
Optimizing Earlier Generations of Intel® 64 and
IA-32 Processor Architectures, Throughput, and

Latency

Document Number: 356477-050US
April 2024

Document #: 356477-050US ii

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis
concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent
claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchant-
ability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of perfor-
mance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly
available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this docu-
ment, with the sole exception that a) you may publish an unmodified copy and b) code included in this document is
licensed subject to the Zero-Clause BSD open source license (0BSD), https://opensource.org/licenses/0BSD.

You may create software implementations based on this document and in compliance with the foregoing that are
intended to execute on the Intel product(s) referenced in this document. No rights are granted to create modifications
or derivatives of this document.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD

Document #: 356477-050US iii

Revision History

Date Revision Description
August 2023 048 Initial release of document.

January 2024 049
• Updated fonts for accessibility.
• Changed title.

April 2024 050

• Added Chapter 8: Intel®
Transactional Synchronization
Extensions (Intel® TSX)
Optimizations.

• Fixed Headings.

Document #: 356477-050US -iv

CONTENTS PAGE

CHAPTER 1
HASWELL MICROARCHITECTURE
1.1 INTRODUCTION . 1-1
1.2 THE FRONT END . 1-2
1.3 THE OUT-OF-ORDER ENGINE. 1-3
1.3.1 Execution Engine . 1-3
1.4 CACHE AND MEMORY SUBSYSTEM . 1-5
1.4.1 Load and Store Operation Enhancements . 1-5
1.4.2 Unlamination . 1-5
1.5 HASWELL-E MICROARCHITECTURE. 1-6
1.6 BROADWELL MICROARCHITECTURE. 1-7

CHAPTER 2
SANDY BRIDGE MICROARCHITECTURE
2.1 SANDY BRIDGE MICROARCHITECTURE PIPELINE OVERVIEW . 2-2
2.1.1 The Front End .2-3
2.1.1.1 Legacy Decode Pipeline .2-3
2.1.1.2 Decoded ICache .2-6
2.1.1.3 Branch Prediction. .2-7
2.1.1.4 Micro-op Queue and the Loop Stream Detector (LSD) .2-7
2.1.2 The Out-of-Order Engine .2-8
2.1.2.1 Renamer .2-8
2.1.2.2 Scheduler .2-9
2.1.3 The Execution Core .2-9
2.1.4 Cache Hierarchy. .2-11
2.1.4.1 Load and Store Operation Overview .2-11
2.1.5 L1 DCache. .2-12
2.1.5.1 Loads .2-13
2.1.5.2 Address Translation .2-14
2.1.5.3 Store Forwarding .2-14
2.1.5.4 Memory Disambiguation .2-16
2.1.6 Ring Interconnect and Last Level Cache .2-16
2.1.7 Data Prefetching .2-17
2.2 SYSTEM AGENT. 2-18
2.3 IVY BRIDGE MICROARCHITECTURE . 2-19

CHAPTER 3
INTEL® CORE™ MICROARCHITECTURE AND
ENHANCED INTEL® CORE™ MICROARCHITECTURE
3.1 INTEL® CORE™ MICROARCHITECTURE PIPELINE OVERVIEW . 3-2
3.1.1 Front End .3-3
3.1.1.1 Branch Prediction Unit. .3-3
3.1.1.2 Instruction Fetch Unit .3-4
3.2 INSTRUCTION CACHE AND ITLB. 3-4
3.2.1 Instruction Pre-Decode. .3-4
3.2.1.1 Instruction Queue (IQ) .3-5
3.2.1.2 Instruction Decode. .3-5
3.2.1.3 Stack Pointer Tracker .3-5
3.2.1.4 MicroFusion .3-5
3.2.2 Execution Core. .3-6
3.2.2.1 Issue Ports and Execution Units .3-6

Document #: 356477-050US -v

CONTENTS PAGE

3.3 INTEL® ADVANCED MEMORY ACCESS . 3-8
3.3.1 Loads and Stores .3-9
3.3.1.1 Data Prefetch to L1 caches .3-9
3.3.1.2 Data Prefetch Logic .3-10
3.3.1.3 Store Forwarding3-10
3.3.1.4 Memory Disambiguation . 3-11
3.3.2 Intel® Advanced Smart Cache . 3-11
3.3.2.1 Loads . 3-13
3.3.2.2 Stores . 3-13

CHAPTER 4
NEHALEM MICROARCHITECTURE
4.1 MICROARCHITECTURE PIPELINE . 4-1
4.1.1 Front End Overview. 4-3
4.1.2 Execution Engine . 4-4
4.1.3 Issue Ports and Execution Units . 4-5
4.1.4 Load and Store Operation Enhancements . 4-6
4.1.5 Efficient Handling of Alignment Hazards. 4-6
4.1.6 Store Forwarding Enhancement . 4-7
4.2 REP STRING ENHANCEMENT . 4-9
4.3 ENHANCEMENTS FOR SYSTEM SOFTWARE . 4-10
4.3.1 Efficiency Enhancements for Power Consumption . 4-10
4.3.2 Intel® Hyper-Threading Technology (Intel® HT) Support in Nehalem Microarchitecture. 4-10

CHAPTER 5
KNIGHTS LANDING MICROARCHITECTURE
OPTIMIZATION
5.1 FRONT END . 5-3
5.1.1 Out-of-Order Engine . 5-3
5.1.2 UnTile . 5-6
5.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS LANDING MICROARCHITECTURE . . . 5-7
5.2.1 Using Gather and Scatter Instructions. 5-7
5.2.2 Using Enhanced Reciprocal Instructions . 5-8
5.3 USING AVX-512CD INSTRUCTIONS . 5-9
5.3.1 Using Intel® Hyper-Threading Technology (Intel® HT) . 5-9
5.3.2 Front End Considerations . 5-9
5.3.3 Instruction Decoder . 5-9
5.3.4 Branching Indirectly Across a 4GB Boundary . 5-10
5.4 INTEGER EXECUTION CONSIDERATIONS . 5-10
5.4.1 Flags usage. 5-10
5.4.2 Integer Division . 5-10
5.5 OPTIMIZING FP AND VECTOR EXECUTION . 5-10
5.5.1 Instruction Selection Considerations. 5-10
5.5.2 Porting Intrinsics from Previous Generation. 5-12
5.5.3 Vectorization Trade-Off Estimation . 5-13
5.6 MEMORY OPTIMIZATION . 5-15
5.6.1 Data Alignment . 5-15
5.6.2 Hardware Prefetcher . 5-15
5.6.3 Software Prefetch . 5-16
5.6.3.1 Memory Execution Cluster . 5-16
5.6.4 Store Forwarding. 5-17
5.6.5 Way, Set Conflicts . 5-17

Document #: 356477-050US -vi

CONTENTS PAGE

5.6.6 Streaming Store Versus Regular Store. 5-18
5.6.7 Compiler Switches and Directives . 5-18
5.6.8 Direct Mapped MCDRAM Cache . 5-18

CHAPTER 6
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE
OPTIMIZATION
6.1 OVERVIEW. 6-1
6.2 INTEL ATOM® MICROARCHITECTURE. 6-1
6.2.1 Intel® Hyper-Threading Technology (Intel® HT) Support in Intel Atom® Microarchitecture 6-3
6.3 CODING RECOMMENDATIONS FOR INTEL ATOM® MICROARCHITECTURE. 6-3
6.3.1 Optimization for Front End of Intel Atom® Microarchitecture .6-3
6.3.2 Optimizing the Execution Core. .6-5
6.3.2.1 Integer Instruction Selection .6-5
6.3.2.2 Address Generation .6-5
6.3.2.3 Integer Multiply .6-6
6.3.2.4 Integer Shift Instructions .6-6
6.3.2.5 Partial Register Access .6-7
6.3.2.6 FP/SIMD Instruction Selection .6-7
6.3.3 Optimizing Memory Access .6-9
6.3.3.1 Store Forwarding .6-9
6.3.3.2 First-level Data Cache .6-9
6.3.3.3 Segment Base .6-9
6.3.3.4 String Moves .6-10
6.3.3.5 Parameter Passing .6-10
6.3.3.6 Function Calls .6-11
6.3.3.7 Optimization of Multiply/Add Dependent Chains .6-11
6.3.3.8 Position Independent Code. .6-12
6.4 INSTRUCTION LATENCY . 6-13
6.5 SILVERMONT MICROARCHITECTURE . 6-20
6.5.1 Integer Pipeline .6-23
6.5.2 Floating-Point Pipeline .6-23
6.6 GOLDMONT MICROARCHITECTURE . 6-23
6.7 GOLDMONT PLUS MICROARCHITECTURE . 6-27
6.8 CODING RECOMMENDATIONS . 6-30
6.8.1 Optimizing The Front End .6-30
6.8.1.1 Instruction Decoder .6-30
6.8.1.2 Front End High IPC Considerations .6-31
6.8.1.3 Branching Across 4GB Boundary. .6-33
6.8.1.4 Loop Unrolling and Loop Stream Detector. .6-33
6.8.1.5 Mixing Code and Data .6-33
6.8.2 Optimizing The Execution Core .6-33
6.8.2.1 Scheduling. .6-33
6.8.2.2 Address Generation .6-33
6.8.2.3 FP Multiply-Accumulate-Store Execution. .6-34
6.8.2.4 Integer Multiply Execution .6-35
6.8.2.5 Zeroing Idioms .6-35
6.8.2.6 NOP Idioms .6-35
6.8.2.7 Move Elimination and ESP Folding .6-35
6.8.2.8 Stack Manipulation Instruction .6-36
6.8.2.9 Flags usage .6-36
6.8.2.10 SIMD Floating-Point and X87 Instructions .6-36
6.8.2.11 SIMD Integer Instructions .6-36

Document #: 356477-050US -vii

CONTENTS PAGE

6.8.2.12 Vectorization Considerations .6-37
6.8.2.13 Other SIMD Instructions .6-37
6.8.2.14 Instruction Selection .6-38
6.8.2.15 Integer Division. .6-39
6.8.2.16 Integer Shift .6-40
6.8.2.17 Pause Instruction .6-41
6.8.3 Optimizing Memory Accesses .6-41
6.8.3.1 Reduce Unaligned Memory Access with PALIGNR .6-41
6.8.3.2 Minimize Memory Execution Issues .6-41
6.8.3.3 Store Forwarding6-41
6.8.3.4 PrefetchW Instruction .6-42
6.8.3.5 Cache Line Splits and Alignment .6-42
6.8.3.6 Segment Base .6-43
6.8.3.7 Copy and String Copy. .6-43
6.9 INSTRUCTION LATENCY AND THROUGHPUT . 6-43

CHAPTER 7
INSTRUCTION LATENCY AND THROUGHPUT
7.1 OVERVIEW. 7-1
7.2 DEFINITIONS . 7-2
7.3 LATENCY AND THROUGHPUT . 7-2
7.3.1 Latency and Throughput with Register Operands .7-3
7.3.2 Table Footnotes. .7-21
7.3.3 Instructions with Memory Operands. .7-22
7.3.3.1 Software Observable Latency of Memory References .7-22

CHAPTER 8
INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
OPTIMIZATIONS
8.1 INTRODUCTION . 8-1
8.1.1 About Intel® TSX . 8-1
8.1.2 Optimization Outline. 8-3
8.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS . 8-3
8.2.1 Existing TSX-Enabled Locking Libraries . 8-4
8.2.1.1 Libraries Allowing Lock Elision for Unmodified Programs . 8-4
8.2.1.2 Libraries Requiring Program Modifications . 8-4
8.2.2 Initial Checks . 8-4
8.2.3 Run and Profile the Application . 8-4
8.2.4 Minimize Transactional Aborts . 8-5
8.2.4.1 Transactional Aborts Due to Data Conflicts . 8-6
8.2.4.2 Transactional Aborts Due to Limited Transactional Resources . 8-7
8.2.4.3 Lock Elision Specific Transactional Aborts . 8-8
8.2.4.4 HLE Specific Transactional Aborts. 8-9
8.2.4.5 Miscellaneous Transactional Aborts. 8-9
8.2.5 Using Transactional-Only Code Paths . 8-10
8.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate. 8-10
8.2.6.1 Transitioning to Non-Elided Execution without Aborting . 8-11
8.2.6.2 Forcing an Early Abort . 8-11
8.2.6.3 Not Eliding Selected Locks . 8-11
8.3 DEVELOPING AN INTEL TSX-ENABLED SYNCHRONIZATION LIBRARY . 8-12
8.3.1 Adding HLE Prefixes . 8-12
8.3.2 Elision Friendly Critical Section Locks . 8-12

TABLES

Document #: 356477-050US -viii

PAGE
8.3.3 Using HLE or RTM for Lock Elision . 8-12
8.3.4 An example wrapper for lock elision using RTM . 8-13
8.3.5 Guidelines for the RTM fallback handler. 8-14
8.3.6 Implementing Elision-Friendly Locks Using Intel® TSX . 8-15
8.3.6.1 Implementing a Simple Spinlock Using HLE . 8-15
8.3.6.2 Implementing Reader-Writer Locks Using Intel® TSX . 8-16
8.3.6.3 Implementing Ticket Locks Using Intel® TSX . 8-17
8.3.6.4 Implementing Queue-Based Locks Using Intel® TSX . 8-17
8.3.7 Eliding Application-Specific Meta-Locks Using Intel® TSX . 8-17
8.3.8 Avoiding Persistent Non-Elided Execution . 8-18
8.3.9 Reading the Value of an Elided Lock in RTM-Based Libraries . 8-20
8.3.10 Intermixing HLE and RTM . 8-20
8.4 USING THE PERFORMANCE MONITORING SUPPORT FOR INTEL® TSX . 8-21
8.4.1 Measuring Transactional Success 8-21
8.4.2 Finding Locks to Elide and Verifying All Locks are Elided. . 8-22
8.4.3 Sampling Transactional Aborts. 8-22
8.4.4 Classifying Aborts Using a Profiling Tool . 8-22
8.4.5 XABORT Arguments for RTM Fallback Handlers . 8-23
8.4.6 Call Graphs for Transactional Aborts . 8-24
8.4.7 Last Branch Records and Transactional Aborts. 8-24
8.4.8 Profiling and Testing Intel TSX Software sing the Intel® SDE. 8-24
8.4.9 HLE Specific Performance Monitoring Events. 8-25
8.4.10 Computing Useful Metrics for Intel® TSX . 8-26
8.5 PERFORMANCE GUIDELINES . 8-27
8.6 DEBUGGING GUIDELINES. 8-27
8.7 COMMON INTRINSICS FOR INTEL® TSX . 8-28
8.7.1 RTM C Intrinsics. 8-28
8.7.1.1 _xbegin() . 8-28
8.7.1.2 Emulated RTM Intrinsics on Older GCC-Compatible Compilers . 8-28
8.7.2 HLE Intrinsics on GCC and Other Linux Compatible Compilers . 8-30
8.7.2.1 Generating HLE Intrinsics with GCC4.8. 8-30
8.7.2.2 C++11 Atomic Support . 8-30
8.7.2.3 Emulating HLE intrinsics with older GCC-Compatible Compilers . 8-31
8.7.3 HLE Intrinsics on Windows C/C++ Compilers . 8-31

TABLES

Document #: 356477-050US -ix

PAGE

TABLES
Table 1-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture. 1-3
Table 1-2. Haswell Microarchitecture Execution Units and Representative Instructions 1-3
Table 1-3. Bypass Delay Between Producer and Consumer Micro-ops (Cycles). 1-4
Table 1-4. Cache Parameters of the Haswell Microarchitecture . 1-5
Table 1-5. TLB Parameters of the Haswell Microarchitecture . 1-5
Table 1-6. Components of the Front End. 1-6
Table 1-7. TLB Parameters of the Broadwell Microarchitecture . 1-7
Table 2-1. Components of the Front End of Sandy Bridge Microarchitecture . 2-3
Table 2-2. ICache and ITLB of Sandy Bridge Microarchitecture . 2-4
Table 2-3. Dispatch Port and Execution Stacks . 2-10
Table 2-4. Execution Core Writeback Latency (Cycles) . 2-10
Table 2-5. Cache Parameters . 2-11
Table 2-6. Lookup Order and Load Latency . 2-11
Table 2-7. L1 Data Cache Components. 2-12
Table 2-8. Effect of Addressing Modes on Load Latency . 2-13
Table 2-9. DTLB and STLB Parameters . 2-14
Table 2-10. Store Forwarding Conditions (1 and 2 byte stores). 2-15
Table 2-11. Store Forwarding Conditions (4-16 byte stores) . 2-15
Table 2-12. 32-byte Store Forwarding Conditions (0-15 byte alignment). 2-15
Table 2-13. 32-byte Store Forwarding Conditions (16-31 byte alignment). 2-16
Table 3-1. Components of the Front End. 3-3
Table 3-2. Issue Ports of Intel® Core™ and Enhanced Intel® Core™ Microarchitectures. 3-7
Table 3-3. Cache Parameters of Processors based on Intel Core Microarchitecture 3-12
Table 3-4. Characteristics of Load and Store Operations in Intel Core Microarchitecture 3-13
Table 4-1. Bypass Delay Between Producer and Consumer Micro-ops (cycles) . 4-4
Table 4-2. Issue Ports of Nehalem Microarchitecture . 4-5
Table 4-3. Cache Parameters of Intel Core i7 Processors . 4-6
Table 4-4. Performance Impact of Address Alignments of MOVDQU from L1 . 4-7
Table 5-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture 5-4
Table 5-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture 5-4
Table 5-3. Characteristics of Caching Resources . 5-5
Table 5-4. Alternatives to MSROM Instructions . 5-9
Table 5-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing

Microarchitecture . 5-13
Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture. 6-7
Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data . 6-13
Table 6-3. Function Unit Mapping of the Silvermont Microarchitecture . 6-22
Table 6-4. Comparison of Front End Cluster Features . 6-25
Table 6-5. Comparison of Distributed Reservation Stations on Scheduling Uops 6-25
Table 6-6. Function Unit Mapping of the Goldmont Microarchitecture . 6-26
Table 6-7. Comparison of MEC Resources . 6-26
Table 6-8. Comparison of Front End Cluster Features . 6-28
Table 6-9. Comparison of Distributed Reservation Stations on Scheduling Uops 6-29
Table 6-10. Function Unit Mapping of the Goldmont Plus Microarchitecture . 6-29
Table 6-11. Alternatives to MSROM Instructions . 6-30
Table 6-12. Comparison of Decoder Capabilities . 6-32
Table 6-13. Integer Multiply Operation Latency . 6-35
Table 6-14. Floating-Point and SIMD Integer Latency. 6-38
Table 6-15. Unsigned Integer Division Operation Latency . 6-40
Table 6-16. Signed Integer Division Operation Latency . 6-40
Table 6-17. Store Forwarding Conditions (1 and 2 Byte Stores) . 6-41
Table 6-18. Store Forwarding Conditions (4-16 Byte Stores) . 6-42

Document #: 356477-050US x

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel® Atom®
Processors . 6-44

Table 7-1. CPUID Signature Values of Recent Intel Microarchitectures . 7-3
Table 7-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature) 7-4
Table 7-3. BMI1, BMI2 and General Purpose Instructions . 7-4
Table 7-4. 256-bit Intel® AVX2 Instructions . 7-5
Table 7-6. BMI1, BMI2 and General Purpose Instructions . 7-7
Table 7-5. Gather Timing Data from L1D* . 7-7
Table 7-7. F16C,RDRAND Instructions . 7-8
Table 7-8. 256-bit Intel® AVX Instructions . 7-8
Table 7-9. AESNI and PCLMULQDQ Instructions . 7-11
Table 7-10. Intel® SSE4.2 Instructions . 7-11
Table 7-11. Intel® SSE4.1 Instructions . 7-12
Table 7-12. Intel® SSE3 Instructions . 7-13
Table 7-13. Intel® SSE3 SIMD Floating-point Instructions . 7-13
Table 7-14. Intel® SIM SSE2 128-bit Integer Instructions . 7-14
Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions. 7-16
Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions. 7-18
Table 7-17. General Purpose Instructions . 7-19
Table 7-18. Pointer-Chasing Variability of Software Measurable Latency of

L1 Data Cache Latency . 7-22
Table 8-1. Additional Resources . 8-1
Table 8-2. RTM Abort Status Definition . 8-23

Document #: 356477-050US xi

FIGURES
Figure 1-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture. .1-1
Figure 1-2. Four Core System Integration of the Haswell Microarchitecture .1-2
Figure 1-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores1-7
Figure 2-1. Sandy Bridge Microarchitecture Pipeline Functionality .2-2
Figure 3-1. Intel® Core™ Microarchitecture Pipeline Functionality .3-2
Figure 3-2. Execution Core of Intel Core Microarchitecture .3-8
Figure 3-3. Store-Forwarding Enhancements in Enhanced Intel® Core™ Microarchitecture3-11
Figure 3-4. Intel® Advanced Smart Cache Architecture .3-12
Figure 4-1. Nehalem Microarchitecture Pipeline Functionality .4-2
Figure 4-2. Front End of Nehalem Microarchitecture .4-3
Figure 4-3. Store-Forwarding Scenarios of 16-Byte Store Operations .4-8
Figure 4-4. Store-Forwarding Enhancement in Nehalem Microarchitecture. .4-9
Figure 5-1. Tile-Mesh Topology of the Knights Landing Microarchitecture .5-1
Figure 5-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture5-2
Figure 6-1. Intel Atom® Microarchitecture Pipeline. .6-2
Figure 6-2. Silvermont Microarchitecture Pipeline .6-21
Figure 6-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture. .6-24
Figure 6-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture.6-28
Example 5-1. Gather Comparison Between Intel® AVX-512F and Intel® AVX2 .5-8
Example 5-2. Gather Comparison Between Intel® AVX-512F and Previous Generation Equivalent 5-8
Example 5-3. Using VRCP28SS for 32-bit Floating-Point Division .5-8
Example 5-4. Replace VCOMIS* with VCMPSS/KORTEST . 5-11
Example 5-5. Using Software Sequence for Horizontal Reduction . 5-12
Example 5-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture 5-12
Example 5-7. Ordering of Memory Instruction for MEC . 5-16
Example 6-1. Instruction Pairing and Alignment to Optimize Decode Throughput on
Intel Atom® Microarchitecture .6-4
Example 6-2. Alternative to Prevent AGU and Execution Unit Dependency .6-6
Example 6-3. Pipeling Instruction Execution in Integer Computation .6-6
Example 6-4. Memory Copy of 64-byte . 6-10
Example 6-5. Examples of Dependent Multiply and Add Computation . 6-11
Example 6-6. Instruction Pointer Query Techniques . 6-12
Example 6-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict 6-34
Example 6-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC 6-34
Example 8-1. Reduce Data Conflict with Conditional Updates .8-7
Example 8-2. Transition from Non-Elided Execution without Aborting . 8-11
Example 8-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives . 8-13
Example 8-4. Spin Lock Example Using HLE in GCC 4.8 and Later . 8-15
Example 8-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic 8-16
Example 8-6. A Meta Lock Example . 8-18
Example 8-7. A Meta Lock Example Using RTM . 8-18
Example 8-8. HLE-Enabled Lock-Acquire/ Lock-Release Sequence . 8-19
Example 8-9. A Spin Wait Example Using HLE . 8-19
Example 8-10. A Conceptual Example of Intermixed HLE and RTM . 8-21
Example 8-11. Emulated RTM intrinsic for Older GCC Compilers . 8-29
Example 8-12. C++ Example of HLE Intrinsic . 8-30
Example 8-13. Emulated HLE Intrinsic with Older GCC Compiler . 8-31
Example 8-14. HLE Intrinsic Supported by Intel and Microsoft Compilers . 8-31

Document #: 248966-049US iii

CHAPTER 1
HASWELL MICROARCHITECTURE
1.1 INTRODUCTION . 1-1
1.2 THE FRONT END . 1-2
1.3 THE OUT-OF-ORDER ENGINE. 1-3
1.3.1 Execution Engine . 1-3
1.4 CACHE AND MEMORY SUBSYSTEM . 1-5
1.4.1 Load and Store Operation Enhancements . 1-5
1.4.2 Unlamination . 1-5
1.5 HASWELL-E MICROARCHITECTURE. 1-6
1.6 BROADWELL MICROARCHITECTURE. 1-7

CHAPTER 2
SANDY BRIDGE MICROARCHITECTURE
2.1 SANDY BRIDGE MICROARCHITECTURE PIPELINE OVERVIEW . 2-2
2.1.1 The Front End .2-3
2.1.1.1 Legacy Decode Pipeline .2-3
2.1.1.2 Decoded ICache .2-6
2.1.1.3 Branch Prediction. .2-7
2.1.1.4 Micro-op Queue and the Loop Stream Detector (LSD) .2-7
2.1.2 The Out-of-Order Engine .2-8
2.1.2.1 Renamer .2-8
2.1.2.2 Scheduler .2-9
2.1.3 The Execution Core .2-9
2.1.4 Cache Hierarchy .2-11
2.1.4.1 Load and Store Operation Overview .2-11
2.1.5 L1 DCache .2-12
2.1.5.1 Loads .2-13
2.1.5.2 Address Translation .2-14
2.1.5.3 Store Forwarding .2-14
2.1.5.4 Memory Disambiguation .2-16
2.1.6 Ring Interconnect and Last Level Cache .2-16
2.1.7 Data Prefetching .2-17
2.2 SYSTEM AGENT. 2-18
2.3 IVY BRIDGE MICROARCHITECTURE . 2-19

CHAPTER 3
INTEL® CORE™ MICROARCHITECTURE AND
ENHANCED INTEL® CORE™ MICROARCHITECTURE
3.1 INTEL® CORE™ MICROARCHITECTURE PIPELINE OVERVIEW . 3-2
3.1.1 Front End .3-3
3.1.1.1 Branch Prediction Unit. .3-3
3.1.1.2 Instruction Fetch Unit .3-4
3.2 INSTRUCTION CACHE AND ITLB. 3-4
3.2.1 Instruction Pre-Decode. .3-4
3.2.1.1 Instruction Queue (IQ) .3-5
3.2.1.2 Instruction Decode. .3-5
3.2.1.3 Stack Pointer Tracker .3-5
3.2.1.4 MicroFusion .3-5
3.2.2 Execution Core. .3-6
3.2.2.1 Issue Ports and Execution Units .3-6
3.3 INTEL® ADVANCED MEMORY ACCESS . 3-8
3.3.1 Loads and Stores .3-9
3.3.1.1 Data Prefetch to L1 caches .3-9
3.3.1.2 Data Prefetch Logic .3-10

Document #: 248966-049US iv

3.3.1.3 Store Forwarding3-10
3.3.1.4 Memory Disambiguation . 3-11
3.3.2 Intel® Advanced Smart Cache . 3-11
3.3.2.1 Loads . 3-13
3.3.2.2 Stores . 3-13

CHAPTER 4
NEHALEM MICROARCHITECTURE
4.1 MICROARCHITECTURE PIPELINE . 4-1
4.1.1 Front End Overview. 4-3
4.1.2 Execution Engine . 4-4
4.1.3 Issue Ports and Execution Units . 4-5
4.1.4 Load and Store Operation Enhancements . 4-6
4.1.5 Efficient Handling of Alignment Hazards. 4-6
4.1.6 Store Forwarding Enhancement . 4-7
4.2 REP STRING ENHANCEMENT . 4-9
4.3 ENHANCEMENTS FOR SYSTEM SOFTWARE . 4-10
4.3.1 Efficiency Enhancements for Power Consumption . 4-10
4.3.2 Intel® Hyper-Threading Technology (Intel® HT) Support in Nehalem Microarchitecture. 4-10

CHAPTER 5
KNIGHTS LANDING MICROARCHITECTURE
OPTIMIZATION
5.1 FRONT END . 5-3
5.1.1 Out-of-Order Engine . 5-3
5.1.2 UnTile . 5-6
5.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS LANDING MICROARCHITECTURE . . . 5-7
5.2.1 Using Gather and Scatter Instructions. 5-7
5.2.2 Using Enhanced Reciprocal Instructions . 5-8
5.3 USING AVX-512CD INSTRUCTIONS . 5-9
5.3.1 Using Intel® Hyper-Threading Technology (Intel® HT) . 5-9
5.3.2 Front End Considerations . 5-9
5.3.3 Instruction Decoder . 5-9
5.3.4 Branching Indirectly Across a 4GB Boundary . 5-10
5.4 INTEGER EXECUTION CONSIDERATIONS . 5-10
5.4.1 Flags usage. 5-10
5.4.2 Integer Division . 5-10
5.5 OPTIMIZING FP AND VECTOR EXECUTION . 5-10
5.5.1 Instruction Selection Considerations. 5-10
5.5.2 Porting Intrinsics from Previous Generation. 5-12
5.5.3 Vectorization Trade-Off Estimation . 5-13
5.6 MEMORY OPTIMIZATION . 5-15
5.6.1 Data Alignment . 5-15
5.6.2 Hardware Prefetcher . 5-15
5.6.3 Software Prefetch . 5-16
5.6.3.1 Memory Execution Cluster . 5-16
5.6.4 Store Forwarding. 5-17
5.6.5 Way, Set Conflicts . 5-17
5.6.6 Streaming Store Versus Regular Store. 5-18
5.6.7 Compiler Switches and Directives . 5-18
5.6.8 Direct Mapped MCDRAM Cache . 5-18

Document #: 248966-049US v

CHAPTER 6
EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE
OPTIMIZATION
6.1 OVERVIEW. 6-1
6.2 INTEL ATOM® MICROARCHITECTURE. 6-1
6.2.1 Intel® Hyper-Threading Technology (Intel® HT) Support in Intel Atom® Microarchitecture 6-3
6.3 CODING RECOMMENDATIONS FOR INTEL ATOM® MICROARCHITECTURE . 6-3
6.3.1 Optimization for Front End of Intel Atom® Microarchitecture .6-3
6.3.2 Optimizing the Execution Core. .6-5
6.3.2.1 Integer Instruction Selection. .6-5
6.3.2.2 Address Generation .6-5
6.3.2.3 Integer Multiply .6-6
6.3.2.4 Integer Shift Instructions .6-6
6.3.2.5 Partial Register Access .6-7
6.3.2.6 FP/SIMD Instruction Selection .6-7
6.3.3 Optimizing Memory Access .6-9
6.3.3.1 Store Forwarding .6-9
6.3.3.2 First-level Data Cache .6-9
6.3.3.3 Segment Base .6-9
6.3.3.4 String Moves. .6-10
6.3.3.5 Parameter Passing .6-10
6.3.3.6 Function Calls .6-11
6.3.3.7 Optimization of Multiply/Add Dependent Chains .6-11
6.3.3.8 Position Independent Code. .6-12
6.4 INSTRUCTION LATENCY . 6-13
6.5 SILVERMONT MICROARCHITECTURE . 6-20
6.5.1 Integer Pipeline .6-23
6.5.2 Floating-Point Pipeline .6-23
6.6 GOLDMONT MICROARCHITECTURE . 6-23
6.7 GOLDMONT PLUS MICROARCHITECTURE . 6-27
6.8 CODING RECOMMENDATIONS . 6-30
6.8.1 Optimizing The Front End. .6-30
6.8.1.1 Instruction Decoder .6-30
6.8.1.2 Front End High IPC Considerations .6-31
6.8.1.3 Branching Across 4GB Boundary. .6-33
6.8.1.4 Loop Unrolling and Loop Stream Detector .6-33
6.8.1.5 Mixing Code and Data .6-33
6.8.2 Optimizing The Execution Core .6-33
6.8.2.1 Scheduling. .6-33
6.8.2.2 Address Generation .6-33
6.8.2.3 FP Multiply-Accumulate-Store Execution. .6-34
6.8.2.4 Integer Multiply Execution .6-35
6.8.2.5 Zeroing Idioms .6-35
6.8.2.6 NOP Idioms .6-35
6.8.2.7 Move Elimination and ESP Folding .6-35
6.8.2.8 Stack Manipulation Instruction. .6-36
6.8.2.9 Flags usage .6-36
6.8.2.10 SIMD Floating-Point and X87 Instructions .6-36
6.8.2.11 SIMD Integer Instructions .6-36
6.8.2.12 Vectorization Considerations .6-37
6.8.2.13 Other SIMD Instructions .6-37
6.8.2.14 Instruction Selection .6-38
6.8.2.15 Integer Division. .6-39
6.8.2.16 Integer Shift .6-40
6.8.2.17 Pause Instruction .6-41
6.8.3 Optimizing Memory Accesses .6-41
6.8.3.1 Reduce Unaligned Memory Access with PALIGNR .6-41
6.8.3.2 Minimize Memory Execution Issues .6-41

Document #: 248966-049US vi

6.8.3.3 Store Forwarding6-41
6.8.3.4 PrefetchW Instruction .6-42
6.8.3.5 Cache Line Splits and Alignment .6-42
6.8.3.6 Segment Base .6-43
6.8.3.7 Copy and String Copy .6-43
6.9 INSTRUCTION LATENCY AND THROUGHPUT . 6-43

CHAPTER 7
INSTRUCTION LATENCY AND THROUGHPUT
7.1 OVERVIEW. 7-1
7.2 DEFINITIONS . 7-2
7.3 LATENCY AND THROUGHPUT . 7-2
7.3.1 Latency and Throughput with Register Operands. 7-3
7.3.2 Table Footnotes. .7-21
7.3.3 Instructions with Memory Operands. 7-22
7.3.3.1 Software Observable Latency of Memory References . 7-22

CHAPTER 8
INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX)
OPTIMIZATIONS
8.1 INTRODUCTION . 8-1
8.1.1 About Intel® TSX . 8-1
8.1.2 Optimization Outline. 8-3
8.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS . 8-3
8.2.1 Existing TSX-Enabled Locking Libraries . 8-4
8.2.1.1 Libraries Allowing Lock Elision for Unmodified Programs . 8-4
8.2.1.2 Libraries Requiring Program Modifications . 8-4
8.2.2 Initial Checks . 8-4
8.2.3 Run and Profile the Application . 8-4
8.2.4 Minimize Transactional Aborts . 8-5
8.2.4.1 Transactional Aborts Due to Data Conflicts . 8-6
8.2.4.2 Transactional Aborts Due to Limited Transactional Resources . 8-7
8.2.4.3 Lock Elision Specific Transactional Aborts . 8-8
8.2.4.4 HLE Specific Transactional Aborts. 8-9
8.2.4.5 Miscellaneous Transactional Aborts. 8-9
8.2.5 Using Transactional-Only Code Paths . 8-10
8.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate. 8-10
8.2.6.1 Transitioning to Non-Elided Execution without Aborting. 8-11
8.2.6.2 Forcing an Early Abort . 8-11
8.2.6.3 Not Eliding Selected Locks. 8-11
8.3 DEVELOPING AN INTEL TSX-ENABLED SYNCHRONIZATION LIBRARY . 8-12
8.3.1 Adding HLE Prefixes . 8-12
8.3.2 Elision Friendly Critical Section Locks . 8-12
8.3.3 Using HLE or RTM for Lock Elision . 8-12
8.3.4 An example wrapper for lock elision using RTM . 8-13
8.3.5 Guidelines for the RTM fallback handler. 8-14
8.3.6 Implementing Elision-Friendly Locks Using Intel® TSX . 8-15
8.3.6.1 Implementing a Simple Spinlock Using HLE . 8-15
8.3.6.2 Implementing Reader-Writer Locks Using Intel® TSX . 8-16
8.3.6.3 Implementing Ticket Locks Using Intel® TSX . 8-17
8.3.6.4 Implementing Queue-Based Locks Using Intel® TSX . 8-17
8.3.7 Eliding Application-Specific Meta-Locks Using Intel® TSX . 8-17
8.3.8 Avoiding Persistent Non-Elided Execution . 8-18
8.3.9 Reading the Value of an Elided Lock in RTM-Based Libraries . 8-20
8.3.10 Intermixing HLE and RTM . 8-20
8.4 USING THE PERFORMANCE MONITORING SUPPORT FOR INTEL® TSX . 8-21

Document #: 248966-049US vii

8.4.1 Measuring Transactional Success 8-21
8.4.2 Finding Locks to Elide and Verifying All Locks are Elided. . 8-22
8.4.3 Sampling Transactional Aborts. 8-22
8.4.4 Classifying Aborts Using a Profiling Tool . 8-22
8.4.5 XABORT Arguments for RTM Fallback Handlers . 8-23
8.4.6 Call Graphs for Transactional Aborts . 8-24
8.4.7 Last Branch Records and Transactional Aborts. 8-24
8.4.8 Profiling and Testing Intel TSX Software sing the Intel® SDE. 8-24
8.4.9 HLE Specific Performance Monitoring Events. 8-25
8.4.10 Computing Useful Metrics for Intel® TSX . 8-26
8.5 PERFORMANCE GUIDELINES . 8-27
8.6 DEBUGGING GUIDELINES. 8-27
8.7 COMMON INTRINSICS FOR INTEL® TSX . 8-28
8.7.1 RTM C Intrinsics. 8-28
8.7.1.1 _xbegin() . 8-28
8.7.1.2 Emulated RTM Intrinsics on Older GCC-Compatible Compilers . 8-28
8.7.2 HLE Intrinsics on GCC and Other Linux Compatible Compilers . 8-30
8.7.2.1 Generating HLE Intrinsics with GCC4.8. 8-30
8.7.2.2 C++11 Atomic Support . 8-30
8.7.2.3 Emulating HLE intrinsics with older GCC-Compatible Compilers . 8-31
8.7.3 HLE Intrinsics on Windows C/C++ Compilers . 8-31

Ref#: 248966-049 viii

TABLES
PAGE

Table 1-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture. 1-3
Table 1-2. Haswell Microarchitecture Execution Units and Representative Instructions 1-3
Table 1-3. Bypass Delay Between Producer and Consumer Micro-ops (Cycles). 1-4
Table 1-4. Cache Parameters of the Haswell Microarchitecture . 1-5
Table 1-5. TLB Parameters of the Haswell Microarchitecture . 1-5
Table 1-6. Components of the Front End. 1-6
Table 1-7. TLB Parameters of the Broadwell Microarchitecture . 1-7
Table 2-1. Components of the Front End of Sandy Bridge Microarchitecture . 2-3
Table 2-2. ICache and ITLB of Sandy Bridge Microarchitecture . 2-4
Table 2-3. Dispatch Port and Execution Stacks . 2-10
Table 2-4. Execution Core Writeback Latency (Cycles) . 2-10
Table 2-5. Cache Parameters . 2-11
Table 2-6. Lookup Order and Load Latency . 2-11
Table 2-7. L1 Data Cache Components . 2-12
Table 2-8. Effect of Addressing Modes on Load Latency . 2-13
Table 2-9. DTLB and STLB Parameters . 2-14
Table 2-10. Store Forwarding Conditions (1 and 2 byte stores). 2-15
Table 2-11. Store Forwarding Conditions (4-16 byte stores) . 2-15
Table 2-12. 32-byte Store Forwarding Conditions (0-15 byte alignment) . 2-15
Table 2-13. 32-byte Store Forwarding Conditions (16-31 byte alignment). 2-16
Table 3-1. Components of the Front End. 3-3
Table 3-2. Issue Ports of Intel® Core™ and Enhanced Intel® Core™ Microarchitectures. 3-7
Table 3-3. Cache Parameters of Processors based on Intel Core Microarchitecture 3-12
Table 3-4. Characteristics of Load and Store Operations in Intel Core Microarchitecture 3-13
Table 4-1. Bypass Delay Between Producer and Consumer Micro-ops (cycles) . 4-4
Table 4-2. Issue Ports of Nehalem Microarchitecture . 4-5
Table 4-3. Cache Parameters of Intel Core i7 Processors . 4-6
Table 4-4. Performance Impact of Address Alignments of MOVDQU from L1 . 4-7
Table 5-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture 5-4
Table 5-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture. 5-4
Table 5-3. Characteristics of Caching Resources . 5-5
Table 5-4. Alternatives to MSROM Instructions . 5-9
Table 5-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing

Microarchitecture . 5-13
Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture. 6-7
Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data . 6-13
Table 6-3. Function Unit Mapping of the Silvermont Microarchitecture . 6-22
Table 6-4. Comparison of Front End Cluster Features . 6-25
Table 6-5. Comparison of Distributed Reservation Stations on Scheduling Uops 6-25
Table 6-6. Function Unit Mapping of the Goldmont Microarchitecture . 6-26
Table 6-7. Comparison of MEC Resources . 6-26
Table 6-8. Comparison of Front End Cluster Features . 6-28
Table 6-9. Comparison of Distributed Reservation Stations on Scheduling Uops 6-29
Table 6-10. Function Unit Mapping of the Goldmont Plus Microarchitecture . 6-29
Table 6-11. Alternatives to MSROM Instructions . 6-30
Table 6-12. Comparison of Decoder Capabilities . 6-32
Table 6-13. Integer Multiply Operation Latency . 6-35
Table 6-14. Floating-Point and SIMD Integer Latency. 6-38
Table 6-15. Unsigned Integer Division Operation Latency . 6-40
Table 6-16. Signed Integer Division Operation Latency . 6-40
Table 6-17. Store Forwarding Conditions (1 and 2 Byte Stores) . 6-41
Table 6-18. Store Forwarding Conditions (4-16 Byte Stores) . 6-42
Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel® Atom®

Processors . 6-44

Ref#: 248966-049 ix

TABLES
PAGE

Table 7-1. CPUID Signature Values of Recent Intel Microarchitectures . 7-3
Table 7-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature) 7-4
Table 7-3. BMI1, BMI2 and General Purpose Instructions . 7-4
Table 7-4. 256-bit Intel® AVX2 Instructions . 7-5
Table 7-6. BMI1, BMI2 and General Purpose Instructions . 7-7
Table 7-5. Gather Timing Data from L1D* . 7-7
Table 7-7. F16C,RDRAND Instructions . 7-8
Table 7-8. 256-bit Intel® AVX Instructions . 7-8
Table 7-9. AESNI and PCLMULQDQ Instructions . 7-11
Table 7-10. Intel® SSE4.2 Instructions . 7-11
Table 7-11. Intel® SSE4.1 Instructions . 7-12
Table 7-12. Intel® SSE3 Instructions . 7-13
Table 7-13. Intel® SSE3 SIMD Floating-point Instructions . 7-13
Table 7-14. Intel® SIM SSE2 128-bit Integer Instructions . 7-14
Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions. 7-16
Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions. 7-18
Table 7-17. General Purpose Instructions . 7-19
Table 7-18. Pointer-Chasing Variability of Software Measurable Latency of

L1 Data Cache Latency . 7-22
Table 8-1. Additional Resources . 8-1
Table 8-2. RTM Abort Status Definition . 8-23

Ref#: 248966-049 x

EXAMPLES

EXAMPLES

Example 5-1. Gather Comparison Between Intel® AVX-512F and Intel® AVX2 .5-8
Example 5-2. Gather Comparison Between Intel® AVX-512F and Previous Generation Equivalent 5-8
Example 5-3. Using VRCP28SS for 32-bit Floating-Point Division .5-8
Example 5-4. Replace VCOMIS* with VCMPSS/KORTEST . 5-11
Example 5-5. Using Software Sequence for Horizontal Reduction . 5-12
Example 5-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture 5-12
Example 5-7. Ordering of Memory Instruction for MEC . 5-16
Example 6-1. Instruction Pairing and Alignment to Optimize Decode Throughput on
Intel Atom® Microarchitecture .6-4
Example 6-2. Alternative to Prevent AGU and Execution Unit Dependency .6-6
Example 6-3. Pipeling Instruction Execution in Integer Computation .6-6
Example 6-4. Memory Copy of 64-byte . 6-10
Example 6-5. Examples of Dependent Multiply and Add Computation . 6-11
Example 6-6. Instruction Pointer Query Techniques . 6-12
Example 6-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict 6-34
Example 6-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC 6-34
Example 8-1. Reduce Data Conflict with Conditional Updates .8-7
Example 8-2. Transition from Non-Elided Execution without Aborting . 8-11
Example 8-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives . 8-13
Example 8-4. Spin Lock Example Using HLE in GCC 4.8 and Later . 8-15
Example 8-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic 8-16
Example 8-6. A Meta Lock Example . 8-18
Example 8-7. A Meta Lock Example Using RTM . 8-18
Example 8-8. HLE-Enabled Lock-Acquire/ Lock-Release Sequence . 8-19
Example 8-9. A Spin Wait Example Using HLE . 8-19
Example 8-10. A Conceptual Example of Intermixed HLE and RTM . 8-21
Example 8-11. Emulated RTM intrinsic for Older GCC Compilers . 8-29
Example 8-12. C++ Example of HLE Intrinsic . 8-30
Example 8-13. Emulated HLE Intrinsic with Older GCC Compiler . 8-31
Example 8-14. HLE Intrinsic Supported by Intel and Microsoft Compilers . 8-31

Ref#: 248966-049

FIGURES
 PAGE

Figure 1-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture. .1-1
Figure 1-2. Four Core System Integration of the Haswell Microarchitecture .1-2
Figure 1-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores1-7
Figure 2-1. Sandy Bridge Microarchitecture Pipeline Functionality .2-2
Figure 3-1. Intel® Core™ Microarchitecture Pipeline Functionality .3-2
Figure 3-2. Execution Core of Intel Core Microarchitecture .3-8
Figure 3-3. Store-Forwarding Enhancements in Enhanced Intel® Core™ Microarchitecture3-11
Figure 3-4. Intel® Advanced Smart Cache Architecture .3-12
Figure 4-1. Nehalem Microarchitecture Pipeline Functionality .4-2
Figure 4-2. Front End of Nehalem Microarchitecture .4-3
Figure 4-3. Store-Forwarding Scenarios of 16-Byte Store Operations .4-8
Figure 4-4. Store-Forwarding Enhancement in Nehalem Microarchitecture. .4-9
Figure 5-1. Tile-Mesh Topology of the Knights Landing Microarchitecture .5-1
Figure 5-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture5-2
Figure 6-1. Intel Atom® Microarchitecture Pipeline. .6-2
Figure 6-2. Silvermont Microarchitecture Pipeline .6-21
Figure 6-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture. .6-24
Figure 6-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture.6-28

CHAPTER 1
HASWELL MICROARCHITECTURE

1.1 INTRODUCTION
The Haswell microarchitecture builds on the successes of the Sandy Bridge and Ivy Bridge microarchitectures. The
basic pipeline functionality of the Haswell microarchitecture is depicted in Figure 1-1. In general, most of the features
described in Section 1.2 - Section 1.4 also apply to the Broadwell microarchitecture. Enhancements of the Broadwell
microarchitecture are summarized in Section 1.6.

The Haswell microarchitecture offers the following innovative features:

• Support for Intel Advanced Vector Extensions 2 (Intel® AVX2), FMA.

• Support for general-purpose, new instructions to accelerate integer numeric encryption.

• Support for Intel® Transactional Synchronization Extensions (Intel® TSX).

• Each core can dispatch up to 8 micro-ops per cycle.

• 256-bit data path for memory operation, FMA, AVX floating-point and AVX2 integer execution units.

• Improved L1D and L2 cache bandwidth.

• Two FMA execution pipelines.

• Four arithmetic logical units (ALUs).

• Three store address ports.

• Two branch execution units.

• Advanced power management features for IA processor core and uncore sub-systems.

Figure 1-1. CPU Core Pipeline Functionality of the Haswell Microarchitecture

M em o ry C on trol

32 K L1 D a ta C ache

STD

Po rt 4

LD /STA

P ort 3

LD /S TA

Port 2

ALU
Fast LEA
VE C ALU
VE C LO G

FP m u l
FM A
FP add
S lo w Int

Po rt 1

A LU
Fast LEA
V EC A LU
V EC LO G
V EC SH UF

P ort 5

A LU, Sh ftA LU
SH FT
V EC LO G
V EC SH FT
FP m ul
FM A
D IV
STTN I
Branch 2

Po rt 0

P re-D eco de In struction Qu eue

25 6K L2 Ca ch e (Un ified)

Scheduler

Load Buffers, S tore Buffers,
Reo rder Buffers

Line F ill Buffers

P rim ary Bran ch

P ort 6

M SRO M

D ecoder

Uo p Cach e (D SB)

A llo ca te/Renam e/Retire/
M oveElim in ation /Zero Id io m

3 2K L1 Instruction C ache

BPU

Document #: 356477-050US 1-2

HASWELL MICROARCHITECTURE

• Support for optional fourth level cache.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-system
consisting of a number of components including a ring interconnect to multiple slices of L3 (an off-die L4 is optional),
processor graphics, integrated memory controller, interconnect fabrics, etc. An example of the system integration
view of four CPU cores with uncore components is illustrated in Figure 1-2.

1.2 THE FRONT END
The front end of Haswell microarchitecture builds on that of the Sandy Bridge and Ivy Bridge microarchitectures, see
Chapter 2, “Sandy Bridge Microarchitecture” and Section 2.3, “Ivy Bridge Microarchitecture”. Additional
enhancements in the front end include:

• The uop cache (or decoded ICache) is partitioned equally between two logical processors.

• The instruction decoders will alternate between each active logical processor. If one sibling logical processor is
idle, the active logical processor will use the decoders continuously.

• The LSD in the micro-op queue (or IDQ) can detect small loops up to 56 micro-ops. The 56-entry micro-op queue
is shared by two logical processors if Hyper-Threading Technology is active (Sandy Bridge microarchitecture
provides duplicated 28-entry micro-op queue in each core).

Figure 1-2. Four Core System Integration of the Haswell Microarchitecture

CPU Core

DMI

CPU Core

System Agent

Legend: Uncore

PCIe DMI
DRAM

Disp

CPU Core

CPU Core

CPU Core

Processor Graphics/
Media Engine

L3 Slice

L3 Slice

L3 Slice

L3 Slice

Eng
PEG PCIe

Brdg
IMc

Document #: 356477-050US 1-3

HASWELL MICROARCHITECTURE

1.3 THE OUT-OF-ORDER ENGINE
The key components and significant improvements to the out-of-order engine are summarized below:

Renamer: The Renamer moves micro-ops from the micro-op queue to bind to the dispatch ports in the Scheduler
with execution resources. Zero-idiom, one-idiom and zero-latency register move operations are performed by the
Renamer to free up the Scheduler and execution core for improved performance.

Scheduler: The Scheduler controls the dispatch of micro-ops onto the dispatch ports. There are eight dispatch ports
to support the out-of-order execution core. Four of the eight ports provided execution resources for computational
operations. The other 4 ports support memory operations of up to two 256-bit load and one 256-bit store operation
in a cycle.

Execution Core: The scheduler can dispatch up to eight micro-ops every cycle, one on each port. Of the four ports
providing computational resources, each provides an ALU, two of these execution pipes provided dedicated FMA
units. With the exception of division/square-root, STTNI/AESNI units, most floating-point and integer SIMD execution
units are 256-bit wide. The four dispatch ports servicing memory operations consist with two dual-use ports for load
and store-address operation. Plus a dedicated 3rd store-address port and one dedicated store-data port. All memory
ports can handle 256-bit memory micro-ops. Peak floating-point throughput, at 32 single-precision operations per
cycle and 16 double-precision operations per cycle using FMA, is twice that of Sandy Bridge microarchitecture.

The out-of-order engine can handle 192 uops in flight compared to 168 in Sandy Bridge microarchitecture.

1.3.1 EXECUTION ENGINE
Table 1-1 summarizes which operations can be dispatched on which port.

Table 1-1. Dispatch Port and Execution Stacks of the Haswell Microarchitecture

Port 0 Port 1 Port 2, 3 Port 4 Port 5 Port 6 Port 7

•ALU,
•Shift

•ALU,
•Fast LEA,
•BM

•Load_Add
r,

•Store_add
r

Store_data

•ALU,
•Fast LEA,
•BM

•ALU,
•Shift,
•JEU

•Store_addr,
•Simple_AGU

•SIMD_Log,
SIMD misc,
SIMD_Shifts

•SIMD_ALU,
SIMD_Log

•SIMD_ALU,
•SIMD_Log,

•FMA/FP_m
ul

•Divide

•FMA/FP_mu
l

•FP_add
Shuffle

2nd_Jeu slow_int, •FP mov
•AES

Document #: 356477-050US 1-4

HASWELL MICROARCHITECTURE

Table 1-2 lists execution units and common representative instructions that rely on these units. Table 1-2 also
includes some instructions that are available only on processors based on the Broadwell microarchitecture.

The reservation station (RS) is expanded to 60 entries deep (compared to 54 entries in Sandy Bridge
microarchitecture). It can dispatch up to eight micro-ops in one cycle if the micro-ops are ready to execute. The RS
dispatch a micro-op through an issue port to a specific execution cluster, arranged in several stacks to handle specific
data types or granularity of data.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a delay can
occur. The delay occurs also for transitions between Intel SSE integer and Intel SSE floating-point operations. In some
of the cases the data transition is done using a micro-op that is added to the instruction flow.

Table 1-2. Haswell Microarchitecture Execution Units and Representative Instructions

Execution
Unit

of
Ports Instructions

ALU 4 add, and, cmp, or, test, xor, movzx, movsx, mov, (v)movdqu, (v)movdqa

SHFT 2 sal, shl, rol, adc, sarx, (adcx, adox)1 etc.

NOTES:
1. Only available in processors based on the Broadwell microarchitecture and support CPUID ADX feature flag.

Slow Int 1 mul, imul, bsr, rcl, shld, mulx, pdep, etc.

BM 2 andn, bextr, blsi, blsmsk, bzhi, etc

SIMD Log 3 (v)pand, (v)por, (v)pxor, (v)movq, (v)movq, (v)blendp*, vpblendd

SIMD_Shft 1 (v)psl*, (v)psr*

SIMD ALU 2 (v)padd*, (v)psign, (v)pabs, (v)pavgb, (v)pcmpeq*, (v)pmax, (v)pcmpgt*

Shuffle 1 (v)shufp*, vperm*, (v)pack*, (v)unpck*, (v)punpck*, (v)pshuf*, (v)pslldq, (v)alignr,
(v)pmovzx*, vbroadcast*, (v)pslldq, (v)pblendw

SIMD Misc 1 (v)pmul*, (v)pmadd*, STTNI, (v)pclmulqdq, (v)psadw, (v)pcmpgtq, vpsllvd, (v)bendv*,
(v)plendw,

FP Add 1 (v)addp*, (v)cmpp*, (v)max*, (v)min*,

FP Mov 1 (v)movap*, (v)movup*, (v)movsd/ss, (v)movd gpr, (v)andp*, (v)orp*

DIVIDE 1 divp*, divs*, vdiv*, sqrt*, vsqrt*, rcp*, vrcp*, rsqrt*, idiv

Table 1-3. Bypass Delay Between Producer and Consumer Micro-ops (Cycles)

From/To INT SSE-INT/AVX-INT SSE-FP/AVX-P_LOW X87/AVX-FP_High

INT
•micro-op (port 5)
•micro-op (port 6) +

1 cycle

•micro-op (port 5)
•micro-op (port 6)

+ 1 cycle

micro-op (port 5)
+ 3 cycle delay

SSE-INT/
AVX-INT micro-op (port 1) 1 cycle delay

Document #: 356477-050US 1-5

HASWELL MICROARCHITECTURE

1.4 CACHE AND MEMORY SUBSYSTEM
The cache hierarchy is similar to prior generations, including an instruction cache, a first-level data cache and a
second-level unified cache in each core, and a 3rd-level unified cache with size dependent on specific product
configuration. The 3rd-level cache is organized as multiple cache slices, the size of each slice may depend on product
configurations, connected by a ring interconnect. The exact details of the cache topology is reported by CPUID leaf 4.
The third level cache resides in the “uncore” sub-system that is shared by all the processor cores. In some product
configurations, a fourth level cache is also supported. Table 1-4 provides more details of the cache hierarchy.

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB for L2.

SSE-FP/
AVX-FP_LOW micro-op (port 1) 1 cycle delay micro-op (port 5)

+ 1 cycle delay

X87/
AVX-FP_High

micro-op (port 1)
+ 3 cycle delay

micro-op (port 5)
+ 1cycle delay

Load 1 cycle delay 1 cycle delay 2 cycle delay

Table 1-4. Cache Parameters of the Haswell Microarchitecture

Level Capacity/
Associativity

Line Size
(bytes)

Fastest
Latency1

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors. L3 latency can vary due to

clock ratios between the processor core and uncore.

Throughput
(clocks)

Peak Bandwidth
(bytes/cyc)

Update
Policy

First Level Data 32 KB/ 8 64 4 cycle 0.52

2. First level data cache supports two load micro-ops each cycle; each micro-op can fetch up to 32-bytes of data.

64 (Load) + 32
(Store) Writeback

Instruction 32 KB/8 64 N/A N/A N/A N/A

Second Level 256KB/8 64 11 cycle Varies 64 Writeback

Third Level
(Shared L3) Varies 64 ~34 Varies - Writeback

Table 1-5. TLB Parameters of the Haswell Microarchitecture
Level Page Size Entries Associativity Partition

Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread - fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2/4MB pages 1024 8 fixed

Table 1-3. Bypass Delay Between Producer and Consumer Micro-ops (Cycles) (Contd.)

From/To INT SSE-INT/AVX-INT SSE-FP/AVX-P_LOW X87/AVX-FP_High

Document #: 356477-050US 1-6

HASWELL MICROARCHITECTURE

1.4.1 LOAD AND STORE OPERATION ENHANCEMENTS
The L1 data cache can handle two 256-bit load and one 256-bit store operations each cycle. The unified L2 can service
one cache line (64 bytes) each cycle. Additionally, there are 72 load buffers and 42 store buffers available to support
micro-ops execution in-flight.

1.4.2 UNLAMINATION
Some micro-fused instructions cannot be allocated as a single uop, and therefore they break into two uops in the
micro-op queue. The process of breaking a fused instruction into its uops is called unlamination.

Unlamination will take place if the number of fused instruction sources is greater than three.

Instruction sources in the context of unlamination are considered to be one of the following: memory address base,
memory address index, source register, destination register (including flags), or a source and destination register.

A memory operand in the context of unlamination can have up to two sources. A memory address in the x86
instruction set is constructed from: base + index*scale + displacement.

Only a base and an index are counted as instruction sources. Notice that if an index exists, the base is counted as a
source even if it's not present.

In addition, source and destination registers are counted as two sources; this is also true in the case where the source
and destination register are the same.

The following table shows examples of micro-fused instructions and details of unlamination.

1.5 HASWELL-E MICROARCHITECTURE
Intel processors based on the Haswell-E microarchitecture comprises the same processor cores as described in the
Haswell microarchitecture, but provides more advanced uncore and integrated I/O capabilities. Processors based on
the Haswell-E microarchitecture support platforms with multiple sockets.

The Haswell-E microarchitecture supports versatile processor architectures and platform configurations for
scalability and high performance. Some of capabilities provided by the uncore and integrated I/O sub-system of the
Haswell-E microarchitecture include:

Table 1-6. Components of the Front End

Instruction
Example Source Destination Source &

Destination Index Base
Number

of
Sources1

NOTES:
1. Recommendation: to avoid unlamination, keep the number of micro-fused instruction sources under 4.

Unlaminated

mulss xmm1,
[4*rax+100] - - xmm1 rax 0 3 no

vmulss xmm1,
xmm1, [rax +100] xmm1 xmm1 - - rax 3 no

vmulss xmm1,
xmm1, [4*rax+100] xmm1 xmm1 - rax 0 4 yes

cmp rax,
[rbx+4*rax+4] rax flags - rax rbx 4 yes

cmp rax, [rbx+4] rax flags - - rbx 3 no

Document #: 356477-050US 1-7

HASWELL MICROARCHITECTURE

• Support for multiple Intel QPI interconnects in multi-socket configurations.

• Up to two integrated memory controllers per physical processor.

• Up to 40 lanes of Intel® PCI Express* 3.0 links per physical processor.

• Up to 18 processor cores connected by two ring interconnects to the L3 in each physical processor.

An example of a possible 12-core processor implementation using the Haswell-E microarchitecture is illustrated in
Figure 1-3. The capabilities of the uncore and integrated I/O sub-system vary across the processor family
implementing the Haswell-E microarchitecture. For details, please consult the data sheets of respective Intel Xeon E5
v3 processors.

1.6 BROADWELL MICROARCHITECTURE
Intel Core M processors are based on the Broadwell microarchitecture. The Broadwell microarchitecture builds from
the Haswell microarchitecture and provides several enhancements. This section covers enhpoanced features of the
Broadwell microarchitecture.

• Floating-int multiply instruction latency is improved from five cycles in prior generation to three cycles in the
Broadwell microarchitecture. This applies to Intel AVX, Intel SSE and FP instruction sets.

• The throughput of gather instructions has been improved significantly.

• The PCLMULQDQ instruction implementation is a single uop in the Broadwell microarchitecture with improved
latency and throughput.

Figure 1-3. An Example of the Haswell-E Microarchitecture Supporting 12 Processor Cores

Core

QPII Links
CPU Core

Legend: Uncore
PCIe QPI

DRAMHome Agent
Memory Controller

L3 Slice

Integrated I/O

Sbox

Core L3 Slice

Core L3 Slice

Core L3 Slice

DRAM DRAMHome Agent
Memory Controller

DRAM

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Core L3 Slice

Sbox

Document #: 356477-050US 1-8

HASWELL MICROARCHITECTURE

The TLB hierarchy consists of dedicated level one TLB for instruction cache, TLB for L1D, plus unified TLB for L2.
Table 1-7. TLB Parameters of the Broadwell Microarchitecture

Level Page Size Entries Associativity Partition
Instruction 4KB 128 4 ways dynamic

Instruction 2MB/4MB 8 per thread fixed

First Level Data 4KB 64 4 fixed

First Level Data 2MB/4MB 32 4 fixed

First Level Data 1GB 4 4 fixed

Second Level Shared by 4KB and 2MB pages 1536 6 fixed

Second Level 1GB pages 16 4 fixed

Document #: 356477-050US 2-1

SANDY BRIDGE MICROARCHITECTURE

CHAPTER 2
SANDY BRIDGE MICROARCHITECTURE

Sandy Bridge microarchitecture builds on the successes of Intel® Core™ microarchitecture and Nehalem
microarchitecture. It offers the following innovative features:

• Intel Advanced Vector Extensions (Intel AVX)

— 256-bit floating-point instruction set extensions to the 128-bit Intel SSE, providing up to 2X performance
benefits relative to 128-bit code.

— Non-destructive destination encoding offers more flexible coding techniques.

— Supports flexible migration and co-existence between 256-bit AVX code, 128-bit AVX code and legacy 128-bit
SSE code.

• Enhanced front end and execution engine

— New decoded ICache component that improves front end bandwidth and reduces branch misprediction
penalty.

— Advanced branch prediction.

— Additional macro-fusion support.

— Larger dynamic execution window.

— Multi-precision integer arithmetic enhancements (ADC/SBB, MUL/IMUL).

— LEA bandwidth improvement.

— Reduction of general execution stalls (read ports, writeback conflicts, bypass latency, partial stalls).

— Fast floating-point exception handling.

— XSAVE/XRSTORE performance improvements and XSAVEOPT new instruction.

• Cache hierarchy improvements for wider data path

— Doubling of bandwidth enabled by two symmetric ports for memory operation.

— Simultaneous handling of more in-flight loads and stores enabled by increased buffers.

— Internal bandwidth of two loads and one store each cycle.

— Improved prefetching.

— High bandwidth low latency LLC architecture.

— High bandwidth ring architecture of on-die interconnect.

• System-on-a-chip support

— Integrated graphics and media engine in second generation Intel Core processors.

— Integrated Intel® PCIe controller.

— Integrated memory controller.

• Next generation Intel Turbo Boost Technology

— Leverage TDP headroom to boost performance of CPU cores and integrated graphic unit.

Document #: 356477-050US 2-2

SANDY BRIDGE MICROARCHITECTURE

2.1 SANDY BRIDGE MICROARCHITECTURE PIPELINE OVERVIEW
Figure 2-1 depicts the pipeline and major components of a processor core that’s based on Sandy Bridge
microarchitecture. The pipeline consists of:

• An in-order issue front end that fetches instructions and decodes them into micro-ops (micro-operations). The
front end feeds the next pipeline stages with a continuous stream of micro-ops from the most likely path that the
program will execute.

• An out-of-order, superscalar execution engine that dispatches up to six micro-ops to execution, per cycle. The
allocate/rename block reorders micro-ops to "dataflow" order so they can execute as soon as their sources are
ready and execution resources are available.

• An in-order retirement unit that ensures that the results of execution of the micro-ops, including any exceptions
they may have encountered, are visible according to the original program order.

The flow of an instruction in the pipeline can be summarized in the following progression:

1. The Branch Prediction Unit chooses the next block of code to execute from the program. The processor searches
for the code in the following resources, in this order:
a. Decoded ICache.

b. Instruction Cache, via activating the legacy decode pipeline.

c. L2 cache, last level cache (LLC) and memory, as necessary.

2. The micro-ops corresponding to this code are sent to the Rename/retirement block. They enter into the
scheduler in program order, but execute and are de-allocated from the scheduler according to data-flow order.
For simultaneously ready micro-ops, FIFO ordering is nearly always maintained.

Figure 2-1. Sandy Bridge Microarchitecture Pipeline Functionality

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

256- FP MUL

ALU

V-Shuffle

Scheduler

ALU ALU
JMPV-AddV-Mul

Fdiv
V-Shuffle

Load Load STD
StAddr StAddr

256- FP Add
256- FP Shuf

256- FP Blend

256- FP Bool

Memory Control

32K L1 Data Cache

Allocate/Rename/Retire

Branch Predictor
1.5K uOP Cache

256K L2 Cache (Unified)

32K L1 Instruction Cache Pre-decode
Decoders

Instr Queue

256- FP Blend

Load
Buffers

Store
Buffers

Reorder
Buffers

Line Fill
Buffers

In-order
out-of-order

48 bytes/cycle

Document #: 356477-050US 2-3

SANDY BRIDGE MICROARCHITECTURE

Micro-op execution is executed using execution resources arranged in three stacks. The execution units in each
stack are associated with the data type of the instruction.

Branch mispredictions are signaled at branch execution. It re-steers the front end which delivers micro-ops from
the correct path. The processor can overlap work preceding the branch misprediction with work from the
following corrected path.

3. Memory operations are managed and reordered to achieve parallelism and maximum performance. Misses to
the L1 data cache go to the L2 cache. The data cache is non-blocking and can handle multiple simultaneous
misses.

4. Exceptions (Faults, Traps) are signaled at retirement (or attempted retirement) of the faulting instruction.

Each processor core based on Sandy Bridge microarchitecture can support two logical processor if Intel® Hyper-
Threading Technology (Intel® HT) is enabled.

2.1.1 THE FRONT END
This section describes the key characteristics of the front end. Table 2-1 lists the components of the front end, their
functions, and the problems they address.

2.1.1.1 Legacy Decode Pipeline
The Legacy Decode Pipeline comprises the instruction translation lookaside buffer (ITLB), the instruction cache
(ICache), instruction pre-decode, and instruction decode units.

Table 2-1. Components of the Front End of Sandy Bridge Microarchitecture
Component Functions Performance Challenges

Instruction Cache 32-Kbyte backing store of instruction bytes Fast access to hot code instruction bytes

Legacy Decode
Pipeline

Decode instructions to micro-ops, delivered
to the micro-op queue and the Decoded
ICache.

Provides the same decode latency and
bandwidth as prior Intel processors.
Decoded ICache warm-up

Decoded ICache Provide stream of micro-ops to the micro-
op queue.

Provides higher micro-op bandwidth at
lower latency and lower power than the
legacy decode pipeline

MSROM
Complex instruction micro-op flow store,
accessible from both Legacy Decode
Pipeline and Decoded ICache

Branch Prediction
Unit (BPU)

Determine next block of code to be
executed and drive lookup of Decoded
ICache and legacy decode pipelines.

Improves performance and energy
efficiency through reduced branch
mispredictions.

Micro-op queue Queues micro-ops from the Decoded
ICache and the legacy decode pipeline.

Hide front end bubbles; provide
execution micro-ops at a constant rate.

Document #: 356477-050US 2-4

SANDY BRIDGE MICROARCHITECTURE

Instruction Cache and ITLB
An instruction fetch is a 16-byte aligned lookup through the ITLB and into the instruction cache. The instruction cache
can deliver every cycle 16 bytes to the instruction pre-decoder. Table 2-1 compares the ICache and ITLB with prior
generation.

Upon ITLB miss there is a lookup to the Second level TLB (STLB) that is common to the DTLB and the ITLB. The penalty
of an ITLB miss and a STLB hit is seven cycles.

Instruction PreDecode
The predecode unit accepts the 16 bytes from the instruction cache and determines the length of the instructions.

The following length changing prefixes (LCPs) imply instruction length that is different from the default length of
instructions. Therefore they cause an additional penalty of three cycles per LCP during length decoding. Previous
processors incur a six-cycle penalty for each 16-byte chunk that has one or more LCPs in it. Since usually there is no
more than one LCP in a 16-byte chunk, in most cases, Sandy Bridge microarchitecture introduces an improvement
over previous processors.

• Operand Size Override (66H) preceding an instruction with a word/double immediate data. This prefix might
appear when the code uses 16 bit data types, Unicode processing, and image processing.

• Address Size Override (67H) preceding an instruction with a modr/m in real, big real, 16-bit protected or 32-bit
protected modes. This prefix may appear in boot code sequences.

• The REX prefix (4xh) in the Intel® 64 instruction set can change the size of two classes of instructions: MOV offset
and MOV immediate. Despite this capability, it does not cause an LCP penalty and hence is not considered an LCP.

Instruction Decode
There are four decoding units that decode instruction into micro-ops. The first can decode all IA-32 and Intel 64
instructions up to four micro-ops in size. The remaining three decoding units handle single-micro-op instructions. All
four decoding units support the common cases of single micro-op flows including micro-fusion and macro-fusion.

Micro-ops emitted by the decoders are directed to the micro-op queue and to the Decoded ICache. Instructions
longer than four micro-ops generate their micro-ops from the MSROM. The MSROM bandwidth is four micro-ops per
cycle. Instructions whose micro-ops come from the MSROM can start from either the legacy decode pipeline or from
the Decoded ICache.

MicroFusion
Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The complex micro-
op is dispatched in the out-of-order execution core as many times as it would if it were not micro-fused.

Micro-fusion enables you to use memory-to-register operations, also known as the complex instruction set computer
(CISC) instruction set, to express the actual program operation without worrying about a loss of decode bandwidth.
Micro-fusion improves instruction bandwidth delivered from decode to retirement and saves power.

Table 2-2. ICache and ITLB of Sandy Bridge Microarchitecture
Component Sandy Bridge Microarchitecture Nehalem Microarchitecture
ICache Size 32-Kbyte 32-Kbyte

ICache Ways 8 4

ITLB 4K page entries 128 128

ITLB large page (2M or 4M) entries 8 7

Document #: 356477-050US 2-5

SANDY BRIDGE MICROARCHITECTURE

Coding an instruction sequence by using single-uop instructions will increases the code size, which can decrease fetch
bandwidth from the legacy pipeline.

The following are examples of micro-fused micro-ops that can be handled by all decoders.

• All stores to memory, including store immediate. Stores execute internally as two separate functions, store-
address and store-data.

• All instructions that combine load and computation operations (load+op), for example:

— ADDPS XMM9, OWORD PTR [RSP+40]

— FADD DOUBLE PTR [RDI+RSI*8]

— XOR RAX, QWORD PTR [RBP+32]

• All instructions of the form "load and jump," for example:

— JMP [RDI+200]

— RET

• CMP and TEST with immediate operand and memory

An instruction with RIP relative addressing is not micro-fused in the following cases:

• An additional immediate is needed, for example:

— CMP [RIP+400], 27

— MOV [RIP+3000], 142

• The instruction is a control flow instruction with an indirect target specified using RIP-relative addressing, for
example:

— JMP [RIP+5000000]

In these cases, an instruction that can not be micro-fused will require decoder 0 to issue two micro-ops, resulting in a
slight loss of decode bandwidth.

In 64-bit code, the usage of RIP Relative addressing is common for global data. Since there is no micro-fusion in these
cases, performance may be reduced when porting 32-bit code to 64-bit code.

MacroFusion
Macro-fusion merges two instructions into a single micro-op. In Intel Core microarchitecture, this hardware
optimization is limited to specific conditions specific to the first and second of the macro-fusable instruction pair.

• The first instruction of the macro-fused pair modifies the flags. The following instructions can be macro-fused:

— In Nehalem microarchitecture: CMP, TEST.

— In Sandy Bridge microarchitecture: CMP, TEST, ADD, SUB, AND, INC, DEC

— These instructions can fuse if

• The first source / destination operand is a register.

• The second source operand (if exists) is one of: immediate, register, or non RIP-relative memory.

Macro fusion does not happen if the first instruction ends on byte 63 of a cache line, and the second instruction is a
conditional branch that starts at byte 0 of the next cache line.

Since these pairs are common in many types of applications, macro-fusion improves performance even on non-
recompiled binaries.

Each macro-fused instruction executes with a single dispatch. This reduces latency and frees execution resources. You
also gain increased rename and retire bandwidth, increased virtual storage, and power savings from representing
more work in fewer bits.

Document #: 356477-050US 2-6

SANDY BRIDGE MICROARCHITECTURE

2.1.1.2 Decoded ICache
The Decoded ICache is essentially an accelerator of the legacy decode pipeline. By storing decoded instructions, the
Decoded ICache enables the following features:

• Reduced latency on branch mispredictions.

• Increased micro-op delivery bandwidth to the out-of-order engine.

• Reduced front end power consumption.

The Decoded ICache caches the output of the instruction decoder. The next time the micro-ops are consumed for
execution the decoded micro-ops are taken from the Decoded ICache. This enables skipping the fetch and decode
stages for these micro-ops and reduces power and latency of the Front End. The Decoded ICache provides average hit
rates of above 80% of the micro-ops; furthermore, "hot spots" typically have hit rates close to 100%.

Typical integer programs average less than four bytes per instruction, and the front end is able to race ahead of the
back end, filling in a large window for the scheduler to find instruction level parallelism. However, for high
performance code with a basic block consisting of many instructions, for example, Intel SSE media algorithms or
excessively unrolled loops, the 16 instruction bytes per cycle is occasionally a limitation. The 32-byte orientation of
the Decoded ICache helps such code to avoid this limitation.

The Decoded ICache automatically improves performance of programs with temporal and spatial locality. However, to
fully utilize the Decoded ICache potential, you might need to understand its internal organization.

The Decoded ICache consists of 32 sets. Each set contains eight Ways. Each Way can hold up to six micro-ops. The
Decoded ICache can ideally hold up to 1536 micro-ops.

The following are some of the rules how the Decoded ICache is filled with micro-ops:

• All micro-ops in a Way represent instructions which are statically contiguous in the code and have their EIPs
within the same aligned 32-byte region.

• Up to three Ways may be dedicated to the same 32-byte aligned chunk, allowing a total of 18 micro-ops to be
cached per 32-byte region of the original IA program.

• A multi micro-op instruction cannot be split across Ways.

• Up to two branches are allowed per Way.

• An instruction which turns on the MSROM consumes an entire Way.

• A non-conditional branch is the last micro-op in a Way.

• Micro-fused micro-ops (load+op and stores) are kept as one micro-op.

• A pair of macro-fused instructions is kept as one micro-op.

• Instructions with 64-bit immediate require two slots to hold the immediate.

When micro-ops cannot be stored in the Decoded ICache due to these restrictions, they are delivered from the legacy
decode pipeline. Once micro-ops are delivered from the legacy pipeline, fetching micro-ops from the Decoded ICache
can resume only after the next branch micro-op. Frequent switches can incur a penalty.

The Decoded ICache is virtually included in the Instruction cache and ITLB. That is, any instruction with micro-ops in
the Decoded ICache has its original instruction bytes present in the instruction cache. Instruction cache evictions
must also be evicted from the Decoded ICache, which evicts only the necessary lines.

There are cases where the entire Decoded ICache is flushed. One reason for this can be an ITLB entry eviction. Other
reasons are not usually visible to the application programmer, as they occur when important controls are changed, for
example, mapping in CR3, or feature and mode enabling in CR0 and CR4. There are also cases where the Decoded
ICache is disabled, for instance, when the CS base address is NOT set to zero.

Document #: 356477-050US 2-7

SANDY BRIDGE MICROARCHITECTURE

2.1.1.3 Branch Prediction
Branch prediction predicts the branch target and enables the processor to begin executing instructions long before
the branch true execution path is known. All branches utilize the branch prediction unit (BPU) for prediction. This unit
predicts the target address not only based on the EIP of the branch but also based on the execution path through
which execution reached this EIP. The BPU can efficiently predict the following branch types:

• Conditional branches.

• Direct calls and jumps.

• Indirect calls and jumps.

• Returns.

2.1.1.4 Micro-op Queue and the Loop Stream Detector (LSD)
The micro-op queue decouples the front end and the out-of order engine. It stays between the micro-op generation
and the renamer as shown in Figure 2-1. This queue helps to hide bubbles which are introduced between the various
sources of micro-ops in the front end and ensures that four micro-ops are delivered for execution, each cycle.

The micro-op queue provides post-decode functionality for certain instructions types. In particular, loads combined
with computational operations and all stores, when used with indexed addressing, are represented as a single micro-
op in the decoder or Decoded ICache. In the micro-op queue they are fragmented into two micro-ops through a
process called un-lamination, one does the load and the other does the operation. A typical example is the following
"load plus operation" instruction:

• ADD RAX, [RBP+RSI]; rax := rax + LD(RBP+RSI)

Similarly, the following store instruction has three register sources and is broken into "generate store address" and
"generate store data" sub-components.

• MOV [ESP+ECX*4+12345678], AL

The additional micro-ops generated by unlamination use the rename and retirement bandwidth. However, it has an
overall power benefit. For code that is dominated by indexed addressing (as often happens with array processing),
recoding algorithms to use base (or base+displacement) addressing can sometimes improve performance by keeping
the load plus operation and store instructions fused.

The Loop Stream Detector (LSD)

The Loop Stream Detector was introduced in Intel® Core microarchitectures. The LSD detects small loops that fit in the
micro-op queue and locks them down. The loop streams from the micro-op queue, with no more fetching, decoding,
or reading micro-ops from any of the caches, until a branch mis-prediction inevitably ends it.

The loops with the following attributes qualify for LSD/micro-op queue replay:

• Up to eight chunk fetches of 32-instruction-bytes.

• Up to 28 micro-ops (~28 instructions).

• All micro-ops are also resident in the Decoded ICache.

• Can contain no more than eight taken branches and none of them can be a CALL or RET.

• Cannot have mismatched stack operations. For example, more PUSH than POP instructions.

Many calculation-intensive loops, searches and software string moves match these characteristics.

Use the loop cache functionality opportunistically. For high performance code, loop unrolling is generally preferable
for performance even when it overflows the LSD capability.

Document #: 356477-050US 2-8

SANDY BRIDGE MICROARCHITECTURE

2.1.2 THE OUT-OF-ORDER ENGINE
The Out-of-Order engine provides improved performance over prior generations with excellent power
characteristics. It detects dependency chains and sends them to execution out-of-order while maintaining the correct
data flow. When a dependency chain is waiting for a resource, such as a second-level data cache line, it sends micro-
ops from another chain to the execution core. This increases the overall rate of instructions executed per cycle (IPC).

The out-of-order engine consists of two blocks, shown in Figure 2-1: Core Functional Diagram, the
Rename/retirement block, and the Scheduler.

The Out-of-Order (OOO) engine contains the following major components:

Renamer. The Renamer component moves micro-ops from the front end to the execution core. It eliminates false
dependencies among micro-ops, thereby enabling out-of-order execution of micro-ops.

Scheduler. The Scheduler component queues micro-ops until all source operands are ready. Schedules and dispatches
ready micro-ops to the available execution units in as close to a first in first out (FIFO) order as possible.

Retirement. The Retirement component retires instructions and micro-ops in order and handles faults and
exceptions.

2.1.2.1 Renamer
The Renamer is the bridge between the in-order part in Figure 2-1, and the dataflow world of the Scheduler. It moves
up to four micro-ops every cycle from the micro-op queue to the out-of-order engine. Although the renamer can send
up to 4 micro-ops (unfused, micro-fused, or macro-fused) per cycle, this is equivalent to the issue port can dispatch six
micro-ops per cycle. In this process, the out-of-order core carries out the following steps:

• Renames architectural sources and destinations of the micro-ops to micro-architectural sources and destinations.

• Allocates resources to the micro-ops. For example, load or store buffers.

• Binds the micro-op to an appropriate dispatch port.

Some micro-ops can execute to completion during rename and are removed from the pipeline at that point,
effectively costing no execution bandwidth. These include:

• Zero idioms (dependency breaking idioms).

• NOP.

• VZEROUPPER.

• FXCHG.

The renamer can allocate two branches each cycle, compared to one branch each cycle in the previous
microarchitecture. This can eliminate some bubbles in execution.

Micro-fused load and store operations that use an index register are decomposed to two micro-ops, hence consume
two out of the four slots the Renamer can use every cycle.

Dependency Breaking Idioms

Instruction parallelism can be improved by using common instructions to clear register contents to zero. The renamer
can detect them on the zero evaluation of the destination register.

Use one of these dependency breaking idioms to clear a register when possible.

• XOR REG,REG

• SUB REG,REG

• PXOR/VPXOR XMMREG,XMMREG

Document #: 356477-050US 2-9

SANDY BRIDGE MICROARCHITECTURE

• PSUBB/W/D/Q XMMREG,XMMREG

• VPSUBB/W/D/Q XMMREG,XMMREG

• XORPS/PD XMMREG,XMMREG

• VXORPS/PD YMMREG, YMMREG

Since zero idioms are detected and removed by the renamer, they have no execution latency.

There is another dependency breaking idiom - the "ones idiom".

• CMPEQ XMM1, XMM1; "ones idiom" set all elements to all "ones"

In this case, the micro-op must execute, however, since it is known that regardless of the input data the output data
is always "all ones" the micro-op dependency upon its sources does not exist as with the zero idiom and it can execute
as soon as it finds a free execution port.

2.1.2.2 Scheduler
The scheduler controls the dispatch of micro-ops onto their execution ports. In order to do this, it must identify which
micro-ops are ready and where its sources come from: a register file entry, or a bypass directly from an execution unit.
Depending on the availability of dispatch ports and writeback buses, and the priority of ready micro-ops, the
scheduler selects which micro-ops are dispatched every cycle.

2.1.3 THE EXECUTION CORE
The execution core is superscalar and can process instructions out of order. The execution core optimizes overall
performance by handling the most common operations efficiently, while minimizing potential delays.

The out-of-order execution core improves execution unit organization over prior generation in the following ways:

• Reduction in read port stalls.

• Reduction in writeback conflicts and delays.

• Reduction in power.

• Reduction of SIMD FP assists dealing with denormal inputs and underflow outputs.

Some high precision FP algorithms need to operate with FTZ=0 and DAZ=0, i.e. permitting underflow intermediate
results and denormal inputs to achieve higher numerical precision at the expense of reduced performance on prior
generation microarchitectures due to SIMD FP assists. The reduction of SIMD FP assists in Sandy Bridge
microarchitecture applies to the following Intel SSE instructions (and Intel AVX variants): ADDPD/ADDPS,
MULPD/MULPS, DIVPD/DIVPS, and CVTPD2PS.

The out-of-order core consist of three execution stacks, where each stack encapsulates a certain type of data. The
execution core contains the following execution stacks:

• General purpose integer.

• SIMD integer and floating-point.

• X87.

The execution core also contains connections to and from the cache hierarchy. The loaded data is fetched from the
caches and written back into one of the stacks.

Document #: 356477-050US 2-10

SANDY BRIDGE MICROARCHITECTURE

The scheduler can dispatch up to six micro-ops every cycle, one on each port. The following table summarizes which
operations can be dispatched on which port.

After execution, the data is written back on a writeback bus corresponding to the dispatch port and the data type of
the result. Micro-ops that are dispatched on the same port but have different latencies may need the write back bus
at the same cycle. In these cases the execution of one of the micro-ops is delayed until the writeback bus is available.
For example, MULPS (five cycles) and BLENDPS (one cycle) may collide if both are ready for execution on port 0: first
the MULPS and four cycles later the BLENDPS. Sandy Bridge microarchitecture eliminates such collisions as long as the
micro-ops write the results to different stacks. For example, integer ADD (one cycle) can be dispatched four cycles
after MULPS (five cycles) since the integer ADD uses the integer stack while the MULPS uses the FP stack.

When a source of a micro-op executed in one stack comes from a micro-op executed in another stack, a one- or two-
cycle delay can occur. The delay occurs also for transitions between Intel SSE integer and Intel SSE floating-point
operations. In some of the cases the data transition is done using a micro-op that is added to the instruction flow. The
following table describes how data, written back after execution, can bypass to micro-op execution in the following
cycles.

Table 2-3. Dispatch Port and Execution Stacks

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

Integer ALU, Shift ALU,
Fast LEA,
Slow LEA,
MUL

Load_Addr,
Store_addr

Load_Addr
Store_addr

Store_data ALU,
Shift,
Branch,
Fast LEA

SSE-Int,
AVX-Int,
MMX

Mul, Shift, STTNI,
Int-Div,
128b-Mov

ALU, Shuf,
Blend, 128b-
Mov

Store_data ALU, Shuf, Shift,
Blend, 128b-
Mov

SSE-FP,
AVX-FP_low

Mul, Div, Blend,
256b-Mov

Add, CVT Store_data Shuf, Blend,
256b-Mov

X87,
AVX-FP_High

Mul, Div, Blend,
256b-Mov

Add, CVT Store_data Shuf, Blend,
256b-Mov

Table 2-4. Execution Core Writeback Latency (Cycles)

Integer SSE-Int, AVX-Int,
MMX

SSE-FP, AVX-
FP_low

X87, AVX-FP_High

Integer
0 micro-op (port 0) micro-op (port 0) micro-op (port 0)

+ 1 cycle

SSE-Int,
AVX-Int,
MMX

• micro-op (port 5)
• micro-op (port 5) +1

cycle
0 1 cycle delay 0

SSE-FP,
AVX-FP_low

• micro-op (port 5)
• micro-op (port 5) +1

cycle
1 cycle delay 0 micro-op (port 5)

+1 cycle

X87,
AVX-FP_High

micro-op (port 5) +1
cycle 0 micro-op (port 5)

+1 cycle 0

Load 0 1 cycle delay 1 cycle delay 2 cycle delay

Document #: 356477-050US 2-11

SANDY BRIDGE MICROARCHITECTURE

2.1.4 CACHE HIERARCHY
The cache hierarchy contains a first level instruction cache, a first level data cache (L1 DCache) and a second level (L2)
cache, in each core. The L1D cache may be shared by two logical processors if the processor support Intel HT. The L2
cache is shared by instructions and data. All cores in a physical processor package connect to a shared last level cache
(LLC) via a ring connection.

The caches use the services of the Instruction Translation Lookaside Buffer (ITLB), Data Translation Lookaside Buffer
(DTLB) and Shared Translation Lookaside Buffer (STLB) to translate linear addresses to physical address. Data
coherency in all cache levels is maintained using the MESI protocol. For more information, see the Intel® 64 IA-32
Architectures Software Developer's Manual, Volume 3. Cache hierarchy details can be obtained at run-time using the
CPUID instruction. see the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A.

2.1.4.1 Load and Store Operation Overview
This section provides an overview of the load and store operations.

Loads
When an instruction reads data from a memory location that has write-back (WB) type, the processor looks for it in
the caches and memory. Table 2-6 shows the access lookup order and best case latency. The actual latency can vary
depending on the cache queue occupancy, LLC ring occupancy, memory components, and their parameters.

The LLC is inclusive of all cache levels above it - data contained in the core caches must also reside in the LLC. Each
cache line in the LLC holds an indication of the cores that may have this line in their L2 and L1 caches. If there is an

Table 2-5. Cache Parameters

Level Capacity Associativity
(ways)

Line Size
(bytes)

Write Update
Policy Inclusive

L1 Data 32 KB 8 64 Writeback -

Instruction 32 KB 8 N/A N/A -

L2 (Unified) 256 KB 8 64 Writeback No

Third Level (LLC) Varies, query
CPUID leaf 4

Varies with
cache size 64 Writeback Yes

Table 2-6. Lookup Order and Load Latency
Level Latency (cycles) Bandwidth (per core per cycle)
L1 Data 41

NOTES:
1. Subject to execution core bypass restriction shown in Table 2-4.

2 x16 bytes

L2 (Unified) 12 1 x 32 bytes

Third Level (LLC) 26-312

2. Latency of L3 varies with product segment and sku. The values apply to second generation Intel Core processor
families.

1 x 32 bytes

L2 and L1 DCache in other
cores if applicable

•43 - clean hit;
•60 - dirty hit

Document #: 356477-050US 2-12

SANDY BRIDGE MICROARCHITECTURE

indication in the LLC that other cores may hold the line of interest and its state might have to modify, there is a lookup
into the L1 DCache and L2 of these cores too. The lookup is called “clean” if it does not require fetching data from the
other core caches. The lookup is called “dirty” if modified data has to be fetched from the other core caches and
transferred to the loading core.

The latencies shown above are the best-case scenarios. Sometimes a modified cache line has to be evicted to make
space for a new cache line. The modified cache line is evicted in parallel to bringing the new data and does not require
additional latency. However, when data is written back to memory, the eviction uses cache bandwidth and possibly
memory bandwidth as well. Therefore, when multiple cache misses require the eviction of modified lines within a
short time, there is an overall degradation in cache response time. Memory access latencies vary based on occupancy
of the memory controller queues, DRAM configuration, DDR parameters, and DDR paging behavior (if the requested
page is a page-hit, page-miss or page-empty).

Stores
When an instruction writes data to a memory location that has a write back memory type, the processor first ensures
that it has the line containing this memory location in its L1 DCache, in Exclusive or Modified MESI state. If the cache
line is not there, in the right state, the processor fetches it from the next levels of the memory hierarchy using a Read
for Ownership request. The processor looks for the cache line in the following locations, in the specified order:

1. L1 DCache

2. L2

3. Last Level Cache

4. L2 and L1 DCache in other cores, if applicable

5. Memory

Once the cache line is in the L1 DCache, the new data is written to it, and the line is marked as Modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of store
instruction retirement. Therefore, the store latency usually does not affect the store instruction itself. However,
several sequential stores that miss the L1 DCache may have cumulative latency that can affect performance. As long
as the store does not complete, its entry remains occupied in the store buffer. When the store buffer becomes full,
new micro-ops cannot enter the execution pipe and execution might stall.

2.1.5 L1 DCACHE
The L1 DCache is the first level data cache. It manages all load and store requests from all types through its internal
data structures. The L1 DCache:

• Enables loads and stores to issue speculatively and out of order.

• Ensures that retired loads and stores have the correct data upon retirement.

• Ensures that loads and stores follow the memory ordering rules of the IA-32 and Intel 64 instruction set
architecture.

Table 2-7. L1 Data Cache Components
Component Sandy Bridge Microarchitecture Nehalem Microarchitecture

Data Cache Unit (DCU) 32KB, 8 ways 32KB, 8 ways

Load buffers 64 entries 48 entries

Store buffers 36 entries 32 entries

Line fill buffers (LFB) 10 entries 10 entries

Document #: 356477-050US 2-13

SANDY BRIDGE MICROARCHITECTURE

The DCU is organized as 32 KBytes, eight-way set associative. Cache line size is 64-bytes arranged in eight banks.

Internally, accesses are up to 16 bytes, with 256-bit Intel AVX instructions utilizing two 16-byte accesses. Two load
operations and one store operation can be handled each cycle.

The L1 DCache maintains requests which cannot be serviced immediately to completion. Some reasons for requests
that are delayed: cache misses, unaligned access that splits across cache lines, data not ready to be forwarded from a
preceding store, loads experiencing bank collisions, and load block due to cache line replacement.

The L1 DCache can maintain up to 64 load micro-ops from allocation until retirement. It can maintain up to 36 store
operations from allocation until the store value is committed to the cache, or written to the line fill buffers (LFB) in the
case of non-temporal stores.

The L1 DCache can handle multiple outstanding cache misses and continue to service incoming stores and loads. Up
to 10 requests of missing cache lines can be managed simultaneously using the LFB.

The L1 DCache is a write-back write-allocate cache. Stores that hit in the DCU do not update the lower levels of the
memory hierarchy. Stores that miss the DCU allocate a cache line.

2.1.5.1 Loads
The L1 DCache architecture can service two loads per cycle, each of which can be up to 16 bytes. Up to 32 loads can
be maintained at different stages of progress, from their allocation in the out of order engine until the loaded value is
returned to the execution core.

Loads can:

• Read data before preceding stores when the load address and store address ranges are known not to conflict.

• Be carried out speculatively, before preceding branches are resolved.

• Take cache misses out of order and in an overlapped manner.

Loads cannot:

• Speculatively take any sort of fault or trap.

• Speculatively access uncacheable memory.

The common load latency is five cycles. When using a simple addressing mode, base plus offset that is smaller than
2048, the load latency can be four cycles. This technique is especially useful for pointer-chasing code. However,
overall latency varies depending on the target register data type due to stack bypass. See Section 2.1.3 for more
information.

The following table lists overall load latencies. These latencies assume the common case of flat segment, that is,
segment base address is zero. If segment base is not zero, load latency increases.

Table 2-8. Effect of Addressing Modes on Load Latency

Data Type/Addressing Mode Base + Offset > 2048;
Base + Index [+ Offset] Base + Offset < 2048

Integer 5 4

MMX, SSE, 128-bit AVX 6 5

X87 7 6

256-bit AVX 7 7

Document #: 356477-050US 2-14

SANDY BRIDGE MICROARCHITECTURE

Stores

Stores to memory are executed in two phases:

• Execution phase. Fills the store buffers with linear and physical address and data. Once store address and data are
known, the store data can be forwarded to the following load operations that need it.

• Completion phase. After the store retires, the L1 DCache moves its data from the store buffers to the DCU, up to
16 bytes per cycle.

2.1.5.2 Address Translation
The DTLB can perform three linear to physical address translations every cycle, two for load addresses and one for a
store address. If the address is missing in the DTLB, the processor looks for it in the STLB, which holds data and
instruction address translations. The penalty of a DTLB miss that hits the STLB is seven cycles. Large page support
include 1G byte pages, in addition to 4K and 2M/4M pages.

The DTLB and STLB are four way set associative. The following table specifies the number of entries in the DTLB and
STLB.

2.1.5.3 Store Forwarding
If a load follows a store and reloads the data that the store writes to memory, the data can forward directly from the
store operation to the load. This process, called store to load forwarding, saves cycles by enabling the load to obtain
the data directly from the store operation instead of through memory. You can take advantage of store forwarding to
quickly move complex structures without losing the ability to forward the subfields. The memory control unit can
handle store forwarding situations with less restrictions compared to previous micro-architectures.

The following rules must be met to enable store to load forwarding:

• The store must be the last store to that address, prior to the load.

• The store must contain all data being loaded.

• The load is from a write-back memory type and neither the load nor the store are non-temporal accesses.

Stores cannot forward to loads in the following cases:

• Four byte and eight byte loads that cross eight byte boundary, relative to the preceding 16- or 32-byte store.

• Any load that crosses a 16-byte boundary of a 32-byte store.

Table 2-9. DTLB and STLB Parameters
TLB Page Size Entries
DTLB 4KB 64

2MB/4MB 32

1GB 4

STLB 4KB 512

Document #: 356477-050US 2-15

SANDY BRIDGE MICROARCHITECTURE

Table 2-10 to Table 2-13 detail the store to load forwarding behavior. For a given store size, all the loads that may
overlap are shown and specified by ‘F’. Forwarding from 32 byte store is similar to forwarding from each of the 16 byte
halves of the store. Cases that cannot forward are shown as ‘N’.

Table 2-10. Store Forwarding Conditions (1 and 2 byte stores)
Load Alignment

Store
Size

Load
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2
1 F F

2 F N

Table 2-11. Store Forwarding Conditions (4-16 byte stores)
Load Alignment

Store
Size

Load
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

1 F F F F

2 F F F N

4 F N N N

8

1 F F F F F F F F

2 F F F F F F F N

4 F F F F F N N N

8 F N N N N N N N

16

1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

Table 2-12. 32-byte Store Forwarding Conditions (0-15 byte alignment)
Load Alignment

Store
Size

Load
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

32

1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 F N N N N N N N N N N N N N N N

Document #: 356477-050US 2-16

SANDY BRIDGE MICROARCHITECTURE

2.1.5.4 Memory Disambiguation
A load operation may depend on a preceding store. Many microarchitectures block loads until all preceding store
addresses are known. The memory disambiguator predicts which loads will not depend on any previous stores whose
addresses aren’t yet known. When the disambiguator predicts that a load does not have such a dependency, the load
takes its data from an earlier store to the same address. This hides the load latency. Eventually, the prediction is
verified. If the load did indeed depend on a store whose address was unknown at the time the load executed, this
conflict is detected and the load and all succeeding instructions are re-executed.

The following loads are not disambiguated. The execution of these loads is stalled until addresses of all previous
stores are known.

• Loads that cross the 16-byte aligned boundary, other than 32-byte loads.

• 32-byte Intel AVX loads that are not 32-byte aligned.

Bank Conflict
Since 16-byte loads can cover up to three banks, and two loads can happen every cycle, it is possible that six of the
eight banks may be accessed per cycle, for loads. A bank conflict happens when two load accesses need the same
bank (their address has the same 2-4 bit value) in different sets, at the same time. When a bank conflict occurs, one
of the load accesses is recycled internally.

In many cases two loads access exactly the same bank in the same cache line, as may happen when popping operands
off the stack, or any sequential accesses. In these cases, conflict does not occur and the loads are serviced
simultaneously.

2.1.6 RING INTERCONNECT AND LAST LEVEL CACHE
The system-on-a-chip design provides a high bandwidth bi-directional ring bus to connect between the IA cores and
various sub-systems in the uncore. In the second generation Intel Core processor 2xxx series, the uncore subsystem
include a system agent, the graphics unit (GT) and the last level cache (LLC).

The LLC consists of multiple cache slices. The number of slices is equal to the number of IA cores. Each slice has logic
portion and data array portion. The logic portion handles data coherency, memory ordering, access to the data array
portion, LLC misses and writeback to memory, and more. The data array portion stores cache lines. Each slice contains
a full cache port that can supply 32 bytes/cycle.

The physical addresses of data kept in the LLC data arrays are distributed among the cache slices by a hash function,
such that addresses are uniformly distributed. The data array in a cache block may have 4/8/12/16 ways corresponding

Table 2-13. 32-byte Store Forwarding Conditions (16-31 byte alignment)
Load Alignment

Store
Size

Load
Size 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32

1 F F F F F F F F F F F F F F F F

2 F F F F F F F F F F F F F F F N

4 F F F F F N N N F F F F F N N N

8 F N N N N N N N F N N N N N N N

16 F N N N N N N N N N N N N N N N

32 N N N N N N N N N N N N N N N N

Document #: 356477-050US 2-17

SANDY BRIDGE MICROARCHITECTURE

to 0.5M/1M/1.5M/2M block size. However, due to the address distribution among the cache blocks from the software
point of view, this does not appear as a normal N-way cache.

From the processor cores and the GT view, the LLC act as one shared cache with multiple ports and bandwidth that
scales with the number of cores. The LLC hit latency, ranging between 26-31 cycles, depends on the core location
relative to the LLC block, and how far the request needs to travel on the ring.

The number of cache-slices increases with the number of cores, therefore the ring and LLC are not likely to be a
bandwidth limiter to core operation.

The GT sits on the same ring interconnect, and uses the LLC for its data operations as well. In this respect it is very
similar to an IA core. Therefore, high bandwidth graphic applications using cache bandwidth and significant cache
footprint, can interfere, to some extent, with core operations.

All the traffic that cannot be satisfied by the LLC, such as LLC misses, dirty line writeback, non-cacheable operations,
and MMIO/IO operations, still travels through the cache-slice logic portion and the ring, to the system agent.

In the Intel Xeon Processor E5 Family, the uncore subsystem does not include the graphics unit (GT). Instead, the
uncore subsystem contains many more components, including an LLC with larger capacity and snooping capabilities
to support multiple processors, Intel® QuickPath Interconnect interfaces that can support multi-socket platforms,
power management control hardware, and a system agent capable of supporting high-bandwidth traffic from
memory and I/O devices.

In the Intel Xeon processor E5 2xxx or 4xxx families, the LLC capacity generally scales with the number of processor
cores with 2.5 MBytes per core.

2.1.7 DATA PREFETCHING
Data can be speculatively loaded to the L1 DCache using software prefetching, hardware prefetching, or any
combination of the two.

You can use the four Streaming SIMD Extensions (SSE) prefetch instructions to enable software-controlled
prefetching. These instructions are hints to bring a cache line of data into the desired levels of the cache hierarchy.
The software-controlled prefetch is intended for prefetching data, but not for prefetching code.

The rest of this section describes the various hardware prefetching mechanisms provided by Sandy Bridge
microarchitecture and their improvement over previous processors. The goal of the prefetchers is to automatically
predict which data the program is about to consume. If this data is not close-by to the execution core or inner cache,
the prefetchers bring it from the next levels of cache hierarchy and memory. Prefetching has the following effects:

• Improves performance if data is arranged sequentially in the order used in the program.

• May cause slight performance degradation due to bandwidth issues, if access patterns are sparse instead of local.

• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded prefetches
evict lines required by the program, hardware prefetcher may cause severe performance degradation due to
cache capacity of L1.

Data Prefetch to L1 Data Cache
Data prefetching is triggered by load operations when the following conditions are met:

• Load is from writeback memory type.

• The prefetched data is within the same 4K byte page as the load instruction that triggered it.

• No fence is in progress in the pipeline.

• Not many other load misses are in progress.

• There is not a continuous stream of stores.

Document #: 356477-050US 2-18

SANDY BRIDGE MICROARCHITECTURE

Two hardware prefetchers load data to the L1 DCache:

• Data cache unit (DCU) prefetcher. This prefetcher, also known as the streaming prefetcher, is triggered by an
ascending access to very recently loaded data. The processor assumes that this access is part of a streaming
algorithm and automatically fetches the next line.

• Instruction pointer (IP)-based stride prefetcher. This prefetcher keeps track of individual load instructions. If a
load instruction is detected to have a regular stride, then a prefetch is sent to the next address which is the sum
of the current address and the stride. This prefetcher can prefetch forward or backward and can detect strides of
up to 2K bytes.

Data Prefetch to the L2 and Last Level Cache
The following two hardware prefetchers fetched data from memory to the L2 cache and last level cache:

• Spatial Prefetcher: This prefetcher strives to complete every cache line fetched to the L2 cache with the pair line
that completes it to a 128-byte aligned chunk.

• Streamer: This prefetcher monitors read requests from the L1 cache for ascending and descending sequences of
addresses. Monitored read requests include L1 DCache requests initiated by load and store operations and by the
hardware prefetchers, and L1 ICache requests for code fetch. When a forward or backward stream of requests is
detected, the anticipated cache lines are prefetched. Prefetched cache lines must be in the same 4K page.

The streamer and spatial prefetcher prefetch the data to the last level cache. Typically data is brought also to the L2
unless the L2 cache is heavily loaded with missing demand requests.

Enhancement to the streamer includes the following features:

• The streamer may issue two prefetch requests on every L2 lookup. The streamer can run up to 20 lines ahead of
the load request.

• Adjusts dynamically to the number of outstanding requests per core. If there are not many outstanding requests,
the streamer prefetches further ahead. If there are many outstanding requests it prefetches to the LLC only and
less far ahead.

• When cache lines are far ahead, it prefetches to the last level cache only and not to the L2. This method avoids
replacement of useful cache lines in the L2 cache.

• Detects and maintains up to 32 streams of data accesses. For each 4K byte page, you can maintain one forward
and one backward stream can be maintained.

2.2 SYSTEM AGENT
The system agent implemented in the second generation Intel Core processor family contains the following
components:

• An arbiter that handles all accesses from the ring domain and from I/O (PCIe* and DMI) and routes the accesses
to the right place.

• PCIe controllers connect to external PCIe devices. The PCIe controllers have different configuration possibilities
the varies with product segment specifics: x16+x4, x8+x8+x4, x8+x4+x4+x4.

• DMI controller connects to the PCH chipset.

• Integrated display engine, Flexible Display Interconnect, and Display Port, for the internal graphic operations.

• Memory controller.

All main memory traffic is routed from the arbiter to the memory controller. The memory controller in the second
generation Intel Core processor 2xxx series support two channels of DDR, with data rates of 1066MHz, 1333MHz and
1600MHz, and 8 bytes per cycle, depending on the unit type, system configuration and DRAMs. Addresses are

Document #: 356477-050US 2-19

SANDY BRIDGE MICROARCHITECTURE

distributed between memory channels based on a local hash function that attempts to balance the load between the
channels in order to achieve maximum bandwidth and minimum hotspot collisions.

For best performance, populate both channels with equal amounts of memory, preferably the exact same types of
DIMMs. In addition, using more ranks for the same amount of memory, results in somewhat better memory
bandwidth, since more DRAM pages can be open simultaneously. For best performance, populate the system with
the highest supported speed DRAM (1333MHz or 1600MHz data rates, depending on the max supported frequency)
with the best DRAM timings.

The two channels have separate resources and handle memory requests independently. The memory controller
contains a high-performance out-of-order scheduler that attempts to maximize memory bandwidth while minimizing
latency. Each memory channel contains a 32 cache-line write-data-buffer. Writes to the memory controller are
considered completed when they are written to the write-data-buffer. The write-data-buffer is flushed out to main
memory at a later time, not impacting write latency.

Partial writes are not handled efficiently on the memory controller and may result in read-modify-write operations on
the DDR channel if the partial-writes do not complete a full cache-line in time. Software should avoid creating partial
write transactions whenever possible and consider alternative, such as buffering the partial writes into full cache line
writes.

The memory controller also supports high-priority isochronous requests (such as USB isochronous, and Display
isochronous requests). High bandwidth of memory requests from the integrated display engine takes up some of the
memory bandwidth and impacts core access latency to some degree.

2.3 IVY BRIDGE MICROARCHITECTURE
3rd generation Intel Core processors are based on Ivy Bridge microarchitecture. Most of the features described in
Section 2.1 - Section 2.2 also apply to Ivy Bridge microarchitecture. This section covers feature differences in
microarchitecture that can affect coding and performance.

Support for new instructions enabling include:

• Numeric conversion to and from half-precision floating-point values.

• Hardware-based random number generator compliant to NIST SP 800-90A.

• Reading and writing to FS/GS base registers in any ring to improve user-mode threading support.

For details about using the hardware based random number generator instruction RDRAND, please refer to the article
available from Intel Software Network at https://software.intel.com/en-us/articles/intel-digital-random-number-
generator-drng-software-implementation-guide/.

A small number of microarchitectural enhancements that can be beneficial to software:

• Hardware prefetch enhancement: A next-page prefetcher (NPP) is added in Ivy Bridge microarchitecture. The
NPP is triggered by sequential accesses to cache lines approaching the page boundary, either upwards or
downwards.

• Zero-latency register move operation: A subset of register-to-register MOV instructions are executed at the front
end, conserving scheduling and execution resource in the out-of-order engine.

• Front end enhancement: In Sandy Bridge microarchitecture, the micro-op queue is statically partitioned to
provide 28 entries for each logical processor, irrespective of software executing in single thread or multiple
threads. If one logical processor is not active in Ivy Bridge microarchitecture, then a single thread executing on
that processor core can use the 56 entries in the micro-op queue. In this case, the LSD can handle larger loop
structure that would require more than 28 entries.

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide/

Document #: 356477-050US 2-20

SANDY BRIDGE MICROARCHITECTURE

• The latency and throughput of some instructions have been improved over those of Sandy Bridge
microarchitecture. For example, 256-bit packed floating-point divide and square root operations are faster; ROL
and ROR instructions are also improved.

Document #: 356477-050US 3-1

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

CHAPTER 3
INTEL® CORE™ MICROARCHITECTURE AND

ENHANCED INTEL® CORE™ MICROARCHITECTURE

Intel Core microarchitecture introduces the following features that enable high performance and power-efficient
performance for single-threaded as well as multi-threaded workloads:

• Intel® Wide Dynamic Execution enables each processor core to fetch, dispatch, execute with high bandwidths
and retire up to four instructions per cycle. Features include:
— Fourteen-stage efficient pipeline.
— Three arithmetic logical units.
— Four decoders to decode up to five instruction per cycle.
— Macro-fusion and micro-fusion to improve front end throughput.
— Peak issue rate of dispatching up to six micro-ops per cycle.
— Peak retirement bandwidth of up to four micro-ops per cycle.
— Advanced branch prediction.
— Stack pointer tracker to improve efficiency of executing function/procedure entries and exits.

• Intel® Advanced Smart Cache delivers higher bandwidth from the second level cache to the core, optimal
performance and flexibility for single-threaded and multi-threaded applications. Features include:
— Optimized for multicore and single-threaded execution environments.
— 256 bit internal data path to improve bandwidth from L2 to first-level data cache.
— Unified, shared second-level cache of 4 Mbyte, 16 way (or 2 MByte, 8 way).

• Intel® Smart Memory Access prefetches data from memory in response to data access patterns and reduces
cache-miss exposure of out-of-order execution. Features include:
— Hardware prefetchers to reduce effective latency of second-level cache misses.
— Hardware prefetchers to reduce effective latency of first-level data cache misses.
— Memory disambiguation to improve efficiency of speculative execution engine.

• Intel® Advanced Digital Media Boost improves most 128-bit SIMD instructions with single-cycle throughput and
floating-point operations. Features include:
— Single-cycle throughput of most 128-bit SIMD instructions (except 128-bit shuffle, pack, unpack operations)
— Up to eight floating-point operations per cycle
— Three issue ports available to dispatching SIMD instructions for execution.

The Enhanced Intel Core microarchitecture supports all of the features of Intel Core microarchitecture and provides a
comprehensive set of enhancements.

• Intel® Wide Dynamic Execution includes several enhancements:
— A radix-16 divider replacing previous radix-4 based divider to speedup long-latency operations such as

divisions and square roots.
— Improved system primitives to speedup long-latency operations such as RDTSC, STI, CLI, and VM exit transi-

tions.
• Intel® Advanced Smart Cache provides up to 6 MBytes of second-level cache shared between two processor

cores (quad-core processors have up to 12 MBytes of L2); up to 24 way/set associativity.
• Intel® Smart Memory Access supports high-speed system bus up 1600 MHz and provides more efficient

handling of memory operations such as split cache line load and store-to-load forwarding situations.
• Intel® Advanced Digital Media Boost provides 128-bit shuffler unit to speedup shuffle, pack, unpack operations;

adds support for forty-seven Intel SSE4.1 instructions.
In the sub-sections of 2.1.x, most of the descriptions on Intel Core microarchitecture also applies to Enhanced Intel
Core microarchitecture. Differences between them are note explicitly.

Document #: 356477-050US 3-2

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.1 INTEL® CORE™ MICROARCHITECTURE PIPELINE OVERVIEW
The pipeline of the Intel Core microarchitecture contains:

• An in-order issue front end that fetches instruction streams from memory, with four instruction decoders to
supply decoded instruction (micro-ops) to the out-of-order execution core.

• An out-of-order superscalar execution core that can issue up to six micro-ops per cycle (see Table 3-2) and
reorder micro-ops to execute as soon as sources are ready and execution resources are available.

• An in-order retirement unit that ensures the results of execution of micro-ops are processed and architectural
states are updated according to the original program order.

Intel Core 2 Extreme processor X6800, Intel Core 2 Duo processors and Intel Xeon processor 3000, 5100 series imple-
ment two processor cores based on the Intel Core microarchitecture. Intel Core 2 Extreme quad-core processor, Intel
Core 2 Quad processors and Intel Xeon processor 3200 series, 5300 series implement four processor cores. Each phys-
ical package of these quad-core processors contains two processor dies, each die containing two processor cores. The
functionality of the subsystems in each core are depicted in Figure 3-1.

Figure 3-1. Intel® Core™ Microarchitecture Pipeline Functionality

Decode

ALU
Branch

MMX/SSE/FP
Move

Load

Shared L2 Cache
Up to 10.7 GB/s

FSB

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and PreDecode

Instruction Queue

Rename/Alloc

ALU
FAdd

MMX/SSE

ALU
FMul

MMX/SSE

Scheduler

Micro-
code
ROM

Store

OM19808

Document #: 356477-050US 3-3

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.1.1 Front End
The front ends needs to supply decoded instructions (micro-ops) and sustain the stream to a six-issue wide out-of-
order engine. The components of the front end, their functions, and the performance challenges to microarchitec-
tural design are described in Table 3-1.

3.1.1.1 Branch Prediction Unit

Branch prediction enables the processor to begin executing instructions long before the branch outcome is decided.
All branches utilize the BPU for prediction. The BPU contains the following features:

• 16-entry Return Stack Buffer (RSB). It enables the BPU to accurately predict RET instructions.
• Front end queuing of BPU lookups. The BPU makes branch predictions for 32 bytes at a time, twice the width of

the fetch engine. This enables taken branches to be predicted with no penalty.
Even though this BPU mechanism generally eliminates the penalty for taken branches, software
should still regard taken branches as consuming more resources than do not-taken branches.

The BPU makes the following types of predictions:

• Direct Calls and Jumps. Targets are read as a target array, without regarding the taken or not-taken prediction.
• Indirect Calls and Jumps. These may either be predicted as having a monotonic target or as having targets that

vary in accordance with recent program behavior.
• Conditional branches. Predicts the branch target and whether or not the branch will be taken.

Table 3-1. Components of the Front End

Component Functions Performance Challenges

Branch Prediction Unit
(BPU)

•Helps the instruction fetch unit fetch the
most likely instruction to be executed by
predicting the various branch types:
conditional, indirect, direct, call, and
return.

•Uses dedicated hardware for each type.

•Enables speculative execution.
•Improves speculative execution

efficiency by reducing the amount of
code in the “non-architected path”1 to
be fetched into the pipeline.

NOTES:
1. Code paths that the processor thought it should execute but then found out it should go in another path and

therefore reverted from its initial intention.

Instruction Fetch Unit

•Prefetches instructions that are likely to be
executed

•Caches frequently-used instructions
•Pre-decodes and buffers instructions,

maintaining a constant bandwidth despite
irregularities in the instruction stream

•Variable length instruction format
causes unevenness (bubbles) in
decode bandwidth.

•Taken branches and misaligned
targets causes disruptions in the
overall bandwidth delivered by the
fetch unit.

Instruction Queue and
Decode Unit

•Decodes up to four instructions, or up to
five with macro-fusion

•Stack pointer tracker algorithm for
efficient procedure entry and exit

• Implements the Macro-Fusion feature,
providing higher performance and
efficiency

•The Instruction Queue is also used as a
loop cache, enabling some loops to be
executed with both higher bandwidth and
lower power

•Varying amounts of work per
instruction requires expansion into
variable numbers of micro-ops.

•Prefix adds a dimension of decoding
complexity.

•Length Changing Prefix (LCP) can
cause front end bubbles.

Document #: 356477-050US 3-4

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.1.1.2 Instruction Fetch Unit

The instruction fetch unit comprises the instruction translation lookaside buffer (ITLB), an instruction prefetcher, the
instruction cache and the pre-decode logic of the instruction queue (IQ).

3.2 INSTRUCTION CACHE AND ITLB
An instruction fetch is a 16-byte aligned lookup through the ITLB into the instruction cache and instruction prefetch
buffers. A hit in the instruction cache causes 16 bytes to be delivered to the instruction pre-decoder. Typical programs
average slightly less than 4 bytes per instruction, depending on the code being executed. Since most instructions can
be decoded by all decoders, an entire fetch can often be consumed by the decoders in one cycle.

A misaligned target reduces the number of instruction bytes by the amount of offset into the 16 byte fetch quantity.
A taken branch reduces the number of instruction bytes delivered to the decoders since the bytes after the taken
branch are not decoded. Branches are taken approximately every 10 instructions in typical integer code, which trans-
lates into a “partial” instruction fetch every 3 or 4 cycles.

Due to stalls in the rest of the machine, front end starvation does not usually cause performance degradation. For
extremely fast code with larger instructions (such as Intel SSE2 integer media kernels), it may be beneficial to use
targeted alignment to prevent instruction starvation.

3.2.1 Instruction Pre-Decode
The pre-decode unit accepts the sixteen bytes from the instruction cache or prefetch buffers and carries out the
following tasks:

• Determine the length of the instructions.
• Decode all prefixes associated with instructions.
• Mark various properties of instructions for the decoders (for example, “is branch.”).
The pre-decode unit can write up to six instructions per cycle into the instruction queue. If a fetch contains more than
six instructions, the pre-decoder continues to decode up to six instructions per cycle until all instructions in the fetch
are written to the instruction queue. Subsequent fetches can only enter pre-decoding after the current fetch
completes.

For a fetch of seven instructions, the pre-decoder decodes the first six in one cycle, and then only one in the next
cycle. This process would support decoding 3.5 instructions per cycle. Even if the instruction per cycle (IPC) rate is not
fully optimized, it is higher than the performance seen in most applications. In general, software usually does not
have to take any extra measures to prevent instruction starvation.

The following instruction prefixes cause problems during length decoding. These prefixes can dynamically change the
length of instructions and are known as length changing prefixes (LCPs):

• Operand Size Override (66H) preceding an instruction with a word immediate data.
• Address Size Override (67H) preceding an instruction with a mod R/M in real, 16-bit protected or 32-bit protected

modes.
When the pre-decoder encounters an LCP in the fetch line, it must use a slower length decoding algorithm. With the
slower length decoding algorithm, the pre-decoder decodes the fetch in 6 cycles, instead of the usual 1 cycle.

Normal queuing within the processor pipeline usually cannot hide LCP penalties.

The REX prefix (4xh) in the Intel 64 architecture instruction set can change the size of two classes of instruction: MOV
offset and MOV immediate. Nevertheless, it does not cause an LCP penalty and hence is not considered an LCP.

Document #: 356477-050US 3-5

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.2.1.1 Instruction Queue (IQ)

The instruction queue is 18 instructions deep. It sits between the instruction predecode unit and the instruction
decoders. It sends up to five instructions per cycle, and supports one macro-fusion per cycle. It also serves as a loop
cache for loops smaller than 18 instructions. The loop cache operates as described below.

A Loop Stream Detector (LSD) resides in the BPU. The LSD attempts to detect loops which are candidates for
streaming from the instruction queue (IQ). When such a loop is detected, the instruction bytes are locked down and
the loop is allowed to stream from the IQ until a misprediction ends it. When the loop plays back from the IQ, it
provides higher bandwidth at reduced power (since much of the rest of the front end pipeline is shut off).

The LSD provides the following benefits:

• No loss of bandwidth due to taken branches.
• No loss of bandwidth due to misaligned instructions.
• No LCP penalties, as the pre-decode stage has already been passed.
• Reduced front end power consumption, because the instruction cache, BPU and predecode unit can be idle.
Software should use the loop cache functionality opportunistically. Loop unrolling and other code optimizations may
make the loop too big to fit into the LSD. For high performance code, loop unrolling is generally preferable for perfor-
mance even when it overflows the loop cache capability.

3.2.1.2 Instruction Decode

The Intel Core microarchitecture contains four instruction decoders. The first, Decoder 0, can decode Intel 64 and IA-
32 instructions up to 4 micro-ops in size. Three other decoders handle single micro-op instructions. The micro-
sequencer can provide up to 3 micro-ops per cycle, and helps decode instructions larger than 4 micro-ops.

All decoders support the common cases of single micro-op flows, including: micro-fusion, stack pointer tracking and
macro-fusion. Thus, the three simple decoders are not limited to decoding single micro-op instructions. Packing
instructions into a 4-1-1-1 template is not necessary and not recommended.

Macro-fusion merges two instructions into a single micro-op. Intel Core microarchitecture is capable of one macro-
fusion per cycle in 32-bit operation (including compatibility sub-mode of the Intel 64 architecture), but not in 64-bit
mode because code that uses longer instructions (length in bytes) more often is less likely to take advantage of hard-
ware support for macro-fusion.

3.2.1.3 Stack Pointer Tracker

The Intel 64 and IA-32 architectures have several commonly used instructions for parameter passing and procedure
entry and exit: PUSH, POP, CALL, LEAVE and RET. These instructions implicitly update the stack pointer register (RSP),
maintaining a combined control and parameter stack without software intervention. These instructions are typically
implemented by several micro-ops in previous microarchitectures.

The Stack Pointer Tracker moves all these implicit RSP updates to logic contained in the decoders themselves. The
feature provides the following benefits:

• Improves decode bandwidth, as PUSH, POP and RET are single micro-op instructions in Intel Core microarchi-
tecture.

• Conserves execution bandwidth as the RSP updates do not compete for execution resources.
• Improves parallelism in the out of order execution engine as the implicit serial dependencies between micro-ops

are removed.
• Improves power efficiency as the RSP updates are carried out on small, dedicated hardware.

3.2.1.4 MicroFusion

Micro-fusion fuses multiple micro-ops from the same instruction into a single complex micro-op. The complex micro-
op is dispatched in the out-of-order execution core. Micro-fusion provides the following performance advantages:

Document #: 356477-050US 3-6

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

• Improves instruction bandwidth delivered from decode to retirement.
• Reduces power consumption as the complex micro-op represents more work in a smaller format (in terms of bit

density), reducing overall “bit-toggling” in the machine for a given amount of work and virtually increasing the
amount of storage in the out-of-order execution engine.

Many instructions provide register flavors and memory flavors. The flavor involving a memory operand will decode
into a longer flow of micro-ops than the register version. Micro-fusion enables software to use memory to register
operations to express the actual program behavior without worrying about a loss of decode bandwidth.

3.2.2 Execution Core
The execution core of the Intel Core microarchitecture is superscalar and can process instructions out of order. When
a dependency chain causes the machine to wait for a resource (such as a second-level data cache line), the execution
core executes other instructions. This increases the overall rate of instructions executed per cycle (IPC).

The execution core contains the following three major components:

• Renamer — Moves micro-ops from the front end to the execution core. Architectural registers are renamed to a
larger set of microarchitectural registers. Renaming eliminates false dependencies known as read-after-read and
write-after-read hazards.

• Reorder buffer (ROB) — Holds micro-ops in various stages of completion, buffers completed micro-ops, updates
the architectural state in order, and manages ordering of exceptions. The ROB has 96 entries to handle instruc-
tions in flight.

• Reservation station (RS) — Queues micro-ops until all source operands are ready, schedules and dispatches ready
micro-ops to the available execution units. The RS has 32 entries.

The initial stages of the out of order core move the micro-ops from the front end to the ROB and RS. In this process,
the out of order core carries out the following steps:

• Allocates resources to micro-ops (for example: these resources could be load or store buffers).
• Binds the micro-op to an appropriate issue port.
• Renames sources and destinations of micro-ops, enabling out of order execution.
• Provides data to the micro-op when the data is either an immediate value or a register value that has already

been calculated.
The following list describes various types of common operations and how the core executes them efficiently:

• Micro-ops with single-cycle latency: Most micro-ops with single-cycle latency can be executed by multiple
execution units, enabling multiple streams of dependent operations to be executed quickly.

• Frequently-used ops with longer latency: These micro-ops have pipelined execution units so that multiple
micro-ops of these types may be executing in different parts of the pipeline simultaneously.

• Operations with data-dependent latencies:Some operations, such as division, have data dependent latencies.
Integer division parses the operands to perform the calculation only on significant portions of the operands,
thereby speeding up common cases of dividing by small numbers.

• Floating-point operations with fixed latency for operands that meet certain restrictions: Operands that do not
fit these restrictions are considered exceptional cases and are executed with higher latency and reduced
throughput. The lower-throughput cases do not affect latency and throughput for more common cases.

• Memory operands with variable latency, even in the case of an L1 cache hit: Loads that are not known to be safe
from forwarding may wait until a store-address is resolved before executing. The memory order buffer (MOB)
accepts and processes all memory operations. See Section 3.3 for more information about the MOB.

3.2.2.1 Issue Ports and Execution Units

The scheduler can dispatch up to six micro-ops per cycle through the issue ports. The issue ports of Intel Core microar-
chitecture and Enhanced Intel Core microarchitecture are depicted in Table 3-2, the former is denoted by its CPUID
signature of DisplayFamily_DisplayModel value of 06_0FH, the latter denoted by the corresponding signature value
of 06_17H. The table provides latency and throughput data of common integer and floating-point (FP) operations for
each issue port in cycles.

Document #: 356477-050US 3-7

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

In each cycle, the RS can dispatch up to six micro-ops. Each cycle, up to 4 results may be written back to the RS and
ROB, to be used as early as the next cycle by the RS. This high execution bandwidth enables execution bursts to keep
up with the functional expansion of the micro-fused micro-ops that are decoded and retired.

The execution core contains the following three execution stacks:

• SIMD integer.

Table 3-2. Issue Ports of Intel® Core™ and Enhanced Intel® Core™ Microarchitectures

Executable operations
Latency, Throughput

Comment1

NOTES:
1. Mixing operations of different latencies that use the same port can result in writeback bus conflicts; this can

reduce overall throughput.

Signature =
06_0FH

Signature =
06_17H

Integer ALU
Integer SIMD ALU
FP/SIMD/SSE2 Move and Logic

1, 1
1, 1
1, 1

1, 1
1, 1
1, 1

Includes 64-bit mode integer MUL;
Issue port 0; Writeback port 0;

Single-precision (SP) FP MUL
Double-precision FP MUL

4, 1
5, 1

4, 1
5, 1

Issue port 0; Writeback port 0

FP MUL (X87)
FP Shuffle
DIV/SQRT

5, 2
1, 1

5, 2
1, 1

Issue port 0; Writeback port 0
FP shuffle does not handle QW shuffle.

Integer ALU
Integer SIMD ALU
FP/SIMD/SSE2 Move and Logic

1, 1
1, 1
1, 1

1, 1
1, 1
1, 1

Excludes 64-bit mode integer MUL;
Issue port 1; Writeback port 1;

FP ADD
QW Shuffle

3, 1
1, 12

2. 128-bit instructions executes with longer latency and reduced throughput.

3, 1
1, 13

3. Uses 128-bit shuffle unit in port 5.

Issue port 1; Writeback port 1;

Integer loads
FP loads

3, 1
4, 1

3, 1
4, 1

Issue port 2; Writeback port 2;

Store address4

4. Prepares the store forwarding and store retirement logic with the address of the data being stored.

3, 1 3, 1 Issue port 3;

Store data5.

5. Prepares the store forwarding and store retirement logic with the data being stored.

Issue Port 4;

Integer ALU
Integer SIMD ALU
FP/SIMD/SSE2 Move and Logic

1, 1
1, 1
1, 1

1, 1
1, 1
1, 1

Issue port 5; Writeback port 5;

QW shuffles
128-bit Shuffle/Pack/Unpack

1, 12

2-4, 2-46

6. Varies with instructions; 128-bit instructions are executed using QW shuffle units.

1, 13

1-3, 17

7. Varies with instructions, 128-bit shuffle unit replaces QW shuffle units in Intel Core microarchitecture.

Issue port 5; Writeback port 5;

Document #: 356477-050US 3-8

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

• Regular integer.
• x87/SIMD floating-point.
The execution core also contains connections to and from the memory cluster. See Figure 3-2.

Notice that the two dark squares inside the execution block (in the grey color) and appear in the path connecting the
integer and SIMD integer stacks to the floating-point stack. This delay shows up as an extra cycle called a bypass delay.
Data from the L1 cache has one extra cycle of latency to the floating-point unit. The dark-colored squares in Figure 3-2
represent the extra cycle of latency.

3.3 INTEL® ADVANCED MEMORY ACCESS
The Intel Core microarchitecture contains an instruction cache and a first-level data cache in each core. The two cores
share a 2 or 4-MByte L2 cache. All caches are writeback and non-inclusive. Each core contains:

• L1 data cache, known as the data cache unit (DCU) — The DCU can handle multiple outstanding cache misses
and continue to service incoming stores and loads. It supports maintaining cache coherency. The DCU has the
following specifications:
— 32-KBytes size.
— 8-way set associative.
— 64-bytes line size.

• Data translation lookaside buffer (DTLB) — The DTLB in Intel Core microarchitecture implements two levels of
hierarchy. Each level of the DTLB have multiple entries and can support either 4-KByte pages or large pages. The
entries of the inner level (DTLB0) is used for loads. The entries in the outer level (DTLB1) support store operations
and loads that missed DTLB0. All entries are 4-way associative. Here is a list of entries in each DTLB:
— DTLB1 for large pages: 32 entries.
— DTLB1 for 4-KByte pages: 256 entries.
— DTLB0 for large pages: 16 entries.
— DTLB0 for 4-KByte pages: 16 entries.

Figure 3-2. Execution Core of Intel Core Microarchitecture

Data Cache
Unit

dtlb
Memory ordering
store forwarding

0,1,5
SIMD
Integer

0,1,5

Integer

0,1,5
Floating
Point

Load 2
Store (address) 3
Store (data) 4

Integer/
SIMD
MUL

EXE

Document #: 356477-050US 3-9

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

An DTLB0 miss and DTLB1 hit causes a penalty of 2 cycles. Software only pays this penalty if the
DTLB0 is used in some dispatch cases. The delays associated with a miss to the DTLB1 and PMH are
largely non-blocking due to the design of Intel Smart Memory Access.

• Page miss handler (PMH).
• A memory ordering buffer (MOB) — Which:

— Enables loads and stores to issue speculatively and out of order.
— Ensures retired loads and stores have the correct data upon retirement.
— Ensures loads and stores follow memory ordering rules of the Intel 64 and IA-32 architectures.

The memory cluster of the Intel Core microarchitecture uses the following to speed up memory operations:

• 128-bit load and store operations.
• Data prefetching to L1 caches.
• Data prefetch logic for prefetching to the L2 cache.
• Store forwarding.
• Memory disambiguation.
• 8 fill buffer entries.
• 20 store buffer entries.
• Out of order execution of memory operations.
• Pipelined read-for-ownership operation (RFO).

3.3.1 Loads and Stores
The Intel Core microarchitecture can execute up to one 128-bit load and up to one 128-bit store per cycle, each to
different memory locations. The microarchitecture enables execution of memory operations out of order with
respect to other instructions and with respect to other memory operations.

Loads can:

• Issue before preceding stores when the load address and store address are known not to conflict.
• Be carried out speculatively, before preceding branches are resolved.
• Take cache misses out of order and in an overlapped manner.
• Issue before preceding stores, speculating that the store is not going to be to a conflicting address.

Loads cannot:

• Speculatively take any sort of fault or trap.
• Speculatively access the uncacheable memory type.

Faulting or uncacheable loads are detected and wait until retirement, when they update the programmer visible
state. x87 and floating-point SIMD loads add 1 additional clock latency.

Stores to memory are executed in two phases:

• Execution phase: Prepares the store buffers with address and data for store forwarding. Consumes dispatch
ports, which are ports 3 and 4.

• Completion phase: The store is retired to programmer-visible memory. It may compete for cache banks with
executing loads. Store retirement is maintained as a background task by the memory order buffer, moving the
data from the store buffers to the L1 cache.

3.3.1.1 Data Prefetch to L1 caches

Intel Core microarchitecture provides two hardware prefetchers to speed up data accessed by a program by
prefetching to the L1 data cache:

Document #: 356477-050US 3-10

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

• Data cache unit (DCU) prefetcher — This prefetcher, also known as the streaming prefetcher, is triggered by an
ascending access to very recently loaded data. The processor assumes that this access is part of a streaming
algorithm and automatically fetches the next line.

• Instruction pointer (IP)- based strided prefetcher — This prefetcher keeps track of individual load instructions. If
a load instruction is detected to have a regular stride, then a prefetch is sent to the next address which is the sum
of the current address and the stride. This prefetcher can prefetch forward or backward and can detect strides of
up to half of a 4KB-page, or 2 KBytes.

Data prefetching works on loads only when the following conditions are met:

• Load is from writeback memory type.
• Prefetch request is within the page boundary of 4 Kbytes.
• No fence or lock is in progress in the pipeline.
• Not many other load misses are in progress.
• The bus is not very busy.
• There is not a continuous stream of stores.
DCU Prefetching has the following effects:

• Improves performance if data in large structures is arranged sequentially in the order used in the program.
• May cause slight performance degradation due to bandwidth issues if access patterns are sparse instead of local.
• On rare occasions, if the algorithm's working set is tuned to occupy most of the cache and unneeded prefetches

evict lines required by the program, hardware prefetcher may cause severe performance degradation due to
cache capacity of L1.

In contrast to hardware prefetchers relying on hardware to anticipate data traffic, software prefetch instructions
relies on the programmer to anticipate cache miss traffic, software prefetch act as hints to bring a cache line of data
into the desired levels of the cache hierarchy. The software-controlled prefetch is intended for prefetching data, but
not for prefetching code.

3.3.1.2 Data Prefetch Logic

Data prefetch logic (DPL) prefetches data to the second-level (L2) cache based on past request patterns of the DCU
from the L2. The DPL maintains two independent arrays to store addresses from the DCU: one for upstreams (12
entries) and one for down streams (4 entries). The DPL tracks accesses to one 4K byte page in each entry. If an
accessed page is not in any of these arrays, then an array entry is allocated.

The DPL monitors DCU reads for incremental sequences of requests, known as streams. Once the DPL detects the
second access of a stream, it prefetches the next cache line. For example, when the DCU requests the cache lines A
and A+1, the DPL assumes the DCU will need cache line A+2 in the near future. If the DCU then reads A+2, the DPL
prefetches cache line A+3. The DPL works similarly for “downward” loops.

The Intel Pentium M processor introduced DPL. The Intel Core microarchitecture added the following features to DPL:

• The DPL can detect more complicated streams, such as when the stream skips cache lines. DPL may issue 2
prefetch requests on every L2 lookup. The DPL in the Intel Core microarchitecture can run up to 8 lines ahead
from the load request.

• DPL in the Intel Core microarchitecture adjusts dynamically to bus bandwidth and the number of requests. DPL
prefetches far ahead if the bus is not busy, and less far ahead if the bus is busy.

• DPL adjusts to various applications and system configurations.
Entries for each core in a multi-core processor are handled separately.

3.3.1.3 Store Forwarding

If a load follows a store and reloads the data that the store writes to memory, the Intel Core microarchitecture can
forward the data directly from the store to the load. This process, called store to load forwarding, saves cycles by
enabling the load to obtain the data directly from the store operation instead of through memory.

The following rules must be met for store to load forwarding to occur:

Document #: 356477-050US 3-11

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load cannot cross a cache line boundary.
• The load cannot cross an 8-Byte boundary. 16-Byte loads are an exception to this rule.
• The load must be aligned to the start of the store address, except for the following exceptions:

— An aligned 64-bit store may forward either of its 32-bit halves.
— An aligned 128-bit store may forward any of its 32-bit quarters.
— An aligned 128-bit store may forward either of its 64-bit halves.

Software can use the exceptions to the last rule to move complex structures without losing the ability to forward the
subfields.

In Enhanced Intel Core microarchitecture, the alignment restrictions to permit store forwarding to proceed have been
relaxed. Enhanced Intel Core microarchitecture permits store-forwarding to proceed in several situations that the
succeeding load is not aligned to the preceding store. Figure 3-3 shows six situations (in gradient-filled background) of
store-forwarding that are permitted in Enhanced Intel Core microarchitecture but not in Intel Core microarchitecture.
The cases with backward slash background depicts store-forwarding that can proceed in both Intel Core microarchi-
tecture and Enhanced Intel Core microarchitecture.

3.3.1.4 Memory Disambiguation

Refer to the “Memory Disambiguation” details in Section 2.1.5, “L1 DCache”.

3.3.2 Intel® Advanced Smart Cache
The Intel Core microarchitecture optimized a number of features for two processor cores on a single die. The two
cores share a second-level cache and a bus interface unit, collectively known as Intel Advanced Smart Cache. This

Figure 3-3. Store-Forwarding Enhancements in Enhanced Intel® Core™ Microarchitecture

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

8 byte boundary8 byte boundary

Store 32 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store 64 bit

Load 32 bit

Load 16 bit Load 16 bit

Load 32 bit

Load 64 bit

Load 16 bit Load 16 bit

Load 8 Load 8 Load 8Load 8 Load 8 Load 8Load 8 Load 8

Store-forwarding (SF) can not proceed

Store

Example: 7 byte misalignment

Example: 1 byte misalignment

SF proceed in Enhanced Intel Core microarchitectu

SF proceed

Document #: 356477-050US 3-12

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

section describes the components of Intel Advanced Smart Cache. Figure 3-4 illustrates the architecture of the Intel
Advanced Smart Cache.

Table 3-3 details the parameters of caches in the Intel Core microarchitecture. For information on enumerating the
cache hierarchy identification using the deterministic cache parameter leaf of CPUID instruction, see the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A.

Figure 3-4. Intel® Advanced Smart Cache Architecture

Table 3-3. Cache Parameters of Processors based on Intel Core Microarchitecture

Level Capacity Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput

(clocks)

Write Update
Policy

First Level 32 KB 8 64 3 1 Writeback

Instruction 32 KB 8 N/A N/A N/A N/A

Second Level
(Shared L2)1

NOTES:
1. Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 0FH).

2, 4 MB 8 or 16 64 142

2. Software-visible latency will vary depending on access patterns and other factors.

2 Writeback

Second Level
(Shared L2)3

3. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 17H or 1DH).

3, 6MB 12 or 24 64 152 2 Writeback

Third Level4 8, 12, 16
MB 16 64 ~110 12 Writeback

Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 1
Branch
Prediction

Retirement Execution
Fetch/
Decode

L1 Data
Cache

L1 Instr.
Cache

Core 0

L2 Cache

Bus Interface Unit

System Bus

Document #: 356477-050US 3-13

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

3.3.2.1 Loads

When an instruction reads data from a memory location that has write-back (WB) type, the processor looks for the
cache line that contains this data in the caches and memory in the following order:

1. DCU of the initiating core.
2. DCU of the other core and second-level cache.
3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line availability or state
in the L2 cache.

Table 3-4 shows the characteristics of fetching the first four bytes of different localities from the memory cluster. The
latency column provides an estimate of access latency. However, the actual latency can vary depending on the load of
cache, memory components, and their parameters.

Sometimes a modified cache line has to be evicted to make space for a new cache line. The modified cache line is
evicted in parallel to bringing the new data and does not require additional latency. However, when data is written
back to memory, the eviction uses cache bandwidth and possibly bus bandwidth as well. Therefore, when multiple
cache misses require the eviction of modified lines within a short time, there is an overall degradation in cache
response time.

3.3.2.2 Stores

When an instruction writes data to a memory location that has WB memory type, the processor first ensures that the
line is in Exclusive or Modified state in its own DCU. The processor looks for the cache line in the following locations,
in the specified order:

1. DCU of initiating core.
2. DCU of the other core and L2 cache.
3. System memory.

The cache line is taken from the DCU of the other core only if it is modified, ignoring the cache line availability or state
in the L2 cache. After reading for ownership is completed, the data is written to the first-level data cache and the line
is marked as modified.

Reading for ownership and storing the data happens after instruction retirement and follows the order of retirement.
Therefore, the store latency does not effect the store instruction itself. However, several sequential stores may have
cumulative latency that can affect performance. Table 3-4 presents store latencies depending on the initial cache line
location.

4. Enhanced Intel Core microarchitecture (CPUID signature DisplayFamily = 06H, DisplayModel = 1DH).

Table 3-4. Characteristics of Load and Store Operations in Intel Core Microarchitecture

Data Locality
Load Store

Latency Throughput Latency Throughput
DCU 3 1 2 1

DCU of the other core in
modified state 14 + 5.5 bus cycles 14 + 5.5 bus cycles 14 + 5.5 bus cycles -

2nd-level cache 14 3 14 3

Memory 14 + 5.5 bus cycles
+ memory

Depends on bus
read protocol

14 + 5.5 bus cycles
+ memory

Depends on bus
write protocol

Document #: 356477-050US 3-14

INTEL® CORE™ MICROARCHITECTURE AND ENHANCED INTEL® CORE™ MICROARCHITECTURE

If MCDRAM cache is enabled, every modified line in the tile caches (L1 or L2 cache) must have an entry in the
MCDRAM cache. If a line is evicted from the MCDRAM cache, any modified version of that line in the tile caches will
writeback its data to memory, and transition to a shared state. There is a very small probability that a pair of lines that
are frequently read and written will alias to the same MCDRAM set. This could cause a pair of writes that would
normally hit in the tile caches to generate extra mesh traffic when using MCDRAM in cache mode. Due to this, a pair
of threads could become substantially slower than the other threads in the chip. Linear to physical mapping can vary
from run to run, making it difficult to diagnose.

One case in point is when two threads read and write their private stacks. Conceptually, any data location that is
commonly read and written to would work, but register spills to the stack are the most frequent case. If the stacks are
offset by a multiple of 16 GB (or the total MCDRAM cache size) in physical memory, they would collide into the same
MCDRAM cache set. A run-time that forced all thread stacks to allocate into a contiguous physical memory region
would avoid this case from occurring.

There is hardware in the Knights Landing microarchitecture to reduce the frequency of set conflicts from occurring.
The probability of hitting this scenario on a given node is extremely small. The best clue to detecting this, is that a pair
of threads on the same chip are significantly slower than all other threads during a program phase. Which exact
threads cores in a package would experience set collision should vary from run to run, happen rarely, and only when
the cache memory mode is enabled. It is very likely that a user may never encounter this on their system.

Document #: 356477-050US 4-1

NEHALEM MICROARCHITECTURE

CHAPTER 4
NEHALEM MICROARCHITECTURE

Nehalem microarchitecture provides the foundation for many innovative features of Intel® Core™ i7 processors and
Intel Xeon processor 3400, 5500, and 7500 series. It builds on the success of 45 nm enhanced Intel Core microarchi-
tecture and provides the following feature enhancements:

• Enhanced processor core
— Improved branch prediction and recovery from misprediction.
— Enhanced loop streaming to improve front end performance and reduce power consumption.
— Deeper buffering in out-of-order engine to extract parallelism.
— Enhanced execution units to provide acceleration in CRC, string/text processing and data shuffling.

• Hyper-Threading Technology
— Provides two hardware threads (logical processors) per core.
— Takes advantage of 4-wide execution engine, large L3, and massive memory bandwidth.

• Smart Memory Access
— Integrated memory controller provides low-latency access to system memory and scalable memory

bandwidth.
— New cache hierarchy organization with shared, inclusive L3 to reduce snoop traffic.
— Two level TLBs and increased TLB size.
— Fast unaligned memory access.

• Dedicated Power management Innovations
— Integrated microcontroller with optimized embedded firmware to manage power consumption.
— Embedded real-time sensors for temperature, current, and power.
— Integrated power gate to turn off/on per-core power consumption.
— Versatility to reduce power consumption of memory, link subsystems.

Westmere microarchitecture is a 32 nm version of Nehalem microarchitecture. All of the features of latter also apply
to the former.

4.1 MICROARCHITECTURE PIPELINE
Nehalem microarchitecture continues the four-wide microarchitecture pipeline pioneered by the 65nm Intel Core
microarchitecture. Figure 4-1 illustrates the basic components of the pipeline of Nehalem microarchitecture as
implemented in Intel Core i7 processor, only two of the four cores are sketched in the Figure 4-1 pipeline diagram.

Document #: 356477-050US 4-2

NEHALEM MICROARCHITECTURE

The length of the pipeline in Nehalem microarchitecture is two cycles longer than its predecessor in the 45 nm Intel
Core 2 processor family, as measured by branch misprediction delay. The front end can decode up to 4 instructions in
one cycle and supports two hardware threads by decoding the instruction streams between two logical processors in
alternate cycles. The front end includes enhancement in branch handling, loop detection, MSROM throughput, etc.
These are discussed in subsequent sections.

The scheduler (or reservation station) can dispatch up to six micro-ops in one cycle through six issue ports (five issue
ports are shown in Figure 4-1; store operation involves separate ports for store address and store data but is depicted
as one in the diagram).

The out-of-order engine has many execution units that are arranged in three execution clusters shown in Figure 4-1.
It can retire four micro-ops in one cycle, same as its predecessor.

Figure 4-1. Nehalem Microarchitecture Pipeline Functionality

L2 Cache

OM19808p

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Decode

EXE
Unit

Cluster
0

Load

Retirement Unit
(Re-Order Buffer)

L1D Cache and DTLB

Instruction Fetch and
PreDecode

Instruction Queue

Rename/Alloc

EXE
Unit

Cluster
1

EXE
Unit

Cluster
5

Scheduler

Micro-
code
ROM

Stor
e

Inclusive L3 Cache by all cores

Intel QPI Link Logic

Other L2

L2 Cache

Document #: 356477-050US 4-3

NEHALEM MICROARCHITECTURE

4.1.1 Front End Overview
Figure 4-2 depicts the key components of the front end of the microarchitecture. The instruction fetch unit (IFU) can
fetch up to 16 bytes of aligned instruction bytes each cycle from the instruction cache to the instruction length
decoder (ILD). The instruction queue (IQ) buffers the ILD-processed instructions and can deliver up to four instruc-
tions in one cycle to the instruction decoder.

The instruction decoder has three decoder units that can decode one simple instruction per cycle per unit. The other
decoder unit can decode one instruction every cycle, either simple instruction or complex instruction made up of
several micro-ops. Instructions made up of more than four micro-ops are delivered from the MSROM. Up to four
micro-ops can be delivered each cycle to the instruction decoder queue (IDQ).

The loop stream detector is located inside the IDQ to improve power consumption and front end efficiency for loops
with a short sequence of instructions.

The instruction decoder supports micro-fusion to improve front end throughput, increase the effective size of queues
in the scheduler and re-order buffer (ROB). The rules for micro-fusion are similar to those of Intel Core microarchitec-
ture.

The instruction queue also supports macro-fusion to combine adjacent instructions into one micro-ops where
possible. In previous generations of Intel Core microarchitecture, macro-fusion support for CMP/Jcc sequence is
limited to the CF and ZF flag, and macro-fusion is not supported in 64-bit mode.

In Nehalem microarchitecture, macro-fusion is supported in 64-bit mode, and the following instruction sequences
are supported:

• CMP or TEST can be fused when comparing (unchanged):

REG-REG. For example: CMP EAX,ECX; JZ label
REG-IMM. For example: CMP EAX,0x80; JZ label
REG-MEM. For example: CMP EAX,[ECX]; JZ label
MEM-REG. For example: CMP [EAX],ECX; JZ label

• TEST can fused with all conditional jumps (unchanged).
• CMP can be fused with the following conditional jumps. These conditional jumps check carry flag (CF) or zero flag

(ZF). The list of macro-fusion-capable conditional jumps are (unchanged):

JA or JNBE
JAE or JNB or JNC

Figure 4-2. Front End of Nehalem Microarchitecture

Instr. Decoder

ILD

Instr. Queue

Instr. Decoder

ICache

Instr.

I Fetch U

Br. Predict U

Length
Decoder

4

1

1

1
LSD

MSROM

Queue

IQ

IDQ
4 micro-ops
per cycle
max

4 micro-ops per cycle

Document #: 356477-050US 4-4

NEHALEM MICROARCHITECTURE

JE or JZ
JNA or JBE
JNAE or JC or JB
JNE or JNZ

• CMP can be fused with the following conditional jumps in Nehalem microarchitecture (this is an enhancement):

JL or JNGE
JGE or JNL
JLE or JNG
JG or JNLE

The hardware improves branch handling in several ways. Branch target buffer has increased to increase the accuracy
of branch predictions. Renaming is supported with return stack buffer to reduce mispredictions of return instructions
in the code. Furthermore, hardware enhancement improves the handling of branch misprediction by expediting
resource reclamation so that the front end would not be waiting to decode instructions in an architected code path
(the code path in which instructions will reach retirement) while resources were allocated to executing mispredicted
code path. Instead, new micro-ops stream can start forward progress as soon as the front end decodes the instruc-
tions in the architected code path.

4.1.2 Execution Engine
The IDQ (Figure 4-2) delivers micro-op stream to the allocation/renaming stage (Figure 4-1) of the pipeline. The out-
of-order engine supports up to 128 micro-ops in flight. Each micro-ops must be allocated with the following
resources: an entry in the re-order buffer (ROB), an entry in the reservation station (RS), and a load/store buffer if a
memory access is required.

The allocator also renames the register file entry of each micro-op in flight. The input data associated with a micro-op
are generally either read from the ROB or from the retired register file.

The RS is expanded to 36 entry deep (compared to 32 entries in previous generation). It can dispatch up to six micro-
ops in one cycle if the micro-ops are ready to execute. The RS dispatch a micro-op through an issue port to a specific
execution cluster, each cluster may contain a collection of integer/FP/SIMD execution units.

The result from the execution unit executing a micro-op is written back to the register file, or forwarded through a
bypass network to a micro-op in-flight that needs the result. Nehalem microarchitecture can support write back
throughput of one register file write per cycle per port. The bypass network consists of three domains of
integer/FP/SIMD. Forwarding the result within the same bypass domain from a producer micro-op to a consumer
micro is done efficiently in hardware without delay. Forwarding the result across different bypass domains may be
subject to additional bypass delays. The bypass delays may be visible to software in addition to the latency and
throughput characteristics of individual execution units. The bypass delays between a producer micro-op and a
consumer micro-op across different bypass domains are shown in Table 4-1.

Table 4-1. Bypass Delay Between Producer and Consumer Micro-ops (cycles)

FP Integer SIMD

FP 0 2 2

Integer 2 0 1

SIMD 2 1 0

Document #: 356477-050US 4-5

NEHALEM MICROARCHITECTURE

4.1.3 Issue Ports and Execution Units

Table 4-2 summarizes the key characteristics of the issue ports and the execution unit latency/throughputs for
common operations in the microarchitecture.

Cache and Memory Subsystem
Nehalem microarchitecture contains an instruction cache, a first-level data cache and a second-level unified cache in
each core (see Figure 4-1). Each physical processor may contain several processor cores and a shared collection of
sub-systems that are referred to as “uncore“. Specifically in Intel Core i7 processor, the uncore provides a unified
third-level cache shared by all cores in the physical processor, Intel QuickPath Interconnect links and associated logic.
The L1 and L2 caches are writeback and non-inclusive.

The shared L3 cache is writeback and inclusive, such that a cache line that exists in either L1 data cache, L1 instruction
cache, unified L2 cache also exists in L3. The L3 is designed to use the inclusive nature to minimize snoop traffic

Table 4-2. Issue Ports of Nehalem Microarchitecture

Port Executable
Operations Latency Throughput Domain Comment

Port 0 • Integer ALU
• Integer Shift

1
1

1
1 Integer

Port 0 • Integer SIMD ALU
• Integer SIMD Shuffle

1
1

1
1 SIMD

Port 0

• Single-precision (SP)
FP MUL

• Double-precision FP
MUL

• FP MUL (X87)
• FP/SIMD/SSE2 Move

and Logic
• FP Shuffle
• DIV/SQRT

4

5

5
1

1

1

1

1
1

1

FP

Port 1
• Integer ALU
• Integer LEA
• Integer Mul

1
1
3

1
1
1

Integer

Port 1

• Integer SIMD MUL
• Integer SIMD Shift
• PSAD
• StringCompare

1
1
3

1
1
1

SIMD

Port 1 FP ADD 3 1 FP

Port 2 Integer loads 4 1 Integer

Port 3 Store address 5 1 Integer

Port 4 Store data Integer

Port 5
• Integer ALU
• Integer Shift
• Jmp

1
1
1

1
1
1

Integer

Port 5 • Integer SIMD ALU
• Integer SIMD Shuffle

1
1

1
1 SIMD

Port 5 FP/SIMD/SSE2 Move
and Logic 1 1 FP

Document #: 356477-050US 4-6

NEHALEM MICROARCHITECTURE

between processor cores. Table 4-3 lists characteristics of the cache hierarchy. The latency of L3 access may vary as a
function of the frequency ratio between the processor and the uncore sub-system.

Nehalem microarchitecture implements two levels of translation lookaside buffer (TLB). The first level consists of
separate TLBs for data and code. DTLB0 handles address translation for data accesses, it provides 64 entries to
support 4KB pages and 32 entries for large pages. The ITLB provides 64 entries (per thread) for 4KB pages and 7 entries
(per thread) for large pages.

The second level TLB (STLB) handles both code and data accesses for 4KB pages. It support 4KB page translation oper-
ation that missed DTLB0 or ITLB. All entries are 4-way associative. Here is a list of entries in each DTLB:

• STLB for 4-KByte pages: 512 entries (services both data and instruction look-ups).
• DTLB0 for large pages: 32 entries.
• DTLB0 for 4-KByte pages: 64 entries.
An DTLB0 miss and STLB hit causes a penalty of 7cycles. Software only pays this penalty if the DTLB0 is used in some
dispatch cases. The delays associated with a miss to the STLB and PMH are largely non-blocking.

4.1.4 Load and Store Operation Enhancements
The memory cluster of Nehalem microarchitecture provides the following enhancements to speed up memory oper-
ations:

• Peak issue rate of one 128-bit load and one 128-bit store operation per cycle.
• Deeper buffers for load and store operations: 48 load buffers, 32 store buffers and 10 fill buffers.
• Fast unaligned memory access and robust handling of memory alignment hazards.
• Improved store-forwarding for aligned and non-aligned scenarios.
• Store forwarding for most address alignments.

4.1.5 Efficient Handling of Alignment Hazards
The cache and memory subsystems handles a significant percentage of instructions in every workload. Different
address alignment scenarios will produce varying performance impact for memory and cache operations. For
example, 1-cycle throughput of L1 (see Table 4-4) generally applies to naturally-aligned loads from L1 cache. But using

Table 4-3. Cache Parameters of Intel Core i7 Processors

Level Capacity Associativity
(ways)

Line Size
(bytes)

Access
Latency
(clocks)

Access
Throughput

(clocks)

Write Update
Policy

First Level Data 32 KB 8 64 4 1 Writeback

Instruction 32 KB 4 N/A N/A N/A N/A

Second Level 256KB 8 64 101

NOTES:
1. Software-visible latency will vary depending on access patterns and other factors.

Varies Writeback

Third Level
(Shared L3)2

2. Minimal L3 latency is 35 cycles if the frequency ratio between core and uncore is unity.

8MB 16 64 35-40+2 Varies Writeback

Document #: 356477-050US 4-7

NEHALEM MICROARCHITECTURE

unaligned load instructions (e.g. MOVUPS, MOVUPD, MOVDQU, etc.) to access data from L1 will experience varying
amount of delays depending on specific microarchitectures and alignment scenarios.

Table 4-4 lists approximate throughput of issuing MOVDQU instructions with different address alignment scenarios to
load data from the L1 cache. If a 16-byte load spans across cache line boundary, previous microarchitecture genera-
tions will experience significant software-visible delays.

Nehalem microarchitecture provides hardware enhancements to reduce the delays of handling different address
alignment scenarios including cache line splits.

4.1.6 Store Forwarding Enhancement
When a load follows a store and reloads the data that the store writes to memory, the microarchitecture can forward
the data directly from the store to the load in many cases. This situation, called store to load forwarding, saves several
cycles by enabling the load to obtain the data directly from the store operation instead of through the memory
system.

Several general rules must be met for store to load forwarding to proceed without delay:

• The store must be the last store to that address prior to the load.
• The store must be equal or greater in size than the size of data being loaded.
• The load data must be completely contained in the preceding store.
Specific address alignment and data sizes between the store and load operations will determine whether a store-
forward situation may proceed with data forwarding or experience a delay via the cache/memory sub-system. The 45
nm Enhanced Intel Core microarchitecture offers more flexible address alignment and data sizes requirement than
previous microarchitectures. Nehalem microarchitecture offers additional enhancement with allowing more situa-
tions to forward data expeditiously.

The store-forwarding situations for with respect to store operations of 16 bytes are illustrated in Figure 4-3.

Table 4-4. Performance Impact of Address Alignments of MOVDQU from L1

Throughput (cycle) Intel® Core™ i7
Processor

45nm Intel® Core™
Microarchitecture

65nm Intel® Core™
Microarchitecture

Alignment Scenario 06_1AH 06_17H 06_0FH

16B aligned 1 2 2

Not-16B aligned, not cache split 1 ~2 ~2

Split cache line boundary ~4.5 ~20 ~20

Document #: 356477-050US 4-8

NEHALEM MICROARCHITECTURE

Figure 4-3. Store-Forwarding Scenarios of 16-Byte Store Operations

Nehalem microarchitecture allows store-to-load forwarding to proceed regardless of store address alignment (The
white space in the diagram does not correspond to an applicable store-to-load scenario). Figure 4-4 illustrates situa-
tions for store operation of 8 bytes or less.

Document #: 356477-050US 4-9

NEHALEM MICROARCHITECTURE

Figure 4-4. Store-Forwarding Enhancement in Nehalem Microarchitecture

4.2 REP STRING ENHANCEMENT
REP prefix in conjunction with MOVS/STOS instruction and a count value in ECX are frequently used to implement
library functions such as memcpy()/memset(). These are referred to as "REP string" instructions. Each iteration of
these instruction can copy/write constant a value in byte/word/dword/qword granularity The performance charac-
teristics of using REP string can be attributed to two components: startup overhead and data transfer throughput.

The two components of performance characteristics of REP String varies further depending on granularity, alignment,
and/or count values. Generally, MOVSB is used to handle very small chunks of data. Therefore, processor implemen-
tation of REP MOVSB is optimized to handle ECX < 4. Using REP MOVSB with ECX > 3 will achieve low data throughput
due to not only byte-granular data transfer but also additional startup overhead. The latency for MOVSB, is 9 cycles if
ECX < 4; otherwise REP MOVSB with ECX >9 have a 50-cycle startup cost.

For REP string of larger granularity data transfer, as ECX value increases, the startup overhead of REP String exhibit
step-wise increase:

• Short string (ECX <= 12): the latency of REP MOVSW/MOVSD/MOVSQ is about 20 cycles.
• Fast string (ECX >= 76: excluding REP MOVSB): the processor implementation provides hardware optimization by

moving as many pieces of data in 16 bytes as possible. The latency of REP string latency will vary if one of the 16-
byte data transfer spans across cache line boundary:
— Split-free: the latency consists of a startup cost of about 40 cycles and each 64 bytes of data adds 4 cycles.
— Cache splits: the latency consists of a startup cost of about 35 cycles and each 64 bytes of data adds 6cycles.

• Intermediate string lengths: the latency of REP MOVSW/MOVSD/MOVSQ has a startup cost of about 15 cycles
plus one cycle for each iteration of the data movement in word/dword/qword.

Nehalem microarchitecture improves the performance of REP strings significantly over previous microarchitectures
in several ways:

• Startup overhead have been reduced in most cases relative to previous microarchitecture.
• Data transfer throughput are improved over previous generation.

Document #: 356477-050US 4-10

NEHALEM MICROARCHITECTURE

• In order for REP string to operate in “fast string” mode, previous microarchitectures requires address alignment.
In Nehalem microarchitecture, REP string can operate in “fast string” mode even if the address is not aligned to
16 bytes.

4.3 ENHANCEMENTS FOR SYSTEM SOFTWARE
In addition to microarchitectural enhancements that can benefit both application-level and system-level software,
Nehalem microarchitecture enhances several operations that primarily benefit system software.

Lock primitives: Synchronization primitives using the Lock prefix (e.g. XCHG, CMPXCHG8B) executes with significantly
reduced latency than previous microarchitectures.

VMM overhead improvements: VMX transitions between a Virtual Machine (VM) and its supervisor (the VMM) can
take thousands of cycle each time on previous microarchitectures. The latency of VMX transitions has been reduced
in processors based on Nehalem microarchitecture.

4.3.1 Efficiency Enhancements for Power Consumption
Nehalem microarchitecture is not only designed for high performance and power-efficient performance under wide
range of loading situations, it also features enhancement for low power consumption while the system idles.
Nehalem microarchitecture supports processor-specific C6 states, which have the lowest leakage power consumption
that OS can manage through ACPI and OS power management mechanisms.

4.3.2 Intel® Hyper-Threading Technology (Intel® HT) Support in Nehalem
Microarchitecture

Nehalem microarchitecture supports Intel® Hyper-Threading Technology (Intel® HT). Its implementation of Intel HT
provides two logical processors sharing most execution/cache resources in each core. The HT implementation in
Nehalem microarchitecture differs from previous generations of HT implementations using Intel NetBurst microarchi-
tecture in several areas:

• Nehalem microarchitecture provides four-wide execution engine, more functional execution units coupled to
three issue ports capable of issuing computational operations.

• Nehalem microarchitecture supports integrated memory controller that can provide peak memory bandwidth of
up to 25.6 GB/sec in Intel Core i7 processor.

• Deeper buffering and enhanced resource sharing/partition policies:
— Replicated resource for HT operation: register state, renamed return stack buffer, large-page ITLB.
— Partitioned resources for HT operation: load buffers, store buffers, re-order buffers, small-page ITLB are

statically allocated between two logical processors.
— Competitively-shared resource during HT operation: the reservation station, cache hierarchy, fill buffers,

both DTLB0 and STLB.
— Alternating during Intel HT operation: front end operation generally alternates between two logical

processors to ensure fairness.
— HT unaware resources: execution units

Document #: 356477-050US 5-1

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

CHAPTER 5
KNIGHTS LANDING MICROARCHITECTURE

OPTIMIZATION

Intel® Xeon PhiTM Processors 7200/5200/3200 Series are based on the Knights Landing microarchitecture. Coding
techniques for software targeting the Knights Landing microarchitecture are described in this chapter. Processors
based on the Knights Landing microarchitecture can be identified using CPUID’s DisplayFamily_DisplayModel signa-
ture, which can be found in Table 2-1 of Chapter 2, “Model-Specific Registers (MSRs)” of Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 4.

Figure 5-1. Tile-Mesh Topology of the Knights Landing Microarchitecture

Tile

PCIe
Gen 3 DMI

Core

CHA

EDC EDC EDC EDC

EDC EDC EDC EDCMISC

DDR MC DDR MC

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

MCDRAM MCDRAM

2 x 16
 x 4

x 4
DM

D
D
R

C
H
A
N
N
E
L
S

D
D
R

C
H
A
N
N
E
L
S

 Multiple Tiles
 Connected by
 2-D Mesh
 Interconnect

 Physical
 Package

Core
 1MB
 L 2

2 VPU 2 VPU

Document #: 356477-050US 5-2

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

The Knights Landing microarchitecture is designed for processors and co-processor product families that target
highly-parallel, high-performance applications. An Intel Xeon Phi processor based on the Knights Landing microarchi-
tecture is comprised of:

• A large number of tiles.
• A two-dimensional mesh interconnect connecting the tiles.
• An advanced memory sub-system supplying data to all the tiles containing IA-compatible processor cores and

cache hierarchy.
Figure 5-1 depicts a collection of “tile” units (or pairs of processor cores) connected by a two-dimensional mesh
network, offering I/O capabilities via PCIe and DMI interfaces, a memory sub-system supporting high-bandwidth opti-
mized MCDRAM, and capacity-optimized DDR memory channels.

Figure 5-1 also illustrates each tile comprising:

• Two out-of-order IA processor cores supporting Intel® Hyper-Threading Technology (Intel® HT)with 4 logical
processors per core.

• A 1 MByte L2 cache shared between the two processor cores in the tile.
• A Caching Homing Agent (CHA) connecting each tile to the 2-D mesh interconnect.

Figure 5-2. Processor Core Pipeline Functionality of the Knights Landing Microarchitecture

ITLB

Fetch &
Instruction
Cache

branch
predict

Allocate
Rename

Integer Rename Buffer

 Integer RF .

ALU
 RS

FP

FP Register File

X87

Vec ALUVec ALU
ALUALU

L1 Data
Cache.

 MEM
 RS .

Decode

Retire

ALU
 RS

 Recycle
 Buffer.

 TLBs

RS
FP
RS

FP Rename Buffer

SHUFFLE
VECINTMUL

Document #: 356477-050US 5-3

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

• Each processor core also provides a dedicated vector processing unit (VPU) capable of executing 512-bit, 256-bit,
128-bit and scalar SIMD instructions.

Figure 5-2 illustrates the microarchitectural pipelines of a processor core (including the VPU pipelines) inside a tile.

The processor core in the Knights Landing microarchitecture provides the following features:

• An out-of-order (OOO) execution engine with 6-wide execution (2 VPU, 2 memory, 2 integer) pipeline. Specifi-
cally, the out-of-order engine is supported by:
— The front end can decode two instructions per-cycle into micro-ops (uops).
— The allocate/rename stage is also two-wide.
— The out-of-order engine has distributed reservation stations (72-entry deep) feeding the integer, memory,

and VPU pipelines.
• The VPU can execute Intel AVX-512F, Intel AVX-512CD, Intel AVX-512ER, Intel AVX-512PF, Intel AVX, and 128-bit

SIMD/FP instructions.
• The VPU can perform two 512-bit FMA operations per cycle; x87 and MMX instructions throughput is limited to

one per cycle.
• Each processor core supports 4 logical processors via Intel HT.
• Two processor cores share a 1 MByte L2 cache and form a tile.

5.1 FRONT END
The front end can fetch 16 bytes of instructions per cycle. The decoders can decode up to two instructions of not more
than 24 bytes in a cycle. The decoders can only provide a single uop per instruction. If an instruction decodes into
multiple uops (e.g., VSCATTER*), the microcode sequencer (MS) will supply the uop flow with a performance bubble
of 3-7 cycles, depending on instruction alignment in the decoder and length of the MS flow. The decoder will also
have a small delay if a taken branch is encountered. If an instruction has more than 3 prefixes, there will be a multi-
cycle bubble.

The front end is connected to the OOO execution engine through the Allocation, Renaming and Retirement cluster.
Scheduling of uops is handled with distributed reservation stations across the integer, memory and VPU pipelines.

5.1.1 Out-of-Order Engine
The reorder buffer (ROB) is 72 uops deep. There are 16 store buffers (for both address and data). Distributed sched-
uling of uops include (see Figure 5-2):

• Two integer reservation stations (one per dispatch port) are 12 entries each.
• The single MEC reservation station has 12 entries, and dispatches up to 2 uops per cycle.
• The two VPU reservation stations (one per dispatch port) are 20 entries each.
The reservation stations, ROB, and store data buffers are hard partitioned per logical processor (depending on the
processor core operating with 1, 2, or 4 active logical processors). Hard partitioning of resources changes as logical
processors wake up and go to sleep. The store address buffers have two entries reserved per logical processor, with
the remaining entries shared among the logical processors.

The integer reservation stations can dispatch 2 uops per cycle each, and are able to do so out-of-order. The memory
execution reservation station dispatches 2 uops from its scheduler in-order, but uops can complete in any order. The
data cache can read two 64B cache lines and write one cache line per cycle. The VPU reservation stations can dispatch
2 uops per cycle each and complete out-of-order.

The OOO engine in the Knights Landing microarchitecture is optimized to favor execution throughput over latency.
Loads to integer registers (e.g., RAX) are 4 cycles, and loads to VPU registers (e.g., XMM0, YMM1, ZMM2, or MM0) are
5 cycles. Only one integer load is possible per cycle, but the other memory operations (store address, vector load, and
prefetch) can dispatch two per cycle. Stores commit post-retirement, at a rate of 1 per cycle. The data cache and
instruction caches are each 32 KB in size.

Document #: 356477-050US 5-4

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Most commonly-used integer math instructions (e.g. add, sub, cmp, test) have a throughput of 2 per cycle with
latency of a single cycle. The integer pipeline has only one integer multiplier with a latency of 3 or 5 cycles depending
on the operand size. Latency of integer division will vary depending on the operand size and input value; its
throughput is expected to be not faster than one every ~20 cycles. Store to load forwarding has a cost of 2 cycles and
can forward one per cycle if the store-forwarding restrictions are met.

Many VPU math operations can dispatch on either VPU port with a latency of either 2 cycles or 6 cycles; see Table 5-2.
The following instructions can only dispatch on a single port:

• All x87 math operations.
• FP divisions and square roots.
• Intel AVX-512ER.
• Vector permute / shuffle operations.
• Vector to integer moves.
• Intel AVX-512CD conflict instructions.
• AESNI.
• The store data operation of a vector instruction with store semantics.
The above operations are limited to one of the two VPU dispatch pipes. Vector store data and vector to integer moves
are on one dispatch pipe. The remaining single pipe instructions are on the other dispatch pipe.

Table 5-1. Integer Pipeline Characteristics of the Knights Landing Microarchitecture

Integer Instruction/Operations Latency (Cycle) Throughput
(Cycles per Instruction)

Simple Integer 1 0.5

Integer Multiply 3 or 5 1

Integer Divide Varies > 20

Store to Load Forward 2 1

Integer Loads 4 1

Table 5-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture

Vector Instructions Latency (cycle) Throughput (cycles per
instruction)

Simple Integer 2 0.5

Most Vector Math (including FMA) 6 0.5

Mask Instructions (operating on opmask) 2 0.5

AVX-512ER (64-bit element) 7 2

AVX-512ER (32-bit element) 8 3

Vector Loads 5 0.5

Store to Load Forward 2 0.5

Gather (8 elements) 15 5

Gather (16 elements) 19 10

Document #: 356477-050US 5-5

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

Additionally, some instructions in the Knights Landing microarchitecture will be decoded as one uop by the front end
but need to expand to two operations for execution. These complex uops will have an allocation throughput of one
per cycle. Examples of these instructions are:

• POP: integer load data + ESP update
• PUSH: integer store data + ESP update
• INC: add to register + update partial flags
• Gather: two VPU uops
• RET: JMP + ESP update
• CALL, DEC, LEA with 3 sources
Table 5-3 lists characteristics of the caching resources in the Knights Landing microarchitecture.

Register Move (GPR ->
XMM/YMM/ZMM) 2 1

Register Move (XMM/YMM/ZMM ->
GPR) 4 1

DIVSS/SQRTSS1 25 ~20

DIVSD/SQRTSD1 40 ~33

DIVP*/SQRTP*1 38 ~10

Shuffle/Permute (1 source operand)1 2 1

Shuffle/Permute (2 source operands)1 3 2

Convert (from/to same width)1 2 1

Convert (from/to different width)1 6 5

Common x87/MMX Instructions1 6 1

NOTES:
1. The physical units executing these instructions may experience additional scheduling delay due to the physical layout of the

units in the VPU.

Table 5-3. Characteristics of Caching Resources

Sets Ways Latency Capacity/Comments

uTLB 8 8 1 64 4KB pages (fractured)1

DTLB (4KB page) 32 8 4 256 4KB pages

DTLB (2M/4M page) 16 8 4 128 2MB/4MB pages

DTLB (1GB page) 1 16 4 16 1GB pages

ITLB 1 48 4 48 4KB pages (fractured)

PDE 8 4 1 Page descriptors

Table 5-2. Vector Pipeline Characteristics of the Knights Landing Microarchitecture (Contd.)

Vector Instructions Latency (cycle) Throughput (cycles per
instruction)

Document #: 356477-050US 5-6

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.1.2 UnTile
In the Knights Landing microarchitecture, many tiles are connected by a mesh interconnect into a physical package;
see Figure 5-1. The mesh and associated on-package components are referred to as “untile”. At each mesh stop, there
is a connection to the tile and a tag directory that identifies which L2 cache (if any) holds a particular cache line. There
is no shared L3 cache within a physical package. Memory accesses that miss in the tile must go over the mesh to the
tag directory to identify any cached copies in another tile. Cache coherence uses the MESIF protocol. If the cache line
is not cached in another tile, then a request goes to memory.

MCDRAM is an on-package, high bandwidth memory subsystem that provides peak bandwidth for read traffic, but
lower bandwidth for write traffic (compared to reads). The aggregate bandwidth provided by MCDRAM is higher than
the off-package memory subsystem (i.e., DDR memory). DDR memory bandwidth can potentially be saturated by
writes or reads alone. The achievable memory bandwidth for MCDRAM is approximately 4x - 6x of what DDR can do,
depending on the mix of read and write traffic.

MCDRAM capacity supported by the Knights Landing microarchitecture is either 8 or 16 GB, depending on product-
specific features. The peak MCDRAM bandwidth will vary according to the size of the installed MCDRAM. MCDRAM
has higher bandwidth but lower capacity than DDR. The Maximum DDR capacity is 384 GB for the Knights Landing
microarchitecture.

The physical memory in a platform comprises both MCDRAM and DDR memory; they can be partitioned in a number
of different modes of operation. The commonly-used modes are summarized below.

• Cache mode: MCDRAM as a direct mapped cache and DDR is used as system memory addressable by software.
• Flat mode: MCDRAM and DDR map to disjoint addressable, system memory.
• Hybrid mode: MCDRAM is partitioned; parts of MCDRAM act as direct mapped cache, the rest of MCDRAM is

directly addressable. DDR map to addressable system memory.
The configuration between tiles, tag directories and the mesh support the following modes of clustering operation for
cache coherent traffic:

• All-to-All: the requesting core, tag directory and memory controller for a cache line can be anywhere in the mesh.
• Quadrant: the tag directory and memory that it monitors are in the same quadrant of the mesh, but the

requesting core can be anywhere in the mesh.
• Sub-NUMA Clustering (SNC): In SNC mode, BIOS expose each quadrant as a NUMA node. This requires software

to recognize the NUMA domains and co-locate the requesting core, tag directory, and memory controller in the
same quadrant of the mesh to realize the benefit of optimal cache miss latency.

If critical portions of an application working set fit in the capacity of MCDRAM, performance could benefit greatly by
allocating it into the MCDRAM and using flat or hybrid mode. Cache mode is generally best for code that has not yet
been optimized for the Knights Landing microarchitecture, and has a working set that MCDRAM can cache.

In general, cache miss latency in All-to-All mode will be worse than it is in Quadrant mode; SNC mode can achieve the
best latency. Quadrant mode is the default mesh configuration. SNC clustering requires some support from software

L1 Data Cache 64 8 4 or 5 32 KB

Instruction Cache 64 8 4 32 KB

Shared L2 Cache 1024 16 13+L1 latency 1 MB

NOTES:
1. The uTLB and ITLB can only hold translations for 4 KB memory regions. If the relevant page is larger than 4 KB (such as 2MB or

1 GB), then the buffer holds the translation for the portion of the page that is being accessed. This smaller translation is
referred to as a fractured page.

Table 5-3. Characteristics of Caching Resources (Contd.)

Sets Ways Latency Capacity/Comments

Document #: 356477-050US 5-7

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

to recognize the different NUMA nodes. If DDR is not populated evenly (e.g., missing DIMMs), the mesh will need to
use the All-to-All clustering mode.

When multiple tiles read the same cache line, each tile might have a copy of the cache line. If both cores in the same
tile read a cache line, there will only be a single copy in the L2 cache of that tile.

If MCDRAM is configured as a cache, it can hold data or instructions accessed by the cores in a single place. If multiple
tiles request the same line, only one MCDRAM cacheline will be used.

L1 data cache has higher bandwidth and lower latency than L2 cache. Cache line access from L2 has higher bandwidth
and lower latency than access from memory.

MCDRAM and DDR memory have different latency and throughput profiles. This becomes important when choosing
between cache vs. flat or other memory modes. In most memory configurations, the DDR capacity will be substan-
tially larger than MCDRAM capacity. Likewise, MCDRAM capacity should be much larger than the combined L2 cache.

Working sets that fit in MCDRAM capacity, but not in the L2 cache, should be in MCDRAM. Large or rarely accessed
structures should migrate to DDR. In Knights Landing microarchitecture, hardware will try to do this dynamically if
MCDRAM is put in cache or hybrid memory modes. If memory is in the flat memory mode, data structures are bound
to one memory or the other (MCDRAM or DDR) at allocation time. The programmer should strive to maximize the
number of memory access that go to MCDRAM. One possible algorithm would allocate data structures into MCDRAM
if they are frequently accessed, and have working sets that do not fit into the tile caches.

In cache memory mode, the MCDRAM access is done first. If the cacheline is not in MCDRAM, the DDR access begins.
Because of this, the perceived memory access latency of DDR in cache memory mode is higher than in flat memory
mode.

5.2 INTEL® AVX-512 CODING RECOMMENDATIONS FOR KNIGHTS
LANDING MICROARCHITECTURE

The Intel AVX-512 family comprises a collection of instruction set extensions. For an overview and detailed features
(EVEX prefix encoding, opmask support, etc.) of the Intel AVX-512 family of instructions, see the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1. Intel Xeon Phi processors (7200, 5200, 3100 series) based on the
Knights Landing microarchitecture support AVX-512 Foundation (AVX-512F), AVX-512 Exponential and Reciprocal
(AVX-512ER), AVX-512 Conflict (AVX-512CD), and AVX-512 Prefetch extensions. Intel AVX and Intel AVX2 instructions
are also supported on processors based on the Knights Landing microarchitecture. Prior generation Intel Xeon Phi
processors (7100, 5100, 3100 series) do not support Intel AVX-512, Intel AVX2, nor Intel AVX instructions.

5.2.1 Using Gather and Scatter Instructions
Gather instructions in Intel AVX-512F are enhanced over those in Intel AVX2, performing 512-bit operations (either 16
elements of 32-bit data or 8 elements of 64-bit data) and using an opmask register as writemask for conditional
updates of fetched elements to the destination ZMM register.

Scatter instructions in Intel AVX-512F selectively store elements in a ZMM register to memory locations expressed via
an index vector. Conditional store to the destination location is selected using an opmask register. Scatter instructions
are not supported in Intel AVX or Intel AVX2.

Consider the following C code fragment:

for (uint32 i = 0; i < 16; i ++) {

b[i] = a[indirect[i]];

// vector compute sequence

Document #: 356477-050US 5-8

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

}

When using VGATHER and VSCATTER, you often need to set a mask to all ones. An efficient instruction to do this is
KXNOR of a mask register with itself. Since VSCATTER and VGATHER clear their mask as the last thing they do, a loop
carried dependence from the VGATHER to KXNOR can be generated. Because of this, it is wise to avoid using the same
mask for source and destination in KXNOR. Since it is rare for the k0 mask to be used as a destination, it is likely that
“KXNORW k1, k0, k0” will be faster than “KXNOR k1, k1, k1”.

Gather and Scatter instructions in AVX-512F are different from those in prior generation Intel Xeon Phi processors
(abbreviated by “Previous Generation” in Example 5-2).

5.2.2 Using Enhanced Reciprocal Instructions
The Intel AVX-512ER instructions provide high precision approximations of exponential, reciprocal, and reciprocal
square root functions. The approximate math instructions in Intel AVX-512ER provide 28 bits of accuracy, compared
to 11 bits in RCPSS or 14 bits with VRCP14SS. Intel AVX-512ER can reduce execution time for iterative algorithms like
Newton-Raphson. Example 5-3 contains sample code using the Newton-Raphson algorithm to compute a single 32b
float division with VRCP28SS. Both values are read off the stack. Note the use of rounding mode overrides on some of
the math operations.

Example 5-1. Gather Comparison Between Intel® AVX-512F and Intel® AVX2
AVX-512F AVX2
vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu ymm0, [rsp+0x1000] ; load half of index vector
vmovdqu ymm3, [rsp+0x1020] ; 2nd half of indirect[]
vpcmpeqdd ymm4, ymm4, ymm4 ; prepare mask
vmovdqaymm1, ymm4
vpgatherdd ymm2, [rax+ymm0*4], ymm1
vpgatherdd ymm5, [rax+ymm3*4], ymm4
; compute sequence using vector register

Example 5-2. Gather Comparison Between Intel® AVX-512F and Previous Generation
Equivalent

AVX-512F Previous Generation Equivalent Sequence
vmovdqu zmm0, [rsp+0x1000] ; load
indirect[]
kxnor k1,k0, k0; prepare mask
vpgatherdd zmm2{k1}, [rax+zmm0*4]
; compute sequence using vector register

vmovdqu zmm0, [rsp+0x1000] ; load indirect[]
kxnor k1,k1 ; prepare mask
g_loop: ; verify gathered elements are complete
vpgatherdd zmm2{k1}, [rax+zmm0*4]
jknzd k1, g_loop ; gather latency exposure
; compute sequence using vector register

Example 5-3. Using VRCP28SS for 32-bit Floating-Point Division

vgetmantss xmm18, xmm18, [rsp+0x10], 0
vgetmantss xmm20, xmm20, [rsp+0x8], 0
vrcp28ss xmm19, xmm18, xmm18
vgetexpss xmm16, xmm16, [rsp+0x8]
vgetexpss xmm17, xmm17, [rsp+0x10]
vsubss xmm22, xmm16, xmm17
vmulss xmm21{rne-sae}, xmm19, xmm20
vfnmadd231ss xmm20{rne-sae}, xmm21, xmm18
vfmadd231ss xmm21, xmm19, xmm20
vscalefss xmm0, xmm21, xmm22

Document #: 356477-050US 5-9

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.3 USING AVX-512CD INSTRUCTIONS
Refer to Section 5.6.5, “Way, Set Conflicts” for details on using the Intel AVX-512 Conflict Detection instructions.

5.3.1 Using Intel® Hyper-Threading Technology (Intel® HT)
The Knights Landing microarchitecture supports four logical processors with each processor core. There are choices
that highly-threaded software may need to consider with respect to:

• Maximizing per-thread performance by providing maximum per-core resources to one logical processor per core.
• Maximizing per-core throughput by allowing multiple logical processors to execute on a processor core.
As thread count per core grows to two or four, some applications will have higher per core performance, but lower
per thread performance. If an application can perfectly scale its performance to an arbitrary number of threads, four
threads per core is likely to have the highest instruction throughput. Practical limitations on memory capacity or
parallelism may limit the number of threads per core.

In Knights Landing microarchitecture, some per core resources (like the ROB or scheduler) are partitioned to one for
each of four logical processors. Because of this, a three-thread configuration will have fewer aggregate resources
available than one, two, or four threads per core. Placing three threads on a processor core is unlikely to perform
better than two or four threads per core.

5.3.2 Front End Considerations
To ensure front end restrictions are not typically a performance limiter, software should consider the following:

• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near indirect. It
will often be better to perform a load into a register and then perform the register version of CALL. Additional
examples are shown in Table 5-4.

• The total length of the instruction bytes that can be decoded each cycle is at most 16 bytes per cycle with instruc-
tions not more than 8 bytes in length. For instruction length exceeding 8 bytes, only one instruction per cycle is
decoded on decoder 0. Vector instructions which address memory using 32-bit displacement can cause the
decoder to limit performance.

• Instructions with multiple prefixes can restrict decode throughput. The restriction is on the length of bytes
combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix count exceeds 3 with the
Knights Landing microarchitecture. Only decoder 0 can decode an instruction exceeding the limit of a
prefix/escape byte restriction.

• Maximum number of branches that can be decoded each cycle is 1.

5.3.3 Instruction Decoder
Some IA instructions require a lookup in the microcode sequencer ROM (MSROM) to decode into a multiple uop flow.
Choosing an alternative sequence of instructions which does not require MSROM will improve performance.

Table 5-4 provides alternate non-MSROM instruction sequences that can replace an instruction that decodes from
MSROM.

Table 5-4. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Knights Landing

CALL m16/m32/m64 Load + CALL reg

PUSH m16/m32/m64 Store + RSP update

(I)MUL r/m16 (Result DX:AX) Use (I)MUL r16, r/m16 if extended precision not required, or (I)MUL r32,
r/m32

(I)MUL r/m32 (Result EDX:EAX) Use (I)MUL r32, r/m32 if extended precision not required, or (I)MUL r64,
r/m64

Document #: 356477-050US 5-10

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.3.4 Branching Indirectly Across a 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction for indirect branches
(indirect branch or call, or ret). For 64-bit applications, indirect branch prediction fails when the target of a branch is
in a different 4GB chunk of the address space from the source. (I.e. the top 32 bits of the virtual addresses of the
source and target are different). This is more likely to happen when the application is split into shared libraries. Devel-
opers can build statically to improve the locality in their code, particularly for latency-sensitive library calls that are
accessed frequently. Another option is to use glibc 2.23 or later, and set the LD_PREFER_MAP_32BIT_EXEC environ-
ment variable which requests that the dynamic linker place all shared libraries at the bottom of the address space.

5.4 INTEGER EXECUTION CONSIDERATIONS

5.4.1 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be consumed by a
variety of instructions such as conditional moves (cmovs), branches, and even a variety of logic/arithmetic operations
(such as rcl). The most common instructions used in computing branch conditions are compare instructions (CMP).
Branches dependent on the CMP instruction can execute in the next cycle. The same is true for branch instructions
dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As a result, an
INC or a DEC instruction should be replaced by “ADD reg, 1” or “SUB reg, 1” to avoid a partial flag penalty.

Instructions that operate on 8-bit or 16-bit registers are not optimized in hardware in the Knights Landing microarchi-
tecture. In general, it is faster to use integer instructions operating on 32-bit or 64-bit general purpose registers than
8-bit or 16-bit registers.

5.4.2 Integer Division
Integer division can be a common operation in some mathematical expressions. However, using hardware integer
divide instructions is often less than optimal in performance. If the divisor is known to be relatively small (16 bits or
less), there are fast SW sequences to emulate the division. If the divisor is known to be a power of 2, use SHR (division)
and/or AND (remainder) instead of DIV. Division by a constant can be replaced by MUL with a constant. If the input
values are highly constrained, a pre-computed lookup table is likely to provide better performance.

Division instructions should be aggressively minimized by the compiler, either using the techniques mentioned
earlier, or by hoisting redundant divisions out of inner loops.

5.5 OPTIMIZING FP AND VECTOR EXECUTION

5.5.1 Instruction Selection Considerations
In general, using 512-bit instructions are more favorable to achieve higher throughput than 256-bit instructions. The
same applies relative to 256-bit vs. 128-bit vector instructions. 128-bit SSE instructions are likely to achieve higher
throughput than using X87 instruction equivalents. Often, X87 instruction functionality (transcendental) not present
in vector instruction extensions natively can be replaced by library implementations using vector instructions.

(I)MUL r/m64 (Result RDX:RAX) Use (I)MUL r64, r/m64 if extended precision not required

Table 5-4. Alternatives to MSROM Instructions (Contd.)

Document #: 356477-050US 5-11

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

In the Knights Landing microarchitecture, COMIS* and UCOMIS* instructions (legacy, VEX, or EVEX encoding) that
update EFLAGS are slow. These should be replaced by a more optimal sequence of the Intel AVX-512F version of
VCMPS* and KORTEST.

Some instructions, like VCOMPRESS*, are single uop when writing a register, but an MS flow when writing memory.
Where possible, it is much better to do a VCOMPRESS to register and then store it. Similar optimizations apply to all
vector instructions that do some sort of operation followed by a store (e.g., PEXTRACT).

In the Knights Landing microarchitecture, mixing SSE instructions and Intel AVX instructions require a different set of
considerations to avoid loss of performance due to intermixing of SSE and Intel AVX instructions. Replace SSE code
with AVX-128 equivalents, whenever possible.

Situations that can result in a performance penalty are:

• If an Intel AVX instruction encoded with a vector length of more than 128 bits is allocated before the retirement
of previous in-flight SSE instructions.

• VZEROUPPER instruction throughput is slow, and is not recommended to preface a transition to AVX code after
SEE code execution. The throughput of VZEROALL is also slow. Using either the VZEROUPPER or the VZEROALL
instruction is likely to result in performance loss.

Conditional packed load/store instructions, like MASKMOVDQU and VMASKMOV, use a vector register for element
selection. AVX-512F instructions provide alternatives using an opmask register for element selection and are
preferred over using a vector register for element selection.

Some vector math instructions require multiple uops to implement in the VPU. This increases the latency of the indi-
vidual instruction beyond the standard math latencies of 2 and 6. In general, instructions that alter output/input
element width (e.g., VCVTSD2SI) fall into this category. Many Intel AVX2 instructions that operate on byte and word
quantities have reduced performance compared to the equivalents that operate on 32b or 64b quantities.

Some execution units in the VPU may incur scheduling delay if a sequence of dependent uop flow needs to use these
execution units. When this happens, it will have an additional cost of a 2-cycle bubble. Code that frequently transition
between the outlier units with other units in the VPU can experience a performance issue due to these bubbles.

Most of the Intel AVX-512 instructions support using an opmask register to make conditional updates to the destina-
tion. In general, using an opmask with all 1’s will be the fastest relative to using an opmask with other non-zero values.
Using a non-zero opmask value, the instruction will be similar in speed relative to an opmask with all 1s, if zeroing-the-
non-updated element is selected. Using a non-zero opmask value with merging (preserving) non-updated elements of
the destination will likely be slower.

Horizontal add/subtraction instructions in Intel AVX2 do not have promoted equivalents in Intel AVX-512. Horizontal
reduction is best implemented using software sequences; see Example 5-5.

In situations where an algorithm needs to perform reduction, reduction can often be implemented without hori-
zontal addition.

Example 5-6 shows code fragment for the inner loop of a DGEMM matrix multiplication routine, which computes the
dense matrix operation of C = A * B.

In Example 5-6, there are 16 partial sums. The sequence of FMA instructions make use of the two VPU capability of 2
FMAs per cycle throughput, 6 cycles latency. The FMA code snippet in Example 5-6 is presented using uncompressed
addressing form for the memory operand. It is important for code generators to ensure optimal code generation will

Example 5-4. Replace VCOMIS* with VCMPSS/KORTEST

vcmpss k1, xmm1, xmm2, imm8 ; specify imm8 according to desired primitive
kortest k1, k1

Document #: 356477-050US 5-12

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

make use of compressed disp8 addressing form, so that the length of each FMA instruction will be less than 8 bytes.
At the end of the inner loop, the partial sums will need to be aggregated and store the result matrix C to memory.

5.5.2 Porting Intrinsics from Previous Generation
Most intrinsics map to individual instructions of the native hardware. Some 512-bit intrinsics may provide syntax that
hides the difference between AVX-512F and the 512-bit incompatible previous generation instruction set.

However, intrinsic code that is optimized to run on previous generations will likely not run optimized on the Knights
Landing microarchitecture, due to differences in the underlying microarchitecture (e.g., unaligned memory access,
cost differences of permutes, limitations of previous generations).

Example 5-5. Using Software Sequence for Horizontal Reduction

vextractf64x4 ymm1, zmm6, 1; reduction of 16
elements

vaddps ymm1, ymm6, ymm1
vpermpd ymm4, ymm1,0xff
vpermpd ymm5, ymm1,0xaa
vpermpd ymm3, ymm1,0x44
vaddps xmm1, xmm1, xmm4
vaddps xmm3, xmm5, xmm3
vaddps xmm3, xmm1, xmm3
vpsrlq xmm1, xmm3, 32
vaddss xmm3, xmm1, xmm3

vextractf64x4 ymm1, zmm6, 1; reduction of 8
elements

vaddps ymm1, ymm6, ymm1
valignq ymm4, ymm1,0x3
valignq ymm5, ymm1,0x2
valignq ymm3, ymm1,0x1
vaddsd ymm1, ymm1, ymm4
vaddsd ymm3, ymm5, ymm3
vaddsd ymm3, ymm1, ymm3

Example 5-6. Optimized Inner Loop of DGEMM for Knights Landing Microarchitecture

;; matrix - matrix dense multiplication
prefetcht0 [rdi+0x400] ;; get A matrix element into L1$
vmovapd zmm30, [rdi]
prefetcht0 [rsi+0x400] ;; get B matrix element into L1$
vfmadd231pd zmm1, zmm30, [rsi+r12]{b} ;; broadcast B elements
vfmadd231pd zmm2, zmm30, [rsi+r12+0x08]{b} ;; displacement shown in un-compressed form
vfmadd231pd zmm3, zmm30, [rsi+r12+0x10]{b}
vfmadd231pd zmm4, zmm30, [rsi+r12+0x18]{b}
vfmadd231pd zmm5, zmm30, [rsi+r12+0x20]{b}
vfmadd231pd zmm6, zmm30, [rsi+r12+0x28]{b}
vfmadd231pd zmm7, zmm30, [rsi+r12+0x30]{b}
vfmadd231pd zmm8, zmm30, [rsi+r12+0x38]{b}

prefetcht0 [rsi+0x440] ;; pull line into the L1$
vfmadd231pd zmm9, zmm30, [rsi+r12+0x40]{b}
vfmadd231pd zmm10, zmm30, [rsi+r12+0x48]{b}
vfmadd231pd zmm11, zmm30, [rsi+r12+0x50]{b}
vfmadd231pd zmm12, zmm30, [rsi+r12+0x58]{b}
vfmadd231pd zmm13, zmm30, [rsi+r12+0x60]{b}
vfmadd231pd zmm14, zmm30, [rsi+r12+0x68]{b}
vfmadd231pd zmm15, zmm30, [rsi+r12+0x70]{b}
vfmadd231pd zmm16, zmm30, [rsi+r12+0x78]{b}

Document #: 356477-050US 5-13

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

It is likely that coding an algorithm in a high level language (C/Fortran) to compile with Intel Compilers supporting
Intel AVX-512F will generate more optimal code than using previous generation intrinsics.

5.5.3 Vectorization Trade-Off Estimation
Profitability of vectorization of loops written in a high-level language to use AVX-512 is an important part of optimiza-
tion for compilers as well as for hand coding assembly. Estimating this for the simplest type of loop construct can be
based on trip count alone. For example, a trip count of 4 or less may be difficult to realize performance gain over
scalar code. With Intel AVX-512, a trip count of 16 may be the minimum to consider vectorization.

Estimation of vectorization trade-off for more elaborate loop construct requires more sophistication. The rest of this
section provides an analytic approach of examining the composition within the loop body and makes use of a table of
cost estimates of basic operations, Table 5-5, to derive the trade-off comparison between vectorization versus scalar
code.

To illustrate the cost build-up approach, consider the simple loop:

for (i=0; i<N; i++) { sum += a[i]*K + b[i]; }

Within the loop body, the basic operations consist of:

• Two loads (a[i], b[i]) per iteration.
• An FMA per iteration.
• For scalar version: an accumulate per loop iteration; for vectorization: a horizontal reduction at the end of the

loop.
The total cost of N trips for scalar code is 4N. By comparison, the total cost for vectorized code using AVX-512 on a 64-
bit data element would be 3 * Ceiling(N/8) + 30, assuming both the main loop and remainder loop (if N is not multiples
of 8) are vectorized. Therefore, profitable vectorization will need a trip count of at least 9.

Consider another example involving fetching data from irregular access patterns which might take advantage of
GATHER instructions:

Table 5-5. Cycle Cost Building Blocks for Vectorization Estimate for Knights Landing
Microarchitecture

Operation Cost (cycles) Example Code Construct

Simple scalar math 1 A*B+C, or A+B, or A*B

Load (split cacheline) 1 (2) A[i] /* load reference to an array element */

Store (split cacheline) 1(2) A[i] = 2;

Gather (Scatter) 8 elements 15 (20) A[key[i]]

Gather (Scatter) 16elements 20 (25) A[key[i]] ;

Horizontal reduction 30 sum += A[i]

Division or Square root 15 A/B

Document #: 356477-050US 5-14

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

for (i=0; i<N; i++) {c[i] = a[indir[i]] * K + b[i]; }

Within the loop body, the basic operations consist of:

• Two loads (indir[i], b[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: a 3rd load per loop iteration; for vectorization: one GATHER per 8 iteration.
The total cost of N trips for scalar code is 5N. By comparison, the total cost for vectorized code would be 19*
Ceiling(N/8). Scalar would be faster if N < 4.

Consider an example involving fetching data from twice irregular access patterns than the previous example:

for (i=0; i<N; i++) {c[i] = a[ind[i]]*K + b[ind[i]]; }

• One load (ind[i]) per iteration.
• An FMA per iteration.
• A store per iteration.
• For scalar version: two more loads per loop iteration; for vectorization: two GATHERs per 8 iteration.
The total cost of N trips for scalar code is still 5N. By comparison, the total cost for vectorized code would be (15*2 +
3)* Ceiling(N/8) = 33* Ceiling(N/8). Even a relatively small profitability of vectorization will require a significantly
larger trip count.

Consider the next example involving fetching data from one irregular access pattern and horizontal reduction:

for (i=0; i<N; i++) {sum += a[ind[i]]*K + b[i]; }

Scalar cost is still 5N. Cost of vectorization is now 19*Ceiling(N/8) + 30. Scalar code would be faster for N <= 13.

Consider an example of scatter with division:

for (i=0; i<N; i++) {c[ind[i]] = a[i] / b[i]; }

The scalar cost is (15+4)*N. Cost of vectorization would be (15+20+3)*Ceiling(N/8). Vectorization would be profitable
for N > 2.

In the case of gather followed by scatter:

for (i=0; i<N; i++) {b[ind[i]] = a[ind[i]]; }

The cost of scalar code is 3*N, and vector code will cost (15+20+1)*Ceiling(N/8). Vectorization will not be profitable.

For a loop body that is more complex, consider the code below from a workload known as miniMD:

for (int k = 0; k < numneigh; k++) {
 int j = neighs[k];
 double rsq = (xtmp - x[3*j])^2 +

 (ytmp - x[3*j+1])^2 +
 (ztmp - x[3*j+2])^2;

 if (rsq < cutforcesq) {
 double sr2 = 1.0/rsq;
 double sr6 = sr2*sr2*sr2;

Document #: 356477-050US 5-15

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

 double force = sr6*(sr6-0.5)*sr2;
 res1 += delx*force;

 res2 += dely*force;
 res3 += delz*force;

 }
}

Before considering the IF clause, there is one load, 3 gathers (strided loads of x[]), 3 subtractions and 3 multiplies.
Inside the IF clause, there is one division, 8 math operations, and 3 horizontal reductions. The scalar cost is
10*numneigh + 23 * numneigh * percent_rsq_less_than_cutforcesq. The vector cost is (52+23) * Ceiling(numneigh /
8) + 3 * 30. Scalar code makes sense if numneigh < 6 or if the compiler is highly confident that the if clause is almost
never taken.

For many compilers, a vectorized loop is generated, and a remainder loop is used to take care of the rest of the oper-
ations. In other words, the vectorized loop is executed floor(N/8) times, and the remainder loop is executed N mod 8
times. In that case, modify the equations above to use floor instead of ceiling to determine whether the primary loop
should be vectorized. For the remainder loop, the maximum value of the loop trip count is known. If N is unknown, it
is simplest to set N to half the maximum value (4 for a ZMM vector of doubles).

More sophisticated analysis is possible. For example, the building block simple math operation of 1-cycle cost in
Table 5-5 covers common instruction sequences that are not blocked by a dependency chain or long latency opera-
tions. Expanding entries of the cost table can cover more complex situations.

5.6 MEMORY OPTIMIZATION

5.6.1 Data Alignment
Data access to address spanning a cache line boundary will experience a small performance hit. Access patterns that
stream through memory can avoid cache line splits to make sure each 64-byte access is aligned to a cache line
boundary. When loading 32-bytes of memory to YMM, do not access 64-bytes of memory with an opmask value to
mask off the high 32 bytes.

Memory references crossing a 4-Kbytes boundary will incur significant cost in performance. Access patterns that
stream throughput memory using 512-bit instructions have a higher rate of crossing a 4-KBytes boundary. So align-
ment to 64 byte will also avoid the penalty of a page split.

If possible to predict the distance in code space of the next crossing of page boundary, it can be helpful to insert a
PREFETCHT1 (to L2) a few iterations ahead of the current read stream. This can also start the page translation early
and permit the L2 hardware prefetcher to start fetching on the next page.

Some access patterns which might intend to use gather and scatter will always have pairs of consecutive addresses.
One common example is complex numbers, where the real and imaginary parts are laid out contiguously. It is also
common when w, x, y, and z information is contiguous. If the values are 32b, it is faster to gather and scatter the 32-
bit elements as half as many 64-bit elements. If the numbers are 64 bits, then it is usually faster to load and insert a
128-bit element instead of gathering 64-bit elements.

5.6.2 Hardware Prefetcher
There are two types of HW prefetchers in a tile. The Instruction Pointer Prefetcher (IPP) resides in a processor core
and analyzes all the accesses in the data cache and the instructions that generated the access. The prefetcher will
then attempt to insert HW prefetches to the L1 cache if a strided access pattern is detected on a cacheable page. The
IPP will not cross a 4k page boundary. The IPP uses the instruction address and logical processor to index into a table.
For this reason, the compiler may insert NOPs into large loops (>256 B) to make instructions that access memory go
into different table entries.

The L2 HW prefetcher tries to identify streaming access patterns, and can track up to 48 access patterns. A streaming
access pattern touches consecutive cache lines in increasing or decreasing order - the stride detected in the L2 is

Document #: 356477-050US 5-16

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

always +/-1 cacheline. The 48 detectors are allocated independently of the logical processor that originated the
request. Each detector looks at the accesses done within a 4 KB region. If a stream is detected, HW prefetches for later
elements of the stream will be sent to the L2 cache, and if they miss, to memory. The HW prefetcher will not stream
across a 4 KB boundary. If multiple access patterns are done within the same 4 KB region, the detector can get
confused, and fail to detect the stream.

5.6.3 Software Prefetch
Knights Landing microarchitecture supports out-of-order execution. In general, it can hide cache miss latency better
than previous generation in-order microarchitecture. Hence, programmers should not use the same aggressive
approach to insert software prefetches.

With the two hardware prefetchers described in Section 5.6.2, most streaming and short stride access patterns
should be detected by the hardware prefetchers. If the access pattern is streaming, a programmer might benefit from
adding software prefetches beyond the current 4-KBytes page. If the access pattern is known, but non-streaming,
software prefetches can be beneficial in some situations. This is especially true if the access pattern is a relatively
large stride (>256 bytes), since the IPP will not fetch across a 4 KB boundary. The software prefetch will do the PMH
walk to fill the TLB, and to start the memory reference early.

Generally, software prefetching into the L2 will show more benefit than L1 prefetches. A software prefetch into L1 will
consume critical hardware resources (fill buffer) until the cacheline fill completes. A software prefetch into L2 does
not hold those resources, and it is less likely to have a negative performance impact. If you do use L1 software
prefetches, it is best if the software prefetch is serviced by hits in the L2 cache, so the length of time that the hardware
resources are held is minimized.

Software prefetch instructions that are dropped will have a negative performance impact due to consuming retire-
ment slots from an invalid address. The performance penalty of prefetching an invalid address or requiring OS privi-
lege from user code can be very large. The performance monitoring event NUKE.ALL provides an indication of when
this might be affecting your code.

5.6.3.1 Memory Execution Cluster

The MEC has limited capability in executing uops out-of-order. Specifically, memory uops are dispatched from the
scheduler in-order, but can complete in any order. By re-arranging the order of memory instructions, performance
may be improved if they make good use of the MEC’s capability.

Example 5-7 illustrates the effect of ordering the sequence of memory instructions of two read streams accessing two
arrays, a[] and b[]. The left side of Example 5-7 is the optimal sequence with the 2nd vector load from b[] dispatched
on cycle N+5, assuming an L1 cache hit. The right side of Example 5-7 is a naive ordering of the memory instructions,
resulting in the second vector load dispatched on cycle N+8.

The right side sequence uses one more register than the left side. If the pointer loads would miss L1, the benefit of left
side will be greater than what is shown in the comment.

If there are many loads in the machine, it might be possible to hoist up the pointer loads, so that there are several
memory references between the pointer load and de-reference, without requiring more integer registers to be
reserved.

Example 5-7. Ordering of Memory Instruction for MEC

movq r15, [rsp+0x40] ; cycle N (load &a[0])
movq r14, [rsp+0x48] ; cycle N+1 (load &b[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
vmovups zmm2, [r14+rax*8] ; cycle N+5

movq r15, [rsp+0x40] ; cycle N (load &a[0])
vmovups zmm1, [r15+rax*8] ; executes in cycle N+4
movq r15, [rsp+0x48] ; cycle N+4 (load &b[0])
vmovups zmm2, [r15+rax*8] ; cycle N+8

Document #: 356477-050US 5-17

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.6.4 Store Forwarding
Store forwarding restriction for integer execution and the MEC in the Knights Landing microarchitecture is similar to
those of the Silvermont microarchitecture. The following paragraphs describes the forwarding restrictions with the
VPU.

Vector, X87, and MMX loads and stores can forward (ZMM0, YMM1, XMM2, MM3, and ST4) if the stores and loads
have the same memory address and the load is not larger than the store. VPU stores cannot forward to integer loads,
and integer stores cannot forward to VPU loads. In either case, the load must wait until the store is post-retirement to
get the value from memory.

Vector stores that use an opmask cannot be forwarded from. If your algorithm requires such behavior, you may
benefit if you merge the value in a register, and then store to memory without a conditional opmask. Later loads can
then forward from the merged value.

5.6.5 Way, Set Conflicts
The memory hierarchy determines forwarding requirements based on the address of the access. The L1 data cache
uses address bits 11:6 to identify which cache set to use. Forwarding logic uses bits 11:0 and the size of the access to
identify potential forwarding or conflicts between loads and stores. If there are many conflicts, performance could be
degraded.

Many dynamic memory allocation routines (may vary by OS and compiler) will start large memory regions with the
same pattern in the least significant 12 bits. If your access patterns touch many arrays with identical shapes (element
size and dimensions) and similar indices, performance could degrade significantly due to set conflict. To void these set
conflicts, it is beneficial for bits [11..6] of memory accesses to be different. For example, consider:

a = malloc(sizeof(double) * 10000);

b = malloc(sizeof(double) * 10000);

for (i=0; i < 10000; i++) {

a[i] = b[i] + 0.5 * b[i-1]);

}

Very likely, in most OSes, the effective address of a[] and b[] will have identical lowest 12 bits, i.e., (a & 0xfff) == (b &
0xfff). Some intra-loop conflict may occur with:

• a[i] and b[i] of iteration N collide.
• a[i] of iteration N-1 and b[i-1] of iteration N collide.
There are multiple ways to offset dynamic arrays. Examples include:

• Offset the working base pointer from the malloc result by an amount of several cache lines,
• Use customized malloc() routine,
• Use posix_memalign() routine with alignment directives for each dynamic allocation to have different alignments

(powers of 2 bytes: 64, 128, 256, 512, etc.) .
The HPC workload known as Leslie3D can be affected by alignment issue.

Document #: 356477-050US 5-18

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

5.6.6 Streaming Store Versus Regular Store
When writing to memory and data is not expected to be consumed by loads immediately, it may be desirable to
choose between streaming stores or regular stores (writeback). On Knights Landing microarchitecture, streaming
stores may be preferable if in flat memory mode; see Section 5.1.2.

If MCDRAM is configured as cache mode, and the data being written fits in the MCDRAM cache, it is likely that stan-
dard stores will perform better. Experimenting with both options may yield non-trivial performance for your applica-
tion.

5.6.7 Compiler Switches and Directives
When using Fortran 90 syntax, Fortran programmers should use the CONTIGUOUS attribute when appropriate. If not,
the compiler may assume that incoming arrays are not contiguous, and will (potentially) replace vector load and store
instructions with VGATHER and VSCATTER instructions. This can have a negative impact on performance.

Expert coders compiling with the Intel compiler can annotate their code with various pragmas. Some of the more
useful ones are LOOP_COUNT, SIMD, and UNROLL. Read the documentation for these pragmas, and use them where
appropriate. The compiler can produce better code when it is given more information to evaluate the cost of vector-
ization.

When using the Intel compilers, the compiler switch “-xMIC-AVX512” targets Knights Landing microarchitecture.

5.6.8 Direct Mapped MCDRAM Cache
When MCDRAM is configured in cache mode, the MCDRAM cache is a convenient way to increase memory band-
width. As a memory side cache, it can automatically cache recently used data, and provide much higher bandwidth
than what DDR memory can achieve.

The MCDRAM cache is a direct mapped cache. This means that multiple memory locations can map to a single place
in the cache. Because of this, a simple optimization for a program to evaluate its memory bandwidth sensitivity is to
turn on the MCDRAM cache. Some applications that heavily utilize only a few GBytes of memory footprint could see
performance improvements of up to 4x. Because of the simplicity of this - no source code changes, and the large
possible performance benefits, moving from DDR only to MCDRAM cache mode should be one of the first perfor-
mance optimizations to try.

There are a few scenarios where enabling the cache could reduce performance. One case is when the MCDRAM cache
is not able to hold the accessed working set. If an application streams through 64 GB of memory without reuse, the
cost of memory access will increase due to checking the MCDRAM cache (and missing), relative to accessing DDR
memory.

The caching of data in the MCDRAM direct mapped cache uses the physical address, not the linear ad-dress. Even if an
address is contiguous in the linear/virtual address space, the physical addresses that the OS allocates and manages
are not required to be. This can cause cache contention when a significant portion of the MCDRAM cache are used.
These contentions are likely to reduce the peak memory bandwidth achievable, and vary from run to run; as how the
OS allocates pages can change from run to run. The performance monitoring hardware in the Knights Landing
microarchitecture provides the UNC_E_EDC_ACCESS event to compute the MCDRAM cache hit rate. It can be instruc-
tive in diagnosing this problem.

If MCDRAM cache is enabled, every modified line in the tile caches (L1 or L2 cache) must have an entry in the
MCDRAM cache. If a line is evicted from the MCDRAM cache, any modified version of that line in the tile caches will
writeback its data to memory, and transition to a shared state. There is a very small probability that a pair of lines that
are frequently read and written will alias to the same MCDRAM set. This could cause a pair of writes that would
normally hit in the tile caches to generate extra mesh traffic when using MCDRAM in cache mode. Due to this, a pair
of threads could become substantially slower than the other threads in the chip. Linear to physical mapping can vary
from run to run, making it difficult to diagnose.

One case in point is when two threads read and write their private stacks. Conceptually, any data location that is
commonly read and written to would work, but register spills to the stack are the most frequent case. If the stacks are

Document #: 356477-050US 5-19

KNIGHTS LANDING MICROARCHITECTURE OPTIMIZATION

offset by a multiple of 16 GB (or the total MCDRAM cache size) in physical memory, they would collide into the same
MCDRAM cache set. A run-time that forced all thread stacks to allocate into a contiguous physical memory region
would avoid this case from occurring.

There is hardware in the Knights Landing microarchitecture to reduce the frequency of set conflicts from occurring.
The probability of hitting this scenario on a given node is extremely small. The best clue to detecting this, is that a pair
of threads on the same chip are significantly slower than all other threads during a program phase. Which exact
threads cores in a package would experience set collision should vary from run to run, happen rarely, and only when
the cache memory mode is enabled. It is very likely that a user may never encounter this on their system.

Document #: 356477-050US 6-1

CHAPTER 6
EARLIER GENERATIONS OF INTEL ATOM®

MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.1 OVERVIEW
45 nm Intel Atom processors introduced Intel Atom microarchitecture. The same microarchitecture also used in 32
nm Intel Atom processors. This chapter covers a brief overview the Intel Atom microarchitecture, and specific coding
techniques for software whose primary targets are processors based on the Intel Atom microarchitecture. The key
features of Intel Atom processors to support low power consumption and efficient performance include:

• Enhanced Intel SpeedStep® Technology enables operating system (OS) to program a processor to transition to
lower frequency and/or voltage levels while executing a workload.

• Support deep power down technology to reduces static power consumption by turning off power to cache and
other sub-systems in the processor.

• Intel Hyper-Threading Technology providing two logical processor for multi-tasking and multi-threading
workloads.

• Support Single-instruction multiple-data extensions up to SSE3 and SSSE3.
• Support for Intel 64 and IA-32 architecture.
The Intel Atom microarchitecture is designed to support the general performance requirements of modern work-
loads within the power-consumption envelop of small form-factor and/or thermally-constrained environments.

6.2 INTEL ATOM® MICROARCHITECTURE
Intel Atom microarchitecture achieves efficient performance and low power operation with a two-issue wide, in-
order pipeline that support Hyper-Threading Technology. The in-order pipeline differs from out-of-order pipelines by
treating an IA-32 instruction with a memory operand as a single pipeline operation instead of multiple micro-opera-
tions.

The basic block diagram of the Intel Atom microarchitecture pipeline is shown in Figure 6-1.

Document #: 356477-050US 6-2

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The front end features a power-optimized pipeline, including:

• 32KB, 8-way set associative, first-level instruction cache.
• Branch prediction units and ITLB.
• Two instruction decoders, each can decode up to one instruction per cycle.
The front end can deliver up to two instructions per cycle to the instruction queue for scheduling. The scheduler can
issue up to two instructions per cycle to the integer or SIMD/FP execution clusters via two issue ports.

Each of the two issue ports can dispatch an instruction per cycle to the integer cluster or the SIMD/FP cluster to
execute. The port-bindings of the integer and SIMD/FP clusters have the following features:

• Integer execution cluster:
— Port 0: ALU0, Shift/Rotate unit, Load/Store.
— Port 1: ALU1, Bit processing unit, jump unite and LEA.
— Effective “load-to-use” latency of 0 cycle.

• SIMD/FP execution cluster:
— Port 0: SIMD ALU, Shuffle unit, SIMD/FP multiply unit, Divide unit, (support IMUL, IDIV).
— Port 1: SIMD ALU, FP Adder.
— The two SIMD ALUs and the shuffle unit in the SIMD/FP cluster are 128-bit wide, but 64-bit integer SIMD

computation is restricted to port 0 only.
— FP adder can execute ADDPS/SUBPS in 128-bit data path, data path for other FP add operations are 64-bit

wide.
— Safe Instruction Recognition algorithm for FP/SIMD execution allow younger, short-latency integer

instruction to execute without being blocked by older FP/SIMD instruction that might cause exception.
— FP multiply pipe also supports memory loads.
— FP ADD instructions with memory load reference can use both ports to dispatch.

The memory execution sub-system (MEU) can support 48-bit linear address for Intel 64 Architecture, either 32-bit or
36-bit physical addressing modes. The MEU provides:

Figure 6-1. Intel Atom® Microarchitecture Pipeline

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst .
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst .
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front

PMH

Per thread
Integer

Register File

Data
Cache

Data
TLBs

Fill +
Write combining

buffers

JEU

ALU

SIMD
multiplier

FP adder

FP store

ALU

Shuffle

FP
multiplier

FP move

FP ROM

FP divider

Per thread
FP

Register File

Fault/
Retire

2- wide ILD
Per - thread
Instruction
Queues

Instruction
Cache

Branch
Prediction UnitMS

P
er

Th
re

ad
Pr

ef
et

ch
Bu

ffe
rs

Inst .
TLB

XLAT/
FL

AGU AGU

L2
Cache

DL1
prefetcher

Front - End Cluster

FP/ SIMD execution cluster

Integer Execution Cluster

Memory Execution
Cluster

ALU

Shifter

XLAT/
FL

FSB
BIU

Bus Cluster

APIC

ALU

Document #: 356477-050US 6-3

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• 24KB first level data cache.
• Hardware prefetching for L1 data cache.
• Two levels of DTLB for 4KByte and larger paging structure.
• Hardware pagewalker to service DTLB and ITLB misses.
• Two address generation units (port 0 supports loads and stores, port 1 supports LEA and stack operations).
• Store-forwarding support for integer operations.
• 8 write combining buffers.
The bus logic sub-system provides:

• 512KB, 8-way set associative, unified L2 cache.
• Hardware prefetching for L2 and interface logic to the front side bus.

6.2.1 Intel® Hyper-Threading Technology (Intel® HT) Support in Intel Atom®
Microarchitecture

The instruction queue is statically partitioned for scheduling instruction execution from two threads. The scheduler is
able to pick one instruction from either thread and dispatch to either of port 0 or port 1 for execution. The hardware
makes selection choice on fetching/decoding/dispatching instructions between two threads based on criteria of fair-
ness as well as each thread’s readiness to make forward progress.

6.3 CODING RECOMMENDATIONS FOR INTEL ATOM®
MICROARCHITECTURE

Instruction scheduling heuristics and coding techniques that apply to out-of-order microarchitectures may not deliver
optimal performance on an in-order microarchitecture. Likewise instruction scheduling heuristics and coding tech-
niques for an in-order pipeline like Intel Atom microarchitecture may not achieve optimal performance on out-of-
order microarchitectures. This section covers specific coding recommendations for software whose primary deploy-
ment targets are processors based on Intel Atom microarchitecture.

6.3.1 Optimization for Front End of Intel Atom® Microarchitecture
The two decoders in the front end of Intel Atom microarchitecture can handle most instructions in the Intel 64 and IA-
32 architecture. Some instructions dealing with complicated operations require the use of an MSROM in the front
end. Instructions that go through the two decoders generally can be decoded by either decoder unit of the front end
in most cases. Instructions the must use the MSROM or conditions that cause the front end to re-arrange decoder
assignments will experience a delay in the front end.

Software can use specific performance monitoring events to detect instruction sequences and/or conditions that
cause front end to re-arrange decoder assignment.

Assembly/Compiler Coding Rule 1. (MH impact, ML generality) For Intel Atom processors, minimize the presence of
complex instructions requiring MSROM to take advantage the optimal decode bandwidth provided by the two
decode units.

Using the performance monitoring events “MACRO_INSTS.NON_CISC_DECODED” and “MACRO_INSTS.CISC_DE-
CODED” can be used to evaluate the percentage instructions in a workload that required MSROM.

Assembly/Compiler Coding Rule 2. (M impact, H generality) For Intel Atom processors, keeping the instruction
working set footprint small will help the front end to take advantage the optimal decode bandwidth provided by the
two decode units.

Assembly/Compiler Coding Rule 3. (MH impact, ML generality) For Intel Atom processors, avoiding back-to-back
X87 instructions will help the front end to take advantage the optimal decode bandwidth provided by the two decode
units.

Using the performance monitoring events “DECODE_RESTRICTION“ can count the number of occurrences in a work-
load that encountered delays causing reduction of decode throughput.

Document #: 356477-050US 6-4

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

In general the front end restrictions are not typical a performance limiter until the retired “cycle per instruction”
becomes less than unity (maximum theoretical retirement throughput corresponds to CPI of 0.5). To reach CPI below
unity, it is important to generate instruction sequences that go through the front end as instruction pairs decodes in
parallel by the two decoders. After the front end, the scheduler and execution hardware do not need to dispatch the
decode pairings through port 0 and port 1 in the same order.

The decoders cannot decode past a jump instruction, so jumps should be paired as the second instruction in a
decoder-optimized pairing. The front end can only handle one X87 instruction per cycle, and only decoder unit 0 can
request a transfer to use MSROM. Instructions that are longer than 8 bytes or having more than three prefixes will
results in a MSROM transfer, experiencing two cycles of delay in the front end.

Instruction lengths and alignment can impact decode throughput. The prefetching buffers inside the front end
imposes a throughput limit that if the number of bytes being decoded in any 7-cycle window exceeds 48 bytes, the
front end will experience a delay to wait for a buffer. Additionally, every time an instruction pair crosses 16 byte
boundary, it requires the front end buffer to be held on for at least one more cycle. So instruction alignment crossing
16 byte boundary is highly problematic.

Instruction alignment can be improved using a combination of an ignore prefix and an instruction.

Example 6-1. Instruction Pairing and Alignment to Optimize Decode Throughput on
Intel Atom® Microarchitecture

Address Instruction Bytes Disassembly

7FFFFDF0 0F594301 mulps xmm0, [ebx+ 01h]

7FFFFDF4 8341FFFF add dword ptr [ecx-01h], -1

7FFFFDF8 83C2FF add edx, , -1

7FFFFDFB 64 ; FS prefix override is ignored, improves code alignment

7FFFFDFC F20f58E4 add xmm4, xmm4

7FFFFE00 0F594B11 mulps xmm1, [ebx+ 11h]

7FFFFE04 8369EFFF sub dword ptr [ecx- 11h], -1

7FFFFE08 83EAFF sub edx, -1

7FFFFE0B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE0C F20F58ED addsd xmm5, xmm5

7FFFFE10 0F595301 mulps xmm2, [ebx +1]

7FFFFE14 8341DFFF add dword ptr [ecx-21H], -1

7FFFFE18 83C2FF add edx, -1

7FFFFE1B 64 ; FS prefix override is ignored, improves code alignment

7FFFFE1C F20F58F6 addssd xmm6, xmm6

7FFFFE20 0F595B11 mulps xmm3, [ebx+ 11h]

7FFFFE24 8369CFFF sub dword ptr [ecx- 31h], -1

7FFFFE28 83EAFF sub edx, -1

Document #: 356477-050US 6-5

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

When a small loop contains some long-latency operation inside, loop unrolling may be considered as a technique to
find adjacent instruction that could be paired with the long-latency instruction to enable that adjacent instruction to
make forward progress. However, loop unrolling must also be evaluated on its impact to increased code size and pres-
sure to the branch target buffer.

The performance monitoring event “BACLEARS” can provide a means to evaluate whether loop unrolling is helping or
hurting front end performance. Another event “ICACHE_MISSES” can help evaluate if loop unrolling is increasing the
instruction footprint.

Branch predictors in Intel Atom processor do not distinguish different branch types. Sometimes mixing different
branch types can cause confusion in the branch prediction hardware.

The performance monitoring event “BR_MISSP_TYPE_RETIRED“ can provide a means to evaluate branch prediction
issues due to branch types.

6.3.2 Optimizing the Execution Core
This section covers several items that can help software use the two-issue-wide execution core to make forward prog-
ress with two instructions more frequently.

6.3.2.1 Integer Instruction Selection
In an in-order machine, instruction selection and pairing can have an impact on the machine’s ability to discover
instruction-level-parallelism for instructions that have data ready to execute. Some examples are:

• EFLAG: The consumer instruction of any EFLAG flag bit can not be issued in the same cycle as the producer
instruction of the EFLAG register. For example, ADD could modify the carry bit, so it is a producer; JC (or ADC)
reads the carry bit and is a consumer.
— Conditional jumps are able to issue in the following cycle after the consumer.
— A consumer instruction of other EFLAG bits must wait one cycle to issue after the producer (two cycle delay).

Assembly/Compiler Coding Rule 4. (M impact, H generality) For Intel Atom processors, place a MOV instruction
between a flag producer instruction and a flag consumer instruction that would have incurred a two-cycle delay. This
will prevent partial flag dependency.

• Long-latency Integer Instructions: They will block shorter latency instruction on the same thread from issuing
(required by program order). Additionally, they will also block shorter-latency instruction on both threads for one
cycle to resolve writeback resource.

• Common Destination: Two instructions that produce results to the same destination can not issue in the same
cycle.

• Expensive Instructions: Some instructions have special requirements and become expensive in consuming
hardware resources for an extended period during execution. It may be delayed in execution until it is the oldest
in the instruction queue; it may delay the issuing of other younger instructions. Examples of these include FDIV,
instructions requiring execution units from both ports, etc.

6.3.2.2 Address Generation
The hardware optimizes the general case of instruction ready to execute must have data ready, and address genera-
tion precedes data being ready. If address generation encounters a dependency that needs data from another instruc-
tion, this dependency in address generation will incur a delay of 3 cycles.

The address generation unit (AGU) may be used directly in three situations that affect execution throughput of the
two-wide machine. The situations are:

• Implicit ESP updates: When the ESP register is not used as the destination of an instruction (explicit ESP updates),
an implicit ESP update will occur with instructions like PUSH, POP, CALL, RETURN. Mixing explicit ESP updates and
implicit ESP updates will also lead to dependency between address generation and data execution.

• LEA: The LEA instruction uses the AGU instead of the ALU. If one of the source register of LEA must come from an
execution unit. This dependency will also cause a 3 cycle delay. Thus, LEA should not be used in the technique of
adding two values and produce the result in a third register. LEA should be used for address computation.

Document #: 356477-050US 6-6

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• Integer-FP/SIMD transfer: Instructions that transfer integer data to the FP/SIMD side of the machine also uses
AGU. Examples of these instructions include MOVD, PINSRW. If one of the source register of these instructions
depends on the result of an execution unit, this dependency will also cause a delay of three cycles.

Assembly/Compiler Coding Rule 5. (MH impact, H generality) For Intel Atom processors, LEA should be used for
address manipulation; but software should avoid the following situations which creates dependencies from ALU to
AGU: an ALU instruction (instead of LEA) for address manipulation or ESP updates; a LEA for ternary addition or non-
destructive writes which do not feed address generation. Alternatively, hoist producer instruction more than 3 cycles
above the consumer instruction that uses the AGU.

6.3.2.3 Integer Multiply
Integer multiply instruction takes several cycles to execute. They are pipelined such that an integer multiply instruc-
tion and another long-latency instruction can make forward progress in the execution phase. However, integer
multiply instructions will block other single-cycle integer instructions from issuing due to requirement of program
order.

Assembly/Compiler Coding Rule 6. (M impact, M generality) For Intel Atom processors, sequence an independent
FP or integer multiply after an integer multiply instruction to take advantage of pipelined IMUL execution.

6.3.2.4 Integer Shift Instructions
Integer shift instructions that encodes shift count in the immediate byte have one-cycle latency. In contrast, shift
instructions using shift count in the ECX register may need to wait for the register count are updated. Thus shift
instruction using register count has 3-cycle latency.

Example 6-2. Alternative to Prevent AGU and Execution Unit Dependency

a) Three cycle delay when using LEA in ternary operations
mov eax, 0x01
lea eax, 0x8000[eax+ebp]; values in eax comes from execution of previous instruction
; 3 cycle delay due to lea and execution dependency

b) Dependency handled in execution, avoiding AGU and execution dependency
mov eax, 0x01
add eax, 0x8000
add eax, ebp

Example 6-3. Pipeling Instruction Execution in Integer Computation

a) Multi-cycle Imul instruction can block 1-cycle integer instruction
imul eax, eax
add ecx, ecx ; 1 cycle int instruction blocked by imul for 4 cycles
imul ebx, ebx ; instruction blocked by in-orer issue

b) Back-to-back issue of independent imul are pipelined
imul eax, eax
imul ebx, ebx ; 2nd imul can issue 1 cycle later
add ecx, ecx ; 1 cycle int instruction blocked by imul

Document #: 356477-050US 6-7

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 7. (M impact, M generality) For Intel Atom processors, hoist the producer
instruction for the implicit register count of an integer shift instruction before the shift instruction by at least two
cycles.

6.3.2.5 Partial Register Access
Although partial register access does not cause additional delay, the in-order hardware tracks dependency on the full
register. Thus 8-bit registers like AL and AH are not treated as independent registers. Additionally some instructions
like LEA, vanilla loads, and pop are slower when the input is smaller than 4 bytes.

Assembly/Compiler Coding Rule 8. (M impact, MH generality) For Intel Atom processors, LEA, simple loads and POP
are slower if the input is smaller than 4 bytes.

6.3.2.6 FP/SIMD Instruction Selection
Table 6-1 summarizes the characteristics of various execution units in Intel Atom microarchitecture that are likely
used most frequently by software.

Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture

Instruction Category Latency (cycles) Throughput # of Execution Unit

SIMD Integer ALU

128-bit ALU/logical/move 1 1 2

64-bit ALU/logical/move 1 1 2

SIMD Integer Shift

128-bit 1 1 1

64-bit 1 1 1

SIMD Shuffle

128-bit 1 1 1

64-bit 1 1 1

SIMD Integer Multiply

128-bit 5 2 1

64-bit 4 1 1

FP Adder

X87 Ops (FADD) 5 1 1

Scalar SIMD (addsd, addss) 5 1 1

Packed single (addps) 5 1 1

Packed double (addpd) 6 5 1

FP Multiplier

X87 Ops (FMUL) 5 2 1

Scalar single (mulss) 4 1 1

Scalar double (mulsd) 5 2 1

Document #: 356477-050US 6-8

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

SIMD/FP instruction selection generally should favor shorter latency first, then favor faster throughput alternatives
whenever possible. Note that packed double-precision instructions are not pipelined, using two scalar double-preci-
sion instead can achieve higher performance in the execution cluster.

Assembly/Compiler Coding Rule 9. (MH impact, H generality) For Intel Atom processors, prefer SIMD instructions
operating on XMM register over X87 instructions using FP stack. Use Packed single-precision instructions where
possible. Replace packed double-precision instruction with scalar double-precision instructions.

Assembly/Compiler Coding Rule 10. (M impact, ML generality) For Intel Atom processors, library software
performing sophisticated math operations like transcendental functions should use SIMD instructions operating on
XMM register instead of native X87 instructions.

Assembly/Compiler Coding Rule 11. (M impact, M generality) For Intel Atom processors, enable DAZ and FTZ
whenever possible.

Several performance monitoring events may be useful for SIMD/FP instruction selection tuning: “SIMD_INST_RE-
TIRED.{PACKED_SINGLE, SCALAR_SINGLE, PACKED_DOUBLE, SCALAR_DOUBLE}” can be used to determine the
instruction selection in the program. “FP_ASSIST” and “SIR” can be used to see if floating exceptions (or false alarms)
are impacting program performance.

The latency and throughput of divide instructions vary with input values and data size. Intel Atom microarchitecture
implements a radix-2 based divider unit. So, divide/sqrt latency will be significantly longer than other FP operations.
The issue throughput rate of divide/sqrt will be correspondingly lower. The divide unit is shared between two logical
processors, so software should consider all alternatives to using the divide instructions.

Assembly/Compiler Coding Rule 12. (H impact, L generality) For Intel Atom processors, use divide instruction only
when it is absolutely necessary, and pay attention to use the smallest data size operand.

The performance monitoring events “DIV” and “CYCLES_DIV_BUSY” can be used to see if the divides are a bottleneck
in the program.

FP operations generally have longer latency than integer instructions. Writeback of results from FP operation gener-
ally occur later in the pipe stages than integer pipeline. Consequently, if an instruction has dependency on the result
of some FP operation, there will be a two-cycle delay. Examples of these type of instructions are FP-to-integer conver-
sions CVTxx2xx, MOVD from XMM to general purpose registers.

In situations where software needs to do computation with consecutive groups 4 single-precision data elements,
PALIGNR+MOVAPS is preferred over MOVUPS. Loading 4 data elements with unconstrained array index k, such as
MOVUPS xmm1, _pArray[k], where the memory address _pArray is aligned on 16-byte boundary, will periodically
causing cache line split, incurring a 14-cycle delay.

The optimal approach is for each k that is not a multiple of 4, round down k to multiples of 4 with j = 4*(k/4), do a
MOVAPS MOVAPS xmm1, _pArray[j] and MOVAPS xmm1, _pArray[j+4], and use PALIGNR to splice together the four
data elements needed for computation.

Packed single (mulps) 5 2 1

Packed double (mulpd) 9 9 1

IMUL

IMUL r32, r/m32 5 1 1

IMUL r12, r/m16 6 1 1

Table 6-1. Instruction Latency/Throughput Summary of Intel Atom® Microarchitecture

Instruction Category Latency (cycles) Throughput # of Execution Unit

Document #: 356477-050US 6-9

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 13. (MH impact, M generality) For Intel Atom processors, prefer a sequence
MOVAPS+PALIGN over MOVUPS. Similarly, MOVDQA+PALIGNR is preferred over MOVDQU.

6.3.3 Optimizing Memory Access
This section covers several items that can help software optimize the performance of the memory sub-system.

Memory access to system memory of cache access that encounter certain hazards can cause the memory access to
become an expensive operation, blocking short-latency instructions to issue even when they have data ready to
execute.

The performance monitoring events “REISSUE” can be used to assess the impact of re-issued memory instructions in
the program.

6.3.3.1 Store Forwarding
In a few limited situations, Intel Atom microarchitecture can forward data from a preceding store operation to a
subsequent load instruction. The situations are:

• Store-forwarding is supported only in the integer pipeline, and does not apply to FP nor SIMD data. Furthermore,
the following conditions must be met:
— The store and load operations must be of the same size and to the same address.
— Data size larger than 8 bytes do not forward from a store operation.

• When data forwarding proceeds, data is forwarded base on the least significant 12 bits of the address. So
software must avoid the address aliasing situation of storing to an address and then loading from another address
that aliases in the lowest 12-bits with the store address.

6.3.3.2 First-level Data Cache
Intel Atom microarchitecture handles each 64-byte cache line of the first-level data cache in 16 4-byte chunks. This
implementation characteristic has a performance impact to data alignment and some data access patterns.

Assembly/Compiler Coding Rule 14. (MH impact, H generality) For Intel Atom processors, ensure data are aligned
in memory to its natural size. For example, 4-byte data should be aligned to 4-byte boundary, etc. Additionally,
smaller access (less than 4 bytes) within a chunk may experience delay if they touch different bytes.

6.3.3.3 Segment Base
In Intel Atom microarchitecture, the address generation unit assumes that the segment base will be 0 by default. Non-
zero segment base will cause load and store operations to experience a delay.

• If the segment base isn’t aligned to a cache line boundary, the max throughput of memory operations is reduced
to one very 9 cycles.

If the segment base is non-zero but cache line aligned the penalty varies by segment base.

• DS will have a max throughput of one every two cycles.
• FS, and GS will have a max throughput of one every two cycles. However, FS and GS are anticipated to be used

only with non-zero bases and therefore have a max throughput of one every two cycles even if the segment base
is zero.

• ES:
— If used as the implicit segment base for the destination of string operation, will have a max throughput of one

every two cycles for non-zero but cacheline aligned bases.
— Otherwise, only do one operation every nine cycles.

• CS and SS will always have a max throughput of one every nine cycles if its segment base is non-zero but cache
line aligned.

Document #: 356477-050US 6-10

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 15. (H impact, ML generality) For Intel Atom processors, use segments with base
set to 0 whenever possible; avoid non-zero segment base address that is not aligned to cache line boundary at all
cost.

Assembly/Compiler Coding Rule 16. (H impact, L generality) For Intel Atom processors, when using non-zero
segment bases, Use DS, FS, GS; string operation should use implicit ES.

Assembly/Compiler Coding Rule 17. (M impact, ML generality) For Intel Atom processors, favor using ES, DS, SS
over FS, GS with zero segment base.

6.3.3.4 String Moves
Using MOVS/STOS instruction and REP prefix on Intel Atom processor should recognize the following items:

• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the hardware
does have small REP count optimization.

• For small count values, using REP prefix is less efficient than not using REP prefix. This is because the hardware
does have small REP count optimization.

• For large count values, using REP prefix will be less efficient than using 16-byte SIMD instructions.
• Incrementing address in loop iterations should favor LEA instruction over explicit ADD instruction.
• If data footprint is such that memory operation is accessing L2, use of software prefetch to bring data to L1 can

avoid memory operation from being re-issued.
• If string/memory operation is accessing system memory, using non-temporal hints of streaming store instruc-

tions can avoid cache pollution.

6.3.3.5 Parameter Passing
Due to the limited situations of load-to-store forwarding support in Intel Atom microarchitecture, parameter passing
via the stack places restrictions on optimal usage by the callee function. For example, “bool” and “char” data usually
are pushed onto the stack as 32-bit data, a callee function that reads “bool” or “char” data off the stack will face store-
forwarding delay and causing the memory operation to be re-issued.

Compiler should recognize this limitation and generate prolog for callee function to read 32-bit data instead of
smaller sizes.

Example 6-4. Memory Copy of 64-byte

T1: prefetcht0 [eax+edx+0x80] ; prefetch ahead by two iterations
movdqa xmm0, [eax+ edx] ; load data from source (in L1 by prefetch)
movdqa xmm1, [eax+ edx+0x10]
movdqa xmm2, [eax+ edx+0x20]
movdqa xmm3, [eax+ edx+0x30]
movdqa [ebx+ edx], xmm0; store data to destination
movdqa [ebx+ edx+0x10], xmm1
movdqa [ebx+ edx+0x30], xmm2
movdqa [ebx+ edx+0x30], xmm3
lea edx, 0x40 ; use LEA to adjust offset address for next iteration
dec ecx
jnz T1

Document #: 356477-050US 6-11

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Assembly/Compiler Coding Rule 18. (MH impact, M generality) For Intel Atom processors, “bool” and “char” value
should be passed onto and read off the stack as 32-bit data.

6.3.3.6 Function Calls
In Intel Atom microarchitecture, using PUSH/POP instructions to manage stack space and address adjustment
between function calls/returns will be more optimal than using ENTER/LEAVE alternatives. This is because PUSH/POP
will not need MSROM flows and stack pointer address update is done at AGU.

When a callee function need to return to the caller, the callee could issue POP instruction to restore data and restore
the stack pointer from the EBP.

Assembly/Compiler Coding Rule 19. (MH impact, M generality) For Intel Atom processors, favor register form of
PUSH/POP and avoid using LEAVE; Use LEA to adjust ESP instead of ADD/SUB.

6.3.3.7 Optimization of Multiply/Add Dependent Chains
Computations of dependent multiply and add operations can illustrate the usage of several coding techniques to opti-
mize for the front end and in-order execution pipeline of the Intel Atom microarchitecture.

Example 6-5a shows a code sequence that may be used on out-of-order microarchitectures. This sequence is far from
optimal on Intel Atom microarchitecture. The full latency of multiply and add operations are exposed and it is not very
successful at taking advantage of the two-issue pipeline.

Example 6-5b shows an improved code sequence that takes advantage of the two-issue in-order pipeline of Intel
Atom microarchitecture. Because the dependency between multiply and add operations are present, the exposure of
latency are only partially covered.

Example 6-5. Examples of Dependent Multiply and Add Computation

a) Instruction sequence that encounters stalls
; accumulator xmm2 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

movaps xmm1, [edi] ; vector stored in 16-byte aligned memory
mulps xmm0, xmm1
addps xmm2, xmm0 ; dependency and branch exposes latency of mul and add
add esi, 16 ;
add edi, 16
sub ecx, 1
jnz top

b) Improved instruction sequence to increase execution throughput
; accumulator xmm4 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; latency exposures partially covered by independent instructions
dec ecx ;
jnz top

Document #: 356477-050US 6-12

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Example 6-5c illustrates a technique that increases instruction-level parallelism and further reduces latency expo-
sures of the multiply and add operations. By unrolling four times, each ADDPS instruction can be hoisted far from its
dependent producer instruction MULPS. Using an interleaving technique, non-dependent ADDPS and MULPS can be
placed in close proximity. Because the hardware that executes MULPS and ADDPS is pipelined, the associated latency
can be covered much more effectively by this technique relative to Example 6-5b.

6.3.3.8 Position Independent Code
Position independent code often needs to obtain the value of the instruction pointer. Example 6-5a shows one tech-
nique to put the value of IP into the ECX register by issuing a CALL without a matching RET. Example 6-5b shows an
alternative technique to put the value of IP into the ECX register using a matched pair of CALL/RET.

c) Improving instruction sequence further by unrolling and interleaving
; accumulator xmm0, xmm1, xmm2, xmm3 initialized
Top: movaps xmm0, [esi] ; vector stored in 16-byte aligned memory

lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm0, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm5, xmm1 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm1, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm1, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm6, xmm2 ; dependent multiply hoisted by unrolling and interleaving

(continue)

movaps xmm2, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm2, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm7, xmm3 ; dependent multiply hoisted by unrolling and interleaving
movaps xmm3, [esi] ; vector stored in 16-byte aligned memory
lea esi, [esi+16] ; can schedule in parallel with load
mulps xmm3, [edi] ;
lea edi, [edi+16] ; can schedule in parallel with multiply
addps xmm4, xmm0 ; dependent multiply hoisted by unrolling and interleaving
sub ecx, 4;
jnz top
; sum up accumulators xmm0, xmm1, xmm2, xmm3 to reduce dependency inside the loop

Example 6-6. Instruction Pointer Query Techniques

a) Using call without return to obtain IP
call _label; return address pushed is the IP of next instruction

_label:
pop ECX; IP of this instruction is now put into ECX

Example 6-5. Examples of Dependent Multiply and Add Computation (Contd.)

Document #: 356477-050US 6-13

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.4 INSTRUCTION LATENCY
This section lists the port-binding and latency information of Intel Atom microarchitecture. The port-binding informa-
tion for each instruction may show one of 3 situations:

• ‘Single digit’ - the specific port that must be issued.
• (0, 1) - either port 0 or port 1.
• ‘B’ - both ports are required.
In the “Instruction” column:

• If different operand syntax of the same instruction have the same port-binding and latency, operand syntax is
omitted.

• When different operand syntax may produce different latency or port binding, the operand syntax is listed; but
instruction syntax of different operand sizes may be compacted and abbreviated with a footnote.

Instruction that required decoder assistance from MSROM are marked in the “Comment” column (should be used
minimally if more decode-efficient alternatives are available).

b) Using matched call/ret pair

call _lblcx;
... ; ECX now contains IP of this instruction
...

_lblcx
mov ecx, [esp];
ret

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

ADD/AND/CMP/OR/SUB/XOR/TEST1 (E)AX/AL, imm; (0, 1) 1 0.5

ADD/AND/CMP/OR/SUB/XOR2 mem, Imm8;
ADD/AND/CMP/OR/SUB/XOR/TEST4 mem, imm; TEST m8, imm8 0 1 1

ADD/AND/CMP/OR/SUB/XOR/TEST2 mem, reg;
ADD/AND/CMP/OR/SUB/XOR2 reg, mem; 0 1 1

ADD/AND/CMP/OR/SUB/XOR2 reg, Imm8;
ADD/AND/CMP/OR/SUB/XOR4 reg, imm (0, 1) 1 0.5

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, mem B 7 6

ADDPD/ADDSUBPD/MAXPD/MAXPS/MINPD/MINPS/SUBPD xmm, xmm B 6 5

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, mem B 5 1

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/SUBSD/SUBSS xmm, xmm 1 5 1

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm,
mem 0 1 1

Example 6-6. Instruction Pointer Query Techniques (Contd.)

Document #: 356477-050US 6-14

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/ORPS/XORPD/XORPS xmm,
xmm (0, 1) 1 1

BSF/BSR r16, m16 B 17 16

BSF/BSR3 reg, mem B 16 15

BSF/BSR4 reg, reg B 16 15

BT m16, imm8; BT3 mem, imm8 (0, 1) 2; 1 1

BT m16, r16; BT3 mem, reg B 10, 9 8

BT4 reg, imm8; BT4 reg, reg 1 1 1

BTC m16, imm8; BTC3 mem, imm8 B 3; 2 2

BTC/BTR/BTS m16; r16 B 12 11

 BTC/BTR/BTS3 mem, reg B 11 10

BTC/BTR/BTS4 reg, imm8; BTC/BTR/BTS4 reg, reg 1 1 1

CALL mem (0, 1) 2 2

CALL reg; CALL rel16; CALL rel32 B 1 1

CMOV4 reg, mem; MOV1 (E)AX/AL, MOFFS; MOV2 mem, imm 0 1 1

CMOV4 reg, reg; MOV2 reg, imm; MOV2 reg, reg; ; SETcc r8 (0, 1) 1 0.5

CMPPD/CMPPS xmm, mem, imm; CVTTPS2DQ xmm, mem B 7 6

CMPPD/CMPPS xmm, xmm, imm; CVTTPS2DQ xmm, xmm B 6 5

CMPSD/CMPSS xmm, mem, imm B 5 1

CMPSD/CMPSS xmm, xmm, imm 1 5 1

(U)COMISD/(U)COMISS xmm, mem; B 10 9

(U)COMISD/(U)COMISS xmm, xmm; B 9 8

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, mem B 8 7

CVTDQ2PD/CVTPD2DQ/CVTPD2PS xmm, xmm B 7 6

CVTDQ2PS/CVTSD2SS/CVTSI2SS/CVTSS2SD xmm, mem B 7 6

CVTDQ2PS/CVTSD2SS/CVTSS2SD xmm, xmm B 6 5

CVT(T)PD2PI mm, mem; CVTPI2PD xmm, mem B 8 7

CVT(T)PD2PI mm, xmm; CVTPI2PD xmm, mm B 7 6

CVTPI2PS/CVTSI2SD xmm, mem; B 5 4

CVTPI2PS xmm, mm; 1 5 1

CVTPS2DQ xmm, mem; B 7 6

CVTPS2DQ xmm, xmm; B 6 5

CVT(T)PS2PI mm, mem; B 5 5

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-15

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

CVT(T)PS2PI mm, xmm; 1 5 1

CVT(T)SD2SI3 reg, mem; CVT(T)SS2SI r32, mem B 9 8

CVT(T)SD2SI3 reg, xmm; CVT(T)SS2SI r32, xmm B 8 7

CVTSI2SD xmm, r32; CVTSI2SS xmm, r32 B 7; 6 5

CVTSI2SD xmm, r64; CVTSI2SS xmm, r64 B 6; 7 5

CVT(T)SS2SI r64, mem; RCPPS xmm, mem B 10 9

CVT(T)SS2SI r64, xmm; RCPPS xmm, xmm B 9 8

CVTTPD2DQ xmm, mem B 8 7

CVTTPD2DQ xmm, xmm B 7 6

DEC/INC2 mem; MASKMOVQ; MOVAPD/MOVAPS mem, xmm 0 1 1

DEC/INC2 reg; FLD ST; FST/FSTP ST; MOVDQ2Q mm, xmm (0, 1) 1 0.5

DIVPD; DIVPS B 125; 70 124; 69

DIVSD; DIVSS B 62; 34 61; 33

EMMS; LDMXCSR B 5 4

FABS/FCHS/FXCH; MOVQ2DQ xmm, mm; MOVSX/MOVZX r16, r16 (0, 1) 1 0.5

FADD/FSUB/FSUBR3 mem B 5 4

FADD/FADDP/FSUB/FSUBP/FSUBR/FSUBRP ST; 1 5 1

FCMOV B 6 5

FCOM/FCOMP3 mem B 1 1

FCOM/FCOMP/FCOMPP/FUCOM/FUCOMP ST; FTST 1 1 1

FCOMI/FCOMIP/FUCOMI/FUCOMIP ST B 9 8

FDIV/FSQRT3 mem; FDIV/FSQRT ST 0 25-65 24-64

FIADD/FIMUL5 mem B 11 10

FICOM/FICOMP mem B 7 6

FILD4 mem B 5 4

FLD3 mem; FXAM; MOVAPD/MOVAPS/MOVD xmm, mem 0 1 1

FLDCW B 5 4

FMUL/FMULP ST; FMUL3 mem 0 5 1

FNSTSW AX; FNSTSW m16 B 10; 14 9; 13

FST/FSTP3 mem B 2 1

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, mem B 9 8

HADDPD/HADDPS/HSUBPD/HSUBPS xmm, xmm B 8 7

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-16

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

IDIV r/m8; IDIV r/m16; IDIV r/m32; IDIV r/m64; B 33;42;57;1
97

32;41;56;19
6

IMUL/MUL6 EAX/AL, mem; IMUL/MUL AX, m16 B 7; 8 6; 7

IMUL/MUL7 AX/AL, reg; IMUL/MUL EAX, r32 B 7; 6 6; 5

IMUL m16, imm8/imm16; IMUL r16, m16 B 7; 6

IMUL r/m32, imm8/imm32; IMUL r32, r/m32 0 5 1

IMUL r/m64, imm8/imm32; B 14 13

IMUL r16, r16; IMUL r16, imm8/imm16 B 6 5

IMUL r64, r/m64; IMUL/MUL RAX, r/m64 B 11; 12 10; 11

JCC1; JMP4 reg; JMP1 1 1 1

JCXZ; JECXZ; JRCXZ B 4 1

JMP mem4; B 2 1

LDDQU; MOVDQU/MOVUPD/MOVUPS xmm, mem; B 3 2

LEA r16, mem; MASKMOVDQU; SETcc m8 (0, 1) 2 1

LEA, reg, mem 1 1 1

LEAVE; B 2; 2

MAXSD/MAXSS/MINSD/MINSS xmm, mem B 5 1

MAXSD/MAXSS/MINSD/MINSS xmm, xmm 1 5 1

MOV2 MOFFS, (E)AX/AL; MOV2 reg, mem; MOV2 mem, reg 0 1 1

MOVD mem3, mm; MOVD xmm, reg3; MOVD mm, mem3 0 1 1

MOVD reg3, mm; MOVD reg3, xmm; PMOVMSK reg3, mm 0 3 1

MOVDQA/MOVQ xmm, mem; MOVDQA/MOVD mem, xmm; 0 1 1

MOVDQA/MOVDQU/MOVUPD xmm, xmm; MOVQ mm, mm (0, 1) 1 0.5

MOVDQU/MOVUPD/MOVUPS mem, xmm; B 2 2

MOVHLPS;MOVLHPS;MOVHPD/MOVHPS/MOVLPD/MOVLPS 0 1 1

MOVMSKPD/MOVSKPS/PMOVMSKB reg3, xmm 0 3 1

MOVNTI3 mem, reg; MOVNTPD/MOVNTPS; MOVNTQ 0 1 1

MOVQ mem, mm; MOVQ mm, mem; MOVDDUP 0 1 1

MOVSD/MOVSS xmm, xmm; MOVSXD5 reg, reg (0, 1) 1 0.5

MOVSD/MOVSS xmm, mem; PALIGNR 0 1 1

MOVSD/MOVSS mem, xmm; PINSRW 0 1 1

MOVSHDUP/MOVSLDUP xmm, mem 0 1 1

MOVSHDUP/MOVSLDUP/MOVUPS xmm, xmm (0, 1) 1 0.5

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-17

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

MOVSX/MOVZX r16, m8; MOVSX/MOVZX r16, r8 0 3; 2 1

MOVSX/MOVZX reg3, r/m8; MOVSX/MOVZX reg3, r/m16 0 1 1

MOVSXD5 reg, mem; MOVSXD r64, r/m32 0 1 1

MULPS/MULSD xmm, mem; MULSS xmm, mem; 0 5; 4 2

MULPS/MULSD xmm, xmm; MULSS xmm, xmm 0 5; 4 2

MULPD B 5; 4 2

NEG/NOT2 mem; PREFETCHNTA; PREFETCHTx 0 10 9

NEG/NOT2 reg; NOP (0, 1) 1 0.5

PABSB/D/W mm, mem; PABSB/D/W xmm, mem 0 1 1

PABSB/D/W mm, mm; PABSB/D/W xmm, xmm (0, 1) 1 0.5

PACKSSDW/WB mm, mem; PACKSSDW/WB xmm, mem 0 1 1

PACKSSDW/WB mm, mm; PACKSSDW/WB xmm, xmm 0 1 1

PACKUSWB mm, mem; PACKUSWB xmm, mem 0 1 1

PACKUSWB mm, mm; PACKUSWB xmm, xmm 0 1 1

PADDB/D/W/Q mm, mem; PADDB/D/W/Q xmm, mem 0 1 1

PADDB/D/W/Q mm, mm; PADDB/D/W/Q xmm, xmm (0, 1) 1 0.5

PADDSB/W mm, mem; PADDSB/W xmm, mem 0 1 1

PADDSB/W mm, mm; PADDSB/W xmm, xmm (0, 1) 1 0.5

PADDUSB/W mm, mem; PADDUSB/W xmm, mem 0 1 1

PADDUSB/W mm, mm; PADDUSB/W xmm, xmm (0, 1) 1 0.5

PAND/PANDN/POR/PXOR mm, mem; PAND/PANDN/POR/PXOR xmm,
mem 0 1 1

PAND/PANDN/POR/PXOR mm, mm; PAND/PANDN/POR/PXOR xmm,
xmm (0, 1) 1 0.5

PAVGB/W mm, mem; PAVGB/W xmm, mem 0 1 1

PAVGB/W mm, mm; PAVGB/W xmm, xmm (0, 1) 1 0.5

PCMPEQB/D/W mm, mem; PCMPEQB/D/W xmm, mem 0 1 1

PCMPEQB/D/W mm, mm; PCMPEQB/D/W xmm, xmm (0, 1) 1 0.5

PCMPGTB/D/W mm, mem; PCMPGTB/D/W xmm, mem 0 1 1

PCMPGTB/D/W mm, mm; PCMPGTB/D/W xmm, xmm (0, 1) 1 0.5

PEXTRW; B 4 1

PHADDD/PHSUBD mm, mem; PHADDD/PHSUBD xmm, mem B 4 3

PHADDD/PHSUBD mm, mm; PHADDD/PHSUBD xmm, xmm B 3 2

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-18

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

PHADDW/PHADDSW mm, mem; PHADDW/PHADDSW xmm, mem B 6; 8 5;7

PHADDW/PHADDSW mm, mm; PHADDW/PHADDSW xmm, xmm B 5; 7 M

PHSUBW/PHSUBSW mm, mem; PHSUBW/PHSUBSW xmm, mem B 6; 8 M

PHSUBW/PHSUBSW mm, mm; PHSUBW/PHSUBSW xmm, xmm B 5; 7 M

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW mm, mem 0 4 1

PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, xmm;
PMADDUBSW/PMADDWD/PMULHRSW/PSADBW xmm, mem 0 5 1

PMAXSW/UB mm, mem; PMAXSW/UB xmm, mem 0 1 1

PMAXSW/UB mm, mm; PMAXSW/UB xmm, xmm (0, 1) 1 0.5

PMINSW/UB mm, mem; PMINSW/UB xmm, mem 0 1 1

PMINSW/UB mm, mm; PMINSW/UB xmm, xmm (0, 1) 1 0.5

PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mm;
PMULHUW/PMULHW/PMULLW/PMULUDQ mm, mem 0 4 1

PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, xmm;
PMULHUW/PMULHW/PMULLW/PMULUDQ xmm, mem 0 5 1

POP mem5; PSLLD/Q/W mm, mem; PSLLD/Q/W xmm, mem B 3 2

POP r16; PUSH mem4; PSLLD/Q/W mm, mm; PSLLD/Q/W xmm, xmm B 2 1

POP reg3; PUSH reg4; PUSH imm B 1 1

POPA ; POPAD B 9 8

PSHUFB mm, mem; PSHUFD; PSHUFHW; PSHUFLW; PSHUFW 0 1 1

PSHUFB mm, mm; PSLLD/Q/W mm, imm; PSLLD/Q/W xmm, imm 0 1 1

PSHUFB xmm, mem B 5 4

PSHUFB xmm, xmm B 4 3

PSIGNB/D/W mm, mem; PSIGNB/D/W xmm, mem 0 1 1

PSIGNB/D/W mm, mm; PSIGNB/D/W xmm, xmm (0, 1) 1 0.5

PSRAD/W mm, imm; PSRAD/W xmm, imm; 0 1 1

PSRLD/Q/W mm, mem; PSRLD/Q/W xmm, mem B 3 2

PSRLD/Q/W mm, mm; PSRLD/Q/W xmm, xmm B 2 1

PSRLD/Q/W mm, imm; PSRLD/Q/W xmm, imm; 0 1 1

PSLLDQ/PSRLDQ xmm, imm; SHUFPD/SHUFPS 0 1 1

PSUBB/D/W/Q mm, mem; PSUBB/D/W/Q xmm, mem 0 1 1

PSUBB/D/W/Q mm, mm; PSUBB/D/W/Q xmm, xmm (0, 1) 1 0.5

PSUBSB/W mm, mem; PSUBSB/W xmm, mem 0 1 1

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-19

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

PSUBSB/W mm, mm; PSUBSB/W xmm, xmm (0, 1) 1 0.5

PSUBUSB/W mm, mem; PSUBUSB/W xmm, mem 0 1 1

PSUBUSB/W mm, mm; PSUBUSB/W xmm, xmm (0, 1) 1 0.5

PUNPCKHBW/DQ/WD; PUNPCKLBW/DQ/WD 0 1 1

PUNPCKHQDQ; PUNPCKLQDQ 0 1 1

PUSHA ; PUSHAD B 8 7

RCL mem2, 1; RCL reg2, 1 0 1 1

RCL m8, CL; RCL m16, CL; RCL mem3, CL; B 18;16; 14 17;15;13

RCL m8, imm; RCL m16, imm; RCL mem3, imm; B 18; 17; 14 17;16;13

RCL r8, CL; RCL r16, CL; RCL reg3, CL; B 17; 16; 14 16;15;14

RCL r8, imm; RCL r16, imm; RCL reg3, imm; B 18;16; 14 17;15;13

RCPSS 0 4 1

RCR mem2, 1; RCR reg2, 1 B 7; 5 6;4

RCR m8, CL; RCR m16, CL; RCR mem3, CL; B 15; 13; 12 14;12;11

RCR m8, imm; RCR m16, imm; RCR mem3, imm; B 16,;14; 12 15;13;11

RCR r8, CL; RCR r16, CL; RCR reg3, CL; B 14; 13; 12 13;12;11

RCR r8, imm; RCR r16, imm; RCR reg3, imm; B 15, 14, 12 14;13;11

RET imm16 B 1 1

RET (far) B 79

ROL; ROR; SAL; SAR; SHL; SHR 0 1 1

SETcc 1 1

SHLD8 mem, reg, imm; SHLD r64, r64, imm; SHLD m64, r64, CL B 11 10

SHLD m32, r32; SHLD r32, r32 B 4; 2 3; 1

SHLD m16, r16, CL; SHLD r16, r16, imm; SHLD r64, r64, CL B 10 9

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-20

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.5 SILVERMONT MICROARCHITECTURE
The Intel Atom processor E3000 and C2000 Series are based on the Silvermont microarchitecture. The Silvermont
microarchitecture spans a wide range of computing devices from tablets, phones, and PCs to microservers. In addi-
tion to support for Intel 64 and IA-32 architecture, major enhancements of the Silvermont microarchitecture include:

• Out-of-order execution for integer instructions and de-coupled ordering between non-integer and memory
instructions. In contrast, the 45nm and 32nm Intel Atom microarchitecture was strictly in-order with limited
ability to exploit available instruction-level parallelism.

• Non-blocking memory instructions allowing multiple (8) outstanding misses. In previous generation processors,
problems in a single memory instruction (for example, a cache miss) caused all subsequent instructions to stall
until the problem was resolved. The new microarchitecture allows up to 8 unique outstanding references.

• Modular system design with two cores sharing an L2 cache connected to a new integrated memory controller
using a point-to-point interface instead of the Front Side Bus.

• Instruction set enhancements to include SSE 4.1, SSE 4.2, AESNI and PCLMULQDQ.
The block diagram for the Silvermont microarchitecture is depicted in Figure 6-1. While the memory and execute clus-
ters were significantly redesigned for improved single thread performance, the primary focus is still a highly efficient
design in a small form factor power envelope. Each pipeline is accompanied with a dedicated scheduling queue called
a reservation station. While floating-point and memory
instructions schedule from their respective queues in program order, integer execution instructions schedule from
their respective queues out of order.

Integer instructions can be scheduled from their queues out of order in contrast to in-order execution in previous
generations. Out of order scheduling allows these instructions to tolerate stalls caused by unavailable (re)sources.
Memory instructions must generate their addresses (AGEN) in-order and schedule from the scheduling queue in-
order but they may complete out-of-order.

SHLD r16, r16, CL; SHRD m64, r64; SHRD r64, r64, imm B 9 8

SHRD m32, r32; SHRD r32, r32 B 4; 2 3; 1

SHRD m16, r16; SHRD r16, r16 B 6 5

SHRD r64, r64, CL B 8 7

STMXCSR B 15 14

TEST2 reg, reg; TEST4 reg, imm (0, 1) 1 0.5

UNPCKHPD; UNPCKHPS; UNPCKLPD, UNPCKLPS 0 1 1

Notes on operand size (osize) and address size (asize):
1. osize = 8, 16, 32 or asize = 8, 16, 32
2. osize = 8, 16, 32, 64
3. osize = 32, 64
4. osize = 16, 32, 64 or asize = 16, 32, 64
5. osize = 16, 32
6. osize = 8, 32
7. osize = 8, 16
8. osize = 16, 64

Table 6-2. Intel Atom® Microarchitecture Instructions Latency Data (Contd.)

Instruction Ports Latency Throughp
ut

DisplayFamily_DisplayModel
06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

06_1CH,
06_26H,
06_27H

Document #: 356477-050US 6-21

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Non-integer instructions (including SIMD integer, SIMD floating-point, and x87 floating-point) also schedule from
their respective scheduling queue in program order. However, these separate scheduling queues allow their execu-
tion to be decoupled from instructions in other scheduling queues.

The design of the microarchitecture takes into account maximizing platform performance of multiple form factors
(e.g. phones, tablets, to micro-servers) and minimizing the power and area cost due to out of order scheduling (i.e.
maximizing performance/power/cost efficiency). Intel Hyper-Threading
Technology is not supported in favor of a multi-core architecture with a shared L2 cache. The rest of this section will
cover some of the cluster-level features in more detail.

The front end cluster (FEC), shown in yellow in Figure 6-1, features a power optimized 2-wide decode pipeline. FEC is
responsible for fetching and decoding instructions from instruction memory. FEC utilizes predecode hints from the
icache to avoid costly on-the-fly instruction length determination. The front end contains a Branch Target Buffer
(BTB), plus advanced branch predictor hardware.

The front end is connected to the execution units through the Allocation, Renaming and Retirement (ARR) cluster
(lavender color in Figure 6-1). ARR receives uops from the FEC and is responsible for resource checks. The Register
Alias Table (RAT) renames the logical registers to the physical registers. The Reorder Buffer (ROB) puts the operations
back into program order and completes (retires) them. It also stops execution at interrupts, exceptions and assists and
runs program control over microcode.

Scheduling in the Silvermont microarchitecture is distributed, so after renaming, uops are sent to various clusters
(IEC: integer execution cluster; MEC: memory execution cluster; FPC: floating-point cluster) for scheduling (shown as
RSV for FP, IEC, and MEC in Figure 6-1).

Figure 6-2. Silvermont Microarchitecture Pipeline

Document #: 356477-050US 6-22

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

There are two sets of reservation stations for FPC and IEC (one for each port) and a single set of reservation stations
for MEC. Each reservation station is responsible for receiving up to two ops from the ARR cluster in a cycle and
selecting one ready op for dispatching to execution as soon as the op becomes ready.

To support the distributed reservation station concept, load-op and load-op-store macro-instructions requiring
integer execution must be split into a memory sub-op that is sent to the MEC and resides in the memory reservation
station and an integer execution sub-op that is sent to the integer reservation station. The IEC schedulers pick the
oldest ready instruction from each of its RSVs while the MEC and the FPC schedulers only look at the oldest instruction
in their respective RSVs. Even though the MEC and FPC clusters employ in-order schedulers, a younger instruction
from a particular FPC RSV can execute before an older instruction in the other FPC RSV for example (or the IEC or MEC
RSVs).

Each execution port has specific functional units available. Table 6-3 shows the mapping of functional units to ports
for IEC (the orange units in Figure 6-1), MEC (the green units in Figure 6-1), and the FPC (the red units in Figure 6-1).
Compared to the previous Intel Atom microarchitecture, the Silvermont microarchitecture adds an integer multiply
unit (IMUL) in IEC.

The Memory Execution Cluster (MEC) (shown in green in Figure 6-1) can support both 32-bit and 36-bit physical
addressing modes. The Silvermont microarchitecture has a 2 level Data TLB hierarchy with support for both large
(2MB or 4MB) and small page structures. A small micro TLB (referred to as uTLB) is backed up by a larger 2nd level TLB
(referred to as DTLB). A hardware page walker services misses from both the Instruction and Data TLBs.

The MEC also owns the MEC RSV, which is responsible for scheduling of all loads and stores. Load and store instruc-
tions go through addresses generation phase in program order to avoid on-the-fly memory ordering later in the pipe-
line. Therefore, an unknown address will stall younger memory instructions. Memory operations that incur problems
(e.g. uTLB misses, unavailable resources, etc.) are put in a separate queue called the RehabQ. This allows younger
instructions (that do not incur problems) to continue execution rather than stalling all younger instructions. The prob-
lematic instruction is later
reissued from the RehabQ when the problem is resolved. Note that load misses are not considered
problematic as the Silvermont microarchitecture features a non-blocking data cache that can sustain 8 outstanding
misses.

The Bus Cluster (BIU) includes the second-level cache (L2) and is responsible for all communication with components
outside the processor core. The L2 cache supports up to 1MB with an optimized latency less than the previous Intel
Atom microarchitecture. The Front-Side Bus from earlier Intel Atom processors has been replaced by an intra-die

Table 6-3. Function Unit Mapping of the Silvermont Microarchitecture

Cluster Port 0 Port 1

IEC
• ALU0
• Shift/Rotate unit.
• LEA with no index.

• ALU1, Bit processing unit
• Jump unit
• IMUL
• POPCNT
• CRC32
• LEA1

NOTES:
1. LEAs with valid index and displacement are split into multiple UOPs and use both ports. LEAs with valid index exe-

cute on port 1.

FPC

• SIMD ALU, SIMD shift/shuffle unit.
• SIMD FP mul/div/cvt unit.
• STTNI/AESNI/PCLMULQDQ unit.
• RCP/RSQRT unit, F2I convert unit.

• SIMD ALU
• SIMD FPadd unit
• F2I convert unit

MEC Load/Store

Document #: 356477-050US 6-23

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

interconnect (IDI) fabric connecting to a newly optimized memory controller. The BIU also houses the L2 data
prefetcher.

The new core level multi-processing (or CMP) system configuration features two processor cores making requests to
a single BIU, which will handle the multiplexing between cores. This basic CMP module can be replicated to create a
quad-core configuration, or one core chopped off to create a single-core
configuration.

6.5.1 Integer Pipeline
Load pipeline stages are no longer inlined with the rest of the integer pipeline. As a result, non-load ops can reach
execute faster, and the branch misprediction penalty is effectively 3 cycles less compared to earlier Intel Atom proces-
sors. Front end pipe stages are the same as earlier Intel Atom processors
(3 cycles for fetch, 3 cycles for decode). ARR pipestages perform out-of-order allocation and register renaming, split
the uop into parts if necessary, and send them to the distributed reservation stations. RSV stage is where the distrib-
uted reservation station performs its scheduling. The execution pipelines are very similar to earlier Intel Atom proces-
sors. When all parts of a uop are marked as finished, the ROB handles final completion in-order.

6.5.2 Floating-Point Pipeline
Compared to the INT pipeline, the FP pipeline is longer. The execution stages can vary between one and five
depending on the instruction. Like other Intel microarchitectures, the Silvermont microarchitecture needs to limit the
number of FP assists (when certain floating-point operations cannot be handled natively by the execution pipeline,
and must be performed by microcode) to the bare minimum to achieve high performance. To do this the processor
should be run with exceptions masked and the DAZ (denormal as zero) and FTZ (flush to zero) flags set whenever
possible.

As mentioned, while each FPC RSV schedules instructions in-order, the RSVs can get out of order with respect to each
other.

6.6 GOLDMONT MICROARCHITECTURE
The Goldmont microarchitecture builds on the success of the Silvermont microarchitecture (see Section 6.5), and
provides the following enhancements:

• An out-of-order execution engine with a three-wide superscalar pipeline. Specifically:
— The decoder can decode three instructions per cycle.
— The microcode sequencer can send three uops per cycle for allocation into the reservation stations.
— Retirement supports a peak rate of three per cycle.

• Enhancement in branch prediction which decouples the fetch pipeline from the instruction decoder.
• Larger out-of-order execution window and buffers that enable deeper out-of-order execution across integer,

FP/SIMD, and memory instruction types.
• Fully out-of-order memory execution and disambiguation. The Goldmont microarchitecture can execute one load

and one store per cycle (compared to one load or one store per cycle in the Silvermont microarchitecture). The
memory execution pipeline also includes a second level TLB enhancement with 512 entries for 4KB pages.

• Integer execution cluster in the Goldmont microarchitecture provides three pipelines and can execute up to three
simple integer ALU operations per cycle.

• SIMD integer and floating-point instructions execute in a 128-bit wide engine. Throughput and latency of many
instructions have improved, including PSHUFB with one cycle throughput (versus five cycles for Silvermont
microarchitecture) and many other SIMD instructions with doubled throughput; see Table 6-19 for details.

• Throughput and latency of instructions for accelerating encryption/description (AES) and carry-less multipli-
cation (PCLMULQDQ) have been improved significantly in the Goldmont microarchitecture.

• The Goldmont microarchitecture provides new instructions with hardware accelerated secure hashing algorithm,
SHA1 and SHA256.

• The Goldmont microarchitecture also adds support for the RDSEED instruction for random number generation
meeting the NIST SP800-90C standard.

Document #: 356477-050US 6-24

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

• PAUSE instruction latency is optimized to enable better power efficiency.

Figure 6-3. CPU Core Pipeline Functionality of the Goldmont Microarchitecture

1st Level Branch
Predict

Instruction Cache

ITLB 2nd Level Branch
Predict

Decode MSROM

Allocate RenameInstruction Queue

Ld/St
Sched

ALU
Sched

ALU
Sched

ALU
Sched

Ld/St
Buffers

TLB L1 Data
Cache

FP/SIMD Sched

Phy Register File

Addr
Gen ALU ALUALU

L2 Cache XQ Queue

Phy Register File

FP ALUFP ALU

IDI

Document #: 356477-050US 6-25

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The front end cluster (FEC) of the Goldmont microarchitecture provides a number of enhancements over the FEC of
the Silvermont microarchitecture. The enhancements are summarized in Table 6-4.

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR) cluster. Sched-
uling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR. Table 6-5 compares
the out-of-order scheduling characteristics between the Goldmont microarchitecture and Silvermont microarchitec-
ture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent to the MEC
cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can commence according to

Table 6-4. Comparison of Front End Cluster Features

Feature Goldmont Microarchitecture Silvermont Microarchitecture

Number of Decoders 3 2

Max Throughput of Decoders 20 Bytes per cycle 16 Bytes per cycle

Fetch and ICache Pipeline Decoupled Coupled

ITLB 48 entries, large page support 48 entries

Branch Mispredict Penalty 12 cycles 10 cycles

L2 Predecode Cache 16K NA

Table 6-5. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Microarchitecture Silvermont Microarchitecture

IEC Reservation
• 3x distributed for each port
• Out-of-order within each IEC RSV

and between IEC, across FPC, MEC

• 2x distributed for each port
• Out-of-order within each IEC RSV and between

IEC, across FPC, MEC

FPC Reservation
• 1x unified to ports 0, 1
• Out-of-order within FPC RSV and

across IEC, MEC

• 2x distributed for each port
• In order within each FPC RSV; out-of-order

between FPC, across IEC, MEC

MEC Reservation
• 1x unified to ports 0, 1
• Out-of-order within MEC RSV and

across IEC, FPC

• 1x to port 0
• In order within each MEC RSV; out-of-order

across IEC, FPC

Document #: 356477-050US 6-26

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

the heuristic described in Table 6-5 and when resources are available. Table 6-6 shows the mapping of execution units
across each port for respective clusters.

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load and store
instructions can go through the address generation phase in order or out-of-order. When
out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from the address
generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory order issues if
the load eventually depended on the unknown store and would require a pipeline flush when the store ad-dress is
known. The Goldmont microarchitecture keeps track of and minimizes such potentially problematic load executions.

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go back to load
or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction is later re-
issued (in some cases, re-issued at retirement) from the load/store buffer when the problem is resolved. Note that
load misses are considered problematic as the data cache is non-blocking and can sustain multiple outstanding misses
using write-combining buffers (WCB).

Table 6-6. Function Unit Mapping of the Goldmont Microarchitecture

Cluster Port 0 Port 1 Port 2

IEC

• ALU0
• Shift/Rotate
• LEA with no index
• F2I
• converts/cmp, store_data

• ALU1
• Bit processing
• JEU
• IMUL
• IDIV
• POPCNT
• CRC32
• LEA
• I2F
• store_data

• ALU2
• LEA1

• I2F
• flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with valid index and displacement are split into multiple

UOPs and use both port 1 and 2. LEAs with valid index execute on port 1.

FPC

• SIMD ALU
• SIMD shift/Shuffle
• SIMD mul
• STTNI/AESNI/PCLMULQDQ/SHA
• FP_mul
• Converts
• F2I convert

• SIMD ALU
• SIMD shuffle
• FP_add
• F2I compare

MEC Load_addr Store_addr

Table 6-7. Comparison of MEC Resources

MEC Resource Goldmont Microarchitecture Silvermont Microarchitecture

L1 Data Cache 24KB 24 KB

uTLB 32 entries 32 entries

DTLB (4KB page) 512 entries 128 entries

DTLB (2M/4M page) 32 entries 16 entries

Document #: 356477-050US 6-27

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.7 GOLDMONT PLUS MICROARCHITECTURE
The Goldmont Plus microarchitecture builds on the success of the Goldmont microarchitecture (see Section 6.6), and
provides the following enhancements:

• Widen previous generation Intel Atom processor back-end pipeline to 4-wide allocation to 4-wide retire, while
maintaining 3-wide fetch and decode pipeline.

• Enhanced branch prediction unit.
• 64KB shared second level pre-decode cache (16KB in Goldmont microarchitecture).
• Larger reservation station and ROB entries to support large out-of-order window.
• Wider integer execution unit. New dedicated JEU port with support for faster branch redirection.
• Radix-1024 floating point divider for fast scalar/packed single, double and extended precision floating point

divides.
• Improved AES-NI instruction latency and throughput.
• Larger load and store buffers. Improved store-to-load forwarding latency store data from register.
• Shared instruction and data second level TLB. Paging Cache Enhancements (PxE/ePxE caches).
• Modular system design with four cores sharing up to 4MB L2 cache.
• Support for Read Processor ID (RDP) new instruction.

Load-use Latency 3 cycles 3 cycles

Pipeline 1x load + 1x store 1x share by load/store

AGEN Out-of-order In order

WCBs 8 8

Addressing 39-bit physical, 48-bit linear 36-bit physical, 48-bit linear

Table 6-7. Comparison of MEC Resources (Contd.)

MEC Resource Goldmont Microarchitecture Silvermont Microarchitecture

Document #: 356477-050US 6-28

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The front end cluster (FEC) of the Goldmont Plus microarchitecture provides a number of enhancements over the FEC
of the Goldmont microarchitecture. The enhancements are summarized in Table 6-8.

Figure 6-4. CPU Core Pipeline Functionality of the Goldmont Plus Microarchitecture

Table 6-8. Comparison of Front End Cluster Features

Feature Goldmont Plus Microarchitecture Goldmont Microarchitecture

Number of Decoders 3 3

Max. Throughput Decoders 20 Bytes per cycle 20 Bytes per cycle

Fetch and Icache Pipeline Decoupled Decoupled

ITLB 48 entries, large page support 48 entries, large page support

2nd Level ITLB Shared with DTLB

Branch Mispredict Penalty 13 cycles (12 cycles for certain Jcc) 12 cycles

L2 Predecode Cache 64K 16K

Document #: 356477-050US 6-29

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

The FEC is connected to the execution units through the Allocation, Renaming and Retirement (ARR) cluster. Sched-
uling of uops is handled with distributed reservation stations across different clusters
(IEC, FPC, MEC). Each cluster has its own reservations for receiving multiple uops from the ARR.
Table 6-9 compares the out-of-order scheduling characteristics between the Goldmont Plus
microarchitecture and Goldmont microarchitecture.

An instruction that references memory and requires integer/FP resources will have the memory uop sent to the MEC
cluster and the integer/FP uop sent to the IEC/FPC cluster. Then out-of-order execution can commence according to
the heuristic described in Table 6-9 when resources are available. Table 6-10 shows the mapping of execution units
across each port for respective clusters.

The MEC owns the MEC RSV and is responsible for scheduling all load and stores via ports 0 and 1. Load and store
instructions can go through the address generation phase in order or out-of-order. When

Table 6-9. Comparison of Distributed Reservation Stations on Scheduling Uops

Cluster Goldmont Plus Microarchitecture Goldmont Microarchitecture

IEC Reservation
• 4x distributed for each port
• Out-of-order within each IEC RSV

and between IEC, across FPC, MEC

• 3x distributed for each port
• Out-of-order within each IEC RSV and between

IEC, across FPC, MEC

FPC Reservation
• 1x unified to ports 0, 1
• Out-of-order within FPC RSV and

across IEC, MEC

• 1x unified to ports 0, 1
• Out-of-order within FPC RSV and across IEC,

MEC

MEC Reservation
• 1x unified to ports 0, 1
• Out-of-order within MEC RSV and

across IEC, FPC

• 1x unified to ports 0, 1
• Out-of-order within MEC RSV and across IEC,

FPC

Table 6-10. Function Unit Mapping of the Goldmont Plus Microarchitecture

Cluster Port 0 Port 1 Port 2 Port 3

IEC

• ALU0
• Shift/Rotate
• LEA with no index
• F2I
• converts/cmp
• store_data

• ALU1
• Bit processing
• IMUL
• IDIV
• POPCNT
• CRC32
• LEA
• I2F
• store_data

• ALU2
• LEA1

• I2F
• flag_merge

NOTES:
1. LEAs without index can execute on port 0, 1, or 2. LEA with a valid index and displacement are split into multiple

UOPs and use both port 1 and 2. LEAs with a valid index execute on port 1.

 JEU

FPC

• SIMD ALU
• SIMD shift/Shuffle
• SIMD mul
• STTNI/AESNI/PCLMULQD

Q/SHA
• FP_mul
• Converts
• F2I convert

• SIMD ALU
• SIMD shuffle
• FP_add
• F2I compare

MEC Load_addr Store_addr

Document #: 356477-050US 6-30

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

out-of-order address generation scheduling is available, memory execution pipeline is de-coupled from the address
generation pipeline using the load buffers and store buffers.

With out-of-order execution, situations where loads can pass an unknown store may cause memory order issues if
the load eventually depended on the unknown store and would require a pipeline flush when the store address is
known. The Goldmont Plus microarchitecture keeps track of and minimizes such potentially problematic load execu-
tions.

Memory operations that experienced problems (for example, uTLB misses and unavailable resources) go back to the
load or store buffer for re-execution. This allows younger instructions (that do not incur
problems) to continue execution rather than stalling all younger instructions. The problematic instruction is later re-
issued from the load/store buffer when the problem is resolved. Note that load misses are considered problematic as
the data cache is non-blocking and can sustain multiple outstanding misses using write-combining buffers (WCB).

Goldmont Plus microarchitecture includes secondary level TLB changes to support both data and instruction side
translations (Goldmont microarchitecture secondary level TLB only supports data).

6.8 CODING RECOMMENDATIONS
Most of the general coding recommendations described in Volume 1Chapter 3, “General Optimization Guidelines”
also apply to the Intel Atom microarchitectures. The rest of this chapter describes techniques that supplement the
general recommendations and are specific to the Intel Atom microarchitectures.

6.8.1 Optimizing The Front End

6.8.1.1 Instruction Decoder
Some IA instructions that perform complex tasks require a lookup in the microcode sequencer ROM (MSROM) to
decode them into a multiple uop flow. To determine which instructions require an MSROM lookup, see the instruc-
tion latency/bandwidth table in Section 6.9.

Fewer instructions require MSROM lookup in the Goldmont Plus and Goldmont microarchitecture than in the Silver-
mont microarchitecture, though the Silvermont microarchitecture also improved significantly over prior generations
in this area; Section 6.9 provides more details. It is advisable to avoid ucode flows where possible. Table 6-11 provides
alternate non-MSROM instruction sequences that can replace an instruction that decodes from MSROM.

Table 6-11. Alternatives to MSROM Instructions

Instruction from MSROM Recommendation for Silvermont
Recommendation for Goldmont Plus and
Goldmont

CALL m16/m32/m64 Load + CALL reg Load + CALL reg

PUSH m16/m32/m64 Load + PUSH reg Use as is (non MSROM)

LEAVE No recommended replacement Use as is (non MSROM)

FLD/FST/FSTP m80fp No recommended replacement Use as is (non MSROM)

FCOM+FNSTSW FCOMI FCOMI

(I)MUL r/m16 (Result DX:AX)

Use
• (I)MUL r16
• r/m16 if extended precision not

required, or
• (I)MUL r32
• r/m32

Use
• (I)MUL r16
• r/m16 if extended precision not

required, or
• (I)MUL r32
• r/m32

Document #: 356477-050US 6-31

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Tuning Suggestion 1. Use the perfmon counter MS_DECODED.MS_ENTRY to find the number of instructions that
need the MSROM (the count will include any assist or fault that occurred).
Assembly/Compiler Coding Rule 1. (M impact, M generality) Try to keep the I-footprint small to get the best reuse
of the predecode bits.

Avoid I-cache aliasing/thrashing since the incorrect predecode bits result in reduction of decode throughput in one
instruction every 3 cycles.
Tuning Suggestion 2. Use the perfmon counter DECODE_RESTRICTION.PREDECODE_WRONG to count the number of
times that a decode restriction reduced instruction decode throughput because predecoded bits are incorrect.

6.8.1.2 Front End High IPC Considerations
In general front end restrictions are not typically a performance limiter until you reach higher (>1) Instructions Per
Cycle (IPC) levels.

The decode restrictions that must be followed to get full decode bandwidth per cycle through the decoders include:

• MSROM instructions should be avoided if possible. A good example is the memory form of CALL near indirect. It
will often be better to perform a load into a register and then perform the register version of CALL.

• The total length of the instruction bytes that can be decoded each cycle varies by microarchitecture.
— Silvermont microarchitecture: up to 16 bytes per cycle with instruction not more than 8 bytes in length. For

an instruction length exceeding 8 bytes, only one instruction per cycle is decoded on decoder 0.
— Goldmont and later microarchitecture: up to 20 bytes per cycle depending on alignment

(for example, if the first instruction of three consecutive instructions is aligned on 4-Byte boundary and the 3
instruction sequence meets decode restrictions. For an instruction length exceeding 8 bytes, it is not
restricted to decoder 0 or one per cycle.

• An instruction with multiple prefixes can restrict decode throughput. The restriction is on the length of bytes
combining prefixes and escape bytes. There is a 3 cycle penalty when the escape/prefix count exceeds the
following limits as specified per microarchitectures.
— Silvermont microarchitecture: the limit is 3 bytes.
— Goldmont and later microarchitecture: the limit is 4 bytes. Thus, SSE4 or AES instruction that accesses one of

the upper 8 registers do not incur a penalty.
— Only decoder 0 can decode an instruction exceeding the limit of prefix/escape byte restriction on the

Silvermont and Goldmont microarchitectures.
• The maximum number of branches that can be decoded each cycle is 1 for the Silvermont

microarchitecture and 2 for the Goldmont microarchitecture. Prevent a re-steer penalty by avoiding back-to-back
conditional branches.

(I)MUL r/m32 (Result
EDX:EAX)

Use
• (I)MUL r32
• r/m32 if extended precision not

required, or
• (I)MUL r64
• r/m64

Use as is (non MSROM)

(I)MUL r/m64 (Result
RDX:RAX)

Use
• (I)MUL r64
• r/m64 if extended precision not

required

Use as is (non MSROM)

PEXTRB/D/Q No recommended replacement Use as is (non MSROM)

PMULLD No recommended replacement Use as is (non MSROM)

Table 6-11. Alternatives to MSROM Instructions (Contd.)

Instruction from MSROM Recommendation for Silvermont
Recommendation for Goldmont Plus and
Goldmont

Document #: 356477-050US 6-32

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Unlike the previous generation, the Silvermont and later microarchitectures can decode two x87
instructions in the same cycle without incurring a 2-cycle penalty. Branch decoder restrictions are also relaxed. In
earlier Intel Atom processors, decoding past a conditional or indirect branch in decoder 0 resulted in a 2-cycle penalty.

The Silvermont microarchitecture can decode past conditional and indirect branch instructions in decoder 0.
However, if the next instruction (on decoder 1) is also a branch, there is a 3-cycle penalty for the second branch
instruction.

The Goldmont and later microarchitecture can decode one predicted not-taken branches in decoder 0 or decoder 1,
plus another branch in decoder 2 without the 3-cycle re-steer penalty. However, if there are two predicted not-taken
branches at decoder 0 and 1, the second branch at decoder 1 will incur a 3-cycle penalty.

For a branch target that is a predicted taken conditional branch or unconditional branch, it is decoded with a one cycle
bubble across all generations of Intel Atom processors.
Assembly/Compiler Coding Rule 2. (MH impact, H generality) Minimize the use of instructions
that have the following characteristics to achieve more than one instruction per cycle throughput:
(i) using the MSROM, (ii) exceeding the limit of escape/prefix bytes, (iii) more than 8 bytes long, or
(iv) have back to back branches.

For example, an instruction with 3 bytes of prefix/escape and accessing the lower 8 registers can decode normally in
the Silvermont, Goldmont and later microarchitectures. For instance:

PCLMULQDQ 66 0F 3A 44 C7 01 pclmulqdq xmm0, xmm7, 0x1

To access any of the upper 8 XMM registers, XMM8-15, an additional byte with REX prefix is necessary. Consequently,
it will decode normally in the Goldmont and later microarchitecture, but incur a decode penalty in the Silvermont
microarchitecture. For instance:

PCLMULQDQ 66 41 0F 3A 44 C0 01 pclmulqdq xmm0, xmm8, 0x1

(Note the REX byte 41, in between the 66 and the 0F 3A.)

The three-cycle penalty applies whenever the combined prefix/escape bytes exceed the decode restriction limit. Also,
it forces the instruction to be decoded on decoder 0. Additionally, when decoding an
instruction exceeding the prefix/escape length limit, not on decoder 0, there is an extra delay to re-steer to decoder 0
(for a total of a 6 cycle penalty for the decoder). Therefore, when hand writing high
performance assembly, be aware of these cases. It would be beneficial to pre-align these cases to decoder 0 if they
occur infrequently using a taken branch target or MS entry point as a decoder 0
alignment vehicle. NOP insertion should be used only as a last resort as NOP instructions consume resources in other
parts of the pipeline. Similar alignment is necessary for MS entry points which suffer the additional 3 cycle penalty if
they align originally to decoder 1. The penalty associated with a prefix/escape length limit and re-steer apply to both
Silvermont, Goldmont and later microarchitectures.

Table 6-12 compares decoder capabilities between microarchitectures.

Table 6-12. Comparison of Decoder Capabilities

Goldmont Plus andGoldmont
Microarchitecture

Silvermont Microarchitecture

Width 3 2

Max Throughput 20 bytes per cycle (1st instr. aligned to 4B
boundary and decoder 1 and 2 restrictions)

16 bytes per cycle (1st instr. <= 8 bytes))

Prefix/Escape Limit 4 bytes 3 bytes

Branch 2 1

Document #: 356477-050US 6-33

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.1.3 Branching Across 4GB Boundary
Another important performance consideration from a front end standpoint is branch prediction. For
64-bit applications, branch prediction performance can be negatively impacted when the target of a branch is more
than 4GB away from the branch. This is more likely to happen when the application is split into shared libraries.
Newer glibc versions can put the shared libraries into the first 2GB to avoid this problem (since 2.23). The environ-
ment variable LD_PREFER_MAP_32BIT_EXEC=1 has to be set.
Developers can build statically to improve the locality in their code. Building with LTO should further improve perfor-
mance.

6.8.1.4 Loop Unrolling and Loop Stream Detector
The Silvermont and later microarchitectures include a Loop Stream Detector (LSD) that provides the back end with
uops that are already decoded. This provides performance and power benefits. When the LSD is engaged, front end
decode restrictions, such as number of prefix/escape bytes and instruction length, no longer apply.

One way to reduce the overhead of loop maintenance code and increase the amount of independent work in a loop
is software loop unrolling. Unfortunately care must be taken on where it is utilized because loop unrolling has both
positive and negative performance effects. The negative performance effects are caused by the increased code size
and increased BTB and register pressure. Furthermore, loop unrolling can increase the loop size beyond the limits of
the LSD. The LSD loop size limit varies with
microarchitecture; it is 27 for the Goldmont and later microarchitecture with a three-wide decoder, and 28 for the
Silvermont microarchitecture. Care must be taken to keep the loop size under the LSD limit.
User/Source Coding Rule 1. (M impact, M generality) Keep per-iteration instruction count below
28 when considering loop unrolling technique on short loops with high iteration count.
Tuning Suggestion 3. Use the BACLEARS.ANY perfmon counter to see if the loop unrolling is causing too much
pressure. Use the ICACHE.MISSES perfmon counter to see if loop unrolling is having an excessive negative effect on
the instruction footprint.

6.8.1.5 Mixing Code and Data
Intel Atom processors perform best when code and data are on different pages. Software should avoid sharing code
and data in the same page to avoid false SMC conditions. This recommendation applies to all page sizes.

6.8.2 Optimizing The Execution Core

6.8.2.1 Scheduling
The Silvermont microarchitecture is less sensitive to instruction ordering than its predecessors due to the introduc-
tion of out-of-order execution for integer instructions. FP instructions have their own reservation stations but still
execute in order with respect to each other. Memory instructions also issue in order but with the addition of the
Rehab Queue, they can complete out of order and memory system delays are no longer blocking.

The Goldmont and later microarchitecture features fully out-of-order execution across the IEC, FPC, and MEC pipe-
lines, and is supported by enhancements ranging from 3 ports for IEC, 128-bit data path of FPC units, dedicated load
address and store address pipelines.
Tuning Suggestion 4. Use the perfmon counter UOPS_NOT_DELIVERED.ANY (NO_ALLOC_CYCLE.ANY on Silvermont
microarchitecture) as an indicator of performance bottlenecks in the back end. This includes delays in the memory
system and execution delays.

6.8.2.2 Address Generation
The Silvermont microarchitecture eliminated address generation limitations in previous generations. As such, using
LEA or ADD instructions to generate addresses are equally effective on the Silvermont and later microarchitectures.

The rule of thumb for ADDs and LEAs is that it is justified to use LEA with a valid index and/or
displacement for non-destructive destination purposes (especially useful for stack offset cases), or to use a SCALE.
Otherwise, ADD(s) are preferable.

Document #: 356477-050US 6-34

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.2.3 FP Multiply-Accumulate-Store Execution
With Goldmont and later microarchitectures, a unified FPC reservation station eliminates the
performance issue that can happen in the Silvermont microarchitecture due to intra-port dependence of in-order
scheduling of FPC uops. The paragraphs below and Example 6-7 illustrate the problem.

FP arithmetic instructions executing on different ports can execute out-of-order with respect to each other in the
Silvermont microarchitecture. As a result, in unrolled loops with multiplication results feeding into add instructions
which in turn produce results for store instructions, grouping the store instructions at the end of the loop will improve
performance. This allows it to overlap the execution of the multiplies and the adds. Consider the example shown in
Example 6-7.

Due to the data dependence, the add instructions cannot start executing until the corresponding multiply instruction
is executed. Because multiplies and stores use the same port, they have to execute in program order. This means the
second multiply instruction cannot start execution even though it is
independent from the first multiply and add instructions. If you group the store instructions together at the end of the
loop as shown below, the second multiply instruction can execute in parallel with the first multiply instruction (note
the 1 cycle bubble when multiplies are overlapped).

Example 6-7. Unrolled Loop Executes In-Order Due to Multiply-Store Port Conflict

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

mulps, xmm1, xmm1 EX
1

EX
2

EX
3

EX
4

EX
5

addps xmm1, xmm1 EX
1

EX
2

EX
3

movaps mem, xmm1 EX
1

mulps, xmm2, xmm2 EX
1

EX
2

EX
3

EX
4

EX
5

addps xmm2, xmm2 EX
1

EX
2

EX
3

movaps mem, xmm2 EX
1

Example 6-8. Grouping Store Instructions Eliminates Bubbles and Improves IPC

Instruction 1 2 3 4 5 6 7 8 9 10 11

mulps, xmm1, xmm1 EX1 EX2 EX3 EX4 EX5

addps xmm1, xmm1 EX1 EX2 EX3

mulps, xmm2, xmm2 bubble EX1 EX2 EX3 EX4 EX5

addps xmm2, xmm2 EX1 EX2 EX3

movaps mem, xmm1 EX1

movaps mem, xmm2 EX1

Document #: 356477-050US 6-35

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.2.4 Integer Multiply Execution
The Silvermont and later microarchitectures have a dedicated integer multiplier to accelerate
commonly-used forms of integer multiply flows. Table 6-13 shows the latency and instruction forms of mul/imul
instructions that are accelerated and not using MSROM.

The multiply forms with microcode flows should be avoided.

6.8.2.5 Zeroing Idioms
XOR / PXOR / XORPS / XORPD instructions are commonly used to force register values to zero when the source and the
destination register are the same (e.g. XOR eax, eax).

This method of zeroing is preferred by compilers instead of the equivalent MOV eax, 0x0 instructions as the MOV
encoding is larger than the XOR in code bytes.

The Silvermont and later microarchitectures have special hardware support to recognize these cases and mark both
the sources as valid in the architectural register file. This helps the XOR execute faster since any value XORed with
itself will accomplish the necessary zeroing.

The logic will also support PXOR, XORPS, and XORPD idioms.

In Silvermont microarchitecture, zero-idiom, a 64-bit general purpose operand using REX.W, will
experience delay. However, zero-idiom is supported with XMM8-XMM15 or the upper 8 general purpose registers
without REX.W. To clear r8, it is sufficient to use XOR r8d, r8d.

Goldmont and later microarchitecture supports these zero-idioms for 64-bit operands.

6.8.2.6 NOP Idioms
NOP instruction is often used for padding or alignment purposes. The Goldmont and later
microarchitecture has hardware support for NOP handling by marking the NOP as completed without
allocating it into the reservation station. This saves execution resources and bandwidth. Retirement resource is still
needed for the eliminated NOP.

6.8.2.7 Move Elimination and ESP Folding
Move elimination is supported in Goldmont and later microarchitecture. When move elimination is in effect, these
instructions can execute with higher throughput in addition to 0 cycle latency. Specifically, 32-bit and 64-bit operand

Table 6-13. Integer Multiply Operation Latency

Integer Multiply Operations Output
Goldmont Plus and
Goldmont Latency

Silvermont Latency

imul/mul r/m8 16 4u 5u

imul/mul r/m16 32 4u 5u

imul/mul r/32 64 3 4u

imul/mul r/m64 128 5 7u

imul/mul r16, r/m16; r16, r/m16, imm 16 4u 4u

imul/mul r32, r/m32; r32, r/m32, imm 32 3 3

imul/mul r64, r/m64; r64, r/m64, imm8 64 5 5

u: ucode flow from MSROM

Document #: 356477-050US 6-36

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

size of MOV, and MOVAPS/MOVAPD/MOVDQA/MOVDQU/MOVUPS/MOVUPD with XMM are supported and have
throughput of 0.33 cycle if move elimination is in effect. MOVSX and MOVZX do not support move elimination.

Stack operation using PUSH/POP/CALL/RET is more efficient with the Goldmont and later
microarchitecture than with the Silvermont microarchitecture. Computing the stack pointer address does not
consume allocation and execution resources in the Goldmont and later microarchitecture.
Additionally, throughput of PUSH/POP is increased from 1 to 3 per cycle.

6.8.2.8 Stack Manipulation Instruction
The memory forms of indirect CALL m16/m32/m64 are decoded into a uop flow from MSROM. Indirect CALL with
target specified in a register can avoid the delays. Thus, loading the target address to a register, followed by an indirect
CALL via register operand is recommended.

In the Goldmont and later microarchitecture, PUSH m16/m32/m64 do not require MSROM to decode. The same is
also true with the LEAVE instruction.

In the Silvermont microarchitecture, PUSH m16/m32/m64 and LEAVE require MSROM to decode.

6.8.2.9 Flags usage
Many instructions have an implicit data result that is captured in a flags register. These results can be consumed by a
variety of instructions such as conditional moves (cmovs), branches and even a variety of logic/arithmetic operations
(such as rcl). The most common instructions used in computing branch
conditions are compare instructions (CMP). Branches dependent on the CMP instruction can execute in the next
cycle. The same is true for branch instructions dependent on ADD or SUB instructions.

INC and DEC instructions require an additional uop to merge the flags as they are partial flag writers. As a result, a
branch instruction depending on an INC or a DEC instruction incurs a 1 cycle penalty.
Note that this penalty only applies to branches that are directly dependent on the INC or DEC instruction.
Assembly/Compiler Coding Rule 3. (M impact, M generality) Use CMP/ADD/SUB instructions to compute branch
conditions instead of INC/DEC instructions whenever possible.

6.8.2.10 SIMD Floating-Point and X87 Instructions
In the Silvermont microarchitecture, only a subset of the SIMD FP execution units are implemented with a 128-bit
wide data path. In Goldmont and later microarchitecture, SIMD FP units are implemented with a 128-bit data path. In
general, packed SIMD instructions complete with one cycle less in latency and twice the throughput in the Goldmont
and later microarchitecture, compared to the Silvermont
microarchitecture.

In particular, MULPD latency is accelerated from 7 to 4 cycles, with 4-fold throughput from every 4 cycles to 1 per
cycle.

Latency and throughput of X87 extended precision load and store, FLD m80fp, and FST/FSTP m80fp are also improved
in the Goldmont and later microarchitecture. See Table 6-19 for more details.

In the Goldmont Plus microarchitecture, Floating point divider is upgraded to radix-1024 based design. Floating point
divide and square root latency and bandwidth are significantly improved. See Table 15-14 for more details.

6.8.2.11 SIMD Integer Instructions
In the Silvermont microarchitecture, a relatively small subset of the SIMD integer instructions can execute with
throughput of two instructions per cycle. In the Goldmont and later microarchitecture, many more SIMD integer
instructions can complete at a rate of two instructions per cycle.

Latency and/or throughput improvements in the Goldmont and later microarchitecture include other SIMD integer
instructions that execute only one port. For example, PMULLD has an 11 cycle latency and throughput of one every 11
cycles in the Silvermont microarchitecture. It has 5 cycle latency and throughput of one every 2 cycles in the Gold-
mont and later microarchitectures.

Document #: 356477-050US 6-37

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

In general, SIMD integer multiply hardware is significantly faster (4 cycle latency) and higher throughput (1 cycle
throughput) than in the Silvermont microarchitecture. Additionally, PADDQ/PSUBQ has 2 cycle latency and
throughput of every 2 cycles, compared to 4 cycle latency and throughput every 4 cycles in the Silvermont microarchi-
tecture. PSHUFB has 1 cycle latency and throughput in the Goldmont and later microarchitectures, compared to 5
cycle latency and throughput of every 5 cycles. See Table 6-19 for more details.

6.8.2.12 Vectorization Considerations
In the Silvermont microarchitecture, opportunity for profitable vectorization may be limited by the
availability of high-throughput implementation SIMD execution units or SIMD instructions that require MSROM to
decode into longer flows.

The Goldmont and later microarchitectures allows compiler, as well as direct programming, to profit from vectoriza-
tion due to improvement in latency and throughput across a wide variety of SIMD instructions.
Assembly/Compiler Coding Rule 4. (M impact, M generality) Avoid MSROM instructions for code vectorization.

6.8.2.13 Other SIMD Instructions
The Silvermont microarchitecture supports AESNI and PCLMULQDQ to accelerate performance of various cryp-
tographic algorithms like AES and AES-GCM for block encryption/decryption.

In the Goldmont and later microarchitectures, the execution hardware is improved from execution latency,
throughput to decode throughput. For example, PCLMULQDQ has latency of six cycles with throughput of every four
cycles in the Goldmont microarchitecture, compared to cycle latency and throughput of every ten cycles in the Silver-
mont microarchitecture.

Additionally, the Goldmont and later microarchitecture supports SHANI to accelerate the performance of secure
hashing algorithms like SHA1 and SHA256. More details about the secure hashing algorithms and SHANI can be found
at

https://software.intel.com/en-us/articles/intel-sha-extensions.

Examples and reference implementation of using the Intel SHA extensions can be found at:

https://software.intel.com/en-us/articles/intel-sha-extensions-implementations.

https://software.intel.com/en-us/articles/intel-sha-extensions
https://software.intel.com/en-us/articles/intel-sha-extensions-implementations

Document #: 356477-050US 6-38

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.2.14 Instruction Selection
Table 6-14 summarizes the latency for floating-point and SIMD integer operations in the Silvermont microarchitec-
ture. The throughput column is expressed in number of cycles per instruction that
execution can complete with all available execution units employed (for example, 4 indicates the same instruction can
complete execution every four cycles; 0.33 indicates three identical instructions can complete execution each cycle).

Table 6-14. Floating-Point and SIMD Integer Latency
Goldmont Plus Goldmont Silvermont

Latency Throughput Latency Throughput Latency Throughput

SIMD integer ALU

128-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

64-bit ALU/logical/move 1 0.5 1 0.5 1 0.5

SIMD integer shift

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD shuffle

128-bit 1 0.5 1 0.5 1 1

64-bit 1 0.5 1 0.5 1 1

SIMD integer multiplier

128-bit 4 1 4 1 5 2

64-bit 4 1 4 1 4 1

FP Adder

x87 (fadd) 3 1 3 1 3 1

scalar (addsd, addss) 3 1 3 1 3 1

packed (addpd, addps) 3 1 3 1 4 2

FP Multiplier

x87 (fmul) 5 2 5 2 5 2

scalar single-precision (mulss) 4 1 4 1 4 1

scalar double-precision (mulsd) 4 1 4 1 5 2

packed single-precision (mulps) 4 1 4 1 5 2

packed double-precision (mulpd) 4 1 4 1 7 4

Converts

Document #: 356477-050US 6-39

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Note that scalar SSE single precision multiples are one cycle faster than most FP operations. From inspection of the
table you can also see that packed SSE doubles have a slightly larger latency and smaller throughput compared to
their scalar counterparts.
Assembly/Compiler Coding Rule 5. (M impact, M generality) Favor SSE floating-point instructions over x87 floating
point instructions.
Assembly/Compiler Coding Rule 6. (MH impact, M generality) Run with exceptions masked and the DAZ and FTZ
flags set (whenever possible).
Tuning Suggestion 5. Use the perfmon counters MACHINE_CLEARS.FP_ASSIST to see if floating exceptions are
impacting program performance.

6.8.2.15 Integer Division
In Silvermont microarchitecture, integer division requires microcode flows that are relatively long and slow. Its
latency can vary profoundly on the input value and data sizes. In Goldmont and later
microarchitecture, there is hardware enhancement for short-precision forms of DIV/IDIV without using MSROM.
DIV/IDIV forms needing higher precision do use MSROM, but are also accelerated from the hardware enhancement.
Table 6-15 and Table 6-16 show the latency range for divide instructions, and the instructions that require MSROM
are noted with the superscript ‘u’.

CVTDQ2PD, CVTDQ2PS, CVTPD2DQ,
CVTPD2PI, CVTPD2PS, CVTPI2PD,

CVTPS2DQ, CVTPS2PD, CVTTPD2DQ,
CVTPD2PI, CVTPS2DQ

4 1 4 1 5 2

CVTPI2PS, CVTPS2PI, CVTSD2SI,
CVTSD2SS, CVTSI2SD,

CVTSI2SS, CVTSS2SD, CVTSS2SI,
CVTTPS2PI, CVTTSD2SI, CVTTSS2SI

4 1 4 1 4 1

FP Divider

x87 fdiv (extended-precision) 15 11 39 39 39 39

x87 fdiv (double-precision) 14 10 34 34 34 34

x87 fdiv (single-precision) 11 7 19 19 19 19

scalar single-precision (divss) 11 7 19 18 19 17

scalar double-precision (divsd) 14 10 34 33 34 32

packed single-precision (divps) 16 12 36 35 39 39

packed double-precision (divpd) 22 18 66 65 69 69

Table 6-14. Floating-Point and SIMD Integer Latency (Contd.)
Goldmont Plus Goldmont Silvermont

Latency Throughput Latency Throughput Latency Throughput

Document #: 356477-050US 6-40

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

User/Source Coding Rule 2. (M impact, L generality) Use divides only when really needed and take care to use the
correct data size and sign so that you get the most efficient execution.
Tuning Suggestion 6. Use the perfmon counter CYCLES_DIV_BUSY.ANY to see if the divides are a bottleneck in the
program.

If one needs unaligned groups of packed singles where the whole array is aligned, the use of PALIGNR is recommend
over MOVUPS. For instance, load A[x+y+3:x+y] where x and y are loop variables; it is better to calculate x+y, round
down to a multiple of 4 and use a MOVAPS and PALIGNR to get the elements (rather than a MOVUPS at x+y). While
this may look longer, the integer operations can execute in parallel to FP ones. This will also avoid the periodic
MOVUPS that splits a line at the cost of approximately six cycles.
User/Source Coding Rule 3. (M impact, M generality) Use PALIGNR when stepping through packed single elements

6.8.2.16 Integer Shift
When using an integer shift instruction with shift count in a register (i.e., CL), there is a one cycle bubble for sched-
uling if the count register is produced by the preceding instruction in the execution pipeline. Thus, the instruction
producing the shift count should be hoisted whenever possible.

Additionally, double shift instructions (SHLD/SHRD) operating on 64-bit input data require long MSROM flows. In the
Silvermont microarchitecture, SHRD with a 32-bit destination register and immediate shift count is decoded from the
MSROM but the corresponding SHLD is not. In the Goldmont and later
microarchitecture, SHLD/SHRD with 32-bit destination register and immediate shift count are not decoded from the
MSROM. SHLD/SHRD with 32-bit destination memory operand or with CL shift count are decoded from the MSROM
on both Silvermont and Goldmont.

Table 6-15. Unsigned Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont

Plus/
Goldmont

DIV r8 AX r8 AL AH 25 11-12

DIV r16 DX:AX r16 AX DX 26-30 12-17u

DIV r32 EDX:EAX r32 EAX EDX 26-38 12-25u

DIV r64 RDX:RAX r64 RAX RDX 38-123 12-41u

Table 6-16. Signed Integer Division Operation Latency

Dividend Divisor Quotient Remainder Silvermontu
Goldmont

Plus/
Goldmont

IDIV r8 AX r8 AL AH 34 11-12

IDIV r16 DX:AX r16 AX DX 35-40 12-17u

IDIV r32 EDX:EAX r32 EAX EDX 35-47 12-25u

IDIV r64 RDX:RAX r64 RAX RDX 49-135 12-41u

Document #: 356477-050US 6-41

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.2.17 Pause Instruction
In the Goldmont and later microarchitecture, the latency of the PAUSE instruction is similar to that of the Skylake
microarchitecture to achieve better power saving with thread synchronization primitives.

6.8.3 Optimizing Memory Accesses

6.8.3.1 Reduce Unaligned Memory Access with PALIGNR
When working with single-precision FP or dword data arrays, loading 4 consecutive elements often encounter
memory accesses that are not 16-Byte aligned. For example, a nested loop iteration with an array using two iterating
indices, ‘i’, ‘j’ in A[i + j]. When loading 16 bytes from memory using “i+j” as the effective index that increments by 1 in
an inner loop, unaligned access will occur 3 of 4 accesses.

These unaligned memory access can be avoided. Assuming the base of the array is 16-Bytes aligned, loading 16 bytes
should be done with an effective index that is a multiple of 4, followed by PALIGNR with two consecutive 16-byte
chunks already loaded in XMM, with the imm8 constant derived from 4* remainder of the original “i+j”.
Assembly/Compiler Coding Rule 7. (M impact, M generality) Use PALIGNR when stepping through packed single-
precision FP or dword elements.

6.8.3.2 Minimize Memory Execution Issues
In the Goldmont and later microarchitecture, fully out-of-order execution in the MEC allows loads to pass older stores
which have not yet resolved their address. If the load did depend on the older store, the hardware detects this situa-
tion and the load and subsequent operations need to be re-executed. The programmer can use a performance
counter event to assess and locate the cause of such re-execution.

In the Silvermont microarchitecture, its RehabQ needs to deal with several types of execution problems in the MEC.
The issues include: load blocks, load/store splits, locks, TLB misses, unknown addresses, and too many stores. The
perfmon counter’s REHABQ in the Silvermont microarchitecture can be used to assess problems specific to the Silver-
mont microarchitecture.
Tuning Suggestion 7. Use the perfmon counters MACHINE_CLEAR.DISAMBIGUATION to assess the impact of loads
passing older unknown stores on application performance with the Goldmont microarchitecture and its descendants.

6.8.3.3 Store Forwarding
Forwarding is significantly improved in the Silvermont and later microarchitectures compared to prior generations. A
store instruction will forward its data to a receiving load instruction if the following are true:

• The forwarding store and the receiving load start at the same address.
• The receiving load is smaller than or equal to the forwarding store in terms of width.
• The forwarding store or the receiving load do not incur cache line splits.
Table 6-17 and Table 6-18 illustrate various situations of successful forwarding versus situations where preceding
stores cannot be forwarded.

Table 6-17. Store Forwarding Conditions (1 and 2 Byte Stores)
Load Alignment

Store
Size

Load
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 F

2
1 F N

2 F N

Document #: 356477-050US 6-42

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

If one (or more) of these conditions is not satisfied, the load is blocked and put into the RehabQ to reissue again.

To eliminate/avoid store forwarding problems, use the guidelines below (in order of preference):

• Use registers instead of memory.
• Hoist the store as early as possible (stores happen later in the pipeline than loads, so the store needs to be hoisted

many instructions earlier than the load).
The cost of a successful forwarding varies with microarchitectures. The cost is 3 cycles in the Silvermont microarchi-
tecture (that is, if the store executes at cycle n, the load will execute at cycle n+3). The cost is 4 cycles in the Goldmont
microarchitecture. Intel Goldmont Plus microarchitecture optimizes certain store data from register operation to
reduce store to load forwarding latency to 3 cycle.

6.8.3.4 PrefetchW Instruction
The Silvermont and later microarchitectures support the PrefetchW instruction (0f 0d /1). This instruction is a hint to
the hardware to prefetch the specified line into the cache with a read-for-ownership request. This can allow later
stores to that line to complete faster than they would if the line was not prefetched or was prefetched with a different
instruction. All prefetch instructions may cause performance loss if misused. Care should be used to ensure that
prefetch instructions, including PrefetchW, actually improve performance. The instruction opcode 0f 0d /0 continues
to be a NOP. It does not prefetch the indicated line.

6.8.3.5 Cache Line Splits and Alignment
Cache line splits cause load and store instructions to operate at reduced bandwidth. As a result, they should be
avoided where possible.
Tuning Suggestion 8. Use the REHABQ.ST_SPLIT and REHABQ.LD_SPLIT perfmon counters to locate splits, and to
count the number of split operations.

While aligned accesses are preferred, the Silvermont microarchitecture has hardware support for unaligned refer-
ences. As such, MOVUPS/MOVUPD/MOVDQU instructions are all single UOP instructions in contrast to previous
generation Intel Atom processors.

Table 6-18. Store Forwarding Conditions (4-16 Byte Stores)
Load Alignment

Store
Size

Load
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4

1 F N F N

2 F N F N

4 F N N N

8

1 F N N N N N N N

2 F N N N N N N N

4 F N N N N N N N

8 F N N N N N N N

16

1 F N N N N N N N N N N N N N N N

2 F N N N N N N N N N N N N N N N

4 F N N N N N N N N N N N N N N N

8 F N N N N N N N N N N N N N N N

16 F N N N N N N N N N N N N N N N

Document #: 356477-050US 6-43

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

6.8.3.6 Segment Base
For simplicity, the AGU in the Silvermont microarchitecture assumes that the segment base will be zero. However,
while studies have shown that this is overwhelmingly true, there are times when a non-zero segment base (NZB) must
be used. When using NZBs, keep the segment base cache line (0x40) aligned if at all possible. NZB address generation
involves a 1 cycle penalty in the Silvermont microarchitecture. In Goldmont and later microarchitecture, NZB address
generation can maintain one per cycle.

6.8.3.7 Copy and String Copy
Compilers typically provide libraries with memcpy/memset routines that provide good performance while managing
code size and alignment issues.

Memcpy and memset operation can be accomplished using REP MOVS/STOS instructions with length of operation
decomposed for optimized byte/dword granular operations and alignment considerations. This usually provides a
decent copy/set solution for the general case. The REP MOVS/STOS instructions have a fixed overhead. REP STOS
should be able to cope with line splits for long strings; but REP MOVS cannot due to the complexity of the possible
alignment matches between source and destination.

For specific copy/set needs, macro code sequence using SIMD instruction can provide modest gains
(on the order of a dozen clocks or so), depending on the alignment, buffer length, and cache residency of the buffers.
Large memory copies with cache line splits are a notable exception to this rule, where careful macrocode might avoid
the cache lines splits and substantially improve on REP MOV.

Processors based on the Silvermont microarchitecture support the Enhanced REP MOVSB and STOSB operation
feature. REP string operations using MOVSB and STOSB can provide the smallest code size with both flexible and high
performance REP string operations for software in common situations like memory copy and set operations. Proces-
sors that provide enhanced MOVSB/STOSB operations are enumerated by the CPUID feature flag: CPUID:(EAX=7H,
ECX=0H):EBX.[bit 9] = 1.

Software wishing to have a simple default string copy or store routine that will work well on a range of implementa-
tions (including future implementations) should consider using REP MOVSB or REP STOSB on implementations that
support Enhanced REP MOVSB and STOSB. Although these instructions may not be as fast on a specific implementa-
tion as a more specialized copy/store routine, such specialized routines may not perform as well on future processors
and may not take advantage of future enhancements.
REP MOVSB and REP STOSB will continue to perform reasonably well on future processors.

6.9 INSTRUCTION LATENCY AND THROUGHPUT
This section lists the throughput and latency information of recent microarchitectures for Intel Atom processor gener-
ations. Instructions that require decoder assistance from MSROM are marked in the “Comment” column (instructions
marked with ‘Y’ should be used minimally if more decode-efficient
alternatives are available). Throughput and latency values for various instructions are grouped by the respective
microarchitecture according to its CPUID DisplayFamily_DisplayModel. When a large number of DisplayModels of the
same DisplayFamily have the same time timing characteristics, the DisplayFamily may be listed only once.

The microarchitectures and corresponding DisplayFamily_DisplayModel signature covered in this section are:

• Goldmont Plus microarchitecture: 06_7AH. Note that if Goldmont Plus microarchitecture differs from Goldmont
in value, this will be indicated by the addition of “(GLP)” next to the value in the table below.

• Goldmont microarchitecture: 06_5CH, 06_5FH.
• Silvermont or Airmont microarchitecture: 06_37H, 06_4AH, 06_4CH, 06_4DH, 06_5AH, 06_5DH

Document #: 356477-050US 6-44

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

ADC/SBB r32, imm8 1 2 2 2 N N

ADC/SBB r32, r32 1 2 2 2 N N

ADC/SBB r64, r64 1 2 2 2 N N

ADD/AND/CMP/OR/SUB/XOR/TEST r32, r32 0.33 0.5 1 1 N N

ADD/AND/CMP/OR/SUB/XOR/TEST r64, r64 0.33 0.5 1 1 N N

ADDPD/ADDSUBPD/MAXPD/MINPD/SUBPD
xmm, xmm 1 2 3 4 N N

ADDPS/ADDSD/ADDSS/ADDSUBPS/SUBPS/S
UBSD/SUBSS 1 1 3 3 N N

MAXPS/MAXSD/MAXSS/MINPS/MINSD/MI
NSS xmm, xmm 1 1 3 3 N N

ANDNPD/ANDNPS/ANDPD/ANDPS/ORPD/O
RPS/XORPD/XORPS 0.5 0.5 1 1 N N

AESDEC/AESDECLAST/AESENC/AESENCLAST 2
1 (GLP) 5 6

4 (GLP) 8 N Y

AESIMC/AESKEYGEN 2
1 (GLP) 5 5

4 (GLP) 8 N Y

BLENDPD/BLENDPS xmm, xmm, imm8 0.5 1 1 1 N N

BLENDVPD/BLENDVPS xmm, xmm 4 4 4 4 Y Y

BSF/BSR r32, r32 8 10 10 10 Y Y

BSWAP r32 1 1 1 1 N N

BT/BTC/BTR/BTS r32, r32 1 1 1 1 N N

CBW 4 4 4 4 Y Y

CDQ/CLC/CMC 1 1 1 1 N N

CMOVxx r32; r32 1 1 2 2 N N

CMPPD xmm, xmm, imm 1 2 3 4 N N

CMPSD/CMPPS/CMPSS xmm, xmm, imm 1 1 3 3 N N

CMPXCHG r32, r32 5 6 5 6 Y Y

CMPXCHG r64, r64 5 6 5 6 Y Y

(U)COMISD/(U)COMISS xmm, xmm; 1 1 4 4 N N

CPUID 58 60 58 60 Y Y

CRC32 r32, r32 1 1 3 3 N N

Document #: 356477-050US 6-45

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

CRC32 r64, r64 1 1 3 3 N N

CVTDQ2PD/CVTDQ2PS/CVTPD2DQ/CVTPD2
PS xmm, xmm 1 2 4 5 N N

CVT(T)PD2PI/CVT(T)PI2PD 1 2 4 5 N N

CVT(T)PS2DQ/CVTPS2PD xmm, xmm; 1 2 4 5 N N

CVT(T)SD2SS/CVTSS2SD xmm, xmm 1 1 4 4 N N

CVTSI2SD/SS xmm, r32 1 1 7 6 N N

CVTSD2SI/SS2SI r32, xmm 1 1 4 4 N N

DEC/INC r32 1 1 1 1 N N

DIV r8 11-12 25 11-12 25 N Y

DIV r16 12-17 26-30 12-17 26-30 Y Y

DIV r32 12-25 26-38 12-25 26-38 Y Y

DIV r64 12-41 38-123 12-41 38-123 Y Y

DIVPD1 12, 65
18 (GLP) 27-69 13, 66

22 (GLP) 27-69 N Y

DIVPS1 12, 35
12 (GLP) 27-39 13, 36

16 (GLP) 27-39 N Y

DIVSD1 12,33
10 (GLP) 11-32 13, 34

14 (GLP) 13-34 N N

DIVSS1 12, 18
7 (GLP) 11-17 13, 19

11 (GLP) 13-19 N N

DPPD xmm, xmm, imm 5 8 8 12 Y Y

DPPS xmm, xmm, imm 11 12 14 15 Y Y

EMMS 23 10 23 10 Y Y

EXTRACTPS 1 4 4 5 N Y

F2XM1 87 88 87 88 Y Y

FABS/FCHS 0.5 1 1 1 N N

FCOM 1 1 4 4 N N

FADD/FSUB 1 1 3 3 N N

FCOS 154 168 154 168 Y Y

FDECSTP/FINCSTP 0.5 0.5 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 6-46

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

FDIV
39
11

(EP GLP)
39

39
15

(EP GLP)
39 N N

FLDZ 280 277 280 277 Y Y

FMUL 2 2 5 5 N N

FPATAN/FYL2X/FYL2XP1 303 296 303 296 Y Y

FPTAN/FSINCOS 287 281 287 281 Y Y

FRNDINT 41 25 41 25 Y Y

FSCALE 32 74 32 74 Y Y

FSIN 140 150 140 150 Y Y

FSQRT 40 40 40 40 N N

HADDPD/HSUBPD xmm, xmm 5 5 5 6 Y Y

HADDPS/HSUBPS xmm, xmm 6 6 6 6 Y Y

IDIV r8 11-12 34 11-12 34 N Y

IDIV r16 12-17 35-40 12-17 35-40 Y Y

IDIV r32 12-25 35-47 12-25 35-47 Y Y

IDIV r64 12-41 49-135 12-41 49-135 Y Y

IMUL r32, r32 (single dest) 1 1 3 3 N N

IMUL r32 (dual dest) 2 5 3 (4,
EDX) 4 N Y

IMUL r64, r64 (single dest) 2 2 5 5 N N

IMUL r64 (dual dest) 2 4 5 (6,RDX) 5 (7,RDX) N Y

INSERTPS 0.5 1 1 1 N N

MASKMOVDQU 4 5 4 5 Y Y

MOVAPD/MOVAPS/MOVDQA/MOVDQU/M
OVUPD/MOVUPS xmm, xmm; 0.332/0.5 0.5 0/1 1 N N

MOVD r32, xmm; MOVQ r64, xmm 1 1 4 4 N N

MOVD xmm, r32 ; MOVQ xmm, r64 1 1 4 3 N N

MOVDDUP/MOVHLPS/MOVLHPS/MOVSHD
UP/MOVSLDUP 0.5 1 1 1 N N

MOVDQ2Q/MOVQ/MOVQ2DQ 0.5 0.5 1 1 N N

MOVSD/MOVSS xmm, xmm; 0.5 0.5 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 6-47

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

MPSADBW 4 5 5 7 Y Y

MULPD 1 4 4 7 N N

MULPS; MULSD 1 2 4 5 N N

MULSS 1 1 4 4 N N

NEG/NOT r32 0.33 0.5 1 1 N N

PACKSSDW/WB xmm, xmm; PACKUSWB
xmm, xmm 0.5 1 1 1 N N

PABSB/D/W xmm, xmm 0.5 0.5 1 1 N N

PADDB/D/W xmm, xmm; PSUBB/D/W xmm,
xmm 0.5 0.5 1 1 N N

PADDQ/PSUBQ/PCMPEQQ xmm, xmm 1 4 2 4 N Y

PADDSB/W; PADDUSB/W; PSUBSB/W;
PSUBUSB/W 0.5 0.5 1 1 N N

PALIGNR xmm, xmm 0.5 1 1 1 N N

PAND/PANDN/POR/PXOR xmm, xmm 0.5 0.5 1 1 N N

PAVGB/W xmm, xmm 0.5 0.5 1 1 N N

PBLENDW xmm, xmm, imm 0.5 0.5 1 1 N N

PBLENDVB xmm, xmm 4 4 4 4 Y Y

PCLMULQDQ xmm, xmm, imm 4 10 6 10 Y Y

PCMPEQB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPESTRI xmm, xmm, imm 13 21 19(C)/
26(F)3

21(C)/
28(F) Y Y

PCMPESTRM xmm, xmm, imm 14 17 15(X)/
25(F)1

17(X)/
24(F) Y Y

PCMPGTB/D/W xmm, xmm 0.5 0.5 1 1 N N

PCMPGTQ/PHMINPOSUW xmm, xmm 2 2 5 5 N N

PCMPISTRI xmm, xmm, imm 8 17 14(C)/
21(F)1

17(C)/
24(F) Y Y

PCMPISTRM xmm, xmm, imm 7 13 10(X)/
20(F)1

13(X)/
20(F) Y Y

PEXTRB/WD r32, xmm, imm 1 4 4 5 N Y

PINSRB/WD xmm, r32, imm 1 1 4 3 N N

PHADDD/PHSUBD xmm, xmm 4 6 4 6 Y Y

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 6-48

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

PHADDW/PHADDSW xmm, xmm 6 9 6 9 Y Y

PHSUBW/PHSUBSW xmm, xmm 6 9 6 9 Y Y

PMADDUBSW/PMADDWD/PMULHRSW/PS
ADBW xmm, xmm 1 2 4 5 N N

PMAXSB/W/D xmm, xmm; PMAXUB/W/D
xmm, xmm 0.5 0.5 1 1 N N

PMINSB/W/D xmm, xmm; PMINUB/W/D
xmm, xmm 0.5 0.5 1 1 N N

PMOVMSKB r32, xmm 1 1 4 4 N N

PMOVSXBW/BD/BQ/WD/WQ/DQ xmm,
xmm 0.5 1 1 1 N N

PMOVZXBW/BD/BQ/WD/WQ/DQ xmm,
xmm 0.5 1 1 1 N N

PMULDQ/PMULUDQ xmm, xmm 1 2 4 5 N N

PMULHUW/PMULHW/PMULLW xmm, xmm 1 2 4 5 N N

PMULLD xmm, xmm 2 11 5 11 N Y

POPCNT r32, r32 1 1 3 3 N N

POPCNT r64, r64 1 1 3 3 N N

PSHUFB xmm, xmm 1 5 1 5 N Y

PSHUFD xmm, mem, imm 0.5 1 1 1 N N

PSHUFHW; PSHUFLW; PSHUFW 0.5 1 1 1 N N

PSIGNB/D/W xmm, xmm 0.5 1 1 1 N N

PSLLDQ/PSRLDQ xmm, imm;
SHUFPD/SHUFPS 0.5 1 1 1 N N

PSLLD/Q/W xmm, xmm 1 2 2 2 N N

PSRAD/W xmm, imm; 0.5 1 1 1 N N

PSRAD/W xmm, xmm; 1 2 2 2 N N

PSRLD/Q/W xmm, imm; 0.5 1 1 1 N N

PSRLD/Q/W xmm, xmm 1 2 2 2 N N

PTEST xmm, xmm 1 1 4 4 N N

PUNPCKHBW/DQ/WD;
PUNPCKLBW/DQ/WD 0.5 1 1 1 N N

PUNPCKHQDQ; PUNPCKLQDQ 0.5 1 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 6-49

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

RCPPS/RSQRTPS 6 8 9 9 Y Y

RCPSS/RSQRTSS 1 1 4 4 N N

RDTSC 20 30 20 30 Y Y

ROUNDPD/PS 1 2 4 5 N N

ROUNDSD/SS 1 1 4 4 N N

ROL; ROR; SAL; SAR; SHL; SHR (count in CL) 1 1
1 (2 for

CL
source)

1 (2 for
CL

source)
N N

ROL; ROR; SAL; SAR; SHL; SHR (count in
imm8) 1 1 1 1 N N

SAHF 1 1 1 1 N N

SHLD r32, r32, imm 2 2 2 2 N N

SHRD r32, r32, imm 2 4 2 4 N Y

SHLD/SHRD r64, r64, imm 12 10 12 10 Y Y

SHLD/SHRD r64, r64, CL 14 10 14 10 Y Y

SHLD/SHRD r32, r32, CL 4 4 4 4 Y Y

SHUFPD/SHUFPS xmm, xmm, imm 0.5 1 1 1 N N

SQRTPD 67
26 (GLP) 70 68

30 (GLP) 71 N Y

SQRTPS 37
14 (GLP) 40 38

18 (GLP) 41 N Y

SQRTSD 34
14 (GLP) 35 35

18 (GLP) 35 N Y

SQRTSS 19
8 (GLP) 20 20

12 (GLP) 20 N Y

TEST r32, r32 0.33 0.5 1 1 N N

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 6-50

EARLIER GENERATIONS OF INTEL ATOM® MICROARCHITECTURE AND SOFTWARE OPTIMIZATION

UNPCKHPD; UNPCKHPS; UNPCKLPD,
UNPCKLPS 0.5 1 1 1 N N

XADD r32, r32 2 5 4 5 Y Y

XCHG r32, r32 2 5 4 5 Y Y

XCHG r64, r64 2 5 4 5 Y Y

SHA1MSG1/SHA1MSG2/SHA1NEXTE 1 NA 3 NA N NA

SHA1RNDS4 xmm, xmm, imm 2 NA 5 NA N NA

SHA256MSG1/SHA256MSG2 1 NA 3 NA N NA

SHA256RNDS2 4 NA 7 NA N NA

NOTES:
1. DIVPD/DIVPS/DIVSD/DIVSS list early-exit value first and common-case value second. Early-exit case applies to a

special input value such as QNAN. Common case applies to normal numeric values.
2. Throughput is 0.33 cycles if move elimination is effect, otherwise 0.5 cycle.
3. Latency values are for ECX/EFLAGS/XMM0 dependency: (C/F/X)

Table 6-19. Instructions Latency and Throughput Recent Microarchitectures for Intel Atom®
Processors (Contd.)

Instruction Throughput Latency MSROM

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH,
• 4DH
• 5AH
• 5DH

• 06_5CH
• 5FH
• 7AH

• 06_37H
• 4AH
• 4CH
• 4DH
• 5AH
• 5DH

Document #: 356477-050US 7-1

CHAPTER 7
INSTRUCTION LATENCY AND THROUGHPUT

NOTE
All recent processors have latency and throughput information posted on the Intel® 64 and IA-32
Architectures Software Developer Manuals Page.

This appendix contains tables showing the latency and throughput are associated with commonly used instructions1.
The instruction timing data varies across processors family/models. It contains the following sections:

• Section 7.1, “Overview” — Provides an overview of issues related to instruction selection and scheduling.

• Section 7.2, “Definitions” — Presents definitions.

• Section 7.3, “Latency and Throughput” — Lists instruction throughput, latency associated with
commonly-used instructions.

7.1 OVERVIEW
This appendix provides information to assembly language programmers and compiler writers. The information aids in
the selection of instruction sequences (to minimize chain latency) and in the arrangement of instructions (assists in
hardware processing). The performance impact of applying the information has been shown to be on the order of
several percent. This is for applications not dominated by other performance factors, such as:

• Cache miss latencies.

• Bus bandwidth.

• I/O bandwidth.

Instruction selection and scheduling matters when the programmer has already addressed performance issues:

• Observe store forwarding restrictions.

• Avoid cache line and memory order buffer splits.

• Do not inhibit branch prediction.

• Minimize the use of xchg instructions on memory locations.

While several items on the above list involve selecting the right instruction, this appendix focuses on the following
issues. These are listed in priority order, though which item contributes most to performance varies by application:

• Maximize the flow of ops into the execution core. Instructions which consist of more than four ops require
additional steps from microcode ROM. Instructions with longer micro-op flows incur a delay in the front end and
reduce the supply of micro-ops to the execution core.

• In Pentium® 4 and Intel® Xeon® processors, transfers to microcode ROM often reduce how efficiently ops can
be packed into the trace cache. Where possible, it is advisable to select instructions with four or fewer ops. For

1. Although instruction latency may be useful in some limited situations (e.g., a tight loop with a dependency chain
that exposes instruction latency), software optimization on super-scalar, out-of-order microarchitecture, in gen-
eral, will benefit much more on increasing the effective throughput of the larger-scale code path. Coding tech-
niques that rely on instruction latency alone to influence the scheduling of instruction is likely to be sub-optimal
as such coding technique is likely to interfere with the out-of-order machine or restrict the amount of instruc-
tion-level parallelism.

https://software.intel.com/en-us/articles/intel-sdm#optimization
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#optimization
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html#optimization

Document #: 356477-050US 7-2

INSTRUCTION LATENCY AND THROUGHPUT

example, a 32-bit integer multiply with a memory operand fits in the trace cache without going to microcode,
while a 16-bit integer multiply to memory does not.

• Avoid resource conflicts. Interleaving instructions so that they don’t compete for the same port or execution unit
can increase throughput. For example, alternate PADDQ and PMULUDQ (each has a throughput of one issue per
two clock cycles). When interleaved, they can achieve an effective throughput of one instruction per cycle
because they use the same port but different execution units. Selecting instructions with fast throughput also
helps to preserve issue port bandwidth, hide latency and allows for higher software performance.

• Minimize the latency of dependency chains that are on the critical path. For example, an operation to shift left by
two bits executes faster when encoded as two adds than when it is encoded as a shift. If latency is not an issue,
the shift results in a denser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction data provided in this manual, you
can take advantage of the software performance analysis and tuning toolset available at
http://developer.intel.com/software/products/index.htm. The tools include the Intel VTune Performance Analyzer,
with its performance-monitoring capabilities.

7.2 DEFINITIONS
The data is listed in several tables. The tables contain the following:

• Instruction Name — The assembly mnemonic of each instruction.

• Latency — The number of clock cycles that are required for the execution core to complete the execution of all
of the ops that form an instruction.

• Throughput — The number of clock cycles required to wait before the issue ports are free to accept the same
instruction again. For many instructions, the throughput of an instruction can be significantly less than its latency.

• The case of RDRAND instruction latency and throughput is an exception to the definitions above, because the
hardware facility that executes the RDRAND instruction resides in the uncore and is shared by all processor cores
and logical processors in a physical package. The software observable latency and throughput using the sequence
of “rdrand followby jnc” in a single-thread scenario can be as low as ~100 cycles. In third generation Intel Core
processors based on Ivy Bridge microarchitecture, the total bandwidth to deliver random numbers via RDRAND
by the uncore is about 500 MBytes/sec. Within the same processor core microarchitecture and different uncore
implementations, RDRAND latency/throughput can vary across Intel Core and Intel Xeon processors.

7.3 LATENCY AND THROUGHPUT
This section presents the latency and throughput information for commonly-used instructions including: MMX
technology, Streaming SIMD Extensions, subsequent generations of SIMD instruction extensions, and most of the
frequently used general-purpose integer and x87 floating-point instructions.

Due to the complexity of dynamic execution and out-of-order nature of the execution core, the instruction latency
data may not be sufficient to accurately predict realistic performance of actual code sequences based on adding
instruction latency data.

• Instruction latency data is useful when tuning a dependency chain. However, dependency chains limit the out-of-
order core’s ability to execute micro-ops in parallel. Instruction throughput data are useful when tuning parallel
code unencumbered by dependency chains.

• Numeric data in the tables is:

— Approximate and subject to change in future implementations of the microarchitecture.

http://developer.intel.com/software/products/index.htm

Document #: 356477-050US 7-3

INSTRUCTION LATENCY AND THROUGHPUT

— Not meant to be used as reference for instruction-level performance benchmarks. Comparison of
instruction-level performance of microprocessors that are based on different microarchitectures is a
complex subject and requires information that is beyond the scope of this manual.

Comparisons of latency and throughput data between different microarchitectures can be misleading.

Chapter 7.3.1 provides latency and throughput data for the register-to-register instruction type.

Chapter 7.3.3 discusses how to adjust latency and throughput specifications for the register-to-memory and
memory-to-register instructions.

In some cases, the latency or throughput figures given are just one half of a clock. This occurs only for the double-
speed ALUs.

7.3.1 LATENCY AND THROUGHPUT WITH REGISTER OPERANDS
Instruction latency and throughput data are presented in Table 7-4 through Table 7-18. Tables include AESNI, SSE4.2,
SSE4.1, Supplemental Streaming SIMD Extension 3, Streaming SIMD Extension 3, Streaming SIMD Extension 2,
Streaming SIMD Extension, MMX technology and most common Intel 64 and IA-32 instructions. Instruction latency
and throughput for different processor microarchitectures are in separate columns.

Processor instruction timing data is implementation specific; it can vary between model encodings within the same
family encoding (e.g. model = 3 vs model < 2). Separate sets of instruction latency and throughput are shown in the
columns for CPUID signature 0xF2n and 0xF3n. The column represented by 0xF3n also applies to Intel processors with
CPUID signature 0xF4n and 0xF6n. The notation 0xF2n represents the hex value of the lower 12 bits of the EAX
register reported by CPUID instruction with input value of EAX = 1; ‘F’ indicates the family encoding value is 15, ‘2’
indicates the model encoding is 2, ‘n’ indicates it applies to any value in the stepping encoding.

Intel Core Solo and Intel Core Duo processors are represented by 06_0EH. Processors bases on 65 nm Intel Core
microarchitecture are represented by 06_0FH. Processors based on Enhanced Intel Core microarchitecture are
represented by 06_17H and 06_1DH. CPUID family/Model signatures of processors based on Nehalem
microarchitecture are represented by 06_1AH, 06_1EH, 06_1FH, and 06_2EH. Processors based on Westmere
microarchitecture are represented by 06_25H, 06_2CH and 06_2FH. Processors based on Sandy Bridge
microarchitecture are represented by 06_2AH, 06_2DH. Processors based on Ivy Bridge microarchitecture are
represented by 06_3AH, 06_3EH. Processors based on Haswell microarchitecture are represented by 06_3CH,
06_45H and 06_46H.

Table 7-1. CPUID Signature Values of Recent Intel Microarchitectures

DisplayFamily_DisplayModel Recent Intel Microarchitectures

06_4EH, 06_5EH Skylake microarchitecture

06_3DH, 06_47H, 06_56H Broadwell microarchitecture

06_3CH, 06_45H, 06_46H,
06_3FH Haswell microarchitecture

06_3AH, 06_3EH Ivy Bridge microarchitecture

06_2AH, 06_2DH Sandy Bridge microarchitecture

06_25H, 06_2CH, 06_2FH Intel microarchitecture Westmere

06_1AH, 06_1EH, 06_1FH,
06_2EH Intel microarchitecture Nehalem

Document #: 356477-050US 7-4

INSTRUCTION LATENCY AND THROUGHPUT

Instruction latency varies by microarchitectures. Table 7-2 lists SIMD extensions introduction in recent
microarchitectures. Each microarchitecture may be associated with more than one signature value given by the
CPUID’s “display_family” and “display_model”. Not all instruction set extensions are enabled in all processors
associated with a particular family/model designation. To determine whether a given instruction set extension is
supported, software must use the appropriate CPUID feature flag as described in Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A.

06_17H, 06_1DH Enhanced Intel Core microarchitecture

06_0FH Intel Core microarchitecture

Table 7-2. Instruction Extensions Introduction by Microarchitectures (CPUID Signature)
DisplayFamily_DisplayModel

SIMD
Instruction
Extensions

• 06_4EH

• 06_5EH

• 06_3D
H

• 06_47H

• 06_56H

• 06_3CH
• 06_45H

• 06_46H

• 06_3FH

• 06_3A
H

• 06_3EH

• 06_2A
H

• 06_2D
H

• 06_25H
• 06_2CH
• 06_2FH

• 06_1A
H

• 06_1EH

• 06_1FH

• 06_2EH

• 06_17H

• 06_1D
H

CLFLUSHOPT Yes No No No No No No No

ADX, RDSEED Yes Yes No No No No No No

AVX2, FMA,
BMI1, BMI2 Yes Yes Yes No No No No No

F16C, RDRAND,
RWFSGSBASE Yes Yes Yes Yes No No No No

AVX Yes Yes Yes Yes Yes No No No

AESNI,
PCLMULQDQ Yes Yes Yes Yes Yes Yes No No

SSE4.2, POPCNT Yes Yes Yes Yes Yes Yes Yes No

SSE4.1 Yes Yes Yes Yes Yes Yes Yes Yes

SSSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE3 Yes Yes Yes Yes Yes Yes Yes Yes

SSE2 Yes Yes Yes Yes Yes Yes Yes Yes

SSE Yes Yes Yes Yes Yes Yes Yes Yes

MMX Yes Yes Yes Yes Yes Yes Yes Yes

Table 7-3. BMI1, BMI2 and General Purpose Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

ADCX 1 1 1 1

ADOX 1 1 1 1

Table 7-1. CPUID Signature (Contd.)Values of Recent Intel Microarchitectures

DisplayFamily_DisplayModel Recent Intel Microarchitectures

Document #: 356477-050US 7-5

INSTRUCTION LATENCY AND THROUGHPUT

RESEED Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

Similar to
RDRAND

Table 7-4. 256-bit Intel® AVX2 Instructions

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

VEXTRACTI128 xmm1, ymm2, imm 1 1 1 1 1 1

VMPSADBW 4 6 6 2 2 2

VPACKUSDW/SSWB 1 1 1 1 1 1

VPADDB/D/W/Q 1 1 1 0.33 0.5 0.5

VPADDSB 1 1 1 0.5 0.5 0.5

VPADDUSB 1 1 1 0.5 0.5 0.5

VPALIGNR 1 1 1 1 1 1

VPAVGB 1 1 1 0.5 0.5 0.5

VPBLENDD 1 1 1 0.33 0.33 0.33

VPBLENDW 1 1 1 1 1 1

VPBLENDVB 1 2 2 1 2 2

VPBROADCASTB/D/SS/SD 3 3 3 1 1 1

VPCMPEQB/W/D 1 1 1 0.5 0.5 0.5

VPCMPEQQ 1 1 1 0.5 0.5 0.5

VPCMPGTQ 3 5 5 1 1 1

VPHADDW/D/SW 3 3 3 2 2 2

VINSERTI128 ymm1, ymm2, xmm, imm 3 3 3 1 1 1

VPMADDWD 5b 5 5 0.5 1 1

VPMADDUBSW 5b 5 5 0.5 1 1

VPMAXSD 1 1 1 0.5 0.5 0.5

VPMAXUD 1 1 1 0.5 0.5 0.5

VPMOVSX 3 3 3 1 1 1

VPMOVZX 3 3 3 1 1 1

Table 7-3. BMI1, BMI2 and General Purpose Instructions (Contd.)
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

Document #: 356477-050US 7-6

INSTRUCTION LATENCY AND THROUGHPUT

VPMULDQ/UDQ 5b 5 5 0.5 1 1

VPMULHRSW 5b 5 5 0.5 1 1

VPMULHW/LW 5b 5 5 0.5 1 1

VPMULLD 10b 10 10 1 2 2

VPOR/VPXOR 1 1 1 0.33 0.33 0.33

VPSADBW 3 5 5 1 1 1

VPSHUFB 1 1 1 1 1 1

VPSHUFD 1 1 1 1 1 1

VPSHUFLW/HW 1 1 1 1 1 1

VPSIGNB/D/W/Q 1 1 1 0.5 0.5 0.5

VPERMD/PS 3 3 3 1 1 1

VPSLLVD/Q 2 2 2 0.5 2 2

VPSRAVD 2 2 2 0.5 2 2

VPSRAD/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLDQ ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm1, ymm2, imm8 1 1 1 1 1 1

VPSLLQ/D/W ymm, ymm, ymm 4 4 4 1 1 1

VPUNPCKHBW/WD/DQ/QDQ 1 1 1 1 1 1

VPUNPCKLBW/WD/DQ/QDQ 1 1 1 1 1 1

ALL VFMA 4 5 5 0.5 0.5 0.5

VPMASKMOVD/Q mem, ymmd, ymm 1 2 2

VPMASKMOVD/Q NUL, msk_0, ymm >200e 2 2

VPMASKMOVD/Q ymm, ymmd, mem 11 8 8 1 2 2

VPMASKMOVD/Q ymm, msk_0,
[base+index]f >200 ~200 ~200 >200 ~200 ~200

Table 7-4. 256-bit Intel® AVX2 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

Document #: 356477-050US 7-7

INSTRUCTION LATENCY AND THROUGHPUT

b: includes 1-cycle bubble due to bypass.
c: includes two 1-cycle bubbles due to bypass
d: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more
elements.
e: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL)
incurs delay due to assist.
f: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay
due to assist.

Table 7-5. Gather Timing Data from L1D*
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel 06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

06_4E,
06_5E

06_3D,
06_47,
06_56

06_3C/45
/46/3F

VPGATHERDD/PS xmm, [vi128], xmm ~20 ~17 ~14 ~4 ~5 ~7

VPGATHERQQ/PD xmm, [vi128], xmm ~18 ~15 ~12 ~3 ~4 ~5

VPGATHERDD/PS ymm, [vi256], ymm ~22 ~19 ~20 ~5 ~6 ~10

VPGATHERQQ/PD ymm, [vi256], ymm ~20 ~16 ~15 ~4 ~5 ~7

* Gather Instructions fetch data elements via memory references. The timing data shown applies to memory
references that reside within the L1 data cache and all mask elements selected

Table 7-6. BMI1, BMI2 and General Purpose Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

ANDN 1 1 1 0.5 0.5 0.5

BEXTR 2 2 2 0.5 0.5 0.5

BLSI/BLSMSK/BLSR 1 1 1 0.5 0.5 0.5

BZHI 1 1 1 0.5 0.5 0.5

MULX r64, r64, r64 4 4 4 1 1 1

PDEP/PEXT r64, r64, r64 3 3 3 1 1 1

RORX r64, r64, r64 1 1 1 0.5 0.5 0.5

SALX/SARX/SHLX r64, r64, r64 1 1 1 0.5 0.5 0.5

LZCNT/TZCNT 3 3 3 1 1 1

Table 7-4. 256-bit Intel® AVX2 Instructions (Contd.)

Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

Document #: 356477-050US 7-8

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-7. F16C,RDRAND Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

RDRAND* r64 Varies Varies Varies <200 <300 ~250 ~250 <200

VCVTPH2PS ymm1, xmm2 7 6 6 7 1 1 1 1

VCVTPH2PS xmm1, xmm2 5 4 4 6 1 1 1 1

VCVTPS2PH ymm1, xmm2, imm 7 6 6 10 1 1 1 1

VCVTPS2PH xmm1, xmm2, imm 5 4 4 9 1 1 1 1

* See Section 7.2

Table 7-8. 256-bit Intel® AVX Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_45
• 06_4

6
• 06_3F

• 06_3
A

• 06_3E

• 06_4
E

• 06_5
E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3
A

• 06_3
E

VADDPD/PS ymm1, ymm2,
ymm3 4 3 3 3 0.5 1 1 1

VADDSUBPD/PS ymm1,
ymm2, ymm3 4 3 3 3 0.5 1 1 1

VANDNPD/PS ymm1, ymm2,
ymm3 1 1 1 1 0.33 1 1 1

VANDPD/PS ymm1, ymm2,
ymm3 1 1 1 1 0.33 1 1 1

VBLENDPD/PS ymm1, ymm2,
ymm3, imm 1 1 1 1 0.33 0.33 0.33 0.5

VBLENDVPD/PS ymm1,
ymm2, ymm3, ymm 1 2 2 1 1 2 2 1

VCMPPD/PS ymm1, ymm2,
ymm3 4 3 3 3 0.5 1 1 1

VCVTDQ2PD ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTDQ2PS ymm1, ymm2 4 3 3 3 0.5 1 1 1

VCVT(T)PD2DQ ymm1, ymm2 7 6 6 4 1 1 1 1

VCVTPD2PS ymm1, ymm2 7 6 6 4 1 1 1 1

VCVT(T)PS2DQ ymm1, ymm2 4 3 3 3 1 1 1 1

VCVTPS2PD ymm1, xmm2 7 4 4 2 1 1 1 1

VDIVPD ymm1, ymm2, ymm3 14 16-23 25-35 27-35 8 16 27 28

Document #: 356477-050US 7-9

INSTRUCTION LATENCY AND THROUGHPUT

VDIVPS ymm1, ymm2, ymm3 11 13-17 17-21 18-21 5 10 13 14

VDPPS ymm1, ymm2, ymm3 13 12 14 12 1.5 2 2 2

VEXTRACTF128 xmm1,
ymm2, imm 3 3 3 3 1 1 1 1

VINSERTF128 ymm1, xmm2,
imm 3 3 3 3 1 1 1 1

VMAXPD/PS ymm1, ymm2,
ymm3 4 3 3 3 0.5 1 1 1

VMINPD/PS ymm1, ymm2,
ymm3 4 3 3 3 0.5 1 1 1

VMOVAPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMOVDDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVDQA/U ymm1, ymm2 1 1 1 1 0.25 0.25 0.25 0.5

VMOVMSKPD/PS ymm1,
ymm2 2 2 2 1 1 1 1 1

VMOVQ xmm1, xmm2 1 1 1 1 0.33 0.33 0.33 0.33

VMOVD/Q xmm1, r32/r64 2 1 1 1 1 1 1 1

VMOVD/Q r32/r64, xmm 2 1 1 1 1 1 1 1

VMOVNTDQ/PS/PD 1 1 1 1

VMOVSHDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVSLDUP ymm1, ymm2 1 1 1 1 1 1 1 1

VMOVUPD/PS ymm1, ymm2 1 1 1 1 0.25 0.5 0.5 1

VMULPD/PS ymm1, ymm2,
ymm3 4 3 5 5 0.5 0.5 0.5 1

VORPD/PS ymm1, ymm2,
ymm3 1 1 1 1 0.33 1 1 1

VPERM2F128 ymm1, ymm2,
ymm3, imm 3 3 3 2 1 1 1 1

VPERMILPD/PS ymm1,
ymm2, ymm3 1 1 1 1 1 1 1 1

VRCPPS ymm1, ymm2 4 7 7 7 1 2 2 2

VROUNDPD/PS ymm1,
ymm2, imm 8 6 6 3 1 2 2 1

VRSQRTPS ymm1, ymm2 4 7 7 7 1 2 2 2

VSHUFPD/PS ymm1, ymm2,
ymm3, imm 1 1 1 1 1 1 1 1

Table 7-8. 256-bit Intel® AVX Instructions (Contd.)
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_45
• 06_4

6
• 06_3F

• 06_3
A

• 06_3E

• 06_4
E

• 06_5
E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3
A

• 06_3
E

Document #: 356477-050US 7-10

INSTRUCTION LATENCY AND THROUGHPUT

VSQRTPD ymm1, ymm2 <18 19-35 19-35 19-35 <12 16-27 16-27 28

VSQRTPS ymm1, ymm2 12 18-21 18-21 18-21 <6 13 13 14

VSUBPD/PS ymm1, ymm2,
imm 4 3 3 3 0.5 1 1 1

VTESTPS ymm1, ymm2 3 2 2 2 1 1 1 1

VUNPCKHPD/PS ymm1,
ymm2, ymm3 1 1 1 1 1 1 1 1

VUNPCKLPD/PS ymm1,
ymm2, ymm3 1 1 1 1 1 1 1 1

VXORPD/PS ymm1, ymm2,
ymm3 1 1 1 1 0.33 1 1 1

VZEROUPPER 0 0 0 0 1 1 1 1

VZEROALL 12 8 8 9

VEXTRACTPS reg, xmm2, imm 3 2 2 2 1 1 1 1

VINSERTPS xmm1, xmm2,
reg, imm 1 1 1 1 1 1 1 1

VMASKMOVPD/PS mema,
ymm, ymm 1 2 2 2

VMASKMOVPD/PS NUL,
msk_0, ymm >200b 2 2 2

VMASKMOVPD/PS ymm,
ymma, mem 11 8 8 9 1 2 2 2

VMASKMOVPD/PS ymm,
msk_0, [base+index]c >200 ~200 ~200 ~200 >200 ~200 ~200 ~200

Latency and Throughput data for CPUID signature 06_3AH are generally the same as those of 06_2AH, only those
that differ from 06_2AH are shown in the 06_3AH column.
a: MASKMOV instruction timing measured with L1 reference and mask register selecting at least 1 or more
elements.
b: MASKMOV store instruction with a mask value selecting 0 elements and illegal address (NUL or non-NUL)
incurs delay due to assist.
c: MASKMOV Load instruction with a mask value selecting 0 elements and certain addressing forms incur delay
due to assist.

Table 7-8. 256-bit Intel® AVX Instructions (Contd.)
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_45
• 06_4

6
• 06_3F

• 06_3
A

• 06_3E

• 06_4
E

• 06_5
E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3
A

• 06_3
E

Document #: 356477-050US 7-11

INSTRUCTION LATENCY AND THROUGHPUT

Latency of VEX.128 encoded AVX instructions should refer to corresponding legacy 128-bit instructions.

Table 7-9. AESNI and PCLMULQDQ Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

AESDEC/AESDECLAST xmm1,
xmm2 4 7 7 8 1 1 1 1

AESENC/AESENCLAST xmm1,
xmm2 4 7 7 8 1 1 1 1

AESIMC xmm1, xmm2 8 14 14 14 2 2 2 2

AESKEYGENASSIST xmm1,
xmm2, imm 12 10 10 10 12 8 8 8

PCLMULQDQ xmm1, xmm2,
imm 7b 5 7 14 1 1 2 8

b: Includes 1-cycle bubble due to bypass.

Table 7-10. Intel® SSE4.2 Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

CRC32 r32, r32 3 3 3 3 1 1 1 1

PCMPESTRI xmm1, xmm2, imm 15 10 10 11 5 4 4 4

PCMPESTRM xmm1, xmm2,
imm 10 10 10 11 6 5 5 4

PCMPISTRI xmm1, xmm2, imm 15 10 10 11 3 3 3 3

PCMPISTRM xmm1, xmm2,
imm 15 11 11 11 3 3 3 3

PCMPGTQ xmm1, xmm2 3 5 5 5 0.33 1 1 1

POPCNT r32, r32 3 3 3 3 1 1 1 1

POPCNT r64, r64 3 3 3 3 1 1 1 1

Document #: 356477-050US 7-12

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-11. Intel® SSE4.1 Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2

D

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

BLENDPD/S xmm1, xmm2,
imm 1 1 1 1 0.33 0.33 0.33 0.5

BLENDVPD/S xmm1, xmm2 1 2 2 2 1 2 2 1

DPPD xmm1, xmm2 9 7 9 9 1 1 1 1

DPPS xmm1, xmm2 13 12 14 13 2 2 2 2

EXTRACTPS xmm1, xmm2, imm 3 2 2 2 1 1 1 1

INSERTPS xmm1, xmm2, imm 1 1 1 1 1 1 1 1

MPSADBW xmm1, xmm2, imm 4 6 6 6 2 2 2 1

PACKUSDW xmm1, xmm2 1 1 1 1 1 1 1 0.5

PBLENVB xmm1, xmm2 2 2 2 2 2 2 2 1

PBLENDW xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PCMPEQQ xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PEXTRB/W/D reg, xmm1, imm 3 3 3 3 1 1 1 1

PHMINPOSUW xmm1,xmm2 4 5 5 5 1 1 1 1

PINSRB/W/D xmm1,reg, imm 2 2 2 2 1 1 1 1

PMAXSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMAXUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINSB/SD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMINUW/UD xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PMOVSXBD/BW/BQ xmm1,
xmm2 1 1 1 1 1 1 1 0.5

PMOVSXWD/WQ/DQ xmm1,
xmm2 1 1 1 1 1 1 1 0.5

PMOVZXBD/BW/BQ xmm1,
xmm2 1 1 1 1 1 1 1 0.5

PMOVZXWD/WQ/DQ xmm1,
xmm2 1 1 1 1 1 1 1 0.5

PMULDQ xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULLD xmm1, xmm2 10c 10 10 5 2 2 2 1

PTEST xmm1, xmm2 3 2 2 2 1 1 1 1

ROUNDPD/PS xmm1, xmm2,
imm 6 6 6 3 2 2 2 1

ROUNDSD/SS xmm1, xmm2,
imm 6 6 6 3 2 2 2 1

b: Includes 1-cycle bubble due to bypass
c: includes two 1-cycle bubbles due to bypass

Document #: 356477-050US 7-13

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-12. Intel® SSE3 Instructions
Instruction Latency 1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

• 06_4
E

• 06_5
E

• 06_3D
• 06_47
• 06_56

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

PALIGNR xmm1, xmm2, imm 1 1 1 1 1 1 1 0.5

PHADDD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHADDSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBD xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PHSUBSW xmm1, xmm2 3 3 3 3 2 2 2 1.5

PMADDUBSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PMULHRSW xmm1, xmm2 5b 5 5 5 0.5 1 1 1

PSHUFB xmm1, xmm2 1 1 1 1 1 1 1 0.5

PSIGNB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

PABSB/D/W xmm1, xmm2 1 1 1 1 0.5 0.5 0.5 0.5

b: Includes 1-cycle bubble due to bypass

Table 7-13. Intel® SSE3 SIMD Floating-point Instructions
Instruction Latency1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

ADDSUBPD/ADDSUBPS 4 3 3 3 0.5 1 1 1

HADDPD xmm1, xmm2 6 5 5 5 2 2 2 2

HADDPS xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPD xmm1, xmm2 6 5 5 5 2 2 2 2

HSUBPS xmm1, xmm2 6 5 5 5 2 2 2 2

MOVDDUP xmm1, xmm2 1 1 1 1 1 1 1 1

Document #: 356477-050US 7-14

INSTRUCTION LATENCY AND THROUGHPUT

MOVSHDUP xmm1, xmm2 1 1 1 1 1 1 1 1

MOVSLDUP xmm1, xmm2 1 1 1 1 1 1 1 1

Table 7-14. Intel® SIM SSE2 128-bit Integer Instructions
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

CVTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

CVTTPS2DQ xmm, xmm 3 3 3 3 1 1 1 1

MASKMOVDQU xmm,
xmm 7 6 6 6

MOVD xmm, r64/r32 2 1 1 1 1 1 1 1

MOVD r64/r32, xmm 2 1 1 1 1 1 1 1

MOVDQA xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVDQU xmm, xmm 1 1 1 1 0.25 0.33 0.33 0.5

MOVQ xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PACKSSWB/PACKSSDW/
PACKUSWB xmm, xmm 1 1 1 1 1 1 1 0.5

PADDB/PADDW/PADDD
xmm, xmm 1 1 1 1 0.33 0.5 0.5 0.5

PADDSB/PADDSW/
PADDUSB/PADDUSW
xmm, xmm

1 1 1 1 0.5 0.5 0.5 0.5

PADDQ/ PSUBQ3 xmm,
xmm 1 1 1 1 0.33 0.5 0.5 0.5

PAND xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PANDN xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PAVGB/PAVGW xmm,
xmm 1 1 1 1 0.5 0.5 0.5 0.5

PCMPEQB/PCMPEQD/
PCMPEQW xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

Table 7-13. Intel® SSE3 SIMD Floating-point Instructions (Contd.)
Instruction Latency1 Throughput

DisplayFamily_DisplayModel

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

• 06_4
E

• 06_5
E

• 06_3
D

• 06_4
7

• 06_5
6

• 06_3
C

• 06_4
5

• 06_4
6

• 06_3
F

• 06_3
A

• 06_3
E

• 06_2
A

• 06_2
D

Document #: 356477-050US 7-15

INSTRUCTION LATENCY AND THROUGHPUT

PCMPGTB/PCMPGTD/PC
MPGTW xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PEXTRW r32, xmm,
imm8 3 3 3 3 1 1 1 1

PINSRW xmm, r32, imm8 2 2 2 2 2 2 2 1

PMADDWD xmm, xmm 5b 5 5 5 0.5 1 1 1

PMAX xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMIN xmm, xmm 1 1 1 1 0.5 0.5 0.5 0.5

PMOVMSKB3 r32, xmm 2 2 2 2 1 1 1 1

PMULHUW/PMULHW/
PMULLW xmm, xmm 5b 5 5 5 0.5 1 1 1

PMULUDQ xmm, xmm 5b 5 5 5 0.5 1 1 1

POR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

PSADBW xmm, xmm 3 5 5 5 1 1 1 1

PSHUFD xmm, xmm,
imm8 1 1 1 1 1 1 1 0.5

PSHUFHW xmm, xmm,
imm8 1 1 1 1 1 1 1 0.5

PSHUFLW xmm, xmm,
imm8 1 1 1 1 1 1 1 0.5

PSLLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSLLW/PSLLD/PSLLQ
xmm, imm8 1 1 1 1 1 1 1 1

PSLL/PSRL xmm, xmm 2 2 2 2 1 1 1 1

PSRAW/PSRAD xmm,
imm8 1 1 1 1 1 1 1 1

PSRAW/PSRAD xmm,
xmm 2 2 2 2 1 1 1 1

PSRLDQ xmm, imm8 1 1 1 1 1 1 1 0.5

PSRLW/PSRLD/PSRLQ
xmm, imm8 1 1 1 1 1 1 1 1

PSUBB/PSUBW/PSUBD
xmm, xmm 1 1 1 1 0.33 0.5 0.5 0.5

PSUBSB/PSUBSW/PSUB
USB/PSUBUSW xmm,
xmm

1 1 1 1 0.5 0.5 0.5 0.5

PUNPCKHBW/PUNPCKH
WD/PUNPCKHDQ xmm,
xmm

1 1 1 1 1 1 1 0.5

Table 7-14. Intel® SIM SSE2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

Document #: 356477-050US 7-16

INSTRUCTION LATENCY AND THROUGHPUT

PUNPCKHQDQ xmm,
xmm 1 1 1 1 1 1 1 0.5

PUNPCKLBW/PUNPCKL
WD/PUNPCKLDQ xmm,
xmm

1 1 1 1 1 1 1 0.5

PUNPCKLQDQ xmm,
xmm 1 1 1 1 1 1 1 0.5

PXOR xmm, xmm 1 1 1 1 0.33 0.33 0.33 0.33

b: Includes 1-cycle bubble due to bypass

Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3A/3

E)

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3A/3

E)

ADDPD xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSD xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPD xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPD xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPD xmm, xmm,
imm8 4 3 3 3 0.5 1 1 1

CMPSD xmm, xmm,
imm8 4 3 3 3 0.5 1 1 1

COMISD xmm, xmm 2 2 2 2 1 1 1 1

CVTDQ2PD xmm, xmm 5 4 4 4 1 1 1 1

CVTDQ2PS xmm, xmm 4 3 3 3 1 1 1 1

CVTPD2DQ xmm, xmm 5 4 4 4 1 1 1 1

CVTPD2PS xmm, xmm 5 4 4 4 1 1 1 1

CVT[T]PS2DQ xmm,
xmm 4 3 3 3 1 1 1 1

CVTPS2PD xmm, xmm 5 2 2 2 1 1 1 1

CVT[T]SD2SI r64/r32,
xmm 6 4 4 5 1 1 1 1

CVTSD2SS xmm, xmm 5 4 4 4 1 1 1 1

CVTSI2SD xmm, r64/r32 5 3 3 4 1 1 1 1

Table 7-14. Intel® SIM SSE2 128-bit Integer Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E
• 06_2A
• 06_2D

Document #: 356477-050US 7-17

INSTRUCTION LATENCY AND THROUGHPUT

CVTSS2SD xmm, xmm 5 2 2 2 1 1 1 1

CVTTPD2DQ xmm,
xmm 5 4 4 4 1 1 1 1

CVTTSD2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPD xmm, xmm1 14 <14 14-20 16-22
(15-20) 4 8 13 22(14)

DIVSD xmm, xmm 14 <14 14-20 16-22
(15-20) 4 5 13 22(14)

MAXPD xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSD xmm, xmm 4 3 3 3 0.5 1 1 1

MINPD xmm, xmm 4 3 3 3 0.5 1 1 1

MINSD xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MOVMSKPD r64/r32,
xmm 2 2 2 2 1 1 1 1

MOVSD xmm, xmm 1 1 1 1 1 1 1 1

MOVUPD xmm, xmm 1 1 1 1 0.33 0.5 0.5 1

MULPD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

MULSD xmm, xmm 3 5 5 5 0.5 0.5 0.5 1

ORPD xmm, xmm 1 1 1 1 0.33 1 1 1

SHUFPD xmm, xmm,
imm8 1 1 1 1 1 1 1 1

SQRTPD xmm, xmm2 18 20 20 22(21) 6 13 13 22(14)

SQRTSD xmm, xmm 18 20 20 22(21) 6 7 13 22(14)

SUBPD xmm, xmm 4 3 3 3 0.5 1 1 1

SUBSD xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISD xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPD xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPD xmm, xmm 1 1 1 1 1 1 1 1

XORPD3 xmm, xmm 1 1 1 1 0.33 1 1 1

NOTES:
1. The latency and throughput of DIVPD/DIVSD can vary with input values. For certain values, hardware can com-

plete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as
less than 10 cycles.

2. The latency throughput of SQRTPD/SQRTSD can vary with input value. For certain values, hardware can complete
quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less
than10 cycles.

Table 7-15. Intel® SSE2 Double-Precision Floating-Point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3A/3

E)

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3A/3

E)

Document #: 356477-050US 7-18

INSTRUCTION LATENCY AND THROUGHPUT

Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3

A/3E)

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3

A/3E)

ADDPS xmm, xmm 4 3 3 3 0.5 1 1 1

ADDSS xmm, xmm 4 3 3 3 0.5 1 1 1

ANDNPS xmm, xmm 1 1 1 1 0.33 1 1 1

ANDPS xmm, xmm 1 1 1 1 0.33 1 1 1

CMPPS xmm, xmm 4 3 3 3 0.5 1 1 1

CMPSS xmm, xmm 4 3 3 3 0.5 1 1 1

COMISS xmm, xmm 2 2 2 2 1 1 1 1

CVTSI2SS xmm, r32 6 4 4 5 1 1 1 1

CVTSS2SI r32, xmm 6 4 4 5 1 1 1 1

CVT[T]SS2SI r64, xmm 6 4 4 5 1 1 1 1

CVTTSS2SI r32, xmm 6 4 4 5 1 1 1 1

DIVPS xmm, xmm1 11 <11 <13 10-14 3 4 6 14(6)

DIVSS xmm, xmm 11 <11 <13 10-14 3 2.5 6 14(6)

MAXPS xmm, xmm 4 3 3 3 0.5 1 1 1

MAXSS xmm, xmm 4 3 3 3 0.5 1 1 1

MINPS xmm, xmm 4 3 3 3 0.5 1 1 1

MINSS xmm, xmm 4 3 3 3 0.5 1 1 1

MOVAPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MOVHLPS xmm, xmm 1 1 1 1 1 1 1 1

MOVLHPS xmm, xmm 1 1 1 1 1 1 1 1

MOVMSKPS r64/r32,
xmm 2 2 2 2 1 1 1 1

MOVSS xmm, xmm 1 1 1 1 1 1 1 1

MOVUPS xmm, xmm 1 1 1 1 0.25 0.5 0.5 1

MULPS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

MULSS xmm, xmm 4 3 5 5 0.5 0.5 0.5 1

ORPS xmm, xmm 1 1 1 1 0.33 1 1 1

RCPPS xmm, xmm 4 5 5 5 1 1 1 1

RCPSS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTPS xmm, xmm 4 5 5 5 1 1 1 1

RSQRTSS xmm, xmm 4 5 5 5 1 1 1 1

SHUFPS xmm, xmm,
imm8 1 1 1 1 1 1 1 1

SQRTPS xmm, xmm2 13 13 13 14 3 7 7 14(7)

Document #: 356477-050US 7-19

INSTRUCTION LATENCY AND THROUGHPUT

SQRTSS xmm, xmm 13 13 13 14 3 4 7 14(7)

SUBPS xmm, xmm 4 3 3 3 0.5 1 1 1

SUBSS xmm, xmm 4 3 3 3 0.5 1 1 1

UCOMISS xmm, xmm 2 2 2 2 1 1 1 1

UNPCKHPS xmm, xmm 1 1 1 1 1 1 1 1

UNPCKLPS xmm, xmm 1 1 1 1 1 1 1 1

XORPS xmm, xmm 1 1 1 1 1 1 1 1

LFENCE3 - - - - 6 5 5 4

MFENCE3 - - - - ~40 ~35 ~35 ~35

SFENCE3 - - - - 7 6 6 5

STMXCSR3 - - - - 1 1 1 1

FXSAVE3 - - - - ~90 ~71 ~75 ~78

NOTES:
1. The latency and throughput of DIVPS/DIVSS can vary with input values. For certain values, hardware can complete

quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as less
than 10 cycles.

2. The latency and throughput of SQRTPS/SQRTSS can vary with input values. For certain values, hardware can com-
plete quickly, throughput may be as low as ~ 6 cycles. Similarly, latency for certain input values may be as low as
less than 10 cycles

3. The throughputs of FXSAVE/LFENCE/MFENCE/SFENCE/STMXCSR are measured with the destination in L1 Data
Cache.

Table 7-17. General Purpose Instructions
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

ADC/SBB reg, reg 1 2 2 2 0.5 1 1 1

ADC/SBB reg, imm 1 2 2 2 0.5 1 1 1

ADD/SUB 1 1 1 1 0.25 0.25 0.25 0.33

AND/OR/XOR 1 1 1 1 0.25 0.25 0.25 0.33

BSF/BSR 3 3 3 3 1 1 1 1

BSWAP 2 2 2 2 0.5 0.5 0.5 1

BT 1 1 1 1 0.5 0.5 0.5 0.5

BTC/BTR/BTS 1 1 1 1 0.5 0.5 0.5 0.5

CBW/CWDE/CDQE 1 1 1 1 1 1 1 1

CDQ 1 1 1 1 1 1 1 1

Table 7-16. Intel® SSE Single-Precision Floating-Point Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3

A/3E)

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_2A
• 06_2D
• (06_3

A/3E)

Document #: 356477-050US 7-20

INSTRUCTION LATENCY AND THROUGHPUT

CQO 1 1 1 1 0.5 0.5 0.5 0.5

CLC 0.25 0.33 0.33 0.33

CMC 0.25 0.33 0.33 0.33

STC 0.25 0.33 0.33 0.33

CLFLUSH12 ~2 to
50

~3 to
50

~3 to
50

~5 to
50

CLFLUSHOPT13 ~2to 10 NA NA NA

CMOVE/CMOVcc 1 1 2 2 0.5 0.5 0.5 0.5

CMOVBE/NBE/A/NA 2 2 3 3 1 1 1 1

CMP/TEST 1 1 1 1 0.25 0.25 0.25 0.33

CPUID (EAX = 0) ~100 ~100 ~100 ~95

CPUID (EAX != 0) >200 >200 >200 >200

CMPXCHG r64, r64 5 5 5 5 5 5 5 5

CMPXCHG8B m64 15 8 8 8 15 8 8 8

CMPXCHG16B m128 19 10 10 10 19 10 10 10

Lock CMPXCHG8B m64 22 19 19 24 22 19 19 24

Lock CMPXCHG16B m128 32 28 28 29 32 28 28 29

DEC/INC 1 2 2 2 0.25 0.25 0.25 0.33

IMUL r64, r64 3 3 3 3 1 1 1 1

IMUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

IMUL r32 5 4 4 4 1 1 1 1

IDIV r64 (RDX!= 0)8 ~85-
100

~85-
100

~85-
100

~85-
100

IDIV r329 ~20-26 ~20-26 ~20-26 ~19-25

LEA 1 1 1 1 0.5 0.5 0.5 0.5

LEA [base+index]disp 3 3 3 3 1 1 1 1

MOVSB/MOVSW 1 1 1 1 0..25 0..25 0..25 0.33

MOVZB/MOVZW 1 1 1 1 0.25 0.25 0.25 0.33

DIV r64 (RDX!= 0)8 ~80-95 ~80-95 ~80-95 ~80-95

DIV r329 ~20-26 ~20-26 ~20-26 ~19-25

MUL r6410 4, 5 3, 4 3, 4 3, 4 1 1 1 1

NEG/NOT 1 2 2 2 0.25 0.25 0.25 0.33

PAUSE ~140 ~10 ~10 ~10

RCL/RCR reg, 1 2 2 2 2 2 1.5 1.5 1.5

RCL/RCR 6 6 6 6 6 6 6 6

RDTSC ~13 ~10 ~10 ~20

Table 7-17. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

Document #: 356477-050US 7-21

INSTRUCTION LATENCY AND THROUGHPUT

7.3.2 TABLE FOOTNOTES
The following footnotes refer to all tables in this appendix.

1. Latency information for many instructions that are complex (> 4 ops) are estimates based on conservative
(worst-case) estimates. Actual performance of these instructions by the out-of-order core execution unit can
range from somewhat faster to significantly faster than the latency data shown in these tables.

2. Latency and Throughput of transcendental instructions can vary substantially in a dynamic execution
environment. Only an approximate value or a range of values are given for these instructions.

3. It may be possible to construct repetitive calls to some Intel 64 and IA-32 instructions in code sequences to
achieve latency that is one or two clock cycles faster than the more realistic number listed in this table.

4. The FXCH instruction has 0 latency in code sequences. However, it is limited to an issue rate of one instruction per
clock cycle.

5. The load constant instructions, FINCSTP, and FDECSTP have 0 latency in code sequences.

6. Selection of conditional jump instructions should be based on the recommendation of Section 3, “General
Optimization Guidelines,” to improve the predictability of branches. When branches are predicted successfully,
the latency of jcc is effectively zero.

7. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count other than 1 will be executed more
slowly. This applies to the Pentium 4 and Intel Xeon processors.

8. The throughput of “DIV/IDIV r64” varies with the number of significant digits in the input RDX:RAX. The
throughput is significantly higher if RDX input is 0, similar to those of “DIV/IDIV r32”. If RDX is not zero, the

RDTSCP ~20 ~30 ~30 ~30

ROL/ROR reg 1 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 (2 flg) 1 1 1 1

ROL/ROR reg imm 1 1 1 1 0.5 0.5 0.5 0.5

ROL/ROR reg, cl 2 2 2 2 1.5 1.5 1.5 1.5

LAHF/SAHF 3 2 2 2

SAL/SAR/SHL/SHR reg,
imm 1 1 1 1 0.5 0.5 0.5 0.5

SAL/SAR/SHL/SHR reg, cl 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

SETBE 2 2 2 2 1 1 1 1

SETE 1 1 1 1 0.5 0.5 0.5 0.5

SHLD/RD reg, reg, cl 6 4 4 2 (4 flg) 1.5 1 1 1.5

SHLD/RD reg, reg, imm 3 3 3 1 0.5 0.5 0.5 0.5

XSAVE11 ~98 ~100 ~100 ~100

XSAVEOPT11 ~86 ~90 ~90 ~90

XADD 2 2 2 2 1 1 1 1

XCHG reg, reg 1 1 1 2 1 1 1 1

XCHG reg, mem 22 19 19 19 22 19 19 19

Table 7-17. General Purpose Instructions (Contd.)
Instruction Latency1 Throughput

CPUID • 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

• 06_4E
• 06_5E

• 06_3D
• 06_47
• 06_56

• 06_3C
• 06_45
• 06_46
• 06_3F

• 06_3A
• 06_3E

Document #: 356477-050US 7-22

INSTRUCTION LATENCY AND THROUGHPUT

throughput is significantly lower, as shown in the range. The throughput decreases (increasing numerical value in
cycles) with increasing number of significant bits in the input RDX:RAX (relative to the number of significant bits
of the divisor) or the output quotient. The latency of “DIV/IDIV r64” also varies with the significant bits of input
values. For a given set of input values, the latency is about the same as the throughput in cycles.

9. The throughput of “DIV/IDIV r32” varies with the number of significant digits in the input EDX:EAX and/or of the
quotient of the division for a given size of significant bits in the divisor r32. The throughput decreases (increasing
numerical value in cycles) with increasing number of significant bits in the input EDX:EAX or the output quotient.
The latency of “DIV/IDIV r32” also varies with the significant bits of the input values. For a given set of input
values, the latency is about the same as the throughput in cycles.

10. The latency of MUL r64 into 128-bit result has two sets of numbers, the read-to-use latency of the low 64-bit
result (RAX) is smaller. The latency of the high 64-bit of the 128 bit result (RDX) is larger.

11. The throughputs of XSAVE and XSAVEOPT are measured with the destination in L1 Data Cache and includes the
YMM states.

12. CLFLUSH throughput is representative from clean cache lines for a range of buffer sizes. CLFLUSH throughput can
decrease significantly by factors including: (a) the number of back-to-back CLFLUSH being executed, (b) flushing
modified cache lines incurs additional cost than cache lines in other coherent state.

13. CLFLUSHOPT throughput is representative from clean cache lines for a range of buffer sizes. CLFLUSHOPT
throughput can decrease by factors including: (a) flushing modified cache lines incurs additional cost than cache
lines in other coherent state, (b) the number of cache lines back-to-back.

7.3.3 INSTRUCTIONS WITH MEMORY OPERANDS
The latency of an Instruction with memory operand can vary greatly due to a number of factors, including data
locality in the memory/cache hierarchy and characteristics that are unique to each microarchitecture. Generally,
software can approach tuning for locality and instruction selection independently. Thus Table 7-4 through Table 7-18
can be used for the purpose of instruction selection. Latency and throughput of data movement in the
cache/memory hierarchy can be dealt with independent of instruction latency and throughput.

7.3.3.1 Software Observable Latency of Memory References
When measuring latency of memory references of individual instructions, many factors can influence the observed
latency exposure. Aside from access patterns, cache locality, effect of the hardware prefetchers, different
microarchitectures may expose variability such register domains of the destination or memory addressing form with
respect to the instruction encoding.

Table 7-18 gives a few selected sampling of the variability of L1D cache hit latency that software may observe using
pointer-chasing constructs, due to memory reference encoding details, on recent Intel microarchitectures.

Table 7-18. Pointer-Chasing Variability of Software Measurable Latency of
L1 Data Cache Latency

Pointer Chase Construct L1D latency Observation

MOV rax, [rax] 4

MOV rax, disp32[rax] , disp32 < 2048 4

MOV rax, [rcx+rax] 5

MOV rax, disp32[rcx+rax] , disp32 < 2048 5

Document #: 248966-050US 8-1

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

CHAPTER 8
INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

(INTEL® TSX) OPTIMIZATIONS

8.1 INTRODUCTION
Intel® Transactional Synchronization Extensions (Intel® TSX) aim to improve the performance of lock-protected
critical sections while maintaining the lock-based programming model.

This chapter describes:

• The recommended approach for optimizing and tuning multi-threaded applications to use the Intel TSX
instructions for lock elision.

• Provides guidelines focused on using the Intel TSX instructions to implement lock elision to enable concurrency of
lock-protected critical sections, whether through

— Prefix hints, as with Hardware Lock Elision (HLE)1.

— New instructions, as with RTM.

8.1.1 ABOUT INTEL® TSX
Intel TSX allows the processor to:

• Determine dynamically whether threads need to serialize through lock-protected critical sections.

• Perform serialization only when required.

1. Hardware Lock Elision (HLE) was deprecated in 2019.

Table 8-1. Additional Resources

Linked Title Description

Intel® Transactional Synchronization
Extension (Intel® TSX) Disable Update for
Selected Processors

Provides details about Intel TSX behavior changes due to the
updated microcode (including the behavior of these MSRs).

Intrinsics for Intel® Transactional
Synchronization Extensions (Intel® TSX)

A section in the Intel® C++ Compiler Classic Developer Guide
and Reference.

Chapter 16, “Programming with Intel®
Transactional Synchronization Extensions”

Details of the Intel TSX interface in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1.

Intel® Transactional Synchronization
Extensions (Intel® TSX) Memory and
Performance Monitoring Update for Intel®
Processors

The latest support, product information, and documentation.

Intel® Transactional Synchronization
Extensions (Intel® TSX) profiling with Linux*
perf

Describes TSX profiling using the Linux perf) (or “perf events”)
profiler, that comes integrated with newer Linux systems.

https://cdrdv2.intel.com/v1/dl/getContent/643557
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/intrinsics-for-tsx.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://www.intel.com/content/www/us/en/docs/cpp-compiler/developer-guide-reference/2021-10/overview.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/developer/articles/community/monitoring-tsx-with-performance-counter-monitor.html
https://www.intel.com/content/www/us/en/developer/articles/community/tsx-profiling-with-linux-perf.html

Document #: 248966-050US 8-2

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

• This lets hardware expose and exploit concurrency hidden in an application due to dynamically unnecessary
synchronization through a technique known as lock elision.

With lock elision, the hardware executes the programmer-specified critical sections transactionally. These are called
transactional regions. In this case, the lock variable is only read within the transactional region. It is neither written to
nor acquired, except that the lock variable remains unchanged after the transactional region, thus exposing
concurrency.

If the transactional execution completes successfully, the hardware ensures that all memory operations within the
transactional region appear instantaneously when viewed from other logical processors. A processor makes
architectural updates within the region visible to other logical processors only on a successful commit. This is a
process called an atomic commit. Updates within the transactional region become visible to other logical processors
only on an atomic commit.

Since a successful transactional execution ensures an atomic commit, the processor can optimistically execute the
programmer-specified code section without synchronization. If synchronization is unnecessary, the execution can
commit without any cross-thread serialization.

If the transactional execution fails, the processor cannot commit the updates atomically. When this happens, the
processor will roll back the execution: called a transactional abort. During a transactional abort, the processor:

• Discards all updates performed in the region.

• Restores the architectural state, as if the optimistic execution never occurred.

• Resumes execution non-transactionally.

Depending on the policy, lock elision may be retried, or the lock may be explicitly acquired to ensure progress.

Intel TSX provides two software interfaces to programmers:

• Hardware Lock Elision (HLE) is a legacy-compatible instruction set extension (comprising the XACQUIRE and
XRELEASE prefixes).

• Restricted Transactional Memory (RTM) is a new instruction set interface (comprising the XBEGIN and XEND
instructions).

Programmers who want to run Intel TSX-enabled software on legacy hardware would use the HLE interface to
implement lock elision. On the other hand, programmers who do not have legacy hardware requirements and who
deal with more complex locking primitives would use the RTM interface of Intel TSX to implement lock elision. If the
latter, when using new instructions, the programmer must:

• Provide a non-transactional path to execute after a transactional abort.

• Must not rely on the transactional execution alone.

This path should have code to acquire the lock being elided.

Intel TSX also provides the XTEST instruction to test if a logical processor executes transactionally and the XABORT
instruction to abort a transactional region.

A processor performs a transactional abort for numerous reasons, but the main reason is conflicting data accesses
between the transactionally executing logical processor and another logical processor. Such conflicting accesses may
prevent a successful transactional execution.

• Memory addresses read from within a transactional region. They constitute:

• The read-set of the transactional region and addresses written to within the transactional region.

The write-set of the transactional region.

Intel TSX maintains the read- and write-sets at the granularity of a cache line. For lock elision using RTM, the address
of the lock being elided must be added to the read-set to ensure the correct behavior of a transactionally executing
thread in the presence of another thread that explicitly acquires the lock.

Document #: 248966-050US 8-3

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

A conflicting data access occurs if another logical processor either reads a location that is part of the transactional
region's write-set or writes a location that is a part of either the read- or write-set of the transactional region. This is
called a data conflict.

Since Intel TSX detects data conflicts at the cache line level, unrelated data locations in the same cache line will be
detected as conflicts. Transactional aborts may also occur due to limited transactional resources. For example, the
amount of data accessed in the region may exceed an implementation-specific capacity.

Some instructions (CPUID and IO, for example) may cause a transactional execution to abort in the implementation.

The term lock elision refers to either an HLE-based or an RTM-based implementation that elides locks.

8.1.2 OPTIMIZATION OUTLINE
The chapter covers:

• Application performance (See Section 8.2) improvement through Intel TSX rather than synthetic micro-kernels
that tend to overlook how real applications behave after acquiring a lock.

• Enabling a synchronization library for lock elision using Intel TSX (See Section 8.3).

• Using the performance monitoring infrastructure for Intel TSX effectively (See Section 8.4) and present some
performance guidelines for the first implementation (See Section 8.5).

The recommended guideline is to enable elision for all critical section locks and then identify problematic critical
sections. Such a “bottoms-up” approach simplifies the evaluation and tuning of the resulting application and allows
the programmer to focus on relevant critical sections.

8.2 APPLICATION-LEVEL TUNING AND OPTIMIZATIONS
Applications typically use synchronization libraries to implement the lock acquire and lock release functions
associated with critical sections. The simplest way to enable these applications to take advantage of Intel TSX-based
lock elision is to use an Intel TSX-enabled synchronization library. Existing libraries may be already enabled to take
advantage of the Intel TSX instructions (see Section 8.2.1). If an off-the-shelf, TSX-enabled library is not yet available,
Section 8.3 discusses how to extend a locking library to use the Intel TSX instructions if it has not already been
enabled. TSX-enabled synchronization libraries can be interchangeably used with conventional synchronization
libraries.

While applications using these libraries can use Intel TSX without application modification, some basic tuning and
profiling can improve performance by increasing the commit rate of transactional execution and lowering the wasted
execution cycles due to transactional aborts. The recommended first step for tuning is to use a profiling tool (see
Section 16.4) to characterize the transactional behavior of the application. The profiling tool uses the performance
monitoring and sampling capabilities implemented in the hardware to provide detailed information about the
transactional behavior of the application. The tool uses capabilities the processor provides, such as performance
monitoring counters and the Precise Event Based Sampling (PEBS) mechanism1.

Applications using an Intel TSX-enabled synchronization library should have the same functional behavior as if using
a conventional synchronization library. However, because Intel TSX changes latencies and can make cross-thread
synchronization faster, latent code bugs may be exposed.

1. See Chapter 18of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B.

Document #: 248966-050US 8-4

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.2.1 EXISTING TSX-ENABLED LOCKING LIBRARIES
This section summarizes off-the-shelf locking libraries that are already TSX-enabled for lock elision. The list represents
a snapshot as of the first half of 2015. Not all libraries mentioned here may be completely tuned.

8.2.1.1 Libraries Allowing Lock Elision for Unmodified Programs
• On Linux, GNU glibc 2.18 added support for lock elision of pthread mutexes of PTHREAD_MUTEX_DEFAULT type.

Glibc 2.19 added support for elision of read/write mutexes.

— Whether elision is enabled depends on if the --enable-lock-elision=yes parameter was set at the compilation
time of the library.

• Java JDK 8u20 or later supports adaptive elision for synchronized sections when the -XX:+UseRTMLocking option
is enabled.

• Intel Composer XE 2013 SP1 or later supports lock elision for OpenMP omp_lock_t. Use “export
KMP_LOCK_KIND=adaptive” to enable lock elision.

8.2.1.2 Libraries Requiring Program Modifications
• Intel Thread Building Blocks (TBB) 4.2 supports elision with the speculative_spin_rw_mutex. The program needs

to be modified to use this new lock type.

• gcc 4.8 and later supports TSX accelerating its software transactional memory implementation.

• Concurrency Kit supports lock elision of spinlocks with its ck_elide wrappers.

• DPDK library supports lock elision of spin locks and read-write locks (through lock/unlock calls with “_tm” suffix).

8.2.2 INITIAL CHECKS
A couple of simple sanity checks can save tuning effort later on; specifically, using a good library implementation and
dealing with statistics collection inside critical sections.

• Use a good Intel TSX enabled synchronization library. The application should directly be using the TSX-enabled
synchronization library. When the application implements its own custom library built on top of an Intel TSX-
enabled library, it still may be missing opportunities to identify transactional regions. See Section 3 on how to
enable the synchronization library for Intel TSX.

• Avoid collecting statistics inside critical sections. Critical sections (and sometimes the synchronization library
itself) may employ shared global statistics counters. Such counters will cause data conflicts and transactional
aborts. Applications often have flags to disable such statistics collection. Disabling such statistics in the initial
tuning phase will help focus on inherent data conflicts.

8.2.3 RUN AND PROFILE THE APPLICATION
Visualizing synchronization-related thread interactions in multi-threaded applications is often difficult. The first step
should be to run the application with an Intel TSX-enabled synchronization library and measure performance. Next,
the profiling tool should be used to understand the result. First we should determine how much of the application is
actually employing transactional execution, by using a profiling tool to measure the percentage of the application
cycles spent in transactional execution (See Section 8.4).

Numerous causes may contribute to a low percentage of transactional execution cycles:

• The application may not be making noticeable use of critical-section based synchronization. In this case, lock
elision is not going to provide benefits.

Document #: 248966-050US 8-5

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

• The application's synchronization library may not use Intel TSX for all its primitives. This can occur if the
application uses internal custom functions and libraries for some of the critical section locks. These lock
implementations need to be identified and modified for elision (See Section 8.4.2).

• The application may be employing higher level locking constructs (referred to as meta-locks in this document)
different from the one provided by the elision-enabled synchronization libraries. In these cases, the construct
needs to be identified and enabled for elision (See Section 8.3.7)

• A program may be using LOCK-prefixed instructions for usages other than critical sections. TSX will not help with
these typically, unless the algorithms are adapted to be transactional. Details on such non-locking usage are
beyond the scope of this guide.

In the “bottom-up“ approach of Intel TSX performance tuning, the methodology can be modularized into the
following tasks:

• Identify all locks.

• Run the unmodified program with a TSX synchronization library eliding all locks.

• Use a profiling tool to measure transactional execution.

• Address causes of transactional aborts if necessary.

8.2.4 MINIMIZE TRANSACTIONAL ABORTS
Data conflicts are detected through the cache coherence protocol. Data conflicts cause transactional aborts. In the
initial implementation, the thread that detects the data conflict will transactionally abort.

If an HLE-based transactional execution experiences a transactional abort, then in the current implementation, the
hardware will restart at the XACQUIRE prefixed instruction that initiated HLE execution but will ignore the XACQUIRE
prefix. This results in the re-execution without lock elision and the lock is explicitly acquired. If an RTM-based
transactional execution experiences a transactional abort, then in the current implementation, the hardware will
restart at the instruction address provided by the operation of the XBEGIN instruction.

The initial TSX implementation supports a limited form of nesting. RTM supports a nesting level of 7. HLE supports a
nesting level of 1. This is an implementation specific number that may change in subsequent implementations of the
same generation of processor families.

The Chapter 16, “Programming with Intel® Transactional Synchronization Extensions” of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1 also describes the various causes for transactional aborts in
detail. Details of Intel TSX instructions and prefixes can be found in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

The profiling tool can use performance monitoring to compute cycles that were spent in transactional execution that
subsequently aborted. It is important to note that not all transactional aborts cause performance loss. The execution
may otherwise have stalled due to waiting on a lock that had been acquired by another thread, and the transactional
execution may also have a data prefetching effect.

The profiling tool can use PEBS to identify the top aborted transactional regions and provide information on the
relative costs (see Section 8.4). We next discuss common causes for transactional aborts and provide mitigation
strategies.

Tuning Suggestion 9. Use a profiling tool to identify the transactional aborts that contribute most to any
performance loss.

The broad categories for transactional abort causes include:

• Aborts due to conflicting data accesses.

• Aborts due to conflicts on the lock variable.

Document #: 248966-050US 8-6

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

• Aborts due to exceeding resource buffering.

• Aborts due to HLE interface specific constraints.

• Miscellaneous aborts as described in Chapter 8 of the Intel® Architecture Instruction Set Extensions
Programming Reference.

8.2.4.1 Transactional Aborts Due to Data Conflicts
A data conflict occurs if another logical processor either reads a location that is part of the transactional region's
write-set or writes a location that is a part of either the read- or write-set of the transactional region. In the initial
implementation, data conflicts are detected through the cache coherence protocol that operates at the granularity of
a cache line.

We now discuss various sources of data conflicts that can cause transactional aborts. Some are avoidable while others
are inherently present in the application.

Conflicts due to False Sharing

False sharing occurs when unrelated variables map to the same cache line (64 bytes) and are independently written
by different threads. In this case, although the addresses of the unrelated variables do not overlap, since the
hardware checks data conflicts at cache-line granularity, these unrelated variables appear to have the same address
and this causes unnecessary transactional aborts.

Note that negative effects of false sharing are not unique to Intel TSX. The cache coherence protocol is moving the
cache line around the system with high overhead. Good software practice already recommends against placing
unrelated variables on the same cache line when at least one of the variables is frequently written by different
threads.

Tuning Suggestion 10. Add padding to put the two conflicting variables in separate cache line.
Tuning Suggestion 11. Reorganize the data structure to minimize false sharing whenever possible.

Conflicts due to True Sharing

These transactional aborts occur if the conflict data is actually shared and is not due to false sharing. Sometimes such
conflicts can also be mitigated through software changes. We discuss how to address some of these conflicts next.

Conflicts due to Statistics Maintenance

Software may often use global statistics counters shared among multiple threads. Examples of such use include
synchronization libraries that count the number of times a critical section lock is either successfully acquired or was
found to be held. Other examples include a count in a global variable or in an object that is accessed by multiple
threads. Such statistics contribute to transactional aborts. In such cases, one must first try to understand the use of
such statistics.

Sometimes these statistics can be disabled or conditionally skipped as they do not affect program logic. For example,
such statistics may be measuring the frequency of serialized execution of a critical section. Without lock elision, the
statistic is updated inside the critical section as the execution is already serialized. However, if the lock has been
elided, then counting the number of times the lock has been elided isn't particularly useful. The only time it matters
is if the lock was not elided; in those situations, the software can use the statistics to track the level of serialization.
The XTEST instruction can be used to update the statistics only when the execution is not eliding a lock (i.e.,
serialized). Sometimes these statistics are only useful during program development and can be disabled in production
software.

In some cases these statistics cannot be disabled or skipped. The programmer can avoid unnecessary transactional
aborts by maintaining these statistics per logical thread (while taking care to avoid false sharing). Such an approach

Document #: 248966-050US 8-7

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

requires results to be aggregated across all threads when read. This can also improve the performance of applications
even without Intel TSX instructions by minimizing communication among various threads.

Other approaches include moving the statistic outside critical sections and using an atomic operation to update the
statistic. This will reduce transactional aborts but may add additional overhead due to an additional atomic operation
and will not reduce the communication overhead.

Tuning Suggestion 12. Global statistics may also be sampled rather than being updated for every operation.
Tuning Suggestion 13. Avoid unnecessary statistics in critical sections.
Tuning Suggestion 14. Consider maintaining statistics in critical sections on a per-thread basis.

The programmer will have to determine the best approach for reducing transactional aborts due to shared global
statistics. Disabling all global statistics during initial testing can help identify whether they are a problem.

Conflicts Due to Accounting in Data Structures

Another common source of data conflicts are accounting operations in data structures. For example, data structures
may maintain a variable to track the number of entries present at any time. This has the same effect as a statistics
counter and can cause unnecessary transactional aborts.

In some usages, it is possible to move the accounting update to outside the critical section using atomic updates (e.g.,
the number of entries to trigger heap reorganization).

In other scenarios, approaches may be adopted to reduce the window of time where data conflicts may occur (see
Section 8.2.4.1 on Reducing the Window for Data Conflict).

Conflicts in Memory Allocators

Some critical sections perform memory allocations. It is recommended to use a thread-friendly memory allocation
library that maintains its free list in thread local space and avoid false sharing of the allocated memory.

Conflict Reduction through Conditional Writes

A common software pattern involves updates to a shared variable or flag that only infrequently changes value. Such
an operation (even with the same value) causes an update to the cache line, which may in turn result in the processor
requesting write-permissions to the cache line. Such an operation will cause transactional aborts in other threads
that are also accessing the shared variable. Software can avoid such data conflicts by performing the update only
when necessary - not performing the store if the value doesn't change, see Example 8-1.

Reducing the Window for Data Conflict

Sometimes the techniques described are insufficient to avoid transactional aborts due to frequent real data conflicts.
In such cases, the goal should be to reduce the window of time where a data conflict can occur. To reduce this
probability, one may move the actual conflicting memory access towards the end of the critical section.

8.2.4.2 Transactional Aborts Due to Limited Transactional Resources
While an Intel TSX implementation provides sufficient resources for executing common transactional regions,
implementation constraints and excessive data footprint for transactional regions may cause a transactional abort.

Example 8-1. Reduce Data Conflict with Conditional Updates

state = true; // updates every time
var |= flag;

if (state != true) state = true;
if (!(var & flag)) var |= flag;

Document #: 248966-050US 8-8

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

The architecture provides neither a guarantee of the resources available for transactional execution nor that a
transactional execution will ever succeed.

The processor tracks both the read-set addresses and the write-set addresses in the first level data cache (L1 cache)
of the processor.

An eviction of a read set address may not always result in an immediate transactional abort since these lines may be
tracked in an implementation-specific second level structure. In current implementations, the second level structure
tracks evicted read-set addresses probabilistically. As a result, accesses from other threads may at times result in a
false positive match thus causing an unnecessary transactional abort. The rate of such false conflicts is a function of
the address stream from different threads and the precise hardware implementation. The Broadwell
microarchitecture implementation has an improved second level structure. The rate of false conflicts is expected to
reduce further with future implementations.

The architecture does not provide any guarantee for buffering and software must not assume any such guarantee.

With Haswell, Broadwell and Skylake microarchitectures, the L1 data cache has an associativity of 8. This means that
in this implementation, a transactional execution that writes to 9 distinct locations mapping to the same cache set
will abort. However, due to microarchitectural implementations, this does not mean that fewer accesses to the same
set are guaranteed to never abort.

Additionally, in configurations with Intel Hyper-Threading Technology, the L1 cache is shared between the two logical
processors on the same core, so operations in a sibling logical processor of the same core can cause evictions and
significantly reduce the effective read and write set sizes.

Use the profiler to identify transactional regions that frequently abort due to capacity limitations (see Section 8.4.4).
Software should avoid accessing excessive data within such transactional regions. Since, in general, accessing large
amounts of data takes time, such aborts result in an excessive wasted execution cycles.

Sometimes, the data footprint of the critical section can be reduced by changing the algorithm. For example, for a
sorted array, a binary instead of a linear search could be used to reduce the number of addresses accessed within the
critical section.

If the algorithm expects certain code paths in the transactional region to access excessive data it may force an early
transactional abort (through the XABORT instruction) or transition into a non-transactional execution without
aborting by first acquiring the elided locks (see Section 8.2.6).

Sometimes, capacity aborts may occur due to side effects of actions inside a transactional region. For example, if an
application invokes a dynamic library function for the first time the software system has to invoke the dynamic linker
to resolve the symbols. If this first time happens inside a transactional region, it may result in excessive data being
accessed, and thus will typically cause an abort. These types of aborts happen only the first time such a function is
invoked. If this happens often, it is likely due to transactional only path not used in a non-transactional execution.

8.2.4.3 Lock Elision Specific Transactional Aborts
In addition to conflicts on data, transactional aborts may also occur due to conflicts on the lock itself. This is necessary
to detect a transactional execution and a non-transactional execution of the critical section overlap in time. When
implementing lock elision through Intel TSX, the implementation adds the lock to the read set - this occurs
automatically for HLE but must be explicitly done in the software library when using RTM for lock elision. This allows
checking conflicts with other threads that explicitly acquire the lock. This is a natural part of a transactional execution
that aborts and re-starts and eventually acquires the lock.

For lock elision with HLE and RTM, many observed aborts occur due to such secondary conflicts on the lock variable:
an aborting transactional thread transitions to a regular non-transactional execution, and as part of the transition
also explicitly acquires the lock. This lock acquisition causes other transactionally executing threads to abort as they
must serialize behind the thread that just acquired the lock.

Document #: 248966-050US 8-9

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

For RTM, the fallback handler can potentially reduce these secondary aborts by waiting for the lock to be free before
trying to acquire the lock (see Section 8.3.5).

8.2.4.4 HLE Specific Transactional Aborts
Some transactional aborts only occur in HLE-based lock elision. They are described in subsequent sections.

Unsupported Lock Elision Patterns

For the transactional execution to commit successfully, the lock must satisfy certain properties and access to the lock
must follow certain guidelines. An XRELEASE-prefixed instruction must restore the value of the elided lock to the
value it had before the corresponding XACQUIRE-prefixed lock acquisition. This allows hardware to elide locks safely
without adding them to the write-set. Both the data size and data address of the lock release (XRELEASE-prefixed)
instruction must match that of the lock acquire (XACQUIRE-prefixed) and the lock must not cross a cache line
boundary. For example, an XACQUIRE-prefixed lock acquire to an address A followed by an XRELEASE-prefixed lock
release to a different address B will abort since the addresses A and B do not match.

Unsupported Access to Lock Variables inside HLE regions

Typically, a lock variable can be read from inside an HLE region without aborting. However, certain uncommon types
of accesses may cause transactional aborts. For example, performing an unaligned access or a partially overlapping
access to an elided lock variable will cause a transactional abort. Software should be changed to perform properly
aligned accesses to the elided lock variable.

Software should not write to the elided lock inside a transactional HLE region with any instruction other than an
XRELEASE prefixed instruction, otherwise it will cause a transactional abort.

8.2.4.5 Miscellaneous Transactional Aborts
Programmers can use any instruction safely inside a transactional region and can use transactional regions at any
privilege level. However, some instructions will always abort the transactional execution and cause execution to
seamlessly and safely transition to a non-transactional path. Such transactional aborts will appear as Instruction
Aborts in the PEBS record transactional abort status collected by the profiling tool (see Section 8.4).

The Intel SDM presents a comprehensive list of such instructions. Common examples include instructions that
operate on the X87 and MMX architecture state, operations that update segment, control, and debug registers, IO
instructions, and instructions that cause ring transitions, such as SYSENTER, SYSCALL, SYSEXIT, and SYSRET.

Programmers should use SSE/AVX instructions instead of X87/MMX instructions inside transactional regions.
However, programmers must be careful when inter-mixing SSE and AVX operations inside a transactional region.
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause
transactional regions to abort. The VZEROUPPER instruction may also cause an abort, and programmers should try to
move the instruction to prior to the critical section.

Certain 32-bit calling conventions may use X87 state to pass or return arguments. Programmers should consider
alternate calling conventions or inline the functions. Some types such as long double may use X87 instructions and
should be avoided.

In addition to the instruction-based considerations, various runtime events may cause transactional execution to
abort.

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the
transactional execution to abort and transition to a non-transactional execution. The rate of such aborts depends on
the background state of the operating system. For example, operating systems with timer ticks generate interrupts
that can cause transactional aborts.

Document #: 248966-050US 8-10

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

Synchronous exception events (#BR, #PF, #DB, #BP/INT3, etc.) that occur during transactional execution may cause an
execution not to commit transactionally, and require a non-transactional execution. These events are suppressed as
if they had never occurred.

Page faults (#PF) typically occur most when a program starts up. Transactional regions will experience aborts at a
higher rate during this period since pages are being mapped for the first time. These aborts will disappear as the
program reaches a steady state behavior. However, for programs with very short run times, these aborts may appear
to dominate. A similar behavior happens when large regions of memory were allocated in the recent past.

Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of the
referenced page table entry. These actions occur on the first access and write to the page, respectively. These
operations will cause a transactional abort in the current implementation. A re-execution in non-transactional mode
will cause these bits to be appropriately updated and subsequent transactional executions will typically not observe
these transactional aborts. Although these transactional aborts will show up as Instruction Aborts in the PEBS record
transactional abort status, special attention isn't needed unless they occur frequently.

In addition to the above, implementation-specific conditions and background system activity may cause transactional
aborts. Examples include aborts as a result of the caching hierarchy of the system, subtle interactions with processor
micro-architecture implementations, and interrupts from system timers among others. Aborts due to such activity
are expected to be fairly infrequent for typical Intel TSX usage for lock elision.

Tuning Suggestion 15. Transactional regions during program startup may observe a higher abort rate than during
steady state.
Tuning Suggestion 16. Operating system services may cause infrequent transactional aborts due to background
activity.

8.2.5 USING TRANSACTIONAL-ONLY CODE PATHS
With Intel TSX, programmers can write code that is only ever executed in a transactional region and the non-
transactional fallback path may be different. This is possible with RTM (through the use of the fallback handler) and
with HLE in conjunction with the XTEST instruction.

Care is required if the code executed during transactional execution is significantly different than the code executed
when not in transactional execution. Certain events such as page faults (instruction and data) and operations on
pages that modify the accessed and dirty bits may repeatedly abort a transactional execution. Thus programmers
must ensure such operations are also performed in a non-transactional fallback path, otherwise the transactional
region may never succeed. This is not a problem in general since with lock elision the transactional path and non-
transactional path in the application is the same and the only differences are captured in the synchronization
libraries.

The XTEST instruction can be used to skip over code sequences that are unnecessary during transactional execution
and likely to lead to aborts. The XTEST instruction can also be used to implement optimizations such as skipping
unwind code and other error handling code (such as deadlock detection) that is only required if the lock is actually
acquired.

Tuning Suggestion 17. Keep any transactional only code paths simple and inlined.
Tuning Suggestion 18. Minimize code paths that are only executed transactionally.

8.2.6 DEALING WITH TRANSACTIONAL REGIONS OR PATHS THAT ABORT AT A
HIGH RATE

Some transactional regions abort at a high rate and the methods discussed so far are not effective in reducing the
aborts. In such cases, the following options may be considered.

Document #: 248966-050US 8-11

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.2.6.1 Transitioning to Non-Elided Execution without Aborting
Sometimes, a transactional abort is unavoidable. Examples include system calls, and IO operations. When these are
required on a transactional code path, software using RTM for lock elision can transition to a non-elided execution by
attempting to acquire the lock and if successful committing the transactional execution. A simplified example is
shown in Example 8-2. The actual code may need to handle nesting, etc.

8.2.6.2 Forcing an Early Abort
Programmers should try to insert a PAUSE or XABORT instruction early in paths that lead to aborts inside transactional
regions. This will force a transactional abort early and minimize work that needs to be discarded.

8.2.6.3 Not Eliding Selected Locks
Sometimes if the application performance is lower with lock elision and the transactional abort reduction techniques
have been exhausted, software can disable elision for the specific locks that have high and expensive transactional
abort rates. This should always be validated with application level performance metrics, as even high abort rates may
still result in a performance improvement.

Example 8-2. Transition from Non-Elided Execution without Aborting

/* … in RTM transaction, but the transactional execution will abort */
/* Acquire the lock without elision */

<original lock acquire code>
_xend(); /* Commit */

/* Do aborting operation */

Document #: 248966-050US 8-12

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.3 DEVELOPING AN INTEL TSX-ENABLED SYNCHRONIZATION
LIBRARY

This section describes how to enable a synchronization library for lock elision using the Intel TSX instructions.

8.3.1 ADDING HLE PREFIXES
The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is protecting
the critical section. The programmer uses the XRELEASE prefix in front of the instruction that is used to release the
lock protecting the critical section. This instruction will be a write to the lock. If the instruction is restoring the value
of the lock to the value it had prior to the XACQUIRE prefixed lock acquire operation on the same lock, then the
processor elides the external write request associated with the release of the lock, enabling concurrency in the
absence of data conflicts.

8.3.2 ELISION FRIENDLY CRITICAL SECTION LOCKS
The library itself shouldn't be a source of data conflicts. Common examples of such problems include:

• Conflicts on the lock owner field.

• Conflicts on lock-related statistics.

When using HLE for lock elision, programmers must add the elision capability to the existing code path (since the code
path executed with and without elision is the same with HLE). The programmer should also check that the only write
operation to a shared location is through the lock-acquire/lock-release instructions on the lock variable. Any other
write operation to a shared location would typically manifest itself as a data conflict among two threads using the
elision library to elide a common lock. A test running multiple threads looping through an empty critical section
protected by a shared lock can quickly identify such situations.

8.3.3 USING HLE OR RTM FOR LOCK ELISION
Software can use the CPUID information to determine whether the processor supports the HLE and RTM extensions.
However, software can use the HLE prefixes (XACQUIRE and XRELEASE) without checking whether the processor
supports HLE. Processors without HLE support ignore these prefixes and will execute the code without entering
transactional execution. In contrast, software must check if the processor supports RTM before it uses the RTM
instructions (XBEGIN, XEND, XABORT). These instructions will generate a #UD exception when used on a processor
that does not support RTM. The XTEST instruction also requires a CPUID check to ensure either HLE or RTM is
supported, else it will also generate a #UD exception. The CPUID information may be cached in some variable to avoid
checking for CPUID repeatedly.

With HLE, if the eliding processor itself reads the value of the lock in the critical section, the value returned will appear
as if the processor had acquired the lock; the read will return the non-elided value. This behavior makes an HLE
execution functionally equivalent to an execution without the HLE prefixes.

The RTM interface allows programmers to write more complex synchronization algorithms and to control the retry
policies following transactional aborts. The preferred way is to use the RTM-based locking implementation as a
wrapper with multiple code paths within; one path exercising the RTM-based lock and the other exercising the non-
RTM based lock (See Section 8.3.4). This typically does not require changes to the non-RTM based lock code.
Performance may further be improved by using a try-once primitive, which allows the thread to re-attempt lock
elision after the lock becomes free.

Document #: 248966-050US 8-13

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

Since the RTM instructions do not have any explicit lock associated with the instructions, software using these
instructions for lock elision must test the lock within the transactional region, and only if free should it continue
executing transactionally. Further, the software may also define a policy to retry if the lock is not free.

In a subtle difference with HLE, if the code within the RTM-based critical section reads the lock, it will appear as if it is
free and not acquired. So library functions used to return the value of locks must abort the transactional execution
and return the value when executed non-transactionally (See Section 8.3.9). This situation does not exist with HLE
because the HLE instructions have an explicit lock address associated with them and the hardware ensures the right
value is returned.

User/Source Coding Rule 1. When using RTM for implementing lock elision, always test for lock inside the
transactional region.

Tuning Suggestion 19. Don't use an RTM wrapper if the lock variable is not readable in the wrapper.

8.3.4 AN EXAMPLE WRAPPER FOR LOCK ELISION USING RTM
This section describes how to write a wrapper to implement lock elision using RTM instructions. The idea is to take the
conventional lock implementation (without elision), add a wrapper around it, and then add a new path within the
wrapper to implement elision. Thus, the wrapper provides separate code paths for the elided path and the non-elided
paths. The non-elided lock-acquire path is executed only if the elided path was unsuccessful. Further, such an
approach allows the non-elided path to remain unchanged. Such an approach works well for wide variety of locks,
including ticket locks and read-write locks.

An example code sequence is shown in Example 8-3 (See Section 8.7 for a description of the intrinsics used).

In Example 8-3, _xabort() terminates the transactional execution if the lock was not free. One can use _xend() to
achieve the same effect. However, the profiling tool can easily recognize the _xabort() operation along with the 0xff
abort code (which is a software convention) and determine that this is the case where the lock was unavailable. If the
_xend() were used, the profiling tool would be unable to distinguish this case from the case where a lock was
successfully elided.

Example 8-3. Exemplary Wrapper Using RTM for Lock/Unlock Primitives

void rtm_wrapped_lock(lock) {
 if (_xbegin() == _XBEGIN_STARTED) {
 if (lock is free)
 /* add lock to the read-set */
 return; /* Execute transactionally */
 _xabort(0xff);
 /* 0xff means the lock was not free */
 }
 /* come here following the transactional abort */
 original_locking_code(lock);
}

void rtm_wrapped_unlock(lock) {
 /* If lock is free, assume that the lock was elided */
 if (lock is free)
 _xend(); /* commit */
 else
 original_unlocking_code(lock);
}

Document #: 248966-050US 8-14

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

The example above is a simplified version showing a basic policy of retrying only once and not distinguishing between
various causes for transactional aborts. A more sophisticated implementation may add heuristics to determine
whether to try elision on a per-lock basis based on information about the causes of transactional aborts. It may also
have code to switch back to re-attempting lock elision after blocking if the lock was not free. This may require small
changes to the underlying synchronization library.

Sometimes programming errors can lead to a thread releasing a lock that is already free. This error may not manifest
itself immediately. However, when such a lock release function is replaced with an
RTM-enabled library using the wrapper described above, an XEND instruction will execute outside a transactional
region. In this case, the hardware will signal a #GP exception. It is generally a good idea to fix the error in the original
application. Alternatively, if the software wants to retain the original erroneous code path, then a XTEST can be used
to guard the XEND.

8.3.5 GUIDELINES FOR THE RTM FALLBACK HANDLER
The fallback handler for RTM provides the code path that is executed if the RTM-based transactional execution is
unsuccessful. Since the Intel TSX architecture specification does not provide any guarantee that a transactional
execution will ever succeed, the RTM fallback handler must have the capability to ensure forward progress; it should
not simply keep retrying the transactional execution.

Tuning Suggestion 20. When RTM is used for lock elision, forward progress is easily ensured by acquiring the lock.

If the fallback handler explicitly acquires the lock, then all other transactionally executing threads eliding the same
lock will abort and the execution serializes on the lock. This is achieved by ensuring that the lock is in the transactional
region's read-set.

Software can use the abort information provided in the EAX register to develop heuristics as to when to retry the
transactional execution and when to fallback and explicitly acquire the lock. For example, if the _XABORT_RETRY bit
is clear, then retrying the transactional execution is likely to result in another abort. The fallback handler should
distinguish this situation from cases where the lock was not free (for example, the _XABORT_EXPLICIT bit is set but
the _XABORT_CODE()1 returns a 0xff identifying the condition as a "lock busy" condition). In those cases, the fallback
handler should eventually retry after waiting.

Performance may also be improved by retrying (after a delay) if the abort cause was a data conflict
(_XABORT_CONFLICT) because such conditions are often transient. Such retries however should be limited and must
not continually retry.

A very small number of retries for capacity aborts (_XABORT_CAPACITY) can be beneficial on configurations with
Hyper Threading enabled. The L1 cache is a shared resource between HT threads and one thread may push data out
of the other. On retry there is a reasonable chance to succeed. This requires ignoring the _XABORT_RETRY bit in the
status code for this case. The _XABORT_RETRY bit should not be ignored for any other reason.

Generally on higher core count and multi-socket systems the number of retries should be increased.

In general, if the lock was not free, then the fallback handler should wait until the lock is free prior to retrying the
transactional execution. This helps to avoid situations where the execution may persistently stay in a non-
transactional execution without lock elision. This can happen because the fallback handler never had an opportunity
to try a transactional execution while the lock was free (See Section 8.3.8).

User/Source Coding Rule 2. RTM abort handlers must provide a valid tested non transactional fallback path.

Tuning Suggestion 21. Lock Busy retries should wait for the lock to become free again.

1. _XABORT_CODE accesses the xabort status in the RTM abort code

Document #: 248966-050US 8-15

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.3.6 IMPLEMENTING ELISION-FRIENDLY LOCKS USING INTEL® TSX
This section discusses strategies for implementing elision friendly versions of common locking algorithms using the
Intel TSX instructions. Similar approaches can be adopted for algorithms not covered in this section.

8.3.6.1 Implementing a Simple Spinlock Using HLE
A spinlock is a simple yet very common locking algorithm. In this algorithm, a thread first checks to see if the lock is
free and then attempts to acquire the lock through a LOCK-prefixed instruction. If not, the thread spins (using a read
operation that typically completes from the local data cache holding the lock value) on the lock waiting for it to
become free.

For this example, assume the lock is free when its value is zero, and held by some thread otherwise. The lock is
released through a regular store instruction.

Example 8-4 uses the gcc 4.8+ atomic intrinsics which are similar to the C11 standard. The description here follows
the recommended approach to implement a spin lock using gcc 4.8+ intrinsics. To enable HLE for this spin lock, the
only change required would be the addition of the __ATOMIC_HLE_ACQUIRE and __ATOMIC_HLE_RELEASE flags. The
rest of the code is the same as without using HLE.

The following shows the same example using intrinsics for the Windows C/C++ compilers (Microsoft Visual Studio
2012 and Intel C++ Compiler 17.0).

Example 8-4. Spin Lock Example Using HLE in GCC 4.8 and Later

#include <immintrin.h> /* For _mm_pause() */
/* Lock initialized with 0 initially */
void hle_spin_lock(int *lock)
{
 while (__atomic_exchange_n(lock, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE) != 0)
 { int val;
 /* Wait for lock to become free again before retrying. */
 do {
 _mm_pause(); /* Abort speculation */
 __atomic_load_n(lock, &val, __ATOMIC_CONSUME);
 } while (val == 1);
 }
}

void hle_spin_unlock(int *lock)
{
 __atomic_clear(lock, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
}

Document #: 248966-050US 8-16

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

See Section 8.7 for an assembler implementation of an HLE spinlock.

8.3.6.2 Implementing Reader-Writer Locks Using Intel® TSX
Reader-Writer locks are common where the critical sections are mostly read-only. Such locks can avoid serializing
access to the critical section for readers; however, they still require an atomic operation on a shared location (often
through a LOCK prefixed XADD or CMPXCHG) and require communication among the multiple readers. Note that lock
elision essentially makes all locks behave as reader-writer locks - except that, with lock elision readers and non-
conflicting writers can proceed concurrently without communication.

RTM can be used to elide reader-writer locks through a wrapper approach as discussed earlier. The only difference
being that, with reader-writer locks, the lock algorithm normally checks both the reader and the writer states to
determine that the lock is free. When it is possible to place the reader and writer locking state on different cache
lines, it is also possible to let transactional and non-transactional readers execute in parallel. The readers only need to
check the writer state being free.

With HLE, the code path for the elided version and non-elided version should remain the same. Some reader-writer
lock implementations use a lock to protect the reader/writer state instead of the actual critical section. In this case,
the lock first needs to be changed to have a fast path with a single atomic operation. Beyond this, the path should not
change the cache line with the lock variable. This can be done by combining the reader and writer counts into a single
field, and then checking/updating it atomically with a LOCK- prefixed XADD or CMPXCHG instruction for the lock
acquire and lock release functions. The HLE prefixes - XACQUIRE and XRELEASE - are placed on these LOCK-prefixed
operations. Interestingly, this approach also improves the performance of reader-writer locks even without using
Intel TSX. Alternatively, using an RTM wrapper can avoid changing lock structure since you can have different lock
acquire paths for elided and non-elided versions in the synchronization library.

Tuning Suggestion 22. For Read/Write locks elide the complete lock operation, not the building block locks.

Example 8-5. Spin Lock Example Using HLE in Intel and Microsoft Compiler Intrinsic

#include <intrin.h> /* For _mm_pause() */
#include <imminitrin.h> /* For HLE intrinsics */
/* Lock initialized with 0 initially */
void hle_spin_lock(int *lock)
{
while (_InterlockedCompareExchange_HLEAcquire(&lock, 1, 0) != 0){
 /* Wait for lock to become free again before retrying speculation */
 do {
 _mm_pause(); /* Abort speculation */
 /* prevent compiler instruction reordering and wait-loop skipping,
 no additional fence instructions are generated on IA */
 _ReadWriteBarrier();
 } while (lock == 1);
}
}

void hle_spin_unlock(int *lock)
{
_Store_HLERelease (lock, 0);
}

Document #: 248966-050US 8-17

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.3.6.3 Implementing Ticket Locks Using Intel® TSX
Ticket locks are another common algorithm. A ticket lock is a variant of a spinlock where instead of spinning on a
shared location and then racing to acquire the lock when the lock is free, threads use tickets to determine which
thread can enter the critical section.

RTM can be used to elide ticket locks through a wrapper approach as discussed earlier (See Section 8.3.4).

Some ticket lock implementations assume an increasing ticket value and such locks do not meet HLE's requirement
that the value of the lock following the lock release be the same as the value prior to the lock acquire.

Tuning Suggestion 23. Use RTM to elide ticket locks.

8.3.6.4 Implementing Queue-Based Locks Using Intel® TSX
In general, the idea of lock elision requires multiple threads to concurrently enter and try to commit a common critical
section. The idea of fair locks requires threads to enter and release the critical section in a first-come first-served
order. The two ideas may sometimes appear at odds, but the general objective is usually more flexible.

Queue-based locks are a form of fair locks where the threads construct a queue of lock requests. This includes
different forms of ticket locks.

In some implementations the queue is formed through an initial LOCK-prefixed operation. For such implementations,
the HLE XACQUIRE prefix can be added to this operation to enable lock elision. In the absence of any transactional
aborts, the queue remains empty following the lock release. However, if a transactional abort occurs and the aborting
thread acquires the lock explicitly (thus forming a queue), subsequent threads will add themselves to the queue, and
when the lock is released, only a single thread will attempt lock elision as the other threads are not at the front of the
queue. Further, if another thread arrives and adds itself to the queue, this may cause the transactionally executing
thread to abort, and the execution remains in a non-eliding phase until the queue is drained.

This scenario only occurs with lock implementations that attempt lock elision as part of the queuing process. It does
not apply to implementations that construct a queue only after an initial atomic operation, like an adaptive spinning-
sleeping lock that elides the spinning phase but only queues for waiting after initial spinning failed. Such a problem
also doesn't exist for implementations that use wrappers (such as those using RTM). In these implementations, the
thread does not attempt lock elision as part of the queuing process.

Tuning Suggestion 24. Use an RTM wrapper for locks that implement queuing as part of the initial atomic operation.

8.3.7 ELIDING APPLICATION-SPECIFIC META-LOCKS USING INTEL® TSX
Some applications build their own locks, called meta-locks, using an underlying synchronization library. In this
approach, the application uses a lock from the underlying synchronization library to protect the data of the meta-
lock. It then updates the data and releases the lock. If you recall, a similar approach was taken for the reader-writer
lock implementation discussed in Section 8.3.6.2.

The application executes the critical section while holding the meta-lock, and then uses a lock from the underlying
synchronization library to protect the meta-lock while it is being released. In this sequence, eliding the lock from the
underlying synchronization library isn't useful; the goal should be to elide the meta-lock itself and transactionally
execute the application code itself instead of the code in the synchronization library. A profiling tool can be used to
identify such critical sections. An RTM wrapper (similar to one discussed in Section 8.3.4) can be used to avoid the
meta-lock during lock elision.

For illustration, assume the following as an example of a meta-lock implementation.

Document #: 248966-050US 8-18

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

The above example can be transformed into the following code.

Tuning Suggestion 25. For meta-locking elide the full outer lock, not the building block locks.

8.3.8 AVOIDING PERSISTENT NON-ELIDED EXECUTION
A transactional abort eventually results in execution transitioning to a non-transactional state without lock elision.
This ensures forward progress. However, under certain conditions and with some lock acquire algorithms, threads
may remain in a persistent non-transactional execution without attempting lock elision for an extended duration. This
will limit performance opportunities.

Example 8-6. A Meta Lock Example

void meta_lock(Metalock *metalock) {
__lock(metalock->lock);

 /* modify meta lock state for lock */
 unlock(metalock->lock);
}

void meta_unlock(Metalock *metalock) {
 lock(metalock->lock);

/* drop metalock state */
unlock(metalock->lock);

}

meta_lock(metalock);
/* critical section */

meta_unlock(metalock);

Example 8-7. A Meta Lock Example Using RTM

void rtm_meta_lock(Metalock *metalock) {
 if (_xbegin() == _XBEGIN_STARTED)
 if (meta_state_is_all_free(metalock))
 return;
 _xabort(0xff);
 }
 meta_lock(metalock);
}
void rtm_meta_unlock(Metalock *metalock) {
 if (meta_state_is_all_free(metalock))
 _xend();
 else
 meta_unlock(metalock);
}

rtm_meta_lock(metalock);
/* critical section */
rtm_meta_unlock(metalock);

Document #: 248966-050US 8-19

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

To understand such situations, consider the following example with a simple spin lock implementation using HLE (a
similar scenario can also exist with RTM). The lock value of zero means the lock is free and a value of one means it is
acquired by some thread.

The HLE-enabled lock-acquire sequence can be written as shown in Example 8-8.

If a thread is unable to perform lock elision, then it acquires the lock without elision. Assume another thread arrives
to acquire the lock. It executes the “XACQUIRE; xchg lockWord, eax” instruction, elides the lock operation on the lock,
and enters transactional execution. However the lock at this point was held by another thread causing this thread to
enter the SpinWait loop while still executing transactionally. This spin occurs during transactional execution because
hardware does not have the notion of a critical section lock - it only sees the instruction to implement the atomic
operation on the lock variable. The hardware doesn't have the semantic knowledge that the lock was not free.

Now, if the thread that held the lock releases it, the write operation to the lock will cause the current transactional
thread spinning on the location to transactionally abort (because of the conflict between the lock release operation
and the read loop of the lock by the transactional thread). Once it has aborted, the thread will restart execution
without lock elision. It is easy to see how this extends to all other threads - they spin transactionally but end up
executing non-transactionally and without lock elision when they actually find the lock free. This will continue until
no other threads are trying to acquire the lock. The threads have thus entered a persistent non-elided execution.

A simple fix for this includes using the pause instruction (which causes an abort) as part of the spin-wait loop. This is
also the recommended approach to waiting on a lock to be released, even without Intel TSX. The pause instruction
will force the spin-wait loop to occur non-transactionally, thus allowing the threads to try lock elision when the lock is
released.

Example 8-8. HLE-Enabled Lock-Acquire/ Lock-Release Sequence

mov eax,$1
Retry:

XACQUIRE; xchg LockWord,eax
cmp eax,$0 # Was zero so lock was acquired successfully
jz Locked

SpinWait:
cmp LockWord, $1
jz SpinWait# Still one
jmp Retry# It's free, try to claim

Locked:

XRELEASE; mov LockWord,$0

Example 8-9. A Spin Wait Example Using HLE

mov eax,$1
Retry:

XACQUIRE; xchg LockWord,eax
cmp eax,$0# Was zero so we got it
jz Locked

SpinWait:
pause

cmp LockWord, $1
jz SpinWait# Still one
jmp Retry# It's free, try to claim

Locked:

Document #: 248966-050US 8-20

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

Tuning Suggestion 26. Always include a pause instruction in the wait loop of a HLE spinlock.

8.3.9 READING THE VALUE OF AN ELIDED LOCK IN RTM-BASED LIBRARIES
Some synchronization libraries provide interfaces that read the value of a lock. Libraries implementing lock elision
using RTM may be unable to reliably determine if the lock variable has been acquired by the thread performing the
elision since the lock was only read but not written to inside the library.

Sometimes the library interface may be as simple as a test to check whether a lock is acquired thus providing a sanity
check to the software. To ensure the correct value is provided to the function using an RTM-based library, the
transactional execution must be aborted and the lock explicitly acquired. This can be achieved by forcing an abort
through the XABORT instruction (using _xabort(0xfe)). The 0xfe code can be used by the fallback handler to
determine this situation and aid in optimizations in eliminating such a read. Alternatively, the _xtest() intrinsic can be
used avoid unnecessary transactional aborts:

assert(is_locked(my_lock)) => assert(_xtest() || is_locked(my_lock))

A better primitive for an elided synchronization library would combine both - the lock being acquired or a lock elision
in progress. For example:

bool is_atomic(lock) { return _xtest() || is_locked(lock); }

At other times, the lock variable may be read as part of a function with assumptions about behavior. An example is the
try-lock interface to acquire a lock where a thread makes a single attempt to acquire the lock and returns a value
indicating whether the lock was free or not. This is in contrast to a spin lock that continues to spin trying to acquire the
lock. In general, this isn't a problem. But sometimes, software may make implicit assumptions about the actual value
returned by a nested try-lock. With an RTM-based implementation, the value returned will be that of a free lock since
the lock was elided. If software is making such implicit assumptions about the value, then the synchronization library
can force a transactional abort through the XABORT instruction (using _xabort(0xfd)). This will however cause
unnecessary aborts in some programs. Such implicit programming assumptions are not recommended. As such
implicit programming assumptions are rare, it is recommended to not abort in the synchronization library in trylock.

8.3.10 INTERMIXING HLE AND RTM
HLE and RTM provide two alternative software interfaces to a common transactional execution capability. The
behavior when HLE and RTM are nested together-HLE inside RTM or RTM inside HLE-is implementation specific. For
the first implementation of the 4th generation Intel Core Processor, intermixing causes a transactional abort. This
behavior may change in subsequent processor implementations but the semantics of a transactional commit will be
maintained.

In general, applications should avoid intermixing HLE and RTM as they are essentially achieving the end purpose of
lock elision but through different software interfaces. However, library functions implementing lock elision may be
unaware of the calling function and whether the calling function is invoking the library function while eliding locks
using RTM or HLE.

Software can handle such conditions by using the _xtest() operation. For example, the library may check if it was
invoked within a transactional region and if the lock is free. If the call was within a transactional region, the library
may avoid starting a new transactional region. If the lock was not free, the library may return an indication through
the _xabort(0xff) function. This does require the function that will be invoked on a release to recognize that the
acquire operation was skipped.

Example 8-10 shows a conceptual sequence.

Document #: 248966-050US 8-21

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.4 USING THE PERFORMANCE MONITORING SUPPORT FOR
INTEL® TSX

Application tuning using Intel TSX relies on performance counter-based profiling to understand transactional
execution behavior and the causes of transactional aborts. Achieving good performance with Intel TSX often requires
some tuning based on data from a profiling tool to minimize aborts. Using the performance counters is often
preferable to instrumenting the application as it is usually less intrusive and easier.

Chapter 19, “Architectural Last Branch Records” of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B provides information about performance monitoring.

In general, profiling can impact transactional execution as any profiling tool generates periodic interrupts to collect
information, and the interrupt will cause a transactional abort. Hence, any profiling should try to minimize the impact
of this in analysis. This is not an issue if one is profiling only transactional aborts.

Program startup tends to have a large number of events that occur only once. When profiling complex programs,
skipping over the startup phase can significantly reduce any noise introduced by these events.

Profilers that support TSX tuning include Linux perf, Intel Performance Counter Monitor, and Intel VTune. See Intel’s
Instruction Set Architecture landing page for many additional resources.

8.4.1 MEASURING TRANSACTIONAL SUCCESS
The first step should be to measure the transactional success in an application. This is done with the
Unhalted_Core_Cycles event programmed in three separate configurations with three counters:

1. Use the fixed cycles counter (IA32_FIXED_CTR0) to measure FixedCyclesCounter.

2. Configure IA32_PERFEVTSEL2 with the IN_TX and IN_TXCP filters set to measure CyclesInTxCP in IA32_PMC2.

3. Configure another MSR IA32_PERFEVTSELx (x= 0, 1, 3) with IN_TX filter to measure CyclesInTXOnly on the corre-
sponding counter.

These cycle measurements should be set up to count and not sample frequently; sampling may cause additional
transactional aborts. With these three values the total cycles, cycles spent in transactional execution, and cycles
spent in transactional regions that eventually aborted can be computed:

Example 8-10. A Conceptual Example of Intermixed HLE and RTM

// Lock Acquire sequence
// Use a function local or per-thread location
bool lock_in_transactional_region = false;
if (_xtest() && my lock is free) { /* Already in a transactional region*/

lock_in_transactional_region = true;
} else {

// acquire lock if free, else abort
}

// the lock release sequence
if (!lock_in_transactional_region) {
 // release lock
}

https://www.intel.com/content/www/us/en/developer/tools/isa-extensions/overview.html

Document #: 248966-050US 8-22

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

CyclesTotal = FixedCycleCounter
%CyclesTransactionalAborted = ((CyclesInTxOnly - CyclesInTxCP) / CyclesTotal) * 100.0
%CyclesTransactional = (CyclesInTx / CyclesTotal) * 100.0
%CyclesNonTransactional = 100.0 - %CyclesTransactional

If CyclesTransactional is near zero then the application is either not using lock-based synchronization or not using a
synchronization library enabled for lock elision through the Intel TSX instructions. In the latter case, the programmer
should use an Intel TSX-enabled synchronization library (See Section 8.3).

If CyclesTransactionalAborted is small relative to CyclesTransactional, then the transactional success rate is high and
additional tuning is not required.

If the CyclesTransactionalAborted is almost the same as CyclesTransactional (but not very small), then most
transactional regions are aborting and lock elision is not going to be beneficial. The next step would be to identify the
causes for transactional aborts and reduce them (See Section 8.2.4).

8.4.2 FINDING LOCKS TO ELIDE AND VERIFYING ALL LOCKS ARE ELIDED.
This step is useful if the cycles spent in transactional execution is low. This may be because few locks are being elided.
The MEM_UOPS_RETIRED.LOCK_LOADS event should be counted and compared to the RTM_RETIRED.START or
HLE_RETIRED.START events. If the number of lock loads is significantly higher than the number of transactional
regions started, then one can usually assume that not all locks are marked for lock elision. The PEBS version of
MEM_UOPS_RETIRED.LOCK_LOADS can be sampled to identify the missing locks. However, this technique isn't
effective in immediately detecting missed opportunities with meta-locking (See Section 8.3.7). Additionally, a profile
on the call graph of the MEM_UOPS_RETIRED.LOCK_LOADS event often identifies the high level synchronization
library that needs to be TSX-enabled to allow transactional execution of the application level critical sections.

8.4.3 SAMPLING TRANSACTIONAL ABORTS
The hardware implementation defines PEBS precise events to sample transactional aborts - HLE_RETIRED.ABORTED
for HLE and RTM_RETIRED.ABORTED for RTM. This allows programmers to perform precise profiling of all
transactional aborts in the execution. The test should be run with PEBS enabled and sampled to identify the code
location where the transactional aborts are occurring. The PEBS handler (a part of the profiling tool) uses the
EventingIP field in the PEBS record to report the correct code location of the transactional aborts.

As a next step, the most common transactional aborts should be examined and addressed. Sampling transactional
aborts does not cause any additional aborts.

8.4.4 CLASSIFYING ABORTS USING A PROFILING TOOL
The PEBS record generated as a result of profiling transactional aborts contains additional information on the cause of
the transactional abort in the TX Abort Information field. The lower 32 bits of the TX Abort Information, called
Cycles_Last_TX, also provides the cycles spent in the last transactional region prior to the abort. This approximately
captures the cost of a transactional abort.

RelativeCostOfAbortForIP = SUM(Cycles_Last_TX_For_IP)

Not all transactional aborts are equal - some don't contribute to performance degradation while the more expensive
ones can have significant impact. The programmer can use this information to decide which transactional aborts to
focus on first.

• For more details on the PEBS record see the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B Section 18.10.5.1

Document #: 248966-050US 8-23

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

The profiling tool should display the abort cost to the user to classify the abort.

Tuning Suggestion 27. The aborts with the highest cost should be examined first.
Tuning Suggestion 28. The TX Abort Information has additional information about the transactional abort.

If the PEBS record Instruction_Abort bit (bit 34) is set, then the cause of the transactional abort can be directly
associated with an instruction. For these aborts, the PEBS record captures the instruction address that was the source
of the transactional abort. Exceptions, like page faults (including those that would normally terminate the program
and those that fault in the working set of the program at startup) also show up as in this category.

If the PEBS record Non_Instruction_Abort bit (bit 35) is set, then the abort may not have been caused by the
instruction reported by the instruction address in the PEBS record. An example of such an abort is one due to a data
conflict with other threads. In this case, the Data_Conflict bit (bit 37) is also set. Another example is when
transactional aborts occur due to capacity limitations for transactional write- and read-sets. This is captured by the
Capacity_Write (bit 38) and the Capacity_Read (bit 39) fields.

Aborts due to data conflicts may occur at arbitrary instructions within the transactional region. Hence it is useful to
concentrate on conflict causes in the whole critical section. Instead of relying on the EventingIP reported by PEBS for
the abort, one should focus on the return IP (IP of the abort code) in conjunction with the call graphs. The return IP
typically points into the synchronization library, unless the lock is inlined. The caller identifies the critical section.

For capacity it can be also useful to concentrate on the whole critical section (profiling for ReturnIP) as the whole
critical section needs to be changed to access less memory.

Tuning Suggestion 29. Instruction aborts should be analyzed early, but only when they are costly and happen after
program startup.
Tuning Suggestion 30. For data conflicts or capacity aborts, concentrate on the whole critical section, not just the
instruction address reported at the time of the abort.
Tuning Suggestion 31. The profiler should support displaying the ReturnIP with callgraph for non-Instruction abort
events, but display the EventingRIP for instruction abort events.
Tuning Suggestion 32. The PEBS TX Abort Information bits should be all displayed by the profiling tool.

8.4.5 XABORT ARGUMENTS FOR RTM FALLBACK HANDLERS
If the XABORT instruction is used to abort an RTM-based transactional region, the instruction operand is passed to the
fallback handler through the EAX register. This information is also provided by the PEBS-based profiling tool for RTM.
A profiling tool can use this information to classify various XABORT-based transactional aborts. Defining a convention
can be also helpful to write sophisticated fallback handlers.

The following table presents the convention used in this document:

Tuning Suggestion 33. The profiling tool should display the abort code to the user for RTM aborts.

Table 8-2. RTM Abort Status Definition

XABORT
Code Description

0xff XABORT-based abort because lock was not free when tested (Section 8.3.4)

0xfe XABORT-based abort because lock tested for the value of the elided lock (Section 8.3.9)

0xfd XABORT-based abort during a nested try lock (Section 8.3.9)

0xfc: 0xf0 Reserved

Document #: 248966-050US 8-24

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.4.6 CALL GRAPHS FOR TRANSACTIONAL ABORTS
The profiling tool generates interrupts to collect performance monitoring information. Such interrupts will cause
transactional aborts. This means a profiling tool can only collect information after a transactional abort happened and
the tool cannot see any function calls on the stack that only happened inside the transactional region; the only view
of the call graph it has was the one at the beginning of the transactional execution. When a transactional abort is
sampled with PEBS the RIP field contains the instruction pointer after the abort and the EventingIP field contains the
instruction pointer within the transactional region at the time of the abort. The same also applies for sampling non-
abort events, as any sampling causes transactional aborts.

Depending on the type of abort, it can be useful to profile for either ReturnIP or EventingIP. The stack callgraph
collected by the profiling tool is always associated with the ReturnIP. When it is combined with the EventingIP, it may
appear noncontiguous (the EventingIP may not be associated with the lowest level caller), as any function calls inside
the transactional region are not included. When the function calls inside the transactional region are required to
understand the abort cause, Last Branch Records (LBRs, See Section 25) or the SDE software emulation (see Section
8.4.8) can be used.

Tuning Suggestion 34. The profiler should have options to display ReturnIP and EventingIP.
Tuning Suggestion 35. The stack callgraph is always associated with the ReturnIP and may appear noncontiguous
with the EventingIP.
Tuning Suggestion 36. To see function calls inside the transactional region use LBRs or SDE.

8.4.7 LAST BRANCH RECORDS AND TRANSACTIONAL ABORTS
The Last Branch Records (see section 17.4 in Volume 3 of the Intel Software Developer's Manual) provide information
about transactional execution and aborts. Regular LBR usage is compatible with Intel TSX. Using LBRs can be useful to
provide context inside the transaction, as the normal call graph is not visible. The lcall filter can be used to
approximate a call graph. However, the LBR Call Graph Stack facility (Section 17.8 in Volume 3 of the Intel Software
Developer's Manual) is not compatible with Intel TSX and may provide incomplete information.

Tuning Suggestion 37. The PEBS profiling handler should support sampling LBRs on abort and report them to the
user.

8.4.8 PROFILING AND TESTING INTEL TSX SOFTWARE SING THE INTEL® SDE
The Intel® Software Development Emulator (Intel® SDE) tool enables software development for planned instruction
set extensions before they appear in hardware. The tool can also be used for extended testing, debugging and
analysis of software that take advantage of the new instructions.

Programmers can use a number of Intel SDE capabilities for functional testing, profiling and debugging programs
using the Intel TSX instructions. The tool can provide insight into common transactional aborts and additional
profiling capability unavailable directly on hardware. Programmers should not use the tool to derive runtimes and
absolute performance characteristics as those are a function of the inherently high overheads of the emulation the
tool performs.

As described previously in Section 8.4.4, hardware reports the precise address of the instruction that caused an abort,
unless the abort is due to either a data conflict or a resource limitation. The tool can provide the precise address of
such an instruction and additional information about the instruction. The tool can further map this back to the
application source code, providing the instruction address, source file names, line number, the call stacks, and the
data address information the instruction was operating on. For victim transactions (aborted due to a conflict) the tool
can also output source code locations where conflicting memory accesses have been executed.

This is achieved through the tool options:

http://software.intel.com/en-us/articles/intel-software-development-emulator

Document #: 248966-050US 8-25

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

-tsx -hle_enabled 1 -rtm-mode full -tsx_stats 1 -tsx_stats_call_stack 1

The fallback handler can use the contents of the EAX register to determine causes of aborts. The SDE tool can force a
transactional abort with a specific EAX register value provided as an emulator parameter. This allows developers to
test their fallback handler code with different EAX values. In this mode, every RTM-based transactional execution will
immediately abort with the EAX register value being that provided as the parameter. This is quite effective in
functionally testing for corner cases where a transactional execution aborts due to unresolved page faults or other
similar operations (EAX = 0).

This is achieved through the tool options:

-tsx -rtm-mode abort -rtm_abort_reason EAX.

Intel SDE has instruction and memory access logging features which are useful for debugging capacity aborts. With
the log data from Intel SDE, one can diagnose cache set population to determine if there is non-uniform cache set
usage causing capacity overflows. A refined log data may be used to further diagnose the source of the aborts. The
logging feature is enabled with the following options:

-tsx_debug_log 3 -tsx_log_inst 1 -tsx_log_file 1
Additionally Intel SDE allows to use a standard debugger (gdb and Microsoft Visual Studio) to perform functional
debugging inside transactions.

8.4.9 HLE SPECIFIC PERFORMANCE MONITORING EVENTS
The Intel TSX Performance Events also include HLE-specific transactional abort conditions. These events track aborts
due to causes listed in Section 8.2.4.4. These aborts often occur due to issues in synchronization library
implementations. When a synchronization library is initially enabled for Intel TSX, it is useful to measure these events
and improve the library until these counts are negligible.

• TX_MEM.ABORT_HLE_STORE_TO_ELIDED_LOCK counts the number of transactional aborts due to a store
operation without the XRELEASE prefix operating on an elided lock in the elision buffer.

— This is often because the library is missing the XRELEASE prefix on the lock release instruction.

• TX_MEM.ABORT_ELISION_BUFFER_NOT_EMPTY counts the number of transactional aborts that occur because
an XRELEASE prefixed lock release instruction that was committing the transactional execution finds the elision
buffer with an elided lock.

— This typically occurs for code sequences where an XRELEASE occurs on a lock that wasn't elided and hence
wasn't in the elision buffer.

• TX_MEM.ABORT_HLE_ELISION_BUFFER_MISMATCH counts the number of transactional aborts because the
XRELEASE lock does not satisfy the address and value requirements for elision in the elision buffer.

— This occurs for example if the value being written by the XRELEASE operation is different from the value that
was read by the earlier XACQUIRE operation to the same lock.

• TX_MEM.ABORT_HLE_ELISION_UNSUPPORTED_ALIGNMENT counts the number of transactional aborts if the
lock in the elision buffer was accessed by a read in the transactional region but the read could not be serviced.

— This typically occurs if the access

• Was not properly aligned.

• Had a partial overlap.

• The read operation's linear address was different than the elided locks but the physical address was
the same.

These are fairly rare events.

Document #: 248966-050US 8-26

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.4.10 COMPUTING USEFUL METRICS FOR INTEL® TSX
We now provide formulas to compute useful metrics with the performance events. While some of the counts are
available as their own events, it can sometimes be useful to do a derivation with limited counters.

The following calculates the number of times a HLE or RTM transactional execution was started. This combines all
nested regions into one region for counting purposes.

#HLE Regions Started: HLE_RETIRED.COMMIT + HLE_RETIRED.ABORTED
#RTM Regions Started: RTM_RETIRED.COMMIT + RTM_RETIRED.ABORTED

The following calculates the percentage of HLE or RTM transactional executions that aborted.

%AbortedHLE = 100.0 * (HLE_RETIRED.ABORTED/HLE_RETIRED.START)
%AbortedRTM = 100.0 * (RTM_RETIRED.ABORTED/RTM_RETIRED.START)

The following calculates the average number of cycles spent in a transactional region (See Section 8.4.1 for CyclesInTX
computation).

AvgCyclesInHLE = CyclesInTX/HLE_RETIRED_START
AvgCyclesInRTM = CyclesInTX/RTM_RETIRED.START
AvgCyclesInTX=CyclesInTX/(HLE_RETIRED.START + RTM_RETIRED.START)

The following calculates the percentage of HLE or RTM transactional executions that aborted due to a data conflict.

%AbortedHLEDataConflict = TX_MEM.ABORT_CONFLICT/HLE_RETIRED.START;
%AbortedRTMDataConflict = TX_MEM.ABORT_CONFLICT / RTM_RETIRED.START;
%AbortedTXDataConlict= TX_MEM.ABORT_CONFLICT / (HLE_RETIRED.START+RTM_RETIRED.START);

The following calculates the number of HLE or RTM transactional executions that aborted due to limited resources for
transactional stores.

%AbortedTXStoreResource = TX_MEM.ABORT_CAPACITY_WRITE

On processors based on the Broadwell and Skylake microarchitectures, the event
“TX_MEM.ABORT_CAPACITY_WRITE” is replaced by TX_MEM.ABORT_CAPACITY that counts aborts due to either
read or write.

The following calculates the total number of HLE or RTM transactional executions that aborted due to resource
limitations. The distinction occurs because transactional reads that are evicted from the L1 data cache may not
immediately cause an abort.

%AbortedHLEResource = HLE_RETIRED.ABORTED_MISC1 - TX_MEM.ABORT_CONFLICT
%AbortedRTMResource = RTM_RETIRED.ABORTED_MISC1- TX_MEM.ABORT_CONFLICT
%AbortedTXResource = (HLE_RETIRED.ABORTED_MISC1+RTM_RETIRED.ABORTED_MISC5) - TX_EM.ABORT_-
CONFLICT

For HLE, HLE_RETIRED.ABORTED_MISC1 may include some additional contributions from the events discussed in
Section 8.4.9. For accurate results the lock library should be tuned first to minimize them.

NOTE
HLE_RETIRED.ABORTED_MISC1 is also known with the more descriptive name
HLE_RETIRED.ABORTED_MIEM. Similarly, RTM_RETIRED.ABORTED_MISC1 is also known as
RTM_RETIRED.ABORTED_MEM.

Document #: 248966-050US 8-27

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.5 PERFORMANCE GUIDELINES
The 4th generation Intel Core Processor is the first implementation that support Intel TSX. Transactional execution
incurs some implementation dependent overheads. Performance will improve in subsequent microarchitecture
generations. The first TSX implementation is oriented towards typical usage of critical sections in applications. As a
result, these overheads are amortized and do not normally manifest themselves at an application level performance.

However, some guidelines are relevant to keep in mind:

Tuning Suggestion 38. Intel TSX is designed for critical sections and thus the latency profiles of the XBEGIN/XEND
instructions and XACQUIRE/XRELEASE prefixes are intended to match the LOCK prefixed instructions. These
instructions should not be expected to have the latency of a regular load operation.

There is an additional implementation-specific overhead associated with executing a transactional region. This
consists of a mostly fixed cost in addition to a variable dynamic component. The overhead is largely independent of
the size and memory foot print of the critical section. The additional overhead is typically amortized and hidden
behind the out-of-order execution of the microarchitecture. However, on the 4th generation Intel Core Processor
implementation, certain sequences may appear to exacerbate the overhead. This is particularly true if the critical
section is very small and appear in tight loops (for example something typically done in microbenchmarks). Realistic
applications do not normally exhibit such behavior.

The overhead is amortized in larger critical sections but will be exposed in very small critical sections. One simple
approach to reduce perceived overhead is to perform an access to the transactional cache lines early in the critical
section

The overhead of commits is reduced with processors based on the Broadwell microarchitecture.

8.6 DEBUGGING GUIDELINES
Using Intel TSX to implement Lock Elision does not change application semantics - all architectural state updated
during an aborted transactional execution is automatically discarded by the hardware. Care must be taken if new
code paths are added to the application and these paths are exercised only under transactional execution (See
Section 8.2.5).

However, lock elision may change the timing relationships among different threads since it requires communication
among threads only when required by data conflicts. Hence, locks may appear to execute much faster than normal.
Such timing changes may expose latent bugs in an application. Exposure of such latent bugs is not unique to Intel TSX
and can be expected with every new hardware generation.

Code instrumentation is a common technique while debugging multi-threaded software. As is the case with
debugging timing related issues, care must be taken when instrumenting code to not perturb timing significantly and
to not cause unnecessary aborts. A per thread buffer can be utilized to trace execution and log events of interests. The
RDTSC instruction can be used to obtain a timestamp. The buffer should be printed outside the critical section.

Transactional aborts discard all memory state updated within the transactional region. This information cannot be
traced without instrumentation support. Issues within transactional regions will show up in a profiling tool as a
transactional abort and the Last Branch Record information can be used to reconstruct the control flow. On
processors that support Intel® Processor Trace, the trace log allows reconstructing the full trace of the control flow
inside transactions. The trace also contains markers indicating transaction start, commit and abort.

The regular assert() function would cause a transactional abort and its output information would not make it out of
the transactional region. When using the RTM instructions, the assert functionality can be enhanced to end the
transactional execution, make side effects visible, and terminate the program through the assert function. For
example:

assert(x) => if (!(x)) { while (_xtest()) _xend(); assert(0); }

Document #: 248966-050US 8-28

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.7 COMMON INTRINSICS FOR INTEL® TSX
Recent assemblers (GNU binutils version 2.23, Microsoft Visual Studio 2012) include support for the Intel TSX
instructions. On older tool chains it is possible to use the instructions as byte values.

8.7.1 RTM C INTRINSICS
Recent C/C++ compilers (gcc 4.8, Microsoft Visual Studio 2012, Intel C++ Compiler 17.0) support RTM intrinsics in the
immintrin.h header file. RTM is a new instruction set and should be only used after checking the RTM feature flag
using the CPUID instruction (See Chapter 3, “Basic Execution Environment” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A).

8.7.1.1 _xbegin()
_xbegin() starts the transactional region and returns _XBEGIN_STARTED when in the transactional region, otherwise
the abort code. It is important to check _xbegin() against _XBEGIN_STARTED which is not zero. Zero is a valid abort
code. When the value is not _XBEGIN_STARTED the return code contains various status bits and an optional 8bit
constant passed by _xabort().

Valid status bits are:

• _XABORT_EXPLICIT: Abort caused by _xabort(). _XABORT_CODE(status) contains the value passed to _xabort().

• _XABORT_RETRY: When this bit is set retrying the transactional region has a chance to commit. If not set retrying
will likely not succeed.

• _XABORT_CAPACITY: The abort is related to a capacity overflow.

• _XABORT_DEBUG: The abort happened due to a debug trap.

• _XABORT_NESTED: The abort happened in a nested transaction.

_xend()

_xend() commits the transaction.

_xtest()

_xtest() returns true when the code is currently executing in a transaction. It can be also used with HLE.

_xabort()

_xabort(constant) aborts the current transaction. Constant can be only 8 bits. The constant is contained in the status
code returned by _xbegin() and can be accessed with _XABORT_CODE() when the _XABORT_EXPLICIT flag is set. See
Section 4.5 for a recommended convention.

On gcc 4.8 and later compilers, the -mrtm flag needs to be used to enable these intrinsics.

8.7.1.2 Emulated RTM Intrinsics on Older GCC-Compatible Compilers
On older gcc compatible compilers that do not support the RTM intrinsics in immintrin.h, Example 8-11 shows the
inline assembler equivalents that can be used.

Document #: 248966-050US 8-29

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

Example 8-11. Emulated RTM intrinsic for Older GCC Compilers

/* Not needed on newer toolchains that support this interface in immintrin.h */
#define _XBEGIN_STARTED (~0u)
#define _XABORT_EXPLICIT (1 << 0)
#define _XABORT_RETRY (1 << 1)
#define _XABORT_CONFLICT (1 << 2)
#define _XABORT_CAPACITY (1 << 3)
#define _XABORT_DEBUG (1 << 4)
#define _XABORT_NESTED (1 << 5)
#define _XABORT_CODE(x) (((x) >> 24) & 0xff)

#define __force_inline __attribute__((__always_inline__)) inline

static __force_inline int _xbegin(void)
{
 int ret = _XBEGIN_STARTED;
 asm volatile(“.byte 0xc7,0xf8 ; .long 0" : “+a” (ret) :: “memory”);
 return ret;
}

static __force_inline void _xend(void)
{
 asm volatile(“.byte 0x0f,0x01,0xd5” ::: “memory”);
}

static __force_inline void _xabort(const unsigned int status)
{
 asm volatile(“.byte 0xc6,0xf8,%P0” :: “i” (status) : “memory”);
}

static __force_inline int _xtest(void)
{
 unsigned char out;
 asm volatile(“.byte 0x0f,0x01,0xd6 ; setnz %0” : “=r” (out) :: “memory”);
 return out;
}

Document #: 248966-050US 8-30

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.7.2 HLE INTRINSICS ON GCC AND OTHER LINUX COMPATIBLE COMPILERS
On Linux and compatible systems HLE is implemented as an extension to gcc 4.8 and an older form of the C11 atomic
primitives. HLE XACQUIRE can be used by setting the __ATOMIC_HLE_ACQUIRE flag to the memory model argument.
HLE XRELEASE can be used with __ATOMIC_HLE_RELEASE.

• For __ATOMIC_HLE_ACQUIRE, the memory model must be __ATOMIC_ACQUIRE or stronger.

• For __ATOMIC_HLE_RELEASE __ATOMIC_RELEASE or stronger.

• For operations with a failure memory model (like __atomic_compare_exchange_n) the HLE flag is only supported
on the non-failure memory model.

HLE is only supported on atomic operations that can be directly translated into IA atomic instructions. It is not
supported with:

• 8 byte values on 32-bit targets.

• 16 byte values.

• Fetch-op or op-fetch other than add/sub when the result is accessed.

• __atomic_store and __atomic_clear only support __ATOMIC_HLE_RELEASE.

8.7.2.1 Generating HLE Intrinsics with GCC4.8
Due to a compiler bug in some versions of gcc 4.8 the -O2 or higher optimization level must be used to generate HLE
hints using the atomic intrinsics.

8.7.2.2 C++11 Atomic Support
gcc 4.8 has support for the C++11 <atomic> header. The memory models defined there are extended with HLE flags
similar to the C atomic interface. Two new flags __memory_order_hle_acquire and __memory_order_hle_release
are defined. The constraints listed for the C atomic intrinsics apply. Example 8-12 shows a C++ example of an HLE
intrinsic.

Example 8-12. C++ Example of HLE Intrinsic

#include <atomic>
#include <immintrin.h>
using namespace std;
atomic_flag lock;
for (;;) {
 if (!lock.test_and_test(memory_order_acquire|__memory_order_hle_acquire) {
 // Critical section with HLE lock elision
 lock.clear(memory_order_release|__memory_order_hle_release);

 break;
 } else {
 // Lock not acquired. Wait for lock and retry.
 while (lock.load())
 _mm_pause(); // abort transactional region on lock busy
 }
}

Document #: 248966-050US 8-31

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

8.7.2.3 Emulating HLE intrinsics with older GCC-Compatible Compilers
For older compilers that do not support these intrinsics inline assembler can be used. For example to emulate
__atomic_exchange_n(&lock, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE), see Example 8-13.

8.7.3 HLE INTRINSICS ON WINDOWS C/C++ COMPILERS
Windows C/C++ compilers (Microsoft Visual Studio 2012 and Intel C++ Compiler 17.0) provide versions of certain
atomic intrinsic with HLE prefixes; see Example 8-14.

Example 8-13. Emulated HLE Intrinsic with Older GCC Compiler

#define XACQUIRE ".byte 0xf2; " /* For older assemblers not supporting XACQUIRE */
#define XRELEASE ".byte 0xf3; "
static inline int hle_acquire_xchg(int *lock, int val)
{
 asm volatile(XACQUIRE “xchg %0,%1” : “+r” (val), “+m” (*lock) :: “memory”);
 return val;
}

static void hle_release_store(int *lock, int val)
{
 asm volatile(XRELEASE “mov %0,%1” : “r” (val), “+m” (*lock) :: “memory”);
}

Example 8-14. HLE Intrinsic Supported by Intel and Microsoft Compilers

Atomic compare-and-exchange operations:

long _InterlockedCompareExchange_HLEAcquire(long volatile *Destination, long Exchange, long Comparand);
__int64 _InterlockedCompareExchange64_HLEAcquire(__int64 volatile *Destination, __int64 Exchange, __int64
Comparand);
void * _InterlockedCompareExchangePointer_HLEAcquire(void * volatile *Destination, void * Exchange, void *
Comparand);
long _InterlockedCompareExchange_HLERelease(long volatile *Destination, long Exchange, long Comparand);
__int64 _InterlockedCompareExchange64_HLERelease(__int64 volatile *Destination, __int64 Exchange, __int64
Comparand);
void * _InterlockedCompareExchangePointer_HLERelease(void * volatile *Destination, void * Exchange, void *
Comparand);

Atomic addition:

long _InterlockedExchangeAdd_HLEAcquire(long volatile *Addend, long Value);
__int64 _InterlockedExchangeAdd64_HLEAcquire(__int64 volatile *Addend, __int64 Value);
long _InterlockedExchangeAdd_HLERelease(long volatile *Addend, long Value);
__int64 _InterlockedExchangeAdd64_HLERelease(__int64 volatile *Addend, __int64 Value);

Document #: 248966-050US 8-32

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS (INTEL® TSX) OPTIMIZATIONS

Please consult the compiler documentation for further information on these intrinsics.

Intrinsics for HLE prefixed stores:

void _Store_HLERelease(long volatile *Destination, long Value);
void _Store64_HLERelease(__int64 volatile *Destination, __int64 Value);
void _StorePointer_HLERelease(void * volatile *Destination, void * Value);

Example 8-14. HLE Intrinsic Supported by Intel and Microsoft Compilers

	Chapter 1 Haswell Microarchitecture
	1.1 Introduction
	1.2 The Front End
	1.3 The Out-of-Order Engine
	1.3.1 Execution Engine

	1.4 Cache and Memory Subsystem
	1.4.1 Load and Store Operation Enhancements
	1.4.2 Unlamination

	1.5 Haswell-E Microarchitecture
	1.6 Broadwell Microarchitecture

	Chapter 2 Sandy Bridge Microarchitecture
	2.1 Sandy Bridge Microarchitecture Pipeline Overview
	2.1.1 The Front End
	2.1.1.1 Legacy Decode Pipeline
	2.1.1.2 Decoded ICache
	2.1.1.3 Branch Prediction
	2.1.1.4 Micro-op Queue and the Loop Stream Detector (LSD)

	2.1.2 The Out-of-Order Engine
	2.1.2.1 Renamer
	2.1.2.2 Scheduler

	2.1.3 The Execution Core
	2.1.4 Cache Hierarchy
	2.1.4.1 Load and Store Operation Overview

	2.1.5 L1 DCache
	2.1.5.1 Loads
	2.1.5.2 Address Translation
	2.1.5.3 Store Forwarding
	2.1.5.4 Memory Disambiguation

	2.1.6 Ring Interconnect and Last Level Cache
	2.1.7 Data Prefetching

	2.2 System Agent
	2.3 Ivy Bridge Microarchitecture

	Chapter 3 Intel® Core™ Microarchitecture and Enhanced Intel® Core™ Microarchitecture
	3.1 Intel® Core™ Microarchitecture Pipeline Overview
	3.1.1 Front End
	3.1.1.1 Branch Prediction Unit
	3.1.1.2 Instruction Fetch Unit

	3.2 Instruction Cache and ITLB
	3.2.1 Instruction Pre-Decode
	3.2.1.1 Instruction Queue (IQ)
	3.2.1.2 Instruction Decode
	3.2.1.3 Stack Pointer Tracker
	3.2.1.4 MicroFusion

	3.2.2 Execution Core
	3.2.2.1 Issue Ports and Execution Units

	3.3 Intel® Advanced Memory Access
	3.3.1 Loads and Stores
	3.3.1.1 Data Prefetch to L1 caches
	3.3.1.2 Data Prefetch Logic
	3.3.1.3 Store Forwarding
	3.3.1.4 Memory Disambiguation

	3.3.2 Intel® Advanced Smart Cache
	3.3.2.1 Loads
	3.3.2.2 Stores

	Chapter 4 Nehalem Microarchitecture
	4.1 Microarchitecture Pipeline
	4.1.1 Front End Overview
	4.1.2 Execution Engine
	4.1.3 Issue Ports and Execution Units

	4.1.4 Load and Store Operation Enhancements
	4.1.5 Efficient Handling of Alignment Hazards
	4.1.6 Store Forwarding Enhancement

	4.2 REP String Enhancement
	4.3 Enhancements for System Software
	4.3.1 Efficiency Enhancements for Power Consumption
	4.3.2 Intel® Hyper-Threading Technology (Intel® HT) Support in Nehalem Microarchitecture

	Chapter 5 Knights landing Microarchitecture Optimization
	5.1 Front End
	5.1.1 Out-of-Order Engine
	5.1.2 UnTile

	5.2 Intel® AVX-512 Coding Recommendations for Knights Landing Microarchitecture
	5.2.1 Using Gather and Scatter Instructions
	5.2.2 Using Enhanced Reciprocal Instructions

	5.3 Using AVX-512CD Instructions
	5.3.1 Using Intel® Hyper-Threading Technology (Intel® HT)
	5.3.2 Front End Considerations
	5.3.3 Instruction Decoder
	5.3.4 Branching Indirectly Across a 4GB Boundary

	5.4 Integer Execution Considerations
	5.4.1 Flags usage
	5.4.2 Integer Division

	5.5 Optimizing FP and Vector Execution
	5.5.1 Instruction Selection Considerations
	5.5.2 Porting Intrinsics from Previous Generation
	5.5.3 Vectorization Trade-Off Estimation

	5.6 Memory Optimization
	5.6.1 Data Alignment
	5.6.2 Hardware Prefetcher
	5.6.3 Software Prefetch
	5.6.3.1 Memory Execution Cluster

	5.6.4 Store Forwarding
	5.6.5 Way, Set Conflicts
	5.6.6 Streaming Store Versus Regular Store
	5.6.7 Compiler Switches and Directives
	5.6.8 Direct Mapped MCDRAM Cache

	Chapter 6 Earlier Generations of Intel Atom® Microarchitecture and Software Optimization
	6.1 Overview
	6.2 Intel Atom® Microarchitecture
	6.2.1 Intel® Hyper-Threading Technology (Intel® HT) Support in Intel Atom® Microarchitecture

	6.3 Coding Recommendations for Intel Atom® Microarchitecture
	6.3.1 Optimization for Front End of Intel Atom® Microarchitecture
	6.3.2 Optimizing the Execution Core
	6.3.2.1 Integer Instruction Selection
	6.3.2.2 Address Generation
	6.3.2.3 Integer Multiply
	6.3.2.4 Integer Shift Instructions
	6.3.2.5 Partial Register Access
	6.3.2.6 FP/SIMD Instruction Selection
	Latency (cycles)
	Throughput
	# of Execution Unit

	6.3.3 Optimizing Memory Access
	6.3.3.1 Store Forwarding
	6.3.3.2 First-level Data Cache
	6.3.3.3 Segment Base
	6.3.3.4 String Moves
	6.3.3.5 Parameter Passing
	6.3.3.6 Function Calls
	6.3.3.7 Optimization of Multiply/Add Dependent Chains
	6.3.3.8 Position Independent Code

	6.4 Instruction Latency
	6.5 Silvermont Microarchitecture
	6.5.1 Integer Pipeline
	6.5.2 Floating-Point Pipeline

	6.6 Goldmont Microarchitecture
	6.7 Goldmont Plus Microarchitecture
	6.8 Coding Recommendations
	6.8.1 Optimizing The Front End
	6.8.1.1 Instruction Decoder
	6.8.1.2 Front End High IPC Considerations
	6.8.1.3 Branching Across 4GB Boundary
	6.8.1.4 Loop Unrolling and Loop Stream Detector
	6.8.1.5 Mixing Code and Data

	6.8.2 Optimizing The Execution Core
	6.8.2.1 Scheduling
	6.8.2.2 Address Generation
	6.8.2.3 FP Multiply-Accumulate-Store Execution
	6.8.2.4 Integer Multiply Execution
	6.8.2.5 Zeroing Idioms
	6.8.2.6 NOP Idioms
	6.8.2.7 Move Elimination and ESP Folding
	6.8.2.8 Stack Manipulation Instruction
	6.8.2.9 Flags usage
	6.8.2.10 SIMD Floating-Point and X87 Instructions
	6.8.2.11 SIMD Integer Instructions
	6.8.2.12 Vectorization Considerations
	6.8.2.13 Other SIMD Instructions
	6.8.2.14 Instruction Selection
	Goldmont Plus
	Goldmont
	Silvermont
	Latency
	Throughput
	Latency
	Throughput
	Latency
	Throughput

	6.8.2.15 Integer Division
	Dividend
	Divisor
	Quotient
	Remainder
	Silvermontu
	Goldmont Plus/ Goldmont
	DIV r8
	DIV r16
	DIV r32
	DIV r64
	Dividend
	Divisor
	Quotient
	Remainder
	Silvermontu
	Goldmont Plus/ Goldmont
	IDIV r8
	IDIV r16
	IDIV r32
	IDIV r64

	6.8.2.16 Integer Shift
	6.8.2.17 Pause Instruction

	6.8.3 Optimizing Memory Accesses
	6.8.3.1 Reduce Unaligned Memory Access with PALIGNR
	6.8.3.2 Minimize Memory Execution Issues
	6.8.3.3 Store Forwarding
	Load Alignment
	Store Size
	Load Size
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	1
	2
	Load Alignment
	Store Size
	Load Size
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	6.8.3.4 PrefetchW Instruction
	6.8.3.5 Cache Line Splits and Alignment
	6.8.3.6 Segment Base
	6.8.3.7 Copy and String Copy

	6.9 Instruction Latency and Throughput

	Chapter 7 Instruction Latency and Throughput
	7.1 Overview
	7.2 Definitions
	7.3 Latency and Throughput
	7.3.1 Latency and Throughput with Register Operands
	7.3.2 Table Footnotes
	7.3.3 Instructions with Memory Operands
	7.3.3.1 Software Observable Latency of Memory References

	Chapter 8 Intel® Transactional Synchronization Extensions (Intel® TSX) Optimizations
	8.1 Introduction
	8.1.1 About Intel® TSX
	8.1.2 Optimization Outline

	8.2 Application-Level Tuning and Optimizations
	8.2.1 Existing TSX-Enabled Locking Libraries
	8.2.1.1 Libraries Allowing Lock Elision for Unmodified Programs
	8.2.1.2 Libraries Requiring Program Modifications

	8.2.2 Initial Checks
	8.2.3 Run and Profile the Application
	8.2.4 Minimize Transactional Aborts
	Tuning Suggestion 9. Use a profiling tool to identify the transactional aborts that contribute most to any performance loss.
	8.2.4.1 Transactional Aborts Due to Data Conflicts
	Tuning Suggestion 10. Add padding to put the two conflicting variables in separate cache line.
	Tuning Suggestion 11. Reorganize the data structure to minimize false sharing whenever possible.
	Tuning Suggestion 12. Global statistics may also be sampled rather than being updated for every operation.
	Tuning Suggestion 13. Avoid unnecessary statistics in critical sections.
	Tuning Suggestion 14. Consider maintaining statistics in critical sections on a per-thread basis.

	8.2.4.2 Transactional Aborts Due to Limited Transactional Resources
	8.2.4.3 Lock Elision Specific Transactional Aborts
	8.2.4.4 HLE Specific Transactional Aborts
	8.2.4.5 Miscellaneous Transactional Aborts
	Tuning Suggestion 15. Transactional regions during program startup may observe a higher abort rate than during steady state.
	Tuning Suggestion 16. Operating system services may cause infrequent transactional aborts due to background activity.

	8.2.5 Using Transactional-Only Code Paths
	Tuning Suggestion 17. Keep any transactional only code paths simple and inlined.
	Tuning Suggestion 18. Minimize code paths that are only executed transactionally.

	8.2.6 Dealing with Transactional Regions or Paths that Abort at a High Rate
	8.2.6.1 Transitioning to Non-Elided Execution without Aborting
	8.2.6.2 Forcing an Early Abort
	8.2.6.3 Not Eliding Selected Locks

	8.3 Developing an Intel TSX-Enabled Synchronization Library
	8.3.1 Adding HLE Prefixes
	8.3.2 Elision Friendly Critical Section Locks
	8.3.3 Using HLE or RTM for Lock Elision
	8.3.4 An example wrapper for lock elision using RTM
	8.3.5 Guidelines for the RTM fallback handler
	8.3.6 Implementing Elision-Friendly Locks Using Intel® TSX
	8.3.6.1 Implementing a Simple Spinlock Using HLE
	8.3.6.2 Implementing Reader-Writer Locks Using Intel® TSX
	8.3.6.3 Implementing Ticket Locks Using Intel® TSX
	8.3.6.4 Implementing Queue-Based Locks Using Intel® TSX

	8.3.7 Eliding Application-Specific Meta-Locks Using Intel® TSX
	8.3.8 Avoiding Persistent Non-Elided Execution
	8.3.9 Reading the Value of an Elided Lock in RTM-Based Libraries
	8.3.10 Intermixing HLE and RTM

	8.4 Using the Performance Monitoring Support for Intel® TSX
	8.4.1 Measuring Transactional Success
	8.4.2 Finding Locks to Elide and Verifying All Locks are Elided.
	8.4.3 Sampling Transactional Aborts
	8.4.4 Classifying Aborts Using a Profiling Tool
	8.4.5 XABORT Arguments for RTM Fallback Handlers
	XABORT Code

	8.4.6 Call Graphs for Transactional Aborts
	8.4.7 Last Branch Records and Transactional Aborts
	8.4.8 Profiling and Testing Intel TSX Software sing the Intel® SDE
	8.4.9 HLE Specific Performance Monitoring Events
	8.4.10 Computing Useful Metrics for Intel® TSX

	8.5 Performance Guidelines
	8.6 Debugging Guidelines
	8.7 Common Intrinsics for Intel® TSX
	8.7.1 RTM C Intrinsics
	8.7.1.1 _xbegin()
	8.7.1.2 Emulated RTM Intrinsics on Older GCC-Compatible Compilers

	8.7.2 HLE Intrinsics on GCC and Other Linux Compatible Compilers
	8.7.2.1 Generating HLE Intrinsics with GCC4.8
	8.7.2.2 C++11 Atomic Support
	8.7.2.3 Emulating HLE intrinsics with older GCC-Compatible Compilers

	8.7.3 HLE Intrinsics on Windows C/C++ Compilers

