Square root

SQRTPS 24 bits
(IEEE) 6 12 12 19

RSQRT14PS + MULPS + 1
Newton-Raphson Iteration 23 bits 3 16 5 20

RSQRT14PS + MULPS 14 bits 2 9 3 12

Reciprocal
square root

SQRTPS + DIVPS 22 bits 11 23 22 36

RSQRT14PS + 1
Newton-Raphson

Iteration
23 bits 3.67 20 4.89 25

RSQRT14PS 14 bits 1 4 2 6

Table 17-16. Latency/Throughput of Different Methods of Computing Divide and Square Root
on Skylake Microarchitecture for Different Vector Widths, on Double Precision

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Divide (a/b)

DIVPD 53 bits
(IEEE) 8 14 16 23

RCP14PD + MULPD + 2
Newton-Raphson Iteration 22 bits 3.2 27 4.7 28.4

RCP14PD + MULPD + 1
Newton-Raphson Iteration 26 bits 2 16 3 20

RCP14PD + MULPD 14 bits 1 8 2 10-12

Document #: 248966-050US 17-82

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Square root

SQRTPD 53 bits
(IEEE) 12 18 24 31

RSQRT14PD + MULPD +
Polynomial Approximation 22 bits 4.82 24.541 6.4 28.481

RSQRT14PD + MULPD + 1 N-
R 26 bits 3.76 17 5 20

RSQRT14PD + MULPD 14 bits 2 9 3 12

Reciprocal
square root

SQRTPD + DIVPD 51 bits 20 32 40 53

RSQRT14PD + 2-NR +
ErrorCcorrection 52 bits 5 29.38 6.53 34

RSQRT14PD+2 N-R 50 bits 3.79 25.73 5.51 30

RSQRT14PD+1 N-R 26 bits 2.7 18 4.5 21.67

RSQRT14PD 14 bits 1 4 2 6

NOTES:
1. These numbers are not rounded because their code sequence contains several FMA (Fused-multiply-add) instruc-

tions, which have a varying latency of 4/6. Therefore the latency for these sequences is not necessarily fixed.

Table 17-16. Latency/Throughput of Different Methods of Computing Divide and Square Root
on Skylake Microarchitecture for Different Vector Widths, on Double Precision (Contd.)

Operation Method Accuracy
256-bit Intel® AVX-512

Instructions
512-bit Intel® AVX-512

Instructions

Throughput Latency Throughput Latency

Document #: 248966-050US 17-83

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.25.4 CODE SNIPPETS

Example 17-35. Vectorized 32-bit Float Division, 24 Bits

Single Precision, Divide, 24 Bits (IEEE)

float a = 10;
float b = 5;

__asm {
vbroadcastss zmm0, a// fill zmm0 with 16 elements of a
vbroadcastss zmm1, b// fill zmm1 with 16 elements of b
vdivps zmm2, zmm0, zmm1// zmm2 = 16 elements of a/b

}

Example 17-36. Vectorized 32-bit Float Division, 23 and 14 Bits

Single Precision, Divide, 23 Bits Single Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm3, zmm0, zmm2
vmovaps zmm4, zmm0
vfnmadd231ps zmm4, zmm3, zmm1
vfmadd231ps zmm3, zmm4, zmm2

}

*/

__asm {
vrcp14ps zmm2, zmm1
vmulps zmm2, zmm0, zmm2

}

Example 17-37. Reciprocal Square Root, 22 Bits

Single Precision, Reciprocal Square Root, 22 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float one = 1.0;

__asm {
vbroadcastss zmm1, one// zmm1 = vector of 16 1’s
vsqrtps zmm2, zmm0
vdivps zmm2, zmm1, zmm2

}

Document #: 248966-050US 17-84

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-38. Reciprocal Square Root, 23 and 14 Bits

Single Precision, Reciprocal Square Root, 23 Bits Single Precision, Reciprocal Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

float half = 0.5;

__asm {
vbroadcastss zmm1, half// zmm1 = vector of 16 0.5’s
vrsqrt14ps zmm2, zmm0
vmulps zmm3, zmm0, zmm2

vmulps zmm4, zmm1, zmm2
vfnmadd231ps zmm1, zmm3, zmm4
vfmsub231ps zmm3, zmm0, zmm2

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14ps zmm2, zmm0

}

vfnmadd231ps zmm1, zmm4, zmm3
vfmadd231ps zmm2, zmm2, zmm1
}

Example 17-39. Square Root , 24 Bits

Single Precision, Square Root, 24 Bits (IEEE)

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtps zmm2, zmm0

}

Example 17-40. Square Root , 23 and 14 Bits

Single Precision, Square Root, 23 Bits Single Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

float half = 0.5;

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

Document #: 248966-050US 17-85

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

__asm {
vbroadcastss zmm3, half
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
vmulps zmm2, zmm0, zmm1, {rn-sae}
vmulps zmm1, zmm1, zmm3
knotw k3, k2
vfnmadd231ps zmm0{k3}, zmm2, zmm2
vfmadd213ps zmm0{k3}, zmm1, zmm2

}

__asm {
vrsqrt14ps zmm1, zmm0
vfpclassps k2, zmm0, 0xe
knotw k3, k2
vmulps zmm0{k3}, zmm0, zmm1

}

Example 17-41. Dividing Packed Doubles, 53 and 52 Bits

Double Precision, Divide, 53 Bits (IEEE) Double Precision, Divide, 52 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

__asm {
vdivpd zmm2, zmm0, zmm1

}

/* Input:
zmm15 = vector of a’s
zmm0 = vector of b’s

Output:
zmm0 = vector of a/b

*/

double One = 1.0;

__asm {
vrcp14pd zmm1, zmm0
vmovapd zmm4, zmm0
vbroadcastsd zmm2, one
vfnmadd213pd zmm0, zmm1, zmm2, {rn-sae}
vfpclasspd k2, zmm1, 0x1e
vfmadd213pd zmm0, zmm1, zmm1, {rn-sae}}
knotw k3, k2
vfnmadd213pd zmm4, zmm0, zmm2, {rn-sae}
vblendmpd zmm0 {k2}, zmm0, zmm1
vfmadd213pd zmm0 {k3}, zmm4, zmm0, {rn-sae}
vmulpd zmm0, zmm0, zmm15

}

Example 17-42. Dividing Packed Doubles, 26 and 14 Bits

Double Precision, Divide, 26 Bits Double Precision, Divide, 14 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm3 = vector of a/b

*/

/* Input:
zmm0 = vector of a’s
zmm1 = vector of b’s

Output:
zmm2 = vector of a/b

*/

Example 17-40. (Contd.)Square Root (Contd.), 23 and 14 Bits

Single Precision, Square Root, 23 Bits Single Precision, Square Root, 14 Bits

Document #: 248966-050US 17-86

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm3, zmm0, zmm2
vmovapd zmm4, zmm0
vfnmadd231pd zmm4, zmm3, zmm1
vfmadd231pd zmm3, zmm4, zmm2

}

__asm {
vrcp14pd zmm2, zmm1
vmulpd zmm2, zmm0, zmm2

}

Example 17-43. Reciprocal Square Root of Doubles, 51 Bits

Double Precision, Reciprocal Square Root, 51 Bits

/* Input:
zmm0 = vector of a’s
zmm1 = vector of 1’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
__asm {

vsqrtpd zmm0, zmm0
vdivpd zmm0, zmm1, zmm0

}

Example 17-42. Dividing Packed Doubles, 26 and 14 Bits (Contd.)

Double Precision, Divide, 26 Bits Double Precision, Divide, 14 Bits

Document #: 248966-050US 17-87

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-44. Reciprocal Square Root of Doubles, 52 and 50 Bits

Double Precision, Reciprocal Square Root, 52 Bits Double Precision, Reciprocal Square Root, 50
Bits

/* Input:
zmm4 = vector of a’s

Output:
zmm0 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vbroadcastsd zmm4, big_num
vmovapd zmm0, one
vmovapd zmm5, dc1
vmovapd zmm6, dc2
vmovapd zmm7, dc3

/* Input:
zmm3 = vector of a’s

Output:
zmm4 = vector of 1/sqrt (a)

*/
// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x
// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))
ALIGNTO(64) __int64 one[] =
{DUP8_DECL(0x3FF0000000000000)};
ALIGNTO(64) __int64 dc1[] =
{DUP8_DECL(0x3FE0000000000000)};
ALIGNTO(64) __int64 dc2[] =
{DUP8_DECL(0x3FD8000004600001)};
ALIGNTO(64) __int64 dc3[] =
{DUP8_DECL(0x3FD4000005E80001)};
__asm {

vmovapd zmm5, one
vmovapd zmm6, dc1
vmovapd zmm8, dc3
vmovapd zmm7, dc2

vrsqrt14pd zmm3, zmm4
vfpclasspd k1, zmm4, 0x5e
vmulpd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd231pd zmm0, zmm3, zmm1
vfmsub231pd zmm1, zmm3, zmm4, {rn-sae}
vfnmadd213pd zmm1, zmm3, zmm0
vmovups zmm0, zmm7
vmulpd zmm2, zmm3, zmm1

vfmadd213pd zmm0, zmm1, zmm6
vfmadd213pd zmm0, zmm1, zmm5
vfmadd213pd zmm0, zmm2, zmm3
vorpd zmm0{k1}, zmm3, zmm3

}

vrsqrt14pd zmm2, zmm3
vfpclasspd k1, zmm3, 0x5e
vmulpd zmm0, zmm2, zmm3, {rn-sae}
vfnmadd231pd zmm0, zmm2, zmm5
vmulpd zmm1, zmm2, zmm0
vmovapd zmm4, zmm8
vfmadd213pd zmm4, zmm0, zmm7
vfmadd213pd zmm4, zmm0, zmm6
vfmadd213pd zmm4, zmm1, zmm2
vorpd zmm4{k1}, zmm2, zmm2

}

Document #: 248966-050US 17-88

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

Example 17-45. Reciprocal Square Root of Doubles, 26 and 14 Bits

Double Precision, Reciprocal Square Root, 26 Bits Double Precision, Reciprocal Square Root, 14
Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm1 = vector of 1/sqrt (a)

*/

double half = 0.5;

__asm {
vrsqrt14pd zmm1, zmm0
vmulpd zmm0, zmm0, zmm1
vbroadcastsd zmm3, half
vmulpd zmm2, zmm1, zmm3
vfnmadd213pd zmm2, zmm0, zmm3
vfmadd213pd zmm1, zmm2, zmm1

}

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of 1/sqrt (a)

*/

__asm {
vrsqrt14pd zmm2, zmm0

}

Example 17-46. Square Root of Packed Doubles, 53 and 52 Bits

Double Precision, Square Root, 53 Bits (IEEE) Double Precision, Square Root, 52 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm2 = vector of sqrt (a)

*/

__asm {
vsqrtpd zmm2, zmm0

}

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

double half = 0.5;

__asm {
vbroadcastsd zmm4, half
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
vmulpd zmm2, zmm0, zmm1, {rn-sae}
vmulpd zmm1, zmm1, zmm4
knotw k3, k2
vmovapd zmm3, zmm4
vfnmadd231pd zmm3, zmm1, zmm2, {rn-sae}
vfmadd213pd zmm2, zmm3, zmm2, {rn-sae}
vfmadd213pd zmm1, zmm3, zmm1, {rn-sae}
vfnmadd231pd zmm0 {k3}, zmm2, zmm2, {rn-sae}
vfmadd213pd zmm0 {k3}, zmm1, zmm2

}

Document #: 248966-050US 17-89

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.26 CLDEMOTE
Using the CLDEMOTE instruction, a processor puts a cache line into the last shared level of the cache hierarchy so that
other CPU cores 'find' the same cache line in the last shared level and expensive cross-core snoop is avoided. The
most significant advantage of CLDEMOTE is that multiple consumers can access the shared cache line amortizing each
snoop request portion.

17.26.1 PRODUCER-CONSUMER COMMUNICATION IN SOFTWARE
In a multiprocessor environment, data sharing between the producers and consumers is an undisputed event. A
cache hierarchy solves the major problem of accessing the line from the main memory resulting in faster data
transfers. Typical cache hierarchy contains:

• Private L1 data and L1 instruction cache.

• A shared L2 cache for sibling hardware thread.

• A common L3 cache for all the CPU cores.

When a producer consumes data from the I/O or produces it, it is brought into the producer's L1 cache. Consumers
read the data by initiating read requests, translating it into cross-core snoops, request, and response events.
Consumers report L3 cache miss events and producer cores responding to the consumer core's snoop request.
Multiplexing these cross-cores requests and responses when dealing with multiple consumers is detrimental.

Example 17-47. Square Root of Packed Doubles, 26 and 14 Bits

Double Precision, Square Root, 26 Bits Double Precision, Square Root, 14 Bits

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

// duplicates x eight times
#define DUP8_DECL(x) x, x, x, x, x, x, x, x

// used for aligning data structures to n bytes
#define ALIGNTO(n) __declspec(align(n))

ALIGNTO(64) __int64 OneHalf[] =
{DUP8_DECL(0X3FE0000000000000)};
__asm {

vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1
vmulpd zmm1, zmm1, ZMMWORD PTR [OneHalf]
vfnmadd213pd zmm1, zmm0, ZMMWORD PTR

/* Input:
zmm0 = vector of a’s

Output:
zmm0 = vector of sqrt (a)

*/

__asm {
vrsqrt14pd zmm1, zmm0
vfpclasspd k2, zmm0, 0xe
knotw k3, k2
vmulpd zmm0 {k3}, zmm0, zmm1

}

[OneHalf]
vfmadd213pd zmm0 {k3}, zmm1, zmm0

}

Document #: 248966-050US 17-90

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

17.27 TIPS ON COMPILER USAGE
This section explains some of the important compiler options that can be used with the Intel compiler to derive the
best performance on a Skylake server.

For complete information on the compiler options and tuning tips, see the Intel Resource & Documentation Center.

Many options have names that are the same on Linux* and Windows*, except that the Windows* form starts with an
initial Q. Within text, such option names are shown as [Q]option-name.

The default optimization level is O2 (unless -g is specified, in which case the default is O0). Level O2 enables many
compiler optimizations including vectorization. Optimization level O3 is recommended for loop-intensive and HPC
applications, as it enables more aggressive loop and memory-access optimizations, such as loop fusion and loop
blocking to allow more efficient use of the caches.

• For the best performance of Skylake server microarchitecture, applications should be compiled with the
processor-specific option [Q]xCORE-AVX512.

— Notably, an executable compiled with these options will not run on non-Intel processors or on Intel
processors that support only lower instruction sets.

• For users who want to generate a common binary that can be executed on Skylake server microarchitecture and
the Intel® Xeon Phi™ processors based on Knights Landing microarchitecture, use the option [Q]xCOMMON-
AVX512.

— This option has a performance cost on both Skylake server microarchitecture and Intel® Xeon Phi™
processors compared with executables generated with the target-specific options:

• [Q]xCORE-AVX512 on Skylake server

• [Q]xMIC-AVX512 on Intel® Xeon Phi™ processors.

Additionally, users can tune the zmm code generation done by the compiler for Skylake server microarchitecture
using the additional option -qopt-zmm-usage=low|high (/Qopt-zmm-usage:low|high on Windows).

• The argument value of low provides a smooth transition experience from Intel AVX2 ISA to Intel AVX-512 ISA on a
Skylake server microarchitecture target, such as for enterprise applications.

— Tuning for ZMM instruction use via explicit vector syntax such as #pragma omp simd simdlen() is recom-
mended.

• The argument value of high is recommended for applications, such as HPC codes, that are bounded by vector
computation to achieve more compute per instruction through use of the wider vector operations:

— The default value is low for Skylake server microarchitecture-family compilation targets, such as [Q]xCORE-
AVX512.

— High for CORE/MIC AVX512 combined compilation targets such as [Q]xCOMMON-AVX512.

It is also possible to generate a fat binary that supports multiple instruction sets by using the [Q]axtarget option.

For example, if the application is compiled with [Q]axCORE-AVX512,CORE-AVX2:

• The compiler might generate specialized code for the Skylake server microarchitecture and AVX2 targets, while
also generating a default code path that will run on any Intel or compatible, non-Intel processor that supports at
least Intel® Streaming SIMD Extensions 2 (Intel® SSE2).

— At runtime, the application automatically detects whether it is running on an Intel processor.

• If so, it selects the most appropriate code path for Intel processors;

• if not, the default code path is selected.

— Irrespective of the options used, the compiler might insert calls into specialized library routines, such as
optimized versions of memset/memcpy, that will dispatch to the appropriate codepath at runtime based on
processor detection.

Document #: 248966-050US 17-91

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

The option -qopt-report[n] (/Qopt-report[:n] on Windows) generates a report on the optimizations performed by the
compiler, by default it is written to a file with a .optrpt file extension. n specifies the level of detail, from 0 (no report)
to 5 (maximum detail).

The option -qopt-report-phase (/Qopt-report-phase on Windows) controls report generation from various compiler
phases, but it is recommended to use the default setting where the report is generated for all compiler phases.

• The report is a useful tool to gain insight into the performance optimizations performed, or not performed, by the
compiler, and also to understand the interactions between multiple optimizations such as inlining, OpenMP*
parallelization, loop optimizations (such as loop distribution or loop unrolling) and vectorization.

• The report is based on static compiler analysis. Hence the reports are most useful when correlated with dynamic
performance analysis tools, such as Intel® VTune™ Amplifier or Vectorization Advisor (part of Intel® Advisor XE),
that do hotspot analysis and provide other dynamic information.

• Once this information is available, the optimization information can be studied for hotspots
(functions/loopnests) in compiler reports.

— The compiler can generate multiple versions of loop-nests, so it is useful to correlate the analysis with the
version actually executed at runtime.

• The phase ordering of the compiler loop optimizations is intended to enable optimal vectorization.
Often, understanding the loop optimization parameters helps to further tune performance.

• Finer control of these loop optimizations is often available via pragmas, directives, and options.

If the application contains OpenMP pragmas or directives, it can be compiled with -qopenmp (/Qopenmp on
Windows) to enable full OpenMP based multi-threading and vectorization. Alternatively, the SIMD vectorization
features of OpenMP alone can be enabled by using the option -qopenmp-simd (/Qopenmp-simd on Windows).

For doing studies where compiler-based vectorization has to be turned off completely, use the options

-no-vec -no-simd -qno-openmp-simd (/Qvec- /Qsimd- /Qopenmp-simd- on Windows).

Data alignment plays an important role in improving the efficiency of vectorization. This usually involves two distinct
steps from the user or application:

• Align the data.

— When compiling a Fortran program, it is possible to use the option -align array64byte (/align:array64byte on
Windows) to align the start of most arrays at a memory address that is divisible by 64.

— For C/C++ programs, data allocation can be done using routines such as _mm_malloc(…, 64) to align the
return-value pointer at 64 bytes. For more information on data alignment, see
https://software.intel.com/en-us/articles/data-alignment-to-assist-vectorization.

• Convey the alignment information to the compiler using appropriate clauses, pragmas, and directives.

Compiler-based software data prefetching can be enabled with the options -O3 -xcore-avx512 -qopt-prefetch[=n] (-
O3 /QxCORE-AVX512 /Qopt-prefetch[=n] on Windows), for n=0 (no prefetching) to 5 (maximal prefetching). Using a
value of n=5 enables aggressive compiler prefetching, disregarding any hardware prefetching, for strided loads/stores
and indexed loads/stores which appear inside loops. Using a value of n=2 reduces the amount of compiler prefetching
and restricts it only to direct memory accesses where the compiler heuristics determine that the hardware prefetcher
may not be able to handle well. It is recommended to try values of n=2 to 5 to determine the best prefetching strategy
for a particular application. It is also possible to use the -qopt-prefetch-distance=n1[,n2] (/Qopt-prefetch-
distance=n1[,n2] on Windows) option to fine-tune application performance.

• Useful values to try for n1: 0,4,8,16,32,64.

• Useful values to try for n2: 0,1,2,4,8.

Loop-nests that have a relatively low trip-count value at runtime in hotspots can sometimes lead to sub-optimal AVX-
512 performance unless the trip-count is conveyed to the compiler. In many such cases, the compiler will be able to

Document #: 248966-050US 17-92

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

generate better code and deliver better performance if values of loop trip-counts, loop-strides, and array extents
(such as for Fortran multi-dimensional arrays) are all known to the compiler. If that is not possible, it may be useful to
add appropriate loop_count pragmas to such loops.

Interprocedural optimization (IPO) is enabled using the option -ipo (/Qipo on Windows). This option can be enabled
on all the source-files of the application or it can be applied selectively to the source files containing the application
hot-spots. IPO permits inlining and other inter-procedural optimizations to happen across these multiple source files.
In some cases, this option can significantly increase compile time and code size. Using the option -inline-factor=n
(/Qinline-factor:n on Windows) controls the amount of inlining done by the compiler. The default value of n is 100,
indicating 100%, or a scale factor of 1. For example, if a value of 200 is specified, all inlining options that define upper
limits are multiplied by a factor of 2, thus enabling more inlining than the default.

Profile-guided optimizations (PGO) are enabled using the options -prof-gen and -prof-use (/Qprof-gen and /Qprof-use
on Windows). Typically, using PGO increases the effectiveness of using IPO.

The option -fp-model name (/fp:name on Windows) controls tradeoffs between performance, accuracy and
reproducibility of floating-point results at a high level. The default value for name is fast=1. Changing it to fast=2
enables more aggressive optimizations at a slight cost in accuracy or reproducibility. Using the value precise for name
disallows optimizations that might produce slight variations in floating-point results. When name is double, extended
or source, intermediate results are computed in the corresponding precision. In most situations where enhanced
floating-point consistency and reproducibility are needed -fp-model precise -fp-model source (/fp:precise /fp:source
on Windows) are recommended.

The option -fimf-precision=name (/Qimf-precision=name on Windows) is used to set the accuracy for math library
functions. The default is OFF, which means that the compiler uses its own default heuristics. Possible values of name
are high, medium, and low. Reduced precision might lead to increased performance and vice versa, particularly for
vectorized code. The options -[no-]prec-div and -[no-]prec-sqrt improve[reduce] precision of floating-point divides
and square root computations. This may slightly degrade [improve] performance. For more details on floating-point
options, see Consistency of Floating-Point Results using the Intel® Compiler (2018) .

The option -[no-]ansi-alias (/Qansi-alias[-] on Windows) enables [disables] ANSI and ISO C Standard aliasing rules. By
default, this option is enabled on Linux, but disabled on Windows. On Windows, especially for C++ programs, adding
/Qansi-alias to the compilation options enable the compiler to perform additional optimizations, particularly taking
advantage of the type-based disambiguation rules of the ANSI Standard, which says for example, that pointer and
float variables do not overlap.

If the optimization report specifies that compiler optimizations may have been disabled to reduce compile-time, use
the option -qoverride-limits to override such disabling in the compiler and ensure optimization is applied. This can
sometimes be important for applications, especially ones with functions that have big bodies. Note that using this
additional option may increase compile time and compiler memory usage significantly in some cases.

The list below shows a sampling of loop-level controls available for fine-tuning optimizations - including a way to turn
off a particular transformation reported by the compiler.

• #pragma simd reduction(+:sum)

— The loop is transformed as is, no other loop-optimizations will change the simd-loop.

• #pragma loop_count min(220) avg (300) max (380)

— Fortran syntax: !dir$ loop count(16)

• #pragma vector aligned nontemporal

• #pragma novector // to suppress vectorization

• #pragma unroll(4)

• #pragma unroll(0) // to suppress loop unrolling

https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

Document #: 248966-050US 17-93

SOFTWARE OPTIMIZATION FOR INTEL® AVX-512 INSTRUCTIONS

• #pragma unroll_and_jam(2) // before an outer loop

• #pragma nofusion

• #pragma distribute_point

— If placed as the first statement right after the for-loop, distribution will be suppressed for that loop.

— Fortran syntax: !dir$ distribute point

• #pragma prefetch *:<hint>:<distance>

— Apply uniform prefetch distance for all arrays in a loop.

• #pragma prefetch <var>:<hint>:<distance>

— Fine-grained control for each array

• #pragma noprefetch [<var>]

— Turns off prefetching [for a particular array]

• #pragma forceinline (recursive)

If placed before a call, this is a hint to the compiler to recursively inline the entire call-chain.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are
not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimization in the product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

	Preface
	1. Updates to Chapter 1
	Chapter 1 Introduction
	2. Updates to Chapter 2
	Chapter 2 Intel® 64 and IA-32 Processor Architectures
	3. Updates to Chapter 4
	Chapter 4 Intel Atom® Processor Architectures
	4. Updates to Chapter 17
	Chapter 17 Software Optimization for Intel® AVX-512 Instructions

