Intel® |A-64 Architecture
Software Developer’s Manual

Volume 4: Itanium™ Processor Programmer’s Guide

January 2000

Order Number: 245320-001

THIS DOCUMENT IS PROVIDED “AS 1S” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® 1A-64 processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000
*Third-party brands and names are the property of their respective owners.

N

tel.

Contents

About this Manual
1.1 Overview of Volume 1: 1A-64 Application ArchiteCtureccccccvvveeveeieee e
1.1.1 Part 1: 1A-64 Application Architecture GUIdecceveeeviiiiiiiiiiieiieee e,
1.1.2 Part 2: 1A-64 Optimization GUIAEcccoiiiiiiiiiiiiiiei e
1.2 Overview of Volume 2: 1A-64 System ArchiteCture ...
1.2.1 Part 1: 1A-64 System Architecture GUIde............ceeeeiieiiiiiiiiiiiiiieeeeee e
1.2.2 Part 2: 1A-64 System Programmer’'s GUIdEcceeeeeriiiiiiiiiieeneeeee e
1.2.3 Y o] 0 1= o [T =
1.3 Overview of Volume 3: Instruction Set Referencecoccovvveiiiiiiiee e
131 Part 1: 1A-64 Instruction Set DeSCHPLIONS..........uuviiiiiiiiaee e
1.3.2 Part 2: 1A-32 Instruction Set DeSCHPLONS.......c..uuiiiiiiiiieee e
1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide.............cccoveeeeeeennn.
15 JLIC=1 1201070 T)R
1.6 Related DOCUMENLSooiiiieiiieeeiiee ettt e s e

Register Stack Engine Support

2.1 RSE MOUES......cooiiieeieeeeee e

2.2 RSE and Clean Register Stack Partitions.............

Virtual Memory Management Support

3.1 Page Size Supported.........ccccvviierieeeee e,

3.2 Physical and Virtual Addressesccccuvvvvnnen.

3.3 Region Register IDcoovcvvvviiiiieee e

3.4 Protection Key Register..........cccccevvieeiieiiiiiiinnne,

Processor Specific Write Coalescing (WC) Behavior

4.1 Write CoaleSCing........ooocviiiieiiiiieee e

4.2 WC Buffer Eviction Conditions.............ccccvveeennee

4.3 WC Buffer Flushing Behaviorccccoccvvvveennee.

Model Specific Instruction Implementation

5.1 o 18 o T PR
5.2 Ifetch Exclusive Hint.........ccooooeviiiiiiiiinn,

5.3 L1170 TSRS
54 L=] o OO
55 L1210 PSP
5.6 (o = PP PUPPPPRPPUPIN
5.7 101 - W UPURPURPORPPN:
5.8 Prefetch Behavior ..o,

5.9 Temporal and Non-temporal Hints Support..........

Processor Performance Monitoring

6.1 Performance Monitor Programming MOAEIScooiviiiiiiiiiiiiiie s

6.1.1 Workload CharacCterizationccceeeiiiieeeiieeieeeeeeeeeee s
6.1.2 PrOTilING .. c e
6.1.3 Event QUAlifiCatION.eiiiiiiiii e

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

6.2 Performance MONITOr StAt.........coiii i e e e e e 6-13
6.2.1 Performance Monitor Control and Accessibility ..., 6-13
6.2.2 Performance Counter REQISIEIScoveiiiiiiciiiiieiee e e e e 6-16
6.2.3 Performance Monitor Overflow Status Registers (PMC[0,1,2,3])............... 6-17
6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])..........ceveuvrnne 6-18
6.2.5 IA-64 Opcode Match Registers (PMC[8,9]) ..vveeeiiiraaiiiiiiiiiiiieeieeee e 6-20
6.2.6 IA-64 Data Address Range Check (PMC[L1]) ..ccuieiiiiiiiiiiiiiiiiieieeee e 6-21
6.2.7 Event Address Registers (PMC[10,11]/PMDJ[0,1,2,3,17]).uuvveeeeeeeeeeaanananns 6-22
6.2.8 IA-64 Branch Trace BUfer........cocciiiiiiii e 6-27
6.2.9 Processor Reset, PAL Calls, and Low Power State...........ccoceeeeeviineenenns 6-31
B.2.10 REFEIENCES ..uviiiii it 6-32
Performance Monitor Events 7-1
7.1 BaASIC BEVENES ...ttt a e e e ae e 7-1
7.2 INSEIUCTION EXECULION ..eeiiiiiiiiie sttt e e et e e nnneeas 7-2
7.3 CycCle ACCOUNTING EVENESuuiiiiiiiiie e ettt s e e e e e e e e e e s e s e e e eeaaeeseeanns 7-5
7.4 BranCh EVENTS ...cooi ittt e s e e nnnneee s 7-5
7.4.1 BR_PATH_PREDICTION......cutiiiiiiiiiteseiiie e esiieee e seiien s eniaee e e 7-6
7.4.2 BR_MISPREDICT _DETAIL....utiiiiiiiiiiee ettt ee e 7-6
7.4.3 BR_MWAY _DETAILL...coitiiiiii ettt nae e e 7-7
7.4.4 BR_TAKEN_DETAILL ...ttt ittt ettt e e 7-7
7.5 V1= o e To T VA o 1= = 1])Y/ SRRSO 7-8
75.1 L1 Instruction Cache and PrefetCh ... 7-8
7.5.2 L1 DAt CACREeeeiiiiieeii e 7-11
7.5.3 L2 UNified CACREcoeiiii e 7-12
7.5.4 [T O Tox o 1= TS PP P RR 7-12
7.6 SYSIEIM EVENTS ...ttt e e et r e e et ee bbb e e e e e e aaba e 7-14
Model Specific Behavior for 1A-32 Instruction Execution 8-1
8.1 Processor Reset and INItIaliZationooiiiiiiiiiii e 8-1
8.2 NEW JMPE INSIIUCTIONeeeiiiiiiiiieiii ettt e e e et e e e e e e e e e e anneeneees 8-1
8.3 System Management Mode (SIMM)ccoiiiiiiiiiiiiie e 8-1
8.4 Machine Check ADOI (IMCA)eeiii ettt 8-2
8.5 Model SPECIfIC REQISTEIS ..ovviiieieii it e e e e e r e e e e e e e e s nnrreaneees 8-2
8.6 (0= Ted o101V oo [P OUPPPPR PRSP 8-2
8.7 10-byte Floating-point Operand Reads and WItESccveeveeiiiiiiiiiiiieieeeee e 8-2
8.8 Floating-point Data SegmMENt STALEoeeeiiiiiiieiiie e 8-3
8.9 Writes to Reserved Bits during FXSAVE ...t 8-3
8.10 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a Page Boundary 8-3
8.11 Enhanced Floating-point INSrUCtION ACCUIACYuvvviiiieeeeeeeiiiiiiiineeereeeeeessssennneneenees 8-3
8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differencescccccccvvvvvvvnnnnns 8-4
8.13 Read/Write ACCESS OFUEINNGccccveiieiie i ee e e e e e e et e e e e e e s e s r e e e e e e e s e s nnnnreeanees 8-4
8.14 Multiple IOAPIC Redirection Table ENrieS........cccoiiiiiieiiiieee e 8-4
8.15 Self Modifying COUE (SMC) ...cciiiiiiiieiiiiiiee ettt 8-4
8.16 Raising an Alignment Check (AC) Fault.............cooiiiiiiiiiiiiic e 8-4
8.17 Maximum Number of IA-64 Processors Supported in MP System
Running Legacy 1A-32 OS (IA-32 system environmMeNt).........ccooccvvveeeriieneeesniieeesnenens 8-5

Intel® IA-64 Architecture Software Developer’'s Manual, Rev. 1.0

intel.

Figures

6-1 TiMe-DASEd SAMPIING ...cooiiiii et e e e e e s et e e e e e e e e e e e annnanes 6-2
6-2 [A-B4 CYCIE ACCOUNTING ..etttiitiiieeie ettt et e ettt e et e e e e e e s s s e s bbbt e e e e aeaa e e e e e s nnbbbeebeeaaaaaeaeaaaas 6-4
6-3 Event Histogram DY Program COUNTEToieii ittt e e eeeeeaa e as 6-6
6-4 [tanium™ Processor Event QUalifiCationcccooeeiiiiiiiiii 6-9
6-5 Instruction Tagging Mechanism in the [tanium™ ProCeSSOruueiiieeiiiiiiiiiiieeee e 6-10
6-6 SINGIE ProCESS MONILOTttt e e e e e e e e s bt be e ae e e e e e e e e e s s ranbeesnnenes 6-12
6-7 MUILIPIE PrOCESS MONILOLiiieiieieei ettt e e e e e e e e bbb et e e e e e e e e e nnnbneeeeeeeeas 6-12
6-8 SYSIEM Wi IMONITOT ... ettt ettt e e e e e e e e e s bbb e e e e e e e e e e e e nnbbeesnneees 6-12
6-9 [tanium™ Processor Performance Monitor Register Model ..., 6-14
6-10 Processor Status Register (PSR) Fields for Performance Monitoring............cccceeeeeiiieiiniinnns 6-15
6-11 Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7]) ..vvveeeeeiaaainiiiiiiiieeeeaee e 6-16
6-12 Itanium™ Processor Generic PMC Registers (PMC[4,5]) ...cuuviiiiiiiiiiii e 6-16
6-13 Itanium™ Processor Generic PMC Registers (PMC[6,7])ccuuvreemiiiiaaaaniiiiiiiee e 6-16
6-14 Itanium™ Processor Performance Monitor Overflow Status Registers (PMC[0,1,2,3])........... 6-18
6-15 Itanium™ Processor Instruction Address Range Check Register (PMC[13]).....c.uuveveeereeeeennnn. 6-18
6-16 Opcode Match Registers (PMC[8,9]) .. . uuie ettt iee e e e ettt e e e e e e e e e e e e e e e e e e s nnees 6-20
6-17 Instruction Event Address Configuration Register (PMC[L0])......cccuuvimmireiiaeieiiiiiiieeeeeee e 6-22
6-18 Instruction Event Address Register Format (PMD[0,1]....ccceiiiiiiiiiiiiiiieieee e 6-23
6-19 Data Event Address Configuration Register (PMCLL])...cceeiiiiuiiiiiiiiieee e 6-25
6-20 Data Event Address Register Format (PMDJ2,3,17]) .. ceeeieaaiiiiiiieieeee e 6-25
6-21 |A-64 Branch Trace Buffer Configuration Register (PMC[12]).....uueieieiaiiiiiiiiiiieieiaee e 6-28
6-22 Branch Trace Buffer Register Format (PMD[8-15])coouuiiiiiiiiiieee e 6-30
6-23 |A-64 Branch Trace Buffer Index Register Format (PMD[16])ccoeeeeiiiiiiiiiiiiiiiieeaaeeee e, 6-31
7-1 Event Monitors in the Itanium™ Processor Memory Hierarchy ..., 7-9
7-2 L1 Instruction Cache and Prefetch MONITOrS.oooiiiiiiie e 7-10
7-3 L1 Data CaChe MONITOISeiiiiiaeeee ittt e e e et e e e e e e e e e e e e bt e aeeaaaaaeeaeas 7-11
7-4 [tanium™ Processor Instruction and Data TLB MONItOrS.........oooiiiuiiiiiiiiiieee e 7-15
Tables

4-1 [tanium™ Processor WCB EVICtion CONAItIONSccooiiiiiiiiieiiis e 4-1
6-1 Average Latency per Request and Requests per Cycle Calculation Example...........cccccuvveeee. 6-4
6-2 [tanium™ Processor EARs and Branch Trace BUffer..........ccccocoiiiiiiici e 6-7
6-3 [tanium™ Processor Event Qualification MOAESoooviiiiiiiiieiiii e 6-10
6-4 [tanium™ Processor Performance Monitor Register Set........ccccvviieiieieeeeieiiccieiieeeeee e 6-15
6-5 Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])ccccvvvverrenrnn.. 6-15
6-6 [tanium™ Processor Generic PMD Register Fields. ... 6-16
6-7 [tanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7]) c.vvvvveveeeveiiiiiiiiieieneeeeeeeenn, 6-17
6-8 Itanium™ Processor Performance Monitor Overflow Register Fields (PMCJ[0,1,2,3]).............. 6-18
6-9 Itanium™ Processor Instruction Address Range Check Register Fields (PMC[13]) 6-19
6-10 Itanium™ Processor Instruction Address Range Check by Instruction Set..........ccccccvveeeeennn. 6-19
6-11 Opcode Match Register Fields (PMC[8,9])ccccrrrrriiiiiieiecieiiiiieeire e e e e e e e s senreeaer e e e e e e s e snennnes 6-20
6-12 Instruction Event Address Configuration Register Fields (PMC[10])........ccccvvvrrereeriiiicrennennnnn. 6-22
6-13 Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tIb=0)...........ccccvrereeerernnnn. 6-23
6-14 Instruction EAR (PMDJ[0,1]) in Cache Mode (PMC[10].tIb=0)ccevrreeeeeiiiiiiiiiiiiireee e e 6-24
6-15 Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tIb=1)ccoeecirrrrrirrrreeeenn, 6-24
6-16 Instruction EAR (PMDJ[0,1]) in TLB Mode (PMC[L0].tIh=1)....cccvvmmiieieeeeeciiciiiee e e e 6-24
6-17 Data Event Address Configuration Register Fields (PMC[L11]) ...uuuurrirereeeeiiiiiiiiinrieeeeeeeeesnenenns 6-25
6-18 PMCJ[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)..........cccccvvrrrvrreeeeennn. 6-26

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 \

6-19
6-20
6-21
6-22
6-23
6-24
6-25

7-2
7-3
7-4
7-5

77
7-8

7-9

7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
7-23
7-24
7-25
7-26

Vi

PMDI[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tIb=0)..........cccccummimreieriaannnnnnns 6-26
PMCJ[11] Unmask Field in TLB Miss Mode (PMC[L11].tID=1)......cuuiiiiiiiiiiaiieiiiiiieeeeeee e 6-27
PMDI[2,3,17] Fields in TLB Miss Mode (PMCJ11].tIb=1)ccoiiiiiiiiiiieiieee e 6-27
IA-64 Branch Trace Buffer Configuration Register Fields (PMCJ12])coocciiiiiiiiiiiieninniinns 6-28
IA-64 Branch Trace Buffer Register Fields (PMD[8-15])ccccuutriiiieiiaaiiee it 6-30
IA-64 Branch Trace Buffer Index Register Fields (PMDJ[L16]).......cuueeeieiiaaniiiiiiiiiiieieeeeeaeeeeeaes 6-31
Information Returned by PAL_PERF_MON_INFO for the Itanium™ Processor..................... 6-32
IA-64 and IA-32 Instruction Set Execution and Retirement MONItOrScccceviiieieiiiiieeeeeeeeeenn, 7-2
IA-64 and IA-32 Instruction Set Execution and Retirement Performance Metrics..................... 7-2
Instruction Issue and RetireMeNt EVENTSuu it eee e 7-2
Retired Event Selection by Opcode MatCh.............uiiiiiiiiiiiiie e 7-3
Floating-point EXECULION IMONITOLScciiiiiiiiiiiiiieiee ittt e e e et e e e e e e e e e e sanbenbeees 7-3
Control and Data Speculation MONITOISuuiiiiiiii ittt e e eeeeas 7-4
INST_TYPE Unit Mask for Control and Data Speculation Events..............ccoccocciiiiiniiiiiiinnen. 7-4
Itanium™ Processor Control/Data Speculation Performance Metrics.........cccvveeveeieeiiiiiiiiinnen. 7-4
[tanium™ ProcesSOr MemOrY EVENESooiiiiiiiiiii ettt e e e e e e 7-4
[tanium™ Processor Stall Cycle MONITOIS ... 7-5
[tanium™ Processor BranCh MONITOISuuuuuiiuiiiiiis e ie e e ee e e e e e e e e e e e ee e ee e 7-5
Branch Selection Based on Branch Prediction Result and Branch Direction............................ 7-6
Branch Selection Based on Branch Prediction QULCOMEuuviviiiiiiiiiiiieieieie e eeeeeeee e, 7-6
Branch Selection Based on Branch Prediction QULCOMEuvviviiiiiiiiiiiiiieieieieeeeeeeeeeeeee e, 7-7
Multi-way Branch Selection Based on Branch Path ... 7-7
Slot Unit Mask for BR_TAKEN _DETAILeuiiiiiiiaaiie ettt e e e e e e 7-7
Itanium™ Processor Cache Performance RatioS........cccooovoieeiiiiiiiiiie 7-9
L1 Instruction Cache and Instruction Prefetch Monitors............c.ccooiiiiriiiceee e, 7-10
L1 Data Cache MONITOIScccoi i e bbb ararae e eeas 7-11
(I O 1ol a T 1Y o]] (o] = PRSP 7-12
[N O 1ol a Lol 1Y o] 1 (o] £ PSP 7-12
L3 READS DerVed BEVENTSottt e et ee e e e e e e e e e e annnes 7-13
L3 WRITES DEINVE EVENLSttt ettt e e e e e e e e e et eaeaaa e e e e e anennes 7-13
[tanium™ Processor SYStEM MONIOFSc.uueiieiiiiieeeeitiieee et ee et e et e e e et ee e s sineeee s es 7-14
[tanium™ Processor TLB Performance MEtriCSooiiiiaiiiiiiiiiiiiiieiee e 7-14
[tanium™ Processor Instruction and Data TLB MONITOrScccevuviiiiiiiieiiee e 7-15

Intel® IA-64 Architecture Software Developer’'s Manual, Rev. 1.0

intel.

About this Manual 1

The | A-64 architecture is a unique combination of innovative features such as explicit parallelism,

predication, speculation and more. The architecture is designed to be highly scalableto fill the ever
increasing performance requirements of various server and workstation market segments. The

| A-64 architecture features arevolutionary 64-bit instruction set architecture (ISA) which appliesa
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A
key feature of the |A-64 architecture is1A-32 instruction set compatibility.

The Intel 1A-64 Architecture Software Developer’s Manpadvides a comprehensive description
of the programming environment, resources, and instruction set visible to both the application and
system programmer. In addition, it also describes how programmers can take advantage of 1A-64
featuresto help them optimize code. This manual replaces the |A-64 Application Developer's
Architecture Guid€Order Number 245188) which contains a subset of the information presented
in this four-volume set.

1.1 Overview of Volume 1: IA-64 Application
Architecture

This volume defines the | A-64 application architecture, including application level resources,
programming environment, and the 1A-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

1.1.1 Part 1. IA-64 Application Architecture Guide

Chapter 1, “About this Manuafirovides an overview of all volumes in timtel 1A-64 Architecture
Software Developer’s Manual

Chapter 2, “Introduction to the IA-64 Processor Architectymedvides an overview of the IA-64
architecture system environments.

Chapter 3, “IA-64 Execution Environmendescribes the 1A-64 register set used by applications
and the memory organization models.

Chapter 4, “IA-64 Application Programming Modajives an overview of the behavior of 1A-64
application instructions (grouped into related functions).

Chapter 5, “IA-64 Floating-point Programming Modeéscribes the IA-64 floating-point
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an IA-64 System Environméestribes the
operation of IA-32 instructions within the IA-64 System Environment from the perspective of an
application programmer.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 1-1

1.1.2

1.2

1.2.1

1-2

intel.

Part 2: IA-64 Optimization Guide

Chapter 7, “About the IA-64 Optimization Guidgives an overview of the |1A-64 optimization
guide.

Chapter 8, “Introduction to I1A-64 Programmingifovides an overview of the IA-64 application
programming environment.

Chapter 9, “Memory Referenceliscusses features and optimizations related to control and data
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stredestribes optimization features
related to predication, control flow, and branch hints.

Chapter 11, “Software Pipelining and Loop Supp@rdvides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applicationgliscusses current performance limitations in
floating-point applications and 1A-64 features that address these limitations.

Overview of Volume 2: IA-64 System Architecture

This volume defines the IA-64 system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also provides a
useful system programmer's guide for writing high performance system software.

Part 1: IA-64 System Architecture Guide

Chapter 1, “About this Manuafirovides an overview of all volumes in thmtel |A-64 Architecture
Software Developer’s Manual

Chapter 2, “IA-64 System Environmerititroduces the environment designed to support execution
of 1A-64 operating systems running 1A-32 or IA-64 applications.

Chapter 3, “IA-64 System State and Programming Modegcribes the 1A-64 architectural state
which is visible only to an operating system.

Chapter 4, “IA-64 Addressing and Protectialéfines the resources available to the operating
system for virtual to physical address translation, virtual aliasing, physical addressing, and memory
ordering.

Chapter 5, “IA-64 Interruptionstiescribes all interruptions that can be generated by an 1A-64
processor.

Chapter 6, “IA-64 Register Stack Engingéscribes the 1A-64 architectural mechanism which
automatically saves and restores the stacked subset (8BR227) of the general register file.

Chapter 7, “IA-64 Debugging and Performance Monitorirsgdn overview of the performance
monitoring and debugging resources that are available in the IA-64 architecture.

Chapter 8, “IA-64 Interruption Vector Description#sts all 1A-64 interruption vectors.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

1.2.2

Chapter 9, “IA-32 Interruption Vector Descriptiongsts IA-32 exceptions, interrupts and
intercepts that can occur during 1A-32 instruction set execution in the IA-64 System Environment.

Chapter 10, “IA-64 Operating System Interaction Model with 1A-32 Applicatialegines the
operation of IA-32 instructions within the IA-64 System Environment from the perspective of an
IA-64 operating system.

Chapter 11, “IA-64 Processor Abstraction Layd€scribes the firmware layer which abstracts
IA-64 processor implementation-dependent features.

Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the IA-64 System Programmer’s Guigleés an introduction to the second
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronizatidescribes 1A-64 multi-processing
synchronization primitives and the |1A-64 memory ordering model.

Chapter 14, “Interruptions and Serializatiatgscribes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 15, “Context Managememi&scribes how operating systems need to preserve |IA-64

register contents and state. This chapter also describes IA-64 system architecture mechanisms that
allow an operating system to reduce the number of registers that need to be spilled/filled on
interruptions, system calls, and context switches.

Chapter 16, “Memory Managemerititroduces various IA-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculatiestribes the operating system
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handldestribes a variety of instruction
emulation handlers that IA-64 operating system are expected to support.

Chapter 19, “Floating-point System Softwai$cusses how IA-64 processors handle
floating-point numeric exceptions and how the 1A-64 software stack provides complete IEEE-754
compliance.

Chapter 20, “IA-32 Application Supportfescribes the support an IA-64 operating system needs to
provide to host IA-32 applications.

Chapter 21, “External Interrupt Architecturdéscribes the 1A-64 external interrupt architecture
with a focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “I/O Architecturedescribes the IA-64 I/O architecture with a focus on platform issues
and support for the existing IA-32 1/O port space platform infrastructure.

Chapter 23, “Performance Monitoring Suppai&scribes the IA-64 performance monitor
architecture with a focus on what kind of operating system support is needed from |A-64 operating
systems.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 1-3

1.2.3

1.3

1.3.1

1.3.2

1-4

intel.

Chapter 24, “Firmware Overviewhtroduces the IA-64 firmware model, and how various
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization, and
operating system boot.

Appendices

Appendix A, “IA-64 Resource and Dependency Semansasimarizes the dependency rules that
are applicable when generating code for IA-64 processors.

Appendix B, “Code Examplegirovides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the IA-64 and IA-32 instruction sets, including
instruction format/encoding.

Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About this Manuafrovides an overview of all volumes in timtel | A-64 Architecture
Software Developer’s Manual

Chapter 2, “IA-64 Instruction Referencptovides a detailed description of all IA-64 instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “IA-64 Pseudo-Code Functiompsbvides a table of pseudo-code functions which are
used to define the behavior of the 1A-64 instructions.

Chapter 4, “IA-64 Instruction Formatslescribes the encoding and instruction format instructions.

Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base 1A-32 Instruction Referenpebvides a detailed description of all base IA-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “IA-32 MMX™ Technology Instruction Referengebvides a detailed description of
all IA-32 MMX™ technology instructions designed to increase performance of multimedia
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “IA-32 Streaming SIMD Extension Instruction ReferempeeVides a detailed

description of all IA-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

1.4

1.5

Overview of Volume 4: ltanium™ Processor
Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itanium™
processor, the first IA-64 processor.

Chapter 1, “About this Manualirovides an overview of four volumes in timel 1A-64
Architecture Software Developer's Manual

Chapter 2, “Register Stack Engine Suppetinmarizes Register Stack Engine (RSE) support
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Suppaittails size of physical and virtual address,
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behadestribes the behavior of write
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementatiai@scribes model specific behavior of
IA-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoridgfines the performance monitoring features
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Even®immarizes the Itanium processor events and describes
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Executide%cribes some of the key
differences between an Itanium processor executing IA-32 instructions and the REntium
processor.

Terminology

The following definitions are for terms related to the 1A-64 architecture and will be used
throughout this document:

Instruction Set Architecture (I SA) — Defines application and system level resources. These
resources include instructions and registers.

IA-64 Architecture — The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

I A-32 Architecture—The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture
Software Developer’s Manual

| A-64 Processor —An Intel 64-bit processor that implements both the |A-64 and the |A-32
instruction sets.

IA-64 System Environment —The | A-64 operating system privileged environment that supports
the execution of both |A-64 and | A-32 code.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 1-5

1.6

1-6

intel.

| A-32 System Environment — The operating system privileged environment and resources as
defined by the Intel Architecture Software Developer’s Manugésources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.

IA-64 Firmware — The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) —The I1A-64 firmware layer which abstracts | A-64 processor
features that are implementation dependent.

System Abstraction Layer (SAL) —The |A-64 firmware layer which abstracts |A-64 system
features that are implementation dependent.

Related Documents

The following documents contain additional material related to the Intel® 1A-64 Architecture
Software Developer’s Manual

« Intel Architecture Software Developer’s Manual This set of manuals describes the Intel
32-bit architecture. They are readily available from the Intel Literature Department by calling
1-800-548-4725 and requesting Order Numbers 243190, 243191and 243192, or can be
downloaded at http://developer.intel.com/design/litcentr.

* IA-64 Software Conventions and Runtime Architecture Guid@his document defines
general information necessary to compile, link, and execute a program on an | A-64 operating
system. It can be downloaded at http://devel oper.intel.com/design/iab4.

* | A-64 System Abstraction Layer Specification — This document specifies requirements to
develop platform firmware for | A-64 processor systems.

» Extensible Firmware | nterface Specification — This document defines a new model for the
interface between operating systems and platform firmware. It can be downloaded at
http://developer.intel.com/technology/efi.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Register Stack Engine Support 2

2.1 RSE Modes

The Itanium processor implements the enforced lazy RSE mode. Refer to Chapter 6, “|A-64
Register Stack Engineh Volume 2for a description of the RSE modes.

2.2 RSE and Clean Register Stack Partitions

On the Itanium processor, the internal RSE pointer RSE.BSPLoad is always equal to AR.BSPStore,
meaning that the size of the clean register stack partition is always zero. This implies that, on the
Itanium processor, fd ushr s instruction will create a dirty region of size zero and an invalid

region of size equal to 96 - CFM.sof. On other implementations that maintain a clean partition,

f1 ushrs behavior may differ by creating a clean register stack partition in addition to an invalid
partition and a zero-sized dirty partition. As a result, the Itanium processor’'s RSE may perform
more mandatory fills upon a branch-retuisn.(ret) orrfi following af | ushr s instruction than

an implementation that maintains a clean partition.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 2-1

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Virtual Memory Management Support 3

3.1 Page Size Supported

The following page sizes are supported on the Itanium processor: 4K, 8K, 16K, 64K, 256K, 1M,
4M, 16M and 256M bytes.

3.2 Physical and Virtual Addresses

The | A-64 architecture requires that a processor implement at least 54 virtual address bits and
32 physical address bits. The Itanium processor implements 54 virtual address bits (51 address bits
plus 3 region index bits) and 44 physical address hits.

3.3 Region Register ID

The Itanium processor implements the minimum region register |1Ds allowed by the |A-64
architecture. The region register ID contains 18 hits.

3.4 Protection Key Register

The | A-64 architecture requires aminimum of 16 protection key registers, each at least aswide as
theregion register IDs. The Itanium processor implements 16 protection key registers, each 21 bits
wide.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 3-1

Intel® IA-64 Architecture Software Developer's Manual, Rev. 1.0

intel.

Processor Specific Write Coalescing
(WC) Behavior 4

4.1

4.2

Write Coalescing

For increased performance of uncacheable references to frame buffers, previous Intel 1A-32
processors defined the Write Coalescing (WC) memory type. WC coal esces streams of data writes
into asingle larger bus write transaction. Refer to the Intel Architecture Software Developer's
Manualfor additional information.

On the Itanium processor, WC loads are performed directly from memory and not from coal escing
buffers. It has a separate 2-entry, 64-byte Write Coalesce Buffer (WCB) which is used exclusively
for WC accesses. Each bytein the line has avalid bit. If all the valid bits are true, then thelineis
full and will be evicted (or flushed) by the processor.

Note: WC behavior of the Itanium processor in the |A-32 System Environment is similar to the
Pentium 111 processor. Refer to the Intel Architecture Software Developer’s Mantiad
more information.

WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries
are flushed). These conditions are followed when the processor is operating in the IA-64 System
Environment:

Table 4-1. ltanium™ Processor WCB Eviction Conditions

Eviction Condition IA-64 Instructions

Memory Fence (mf) mf

Architectural Conditions for WCB Flush

Memory Release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g
Flush Cache (fc) hit on WCB yes
Flush Write Buffers (fwb) yes
Any UC load no?
Any UC store no?@
UC load or ifetch hits WCB no?
UC store hits WCB no?

WC load/ifetch hits WCB

WC store hits WCB

a. I1A-64 architecture doesn't require the WC buffers to be coherent w.r.t to UC load/store operations.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 4-1

4.3

4-2

WC Buffer Flushing Behavior

As mentioned previously, the Itanium processor WCB contains two entries. The WC entries are

flushed in the same order asthey are allocated. That is, the entries are flushed in written order. This
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC
entry at a time and does not write the second WC entry until the first one is full.

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
always flushed in a program written order for a “well-behaved” stream, even in the presence of
interrupts. For example, consider the following scenario: if software issues a “well-behaved”
stream, but is interrupted in the middle; one of the WC entries could be patrtially filled. The WCB
(including the partially filled entry) could be flushed by the OS kernel code or by other processes.
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the
other entry. Note that the resumed context could be interrupted again in the middle of filling up the
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC
buffer is flushed is random.

WCB eviction is performed for full lines by a single 64-byte bus transaction in a stream of 8-byte
packages. For partially full lines, the WCB is evicted using up to eight 8-byte transactions with the
proper byte enables. When flushing, WC transactions are given the highest priority of all external
bus operations.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Model Specific Instruction
Implementation 5

This section describes how 1A-64 instructions with processor implementation-specific features,
behave on the Intel Itanium processor.

5.1 Id.bias

If the instruction hits L1D? or L2 cache and the state of the line is exclusive (E) or modified (M),
thelineis returned and remains in cache; no external bustraffic is generated. If the line is shared
(S) or invalid (1) or theinstruction missesthe L 2, it istreated as a store miss by the L3/bus. Theline
isreturned and stored in E state by the processor in the L2 and L3 cache.

Please refer to page 2-126 in Volume 3 for a detailed description of thel d instruction.

52 Ifetch Exclusive Hint

The exclusive hint inthel f et ch instruction allows the cache line to be fetched in an exclusive (E)
state. On the Itanium processor, an| f et ch transaction that has a snoop hit will be cached in an
shared (S) state; otherwise, it is cached in an exclusive state.

Please refer to page 2-137 in Volume 3 for a detailed description of thel f et ch instruction.

5.3 fwb

The Itanium processor implements the flush write-back buffer (f wb) instruction. Thisinstruction
carries aweak memory attribute and causes the coalescing buffer to be flushed. The L1D and L2
store buffers are not flushed.

Please refer to page 2-117 in Volume 3 for a detail ed description of the f wb instruction.

1. The Intel Itanium™ processor cache hierarchy consists of the following levels: on-chip L1l, L1D, L2 caches, and
off-chip L3 cache.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 5-1

5.4

5.5

5-2

thash

The | A-64 architecture defines at hash instruction for generating the hash address for long format
VHPT. t hash isimplementation specific. On the Itanium processor, since the hashing function is
performed in the HPW, the HPW will generate the VHPT Entry which corresponds to the virtual
address supplied. The hashing function is given in the following pseudo-code:

If (GR[r3].nat ='1 or uninplenented virtual address bits) then {
GRrl] ='0; // treated as a specul ative access.
GR[rl].nat = "1;
}

el se {

Mask = (27PTA.size) - 1;
HPN = VA{50: 0} >> RR[VA{63:61}]. ps; /1l Hash Page Nunber unsigned right shift.
/1 mov 2 RR checks for supported ps
if (PTA vf=32) { /1 32B PTE (Long format)
Hash_I ndex = HPN ~ (zero{63:18} || rid{17:0})
VHPT_Of fset = Hash_Index << 5 ;

}
if (PTA vf=8) { /1 8B PTE
Hash_I ndex = HPN ;
VHPT_Of fset = Hash_I ndex << 3;
}
GRr1l] = (PTA base{63:61} << 61)
|| ([(PTA base{60: 15} & ~Mask{60:15}) ||
(VHPT_Of f set {60: 15} & Mask{60: 15})] << 15)
|| VHPT_Of f set{14: 0} ;
}

}
Please refer to page 2-224 in Volume 3 for a detailed description of thet hash instruction.

ttag

The |A-64 architecture definesthe t t ag instruction for generating the tag for along format VHPT
entry. t t ag isimplementation specific. The HPW will generate the tag for the long format VHPT
entry which corresponds to the virtual address supplied. The function is:

If (GR[r3].nat =1 or uninplemented virtual address bits) then {
GRr1l] ='0;
GR[rl].nat = '1;
}

el se {

GR[r1] =(VA{50:0}>> RR[VA{63:61}].PS) "
((zero{5:0} || RRIVA{63:61}].RI D{17:0}) << 39);

}

Please refer to page 2-228 in Volume 3 for a detailed description of thet t ag instruction.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

5.6 ptc.e

On the Itanium processor, asingle pt c. e purges all trandation cache (TC) entries in both the
instruction and data TLBs. The caches are not flushed.

Please refer to page 2-192 in Volume 3 for a detailed description of the pt ¢ instruction.

57 mf.a

In the 1A-64 architecture, the nf . a instruction is amemory acceptance fence for UC transactions
only. On the Itanium processor, nf . a isimplemented as an acceptance fence for both cacheable
and UC datatransactions (but not | fetches). The processor stalls until all databuffersinthelL2 and
bus are empty. This does not include buffers for instruction and L3 WB buffer in the bus request
queue.

Please refer to page 2-140 in Volume 3 for a detailed description of the nf instruction.

5.8 Prefetch Behavior

The Itanium processor does not initiate prefetches with post-increment loads.

5.9 Temporal and Non-temporal Hints Support

| A-64 architecture provides memory locality hints for data accesses that can be used for allocation
control in the processor cache hierarchy. For more details on this topic, please refer to Volume 1,
Section 4.4.6. Implementation of locality hintsisleft as an implementation-specific feature on

| A-64 processors.

On the Itanium processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta.
The Itanium processor does not support a non-temporal buffer; instead, non-temporal accesses are
alocated in L2 cache with biased replacement.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 5-3

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

In

tel.

Processor Performance Monitoring 6

6.1

This chapter defines the performance monitoring features on the Itanium processor. The Itanium
processor provides four 32-bit performance counters, more than 50 monitorable events, and several
advanced monitoring capabilities. This chapter outlines the targeted performance monitor usage
models, defines the software interface and programming model, and lists the set of monitored
events.

| A-64 architecture incorporates architected mechanisms that allow software to actively and directly
manage performance critical processor resources such as branch prediction structures, processor
data and instruction caches, virtual memory trandlation structures, and more. To achieve the highest
performance levels, dynamic processor behavior can be monitored and fed back into the code
generation process to improve observed run-time behavior or to expose higher levels of instruction
level parallelism. One can quantify and measure behavior of real-world 1A-64 applications, tools
and operating systems. These measurements will be critical for compiler optimizations and the
efficient use of several architectural features such as speculation, predication, and more.

The remainder of this chapter is split into the following two subsections:

» Section 6.1, "Performance Monitor Programming Moddistusses how performance
monitors are used and presents various Itanium processor performance monitoring
programming models.

» Section 6.2, "Performance Monitor Stat#fines the Itanium processor specific PMC/PMD
performance monitoring registers.

Performance Monitor Programming Models

This section introduces the Itanium processor performance monitoring features from a
programming model point-of-view and describes how the different event monitoring mechanisms
can be used effectively. The Itanium processor performance monitor architecture focuses on the
following two usage models:

» Workload Characterization: the first step in any performance analysis is to understand the
performance characteristics of the workload under staegtion 6.1.1, "Workload
Characterizationdiscusses the Itanium processor support for workload characterization.

 Profiling: profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and relating them
back to their code. Their primary objective is to understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced IA-64 architectural features such as predication
and speculation benefit from run-time profile information to optimize instruction schedules.
The Itanium processor supports instruction granular statistical profiling of branch mispredicts
and cache misses. Details of the Itanium processor’s profiling support are described in
Section 6.1.2, "Profiling"

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-1

6.1.1

6.1.1.1

intel.

Whenever monitoring overhead isirrelevant, but accuracy is the primary objective, system and
processor designers may resort to tracing processor activity at the system or the processor bus
interface. However, trace based performance analysis and hardware tracing of the Itanium
processor are beyond the scope of this documentation.

Workload Characterization

Thefirst step in any performance analysisis to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

« Event Rate Monitoring: Event rates of interest include average retired instructions-per-clock
(IPC), data and instruction cache miss rates, or branch mispredict rates measured across the
entire application. Characterization of operating systems or large commercial workloads (e.g.
OLTP analysis) requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second or bus utilization 8deton 6.1.1.1, "Event
Rate Monitoring"discusses event rate monitoring.

» Cycle Accounting: The cycle break-down of a workload attributes a reason to every cycle
spent by a program. Apart from a program'’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flush8sction 6.1.1.4, "Cycle Accountingliscusses cycle
accounting.

Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run and then computing the desired rates. For instance, two basic
Itanium processor events that count the number of retired 1A-64 instructions
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_CYCLES) allow a
workload'’s instructions per cycle (IPC) to be computed as follows:

IPC = (IA64_INST_RETIRED.4 — IA64_INST_RETIRED.}) / (CPU_CYCLES, —
CPU_CYCLES)

Time-based sampling is the basis for many performance debugging tools [VTune, gprof, Windows
NT*]. As shown inFigure 6-1 time-based sampling can be used to plot the event rates over time,
and can provide insights into the different phases the workload moves through.

Figure 6-1. Time-based Sampling

6-2

A

Event Rate

Time

-
Sample Interval

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

6.1.1.2

6.1.1.3

On the Itanium processor, many event types (e.g. TLB misses or branch mispredicts) are limited to

a rate of one per clock cycle. These are referred to as “single occurrence” events. However, in the
Itanium processor multiple events of the same type may occur in the same clock. We refer to such
events as “multi-occurrence” events. An example of a multi-occurrence events on the Itanium
processor is data cache misses (up to two per clock). Multi-occurrence events, such as the number
of entries in the memory request queue, can be used to the derive average number and average
latency of memory accesses. The next two sections describe the basic Itanium processor
mechanisms for monitoring single and multi-occurrence events.

Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium processor performance counters.
For all single occurrence events a counter is incremented by up to one per clock cycle. Duration
counters that count the number of clock cycles during which a condition persists are considered
“single occurrence” events. Examples of single occurrence events on the Itanium processor are
TLB misses, branch mispredictions, or cycle-based metrics.

Multi-occurrence Events, Thresholding and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Itanium processor are retired
instructions or the number of live entries in the memory request queue. The Itanium processor’s
four performance counters are asymmetrical. While all counters handle single-occurrence and
multi-occurrence events with event rates up to three per cycle, only two counters can handle
multi-occurrence events with event rates up to seven per cycle. For detétlsc8ern 6.2.2,
"Performance Counter Registers"

Thresholding capabilities are available in the Itanium processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “for how many cycles did the memory
request queue contain more than two entries?” or “during how many cycles did the machine retire
more than three instructions?” to be answered. This capability allows micro-architectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding requests and the average number of cycles that requests were pending is
of interest. To calculate the average number or latency of multiple outstanding requests in the
memory queue, we need to know the total number of requegig &nd, in each cycle, the number

of live requests per cycle/cycle). By summing up the live requestgdicycle) using a
multi-occurrence counta@mlive is directly measured by hardware. We can now calculate the

average number of requests and the average latency as follows:

» Average outstanding requests/cycl&nrg,/ At
» Average latency per requesEnjiye / Notal

An example of this calculation is givenTable 6-1 in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-3

Table 6-1. Average Latency per Request and Requests per Cycle Calculation Example

6.1.1.4

Time [Cycles] 1 2 3 4 5 6 7 8
Requests In 1 1 1 1 1 0 0 0
Requests Out 0 0 0 1 1 1 1 1
Niive 1 2 3 3 3 2 1 0
INjive 1 3 6 9 12 14 15 15
Ntotal 1 2 3 4 5 5 5 5

The Itanium processor provides the following capabilities to support event rate monitoring:
 Clock cycle counter
* Retired instruction counter
« Event occurrence and duration counters
« Multi-occurrence counters with thresholding capability

Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low IPC
occurs concurrently with a peak of cache miss activity, chances are that cache misses are causing a
performance problem. To eliminate such guess work, the Itanium processor provides a set of IA-64
cycle accounting monitors, that break-down the number of cycles that are lost due to various kinds
of micro-architectural events. As showrFigure 6-2 this lets us account for every cycle spent by

a program and therefore provides insight into an application’s micro-architectural behavior. Note
that cycle accounting is different from simple stall or flush duration counting. Cycle accounting is
based on the machine’s actual stall and flush conditions and accounts for overlapped pipeline
delays, while simple stall or flush duration counters do not. Cycle accounting determines a
program’s cycle break-down by stall and flush reasons, while simple duration counters are useful in
determining cumulative stall or flush latencies.

Figure 6-2. IA-64 Cycle Accounting

Inherent Program Data Access Branch | Fetch Other
Execution Latency Cycles Mispredicts Stalls Stalls
-- ITE
30% 20% 15% 10% 10%
H\HH\HH\HH\HH\HHHHHHH\HH\HH

100% Execution Time

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

The Itanium processor cycle accounting monitors account for all major single and multi-cycle stall
and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline order
(i.e. delaysthat occur later in the pipe and that overlap with earlier stage delays are reported as
being caused later in the pipeling). The eight stall and flush reasons are prioritized in the following
order:

1. Branch Mispredict Cycle: branch mispredicts, pipeline flushes (includes interrupts and
exceptions)

Data Access Cycle: memory pipeline full, data TLB stalls, and load-use stalls
Execution Latency Cycle: scoreboard stalls and FPU stalls

RSE Active Cycle: RSE spill/fill stall

Issue Limit Cycle: instruction issue, stops, or resource oversubscription stalls
Instruction Access Cycle: instruction fetch stalls due to instruction cache or TLB misses
Taken Branch Cycle: instruction fetch branch bubbles

Fetch Window Cycle: partia instruction fetch stalls due to non instruction cache line aligned
branch targets

© N o gk~ WD

Four of the eight categories (1,2,3,6) are directly measurable as the Itanium processor events. The
other four categories (4,5,7,8) are not measured directly. Instead four combined categories are
available as the Itanium processor events: branch cycles (1+7), memory cycles (2+4), execution
cycles (3+5), and instruction fetch cycles (6+8) are directly measurable as a I tanium processor
event. For details refer to Section 7.3, “Cycle Accounting Events” on page.7-5

6.1.2 Profiling

Profiling is used by application developers and profile-guided compilers, optimizing linkers and
run-time systems. Application developers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback developers can make changes to
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced IA-64 architectural features such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Itanium processor’s performance
monitors:

» Program Counter Sampling

» Miss Event Address Sampling: Itanium processor Event Address Registers (EARS) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, instruction and data TLBs).

» Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-5

6.1.2.1

Program Counter Sampling

Application tuning tools like [V Tune, gprof] use time-based or event-based sampling of the
program counter and other event countersto identify performance critical functions and basic
blocks. As shown in Figure 6-3, the sampled points can be histogrammed by instruction addresses.
For application tuning, statistical sampling techniques have been very successful, because the
programmer can rapidly identify code hot-spotsin which the program spends a significant fraction
of itstime or where certain event counts are high.

Figure 6-3. Event Histogram by Program Counter

6.1.2.2

-

Event Frequency

A

|
Address Space

Program counter sampling points the performance analysts at code hot-spots, but does not indicate

what caused the performance problem. Inspection and manual analysis of the hot-spot region along

with afair amount of guess work are required to identify the root cause of the performance

problem. On the Itanium processor, the cycle accounting mechanism (described in Section 6.1.1.4,

"Cycle Accounting") can be used to directly measure an application’s micro-architectural behavior.

The IA-64 architectural interval timer facilities (ITC and ITM registers) can be used for time-based
program counter sampling. Event-based program counter sampling is supported by a dedicated
performance monitor overflow interrupt mechanism described in detélume 2 Section 7.2.2,
"Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])"

To support program counter sampling, the Itanium processor provides the following mechanisms:
« Timer interrupt for time-based program counter sampling.
» Event count overflow interrupt for event-based program counter sampling.
« Hardware supported cycle accounting.

Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
micro-architectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
micro-architectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. This type of analysis requires
identification of instruction and data addresses related to micro-architectural “miss events” such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

Due to the super-scalar issue, deep pipelining, and out-of-order instruction completion of today’s
micro-architectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter
may be off by 2 dynamic instructions from the instruction that caused the miss event. On a Pentium
Pro processor, this distance increases to approximately 32 dynamic instructions. On the Itanium
processor it is approximately 48 dynamic instructions. If program counter sampling is used for miss
event address identification on the Itanium processor, a miss event might be associated with an
instruction almost five dynamic basic blocks away from where it actually occurred (assuming that
10% of all instructions are branches). Therefore, it is essential for hardware to precisely identify an
event’s address.

The Itanium processor provides a seewdnt address registers (EARS) that record the instruction

and data addresses of data cache misses for loads, the instruction and data addresses of data TLB
misses, the instruction addresses of instruction TLB and cache misses. A fobrashebrace

buffer captures sequences of branch instructidable 6-2summarizes the capabilities offered by

the EARs and branch trace buffer. Exposing miss event addresses to software allows them to be
monitored either by sampling or by code instrumentation. This eliminates the need for trace
generation to identify and solve performance problems and enables performance analysis by a
much larger audience on unmodified hardware.

Table 6-2. Itanium™ Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded
Instruction Cache Instruction fetches that miss Instruction Address
the L1 instruction cache Number of cycles fetch was in flight
(demand fetches only)
Instruction TLB (ITLB) Instruction fetch missed ITLB Instruction Address
(demand fetches only) Who serviced TLB miss: VHPT or software
Data Cache Load instructions that miss L1 | Instruction Address
data cache Data Address
Number of cycles load was in flight.
Data TLB Data references that miss Instruction Address
(DTLB) L1 DTLB Data Address
Who serviced TLB miss: L2 DTLB, VHPT or
software
Branch Branch Outcomes Branch Instruction Address
Trace Branch Target Instruction Address
Buffer Mispredict status and reason

The Itanium processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache misses or retired instructions. The performance
counter value is set up to interrupt the processor after a pre-determined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows an interrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval, and by increasing
the number of observation intervals.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-7

6.1.3

intel.

Event Qualification

On the Itanium processor, performance monitoring can be confined to a subset of all events. As

shown in Figure 6-4, events can be qualified for monitoring based on an instruction address range,

a particular instruction opcode, a data address range, an event specific “unit-mask”, the privilege
level and instruction set the event was caused by, and the status of the performance monitoring
freeze bit (PMCJ[O].fr).

IA-64 Instruction Address Range Check: The Itanium processor allows event monitoring to be
constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLL), functions, or loops of interest in the context of a large

IA-64 application. The 1A-64 instruction address range check is applied at the instruction fetch
stage of the pipeline and the resulting qualification is carried by the instruction throughout the
pipeline. This enables conditional event counting at a level of granularity smaller than dynamic
instruction length of the pipeline (approximately 48 instructions). The Itanium processor’s
instruction address range check operates only during IA-64 code execution (i.e. when PSR.is is
zero). For details, seégection 6.2.4, "|A-64 Instruction Address Range Check Register
(PMCI13])".

IA-64 Instruction Opcode Match: The Itanium processor provides two independent 1A-64
opcode match registers each of which match the currently issued instruction encodings with a
programmable opcode match and mask function. The resulting match events can be selected as
an event type for counting by the performance counters. This allows histogramming of
instruction types, usage of destination and predicate registers as well as basic block profiling
(through insertion of taggetbps). The opcode matcher operates only during IA-64 code
execution (i.e. when PSR.is is zero). Details are describ®ddtion 6.2.5, "IA-64 Opcode

Match Registers (PMC[8,9])"

IA-64 Data Address Range Check: The Itanium processor allows event collection for memory
operations to be constrained to a programmable data address range. This enables selective
monitoring of data cache miss behavior of specific data structures. For details, see

Section 6.2.6, "IA-64 Data Address Range Check (PMC[11])"

Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. For details, refer to the event pages in
Chapter 7, "Performance Monitor Events"

Privilege Level: Two bits in the processor status register are provided to enable selective
process-based event monitoring. The Itanium processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to
break-down event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level refer$ection 6.2.1, "Performance Monitor Control

and Accessibility"'

Instruction Set: The Itanium processor supports conditional event counting based on the
currently executing instruction set (IA-64 or 1A-32) by providing two instruction set mask bits
for each event monitor. This allows performance monitoring software to break-down event
counts into IA-64 and IA-32 contributions. For details, refeé8éation 6.2.1, "Performance
Monitor Control and Accessibility”

Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PMCJO0].fr). This ensures that the performance monitoring routines themselves, e.g.
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Figure 6-4. Itanium™ Processor Event Qualification

Instruction Address —

1A-64 Instruction
Address Range Check

Is IA-64 instruction pointer
in IBR range?

Instruction Opcode —

IA-64 Instruction Opcode Match

—» Does IA-64 opcode match?

Data Address —

IA-64 Data Address Range Check

(Memory Operations Only)

Is IA-64 data address
in DBR range?

Event —

Event Spefic "Unit Mask"

—» Did event happen and qualify?

Current Privilege
Level

Privilege Level Check

Executing at monitored
privilege level?

Current Instruction
Set (IA-64 or IA-32)

Instruction Set Check

Executing in monitored
instruction set?

Performance Monitor
Freeze Bit (PMC,,.fr)

Event Count Freeze

—» Is event monitoring enabled?

i

YES, all of the above are true;

this event is qualified.

000987

6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range

Check

The Itanium processor alows various event qualification mechanisms to be combined by providing
the instruction tagging mechanism shown in Figure 6-5. Instruction address range check and
opcode matching are available only for 1A-64 code; they are disabled when 1A-32 codeis

executing.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

6-9

Figure 6-5. Instruction Tagging Mechanism in the Itanium™ Processor

1A-64 Opcode IA-64 Data
| Matcher » Address Range
(PMCI8]) Check
(DBRs, PMC[11]) Event Select (PMCJi].es)

1A-64 Tag(PMC[8]) DBRRange Tag
Instruction
Address » Memory Ly

Range —| Event i

Check
PMC[13)]) !

Privilege Level Mask
Instruction Set Mask
IBRRange Tag {(PMCU].pIm, PMCIi].ism)
- Privilege
» [Level &
IA-64 Opcode Instruction Set
— Matcher > Check
(PMCI9)) Tag(PMCI[9]) Counter
(PMDIi)
000988

During |A-64 instruction execution (PSR.is is zero), the instruction address range check is applied
first. The resulting address range check tag (IBRRangeTag) is passed to two opcode matchers that
combine the instruction address range check with the opcode match. Each of the two combined tags
(Tag(PMCJ[8]) and Tag(PMC[9])) can be counted as aretired instruction count event (for details

refer to event description IA64 TAGGED_INSTRS RETIRED in Table 7-3 “Instruction Issue and
Retirement Events” on page 7-2

One of the combined 1A-64 address range and opcode match tags, Tag(PMCJ8]), qualifies all
down-stream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB
events) can further be qualified using a data address DBRRangeTag).

As summarized ifTable 6-3 data address range checking can be combined with opcode matching
and instruction range checking on the Itanium processor. Additional event qualifications based on
the current privilege level and the current instruction set can be applied to all events and are
discussed irsection 6.1.3.2, "Privilege Level ConstraingsidSection 6.1.3.3, "Instruction Set
Constraints!'

Table 6-3. [tanium™ Processor Event Qualification Modes
Instr. Address Opcode Matching Data Address
Event Qualification Modes Range Check Range Check
PMCJ[13].ta PMCI[8] PMCJ[11].pt
Unconstrained Monitoring (all events) 1 Oxffff_ffff_ffff_ffff 1
Instruction Address Range Check only 0 Oxffff_ffff_ffff_ffff 1
Opcode Matching only 1 Desired Opcodes 1
Data Address Range Check only 1 Oxffff_ffff_ffff_ffff 0
Instruction Address Range Check and 0 Desired Opcodes 1
Opcode Matching
6-10 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Table 6-3.

6.1.3.2

6.1.3.3

[tanium™ Processor Event Qualification Modes (Continued)

Instr. Address Opcode Matching Data Address
Event Qualification Modes Range Check Range Check
PMC[13].ta PMCI[8] PMC[11].pt
Instruction and Data Address Range Check 0 Oxffff_ffff_ffff_ffff 0
Opcode Matching and Data Address 1 Desired Opcodes 0
Range Check

Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the

operating system. In general, this has made performance analysis of asingle processin a
multi-processing system or a multi-process workload very difficult. To provide hardware support

for thiskind of analysis, |A-64 specifies three global bits (PSR.up, PSR.pp, DCR.pp) and a

per-monitor “privilege monitor” bit (PMCJ[i].pm). To break down the performance contributions of
operating system and user-level application components, each monitor specifies a 4-bit privilege
level mask (PMCIJi].plm). The mask is compared to the current privilege level in the processor
status register (PSR.cpl), and event counting is enabled if PMCJi].pIm[PSR.cpl] is one. The
Itanium processor performance monitors control is discussBddtion 6.2.1, "Performance

Monitor Control and Accessibility"

PMC registers can be configured as user-level monitors (PMCJi].pm is zero) or system-level
monitors (PMCJi].pm is one). A user-level monitor is enabled whenever PSR.up is one. PSR.up can
be controlled by an application using thenr uminstructions. This allows applications to
enable/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is zero, events during
interruptions are not counted, if DCR.pp is one, they are included in the kernel counts.

As shown inFigure 6-6 Figure 6-7andFigure 6-8 single process, multi-process, and system level
performance monitoring are possible by specifying the appropriate combination of PSR and DCR
bits. These bits allow performance monitoring to be controlled entirely from a kernel level device
driver, without explicit operating system support. Once the desired monitoring configuration has
been setup in a process’ processor status register (PSR), “regular” unmodified operating context
switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-down of event counts can be
generated as outlined 8ection 7.2, "Performance Monitoringf Volume 2

Instruction Set Constraints

On the Itanium processor, monitoring can additionally be constrained based on the currently
executing instruction set as defined by PSR.is. This capability is supported by the four generic
performance counters as well as the instruction and data event address registers. However, the
IA-64 instruction address range checking, 1A-64 opcode matching and the 1A-64 branch trace
buffer, only support IA-64 code execution. When these IA-64 only features are used, the
corresponding PMC register instruction set mask (PMC]Ji].ism) should be set to 1A-64 only (01) to
ensure that events generated by IA-32 code do not corrupt the 1A-64 event counts.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-11

Figure 6-6. Single Process Monitor

PMC.pm =0 PMC.pm =0 PMC.pm=1
PMC.pIm = 1000 PMC.plm = 1001 PMC.pim = 1001
DCR.pp=0 DCR.pp =0 DCR.pp=1
000989
Figure 6-7. Multiple Process Monitor
Usel-level, cpl# 3 Usef-level, cplF 3 User-level, cp| § 3
(Applicatior]) (Applicatior]) (Application)
|
Kernel-level, cpl = 0 Kernel-level, cgl= 0 Kerngl-level, cpl|= 0
(©s) (©s) (©s)
Interrypt-level, gpl = 0 Interrypt-level, cpl = 0 Interryipt-level, ggl = 0
Handlers) Handlers) Handlers
. N
Proc A | ProcB | Proc C Proc A ' ProcB | Proc C Proc A | ProcB | Proc C
PSRa/g.up = 1, others 0 PSRa/g.up = 1, others 0 PSRa/g.pp = 1, others 0
PMC.pm =0 PMC.pm =0 PMC.pm =1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp=0 DCR.pp=1
000990
Figure 6-8. System Wide Monitor
Usef(-level, cpl|=3 Usef-level, cpl{=3 Usef-level, cpl|=3
(Application) (Applicatior]) (Application)
A
Kerngl-level, cgl =0 Kerngl-level, cgl =0 Kerngl-level, cpgl =0
(0S) (0S) (0S)
Interrypt-level, cpl = 0 Interrypt-level, cpl = 0 Interrypt-level, cpl = 0
Handlers) Handlers) Handlers)
. A
Proc A | ProcB | ProcC ProcA | ProcB | ProcC Proc A | ProcB | ProcC
AllPSR.up=1 AllPSR.up=1 AllPSR.pp=1
PMC.pm=1 PMC.pm =0 PMC.pm=1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp=0 DCR.pp=1
000991

6-12

Useltlevel, cpll=3 Usertlevel, cp| =3 Useftlevel, cpll=3
(Applicatiory) (Application) (Mpplicatiorf)
Kernel-level, cpl = 0 Kerngl-level, cpl =0 Kerngl-level, cgl =0
(0S) (0s (0S)

Interrupt-level, gpl = 0
Handlers

Interryipt-level, gpl = 0
Handlers

Interrypt-level, gpl = 0
Fandlers)

A

Proc A | ProcB | Proc C
PSR .up =1, others 0

ProcA | ProcB | Proc C
PSRy .up =1, others 0

Proc A | ProcB | ProcC
PSRa .pp =1, others 0

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

6.2

6.2.1

Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC)
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide
data values from the monitors. This section describes the Itanium processor performance
monitoring registers which expands on the 1A-64 architectural definition. As shown in Figure 6-9,
the Itanium processor provides four 32-bit performance counters (PMC/PMD[4,5,6,7] pairs), and
the following model-specific monitoring registers: instruction and data event address registers
(EARSs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match registers
and an instruction address range check register.

Table 6-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMCJ[0,1,2,3]. The four generic performance counter pairs are
assigned to PMC/PMD[4,5,6,7]. The event address registers and the branch trace buffer are
controlled by three configuration registers (PMC[10,11,12]). Captured event addresses and cache
miss latencies are accessible to software through five event address data registers
(PMDJ[0,1,2,3,17]) and a branch trace buffer (PMD[8-16]). On the Itanium processor, monitoring
of some events can additionally be constrained to a programmabl e instruction address range by
appropriate setting of the instruction breakpoint registers (IBR) and the instruction address range
check register (PMC[13]). Two opcode match registers (PMC[8,9]) allow monitoring of some
events to be qualified with a programmable opcode. For memory operations, events can be
qualified by a programmable data address range by appropriate setting of the data breakpoint
registers (DBR) and the data address range check bitsin PMC[11].

Performance Monitor Control and Accessibility

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PMC[0].fr) affect the behavior of all performance monitor
registers.

Finer, per monitor, control is provided by three PMC register fields (PMC[i].plm, PMC[i].ism, and
PMCJi].pm). Instruction set masking based on PMCJi].ism is an Itanium processor model-specific
feature. Event collection for a monitor is enabled under the following constraints on the Itanium
processor:

Moni tor Enabl e; =(not PMC[O].fr) and PMC[i].pln{PSR cpl] and ((not

PMJi].isnfPSRis]) or (PMi]=12)) and (not (PMJi].pm and PSR up) or (PMi].pm
and PSR pp))

Figure 3-2, “Processor Status Register (PSR)” on pagim ¥@ume 2defines the PSR control
fields that affect performance monitoring. For a detailed definition of how the PSR bits affect event
monitoring and control accessibility of PMD registers, please refeettion 3.3.2, "Processor
Status Register (PSR3hdSection 7.2.1, "Generic Performance Counter Registejlume 2

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-13

Figure 6-9. Itanium™ Processor Performance Monitor Register Model

Performance Monitoring Register Set

Performance Counter

Overflow Status Registers Processor Status Register
63 0 0
pmc, PSR
pmc,
pme, Default Control Register
pmc,
63 0
Clo DCR
Performance Counter Performance Counter Performance Monitor
Configuration Registers Data Registers Vector Register
63 0 63 0 63 958
Pme Pmes cryg PMV
pmcs pmcs
pmcs pmcs
pmc, pmc, IA-64 Generic
Register Set
1A-64 Opcode Match Instruction/Data Event
Registers Address Data Registers Itanium™ Processor
63 0 63 0 Implementation-
pmc, pmc, instr Specific Register Set
pmc, pmc, :
pmc,
Instruction/Data Event Address ~ P™¢3 data
Configuration Registers pme;,
63
pPMCy, instr. Branch Trace
pmc,; data Buffer Registers
63 0
pmc,
Branch Trace Buffer pme,

Configuration Register
63 0 | | '

mep []
e A E—
IA-64 Instruction Address pmes []

Range Check Register
63 0

pme []

000992

6-14 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Table 6-4. Itanium™ Processor Performance Monitor Register Set

Configu-

Monitoring ration Data
Feature Registers R((eg,l\the)rs Description
(PMC)
Interrupt Status PMCI0,1,2,3] none See Section 6.2.3, "Performance Monitor Overflow Status

Registers (PMC[0,1,2,3])"

Event Counters PMC[4,5,6,7] | PMD[4,5,6,7] | See Section 6.2.2, "Performance Counter Registers"

Opcode PMC[8,9] none See Section 6.2.5, "IA-64 Opcode Match Registers

Matching (PMCJ8,9))"

Instruction EAR PMC[10] PMD[0,1] See Section 6.2.7.1, "Instruction EAR (PMCJ[10],
PMD[0,1])"

Data EAR PMCJ[11] PMD[2,3,17] | See Section 6.2.7.4, "Data EAR (PMCJ[11], PMD[2,3,17])"

Instruction PMCI[13] none See Section 6.2.4, "IA-64 Instruction Address Range

Address Range Check Register (PMC[13])"

Check

Data Address PMC[11] none See Section 6.2.6, "IA-64 Data Address Range Check

Range Check (PMC[11])"

Asdefined in Table 6-4, each of these PMC registers controls the behavior of its associated
performance monitor data registers (PMD). Table 6-5 defines per monitor controls that apply to
PMCJ[4,5,6,7,10,11,12]. The Itanium processor model-specific PMD registers associated with
instruction/data EARs and the branch trace buffer (PMDJ[0,1,2,3,8-17]) can be read reliably only
when event monitoring is frozen (PMCJ[Q].fr is one).

Figure 6-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 4 3 2 1

5 0
cier ol o

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

other ‘ is ‘ cpl

Table 6-5. Performance Monitor PMC Register Control Fields (PMCJ[4,5,6,7,10,11,12])

Field Bits Description

pim 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Itanium™ processor will not preserve the value of the corresponding PMD register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor, and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.

ism 25:24 | Instruction Set Mask - controls performance monitor operation based on the current
instruction set.

The instruction set mask applies to PMC[4,5,6,7,10,11] but not to PMC[12].

00: monitoring enabled during IA-64 and IA-32 instruction execution (regardless of PSR.is)
10: bit 24 low enables monitoring during 1A-64 instruction execution (when PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)

11: disables monitoring

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-15

6.2.2

intel.

Performance Counter Registers

The Itanium processor provides four generic performance counters (PMC/PMDJ[4,5,6,7] pairs).
The implemented counter width on the Itanium processor is 32 bits. The Itanium processor counters
are not symmetrical (i.e. not al event types can be monitored by all counters). Counters
PMC/PMDI[4,5] can track events whose maximum per-cycle event increment is 7. Counters
PMC/PMDI6,7] can track events whose maximum per-cycle event increment is 3.

The Itanium processor extends the generic 1A-64 counter configuration register (PMC) layout by
adding two fields for specifying a unit mask (umask) and a threshold field. These model-specific
fields are described in Table 6-6. A counter overflow occurs when the counter wraps (i.e. a carry
out from bit 31 is detected). Software can force an external interruption or external notification
after N events, by prel oading the monitor with a count value of 2%2 - N. When accessible, software
can continuously read the performance counter registers PMD[4,5,6,7] without disabling event
collection. The processor guarantees that software will see monotonically increasing counter
values.

Figure 6-11 and Table 6-6 define the layout of the Itanium processor Performance Counter Data
Registers (PMD[4,5,6,7]). Figure 6-12, Figure 6-13 and Table 6-6 define the layout of the Itanium
processor Performance Counter Configuration Registers (PMC[4,5,6,7]).

Figure 6-11. Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7])

63 3231 0

PMD[4,5,6,7] | Sxt32 | count

32 32

Table 6-6. Itanium™ Processor Generic PMD Register Fields

Field Bits Description

sxt32 | 63:32 | Writes are ignored, Reads return the value of bit 31, so count values appear as sign
extended.

count 31:0 | Event Count. The counter is defined to overflow when the count field wraps (carry out from
bit 31).

Figure 6-12. Itanium™ Processor Generic PMC Registers (PMC[4,5])

63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0
PMCJ[4,5] ignored ism |ig|thresh-| umask |ig es ig/pm|oiev, plm
old
38 2 3 4 1 7 1 1 11 4

Figure 6-13. Itanium™ Processor Generic PMC Registers (PMC[6,7])

6-16

63 2625242322 21 20 19 16 15 14 87 6 5 43 0
PMC[6,7]| ignored |ism| ig [thresh-| umask |ig es ig/pm|oiev] plm
old
38 2 2 4 1 7 1 1 11 4

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Table 6-7. Itanium™ Processor Generic PMC Register Fields (PMCJ[4,5,6,7])

Field

Bits

Description

plm

3.0

Privilege Level Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])".

External visibility - When 1, an external notification (BPM pin strobe) is provided
whenever the counter wraps, i.e a carry out from bit 31 is detected. External notification
occurs regardless of the setting of the oi bit. On the Itanium™ processor, PMC[4] external
notification strobes the BPMO pin, PMC[5] external notification strobes the BPM1 pin,
PMC[6] external notification strobes the BPM2 pin, and PMC[7] external notification
strobes the BPM3 pin.

Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMCJ0].fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMC[0].fr) remains
unchanged. Overflow occurs when the counter wraps, i.e. a carry out from bit 31 is
detected. Counter overflows generate only one interrupt.

es

6

14:8

Privilege Monitor. See Table 6-5, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])".

Event select - selects the performance event to be monitored.
Itanium processor event encodings are defined in Chapter 7, "Performance Monitor
Events".

umask 19:16 | Unit Mask - event specific mask bits (see event definition for details)
threshold | 22:20 | Threshold -enables thresholding for “multi-occurrence” events.
21:20 | ppmc(4,5] define 3 threshold bits 22:20, while PMC[6,7] define 2 threshold bits 21:20.
When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.
ism 25:24 | Instruction Set Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields

(PMC[4,5,6,7,10,11,12])".

ignored | 63:24 | Read zero, Writes ignored.

6.2.3 Performance Monitor Overflow Status Registers

(PMCJ0,1,2,3])

The Itanium processor supports four counters. As shown in Figure 6-14 and Table 6-8 only
PMCI[Q]{7:4} bitsare populated. All other overflow bits areignored, i.e. they read as zero and
ignore writes.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-17

intel.

Figure 6-14. Itanium™ Processor Performance Monitor Overflow Status Registers
(PMCI0,1,2,3])
63 8 7 6 5 4 3 2 1 0
| ignored (PMCI[0]) overflow |ignored| fr |
4 3 1
| ignored (PMCI1]) |

| ignored (PMCI2]) |

| ignored (PMCI3]) |

Table 6-8. Itanium™ Processor Performance Monitor Overflow Register
Fields (PMC[0,1,2,3])

Register Field Bits Description

PMCJO0] fr 0 Performance Monitor “freeze” bit - when 1, event monitoring is disabled.
When 0, event monitoring is enabled. This bit is set by hardware whenever a
performance monitor overflow occurs and its corresponding overflow
interrupt bit (PMC.o0i) is set to one. SW is responsible for clearing it. When
the PMC.oi bit is not set, then counter overflows do not set this bit.

PMCI0] ignored 3:1 | Read zero, Writes ignored.

PMCI[O0] overflow 7:4 | Event Counter Overflow - When bit n is one, indicate that the PMD,,
overflowed. This is a

bit vector indicating which performance monitor overflowed. These overflow
bits are set on their corresponding counters overflow regardless of the state
of the PMC.oi bit. These bits are sticky and multiple bits may be set.

PMC[0] ignored 63:8 | Read zero, Writes ignored.

PMC ignored 63:0 | Read zero, Writes ignored.
[1,2,3]

6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])

The Itanium processor alows event monitoring to be constrained to a range of instruction
addresses. All four architectural breakpoint registers (IBRs) are used to specify the desired address
range. The Itanium processor instruction address range check register PMC[13] specifies how the
resulting address match is applied to the performance monitors.

Figure 6-15. Itanium™ Processor Instruction Address Range Check Register (PMCJ[13])

63 1 0
ignored (PMC[13]) \ta\
61 1

6-18 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Table 6-9. Itanium™ Processor Instruction Address Range Check Register Fields (PMC[13])

Field Bits Description

ta 0 Tag All - when 1, all events are counted independent of instruction address and
instruction set. The default value of this PMC[13].ta should be set to one upon
reset.

Instruction address range checking is controlled by the “tag all” bit (PMC[13].ta). When
PMCJ13].ta is one, all instructions are tagged regardless of IBR settings. In this mode, events from
both IA-32 and IA-64 code execution contribute to the event count. When PMC[13].ta is zero, the
instruction address range check based on the IBR settings is applied to all IA-64 code fetches. In
this mode, IA-32 instructions are never tagged, and, as a result, events generated by IA-32 code
execution are ignoredable 6-10defines the behavior of the instruction address range checker for
different combinations of PSR.is and PMC[13].ta.

Table 6-10. Itanium™ Processor Instruction Address Range Check by Instruction Set

PSR.is
PMC,3.ta 0 (IA-64) 1 (IA-32)
0 Tag only IA-64 instructions if they match DO NOT tag any IA-32 operations.
IBR range
1 Tag all IA-64 and |A-32 instructions.Ignore IBR range.

The processor compares every 1A-64 instruction fetch address IP{63:0} with each of the four
architectural instruction breakpoint registers. Regardless of the value of the instruction break-point
fault enable (IBR x-bit), the following expression is evaluated for each of the Itanium processor’s
four IBRs:

IBRmatch = match(IP,IBRaddr, IBRo+jy+1.mask, IBRo+jy+1.plm)

On the Itanium processor, in which only 54 virtual and 44 physical address bits are implemented,
this IBR match is defined as follows:

IBRmatch = (IBR2+j}+1-PIM[PSR.cpl])

and (ANDy=50_o ((IBR;.addr{b} and IBRp«j;+1.mask{b}) = (IP{b} and IBR,+j;+1.mask{b})))
and (ANDy=s5 51 ((IBR;.addr{b} and IBRy«j+1.mask{b}) = (IP{50} and IBRy+j;+1.mask{b})))
and (AND,=¢g_56 (IBR;.addr{b}=I1P{50}))

and (AND,=ga:61 (IBR;.addr{b}=IP{b}))

The resulting four matches are combined with the PSR.is bit, two instruction address range check
register bits, the IBR x-bits, and PSR.db:

IBRRangeTag = (PMCJ[13].ta)

or ((not PSR.is)

and ((IBRmatch or IBRmatch or IBRmatch or IBRmatch)
and (not (PSR.db or IBRx or IBR3.x or IBRs.x or IBR;.X))))

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if
PMCJ13].ta is zero, PSR.is is zero, and if none of the IBR x-bits or PSR.db are set. Since the
architectural break-point registers (IBRs) are used to specify the desired performance monitor
address range, it is not possible to constrain monitoring when the IBRs are used in their

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-19

intel.

architectural break-point capacity, i.e. when PSR.db or an IBR x-bit is set. In other words, it is not
possible to use performance monitor address range checking when a debugger is running, unless
the debugger and the performance monitor software carefully synchronize their use of the IBRs.

The instruction range check tag is computed early in the processor pipeline and therefore includes
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units).
Therefore, software must accept alevel of range check inaccuracy for events generated by these
units, especially for non-looping code sequences that are shorter than the Itanium processor
pipeline. As described in Section 6.1.3.1, "Combining Opcode Matching, Instruction, and Data
Address Range Check", the instruction range check result may be combined with the results of the
| A-64 opcode match registers described in the next section.

6.2.5 IA-64 Opcode Match Registers (PMCJ[8,9])

6-20

The Itanium processor allows event monitoring to be constrained based on the |1A-64 encoding
(opcode) of an instruction. Registers PMC[8,9] allow two independent opcodes matches to be
specified. The |A-64 opcode matcher operates only during | A-64 code execution (i.e. when PSR.is
is zero).

Figure 6-16. Opcode Match Registers (PMC[8,9])

63 62 61 60 59 33 32 31 30 29 3 2 1 0
‘m‘ [‘ f ‘ b ‘ match ‘ignored‘ mask ‘ignored‘
1 1 1 1 27 3 27 3

Table 6-11. Opcode Match Register Fields (PMC[8,9])

Field Bits Width Description
mask 29:3 27 Bits that mask |1A-64 instruction encoding bits {40:27} and {12:0}
match 59:33 27 Opcode bits to match 1A-64 instruction encoding bits {40:27} and {12:0}
b 60 1 If 1: match if opcode is an B-syllable
f 61 1 If 1: match if opcode is an F-syllable
i 62 1 If 1: match if opcode is an I-syllable
m 63 1 If 1: match if opcode is an M-syllable

For opcode matching purposes, an |A-64 instruction is defined by two items: the instruction type
“itype” (one of M, I, F or B) and the 40-bit encoding “enco{40:0}" defined/atlume 3 Each
instruction is evaluated against each opcode match register (PMCJ[8,9]) as follows:

Match(PMCIi]) = (imatch (itype,PMCJi].mifb) and
ematch(enco,PMCJi].match,PMCJi]PMC]Ji].mask))

Where:

imatch(itype,PMC[i].mifb) = itype=M and PMC]Ji].m) or (itype=I and PMC]Ii].i) or (itype=F and
PMCIi].f) or (itype=B and PMCIi].b)

ematch(enco,match,mask) = ANDyg »7 ((enco{b}=match{b-14}) or mask{b-14}) and AND
b=12.0 ((enco{b}=match{b}) or mask{b})

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

6.2.6

This function matches encoding bits{ 40:27} (major opcode) and encoding bits{ 12:0} (destination
and qualifying predicate) only. Bits{ 26:13} of the instruction encoding are ignored by the opcode
matcher.

This produces two opcode match events that are combined with the PSR.is bit, and the instruction
range check tag (IBRRangeTag, see Section 6.2.4, "I A-64 Instruction Address Range Check
Register (PMC[13])") asfollows:

Tag(PMC[8]) = Match(PMC[8]) and IBRRangeTag and (not PSR.is)
Tag(PMC[9]) = Match(PMC[9]) and IBRRangeTag and (not PSR.is)

As shown in Figure 6-5, the two tags, Tag(PMC[8]) and Tag(PMCJ[9]), are staged down the
processor pipeline until instruction retirement, and can be selected as aretired instruction count
event. In this way, a performance counters (PMC/PMD[4,5,6,7]) can be used to count the number
of retired instructions within the programmed range that match the specified opcodes. All
combinations of the mifb bits are supported. To match A-syllable instructions both m and i bits
should be set to one. To match all instruction types, all mifb and all mask bits should be set to one.
Thiswill count the number of retired instructions within the programmed address range. One of the
combined | A-64 address range and opcode match tags, Tag(PMC[8]), qualifies most down-stream
pipeline events. To ensure that all events are counted independent of the | A-64 opcode matcher, all
mifb and all mask bits of PMC[8] should be set to one (all opcodes match). Tag(PMC[9]) is not
used to qualify downstream events.

IA-64 Data Address Range Check (PMC[11])

For instructions that reference memory, the Itanium processor allows event counting to be

constrained by data address ranges using the architectural data breakpoint registers (DBRs). Data
address range checking capability is controlled enabled by the “pass tags” bit in the Data Event
Address Register (PMCJ[11].pt). For details on PMC[11], ref&¢ction 6.2.7.4, "Data EAR
(PMC[11], PMDI[2,3,17])"

When enabled (PMCJ[11].pt is zero), data address range checking is applied to loads (all types),
stores, semaphore operations, and ftes ch instruction whose upstream opcode match
Tag(PMCJ8]) was set. When PMC[11].pt is one, RSE operations and VHPT walks are tagged only
if the opcode match Tag(PMCJ8]) was set for the operation that caused the RSE or VHPT activity.
When PMC[11].pt is zero, all RSE operations and VHPT walks that hit the programmed data
address range are tagged (regardless of the opcode match Tag(PMCJ8])). To capture all VHPT
walks when PMCJ[11].pt is zero, the minimum DBR mask granularity must be set to the size of a
single VHPT entry.

On the Itanium processor, in which only 54 virtual address bits are implemented, the performance
monitoring DBR match function is defined as follows:

DBRRangeMatch~

(AND b=50..0 ((DBRaddr{b} and DBRyxjj+1.-mask{b}) = (addr{b} and DBR+;;.1-mask{b})))
and(AND b=55..51 ((DBRaddr{b} and DBR,xj;.+1.mask{b}) = (addr{50} and
DBR[Z*i]ﬂ.mask{b})))

and(AND b=60..56 (DBRaddr{b}=addr{50}))

and(AND b=63:61 (DBRaddr{b}=addr{b}))

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-21

6.2.7

6.2.7.1

The resulting four matches are combined with PSR.db to form a single DBR match:

DBRRangeMatch = ((DBRRangeMatchy or DBRRangeMatch, or DBRRangeMatch, or
DBRRangeMatchyz)
and (not PSR.db))

Note: DBR matching for performance monitoring ignores the setting of the DBR r, w and plm
fields. Finally, the DBRRangeMatch is combined with PMC[11].pt and the upstream
opcode match tag Tag(PMC[8]) as follows:

DBRRangeTag = Tag(PMC[8]) and ((PMC[11].pt) or DBRRangeMatch)

DBR based data address range checking combined with opcode matching and instruction range
checking allows the following combinations of event monitoring on the Itanium processor.

Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])

This section defines the register layout for the Itanium processor instruction and data event address
registers (EARs). Sampling of four eventsis supported on the Itanium processor: instruction cache
and instruction TLB misses, data cache load misses, and data TLB misses. The EARs are
configured through two PMC registers (PMC[10,11]). EAR specific unit masks allow software to
specify event collection parameters to hardware. | nstruction and data addresses, operation latencies
and other captured event parameters are provided in five PMD registers (PMD[0,1,2,3,17]). The
instruction and data cache EARSs report the latency of captured cache events and allow latency
thresholding to qualify event capture. Event address data registers (PMDJ[0,1,2,3,17]) contain valid
data only when event collection is frozen (PMC[0].fr is one). Reads of PMDJ[0,1,2,3,17] while
event collection is enabled return undefined values.

Instruction EAR (PMC[10], PMD[0,1])

Theinstruction event address configuration register (PMC[10]) can be programmed to monitor
either L1 instruction cache or instruction TLB miss events. Figure 6-17 and Table 6-12 detail the
register layout of PMC[10]. Figure 6-18 describes the associated event address data registers
PMD[0,1].

Figure 6-17. Instruction Event Address Configuration Register (PMC[10])

6-22

63 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0
‘ ignored ‘ ism ‘ ignored ‘ umask ‘ ignored ‘tlb‘ pm‘ ign. ‘ pim
38 2 4 4 7 1 1 2 4

When the tib-bit (PMC[10].tIb) is set to zero instruction cache misses are monitored, when it is set
to oneinstruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD[0,1] depend on the setting of the tb bit, and are described
in Section 6.2.7.2, "Instruction EAR Cache Mode (PMC[10].tlb=0)" for instruction cache
monitoring and in Section 6.2.7.3, "Instruction EAR TLB Mode (PMC[10].tIlb=1)" for instruction
TLB monitoring.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Table 6-12. Instruction Event Address Configuration Register Fields (PMC[10])

Field Bits Description
pim 3.0 See Table 6-5.
pm 6 See Table 6-5.
tlb 7 Instruction EAR selector: instruction cache/TLB
if tlb=0: monitor L1 instruction cache misses

PMD[0,1] register interpretation see Table 6-14.

if thh=1: monitor instruction TLB misses
PMDI[0,1] register interpretation see Table 6-16.

umask 19:16 Instruction EAR unit mask
if tlh=0: instruction cache unit mask (definition see Table 6-13)
if thh=1: instruction TLB unit mask (definition see Table 6-15)
ism 25:24 See Table 6-5.

Figure 6-18. Instruction Event Address Register Format (PMDJ[0,1]

63 5 4 3 2 1 0
‘ Instruction Cache Line Address (PMD[0]) ‘ignored ‘tlb‘ v
59 3 11
63 12 11 0
ignored (PMDI1]) latency
52 12

6.2.7.2 Instruction EAR Cache Mode (PMCJ[10].tIb=0)

When PMC[10].tIb is zero, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmabl e threshold are captured. The threshold is specified as afour bit umask field in the
configuration register PMC[10]. Possible threshold values are defined in Table 6-13.

As defined in Table 6-14, the address of the instruction cache line missed the L 1 instruction cache
isprovided in PMDIQ]. If no qualified event was captured, the valid bit in PMD[0] is zero. The
latency of the captured instruction cache missin processor clock cyclesis provided in the latency
field of PMDI[1]. In cache mode, the TLB miss bit of PMD[0] is undefined.

Table 6-13. Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tIb=0)

umask Latency umask Latency
Threshold Threshold
Bits 3:0 [CPU cycles] Bits 3:0 [CPU cycles]
0000 >=4 0110 >= 256
0001 >=8 0111 >=512
0010 >=16 1000 >=1024
0011 >= 32 1001 >= 2048
0100 >=64 1010 >= 4096
0101 >=128 1011.. 1111 No events are captured.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-23

6.2.7.3

6-24

Table 6-14. Instruction EAR (PMDJ0,1]) in Cache Mode (PMC[10].tIb=0)

Register Field Bits Description

PMD[0] v 0 Valid Bit
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

tib 1 TLB Miss Bit (undefined in cache mode)
Instruction Cache 63:5 Address of instruction cache line that caused cache miss?
Line Address
PMD[1] latency 11:0 Latency in processor clocks

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The instruction and data address bits {60:51} of PMD[0] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[0] are ignored by the processor.

Instruction EAR TLB Mode (PMC[10].tlb=1)

When PMCJ[10].tIb is one, the instruction event address register captures addresses of instruction
TLB misses. The unit mask allows event address collection to capture specific subsets of
instruction TLB misses. Table 6-15 summarizes the instruction TLB umask settings. All
combinations of the mask bits are supported.

Asdefined in Table 6-16, the address of the instruction cache line fetch that missed the L1 TLB is
provided in PMDI[Q]. Thetlb bit indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. If no qualified event was captured, the valid bit in PMD[0] reads
zero. In TLB mode, the latency field of PMD[1] is undefined.

Table 6-15. Instruction EAR (PMCJ[10]) umask Field in TLB Mode (PMC[10].tlb=1)

umask Bit Instruction TLB EAR Unit Mask (Instruction TLB misses)
0 ignored
1 ignored
2 if one, capture Instruction TLB misses that hit VHPT
3 if one, capture Instruction TLB misses handled by software

Table 6-16. Instruction EAR (PMDJ[0,1]) in TLB Mode (PMC[10].tIb=1)

Register Field Bits Description

PMDI0] \% 0 Valid Bit
0: invalid address (EAR did not capture qualified event
1: EAR contains valid event data

tlb 1 TLB Miss Bit:
0: VHPT Hit
1: Instruction TLB Miss handled by software
Instruction Cache 63:5 Address of instruction cache line that caused TLB miss?
Line Address
PMDI[1] latency 11:2 undefined in TLB mode

a. The Itanium™ processor does not implement virtual address bits va{60:51}. The instruction address bits
{60:51} of PMDI0] read as a sign-extension of bit {50}. Writes to bits {60:51} of PMD[0] are ignored by the

processor.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])

The data event address configuration register (PMC[11]) can be programmed to monitor either L1
data cache load misses or L1 data TLB misses. Figure 6-19 and Table 6-17 detail the register layout
of PMCJ[11]. Figure 6-20 describes the associated event address data registers PMD[2,3,17]. The
tib bit in configuration register PM C[11] selects data cache or data TLB monitoring. The
interpretation of the umask field and registers PMD[2,3,17] depends on the setting of the tlb bit,
and is described in Section 6.2.7.5, "Data Cache Load Miss Monitoring (PM C[11].tlb=0)" for data
cache load miss monitoring and in Section 6.2.7.6, "Data TLB Miss Monitoring (PMC[11].tIb=1)"
for data TLB monitoring. The PMC[11].pt bit controls data address range checking which is
described in Section 6.2.6, "1A-64 Data Address Range Check (PMC[11])".

Figure 6-19. Data Event Address Configuration Register (PMC[11])

63 28 27 26 25 24 23 20 19 18 17 16 15

6 5 4 3 2 10

35

ignored ‘pt‘ ign. ‘ ism‘ ignored ‘ umask ‘ ignored s‘trb‘pm‘ign.‘ pim
1 2 2 4 4 7 1 1 2

4

Table 6-17. Data Event Address Configuration Register Fields (PMC[11])

Field Bits Description
plm 3.0 See Table 6-5.
pm 6 See Table 6-5.
tib 7 Data EAR selector: data cache/TLB

if tlb=0:monitor L1 data cache load misses
PMD[2,3,17] register interpretation see Table 6-19.

if tlb=1: monitor L1 data TLB misses
PMD[2,3,17] register interpretation see Table 6-21.

umask 19:16

Data EAR unit mask
if tlb=0: data cache unit mask (definition see Table 6-18)
if tlb=1: data TLB unit mask (definition see Table 6-20)

ism 25:24

See Table 6-5.

pt 28

Pass Tags. This bit enables/disables data address range checking. See Section 6.2.6,
"IA-64 Data Address Range Check (PMC[11])" for details.

if pt=1: then the Tag(PMC[8]) is passed down the pipeline unmodified.
if pt=0: data address range checking is enabled for memory operations.

Figure 6-20. Data Event Address Register Format (PMDJ[2,3,17])

63 4 3 2 1 0

‘ Instruction Address (PMD[17]) ‘ slot ‘ig‘ v‘

60 11

63 62 61 12 11 0

‘Ievel‘ ignored (PMDI3]) ‘ latency ‘
50 12

63 0

Data Address (PMD[2])

64

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-25

6.2.7.5

intel.

Data Cache Load Miss Monitoring (PMC[11].tIb=0)

If the Data EAR is configured to monitor data cache load misses (PMC[11].tIb=0), the umask is
used as aload latency threshold defined by Table 6-18.

Asdefined in Table 6-19, the instruction and data addresses as well as the load latency of a
captured data cache load missis presented to software in three registers PMD[2,3,17]. If no
qualified event was captured, the valid bit in PMD[3] is zero. In data cache load miss mode, the
level field of PMD[3] is undefined.

Table 6-18. PMCJ[11] Mask Fields in Data Cache Load Miss Mode (PMCJ[11].tIb=0)

umask Latency umask Latency
Threshold Threshold
Bits 3:0 [CPU cycles] Bits 3:0 [CPU cycles]
0000 >=4 0110 >= 256
0001 >=8 0111 >=512
0010 >=16 1000 >=1024
0011 >= 32 1001 >= 2048
0100 >= 64 1010 >= 4096
0101 >=128 1011.. 1111 No events are captured.

Table 6-19. PMDJ[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tIb=0)

6-26

Register Fields Bit Range Description
PMD[2] Data Address 63:0 64-bit address of data item that caused miss?
PMD[3] latency 11.0 Latency in CPU clocks

level 63:62 Undefined in data cache load miss mode
PMDI[17] valid 0 Valid bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction bundle slot of memory instruction. For IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction.?

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[2,17] are ignored by the processor.

The detection of data cache load misses requires aload instruction to be tracked during multiple
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Itanium processor data cache miss event address register can
only track asingle load at atime, not all data cache load misses may be captured. When the
processor hardware captures the address of aload (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turnsout tobean L1
data cache miss or not. If the monitored |oad turns out to be a cache miss, its parameters are latched
into PMD[2,3,17]. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache |oad miss from always being captured (in aregular sequence of
overlapped data cache load misses). While this mechanism will not always capture all data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

6.2.7.6 Data TLB Miss Monitoring (PMC[11].tIb=1)
If the Data EAR is configured to monitor data TLB misses (PMC[11].tIb=1), the umask defined by

Table 6-20 determine which data TLB misses are captured by the Data EAR. For TLB monitoring,
all combinations of the mask bits are supported.

Table 6-20. PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tIb=1)

umask Bit Data EAR Unit Mask (L1 data TLB misses)
0 reserved
1 if one, capture L1 TLB misses that hit L2 Data TLB
2 if one, capture L1 TLB misses that hit VHPT
3 if one, capture L1 TLB misses that was handled by software

Asdefined in Table 6-21, the instruction and data addresses of captured data TLB misses are
presented to softwarein PMD[2,17]. The level of the TLB hierarchy from which the L1 data TLB
miss was satisfied is recorded in the level field of PMD[3]. If no qualified event was captured, the
valid bit in PMD[17] and the level field in PMD[3] read zero. When programmed for data TLB
monitoring, the contents of the latency field of PMD[3] are undefined.

Table 6-21. PMDJ[2,3,17] Fields in TLB Miss Mode (PMC[11].tIb=1)

Register Field Bit Range Description
PMD[2] Data Address 63:0 64-bit address of data item that caused miss?®
PMD[3] latency 11:.0 Undefined in TLB Miss mode

level 63:62 Data TLB Miss Level

0: invalid address (EAR did not capture qualified event)
1: L2 Data TLB hit

2: VHPT hit

3: Data TLB miss handled by software

PMD[17] valid 0 Valid Bit:
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction Bundle Slot of memory instruction. In IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction®

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes
to bits {60:51} of PMD[2,17] are ignored by the processor.

6.2.8 IA-64 Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent | A-64 branch
instructions and their predictions and outcomes. The | A-64 branch trace buffer configuration
register (PMC[12]) defines the conditions under which branch instructions are captured and allows
the trace buffer to capture specific subsets of branch events. The | A-64 branch trace buffer operates
only during 1A-64 code execution (i.e. when PSR.isis zero).

In every cyclein which aqualified | A-64 branch retires, its source bundle address and slot number

are written to the branch trace buffer. The branches’ target address is written to the next buffer
location. If the target instruction bundle itself contains a qualified 1A-64 branch, the branch trace
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer entries:

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-27

intel.

onethat records the target instruction as a branch target (b-bit cleared), and another that records the

6.2.8.1

target instruction as a branch source (b-bit set). Asaresult, the branch trace buffer may contain a

mixed sequence of the branches and targets.

IA-64 Trace Buffer Collection Constraining

The | A-64 branch trace buffer configuration register (PMC[12]) defines the conditions under which
branch instructions are captured. These conditions are given in Figure 6-21 and Table 6-22, and
refer to conditions associated with the branch prediction and resolution hardware. These conditions

are
» Which branch prediction hardware structure made the prediction,
« The path of the branch (not taken/taken),
* Whether or not the branch path was mispredicted, and
« Whether or not the target of the branch was mispredicted.

Figure 6-21. I1A-64 Branch Trace Buffer Configuration Register (PMC[12])

63

16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 0

ignored ‘bac‘bpt‘ppm‘ ptm ‘ tm haﬁpm‘ ign. ‘ plm ‘
1 1 2 2 2 1 1 2 4

48

Table 6-22. IA-64 Branch Trace Buffer Configuration Register Fields (PMC[12])

Field

Bits

Description

plm

3:.0

See Table 6-5.

pm

6

See Table 6-5.

tar

7

Target Address Register:

1: capture TAR predictions
0: No TAR predictions are captured

tm

9:8

Taken Mask:

11: all IA-64 branches

10: Taken IA-64 branches only

01: Not Taken IA-64 branches only
00: No branch is captured

ptm

11:10

Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch predicted target address correctly

01: branch mispredicted target address

00: No branch is captured

ppm

13:12

Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)

00: No branch is captured

bpt

14

Branch Prediction Table:
10: No TAC predictions are captured

bac

15

Branch Address Calculator:

1: capture BAC predictions
0: No BAC predictions are captured

6-28

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

The Itanium processor uses the following micro-architectural structures for branch prediction: the
Target Address Registers (TAR), and Target Address Cache (TAC). Using the tar and bac fields of
the branch trace buffer configuration register (PMC[12]), collection in the branch trace buffer can
be restricted to only branches predicted by a subset of these prediction structures.

The Target Address Registers (TAR) are asmall and fast fully associative buffer that is exclusively

written to by branch predict instructions with the “.imp’ extension. A hit in the TAR will cause a
taken prediction and yield the target address of the branch. If the tar field in the branch trace buffer
configuration register (PMC[12]) is set to one, branches predicted by TAR will be included in the
trace buffer.

The Target Address Cache (TAC) is a larger structure that is also written to by branch predict
instructions, or the prediction hardware. The primary function of the TAC is to provide the target
address of a branch.

If the bpt field in the branch trace buffer configuration register (PMC[12]) is set to one, branches
predicted by the TAC will be included in the trace buffer.

If neither the TAR nor TAC generated a hit, the branch has to be predicted using the static hints
encoded in the branches and the target address has to be calculated. This is done by the branch
address corrector (BAC). If the bac field in the branch trace buffer configuration register (PMCJ[12])

is set to one, branches predicted by the branch address corrector will be included in the trace buffer.

Furthermore, using the ptm, ppm and tm fields in the branch trace buffer configuration register
(PMCJ12]) collection in the branch trace buffer can be restricted based on the correctness of target
and predicate prediction in addition to whether the branch was actually taken or not.

To summarize, an 1A-64 branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is)
and ((tnf1] and branch taken)
or (tn{0] and branch not taken)
)
and ((ptn{1] and hardware predicted target address correctly
and hardware predicted the branch path correctly
and branch is taken)
or (ptn{0] and hardware mnispredicted target address
and hardware predicted the branch path correctly
and branch is taken)
or (ptnf 0] and ptn{1])

and ((pprf 1] and hardware predicted the branch path correctly)
or (ppni0] and hardware m spredicted the branch path)

and ((bpt and branch was predicted by TAC)
or (bac and branch was predicted by BAQ)
or (tar and branch was predicted by TAR)

To capture all mispredicted IA-64 branches, the branch trace buffer configuration settings in
PMCJ[12] should be: Tm=11, ptm=01, ppm=01, bpt=1, bac=1, and tar=1.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-29

6.2.8.2 IA-64 Branch Trace Buffer Reading

The eight branch trace buffer registers PMD[8-15] provide information about the outcome of a
captured branch sequence. The branch trace buffer registers (PMD[8-15]) contain valid data only
when event collection is frozen (PMC[0].fr isone). While event collection is enabled, reads of
PMD[8-15] return undefined values. The registers follow the layout defined in Figure 6-22, and
contain the address of either a captured branch instruction (b-bit=1) or branch target (b-bit=0). For
branch instructions, the mp-bit indicates a branch misprediction. A branch trace register with azero
b-bit and a zero mp-bit indicates an invalid branch trace buffer entry. The slot field captures the slot
number of the first taken | A-64 branch instruction in the captured instruction bundle. A slot number
of 3indicates a not-taken branch. The target address bundle of abranch to 1A-32 (br . i a) is
recorded. An 1A-32 IMPE branch instruction and its | A-64 target are not recorded.

Figure 6-22. Branch Trace Buffer Register Format (PMD[8-15])

63 4 3 2 1 O
Address ‘ slot ‘mp‘ b‘
60 2 11

Table 6-23. IA-64 Branch Trace Buffer Register Fields (PMD[8-15])

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction

0: contents of register is a branch target

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)

if b=1 and mp=0: correctly predicted branch
if b=0 and mp=0: invalid branch trace buffer register
if b=0 and mp=1: valid target address

slot 3:2 if b=0: 00

if b=1: Slot index of first taken branch instruction in bundle
00: IA-64 Slot 0 branch/target

01: IA-64 Slot 1 branch/target

10: 1A-64 Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of 1A-64 branch instruction®
if b=0: 60-bit target bundle address of IA-64 branch instruction®

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits
pa{62:44}. When the processor captures an instruction address, bits {60:51} of PMD[8-15] are written by the
processor with a sign-extension of bit {50} of the captured address. When PMD[8-15] are written by software
bits {60:51} of PMD[8-15] can be written with any value (not necessarily a sign-extension of bit {50}).

In every cycleinwhich aqualified | A-64 branch retires?, its source bundle address and slot number

are written to the branch trace buffer. The branches’ target address is written to the next buffer
location. If the target instruction bundle itself contains a qualified 1A-64 branch, the branch trace
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer entries:

1. In some cases, the Itanium™ processor branch trace buffer will capture the source (but not the target) address of an
excepting branch instruction. This occurs on trapping branch instructions as well as fauliirzg br eak. b and
multiway branches.

6-30 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

one that records the target instruction as a branch target (b-bit cleared), and another that records the
target instruction as a branch source (b-bit set). Asaresult, the branch trace buffer may contain a
mixed sequence of the branches and targets.

The | A-64 branch trace buffer isacircular buffer containing the last four to eight qualified 1A-64
branches. The Branch Trace Buffer Index Register (PMD[16]) defined in Figure 6-23 identifies the
most recently recorded branch or target. In every cycle in which a qualified branch (branch or
target) is recorded, the branch buffer index (bbi) is post-incremented. After 8 entries have been
recorded, the branch index wraps around, and the next qualified branch will overwrite thefirst trace
buffer entry. The wrap condition itself is recorded in the full bit of PMD[16]. The bbi field of
PMD[16] defines the next branch buffer index that is about to be written.The following formula
computes the last written branch trace buffer PM D index from the contents of PMD[16]:

|ast-written-PM D-index = 8+ ([(8*PMD[16].full) + (PMC[16].bbi - 1)] % 8)

If both the full bit and the bbi field of PMD[16] are zero, no qualified branch has been captured by
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from
PMD[15] to PMD[8]. Once s&t, the full bit remains set until explicitly cleared by software, i.e. itis
asticky bit. Software can reset the bbi index and the full bit by writing to PMD[16].

Figure 6-23. IA-64 Branch Trace Buffer Index Register Format (PMD[16])

63 4 3 2 1 0
| ignored full bbi |
60 1 3

Table 6-24. IA-64 Branch Trace Buffer Index Register Fields (PMD[16])

6.2.9

Field Bit Range Description

bbi 2.0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD[8]]
Pointer to the next branch trace buffer entry to be written.
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped

if full=0: branch trace buffer has not wrapped

Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi, ev of all PMC registers are zero, and PMV.m
is set to one. This ensures that no interrupts are generated, and events are not externally visible. On
reset, PAL firmware ensures that the instruction address range check, the opcode matcher and the
data address range check areinitialized as follows:
* PMCJ[13].ta=1,
* PMC[8,9].mifb=1111, PMC[8,9].mask{29:3}= “all 1s”, PMC[8,9].match{59:33}= “all 0s”,
and

e PMC[11].ptis 1.

All other performance monitoring related state is undefined.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-31

intel.

PAL Call: Asdefined in Chapter 11, “IA-64 Processor Abstraction LayeNolume 2 the PAL
call PAL_PERF_MON_INFO provides software with information about the implemented
performance monitors. The Itanium processor specific values are summariadteiB-25

Low Power State: To ensure that monitor counts are preserved when the processor enters low
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the processor.
PAL_LIGHT_HALT preserves the original value of the PMC[0] register.

Table 6-25. Information Returned by PAL_PERF_MON_INFO for the Itanium™ Processor

Itanium™
PAL_PERF_MON_INFO _— Processor-
- = - Description L
Return Value specific
Value
PAL_RETIRED 8-bit unsigned event type for counting the number of 0x08
untagged retired IA-64 instructions.
PAL_CYCLES 8-bit unsigned event type for counting the number of 0x12
running CPU cycles.
PAL_WIDTH 8-bit unsigned number of implemented counter bits. 32
PAL_GENERIC_PM_PAIRS | 8-bit unsigned number of generic PMC/PMD pairs. 4
PAL_PMCmask 256-bit mask defining which PMC registers are populated. Ox3FFF
PAL_PMDmask 256-bit mask defining which PMD registers are populated. Ox3FFFF
PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can count O0xFO
running CPU cycles (event defined by PAL_CYCLES)
PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can count 0x10
untagged retired IA-64 instructions (event defined by
PAL_RETIRED)

6.2.10 References

[gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

[Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmarks: A
Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin - Madison,
July 1993.

[VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

[WINNT] Russ Blake, “Optimizing Windows NT™”, Volume 4 of the Microsoft “Windows
NT Resource Kit for Windows NT Version 3.51", Microsoft Press, 1995.

6-32 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

In

Performance Monitor Events 4

7.1

This chapter summarizes the Itanium processor events and describes how to compute commonly
used performance metrics from them. The event summaries are grouped as follows:

» Basic Events: clock cycles, retired instructiosdtion 7.

* Instruction Execution: instruction decode, issue and execution, data and control speculation,
and memory operationSéction 7.2

» Cycle Accounting Events: stall cycle breakdow&sdtion 7.3.

» Branch Events: branch predictioBection 7.4.

» Memory Hierarchy: instruction prefetch, instruction and data ca8wgion 7.5.
» System Events: operating system monitors, instruction and data BeBsdn 7.§.

Note: The Itanium processor provides elaborate features to collect performance metrics to
varying degrees of details. The user must have a good understanding of the architected
performance monitor mechanisms before attempting to collect datdo{sieee 2
Chapter #or more details). Also correct setup of the configuration register(s), privilege
levels and other parameters are required for generating data that is both meaningful and
correct.

The tables in the subsequent sections define events by specifying four attributes: symbolic event
name, a brief event description, the PMC/PMD counter that can count the event, and a hexadecimal
event code. Event codes and PMC/PMD counters are specified only for “monitored” events that are
directly measurable by the processor. Some performance metrics are not directly measurable, but
can be computed by combining or restricting one or more monitored event counts. These metrics
are listed in the tables as “derived” events.

Events with no suffix are directly measured in hardware. Events with a “.a” suffix are also directly
measured in hardware; the “.a” events are event name aliases. Events with a “.u” suffix are directly
measured in hardware; however, they require an event code with a specific unit mask setting.
PLease refer t8ection 6.2.2, "Performance Counter Registiasinore details on umask. Events

with a “.d” suffix are not measured in hardware directly, but can be computed from two or more
measured events.

Basic Events

Table 7-1summarizes four basic execution monitors. The CPU_CYCLES event can be used to
break out separate or combined 1A-64 or I1A-32 cycle counts (by constraining the PMC/PMD based
on the currently executing instruction set). The IA-64 retired instruction count
(IA64_INST_RETIRED.u) includes predicated true and false instructionsyarg] but excludes

RSE operations. These instruction categories (and others) can be monitored as separate events (for
details se&ection 7.2 Table 7-2defines IPC and average instructions/cycles per ISA transition
metrics.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-1

Table 7-1.

Table 7-2.

7.2

IA-64 and IA-32 Instruction Set Execution and Retirement Monitors

Execution Monitors Description PMC/PMD EveUnr;gglge/
CPU_CYCLES CPU Cycles 4,5,6,7 0x12
IA64_INST_RETIRED.u Retired IA-64 Instructions 45 0x08 / 0x0
IA32_INSTR_RETIRED IA-32 Instructions Retired 4,5,6,7 0x15
ISA_TRANSITIONS IA-64 to IA-32 ISA Transitions 4,5,6,7 0x14

IA-64 and IA-32 Instruction Set Execution and Retirement Performance Metrics

Performance Metric

Performance Monitor Equation

IA-64 Instruction per Cycle

IA64_INST_RETIRED.u/ CPU_CYCLES[IA64]

IA-32 Instruction per Cycle

IA32_INSTR_RETIRED / CPU_CYCLESJ[IA32]

Average |A-64 Instructions/Transition

IA64_INST_RETIRED.U/ (ISA_TRANSITIONS*2)

Average IA-32 Instructions/Transition

IA32_INSTR_RETIRED/ (ISA_TRANSITIONS*2)

Average |A-64 Cycles/Transition

CPU_CYCLES[IA64]/ (ISA_TRANSITIONS*2)

Average IA-32 Cycles/Transition

CPU_CYCLES[IA32)/ (ISA_TRANSITIONS*2)

Instruction Execution

This section describes events rel ated to instruction issue and retirement (Table 7-3), multimediaand

monitors (Table 7-9).

Table 7-3. Instruction Issue and Retirement Events

7-2

floating-point (Table 7-5), data and control speculation (Table 7-6), as well as memory instruction

Decode, Issue, Retirement Monitors Description PMC/PMD | Event Code
INST_DISPERSED Instructions Dispersed 4,5,6,7 0ox2d
EXPL_STOPS Explicit Stops 4,5,6,7 0x2e
IMPL_STOPS_DISPERSED Implicit Stops 4,5,6,7 ox2f
IA64_TAGGED_INSTRS_RETIRED Retired Tagged |A-64 Instructions 45 0x082
NOPS_RETIRED Retired NOP Instructions 4,5 0x30
PREDICATE_SQUASHED_RETIRED | Instructions Squashed Due to 4,5 0x31
Predicate Off
RSE_REFERENCES_RETIRED RSE Accesses 4,5,6,7 0x65
RSE_LOADS_RETIRED RSE Load Accesses 4,5,6,7 0x32
RSE_STORES_RETIRED.d RSE Store Accesses None Derived®

a. See Section Table 7-4., "Retired Event Selection by Opcode Match" for umask values.
b. RSE_STORES_RETIRED.d = (RSE_REFERENCES_RETIRED) —(RSE_LOADS_RETIRED).

Instruction cache lines are delivered to the execution core and are “dispersed” to the Itanium
processor functional units. The number of dispersed instructions (INST_DISPERSED) depends on
the stop bits in the instruction stream (EXPL_STOPS) as well as functional unit availability
(IMPL_STOPS_DISPERSED).

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

Retired instruction counts (IA64_TAGGED_INSTRS RETIRED, NOPS _RETIRED) are based on
tag information specified by the address range check and opcode match facilities described in
Section 6.1.3, "Event Qualification”. The tagged retired instruction counts include predicated off
instructions but exclude RSE operations. A separate event
(PREDICATE_SQUASHED_RETIRED) is provided to count predicated off instructions.
RSE_REFERENCES RETIRED counts the number of retired RSE operations.

There are two ways to count the total number of retired 1A-64 instructions. Either the untagged
IA64_INST_RETIRED.u event can be used (PMC/PMD, only), or the

IA64_TAGGED_INSTRS RETIRED event. IA64_TAGGED_INSTRS_RETIRED counts number
of retired instructions (includes predicated off instructions) that match the instruction address range
and opcode match settingsin the IBR and PM C registers. The TAG_SEL ECT unit mask defined in
Table 7-4 dways qualifies the event count of IA64 TAGGED_INSTRS RETIRED with either the
opcode match register PMCg or PMCg. Note that the setting of PMCg qualifies all downstream
event monitors (see Section 6.1.3, "Event Qualification" for details). To ensure that other monitored
events are counted independent of the opcode matcher, m, i, f, b bits and all mask bits of PMCg
(Table 7-24) should be set to one (all opcodes match). The settings of PM Cq do not affect other
event monitors.

Table 7-4. Retired Event Selection by Opcode Match

TAG_SELECT PMC.umask {19:16} Description
PMCg tag 0011 Instruction tagged by Opcode matcher PMCg
PMCg tag 0010 Instruction tagged by Opcode matcher PMCg
All 0000 All retired instructions (regardless of whether they
were tagged or not)
Undefined All other umask settings Undefined event count

The floating-point monitors listed in Table 7-5 capture dynamic run-time information
(FP_FLUSH_TO_ZERO, FP_SIR_FLUSH).

Table 7-5. Floating-point Execution Monitors

Floating-point Monitors Description PMC/PMD | Event Code
FP_FLUSH_TO_ZERO FP Result Flushed to Zero 4,5,6,7 0x0b
FP_SIR_FLUSH FP SIR Flush Cycles 4,5,6,7 0x0c

Asdescribed in Table 7-6, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk. s instructions (INST_FAILED _CHKS_RETIRED), the
number of advanced check loads and check loads (ALAT_INST_CHKA_LDC) and failed
advanced check loads and no-clear check loads (ALAT_INST_FAILED CHKA_LDC) as seen by
the ALAT. The number of retired chk. s instructionsis monitored by the

IA64 TAGGED_INSTRS _RETIRED event with the appropriate opcode mask. Since the Itanium
processor ALAT is updated by operations on mispredicted branch paths the number of advanced
check loads needs an explicit event (ALAT_INST_CHKA_LDC). Finaly, the

ALAT _CAPACITY_MISS event can be used to monitors ALAT overflows.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-3

7-4

Table 7-6. Control and Data Speculation Monitors

Control and Data Speculation

Monitors Description PMC/PMD | Event Code
INST_FAILED_CHKS_RETIRED Failed Speculative Check Loads 4,5,6,7 0x35
ALAT_INST_CHKA_LDC Advanced Check Loads 4,5,6,7 0x36
ALAT_INST_FAILED_CHKA_LDC Failed Advanced Check Loads 4,5,6,7 0x37
ALAT_CAPACITY_MISS ALAT Entry Replaced 4,5,6,7 0x38

Using the two-bit instruction type unit mask described in Table 7-7, the four control and data
speculation events can be constrained to monitor integer, floating-point or al speculative
instructions. With the Itanium processor speculation monitors the performance metrics described in

Table 7-8 can be computed.

Table 7-7. INST_TYPE Unit Mask for Control and Data Speculation Events

Table 7-8.

SpeCLIJII\laStl_I_/_e_{_A\\((I:i:annced Pl\/{l(jél:J:rlré?sk Description
NONE xx00 no instructions are counted
INTEGER xx01 count speculative/advanced integer instructions only
FP xx10 count speculative/advanced floating-point instructions only
ALL xx11 count b_oth integer and floating-point speculative/advanced
instructions

[tanium™ Processor Control/Data Speculation Performance Metrics

Performance Metric

Performance Monitor Equation

Control Speculation Miss Ratio

INST_FAILED_CHKS_RETIRED /
IA64_TAGGED_INSTRS_RETIRED[chk.s]

Data Speculation Miss Ratio

ALAT_INST_FAILED_CHKA_LDC / ALAT_INST_CHKA_LDC

ALAT Capacity Miss Ratio

ALAT_CAPACITY_MISS/

IA64_TAGGED_INSTRS_RETIRED]ld.sa,ld.a,Idfp.a,ldfp.sa]

Finally, Table 7-9 defines six memory instruction retirement events to count retired loads and
stores. These counts include RSE operations. The load counts include failed check load

instructions.

Table 7-9. Itanium™ Processor Memory Events

Memory Monitors Description PMC/PMD | Event Code
LOADS_RETIRED Retired Loads 4,5,6,7 0x6¢
STORES_RETIRED Retired Stores 4,5,6,7 oxéd
UC_LOADS_RETIRED Retired Uncacheable Loads 4,5,6,7 0x6e
UC_STORES_RETIRED Retired Uncacheable Stores 4,5,6,7 0Ox6f
MISALIGNED_LOADS_RETIRED Retired Misaligned Load Instructions 4,5,6,7 0x70
MISALIGNED_STORES_RETIRED | Retired Misaligned Store Instructions 45,6,7 0x71

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

7.3 Cycle Accounting Events

Asdescribed in Section 6.1.1.4, "Cycle Accounting”, the Itanium processor provides eight directly
measured and four derived stall cycle monitors. Table 7-10 lists the Itanium processor stall events.

Table 7-10. Itanium™ Processor Stall Cycle Monitors

Stall Acgounting Description PMC/PMD | Event Code
Monitors
BRANCH_MISPRED_CYCLE | Branch Mispredict Stall Cycle 4,5,6,7 0x00
DATA_ACCESS_CYCLE Data Access Stall Cycle 4,5,6,7 0x03
EXEC_LATENCY_CYCLE Execution Latency Stall Cycle 4,5,6,7 0x02
INST_ACCESS_CYCLE Instruction Access Cycle 4,5,6,7 0x01
BRANCH_CYCLE Combined Branch Stall Cycle 4,5,6,7 0x04
MEMORY_CYCLE Combined Memory Stall Cycle 4,5,6,7 0x07
EXECUTION_CYCLE Combined Execution Stall Cycle 4,5,6,7 0x06
INST_FETCH_CYCLE Combined Instruction Fetch Stall Cycle 4,5,6,7 0x05
RSE_ACTIVE_CYCLE.d RSE Active Cycle 4,5,6,7 Derived?
ISSUE_LIMIT_CYCLE.d Issue Limit Cycle 456,7 Derived®
TAKEN_BRANCH_CYCLE.d | Taken Branch Cycle 4,5,6,7 Derived®
FETCH_WINDOW_CYCLE.d | Fetch Window Cycle 45,6,7 Derivedd

a. RSE_ACTIVE_CYCLE.d = (MEMORY_CYCLE) —(DATA_ACCESS_CYCLE).

b. ISSUE_LIMIT_CYCLE.d = (EXECUTION_CYCLE) —(EXEC_LATENCY_CYCLE).

¢. TAKEN_BRANCH_CYCLE.d = (BRANCH_CYCLE) ~(BRANCH_MISPRED_CYCLE).
d. FETCH_WINDOW_CYCLE.d = (INST_FETCH_CYCLE) —(INST_ACCESS_CYCLE).

7.4 Branch Events

The five measured Itanium processor branch events listed in Table 7-11 expand into over fifty
measurable branch metrics by using the unit masks described on the event pages.
BR_PATH_PREDICTION counts branches based on branch direction (taken/not taken) and
prediction outcome (mispredict or not). BR_MISPREDICT_DETAIL and BR_MWAY_DETAIL
provide finer resolution, and break down branch events by mispredict reasons (correctly predicted,
wrong branch outcome, wrong target) and by the Itanium processor branch prediction structures.
BR_TAKEN_DETAIL countstaken branches on per instruction slot basis, and, in conjunction with
the instruction address range check, can be used for detailed branch profiling. BRANCH_EVENT
counts the number of events captured in the branch trace buffer.

Table 7-11. ltanium™ Processor Branch Monitors

Branch Events Description PMC/PMD | Event Code
BR_PATH_PREDICTION Branch Path Prediction 4,5,6,7 0x0f&
BR_MISPREDICT_DETAIL Branch Mispredict Detail 4,5,6,7 0x102
BR_MWAY_DETAIL Multiway Branch Detail 4,5,6,7 0x0e?
BR_TAKEN_DETAIL Taken Branch Detail 4,5,6,7 0x0d?

a. See following sections for more umask values.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-5

7.4.1

intel.

All branch events can be qualified by instruction address range and opcode matching as described

in Section 6.1.3, “Event Qualification” on page 6Snce the instruction address range check is
bundle granular, qualification of multiway branches by address range is straightforward. However,
for opcode matching purposes, multiway branches (MBB or BBB bundle templates) are qualified
up to and including the first taken branch as follows:

((address range and opcode match on instruction slot 0)

)

or

or

and (branch in slot 0 is taken)

((address range and opcode match on instruction slot 0 or 1)

and (branch in slot 1 is taken)

and (branch in slot 0 is NOT taken)

((address range and opcode match on instruction slot 0 or 1 or 2)
and (branch in slot 1 is NOT taken)

and (branch in slot 0 is NOT taken)

BR_PATH_PREDICTION

One event unit mask (BRANCH_PATH_RESULT) allows branch monitoring to be constrained to
combinations of taken/not taken.

Table 7-12. Branch Selection Based on Branch Prediction Result and Branch Direction

7.4.2

BRANCH_PATH_RESULT P'v{'félﬂ?k Description
MISPRED_NT 0000 Incorrectly predicted path and Not taken branches.
MISPRED_TAKEN 0001 Incorrectly predicted path and taken branches.
OKPRED_NT 0010 Correctly predicted path and Not taken branches.
OKPRED_TAKEN 0011 Correctly predicted path and taken branches.

BR_MISPREDICT_DETAIL

BR_MISPREDICT_DETAIL can categorize branch mispredictions by mispredict reason (correctly
predicted, wrong path or wrong target). Below event unit mask (PREDICTION_RESULT) allows
branch monitoring to be constrained to combination of prediction results.

Table 7-13. Branch Selection Based on Branch Prediction Outcome

7-6

PMC.umask
PREDICTION_RESULT Description
- {19:16} P

ALL_PREDICTIONS 0000 count branches without regard to prediction result

CORRECT_PREDICTION 0001 count correctly predicted branches only. For taken
branches this means that both the path and the target
prediction are correct. For not taken branches, only the
path prediction was correct

WRONG_PATH 0010 count mispredicted branches due to wrong branch path
only (taken or not taken branches)

WRONG_TARGET 0011 count mispredicted branches due to wrong target only
(only happens for taken branches whose path was
predicted correctly)

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

7.4.3 BR_MWAY_DETAIL

BR_MWAY _DETAIL monitors the outcome of multiway branches, i.e. any MBB or BBB bundles
with at least one branch. Two event unit masks (BRANCH_PATH and PREDICTION_RESULT)
allow branch monitoring to be constrained to combinations of taken/not taken (Table 7-14) and
branch prediction outcomes (Table 7-15).

Table 7-14. Branch Selection Based on Branch Prediction Outcome

PMC.umask I
PREDICTION_RESULT Description
- {19:16} P

ALL_PREDICTIONS xx00 count branches without regard to prediction result

CORRECT_PREDICTION xx01 count correctly predicted branches only. For taken
branches this means that both the path and the target
prediction are correct. For not taken branches, only the
path prediction was correct

WRONG_PATH xx10 count mispredicted branches due to wrong branch path
only (taken or not taken branches)

WRONG_TARGET xx11 count mispredicted branches due to wrong target only

(only happens for taken branches whose path was
predicted correctly)

Table 7-15. Multi-way Branch Selection Based on Branch Path

BRANCH_PATH PN{'S;TG?SK Description
NOT_TAKEN 10xx count not-taken branches only
TAKEN 11xx count taken branches only
ALL_PATHS 0xxx counts all branches (taken or not-taken)

7.4.4

BR_TAKEN_DETAIL

BR_TAKEN_DETAIL monitors taken branches based on their instruction slot number. The
SLOT_MASK unit mask defined in Table 7-16 allows profiling of taken branches based on their
instruction slot number. If multiple bitsare setinthe SLOT_MASK, al the set casesareincluded in

the event count.

Table 7-16. Slot Unit Mask for BR_TAKEN_DETAIL

SLOT_MASK PN{K:L:;E?SK Description
Instruction Slot 0 xxx1 count if branch in slot 0 is first taken branch
Instruction Slot 1 xx1x count if branch in slot 1 is first taken branch
Instruction Slot 2 XXX count if branch in slot 2 is first taken branch
No taken branch 1xxx count if NO branch was taken

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

7-7

7.5

7.5.1

7-8

Memory Hierarchy

This section summarizes events related to the Itanium processor’'s memory hierarchy. The memory
hierarchy events are grouped as follows:

e L1 Instruction Cache and Prefetc®e(tion 7.5.1
» L1 Data CacheSection 7.5.2

» L2 Unified Cache $ection 7.5.8

» L3 Cache $ection 7.5%

An overview of the Itanium processor’s three level memory hierarchy and its event monitors is
shown inFigure 7-1 The instruction and the data stream work through separate L1 caches. The L1
data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and data
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache
hierarchy are described in the following three sections. They can be used to compute the most
common cache performance ratios summariz&abie 7-17

L1 Instruction Cache and Prefetch

Table 7-18summarizes the eight events that the Itanium processor provides to monitor the L1
instruction cache and prefetch activity. The instruction fetch monitors distinguish between demand
fetch (L11_READS, L1l_MISSES) and prefetch activity (L1l_IPREFETCHES,

L2 INST_PREFETCHES). The amount of data returned from the L2 into the L1 instruction cache
and the instruction streaming buffer is monitored by two events (L1l_FILLS, ISB_LINES_IN).

The INSTRUCTION_EAR_EVENTS monitor (not shownRkigure 7-3 counts how many

instruction cache or TLB misses are captured by the instruction event address register.

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matching facilities describ&ation 6.1.3, “Event Qualification”

on page 6-8Since instruction cache and prefetch events occur early in the processor pipeline, they
include events caused by speculative, wrong-path as well as predicated off instructions. Since the
address range check is not based on actually retired, but speculative instruction addresses, event
counts may be inaccurate when the range checker is confined to address ranges smaller than the
length of the processor pipeline ($&ection 6.2.4, “IA-64 Instruction Address Range Check

Register (PMC[13])” on page 6-18r details).

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

Figure 7-1. Event Monitors in the Itanium™ Processor Memory Hierarchy

BUS

f L3_MISSES

L3

? L3_REFERENCES

L3_WRITE_REFERENCES.u L3_READ_REFERENCES.u

L3_STORE_REFERENCES.u L3 _LOAD_RHFERENCES.u
L2_WB_REFERENCES.u L2_INST_REFERENCES.u

| * L2_MISSES

L2

L2_REFERENCES

L2_INST_REFERENCES.d L2_DATA_REFERENCES [Reads/Writes]
L2_INST_PREFETCHES| L1lI_MISSES L1D_READ_MISSES_RETIRED 1
L1D
L1l (Write-Through)

L1D_READS_RETIRED ;

DATA_REFERENCES_RETIRED

Table 7-17. Iltanium™ Processor Cache Performance Ratios

Performance Metric Itanium Processor Performance Monitor Equation
L1l Miss Ratio L1l_MISSES / L1l_REFERENCES.d
L1D Read Miss Ratio L1D_READ_MISSES_RETIRED /L1D_READS_RETIRED
L2 Miss Ratio L2_MISSES / L2_REFERENCES
L2 Data Miss Ratio L3_DATA_REFERENCES.d/L2_DATA_REFERENCES

L2 Instruction Miss Ratio L3_INST_REFERENCES.u/L2_INST_REFERENCES.d
(includes prefetches)

L2 Data Read Miss Ratio L3_LOAD_REFERENCES.u/L2_DATA_READS.u

L2 Data Write Miss Ratio L3_STORE_REFERENCES.u/L2_DATA _WRITES.u

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

Table 7-17. Itanium™ Processor Cache Performance Ratios (Continued)

Performance Metric

Itanium Processor Performance Monitor Equation

L2 Instruction Fetch Ratio

L1l_MISSES /L2_REFERENCES

L2 Data Ratio

L2_DATA_REFERENCES / L2_REFERENCES

L3 Miss Ratio

L3_MISSES / L2_MISSES

L3 Data Miss Ratio

(L3_LOAD_MISSES.u + L3_STORE_MISSES.u) / L3_DATA_REFERENCES.d

L3 Instruction Miss Ratio

L3_INST_MISSES.u/L3_INST_REFERENCES.u

L3 Data Read Ratio

L3_LOAD_REFERENCES.u/ L3_DATA REFERENCES.d

L3 Data Ratio

L3_DATA_REFERENCES.d / L3_REFERENCES

Table 7-18. L1 Instruction Cache and Instruction Prefetch Monitors

7-10

Description PMC/PMD | Event Code
L1l Monitors
L1l_REFERENCES.d L1 Instruction Cache References None Derived?
L1l_READS L1 Instruction Cache Reads 4,5,6,7 0x20
L1I_FILLS L1 Instruction Cache Fills 4,5,6,7 0x21
L1l_MISSES L1 Instruction Cache Misses 4,5,6,7 0x22
INSTRUCTION_EAR_EVENTS | Instruction EAR Events 4,5,6,7 0x23
|-Prefetch Monitors
L1l_IPREFETCHES L1 Instruction Prefetch Requests 4,5,6,7 0x24
L2_INST_PREFETCHES L2 Instruction Prefetch Requests 4,5,6,7 0x25
ISB_LINES_IN Instruction Streaming Buffer Lines In 4,5,6,7 0x26

a. L1|_REFERENCES.d =(L1l_READS) +(L1l_IPREFETCHES).

Figure 7-2. L1 Instruction Cache and Prefetch Monitors

L1l_READS — |
L1l_PREFETCHES —»

ISB_LINES_IN
ISB - L2
L1l_FILLS
L1l_MISSES
L1l L2_INST_PREFETCHES

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

7.5.2

L1 Data Cache

Table 7-19 lists the Itanium processor’s seven L1 data cache monitors. As shéiguia 7-3 the
write-through L1 data cache services cacheable loads. Integer and RSE stores, floating-point
memory operations, VHPT references, semaphores, check loads and hinted L2 memory references
are serviced by the L2 cache. DATA_ REFERENCES_RETIRED is the number of issued data
memory references. The count includes wrong-path operations. L1 data cache reads
(L1D_READS_RETIRED) and L1 data cache misses (L1D_READ_MISSES RETIRED) monitor
the read hit/miss rate for the L1 data cache. The number of L2 data references

(L2_DATA REFERENCES) is the number of data requests prior to cache line merging, and can be
broken down into reads and writes. The DATA_EAR_EVENTS monitor (not shofigime 7-3

counts how many data cache or TLB misses are captured by the data event address register. RSE
operations are included in all data cache monitors, but are not broken down explicitly.

Table 7-19. L1 Data Cache Monitors

Event
L1D Monitors Description PMC/PMD Code/
Umask
DATA_REFERENCES_RETIRED Retired Data Memory References 4,5,6,7 0x63
L1D_READS_RETIRED L1 Data Cache Reads 4,5,6,7 0x64
L1D_READ_MISSES_RETIRED L1 Data Cache Read Misses 4,5,6,7 0x66
L1D_WAY_MISPREDICT.u L1 Data Cache Way Mispredicts 4,5,6,7 0x33 / 0x2
L1D_READ_FORCED_MISSES_RETIRED | L1 Data Cache Forced Load Misses | 4,5,6,7 0x6b
L2_DATA_REFERENCES L2 Data References 4,5,6,7 0x69
DATA_EAR_EVENTS L1 Data Cache EAR Events 4,5,6,7 0x67

Figure 7-3. L1 Data Cache Monitors

int/RSE st, FP Id/st, VHPT, semaphores, failed Id.c, hinted L2 op

L2D_DATA_REFERENCES
[Reads/Writes]

ES_RETIRED

DATA_REFERE

L1D_RERDS_RETIRED L1D_READ_MI

L1D Cache
(Write-Through)

L1D Store Buffer

L1D_READ_FORCED_MISSES_RETIRED‘—‘

L2 Cache

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-11

7.5.3

L2 Unified Cache

intel.

Table 7-20 lists 9 measured and 2 derived events that monitor the Itanium processor L2 cache.
Refer to Figure 7-1 for graphical view of the L2 cache monitors.

Table 7-20. L2 Cache Monitors

7.5.4

Event
L2 Monitors Description PMC/PMD Code/
Umask
L2_REFERENCES L2 References 4,5,6,7 0x68
L2 INST_REFERENCES.d L2 Instruction References None Derived?
L2_INST_FETCHES.a L2 Instruction Fetches None AliasP
L2_INST_PREFETCHES L2 Instruction Prefetch Requests 4,5,6,7 0x25
L2_DATA_REFERENCES L2 Data References 4,5,6,7 0x69
L2 _DATA_READS.u L2 Data Reads None 0x69 / 0x1
L2_DATA_WRITES.u L2 Data Writes None 0x69 / 0x2
L2_MISSES L2 Misses 4,5,6,7 Ox6a
L2_FLUSHES L2 Flushes 4,5,6,7 0x76
L2_FLUSH_DETAILS L2 Flush Details 4,5,6,7 0x77

a.L2_INST_REFERENCES.d = (L1I_MISSES) +(L2_INST_PREFETCHES).

b. This is equal to L1l_MISSES.

L2 REFERENCES, L2_INST_PREFETCHES and L2_DATA_REFERENCES are counted in
terms of number of requests seen by the L2. L2_MISSES are counted in terms of the number of L2
cachelinerequests sent tothe L3. L2 FLUSHESand L2 _FLUSH_DETAILS count and

break-down the number of L2 flushes due to address and bank conflicts.

L1D READ_FORCED_MISSES RETIRED countsthe number of loads that were bypassed from

an earlier store.

L3 Cache

Table 7-21 lists 23 L 3 cache measured events and one derived events. Using unit masks, two events
(L3_READS, L3 WRITES) can be specialized (hit/miss/all accesses, instruction/data/all
references) to count a number of derived L3 events. Refer to the event pagesfor L3_READS or
L3 WRITESfor details on L3 unit mask usage. Refer to Figure 7-1 for graphical view of the L3

cache monitors.

Table 7-21. L3 Cache Monitors

7-12

L3 Monitors Description PMC/PMD E\g%né
L3_REFERENCES L3 References 4,5,6,7 0x7b
L3 _MISSES L3 Misses 4,5,6,7 0x7c
L3_READS L3 Reads 4,5,6,7 0ox7d
L3_WRITES L3 Writes 4,5,6,7 Ox7e
L3_LINES_REPLACED L3 Cache Lines Replaced 4,5,6,7 ox7f

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

N

tel.

Table 7-21. L3 Cache Monitors (Continued)

L3 Monitors Description PMC/PMD E\g%né
L3 INST_REFERENCES.u L3 Instruction References 4,5,6,7 Umask?
L3_INST_MISSES.u L3 Instruction Fetch Misses 4,5,6,7 Umask?
L3 INST_HITS.u L3 Instruction Fetch Hits 4,5,6,7 Umask?
L3_DATA_REFERENCES.d L3 Data References 4,5,6,7 Derived
L3 LOAD_REFERENCES.u L3 Load References 4,5,6,7 Umask?
L3 _LOAD_MISSES.u L3 Load Misses 4,5,6,7 Umask?
L3 LOAD_HITS.u L3 Load Hits 4,5,6,7 Umask?
L3 _READ_REFERENCES.u L3 Read References 4,5,6,7 Umask?
L3 READ_MISSES.u L3 Read Misses 4,5,6,7 Umask?
L3_READ_HITS.u L3 Read Hits 4,5,6,7 Umask?
L3_STORE_REFERENCES.u L3 Store References 4,5,6,7 UmaskP?
L3 _STORE_MISSES.u L3 Store Misses 4,5,6,7 UmaskP
L3 STORE_HITS.u L3 Store Hits 4,5,6,7 UmaskP?
L2_WB_REFERENCES.u L2 Write Back References 4,5,6,7 UmaskP
L2 _WB_MISSES.u L2 Write Back Misses 4,5,6,7 Umask®?
L2_WB_HITS.u L2 Write Back Hits 4,5,6,7 UmaskP
L3 WRITE_REFERENCES.u L3 Write References 4,5,6,7 Umask®
L3 _WRITE_MISSES.u L3 Write Misses 4,5,6,7 UmaskP
L3 WRITE_HITS.u L3 Write Hits 4,5,6,7 Umask®

a. Refer to Table 7-22 for umask values.
b. Refer to Table 7-23 for umask values.

Table 7-22. L3_READS Derived Events

L3_Reads

PMC.umask{19:18}

PMC.umask{17:16}

INSTR_FETCH (01)

DATA_READ (10)

ALL_READS (11)

HIT (01) L2_INST_HITS.u L2_LOAD_HITS.u L2_READ_HITS.u
MISS (10) L2_INST_MISSES.u L2_LOAD_MISSES.u L2_READ_MISSES.u
ALL (11) L2_INST_REFERENCES.u | L2_LOAD_REFERENCES. | L2_ READ_REFERENCES.

u

u

Table 7-23. L3_WRITES Derived Events

L3_WRITES

PMC.umask[19:18]

PMC.umask{17:16}

DATA_WRITE (01)

L1_WRITE_BACK (10)

ALL_WRITES (11)

HIT (01)

L2_STORE_HITS.u

L1 WB_HITS.u

L2 WRITE_HITS.u

MISS (10)

L2_STORE_MISSES.u

L1_WB_MISSES.u

L2_WRITE_MISSES.u

ALL (11)

L2_STORE_REFERENCE
S.u

L1 WB_REFERENCES.u

L2_WRITE_REFERENCE
S.u

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

7-13

7.6

System Events

Table 7-24 defines seven measured and one derived system monitor. The debug register match
events count how often the address in any instruction or data break-point register (IBR or DBR)
matches the current retired instruction pointer (CODE_DEBUG_REGISTER_MATCHES.a) or the
current data memory address (DATA_DEBUG_REGISTER_MATCHES.d). PIPELINE_FLUSH
counts the number of times the Itanium processor pipelineis flushed due to a data translation cache
miss, L1 data cache way mispredict, an exception flush or an instruction serialization event.
CPU_CPL_CHANGES counts the number of privilege level transitions due to interruptions,
system calls (epc) and returns (demoting branch), and r f i instructions. CPU_CY CLES counts the
number of cyclesthe CPU is not powered down or in light HALT state. Two events
(EXTERN_BPM_PINS 0 TO 3and EXTERN_BPM_PINS 4 TO _5) are provided to monitor
external platform events.

Table 7-24. ltanium™ Processor System Monitors

System Monitors Description P',\\AA%/P Event Code
CODE_DEBUG_REGISTER_MATCHES.a | Code Debug Register Matches None Derived?
DATA_DEBUG_REGISTER_MATCHES.d Data Debug Register Matches None Derived®
PIPELINE_FLUSH Pipeline Flush 45,6,7 0x33
CPU_CPL_CHANGES Privilege Level Changes 4,5,6,7 | O0x34
CPU_CYCLES CPU Cycles 4,5,6,7 | 0x12
EXTERN_BPM_PINS_0_TO_3 Counts the number of times 4,5,6,7 | Ox5e

external BPM pins 0 through 23
were asserted
EXTERN_BPM_PINS_4 TO 5 Counts the number of times 4,5,6,7 | Ox5f
external BPM pins 4 and 5 were
asserted

a. CODE_DEBUG_REGISTER_MATCHES.a = 1A64_TAGGED_INSTRS_RETIRED.
b. DATA_DEBUG_REGISTER_MATCHES.d = LOADS_RETIRED + STORES_RETIRED.

Table 7-25 lists the TLB performance metrics that can be computed using these events. The
Itanium processor instruction and data TLBs and the Virtual Hash Page Table walker are monitored
by the events described in Table 7-26. Figure 7-4 gives a graphical summary.

Table 7-25. Itanium™ Processor TLB Performance Metrics

7-14

Performance Metric Performance Monitor Equation
ITLB Miss Ratio ITLB_MISSES_FETCH / L1I_READS
DTLB Miss Ratio DTLB_MISSES / DATA_REFERENCES_RETIRED
DTC Miss Ratio DTC_MISSES / DATA_REFERENCES_RETIRED

ITLB_REFERENCES.aand DTLB_REFERENCES.a are derived from the respective
instruction/data cache access events. ITLB_MISSES FETCH and DTLB_MISSES count TLB
misses. ITLB_INSERTS HPW and DTLB_INSERTS _HPW count the number of instruction/data
TLB inserts performed by the Virtual Hash Page Table walker. The Itanium processor data TLB isa
two level TLB; DTC_MISSES counts the number of first level data TLB misses.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

tel.

Table 7-26. Itanium™ Processor Instruction and Data TLB Monitors

Instruction a.nd Data TLB Description PMC/PMD Event Code
Monitors
ITLB_REFERENCES.a Instruction Translation Buffer References None Derived?®
ITLB_MISSES_FETCH Instruction Translation Buffer Misses 4,5,6,7 0x27
Demand Fetch
ITLB_EAR_EVENT.a Instruction Translation Buffer EAR Event None Derived®
ITLB_INSERTS_HPW ITLB Hardware Page Walker Inserts 45,6,7 0x28
DTLB_REFERENCES.a DTLB References 4,5,6,7 Derived®
DTC_MISSES DTC Misses 4,5,6,7 0x60
DTLB_MISSES DTLB Misses 4,5,6,7 0x61
DTLB_EAR_EVENT.a DTLB EAR Event 4,5,6,7 Derived?
DTLB_INSERTS_HPW Hardware Page Walker Installs to DTLB 45,6,7 0x62

a. This is equal to L11_READS.

b. This is equal to INSTRUCTION_EAR_EVENTS.
c. This is equal to DATA_REFERENCES_RETIRED.
d. This is equal to DATA_EAR_EVENTS.

Figure 7-4. Itanium™ Processor Instruction and Data TLB Monitors

#

ITLB_INSERTS_HPW

ITLB_MISSES_FETCH
L1l_READS ——B»| ITLB = »

=

L1l_IPREFETCHES

VHPT Walker

DTLB_MISSES

L1 DTLB

DTC_MISSES
L = T
(DTC)

DTLB

DATA_REFERENCES_%ETIRED fDTLB_INSERTS_HPW

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-15

7-16 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

In

tel.

Model Specific Behavior for IA-32
Instruction Execution 3

8.1

8.2

8.3

The Itanium processor is capable of executing |A-32 instructions in the | A-32 system environment
(legacy |A-32 operating systems) provided the required platform and firmware support existsin the
system. The Itanium processor is also capable of executing 1A-32 instructionsin the |A-64 system
environment (1A-64 operating system). | A-64 operating system support for the capability of
running |A-32 applicationsis defined by the respective operating system vendor. For more details
on [A-32 instruction execution on 1A-64 OS, please refer to Volume 1, Chapter 6 and Volume 2,
Chapter 10.

Note that while Itanium processor supports execution of |A-32 applications, best performance and
capabilities will be realized by using 64-bit optimized OSes and applications

In general, the behavior of 1A-32 instructions on the Itanium processor is similar to that of the
Pentium 111 processor except where noted. The following sections describe some of the key
differences in behavior between | A-32 instruction execution on an Itanium processor and on the
Pentium 111 processor. These differences do not prevent 1A-32 legacy operating systems or 1A-32
applications from operating correctly.

Processor Reset and Initialization

When RESET# is asserted, all | A-64 processors boot at a different reset |ocation than [A-32
processors and start executing |A-64 64-bit code instead of 1A-32 16-bit Real Mode code. Unlike
| A-32 processors, | A-64 processors execute PAL firmware to test and initialize the processor and
then continue execution in the |A-64 instruction set to boot the system. SAL firmware code can
switch to the IA-32 instruction set as needed to execute |A-32 BIOS code. For more details on

| A-64 processor reset, please refer to Chapter 11 and Chapter 24 of Volume 2.

New JMPE Instruction

A new |A-32 instruction JM PE has been defined for | A-64 processors. Thisinstruction comesin
two forms with an opcode for each. These opcodes will cause an Invalid Opcode fault on all 1A-32
processors. For more details, refer to Chapter 5 of Volume 3.

System Management Mode (SMM)

SMM is superseded by the | A-64 Platform Management definition. This mechanism is designed to
provide platform level interrupt support for both 1A-32 and | A-64 operating systems. Please refer to
Chapter 11 of Volume 2 for more details on PMI.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 8-1

8.4

8.5

8.6

8.7

8-2

intel.

The |A-32 SMM and 1/O Port Restart feature is not supported on the Itanium processor.
Dynamically, powering off/on 1/O devices on an /O Port reference via system logic is not possible
for IA-32 Operating Systems or | A-64 Operating Systems using the |A-32 SMM 1/O Restart
mechanism. |/O Restart has not been extended on 1A-64 processors to intercept 1/0 Port references
from the | A-64 instruction set via normal loads and stores on | A-64 processors.

Execution of the |A-32 RSM (Resume from SMM) instruction results an Invalid Opcode fault on
all 1A-64 processors.

Machine Check Abort (MCA)

The Itanium processor supports Pentium processor level machine checksin the 1A-32 System
Environment.

Model Specific Registers

The complete set of Model Specific Registers (M SRs) found on the Pentium 111 processor is not
supported on the Itanium processor. For example, Model Specific Debug registers, Model Specific
Test registers, Machine Check registers, and Model Specific Configuration registers are not
supported.

Model Specific registers that are common to the Itanium processor and Pentium Il processor use
the Pentium 1l processor’s bit definition and register assignment. The ITC, APIC_Base, MTRR
and MAP registers are supported on the Itanium processor.

Cache Modes

Pentium processor and Pentillinprocessor SRAM Cache Mode is hot supported on the Itanium
processor.

SRAM is typically used on IA-32 processors to provide scratch RAM areas while running 1A-32
boot and machine check code before memory is available. Both of these functions are now
provided by IA-64 firmware while running IA-32 and IA-64 operating systems.

10-byte Floating-point Operand Reads and Writes

Many 1A-32 FP instructions read and write 10 bytes to memory. Consider the case of 16-bit
segment, where the read or write starts at offset OxFFF8. Pdiitiprocessor reads or writes

8 bytes then re-evaluates the linear address before reading or writing the final 2 bytes. Eight bytes

are accessed at 0xfff8, and 2 bytes are accessed at 0x0000.

The Itanium processor evaluates the address once, then accesses all 10 bytes. Therefore, bytes
0xfff8 to 0x10001 will be accessed.

On a 10-byte operand read or write access, potential page faults and GP faults will return slightly

different faulting addresses (linear addresses may wrap differently).

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

intel.

8.8 Floating-point Data Segment State

The Itanium processor reports a different value of the floating-point data segment state (FDS) after

the execution of “FNOP” instruction (or any FP instruction that does not perform a memory
reference). The contents of the data register are undefined if the prior non-control instruction did
not have a memory operand. The Pentilmrocessor behaves as follows:

1. A FP non-transparent instruction which references memory will put the selector of the data
segment used in the memory reference into FDS.

2. A FP non-transparent instruction which doesn’t reference memory will put the selector of SS
into FDS and 0 into FEA.

If a segment override prefix is present on an instruction of the type specified in case 2, the
overriding segment selector will be put into FDS instead of the selector of SS.

The Itanium processor behavior covers only case #1 described above. Note that this difference does
not affect the running of IA-32 applications.

8.9 Writes to Reserved Bits during FXSAVE

During FXSAVE, the Itanium processor does not write any reserved bits, while the PBhtium
processor may write reserved bits. The Itanium processor does one 10 byte access to save each FP
register, whereas the Pentiuthprocessor will do two 8 byte accesses causing writes to upper
reserved bits.

8.10 Setting the Access/Dirty (A/D) Bit on Accesses that
Cross a Page Boundary

In the I1A-32 system environment, the Itanium processor sets a page's A/D bit even if a memory
reference crosses a page boundary and the other page has a fault. This behavior is different from
Pentiumlll processors which do not modify the A/D bit under the above conditions.

The above difference does not come into play in the IA-64 system environment.

8.11 Enhanced Floating-point Instruction Accuracy

On the Itanium processor, FP transcendental instructions will return more accurate (hence slightly
different) answers than Pentidthprocessor. This behavior falls into 3 categories:
e F2XM1, FYL2X, FYL2XP1, FPATAN Instructions
More accurate algorithms will result in answers which may differ from Pentiyprocessor
by lunit in thelastplace (ulp). Also, for FYL2X and FYL2XP1, when x or x+1 respectively is
a power of two, the Precision exception is not signaled (since log(2”k) where, k is integral, is
exact).

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 8-3

8.12

8.13

8.14

8.15

8.16

8-4

intel.

* FPTAN, FSIN, FCOS, FSINCOS Instructions
New algorithms on Itanium processor include a more accurate argument reduction scheme.
Although more accurate, the algorithms implemented on Itanium processor can produce
answers which are different from those returned on Penliyprocessor.

« FPREM, FPREM1 Instructions
No change.

RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction
Differences

These four instructions are single and parallel approximations of divide and square root operations.
The Itanium processor will calculate these functions to a higher accuracy than previous
implementations. resulting in different answers. The Penltiiuprocessor implementation of one

of these functions can have a maximum error of 1.3*1Fhe Itanium processor, however, will
calculate these functions to a maximum error of 1.5%10

Read/Write Access Ordering

In general, the order of reads/writes within any complex 1A-32 instruction is model specific even
among IA-32 processors. Different Intel processors have different access ordering behavior; for
example, internal operation ordering varies between the 80486, Pentium, Pdrgingnitanium
processors.

Multiple IOAPIC Redirection Table Entries

If multiple IOAPIC Redirection Table Entries (RTE) share the same vector, and at least one RTE is
programmed as logical delivery mode in which the selected local APIC destinations overlap with
the other RTEs with the same vector, some of the selected local APICs might not receive the
interrupt when the pins that correspond to these RTEs are asserted.

Self Modifying Code (SMC)

The Itanium processor provides the same SMC support as the Pentium processor. Also, a branch
instruction is required between the store that modifies instruction(s) and the modified code.

Raising an Alignment Check (AC) Fault

The Pentiunill processor checks and raises AC fault before a page fault. The Itanium processor
checks and raise a page fault before an AC fault.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

8.17 Maximum Number of IA-64 Processors Supported in
MP System Running Legacy IA-32 OS (IA-32 system
environment)

Similar to the case of 1A-32 processorsin an MP system, the maximum number of 1A-64
processors supported in a MP system running legacy 1A-32 OS (IA-32 system environment) is 16.
However, in MP systems with | A-32 processors, the number of 1A-32 processors can be extended
beyond 16 with additional platform enhancements while the limit for the number of 1A-64
processors running 1A-32 OSin a MP system is limited to 16.

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 8-5

Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0

	1 About this Manual
	1.1 Overview of Volume 1: IA-64 Application Architecture
	1.1.1 Part 1: IA-64 Application Architecture Guide
	1.1.2 Part 2: IA-64 Optimization Guide

	1.2 Overview of Volume 2: IA-64 System Architecture
	1.2.1 Part 1: IA-64 System Architecture Guide
	1.2.2 Part 2: IA-64 System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Instruction Set Reference
	1.3.1 Part 1: IA-64 Instruction Set Descriptions
	1.3.2 Part 2: IA-32 Instruction Set Descriptions

	1.4 Overview of Volume 4: Itanium™ Processor Programmer’s Guide
	1.5 Terminology
	1.6 Related Documents

	2 Register Stack Engine Support
	2.1 RSE Modes
	2.2 RSE and Clean Register Stack Partitions

	3 Virtual Memory Management Support
	3.1 Page Size Supported
	3.2 Physical and Virtual Addresses
	3.3 Region Register ID
	3.4 Protection Key Register

	4 Processor Specific Write Coalescing (WC) Behavior
	4.1 Write Coalescing
	4.2 WC Buffer Eviction Conditions
	4.3 WC Buffer Flushing Behavior

	5 Model Specific Instruction Implementation
	5.1 ld.bias
	5.2 lfetch Exclusive Hint
	5.3 fwb
	5.4 thash
	5.5 ttag
	5.6 ptc.e
	5.7 mf.a
	5.8 Prefetch Behavior
	5.9 Temporal and Non-temporal Hints Support

	6 Processor Performance Monitoring
	6.1 Performance Monitor Programming Models
	6.1.1 Workload Characterization
	6.1.2 Profiling
	6.1.3 Event Qualification

	6.2 Performance Monitor State
	6.2.1 Performance Monitor Control and Accessibility
	6.2.2 Performance Counter Registers
	6.2.3 Performance Monitor Overflow Status Registers (PMC[0,1,2,3])
	6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])
	6.2.5 IA-64 Opcode Match Registers (PMC[8,9])
	6.2.6 IA-64 Data Address Range Check (PMC[11])
	6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])
	6.2.8 IA-64 Branch Trace Buffer
	6.2.9 Processor Reset, PAL Calls, and Low Power State
	6.2.10 References

	7 Performance Monitor Events
	7.1 Basic Events
	7.2 Instruction Execution
	7.3 Cycle Accounting Events
	7.4 Branch Events
	7.4.1 BR_PATH_PREDICTION
	7.4.2 BR_MISPREDICT_DETAIL
	7.4.3 BR_MWAY_DETAIL
	7.4.4 BR_TAKEN_DETAIL

	7.5 Memory Hierarchy
	7.5.1 L1 Instruction Cache and Prefetch
	7.5.2 L1 Data Cache
	7.5.3 L2 Unified Cache
	7.5.4 L3 Cache

	7.6 System Events

	8 Model Specific Behavior for IA-32 Instruction Execution
	8.1 Processor Reset and Initialization
	8.2 New JMPE Instruction
	8.3 System Management Mode (SMM)
	8.4 Machine Check Abort (MCA)
	8.5 Model Specific Registers
	8.6 Cache Modes
	8.7 10-byte Floating-point Operand Reads and Writes
	8.8 Floating-point Data Segment State
	8.9 Writes to Reserved Bits during FXSAVE
	8.10 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a Page Boundary
	8.11 Enhanced Floating-point Instruction Accuracy
	8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differences
	8.13 Read/Write Access Ordering
	8.14 Multiple IOAPIC Redirection Table Entries
	8.15 Self Modifying Code (SMC)
	8.16 Raising an Alignment Check (AC) Fault
	8.17 Maximum Number of IA-64 Processors Supported in MP System Running Legacy IA-32 OS (IA-32 sys...

