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About this Manual 1

The IA-64 architecture is a unique combination of innovative features such as explicit parallelism, 
predication, speculation and more. The architecture is designed to be highly scalable to fill the ever 
increasing performance requirements of various server and workstation market segments. The 
IA-64 architecture features a revolutionary 64-bit instruction set architecture (ISA) which applies a 
new processor architecture technology called EPIC, or Explicitly Parallel Instruction Computing. A 
key feature of the IA-64 architecture is IA-32 instruction set compatibility.

The Intel IA-64 Architecture Software Developer’s Manual provides a comprehensive description 
of the programming environment, resources, and instruction set visible to both the application and 
system programmer. In addition, it also describes how programmers can take advantage of IA-64 
features to help them optimize code. This manual replaces the IA-64 Application Developer’s 
Architecture Guide (Order Number 245188) which contains a subset of the information presented 
in this four-volume set.

1.1 Overview of Volume 1: IA-64 Application 
Architecture

This volume defines the IA-64 application architecture, including application level resources, 
programming environment, and the IA-32 application interface. This volume also describes 
optimization techniques used to generate high performance software.

1.1.1 Part 1: IA-64 Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “Introduction to the IA-64 Processor Architecture” provides an overview of the IA-64 
architecture system environments.

Chapter 3, “IA-64 Execution Environment” describes the IA-64 register set used by applications
and the memory organization models.

Chapter 4, “IA-64 Application Programming Model” gives an overview of the behavior of IA-64 
application instructions (grouped into related functions).

Chapter 5, “IA-64 Floating-point Programming Model” describes the IA-64 floating-point 
architecture (including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an IA-64 System Environment” describes the 
operation of IA-32 instructions within the IA-64 System Environment from the perspective of 
application programmer.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 1-1
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1.1.2 Part 2: IA-64 Optimization Guide

Chapter 7, “About the IA-64 Optimization Guide” gives an overview of the IA-64 optimization 
guide.

Chapter 8, “Introduction to IA-64 Programming” provides an overview of the IA-64 application 
programming environment.

Chapter 9, “Memory Reference” discusses features and optimizations related to control and da
speculation.

Chapter 10, “Predication, Control Flow, and Instruction Stream” describes optimization features 
related to predication, control flow, and branch hints.

Chapter 11, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 12, “Floating-point Applications” discusses current performance limitations in 
floating-point applications and IA-64 features that address these limitations.

1.2 Overview of Volume 2: IA-64 System Architecture

This volume defines the IA-64 system architecture, including system level resources and 
programming state, interrupt model, and processor firmware interface. This volume also prov
useful system programmer's guide for writing high performance system software.

1.2.1 Part 1: IA-64 System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “IA-64 System Environment” introduces the environment designed to support execut
of IA-64 operating systems running IA-32 or IA-64 applications.

Chapter 3, “IA-64 System State and Programming Model” describes the IA-64 architectural state
which is visible only to an operating system.

Chapter 4, “IA-64 Addressing and Protection” defines the resources available to the operating 
system for virtual to physical address translation, virtual aliasing, physical addressing, and me
ordering.

Chapter 5, “IA-64 Interruptions” describes all interruptions that can be generated by an IA-64 
processor.

Chapter 6, “IA-64 Register Stack Engine” describes the IA-64 architectural mechanism which 
automatically saves and restores the stacked subset (GR32 – GR 127) of the general register file.

Chapter 7, “IA-64 Debugging and Performance Monitoring” is an overview of the performance 
monitoring and debugging resources that are available in the IA-64 architecture.

Chapter 8, “IA-64 Interruption Vector Descriptions” lists all IA-64 interruption vectors.
1-2 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0
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Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and 
intercepts that can occur during IA-32 instruction set execution in the IA-64 System Environm

Chapter 10, “IA-64 Operating System Interaction Model with IA-32 Applications” defines the 
operation of IA-32 instructions within the IA-64 System Environment from the perspective of 
IA-64 operating system.

Chapter 11, “IA-64 Processor Abstraction Layer” describes the firmware layer which abstracts 
IA-64 processor implementation-dependent features.

1.2.2 Part 2: IA-64 System Programmer’s Guide

Chapter 12, “About the IA-64 System Programmer’s Guide” gives an introduction to the second 
section of the system architecture guide.

Chapter 13, “MP Coherence and Synchronization” describes IA-64 multi-processing 
synchronization primitives and the IA-64 memory ordering model.

Chapter 14, “Interruptions and Serialization” describes how the processor serializes execution 
around interruptions and what state is preserved and made available to low-level system cod
interruptions are taken.

Chapter 15, “Context Management” describes how operating systems need to preserve IA-64 
register contents and state. This chapter also describes IA-64 system architecture mechanis
allow an operating system to reduce the number of registers that need to be spilled/filled on 
interruptions, system calls, and context switches.

Chapter 16, “Memory Management” introduces various IA-64 memory management strategies.

Chapter 17, “Runtime Support for Control and Data Speculation” describes the operating system 
support that is required for control and data speculation.

Chapter 18, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction 
emulation handlers that IA-64 operating system are expected to support.

Chapter 19, “Floating-point System Software” discusses how IA-64 processors handle 
floating-point numeric exceptions and how the IA-64 software stack provides complete IEEE
compliance.

Chapter 20, “IA-32 Application Support” describes the support an IA-64 operating system need
provide to host IA-32 applications.

Chapter 21, “External Interrupt Architecture” describes the IA-64 external interrupt architecture 
with a focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 22, “I/O Architecture” describes the IA-64 I/O architecture with a focus on platform issu
and support for the existing IA-32 I/O port space platform infrastructure.

Chapter 23, “Performance Monitoring Support” describes the IA-64 performance monitor 
architecture with a focus on what kind of operating system support is needed from IA-64 ope
systems. 
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 and 

at 

, 

 

ns.

ance 
uage 
Chapter 24, “Firmware Overview” introduces the IA-64 firmware model, and how various 
firmware layers (PAL, SAL, EFI) work together to enable processor and system initialization,
operating system boot.

1.2.3 Appendices

Appendix A, “IA-64 Resource and Dependency Semantics” summarizes the dependency rules th
are applicable when generating code for IA-64 processors.

Appendix B, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the IA-64 and IA-32 instruction sets, including 
instruction format/encoding. 

1.3.1 Part 1: IA-64 Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel IA-64 Architecture 
Software Developer’s Manual.

Chapter 2, “IA-64 Instruction Reference” provides a detailed description of all IA-64 instructions
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “IA-64 Pseudo-Code Functions” provides a table of pseudo-code functions which are
used to define the behavior of the IA-64 instructions.

Chapter 4, “IA-64 Instruction Formats” describes the encoding and instruction format instructio

1.3.2 Part 2: IA-32 Instruction Set Descriptions

Chapter 5, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32 
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 6, “IA-32 MMX™ Technology Instruction Reference” provides a detailed description of 
all IA-32 MMX™ technology instructions designed to increase performance of multimedia 
intensive applications. Organized in alphabetical order by assembly language mnemonic.

Chapter 7, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed 
description of all IA-32 Streaming SIMD Extension instructions designed to increase perform
of multimedia intensive applications, and is organized in alphabetical order by assembly lang
mnemonic.
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1.4 Overview of Volume 4: Itanium™ Processor 
Programmer’s Guide

This volume describes model-specific architectural features incorporated into the Intel® Itaniu
processor, the first IA-64 processor.

Chapter 1, “About this Manual” provides an overview of four volumes in the Intel IA-64 
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support 
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address, 
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write 
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of 
IA-64 instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features 
which are specific to the Itanium processor. This chapter outlines the targeted performance m
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events” summarizes the Itanium processor events and descri
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Execution” describes some of the key 
differences between an Itanium processor executing IA-32 instructions and the PentiumIII 
processor.

1.5 Terminology

The following definitions are for terms related to the IA-64 architecture and will be used 
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These 
resources include instructions and registers.

IA-64 Architecture  – The new ISA with 64-bit instruction capabilities, new performance- 
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture 
Software Developer’s Manual.

IA-64 Processor – An Intel 64-bit processor that implements both the IA-64 and the IA-32 
instruction sets.

IA-64 System Environment – The IA-64 operating system privileged environment that supports 
the execution of both IA-64 and IA-32 code.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 1-5
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IA-32 System Environment – The operating system privileged environment and resources as 
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging, 
control registers, debugging, performance monitoring, machine checks, and the set of privileged 
instructions.

IA-64 Firmware – The Processor Abstraction Layer (PAL) and System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) – The IA-64 firmware layer which abstracts IA-64 processor 
features that are implementation dependent.

System Abstraction Layer (SAL) – The IA-64 firmware layer which abstracts IA-64 system 
features that are implementation dependent.

1.6 Related Documents

The following documents contain additional material related to the Intel® IA-64 Architecture 
Software Developer’s Manual:

• Intel Architecture Software Developer’s Manual – This set of manuals describes the Intel 
32-bit architecture. They are readily available from the Intel Literature Department by cal
1-800-548-4725 and requesting Order Numbers 243190, 243191and 243192, or can be 
downloaded at http://developer.intel.com/design/litcentr.

• IA-64 Software Conventions and Runtime Architecture Guide – This document defines 
general information necessary to compile, link, and execute a program on an IA-64 operating 
system. It can be downloaded at http://developer.intel.com/design/ia64.

• IA-64 System Abstraction Layer Specification – This document specifies requirements to 
develop platform firmware for IA-64 processor systems.

• Extensible Firmware Interface Specification – This document defines a new model for the 
interface between operating systems and platform firmware. It can be downloaded at 
http://developer.intel.com/technology/efi.
1-6 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0
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Register Stack Engine Support 2

2.1 RSE Modes

The Itanium processor implements the enforced lazy RSE mode. Refer to Chapter 6, “IA-64 
Register Stack Engine” in Volume 2 for a description of the RSE modes.

2.2 RSE and Clean Register Stack Partitions

On the Itanium processor, the internal RSE pointer RSE.BSPLoad is always equal to AR.BSP
meaning that the size of the clean register stack partition is always zero. This implies that, on
Itanium processor, a flushrs instruction will create a dirty region of size zero and an invalid 
region of size equal to 96 - CFM.sof. On other implementations that maintain a clean partitio
flushrs behavior may differ by creating a clean register stack partition in addition to an inva
partition and a zero-sized dirty partition. As a result, the Itanium processor’s RSE may perfor
more mandatory fills upon a branch-return (br.ret) or rfi following a flushrs instruction than 
an implementation that maintains a clean partition.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 2-1



2-2 Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0



Virtual Memory Management Support 3

3.1 Page Size Supported

The following page sizes are supported on the Itanium processor: 4K, 8K, 16K, 64K, 256K, 1M, 
4M, 16M and 256M bytes.

3.2 Physical and Virtual Addresses

The IA-64 architecture requires that a processor implement at least 54 virtual address bits and 
32 physical address bits. The Itanium processor implements 54 virtual address bits (51 address bits 
plus 3 region index bits) and 44 physical address bits.

3.3 Region Register ID 

The Itanium processor implements the minimum region register IDs allowed by the IA-64 
architecture. The region register ID contains 18 bits.

3.4 Protection Key Register

The IA-64 architecture requires a minimum of 16 protection key registers, each at least as wide as 
the region register IDs. The Itanium processor implements 16 protection key registers, each 21 bits 
wide.
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Processor Specific Write Coalescing 
(WC) Behavior 4

4.1 Write Coalescing

For increased performance of uncacheable references to frame buffers, previous Intel IA-32 
processors defined the Write Coalescing (WC) memory type. WC coalesces streams of data writes 
into a single larger bus write transaction. Refer to the Intel Architecture Software Developer’s 
Manual for additional information.

On the Itanium processor, WC loads are performed directly from memory and not from coalescing 
buffers. It has a separate 2-entry, 64-byte Write Coalesce Buffer (WCB) which is used exclusively 
for WC accesses. Each byte in the line has a valid bit. If all the valid bits are true, then the line is 
full and will be evicted (or flushed) by the processor. 

Note: WC behavior of the Itanium processor in the IA-32 System Environment is similar to the 
Pentium III processor. Refer to the Intel Architecture Software Developer’s Manual for 
more information.

4.2 WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries 
are flushed). These conditions are followed when the processor is operating in the IA-64 System 
Environment:

Table 4-1. Itanium™ Processor WCB Eviction Conditions

Eviction Condition IA-64 Instructions

Memory Fence (mf) mf

Architectural Conditions for WCB Flush

Memory Release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Flush Cache (fc) hit on WCB yes

Flush Write Buffers (fwb) yes

Any UC load no a

a. IA-64 architecture doesn’t require the WC buffers to be coherent w.r.t to UC load/store operations.

Any UC store no a

UC load or ifetch hits WCB no a

UC store hits WCB no a

WC load/ifetch hits WCB

WC store hits WCB
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 4-1
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4.3 WC Buffer Flushing Behavior

As mentioned previously, the Itanium processor WCB contains two entries. The WC entries are 
flushed in the same order as they are allocated. That is, the entries are flushed in written order. This 
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one W
entry at a time and does not write the second WC entry until the first one is full.

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
always flushed in a program written order for a “well-behaved” stream, even in the presence
interrupts. For example, consider the following scenario: if software issues a “well-behaved” 
stream, but is interrupted in the middle; one of the WC entries could be partially filled. The W
(including the partially filled entry) could be flushed by the OS kernel code or by other proces
When the interrupted context resumes, it sends out the remaining line and then moves on to
other entry. Note that the resumed context could be interrupted again in the middle of filling u
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC
buffer is flushed is random.

WCB eviction is performed for full lines by a single 64-byte bus transaction in a stream of 8-b
packages. For partially full lines, the WCB is evicted using up to eight 8-byte transactions wit
proper byte enables. When flushing, WC transactions are given the highest priority of all exte
bus operations.
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Implementation 5

This section describes how IA-64 instructions with processor implementation-specific features, 
behave on the Intel Itanium processor.

5.1 ld.bias

If the instruction hits L1D1 or L2 cache and the state of the line is exclusive (E) or modified (M), 
the line is returned and remains in cache; no external bus traffic is generated. If the line is shared 
(S) or invalid (I) or the instruction misses the L2, it is treated as a store miss by the L3/bus. The line 
is returned and stored in E state by the processor in the L2 and L3 cache.

Please refer to page 2-126 in Volume 3 for a detailed description of the ld instruction.

5.2 lfetch Exclusive Hint

The exclusive hint in the lfetch instruction allows the cache line to be fetched in an exclusive (E) 
state. On the Itanium processor, an lfetch transaction that has a snoop hit will be cached in an 
shared (S) state; otherwise, it is cached in an exclusive state.

Please refer to page 2-137 in Volume 3 for a detailed description of the lfetch instruction.

5.3 fwb

The Itanium processor implements the flush write-back buffer (fwb) instruction. This instruction 
carries a weak memory attribute and causes the coalescing buffer to be flushed. The L1D and L2 
store buffers are not flushed.

Please refer to page 2-117 in Volume 3 for a detailed description of the fwb instruction.

1. The Intel Itanium™ processor cache hierarchy consists of the following levels: on-chip L1I, L1D, L2 caches, an
off-chip L3 cache.
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5.4 thash

The IA-64 architecture defines a thash instruction for generating the hash address for long format 
VHPT. thash is implementation specific. On the Itanium processor, since the hashing function is 
performed in the HPW, the HPW will generate the VHPT Entry which corresponds to the virtual 
address supplied. The hashing function is given in the following pseudo-code:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ; // treated as a speculative access.

GR[r1].nat = ’1;

}

else {

Mask = (2^PTA.size) - 1;

HPN = VA{50:0} >> RR[VA{63:61}].ps; // Hash Page Number unsigned right shift.

 // mov 2 RR checks for supported ps

if (PTA.vf=32) { // 32B PTE (Long format)

Hash_Index = HPN ^ (zero{63:18} || rid{17:0})

VHPT_Offset = Hash_Index << 5 ;

}

if (PTA.vf=8) { // 8B PTE

Hash_Index = HPN ;

VHPT_Offset = Hash_Index << 3;

} 

GR[r1] =  (PTA.base{63:61} << 61)

 || ([(PTA.base{60:15} & ~Mask{60:15}) ||

 (VHPT_Offset{60:15} & Mask{60:15})] << 15)

|| VHPT_Offset{14:0} ;

}

}

Please refer to page 2-224 in Volume 3 for a detailed description of the thash instruction.

5.5 ttag

The IA-64 architecture defines the ttag instruction for generating the tag for a long format VHPT 
entry. ttag is implementation specific. The HPW will generate the tag for the long format VHPT 
entry which corresponds to the virtual address supplied. The function is:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ;

GR[r1].nat = ’1;

}

else {

GR[r1] =(VA{50:0}>> RR[VA{63:61}].PS) ^ 

((zero{5:0} || RR[VA{63:61}].RID{17:0}) << 39);

}

}

Please refer to page 2-228 in Volume 3 for a detailed description of the ttag instruction.
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5.6 ptc.e

On the Itanium processor, a single ptc.e purges all translation cache (TC) entries in both the 
instruction and data TLBs. The caches are not flushed.

Please refer to page 2-192 in Volume 3 for a detailed description of the ptc instruction.

5.7 mf.a

In the IA-64 architecture, the mf.a instruction is a memory acceptance fence for UC transactions 
only. On the Itanium processor, mf.a is implemented as an acceptance fence for both cacheable 
and UC data transactions (but not I fetches). The processor stalls until all data buffers in the L2 and 
bus are empty. This does not include buffers for instruction and L3 WB buffer in the bus request 
queue.

Please refer to page 2-140 in Volume 3 for a detailed description of the mf instruction.

5.8 Prefetch Behavior

The Itanium processor does not initiate prefetches with post-increment loads.

5.9 Temporal and Non-temporal Hints Support

 IA-64 architecture provides memory locality hints for data accesses that can be used for allocation 
control in the processor cache hierarchy. For more details on this topic, please refer to Volume 1, 
Section 4.4.6. Implementation of locality hints is left as an implementation-specific feature on 
IA-64 processors.

On the Itanium processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta. 
The Itanium processor does not support a non-temporal buffer; instead, non-temporal accesses are 
allocated in L2 cache with biased replacement.
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Processor Performance Monitoring 6

This chapter defines the performance monitoring features on the Itanium processor. The Itanium 
processor provides four 32-bit performance counters, more than 50 monitorable events, and several 
advanced monitoring capabilities. This chapter outlines the targeted performance monitor usage 
models, defines the software interface and programming model, and lists the set of monitored 
events.

IA-64 architecture incorporates architected mechanisms that allow software to actively and directly 
manage performance critical processor resources such as branch prediction structures, processor 
data and instruction caches, virtual memory translation structures, and more. To achieve the highest 
performance levels, dynamic processor behavior can be monitored and fed back into the code 
generation process to improve observed run-time behavior or to expose higher levels of instruction 
level parallelism. One can quantify and measure behavior of real-world IA-64 applications, tools 
and operating systems. These measurements will be critical for compiler optimizations and the 
efficient use of several architectural features such as speculation, predication, and more.

The remainder of this chapter is split into the following two subsections:

• Section 6.1, "Performance Monitor Programming Models" discusses how performance 
monitors are used and presents various Itanium processor performance monitoring 
programming models.

• Section 6.2, "Performance Monitor State" defines the Itanium processor specific PMC/PMD
performance monitoring registers.

6.1 Performance Monitor Programming Models

This section introduces the Itanium processor performance monitoring features from a 
programming model point-of-view and describes how the different event monitoring mechani
can be used effectively. The Itanium processor performance monitor architecture focuses on
following two usage models:

• Workload Characterization: the first step in any performance analysis is to understand th
performance characteristics of the workload under study. Section 6.1.1, "Workload 
Characterization" discusses the Itanium processor support for workload characterization.

• Profiling: profiling is used by application developers and profile-guided compilers. 
Application developers are interested in identifying performance bottlenecks and relating
back to their code. Their primary objective is to understand which program location caus
performance degradation at the module, function, and basic block level. For optimization
data placement and the analysis of critical loops, instruction level granularity is desirable
Profile-guided compilers that use advanced IA-64 architectural features such as predica
and speculation benefit from run-time profile information to optimize instruction schedule
The Itanium processor supports instruction granular statistical profiling of branch mispre
and cache misses. Details of the Itanium processor’s profiling support are described in 
Section 6.1.2, "Profiling".
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-1
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Whenever monitoring overhead is irrelevant, but accuracy is the primary objective, system and 
processor designers may resort to tracing processor activity at the system or the processor bus 
interface. However, trace based performance analysis and hardware tracing of the Itanium 
processor are beyond the scope of this documentation.

6.1.1 Workload Characterization

The first step in any performance analysis is to understand the performance characteristics of the 
workload under study. There are two fundamental measures of interest: event rates and program 
cycle break down. 

• Event Rate Monitoring: Event rates of interest include average retired instructions-per-cl
(IPC), data and instruction cache miss rates, or branch mispredict rates measured acros
entire application. Characterization of operating systems or large commercial workloads 
OLTP analysis) requires a system-level view of performance relevant events such as TLB
rates, VHPT walks/second, interrupts/second or bus utilization rates. Section 6.1.1.1, "Event 
Rate Monitoring" discusses event rate monitoring.

• Cycle Accounting: The cycle break-down of a workload attributes a reason to every cycle
spent by a program. Apart from a program’s inherent execution latency, extra cycles are
usually due to pipeline stalls and flushes. Section 6.1.1.4, "Cycle Accounting" discusses cycle 
accounting.

6.1.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counte
before and after the workload is run and then computing the desired rates. For instance, two
Itanium processor events that count the number of retired IA-64 instructions 
(IA64_INST_RETIRED.u) and the number of elapsed clock cycles (CPU_CYCLES) allow a 
workload’s instructions per cycle (IPC) to be computed as follows:

IPC = (IA64_INST_RETIRED.ut1 – IA64_INST_RETIRED.ut0) / (CPU_CYCLESt1 – 
CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune, gprof, Win
NT*]. As shown in Figure 6-1, time-based sampling can be used to plot the event rates over tim
and can provide insights into the different phases the workload moves through. 

Figure 6-1. Time-based Sampling
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On the Itanium processor, many event types (e.g. TLB misses or branch mispredicts) are limited to 
a rate of one per clock cycle. These are referred to as “single occurrence” events. However, 
Itanium processor multiple events of the same type may occur in the same clock. We refer to
events as “multi-occurrence” events. An example of a multi-occurrence events on the Itanium
processor is data cache misses (up to two per clock). Multi-occurrence events, such as the n
of entries in the memory request queue, can be used to the derive average number and aver
latency of memory accesses. The next two sections describe the basic Itanium processor 
mechanisms for monitoring single and multi-occurrence events.

6.1.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium processor performance co
For all single occurrence events a counter is incremented by up to one per clock cycle. Dura
counters that count the number of clock cycles during which a condition persists are conside
“single occurrence” events. Examples of single occurrence events on the Itanium processor 
TLB misses, branch mispredictions, or cycle-based metrics.

6.1.1.3 Multi-occurrence Events, Thresholding and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle
termed “multi-occurrence” events. Examples of such events on the Itanium processor are ret
instructions or the number of live entries in the memory request queue. The Itanium process
four performance counters are asymmetrical. While all counters handle single-occurrence an
multi-occurrence events with event rates up to three per cycle, only two counters can handle
multi-occurrence events with event rates up to seven per cycle. For details, see Section 6.2.2, 
"Performance Counter Registers".

Thresholding capabilities are available in the Itanium processor’s multi-occurrence counters 
can be used to plot an event distribution histogram. When a non-zero threshold is specified, 
monitor is incremented by one in every cycle in which the observed event count exceeds tha
programmed threshold. This allows questions such as “for how many cycles did the memory
request queue contain more than two entries?” or “during how many cycles did the machine 
more than three instructions?” to be answered. This capability allows micro-architectural buff
sizing experiments to be supported by real measurements. By running a benchmark with diff
threshold values, a histogram can be drawn up that may help to identify the performance “kn
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average numbe
concurrently outstanding requests and the average number of cycles that requests were pen
of interest. To calculate the average number or latency of multiple outstanding requests in th
memory queue, we need to know the total number of requests (ntotal) and, in each cycle, the numbe
of live requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a 
multi-occurrence counter Σnlive is directly measured by hardware. We can now calculate the 
average number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t 

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 6-1, in which the average outstanding 
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles. 
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-3
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The Itanium processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter

• Retired instruction counter

• Event occurrence and duration counters

• Multi-occurrence counters with thresholding capability

6.1.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the obse
events are contributing to a performance problem. A commonly used strategy is to plot multi
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low I
occurs concurrently with a peak of cache miss activity, chances are that cache misses are ca
performance problem. To eliminate such guess work, the Itanium processor provides a set of
cycle accounting monitors, that break-down the number of cycles that are lost due to various
of micro-architectural events. As shown in Figure 6-2, this lets us account for every cycle spent b
a program and therefore provides insight into an application’s micro-architectural behavior. N
that cycle accounting is different from simple stall or flush duration counting. Cycle accountin
based on the machine’s actual stall and flush conditions and accounts for overlapped pipelin
delays, while simple stall or flush duration counters do not. Cycle accounting determines a 
program’s cycle break-down by stall and flush reasons, while simple duration counters are us
determining cumulative stall or flush latencies.

Table 6-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

# Requests In 1 1 1 1 1 0 0 0

# Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5

Figure 6-2. IA-64 Cycle Accounting
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The Itanium processor cycle accounting monitors account for all major single and multi-cycle stall 
and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline order 
(i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported as 
being caused later in the pipeline). The eight stall and flush reasons are prioritized in the following 
order:

1. Branch Mispredict Cycle: branch mispredicts, pipeline flushes (includes interrupts and 
exceptions)

2. Data Access Cycle: memory pipeline full, data TLB stalls, and load-use stalls

3. Execution Latency Cycle: scoreboard stalls and FPU stalls

4. RSE Active Cycle: RSE spill/fill stall

5. Issue Limit Cycle: instruction issue, stops, or resource oversubscription stalls

6. Instruction Access Cycle: instruction fetch stalls due to instruction cache or TLB misses

7. Taken Branch Cycle: instruction fetch branch bubbles

8. Fetch Window Cycle: partial instruction fetch stalls due to non instruction cache line aligned 
branch targets

Four of the eight categories (1,2,3,6) are directly measurable as the Itanium processor events. The 
other four categories (4,5,7,8) are not measured directly. Instead four combined categories are 
available as the Itanium processor events: branch cycles (1+7), memory cycles (2+4), execution 
cycles (3+5), and instruction fetch cycles (6+8) are directly measurable as a Itanium processor 
event. For details refer to Section 7.3, “Cycle Accounting Events” on page 7-5.

6.1.2 Profiling

Profiling is used by application developers and profile-guided compilers, optimizing linkers a
run-time systems. Application developers are interested in identifying performance bottleneck
relating them back to their source code. Based on profile feedback developers can make cha
the high-level algorithms and data structures of the program. Compilers can use profile feedb
optimize instruction schedules by employing advanced IA-64 architectural features such as 
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locatio
The following mechanisms are supported directly by the Itanium processor’s performance 
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Itanium processor Event Address Registers (EARs) prov
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, 
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-5
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6.1.2.1 Program Counter Sampling

Application tuning tools like [VTune, gprof] use time-based or event-based sampling of the 
program counter and other event counters to identify performance critical functions and basic 
blocks. As shown in Figure 6-3, the sampled points can be histogrammed by instruction addresses. 
For application tuning, statistical sampling techniques have been very successful, because the 
programmer can rapidly identify code hot-spots in which the program spends a significant fraction 
of its time or where certain event counts are high.

Program counter sampling points the performance analysts at code hot-spots, but does not indicate 
what caused the performance problem. Inspection and manual analysis of the hot-spot region along 
with a fair amount of guess work are required to identify the root cause of the performance 
problem. On the Itanium processor, the cycle accounting mechanism (described in Section 6.1.1.4, 
"Cycle Accounting") can be used to directly measure an application’s micro-architectural beha

The IA-64 architectural interval timer facilities (ITC and ITM registers) can be used for time-b
program counter sampling. Event-based program counter sampling is supported by a dedica
performance monitor overflow interrupt mechanism described in detail in Volume 2, Section 7.2.2, 
"Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])".

To support program counter sampling, the Itanium processor provides the following mechani

• Timer interrupt for time-based program counter sampling.

• Event count overflow interrupt for event-based program counter sampling.

• Hardware supported cycle accounting.

6.1.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative 
micro-architectural behavior, but they do not provide the application developer with pointers 
specific program elements (code locations and data structures) that repeatedly cause 
micro-architectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] use
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on vari
benchmarks by making simple changes to the source code. This type of analysis requires 
identification of instruction and data addresses related to micro-architectural “miss events” su
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotatio
these addresses can be mapped back to critical source code elements. Like Lebeck, most 
performance analysts in the past have had to capture hardware traces and resort to trace dr
simulation.

Figure 6-3. Event Histogram by Program Counter
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Due to the super-scalar issue, deep pipelining, and out-of-order instruction completion of tod
micro-architectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program c
may be off by 2 dynamic instructions from the instruction that caused the miss event. On a Pe
Pro processor, this distance increases to approximately 32 dynamic instructions. On the Itan
processor it is approximately 48 dynamic instructions. If program counter sampling is used for
event address identification on the Itanium processor, a miss event might be associated with
instruction almost five dynamic basic blocks away from where it actually occurred (assuming
10% of all instructions are branches). Therefore, it is essential for hardware to precisely ident
event’s address.

The Itanium processor provides a set of event address registers (EARs) that record the instruction 
and data addresses of data cache misses for loads, the instruction and data addresses of da
misses, the instruction addresses of instruction TLB and cache misses. A four deep branch trace 
buffer captures sequences of branch instructions. Table 6-2 summarizes the capabilities offered by
the EARs and branch trace buffer. Exposing miss event addresses to software allows them t
monitored either by sampling or by code instrumentation. This eliminates the need for trace 
generation to identify and solve performance problems and enables performance analysis by
much larger audience on unmodified hardware. 

The Itanium processor EARs enable statistical sampling by configuring a performance count
count, for instance, the number of data cache misses or retired instructions. The performanc
counter value is set up to interrupt the processor after a pre-determined number of events ha
observed. The data cache event address register repeatedly captures the instruction and da
addresses of actual data cache load misses. Whenever the counter overflows, miss event ad
collection is suspended until the event address register is read by software (this prevents so
from capturing a miss event that might be caused by the monitoring software itself). When th
counter overflows an interrupt is delivered to software, the observed event addresses are co
and a new observation interval can be setup by rewriting the performance counter register. F
time-based (rather than event-based) sampling methods, the event address registers indicat
software whether or not a qualified event was captured. Statistical sampling can achieve arb
event resolution by varying the number of events within an observation interval, and by incre
the number of observation intervals.

Table 6-2. Itanium™ Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded

Instruction Cache Instruction fetches that miss 
the L1 instruction cache 
(demand fetches only) 

Instruction Address
Number of cycles fetch was in flight

Instruction TLB (ITLB) Instruction fetch missed ITLB 
(demand fetches only) 

Instruction Address
Who serviced TLB miss: VHPT or software

Data Cache Load instructions that miss L1 
data cache

Instruction Address
Data Address
Number of cycles load was in flight.

Data TLB

(DTLB)

Data references that miss
L1 DTLB

Instruction Address
Data Address
Who serviced TLB miss: L2 DTLB, VHPT or 
software

Branch

Trace 

Buffer

Branch Outcomes Branch Instruction Address

Branch Target Instruction Address

Mispredict status and reason
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 6-7
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6.1.3 Event Qualification

On the Itanium processor, performance monitoring can be confined to a subset of all events. As 
shown in Figure 6-4, events can be qualified for monitoring based on an instruction address range, 
a particular instruction opcode, a data address range, an event specific “unit-mask”, the priv
level and instruction set the event was caused by, and the status of the performance monito
freeze bit (PMC[0].fr).

• IA-64 Instruction Address Range Check: The Itanium processor allows event monitoring 
constrained to a programmable instruction address range. This enables monitoring of 
dynamically linked libraries (DLL), functions, or loops of interest in the context of a large 
IA-64 application. The IA-64 instruction address range check is applied at the instruction 
stage of the pipeline and the resulting qualification is carried by the instruction throughou
pipeline. This enables conditional event counting at a level of granularity smaller than dyn
instruction length of the pipeline (approximately 48 instructions). The Itanium processor’s
instruction address range check operates only during IA-64 code execution (i.e. when PS
zero). For details, see Section 6.2.4, "IA-64 Instruction Address Range Check Register 
(PMC[13])".

• IA-64 Instruction Opcode Match: The Itanium processor provides two independent IA-64
opcode match registers each of which match the currently issued instruction encodings w
programmable opcode match and mask function. The resulting match events can be sele
an event type for counting by the performance counters. This allows histogramming of 
instruction types, usage of destination and predicate registers as well as basic block pro
(through insertion of tagged nops). The opcode matcher operates only during IA-64 code 
execution (i.e. when PSR.is is zero). Details are described in Section 6.2.5, "IA-64 Opcode 
Match Registers (PMC[8,9])". 

• IA-64 Data Address Range Check: The Itanium processor allows event collection for me
operations to be constrained to a programmable data address range. This enables selec
monitoring of data cache miss behavior of specific data structures. For details, see 
Section 6.2.6, "IA-64 Data Address Range Check (PMC[11])". 

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter o
interesting events directly at the monitored unit. For details, refer to the event pages in 
Chapter 7, "Performance Monitor Events". 

• Privilege Level: Two bits in the processor status register are provided to enable selective
process-based event monitoring. The Itanium processor supports conditional event coun
based on the current privilege level; this allows performance monitoring software to 
break-down event counts into user and operating system contributions. For details on ho
constrain monitoring by privilege level refer to Section 6.2.1, "Performance Monitor Control 
and Accessibility".

• Instruction Set: The Itanium processor supports conditional event counting based on the
currently executing instruction set (IA-64 or IA-32) by providing two instruction set mask 
for each event monitor. This allows performance monitoring software to break-down eve
counts into IA-64 and IA-32 contributions. For details, refer to Section 6.2.1, "Performance 
Monitor Control and Accessibility". 

• Performance Monitor Freeze: Event counter overflows or software can freeze event 
monitoring. When frozen, no event monitoring takes place until software clears the monit
freeze bit (PMC[0].fr). This ensures that the performance monitoring routines themselves
counter overflow interrupt handlers or performance monitoring context switch routines, do
“pollute” the event counts of the system under observation.
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6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range 
Check

The Itanium processor allows various event qualification mechanisms to be combined by providing 
the instruction tagging mechanism shown in Figure 6-5. Instruction address range check and 
opcode matching are available only for IA-64 code; they are disabled when IA-32 code is 
executing.

Figure 6-4. Itanium™ Processor Event Qualification

000987

IA-64 Instruction
Address Range Check

Instruction Address

IA-64 Instruction Opcode MatchInstruction Opcode

Is IA-64 instruction pointer
in IBR range?

Does IA-64 opcode match?

IA-64 Data Address Range Check
(Memory Operations Only)

Data Address
Is IA-64 data address
in DBR range?

Event Spefic "Unit Mask"Event Did event happen and qualify?

Privilege Level Check
Current Privilege

 Level
Executing at monitored
privilege level?

Instruction Set Check
Current Instruction

Set (IA-64 or IA-32)
Executing in monitored
instruction set?

Event Count Freeze
Performance Monitor
Freeze Bit (PMC0.fr)

Is event monitoring enabled?

YES, all of the above are true;
this event is qualified.
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During IA-64 instruction execution (PSR.is is zero), the instruction address range check is applied 
first. The resulting address range check tag (IBRRangeTag) is passed to two opcode matchers that 
combine the instruction address range check with the opcode match. Each of the two combined tags 
(Tag(PMC[8]) and Tag(PMC[9])) can be counted as a retired instruction count event (for details 
refer to event description IA64_TAGGED_INSTRS_RETIRED in Table 7-3 “Instruction Issue and
Retirement Events” on page 7-2).

One of the combined IA-64 address range and opcode match tags, Tag(PMC[8]), qualifies a
down-stream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and da
events) can further be qualified using a data address DBRRangeTag). 

As summarized in Table 6-3, data address range checking can be combined with opcode matc
and instruction range checking on the Itanium processor. Additional event qualifications base
the current privilege level and the current instruction set can be applied to all events and are
discussed in Section 6.1.3.2, "Privilege Level Constraints" and Section 6.1.3.3, "Instruction Set 
Constraints".

Figure 6-5. Instruction Tagging Mechanism in the Itanium™ Processor

000988

Table 6-3. Itanium™ Processor Event Qualification Modes

Event Qualification Modes
Instr. Address 
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address 
Range Check

PMC[11].pt

Unconstrained Monitoring (all events) 1 0xffff_ffff_ffff_ffff 1

Instruction Address Range Check only 0 0xffff_ffff_ffff_ffff 1

Opcode Matching only 1 Desired Opcodes 1

Data Address Range Check only 1 0xffff_ffff_ffff_ffff 0

Instruction Address Range Check and 
Opcode Matching

0 Desired Opcodes 1

IA-64
Instruction
Address
Range
Check
(IBRs,

PMC[13])

IA-64 Opcode
Matcher
(PMC[8])

IA-64 Data
Address Range

Check
(DBRs, PMC[11])

Memory
Event i

Event j

Event k

Event l

IA-64 Opcode
Matcher
(PMC[9])

Tag(PMC[8])

IBRRange Tag

DBRRange Tag

Tag(PMC[9])

Event Select (PMC[i].es)

Privilege
Level & 

Instruction Set
Check

Privilege Level Mask
Instruction Set Mask
(PMC[i].plm, PMC[i].ism)

Counter
(PMD[i])
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6.1.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the 
operating system. In general, this has made performance analysis of a single process in a 
multi-processing system or a multi-process workload very difficult. To provide hardware support 
for this kind of analysis, IA-64 specifies three global bits (PSR.up, PSR.pp, DCR.pp) and a 
per-monitor “privilege monitor” bit (PMC[i].pm). To break down the performance contributions
operating system and user-level application components, each monitor specifies a 4-bit privi
level mask (PMC[i].plm). The mask is compared to the current privilege level in the processo
status register (PSR.cpl), and event counting is enabled if PMC[i].plm[PSR.cpl] is one. The 
Itanium processor performance monitors control is discussed in Section 6.2.1, "Performance 
Monitor Control and Accessibility". 

PMC registers can be configured as user-level monitors (PMC[i].pm is zero) or system-level 
monitors (PMC[i].pm is one). A user-level monitor is enabled whenever PSR.up is one. PSR.u
be controlled by an application using the sum/rum instructions. This allows applications to 
enable/disable performance monitoring for specific code sections. A system-level monitor is 
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which a
monitor control without interference from user-level processes. The pp field in the default con
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows e
generated during interruptions to be broken down separately: if DCR.pp is zero, events durin
interruptions are not counted, if DCR.pp is one, they are included in the kernel counts.

As shown in Figure 6-6, Figure 6-7 and Figure 6-8, single process, multi-process, and system lev
performance monitoring are possible by specifying the appropriate combination of PSR and 
bits. These bits allow performance monitoring to be controlled entirely from a kernel level de
driver, without explicit operating system support. Once the desired monitoring configuration h
been setup in a process’ processor status register (PSR), “regular” unmodified operating con
switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-down of event counts c
generated as outlined in Section 7.2, "Performance Monitoring" of Volume 2.

6.1.3.3 Instruction Set Constraints

On the Itanium processor, monitoring can additionally be constrained based on the currently
executing instruction set as defined by PSR.is. This capability is supported by the four gener
performance counters as well as the instruction and data event address registers. However, 
IA-64 instruction address range checking, IA-64 opcode matching and the IA-64 branch trace
buffer, only support IA-64 code execution. When these IA-64 only features are used, the 
corresponding PMC register instruction set mask (PMC[i].ism) should be set to IA-64 only (0
ensure that events generated by IA-32 code do not corrupt the IA-64 event counts.

Instruction and Data Address Range Check 0 0xffff_ffff_ffff_ffff 0

Opcode Matching and Data Address 
Range Check

1 Desired Opcodes 0

Table 6-3. Itanium™ Processor Event Qualification Modes (Continued)

Event Qualification Modes
Instr. Address 
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address 
Range Check

PMC[11].pt
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Figure 6-6. Single Process Monitor

000989

Figure 6-7. Multiple Process Monitor
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Figure 6-8. System Wide Monitor
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6.2 Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC) 
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide 
data values from the monitors. This section describes the Itanium processor performance 
monitoring registers which expands on the IA-64 architectural definition. As shown in Figure 6-9, 
the Itanium processor provides four 32-bit performance counters (PMC/PMD[4,5,6,7] pairs), and 
the following model-specific monitoring registers: instruction and data event address registers 
(EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match registers 
and an instruction address range check register.

Table 6-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt 
status registers are mapped to PMC[0,1,2,3]. The four generic performance counter pairs are 
assigned to PMC/PMD[4,5,6,7]. The event address registers and the branch trace buffer are 
controlled by three configuration registers (PMC[10,11,12]). Captured event addresses and cache 
miss latencies are accessible to software through five event address data registers 
(PMD[0,1,2,3,17]) and a branch trace buffer (PMD[8-16]). On the Itanium processor, monitoring 
of some events can additionally be constrained to a programmable instruction address range by 
appropriate setting of the instruction breakpoint registers (IBR) and the instruction address range 
check register (PMC[13]). Two opcode match registers (PMC[8,9]) allow monitoring of some 
events to be qualified with a programmable opcode. For memory operations, events can be 
qualified by a programmable data address range by appropriate setting of the data breakpoint 
registers (DBR) and the data address range check bits in PMC[11].

6.2.1 Performance Monitor Control and Accessibility

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the 
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the 
performance monitor freeze bit (PMC[0].fr) affect the behavior of all performance monitor 
registers. 

Finer, per monitor, control is provided by three PMC register fields (PMC[i].plm, PMC[i].ism, and 
PMC[i].pm). Instruction set masking based on PMC[i].ism is an Itanium processor model-specific 
feature. Event collection for a monitor is enabled under the following constraints on the Itanium 
processor:
Monitor Enablei =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and ((not 
PMC[i].ism[PSR.is]) or (PMC[i]=12)) and (not (PMC[i].pm) and PSR.up) or (PMC[i].pm 
and PSR.pp))

Figure 3-2, “Processor Status Register (PSR)” on page 3-6 in Volume 2 defines the PSR control 
fields that affect performance monitoring. For a detailed definition of how the PSR bits affect e
monitoring and control accessibility of PMD registers, please refer to Section 3.3.2, "Processor 
Status Register (PSR)" and Section 7.2.1, "Generic Performance Counter Registers" in Volume 2.
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Figure 6-9. Itanium™ Processor Performance Monitor Register Model
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As defined in Table 6-4, each of these PMC registers controls the behavior of its associated 
performance monitor data registers (PMD). Table 6-5 defines per monitor controls that apply to 
PMC[4,5,6,7,10,11,12]. The Itanium processor model-specific PMD registers associated with 
instruction/data EARs and the branch trace buffer (PMD[0,1,2,3,8-17]) can be read reliably only 
when event monitoring is frozen (PMC[0].fr is one). 

Table 6-4. Itanium™ Processor Performance Monitor Register Set

Monitoring
Feature

Configu-
ration

Registers 
(PMC)

Data
Registers 

(PMD)
Description

Interrupt Status PMC[0,1,2,3] none See Section 6.2.3, "Performance Monitor Overflow Status 
Registers (PMC[0,1,2,3])"

Event Counters PMC[4,5,6,7] PMD[4,5,6,7] See Section 6.2.2, "Performance Counter Registers"

Opcode 
Matching

PMC[8,9] none See Section 6.2.5, "IA-64 Opcode Match Registers 
(PMC[8,9])"

Instruction EAR PMC[10] PMD[0,1] See Section 6.2.7.1, "Instruction EAR (PMC[10], 
PMD[0,1])"

Data EAR PMC[11] PMD[2,3,17] See Section 6.2.7.4, "Data EAR (PMC[11], PMD[2,3,17])"

Instruction 
Address Range 
Check

PMC[13] none See Section 6.2.4, "IA-64 Instruction Address Range 
Check Register (PMC[13])"

Data Address 
Range Check

PMC[11] none See Section 6.2.6, "IA-64 Data Address Range Check 
(PMC[11])"

Figure 6-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other upoth rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Table 6-5. Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level. 
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege 
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at 
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state, 
the Itanium™ processor will not preserve the value of the corresponding PMD register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor, and 
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a 
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.

ism 25:24 Instruction Set Mask - controls performance monitor operation based on the current 
instruction set.

The instruction set mask applies to PMC[4,5,6,7,10,11] but not to PMC[12].

00: monitoring enabled during IA-64 and IA-32 instruction execution (regardless of PSR.is)
10: bit 24 low enables monitoring during IA-64 instruction execution (when PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring
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6.2.2 Performance Counter Registers

The Itanium processor provides four generic performance counters (PMC/PMD[4,5,6,7] pairs). 
The implemented counter width on the Itanium processor is 32 bits. The Itanium processor counters 
are not symmetrical (i.e. not all event types can be monitored by all counters). Counters 
PMC/PMD[4,5] can track events whose maximum per-cycle event increment is 7. Counters 
PMC/PMD[6,7] can track events whose maximum per-cycle event increment is 3.

The Itanium processor extends the generic IA-64 counter configuration register (PMC) layout by 
adding two fields for specifying a unit mask (umask) and a threshold field. These model-specific 
fields are described in Table 6-6. A counter overflow occurs when the counter wraps (i.e. a carry 
out from bit 31 is detected). Software can force an external interruption or external notification 
after N events, by preloading the monitor with a count value of 232 - N. When accessible, software 
can continuously read the performance counter registers PMD[4,5,6,7] without disabling event 
collection. The processor guarantees that software will see monotonically increasing counter 
values.

Figure 6-11 and Table 6-6 define the layout of the Itanium processor Performance Counter Data 
Registers (PMD[4,5,6,7]). Figure 6-12, Figure 6-13 and Table 6-6 define the layout of the Itanium 
processor Performance Counter Configuration Registers (PMC[4,5,6,7]).

Figure 6-11. Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7])
63 32 31 0

PMD[4,5,6,7] sxt32 count
32 32

Table 6-6. Itanium™ Processor Generic PMD Register Fields

Field Bits Description

sxt32 63:32 Writes are ignored, Reads return the value of bit 31, so count values appear as sign 
extended.

count 31:0 Event Count. The counter is defined to overflow when the count field wraps (carry out from 
bit 31).

Figure 6-12. Itanium™ Processor Generic PMC Registers (PMC[4,5])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[4,5] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 3 4 1 7 1 1 1 1 4

Figure 6-13. Itanium™ Processor Generic PMC Registers (PMC[6,7])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[6,7] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 2 4 1 7 1 1 1 1 4
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6.2.3 Performance Monitor Overflow Status Registers 
(PMC[0,1,2,3])

The Itanium processor supports four counters. As shown in Figure 6-14 and Table 6-8 only 
PMC[0]{7:4} bits are populated. All other overflow bits are ignored, i.e. they read as zero and 
ignore writes.

Table 6-7. Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7])

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields 
(PMC[4,5,6,7,10,11,12])”.

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided 
whenever the counter wraps, i.e a carry out from bit 31 is detected. External notification 
occurs regardless of the setting of the oi bit. On the Itanium™ processor, PMC[4] external 
notification strobes the BPM0 pin, PMC[5] external notification strobes the BPM1 pin, 
PMC[6] external notification strobes the BPM2 pin, and PMC[7] external notification 
strobes the BPM3 pin.

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the 
performance monitor freeze bit (PMC[0].fr) is set when the monitor overflows. When 0, no 
interrupt is raised and the performance monitor freeze bit (PMC[0].fr) remains 
unchanged. Overflow occurs when the counter wraps, i.e. a carry out from bit 31 is 
detected. Counter overflows generate only one interrupt.

pm 6 Privilege Monitor. See Table 6-5, “Performance Monitor PMC Register Control Fields 
(PMC[4,5,6,7,10,11,12])”.

ig 7 ignored

es 14:8 Event select - selects the performance event to be monitored. 
Itanium processor event encodings are defined in Chapter 7, "Performance Monitor 
Events". 

ig 15 ignored

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)

threshold 22:20
21:20

Threshold -enables thresholding for “multi-occurrence” events. 

PMC[4,5] define 3 threshold bits 22:20, while PMC[6,7] define 2 threshold bits 21:20.

When threshold is zero, the counter sums up all observed event values. When the 
threshold is non-zero, the counter increments by one in every cycle in which the 
observed event value exceeds the threshold. 

ism 25:24 Instruction Set Mask. See Table 6-5, “Performance Monitor PMC Register Control Fields 
(PMC[4,5,6,7,10,11,12])”.

ignored 63:24 Read zero, Writes ignored.
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6.2.4 IA-64 Instruction Address Range Check Register (PMC[13])

The Itanium processor allows event monitoring to be constrained to a range of instruction 
addresses. All four architectural breakpoint registers (IBRs) are used to specify the desired address 
range. The Itanium processor instruction address range check register PMC[13] specifies how the 
resulting address match is applied to the performance monitors.

Figure 6-14. Itanium™ Processor Performance Monitor Overflow Status Registers 
(PMC[0,1,2,3])
63    8 7 6 5 4 3 2 1 0

ignored (PMC[0]) overflow ignored fr
4 3 1

ignored (PMC[1])

ignored (PMC[2])

ignored (PMC[3])

Table 6-8. Itanium™ Processor Performance Monitor Overflow Register
Fields (PMC[0,1,2,3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit - when 1, event monitoring is disabled. 
When 0, event monitoring is enabled. This bit is set by hardware whenever a 
performance monitor overflow occurs and its corresponding overflow 
interrupt bit (PMC.oi) is set to one. SW is responsible for clearing it. When 
the PMC.oi bit is not set, then counter overflows do not set this bit.

PMC[0] ignored 3:1 Read zero, Writes ignored.

PMC[0] overflow 7:4 Event Counter Overflow - When bit n is one, indicate that the PMDn 
overflowed. This is a 

bit vector indicating which performance monitor overflowed. These overflow 
bits are set on their corresponding counters overflow regardless of the state 
of the PMC.oi bit. These bits are sticky and multiple bits may be set.

PMC[0] ignored 63:8 Read zero, Writes ignored.

PMC
[1,2,3]

ignored 63:0 Read zero, Writes ignored.

Figure 6-15. Itanium™ Processor Instruction Address Range Check Register (PMC[13])
63    1 0

ignored (PMC[13]) ta
61 1
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Instruction address range checking is controlled by the “tag all” bit (PMC[13].ta). When 
PMC[13].ta is one, all instructions are tagged regardless of IBR settings. In this mode, event
both IA-32 and IA-64 code execution contribute to the event count. When PMC[13].ta is zero
instruction address range check based on the IBR settings is applied to all IA-64 code fetche
this mode, IA-32 instructions are never tagged, and, as a result, events generated by IA-32 c
execution are ignored. Table 6-10 defines the behavior of the instruction address range checker
different combinations of PSR.is and PMC[13].ta.

The processor compares every IA-64 instruction fetch address IP{63:0} with each of the four
architectural instruction breakpoint registers. Regardless of the value of the instruction break
fault enable (IBR x-bit), the following expression is evaluated for each of the Itanium process
four IBRs:

IBRmatchi = match(IP,IBRi.addr, IBR(2*i)+1.mask, IBR(2*i)+1.plm)

On the Itanium processor, in which only 54 virtual and 44 physical address bits are implemen
this IBR match is defined as follows:

IBRmatchi = (IBR[2*i]+1.plm[PSR.cpl]) 
and (ANDb=50..0 ( (IBRi.addr{b} and IBR[2*i]+1.mask{b}) = (IP{b} and IBR[2*i]+1.mask{b})))
and (ANDb=55..51 ( (IBRi.addr{b} and IBR[2*i]+1.mask{b}) = (IP{50} and IBR[2*i]+1.mask{b})))
and (ANDb=60..56 (IBRi.addr{b}=IP{50}))
and (ANDb=63:61 (IBRi.addr{b}=IP{b}))

The resulting four matches are combined with the PSR.is bit, two instruction address range c
register bits, the IBR x-bits, and PSR.db:

IBRRangeTag = (PMC[13].ta)
or ((not PSR.is) 
and ((IBRmatch0 or IBRmatch1 or IBRmatch2 or IBRmatch3)
and (not (PSR.db or IBR1.x or IBR3.x or IBR5.x or IBR7.x))))

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if 
PMC[13].ta is zero, PSR.is is zero, and if none of the IBR x-bits or PSR.db are set. Since the
architectural break-point registers (IBRs) are used to specify the desired performance monito
address range, it is not possible to constrain monitoring when the IBRs are used in their 

Table 6-9. Itanium™ Processor Instruction Address Range Check Register Fields (PMC[13])

Field Bits Description

ta 0 Tag All - when 1, all events are counted independent of instruction address and 
instruction set. The default value of this PMC[13].ta should be set to one upon 
reset.

Table 6-10. Itanium™ Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC13.ta 0 (IA-64) 1 (IA-32)

0 Tag only IA-64 instructions if they match 
IBR range

DO NOT tag any IA-32 operations.

1 Tag all IA-64 and IA-32 instructions.Ignore IBR range. 
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architectural break-point capacity, i.e. when PSR.db or an IBR x-bit is set. In other words, it is not 
possible to use performance monitor address range checking when a debugger is running, unless 
the debugger and the performance monitor software carefully synchronize their use of the IBRs.

The instruction range check tag is computed early in the processor pipeline and therefore includes 
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are 
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units). 
Therefore, software must accept a level of range check inaccuracy for events generated by these 
units, especially for non-looping code sequences that are shorter than the Itanium processor 
pipeline. As described in Section 6.1.3.1, "Combining Opcode Matching, Instruction, and Data 
Address Range Check", the instruction range check result may be combined with the results of the 
IA-64 opcode match registers described in the next section.

6.2.5 IA-64 Opcode Match Registers (PMC[8,9])

The Itanium processor allows event monitoring to be constrained based on the IA-64 encoding 
(opcode) of an instruction. Registers PMC[8,9] allow two independent opcodes matches to be 
specified. The IA-64 opcode matcher operates only during IA-64 code execution (i.e. when PSR.is 
is zero).

For opcode matching purposes, an IA-64 instruction is defined by two items: the instruction type 
“itype” (one of M, I, F or B) and the 40-bit encoding “enco{40:0}” defined in Volume 3. Each 
instruction is evaluated against each opcode match register (PMC[8,9]) as follows:

Match(PMC[i]) = (imatch (itype,PMC[i].mifb) and 
ematch(enco,PMC[i].match,PMC[i]PMC[i].mask))

Where:

imatch(itype,PMC[i].mifb) = itype=M and PMC[i].m) or (itype=I and PMC[i].i) or (itype=F and 
PMC[i].f) or (itype=B and PMC[i].b)

ematch(enco,match,mask) = AND b=40..27 ((enco{b}=match{b-14}) or mask{b-14}) and AND 
b=12..0 ((enco{b}=match{b}) or mask{b})

Figure 6-16. Opcode Match Registers (PMC[8,9])
63 62 61 60  59  33 32 31 30 29 3 2 1 0

m i f b match ignored mask ignored
1 1 1 1 27 3 27 3

Table 6-11. Opcode Match Register Fields (PMC[8,9])

Field Bits Width Description

mask 29:3 27 Bits that mask IA-64 instruction encoding bits {40:27} and {12:0}

match 59:33 27 Opcode bits to match IA-64 instruction encoding bits {40:27} and {12:0}

b 60 1 If 1: match if opcode is an B-syllable

f 61 1 If 1: match if opcode is an F-syllable

i 62 1 If 1: match if opcode is an I-syllable

m 63 1 If 1: match if opcode is an M-syllable
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This function matches encoding bits{40:27} (major opcode) and encoding bits{12:0} (destination 
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode 
matcher.

This produces two opcode match events that are combined with the PSR.is bit, and the instruction 
range check tag (IBRRangeTag, see Section 6.2.4, "IA-64 Instruction Address Range Check 
Register (PMC[13])") as follows:

Tag(PMC[8]) = Match(PMC[8]) and IBRRangeTag and (not PSR.is)

Tag(PMC[9]) = Match(PMC[9]) and IBRRangeTag and (not PSR.is)

As shown in Figure 6-5, the two tags, Tag(PMC[8]) and Tag(PMC[9]), are staged down the 
processor pipeline until instruction retirement, and can be selected as a retired instruction count 
event. In this way, a performance counters (PMC/PMD[4,5,6,7]) can be used to count the number 
of retired instructions within the programmed range that match the specified opcodes. All 
combinations of the mifb bits are supported. To match A-syllable instructions both m and i bits 
should be set to one. To match all instruction types, all mifb and all mask bits should be set to one. 
This will count the number of retired instructions within the programmed address range. One of the 
combined IA-64 address range and opcode match tags, Tag(PMC[8]), qualifies most down-stream 
pipeline events. To ensure that all events are counted independent of the IA-64 opcode matcher, all 
mifb and all mask bits of PMC[8] should be set to one (all opcodes match). Tag(PMC[9]) is not 
used to qualify downstream events.

6.2.6 IA-64 Data Address Range Check (PMC[11])

For instructions that reference memory, the Itanium processor allows event counting to be 
constrained by data address ranges using the architectural data breakpoint registers (DBRs). Data 
address range checking capability is controlled enabled by the “pass tags” bit in the Data Ev
Address Register (PMC[11].pt). For details on PMC[11], refer to Section 6.2.7.4, "Data EAR 
(PMC[11], PMD[2,3,17])". 

When enabled (PMC[11].pt is zero), data address range checking is applied to loads (all type
stores, semaphore operations, and the lfetch instruction whose upstream opcode match 
Tag(PMC[8]) was set. When PMC[11].pt is one, RSE operations and VHPT walks are tagged
if the opcode match Tag(PMC[8]) was set for the operation that caused the RSE or VHPT ac
When PMC[11].pt is zero, all RSE operations and VHPT walks that hit the programmed data
address range are tagged (regardless of the opcode match Tag(PMC[8])). To capture all VH
walks when PMC[11].pt is zero, the minimum DBR mask granularity must be set to the size 
single VHPT entry.

On the Itanium processor, in which only 54 virtual address bits are implemented, the perform
monitoring DBR match function is defined as follows:

DBRRangeMatchi =
(AND b=50..0 ( (DBRi.addr{b} and DBR[2*i]+1.mask{b}) = (addr{b} and DBR[2*i]+1.mask{b}))) 
and(AND b=55..51 ( (DBRi.addr{b} and DBR[2*i]+1.mask{b}) = (addr{50} and 
DBR[2*i]+1.mask{b})))
and(AND b=60..56 (DBRi.addr{b}=addr{50}))
and(AND b=63:61 (DBRi.addr{b}=addr{b}))
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The resulting four matches are combined with PSR.db to form a single DBR match:

DBRRangeMatch = ((DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or 
DBRRangeMatch3) 
and (not PSR.db))

Note: DBR matching for performance monitoring ignores the setting of the DBR r, w and plm 
fields. Finally, the DBRRangeMatch is combined with PMC[11].pt and the upstream 
opcode match tag Tag(PMC[8]) as follows:

DBRRangeTag = Tag(PMC[8]) and ((PMC[11].pt) or DBRRangeMatch)

DBR based data address range checking combined with opcode matching and instruction range 
checking allows the following combinations of event monitoring on the Itanium processor.

6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])

This section defines the register layout for the Itanium processor instruction and data event address 
registers (EARs). Sampling of four events is supported on the Itanium processor: instruction cache 
and instruction TLB misses, data cache load misses, and data TLB misses. The EARs are 
configured through two PMC registers (PMC[10,11]). EAR specific unit masks allow software to 
specify event collection parameters to hardware. Instruction and data addresses, operation latencies 
and other captured event parameters are provided in five PMD registers (PMD[0,1,2,3,17]). The 
instruction and data cache EARs report the latency of captured cache events and allow latency 
thresholding to qualify event capture. Event address data registers (PMD[0,1,2,3,17]) contain valid 
data only when event collection is frozen (PMC[0].fr is one). Reads of PMD[0,1,2,3,17] while 
event collection is enabled return undefined values.

6.2.7.1 Instruction EAR (PMC[10], PMD[0,1])

The instruction event address configuration register (PMC[10]) can be programmed to monitor 
either L1 instruction cache or instruction TLB miss events. Figure 6-17 and Table 6-12 detail the 
register layout of PMC[10]. Figure 6-18 describes the associated event address data registers 
PMD[0,1].

When the tlb-bit (PMC[10].tlb) is set to zero instruction cache misses are monitored, when it is set 
to one instruction TLB misses are monitored. The interpretation of the umask field and 
performance monitor data registers PMD[0,1] depend on the setting of the tlb bit, and are described 
in Section 6.2.7.2, "Instruction EAR Cache Mode (PMC[10].tlb=0)" for instruction cache 
monitoring and in Section 6.2.7.3, "Instruction EAR TLB Mode (PMC[10].tlb=1)" for instruction 
TLB monitoring. 

Figure 6-17. Instruction Event Address Configuration Register (PMC[10])
63    26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored ism ignored umask ignored tlb pm ign. plm
38 2 4 4 7 1 1 2 4
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6.2.7.2 Instruction EAR Cache Mode (PMC[10].tlb=0)

When PMC[10].tlb is zero, the instruction event address register captures instruction addresses and 
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a 
programmable threshold are captured. The threshold is specified as a four bit umask field in the 
configuration register PMC[10]. Possible threshold values are defined in Table 6-13. 

As defined in Table 6-14, the address of the instruction cache line missed the L1 instruction cache 
is provided in PMD[0]. If no qualified event was captured, the valid bit in PMD[0] is zero. The 
latency of the captured instruction cache miss in processor clock cycles is provided in the latency 
field of PMD[1]. In cache mode, the TLB miss bit of PMD[0] is undefined.

Table 6-12. Instruction Event Address Configuration Register Fields (PMC[10])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tlb 7 Instruction EAR selector: instruction cache/TLB

if tlb=0: monitor L1 instruction cache misses
PMD[0,1] register interpretation see Table 6-14.

if tlb=1: monitor instruction TLB misses

PMD[0,1] register interpretation see Table 6-16.

umask 19:16 Instruction EAR unit mask 

if tlb=0: instruction cache unit mask (definition see Table 6-13) 

if tlb=1: instruction TLB unit mask (definition see Table 6-15)

ism 25:24 See Table 6-5.

Figure 6-18. Instruction Event Address Register Format (PMD[0,1]
63 5 4 3 2 1 0

Instruction Cache Line Address (PMD[0]) ignored tlb v
59 3 1 1

63 12 11 0

ignored (PMD[1]) latency
52 12

Table 6-13. Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.
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6.2.7.3 Instruction EAR TLB Mode (PMC[10].tlb=1)

When PMC[10].tlb is one, the instruction event address register captures addresses of instruction 
TLB misses. The unit mask allows event address collection to capture specific subsets of 
instruction TLB misses. Table 6-15 summarizes the instruction TLB umask settings. All 
combinations of the mask bits are supported.

As defined in Table 6-16, the address of the instruction cache line fetch that missed the L1 TLB is 
provided in PMD[0]. The tlb bit indicates whether the captured TLB miss hit in the VHPT or 
required servicing by software. If no qualified event was captured, the valid bit in PMD[0] reads 
zero. In TLB mode, the latency field of PMD[1] is undefined.

Table 6-14. Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

tlb 1 TLB Miss Bit (undefined in cache mode)

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache missa

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits 
pa{62:44}. The instruction and data address bits {60:51} of PMD[0] read as a sign-extension of bit {50}. Writes 
to bits {60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:0 Latency in processor clocks

Table 6-15. Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)

umask Bit Instruction TLB EAR Unit Mask (Instruction TLB misses)

0

1

2

3

ignored

ignored

if one, capture Instruction TLB misses that hit VHPT

if one, capture Instruction TLB misses handled by software

Table 6-16. Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event
1: EAR contains valid event data

tlb 1 TLB Miss Bit:

0: VHPT Hit
1: Instruction TLB Miss handled by software

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB missa

a. The Itanium™ processor does not implement virtual address bits va{60:51}. The instruction address bits 
{60:51} of PMD[0] read as a sign-extension of bit {50}. Writes to bits {60:51} of PMD[0] are ignored by the 
processor.

PMD[1] latency 11:2 undefined in TLB mode
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6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])

The data event address configuration register (PMC[11]) can be programmed to monitor either L1 
data cache load misses or L1 data TLB misses. Figure 6-19 and Table 6-17 detail the register layout 
of PMC[11]. Figure 6-20 describes the associated event address data registers PMD[2,3,17]. The 
tlb bit in configuration register PMC[11] selects data cache or data TLB monitoring. The 
interpretation of the umask field and registers PMD[2,3,17] depends on the setting of the tlb bit, 
and is described in Section 6.2.7.5, "Data Cache Load Miss Monitoring (PMC[11].tlb=0)" for data 
cache load miss monitoring and in Section 6.2.7.6, "Data TLB Miss Monitoring (PMC[11].tlb=1)" 
for data TLB monitoring. The PMC[11].pt bit controls data address range checking which is 
described in Section 6.2.6, "IA-64 Data Address Range Check (PMC[11])".

Figure 6-19. Data Event Address Configuration Register (PMC[11])
63    28 27 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored pt ign. ism ignored umask ignored tlb pm ign. plm
35 1 2 2 4 4 7 1 1 2 4

Table 6-17. Data Event Address Configuration Register Fields (PMC[11])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tlb 7 Data EAR selector: data cache/TLB

if tlb=0:monitor L1 data cache load misses
PMD[2,3,17] register interpretation see Table 6-19.

if tlb=1: monitor L1 data TLB misses
PMD[2,3,17] register interpretation see Table 6-21.

umask 19:16 Data EAR unit mask 

if tlb=0: data cache unit mask (definition see Table 6-18) 

if tlb=1: data TLB unit mask (definition see Table 6-20)

ism 25:24 See Table 6-5.

pt 28 Pass Tags. This bit enables/disables data address range checking. See Section 6.2.6, 
"IA-64 Data Address Range Check (PMC[11])" for details.

if pt=1: then the Tag(PMC[8]) is passed down the pipeline unmodified.

if pt=0: data address range checking is enabled for memory operations. 

Figure 6-20. Data Event Address Register Format (PMD[2,3,17])
63 4 3 2 1 0

Instruction Address (PMD[17]) slot ig v
60 2 1 1

63 62 61 12 11 0

level ignored (PMD[3]) latency
2 50 12

63 0

Data Address (PMD[2])

64
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6.2.7.5 Data Cache Load Miss Monitoring (PMC[11].tlb=0)

If the Data EAR is configured to monitor data cache load misses (PMC[11].tlb=0), the umask is 
used as a load latency threshold defined by Table 6-18.

As defined in Table 6-19, the instruction and data addresses as well as the load latency of a 
captured data cache load miss is presented to software in three registers PMD[2,3,17]. If no 
qualified event was captured, the valid bit in PMD[3] is zero. In data cache load miss mode, the 
level field of PMD[3] is undefined. 

The detection of data cache load misses requires a load instruction to be tracked during multiple 
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be 
outstanding at any point in time and the Itanium processor data cache miss event address register can 
only track a single load at a time, not all data cache load misses may be captured. When the 
processor hardware captures the address of a load (called the monitored load), it ignores all other 
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1 
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched 
into PMD[2,3,17]. The processor randomizes the choice of which load instructions are tracked to 
prevent the same data cache load miss from always being captured (in a regular sequence of 
overlapped data cache load misses). While this mechanism will not always capture all data cache 
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by 
statistical sampling or code instrumentation.

Table 6-18. PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.

Table 6-19. PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

Register Fields Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Latency in CPU clocks

level 63:62 Undefined in data cache load miss mode

PMD[17] valid 0 Valid bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction bundle slot of memory instruction. For IA-32 ISA 
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction.a

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits 
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes 
to bits {60:51} of PMD[2,17] are ignored by the processor.
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6.2.7.6 Data TLB Miss Monitoring (PMC[11].tlb=1)

If the Data EAR is configured to monitor data TLB misses (PMC[11].tlb=1), the umask defined by 
Table 6-20 determine which data TLB misses are captured by the Data EAR. For TLB monitoring, 
all combinations of the mask bits are supported. 

As defined in Table 6-21, the instruction and data addresses of captured data TLB misses are 
presented to software in PMD[2,17]. The level of the TLB hierarchy from which the L1 data TLB 
miss was satisfied is recorded in the level field of PMD[3]. If no qualified event was captured, the 
valid bit in PMD[17] and the level field in PMD[3] read zero. When programmed for data TLB 
monitoring, the contents of the latency field of PMD[3] are undefined. 

6.2.8 IA-64 Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent IA-64 branch 
instructions and their predictions and outcomes. The IA-64 branch trace buffer configuration 
register (PMC[12]) defines the conditions under which branch instructions are captured and allows 
the trace buffer to capture specific subsets of branch events. The IA-64 branch trace buffer operates 
only during IA-64 code execution (i.e. when PSR.is is zero). 

In every cycle in which a qualified IA-64 branch retires, its source bundle address and slot number 
are written to the branch trace buffer. The branches’ target address is written to the next buff
location. If the target instruction bundle itself contains a qualified IA-64 branch, the branch tra
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer en

Table 6-20. PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1)

umask Bit Data EAR Unit Mask (L1 data TLB misses)

0

1

2

3

reserved

if one, capture L1 TLB misses that hit L2 Data TLB

if one, capture L1 TLB misses that hit VHPT

if one, capture L1 TLB misses that was handled by software

Table 6-21. PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1)

Register Field Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Undefined in TLB Miss mode

level 63:62 Data TLB Miss Level

0: invalid address (EAR did not capture qualified event)

1: L2 Data TLB hit
2: VHPT hit
3: Data TLB miss handled by software

PMD[17] valid 0 Valid Bit:
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction Bundle Slot of memory instruction. In IA-32 ISA 
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instructiona

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits 
pa{62:44}. The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes 
to bits {60:51} of PMD[2,17] are ignored by the processor.
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one that records the target instruction as a branch target (b-bit cleared), and another that records the 
target instruction as a branch source (b-bit set). As a result, the branch trace buffer may contain a 
mixed sequence of the branches and targets.

6.2.8.1 IA-64 Trace Buffer Collection Constraining

The IA-64 branch trace buffer configuration register (PMC[12]) defines the conditions under which 
branch instructions are captured. These conditions are given in Figure 6-21 and Table 6-22, and 
refer to conditions associated with the branch prediction and resolution hardware. These conditions 
are:

• Which branch prediction hardware structure made the prediction,

• The path of the branch (not taken/taken), 

• Whether or not the branch path was mispredicted, and

• Whether or not the target of the branch was mispredicted.

Figure 6-21. IA-64 Branch Trace Buffer Configuration Register (PMC[12])
63    16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ignored bac bpt ppm ptm tm tarpm ign. plm
48 1 1 2 2 2 1 1 2 4

Table 6-22. IA-64 Branch Trace Buffer Configuration Register Fields (PMC[12])

Field Bits Description

plm 3:0 See Table 6-5.

pm 6 See Table 6-5.

tar 7 Target Address Register:

1: capture TAR predictions
0: No TAR predictions are captured

tm 9:8 Taken Mask:

11: all IA-64 branches
10: Taken IA-64 branches only
01: Not Taken IA-64 branches only
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch predicted target address correctly
01: branch mispredicted target address
00: No branch is captured 

ppm 13:12 Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

bpt 14 Branch Prediction Table:

10: No TAC predictions are captured

bac 15 Branch Address Calculator:

1: capture BAC predictions
0: No BAC predictions are captured
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The Itanium processor uses the following micro-architectural structures for branch prediction: the 
Target Address Registers (TAR), and Target Address Cache (TAC). Using the tar and bac fields of 
the branch trace buffer configuration register (PMC[12]), collection in the branch trace buffer can 
be restricted to only branches predicted by a subset of these prediction structures.

The Target Address Registers (TAR) are a small and fast fully associative buffer that is exclusively 
written to by branch predict instructions with the ‘.imp’ extension. A hit in the TAR will cause 
taken prediction and yield the target address of the branch. If the tar field in the branch trace
configuration register (PMC[12]) is set to one, branches predicted by TAR will be included in
trace buffer.

The Target Address Cache (TAC) is a larger structure that is also written to by branch predic
instructions, or the prediction hardware. The primary function of the TAC is to provide the tar
address of a branch. 

 If the bpt field in the branch trace buffer configuration register (PMC[12]) is set to one, branc
predicted by the TAC will be included in the trace buffer.

If neither the TAR nor TAC generated a hit, the branch has to be predicted using the static hi
encoded in the branches and the target address has to be calculated. This is done by the bra
address corrector (BAC). If the bac field in the branch trace buffer configuration register (PMC
is set to one, branches predicted by the branch address corrector will be included in the trace

Furthermore, using the ptm, ppm and tm fields in the branch trace buffer configuration regist
(PMC[12]) collection in the branch trace buffer can be restricted based on the correctness of
and predicate prediction in addition to whether the branch was actually taken or not.

To summarize, an IA-64 branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is) 
and ( (tm[1] and branch taken)

or (tm[0] and branch not taken)
)

and ( (ptm[1] and hardware predicted target address correctly
 and hardware predicted the branch path correctly
 and branch is taken) 

or (ptm[0] and hardware mispredicted target address
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and ptm[1])
)

and ( (ppm[1] and hardware predicted the branch path correctly) 
or (ppm[0] and hardware mispredicted the branch path)

)
and ( (bpt and branch was predicted by TAC) 

or (bac and branch was predicted by BAC) 
or (tar and branch was predicted by TAR)

)

To capture all mispredicted IA-64 branches, the branch trace buffer configuration settings in 
PMC[12] should be: Tm=11, ptm=01, ppm=01, bpt=1, bac=1, and tar=1. 
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6.2.8.2 IA-64 Branch Trace Buffer Reading
 

The eight branch trace buffer registers PMD[8-15] provide information about the outcome of a 
captured branch sequence. The branch trace buffer registers (PMD[8-15]) contain valid data only 
when event collection is frozen (PMC[0].fr is one). While event collection is enabled, reads of 
PMD[8-15] return undefined values. The registers follow the layout defined in Figure 6-22, and 
contain the address of either a captured branch instruction (b-bit=1) or branch target (b-bit=0). For 
branch instructions, the mp-bit indicates a branch misprediction. A branch trace register with a zero 
b-bit and a zero mp-bit indicates an invalid branch trace buffer entry. The slot field captures the slot 
number of the first taken IA-64 branch instruction in the captured instruction bundle. A slot number 
of 3 indicates a not-taken branch. The target address bundle of a branch to IA-32 (br.ia) is 
recorded. An IA-32 JMPE branch instruction and its IA-64 target are not recorded.

In every cycle in which a qualified IA-64 branch retires1, its source bundle address and slot number 
are written to the branch trace buffer. The branches’ target address is written to the next buff
location. If the target instruction bundle itself contains a qualified IA-64 branch, the branch tra
buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer en

Figure 6-22. Branch Trace Buffer Register Format (PMD[8-15])
63 4 3 2 1 0

Address slot mp b

60 2 1 1

Table 6-23. IA-64 Branch Trace Buffer Register Fields (PMD[8-15])

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction

0: contents of register is a branch target

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)

if b=1 and mp=0: correctly predicted branch

if b=0 and mp=0: invalid branch trace buffer register

if b=0 and mp=1: valid target address

slot 3:2 if b=0: 00

if b=1: Slot index of first taken branch instruction in bundle

00: IA-64 Slot 0 branch/target

01: IA-64 Slot 1 branch/target

10: IA-64 Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of IA-64 branch instructiona

if b=0: 60-bit target bundle address of IA-64 branch instructiona

a. The Itanium™ processor does not implement virtual address bits va{60:51} and physical address bits 
pa{62:44}. When the processor captures an instruction address, bits {60:51} of PMD[8-15] are written by the 
processor with a sign-extension of bit {50} of the captured address. When PMD[8-15] are written by software 
bits {60:51} of PMD[8-15] can be written with any value (not necessarily a sign-extension of bit {50}).

1. In some cases, the Itanium™ processor branch trace buffer will capture the source (but not the target) address 
excepting branch instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and
multiway branches.
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one that records the target instruction as a branch target (b-bit cleared), and another that records the 
target instruction as a branch source (b-bit set). As a result, the branch trace buffer may contain a 
mixed sequence of the branches and targets.

The IA-64 branch trace buffer is a circular buffer containing the last four to eight qualified IA-64 
branches. The Branch Trace Buffer Index Register (PMD[16]) defined in Figure 6-23 identifies the 
most recently recorded branch or target. In every cycle in which a qualified branch (branch or 
target) is recorded, the branch buffer index (bbi) is post-incremented. After 8 entries have been 
recorded, the branch index wraps around, and the next qualified branch will overwrite the first trace 
buffer entry. The wrap condition itself is recorded in the full bit of PMD[16]. The bbi field of 
PMD[16] defines the next branch buffer index that is about to be written.The following formula 
computes the last written branch trace buffer PMD index from the contents of PMD[16]:

last-written-PMD-index = 8+ ([ (8*PMD[16].full) + (PMC[16].bbi - 1)] % 8)

If both the full bit and the bbi field of PMD[16] are zero, no qualified branch has been captured by 
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from 
PMD[15] to PMD[8]. Once set, the full bit remains set until explicitly cleared by software, i.e. it is 
a sticky bit. Software can reset the bbi index and the full bit by writing to PMD[16].

6.2.9 Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi, ev of all PMC registers are zero, and PMV.m 
is set to one. This ensures that no interrupts are generated, and events are not externally visible. On 
reset, PAL firmware ensures that the instruction address range check, the opcode matcher and the 
data address range check are initialized as follows:

• PMC[13].ta=1, 

• PMC[8,9].mifb=1111, PMC[8,9].mask{29:3}= “all 1s”, PMC[8,9].match{59:33}= “all 0s”, 
and

• PMC[11].pt is 1. 

All other performance monitoring related state is undefined. 

Figure 6-23. IA-64 Branch Trace Buffer Index Register Format (PMD[16])
63 4 3 2 1 0

ignored full bbi

60 1 3

Table 6-24. IA-64 Branch Trace Buffer Index Register Fields (PMD[16])

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD[8]]
Pointer to the next branch trace buffer entry to be written. 
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped

if full=0: branch trace buffer has not wrapped
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PAL Call: As defined in Chapter 11, “IA-64 Processor Abstraction Layer”in Volume 2, the PAL 
call PAL_PERF_MON_INFO provides software with information about the implemented 
performance monitors. The Itanium processor specific values are summarized in Table 6-25.

Low Power State: To ensure that monitor counts are preserved when the processor enters lo
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the proces
PAL_LIGHT_HALT preserves the original value of the PMC[0] register.

6.2.10 References

• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Executio
Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN 
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmark
Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin - Mad
July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

• [WinNT] Russ Blake, “Optimizing Windows NT™”, Volume 4 of the Microsoft “Windows 
NT Resource Kit for Windows NT Version 3.51”, Microsoft Press, 1995.

Table 6-25. Information Returned by PAL_PERF_MON_INFO for the Itanium™ Processor

PAL_PERF_MON_INFO
Return Value Description

Itanium™ 
Processor-

specific 
Value

PAL_RETIRED 8-bit unsigned event type for counting the number of 
untagged retired IA-64 instructions.

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of 
running CPU cycles.

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits. 32

PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs. 4

PAL_PMCmask 256-bit mask defining which PMC registers are populated. 0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are populated. 0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can count 
running CPU cycles (event defined by PAL_CYCLES)

0xF0

PAL_RETIRED_MASK 256-bit mask defining which PMC/PMD counters can count 
untagged retired IA-64 instructions (event defined by 
PAL_RETIRED)

0x10
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Performance Monitor Events 7

This chapter summarizes the Itanium processor events and describes how to compute commonly 
used performance metrics from them. The event summaries are grouped as follows:

• Basic Events: clock cycles, retired instructions (Section 7.1).

• Instruction Execution: instruction decode, issue and execution, data and control specula
and memory operations (Section 7.2).

• Cycle Accounting Events: stall cycle breakdowns (Section 7.3).

• Branch Events: branch prediction (Section 7.4).

• Memory Hierarchy: instruction prefetch, instruction and data caches (Section 7.5).

• System Events: operating system monitors, instruction and data TLBs (Section 7.6).

Note: The Itanium processor provides elaborate features to collect performance metrics to
varying degrees of details. The user must have a good understanding of the architec
performance monitor mechanisms before attempting to collect data (see Volume 2, 
Chapter 7 for more details). Also correct setup of the configuration register(s), privileg
levels and other parameters are required for generating data that is both meaningful
correct.

The tables in the subsequent sections define events by specifying four attributes: symbolic e
name, a brief event description, the PMC/PMD counter that can count the event, and a hexad
event code. Event codes and PMC/PMD counters are specified only for “monitored” events th
directly measurable by the processor. Some performance metrics are not directly measurabl
can be computed by combining or restricting one or more monitored event counts. These me
are listed in the tables as “derived” events.

Events with no suffix are directly measured in hardware. Events with a “.a” suffix are also dir
measured in hardware; the “.a” events are event name aliases. Events with a “.u” suffix are d
measured in hardware; however, they require an event code with a specific unit mask setting
PLease refer to Section 6.2.2, "Performance Counter Registers" for more details on umask. Events
with a “.d” suffix are not measured in hardware directly, but can be computed from two or mo
measured events.

7.1 Basic Events

Table 7-1 summarizes four basic execution monitors. The CPU_CYCLES event can be used 
break out separate or combined IA-64 or IA-32 cycle counts (by constraining the PMC/PMD b
on the currently executing instruction set). The IA-64 retired instruction count 
(IA64_INST_RETIRED.u) includes predicated true and false instructions, and nops, but excludes 
RSE operations. These instruction categories (and others) can be monitored as separate ev
details see Section 7.2). Table 7-2 defines IPC and average instructions/cycles per ISA transitio
metrics.
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7.2 Instruction Execution

This section describes events related to instruction issue and retirement (Table 7-3), multimedia and 
floating-point (Table 7-5), data and control speculation (Table 7-6), as well as memory instruction 
monitors (Table 7-9).

Instruction cache lines are delivered to the execution core and are “dispersed” to the Itanium
processor functional units. The number of dispersed instructions (INST_DISPERSED) depen
the stop bits in the instruction stream (EXPL_STOPS) as well as functional unit availability 
(IMPL_STOPS_DISPERSED). 

Table 7-1. IA-64 and IA-32 Instruction Set Execution and Retirement Monitors

Execution Monitors Description PMC/PMD Event Code / 
Umask

CPU_CYCLES CPU Cycles 4,5,6,7 0x12

IA64_INST_RETIRED.u Retired IA-64 Instructions 4,5 0x08 / 0x0

IA32_INSTR_RETIRED IA-32 Instructions Retired 4,5,6,7 0x15

ISA_TRANSITIONS IA-64 to IA-32 ISA Transitions 4,5,6,7 0x14

Table 7-2. IA-64 and IA-32 Instruction Set Execution and Retirement Performance Metrics

Performance Metric Performance Monitor Equation

IA-64 Instruction per Cycle IA64_INST_RETIRED.u / CPU_CYCLES[IA64]

IA-32 Instruction per Cycle IA32_INSTR_RETIRED / CPU_CYCLES[IA32]

Average IA-64 Instructions/Transition IA64_INST_RETIRED.u/ (ISA_TRANSITIONS*2)

Average IA-32 Instructions/Transition IA32_INSTR_RETIRED/ (ISA_TRANSITIONS*2)

Average IA-64 Cycles/Transition CPU_CYCLES[IA64]/ (ISA_TRANSITIONS*2)

Average IA-32 Cycles/Transition CPU_CYCLES[IA32]/ (ISA_TRANSITIONS*2)

Table 7-3. Instruction Issue and Retirement Events

Decode, Issue, Retirement Monitors Description PMC/PMD Event Code

INST_DISPERSED Instructions Dispersed 4,5,6,7 0x2d

EXPL_STOPS Explicit Stops 4,5,6,7 0x2e

IMPL_STOPS_DISPERSED Implicit Stops 4,5,6,7 0x2f

IA64_TAGGED_INSTRS_RETIRED Retired Tagged IA-64 Instructions 4,5 0x08a

a. See Section Table 7-4., "Retired Event Selection by Opcode Match" for umask values.

NOPS_RETIRED Retired NOP Instructions 4,5 0x30

PREDICATE_SQUASHED_RETIRED Instructions Squashed Due to 
Predicate Off

4,5 0x31

RSE_REFERENCES_RETIRED RSE Accesses 4,5,6,7 0x65

RSE_LOADS_RETIRED RSE Load Accesses 4,5,6,7 0x32

RSE_STORES_RETIRED.d RSE Store Accesses None Derivedb

b. RSE_STORES_RETIRED.d = (RSE_REFERENCES_RETIRED) –(RSE_LOADS_RETIRED).
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Retired instruction counts (IA64_TAGGED_INSTRS_RETIRED, NOPS_RETIRED) are based on 
tag information specified by the address range check and opcode match facilities described in 
Section 6.1.3, "Event Qualification". The tagged retired instruction counts include predicated off 
instructions but exclude RSE operations. A separate event 
(PREDICATE_SQUASHED_RETIRED) is provided to count predicated off instructions. 
RSE_REFERENCES_RETIRED counts the number of retired RSE operations.

There are two ways to count the total number of retired IA-64 instructions. Either the untagged 
IA64_INST_RETIRED.u event can be used (PMC/PMD4 only), or the 
IA64_TAGGED_INSTRS_RETIRED event. IA64_TAGGED_INSTRS_RETIRED counts number 
of retired instructions (includes predicated off instructions) that match the instruction address range 
and opcode match settings in the IBR and PMC registers. The TAG_SELECT unit mask defined in 
Table 7-4 always qualifies the event count of IA64_TAGGED_INSTRS_RETIRED with either the 
opcode match register PMC8 or PMC9. Note that the setting of PMC8 qualifies all downstream 
event monitors (see Section 6.1.3, "Event Qualification" for details). To ensure that other monitored 
events are counted independent of the opcode matcher, m, i, f, b bits and all mask bits of PMC8 
(Table 7-24) should be set to one (all opcodes match). The settings of PMC9 do not affect other 
event monitors.

The floating-point monitors listed in Table 7-5 capture dynamic run-time information 
(FP_FLUSH_TO_ZERO, FP_SIR_FLUSH).

As described in Table 7-6, monitors for control and data speculation capture dynamic run-time 
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED), the 
number of advanced check loads and check loads (ALAT_INST_CHKA_LDC) and failed 
advanced check loads and no-clear check loads (ALAT_INST_FAILED_CHKA_LDC) as seen by 
the ALAT. The number of retired chk.s instructions is monitored by the 
IA64_TAGGED_INSTRS_RETIRED event with the appropriate opcode mask. Since the Itanium 
processor ALAT is updated by operations on mispredicted branch paths the number of advanced 
check loads needs an explicit event (ALAT_INST_CHKA_LDC). Finally, the 
ALAT_CAPACITY_MISS event can be used to monitors ALAT overflows. 

Table 7-4. Retired Event Selection by Opcode Match

TAG_SELECT PMC.umask {19:16} Description

PMC8 tag 0011 Instruction tagged by Opcode matcher PMC8 

PMC9 tag 0010 Instruction tagged by Opcode matcher PMC9 

All 0000 All retired instructions (regardless of whether they 
were tagged or not)

Undefined All other umask settings Undefined event count

Table 7-5. Floating-point Execution Monitors

Floating-point Monitors Description PMC/PMD Event Code

FP_FLUSH_TO_ZERO FP Result Flushed to Zero 4,5,6,7 0x0b

FP_SIR_FLUSH FP SIR Flush Cycles 4,5,6,7 0x0c
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Using the two-bit instruction type unit mask described in Table 7-7, the four control and data 
speculation events can be constrained to monitor integer, floating-point or all speculative 
instructions. With the Itanium processor speculation monitors the performance metrics described in 
Table 7-8 can be computed.

Finally, Table 7-9 defines six memory instruction retirement events to count retired loads and 
stores. These counts include RSE operations. The load counts include failed check load 
instructions.

Table 7-6. Control and Data Speculation Monitors

Control and Data Speculation
Monitors Description PMC/PMD Event Code

INST_FAILED_CHKS_RETIRED Failed Speculative Check Loads 4,5,6,7 0x35

ALAT_INST_CHKA_LDC Advanced Check Loads 4,5,6,7 0x36

ALAT_INST_FAILED_CHKA_LDC Failed Advanced Check Loads 4,5,6,7 0x37

ALAT_CAPACITY_MISS ALAT Entry Replaced 4,5,6,7 0x38

Table 7-7. INST_TYPE Unit Mask for Control and Data Speculation Events

Speculative/Advanced
INST_TYPE

PMC.umask 
{19:16} Description

NONE xx00 no instructions are counted

INTEGER xx01 count speculative/advanced integer instructions only

FP xx10 count speculative/advanced floating-point instructions only

ALL xx11 count both integer and floating-point speculative/advanced 
instructions

Table 7-8. Itanium™ Processor Control/Data Speculation Performance Metrics

Performance Metric Performance Monitor Equation

Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED / 
IA64_TAGGED_INSTRS_RETIRED[chk.s]

Data Speculation Miss Ratio ALAT_INST_FAILED_CHKA_LDC / ALAT_INST_CHKA_LDC

ALAT Capacity Miss Ratio ALAT_CAPACITY_MISS/
IA64_TAGGED_INSTRS_RETIRED[ld.sa,ld.a,ldfp.a,ldfp.sa]

Table 7-9. Itanium™ Processor Memory Events

Memory Monitors Description PMC/PMD Event Code

LOADS_RETIRED Retired Loads 4,5,6,7 0x6c

STORES_RETIRED Retired Stores 4,5,6,7 0x6d

UC_LOADS_RETIRED Retired Uncacheable Loads 4,5,6,7 0x6e

UC_STORES_RETIRED Retired Uncacheable Stores 4,5,6,7 0x6f

MISALIGNED_LOADS_RETIRED Retired Misaligned Load Instructions 4,5,6,7 0x70

MISALIGNED_STORES_RETIRED Retired Misaligned Store Instructions 4,5,6,7 0x71
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7.3 Cycle Accounting Events

As described in Section 6.1.1.4, "Cycle Accounting", the Itanium processor provides eight directly 
measured and four derived stall cycle monitors.Table 7-10 lists the Itanium processor stall events.

7.4 Branch Events

The five measured Itanium processor branch events listed in Table 7-11 expand into over fifty 
measurable branch metrics by using the unit masks described on the event pages. 
BR_PATH_PREDICTION counts branches based on branch direction (taken/not taken) and 
prediction outcome (mispredict or not). BR_MISPREDICT_DETAIL and BR_MWAY_DETAIL 
provide finer resolution, and break down branch events by mispredict reasons (correctly predicted, 
wrong branch outcome, wrong target) and by the Itanium processor branch prediction structures. 
BR_TAKEN_DETAIL counts taken branches on per instruction slot basis, and, in conjunction with 
the instruction address range check, can be used for detailed branch profiling. BRANCH_EVENT 
counts the number of events captured in the branch trace buffer. 

Table 7-10. Itanium™ Processor Stall Cycle Monitors

Stall Accounting
Monitors Description PMC/PMD Event Code

BRANCH_MISPRED_CYCLE Branch Mispredict Stall Cycle 4,5,6,7 0x00

DATA_ACCESS_CYCLE Data Access Stall Cycle 4,5,6,7 0x03

EXEC_LATENCY_CYCLE Execution Latency Stall Cycle 4,5,6,7 0x02

INST_ACCESS_CYCLE Instruction Access Cycle 4,5,6,7 0x01

BRANCH_CYCLE Combined Branch Stall Cycle 4,5,6,7 0x04

MEMORY_CYCLE Combined Memory Stall Cycle 4,5,6,7 0x07

EXECUTION_CYCLE Combined Execution Stall Cycle 4,5,6,7 0x06

INST_FETCH_CYCLE Combined Instruction Fetch Stall Cycle 4,5,6,7 0x05

RSE_ACTIVE_CYCLE.d RSE Active Cycle 4,5,6,7 Deriveda

a. RSE_ACTIVE_CYCLE.d = (MEMORY_CYCLE) –(DATA_ACCESS_CYCLE).

ISSUE_LIMIT_CYCLE.d Issue Limit Cycle 4,5,6,7 Derivedb

b. ISSUE_LIMIT_CYCLE.d = (EXECUTION_CYCLE) –(EXEC_LATENCY_CYCLE).

TAKEN_BRANCH_CYCLE.d Taken Branch Cycle 4,5,6,7 Derivedc

c. TAKEN_BRANCH_CYCLE.d = (BRANCH_CYCLE) –(BRANCH_MISPRED_CYCLE).

FETCH_WINDOW_CYCLE.d Fetch Window Cycle 4,5,6,7 Derivedd

d. FETCH_WINDOW_CYCLE.d = (INST_FETCH_CYCLE) –(INST_ACCESS_CYCLE).

Table 7-11. Itanium™ Processor Branch Monitors

Branch Events Description PMC/PMD Event Code

BR_PATH_PREDICTION Branch Path Prediction 4,5,6,7 0x0fa

a. See following sections for more umask values.

BR_MISPREDICT_DETAIL Branch Mispredict Detail 4,5,6,7 0x10a

BR_MWAY_DETAIL Multiway Branch Detail 4,5,6,7 0x0ea

BR_TAKEN_DETAIL Taken Branch Detail 4,5,6,7 0x0da
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All branch events can be qualified by instruction address range and opcode matching as described 
in Section 6.1.3, “Event Qualification” on page 6-8. Since the instruction address range check is
bundle granular, qualification of multiway branches by address range is straightforward. How
for opcode matching purposes, multiway branches (MBB or BBB bundle templates) are qual
up to and including the first taken branch as follows:

((address range and opcode match on instruction slot 0)
and (branch in slot 0 is taken)

)
or ((address range and opcode match on instruction slot 0 or 1)

and (branch in slot 1 is taken)
and (branch in slot 0 is NOT taken)

or ((address range and opcode match on instruction slot 0 or 1 or 2)
and (branch in slot 1 is NOT taken) 
and (branch in slot 0 is NOT taken)

)

7.4.1 BR_PATH_PREDICTION

One event unit mask (BRANCH_PATH_RESULT) allows branch monitoring to be constrained
combinations of taken/not taken.

7.4.2 BR_MISPREDICT_DETAIL

BR_MISPREDICT_DETAIL can categorize branch mispredictions by mispredict reason (corre
predicted, wrong path or wrong target). Below event unit mask (PREDICTION_RESULT) allo
branch monitoring to be constrained to combination of prediction results.

Table 7-12. Branch Selection Based on Branch Prediction Result and Branch Direction

BRANCH_PATH_RESULT
PMC.umask 

{19:16}
Description

MISPRED_NT 0000 Incorrectly predicted path and Not taken branches.

MISPRED_TAKEN 0001 Incorrectly predicted path and taken branches.

OKPRED_NT 0010 Correctly predicted path and Not taken branches.

OKPRED_TAKEN 0011 Correctly predicted path and taken branches.

Table 7-13. Branch Selection Based on Branch Prediction Outcome

PREDICTION_RESULT
PMC.umask 

{19:16}
Description

ALL_PREDICTIONS 0000 count branches without regard to prediction result

CORRECT_PREDICTION 0001 count correctly predicted branches only. For taken 
branches this means that both the path and the target 
prediction are correct. For not taken branches, only the 
path prediction was correct

WRONG_PATH 0010 count mispredicted branches due to wrong branch path 
only (taken or not taken branches)

WRONG_TARGET 0011 count mispredicted branches due to wrong target only 
(only happens for taken branches whose path was 
predicted correctly)
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7.4.3 BR_MWAY_DETAIL

BR_MWAY_DETAIL monitors the outcome of multiway branches, i.e. any MBB or BBB bundles 
with at least one branch. Two event unit masks (BRANCH_PATH and PREDICTION_RESULT) 
allow branch monitoring to be constrained to combinations of taken/not taken (Table 7-14) and 
branch prediction outcomes (Table 7-15).

7.4.4 BR_TAKEN_DETAIL

BR_TAKEN_DETAIL monitors taken branches based on their instruction slot number. The 
SLOT_MASK unit mask defined in Table 7-16 allows profiling of taken branches based on their 
instruction slot number. If multiple bits are set in the SLOT_MASK, all the set cases are included in 
the event count.

Table 7-14. Branch Selection Based on Branch Prediction Outcome

PREDICTION_RESULT
PMC.umask 

{19:16}
Description

ALL_PREDICTIONS xx00 count branches without regard to prediction result

CORRECT_PREDICTION xx01 count correctly predicted branches only. For taken 
branches this means that both the path and the target 
prediction are correct. For not taken branches, only the 
path prediction was correct

WRONG_PATH xx10 count mispredicted branches due to wrong branch path 
only (taken or not taken branches)

WRONG_TARGET xx11 count mispredicted branches due to wrong target only 
(only happens for taken branches whose path was 
predicted correctly)

Table 7-15. Multi-way Branch Selection Based on Branch Path

BRANCH_PATH
PMC.umask 

{19:16}
Description

NOT_TAKEN 10xx count not-taken branches only

TAKEN 11xx count taken branches only

ALL_PATHS 0xxx counts all branches (taken or not-taken)

Table 7-16. Slot Unit Mask for BR_TAKEN_DETAIL

SLOT_MASK
PMC.umask 

{19:16}
Description

Instruction Slot 0 xxx1 count if branch in slot 0 is first taken branch

Instruction Slot 1 xx1x count if branch in slot 1 is first taken branch

Instruction Slot 2 x1xx count if branch in slot 2 is first taken branch

No taken branch 1xxx count if NO branch was taken
Intel® IA-64 Architecture Software Developer’s Manual, Rev. 1.0 7-7



emory 

is 
e L1 

ata 

st 

 
mand 

ache 
 

ge 

, they 
e the 
event 
n the 
7.5 Memory Hierarchy

This section summarizes events related to the Itanium processor’s memory hierarchy. The m
hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch (Section 7.5.1)

• L1 Data Cache (Section 7.5.2)

• L2 Unified Cache (Section 7.5.3)

• L3 Cache (Section 7.5.4)

An overview of the Itanium processor’s three level memory hierarchy and its event monitors 
shown in Figure 7-1. The instruction and the data stream work through separate L1 caches. Th
data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and d
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache 
hierarchy are described in the following three sections. They can be used to compute the mo
common cache performance ratios summarized in Table 7-17. 

7.5.1 L1 Instruction Cache and Prefetch

Table 7-18 summarizes the eight events that the Itanium processor provides to monitor the L1
instruction cache and prefetch activity. The instruction fetch monitors distinguish between de
fetch (L1I_READS, L1I_MISSES) and prefetch activity (L1I_IPREFETCHES, 
L2_INST_PREFETCHES). The amount of data returned from the L2 into the L1 instruction c
and the instruction streaming buffer is monitored by two events (L1I_FILLS, ISB_LINES_IN).
The INSTRUCTION_EAR_EVENTS monitor (not shown in Figure 7-2) counts how many 
instruction cache or TLB misses are captured by the instruction event address register. 

The L1 instruction cache and prefetch events can be qualified by the instruction address ran
check, but not by the opcode matching facilities described in Section 6.1.3, “Event Qualification” 
on page 6-8. Since instruction cache and prefetch events occur early in the processor pipeline
include events caused by speculative, wrong-path as well as predicated off instructions. Sinc
address range check is not based on actually retired, but speculative instruction addresses, 
counts may be inaccurate when the range checker is confined to address ranges smaller tha
length of the processor pipeline (see Section 6.2.4, “IA-64 Instruction Address Range Check 
Register (PMC[13])” on page 6-18 for details).
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Figure 7-1. Event Monitors in the Itanium™ Processor Memory Hierarchy

Table 7-17. Itanium™ Processor Cache Performance Ratios

Performance Metric Itanium Processor Performance Monitor Equation

L1I Miss Ratio L1I_MISSES / L1I_REFERENCES.d

L1D Read Miss Ratio L1D_READ_MISSES_RETIRED / L1D_READS_RETIRED

L2 Miss Ratio L2_MISSES / L2_REFERENCES

L2 Data Miss Ratio L3_DATA_REFERENCES.d / L2_DATA_REFERENCES

L2 Instruction Miss Ratio
(includes prefetches)

L3_INST_REFERENCES.u/L2_INST_REFERENCES.d

L2 Data Read Miss Ratio L3_LOAD_REFERENCES.u / L2_DATA_READS.u

L2 Data Write Miss Ratio L3_STORE_REFERENCES.u / L2_DATA_WRITES.u

L1D
L1I

L2

L3

BUS

L3_MISSES

L3_REFERENCES

L3_WRITE_REFERENCES.u L3_READ_REFERENCES.u

L2_WB_REFERENCES.u L2_INST_REFERENCES.u

L3_STORE_REFERENCES.u L3_LOAD_REFERENCES.u

L2_MISSES

L2_INST_REFERENCES.d L2_DATA_REFERENCES [Reads/Writes]

L2_INST_PREFETCHES L1I_MISSES L1D_READ_MISSES_RETIRED

L2_REFERENCES

(Write-Through)

DATA_REFERENCES_RETIRED

L1D_READS_RETIRED
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L2 Instruction Fetch Ratio L1I_MISSES / L2_REFERENCES

L2 Data Ratio L2_DATA_REFERENCES / L2_REFERENCES

L3 Miss Ratio L3_MISSES / L2_MISSES

L3 Data Miss Ratio (L3_LOAD_MISSES.u + L3_STORE_MISSES.u) / L3_DATA_REFERENCES.d

L3 Instruction Miss Ratio L3_INST_MISSES.u / L3_INST_REFERENCES.u

L3 Data Read Ratio L3_LOAD_REFERENCES.u / L3_DATA_REFERENCES.d

L3 Data Ratio L3_DATA_REFERENCES.d / L3_REFERENCES

Table 7-18. L1 Instruction Cache and Instruction Prefetch Monitors

Description PMC/PMD Event Code

L1I Monitors

L1I_REFERENCES.d L1 Instruction Cache References None Deriveda

a. L1I_REFERENCES.d =(L1I_READS) +(L1I_IPREFETCHES).

L1I_READS L1 Instruction Cache Reads 4,5,6,7 0x20

L1I_FILLS L1 Instruction Cache Fills 4,5,6,7 0x21

L1I_MISSES L1 Instruction Cache Misses 4,5,6,7 0x22

INSTRUCTION_EAR_EVENTS Instruction EAR Events 4,5,6,7 0x23

I-Prefetch Monitors

L1I_IPREFETCHES L1 Instruction Prefetch Requests 4,5,6,7 0x24

L2_INST_PREFETCHES L2 Instruction Prefetch Requests 4,5,6,7 0x25

ISB_LINES_IN Instruction Streaming Buffer Lines In 4,5,6,7 0x26

Figure 7-2. L1 Instruction Cache and Prefetch Monitors

Table 7-17. Itanium™ Processor Cache Performance Ratios (Continued)

Performance Metric Itanium Processor Performance Monitor Equation

L1I

ISB L2
ISB_LINES_IN

L1I_FILLS

L1I_READS

L1I_PREFETCHES

L1I_MISSES

L2_INST_PREFETCHES
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7.5.2 L1 Data Cache

Table 7-19 lists the Itanium processor’s seven L1 data cache monitors. As shown in Figure 7-3, the 
write-through L1 data cache services cacheable loads. Integer and RSE stores, floating-poin
memory operations, VHPT references, semaphores, check loads and hinted L2 memory refe
are serviced by the L2 cache. DATA_REFERENCES_RETIRED is the number of issued data
memory references. The count includes wrong-path operations. L1 data cache reads 
(L1D_READS_RETIRED) and L1 data cache misses (L1D_READ_MISSES_RETIRED) mon
the read hit/miss rate for the L1 data cache. The number of L2 data references 
(L2_DATA_REFERENCES) is the number of data requests prior to cache line merging, and c
broken down into reads and writes. The DATA_EAR_EVENTS monitor (not shown in Figure 7-3) 
counts how many data cache or TLB misses are captured by the data event address registe
operations are included in all data cache monitors, but are not broken down explicitly.

Table 7-19. L1 Data Cache Monitors

L1D Monitors Description PMC/PMD
Event 
Code / 
Umask

DATA_REFERENCES_RETIRED Retired Data Memory References 4,5,6,7 0x63

L1D_READS_RETIRED L1 Data Cache Reads 4,5,6,7 0x64

L1D_READ_MISSES_RETIRED L1 Data Cache Read Misses 4,5,6,7 0x66

L1D_WAY_MISPREDICT.u L1 Data Cache Way Mispredicts 4,5,6,7 0x33 / 0x2

L1D_READ_FORCED_MISSES_RETIRED L1 Data Cache Forced Load Misses 4,5,6,7 0x6b

L2_DATA_REFERENCES L2 Data References 4,5,6,7 0x69

DATA_EAR_EVENTS L1 Data Cache EAR Events 4,5,6,7 0x67

Figure 7-3. L1 Data Cache Monitors

L2 Cache
L1D Store Buffer

L1D Cache
(Write-Through)

DATA_REFERENCES_RETIRED

L1D_READS_RETIRED

int/RSE st, FP ld/st, VHPT, semaphores, failed ld.c, hinted L2 op

L1D_READ_MISSES_RETIRED

L2D_DATA_REFERENCES
[Reads/Writes]

L1D_READ_FORCED_MISSES_RETIRED
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7.5.3 L2 Unified Cache

Table 7-20 lists 9 measured and 2 derived events that monitor the Itanium processor L2 cache. 
Refer to Figure 7-1 for graphical view of the L2 cache monitors.

L2_REFERENCES, L2_INST_PREFETCHES and L2_DATA_REFERENCES are counted in 
terms of number of requests seen by the L2. L2_MISSES are counted in terms of the number of L2 
cache line requests sent to the L3. L2_FLUSHES and L2_FLUSH_DETAILS count and 
break-down the number of L2 flushes due to address and bank conflicts.

L1D_READ_FORCED_MISSES_RETIRED counts the number of loads that were bypassed from 
an earlier store. 

7.5.4 L3 Cache

Table 7-21 lists 23 L3 cache measured events and one derived events. Using unit masks, two events 
(L3_READS, L3_WRITES) can be specialized (hit/miss/all accesses, instruction/data/all 
references) to count a number of derived L3 events. Refer to the event pages for L3_READS or 
L3_WRITES for details on L3 unit mask usage. Refer to Figure 7-1 for graphical view of the L3 
cache monitors.

Table 7-20. L2 Cache Monitors

L2 Monitors Description PMC/PMD
Event 
Code / 
Umask

L2_REFERENCES L2 References 4,5,6,7 0x68

L2_INST_REFERENCES.d L2 Instruction References None Deriveda

a. L2_INST_REFERENCES.d = (L1I_MISSES) +(L2_INST_PREFETCHES).

L2_INST_FETCHES.a L2 Instruction Fetches None Aliasb

b. This is equal to L1I_MISSES.

L2_INST_PREFETCHES L2 Instruction Prefetch Requests 4,5,6,7 0x25

L2_DATA_REFERENCES L2 Data References 4,5,6,7 0x69

L2_DATA_READS.u L2 Data Reads None 0x69 / 0x1

L2_DATA_WRITES.u L2 Data Writes None 0x69 / 0x2

L2_MISSES L2 Misses 4,5,6,7 0x6a

L2_FLUSHES L2 Flushes 4,5,6,7 0x76

L2_FLUSH_DETAILS L2 Flush Details 4,5,6,7 0x77

Table 7-21. L3 Cache Monitors

L3 Monitors Description PMC/PMD Event 
Code

L3_REFERENCES L3 References 4,5,6,7 0x7b

L3_MISSES L3 Misses 4,5,6,7 0x7c

L3_READS L3 Reads 4,5,6,7 0x7d

L3_WRITES L3 Writes 4,5,6,7 0x7e

L3_LINES_REPLACED L3 Cache Lines Replaced 4,5,6,7 0x7f
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L3_INST_REFERENCES.u L3 Instruction References 4,5,6,7 Umaska

L3_INST_MISSES.u L3 Instruction Fetch Misses 4,5,6,7 Umaska

L3_INST_HITS.u L3 Instruction Fetch Hits 4,5,6,7 Umaska

L3_DATA_REFERENCES.d L3 Data References 4,5,6,7 Derived

L3_LOAD_REFERENCES.u L3 Load References 4,5,6,7 Umaska

L3_LOAD_MISSES.u L3 Load Misses 4,5,6,7 Umaska

L3_LOAD_HITS.u L3 Load Hits 4,5,6,7 Umaska

L3_READ_REFERENCES.u L3 Read References 4,5,6,7 Umaska

L3_READ_MISSES.u L3 Read Misses 4,5,6,7 Umaska

L3_READ_HITS.u L3 Read Hits 4,5,6,7 Umaska

L3_STORE_REFERENCES.u L3 Store References 4,5,6,7 Umaskb

L3_STORE_MISSES.u L3 Store Misses 4,5,6,7 Umaskb

L3_STORE_HITS.u L3 Store Hits 4,5,6,7 Umaskb

L2_WB_REFERENCES.u L2 Write Back References 4,5,6,7 Umaskb

L2_WB_MISSES.u L2 Write Back Misses 4,5,6,7 Umaskb

L2_WB_HITS.u L2 Write Back Hits 4,5,6,7 Umaskb

L3_WRITE_REFERENCES.u L3 Write References 4,5,6,7 Umaskb

L3_WRITE_MISSES.u L3 Write Misses 4,5,6,7 Umaskb

L3_WRITE_HITS.u L3 Write Hits 4,5,6,7 Umaskb

a. Refer to Table 7-22 for umask values.
b. Refer to Table 7-23 for umask values.

Table 7-22. L3_READS Derived Events

L3_Reads PMC.umask{19:18}

PMC.umask{17:16}  INSTR_FETCH (01) DATA_READ (10) ALL_READS (11)

HIT (01) L2_INST_HITS.u L2_LOAD_HITS.u L2_READ_HITS.u

MISS (10) L2_INST_MISSES.u L2_LOAD_MISSES.u L2_READ_MISSES.u

ALL (11) L2_INST_REFERENCES.u L2_LOAD_REFERENCES.
u

L2_READ_REFERENCES.
u

Table 7-23. L3_WRITES Derived Events

L3_WRITES PMC.umask[19:18]

PMC.umask{17:16} DATA_WRITE (01) L1_WRITE_BACK (10) ALL_WRITES (11)

HIT (01) L2_STORE_HITS.u L1_WB_HITS.u L2_WRITE_HITS.u

MISS (10) L2_STORE_MISSES.u L1_WB_MISSES.u L2_WRITE_MISSES.u

ALL (11) L2_STORE_REFERENCE
S.u

L1_WB_REFERENCES.u L2_WRITE_REFERENCE
S.u

Table 7-21. L3 Cache Monitors (Continued)

L3 Monitors Description PMC/PMD Event 
Code
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7.6 System Events

Table 7-24 defines seven measured and one derived system monitor. The debug register match 
events count how often the address in any instruction or data break-point register (IBR or DBR) 
matches the current retired instruction pointer (CODE_DEBUG_REGISTER_MATCHES.a) or the 
current data memory address (DATA_DEBUG_REGISTER_MATCHES.d). PIPELINE_FLUSH 
counts the number of times the Itanium processor pipeline is flushed due to a data translation cache 
miss, L1 data cache way mispredict, an exception flush or an instruction serialization event. 
CPU_CPL_CHANGES counts the number of privilege level transitions due to interruptions, 
system calls (epc) and returns (demoting branch), and rfi instructions. CPU_CYCLES counts the 
number of cycles the CPU is not powered down or in light HALT state. Two events 
(EXTERN_BPM_PINS_0_TO_3 and EXTERN_BPM_PINS_4_TO_5) are provided to monitor 
external platform events. 

 Table 7-25 lists the TLB performance metrics that can be computed using these events. The 
Itanium processor instruction and data TLBs and the Virtual Hash Page Table walker are monitored 
by the events described in Table 7-26. Figure 7-4 gives a graphical summary.

ITLB_REFERENCES.a and DTLB_REFERENCES.a are derived from the respective 
instruction/data cache access events. ITLB_MISSES_FETCH and DTLB_MISSES count TLB 
misses. ITLB_INSERTS_HPW and DTLB_INSERTS_HPW count the number of instruction/data 
TLB inserts performed by the Virtual Hash Page Table walker. The Itanium processor data TLB is a 
two level TLB; DTC_MISSES counts the number of first level data TLB misses.

Table 7-24. Itanium™ Processor System Monitors

System Monitors Description PMC/P
MD Event Code

CODE_DEBUG_REGISTER_MATCHES.a Code Debug Register Matches None Deriveda

a. CODE_DEBUG_REGISTER_MATCHES.a = IA64_TAGGED_INSTRS_RETIRED.

DATA_DEBUG_REGISTER_MATCHES.d Data Debug Register Matches None Derivedb

b. DATA_DEBUG_REGISTER_MATCHES.d = LOADS_RETIRED + STORES_RETIRED.

PIPELINE_FLUSH Pipeline Flush 4,5,6,7 0x33

CPU_CPL_CHANGES Privilege Level Changes 4,5,6,7 0x34

CPU_CYCLES CPU Cycles 4,5,6,7 0x12

EXTERN_BPM_PINS_0_TO_3 Counts the number of times 
external BPM pins 0 through 23 
were asserted

4,5,6,7 0x5e

EXTERN_BPM_PINS_4_TO_5 Counts the number of times 
external BPM pins 4 and 5 were 
asserted

4,5,6,7 0x5f

Table 7-25. Itanium™ Processor TLB Performance Metrics

Performance Metric Performance Monitor Equation

ITLB Miss Ratio ITLB_MISSES_FETCH / L1I_READS

DTLB Miss Ratio DTLB_MISSES / DATA_REFERENCES_RETIRED

DTC Miss Ratio DTC_MISSES / DATA_REFERENCES_RETIRED
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Table 7-26. Itanium™ Processor Instruction and Data TLB Monitors

Instruction and Data TLB 
Monitors Description PMC/PMD Event Code

ITLB_REFERENCES.a Instruction Translation Buffer References None Deriveda

a. This is equal to L1I_READS.

ITLB_MISSES_FETCH Instruction Translation Buffer Misses 
Demand Fetch

4,5,6,7 0x27

ITLB_EAR_EVENT.a Instruction Translation Buffer EAR Event None Derivedb

b. This is equal to INSTRUCTION_EAR_EVENTS.

ITLB_INSERTS_HPW ITLB Hardware Page Walker Inserts 4,5,6,7 0x28

DTLB_REFERENCES.a DTLB References 4,5,6,7 Derivedc

c. This is equal to DATA_REFERENCES_RETIRED.

DTC_MISSES DTC Misses 4,5,6,7 0x60

DTLB_MISSES DTLB Misses 4,5,6,7 0x61

DTLB_EAR_EVENT.a DTLB EAR Event 4,5,6,7 Derivedd

d. This is equal to DATA_EAR_EVENTS.

DTLB_INSERTS_HPW Hardware Page Walker Installs to DTLB 4,5,6,7 0x62

Figure 7-4. Itanium™ Processor Instruction and Data TLB Monitors

ITLB

VHPT Walker

L1 DTLB
DTLB(DTC)

ITLB_INSERTS_HPW

ITLB_MISSES_FETCH
L1I_READS

L1I_IPREFETCHES

DTC_MISSES

DTLB_MISSES

DATA_REFERENCES_RETIRED DTLB_INSERTS_HPW
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Model Specific Behavior for IA-32 
Instruction Execution 8

The Itanium processor is capable of executing IA-32 instructions in the IA-32 system environment 
(legacy lA-32 operating systems) provided the required platform and firmware support exists in the 
system. The Itanium processor is also capable of executing IA-32 instructions in the IA-64 system 
environment (IA-64 operating system). IA-64 operating system support for the capability of 
running IA-32 applications is defined by the respective operating system vendor. For more details 
on IA-32 instruction execution on IA-64 OS, please refer to Volume 1, Chapter 6 and Volume 2, 
Chapter 10. 

Note that while Itanium processor supports execution of IA-32 applications, best performance and 
capabilities will be realized by using 64-bit optimized OSes and applications 

In general, the behavior of IA-32 instructions on the Itanium processor is similar to that of the 
Pentium III processor except where noted. The following sections describe some of the key 
differences in behavior between IA-32 instruction execution on an Itanium processor and on the 
Pentium III processor. These differences do not prevent IA-32 legacy operating systems or IA-32 
applications from operating correctly.

8.1 Processor Reset and Initialization

When RESET# is asserted, all IA-64 processors boot at a different reset location than IA-32 
processors and start executing IA-64 64-bit code instead of IA-32 16-bit Real Mode code. Unlike 
IA-32 processors, IA-64 processors execute PAL firmware to test and initialize the processor and 
then continue execution in the IA-64 instruction set to boot the system. SAL firmware code can 
switch to the IA-32 instruction set as needed to execute IA-32 BIOS code. For more details on 
IA-64 processor reset, please refer to Chapter 11 and Chapter 24 of Volume 2.

8.2 New JMPE Instruction

A new IA-32 instruction JMPE has been defined for IA-64 processors. This instruction comes in 
two forms with an opcode for each. These opcodes will cause an Invalid Opcode fault on all IA-32 
processors. For more details, refer to Chapter 5 of Volume 3.

8.3 System Management Mode (SMM)

SMM is superseded by the IA-64 Platform Management definition. This mechanism is designed to 
provide platform level interrupt support for both IA-32 and IA-64 operating systems. Please refer to 
Chapter 11 of Volume 2 for more details on PMI.
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The IA-32 SMM and I/O Port Restart feature is not supported on the Itanium processor. 
Dynamically, powering off/on I/O devices on an I/O Port reference via system logic is not possible 
for IA-32 Operating Systems or IA-64 Operating Systems using the IA-32 SMM I/O Restart 
mechanism. I/O Restart has not been extended on IA-64 processors to intercept I/O Port references 
from the IA-64 instruction set via normal loads and stores on IA-64 processors. 

Execution of the IA-32 RSM (Resume from SMM) instruction results an Invalid Opcode fault on 
all IA-64 processors.

8.4 Machine Check Abort (MCA)

The Itanium processor supports Pentium processor level machine checks in the IA-32 System 
Environment. 

8.5 Model Specific Registers

The complete set of Model Specific Registers (MSRs) found on the Pentium III processor is not 
supported on the Itanium processor. For example, Model Specific Debug registers, Model Specific 
Test registers, Machine Check registers, and Model Specific Configuration registers are not 
supported.

Model Specific registers that are common to the Itanium processor and Pentium III processor use 
the Pentium III processor’s bit definition and register assignment. The ITC, APIC_Base, MTRR
and MAP registers are supported on the Itanium processor.

8.6 Cache Modes

Pentium processor and PentiumIII processor SRAM Cache Mode is not supported on the Itaniu
processor.

SRAM is typically used on IA-32 processors to provide scratch RAM areas while running IA-
boot and machine check code before memory is available. Both of these functions are now 
provided by IA-64 firmware while running IA-32 and IA-64 operating systems.

8.7 10-byte Floating-point Operand Reads and Writes

Many IA-32 FP instructions read and write 10 bytes to memory. Consider the case of 16-bit 
segment, where the read or write starts at offset 0xFFF8. PentiumIII processor reads or writes 
8 bytes then re-evaluates the linear address before reading or writing the final 2 bytes. Eight
are accessed at 0xfff8, and 2 bytes are accessed at 0x0000. 

The Itanium processor evaluates the address once, then accesses all 10 bytes. Therefore, b
0xfff8 to 0x10001 will be accessed.

On a 10-byte operand read or write access, potential page faults and GP faults will return sli
different faulting addresses (linear addresses may wrap differently).
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8.8 Floating-point Data Segment State

The Itanium processor reports a different value of the floating-point data segment state (FDS) after 
the execution of “FNOP” instruction (or any FP instruction that does not perform a memory 
reference). The contents of the data register are undefined if the prior non-control instruction
not have a memory operand. The PentiumIII processor behaves as follows:

1.  A FP non-transparent instruction which references memory will put the selector of the
segment used in the memory reference into FDS.

2. A FP non-transparent instruction which doesn’t reference memory will put the selector o
into FDS and 0 into FEA.

If a segment override prefix is present on an instruction of the type specified in case 2, the 
overriding segment selector will be put into FDS instead of the selector of SS.

The Itanium processor behavior covers only case #1 described above. Note that this differenc
not affect the running of IA-32 applications. 

8.9 Writes to Reserved Bits during FXSAVE

During FXSAVE, the Itanium processor does not write any reserved bits, while the PentiumIII 
processor may write reserved bits. The Itanium processor does one 10 byte access to save 
register, whereas the PentiumIII processor will do two 8 byte accesses causing writes to upper 
reserved bits.

8.10 Setting the Access/Dirty (A/D) Bit on Accesses that 
Cross a Page Boundary

In the IA-32 system environment, the Itanium processor sets a page's A/D bit even if a mem
reference crosses a page boundary and the other page has a fault. This behavior is different
PentiumIII processors which do not modify the A/D bit under the above conditions. 

The above difference does not come into play in the IA-64 system environment.

8.11 Enhanced Floating-point Instruction Accuracy

On the Itanium processor, FP transcendental instructions will return more accurate (hence sl
different) answers than PentiumIII processor. This behavior falls into 3 categories:

• F2XM1, FYL2X, FYL2XP1, FPATAN Instructions
More accurate algorithms will result in answers which may differ from PentiumIII processor 
by 1 unit in the last place (ulp). Also, for FYL2X and FYL2XP1, when x or x+1 respectively 
a power of two, the Precision exception is not signaled (since log(2^k) where, k is integr
exact).
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• FPTAN, FSIN, FCOS, FSINCOS Instructions
New algorithms on Itanium processor include a more accurate argument reduction sche
Although more accurate, the algorithms implemented on Itanium processor can produce
answers which are different from those returned on PentiumIII processor.

• FPREM, FPREM1 Instructions
No change.

8.12 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction 
Differences

These four instructions are single and parallel approximations of divide and square root oper
The Itanium processor will calculate these functions to a higher accuracy than previous 
implementations. resulting in different answers. The PentiumIII processor implementation of one 
of these functions can have a maximum error of 1.5*10-12. The Itanium processor, however, will 
calculate these functions to a maximum error of 1.5*10-16.

8.13 Read/Write Access Ordering

In general, the order of reads/writes within any complex IA-32 instruction is model specific ev
among IA-32 processors. Different Intel processors have different access ordering behavior;
example, internal operation ordering varies between the 80486, Pentium, PentiumIII and Itanium 
processors.

8.14 Multiple IOAPIC Redirection Table Entries

If multiple IOAPIC Redirection Table Entries (RTE) share the same vector, and at least one R
programmed as logical delivery mode in which the selected local APIC destinations overlap 
the other RTEs with the same vector, some of the selected local APICs might not receive the
interrupt when the pins that correspond to these RTEs are asserted.

8.15 Self Modifying Code (SMC)

The Itanium processor provides the same SMC support as the Pentium processor. Also, a b
instruction is required between the store that modifies instruction(s) and the modified code.

8.16 Raising an Alignment Check (AC) Fault

The PentiumIII processor checks and raises AC fault before a page fault. The Itanium proces
checks and raise a page fault before an AC fault.
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8.17 Maximum Number of IA-64 Processors Supported in 
MP System Running Legacy IA-32 OS (IA-32 system 
environment)

Similar to the case of IA-32 processors in an MP system, the maximum number of IA-64 
processors supported in a MP system running legacy IA-32 OS (IA-32 system environment) is 16. 
However, in MP systems with IA-32 processors, the number of IA-32 processors can be extended 
beyond 16 with additional platform enhancements while the limit for the number of IA-64 
processors running IA-32 OS in a MP system is limited to 16.
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