
Reference Number: 327132-001

Intel® Itanium® Processor 9500
Series Reference Manual
Software Development and Optimization Guide

July 2012

2 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Legal Lines and DisclaimersINFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving,
life sustaining, critical control or safety systems, or in nuclear facility applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

The Intel® Itanium® Processor 9500 Series processor may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor
(VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software
applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information, visit
http://www.intel.com/go/virtualization

Available on select Intel® Core™ processors. Requires an Intel® HT Technology-enabled system. Consult your PC manufacturer.
Performance will vary depending on the specific hardware and software used. For more information including details on which
processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained
by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010-2012, Intel Corporation. All Rights Reserved.

Notice: This document contains information on products in the design phase of development. The information here
is subject to change without notice. Do not finalize a design with this information.

http://www.intel.com

Intel® Itanium® Processor 9500 Series 3
Reference Manual for Software Development and Optimization Guide

Contents

1 Introduction .. 15
1.1 Terminology ... 15
1.2 Related Documentation .. 15
1.3 Identifying Intel® Itanium® Processors ... 16

2 The Intel Itanium Processor 9500 series Core ... 19
2.1 Overview ... 19
2.2 The Intel Itanium Processor 9500 Series .. 22

2.2.1 Implementation Specific Behavior... 22
2.2.2 Processor Core Pipeline ... 29
2.2.3 New Instruction Support ... 29
2.2.4 Advanced Load Address Table (ALAT).. 30
2.2.5 Data Translation Lookaside Buffers (TLBs) ... 30
2.2.6 Architectural Ordering... 34
2.2.7 Execution Latencies .. 35

2.3 Data Access Hints, Fetch, Dispersal and Execution ... 37
2.3.1 Data Access Hints... 37
2.3.2 Instruction Fetch.. 43
2.3.3 Register Fetch.. 47
2.3.4 Data Fetch .. 48
2.3.5 Instruction Execution .. 61

2.4 Intel Itanium Processor 9500 Series Multi-Threading.. 71
2.4.1 Frontend MT Introduction .. 71
2.4.2 BE Thread Domain.. 72

2.5 Intel® Virtualization Technology ... 83
2.5.1 Intel® VT-i3 Support .. 83

2.6 IA-32 Execution .. 84
2.7 Brand Information ... 84

3 Core Performance Monitoring .. 87
3.1 Introduction ... 87
3.2 Performance Monitor Programming Models.. 87

3.2.1 Workload Characterization... 88
3.2.2 Profiling .. 91
3.2.3 Event Qualification ... 93
3.2.4 References .. 99

3.3 Performance Monitor State ... 100
3.3.1 Performance Monitor Control and Accessibility .. 102
3.3.2 Performance Counter Registers .. 103
3.3.3 Performance Monitor Event Counting Restrictions Overview........................ 105
3.3.4 Performance Monitor Overflow Status Registers (PMC0,1,2,3) 105
3.3.5 Instruction Address Range Matching ... 106
3.3.6 Opcode Match Check .. 109
3.3.7 Data Address Range Matching (PMC_DAM_CFG) 112
3.3.8 Data Reference Type Matching (PMC_DAM_CFG) 114
3.3.9 Event Address Registers.. 114
3.3.10 Instruction Cache EAR .. 115
3.3.11 Data Cache EAR ... 118
3.3.12 Execution Trace Buffer .. 123
3.3.13 Thread-State Event Configuration... 131
3.3.14 Interrupt Counting.. 131
3.3.15 PerfMon Interrupts ... 132

4 Core Performance Monitor Events.. 133

4 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.1 Introduction..133
4.1.1 Categorization of Events ..133
4.1.2 Multi-Threading and Event Types ..133
4.1.3 Performance Event Associativity ...134
4.1.4 Event Description Tables Field Definition ..134
4.1.5 Performance Monitor Events Ordered by Event Code..................................135
4.1.6 Performance Monitor Events Ordered by Event Name.................................155

4.2 Performance Monitor Events by Area ..174
4.2.1 Basic Events ..174
4.2.2 Dispersal Events ...176
4.2.3 Execution Events ..183
4.2.4 Back-End Cycle Accounting ..194
4.2.5 Front-End Cycle Accounting..205
4.2.6 Branch Events ..209
4.2.7 Memory Hierarchy Events ..219
4.2.8 FLI Events ...224
4.2.9 MLI Events...228
4.2.10 FLITLB Events ..232
4.2.11 MLITLB Events ...233
4.2.12 FLD Events ..234
4.2.13 MLD Events..239
4.2.14 FLDTLB Events ...254
4.2.15 MLDTLB Events ..255
4.2.16 DPF Events ..257
4.2.17 RIL Events ...269
4.2.18 RSE Events ..289
4.2.19 LLC Events...290
4.2.20 System Events ...293
4.2.21 Multithreading Events..295

5 Uncore Performance Monitoring...307
5.1 Processor Overview..307

5.1.1 Ring Interconnect Overview ...309
5.1.2 Cache Control (Cbox) Overview ..310
5.1.3 Last-Level Cache (LLC) Overview ..311
5.1.4 System Bridge (Sbox) Overview ...312
5.1.5 Global Coherence Engine (Bbox) Overview ...312
5.1.6 Integrated Memory Controller (Zbox) Overview ..312
5.1.7 Inter-processor Router (Rbox) Overview ..313
5.1.8 Port Physical Interfaces (Pbox) Overview ...313
5.1.9 System Utilities Controller (Ubox) Overview ...313

5.2 Uncore PMU Programming Overview...314
5.2.1 On Accessing Uncore PMUs by Virtual Addresses

(Win/Linux*)315
5.2.2 Uncore PMU Summary Tables ...317

5.3 Global Performance Monitoring Control ...319
5.3.1 Global Enable/Disable..320
5.3.2 Setting Up a Global Monitoring Session..320
5.3.3 Reading the Sample Interval ..321
5.3.4 Enabling a New Sample Interval from Frozen Counters.322
5.3.5 Global Performance Monitors ..322

5.4 Bbox Performance Monitoring ..323
5.4.1 Overview of the Bbox ..323
5.4.2 Bbox Performance Monitoring Overview ...324
5.4.3 Bbox Performance Monitoring CSRs...325
5.4.4 Bbox Performance Monitoring Events...339
5.4.5 BBox Events Ordered By Code ..341

Intel® Itanium® Processor 9500 Series 5
Reference Manual for Software Development and Optimization Guide

5.4.6 Bbox Performance Monitor Event List .. 343
5.5 Cbox Performance Monitoring ... 363

5.5.1 Overview of the Cbox.. 363
5.5.2 Cbox Performance Monitoring Overview... 363
5.5.3 Cbox Performance Monitors ... 364
5.5.4 Cbox Performance Monitoring Events .. 367
5.5.5 Cbox Events Ordered By Code.. 369
5.5.6 Cbox Performance Monitor Event List .. 370

5.6 Rbox Performance Monitoring ... 381
5.6.1 Overview of the Rbox.. 381
5.6.2 Rbox Performance Monitoring Overview... 382
5.6.3 Rbox Performance Monitoring CSRs .. 384
5.6.4 Rbox Performance Monitoring Events .. 398
5.6.5 RBox Events Ordered By Code ... 399
5.6.6 Rbox Performance Monitor Event List .. 400

5.7 Sbox Performance Monitoring ... 406
5.7.1 Overview of the Sbox.. 406
5.7.2 Sbox Performance Monitoring Overview... 406
5.7.3 Sbox Performance Monitors ... 407
5.7.4 QEAR.. 414
5.7.5 Sbox Performance Monitoring Events .. 417
5.7.6 Sbox Events Ordered By Code.. 419
5.7.7 Sbox Performance Monitor Event List .. 420

5.8 Wbox Performance Monitoring... 432
5.8.1 Overview of the Wbox... 432
5.8.2 Wbox Performance Monitoring Overview.. 432
5.8.3 Wbox Performance Monitors .. 433
5.8.4 Wbox Performance Monitoring Events ... 436
5.8.5 Wbox Events Ordered By Code... 437
5.8.6 Wbox Performance Monitor Event List ... 437

5.9 Zbox Performance Monitoring ... 438
5.9.1 Overview of the Zbox.. 438
5.9.2 Functional Overview ... 438
5.9.3 Zbox Perfmon Overview .. 440
5.9.4 Zbox PerfMon Registers... 442
5.9.5 Zbox Performance Monitoring Events .. 451
5.9.6 ZBox Events Ordered By Code ... 451
5.9.7 Zbox Performance Monitor Event List .. 453

5.10 Packet Matching Reference ... 468

A Identifying Multi-Core and Multi-Threading ... 473
A.1 Architectural Support ... 473

A.1.1 Terminology .. 473
A.1.2 Detection of Intel® Hyper-Threading Technology...................................... 473
A.1.3 Number of Cores on a Physical Processor... 474
A.1.4 Number of Threads in a Core ... 474
A.1.5 Number of Logical Processors Enabled on a Physical Processor 474
A.1.6 Logical to Physical Translation.. 474
A.1.7 Number of Logical Processors Sharing a Cache ... 474
A.1.8 Determine which Logical Processors are Sharing a Cache........................... 475

A.2 Operating System Specific Mechanisms .. 475
A.2.1 HP-UX*... 475
A.2.2 Linux* .. 475
A.2.3 Microsoft Windows*.. 476

B Example Core PMU Event Reports .. 477
B.1 Introduction ... 477

6 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

B.2 Retired Instruction Types..477
B.3 Back-End Cycle Accounting ...478
B.4 Primary Data Reference Outcomes ...481

B.4.1 LOAD_ANY...481
B.4.2 STORE_ANY ...481
B.4.3 SEMAPHORE ..482
B.4.4 LFETCH ...482
B.4.5 HW_PREF ..483
B.4.6 MLD Buddy Line Prefetches ..484
B.4.7 DREF ..485

B.5 Instruction Fetch Outcomes...488
B.6 Branch Prediction Outcomes..489
B.7 Latency Calculations...489

B.7.1 Replay Latencies...489
B.7.2 Exposed Data Access Latencies...490
B.7.3 Average Lifetimes in Queues ..491

B.8 Data Prefetching..492
B.8.1 Data Prefetch Queue Insertions ..492

C ‘Data Fetch Software Optimization Opportunities and Examples493
C.1 Transitioning from 4 M-ports to 2...493

C.1.1 Avoiding 4 M’s in instruction group..493
C.1.2 Avoiding 3 M’s in instruction group..494
C.1.3 Scheduling lfetches on an A Pipeline..494

C.2 Data Memory Reference Clustering...495
C.2.1 Load Clustering ..495
C.2.2 Lfetch/Load Clustering...496
C.2.3 Store/Load Declustering ..497

C.3 Control Speculation..497
C.4 Software Data Prefetching ..498

C.4.1 Managing the Cost of an lfetch ...498
C.4.2 lfetching in Acyclic Code ..499
C.4.3 Prefetching Data Address Translations ...499

C.5 Lfetches vs. Speculative Loads ..499
C.5.1 Lfetch advantages...499
C.5.2 Speculative load advantages ..501

C.6 Re-tuning ILP heuristics..501
C.7 Utilizing Data Access Hints ..502

C.7.1 Managing data access cost ...502
C.7.2 Using Cache Locality Hints ...503
C.7.3 Using PF Hints ..504
C.7.4 Using PF_DROP Hints ..505
C.7.5 Using PIPE Hint ..506
C.7.6 Using BIAS_SHARED Hint ..506
C.7.7 Dynamic Optimization Opportunities..506

C.8 Scheduling High Cache Hierarchy Bandwidth Applications......................................507
C.8.1 Nominal Hardware Bandwidth Limitations...507
C.8.2 Schedule to Maximize In-flight Operations Not to Hide Latency507
C.8.3 Synchronous Data Hazards ..508
C.8.4 Synchronous Structural Hazards ...510
C.8.5 Asynchronous Data Hazards ...512
C.8.6 Asynchronous Structural Hazards..513

Intel® Itanium® Processor 9500 Series 7
Reference Manual for Software Development and Optimization Guide

Figures
2-1 Core Pipeline .. 20
2-2 Core Block Diagram... 21
2-3 BE Execution Pipelines ... 25
2-4 Back-End Pipeline Control Mechanisms ... 29
2-5 IBL Block Diagram... 61
2-6 Dispersal Example 1 - 2-bundle group.. 66
2-7 Dispersal Example 2 - 3-bundle group.. 67
2-8 Thread Execution Status... 74
2-9 Unfairness Meter ... 81
3-1 Time-Based Sampling .. 88
3-2 Itanium® Processor Family Cycle Accounting .. 90
3-3 Event Histogram by Program Counter .. 92
3-4 Processor Event Qualification .. 94
3-5 Instruction Tagging Mechanism in the Processor .. 95
3-6 Single Process Monitor ... 98
3-7 Multiple Process Monitor... 98
3-8 System Wide Monitor ... 99
3-9 Processor Performance Monitor Register Mode... 102
3-10 Processor Status Register (PSR) Fields for Performance Monitoring 103
3-11 Processor Generic PMC Registers (PMC4–19)... 104
3-12 Processor Generic PMD Registers (PMD4–19) .. 104
3-13 Processor Performance Monitor Overflow Status Registers (PMC0,1,2,3) 105
3-14 Instruction Address Range Configuration Register (PMC_IAM_CFG) 107
3-15 Opcode Matcher Mask Registers .. 109
3-16 Opcode Matcher Match Registers ... 110
3-17 Opcode Match Configuration Register ... 110
3-18 Data Address Match Configuration Register ... 112
3-19 Instruction Event Address Configuration Register (PMC_IEAR_CFG)........................ 115
3-20 Instruction Cache EAR Data Registers Format ... 116
3-21 Data Event Address Configuration Register (PMC_DEAR_CFG) 118
3-22 Data Cache EAR Data Registers Format .. 119
3-23 Execution Trace Buffer Configuration Register fields ... 124
3-24 Execution Trace Buffer Entry Format .. 125
3-25 Execution Trace Buffer Index Register Format ... 127
3-26 IP-EAR Configuration Register ... 128
3-27 IP-EAR Entry Format.. 129
3-28 IP Trace Buffer Index Register Format (PMD_ETB_BUFIDX)................................... 129
3-29 Thread State Event Control Register Format.. 131
3-30 Interrupt Counting Event Configuration Register Format 131
4-1 Processor Memory Hierarchy... 220
5-1 Intel® Itanium® Processor 9500 Series Processor Block Diagram.......................... 309
5-2 Intel® Itanium® Processor 9500 Series Ring Architecture 310
5-3 Rbox Block Diagram .. 381
5-4 Memory Controller Block Diagram.. 439

Tables
1-1 Intel® Itanium® Processor Family and Model Values ... 16
1-2 Definition Table... 16
2-1 Core Pipelines ... 20

8 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2-2 Functional Unit Support on Ports..25
2-3 Issue Port Map for A-type Instructions..26
2-4 Issue Port Map for I/X-type Instructions ...26
2-5 Issue Port Map for M-type Instructions ...27
2-6 Issue Port Map for F-type instructions...28
2-7 Issue Port Map for B-type Instructions..29
2-8 New Instruction Support ...30
2-9 ALAT Changes ...30
2-10 Data TLB Characteristics ...31
2-11 Data TLB Differences from Previous Intel Itanium Processors31
2-12 Integer Execution Latencies ..35
2-13 Floating-Point Execution Latencies ...36
2-14 Predicate Execution Latencies..36
2-15 Branch Execution Latencies ...36
2-16 Instruction Type Details..36
2-17 Legacy Code Temporal Hint Mapping to DAHRs by the Processor42
2-18 DAHR Mapping to Temporal Hints by Previous Intel Itanium Processors.....................42
2-19 Default DAHR Values..42
2-20 Intel Itanium Processor 9300 Series Differences...43
2-21 Instruction Cache Characteristics ...43
2-22 Instruction Prefetching Instructions ..44
2-23 brp and movbr: Contention for PVAB Write Ports..45
2-24 Short versus Long IP-relative Penalties and Target Accuracy....................................46
2-25 Core Cache Hierarchy Summary ..48
2-26 Data Cache Characteristics..49
2-27 Data Cache Differences from Previous Intel Itanium Processors................................49
2-28 Some FLD Asynchronous Operations...55
2-29 FLD Operation Type Definitions..56
2-30 FLD Hitting FLDLD after FLDWR Hazard Penalties ...56
2-31 Instruction Subtypes for Dispersal..62
2-32 Queue Mapping Table ...64
2-33 Queue Mapping Table - A9/A10 in an M-slot Special Case..64
2-34 Case1 - 1 cycle separation for FR read after write ..68
2-35 Case2 - 2 cycle separation for FR read after write ..68
2-36 Case3 - 3 cycle Separation for FR Read After Write...68
2-37 Long-latency FR Hazards ..69
2-38 IBL Misc EXE Replays ...70
2-39 BE Thread Switch Events ..74
2-40 Thread Switch Transition Key ..76
2-41 Blocking Event Transitions ..77
2-42 Unstall Event Transitions ..77
2-43 FG Timeslice Expiration ..77
2-44 BG Timeslice Expiration ..78
2-45 Hint @pause ...78
2-46 Hint @priority ...78
2-47 ALAT Invalidation Event In Low Priority...79
2-48 LP Halt Event ..79
2-49 External Interrupt Event on FG Thread ...79
2-50 External Interrupt Event on BG Thread ...79
2-51 Unfairness Meter Regions/Actions ..82
2-52 PAL_BRAND_INFO Return Values ...84
2-53 Intel Itanium Processor 9500 Series Feature Set Return Values................................85

Intel® Itanium® Processor 9500 Series 9
Reference Manual for Software Development and Optimization Guide

3-1 Average Latency per Request and Requests per Cycle Calculation Example 89
3-2 Processor EARs and Branch Trace Buffer... 93
3-3 Example Processor Event Qualification Modes.. 96
3-4 Processor Performance Monitor Register Set ... 100
3-5 Processor Implementation Specific PMC/PMD Numbering 101
3-6 Performance Monitor PMC Register Control Fields (PMC4–19) 103
3-7 Processor Generic PMC Register Fields (PMC4–19) ... 104
3-8 Processor Generic PMD Register Fields ... 105
3-9 Processor Performance Monitor Overflow Register Fields (PMC0,1,2,3).................... 106
3-10 Instruction Address Range Configuration Register Fields 107
3-11 Opcode Matcher Mask Register Fields ... 110
3-12 Opcode Matcher Match Register Field ... 110
3-13 Opcode Match Configuration Register Fields .. 111
3-14 Memory Pipeline Event Constraints Fields (PMC_DAM_CFG)................................... 112
3-15 Instruction Event Address Configuration Register Fields (PMC_IEAR_CFG)............... 115
3-16 PMC_IEAR_CFG.Umask Field in Instruction Cache Mode.. 115
3-17 PMC_IEAR_CFG.Umask Field in Instruction TLB Mode ... 116
3-18 Instruction Cache EAR Data Registers Field Descriptions 117
3-19 Instruction EAR Status Register Field Validity in Different Modes 117
3-20 Data Event Address Configuration Register Fields (PMC_DEAR_CFG) 118
3-21 PMC_DEAR_CFG.Umask Field in Data Cache Load Mode (010) 118
3-22 PMC_DEAR_CFG.Umask Field in Data TLB Mode... 119
3-23 Data Cache EAR Data Field Descriptions ... 120
3-24 PMD_DEAR_STAT Field validity in different modes ... 121
3-25 Valid PMD_DEAR_STAT.req values ... 121
3-26 Execution Trace Buffer Configuration Register field description 124
3-27 Execution Trace Buffer Entry Fields .. 126
3-28 Execution Trace Buffer Index Register Fields ... 128
3-29 IP-EAR Configuration Register Field Description ... 128
3-30 IP-EAR Entry Fields.. 129
3-31 IP Trace Buffer Index Register Fields Description ... 130
3-32 Thread State Event Control Register Field Description .. 131
3-33 Interrupt Counting Event Configuration Register Field Description 132
4-1 All Performance Monitors Ordered by Code ... 135
4-2 All Performance Monitors Ordered by Name .. 155
0-1 Some Asynchronous Operation Definitions .. 234
0-2 FLD Operation Type Definitions ... 234
5-1 Per-Box Performance Monitoring Capabilities... 307
5-2 LLC Parameters... 311
5-3 Physical/Virtual Address Offsets for Socket Access ... 314
5-4 Address Offsets for Per-Box Access.. 314
5-5 Uncore Performance Monitoring CSRs... 317
5-6 U_CSR_PERF_CTL Register Field Definitions .. 322
5-7 U_CSR_IDR[14] (for PMON interrupts) Register – Field Definitions 323
5-8 Bbox PMU Summary .. 325
5-9 B_CSR_PMON_PERF_MASTER Register – Field Definitions 326
5-10 B_CSR_PMON_PERF_STATUS Register – Field Definitions...................................... 327
5-11 B_CSR_PERF_CTL0 Register – Field Definitions.. 327
5-12 B_CSR_PERF_CTL1_{7-0} Register – Field Definitions.. 328
5-13 B_CSR_PERF_CNT{7-0} Register – Field Definitions... 329
5-14 B_CSR_PERF_CTL2 Register – Field Definitions.. 329
5-15 ARBQ_SEL0 - which queues are relevant for ARB_Q0* events. 330

10 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5-16 B_CSR_PERF_CTL3 Register – Field Definitions ..331
5-17 Intel® QuickPath Interconnect Packet Message Classes ..331
5-18 Opcode Match by Message Class for the Bbox ..332
5-19 B_CSR_IOB_PERF_CNT Register – Field Definitions ..333
5-20 B_CSR_BZ_PERF_CNT Register – Field Definitions..334
5-21 B_CSR_ARB_PERF_CNT0 Register – Field Definitions ..334
5-22 B_CSR_ARB_PERF_CNT1 Register – Field Definitions ..335
5-23 B_CSR_IMT_PERF_CNT Register – Field Definitions ..335
5-24 B_CSR_DC_PERF_CNT Register – Field Definitions..336
5-25 B_CSR_DC_PERF_CTL0 Register – Field Definitions ..336
5-26 Mux controls for B_CSR_DC_PERF_CTL1 ...336
5-27 B_CSR_DC_PERF_CTL1 Register – Field Definitions ..337
5-28 B_CSR_DC_PERF_MATCH_RD Register – Field Definitions......................................337
5-29 B_CSR_DC_PERF_MASK_RD Register – Field Definitions338
5-30 B_CSR_DC_PERF_MATCH_WR{1,2} Register – Field Definitions338
5-31 B_CSR_DC_PERF_MASK_WR{1,2} Register – Field Definitions338
5-32 B_CSR_DC_PERF_WMARK Register – Field Definitions...339
5-33 Performance Monitor Events for BBox Events...341
5-34 Cbox Performance Monitoring CSRs..364
5-35 C_CSR_PMON_PERF_MASTER Register – Field Definitions......................................365
5-36 C_CSR_PMON_GLOBAL_CTL Register – Field Definitions..365
5-37 C_CSR_PMON_GLOBAL_STATUS Register – Field Definitions..................................366
5-38 C_CSR_PMON_EVT_SEL{5-0} Register – Field Definitions366
5-39 C_CSR_PMON_CTR{5-0} Register – Field Definitions ..367
5-40 Performance Monitor Events for Cbox Events ...369
5-41 Input Buffering Per Port..382
5-42 Rbox PMU Summary...384
5-43 Rbox Port Map...389
5-44 R_CSR_PMON_PERF_MASTER Register – Field Definitions......................................389
5-45 R_CSR_PERF_CNT_CTRL_{15-0} Fields ..390
5-46 R_CSR_PERF_CNT_{15-0} Fields...391
5-47 R_CSR_P{9-0}_IPERF{1-0} Registers ..391
5-48 R_CSR_ARB_PERF_CTR{4-0} Register Fields...393
5-49 R_CSR_PORT{4-0}_MM_CFG_{1-0} Registers...395
5-50 R_CSR_PORT{4-0}_MATCH_{1-0}_MSB Registers...396
5-51 R_CSR_PORT{4-0}_MATCH_{1-0}_LSB Registers..396
5-52 R_CSR_PORT{4-0}_MASK_{1-0}_MSB Registers...397
5-53 R_CSR_PORT{4-0}_MASK_{1-0}_LSB Registers..397
5-54 Message Events Derived from the Match/Mask filters ..397
5-55 Performance Monitor Events for RBox Events...399
5-56 Unit Masks for EOT_DEPTH_ACC..400
5-57 Unit Masks for EOT_INSERTS ..401
5-58 Unit Masks for ET_DEPTH_ACC ..401
5-59 Unit Masks for NEW_PACKETS_RECV..403
5-60 Unit Masks for QUE_ARB_BID..405
5-61 Unit Masks for QUE_ARB_BID_FAIL ..405
5-62 Unit Masks for TARGET_AVAILABLE..406
5-63 Sbox Performance Monitoring CSRs..407
5-64 S_CSR_PMON_SUMMARY Register Fields...409
5-65 S_CSR_PMON_FRZ_EN Register Fields..409
5-66 S_CSR_PMON_PERF_MASTER Register – Field Definitions......................................410
5-67 S_CSR_PMON_GLOBAL_STATUS Register Fields...410

Intel® Itanium® Processor 9500 Series 11
Reference Manual for Software Development and Optimization Guide

5-68 S_CSR_PMON_CTL{3-0} Register – Field Definitions .. 411
5-69 S_CSR_PMON_CTR{3-0} Register – Field Definitions.. 412
5-70 S_CSR_MM_CFG Register – Field Definitions ... 412
5-71 S_CSR_MATCH Register – Field Definitions ... 412
5-72 S_CSR_MATCH2 Register – Field Definitions.. 413
5-73 S_CSR_MATCH2.opc - Opcode Match by Message Class .. 413
5-74 S_CSR_MASK Register – Field Definitions ... 414
5-75 QEAR Performance Monitoring CSRs... 414
5-76 QEAR Configuration Register Fields (S_CSR_QEAR_CTL)....................................... 416
5-77 QEAR Data Register 0 Fields (CPE_CSR_CEAR_DAT0)... 417
5-78 QEAR Data Register 1 Fields (CPE_CSR_CEAR_DAT1)... 417
5-79 Sbox Data Structure Occupancy Events .. 418
5-80 Performance Monitor Events for Sbox Events .. 419
5-81 Wbox Performance Monitoring CSRs... 433
5-82 W_CSR_PMON_PERF_MASTER Register – Field Definitions 434
5-83 W_CSR_PMON_GLOBAL_CTL Register Fields ... 434
5-84 W_CSR_PMON_GLOBAL_STATUS Register Fields ... 434
5-85 W_MSR_PMON_EVT_SEL_{3-0} Register – Field Definitions.................................. 435
5-86 W_MSR_PMON_FIXED_CTR_CTL Register – Field Definitions 436
5-87 W_MSR_PMON_CTR_{3-0} Register – Field Definitions... 436
5-88 W_MSR_PMON_FIXED_CTR Register – Field Definitions .. 436
5-89 Performance Monitor Events for Wbox Events.. 437
5-90 Zbox Performance Monitoring CSRs ... 442
5-91 Z_CSR_PMON_PERF_MASTER Register – Field Definitions 443
5-92 Z_CSR_PMU_CNT_STATUS Register Field Definitions.. 443
5-93 Z_CSR_PMU_CNT_CTRL_{5-0} Register Field Definitions...................................... 444
5-94 Z_CSR_PMU_CNT_{5-0} Fields ... 444
5-95 Z_CSR_DSP_PMU Register – Field Definitions.. 446
5-96 Z_CSR_ISS_PMU Register – Field Definitions... 446
5-97 Z_CSR_PMU_MSC_THR Register – Field Definitions .. 447
5-98 TRP_PT_{DN,UP}_CND Encodings ... 447
5-99 Z_CSR_PGT_PMU Register – Field Definitions .. 448
5-100 Z_CSR_PLD_PMU Register – Field Definitions .. 448
5-101 Z_CSR_PMU_ZDP_CTL_FVC Register – Field Definitions.. 449
5-102 Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings.. 449
5-103 Z_CSR_PMU_ZDP_CTL_FVC.RESP Encodings... 450
5-104 Z_CSR_PMU_ZDP_CTL_FVC.BCMD Encodings.. 450
5-105 Performance Monitor Events for ZBox Events .. 451
5-106 Unit Masks for FVC_EV0 ... 459
5-107 Unit Masks for FVC_EV1 ... 460
5-108 Unit Masks for FVC_EV2 ... 461
5-109 Unit Masks for FVC_EV3 ... 463
5-110 Intel QuickPath Interconnect Packet Message Classes... 468
5-111 Opcode Match by Message Class.. 469
5-112 Opcodes (Alphabetical Listing) .. 470
5-113 Nominal Data Streaming Bandwidth Limitations... 507
5-114 Cost of Various Operations ... 507
5-115 Maximum Number of In-flight Memory Operations ... 508

12 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Revision History

§

Document
Number

Revision
Number Description Date

327132 001 • Initial release July 2012

Intel® Itanium® Processor 9500 Series 15
Reference Manual for Software Development and Optimization Guide

Introduction

1 Introduction

This document provides microarchitectural description of the Intel® Itanium®
processor 9500 series (formerly code-named Poulson), performance monitor
information, and other guidance to assist software developers in optimizing for the this
Intel® Itanium® processor.

1.1 Terminology
The following definitions are for terms that will be used throughout this document:

1.2 Related Documentation
The reader of this document should also be familiar with the material and concepts
presented in the following documents:

• 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 1:
Application Architecture

• 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System
Architecture

• 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 3:
Instruction Set Reference

• Intel® Itanium® Architecture Software Developer’s Manual Specification Update

• Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization

• Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual

Term Definition

Dispersal The process of mapping instructions within bundles to functional
units

Bundle rotation The process of bringing new bundles into the two-bundle issue
window

Split issue Instruction execution when an instruction does not issue at the same
time as the instruction immediately before it.

Advanced load address table (ALAT) The ALAT holds the state necessary for advanced load and check
operations.

Translation lookaside buffer (TLB) The TLB holds virtual to physical address mappings

Virtual hash page table (VHPT) The VHPT is an extension of the TLB hierarchy, which resides in the
virtual memory space, is designed to enhance virtual address
translation performance.

Hardware page walker (HPW) The HPW is the third level of address translation. It is an engine that
performs page look-ups from the VHPT and seeks opportunities to
insert translations into the processor TLBs.

Register stack engine (RSE) The RSE moves registers between the register stack and the backing
store in memory.

Event address registers (EARs) The EARs record the instruction and data addresses of data cache
misses.

Introduction

16 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

1.3 Identifying Intel® Itanium® Processors
The eight generations of the Intel® Itanium® processor can be identified by their
unique CPUID values. For simplicity of documentation, throughout this document we
will group all processors of like model together. Table 1-1 lists the CPUID values of all of
the Intel® Itanium® processors. Table 1-2 lists Intel® Itanium® processors and their
grouping.

Table 1-1. Intel® Itanium® Processor Family and Model Values

Family Model Description

0x07 0x00 Intel® Itanium® Processor

0x1f 0x00 Intel® Itanium® Processor (up to 3 MB L3 cache)

0x1f 0x01 Intel® Itanium® Processor (up to 6 MB L3 cache)

0x1f 0x02 Intel® Itanium® Processor (up to 9 MB L3 cache)

0x20 0x00 Intel® Itanium® Processor 9000 Series

0x20 0x01 Intel® Itanium® Processor 9100 Series

0x20 0x02 Intel® Itanium® Processor 9300 Series

0x21 0x00 Intel® Itanium® Processor 9500 Series

Table 1-2. Definition Table (Sheet 1 of 2)

Processor Abbreviation

Intel® Itanium® Processor 900 MHz with 1.5 MB L3 Cache Intel® Itanium® Processor (up to 3 MB
L3 cache)Intel® Itanium® Processor 1.0 GHz with 3 MB L3 Cache

Low Voltage Intel® Itanium® Processor 1.0 GHz with 1.5 MB
L3 Cache

Intel® Itanium® Processor (up to 6 MB
L3 cache)

Intel® Itanium® Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® Processor 1.50 GHz with 6 MB L3 Cache

Low Voltage Intel® Itanium® Processor 1.30 GHz with 3 MB
L3 Cache

Intel® Itanium® Processor (up to 9 MB
L3 cache)

Intel® Itanium® Processor 1.60 GHz with 3 MB L3 Cache at 400
and 533 MHz System Bus (DP Optimized)

Intel® Itanium® Processor 1.50 GHz with 4 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 9 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 9 MB L3 Cache

Intel® Itanium® Processor 9010

Intel® Itanium® Processor 9000 Series
(dual-core)

Intel® Itanium® Processor 9015

Intel® Itanium® Processor 9020

Intel® Itanium® Processor 9030

Intel® Itanium® Processor 9040

Intel® Itanium® Processor 9050

Intel® Itanium® Processor 9500 Series 17
Reference Manual for Software Development and Optimization Guide

Introduction

§

Intel® Itanium® Processor 9110N

Intel® Itanium® Processor 9100 Series
(dual-core)

Intel® Itanium® Processor 9120N

Intel® Itanium® Processor 9130M

Intel® Itanium® Processor 9140N

Intel® Itanium® Processor 9140M

Intel® Itanium® Processor 9150N

Intel® Itanium® Processor 9150M

Intel® Itanium® Processor 9310

Intel® Itanium® Processor 9300 Series
(quad-core)

Intel® Itanium® Processor 9320

Intel® Itanium® Processor 9330

Intel® Itanium® Processor 9340

Intel® Itanium® Processor 9350

Intel® Itanium® Processor 9520

Intel® Itanium® Processor 9500 Series
(eight-core)

Intel® Itanium® Processor 9540

Intel® Itanium® Processor 9550

Intel® Itanium® Processor 9560

Table 1-2. Definition Table (Sheet 2 of 2)

Processor Abbreviation

Introduction

18 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 19
Reference Manual for Software Development and Optimization Guide

2 The Intel Itanium Processor
9500 series Core

The Intel Itanium processor 9500 series introduces a redesigned Itanium architecture
core, which significantly improves both frequency and power efficiency through many
micro-architectural and technology advancements. Although the processor core can
trace its origin to the Intel Itanium processor 9300 series core, it is also the first major
revamp of the Intel Itanium core microarchitecture since the original Itanium® core
microarchitecture. The Intel Itanium processor 9500 series core has been re-optimized
from the ground-up for the current process technology and includes the elimination of
global stalls, re-design of most known critical paths, reduction in overall wiring delays
through better floor planning and power efficiency improvements through elimination
of dynamic circuits and improved clock gating.

2.1 Overview
The Intel Itanium processor 9500 series core provides a 12-wide issue (4 bundles) 11
stage deep pipeline that can fetch up to six instructions per cycle and retire up to 12 (4
bundles) instructions per cycle. The following is a summary of the key features
supported in the processor core:

• Use pipeline replays for pipeline control instead of global stall mechanisms.

• In-order 12 wide instruction (4 bundles) issue and retirement.

• A 96 entry instruction buffer per thread for decoupling the Front End (FE) and Back
End (BE).

• Execution Units:

— 6 integer ALU units
— 4 multimedia units
— 2 load/store units
— 1 integer multiply unit
— 2 floating point units capable of extended, double and single-precision

arithmetic with hardware support for denormal, unnormal and pseudo-normal
operands.

— 3 branch units
— support for nop squashing through a dedicated nop pipeline

• Independent FE and BE thread domains providing hardware support for 2 threads
per core.

• Duplicated first-level and second-level Data TLBs for the 2 threads.

• 32 extra General Registers increasing the stacked physical registers to 128.

• Dedicated load return paths from the MLD to the Integer Register File.

• Intel® Virtualization Technology (Intel® VT) for Intel® 64 or Itanium®
architecture (Intel® VT-i) 3 support - virtualization support extensions.

• New Data Prefetcher unit for improved software and hardware-initiated data
prefetching.

The Intel Itanium Processor 9500 series Core

20 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• Improved control speculation support via spontaneous deferral, multiple
outstanding page walks.

• Expanded memory operation hints for software to communicate cache locality,
cache allocation, prefetch hints and deferral information to hardware.

The first stage initiates the instruction fetch (IPG) of two bundles. The second stage
(FET) completes the FLI cache lookup and delivers the two bundles to the front end
decoding (FDC) stage which then passes them on to the register renaming (REN)
stage. The six instructions in the two bundles with their renamed register identifiers are
inserted into an appropriate memory (M), ALU (A), integer (I), floating point (F),
branch (B) and NOP (N) queues in the IBD stage. The first three stages operate on one
of two stages independently of the last 6 stages. Up to 12 instructions can be issued
from the instruction buffer queues in the IBD stage to 2 memory (M), 2 ALU (A), 2
integer (I), 2 FPU (F) and 3 branch (B) pipelines. NOP instructions do not use execution
pipelines and are managed within the control portion of the core pipeline. The
instructions issued by the instruction buffer are distributed and decoded in the DEC
stage, operand bypass occurs in the REG stage and execution starts in the EXE stage.
Exception information is coalesced in the DET stage, instruction commit vectors are
created in the WRB stage. The WB2 stage folds in late arriving error detection
information that may retry instruction execution.

Figure 2-1. Core Pipeline

Table 2-1. Core Pipelines

Pipeline Pipe Stages

Main IPG FET FDC REN IBD DEC REG EXE DET WRB WB2

MLD L1A L1T L1H L1M L1D L1C L1W

FPU FP1 FP2 FP3 FP4 FP5 FP6

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 21
Reference Manual for Software Development and Optimization Guide

• Mid-level Instruction cache (MLI) — 512 kB, 8 way, 64B line x2 sectored, 9 cycle
latency, 1 read, 1 fill port, NRU replacement. States: Invalid, Valid, Killed

• Instruction paging cache (IPC) — 128 entries, 50 physical address bit support, RID
and Key prevalidated

• First-level Instruction cache (FLI) — 16 kB, 4 way, 64B line, single cycle latency, 1
read, 1 fill port, LRU replacement. States: Invalid, Valid

• First-level TLB (FLITLB) — 32 entry, fully associative, NRU replacement

• Instruction buffer (IBQ) — 96 instructions per thread, 32 instruction MQ (memory),
32 instruction AQ (alu), 32 instruction IQ (integer), 32 instruction FQ (floating
point) and 16 bundle BQ (bru)

• Execution ports: 2 M/A (memory/alu), 2 A (alu), 2 I/A (integer/alu), 2 F (fpu), 3 B
(branch) ports and 1 N (nop)

• Integer registers (IRF) — 32 static, 16 banked, 128 stacked 64 bit registers plus 1
NaT bit per thread. 12 read ports, 10 write ports

Figure 2-2. Core Block Diagram

Instruction Buffer (32 Bundles per thread),
 Dispersal and Register Stack Engine

FLI
and Fetch/Pre-fetch

Engine
ITLB

MLD

Branch
Prediction

M F FAM A

Branch
Registers

160 Integer Registers 128 FP
Registers

S
co

re
bo

ar
d,

 P
re

di
ca

te
, N

aT
s,

E
xc

ep
tio

ns

Branch
Units
(3x)

Integer
ALU
(6x)

Int MPY
(1x)

FLD (Dual Port)
and TLB A

LA
T

Floating
Point
Units
(2x)

Ring

B B B I I

Integer
Multi

Media
Units
(4x)

Register Renaming

MLI

Front End
Thread Domain

Back End
Thread Domain

LLC

The Intel Itanium Processor 9500 series Core

22 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• Integer execution unit (IEU) — 2 M/A, 2 A and 2 I/A units. Most I and A instructions
are one cycle latency; some I and multi-media instructions are two cycle latency;
the one 32x32 multiplier is 4 cycle latency.

• Floating point register file (FRF) — 32 static, 96 rotating 80 bit registers per thread,
6 read ports, 6 write ports

• Floating point execution unit (FPU) — 2 fused multiply-accumulate and 2 misc
execution units. 6 cycle latency

• Branch resolution execution unit (BRU) — 3 branch execution units, 8 branch
registers per thread. Generates a bruFlushWrb signal on a branch mispredict, 10
cycle penalty.

• Predicate delivery unit (PDU) — 16 static and 48 rotating one-bit registers per
thread.

• ALAT (Advanced load address table) — 32 entry, 24-bit physical address support,
fully associative per thread

• First level data cache (FLD) — 16 kB, 4 way, 64B line, LRU replacement, single
cycle latency, 2 read, 2 write ports, write-through. TLB prevalidated

• First level data TLB (FLDTLB) — 32 entries per thread, fully associative, 4 kB, 8 kB
and 16 kB variable page size,

• Second level data TLB (DTB) - 128 entries per thread

2.2 The Intel Itanium Processor 9500 Series

2.2.1 Implementation Specific Behavior

2.2.1.1 Virtual and Physical Addressing

The processor core supports the full 64 bit virtual address space with 224 regions, 50
bits of physical address and 24-bit protection keys. Since the processor implements the
PSR.vm bit, the number of implemented virtual address bits is reduced by 1, that is,
from 61 to 60 when PSR.vm=1. This allows for creating a protected memory address
space under processor virtualization for the host or virtual machine manager.

2.2.1.2 Region Registers

The processor implements the full size of region register IDs (24b). Instead of looking
up the entire virtual address and the region, the region ID of a TLB entry is
prevalidated. A single bit is kept in the TLB (called RR match) which is set whenever
there is an insert operation or whenever there is a mov to RR operation to the
corresponding region register (selected by VA bits 63:61) with a RID that matches the
TLB entry's RID. The bit is cleared when a mov to RR occurs to the region register with
a different RID. This bit is used as an additional valid bit during a TLB lookup.

2.2.1.3 Protection Key Registers

The processor supports 16 protection key registers, with 24b of key. The keys are kept
prevalidated in the TLB. A PKR index field is added to the TLB entries. Whenever there
is a mov to PKR operation (to any PKR), if the key matches a TLB entry's key, then the
entry is prevalidated with the incoming key valid bit and the index field is written with
the index used in the mov to PKR operation. If the key does not match but the index of
the op matches with the PKR index in a TLB entry, then the key valid bit is cleared.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 23
Reference Manual for Software Development and Optimization Guide

2.2.1.4 RSE stacked physical register file size

The processor adds 32 integer registers to the RSE stacked physical register file size for
a total of 128. These registers are referenced from the virtual register id space of r32–
r127, which is a 96 entry window that moves across the 128 entry stacked physical
register file. These additional registers improve performance by reducing the number of
RSE injected fill and spill operations. Intel Itanium processor 9300 series has 96
stacked physical registers.

2.2.1.5 Reversibility of ttag and thash

The VHPT hash is implementation specific. The processors hash is defined as:
if hpn = va{60:0} >> RR[va{63:61}].ps
 tag = hpn ^ (RR[va{63:61}].rid << 39)
 hash = (PTA.base{63:15} & (1 << 64 − 1<<PTA.size))
 | (hpn^RR[va{63:61}].rid << 5) & (1 << PTA.size −1)

From the values of hash, tag, RR[va{63:61}].ps and PTA.size:
va{50:12+x} = tag{38-x:0} where RR.ps = (12 + x)
 rid{23:10} = tag{62:49}
 rid{9:0} = hash{14:5}^va{21+x:12+x}
 va{60:50} = tag{48−x:39−x}^rid{9−x:0}. if x > 9, then the rid term is ignored

2.2.1.6 Purge Behavior

The processor supports the following page sizes for purges or inserts: 4K, 8K, 16K,
64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, 4G. A purge operation which uses a page
size that is not supported will take a reserved register field fault. The only exception is
an incoming shootdown operation which can specify a page size that's not supported by
the processor. The processor will then round the page size to the nearest supported
page size above the incoming page size and it will use that to execute the purge.

2.2.1.7 ptc.e — Purge translation cache entries

This is an architected instruction of type M28 with some implementation dependent
behavior. See Volume 3 of the "Intel IA-64 Architecture Software Developer's Manual"
for the architected description and encoding. In the processor, one application of this
instruction will purge all translation cache (TC) entries from both the instruction and
data translation caches. This instruction purges TC entries from only the current
thread; Intel Itanium processor 9300 series purged both thread’s entries. The
"parameter" given in r3 is not used.

2.2.1.8 fc.i — Flush Cache, Instruction Cache Coherence

The processor does not flush the last level cache (LLC) on a fc.i instruction. This is to
assist with dynamic instruction translation performance by not moving the cache line to
memory to make it visible to the I-side. All previous Itanium CPUs flushed all caches
with this instruction.

2.2.1.9 NaT’d ld and st8.spill Behavior

The st8.spill will write the register’s 64-bit data portion to memory. The processor
returns a zero into the target register of all NaTed speculative loads, and also ensures
that all NaT propagating instructions perform all computations as specified by the
instruction pages.

The Intel Itanium Processor 9500 series Core

24 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.2.1.10 hint @ pause/priority

Hint @pause signals to hardware that the executing thread in the BE pipeline is willing
to give away execution resources and should be switched to the background. Hint
@priority signals to hardware that the executing thread in the BE pipeline is a high
priority thread and should generally not be switched away. Both of these hint
instructions are supported on all M, I and F execution units. The processor does not
support the hint.b or B-unit hint instructions i.e. hint.b will be ignored.

2.2.1.11 Unsupported Accesses and alignment

The following operations will generate unsupported reference faults:

• ld16/st16 to UC and WC space

• ldfe/stfe to UC and WC space

• Architecturally, semaphore operations are not allowed to UC and WC space.

The following are supported references subject to alignment requirements:

• ldf.fill, stf.spill are supported to UC and WC space

The following operations and their respective data alignments are supported when
PSR.ac=0:

• All semaphores operations {xchg, cmpxchg, fetchadd} that are naturally aligned

• All 16 byte accesses that are naturally aligned

• All 10 byte accesses (ldfe/stfe) that do not cross a 16B boundary

• All FP 4, 8 byte accesses that do not cross a 16B boundary except tldfps which
must be naturally (8B) aligned

• All Integer 2, 4 and 8 byte accesses that do not cross an 8B boundary

2.2.1.12 Floating Point Software Assist (FPSWA) Faults

The processor adds the following instructions to the FPSWA faulting list:

• SIMD FMAC ops: fpma, fpms, fpnma, fpcvt

• SIMD mins and maxes: fpmax, fpmin, fpamin, fpamax

• fprcpa, fprqsrta

• fpcmp

The Intel Itanium processor 9500 series and Intel Itanium processor 9300 series also
take a FPSWA on the following instructions:

• frcpa

• frsqrta

The processor does not FPSWA on denormal, unnormal and pseudo-denormal
operands. These operand types are automatically normalized by the hardware.

2.2.1.13 Processor Instruction Issue Port Mapping

As mentioned previously, the processor core BE has 12 execution pipelines. The
instruction issue port map table below outlines which instructions can execute on which
pipelines and their execution latency. The Instruction Buffer (IBL) unit which houses
the instruction dispersal logic is responsible for ensuring this issue port map. The
twelve execution pipelines in the BE are:

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 25
Reference Manual for Software Development and Optimization Guide

• 2 M-ports — M0 (or P0), M1 (or P1)

• 2 I-ports — I0 (or P2), I1 (or P3)

• 2 A-ports — A0 (or P4), A1 (or P5)

• 2 F-ports — F0 (or P6), F1 (or P7)

• 3 B-ports — B0 (or P8), B1 (or P9), B2 (or P10)

• 1 N-port — capable of executing 12 nops per cycle

The table below lists various functional units that are available on each of the twelve
execution pipelines:

The tables below specify the instruction issue port map for A-type, I-type, M-type, F-
type and B-type instructions.

Table 2-2. Functional Unit Support on Ports

Port Type Pipelines Functional Capabilities

M-port M0, M1 1-cycle ALU, Memory Address support

I-port I0 1-cycle ALU, 2-cycle MM ALU, Integer Shifter, MM Shifter,
Misc I-unit, Integer Multiplier

I1 1-cycle ALU, 2-cycle MM ALU, Integer Shifter, MM Shifter,
Misc I-unit

A-port A0, A1 1-cycle ALU, 2-cycle MM ALU, Misc A-unit

F-port F0, F1 6-cycle Fmac unit, 6-cycle Fmisc unit

B-port B0, B1, B2 Branch resolution unit

N-port N0 Handles up to 12 nop, brp instructions

Figure 2-3. BE Execution Pipelines

M0

Unified CntQ

IALU
MEM

M1

MQ IQ AQ FQ BQ

P0

N

P1 P2 P3 P4 P5 P6 P7 P1
0

P1
1

 P
8

 P
9

I0

IALU
MMALU
IMISC
ISHFT
PSMU
BITCNT
IMUL

I1

IALU
MMALU
IMISC
ISHFT
PSMU
BITCNT

A0

IALU
MMALU
AMISC

A1

IALU
MMALU
AMISC

F0

FMAC
FMISC

F1

FMAC
FMISC

B0-B1-B2

BRU

N0

NOPIALU
MEM

Instruction Buffer (IBQ)

The Intel Itanium Processor 9500 series Core

26 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Legend:
1 — 1-cycle latency, issues to that port
2 — 2-cycle latency, issues to that port

Note: A9, A10 issue width is different from Intel Itanium processor 9300 series. These could issue to all 6
ports on Intel Itanium processor 9300 series. Additional decode will be required in the processor to
steer them away from M-ports.

Table 2-3. Issue Port Map for A-type Instructions

M I A
Format Description Examples

0 1 0 1 0 1

1 1 1 1 1 1 A1 Integer ALU add, sub, addp4, and, andcm, or, xor

1 1 1 1 1 1 A2 Shift Left and Add shladd, shladdp4

1 1 1 1 1 1 A3 Integer ALU sub, and, andcm, or, xor

1 1 1 1 1 1 A4 Add Imm adds, addp4

1 1 1 1 1 1 A5 Add Imm addl

1 1 1 1 1 1 A6-A8 Integer compare cmp, cmp4

2 2 2 2 A9 MM ALU padd, psub, pavg, pavgsub, pcmp

2 2 2 2 A10 MM shift and Add pshladd, pshradd

Table 2-4. Issue Port Map for I/X-type Instructions (Sheet 1 of 2)

M I A
N Format Description Examples

0 1 0 1 0 1

4 I1 MM Mult & Shift pmpyshr

4 I2 MM Mult pmpy, mpy4, mpyshl4

2 2 MM Mix/Pack/Unpack mix, pack, unpack, pmin, pmax

2 2 psad

2 2 I3–4 MM Mux mux1, mux2

2 2 I5 Shift Right Variable pshr, shr

2 2 I6 MM Shift Right Fixed pshr

2 2 I7 Shift Left Variable pshl, shl

2 2 I8 MM Shift Left Fixed pshl

2 2 I9 Bit Strings popcnt, clz

1 1 I10 Shift Right Pair shrp

1 1 I11 Extract extr

1 1 I12–15 Deposit dep, dep.z

1 1 I16–17 Test bit/ Test NaT tbit, tnat

N I18 Nop nop.i

1 1 Hint hint.i

1 1 I19 Break break.i

1 1 1a 1a I20 Integer Spec Check chk.s.i

1 1 I21 Move BR mov to BR

2 I22 Move BR mov from BR

1 1 I23–24 Move PR mov to PR

2 I25 Move PR mov from PR/IP

1 1 I26–27 Move AR mov to AR

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 27
Reference Manual for Software Development and Optimization Guide

Notes:
1 — 1-cycle latency, issues to that port
2 — 2-cycle latency, issues to that port
4 — 4-cycle latency, issues to that port
1a — 1-cycle latency, instructions can issue to A-port if I-ports are already subscribed
N — squashed nop

Multiply instructions are changing to 4-cycle latency (over 2 on Intel Itanium processor
9300 series).

The mov to br/pr/ar instructions may issue on either I0 or I1 but the same resource
cannot be targeted in the same cycle. For example, a mov to br could be paired with a
mov to pr but not with another mov to br. Note that it is possible to perform a mov to
AR.EC and a mov to AR.LC in the same cycle, that is, each AR is considered to be a
different resource.

2 I28 Move AR mov from AR

1 1 I29 Sign/Zero Extend sxt, zxt

2 2 Compute Zero Index czx

1 1 I30 Test Feature tf

1 1 X1 Break break.x

1 1 X2 Move Long Imm movl

1 1 X5 Nop nop.x

1 1 Hint hint.x

Table 2-4. Issue Port Map for I/X-type Instructions (Sheet 2 of 2)

M I A
N Format Description Examples

0 1 0 1 0 1

Table 2-5. Issue Port Map for M-type Instructions (Sheet 1 of 2)

M I A
N Format Description Examples

0 1 0 1 0 1

X X M1–3 Integer Load ld, ld.a, ld.c, ld.s, ld.sa, ld16

X X M4–5 Integer Store st, st.rel, st.spill, st16

X X M6–8 FP Load ldf, ldf.a, ldf.sa, ldf.c

X X M9–10 FP Store stf, stf.spill

X X M11–12 FP Load Pair ldfp, ldfp.a, ldfp.sa, ldfp.c

X X Xa Xa M13–15 Line Prefetch lfetch

X X lfetch.fault, lfetch.excl

X X Xa Xa M51 lfetch

X X M52 Counted Line Prefetch lfetch.count

X X M16–17 Semaphore cmpxchg, xchg, fetchadd

X X M18 Set FR setf

X X M19 Get FR getf

X X Xa Xa M20 Int Spec Check chk.s.m

X X M21 FP Spec Check chk.s.m

X X M22–23 Adv Load Check chk.a

X X M24 Inval ALAT invala

X Sync/Serialize/Fence sync.i, srlz.d, srlz.i, mf, fwb

The Intel Itanium Processor 9500 series Core

28 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Notes:
X — issues to port
Xa — Instructions can issue to A-port if M-ports are already subscribed
N — squashed nop

X M25 RSE Control flushrs, loadrs

X X M26–27 ALAT Entry Inval invala.e

X X M28 Flush Cache fc, fc.i

X M29–33 Mov AR/CR mov ar, mov cr

X M34 Allocate Stack Frame alloc

X M35–36 Mov PSR mov psr

X X M37 Break break

X M38–40 Probe probe.r, probe.w

X M41 TC insert itc.d, itc.i

X M42 TR insert itr.d, itr.i

X M43 Mov from Indirect mov rr/dbr/ibr/pkr/pmc/pmd

X M44 System Mask sum, rum, ssm, rsm

X M45 TC, TR purge ptc.l, ptc.g, ptc.ga, ptr.d, ptr.i

X M46 Translation access thash, ttag, tpa, tak

X M47 Purge Entry ptc.e

N M48 Nop nop.m

X X M49 Hint hint.m

X X M50 Move to DAHR mov dahr

Table 2-5. Issue Port Map for M-type Instructions (Sheet 2 of 2)

M I A
N Format Description Examples

0 1 0 1 0 1

Table 2-6. Issue Port Map for F-type instructions

F
N Format Description Examples

0 1

6 6 F1 FP Multiply Add fma, fnma, fms, fnms

6 6 F2 Fixed Multiply Add xma

6 6 F3 FP Select fselect

6 6 F4 FP Compare fcmp

6 6 F5 FP Class fclass

6 6 F6 FP Reciprocal Approx frcpa

6 6 F7 FP Square Root frsqrta

6 6 F8 FP Min/Max fmin, famin, fmax, famax

6 6 F9 FP Merge/Logical fmerge, fmix, fsxt, fand, fandcm, for, fxor

6 6 F10–11 FP Conversion fcvt

6 6 F12–14 FP Status Field fsetc, fclrf, fchkf

6 6 F15 Break break.f

N F16 Nop nop.f

6 6 Hint hint.f

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 29
Reference Manual for Software Development and Optimization Guide

2.2.2 Processor Core Pipeline
As discussed above, the processor core pipeline consists of a Front-end or FE pipeline
and a Back-end or BE pipeline. The FE and the BE each have their own pipeline control
mechanisms consisting of replays, flushes and stalls to account for various pipeline
hazards. For a discussion of the FE pipeline control mechanisms, please refer to the IFR
chapter in the Instruction Fetch section. The figure below shows the primary BE
pipeline control mechanisms. Generally, the BE pipeline has been converted from a
global stall based microarchitecture on previous Itanium processors to a replay based
micro-architecture on the Intel Itanium processor 9500 series.

Appendix , “Data Access Hints”

2.2.3 New Instruction Support
The processor is fully compliant with latest revisions of the Intel Itanium Architecture
SDM and adds support for the following new instructions:

Table 2-7. Issue Port Map for B-type Instructions

B
N Format Description Examples

0 1 2

X X X B1 IP-rel Branch br.cond

X br.wexit, br.wtop

X B2 IP-rel Counted Branch br.cloop, br.cexit, br.ctop

X X X B3 IP-rel Call br.call

X X X B4–5 Indirect Branch br.cond, br.call, br.ia, br.ret

N B6–7 Branch Predict brp, brp.ret

X B8 Misc cover, clrrrb, rfi, bsw, epc, vmsw

X X X B9 Break break.b

N Nop nop.b

X X X Hint hint.b

Figure 2-4. Back-End Pipeline Control Mechanisms

IPG IBD

M

FET FDC REN

A
I

F
B

N

DEC REG EXE DET WRB WB2

EXE Replay

DET Replay

WB2 Replay

WRB Flush

WB2 Flush

IBD Stall

The Intel Itanium Processor 9500 series Core

30 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Although tf is not a new instruction in the Intel Itanium architecture, the processor is
the first implementation that can return a true predicate. All previous implementations
have always returned a false predicate for all features.

2.2.4 Advanced Load Address Table (ALAT)
The ALAT is a 32 entry fully associative table that attempts to hold for the window of
data speculation the set of advanced (data speculative) loads that have executed but
whose target locations have not been modified by a store. The ALAT is mostly
unchanged in the processor except for the changes listed in Table 2-9.

2.2.5 Data Translation Lookaside Buffers (TLBs)
The processor has two data TLBs: the FLDTLB and DTB. The FLDTLB isn’t really a
complete TLB because it is missing some information associate with translations. It’s
entire purpose is to enable the FLD to have single cycle latency by pre-validating the
FLD with respect to the FLDTLB. "Pre-validation" means that each line in the FLD is
associated with an FLDTLB entry and that and access must hit on the associated entry
in the FLDTLB to hit on line in the FLD. Likewise, in order to trigger an FLD fill, an
access must hit in the FLDTLB. Independent of the outcome of the FLDTLB lookup, all
data accesses access the DTB. Table 2-10 lists some important characteristics of these
TLBs.

Table 2-8. New Instruction Support

New Instruction Description

clz Counts the number of leading zeros in a 64-bit GR value

hint @priority Indicates to processor that current thread is performing a high-priority task

lfetch.count Counted line prefetch

mov dahr Move Data Access Hint Register (refer to Chapter 2.3.1 for further details)

mov r1 = dahr[r3] Move Indirect (from dahr) register (refer to Chapter 2.3.1 for further details)

mpy4 Unsigned 32x32 integer multiply

mpyshl4 Unsigned 32x32 integer shift left and multiply

tf Test feature presence from features vector in CPUID[4]

Table 2-9. ALAT Changes

Intel Itanium Processor 9500
Series

Previous Intel Itanium
Processors

number of ports 2 4

store precedes ld.c or chk.a by
2 or more cycles

24-bit comparison 20-bit comparison

store precedes ld.c or chk.a by
1 or cycle1

24-bit comparison 12-bit comparison

ld.c fail penalty 7 cycles (WB2 replay) forced FLD miss

chk.a fail penalty 19 cycles 14 cycles

banked register aliasing no yes

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 31
Reference Manual for Software Development and Optimization Guide

2.2.5.1 FLDTLB

The FLD Translation Lookaside Buffer (FLDTLB) is a fully associative TLB with 32 entries
per thread that exists to speed access to the FLD. As discussed in the earlier FLD
section of this document, every FLD entry is associated with an FLDTLB entry. All FLD
accesses require an FLDTLB translation. The FLDTLB is not a complete TLB in the
architectural sense because it does not contain all of the required architected values.
Therefore, when the FLDTLB is used to do a lookup in the FLD, the translation must also
be looked up in the DTB, a full architectural TLB. If the translation does not exist in the
DTB, the results of the FLD lookup cannot be used.

2.2.5.1.1 Non-blocking FLDTLB Misses

On previous processors, FLDTLB misses were blocking. On the processor they are non-
blocking. Operations that miss the FLDTLB and hit in the DTB are immediately sent to
the MLD but are not able to fill the FLD. Typically, if such an operation is of the type that

Table 2-10. Data TLB Characteristics

FLDTLB DTB

size 32 entries per thread 128 entries per thread, entries 64-
127 can only be TCs

latency 1 cycle 5 cycle minimum non-blocking
minimum DTB->FLDTLB transfer
latency, 2 cycle lookup latency
(part of MLD latency)

page sizes 4 KB, 8 KB, 16 KB 4KB-4GB

associativity fully associative fully associative

number of ports 2 read, 1 write 2 read, 1 write

replacment
algorithm

perfect LRU 4 quadrant NRU

max # primary
misses outstanding

1 DTB->FLDTLB transfer (non-
blocking), otherwise unlimited by
FLDTLB

1 blocking miss per thread; # of
non-blocking misses unlimited by
DTB

max # secondary
misses outstanding

unlimited by FLDTLB # of non-blocking secondary
misses is unlimited by DTB

Table 2-11. Data TLB Differences from Previous Intel Itanium Processors

FLDTLB DTB

size twice the previous size; statically
split between threads vs.
dynamically split previously

twice the previous size; statically
split between threads vs.
dynamically split previously

latency unchanged DTB->FLDTLB minimum latency is
up 1 but has gone from blocking to
non-blocking

page sizes unchanged unchanged

associativity unchanged unchanged

number of ports down from 4 down from 4

replacment
algorithm

improved from NRU improved

max # primary
misses outstanding

improved from 1 blocking miss improved from 1 blocking miss

max # secondary
misses outstanding

improved from 0 improved from 0

The Intel Itanium Processor 9500 series Core

32 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

would have filled the FLD (FLDCANFILL) and there is no DTB->FLDTLB transfer in
progress, a new DTB->FLDTLB transfer will be initiated for the corresponding
translation. The DTB->FLDTLB transfer process occurs in the background and in the
common case (no PA purge) attempts not to interrupt the progress of the main
pipeline. A cycle where nothing is inserted in the M-pipes is required to complete the
transfer, but the transfer waits up to 16 cycles before requesting M0 and M1 in an
attempt to use a cycle in which they happen to be unused. The theory is that there isn’t
typically much benefit in interrupting the main pipe if it is making progress. The reason
the transfer waits only 16 cycles is that a pending transfer can block other things (e.g.
the DPFQ) that shouldn’t be held off indefinitely. Thread switches cause DTB->FLDTLB
transfers to be aborted.

2.2.5.1.2 FLDTLB inserts

FLDTLB inserts occur only as DTB->FLDTLB transfers. FLDTLB inserts do not occur as
part of DTB inserts. DTB->FLDTLB transfers are initiated when all the following are
true:

• FLDCANFILL operation reaches DET stage

• operation is a virtual mode operation

• data access hint says allocate in FLD

• operation misses in FLDTLB

• operation hits in DTB

• DTB translation attributes: page present and memory attribute of WB

• there is no other outstanding DTB->FLDTLB transfer in progress

An outstanding DTB->FLDTLB transfer is cancelled when any of the following events
occur:

• anything causes an entry to be purged or replaced in the DTB

• a back-end thread switch occurs

2.2.5.1.3 FLDTLB Replacement

The replacement algorithm is per-thread perfect LRU.

2.2.5.1.4 Virtual Aliasing

As with previous Intel Itanium processors, the FLD cannot handle an FLDWR that hits
two virtually aliased (same PA different VA) cache lines because doing so would require
the ability for a single store to simultaneously write to two different locations in the
cache. To prevent this from happening, before inserting a new translation into the
FLDTLB, any translations that are virtually aliased with the new translation are purged.
A new translation (for example, 16K pages) could overlap with as many as 4 existing
translations (for example, 4K pages) in the FLDTLB.

Due to the lack of physical tags, the processor FLD has a further restriction in that it
doesn’t allow locations in the FLD to be virtually aliased with any FLDWR. To prevent
this from happening, stores that miss the FLDTLB purge any virtually aliased
translations in the FLDTLB. An FLDWR could overlap with at most one existing
translation in the FLDTLB. Any FLDLD that hits in the FLD after an FLDWR that needs to
purge the FLDTLB but before the purge is completed will be WB2 replayed. If the
FLDTLB missing FLDWR and FLD hitting FLDLD occur in the same cycle, a WB2 replay is
triggered if comparing VA[11:0] and sizes suggest these two operations may overlap.
(PMU event: CYC_BE_WB2_REPLAY.STORE_ALIAS)

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 33
Reference Manual for Software Development and Optimization Guide

2.2.5.2 DTB

The Data TLB (DTB) is a fully associative 128-entry per thread TLB. Entries 0 to 63 can
be used as TR entries. Any entry not being used as a TR entry can be used as a TC
entry. DTB misses can trigger the Hardware Page Walker (HPW). On previous Intel
Itanium processors, a DTB miss that triggered a hardware page walk was always
blocking. In other words, it stalled the main pipeline. On the processor, DTB misses that
trigger hardware page walks can be either blocking or non-blocking. A DTB miss that
triggers a hardware page walk will be non-blocking if all of the following conditions hold
true and blocking otherwise:

• operation is a control speculative load, lfetch, or hardware data prefetch

• spontaneous deferral is allowed

• data access is hinted PIPE_DEFER

2.2.5.2.1 Blocking DTB Miss

(PMU events: CYC_BE_WB2_REPLAY.BLK_HPW, CYC_BE_IBD_STALL.HPW)

2.2.5.2.2 Non-blocking DTB Miss

When an lfetch triggers a non-blocking walk, it is placed in the Data Prefetch Queue
(DPFQ - see data prefetching section) and then re-issued, if possible, when the walk is
completed. When a ld.s triggers a non-blocking walk, it is deferred (NATed). In this
case, NATed register value is available in the bypass network in WB2. The more
common scenario where the integer speculative load missed the FLD, and unusual
scenario where the integer speculative load hit in the FLD (and missed in the DTB).

(PMU events: CYC_BE_EXE_REPLAY_GR_LOAD_RAW,
CYC_BE_WB2_REPLAY.NAT_HZRD)

2.2.5.2.3 Pre-validation With Respect to Region Register

The DTB is pre-validated with respect to the region registers. This means that each DTB
entry is associated with a particular region register and the Region Identifier (RID) in
that region register. If a new RID is written into a region register, then all of the entries
associated with that RID and region register become invalid. However, if such an entry
is still in the DTB when the original RID is written back to the same region register, then
the entry becomes valid again.

2.2.5.2.4 Replacement Algorithm

The replacement algorithm for the DTB has been improved relative to previous Intel
Itanium processors. The 128 DTB locations for each thread are split up into four 32
entry quadrants. Quadrant n includes location n, n +4, n+8, etc. to n+124. Each
quadrant consists of half TR/TC entries and half TC only entries. Inserts rotate through
the quadrants such that following an insert to quadrant 0, the next insert will be to
quadrant 1, and so forth. Entries will be chosen for replacement in the following priority
order:

• Use the Dtb entry location specified by the itr.d or ldat commands.

• Choose the first invalid entry in the following order: 64-127, 0-63.

• The first non TR location in the current quadrant without a currently valid RID entry

• The first non TR location in the current quad with the Recently Used (RU) bit equal
to zero.

The Intel Itanium Processor 9500 series Core

34 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The RU bit for each entry starts off at 0, and whenever a location is inserted to or is
used by a translation, the corresponding RU bit is set to 1. If all the non-TR RU bits for
the quadrant are 1’s, the RU bits are all forced to 0’s.

2.2.5.3 Hardware Page Walker (HPW)

The Hardware Page Walker (HPW) can be used on a TLB miss (DTB on the data side) to
look up a translation in the Virtual Hashed Page Table (VHPT). Previous processors
could only do a single hardware page walk at a time, and data side hardware page walk
always blocked the main pipeline. Both of these constraints have been removed on the
processor. See the previous DTB section for a discussion of servicing DTB misses in a
non-blocking manner.

2.2.5.3.1 Concurrent Walks

Any two walks from the following list can be executed concurrently:

• 1 i-walk (from either thread)

• 1 blocking d-walk from thread 0

• 1 blocking d-walk from thread 1

• 1 non-blocking d-walk from either thread

A Non-blocking d-walk is dropped whenever another d-walk is requested before it
begins execution. New d-walk requests are coalesced with outstanding non-blocking d-
walks to the same V[63:12] and thread.

2.2.5.3.2 Thread Switching

Hardware page walks are long latency events and thus can affect and interact with
thread switching in the following ways:

• Blocking d-walk requests hold off thread switching only until VHPT load enters MLD
OZQ.

• A switch away event occurs when a blocking VHPT load exceeds a certain latency.

• A switch back event occurs when a blocking VHPT load completes

• Off thread VHPT loads can occur without a thread switch.

2.2.6 Architectural Ordering

2.2.6.1 Acquire Semantics

On the processor, acquire semantics are handled cooperatively by the FLD and MLD.
The FLD prevents servicing FLD and ALAT check hits whenever there is an older
operation with acquire semantics that hasn’t reached global visibility by replaying FLD
hits, ld.c’s, and chk.a’s (PMU events: CYC_BE_WB2_REPLAY.LOAD_ACQ,
CYC_BE_DET_REPLAY.LOAD_ACQ, CYC_BE_IBD_STALL.ACQ).

The MLD doesn’t allow operations from same thread as an older operation with acquire
semantics to issue from the OZQ until the older acquire operation has issued and has
hit in the MLD or is no longer in the MLDFAB or SMQ. An exception to this rule is that
lfetches that haven’t requested an FLD fill are allowed to forgo the MLD acquire
semantics restrictions. In an effort to improve performance in the presence of
operations with acquire semantics, hardware will generate prefetches (via the DPFQ)
for all loads sent to the MLD while an acquire operation is outstanding. These

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 35
Reference Manual for Software Development and Optimization Guide

prefetches do not request FLD fills, and so, if they can make it into the MLD OZQ before
it fills up due to a long latency acquire operation, they can issue regardless of the state
of the acquire operation.

2.2.6.2 Release Semantics

An operation with release semantics will not issue from OZQ until it is oldest in OZQ
(from both threads) and all release dependencies from already issued operations have
been met. This does imply that a long latency release operation from one thread can
hold up a release operation from the other thread. In an effort to improve performance
in the presence of stores with release semantics, hardware will generate a prefetch (via
the DPFQ) for every st.rel that goes down the pipeline. Such a prefetch is not affected
by release semantics, and so, if it can make it into the MLD OZQ while a long latency
release operation is waiting to be issued, it can issue and potentially improve the
performance of the release operation.

2.2.6.3 Memory Fences

Memory fence semantics is a combination of acquire and release semantics. Therefore,
operations with memory fence semantics are handled by combining the acquire and
release behaviors already discussed. The following restrictions are also implemented
for memory fences:

• Operations with memory fence semantics do not allow lfetches to ignore their
acquire behaviors. This implementation restriction is architecturally required by
mf.a but is not required for mf.

• Operations with memory fence semantics wait for all outstanding memory
accesses, including lfetches and operations from the other thread, to complete
before they become globally visible. This implementation restriction (called a
"super release") is not architecturally required.

• The semantic restrictions for mf.a are applied across both threads. This
implementation restriction is not architecturally required.

2.2.7 Execution Latencies
The following tables show the processor core instruction execution latencies. Separate
tables are presented for GRs, FRs, BRs, PRs, ARs and CRs.

Table 2-12. Integer Execution Latencies (Sheet 1 of 2)

Consumer
(across) Producer

(down)
IALU ICMP ISHFT MMAL

U PSMU BITC
NT PSAD IMUL

T ICHK IMOV
TO

MADD
R

STDA
TA

IALU 1 1 1 1 1 1 1 1 1 1 1 1

ISHFT 1 1 1 1 1 1 1 1 1 1 2 1

MMALU 2 2 2 2 2 2 2 2 2 2 3 2

PSMU 2 2 2 2 2 2 2 2 2 2 3 2

BITCNT 2 2 2 2 2 2 2 2 2 2 3 2

PSAD 2 2 2 2 2 2 2 2 2 2 3 2

IMULT 4 4 4 4 4 4 4 4 4 4 5 4

IMOVFM 2 2 2 2 2 2 2 2 2 2 3 2

FLDHIT 1 1 1 2 2 2 2 2 1 1 2 1

The Intel Itanium Processor 9500 series Core

36 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FLDLDFILLHIT 2 2 2 2 2 2 2 2 2 2 2 2

MLDRTN M M M M M M M M M M M+1 M

DCSRTN C C C C+1 C+1 C+1 C+1 C+1 C C C+1 C

Table 2-13. Floating-Point Execution Latencies

Consumer (across)
Producer (down) FMAC FMISC FPST GETF

FMAC 6 6 6 6

FMISC 6 6 6 6

SETF 9+ 9+ 9+ 9+

MLDRTN M+1 M+1 M+1 M+1

Table 2-14. Predicate Execution Latencies

Consumer (across)
Producer (down)

NONB
RQP BRQP MOVF

MPR

INTPREDWR 1 0 1

FPPREDWR 3 2 3

MODSCHBR 1 1 1

MOVTOPR 2 0 1

Table 2-15. Branch Execution Latencies

Consumer (across)
Producer (down) INDBR MOVF

MBR

BRCALL 1 1

MOVTOBR 0 1

Table 2-16. Instruction Type Details (Sheet 1 of 2)

Inst Type Instructions

IALU A1-5, M2-3, M5, M7-8, M10, M12, M14-15, M31(unat,rnat), I29(zxt)

ICMP A6-8, I16-17

MMALU A9-10,I2(pmin,pmax),M13-15(A-ports),I26(pfs)

ISHFT I10-15,I29(sxt)

PSMU I3-8,I2(mix,pack,unpack)

BITCNT I9,I29(czx)

PSAD I2(psad)

IMULT I1,I2(mpy,pmpy)

ICHK I20,M20

IMOVTO I21,I23,I26

IMOVFM I22,I25,I28

Table 2-12. Integer Execution Latencies (Sheet 2 of 2)

Consumer
(across) Producer

(down)
IALU ICMP ISHFT MMAL

U PSMU BITC
NT PSAD IMUL

T ICHK IMOV
TO

MADD
R

STDA
TA

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 37
Reference Manual for Software Development and Optimization Guide

2.3 Data Access Hints, Fetch, Dispersal and Execution

2.3.1 Data Access Hints

2.3.1.1 Hint Architecture Overview

Up until now, loads and stores have had only a few bits in the instruction encoding to
hint some attributes such as temporal locality and expected MESI state behavior. There
are many other useful attributes associated with memory operations that could
potentially be communicated by software in order to optimize the handling of those
operations by the hardware. Towards this end the following extensions to the
Instruction Set Architecture (ISA) have been made:

• All loads, stores, lfetches, and semaphore instructions specify a dynamic DAHR
instead of a static hint, using the two encoding bits formerly used for the
temporalness hints. Each of the 8 DAHRs can specify a unique set of memory
attributes, including such things as speculation, prefetching and temporal hints. An
additional “h” bit is defined in the encoding of lfetch instructions and all loads and
stores except the FP load pair, register update, and immediate update forms,
allowing those instructions to reference any of the 8 DAHRs. Semaphore
instructions also do not have the "h" bit. The instructions without the "h" bit can
only index DAHRs 0-3. Hardware sets the default DAHR values such that they
mimic legacy hint bit behavior.

MADDR M1-12, M13-15(M-ports), M16-17, M28, M38-40, M42-43, M45-47, M51-52

STDATA M4-5, M16, M18, M29, M32, M35, M38, M41-42, M45, M1003

FLDHIT M1-3

FLDLDFILLHIT M1-3(ld.fill)

MLDRTN (GR) M1-3,M16-17,M19,M31(csd,ccv);

MLDRTN (FR) M6-8, M11-12

DCSRTN M31(excluding csd, ccv, unat, rnat), M33-34, M36, M38-39, M43, M46, M1002

FMAC F1-2, F10-11

FMISC F3-9

FPST M9-10

GETF M19

SETF M18

INTPREDWR A6-8, I16-17, I30

FPPREDWR F4-7

MODSCHBR B1-2

MOVTOPR I23-24

MOVFMPR I25

BRCALL B3, B5, X4

MOVTOBR I21

INDBR B4, B5

MOVFMBR I22

Table 2-16. Instruction Type Details (Sheet 2 of 2)

Inst Type Instructions

The Intel Itanium Processor 9500 series Core

38 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• A new instruction, mov-to-DAHR, allows software to specify a set of attribute
values to use for subsequent memory operations (in the current procedure) which
are tagged with that particular DAHR. This new instruction uses a formerly-unused
encoding within the hint opcode space, so it is ignored by legacy processors. The
mov-to-DAHR instruction has single cycle latency on the processor.

• Another new instruction, mov-from-DAHR, allows software to read the current
contents of a DAHR. In general, however, software is expected to remember the
values it wrote into the DAHRs, and to simply (re)write a DAHR before an important
code sequence (rather than first reading the DAHR to see if it needs to be
changed). Thus, the mov-from-DAHR operation is not optimized on the processor,
and may result in many replay cycles.

• A Data Access Hint Stack (DAHS) preserves modified DAHR values across
procedure calls and returns. Any br.call instruction or interruption will allocate a
new stack frame, and set all of the DAHRs in that new frame to default values. Any
br.ret or rfi instruction will throw away the current stack frame, and return to the
previous frame. The processor implements 7 entries in its DAHS. If the stack
overflows (as a result of nesting more than 7 procedure calls), the oldest stack
frame is lost, and the DAHRs will revert to their default values when control
eventually returns to its associated procedure. The DAHRs are also reinitialized to
default values, and the entire DAHS is cleared, on a context switch (indicated by a
mov-to-BSPSTORE instruction).

In the processor implementation of this hint architecture, the following will cause 7
cycle WB2 replays:

• a mov-to-DAHR and a DAHS push followed by a DAHS pop in a 6 cycle window

• multiple DAHS pushes followed by a DAHS pop in a 6 cycle window

• a mov-to-BSPSTORE instruction followed by a mov-to-DAHR or a DAHS pop in a 6
cycle window

2.3.1.2 Hint Definitions

The architecture supports up to 16 hint bits per DAHR. The processor implements 7
independent hint fields, using 11 of the available bits. The remaining hint bits are
reserved: they should always be set to zero in mov-to-DAHR instructions to allow for
additional capabilities in future products. It should be noted that while hardware strives
to follow these hints as much as possible, there may be cases where the hints are
ignored. The definitions of the implemented fields and their corresponding values are
the following:

• FLD_LOC (bits [1:0])
These hint bits affect the allocation of a line into the first-level data (FLD) cache.

— FLD_NORMAL (value = 0)
Meaning: This hint is really just the absence of the two other FLD_LOCALITY
hints.
HW behavior: FLD missing integer loads and data prefetches with this hint
typically trigger FLD fills, and such fills are initially marked recently used (RU).

— FLD_NRU (value = 1)
Meaning: This hint tells hardware that the hinted access is accessing a line that
is less likely than other cache lines to be re-used during its lifetime in the FLD.
HW behavior: Whether this line is already in the FLD or being filled into the FLD
because of the hinted access, the line is marked not recently used (NRU)
instead of recently used (RU).

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 39
Reference Manual for Software Development and Optimization Guide

PMU Events: FLD_LINE_DEMOTE counts the demotion of a cache lines to not-
recently-used due to this hint. FLD_FILL_NRU counts the allocation to not-
recently-used due to this hint.

— FLD_NO_ALLOCATE (value = 2)
Meaning: This hint tells the hardware that the hinted access should not trigger
an FLD fill.
HW behavior: Accesses with this hint do not trigger FLD fills.
PMU Events: FLD_HINT_NOALLOC counts the number of times this hint
prevents an FLD fill request.

• MLD_LOC (bits [3:2])
These hint bits affect the allocation of a line into the mid-level data (MLD) cache.

— MLD_NORMAL (value = 0)
Meaning: This hint is really just the absence of the two other MLD_LOCALITY
hints.
HW behavior: MLD misses with this hint typically trigger MLD fills, and such fills
are initially marked recently used (RU).

— MLD_NRU (value = 1)
Meaning: This hint tells hardware that cache lines filled to the MLD as a result
of the hinted access are less likely to be re-used during their lifetimes in the
MLD than other cache lines filled to the MLD.
HW behavior: A cache line filled to the MLD by such an access is initially
marked not recently used (NRU) instead of recently used (RU). Subsequent
accesses to that line update it to the RU state.
PMU Events: MLD_HINT_NRU counts the allocation to not-recently-used due to
this hint.

— MLD_NO_ALLOCATE (value = 2)
Meaning: This hint tells hardware that the hinted access should not trigger an
MLD fill.
HW behavior: Accesses with this hint do not trigger MLD fills.
PMU Events: MLD_HINT_NOALLOC counts the number of times this hint
prevents an MLD fill.

• LLC_LOC (bit [4])
These hint bits affect the allocation of a line into the last-level cache (LLC).

— LLC_NORMAL (value = 0)
Meaning: This hint is really just the absence of the LLC_LOCALITY.ALLOC_NRU
hint.
HW behavior: LLC misses with this hint typically trigger LLC fills, and such fills
are initially marked recently used (RU). Subsequent accesses to that line leave
the line in the RU state.

— LLC_NRU (value = 1)
Meaning: This hint tells hardware that cache lines filled to the LLC as a result of
the hinted access are less likely to be re-used during their lifetimes in the LLC
than other cache lines filled to the LLC.
HW behavior: A cache line filled to the LLC by such an access is marked not
recently used (RU) instead of recently used (RU).
PMU Events: RIL_REQ_HINT_NRU counts requests which allocate to not-
recently-used due to this hint.

• PF (bits [6:5])

The Intel Itanium Processor 9500 series Core

40 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

These hint bits affect which hardware data prefetchers can be triggered by an
operation. Please see Section 2.3.4.1.3 for a description of all the types of the
processor’s hardware data prefetchers.

— PF_NORMAL(value = 0)
Meaning: This hint is really the absence of software hinted hardware
prefetching restrictions.
HW behavior: All hardware prefetchers may use this operation as a trigger for
more prefetches. In practice, various prefetchers ignore various operations and
only trigger prefetches subject to their algorithms.

— PF_NO_FLD (value = 1)
Meaning: Any hardware prefetch mechanisms that prefetch into the FLD and
can generate multiple cache lines of prefetches from a single access should
ignore this access.
HW behavior: The FLD sequential (neighbor line) prefetcher will ignore
accesses with this hint.

— PF_NO_MLD (value = 2)
Meaning: Any hardware prefetch mechanisms that prefetch into the FLD or
MLD and can generate multiple cache lines of prefetches from a single access
should ignore this access.
HW behavior: The FLD sequential (neighbor line) prefetcher and the MLD
sequential prefetcher will ignore accesses with this hint.

— PF_NONE (value = 3)
Meaning: Any hardware prefetch mechanisms that prefetch into the FLD or
MLD and can generate multiple cache lines of prefetches from a single access
and any buddy line prefetchers should ignore this access.
HW behavior: The FLD sequential (neighbor line) prefetcher, the MLD
sequential prefetcher, and the MLD buddy line prefetcher will ignore accesses
with this hint.
PMU Events: FLD_HINT_NO_MULTI_HWPREF counts the number of times any
setting of this hint (NO_FLD_MULTI, NO_FLD_MLD_MULTI, or
NO_FLD_MLD_MULTI_NOBUDDY) prevents an operation from triggering an FLD
sequential (neighbor line) hardware data prefetch. Similarly,
MLD_HINT_NO_BUDDY counts the number of times any setting of this hint
prevents an operation from triggering an MLD buddy line prefetch.

• PF_DROP (bits [8:7])
These hint bits cause data prefetches (lfetches and hardware data prefetches) to be
dropped when various events occur.

— PFD_NORMAL(value = 0)
Meaning: This hint is really the absence of the other PF_DROP hints.
HW behavior: The lfetch is carried to completion (short of triggering a fault if
not lfetch.fault).

— PFD_TLB(value = 1)
Meaning: This lfetch should be dropped if it doesn’t hit in a data TLBs.
HW behavior: This lfetch is dropped if it misses the DTB.
PMU Events: PREF_DROP.DTLB_MISS counts the number of times this hint
causes a prefetch to be dropped due to a DTB miss.

— PFD_TLB_MLD (value = 2)
Meaning: This lfetch should be dropped if it doesn’t hit in any data TLB or it
misses the MLD.
HW behavior: This lfetch is dropped if it misses the DTB or the MLD.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 41
Reference Manual for Software Development and Optimization Guide

PMU Events: In addition to the PMU event for the ON_DTB_MISS setting, the
PMU event MLD_HINT_PREF_DROP that counts the number of times this hint
causes a prefetch to be dropped due to an MLD miss.

— PFD_ANY (value = 3)
Meaning: This lfetch should be dropped if anything happens that would
increase the cost of this lfetch above the minimum possible cost.
HW behavior: This lfetch is dropped if it misses in any data TLB, or if it misses
the MLD, or if there is some risk of overflowing the data prefetch queue.
PMU Events: In addition to the PMU events for the ON_DTB_MLD_MISS setting,
the PMU event PREF_DROP.FLDTLB_MISS) that counts the number of times this
hint causes a prefetch to be dropped due to an FLDTLB miss.

• PIPE(bit [9])

— PIPE_DEFER (value = 0)
Meaning: Lfetches with this hint should not block the pipeline while fetching
their TLB translations, and speculative loads with this hint should
spontaneously defer when when waiting for some long latency operation.
HW behavior: An lfetch with this hint that misses the DTB will initiate a
hardware page walk and be placed in the data prefetch queue. A speculative
load that misses the DTB or MLD will spontaneously defer (if architecturally
allowed).
PMU Events: MLD_HINT_DEFER counts the number of times a ld.s is
spontaneously deferred due to an MLD miss.

— PIPE_BLOCK (value = 1)
Meaning: Lfetches with this hint should block the pipeline until they are done
fetching their TLB translations, and speculative loads with this hint should block
uses of their target register until they have completed their fetch.
HW behavior: An lfetch with this hint that misses the DTB will block the pipeline
until its hardware page walk is completed. The pipeline will be blocked on the
use of a speculative load with this hint that misses the DTB or the MLD until the
speculative load returns a value to the target register. These behaviors were
the default behavior on previous Intel Itanium processors, and this hint is a
way to force these behaviors on the processor. An lfetch or speculative load
without this hint may not block the pipeline, and the speculative load may be
spontaneously NATed on a DTB or MLD miss - subject to architectural
restrictions for spontaneous deferral.
PMU Events: DTLB_HPWHINT_BLK counts the number of times this hint causes
a ld.s not to be spontaneously deferred due to a DTB miss.

• BIAS (bit [10])

— BIAS_EXCL
Meaning: If hardware has a choice of getting a line in either the shared or
exclusive MESI states, it should choose exclusive.
HW behavior: A DREAD access with this hint that causes an LLC fill will fill the
line to the exclusive (E) MESI state if the line doesn’t exist in any other cache.

— BIAS_SHARED
Meaning: If hardware has a choice of getting a line in either the shared or
exclusive MESI states, it should choose shared.
HW behavior: A DREAD access with this hint that causes an LLC fill will fill the
line to the shared (S) MESI state.
PMU Events: RIL_REQ_REF_DATA.WB_CRD counts the number of times this
hint causes an LLC fill to the S state instead of the E state.

The Intel Itanium Processor 9500 series Core

42 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.3.1.3 PMU DEAR Support for Data Access Hints

In addition to the PMU support via the hint related events mentioned in the previous
section, the Data cache EAR captures the hint values that were associated with the
captured access. This allows a dynamic optimizer to know for sure what hint values
various accesses are actually using. This can be useful both in figuring out what the
opportunities are for changing hint values and for verifying which accesses are affected
by a change in hint values.

2.3.1.4 Backwards Compatibility of DAHR Hints with Temporal Hints

Two of the DAHR index bits were previously defined to be temporal hint bits. The
processor will interpret legacy code temporal hint usage by using the default hint
values of the associated DAHRs. The temporal hint to associated DAHR mappings are
shown in Table 2-18. The default DAHR values are shown in Table 2-19. The way that
previous Intel Itanium processors will interpret DAHRs is shown in Table 2-18.

Table 2-17. Legacy Code Temporal Hint Mapping to DAHRs by the Processor

Temporal Hint DAHR

none DAHR0

nt1 DAHR1

nt2 DAHR2

nta DAHR3

Table 2-18. DAHR Mapping to Temporal Hints by Previous Intel Itanium Processors

DAHR Temporal HInt

DAHR0 none

DAHR1 nt1

DAHR2 nt2

DAHR3 nta

DAHR4 none

DAHR5 nt1

DAHR6 nt2

DAHR7 nta

Table 2-19. Default DAHR Values

DAHR fld_loc mld_loc llc_loc pf pf_drop pipe bias

DAHR0 fld_normal mld_normal llc_normal pf_normal pfd_normal pipe_block bias_excl

DAHR1 fld_no_allocate mld_normal llc_normal pf_no_fld pfd_normal pipe_block bias_excl

DAHR2 fld_no_allocate mld_nru llc_normal pf_no_fld pfd_normal pipe_block bias_excl

DAHR3 fld_no_allocate mld_normal llc_nru pfd_no_fld pfd_normal pipe_block bias_excl

DAHR4 fld_normal mld_normal llc_normal pf_normal pfd_normal pipe_defer bias_excl

DAHR5 fld_no_allocate mld_normal llc_normal pf_no_fld pfd_normal pipe_defer bias_excl

DAHR6 fld_no_allocate mld_no_allocate llc_normal pf_no_mld pfd_normal pipe_defer bias_excl

DAHR7 fld_no_allocate mld_no_allocate llc_nru pf_none pfd_normal pipe_defer bias_excl

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 43
Reference Manual for Software Development and Optimization Guide

2.3.2 Instruction Fetch

2.3.2.1 Intel Itanium Processor 9300 Series Processor Differences

The following table enumerates key differences between Intel Itanium Processor 9500
Series and Intel Itanium Processor 9300 Series.

2.3.2.2 Memory Hierarchy

The FLI on the processor is nearly identical to the FLI on Intel Itanium Processor 9300
Series. Both use prevalidation and consequently an FLI TLB page invalidation will
invalidate all FLI instruction data associated with the invalidated page. On Intel Itanium
Processor 9300 Series, virtual address page aliasing, even between threads, would
cause FLI TLB page invalidation. Therefore, two threads accessing the same physical
page in memory would invalidate each others FLI cache data and FLITLB on a 4k page
size granularity. On the processor, virtual address page aliasing between threads will
install a TLB entry per thread into the FLI TLB. Therefore, two threads executing out of

Table 2-20. Intel Itanium Processor 9300 Series Differences

Intel Itanium Processor 9500
Series

Intel Itanium Processor 9300
Series

Branch misprediction penalty 10 cycles 6 cycles

MLI (512k) nominal access
time

9 cycles 6 cycles

MLITLB (128 entry shared)
access time

3 cycles 2 cycles

MLI to LLC fetch size 2 64B cache lines 1 128B cache line

0-bubble resteers 4 short IP-relative branches Any short IP-relative branch in the
FLI

1-bubble resteers Any short IP-relative branch in the
FLI, br.ret

br.ret

2-bubble resteers NA Non-return indirect branch

3-bubble resteers Non-return indirect branch, long
branch

NA

Branch predictor Long branch (brl) target predictor
added

No long branch support

Table 2-21. Instruction Cache Characteristics

FLI MLI

Size 16k 512k

Latency 1 Cycle 9 Cycles

Line Size 64B 128B

Associativity 4-way 8-way

Shared Across Threads? Yes Yes

Number of Ports 2 read/1 write 1 read/1 write

Max # of misses
outstanding

16 64B (8 entries restricted to MLI
buddy line)

8 128B

Fill Bandwidth 32B/cycle 32B/cycle

Address Ordering
Granularity

32B 32B

Address Type Pre-validated Physical

The Intel Itanium Processor 9500 series Core

44 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

the same physical address space will not cause FLI TLB and FLI victimizations.
However, the instruction data will be duplicated in the FLI in this scenario. In addition,
the default FLI replacement policy is to mark both demand and prefetch fills as most
recently used. Another key difference is that the processor no longer has an ISB. On
the processor, fills from MLI are immediately filled into the FLI.

2.3.2.3 Instruction Prefetch

Instruction prefetching is controlled primarily by special prefetching hint instructions,
instruction completer hints on branch instructions, and move to BR instructions. The
only exception to this is “next line” prefetching, which is controlled by the hardware.
With "next line" prefetching, an FLI miss to an address with IP[5]=0 will cause a 64B
miss to the cache line aligned with their current IP address as well as to IP[5]=1. That
is, the frontend will fetch the 64B "buddy" address of the current miss. If the miss
address is to the "buddy", then only one 64B miss will be issued.

The following table enumerates how software can initiate instruction prefetching.

The instruction prefetcher will terminate prematurely if a control flow change is
detected at that current IP, not at the prefetch IP. This control flow change can occur
either due to a predicted taken branch or a backend resteer. On a thread switch,
instruction prefetching is halted and saved on the thread that is going inactive, and the
instruction prefetcher restores prior state and continues prefetching on the thread that
is becoming the active thread if the instruction prefetcher was previously active.

2.3.2.4 Instruction Prefetch - Prefetch Structures

• PVAB (prefetch virtual address buffer):
The PVAB is an 8-entry buffer used to store prefetch requests from brp and mov-br
instructions. The PVAB is needed because the front end can see more brp/mov to
br instructions per clock than can be issued.

• SPE (streaming prefetch engine):
The SPE spins on a sequence of prefetch addresses for large basic blocks.

2.3.2.5 Instruction Prefetch -brp prefetches

Only brp instructions that are in slot 2 of a bundle are recognized by the prefetch logic.
The PVAB has two write ports for storing prefetch information. Since it is possible to
have a bundle pair with brp instructions in slot 2 of both bundles and have a mov-br
executing in the DET stage at the same time, one of the brp instructions will be
dropped. In this case, the brp in bundle 1 will be dropped.

Table 2-22. Instruction Prefetching Instructions

Instruction Action

mov br[N] = r[N] Prefetch 8 bundles. Target address is specified by the branch register

br.few target No action taken. Next line prefetching is possible if IP[5]=0

br.many target Engage the streaming prefetch engine. Fetch 32 bundles ahead of the 64B cache line pointed to by
target. The prefetch target starts at the next cache line after the target address.

brp.few target Prefetch 8 bundles at the specified target address. Instruction treated as NOP by execution
stages.

brp.many target Prefetch 16 bundles at the specified target address. Instruction treated as NOP by execution
stages.

brp.exit target, count Prefetch count bundles at specified target address. Instruction treated as NOP by execution
stages.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 45
Reference Manual for Software Development and Optimization Guide

2.3.2.6 Instruction Prefetch - Prefetch Cancellation

Prefetches generate extra memory traffic. To minimize unnecessary prefetches, the
processor may cancel certain prefetches that are in the PVAB or in the prefetch
pipeline. Prefetches are not sent to the MLI if they result in an FLI hit. Prefetches are
also canceled on FLITLB misses. Additionally, the branch hints may specify a trace
vector (.tk.tk, .nt.nt, .dc.dc etc). The trace vector is used to cancel a prefetch in the
PVAB or any of the prefetch pipestages if the execution trace does not match the trace
vector specified in the branch hints.

The trace vector is implemented as a 4-bit shift register with aging vector. The trace
vector is a two bit vector corresponding to the direction the next two branches are to
be predicted before the prefetch becomes ready. The aging vector is a two bit vector
that indicates whether the corresponding trace bits have been checked (0=not
checked, 1=checked). When both bits of the aging vector are 1, the prefetch is ready to
be issued.

Every time a branch is executed in the front end (FET stage), the trace vector LSB for
all PVAB entries that have a 0 in the aging vector LSB are compared to the branch
prediction. If they match, then both the aging and trace vectors are shifted to the right,
and a '1 is shifted in from the left into the aging vector. For entries that have a "dc" hint
for any of the bits in the trace vector, the aging bit is set to a '1 to indicate that the
branch has been checked. The streaming prefetch engine also supports prefetch
cancellation based on the prefetch vector for brp.many prefetches.

2.3.2.7 Instruction Prefetch - Guidelines

Efficient use of the instruction prefetcher can reduce instruction cache miss penalties.
However, the danger of over prefetching is FLI and ideally to a lesser extent, MLI cache
pollution.

• Guideline: Use br.many instead of br.few unless you know that the target code of
the branch is going branch again in less than 8 bundles for a branch target with
IP[5]=0 or 4 bundles with a branch target with IP[5]=1.

• Guideline: Brp instructions are lfetch’s for the i-side. Brp instructions can be used
to reduce i-cache miss penalties. However, only i-cache misses that cause empty
cycles in the backend reduce performance. In particular, i-cache misses after
branch mispredictions are always exposed, and this is one area where brp
instructions can be utilized.

Table 2-23. brp and movbr: Contention for PVAB Write Ports

brp instruction
on slot 2 of

bundle 0 (Brp0)

brp instruction
of slot 2 of

bundle 1 (Brp1)

MovBr in DET?
(MovBr) PVAB Inserts

y n n Brp0 —

n y n Brp1 —

n n y MovBr —

y y n Brp0 Brp1

y n y Brp0 MovBr

n y y Brp1 MovBr

y y y Brp0 MovBr

n n n — —

The Intel Itanium Processor 9500 series Core

46 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.3.2.8 Branch Prediction - Guidelines

• .dptk vs .sptk
Dynamic branches have better prediction accuracy at the expense of extra FET
replays on tight loops during the first few iterations. Static branches do not incur
FET replay penalties, but prediction accuracy suffers in many cases. Static branches
can not detect patterns or loop exit conditions on small trip count loops.
Guideline: Use .dptk except on unconditionals where .sptk should be used.

• Multiway Branch Bundles
Perfect branch history is only stored in the FLI BHT for up to two branches per
bundle. BBB templates use an encoded history that is imperfect has several
detrimental effects.
Guideline: Avoid using BBB bundles

• MLIBHT/MLB Oversubscription
Once a branch is evicted from the FLI, we store its branch history in the second
level branch history table (MLB). The MLB has a history capacity of approximately
12k entries. Each entry has enough storage for two branches per bundle pair or one
BBB per bundle pair.
Guideline: For branching bundle pairs whose prediction requires local branch
history for prediction accuracy, try to keep branch density down to at most two
branches per bundle pair.
Guideline: If a particular branch is unconditional or only expected to be seen once
in > ~12k-24k branches, use the .clr hint to free up MLB resources. The MLB
aliases when there are capacity issues.

• Short vs Long IP-relative target prediction

Guideline: Use brl if IP-rel target calculation will be mispredicted using a short IP-
rel branch.

• Non-return indirect branches
While trigger prediction accuracy is typically very high, target prediction accuracy is
very low. The FE reads the branch register file when the branch is in the FDC
pipestage. This requires a large distance in cycles between a mov-to-br and non-
return indirect branch. Backend pipeline dispersal stalls and replays can cause the
required distance to be increase. It is important to note that this distance is greater
on the processor than for prior Itanium processors.
Guideline: Avoid non-return indirect branches by converting most common targets
to IP-rel. In addition, scatter branch register usage across all 8 branch registers.
This may increase the probability of a branch register already having the correct
target.

Table 2-24. Short versus Long IP-relative Penalties and Target Accuracy

Resteer Penalty Target Accuracy

Short IP-relative 0-1 cycles 21b immediate offset, only VA[40:4]
are predicted. If IP+offset_21b causes
a carry out past VA[40], this branch
will always mispredict

Long IP-relative 3 cycles Perfect target prediction

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 47
Reference Manual for Software Development and Optimization Guide

2.3.2.9 Branch Prediction - Zero-Bubble Buffer

On prior Intel Itanium processors, short IP-relative resteers occurred without incurring
any penalty cycles. That is, taken IP-relative branches were able to resteer the
instruction pointer through a 0-bubble resteer mechanism. The branch target buffer
(BTB) for these IP-relative branches on the processor now takes an additional cycle to
access. Therefore, short IP-relative resteers now occur with a 1-cycle penalty.

This additional bubble during an IP-relative resteer becomes material during tight loop
execution with high trip counts where the backend is not encountering any long latency
events. For this reason, a smaller faster BTB was added on the processor. The Zero-
Bubble Buffer (ZBB) is a small 4-entry BTB that caches the target for specific IP-
relative branches. The insertion, replacement, and invalidation of branches into the
ZBB is controlled explicitly by the hardware.

For a branch to be inserted into the ZBB, the branch needs to be:

• Short IP-relative

• Predicted ’taken’ for the current instruction fet

• Have a history of ’taken’ for the last 4 iterations

This last condition is accelerated for branches that are fetched into the FLI with either a
.sptk or .dptk completer.

When a new branch meets the criteria for insertion into the ZBB, the replacement
algorithm first looks for an invalid entry. If all ZBB entries are allocated, then an LRU is
used. The LRU is updated on ZBB hits and ZBB invalidates.

A branch is invalidated from the ZBB when it is mispredicted 'taken' by the ZBB. In
addition, capacity issues naturally cause branch replacement.

2.3.3 Register Fetch
The Register Fetch section of the core supports the register renaming and register
stack features of the Itanium architecture.

The Register Renaming (RNM) unit translates virtual integer, floating-point and
predicate register identifiers into physical register identifiers. On the processor, register
renaming is performed in the Front End (FE) of the pipeline on the 32-byte aligned
bundle pair delivered by instruction fetch. The renamed register identifiers are stored in
the Instruction Buffer Queues for direct dispersal to the register files and the execution
pipelines in the BE. A few corner cases are introduced due to register renaming being
performed on the fetched bundle pair in the FE as opposed to being performed in the
BE after instruction dispersal on “pre” Intel Itanium processor 9500 series Differences
processors:

• Multiple alloc instructions in bundle pair - since an alloc does not change BOF, it
does not affect renaming in the current cycle. The last alloc in program order will
simply update CFM.

• Multiple cover, clrrrb instructions in bundle pair - A cover or clrrrb in the even-
addressed bundle will cause instruction fetch to invalidate the odd-addressed
bundle in the bundle pair and present it to RNM again in the next cycle.

• Multiple bsw instructions in bundle pair - At most 2 bsw instructions can be present
in a bundle pair. The RNM unit tracks the state of PSR.bn on a per bundle basis and
thus accounts for this corner case.

The Intel Itanium Processor 9500 series Core

48 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• Multiple branch instructions in bundle pair - Instruction fetch can only mark 1
branch instruction as a predicted taken branch in a bundle pair. If the predicted
taken branch is in the even-addressed bundle, the odd-addressed bundle is
invalidated and the instructions at the predicted taken target are delivered in
subsequent cycles.

The Register Stack Engine (RSE) manages the stacked register set and is responsible
for spilling and filling registers using RSE st and ld operations. The processor RSE, just
like all previous Intel Itanium processors, only operates in the Lazy Mode (AR.RSC=0),
that is, every memory reference issued by the RSE is deemed "mandatory" and needed
for program progress. The processor core does add an extra 32 general registers to
increase the number of stacked registers to 128 from 96 on the processor. This should
be completely invisible to software, in general, and lead to fewer pipeline stall cycles to
accomplish the injection of RSE spill and fill operations. The pipeline penalties
attributable to RSE operations are accounted by the CYC_BE_IBD_STALL.RSE_* PMU
events.

In order to reduce the data access penalties associated with RSE spill and fill
operations, the hardware data prefetcher on the processor does support data
prefetching initiated by various RSE operations. For further details, related to RSE-
based data prefetching, please refer to the Data Prefetching section.

2.3.4 Data Fetch
For examples, refer to Appendix C, “‘Data Fetch Software Optimization Opportunities
and Examples”.

The processor has a three level cache hierarchy. All cache levels are on chip. Data and
instructions are stored in separate caches at the first- and mid-level and in the same
cache at the last level. The caches that store data are called First Level Data (FLD)
cache, Mid Level Data (MLD) cache, and Last Level Cache (LLC). Unless stated
otherwise, all data cache hierarchy resources are dynamically shared by different
threads. The Last Level Cache (LLC) is also shared by all the cores on a die.

The processor includes both per-core caches and per-socket cache that is shared across
all the cores on the socket. The processor, like previous Itanium processors, has a
three-level cache hierarchy. The first two levels include separate I and D in each core.
The last-level cache (LLC) is inclusive of all of the cores caches. Some high-level details
of the cache hierarchy are shown in the table below.

Table 2-25. Core Cache Hierarchy Summary

Cache Data Type
Supported

WriteThrough
/ WriteBack Size Line

Size Ways Index Queueing Latency

FLD Integer WT 16K 64B 4 VA[11:6] 8 fills 1

FLI Instruction NA 16k 64B 4 VA[11:6] 1 Dmnd +
7 Prefetch

1

MLD Integer, FP WB 256K 64B 8 PA[14:7] 16 Ozq/16
Fills

8

MLI Instruction NA 512K 128B 8 PA[15:7] 8 requests 9

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 49
Reference Manual for Software Development and Optimization Guide

b FLD writes are speculative on the processor. See FLD section for more details..
c Minimum MLD hit latency is up from 5 on previous Intel Itanium processors, but average MLD hit latency is probably similar to

previous Intel Itanium processors.
d There are some conflicts among stores but between loads and stores as on previous Intel Itanium processors. See FLD section for

more details.
e These aren’t true ports but actually banks instead. Bank conflicts can occur as in previous Intel Itanium processors. See MLD

section for details.
f These aren’t true ports but are slices instead. (Slices and banks are pretty similar, but in the LLC they are called slices.) Slice

conflicts and many other types of conflicts can occur on the Ring.
g Because of the intricacies of MLD queueing, sometimes MLD will be non-blocking to some hits even with more this number of

primary misses unresolved. However, at most the specified number can be simultaneously outstanding to the higher level
caches.

h There are some conflicts between fills and stores, but less so that previous Intel Itanium processors. See FLD section for more
details.

Table 2-26. Data Cache Characteristics

FLD MLD LLC

size 16 KB 256 KB up to 32 MB shared

latency 1 cycle reads, 2 cycle writesb 8,9 cycles minimum read latency
for int / fp loads respectivelyc

~50 cycles nominally

line size 64 bytes 128 byte sectored tags, 64 byte
data

64 bytes

associativity 4-way 8-way 32 ways

number of ports 2 read/writed 2 read/writee 8 read/writef

replacement
algorithm

NRU NRU NRU

max # primary
misses outstanding

16 fill requests; otherwise
unlimited by FLD

at least 16 independent and 16
buddiesg

12 misses / writebacks per slice

max # secondary
misses outstanding

unlimited by FLD 16 independent and 16 more to
the same 64 byte lines as first 16

LLC doesn’t see secondary
misses from a single core; cross-
core secondary misses have
complex queuing behaviors

write policy write through; no write allocate write back; write allocate write back; write allocate

store data
buffering

n/a 32 16-byte entries 12 misses / writebacks per slice

fill bandwidth 64 bytes (1 line) per cycleh 128 bytes (1 line and buddy)
every 5 cycles

dependent on system and
memory configuration (LLC isn’t
limiter)

alignment all alignments of 1, 2, 4, and 8
byte accesses that do not cross an
8 byte boundary are supported

generally operations must not
cross 16 byte boundaries and
semaphore operations must be
naturally aligned; see MLD section
for more detail.

n/a

address ordering
granularity

overlap in VA[11:0] overlap in VA[7:4] entire cache lines

Table 2-27. Data Cache Differences from Previous Intel Itanium Processors

FLD MLD LLC

Size Unchanged Unchanged Less (4) MB per core than some
previous processors but cache is
shared among all cores on die

Latency 2 cycle (speculative) wr latency is
down from 4 (non-speculative)
previously

Minimum latency is up from 5,6
cycles previously; typical latency
is close to unchanged

Latency is more than double
previous Intel Itanium processor

Line Size Unchanged Down from 128 byte lines
previously to 64- byte lines with
buddy line prefetch

64B down from 128B

Associativity Unchanged Unchanged up from 12 ways

The Intel Itanium Processor 9500 series Core

50 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Each data access operation comes into the one of the main pipeline M-pipes from the
instruction buffer, the data prefetch queue, or the register stack engine. Operations
that continue on to the MLD exit the main pipeline and are inserted in the MLD OZQ.
The MLD OZQ is a decoupling buffer between the main pipeline back-end and the MLD
pipeline similar to the instruction buffer between the main pipeline front-end and back-
end. Data access operations enter the MLD pipeline from the MLD OZQ (or bypass), the
MLD SMQ, or the MLD FAB. Operations that MLD cannot service by itself are inserted
into the MLD FAB and continue on to the LLC via the Ring Interface Layer (RIL) and the
Ring that connects the multiple LLC cache slices. Operations that the LLC cannot
service by itself continue on to socket local memory or over Intel QPI to off socket
memory as appropriate.

Data returning from memory returns over the Ring to both the appropriate LLC slice
and the requesting core. For loads returning from the Ring, as critical chunk arrives, it
is forwarded to integer or floating point register file as appropriate. The register files
have separate ports for register returns, so register return operations to NOT interrupt
the main pipeline as they did in previous processors. Operations that fill the FLD
forward a whole cache line of data to the FLD. The FLD has a (somewhat) separate fill
port, so FLD fill operations do not typically interrupt the main pipeline. Operations
returning to the MLD from the Ring must typically be issued down the MLD pipeline
again whether or not they fill the MLD.

2.3.4.1 Data Prefetching

The processor has support for a variety of new kinds of hardware and software initiated
data prefetching.

2.3.4.1.1 Data Prefetch Queue (DPFQ)

The DPFQ is a queue that hold data prefetches that are waiting to issue on a main
pipeline M-port. All data prefetches, except for single count lfetches issued on an M-
port and MLD buddy line prefetches, go through this queue. The DPFQ has 8 entries per
thread and holds all the information needed to execute a data prefetch. The DPFQ is a
FIFO, and when a prefetch is written into a full DPFQ, the oldest entry is dropped. A

number of ports down from 4 ports (2R, 2W); fill
port is better on the processor

down from 4 ports still a ratio of 1 port per core, but
all 8 ports are accessible by all
cores

replacment
algorithm

unchanged unchanged unchanged

max # primary
misses outstanding

up from 8 previously unchanged fewer misses per core, but all
queueing available to all cores

max # secondary
misses outstanding

unchanged # unchanged, but different
implementation might be
detectable

n/a

write policy unchanged unchanged unchanged

store data
buffering

none needed on the processor due
to lower speculative write
latencies

up from 24 entries less writeback buffering per core
but total writeback buffering is
available to all cores

fill bandwidth up from 32 bytes / cycle unchanged system dependent

alignment unchanged unchanged n/a

address ordering
granularity

improved from overlap in
VA[11:2]

less granular unchanged

Table 2-27. Data Cache Differences from Previous Intel Itanium Processors

FLD MLD LLC

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 51
Reference Manual for Software Development and Optimization Guide

variety of mechanisms are employed to avoid dropping software initiated prefetches
and to intentionally drop old or bandwidth limited hardware initiated prefetches. See
the following sections on software and hardware data prefetching for more details.

2.3.4.1.2 Software Initiated Data Prefetching

Lfetches are instructions that allow software to initiate a data prefetch. In previous
processors, all lfetches were executed in the main pipeline in much the same way a
load instruction would be. On the processor, lfetches make use of the DPFQ in the
following cases:

• lfetch-on-A
Previous Intel Itanium processors had 4 memory ports in the main pipeline. The
processor has only 2. Thus, the available M-op issue bandwidth per cycle has
decreased relative to previous processors. This decrease in M-op issue bandwidth
makes it more costly for software to issue lfetches. In an attempt to offset this
increase in cost and to encourage software to issue as many useful lfetches as it
can, regular lfetches (those without .excl, .fault, or .count suffixes) will be allowed
to issue on the A ports in addition to the M ports.
One of the functions of the DPFQ is to temporarily hold lfetches from an A-port
after they look up their virtual addresses (VAs). Lfetches in the DPFQ wait and
issue in order to an M-port, on a cycle that it is not being used. Thus, the DPFQ is
essentially providing out-of-order execution of lfetches and allowing these lfetches
to access M-port bandwidth that is available dynamically (due to various pipeline
replays, flushes, and issue stalls) but not previously available statically to software.
To handle situations where the M-ports are completely utilized, the DPF can be
configured to force an lfetch into the pipeline via preemption, if that lfetch has been
waiting to issue for more than a certain number of cycles. The PMU event
DPFQ_ENQ.LFETCH counts when lfetches from an A-port are inserted into the
DPFQ.

• lfetch.count
The DPFQ also supports a new counted variety of lfetch, named lfetch.count. A
single lfetch.count instruction can represent up to 32 individual prefetches, and can
specify various forward and backward strides between fetches. An lfetch.count
occupies one entry in the DPFQ, and is expanded into multiple fetches as it is read
out of the queue and sent into an M-port. The PMU event
DPFQ_ENQ.LFETCH_COUNT counts when counted lfetches are inserted into the
DPFQ.

• DTB missing lfetch
In previous designs a static choice could be made that allowed lfetches that missed
the DTB to either be immediately dropped or to stall the main pipeline waiting for
the resulting hardware page walk (HPW) to complete. Each of these choices is not
optimal sometimes. If the lfetches are really needed, dropping all of them that
target a page lacking a translation in the DTB is not a good choice. If the lfetches
are not needed (e.g. prefetching off the end of a loop), then repeatedly stalling
(possibly repeatedly) the pipeline to do a useless HPW is not a good choice. The
DPFQ allows the pipeline to continue executing after an lfetch encounters a DTB
miss without dropping lfetches. Instead, lfetches missing the DTB are placed in the
DPFQ, where they wait until a (non-blocking) HPW is completed and then issue to
the M-ports. The PMU event FLD_HWPREF_INS.DTBMISS counts when these
operations are inserted into the DPFQ.

The Intel Itanium Processor 9500 series Core

52 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.3.4.1.3 Hardware Initiated Data Prefetching

Software initiated prefetches are data prefetches that are initiated by lfetch
instructions. Hardware initiated prefetches are prefetches that are initiated by the
hardware in response to something other than an lfetch instruction. Both software and
hardware prefetching (except MLD buddy prefetching) make use of the DPFQ. The DPF
block provides for several varieties of hardware initiated prefetching:

• FLD sequential (neighbor line) prefetching
The goal of FLD sequential prefetching is to use a simple algorithm to take
advantage of spatial locality in the FLD. The simple algorithm is as follows:

— If an FLD load (FLDLD) misses the FLD and hits in the FLDTLB, insert a prefetch
in the DPFQ that will prefetch N lines in the forward direction and M lines in the
backward direction. The PMU event DPFQ_ENQ.FLD_BIDI counts these DPFQ
insertions.

— When the Nth line of a forward FLD sequential prefetch fills the FLD, mark that
cache line FWD. When the Mth line of a backward FLD sequential prefetch fills
the FLD, mark that cache line BWD.

— When an FLDLD hits in the FLD on a line marked FWD, insert a prefetch in the
DPFQ that will prefetch N more lines in the forward direction. When an FLDLD
hits in the FLD on a line marked BWD, insert a prefetch in the DPFQ that will
prefetch M more lines in the backward direction. The PMU events
DPFQ_ENQ.FLD_FWD and DPFQ_ENQ.FLD_BWD count these DPFQ insertions.

The parameters N and M will be fixed, but have not yet been determined.

• .rel op transform to prefetch
A prefetch is inserted in the DPFQ when store with release semantics is observed in
the main pipeline. This generated prefetch is not required to observe the release
semantics and thus may be able to fetch the relevant cache line sooner than the
original fetch. The prefetch is dropped if it hits in MLD. The PMU event
FLD_HWPREF_INS.REL_OP) that counts these DPFQ insertions.

• .acq op prefetching
When a data fetch instruction with acquire semantics is outstanding (observed by
DPFQ in main pipe, but not yet globally visible), any MLD destined load instructions
observed by the DPFQ will cause a data prefetch operation to inserted in the DPFQ.
These data prefetches, if they reach the MLD OZQ while the instruction with acquire
semantics is still outstanding, will be allowed to issue out of the OZQ while the
instruction with acquire semantics is outstanding. The PMU event
FLD_HWPREF_INS.ACQ_PEND counts these DPFQ insertions.

• FLD store alias replay case prefetching
In the case where the instruction on M1 is WB2 replayed due to a possible store
alias with the instruction on M0 (see FLD WB2 replay section), a prefetch of the line
targeted by the store in M1 is inserted in the DPFQ. This is done because this WB2
replay is not exact, and moving the translation for the store into the FLDTLB will
resolve the potential store alias in a way that will remove unneeded WB2 replays.
The PMU event FLD_HWPREF_INS.STORE_ALIAS counts these DPFQ insertions.

• RSE prefetching
Various types of RSE activity can trigger hardware prefetching, with the goal of
prefetching lines that the RSE will soon need. The last of a sequence (or “episode”)
of RSE fills will trigger prefetching backwards from the final load address. The last
of a sequence/episode of RSE spills will trigger prefetching forwards from the final
store address. A mov to ar.bspstore will begin prefetching backwards from the new
bspstore address, with the expectation that new RSE fills are likely to follow soon.
The number of lines prefetched (or whether no prefetching is done at all) is
individually configurable for each of these three cases. There are PMU events

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 53
Reference Manual for Software Development and Optimization Guide

(DPFQ_ENQ.MOV_BSPST, DPFQ_ENQ.RSE_ANY, DPFQ_ENQ.RSE_LOAD, and
DPFQ_ENQ.RSE_STORE) that count these DPFQ insertions.

• MLD sequential prefetching
All demand data fetches that miss the MLD are tracked, and can trigger hardware
prefetching if sequential behavior is detected. The MLD prefetcher can track
accesses to 8 different 4 kB pages (per thread). Two accesses within the same
address window on one of these pages indicate a possible sequential access
pattern, and prefetch the next line in the appropriate direction. Further accesses
that fall within the address window of the previous access indicate increasingly
higher confidence of a sequential access pattern, and increase the number of lines
that are prefetched ahead of the last access. An access to a page that falls outside
the address window of the previous access indicates reduced confidence of a
sequential access pattern, and decreases the number of lines that will be
prefetched. The window size for determining sequential accesses, and the
maximum number of lines that may be prefetched (or whether no prefetching is
done at all), are both configurable. There is a PMU event (currently called
DPFQ_ENQ.MLD) that counts these DPFQ insertions.

• MLD buddy prefetching
Unless hinted otherwise (via PF_NONE), an operation that misses MLD typically
triggers a prefetch of the other half of its aligned 128B chunk, in addition to the
fetch of its 64B line. (PMU event: MLD_FILL_MESI_STATE_BUDDY.ANY)

2.3.4.1.4 DPFQ Data Fetch Retry

There are several cases where the DPFQ is used to retry a data fetch that would have
been dropped or would have significantly delayed the main pipeline:

• MLD OZQ full DPFQ retry
When a data fetch (either hardware or software prefetch) that was issued into the
main pipe by the DPFQ is rejected by the MLD OZQ because no entries are available
to hold the data fetch (looks like an lfetch to MLD), that data fetch is re-inserted
into the DPFQ behind the other data fetches already in the DPFQ. The PMU events
FLD_HWPREF_INS.OZQ_FULL and FLD_HWPREF_INS.OZQ_FULL_LFETCH counts
these DPFQ insertions.

• FLD fill request retry
FLD fill requests associated with a data fetch are dropped in several scenarios
including the following:

— data fetch misses the FLDTLB (but goes out to MLD, and possibly triggers a
DTB-to-FLD transfer)

— a store targeting the requested line reaches the DET stage of the pipeline
before the outstanding FLD fill request has filled the FLD

In these cases, a prefetch requesting an FLD fill is inserted in the DPFQ in place of
the dropped FLD fill for the original data fetch. The prefetch is hinted to be dropped
if it misses the MLD. Three PMU events (FLD_HWPREF_INS.FLDTLBMISS,
FLD_HWPREF_INS.FLDTLBMISS_LFETCH, and FLD_HWPREF_INS.CNCLDFILL)
count these DPFQ insertions.

2.3.4.1.5 Managing DPFQ Oversubscription

If prefetches are being inserted into the DPFQ at a higher rate than they are leaving the
queue and entering the pipeline, then the DPFQ can fill up and overflow. When the
DPFQ overflows, the older prefetches are dropped to make way for the newer
prefetches. Dropping software initiated prefetches is typically highly undesirable from a
performance perspective. Therefore, the DPFQ has several mechanisms to help it avoid
dropping software initiated prefetches. It can drop hardware initiated prefetches. It can

The Intel Itanium Processor 9500 series Core

54 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

force open slots on the M-pipes. It can continually replay the main pipeline. To facilitate
the usage of these mechanisms, the DPFQ keeps track of how old the entry at the head
of the queue is, how full it is, and how many software initiated prefetches it contains.

When the prefetch at the head of the DPFQ gets too old or the queue gets too full of
software initiated prefetches, if that prefetch is a hardware initiated prefetch, it is
dropped. If that prefetch is a software initiated prefetch and it is ready to be issued
(not waiting on the DTB or HPW), then it holds off instruction issue on the M-ports for a
cycle so it can be issued.

When the DPFQ gets full enough of software initiated prefetches that it is in danger of
dropping some and it is unable to issue any prefetches because it is waiting on
something (for example, DTB->FLDTLB transfer, HPW completion, available OZQ
entry), it will start continuously WB2 replaying the main pipeline until this condition
clears. (PMU event: BE_CYC_WB2_REPLAY.DAHR_HZRD)

When an lfetch instruction is hinted PFD_ANY (see Data Access Hints section) and it
enters the DPFQ (for example, due to being issued on an A-port or being a counted
lfetch), it will be treated as if it were a hardware initiated prefetch for the purpose of
managing DPFQ oversubscription. The purpose of this capability is to provide software
with a very low cost prefetch instruction.

2.3.4.1.6 Dropping Data Prefetches

The following are the events that cause data prefetches to be dropped:

• DPFQ Overflow
When an prefetch is inserted in a full DPFQ, the oldest DPFQ entry is dropped. The
PMU event DPFQ_ENQ_OVERFLOW.ANY counts these events.

• DPFQ Stale or Filling Up with Software Initiated Prefetches
When hardware initiated prefetches have been in the DPFQ for too long or are at
the head of the DPFQ and the queue is filling up with software initiated prefetches,
they may be dropped. The PMU event DPFQ_DEQ_PREEMPT.TIMEOUT counts these
events.

• FLD Hit
Prefetches are dropped when they hit in the FLD. The PMU event
PREF_DROP.FLD_HIT counts these events.

• Secondary FLD Miss or FLD FAB Full
A prefetch whose only goal is to fill the FLD (hinted (PFD_TLB_MLD or PFD_ANY)
and not FLD_NO_ALLOCATE) is dropped when it looks in the FLDFAB sees that it is
full or sees there is an outstanding FLD fill request to the same line. The PMU event
PREF_DROP.FLD_SECONDARY_MISS counts these events.

• FLDTLB Miss
Prefetches hinted PFD_ANY are dropped when they miss the FLDTLB. The PMU
event PREF_DROP.FLDTLB_MISS counts these events.

• DTB Miss
Prefetches hinted PF_DROP!=PFD_NORMAL are dropped when they miss the DTB.
Virtually addressed data prefetches, other than lfetch.fault, that have any issue
that would cause an lfetch.fault to take an address related fault will be dropped.
The PMU event PREF_DROP.DTB_MISS counts these events.

• MLD Hit
Prefetches that don’t request an FLD fill are dropped when they hit the MLD. The
PMU events (MLD_REF.HIT + MLD_SMQ_REF.HIT) with a dataref filter of LFETCH
and/or HWPF counts these events.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 55
Reference Manual for Software Development and Optimization Guide

• MLD Miss
Prefetches hinted PFD_TLB_MLD or PFD_ANY are dropped when they miss the MLD.
The PMU event MLD_HINT_PREF_DROP counts these events.

• Secondary MLD Miss
Prefetches that are secondary MLD misses are dropped. The PMU events
(MLD_REF.SECONDARY_DROP + MLD_SMQ_REF.SECONDARY_DROP) count these
events.

• FLD Fill Cancel
The FLD fill portion of a data prefetch can be cancelled by anything that can cancel
an FLD fill (see FLD fill section), even though that prefetch may still fill MLD and/or
LLC. The PMU event FLD_FILL_CANCEL.ANY with a dataref filter of LFETCH and/or
HWPF) that counts these events.

2.3.4.2 Data Cache

2.3.4.2.1 FLD

The First Level Data cache (FLD) is a 16 KB, 4-way set associative, single cycle, two-
port data cache. It handles integer loads and stores and has a line size of 64B. As with
previous Intel Itanium processors, floating point loads and stores and handled by the
MLD.

• Pipelines
In previous Intel Itanium processors, the FLD (called L1D), the FLDTLB, and the
DTB were on a pipeline that was distinct from the main pipeline. It could
recirculate, and might not always be in step with the main pipeline. On the
processor, the FLD, FLDTLB, and DTB are all directly part of the main pipeline. On
previous Intel Itanium processors, the main pipeline could stall. On the processor,
the main pipeline cannot stall. Instead, hazards are handled with replays. In
particular, FLD hazards are handled with DET and WB2 replays. Also, on previous
Intel Itanium processors, some MLD (called L2D) related operations, including
recirculates and returns to register files, had to go through the FLD (called L1D)
pipeline. On the processor, once operations are sent to the MLD, they never have to
go back through the FLD (that is, main) pipeline.

• Pre-validation (with respect to the FLDTLB) and Multi-threading
As with previous processors, the FLD cache is pre-validated with respect to the
FLDTLB. This means that every entry is associated with one and only one entry in
the FLDTLB. Since entries in the FLDTLB are associated with only one thread, FLD
cache lines are also associated with only one thread. (See FLDTLB section for a
discussion of two threads accessing the same physical address and virtual aliasing
in general.) If the FLDTLB entry that an FLD cache line is associated with is
overwritten or become invalid, the corresponding lines in the FLD are no longer
accessible.

• FLD Operations and Operation Types
The next two tables define some FLD operations and types of operations that will be
used in descriptions and figures that follow.

Table 2-28. Some FLD Asynchronous Operations (Sheet 1 of 2)

Name Description Injection Stage

a_snp Snoop (not snoop to shared) IBD

The Intel Itanium Processor 9500 series Core

56 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• FLD Hit: FLDLD
The result of FLDLD that hits in the FLD is available to most uses the cycle following
the load. An FLDLD result is not available to be used as an address until 2 cycles
after the load. Any use of the FLDLD result as an address within a cycle of the
FLDLD (independent of predicates) will result in a single cycle IBL issue stall (PMU
event: CYC_BE_IBD_STALL.MTOM).

• FLD Hit: FLDWR
The FLD implements no allocate on write and write-through policies. In other
words, writes do not trigger FLD fills, and all writes are forwarded to the MLD.
Writes to the FLD are somewhat speculative on the processor allowing a lower FLD
write to read latency than on previous Intel Itanium processors. The result of an
FLDWR that hits in the FLD is available to an FLDLD 2 cycles after the FLDWR. An
FLDLD that follows an FLDWR in the same cycle or 1 cycle later with an overlapping
virtual address (VA[63:12] ignored but truly overlapping with respect to VA[11:0])
will be DET replayed (PMU event: CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE).
Previous Intel Itanium processors had greater penalties, in general, for FLDLD after
FLDWR hazards as shown in Table 2-30.

The processor FLD does not have a store buffer. Instead, hitting FLDSTs write the
FLD speculatively (DET stage). If they do not retire (WB2 stage) the speculatively
updated cache lines must be invalidated. WB2 replays, faults/traps/interrupts, and
branch target mispredictions can cause FLDSTs that hit in the FLD to not retire. Any
FLD invalidates due to flushed stores will typically occur in the empty cycles
following a replay or flush. However, snoops conflict with FLD flushed store
invalidate operations, so snoops already in the pipeline could delay the FLD flushed

a_snps Snoop to shared IBD

a_dpf data prefetch REG/IBD

a_flshd_stinv Invalidation of an FLD cache line that was updated by a
non-committing store

DEC/REG/
EXE;IBD

Table 2-29. FLD Operation Type Definitions

Op Type Instructions async ops

FLDLD integer loads other than ld16 and ldc.acq; RSE loads none

FLDPF lfetch a_dpf

FLDCANFILL FLDLD + FLDPF instructions FLDPF ops

FLDST any integer store other than st16; RSE stores none

FLDINVLDT stf, st16, fc, xchg, cmpxchg, fetchadd a_snp, a_snps, a_flshd_stinv

FLDWR FLDST + FLDINVLDT instructions FLDINVLDT ops

Table 2-28. Some FLD Asynchronous Operations (Sheet 2 of 2)

Name Description Injection Stage

Table 2-30. FLD Hitting FLDLD after FLDWR Hazard Penalties

FLDWR - FLDLD Distance Processor Penalty Previous Intel Itanium Processor
Penalty

0 cycles 5 cycles (VA[11:0] considered) 17 cycles (VA[11:2] considered)

1 cycle 5 cycles (VA[11:0] considered) 3 or 5 cycles (VA[11:2] considered)

2 cycles no penalty 3 cycles (full VA considered)

3 cycles no penalty 1 or 3 cycles (full VA considered)

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 57
Reference Manual for Software Development and Optimization Guide

store invalidate operations. If an FLDLD beats any pending a_flshd_stinv operations
down the pipeline, it will be DET replayed (PMU event:
CYC_BE_DET_REPLAY.FLUSHED_STORE).

— The FLD store ports on processor have been improved relative to previous Intel
Itanium processors. Previously, some stores could conflict with other loads and
stores. On the processor, there are not conflicts between loads and stores.
However, two simultaneous hitting FLDSTs with the same VA[7:5] and different
VA[11:8] conflict. The second store will be DET replayed (PMU event:
CYC_BE_DET_REPLAY.STORE_VS_STORE).

• FLD Misses

— Using the result of an FLDLD that misses the FLD will result in an EXE replay
(PMU event: CYC_BE_EXE_REPLAY.GR_LOAD_RAW) if the load more than one
cycle after the load or a DET replay (PMU event: CYC_
BE_DET_REPLAY.GR_LOAD).

• FLD Fills
Moving a cache line into the FLD is called filling the FLD. Before requesting that the
MLD return a cache line for an FLD fill, the FLD must allocate an entry in the 16
entry FLD Fill Address Buffer (FLDFAB). An operation cannot trigger an FLD fill
request when the FLD FAB is full. The FLDFAB is used to store addressing
information associated with the FLD fill. An FLD fill is requested and an entry
allocated in the FLDFAB when all of the following are true:

— operation type is FLDCANFILL (see Table 2-29)
— operation is a virtual mode operation
— data access hint says allocate in FLD (see section on data access hints)
— operation misses the FLD
— operation hits in the FLDTLB
— there is an entry available in the FLDFAB
— there is no outstanding FLD fill to the same line

An FLDFAB entry is removed when any of the following events occur:

— the operation is an instruction and that instruction fails to retire (MLD drops fill
request)

— the FLD receives an FLD fill operation from MLD
An FLD fill is cancelled prior to or simultaneous with the removal of the FLDFAB
entry when any of the following events occur:

— an FLDWR operation targeting the fill cache line reaches the DET stage (A
hardware initiated prefetch can occur in this case.)

— the FLDTLB entry corresponding to the fill is invalidated
— the MLD requests the FLD fill be dropped due to a prefetch that was hinted to

be dropped on MLD hit or an off thread prefetch that passed a potentially
overlapping (same VA[11:6]) on thread store

— an FLDTLB insert occurs 1 cycle before the time at which the FLD fill was going
to occur

— an FLDINVLDT with the same VA[11:6] reaches DET 1 cycle before the fill
— a snoop is lined up to occur 1 cycle after an FLD fill

On previous Intel Itanium processors, all FLD (called L1D) fills conflicted with all
FLD accesses. On the processor, conflicts between FLD fills and other FLD accesses
in the main pipeline have been reduced to the following two DET replay causing
conflicts:

The Intel Itanium Processor 9500 series Core

58 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

— FLDWR hit vs. FLD fill - A hitting FLDST is replayed if it occurs simultaneously
with a fill with same VA[7:6] and different VA[11:8] due to a structural hazard
in the FLD data array. A hitting FLDWR is replayed if it occurs at the same time
as or one cycle following a fill with the same VA[11:6] so that a write targeting
a line being replaced will not incorrectly write to the line that is replacing it.
(PMU event: CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL)

— FLDWR miss vs. FLD fill - An FLDST that misses the FLD and has the same
VA[13:6] as a fill that occurs at the same time as or one cycle following the
FLDST is DET replayed. An FLDWR that misses the FLD and has the same
VA[13:6] as a fill that occurs one cycle before the FLDWR is DET replayed.
These replays happen because there is not time for the FLDWR to cancel the fill
in the case that the FLDWR and fill are associated with the same VA[63:6].
(PMU event: CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL)

• FLD replacement
The FLD uses a Not Recently Used (NRU) replacement algorithm. In this algorithm,
one bit of state is associated with each line in the cache. Each of these bits can be
in a Recently Used (RU) state or a Not Recently Used (NRU) state.
At the time of an FLD fill, one of the 4 ways in the appropriate set is selected for
replacement in the following manner:

— If all of the ways are marked NRU, the way pointed to by the
FLD_random_way_ptr is chosen and the FLD_random_way_ptr is rotate by one
way. Otherwise, the first way marked NRU is selected.

The replacement state of the FLD is updated in the following manner:

— When an FLDLD hits in the FLD...
• Mark the accessed cache line RU.
• If all the lines in the set are now marked RU, mark them all NRU.

— When a cache line is filled to the FLD...
• If the fill is hinted to be marked NRU, it is.
• Otherwise, mark the filled line RU.
• If all the lines in the set are now marked RU, mark them all NRU.

2.3.4.2.2 MLD

The Mid Level Data Cache (MLD) is a 256 KB, 8-way set associative, 2-ported data
cache. The minimum integer load-use latency is 8 cycles. It handles all memory
reference instructions save integer loads that can be satisfied by the First Level Data
Cache (FLD). In addition to the large caching structure, the MLD also contains the
Ordering Czar Queue (OZQ), which manages all architecturally required ordering
constraints on memory references. The MLD is not guaranteed to be inclusive of the
FLD, but the LLC will be guaranteed to be inclusive of the MLD.

• Pipelines
The MLD implements a 9-stage pipeline that is independent from the main
instruction pipeline. The MLD connects to the main pipeline where it receives
memory operations either directly from the instruction stream or synthesized by
the FLD. The OZQ forms the logical decoupling point between the main pipeline and
the MLD pipeline (in much the same way the the Instruction Buffer forms a
decoupling point between the Front-End and Back-End instruction pipelines). When
the OZQ is empty, memory ops may bypass around the OZQ. In this case, the L1A
stage of the MLD pipeline corresponds with the DET stage of the main pipeline.
When the OZQ is not empty, or an operation is not allowed to bypass (due to
asymmetry or semantic ordering constraints), the OZQ is written at the end of the
DET stage. Memory ops in the OZQ are selected (nominated) in the first, or L1N,
stage of the MLD pipeline.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 59
Reference Manual for Software Development and Optimization Guide

Unlike prior processors, the MLD tag and data arrays are part of the same
monolithic pipeline and logically occur after the OZQ. In addition, the MLD pipeline
is a stall-based pipeline, not a replay-based pipeline. Once an op is issued into the
MLD pipeline from the OZQ it is guaranteed to complete. The MLD pipeline stalls to
reconcile structural and RAW hazards. The OZQ nomination mechanism handles
semantic and address ordering constraints (and makes an attempt to prevent some
structural hazards).
Like prior processors, the MLD data is pseudo-ported via banking. The data array is
broken up into 16 banks. A given data value is mapped to a specific bank by
address bits 7:4. Each bank is single-ported. If multiple operations need to read or
write the same bank on the same cycle, a structural hazard occurs, see below. The
banks are organized in such a way that a 64 B FLD fill operation, essentially a 64 B
transfer from MLD to FLD, can complete in a single cycle. By the same token, a
64 B MLD fill operation (on an MLD miss) also completes in a single cycle. The MLD
tag array has 2 true ports, supporting two independent reads or one write (for fills)
per cycle. All structural hazards, therefore, are a consequence of the data array
design.

• Hazards
There are two types of hazards the MLD pipeline resolves: structural and RAW.
There are several sub-types of structural hazards: RR bank, WW bank, RW bank,
Fill-store, and fill port.

— RR bank hazards occur when two memory ops flow down the MLD pipeline
together that need to read the same bank (determined by address bits 7:4),
but not the same full address. In this case, the MLD pipeline will stall for one
cycle. Ops issued from the OZQ will never have a RR bank hazard and thus this
hazard will only occur on bypassed ops.

— WW bank hazards occur when two memory ops flow down the MLD pipeline
together than need to write the same bank (address bits 7:4), but not the
same full address. Again, the MLD pipeline will stall for one cycle. Note that if a
pair of ops have both RR bank and WW bank hazards (that is, Read-Modify-
Write (RMW) stores), only one pipeline stall will occur. Ops issued from the OZQ
will never have a WW bank hazard and thus this hazard will only occur on
bypassed ops.

— RW bank hazards occur when a store that is writing a given bank is followed 4
cycles later by a memory op that is reading the same bank, but not the same
full address. The pipeline will stall for one cycle. Note that the stall may cause a
subsequent RW bank hazard with a following store. Because this is an inter-
stage hazard, ops issued from the OZQ may have a RW bank hazard.

— Fill-store hazards occur when a store is followed 4 cycles later by a fill
operation, independent of address. The pipeline will stall for one cycle (and
may cause a subsequent Fill-store hazard with a following store.)

— Fill port hazards occur when two memory ops flow down the MLD pipeline
together and both ops will perform an FLD fill. The pipeline will stall for one
cycle. Note that if the ops also have a RR bank hazard, only one stall will occur.
The OZQ will attempt to avoid these hazards but they are not completely
prevented when issuing out of the OZQ.

RAW hazards occur when a multi-bank read matches same physical address of an
older store that has not completed. Matching in this case means matching down to
address bit 6. Multi-bank reads are integer loads and prefetches performing an FLD
fill, flushes and snoops. The MLD pipeline will keep the multi-bank read stalled in
the L1M pipeline stage until the store reaches the L1X pipeline stage. An exception
to this occurs when an integer load with FLD fill follows the store and both the load
and store address match down to address bit 4. In this case, there will be no stalls.
Because this is an inter-stage hazard, ops issued from the OZQ may have a RAW
hazard.

The Intel Itanium Processor 9500 series Core

60 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• AR Hazards
There is another form of hazard that is resolved by the OZQ nomination mechanism
rather than the MLD pipeline - those involving the two ARs implemented by the
MLD, namely CCV and CSD. RAW, WAR, and WAW AR hazards are detected
between ops. AR writers are "move to" instructions, ld16 and cmp8xchg16. AR
readers are "move from" instructions, st16, and cmpxchg. These hazards are
resolved by holding off issue into the MLD pipeline until the previously issued
operations that form the hazard are completed (possibly requiring waiting for a
ld16, st16 or cmpxchg miss to complete). This hazard logic is thread aware (since
the ARs are threaded), although there may be superfluous stalls when an AR
reader or writer for the opposite thread is flowing down the MLD pipeline.

• Store-Store and Store-Load Bypassing
Unlike prior processors, a store followed by another store to the same address
suffers no penalty - if even the stores are RWM stores or are closer than 5 cycles. A
RWM store is a 1 or 2 byte store or an unaligned store. Likewise, a load following a
store to the same address will not have a penalty (provided they are either to the
same address down to address bit 4 or the load is not requesting an FLD fill.

• OZQ Full and OZQ Data Buffer Full Replays
The OZQ on the processor is smaller (16 entries) than on previous processors. This
was enabled by two changes: 1) Secondary misses are placed into a separate
structure - the SMQ. 2) The OZQ allocation and nomination mechanism doesn’t use
head and tail pointers but uses age vectors instead. This allows more efficient
usage of it’s entries - there are no "holes" in the OZQ. The OZData Buffer, which
holds data for stores that have not yet completed, has been expanded from prior
processors to 32 entries. However, the OZQ can still be filled completely as can the
OZData Buffer. When the MLD OZQ is full, operations that need to go into the MLD
OZQ are WB2 replayed to an IBL issue stall. When the MLD OZ Data Buffer is full,
operations that need to put data into the MLD OZ Data buffer are WB2 replayed
and then EXE replayed continuously until the MLD OZ Data Queue is no longer full.

• MLD Fill Policies
Unlike prior processors, memory operations that miss the MLD are not required to
fill into the MLD. This behavior can be controlled via Data Access Hints. The MLD
line size was reduced from 128B in prior processors to 64B. This was implemented
without increasing the tag array size by using a "buddy" line scheme (also known
as sectoring). A single MLD tag covers 2 64B data lines. Each of the 64B lines
contains its own, independent MESI state. Generally, on an MLD miss both 64B
lines will be filled into the MLD. The non-critical 64B line (the buddy) is essentially
prefetched by the MLD. Again, this can be controlled via Data Access Hints. The
MLD is 8-way set associative, with the way selected for replacement at the time an
MLD miss is detected. Note that there is no "pending" tag state for the MLD.
Instead, the victim data is not read out until immediately prior to the corresponding
fill.

• MLD Replacement
The MLD uses a Not Recently Used (NRU) replacement algorithm. In this algorithm,
one bit of state is associated with each line in the cache. Each of these bits can be
in a Recently Used (RU) state or a Not Recently Used (NRU) state.
At the time of an MLD fill, one of the 8 ways in the appropriate set is selected for
replacement in the following manner:

— The first way marked NRU that is not pointed at by the
MLD_prohibited_way_ptr is selected. The MLD_prohibited_way_ptr is rotated
by one way each cycle.

The replacement state of the MLD is updated in the following manner:

— When a data access hits in the MLD...

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 61
Reference Manual for Software Development and Optimization Guide

• Mark the accessed cache line RU.
• If all the lines in the set are now marked RU, mark them all NRU except

for the line being accessed.

— When a cache line is filled to the MLD...
• If the fill is hinted to be marked NRU, it is.
• Otherwise, mark the filled line RU.
• If all the lines in the set are now marked RU, mark them all NRU except

for the line being filled.

2.3.4.2.3 LLC

The LLC contains instructions and data and is shared among all 8 processor cores. It is
inclusive of all of the lower level caches in all 8 processor cores. This means that an
eviction from the LLC forces an eviction of the corresponding cache line in every lower
level cache it is resident in. The LLC is arranged in 8 slices around a bi-directional ring
shaped communication channel called the Ring. The entire LLC is a 32 MB, 32-way set
associative cache. Each slice is a 4 MB 32-way subset of the entire LLC. The cache is
indexed via a hash of PA[49:6] in order to better spread accesses around the cache
physically to increase performance. The latency of the LLC is variable depending on
distance between requesting core and responding LLC slice, frequency of the uncore
relative to the core, and bandwith of accesses from all of the cores. However, 50 cycles
would be a reasonable number to use for nominal load-to-use latency for a load hitting
in the LLC. The LLC implements write back and allocate-on-write policies. The LLC can
queue up 12 outstanding LLC misses / writebacks per slice. It implements a NRU
replacement policy.

2.3.5 Instruction Execution
As shown in the unit level block diagram below, the IBL is comprised of several syllable
and bundle wide queues. The queue storage elements and the associated pointers are
duplicated for multi-threading in each queue while the write/read datapath and control
logic are shared between the 2 threads. Two generic queue structures are used to build
each of the queues in IBL. The next two sections describe a generic syllable queue
structure and a generic bundle queue structure. Then the following sections list out the
queue entry formats for each specific queue.

Figure 2-5. IBL Block Diagram

The Intel Itanium Processor 9500 series Core

62 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.3.5.1 Instruction Dispersal

One of the important functions that IBL performs is that of Instruction Dispersal.
Instruction dispersal refers to the process by which up to 2 bundles of instructions
delivered by instruction fetch are issued to the twelve instruction execution pipelines in
the BE. Instruction dispersal on the processor is split into two steps, namely Instruction
Insertion and Instruction Issue. Instruction insertion is the process by which up to six
instructions from the two bundles delivered by instruction fetch are distributed and
inserted into the MQ, IQ, AQ, FQ or BQ each cycle in the FE pipeline. Instruction issue
refers to the process of examining up to four bundles and issuing up to 12 instructions
in the BE pipeline to the respective execution pipelines attached to each of the
aforementioned IBL queues.

Frontend Instruction Insertion

The processor core implements the Template-based Queue Assignment (TQA)
algorithm to accomplish instruction insertion. The TQA algorithm has two primary
inputs which are the architectural bundle template field and instruction subtype
generated from simple instruction decode. The essential idea of TQA is that for each
architectural template, there is a default mapping for steering each instruction slot of
the bundle to a particular queue. This default mapping is motivated by the desire to
evenly distribute instructions across the BE execution pipelines. Since the BE provides
2M, 2I, 2A, 2F and 3B functional units, the TQA algorithm attempts to use 1 of each
functional unit type for a given bundle. Furthermore, the algorithm assumes that within
each instruction group and bundle, the more restrictive instruction subtype is earlier in
the bundle slots. This assumption allows TQA to bias the second slot of the same type
in a bundle to the AQ and thus achieve even distribution. The primary benefits of TQA
are:

• predictable hardware dispersal behavior and software control since it is based on
architectural templates

• independent of instruction address alignment and fetch patterns

As mentioned above, TQA requires instruction subtype generation. Simple instruction
decode is performed in the FE pipeline in the FDC stage to classify each instruction slot
of a bundle into 1 of 7 instruction subtypes. The 7 instruction subtypes are enumerated
in the table below. For each instruction subtype, the table shows the bundle slot from
which the instruction can originate, the legal queue assignment and a brief description
of the instructions in that subtype. Legal queue assignment implies that a particular
subtype must be inserted into a particular queue because instruction execution is only
supported on the functional units attached to that queue.

Table 2-31. Instruction Subtypes for Dispersal

Subtype Bundle
Slot

Legal Queue
Assignment Description

M01 M-slot MQ M-format instructions except for chk.s, nop and some lfetch

MA M-slot MQ, AQ A1-8 instructions and some M-format such as chk.s.m, nop.m, lfetch

IA M-slot AQ A9-10 instructions

I-slot IQ, AQ A1-10, chk.s.i instructions

I01 I-slot IQ I-format instructions except for chk.s.i, nop.i

NOP any NQ Any nop instruction

FOP F-slot FQ F-format instructions except for nop.f

BOP B-slot BQ B-format instructions except for nop.b, brp

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 63
Reference Manual for Software Development and Optimization Guide

Given the architectural template and the instruction subtype information described
above, a queue mapping table can be derived for queue assignment as per the TQA
algorithm. In the queue mapping table shown below, each row of the table corresponds
to a unique template type in the Itanium architecture. For convenience, the MLX
template is shown in 2 rows (MLI and MLB) to explicitly indicate behavior when the X-
slot is an I-unit or a B-unit instruction. The leftmost column in the table specifies the
architectural template (in uppercase letters). The next six columns specify the rules of
the TQA algorithm that are applied when a particular template is presented and
combined with instruction subtype information. Further details on the rules column are:

• 2M/2I - applies when instruction subtype forces the queue assignment to 2 MQ or 2
IQ entries. Any given bundle can be labeled as a "2M", "2I" or neither. For example,
in a MMI template, if the first 2 slots are M01 subtypes, then this bundle would be
labeled as a 2M bundle.

• 2M Prev or 2I Prev - This denotes whether there were two MQ or two IQ
assignments in the previous bundle. This is a simple history mechanism used to
adjust queue assignments for the current bundle based on information from the
previous bundle. The previous bundle information may be from a concurrently
fetched bundle or fetched earlier. This previous bundle history is cleared if the
previous bundle was terminated with a stop bit, or contained a stop bit, or if it was
a branch bundle. There is one other case where the hardware will assert 2M Prev
irrespective of history, and that is when hardware recognizes a 3rd bundle in an
instruction group. This is an optimization to give compilation more scheduling
options to allow more 3-bundle wide instruction groups to achieve 9-wide issue in
the BE. For this purpose, an instruction group is considered terminated if a
template stop bit is reached or a bundle with an actual branch instruction is
reached. Lastly, there is a flaw to take note of. If an MI;;I template is used with an
A9 or A10 format instruction in the M-slot, and a true I01 subtype in slot 1, the HW
can count this as 2I Prev for the next bundle. This only occurs if the MI;;I bundle is
at an even bundle address, and if there is no stop bit at the end of this bundle.

• 2nd M/I - This means that the 2nd M-slot or a 2nd I-slot is a M01 subtype or a I01
subtype respectively. So for MM* templates, if the 2nd M-slot is a M01 subtype, this
bundle would be labeled a "2nd M" template. Likewise for *II templates, if the 2nd
I-slot is a I01 subtype, this bundle would be labeled a "2nd I" template.

• Default - The default mapping is the queue assignment if none of the columns to
the left apply and is set to achieve even distribution of instructions from a bundle
across the BE execution pipelines.

• Fallback - This is the fall-back case and the rule applied if all of the other rules fail
to create a legal queue assignment. As shown in the table, it is needed for only a
couple of templates.

Each cell in the table specifies the queue assignment where the lower-case letters
indicate the appropriate queue, that is, m=MQ, i=IQ, a=AQ, f=FQ and b=BQ. A blank
cell implies that for the given row, that rule column does not apply. The queue mapping
table is applied by starting with a bundle template, choosing an appropriate row of the
table and applying the rules from left to right along the row skipping empty cells as
follows:

• If current bundle is "2M" or a "2I" then use column 2M/2I or else

• If current bundle is ("2nd M/I" and "no mapping conflict") then use column 2nd M/I
or else

• If previous bundle is ("2M" and "no mapping conflict") then use column 2M Prev or
else

The Intel Itanium Processor 9500 series Core

64 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• If previous bundle is ("2I" and "no mapping conflict") then use column 2I Prev or
else

• If "Default" column has ("no mapping conflict") then use Default or else

• Use the Fallback column.

A mapping conflict is when the queue assignment would conflict with the Legal Queue
Assignment as defined in Table 2-31. Nops do not have mapping conflicts, do not count
for 2M or 2I determination, and are not placed in a queue.

Since the processor core IEU does not support execution of A9 and A10 format
instructions on the M-port execution pipelines, these instructions must be dealt with as
a special case in instruction dispersal. Instead of treating A9/A10 instructions in M-slots
as a mapping conflict, it was found to be simpler to devise specific steering rules and
they are presented in the table below. The queue assignments specified below do not
attempt to optimize for performance but instead are designed to simplify hardware
implementation. It is recommended to software that A9-A10 instructions be placed in I-
slots in a bundle for optimal performance. This queue mapping table is read and
interpreted just like the generic one above except that a A9-A10 instruction in an M-
slot is called out as a capitol "A" in the second column from the left.

Table 2-32. Queue Mapping Table

Template 2M/2I 2nd M/I 2M Prev 2I Prev Default Fallback

MII mii mai aia maa mia

MI;I mii aai mai mii

MLI aai mai

MLB abb mbb

MMI mmi ami aai maa mai

M;MI mmi ami mmi

MFI afi mfa mfi

MMF mmf amf aaf maf

MIB aib mab mib

MBB abb mbb

BBB bbb

MMB mmb amb aab mab

MFB afb mfb

Table 2-33. Queue Mapping Table - A9/A10 in an M-slot Special Case (Sheet 1 of 2)

Template 2M/2I 2nd M/I 2M Prev 2I Prev Default Fallback

MII AII aai aii

MI;I AI;I aai aii

MLI ALI aai

MLB ALB abb

MMI AMI ami aai

MAI aai maa mai

AAI aai

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 65
Reference Manual for Software Development and Optimization Guide

While writing instructions into the instruction queues, IBL also puts information into the
control queue (CQ) about each bundle. The CQ entry is defined in ibldspq section
above. For each slot in a bundle the CQ records which queue it went into (called here
its "type") as a one-hot 6-bit field that is divided in two sections, one for Mq, Iq, Aq, or
Fq, and one for Bq or Nq, where the Nq is the pseudo-queue for squashed nops. For
each slot, the CQ entry also records the address or pointer in the corresponding queue
in which the instruction will be stored. These pointers are referred to as the shadow
write pointers, because they are copies of the pointers that live in the respective queue
control blocks. Along with the "where" information, the CQ entry records per slot a stop
bit, a port need for I0 or M0 (the asym bit), and a bit for a need for an IBD stall due to
RSE behavior. For the whole bundle, the CQ entry also records whether it is an MLX
template, and whether the bundle has an instruction-side fault associated with it.

Backend Instruction Issue

The processor instruction issue out of the queues into the backend pipeline, is in
program order, and uses a 4 bundle wide issue window which is populated each cycle
by the 4 oldest not yet issued bundles. In the oldest bundle, one or two instructions
may have issued last cycle, so in each cycle, there is a marker for the starting syllable
which defines the start of the issue window. The 4 bundle wide window can contain up
to 12 instructions to issue, but there is an additional constraint on the 4th bundle of the
window. Only nops and branches will be allowed to issue from this last bundle.
Squashed nops are part of the issue window and issue in program order with the rest of
the instructions.

The basic issue algorithm is to look in the issue window from oldest to youngest and
find the first reason to stop issue. The reasons are termed architectural stop bits,
implicit stops, asymmetric stops, oversubscription stops, and 4th bundle constraint
stops. Implicit stops are placed at the end of each non-trivial branch bundle (containing
a non-brp, non-nop.b, b-type instruction). Asymmetric stops are on the second M or I
type instruction in the issue window if it needs to be on port M0 or I0. Oversubscription
stops are on the third M, I, A, or F type instruction in the issue window, because there
are only two read ports on each of these instruction queues. Constraint stops are
placed on the first non-squashed nop, non-b-type instruction in the 4th bundle.

M;MI A;MI ami aai

M;AI aai maa mai

A;AI aai

MFI AFI afi

MMF AMF amf aaf

MAF aaf maf

AAF aaf

MIB AIB aab aib

MBB ABB abb

BBB BBB bbb

MMB AMB amb aab

MAB aab mab

AAB aab

MFB AFB afb

Table 2-33. Queue Mapping Table - A9/A10 in an M-slot Special Case (Sheet 2 of 2)

Template 2M/2I 2nd M/I 2M Prev 2I Prev Default Fallback

The Intel Itanium Processor 9500 series Core

66 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

All of the instructions from the start syllable to the first stop reason will be allowed to
issue and the corresponding execution units will receive a notice of instruction validity.
Squashed nops will be executed as single bit instructions by the exceptions unit (EPN).
There can be up to 12 squashed nops issued in a cycle. For the next cycle, the
individual instruction queues will advance their read point by how many of their
instructions were issued, and new, un-issued bundles will slide into the issue window
while the just issued ones drop out.

Instruction Dispersal Examples

The figures below show how the TQA algorithm described above works on different
code examples. Figure 2-6 shows how a 2 bundle wide instruction group would get
inserted into the IBQ and issued to the various execution pipelines in the BE. Because
the first bundle is a "2I" bundle, the second chooses the "2I Prev" column rule to
disperse the MMI template, sending slots 1 and 2 to the AQ.

Figure 2-7 shows a 3 bundle wide instruction group and how it might disperse. In this
case, the first 2 bundles follow the "Default" column rules as software has spread out
execution resources evenly. The 3rd bundle is recognized by hardware and labeled as a
"2M Prev" and it steers slot0 or the M-slot instruction to the AQ and thus achieve 9
instruction wide issue in the BE.

Figure 2-6. Dispersal Example 1 - 2-bundle group

Bundles
Presented Template

Instruction
Subtype

Queue
Mapping
Rule

Queue
Assignment

BE
Execution
Pipeline Notes

 {.mii
 ld8 M01 mQ M0
 shl I01 iQ I0
 czx I01 iQ I1
 }

 {.mmi
 st4 M01 mQ M1
 add MA aQ A0
 sub IA aQ A1
 };;

6-wide issue of 2
bundles; 2M, 2I,
2A

MII

MMI

2M/2I

2I Prev

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 67
Reference Manual for Software Development and Optimization Guide

Backend Instruction Issue Implementation

On the output side of the queues, each cycle, the control queue provides the four oldest
bundle entries to the iblvalids block. The iblvalids block controls which instructions are
issued, and tells the other queues when to advance to new entries.

The HW implementation has stop reasons that can come into play in addition to those
described above. There is an issue width control (iwc) used after replays and for power
control (for throttling dispersal) which defines the youngest syllable in the four bundles
that is allowed to issue. There are DAF controls for single issue per instruction queue,
and there is a DAF-like control for the floating point register file step load control.

2.3.5.2 Issue Group Scheduling

For certain read-after-write hazards that are deemed to be performance critical, the
issue logic in IBL will inject bubbles at the IBD stage to avoid these hazards from
occurring in the pipeline. This is referred to as Issue Group Scheduling. Two classes of
such read-after-write hazards are covered by issue group scheduling: 1) FR-FR hazards
or FP register hazards and 2) IntLd-MemAddr hazards, or an integer load instruction
target register being consumed as a memory address register.

The FR-FR hazards were deemed to be performance critical due to the FPU pipeline
latency increase to 6 cycles on Intel Itanium Processor 9500 Series from 4 cycles for
“pre” Intel Itanium Processor 9500 Series. Without issue group scheduling, legacy code
scheduled at 4 cycle separation would have triggered EXE replays resulting in a 4 cycle
penalty for every such hazard.

All FR writers on the F-pipes are fixed latency at 6 cycles, that is, they can bypass a
result in the WB4 or FP6 pipestage to an FR reader in the REG stage. The FR-FR issue
group scheduling logic then needs to ensure that minimum 6 cycle separation between
an FR writer and FR reader. The separation distance is achieved by a combination of
EXE replay and IBD stall. For FR readers separated from FR writers by 1 or 2 cycles, the
issue stall logic can be minimized by first letting an EXE replay occur without any
additional penalty. This is shown in the first 2 pipeline tables below. For FR readers
separated from FR writers by 3, 4 or 5 cycles, the scheduling logic inserts the

Figure 2-7. Dispersal Example 2 - 3-bundle group

Bundles
Presented Template

Instruction
Subtype

Queue
Mapping
Rule

Queue
Assignment

BE
Execution
Pipeline Notes

 {.mmi
 ld8 M01 mQ M0
 xor MA aQ A0
 czx I01 iQ I0
 }

 {.mfi
 st4 M01 mQ M1
 fma FOP fQ F0
 sub IA iQ I1
 }

 {.mfb
 andcm MA aQ A1
 fsub FOP fQ F1
 br BOP bQ B2
 };;

MFB 2M Prev

9-wide issue of 3
bundles; 2M, 2I,
2A, 2F, 1B

MMI Default

MFI Default

The Intel Itanium Processor 9500 series Core

68 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

appropriate number of IBD stall cycles. FR writers on F-pipes are considered to be all
instructions in the class of fp-arith and fp-non-arith as defined in the Intel® Itanium®

Architecture Software Developer’s Manual. FR readers would be fp-arith, fp-non-arith
and pr-writers-fp classes on F-pipes and mem-writers-fp, chk.s and getf on M-pipes.

Table 2-34. Case1 - 1 cycle separation for FR read after write

CYCLE
IB

D

D
E

C

R
EG

EX
E

 (
 F

P
1

)

D
ET

 (
 F

P
2

)

W
R

B
 (

 F
P

3
)

W
B

2
 (

 F
P

4
)

W
B

3
 (

FP
5

)

W
B

4
 (

FP
6

)

W
B

5
 (

FP
7

)

W
B

6
 (

FP
8

)

Notes

101 Rd Wr

102 Rd Wr

103 Rd Wr

104 Rd Wr EXE Replay

105 Rd Wr IBD Stall

106 Rd Wr

107 Rd Wr

108 Rd Wr Bypass from WB4

109 Rd Wr

110 Rd Wr FRF updated

Table 2-35. Case2 - 2 cycle separation for FR read after write

CYCLE

IB
D

D
EC

R
EG

E
X

E
(

FP
1

)

D
E

T
(

FP
2

)

W
R

B
 (

 F
P

3
)

W
B

2
 (

 F
P

4
)

W
B

3
 (

FP
5

)

W
B

4
 (

FP
6

)

W
B

5
 (

FP
7

)

W
B

6
 (

FP
8

)

Notes

101 Rd Wr

102 Rd Wr

103 Rd Wr

104 Rd Wr EXE Replay

105 Rd Wr

106 Rd Wr

107 Rd Wr Bypass from WB4

108 Rd Wr

109 Rd Wr FRF updated

110 Rd

Table 2-36. Case3 - 3 cycle Separation for FR Read After Write (Sheet 1 of 2)

CYCLE

IB
D

D
E

C

R
E

G

EX
E

 (
 F

P
1

)

D
ET

 (
 F

P
2

)

W
R

B
 (

 F
P

3
)

W
B

2
 (

 F
P

4
)

W
B

3
 (

FP
5

)

W
B

4
 (

FP
6

)

W
B

5
 (

FP
7

)

W
B

6
 (

FP
8

)

Notes

101 Rd Wr IBD Stall

102 Rd Wr IBD Stall

103 Rd Wr IBD Stall

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 69
Reference Manual for Software Development and Optimization Guide

2.3.5.3 Long-latency FR Hazards

Floating-point load operations are considered to be long latency operations and also
exhibit variable latency depending on whether they hit in the MLD, LLC or memory. IBL
includes a FR scoreboard to track outstanding updates to the target FR of such
operations. Then, whenever a subsequent operation consumes an invalid FR, an EXE
replay is triggered followed by an IBD stall if necessary to align the returning data for
this FR from the memory hierarchy. A consuming operation in this case can be either a
read or a write of the outstanding FR. Subsequent writers must be serialized in this
fashion to ensure in-order architectural state updates. The IBL FR scoreboard pending
bits are set by mem-readers-fp and setf instruction classes. The consuming operations
include mem-readers-fp, mem-writers-fp, setf, getf on M-pipes and fp-arith, fp-non-
arith and pr-writers-fp instruction classes on F-pipes.

The pipeline table below shows an example of such a hazard. The table shows a FP load
operation (ldf) executing down the main pipeline. The MLDPipe column shows ldf as it
progresses in the MLD pipeline. The MLD drives the return regid in the L1M stage and
drives the data for the return in the L1C pipe stage. The data is then available for
bypass in the L1X pipe stage in the FPU to a consumer operation in the REG stage. The
IBL stall logic uses the return regid from the L1M stage to release the IBD stall just-in-
time to catch the return data from the L1X pipe stage.

104 Rd Wr

105 Rd Wr

106 Rd Wr Bypass from WB4

107 Rd Wr

108 Rd Wr FRF updated

109 Rd

110 Rd

Table 2-36. Case3 - 3 cycle Separation for FR Read After Write (Sheet 2 of 2)

CYCLE

IB
D

D
EC

R
EG

E
X

E
(

FP
1

)

D
E

T
(

FP
2

)

W
R

B
 (

 F
P

3
)

W
B

2
 (

 F
P

4
)

W
B

3
 (

FP
5

)

W
B

4
 (

FP
6

)

W
B

5
 (

FP
7

)

W
B

6
 (

FP
8

)

Notes

Table 2-37. Long-latency FR Hazards (Sheet 1 of 2)

CYCLE

IB
D

D
E

C

R
EG

EX
E

D
E

T

W
R

B

W
B

2

M
LD

 P
ip

e

Notes

101 ldf

102 ldf

103 use ldf

104 use ldf

105 use ldf L1A

106 use ldf L1T EXE Replay

107 use ldf L1H IBD Stall

108 use L1M IBD Stall

109 use L1D IBD Stall

110 use L1C

The Intel Itanium Processor 9500 series Core

70 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.3.5.4 IBL Miscellaneous Replays

IBL is also responsible for satisfying various AR, CR and other serialization pipeline
hazards using the EXE replay mechanism. The following table lists such producer-
consumer hazards that the IBL logic detects and requests an EXE replay on the
appropriate execution pipeline.

111 use L1W

112 use L1X Bypass MLDRTN

113 use

114 use

Table 2-37. Long-latency FR Hazards (Sheet 2 of 2)

CYCLE

IB
D

D
EC

R
EG

E
X

E

D
E

T

W
R

B

W
B

2

M
LD

 P
ip

e

Notes

Table 2-38. IBL Misc EXE Replays

 Producer /
Consumer

P
sr

U
m

H
p

w
B

u
s

M
vt

A
n

y

S
yn

cO
u

t

X
p

n
W

r

P
FS

W
r

R
S

C
W

r

ld
R

N
A

T

R
S

C
W

re
xe

B
S

P
S

W
re

xe

LC
E

C
W

r

B
R

W
r

Fp
P

n
d

fs
et

cP
n

d

FP
S

R
W

r

VldOp All

RelType M0
M1

SrlzOp M0
B2

M0
B2

ThashOp M0

mvfXpnCr M0

allocOp M0

mvfBSPS M0 M0

mvfBSP M0

mvtBSPS M0

mvRNAT M0 M0

mvfRSC M0

mvfLCEC I0

brCall B0
B1
B2

mvtBR I1

mvfFPSR M0 M0 M0

VldFpOp F0
F1

VldFpArith F0
F1

FpSfOp F0
F1

F0
F1

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 71
Reference Manual for Software Development and Optimization Guide

2.4 Intel Itanium Processor 9500 Series Multi-
Threading
The processor expands support for Hyper-Threading or HT Technology over previous
Itanium processors with key additional hardware to deliver higher utilization of
processor core resources and thus higher performance and throughput. As in previous
Itanium processors, the processor core duplicates all architectural state and some
micro-architectural state to create 2 logical processors in each physical core. The
processor introduces the concept of 2 thread domains in the core by exploiting the
decoupled pipeline separated by the Instruction Buffer that allows instruction fetch and
instruction execution to operate independently. The Front End (FE) thread domain
spans the FE of the pipeline, that is, from IPG to IBD while the Back End (BE) thread
domain spans the BE of the pipeline, that is, from IBD to WB2. With independent
thread domains and a fully duplicated Instruction Buffer, the FE can perform instruction
fetch for either thread regardless of which thread the BE is executing. The processor
implements Switch-On-Event MT or SOEMT, as in previous Itanium processors, in each
thread domain. That is, only 1 thread can be active at any time in the FE pipeline or the
BE pipeline but the FE and the BE may be fetching and executing on the same thread or
a different thread in any given cycle respectively. The FE thread domain has its own set
of thread switch events and a switch controller. The FE thread domain switch controller
attempts to maximize instruction fetch bandwidth utilization with the goal of keeping
the Instruction Buffer full for both threads. The BE thread domain also has its own set
of thread switch events and a separate switch controller. The BE thread domain switch
controller attempts to maximize utilization of execution resources by switching between
the two thread’s Instruction Buffer whenever a thread in the BE incurs a long latency
event. The next two sections present more details on the MT implementation for the FE
thread domain and the BE thread domain.

2.4.1 Frontend MT Introduction
On the processor, the frontend and backend pipelines are on separate threading
domains. The frontend has the choice of filling two instruction buffers, one per thread.
This enables greater frontend efficiency by enabling it to hide long latency events, and,
more importantly, enables the backend to have a choice of instruction buffers.

The frontend is SoEMT (Switch on Event MT) which means only one thread will be
active in the frontend of the pipeline at a time. The frontend will switch threads and
begin inserting instructions into the other thread's instruction buffer based on a series
of events. There are two types of switch events: implicit and explicit. The implicit
switch algorithm utilizes an urgency based urgency system that monitors the relative
urgency between the two threads in deciding when to switch. In general, two factors
influence the urgency of a thread. The first is determined by whether a thread is
believed to have instructions ready to deliver to the instruction buffer, and the second
is whether the backend is requesting immediate attention on a particular thread. When
one thread has a higher urgency than the other, a thread switch occurs. The purpose of
the urgency system is to determine which thread has useful work to do to enable more
efficient operation. In addition, the urgency system can be biased to follow the
backend's active thread except when there is no useful work to do. Explicit switch
events force a thread switch irrespective of the background thread's urgency.

There is no additional user-visible state over what exists on Intel Itanium Processor
9300 Series to enable frontend multithreading. Microarchitecturally, speculative state is
kept for both threads and the frontend operates on this speculative state until the
backend refreshes the appropriate thread with architected state.

The Intel Itanium Processor 9500 series Core

72 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.4.2 BE Thread Domain
The BE thread domain spans from IBD to WB2 in the main core pipeline. Switching
threads in the BE involves 2 primary steps: 1) stopping execution of the current thread
and 2) switching the Instruction Buffer to the new thread and launching instruction out
of the IBQ into the BE. A thread switch begins with some switch event arriving and
being processed through a relative comparison of the two threads run-state. The
thread run-state is comprised of a thread priority state and a thread execution state.
The thread run-state is comparable to the concept of thread urgency on previous
Itanium processors. If the comparison of the thread run-state determines that a thread
switch would be useful, a thread switch request is generated and attributed to a switch
event. The switch controller in the BE then will request a IBD stage issue stall and wait
for the BE pipeline to drain from DEC to WB2 including accounting for any replays and/
or flushes occurring on the current thread. Once the main pipeline is idle, the active
thread in the BE is changed and after a few cycles valid instructions are launched into
the pipeline from the IBQ of the new thread, thus completing a thread switch operation.

2.4.2.1 Thread Priority State

As mentioned above, the concept of urgency of execution for a given thread in “pre”
Intel Itanium Processor 9500 Series has been replaced with two separate thread states.
One of these is the concept of thread priority and is mostly controlled by software. The
hint @priority and hint @pause instructions are two low overhead mechanisms for
software to communicate to hardware the urgency of execution for a given thread.
Three priority states are defined as follows:

• Nominal

— This is the default priority state for a thread.
• High

— This priority state is entered by retiring a hint @priority instruction which can
be executed on any M, I or F ports on the processor.

— Retiring a hint @priority instruction also has the side-effect of reloading the FG
thread timeslice with the High Timeout Value (HiTOV) and then it only counts
down during "Unstalled" thread execution cycles counting down every cycle in
the high state. The expiry of the timeslice leads to termination of High priority.
If a High priority thread is switched out for some reason, its remaining HiTOV
timeslice is preserved and restored when it is brought to the foreground again.

— The High priority state of a thread can also be terminated explicitly by software
using a hint @pause instruction. Executing a hint @pause at High priority
transitions the thread priority down to Nom.

• Low

— This priority state is entered by retiring a hint @pause instruction at Nom
priority and can be executed on any M, I or F ports on the processor.

— Entering the Low priority state due to hint@pause also has the side-effect of
reloading the background (BG) thread timeslice with Low Timeout Value
(LoTOV). The expiry of the LoTOV timeslice is then used to terminate Low
priority and return to thread priority to Nom. Unlike for high priority, this
timeslice counter decrements every cycle.

— This priority state is also entered when a thread has entered the Low Power
state due to the execution of a PAL_HALT_LIGHT call. For this case Low Priority
is only exited due to an external interrupt.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 73
Reference Manual for Software Development and Optimization Guide

This notion of thread priority is provided as a method for software to communicate the
future resource requirements to hardware multi-threaded processors to optimize
performance. Three specific scenarios under which it is especially important for
software to communicate its resource requirements through thread priority are:

• Idle Loops - By placing a hint @pause in idle loops, software communicates to
hardware it has no work to perform at present. The hardware in this case acts upon
the hint @pause by placing the thread in Low priority and switching away from it
until the LoTOV timeslice expiration, interrupt, or other switch event. This allows
the other thread to more fully utilize the shared hardware resources for a period of
time.

• Wait Loops - By placing a hint @pause and allocating a memory address into the
ALAT, software communicates to hardware that it is willing yield resources
temporarily until the data at the address is the target of a store on any other
processor. The hardware in this case responds to the hint @pause by placing the
thread in Low priority and switching away to the other thread. When the allocated
ALAT entry is invalidated due to the store, the thread priority is restored to Nom
and a thread switch brings back the waiting thread to the FG. If an ALAT
invalidation doesn’t arrive within a LoTOV timeslice, the timeslice expiration
accomplishes the same change in priority and thread switch.

— Example code
• ldxxxx

• Critical Regions - If software is about to enter a critical section, it can communicate
to hardware such critical need for resources by preceding the critical section with a
hint @priority. The hardware responds by raising the thread priority to High and
biases the thread switch behavior to give more resources to this critical thread for a
short duration. Software must be aware of a couple of corner cases with respect to
using hint @priority instructions:

— hint @priority followed by hint @pause in the same issue group: hardware will
ignore the hint @priority and the hint @pause will have its normal effects as
explained above.

— hint @pause followed by hint @priority: the hint @pause will cause a switch out
event and when this thread begins execution again the hint @priority will be
executed. This works as expected since a hint @pause always causes a WB2
replay on the instruction following the hint @pause to ensure precise thread
switch points in the instruction sequence.

The recommended way to terminate High priority is at the end of the critical region
perform the following instructions: hint@priority ;; hint@pause. This minimizes the
chance of a timeout while in high priority that would cause the hint@pause to take
the thread to low priority instead of nominal priority.

2.4.2.2 Thread Execution State

The second piece of thread state that replaces the concept of urgency of execution for
a given thread in “pre” Intel Itanium Processor 9500 Series Differences is the thread
execution state. Unlike thread priority state, the thread execution is determined and
managed completely by hardware. The thread execution state attempts to represent
the ability of a thread to make execution progress and utilize shared hardware
resources. Thus, there are three main components that determine comprise thread
execution state:

• D-cache data unavailable - a use causes an EXE or DET replay followed by a IBD
use-stall.

• I-cache fetch unavailable - the FE is unable to supply instructions, represented by
an empty IBQ.

The Intel Itanium Processor 9500 series Core

74 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• DTLB miss - a memory operation needs a translation that is unavailable in the DTB
causing a WB2 replay followed by a IBD hpw-stall.

Each of the above components represent potentially long latency events and hence are
candidates for possible thread switch out events (MLDuse, IBQEmpty, HPWmiss
respectively). The thread execution status resulting from these events is shown below
in the figure:

• Unstalled (U): a thread is considered unstalled until one of these long latency
events is hit.

• Stalled (S): a thread transitions to this state when one of the long potential latency
events is hit.

• Blocked (B): when a thread’s stalled state persists to the point where it is likely to
remain stalled for a long time, it transitions to this Blocked state for that latency
event. It is also upon reaching this Blocked state that a switch out event of type
MLDuse, IBQEmpty or HPWmiss is generated. The Blocked state is cancelled at
every thread switch for the new FG thread and can be re-engaged if Stalled
condition persists and thus generate another switch OUT event. It is also possible
that both threads in a core can be in the Blocked state simultaneously.

• Waiting (W): the Waiting state of a thread is simply that the thread is not
Unstalled.

• Unblocked (b): Likewise, the Unblocked state is simply that the thread is not
Blocked.

2.4.2.3 BE Thread Switch Events

Since, a thread switch operation is no longer a full pipeline flush including a re-fetch of
instructions, much finer-grain Switch-On-Event MT (SOEMT) can be implemented in the
BE to overlap even more idle cycles of a given thread with execution of the other
thread. The BE switch events are shown in the table below.

Figure 2-8. Thread Execution Status

Unstalled (U) Stalled (S) Blocked (B)

Waiting (W)

Unblocked (b)

Table 2-39. BE Thread Switch Events (Sheet 1 of 2)

Event Name Event Type Event Description Switch
Type

MLDUse Blocking Consumption of a MLD miss; Typically, occurs after an EXE replay to
an IBD stall on a use. If the stall lasts for more than typical MLD
latency, a MLDUse switch event is generated.

OUT

HPWMiss Data TLB miss; Typically occurs after a WB2 replay to an IBD stall on
a blocking hardware page walk. If missing translation isn’t returned
within the pre-programmed HPW event delay, a HPWMiss switch
event is generated.

OUT

IBQEmpty Instruction Buffer Empty; Typically occurs after a WRB BruFlush on a
mispredicted branch. If the FE doesn’t deliver instructions within the
pre-programmed IBQevent delay, a IBQEmpty event is generated.

OUT

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 75
Reference Manual for Software Development and Optimization Guide

The thread-switch overhead when pipeline is busy is about 13 cycles, and when the
pipe is empty is about 7 cycles.

MLDUse Event

An EXE or DET replay due to a unavailable register begins the sequence of events
leading to a MLDUse switch event. The consuming instruction is replayed to a IBD use-
stall and at this point the event delay counter is triggered to count down for a fixed
number of cycles. If the use-stall is resolved prior to the event delay counter
expiration, there is no thread switch to initiate and the current thread continues
execution. If the use-stall is still asserted at the delay counter expiration, a MLDuse
switch event is generated and the current thread is now considered to be in the Blocked
state for MLD. The IBL block is now also enabled to watch for MLD returns to the regid
that was unavailable and thus a MLDRtn can possibly be generated when the current
thread is in the BG.

HPWMiss Event

A WB2 replay due to a blocking DTLB miss begins the sequence of events leading to a
HPWMiss switch event. The consuming instruction is replayed to a IBD hpw-stall and at
this point the event delay counter is triggered to count down for a fixed number of
cycles. If the hpw-stall is resolved prior to the event delay counter expiration, there is
no thread switch to initiate and the current thread continues execution. If the hpw-stall
is still asserted at the delay counter expiration, a HPWMiss switch event is generated
and the current thread is now considered to be in the Blocked state for HPW. The HPW
logic is now also enabled to watch for MLD returns for the VHPT load operation and thus
a HPWInsrt switch event can possibly be generated when the current thread is in the
BG.

IBQEmpty Event

MLDRtn Unstall Data return corresponding to MLDUse IN

HPWInsrt Translation from the VHPT is ready for insertion corresponding to
HPWMiss

IN

IBQFill Instruction Buffer Filled or FE is ready to fill corresponding to
IBQEmpty

IN

FG TimeSlice Timeslice Timeslice for the current High Priority FG thread expires thus
returning the FG thread priority to Nom.

N/A

BG TimeSlice Timeslice for the current BG thread expires thus usually requiring the
thread to be switched in.

IN

@Priority Hint Elevate FG thread priority to Hi. Does not cause a thread switch
event

N/A

@Pause hint @pause at NOM priority causes the current FG thread to be
switched out and moved to Low priority.

OUT

ALATInval ALAT ALAT Invalidation; An ALAT entry is invalidated on a hint @paused
thread while it is in back-ground.

IN

LPMode Low Power LPEnter: A halt.lp called by PAL_HALT_LIGHT retires on the
foreground thread and the background thread is not in LP

OUT

LPExit: A wakeup event (external interrupt) arrives on the
background thread causing it to exit LP (

IN

Fairness Others Unfairness Meter has crossed into Region3 and a thread switch is
required to bring the victim thread into the fore-ground.

IN

Table 2-39. BE Thread Switch Events (Sheet 2 of 2)

Event Name Event Type Event Description Switch
Type

The Intel Itanium Processor 9500 series Core

76 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

When the BE FG thread IBQ is empty, the event delay counter is triggered to count
down for a fixed number of cycles. Typically, this will occur when the BE hits a
mispredicted branch. A BRU flush of the pipeline occurs in WRB leading to an empty
IBQ. If the FE is unable to supply instructions within a fixed number of cycles, a
IBQEmpty thread switch event is initiated. At this point the current thread is Blocked
for IBQ and when the FE fills the IBQ or indicates that it is ready to fetch for this
thread, an IBQFill switch event can be generated when the current thread is in the BG.

Switch IN Events

Switch IN events are those that are generated by the BG thread as a request to
become the FG thread in the BE. When a thread switch request generated on behalf of
the BG thread is received and the switch controller accepts it, an IBD mt-stall is
generated to stop instruction issue on the current thread. Then, it would wait for the
pipeline to drain from DEC to WB2 to account for any flushes/replays before initiating
the thread switch. Examples for such events are MLDRtn, HPWInsrt, IBQFill,
ALATInvalidate, BG timeslice etc.

2.4.2.4 Thread Switch Decision Diagrams

The following tables define how thread priority and thread execution state described
above affect the switch controller behavior for each major type of switch event. Each
table is organized to show the FG thread priority/execution state combination in
columns and the BG thread priority/execution state combination in rows.

Here is a key to reading the tables:

The Blocking event transitions are shown below and apply to MLDUse, HPWMiss and
IBQEmpty switch out events.

Table 2-40. Thread Switch Transition Key

Symbol Description

FG foreground thread

BG background thread

H High priority

N Nominal priority

L Low priority and non-LP

Lp Low priority and LP

U Unstalled execution state, i.e. ~(S || B)

W Waiting execution state, i.e. (S || B)

S Stalled execution state i.e. ~(U || B)

B Blocked execution state i.e. ~(U || S)

b Not Blocked i.e. (U || S)

a b c Each table entry cell has three characters. a=new FG priority, b= new BG priority, c=thread
switch or not

For c only, "-" implies no change

For c only, "T" implies that a thread switch is initiated.

X Invalid state or don't care due to event assumptions or impossible state combinations

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 77
Reference Manual for Software Development and Optimization Guide

The Unstall event transitions are shown below and apply to MLDRtn, HPWInsrt and
IBQFill switch in events.

Table 2-41. Blocking Event Transitions

FG States

HB NB LB

B
G

 S
ta

te
s

HU - - T - - T X

HW - - - - - - X

NU - - T - - T X

NW - - - - - - X

LU - - - - - - X

LW - - - - - - X

Lp - - - - - - - - -

Table 2-42. Unstall Event Transitions

FG States

Hb HB Nb NB Lb LB

B
G

 S
ta

te
s HU - - - - - T - - T - - T X X

NU X - - T - - - - - T X X

LU - - - - - - - - - - - - - - - - - -

Table 2-43. FG Timeslice Expiration

FG States

HU

B
G

 S
ta

te
s

HU N - T

HW N - -

NU N - -

NW N - -

LU N - -

LW N - -

Lp N - -

The Intel Itanium Processor 9500 series Core

78 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Each hint@priority execution causes a reload of FG timeslice with HiTOV.

Table 2-44. BG Timeslice Expiration

FG States

HU HW NU NW
B

G
 S

ta
te

s

HU - - - - - T - - T - - T

HW - - - - - T - - T - - T

NU - - - - - T - - T - - T

NW - - - - - T - - T - - T

LU - N - - N T - N T - N T

LW - N - - N T - N T - N T

Table 2-45. Hint @pause

FG States

HU NU

B
G

 S
ta

te
s

HU N - T X

HW N - - L - T

NU N - - L - T

NW N - - L - T

LU N - - L N T

LW N - - L N T

Lp N - - - - -

Table 2-46. Hint @priority

FG States

HU NU LU

B
G

 S
ta

te
s

HU - - - H - - H - -

HW - - - H - - H - -

NU - - - H - - H - -

NW - - - H - - H - -

LU - - - H - - H - -

LW - - - H - - H - -

Lp - - - H - - H - -

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 79
Reference Manual for Software Development and Optimization Guide

BG States NU and NW rows come about if BG was L when the ALATinv occurs, but a switch did not happen.

Table 2-47. ALAT Invalidation Event In Low Priority

FG States

Hb HB Nb NB
B

G
 S

ta
te

s
NU - - - - - T - - T - - T

NW - - - - - - - - - - - -

LU - N - - N T - N T - N T

LW - N - - N - - N - - N -

Table 2-48. LP Halt Event

FG States

HU NU

B
G

 S
ta

te
s

HU Lp - T X

HW Lp - T Lp - T

NU Lp - T Lp - T

NW Lp - T Lp - T

LU Lp N T Lp N T

LW Lp N T Lp N T

Lp Lp - - Lp - -

Table 2-49. External Interrupt Event on FG Thread

FG States

Hb HB Nb NB Lb LB Lp

B
G

 S
ta

te
s

HU - - - X X X X X X

HW - - - - - - - - - - - - X X X

NU - - - X - - - X X X X

NW - - - - - - - - - - - - X X X

LU - - - - - - - - - - - - X X X

LW - - - - - - - - - - - - X X X

Lp - - - - - - - - - - - - - - - - - - N - -

Table 2-50. External Interrupt Event on BG Thread

FG States

Hb HB Nb NB Lb LB Lp

B
G

 S
ta

te
s

HU - - - X X X X X X

HW - - - - - - - - - - - - X X X

NU - - - X - - - X X X X

NW - - - - - - - - - - - - X X X

LU - - - - - - - - - - - - X X X

LW - - - - - - - - - - - - X X X

Lp - N T - N T - N T - N T - N T - N T - N T

The Intel Itanium Processor 9500 series Core

80 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.4.2.5 Unfairness Meter

One of the challenges hardware multi-threading implementations have faced is
execution fairness between the 2 threads running on the same physical core. The idea
of fairness is further complicated by the desire to deliver maximum throughput since a
high throughput thread will almost always imply unfairness in execution for its sibling
thread. The processor introduces a new concept of an Unfairness Meter to track
whether a particular thread is being victimized and upon detection of such unfairness to
take remedial action.

The Unfairness Meter is designed to measure and track "unfairness" rather than some
metric such as IPC that tracks fairness between the two threads in a core. The essential
idea is that of a single up/down counter that ticks based on a thread being deemed
ready-to-execute but yet unable to execute because either it is in the back-ground in
the BE or is unable to execute despite being in the fore-ground in the BE. As shown in
the figure below, the unfairness meter defines 4 regions of operation and associated
threshold levels for the up/down counter. Region0 or "Green Region" is considered to
be normal operation i.e. the meter is allowed to drift between +L1 and −L1 as the 2
threads execute and attempt to deliver maximal throughput without any remedial
action being taken. So for example, if T1 is in the back-ground in the BE and is "ready-
to-execute", the unfairness meter will start ticking down from 0 toward −L1. A negative
meter value indicates that T1 is the "losing" or "victim" thread while a positive meter
value indicates that T0 is the "losing" or "victim" thread.

The unfairness meter ticks in the appropriate direction based on which thread is losing
its fair share of execution. The conditions under which the meter will tick are:

• A thread is in the back-ground in the BE and is not at Low thread priority and is
Unstalled.

• A thread is stalled because of the other thread occupying a significant portion of
MLD queue resources.

However, a victim thread credits back accumulated unfairness when it is active, except
when condition 2 is true.

No unfairness counting happens during a thread switch.

The actual number of ticks the unfairness meter is given is determined by a per-thread
pre-scaler value defined in implementation specific registers. This notion of a pre-scaler
on the unfairness meter ticks allows for creating a policy of deliberately biased
unfairness in favor of one thread by the operating systems. High Priority and Exclusive
High Priority settings in PAL_SET_HW_POLICY provide 4:1 pre-scalar ratios, while other
performance and fairness personalities provide 1:1 pre-scalar ratio.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 81
Reference Manual for Software Development and Optimization Guide

Remedial actions are associated with each region of the meter and are designed to be
progressively worse in terms of maintaining throughput of the aggressor thread. These
actions or policies come into effect as the meter crosses over a threshold into a new
region and stay in effect until the meter actually returns to 0. A given policy stays in
effect starting at the threshold crossover until the meter reaches 0 again. The table
below defines each of the meter regions and the policies or actions taken as different
regions are entered.

Figure 2-9. Unfairness Meter

The Intel Itanium Processor 9500 series Core

82 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

2.4.2.6 Thread Forward Progress

Thread forward progress responsibility lies with the BE thread domain on the processor.
The BE thread forward progress mechanism is essentially the same as in previous
Itanium processors. The BE counts and allows a set number of BE thread switches to a
given thread with no instruction retirement before requiring forward progress. A thread
is considered to be making forward progress if any of the following events are
occurring:

• Retirement of an instruction including a predicated-off instruction

• Completion of an RSE fill/spill

• Delivery of an interruption — may be optionally excluded

Once the threshold of the pre-programmed number of thread switches is exceeded, the
thread forward progress mode is engaged. The thread forward progress mode is
comprised of two primary actions:

• Camp on current thread in the BE until an instruction retires or interruption occurs.

• Request the FE thread switch controller to lock to the BE thread and disable any
further FE thread switch events.

An L2/L3/L4 aggressor will not be allowed to BE forward progress camp until fairness is
restored.

This BE thread forward progress mechanism, once engaged, is deemed sufficient to
ensure that instruction fetch progress in the FE thread domain will occur due to the FE
eventually following the BE thread.

Full Time Slice Mode allows a thread that exits forward progress lock to remain in the
FG for up to a time-slice after it begins to retire instructions. When this feature is
enabled, a thread that exits forward progress mode by retiring an instruction can be
switched to the BG only for the following reasons; FG Blocking, FG Time slice
expiration, BG Time slice expiration, Hint@pause, Halt.lp, Fairness Meter induced
switch events, External interrupt to BG thread.

Table 2-51. Unfairness Meter Regions/Actions

Region Description Policy/Action

Region0 or Green Normal operating region. Threads are executing
fairly

No action necessary; Maintain default switching
behavior.

Region1 or Yellow Unfairness in play as meter has crossed +L1 or −L1. Make BG timeslices asymmetric; 1/2x on Victim, 2x
on Aggressor as long as thread priority is Nom or
High. The FG slice of a High priority thread and the
BG slice of a Low priority thread are not scaled to
maintain deterministic behavior for hint @pause and
@priority from a software view.

Region2 or
Orange

Unfairness in play as meter has crossed +L2 or −L2. Victim thread becomes fore-ground whenever it is
Unblocked; All yellow region policy actions also in
effect.

Region3 or Red Unfairness in play as meter has crossed +L3 or −L3. Bring Victim thread to fore-ground whenever it is not
at Low priority and camp on it until fairness restored
or victim assumes low priority. The FE thread domain
is also locked to the BE thread in this region.

Region 4 Unfairness in play as meter has crossed +L4 or −L4. Camp on victim until fairness is restored

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 83
Reference Manual for Software Development and Optimization Guide

2.4.2.7 Switch-Delay

Switch-Delay limits the fraction of time spent switching between threads. Thread switch
events that occur during a certain duration (or window) of time after the prior thread
switch receive special treatment.

• When unfairness is Green/Yellow

— Switch-in event (Unstall and ALATinv) induced switches are remembered and
acted upon after the switch-wait window expires

— Switch-out events are unaffected by the window
• When unfairness is Orange/Red

— Blocking induced switches are remembered and acted upon after the switch-
wait window expires

— Hint@pause is ignored (has no effect) within the switch-wait window
— Switch-in events are unaffected by the window

FG and BG timeouts are not affected by the wait window.

2.5 Intel® Virtualization Technology
The Intel Itanium processor 9500 series is the fourth Intel® Itanium® processor to
implement Intel® Virtualization Technology, described in the Intel® Itanium®
Architecture Software Developer’s Manual.

The Intel Itanium processor 9500 series provides enhanced Intel® Virtualization
Technology (Intel® VT-i3) and Intel® Virtualization Technology for directed I/O (Intel®

VT-d).

The Intel Itanium processor 9500 series core supports all of the baseline virtualization
support provided in the Intel® Itanium® processors 9300 series. In addition, it
implements certain hardware acceleration modes and provides a new Interruption
Instruction Bundle control register. The additional virtualization support attempts to
further reduce the virtualization overhead.

2.5.1 Intel® VT-i3 Support
Summary of enhancements over Intel VT-i3

• Guest copy of interruption control registers (cr16–17,19–27)

• Guest cover

• Asynchronous VINT delivery, directly to Virtual External Interrupt vector
(IVA+0x3400)

• Guest ssm/rsm enhancements

• Guest PSR read (full VPSR)

• Relaxed reserved field checking on mov to psr.l

• Guest tf support (VCPUID4)

• Guest AR.ITC offset (CR.ITO)

• Probe intercepts

• Support illegal op fault on virtual CR access when not in VMAL

• Enhanced bundle capture

The Intel Itanium Processor 9500 series Core

84 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• PMU event filtering on psr.vm

Intel VT-i3 is documented in the Intel Itanium Software Developers Manual and
supplement.

2.6 IA-32 Execution
IA-32 execution on the Intel Itanium processor 9500 series is enabled supported with
PAL-based IA-32 execution and IA-32 Execution Layer (IA-32 EL).

PAL-based IA-32 execution is available after PAL_COPY_PAL is called and provides IA-
32 execution support before the OS has booted. PAL-based IA-32 execution is not
supported in an OS environment.

IA-32 EL is a software layer that is currently shipping with Intel® Itanium®
architecture-based operating systems, which converts IA-32 instructions into Intel®
Itanium® processor instructions via dynamic translation. IA-32 EL is OS-based and is
only available after an OS has booted.

2.7 Brand Information
The PAL_BRAND_INFO procedure, along with PAL_PROC_GET_FEATURES, allows
software to obtain processor branding and feature information. Details on the above
functions can be found in the Intel® Itanium® Architecture Software Developer’s
Manual.
Below is the table of the return values for PAL_BRAND_INFO. The Intel Itanium
processor 9500 series will implement all three; however, some previous Intel®
Itanium® processors are all unable to retrieve the processor frequency, so requests for
these fields will return -6, information not available. Also, previous Intel® Itanium®
processors cannot return system bus frequency speed. Implementation-specific values
are expected to start at value 16 and continue until an invalid argument (-2) is
returned.

There are other processor features that may not be included in the brand name above.
To obtain information on if that technology or feature has been implemented, the
PAL_PROC_GET_FEATURES procedure should be used. The Intel® Itanium® processor
9500 series features will be available in feature_set (20).

Table 2-52. PAL_BRAND_INFO Return Values

Value Definition

19 Stepping - terminated ASCII string corresponding to the processor stepping will be returned
in the brand_info return argument.

17 The shared LLC cache size component (in bytes) of the brand identification string will be
returned as a binary value in the brand_info return argument.

16 The frequency component (in Hz) of the brand identification string will be returned as a
binary value in the brand_info return argument.

0 The ASCII brand identification string will be copied to the address specified in the address
input argument. The processor brand identification string is defined to be a maximum of 128
characters long; 127 bytes will contain characters and the 128th byte is defined to be NULL
(0). A processor may return less than 127 ASCII characters as long as the string is null
terminated. The string length will be placed in the brand_info return argument.

The Intel Itanium Processor 9500 series Core

Intel® Itanium® Processor 9500 Series 85
Reference Manual for Software Development and Optimization Guide

\

§

Table 2-53. Intel Itanium Processor 9500 Series Feature Set Return Values

Value Definition

18 Multi-Threading Technology (MT) – This processor supports Multi-Threading Technology

The Intel Itanium Processor 9500 series Core

86 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 87
Reference Manual for Software Development and Optimization Guide

3 Core Performance Monitoring

3.1 Introduction
This section defines the performance monitoring features of the the processor core. The
the processor core provides 16 48-bit performance counters per thread, hundreds of
monitorable events, and several advanced monitoring capabilities. This chapter outlines
the targeted performance monitor usage models and defines the software interface and
programming model.

The Itanium architecture incorporates architected mechanisms that allow software to
actively and directly manage performance critical processor resources such as branch
prediction structures, processor data and instruction caches, virtual memory
translation structures, and more. To achieve the highest performance levels, dynamic
processor behavior can monitor and be fed back into the code generation process to
better encode observed run-time behavior, or to expose higher levels of instruction
level parallelism. These measurements are critical for understanding the behavior of
compiler optimizations, the use of architectural features such as speculation and
predication, or the effectiveness of microarchitectural structures such as the ALAT, the
caches, and the TLBs. These measurements provide the data to drive application tuning
and future processor, compiler, and operating system designs.

The remainder of the document is split into the following sections:

• Section 3.2 discusses how performance monitors are used, and presents various
the processor performance monitoring programming models.

• Section 3.3 defines the the processor specific performance monitoring features,
structures and registers.

Refer to Appendix B, “Example Core PMU Event Reports” for examples of PMU core
reporting.

3.2 Performance Monitor Programming Models
This section introduces the the processor performance monitoring features from a
programming model point of view and describes how the different event monitoring
mechanisms can be used effectively. The the processor performance monitor
architecture focuses on the following two usage models:

• Workload Characterization: The first step in any performance analysis is to
understand the performance characteristics of the workload under study.
Section 3.2.1 discusses the the processor support for workload characterization.

• Profiling: Profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and
relating them back to their code. Their primary objective is to understand which
program location caused performance degradation at the module, function, and
basic block level. For optimization of data placement and the analysis of critical
loops, instruction level granularity is desirable. Profile-guided compilers that use
advanced Itanium architectural features such as predication and speculation
benefit from run-time profile information to optimize instruction schedules. The the
processor supports instruction level statistical profiling of branch mispredicts and
cache misses. Details of the the processor's profiling support are described in
Section 3.2.2.

Core Performance Monitoring

88 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.2.1 Workload Characterization
The first step in any performance analysis is to understand the performance
characteristics of the workload under study. There are two fundamental measures of
interest: event rates and cycle accounting.

• Event Rate Monitoring: Event rates of interest include average retired
instructions-per-clock (IPC), data and instruction cache miss rates, or branch
mispredict rates measured across the entire application. Characterization of
operating systems or large commercial workloads (for example, OLTP analysis)
requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second, or bus utilization rates.
Section 3.2.1.1 discusses event rate monitoring.

• Cycle Accounting: The cycle breakdown of a workload attributes a reason to
every cycle spent by a program. Apart from a program's inherent execution latency,
extra cycles are usually due to pipeline stalls and flushes. Section 3.2.1.4 discusses
cycle accounting.

3.2.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence
counters before and after the workload is run, and then computing the desired rates.
For instance, two basic the processor events that count the number of retired Itanium
instructions (IA64_INST_RETIRED) and the number of elapsed clock cycles
(CPU_OP_CYCLES) allow a workload's instructions per cycle (IPC) to be computed as
follows:

• IPC = (IA64_INST_RETIREDt1 − IA64_INST_RETIREDt0) / (CPU_OP_CYCLESt1 −
CPU_OP_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune™,
gprof, WinNT*]. As shown in Figure 3-1, time-based sampling can be used to plot the
event rates over time, and can provide insights into the different phases that the
workload moves through.

On the processor, many event types, for example, TLB misses or branch mispredicts
are limited to a rate of one per clock cycle. These are referred to as “single occurrence”
events. However, in the the processor, multiple events of the same type may occur in
the same clock. We refer to such events as “multi-occurrence” events. An example of a
multi-occurrence event on the processor is data cache read misses (up to two occur per

Figure 3-1. Time-Based Sampling

Time
Sample Interval

t1t0

E
ve

nt
 R

at
e

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 89
Reference Manual for Software Development and Optimization Guide

clock). Multi-occurrence events, such as the number of entries in the memory request
queue, can be used to derive the average number and average latency of memory
accesses. The next two sections describe the basic processor mechanisms for
monitoring single and multi-occurrence events.

3.2.1.2 Single Occurrence Events and Duration Counts

For all single occurrence events, a counter is incremented by up to one per clock cycle.
Duration counters that count the number of clock cycles during which a condition
persists are considered “single occurrence” events. Examples of single occurrence
events on the processor are TLB misses, branch mispredictions, and cycle-based
metrics.

3.2.1.3 Multi-Occurrence Events, Thresholding, and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock
cycle are termed “multi-occurrence” events. Examples of such events on the processor
are retired instructions or the number of live entries in the memory request queue.

Thresholding capabilities are available in the processor's counters and can be used to
plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count
exceeds that programmed threshold. This allows questions such as "For how many
cycles did the memory request queue contain more than two entries?" or "During
how many cycles did the machine retire more than three instructions?" to be answered.
This capability allows microarchitectural buffer sizing experiments to be supported by
real measurements. By running a benchmark with different threshold values, a
histogram can be drawn up that may help to identify the performance "knee" at a
certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average
number of concurrently outstanding requests and the average number of cycles that
requests were pending are of interest. To calculate the average number or latency of
multiple outstanding requests in the memory queue, we need to know the total number
of requests (ntotal) and the number of live requests per cycle (nlive/cycle). By summing
up the live requests (nlive/cycle) using a multi-occurrence counter, Σnlive is directly
measured by hardware. We can now calculate the average number of requests and the
average latency as follows:

• Average outstanding requests/cycle = Σnlive/ Δt

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 3-1 in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

The processor provides the following capabilities to support event rate monitoring:

Table 3-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5

Core Performance Monitoring

90 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• Clock cycle counter

• Retired instruction counter

• Event occurrence and duration counters

• Multi-occurrence capable counters

• Counter thresholding

3.2.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether
the observed events are contributing to a performance problem. A commonly used
strategy is to plot multiple event rates and correlate them with the measured
instructions per cycle (IPC) rate. If a low IPC occurs concurrently with a peak of cache
miss activity, chances are that cache misses are causing a performance problem. To
eliminate such guess work, the processor provides a set of cycle accounting monitors,
that break down the number of cycles that are lost due to various kinds of
microarchitectural events. As shown in Figure 3-2, this lets us account for every cycle
spent by a program and therefore provides insight into an application's
microarchitectural behavior. Note that cycle accounting is different from simple stall or
flush duration counting. Cycle accounting is based on the machine's actual stall and
flush conditions, and accounts for overlapped pipeline delays, while simple stall or flush
duration counters do not. Cycle accounting determines a program's cycle breakdown by
stall and flush reasons, while simple duration counters are useful in determining
cumulative stall or flush latencies.

The processor cycle accounting monitors account for all major single and multi-cycle
stall, replay and flush conditions both for the front-end as well as the back-end thread
domain. Overlapping stall, replay and flush conditions are prioritized in reverse pipeline
order, that is, delays that occur later in the pipe and that overlap with earlier stage
delays are reported as being caused later in the pipeline. The six back-end stall, replay
and flush reasons are prioritized in the following order:

1. Exception/Interruption flushes: cycles spent flushing the pipe due to interrupts and
exceptions. (event CYC_BE_WB2_FLUSH.XPN Appendix 4.2.4.6)

2. WB2 replays: late pipe events due to FP, exceptions, and blocking hazards (event
CYC_BE_WB2_REPLAY.* Appendix 4.2.4.7)

3. Branch Mispredictions: cycles spent flushing the pipe due to branch mispredicts.
(event CYC_BE_WB2_FLUSH.BRU Appendix 4.2.4.6)

4. DET replays: mostly due to memory pipe hazards (event CYC_BE_DET_REPLAY.*
Appendix 4.2.4.2)

5. EXE replays: mostly register hazards. (event CYC_BE_EXE_REPLAY.*
Appendix 4.2.4.3)

Figure 3-2. Itanium® Processor Family Cycle Accounting

Inherent Program Execution
Latency

Data Access
 Stall

Cycles

I-fetch
Stalls

Branch
Mispredicts
 Cycles

Other Stalls

17% 20%17% 10%35%

Unstalled Cycles Stall Cycles

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 91
Reference Manual for Software Development and Optimization Guide

6. Issue stall cycles due to load hazards, RSE activities, front end bubbles and others.
(event CYC_BE_IBD_STALL.* Appendix 4.2.4.4)

For each of these reasons, a complete set of sub-cause events is available. In addition
to the back-end, execution, cycle accounting, analogous monitors are available to
diagnose front-end fetch performance.

3.2.2 Profiling
Profiling is used by application developers, profile-guided compilers, optimizing linkers,
and run-time systems. Application developers are interested in identifying performance
bottlenecks and relating them back to their source code. Based on profile feedback,
developers can make changes to the high-level algorithms and data structures of the
program. Compilers can use profile feedback to optimize instruction schedules by
employing advanced Itanium architectural features such as predication and
speculation.

To support profiling, performance monitor counts have to be associated with program
locations. The following mechanisms are supported directly by the processor's
performance monitors:

• Program Counter Sampling

• Miss Event Address Sampling: The processor event address registers (EARs)
provide address and latency information for performance critical events (instruction
and data cache accesses, branch mispredicts, and instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address
range, to certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

3.2.2.1 Program Counter Sampling

Application tuning tools use time-based or event-based sampling of the program
counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 3-3, the sampled points can be histogrammed by instruction
addresses. For application tuning, statistical sampling techniques have been very
successful, because the programmer can rapidly identify code hot spots in which the
program spends a significant fraction of its time, or where certain event counts are
high.

Program counter sampling points the performance analysts at code hot spots, but does
not indicate what caused the performance problem. Inspection and manual analysis of
the hot-spot region along with a fair amount of guess work are required to identify the
root cause of the performance problem. On the processor, the cycle accounting
mechanism (described in Section 3.2.1.4) can be used to directly measure an
application's microarchitectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used
for time-based program counter sampling. Event-based program counter sampling is
supported by a dedicated performance monitor overflow interrupt mechanism
described in detail in Section 7.2.2 "Performance Monitor Overflow Status Registers
(PMC0...PMC3)" in Volume 2 of the Intel® Itanium® Architecture Software Developer's
Manual.

Core Performance Monitoring

92 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

To support program counter sampling, the processor provides the following
mechanisms:

• Timer interrupt for time-based program counter sampling

• Event count overflow interrupt for event-based program counter sampling

• Hardware-supported cycle accounting

3.2.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of
cumulative microarchitectural behavior, but they do not provide the application
developer with pointers to specific program elements (code locations and data
structures) that repeatedly cause microarchitectural "miss events". In a cache study of
the SPEC92 benchmarks, [Lebeck] used (trace based) cache miss profiling to gain
performance improvements of 1.02 to 3.46 on various benchmarks by making simple
changes to the source code. This type of analysis requires identification of instruction
and data addresses related to microarchitectural "miss events" such as cache misses,
branch mispredicts, or TLB misses. Using symbol tables or compiler annotations these
addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to
trace driven simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruction completion
of today's microarchitectures, the sampled program counter value may not be related
to the instruction address that caused a miss event. On a Pentium processor pipeline,
the sampled program counter may be off by two dynamic instructions from the
instruction that caused the miss event. On a Pentium Pro processor, this distance
increases to approximately 32 dynamic instructions. On the processor, it is
approximately 48 dynamic instructions. If program counter sampling is used for miss
event address identification on the processor, a miss event might be associated with an
instruction almost five dynamic basic blocks away from where it actually occurred
(assuming that 10% of all instructions are branches). Therefore, it is essential for
hardware to precisely identify an event's address.

The processor provides a set of event address registers (EARs) that record the
instruction and data addresses of data cache accesses, the instruction and data
addresses of data TLB misses, and the instruction addresses of instruction TLB and
cache misses as well as latency and responder type status associated with the access.
A 24 entry deep execution trace buffer captures sequences of branch instructions and
other instructions and events which causes changes to execution flow. The table below
summarizes the capabilities offered by the processor EARs and the execution trace

Figure 3-3. Event Histogram by Program Counter

Event
Frequency

Examples:
Cache Misses

TLB Misses

Address Space

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 93
Reference Manual for Software Development and Optimization Guide

buffer. Exposing miss event addresses to software allows them to be monitored either
by sampling or by code instrumentation. This eliminates the need for trace generation
to identify and solve performance problems and enables performance analysis by a
much larger audience on unmodified hardware.

The processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache miss captures or retired instructions. The
performance counter value is set up to interrupt the processor after a predetermined
number of events have been observed. The data cache event address register
repeatedly captures the instruction and data addresses of actual data cache load
misses. Whenever the counter overflows, event address collection is suspended (this
prevents software from capturing a miss event that might be caused by the monitoring
software itself). When the counter overflows the PMU is frozen, an interrupt is delivered
to software, the observed event addresses are collected, and a new observation
interval can be set up by rewriting the performance counter registers. For time-based
(rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can
achieve arbitrary event resolution by varying the number of events within an
observation interval and by increasing the number of observation intervals.

3.2.3 Event Qualification
In the processor, many of the performance monitoring events can be qualified in a
number of ways such that only a subset of the events are counted using performance
monitoring counters. As shown in the figure below, events can be qualified for
monitoring based on instruction address range, instruction opcode, data address range,
data reference type, the privilege level and virtual machine state and the status of the
performance monitoring freeze bit (PMC0.fr). The following paragraphs describe these
capabilities in more detail.

• Itanium Instruction Address Range Check: The processor allows event monitoring
to be constrained to a programmable instruction address range. This enables
monitoring of dynamically linked libraries (DLLs), functions, or loops of interest in
the context of a large Itanium-based application. The Itanium instruction address

Table 3-2. Processor EARs and Branch Trace Buffer

Event Address Register Triggers On What is Recorded

Instruction Cache Instruction fetches that miss the FLI cache
(demand fetches only)
Instruction fetch missed FLI ITLB (demand
fetches only)

Instruction Address
Number of cycles fetch was in flight
Responder status of the fetch (who serviced the
miss)
Who serviced L1 ITLB miss: L2 ITLB VHPT or
software

Data Cache Load or store instructions that hit or miss the
FLD or MLD data caches
Data references to the DTLB
ALAT accesses

Instruction Address
Data Address
Number of cycles load was in flight.
Responder status of the load (who serviced the
request)
Requester op-type (who asked)
Current HWPF hint state
Who serviced L1 DTLB miss: L2 DTLB, VHPT or
software

Execution Trace Buffer Branch Outcomes
rfi, exceptions, failed "chk" instructions which
cause a change in execution flow

Source instruction address of the event
Target Instruction Address of the event
Mispredict status and reason for branches

Retired IP Retired IPs Source instruction address of the retired
instruction, cycles since last retirement.

Core Performance Monitoring

94 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

range check is applied at the instruction fetch stage of the pipeline and the
resulting qualification is carried by the instruction throughout the pipeline. This
enables conditional event counting at a level of granularity smaller than dynamic
instruction length of the pipeline (approximately 48 instructions). For details, see
Section 3.3.5.

Itanium Instruction Opcode Match: The processor provides two independent Itanium
opcode match ranges each of which match the currently issued instruction encodings
with a programmable opcode match and mask function. The resulting match events can
be selected as an event type for counting by the performance counters. This allows
histogramming of instruction types, usage of destination and predicate registers as well
as software profiling (through insertion of tagged NOPs). Details are described in
Section 3.3.6.

• Itanium Data Address Range Check: The processor allows event collection for
memory operations to be constrained to a programmable data address range. This
enables selective monitoring of data cache miss behavior of specific data
structures. For details, see Section 3.3.7.

• Itanium Data Reference Type Check: The processor allows event collection for
memory operations to be constrained to specific memory pipe operations. For
details, see Section 3.3.7.

• Privilege Level: The processor supports conditional event counting based on the
current privilege level; this allows performance monitoring software to break down

Figure 3-4. Processor Event Qualification

Event Event ID Did event happen?

Current Virtual Machine
state

Current Privilege Level

VM Check

Privilege Level Check

Itanium Data Address
Range Check

(Memory operations)

Itanium Instruction
Opcode Match

Itanium Instruction
Address Range Check

Data Address

Instruction Opcode

Instruction Address

In monitored
VM state?

At monitored
privilege level?

Is data address
in DBR range?

Does Opcode
Match?

Is instruction
pointer in IBR range?

Itanium Data Reference
Type Check

(Memory Operations)

Memory
Reference type

Is data access in
reftype?

Performance Monitor
Freeze Bit (PMC0.fr)

Yes, all of the above are true ;
This event is counted

Event Counter Freeze Is event monitoring
enabled?

Did event happen?

In monitored
VM state?

At monitored
privilege level?

Is data address
in DBR range?

Does Opcode
Match?

Is data access in
reftype?

Is event monitoring
enabled?

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 95
Reference Manual for Software Development and Optimization Guide

event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level, refer to Section 3.3.1.

• Virtual Machine state: Analogous to privilege level constraints, the processor
supports conditional event counting based on the current virtual machine state
(PSR.vm). This allows performance monitoring software to further break down
event counts into the virtual machine hosts and guest operating system
contributions. For details on how to constrain monitoring by virtual machine state
level, refer to Section 3.3.1.

• Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the
monitoring freeze bit (PMC0.fr). This ensures that the performance monitoring
routines themselves, for example, counter overflow interrupt handlers or
performance monitoring context switch routines, do not "pollute" the event counts
of the system under observation. For details, refer to Section 7.2.4 of Volume 2 of
the Intel® Itanium® Architecture Software Developer's Manual.

3.2.3.1 Combining Instruction Address, Opcode, Data Address and Memory
Reference Type Matching

The processor allows various event qualification mechanisms to be combined in a
daisy-chained manner by providing the instruction tagging mechanism shown in
Figure 3-5.

Figure 3-5. Instruction Tagging Mechanism in the Processor

Core Performance Monitoring

96 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

During Itanium instruction execution, the instruction address range check is applied
first. This is applied separately for each IBR pair (IBRP) to generate 4 independent tag
bits which flow down the machine in four tag channels. The channel 0 instruction
address tag is used to qualify front-end events where applicable. Tags in the four tag
channels are then passed to two opcode matchers that combine the instruction address
range check with the opcode match and generate the set of four tags passed to the
back-end. This is done by combining tag channels 0 and 2 with first opcode match
registers and tag channels 1 and 3 with the second opcode match registers as shown in
Figure 3-5. Each of the 4 combined tags in the four tag channels can be counted as a
retired instruction count event (for details refer to event description
"RETIRED_INST_TAGGED"). Additionally tags 0 and 1 are used for the
CPU_OP_CYCLES.TAGGED event Appendix 4.2.1.1.

The combined Itanium instruction address range and opcode match in tag channel 0
qualify all downstream pipeline events. Events in the data memory hierarchy (L1 and
L2 data cache and data TLB events, can further be qualified using data address range,
specified through the DBRs and data reference type constraints.

As summarized in Figure 3-5, data address range checking can be combined with
opcode matching and instruction range checking on the processor. Additional event
qualifications based on the current privilege level can be applied to all events and are
discussed in Section 3.2.3.2.

Table 3-3 below shows register settings for different qualification scenarios. These are
the preferred settings, though it may be possible to achieve the same functionality with
different settings. Table 3-3’s scenarios apply to tag channel 0. Channels 1–3 can be
constrained analogously for those events that use/require them. These and other
scenarios are left as an exercise to the reader.

Table 3-3. Example Processor Event Qualification Modes (Sheet 1 of 2)

Event Qualification Modes PMC settings Constraints Defined By

Unconstrained Monitoring PMC_IAM_CFG.ig_ibrp = 1
PMC_OPM0_MSK.ig_ad = 1
PMC_OPM_CFG.ch0_ig_opc = 1
PMC_DAM_CFG.cfgdtag0 = 0x18

Instruction Address Range
constraint only

PMC_IAM_CFG.ig_ibrp = 0
PMC_OPM0_MSK.ig_ad = 0
PMC_OPM_CFG.ch0_ig_opc = 1
PMC_DAM_CFG.cfgdtag0 = 0x08

IBRP0

Opcode constraint only PMC_IAM_CFG.ig_ibrp = 1
PMC_OPM0_MSK.ig_ad = 1
PMC_OPM_CFG.ch0_ig_opc = 0
PMC_DAM_CFG.cfgdtag0 = 0x08

PMC_OPM0_MSK
PMC_OPM0_MAT

Instruction Address Range and
Opcode constraints

PMC_IAM_CFG.ig_ibrp = 0
PMC_OPM0_MSK.ig_ad = 0
PMC_OPM_CFG.ch0_ig_opc = 0
PMC_DAM_CFG.cfgdtag0 = 0x08

IBRP0
PMC_OPM0_MSK
PMC_OPM0_MAT

Data Address Range constraint
only

PMC_IAM_CFG.ig_ibrp = 1
PMC_OPM0_MSK.ig_ad = 1
PMC_OPM_CFG.ch0_ig_opc = 1
PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = 0xF0

DBRP0

Data Reference Type constraint
only

PMC_IAM_CFG.ig_ibrp = 1
PMC_OPM0_MSK.ig_ad = 1
PMC_OPM_CFG.ch0_ig_opc = 1
PMC_DAM_CFG.cfgdtag0 = 0x18

PMC_DAM_CFG.typemask

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 97
Reference Manual for Software Development and Optimization Guide

Note: Event address range and optype qualification when PMC.all is set will only produce
expected results if both threads’ constraints are programmed identically. Per-monitor
constraints are applied to the originating thread’s state.

Note: Similarly, to correctly constrain floating events (indicated by the “F” threading attribute
in the event tables), both threads’ constraints must be programmed identically.

3.2.3.2 Privilege Level Constraints

To provide hardware support for various combinations of privilege levels and interrupt
handlers, the Itanium architecture specifies three global bits (PSR.up, PSR.pp, DCR.pp)
and a per-monitor "privileged monitor" bit (PMCi.pm). To break down the performance
contributions of operating system and user-level application components, each monitor
specifies a 4-bit privilege level mask (PMCi.plm). The mask is compared to the current
privilege level in the processor status register (PSR.cpl), and event counting is enabled
if PMCi.plm[PSR.cpl] is one. The processor performance monitors control is discussed in
Section 3.3.1.

PMC registers can be configured as user-level monitors (PMCi.pm is 0) or system-level
monitors (PMCi.pm is 1). A user-level monitor is enabled whenever PSR.up is one.
PSR.up can be controlled by an application using the sum/rum instructions. This allows
applications to enable/disable performance monitoring for specific code sections. A
system-level monitor is enabled whenever PSR.pp is one. PSR.pp can be controlled at
privilege level 0 only by way of the ssm/rsm instructions, which allows monitor control
without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This
allows events generated during interruptions to be broken down separately: if DCR.pp
is 0, events during interruptions are not counted; if DCR.pp is 1, they are included in
the kernel counts.

As shown in Figure 3-6, Figure 3-7, and Figure 3-8, single process, multi-process, and
system-level performance monitoring are possible by specifying the appropriate
combination of PSR and DCR bits. These bits allow performance monitoring to be
controlled entirely from a kernel level device driver, without explicit operating system
support. Once the desired monitoring configuration has been set up in a process'
processor status register (PSR), "regular" unmodified operating context switch code
automatically enables/disables performance monitoring.

Instruction and Data Address
Range constraints

PMC_IAM_CFG.ig_ibrp = 0
PMC_OPM0_MSK.ig_ad = 0
PMC_OPM_CFG.ch0_ig_opc = 1
PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = 0xE0

IBRP0
DBRP0

Opcode and Data Address Range
constraints

PMC_IAM_CFG.ig_ibrp = 1
PMC_OPM0_MSK.ig_ad = 1
PMC_OPM_CFG.ch0_ig_opc = 0
PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = 0xE0

PMC_OPM0_MSK
PMC_OPM0_MAT
DBRP0

Instruction Address, Opcode,
Data Address and Data Reference
Type constraints

PMC_IAM_CFG.ig_ibrp = 0
PMC_OPM0_MSK.ig_ad = 0
PMC_OPM_CFG.ch0_ig_opc = 0
PMC_DAM_CFG.cfgdtag0 = 0xE0

IBRP0
PMC_OPM0_MSK
PMC_OPM0_MAT
DBRP0
PMC_DAM_CFG.typemask

Table 3-3. Example Processor Event Qualification Modes (Sheet 2 of 2)

Event Qualification Modes PMC settings Constraints Defined By

Core Performance Monitoring

98 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

With support from the operating system, individual per-process breakdown of event
counts can be generated as outlined in the performance monitoring chapter of the
Intel® Itanium® Architecture Software Developer's Manual.

Figure 3-6. Single Process Monitor

Figure 3-7. Multiple Process Monitor

User-level, cpl=3
(Application)

Kernel-level, cpl=0
(OS)

Interrupt -level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA.up =1, others 0
PMC.pm = 0

PMC.plm = 1000
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel-level, cpl=0
(OS)

Interrupt -level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA.up =1, others 0
PMC.pm = 0

PMC.plm = 1001
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel -level, cpl=0
(OS)

Interrupt-level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA.pp =1, others 0
PMC.pm = 1

PMC.plm = 1001
DCR.pp = 1

User-level, cpl=3
(Application)

Kernel-level, cpl=0
(OS)

Interrupt -level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA/B .up =1, others 0
PMC.pm = 0

PMC.plm = 1000
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel-level, cpl=0
(OS)

Interrupt -level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA/B.up =1, others 0
PMC.pm = 0

PMC.plm = 1001
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel -level, cpl=0
(OS)

Interrupt-level, cpl=0
(Handlers)

Proc A Proc B Proc C

PSRA/B.pp =1, others 0
PMC.pm = 1

PMC.plm = 1001
DCR.pp = 1

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 99
Reference Manual for Software Development and Optimization Guide

3.2.3.3 Virtual Machine State Constraints

To break down the performance contributions of virtual machine operation, each
monitor specifies a 2-bit virtual machine state mask (PMCi.vm). The mask is compared
to the current virtual machine state (PSR.vm) and event counting is enabled
accordingly. The processor performance monitors control is discussed in Section 3.3.1.

3.2.3.4 Power State Constraints

To allow for halted state accounting, the processor provides a count halted event count
qualifier (PMCi.ch) that enables counting during low-power halted state.

3.2.3.5 Instruction Set Constraints

Instruction set constraint is not supported in the processor.

3.2.4 References
• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, "gprof: A Call Graph

Execution Profiler", Proceedings SIGPLAN'82 Symposium on Compiler Construction;
SIGPLAN Notices; Vol. 17, No. 6, pp. 120–126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, "Cache Profiling and the SPEC
benchmarks: A Case Study", Tech Report 1164, Computer Science Dept., University
of Wisconsin – Madison, July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, "PC Software Performance
Tuning", IEEE Computer, Vol. 29, No. 8, pp. 47–54, August 1996.

• [WinNT] Russ Blake, "Optimizing Windows NT(tm)", Volume 4 of the Microsoft
"Windows NT Resource Kit for Windows NT Version 3.51", Microsoft Press, 1995.

Figure 3-8. System Wide Monitor

User-level, cpl=3
(Application)

Kernel -level, cpl=0
(OS)

Interrupt-level, cpl=0
(Handlers)

Proc A Proc B Proc C

All PSR.up =1
PMC.pm = 0

PMC.plm = 1000
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel -level, cpl=0
(OS)

Interrupt-level, cpl=0
(Handlers)

Proc A Proc B Proc C

All PSR.up =1
PMC.pm = 0

PMC.plm = 1001
DCR.pp = 0

User-level, cpl=3
(Application)

Kernel -level, cpl=0
(OS)

Interrupt -level, cpl=0
(Handlers)

Proc A Proc B Proc C

All PSR.pp =1
PMC.pm = 1

PMC.plm = 1001
DCR.pp = 1

Core Performance Monitoring

100 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3 Performance Monitor State
IA64 Performance Monitoring architecture described in Section 12 and Section 7.2.1 of
Volume 2 of the Intel® Itanium® Architecture Software Developer's Manual IA64
defines two sets of performance monitor registers; Performance Monitor Configuration
(PMC) registers to configure the monitoring and Performance Monitor Data (PMD)
registers to provide data from the monitors. Additionally, the architecture allows for
architectural as well as model specific registers. Complying with this architectural
definition, the processor provides both kind of PMCs and PMDs. The processor provides
16 48-bit performance counters (PMC/PMD4–19 pairs), and a set of model-specific
monitoring registers.

The table below defines the PMC/PMD register assignments for each monitoring
feature. The interrupt status registers are mapped to PMC0–3. The 16 generic
performance counter pairs are assigned to PMC/PMD4–19. The Event Address Registers
(EARs) and the Execution Trace Buffer (ETB) are controlled by their respective
configuration registers in PMC space. Captured event addresses and cache miss
latencies are accessible to software through event address data registers and a
execution trace buffer, addressed in PMD space. On the processor, monitoring of some
events can additionally be constrained to a programmable instruction address range,
by appropriately setting the instruction breakpoint registers (IBR) and the instruction
address range check register (PMC_IAM_CFG) and turning on the checking mechanism
in the opcode matchers. Two opcode match register sets and an opcode match
configuration register allow some events to be further qualified with a programmable
opcode mask. For memory operations, events can subsequently be qualified by a
programmable data address range by appropriate setting of the data breakpoint
registers (DBRs) and the data address range configuration register as well as by data
reference type.

Since the processor is capable of running two threads, it provides the illusion of having
two processors by providing exactly the same set of performance monitoring features
and structures separately for each thread.

Table 3-4. Processor Performance Monitor Register Set (Sheet 1 of 2)

Monitoring Feature Configuration
Registers (PMC) Data Registers (PMD) Description

Interrupt Status PMC0,1,2,3 none See Section 3.3.4, “Performance Monitor
Overflow Status Registers (PMC0,1,2,3)”

Event Counters PMC4–19 PMD4–19 See Section 3.3.2, “Performance Counter
Registers”

Instruction Address
Match

PMC_IAM_CFG none See Section 3.3.5, “Instruction Address Range
Matching”

Opcode Matching PMC_OPM_CFG
PMC_OPM0_MSK
PMC_OPM0_MAT
PMC_OPM1_MSK
PMC_OPM1_MAT

none See Section 3.3.6, “Opcode Match Check”,

Data Address Range
Match

PMC_DAM_CFG none See Section 3.3.7, “Data Address Range
Matching (PMC_DAM_CFG)”

Data Reference Type
Match

PMC_DAM_CFG none See Section 3.3.8, “Data Reference Type
Matching (PMC_DAM_CFG)”

Instruction EAR PMC_IEAR_CFG PMD_IEAR_STAT
PMD_IEAR_IADDR

See Section 3.3.9, “Event Address Registers”

Data EAR PMC_DEAR_CFG PMD_DEAR_STAT
PMD_DEAR_IADDR
PMD_DEAR_DADDR

See Section 3.3.11, “Data Cache EAR”

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 101
Reference Manual for Software Development and Optimization Guide

This document refers to the non-generic PMCs and PMDs by their functional names
rather than the PMC/PMD numbers; the table below is intended to serve as a cross
reference.

The figure below gives an overview of the processor Performance Monitor register map:

Branch Trace Buffer PMC_ETB_CFG PMD_ETB_BUFIDX
PMD_ETB0–23
PMD_ETBEXT0–23

See Section 3.3.12, “Execution Trace Buffer”

Retired IP EAR PMC_IPEAR_CFG PMD_ETB_BUFIDX
PMD_ETB0–23
PMD_ETBEXT0–23

See Section 3.3.12.2, “IP Event Address
Capture (IP-EAR)”

Thread Switch EAR PMC_IPEAR_CFG
PMC_BEMT_CTL

PMD_ETB_BUFIDX
PMD_ETB0–23
PMD_ETBEXT0–23

See Section 3.3.12.3, “IP-EAR User Guide”

Table 3-4. Processor Performance Monitor Register Set (Sheet 2 of 2)

Monitoring Feature Configuration
Registers (PMC) Data Registers (PMD) Description

Table 3-5. Processor Implementation Specific PMC/PMD Numbering

Feature Functional Name PMC/PMD Notes

Instruction EAR PMC_IEAR_CFG PMC32 Instruction Cache EAR Configuration

PMD_IEAR_STAT PMD32 Instruction Cache EAR Status

PMD_IEAR_IADDR PMD33 Instruction Cache EAR Instruction Address

Data EAR PMC_DEAR_CFG PMC34 Data Cache EAR Configuration

PMD_DEAR_STAT PMD34 Data Cache EAR Status

PMD_DEAR_DADDR PMD35 Data Cache EAR Data Address

PMD_DEAR_IADDR PMD36 Data Cache EAR Instruction Address

Execution Trace Buffer PMC_ETB_CFG PMC37 ETB Configuration

Retired IP-EAR PMC_IPEAR_CFG PMC38 IP-EAR Configuration

PMC_ETB_BUFIDX PMD37 ETB/IP-EAR Buffer Index

PMD_ETB0–23 PMD64–87 ETB/IP-EAR Buffer

PMD_ETBEXT0–23 PMD128–151 ETB/IP-EAR Buffer Extension

Opcode Matching PMC_OPM0_MSK PMC40 Opcode Matcher 0 Mask Register

PMC_OPM0_MAT PMC41 Opcode Matcher 0 Match Register

PMC_OPM1_MSK PMC42 Opcode Matcher 1 Mask Register

PMC_OPM1_MAT PMC43 Opcode Matcher 1 Match Register

Instruction Address Matching PMC_IAM_CFG PMC48 Instruction Address Matcher Configuration

Opcode Matching PMC_OPM_CFG PMC49 Opcode Matcher Configuration

Data Address Matching PMC_DAM_CFG PMC50 Data Address Matcher Configuration

Interrupt Event Mask PMC_IVAEV_MSK PMC52 Interrupt Event Configuration

Thread State Event Control PMC_BEMT_CTL PMC53 Thread State Event Configuration

Core Performance Monitoring

102 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.1 Performance Monitor Control and Accessibility
As in other Intel Itanium processors, in the processor event collection is controlled by
the Performance Monitor Configuration (PMC) registers and the processor status
register (PSR). Five PSR fields (PSR.up, PSR.pp, PSR.cpl, PSR.vm and PSR.sp) and the
performance monitor freeze bit (PMC0.fr) affect the behavior of all performance
monitor registers.

Per-monitor control is provided by three PMC register fields (PMCi.plm, PMCi.vm, and
PMCi.pm). Event collection for a monitor is enabled under the following constraints on
the processor:

vmmatch = PMCi.vm[PSR.vm] OR PMCi.vm == 0

Monitor Enablei = (not PMC0.fr) and
PMCi.plm[PSR.cpl] and

vmmmatch] and

((not PMCi.pm and PSR.up) or

(PMCi.pm and PSR.pp)) and

Figure 3-9. Processor Performance Monitor Register Mode

Opcode Match
Conf. Regs.

pmc 40
pmc 41
pmc 42
pmc 43

D- Cache EAR Data
pmd34
pmd35
pmd36

I- Cache EAR Config
pmc32

I- Cache EAR Data
pmd32
pmd33

Perf . Counter
Conf. Regs.

pmc 4
pmc 5
- - - - -
pmc19

Perf. Counter
Data Regs.

pmd4
pmd 5
- - - - -
pmd19

ETB/ IP- EAR Data
pmd 64
pmd 65
- - - - -
pmd 87

Perf. Counter Overflow
Status Regs.

pmc 0
pmc 1
pmc 2
pmc 3

Perf. Mon. Vector Reg.
PMV

Default Conf. Reg.
DCR

Processor Status Reg.
PSR

 9500 series
Perform ance Monitoring

Generic Reg. Set

Specific Perform ance
Monitoring Reg. SetD- Cache EAR Config

pmc34

ETB/IP- EAR Index
pmd37

ETB Config
pmc 37

IP- EAR Config
pmc 38

ETB/IP- EAR Ext Data
pmd 128
pmd 129

- - - - -
pmd 151

Filter Conf. Regs
pmc 48
pmc 49
pmc 50

Interrupt Event Conf
pmc 52

BE MT Conf
pmc 53

9500 series

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 103
Reference Manual for Software Development and Optimization Guide

(not halted or PMCi.ch)

Figure 3-10 defines the PSR control fields that affect performance monitoring. For a
detailed definition of how the PSR bits affect event monitoring and control accessibility
of PMD registers, please refer to Section 3.3.2 and Section 7.2.1 of Volume 2 of the
Intel® Itanium® Architecture Software Developer's Manual.

Table 3-6 defines per monitor controls that apply to PMC4–19,32,34,37,38. As defined in
Table 3-4, “Processor Performance Monitor Register Set", each of these PMC registers
controls the behavior of its associated performance monitor data registers (PMD). The
processor model-specific PMD registers associated with instruction/data EARs and the
branch trace buffer should be read only when event monitoring is frozen (PMC0.fr is
one).

Any PMC fields labeled "ignore" or "ig" are ignored on writes and should be treated as
don’t care on reads.

3.3.1.1 Notes on the Execution Trace Buffer

3.3.2 Performance Counter Registers
Performance Monitors are not shared between hardware threads. Each hardware
thread has its own set of 16 generic performance counter (PMC/PMD4–19) pairs.

Figure 3-10. Processor Status Register (PSR) Fields for Performance Monitoring

rv
ot
hupotherreservedotherspppotherreserved

cpl

31 28 27 22 21 20 19 13 12 6 5 3 2 1 0

otherreserved

33 3234454763

v
m

46

Table 3-6. Performance Monitor PMC Register Control Fields (PMC4–19)

Field Bits Description

vm 34:33 Virtual machine mask — Controls performance monitor operation relative to the virtual machine state. Each
of the two bits corresponds to one of the states of PSR.vm. A mask bit value of 1 indicates that the monitor is
enabled at that vm state.
01 — enable when psr.vm is off
10 — enable when psr.vm is set
11/00 — enable regardless of psr.vm

pm 6 Privileged monitor — When 0, the performance monitor is configured as a user monitor and enabled by
PSR.up. When PMC.pm is 1, the performance monitor is configured as a privileged monitor, enabled by
PSR.pp, and PMD can only be read by privileged software. Any read of the PMD by non-privileged software in
this case will return 0.

plm 3:0 Privilege Level Mask — Controls performance monitor operation for a specific privilege level. Each bit
corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege level 0, bit 1 with privilege
level 1, etc. A bit value of 1 indicates that the monitor is enabled at that privilege level. Writing zeros to all
plm bits effectively disables the monitor.
NOTE: With plm set to 0, the processor may not preserve the value of the corresponding PMD register(s).

Core Performance Monitoring

104 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

PMC/PMD pairs are not entirely symmetrical in their ability to count events. Please refer
to Section 3.3.3 for more information.

The figure and table below define the layout of the processor Performance Counter
Configuration Registers (PMC4–19). The main task of these configuration registers is to
select the events to be monitored by the respective performance monitor data
counters. The event selection (es) and unit mask (umask) in the PMC registers perform
the selection of the event. The rest of the fields in PMCs specify under what conditions
the counting should be done (plm, pm, vm, ch, all), how the counter should be
incremented (thresh), and what needs to be done if the counter overflows (oi).

The figure and table below the layout of the processor Performance Counter Data
Registers (PMD4–19). A counter overflow occurs when the counter wraps (i.e., a carry
out from bit 46 is detected). Software can force an external interruption or external
notification after N events by preloading the monitor with a count value of 247 − N.

When accessible, software can continuously read the performance counter registers
PMD4–19 without disabling event collection. Any read of the PMD from software without
the appropriate privilege level will return 0 (See "plm" in table above). The processor
ensures that software will see monotonically increasing counter values.

Figure 3-11. Processor Generic PMC Registers (PMC4–19)

Table 3-7. Processor Generic PMC Register Fields (PMC4–19)

Field Bits Description

all 35 All threads; This bit selects whether or not to monitor just the self thread or both threads.
If 1, events from both threads are monitored; If 0, only self thread is monitored.

vm 34:33 Virtual Machine Mask — This field control counting based on the psr.vm filed value.

ch 32 Count Halted state — if this bit is set, counting during low-power halted state is enabled

thresh 23:20 Threshold — Enables thresholding for "multi-occurrence" events. When threshold is zero, the
counter sums up all observed event values. When the threshold is non-zero, the counter increments
by one in every cycle in which the observed event value exceeds the threshold.

umask 19:16 Unit Mask — Combined with .es selects the performance event to be monitored.

es 15:8 Event select — Combined with .umask selects the performance event to be monitored.

pm 6 Privileged Monitor. See Table 3-6.

oi 5 Overflow interrupt — When 1, a Performance Monitor Interrupt is raised and the performance
monitor freeze bit (PMC0.fr) is set when the monitor overflows. When 0, no interrupt is raised and
the performance monitor freeze bit (PMC0.fr) remains unchanged. Counter overflows generate only
one interrupt. Setting the corresponding PMC0 bit on an overflow will be independent of this bit.

plm 3:0 Privilege Level Mask. See Table 3-6.

35

plmrs
v

oip
m

igesumaskthresh

034567816 15192023

4 4 8 4

igig all

3233

vm ch

34

2

Figure 3-12. Processor Generic PMD Registers (PMD4–19)

Countig

0464763

17 47

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 105
Reference Manual for Software Development and Optimization Guide

3.3.3 Performance Monitor Event Counting Restrictions
Overview
Similar to other Itanium processors, not all performance monitoring events can be
monitored using any generic performance monitor counters (PMD4–19). The following
need to be noted when determining which counter to be used to monitor events.

The processor supports a large number of performance events that are collected in a
decentralized manner. Many constraints posed by previous Intel Itanium generations
were eliminated. In turn, the processor poses some restriction in terms of counter
associativity.

Each events counter affinity is indicated by the counter affinity field in the event
description table. The field is a hexadecimal number, where a set bit i indicates that
PMC/PMD pair i can count the event. For example, a value of 0x05550 means PMD14,
12, 10, 8, 6 and 4 can count this particular event.

The associativity was designed to allow significant flexibility.

More details can be found in the Performance Monitor Event Section (Appendix 4.1.5).

3.3.4 Performance Monitor Overflow Status Registers
(PMC0,1,2,3)
As previously mentioned, the processor supports 16 performance monitoring counters
per thread. The overflow status of these 16 counters is indicated in register PMC0. As
shown in the figure and table below, only PMC0[19:4,0] bits are populated. All other
overflow bits are ignored, i.e., they read as zero and ignore writes.

Table 3-8. Processor Generic PMD Register Fields

Field Bits Description

count 46:0 Event Count. The counter is defined to overflow when the count field wraps (carry out from bit 46).

Figure 3-13. Processor Performance Monitor Overflow Status Registers (PMC0,1,2,3)

frigOverflowig

0134192063

31648

ig (PMC1)

ig (PMC2)

ig (PMC3)

Core Performance Monitoring

106 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.5 Instruction Address Range Matching
The processor allows event monitoring to be constrained to a range of instruction
addresses. Once programmed with these constraints, only the events generated by
instructions with their addresses within this range are counted using PMD4–19 and
tracked by the instruction cache, data cache and IP EAR as well as the ETB. The four
architectural Instruction Breakpoint Register Pairs IBRP0–3 (IBR0–7) are used to specify
the desired address ranges. Using these IBR pairs it is possible to define up to 4
different address ranges (or 2 address ranges in "fine mode") that can be used to
qualify event monitoring.

Once programmed, each of these 4 address restrictions can be applied separately to all
events that are identified to do so. The event, IA64_INST_RETIRED, is the only event
that can be constrained using any of the four address ranges. Events described as
instruction prefetch events can only be constrained using the address range 2 (IBRP1).
All other events can only use the first address range (IBRP0) and this range will be
considered as the default for this section.

In addition to constraining events based on instruction addresses, the processor allows
event qualification based on the opcode of the instruction, and, if applicable, the data
reference address and data reference type. These are done by applying these
constraints to the same 4 instruction address ranges described in this section. These
features are explained in Section 3.3.6, “Opcode Match Check”, Section 3.3.7, “Data
Address Range Matching (PMC_DAM_CFG)”, and Section 3.3.8, “Data Reference Type
Matching (PMC_DAM_CFG)”. See also Section 4.2.7.2, “Asynchronous Data References
and Event Matching Constraints” for important information regarding opcode matching
and data reference events.

3.3.5.1 PMC_IAM_CFG

The Performance Monitoring Instruction Address Match Configuration register is the
main control register for Instruction Address Range matching feature. In addition to
this register, PMC_OPM0_MSK also controls certain aspects of this feature as explained
below.

Figure 3-14 and Table 3-10 describe the fields of PMC_IAM_CFG.

Instruction address range checking is controlled by the "ignore address range check"
bit (PMC_OPM0_MSK.ig_ad and PMC_IAM_CFG.ig_ibrp0). When
PMC_OPM0_MSK.ig_ad is one (or PMC_IAM_CFG.ig_ibrp0 is one), all instructions are

Table 3-9. Processor Performance Monitor Overflow Register Fields (PMC0,1,2,3)

Register Field Bits Description

PMC1,2,3 ig 63:0 Read zero, Writes ignored.

PMC0 ig 63:20 Read zero, Writes ignored.

PMC0 overflow 19:4 Event Counter Overflow — When bit n is one, indicate that the PMDn overflowed. This
is a bit vector indicating which performance monitor overflowed. These overflow bits
are set on their corresponding counters overflow regardless of the state of the PMC.oi
bit. Software may also set these bits. These bits are sticky and multiple bits may be
set.

PMC0 ig 3:1 Read zero, Writes ignored.

PMC0 fr 0 Performance Monitor "freeze" bit — When 1, event monitoring is disabled. When 0,
event monitoring is enabled. This bit is set by hardware whenever a performance
monitor overflow occurs and its corresponding overflow interrupt bit (PMC.oi) is set to
one. SW is responsible for clearing it. When the PMC.oi bit is not set, then counter
overflows do not set this bit.

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 107
Reference Manual for Software Development and Optimization Guide

included (i.e. un-constrained) regardless of IBR settings. When both
PMC_OPM_CFG.ig_ad and PMC_IAM_CFG.ig_ibrp0 are zero, the instruction address
range check based on the IBRP0 settings is applied to all Itanium code fetches.

The processor compares every Itanium instruction fetch address IP{63:0} against the
address range programmed into the architectural instruction breakpoint register pair
IBRP0. Regardless of the value of the instruction breakpoint fault enable (IBR x-bit),
the following expression is evaluated for the processor's IBRP0:

match(IP, PSR.cpl, IBR0.addr, IBR1.mask, IBR1.plm) =
(IP[63:56] == IBR0.addr[63:56]) &&
((IP[55:4] & IBR1.mask[55:4]) == (IBR0.addr[55:4] & IBR1.mask[55:4])) &&
(IBR1.plm[PSR.cpl] == 1)

For further details refer to chapter 7 in the 2.3 Intel® Itanium® Architecture Software
Developer’s Manual.

The events which occur before the instruction dispersal stage will fire only if this
qualified match (IBRmatch) is true. This qualified match will be combined with the
result of Opcode Matcher 0 PMC_OPM0_MSK, PMC_OPM0_MAT before being passed
down the pipeline. The events which occur after instruction dispersal stage will use this
new qualified match (IBRP0-OpCode0 match).

Figure 3-14. Instruction Address Range Configuration Register (PMC_IAM_CFG)

Table 3-10. Instruction Address Range Configuration Register Fields

Field Bits Description

pte 15 Prefetch Tag Enable — Enable RIL tagging of instruction prefetches.
If set, this bit causes the ring interface logic to tag all instruction prefetches sourced by the MLI.

fine 13 Enable fine-mode address range checking (non power of 2)
1: IBRP0,2 and IBRP1,3 are paired to define two address ranges
0: Normal mode
If set to 1, IBRP0 and IBRP2 define the lower and upper limits for address range 0 respectively;
Similarly, IBRP1 and IBRP3 define the lower and upper limits for address range 1.
Bits [63:16] of upper and lower limits need to be exactly the same but could have any value.
Bits[15:4] of upper limit needs to be greater than bits[15:4] of lower limit. If an address falls in the
range defined by and including the upper and lower limits, then a match will be signaled only in
address ranges 0 or 1. Any event qualification based on address ranges 2 and 3 are not defined.
NOTE:
The mask bits programmed in IBRs 1,3,5,7 for bits [15:4] have no effect in this mode.
When using fine mode address range 0, it is necessary to program both
MC_IAM_CFG.ig_ibrp0,ig_brp2 to 0. Similarly, when using address range 1, it is necessary to set
both PMC_IAM_CFG.ig_ibrp1,ig_ibrp3 to 0.

ig_ibrp3 10 1: No constraint
0: Address range 3 based on IBRP3 is enabled

ig_ibrp2 7 1: No constraint
0: Address range 2 based on IBRP2 is enabled

ig_ibrp1 4 1: No constraint
0: Address range 1 based on IBRP1 is enabled

ig_ibrp0 1 1: No constraint
0: Address range 0 based on IBRP0 is enabled

1063

igibrp0

01

igibrp1igibrp2igibrp3igfineig

3 245678911121314

pte

15

ig

Core Performance Monitoring

108 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The IBRP0 match is generated in the following fashion. Note that unless fine mode is
used, arbitrary range checking cannot be performed since the mask bits are in powers
of 2. In fine mode, two IBR pairs are used to specify the upper and lower limits of a
range within a 64kB region (the upper bits of lower and upper limits must be exactly
the same).

 if PMC_IAM_CFG.Fine=0,
 IBRmatch0 = match(IP(63:0), PSR.cpl, IBR0(63:0), IBR1(55:0), IBR1.plm)
 else,
 IBRmatch0 = match (IP(63:16), PSR.cpl, IBR0(63:16), IBR1(55:16), IBR1.plm)
 and (IP(15:4) >= IBR0(15:4))
 and (IP(15:0) <= IBR4(15:4))

 ibrp0match = (PMC_OPM0_MSK.ig_ad and
 PMC_IAM_CFG.ig_ibrp0) or
 IBRmatch0

The instruction range checking considers the address range specified by IBRPi only if
PMC_OPM0_MSK.ig_ad(for i=0) and PMC_IAM_CFG.ig_ibrpi are 0.

3.3.5.2 Use of IBRP0 for Instruction Address Range Check — Exception 1

The address range constraint for instruction prefetch events is on the target address of
these events rather than the address of the prefetch instruction. Therefore, IBRP1 must
be used for constraining these events. Calculation of IBRP1 match is the same as that
of IBRP0 match with the exception that we use IBR2,3,6 instead of IBR0,1,4.

3.3.5.3 Use of IBRP0 for Instruction Address Range Check — Exception 2

The Address Range Constraint for RETIRED_INST_TAGGED event uses all four IBR pairs
with a distinct subevent for each pair. Calculation of IBRP2 match is the same as that of
IBRP0 match with the exception that IBR4,5 (in non-fine mode) are used instead of
IBR0,1. Calculation of IBRP3 match is the same as that of IBRP1 match with the
exception that we use IBR6,7 (in non-fine mode) instead of IBR2,3.

The instruction range check tag is computed early in the processor pipeline and
therefore includes speculative, wrong-path as well as predicated off instructions.

As described in Section 3.2.3.1, “Combining Instruction Address, Opcode, Data Address
and Memory Reference Type Matching”, the instruction range check result may be
combined with the results of the IA-64 opcode match registers described in the next
section.

3.3.5.4 Fine Mode Address Range Check

In addition to providing coarse address range checking described above, the processor
can be programmed to perform address range checks in fine mode. The processor
provides the use of two address ranges for fine mode. The first range is defined using
IBRP0 and IBRP2 while the second is defined using IBRP1 and IBRP3. When properly
programmed to use address range 0, all performance monitoring events that have been
indicated to be able to qualify with IBRP0 would now qualify with this new address
range (defined collectively by IBRP0 and IBRP2). Similarly, when using the address
range 1, all events that could be qualified with IBRP1, now get qualified with this new
address range.

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 109
Reference Manual for Software Development and Optimization Guide

A user can configure the processor PMU to use fine mode address range 0 by following
these steps:

• Program IBRP0 and IBRP2 to define the instruction address range.

• Program PMC_OPM0_MSK[ig_ad,inv] = '00 to turn off default tags injected into tag
channel 0

• Program PMC_IAM_CFG[ig_ibrp0,ig_ibrp2] = '00 to turn on address tagging based
on IBRP0 and IBRP2.

• Program PMC_IAM_CFG.fine = 1

Similarly, a user can configure the processor PMU to use fine mode address range by
following the same steps as above but this time with IBRP1 and 3. The only exception is
that PMC_OPM1_MSK.[ig_ad,inv] need not be programmed.

3.3.6 Opcode Match Check
As shown in Figure 3-5, event monitoring can be constrained based on the Itanium
encoding of an instruction. Registers PMC_OPM{0,1}_{MSK,MAT} and PMC_OPM_CFG
allow configuring this feature. In the processor, registers PMC_OPM0_MSK,
PMC_OPM0_MAT and PMC_OPM1_MSK, PMC_OPM1_MAT define 2 opcode matchers
(Opcode matcher 0 (OpM0) and Opcode Matcher 1 (OpM1)). Register PMC_OPM_CFG
controls how to apply opcode range checking to the four instruction address ranges
defined by using IBRPs.

(See Section 4.2.7.2, “Asynchronous Data References and Event Matching Constraints”
for important information regarding opcode matching and data reference events.)

3.3.6.1 PMC_OPM{0,1}_{MSK,MAT}

Figure 3-15, Figure 3-16 and Table 3-11, Table 3-12 describe the fields of the opcode
matcher mask and match registers. Figure 3-17 and Table 3-13 describes the opcode
matcher configuration register.

All combinations of setting for PMC_OPMx_MSK.{m,i,f,b} are supported. To match a A-
slot instruction, it is necessary to set both PMC_OPMx_MSK.{m,i} to 1. To match all
instruction types, all of PMC_OPMx_MSK.{m,i,f,b} should be set to 1. To ensure that all
events are counted independent of the opcode matcher, all mifb and all mask bits of
PMC_OPMx_MSK should be set to 1 (all opcodes match) while keeping the inv bit
cleared.

Once the opcode matcher constraints are generated, they are ANDed with the address
range constraints available on 4 IBRP channels to form 4 combined address range and
opcode match ranges as described. The constraints defined by OpM0 are ANDed with
address constraints defined by IBRP0 and IBRP2 to form combined constraints for
channels 0 and 2. Similarly, the constraints defined by OpM1 are ANDed with address
constraints defined by IBRP1 and IBRP3 to form combined constraints for channels 1
and 3.

Figure 3-15. Opcode Matcher Mask Registers

ig_ad inv ig m i f b ig maskig

040414748495051525556575863

4 7 414

Core Performance Monitoring

110 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.6.2 PMC_OPM_CFG

The Performance Monitoring Configuration register PMC_OPM_CFG controls whether or
not to apply opcode matching in event qualification. As mentioned earlier, opcode
matching is applied to the four instruction address ranges defined by using IBRPs.

Table 3-11. Opcode Matcher Mask Register Fields

Field Bits Description

ig_ad 57 Ignore Instruction Address Range Checking for tag channel0
If set to 1, all instruction addresses are considered for events.
If 0, IBRs 0–1 will be used for address constraints.
NOTE: This bit is not implemented in PMC_OPM1_MSK, but behaves as if set to 0.

inv 56 Invert Range Check. for tag channel 0
If set to 1, the address ranged specified by IBRP0 is inverted. Effective only when ig_ad bit is set to 0.
NOTE: This bit is not implemented in PMC_OPM1_MSK, but behaves as if set to 0.

m 51 If 1: match if opcode is an M-slot

i 50 If 1: match if opcode is an I-slot

f 49 If 1: match if opcode is an F-slot

b 48 If 1: match if opcode is an B-slot

mask 40:0 Bits that mask Itanium® instruction encoding bits. Any of the 41 syllable bits can be selectively masked.
If mask bit is set to 1, the corresponding opcode bit is not used for opcode matching.

Figure 3-16. Opcode Matcher Match Registers

Table 3-12. Opcode Matcher Match Register Field

Field Bits Description

match 40:0 Opcode bits against which to match the Itanium instruction encoding
Each opcode bit has a corresponding bit position here.

matchig

63 41 40 0

23 41

Figure 3-17. Opcode Match Configuration Register

Ch0_ig
_OpC

Ch1_ig
_OpC

Ch2_ig
_OpC

Ch3_ig
_OpCig

63 4 3 2 1 0

60

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 111
Reference Manual for Software Development and Optimization Guide

For opcode matching purposes, an Itanium instruction is defined by two items: the
instruction type "itype" (one of M, I, F or B) and the 41-bit encoding "enco{40:0}"
defined the Intel® Itanium® Architecture Software Developer's Manual. Each
instruction is evaluated against each opcode match register (OpCM0 and OpCM1) as
follows:

 Match(OpCM[i]) = imatch(itype, OpCM[i].mifb) AND
 ematch(enco,OpM[i].match,OpM[i].mask))

Where:

 imatch(itype,OpCMi.mifb) = (itype=M AND PMC_OPMi_MSK.m) OR
 (itype=I AND PMC_OPMi_MSK.i) OR
 (itype=F AND PMC_OPMi_MSK.f) OR
 (itype=B AND PMC_OPMi_MSK.b)

 ematch(enco,match,mask) = AND b=40..0 ((enco{b}=match{b}) OR mask{b})

The IBRP matches are advanced with the instruction pointer to the point where opcodes
are being dispersed. The matches from opcode matchers are ANDed with the IBRP
matches at this point.

This produces two opcode match events that are combined with the instruction range
check tag (IBRRangeTag, see Section 3.3.5, “Instruction Address Range Matching”) as
follows:

 Tag(IBRChnl0) = Match(OpCM0) and IBRRangeTag0
 Tag(IBRChnl1) = Match(OpCM1) and IBRRangeTag1
 Tag(IBRChnl2) = Match(OpCM0) and IBRRangeTag2
 Tag(IBRChnl3) = Match(OpCM1) and IBRRangeTag3

As shown in Figure 3-5, the 4 tags, Tag(IBRChnli; i=0–3) are staged down the
processor pipeline until instruction retirement and can be selected as a retired
instruction count event (see event description "RETIRED_INST_TAGGED"). In this way,
a performance counter (PMC/PMD4–19) can be used to count the number of retired
instructions within the programmed range that match the specified opcode(s).

Table 3-13. Opcode Match Configuration Register Fields

Field Bits Description

ig 63:4 Ignored bits

Ch3_ig_OpC 3 1: Tag channel3 events (RETIRED_INST_TAGGED.IAM3_OPM1) won't be constrained by opcode
0: Tag channel2 events will be opcode constrained by OpM1

Ch2_ig_OpC 2 1: Tag channel2 events (RETIRED_INST_TAGGED.IAM2_OPM0) won't be constrained by opcode
0: Tag channel2 events will be opcode constrained by OpM0

Ch1_ig_OPC 1 1: tag channel1 events (RETIRED_INST_TAGGED.IAM1_OPM1) won't be constrained by opcode
0: tag channel1 events will be opcode constrained by OpM1

Ch0_ig_OPC 0 1: Tag channel0 PMU events will not be constrained by opcode
0: Tag channel0 PMU events (including RETIRED_INST_TAGGED.IAM0_OPM0) will be opcode
constrained by OpM0

Core Performance Monitoring

112 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.7 Data Address Range Matching (PMC_DAM_CFG)
For instructions that reference memory, the processor allows event counting to be
constrained by data address ranges. The 4 architectural Data Breakpoint Registers
(DBRs) can be used to specify the desired data address range. The actual range is
defined as the OR combination of the DBRPs used. For further qualifications selected
via this register, refer to Section 3.3.8, “Data Reference Type Matching
(PMC_DAM_CFG)”. See also Section 4.2.7.2, “Asynchronous Data References and
Event Matching Constraints” for important information regarding data address range
matching and data reference events.

Figure 3-18 and Table 3-14 describe the fields of register PMC_DAM_CFG.

Figure 3-18. Data Address Match Configuration Register

Table 3-14. Memory Pipeline Event Constraints Fields (PMC_DAM_CFG) (Sheet 1 of 2)

Field Bits Description

typemask 63:49 Memory Optype Mask — this is a bit-vector to constrain the filtering for PMU, data EAR, and data
debug triggers to specific memory pipe operations. Any number or combination of these bits may be
set, permitting any arbitrary group of operations to cause triggers. A value of all 0s for this field
indicates that data optype constraints are disabled. However, a value of all 1s will filter out some
operations as the typemask does not represent all memory operations.
Note that this type mask applies to all four DBRs. Matches on specific DBRs are further constrained
by the r and w bits described below.
63 — misc DTB ops (thash, ttag, tak, tpa, probe)
62 — DTB TLB transfers
61 — PTCs and PTRs
60 — snoops
59 — LOAD_HPW
58 — HW_PREF
57 — fc
56 — SEMAPHORE
55 — LFETCH
54 — STORE_RSE
53 — STORE_FP
52 — STORE_INT
51 — LOAD_RSE
50 — LOAD_FP
49 — LOAD_INT

cfgdtag3 31:24 These bits determine whether and how DBRP3 should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRP0; simply add 24 to the bit number in cfgdtag0 to get the corresponding bit
position in cfgdtag3.

cfgdtag2 23:16 These bits determine whether and how DBRP2 should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRP0; simply add 16 to the bit number in cfgdtag0 to get the corresponding bit
position in cfgdtag2.

cfgdtag1 15:8 These bits determine whether and how DBRP1 should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRP0; simply add 8 to the bit number in cfgdtag0 to get the corresponding bit
position in cfgdtag1.

cfg dtag0

63 32 31 24 23 16 15 8 7 0

typemask

49

cfg dtag1cfg dtag2cfg dtag3

48

ignored

inigiienwr ign

034567

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 113
Reference Manual for Software Development and Optimization Guide

Note that the DBRs are overloaded to detect address matches for several different
features. Firmware must ensure that any particular DBR is not configured for two
conflicting uses at the same time.

In particular, in order to allow simultaneous use of some DBRs for Performance
Monitoring and the others for debugging (the architected purpose of these registers),
separate mechanisms are provided for enabling DBRs. For example, the DBR r/w bits
must be cleared to 0 for DBRs which are going to be used for the PMU. PSR.db bit has
no effect when DBRs are used for this purpose.

The various features are listed below, together with the bits which configure a DBR to
be used for that particular feature, and the bits which configure matches for that
feature:

• Architected data debug breakpoint faults:

— enabled by the architected DBRx.r and DBRx.w bits (depending on instruction
type);

— matching addresses are selected via the architected DBRx.addr and DBRx.mask
fields;

— matching privilege levels are selected via the architected DBRx.plm field.
• PMU matches:

x is 0..3, depending on the applicable DBR

— enabled by the rx and wx bits in this register (depending on instruction type);
— matching addresses and privilege levels are selected as described above for

data debug faults, with the addition that bit 0 of the cfgdtagx field in this
register allows the sense of the address match to be inverted;

— matching operations must also be one of the types selected by the typemask
field in this register;

— HOWEVER, if the ignore data match bit (cfgdtagx.id) in this register is set, all of
the above enabling and matching logic is disabled, and a PMU match will be
generated based solely on the inbound syllable tag and master PMU enable bit
(below);

— matching operations must also have a syllable tag, unless the ignore inbound
syllable tag bit (cfgdtagx.ii) is set to ignore syllable tags;

— and the master PMU data match enable bit (cfgdtagx.en) in this register must
be set;

— HOWEVER, if all four cfgdtagx.en bits are zero (which would normally disable
all PMU tagging), all enabling and matching logic is disabled, and every single
operation will match.

cfgdtag0 7:0 These bits determine whether and how DBRP0 should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The individual bits are as
follows:
0 — in: Invert the sense of the address match (i.e. matching addresses will not trigger a DBR
match; all other addresses will cause a DBR match)
3 — id: Ignore the generated data match (data address, privilege, and read/write)
4 — ii: Ignore the inbound syllable tag (instruction address & opcode match)
5 — en: Enable DBRP0 - operations that match DBR0/R0/W0/typemask get tagged for PMU and/or
data EAR
6 — w0:Write bit for PMU, data EAR (enable write type operations to be tagged, analogous to the
DBR.w bit)
7 — r0: Read bit for PMU, data EAR (enables read type operations to be tagged, analogous to the
DBR.r bit

Table 3-14. Memory Pipeline Event Constraints Fields (PMC_DAM_CFG) (Sheet 2 of 2)

Field Bits Description

Core Performance Monitoring

114 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• D-EAR matches:

— All enabling and matching is identical to that described above for PMU matches,
including all of the cfgdtag[x].en qualification; plus

— the operation must also meet the additional qualifications specified in
Section 3.3.11, “Data Cache EAR” for the specific type of data events that are
desired to be captured by the D-EAR.

3.3.8 Data Reference Type Matching (PMC_DAM_CFG)
For instructions that reference memory, the processor allows event counting to be
constrained by data reference type. The following is a list of primary data reference
types:

• LOAD_INT: integer loads (see DATA_REF.LOAD_INT)

• LOAD_FP: floating point loads (see DATA_REF.LOAD_FP)

• LOAD_RSE: RSE loads (see DATA_REF.LOAD_RSE)

• LOAD_HPW: hardware page walker loads (see DATA_REF.LOAD_HPW)

• STORE_INT: integer stores (see DATA_REF.STORE_INT)

• STORE_FP: floating point stores (see DATA_REF.STORE_FP)

• STORE_RSE: RSE stores (see DATA_REF.STORE_RSE)

• SEMAPHORE: semaphores (see DATA_REF.SEMAPHORE)

• LFETCH: software prefetches (see DATA_REF.LFETCH)

• HW_PREF: hardware prefetches (see DATA_REF.HW_PREF and
RIL_REQ_REF_DATA.WB_MLD_BUDDY)

The primary data reference types (see Section 4.2.7.1, “Primary Data Reference
Types”) are more widely supported by a variety of PMU events than the following data
reference types are:

• Cache flushes (fc)

• TLB purges (ptc, ptr)

• Data TLB transfers

• Other Data TLB ops (thash, ttag, tak, tpa, probe)

• Snoops

The data references types to be matched are encoded in PMC_DAM_CFG.typemask as
shown in Table 3-14.

The data reference type match operates independently of, but can be combined with
other types of PMU event counting constraints. See Section 4.2.7.2, “Asynchronous
Data References and Event Matching Constraints” for important information regarding
data reference type matching and data reference events.

3.3.9 Event Address Registers
This section defines the register layout for the processor instruction cache and data
cache event address registers (EARs). Sampling of the following events is supported on
the processor:

• Instruction demand fetch misses

• Instruction TLB misses

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 115
Reference Manual for Software Development and Optimization Guide

• Data cache accesses

• Data TLB accesses

• ALAT operations

The EARs are configured through two PMC registers (PMC_DEAR_CFG and
PMC_IEAR_CFG). The EAR unit masks allow software to specify event collection latency
thresholds to hardware. Instruction and data addresses, operation latencies, request
and response type and other captured event parameters are provided in five PMD
registers (PMD_IEAR_STAT, PMD_IEAR_IADDR, PMD_DEAR_STAT, PMD_DEAR_IADDR,
PMD_DEAR_DADDR). The instruction and data cache EARs report the latency of
captured cache events and allow latency thresholding to qualify event capture. Event
address data registers contain consistent data only when event collection is frozen
(PMC0.fr is one). Reads of EAR PMDs while event collection is enabled return undefined
values.

3.3.10 Instruction Cache EAR
The instruction event address configuration register (PMC_IEAR_CFG) can be
programmed to monitor either L1 instruction cache or instruction TLB miss events.
Figure 3-19 and Table 3-15 detail the register layout of PMC_IEAR_CFG. Table 3-21
describes the associated event address data registers PMD_IEAR_{STAT,IADDR}.

Figure 3-19. Instruction Event Address Configuration Register (PMC_IEAR_CFG)

Table 3-15. Instruction Event Address Configuration Register Fields (PMC_IEAR_CFG)

Field Bits Description

vm 34:33 See Table 3-6

umask 19:16 Instruction EAR unit mask
mode 01: instruction cache unit mask (definition see Table 3-16)
mode 10: instruction TLB unit mask (definition see Table 3-17)

mode 9:8 Instruction EAR mode selector:
00:Not active
01: Instruction cache fetch misses
10: TLB accesses

pm 6 See Table 3-6.

plm 3:0 See Table 3-6.

Table 3-16. PMC_IEAR_CFG.Umask Field in Instruction Cache Mode (Sheet 1 of 2)

Umask
Bits 19:16

Latency Threshold
[CPU cycles]

Umask
Bits 19:16

Latency Threshold
[CPU cycles]

0000 (Any latency) 1000 ≥ 384

0001 ≥ 16 1001 ≥ 512

0010 ≥ 24 1010 ≥ 1024

0011 ≥ 32 1011 ≥ 1536

63 0

ig

2 4

plmp
m

igmodeumask

34567816 919

4

ig igig

33

vm

34

2

Core Performance Monitoring

116 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

When the PMC_IEAR_CFG.mode is set to 01, instruction cache accesses are monitored.
When it is set to 10, instruction TLB misses are monitored. The interpretation of the
umask field depend on the setting of this field and is described in Table 3-16 and
Table 3-17 respectively. The interpretation of the performance monitor data registers
PMD_IEAR_STAT and PMD_IEAR_IADDR is described in Table 3-18 below and the field
validity in the different modes in Table 3-19.

When PMC_IEAR_CFG.mode is ’01, the instruction event address register captures
instruction addresses, access latency, RAB status and responder type for instruction
demand fetch misses. Only accesses whose latency meets or exceed the threshold in
PMC_IEAR_CFG.umask will be captured.

0100 ≥ 64 1100 ≥ 2048

0101 ≥ 96 1101 ≥ 3072

0110 ≥ 128 1110 ≥ 4096

0111 ≥ 256 1111 ≥ 5120

Table 3-17. PMC_IEAR_CFG.Umask Field in Instruction TLB Mode

DTLB Miss Type PMC.umask[19:16] Description

None x000 Disabled; nothing will be counted

All x111 All — any combination valid

FL TLB miss xxx1 L1 ITLB misses

ML TLB miss xx1x L2 ITLB misses

HPW miss x1xx HPW misses

Table 3-16. PMC_IEAR_CFG.Umask Field in Instruction Cache Mode (Sheet 2 of 2)

Umask
Bits 19:16

Latency Threshold
[CPU cycles]

Umask
Bits 19:16

Latency Threshold
[CPU cycles]

Figure 3-20. Instruction Cache EAR Data Registers Format

latencyovstatig (PMD_IEAR_STAT)

16 15 13 12 0

13

63 0

tstat

19 18

resp

35

24 23

ig

Instruction Cache Line Address (PMD_IEAR_IADDR)

63 5 0

60

ig

rh

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 117
Reference Manual for Software Development and Optimization Guide

As defined in Table 3-18, the address of the instruction cache line missed the
instruction cache is provided in PMD_IEAR_IADDR. If no qualified event was captured,
it is indicated in PMD_IEAR_STAT.stat. The latency of the captured instruction cache
miss in CPU clock cycles is provided in PMD_IEAR_STAT.latency.

Table 3-18. Instruction Cache EAR Data Registers Field Descriptions

Register Fields Bit Range Description

PMD_IEAR_STAT rh 24 RAB hit — when set, this field indicates the access hit in the RAB. See for more
on the RAB.

resp 23:19 Responder Type:
0x00: Off core — no information due to “no information”
0x02: MLI hit
0x10: Off core — signaled no information
0x11: non-DRAM socket local system address
0x12: non-DRAM socket remote system address
0x13: non DRAM system address — no details
0x14: LLC hit, minimum latency
0x15: LLC hit, local core snoop required, no forwarding
0x16:LLC hit, local core snoop required, core cache data forwarded
0x17: LLC hit — no details
0x18: local DRAM, no remote snoops
0x19: local DRAM, remote snoops required, no forwarding
0x1A:local DRAM, remote snoops required, remote cache data forwarded
0x1B: local DRAM — no further details
0x1C: remote DRAM, no additional snoops required
0x1D: remote DRAM, additional snoops required, no forwarding
0x1E: remote DRAM, additional snoops required, remote cache data forwarded
0x1F: remote DRAM — no further details

tstat 19:16 TLB Status:
000: no data
001: FL Instruction TLB hit
010: ML Instruction TLB hit
011: HPW hit
100: other — implied page fault

stat 15 Status:
0: No valid information in PMD_IEAR_IADDR and rest of PMD_IEAR_STAT
1: Valid information in PMD_IEAR_*
NOTE: This bit should be cleared before the EAR is reused.

overflow 13 Overflow — If 1, latency counter has overflowed one or more times before data
was returned

latency 12:0 Latency in CPU clocks

PMD_IEAR_IADDR Instruction
Cache Line
Address

63:5 Virtual address of the cache line access

Table 3-19. Instruction EAR Status Register Field Validity in Different Modes

Mode Resp rh tstat stat ov latency

00 (inactive) undef undef undef undef undef undef

01 (I cache load miss mode) valid valid valid valid valid valid

10 (TLB mode) undef undef valid valid undef undef

Core Performance Monitoring

118 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

When PMC_IEAR_CFG.mode is 10, the instruction event address register captures
addresses of instruction TLB misses. The unit mask allows event address collection to
capture specific subsets of instruction TLB misses. Table 3-17 summarizes the
instruction TLB umask settings. All combinations of the mask bits are supported.

3.3.11 Data Cache EAR
The data event address register can be programmed to monitor either data loads, data
stores, data TLB misses, or ALAT misses. Figure 3-21 and Table 3-20 detail the register
layout of PMC_DEAR_CFG. Figure 3-22 describes the associated event address data
registers PMD_DEAR_{STAT,IADDR,DADDR}. The mode bits in PMC_DEAR_CFG select
data cache, data TLB, or ALAT monitoring. The interpretation of the umask field and
registers PMD_DEAR_* depends on the setting of the mode bits and is described in
Section 3.3.11.1, “Data Cache Monitoring” for data cache load monitoring,
Section 3.3.11.2, “Data TLB Monitoring” for data TLB monitoring, and Section 3.3.11.3,
“ALAT Monitoring” for ALAT monitoring.

Figure 3-21. Data Event Address Configuration Register (PMC_DEAR_CFG)

Table 3-20. Data Event Address Configuration Register Fields (PMC_DEAR_CFG)

Field Bits Description

vm 34:33 See Table 3-6

umask 19:16 Data EAR unit mask
mode 01x: data cache unit mask (definition see Table 3-21)
mode 100: data TLB unit mask (definition see Table 3-22)
mode 11x: the field is ignored.

mode 10:8 Data EAR mode selector:
000:Not active
010: Data cache loads
011: Data cache stores
100: TLB accesses
110: ALAT misses
111: ALAT store hits

pm 6 See Table 3-6.

plm 3:0 See Table 3-6.

Table 3-21. PMC_DEAR_CFG.Umask Field in Data Cache Load Mode (010) (Sheet 1 of 2)

umask
Bits 19:16

Latency Threshold
[CPU cycles]

umask
Bits 19:16

Latency Threshold
[CPU cycles]

0000 (Any latency) 1000 ≥ 384

0001 ≥ 4 1001 ≥ 512

0010 ≥ 24 1010 ≥ 1024

0011 ≥ 32 1011 ≥ 1536

0100 ≥ 64 1100 ≥ 2048

63 0

ig

3 4

plmp
m

igmodeumask

34567816 1019

4

ig

33

v
m

igigvm

34

2

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 119
Reference Manual for Software Development and Optimization Guide

For snoops captured in TLB mode, the umask should be set to all ones (0xF), as the
results (for the snoop-related capture) are undefined otherwise and should be ignored.

In ALAT mode (PMC_DEAR_CFG.mode=11x), the umask field is ignored.

0101 ≥ 96 1101 ≥ 3072

0110 ≥ 128 1110 ≥ 4096

0111 ≥ 256 1111 ≥ 5120

Table 3-22. PMC_DEAR_CFG.Umask Field in Data TLB Mode

TLB Access Type PMC.umask[19:16] Description

None 0000 Disabled; nothing will be counted

FL TLB hit xxx1 First level data TLB hits will be counted

ML TLB hit xx1x Mid level data TLB hits (with first level TLB miss) will be counted

HPW hit x1xx Hardware page walker hits (with TLB misses) will be counted

HPW miss 1xxx Hardware page walker misses will be counted

All 1111 All - any combination valid

Table 3-21. PMC_DEAR_CFG.Umask Field in Data Cache Load Mode (010) (Sheet 2 of 2)

umask
Bits 19:16

Latency Threshold
[CPU cycles]

umask
Bits 19:16

Latency Threshold
[CPU cycles]

Figure 3-22. Data Cache EAR Data Registers Format

Data Address

63 0

64

latencyovstatig

16 15 13 12 0

13

63 0

tstat

19 18

resp

35

24 23

ig

Instruction Address slotbnInstruction Address

63 4 3 2 1 0

60 2

req

27

4

2

hints

3242

ig

11

PMD_DEAR_STAT:

PMD_DEAR_DADDR:

PMD_DEAR_IADDR:

Core Performance Monitoring

120 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Table 3-23. Data Cache EAR Data Field Descriptions (Sheet 1 of 2)

Register Fields Bit Range Description

PMD_DEAR_STAT hints 42:32 DAHR Hints read out and applied to the captured operation (see the DPF
chapter for a detailed description of these hint fields as they are defined
for the processor, and a definition of their various values):
42 — BIAS
41 — NON_BLOCKING_SPEC_DISALLOWED
40:39 — PF_DROP
38:37 — HWPF
36 — LLC_LOCALITY
35:34 — MLD_LOCALITY

req 27:24 Requestor Type:
0x00: No information
0x01: Int load
0x02: FP load
0x03: RSE load
0x04: Int store
0x05: FP store
0x06: RSE store
0x07: lfetch
0x08: Semaphore
0x09: fc
0x0A: Hardware prefetch
0x0B: HPW load
0x0C: Snoop
0x0D: PTC or PTR
0x0E: DTB TLB transfer
0x0F: misc DTB op (thash, ttag, tak, tpa, probe)
Note: Table 3-25 below indicates which requestor types are valid in

whichmode.

resp 23:19 Responder Type:
0x00: Deferral: DTB miss/DTB NaT, latency up to HPW
0x01: FLD hit, implied FLD TLB hit
0x02: MLD hit, implied MLD TLB hit
0x04: SMQ hit, implied MLD TLB hit
0x08: Deferral: MLD NaT, FLD address NaT
0x10: Off core — no information
0x11: non-DRAM socket local system address
0x12: non-DRAM socket remote system address
0x13: non DRAM system address — no details
0x14: LLC hit, minimum latency
0x15: LLC hit, local core snoop required, no forwarding
0x16:LLC hit, local core snoop required, core cache data forwarded
0x17: LLC hit — no details
0x18: local DRAM, no remote snoops
0x19: local DRAM, remote snoops required, no forwarding
0x1A:local DRAM, remote snoops required, remote cache data forwarded
0x1B: local DRAM — no further details
0x1C: remote DRAM, no additional snoops required
0x1D: remote DRAM, additional snoops required, no forwarding
0x1E: remote DRAM, additional snoops required, remote cache data
forwarded
0x1F: remote DRAM — no further data

tstat 19:16 TLB Status:
000: No information
001: FL Data TLB hit
010: ML Data TLB hit
011: HPW hit
100: other — implied page fault

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 121
Reference Manual for Software Development and Optimization Guide

stat 15 Status:
0: No valid information in PMD_DEAR_*ADDR and rest of
PMD_DEAR_STAT
1: Valid information in PMD_DEAR_STAT, PMD_DEAR_DADDR and in
PMD_DEAR_IADDR as indicated by slot field.
NOTE: This bits should be cleared before the EAR is reused.

overflow 13 Overflow — If 1, latency counter has overflowed one or more times
before data was returned

latency 12:0 Latency in CPU clocks.

PMD_DEAR_DADDR Data
Address

63:0 64-bit virtual address of data item that caused miss.
Exception: for snoops, this is the physical address.

PMD_DEAR_IADDR Instruction
Address

63:4 Virtual address of the first bundle in the dispersal window which was
being executed at the time of the miss. If ".bn" is n, then n * 16 should
be added to the address to arrive at the correct bundle address.
Exception: for snoops, an address is recorded, it is however invalid.

bn 3:2 Bundle field, indicates which of the executed bundles is associated with
the captured miss

slot 1:0 Slot field; if ≠ 3,indicates the Instruction bundle slot of memory
instruction. A value of 3 indicates the captured address is not valid.

Table 3-24. PMD_DEAR_STAT Field validity in different modes

Mode hints req resp tstat stat ov latency

000 (inactive) undef undef undef undef undef undef undef

010 (D cache load
mode)

valid valid valid valid valid valid valid

011 (D cache store
mode)

valid valid =0x00
or 0x01

valid valid undef undef

100 (TLB mode) valid valid undef valid valid undef undef

110 (ALAT miss) valid valid undef undef valid undef undef

111 (ALAT st hit) valid valid undef undef valid undef undef

Table 3-25. Valid PMD_DEAR_STAT.req values (Sheet 1 of 2)

Request type D cache load D cache store Data TLB ALAT miss ALAT hit

int load valid valid ldc that misses

fp load valid valid ldc that misses valid

RSE load valid valid valid

HPW load valid

int store valid valid valid

fp store valid valid valid

RSE store valid valid

lfetch valid

semaphore valid valid valid valid

HW prefetch valid

snoop valid

fc

Table 3-23. Data Cache EAR Data Field Descriptions (Sheet 2 of 2)

Register Fields Bit Range Description

Core Performance Monitoring

122 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.11.1 Data Cache Monitoring

If the Data EAR is configured to monitor the data cache, the umask is used as a load
latency threshold as defined by Table 3-21.

As defined in Table 3-22, the instruction and data addresses as well as the load latency
of a captured data cache events as well as the responder type for load accesses are
presented to software in three registers PMD_DEAR_{STAT,DADDR,IADDR}. In addition
the TLB status associated with the data access is reported. Note that in Data Cache
Monitoring mode, the TLB umask is implicitly ‘1111 (Refer to Table 3-22). If no
qualified event was captured, the valid bit in PMD_DEAR_STAT is zero.

Only the types of operations enabled in PMC_DAM_CFG.typemask will be sampled.
Other types of instructions (such as setf and reads from ccv) cannot be monitored,
even though the memory subsystem may be involved in their execution.

The detection of data cache load misses requires a load instruction to be tracked during
multiple clock cycles from instruction issue to cache miss occurrence. Since multiple
loads may be outstanding at any point in time and the processor data cache miss event
address register can only track a single event at a time, not all data cache load misses
may be captured. When the processor hardware captures the address of a load (called
the monitored load), it ignores all other overlapped concurrent loads for at least 8
cycles, or until the status of the monitored load is determined (whichever comes later).
If the monitored load turns out to be a something that is eligible to be captured, its
parameters are then latched into PMD_DEAR_*. The processor randomizes the choice
of which load instructions are tracked to prevent the same data cache load miss from
always being captured (in a regular sequence of overlapped data cache load misses).
This mechanism will sub-sample data cache events by a factor of 8 to remove capture
bias in loops, making its accuracy sufficient to be used by statistical sampling or code
instrumentation.

3.3.11.2 Data TLB Monitoring

If the Data EAR is configured to monitor data TLB accesses, the umask defined in
Table 3-22 determines which data TLB misses are captured by the Data EAR. For TLB
monitoring, all combinations of the mask bits are supported.

3.3.11.3 ALAT Monitoring

The Data EAR provides two ALAT-related modes:

• ALAT miss mode
This mode captures ld.c and chk.a instructions that miss the ALAT, indicating an
instance of unsuccessful speculation.

• ALAT store hit mode
This mode captures store operations that hit the ALAT and clear an entry.
Store operations do not include snoops, but do include xchg, semaphore and
fetchadd operations.

ptc valid

DTB TLB transfer valid

misc DTB ops valid

Table 3-25. Valid PMD_DEAR_STAT.req values (Sheet 2 of 2)

Request type D cache load D cache store Data TLB ALAT miss ALAT hit

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 123
Reference Manual for Software Development and Optimization Guide

Additionally, this mode only captures ALAT invalidations for the currently active
back-end thread. While a store may invalidate an ALAT entry for the inactive
thread, these invalidations will not be captured.

3.3.12 Execution Trace Buffer
The execution trace buffer provides information about the most recent Itanium control
flow changes. The execution trace buffer configuration register (PMC_ETB_CFG) defines
the conditions under which instructions which cause the changes to the execution flow
are captured, and allows the trace buffer to capture specific subsets of these events.

In addition to the branches, the processor's ETB captures rfis, exceptions (excluding
asynchronous interrupts) and and silently resteered (non-faulting failing) chk events.
Passing chk instructions are not captured under any programming conditions (except
when there is another capturable event).

In every cycle in which a qualified change to the execution flow happens, its source
bundle address and slot number are written to the execution trace buffer. This event's
target address is written to the next buffer location. If the target instruction bundle
itself contains a qualified execution flow change, the execution trace buffer records that
target instruction as a branch source instead. As a result, the branch trace buffer may
contain multiple source address entries in sequence, which implies that the second
(and subsequent) source entry implies a target entry with same bundle group address
as the source.

The setting of PMC_IPEAR_CFG can override the setting of PMC_ETB_CFG.
PMC_IPEAR_CFG is used to configure the Execution Trace Buffer's alternate modes: the
IP-EAR. Please refer to the IP_EAR mode Section 3.3.12.2 for more information about
this mode. PMC_IPEAR_CFG.mode must be set to 0 to enable normal execution trace
capture in PMD_ETB0–23 and PMD_ETBEXT0–23 as described below. If
PMC_IPEAR_CFG.mode is set to values other than 0, PMC_ETB_CFG's contents will be
ignored.

• The Execution Trace Buffer fails to record the target address of an rfi. The buffer
will show back-to-back branch entries instead of the usual branch-target-branch-
target sequences. Historically back-to-back branch entries implies the target of the
first branch entry is syllable 0 of the address of the issue group indicated by the
2nd branch entry. Failing to record the target of the rfi results in analysis tools
assuming the rfi's target is at the address of the issue group of the next taken
branch.
It can only occur if the rfi is in an MBB or BBB bundle. There needs to be a WB2
replay in the rfi issue group (and squashed nops don't replay). So if there is a stop
bit prior to the MBB or BBB bundle, and if the M or Bs are just nops, then there
won't be an issue.

• When an external interrupt occurs in the shadow of a replay (where there are
unexecuted IP's in the pipeline) the Execution Trace Buffer records one of the
unexecuted IP's in the pipeline as the source IP of the interruption. In the normal
(non-replay) case, the source IP of an interrupt event is one of the IP's of the last
retired bundle group.

3.3.12.1 Execution Trace Capture

The subsequent subsections describe the operation of the Execution Trace Buffer when
configured to capture an execution trace (or "enhanced" branch trace).

Core Performance Monitoring

124 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

PMC_ETB_CFG defines the conditions under which execution flow changes are to be
captured. These conditions are given in Figure 3-23 and Table 3-26, which refer to
conditions associated with branch prediction and execution. These conditions are:

• Whether the target of the branch should be captured

• The path of the branch (not taken/taken), and

• Whether or not the branch path was mispredicted

• Whether or not the target of the branch was mispredicted

• What type of branch should be captured

All instructions eligible for capture are subject to filtering by the "plm" and "vm" fields
but only branches are affected by PMC_ETB_CFG's other filters (tm, ptm, ppm, brt, rtg
and cir) as well as the Instruction Addr Range and Opcode Match filters. The chk, rfi,
and interruption, when selected, always log both source and target IP. To not log
branches set one of the fields ppm, ptm, or tm to zero.

Figure 3-23. Execution Trace Buffer Configuration Register fields

Table 3-26. Execution Trace Buffer Configuration Register field description (Sheet 1 of 2)

Field Bits Description

vm 34:33 VM mask

cir 21:19 Exception mask
1xx: capture chk instructions
x1x: capture interrupts
xx1: capture rfi instructions

rtg 18:17 Record Target
11: log target for all taken branches
10: log target for ip-relative branches only
01: log target for indirect taken branches only
00: do not log target

brt 16:14 Branch Type Mask:
111: all indirect branches captured
110: only calls and return branches will be captured
101: only IP-relative loopy branches will be captured (cloop, ctop, cexit, wtop, wexit)
011: only non-return indirect branches captured
010: only return branches will be captured
001: only IP-relative branches will be captured
000: all branches are captured

ppm 13:12 Predicted Predicate Mask:
11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

ptm 11:10 Predicted Target Address Mask:
11: capture branch regardless of target prediction outcome
10: branch target address predicted correctly
01: branch target address mispredicted
00: No branch is captured

plmig
p
mig

63 6 3 0

4

vm

34

2

ig

33

cir

21 19

3

rtg

2

18 17

ppm

2

13 12

ptm

2

11 10

tm

2

9 8

ig

1

brt

16 14

3

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 125
Reference Manual for Software Development and Optimization Guide

To capture all correctly predicted branches, the branch trace buffer configuration
settings in PMC_ETB_CFG should be: tm=11, ptm=10, ppm=10, brt=000, rtg=11,
cir=000

Either branches whose path was mispredicted can be captured (tm=11, ptm=11,
ppm=01, brt=000) or branches with a target misprediction (tm=11, ptm=01, ppm=11,
brt=000) can be captured but not both. A setting of tm=11, ptm=01, ppm=01,
brt=000 will result in an empty buffer. If a branch's path is mispredicted, no target
prediction is recorded.

Instruction Address Range Matching (Section 3.3.5) and Opcode Matching
(Section 3.3.6) may also be used to constrain what is captured in the Branch Trace
Buffer.

These twenty-four execution trace buffer registers PMD_ETB0–23 and their extension
PMD_ETBEXT0–23 provide information about the outcome of a captured event
sequence. Every ETB capture records 80 bits of data, which is accessible across a pair
of PMDs, PMD_ETBi and PMD_ETBEXTi.

tm 9:8 Taken Mask:
11: all branches
10: Taken branches only
01: Not Taken branches only
00: No branch is captured

pm 6 See Table 3-6.
Note: This bit is applied at the time the event's source address is captured. Once the source IP is
captured, the target IP of this event is always captured even if the ETB is disabled.

plm 3:0 See Table 3-6.
Note: This mask is applied at the time the event's source address is captured. Once the source IP is
captured, the target IP of this event is always captured even if the ETB is disabled.

Table 3-26. Execution Trace Buffer Configuration Register field description (Sheet 2 of 2)

Field Bits Description

Figure 3-24. Execution Trace Buffer Entry Format

slbnAddress

63 4 3 2 1 0

60 2

timestamptid statig

63 15 14 11 0

12

PMD_ETBi

PMD_ETBEXTi
12

3

2

Core Performance Monitoring

126 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The branch trace buffer registers contain valid data only when event collection is frozen
(PMC0.fr is one). While event collection is enabled, reads of PMD_ETB* return
undefined values. The registers follow the layout defined in Figure 3-24, and Table 3-27
contain the address of either a captured branch instruction or a branch target. For
branch instructions, the stat field contains more information about branch
mispredictions. An execution trace register with a zero stat field indicates an invalid
buffer entry. SW needs to initialize these field. The processor never writes 0 to stat. The
slot field captures the slot number of the first taken Itanium branch instruction in the
captured instruction bundle. A slot number of 3 indicates a not-taken branch.

In every cycle in which a qualified Itanium branch retires1, its source bundle address
and bundle and slot number are written to the branch trace buffer. If within the next
clock, the target instruction bundle contains a branch that retires and meets the same
conditions, the address of the second branch is stored. Otherwise, either the branches'
target address or details of the branch prediction are written to the next buffer location.
As a result, the branch trace buffer may contain a mixed sequence of sources and
targets.

The ETB contains a feature of tracking exceptions, controlled by the PMC_ETB_CFG.cir
field. It will record exceptions and their targets. For exception targets, the slot field in
the buffer shall be ignored regardless of value.

Note: The following behaviors of the processor ETB need to be taken into account when
reconstructing an execution flow:

• If a branch is immediately followed by a control flow change at the target (branch
or exception), another source entry will be recorded with the target’s IP rather than
a source/target pair.

Table 3-27. Execution Trace Buffer Entry Fields

Field Bit Range Description

Address 63:4 60-bit bundle address of bundle 0 of the issue group of the branch instruction or branch target

bn 1:0 Bundle of the taken event

slot 3:2 Slot index of taken event in bundle
00: Slot 0 source/target
01: Slot 1 source/target
10: Slot 2 source/target
11: this was a not taken event

tid 15 (79) Thread ID - will always have the same value for a given thread.

stat 14:12
(78:76)

ETB entry status:
'000: the content of the entry is invalid
'010: the content of the entry is a target address
’100: the content of the entry is an rfi source
’110: the content of the entry is an exception source
’xx1: the content of the entry is a branch source
Note that a "11" in the slot field indicates that no taken branch was within that bundle.
’001: branch, correctly predicted
’011: branch mispredicted
’111: branch mispredicted due to target or path misprediction (implied BRU flush)

timestamp 11:0
(75:64)

Timestamp — value of the free-running core-clock timestamp-counter

1. 1n some cases, the processor execution trace buffer will capture the source (but not the target)
address of an excepting branch instruction. This occurs on trapping branch instructions as well as
faulting br.ia, break.b and multi-way branches.

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 127
Reference Manual for Software Development and Optimization Guide

• A branch taking a trap will be recorded as a branch with as its target the trap
handler IP. The subsequent rfi will then point to the branch’s original target.

• A correctly predicted branch which takes an exception may create extraneous
(identical) exception source records.

• Exception target addresses may record an incorrect slot field. Exception targets will
always have a slot of 0 and the recorded value can be discarded.

• Exceptions due to an external interrupt may record an incorrect source IP which
should be ignored. The subsequent rfi will then point to the correct interrupted
instruction.

• A branch target record may be misrecorded as an exception source. These can be
identified and eliminated as follows: Any exception source record follows a branch
source that isn’t followed by a target record is spurious and should be changed to a
target record.

• RFIs may fail to record their target in certain cases where the rfi is in an MBB or
BBB template bundle. Similarly, synthesized RFIs will not be captured.

The branch trace buffer is a circular buffer containing the last twelve to twenty-four
qualified Itanium branches. The Branch Trace Buffer Index Register
(PMD_ETB_BUFIDX) defined in Figure 3-25 and Table 3-28 identify the most recently
recorded branch or target. In every cycle in which a qualified branch or target is
recorded, the execution buffer index (ebi) is post-incremented. After 24 entries have
been recorded, the branch index wraps around, and the next qualified branch will
overwrite the first trace buffer entry. The wrap condition itself is recorded in
PMD_ETB_BUFIDX.f. The ebi field of PMD_ETB_BUFIDX.ebi defines the next branch
buffer index that is about to be written. The following equation computes the last
written branch trace buffer PMD index from PMD_ETB_BUFIDX:

 last-written-PMD-index = (PMC_ETB_BUFIDX.ebi - 1) % 24

If both the full bit and the ebi field of PMD_ETB_BUFIDX are zero, no qualified branch
has been captured by the branch trace buffer. The full bit gets set every time the
branch trace buffer wraps. Once set, the full bit remains set until explicitly cleared by
software, i.e. it is a sticky bit. Software can reset the ebi index and the full bit by
writing to PMD_ETB_BUFIDX.

Figure 3-25. Execution Trace Buffer Index Register Format

ebifig

63 4 0

5

6

ig

Core Performance Monitoring

128 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Notes on the Execution Trace Buffer

Although the processor ETB does not capture asynchronous interrupts as events, the
address of these handlers can be captured as target addresses. This could happen if, at
the target of a captured event (for example, taken branch), an asynchronous event is
taken before executing any instruction at the target.

3.3.12.2 IP Event Address Capture (IP-EAR)

The processor has a feature called Instruction Pointer Event Address Capture (or IP-
EAR). This feature is intended to facilitate the correlation of performance monitoring
events to IP values. To do this, the processor's Execution Trace buffer (ETB) can be
configured to capture IPs of retired instructions. When a performance monitoring event
is used to trigger an IP-EAR freeze, if the IP which caused the event gets to retirement
there is a good chance that IP would be captured in the ETB. The IP-EAR freezes after a
programmable number of cycles following a PMU freeze as described below, in order to
allow IPs for early pipe events to proceed to retirement.

PMC_IPEAR_CFG is used to configure this feature and the ETB registers (PMD_ETB*)
are used to capture the data. PMD_ETB_BUFIDX holds the index and overflow bits for
the IP Buffer much as it does for the ETB.

Setting PMC_IPEAR_CFG.mode to 4 will override the setting of PMC_ETB_CFG (the
configuration register for the normal ETB mode).

Table 3-28. Execution Trace Buffer Index Register Fields

Field Bit Range Description

full 6 Full Bit (sticky)
if full=1: branch trace buffer has wrapped
if full=0: branch trace buffer has not wrapped

ebi 4:0 Execution Buffer Index [Range 0..23 — Index 0 indicates PMD64]
Pointer to the next execution trace buffer entry to be written
if full=1: points to the oldest recorded branch/target
if full=0: points to the next location to be written

Figure 3-26. IP-EAR Configuration Register

Table 3-29. IP-EAR Configuration Register Field Description

Field Bits Description

vm 34:33 See Table 3-6.

delay 18:11 Programmable delay before freezing

mode 10:8 IP EAR mode:
000: ETB Mode (IP-EAR not functional; ETB is functional)
100: IP-EAR Mode (IP-EAR functional; ETB not functional)

pm 6 See Table 3-6.

plm 3:0 See Table 3-6.

plmig
p
mmodedelayig

63 18 11 10 8 6 3 0

8 3 4

ig

33

vm

34

2

ig

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 129
Reference Manual for Software Development and Optimization Guide

The IP_EAR functions by continuously capturing retired IPs in PMD_ETB*0–23 as long as
it is enabled. It captures retired IPs and elapsed time between retirements. Up to 24
entries can be captured.

The IP-EAR has a different freezing model than the rest of the Performance Monitors. It
is capable of delaying its freeze for a number of cycles past the point of PMU freeze.
The user can program an 8-bit number to determine the number of cycles the freeze
will be delayed.

Figure 3-27 represent the layout of an execution trace buffer entry in IP-EAR mode
across the PMD_ETB and PMD_ETBEXT register pairs.

Figure 3-27. IP-EAR Entry Format

Table 3-30. IP-EAR Entry Fields

Field Bits Description

Address 63:0 Retired IP — bits 63:0 — bits 3:2 indicate the bundle, bits 1:0 the instruction slot

delay 7:0 Aborted delay count — if .ef is set, indicates the remainder of the aborted delay count,
otherwise contains the rest of the retired IP value

tid 15 (79) Thread ID - will always have the same value for a given thread.

f 14 (78) Flush — Indicates whether there has been a pipe flush since the last entry

ef 13 (77) Early freeze — When set, indicates the current entry is an early freeze case, due to one of the
following: a change in PSR bits caused the IP-EAR to become disabled or a thread switch
occurred

cycles 12:0 (76:64) Elapsed cycle count from the previous retired IP. This is a saturating counter and will stay at
all 1s when counted up to the maximum value.

Figure 3-28. IP Trace Buffer Index Register Format (PMD_ETB_BUFIDX)

Address

63 7 0

60

cyclestid fig

63 15 14 12 0

48 13

PMD_ETB_[0-23]

PMD_ETBEXT_[0-23]

13

8

ef

Delay(ef=1)

ebifig

63 4 0

5

6

ig

Core Performance Monitoring

130 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Notes on the IP-EAR

When the IP-EAR freezes due to its normal freeze mechanism (that is, PMU freeze +
delay), it captures one last entry with "ef"=0. The IP value in this entry could be
incorrect since it is not assured that the CPU would be retiring an IP at this particular
time. Since this is always the youngest entry captured in IP_EAR buffer, it should be
easier to identify this event.

3.3.12.3 IP-EAR User Guide

The following section contains a user guide to programming the IP-EAR and
interpreting the captured results.

1. Chose a core PMU event to guide the IP-EAR. Note that only events which have the
IP-EAR parameter entry can be used with the IP-EAR.
For each event we need the following two values:

a. L: the event count latency. This is the time from the event occurrence to when
it increments the PMD counter.

b. P: the event pipeline latency. This is the number of pipeline stages from the
event occurrence to when the associated IP retirement gets recorded in the ETB.

2. Program a PMC/PMD counter pair to record this event. The PMD is pre-loaded with
the desired sample count (maximum possible count +1 - sample count). Typically,
the PMC is configured to interrupt on overflow.

3. The IP-EAR (PMC_IPEAR_CFG) is programmed as follows:

a. PMC_IPEAR_CFG.{pm, plm, vm} are configured as desired

b. PMC_IPEAR_CFG.mode is set to ’b100 to set IP-EAR mode

c. PMC_IPEAR_CFG.delay, called D below, is set according to the estimated core
cycles it takes the instructions associated with the event to retire (there will be
some trial and error here).

4. The PMU is then run on the workload of choice. It will overflow and cause an
interrupt.

5. The ETB data is collected and analyzed off-line:

a. Reorder the buffer in ascending chronological order (PMC_ETB_BUFIDX points
to the oldest entry).

b. Starting at the newest record (chronologically), walk back and forward to locate
the IP that is associated with the event:

• Walk the buffer backwards through time until the sum of the timestamp
fields in the ETB entries >= L+D

• Next walk the buffer forward P entries. This entry should have the IP
associated with the event

Table 3-31. IP Trace Buffer Index Register Fields Description

Field Bit Range Description

full 6 Full Bit (sticky)
if full=1: IP trace buffer has wrapped
if full=0: IP trace buffer has not wrapped

ebi 4:0 IP Trace Buffer Index [Range 0.. 23 — Index 0 indicates PMD64]
Pointer to the next IP trace buffer entry to be written
if full=1: points to the oldest recorded IP entry
if full=0: points to the next location to be written

Core Performance Monitoring

Intel® Itanium® Processor 9500 Series 131
Reference Manual for Software Development and Optimization Guide

c. If during the walk back we go past the beginning of the buffer, then the delay
value D is too large.

d. If during the walk forward we go past the end of the buffer, the delay value D is
too small.

3.3.13 Thread-State Event Configuration
The processor allows PMU users to count background thread state cycles
(MT_BE_BGND_CYCLES_IN_STATE.*). To allow capture of thread state combinations
with a limited number of events, PMC_BEMT_CTL allows to select which FG/BG thread
state combinations are captured.

The respective MT_BE_BGND_CYC_IN_STATE event will only fire when the foreground
thread is in the thread state(s) indicated by PMC_BEMT_CTL.

3.3.14 Interrupt Counting
The processor allows PMU users to count IVA based interrupts based on the IVA offset.
The interrupts to be counted are programmed by programming the register
PMC_IVAEV_CFG. which supports an 11bit IVA offset and 11bit mask to select the
interrupt. In addition there is a unmasked version of this event.

The IVA_mask and IVA_offs apply to address bits [14:4].

Figure 3-29. Thread State Event Control Register Format

Table 3-32. Thread State Event Control Register Field Description

Field Bit Range Description

FGSt 5:3 Exec-state selects for foreground thread
5: signal background thread state when foreground thread is unstalled
4: signal background thread state when foreground thread is blocked
3: signal background thread state when foreground thread is stalled

FGPri 2:0 Priority selects for foreground thread
2: signal background thread state when foreground thread is high priority
1: signal background thread state when foreground thread is nominal priority
0: signal background thread state when foreground thread is low priority

FGPri

0235

3

ig

3

FGSt

Figure 3-30. Interrupt Counting Event Configuration Register Format

IVA_offs

01021 11

11 11

ig IVA_mask

Core Performance Monitoring

132 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3.3.15 PerfMon Interrupts
Each one of registers PMD4–19 will cause an interrupt if the following conditions are all
true:

• PMCi.oi=1 (that is, overflow interrupt is enabled for PMDi) and PMDi overflows.
Note that there is only one interrupt line that will be raised regardless of which
PMC/PMD set meets this condition.

This interrupt is an "External Interrupt" with Vector= 0x3000 and will be recognized
only if the following conditions are true:

• PMV.m=0 and PMV.vector is set up correctly; i.e. Performance Monitor interrupts
are not masked and a proper vector is programmed for this interrupt by executing
a "mov cr73=r2".

• PSR.i =1 and PSR.ic=1; i.e. interruptions are unmasked and interruption collection
is enabled in the Processor Status Register by executing either the "ssm imm" or
"mov psr.i=r2" instruction.
TPR.mmi=0 (i.e. all external interrupts are not masked) and TPR.mic is a value that
the priority class that Performance Monitor Interrupt belongs to are not masked.
For example, if we assign vector 0xD2 to the Performance Monitor Interrupt,
according to Table 5–7 "Interrupt Priorities, Enabling, and Masking" in Volume 2 of
the Intel® Itanium® Architecture Software Developer's Manual, it will be priority
class 13. So any value less than 13 for TPR.mic is okay for recognizing this
interrupt. A "mov cr66=r1" will write to this register.

• There are no higher priority faults, traps, or external interrupts pending.

The interrupt service routine needs to read IVR register "mov r1=cr65" in order to
figure out the highest priority external interrupt which needs to be serviced.

Before returning from the interrupt service routine, the Performance Monitor needs to
be initialized such that the interrupt will be cleared. This could be done by clearing the
PMC.oi and/or re-initializing the PMD which caused the interrupt (you will know this by
reading PMC0). In addition to this, all bits of PMC0 need to be cleared if further
monitoring needs to be done.

§

Table 3-33. Interrupt Counting Event Configuration Register Field Description

Field Bit Range Description

IVA_mask 21:11 Mask for IVA offset bits [14:4] programmed into IVA_offs field
If 1: The corresponding bit in IVA_offs is already considered as matched
if 0: The bit corresponding bit in the IVA_offs needs to match the real offset to increment the event
INTERRUPT_EVENT.

IVA_offs 10:0 IVA offset; In order for the event INTERRUPT_EVENT to increment it is necessary to match the IVA
offset bits [14:4] of the interrupt to the value defined by IVA_offs and IVA_mask defined in this
register.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 133
Reference Manual for Software Development and Optimization Guide

4 Core Performance Monitor
Events

4.1 Introduction
This section enumerates and describes the performance monitoring events available on
the Intel® Itanium® processor 9500 series core.

4.1.1 Categorization of Events
Performance related events are grouped into the following categories:

• Basic Events: clock cycles, retired instructions (4.2.1)

• Instruction Dispersal Events: instruction decode and issue (4.2.2)

• Instruction Execution Events: instruction execution, data and control speculation,
and memory operations (4.2.3)

• Cycle accounting: stall and replay cycle break-down for both front- and back-end
(4.2.4, 4.2.5)

• Branch Events: branch prediction (4.2.6)

• Memory Hierarchy: instruction and data caches (4.2.8, 4.2.9, 4.2.12, 4.2.13)

• TLB Events: instruction and data TLBs (4.2.10, 4.2.11, 4.2.14, 4.2.15)

• Data Prefetch Events (4.2.16)

• RIL Events: Off-core request and responses (4.2.17)

• LLC Events: Last-level cache events (4.2.19)

• RSE Events: Register Stack Engine (4.2.18)

• System Events: operating system monitors (4.2.20)

• Multi-Threading Events (4.2.21)

4.1.2 Multi-Threading and Event Types
The processor implements a type of hardware based multithreading that effectively
allows two threads to coexist within a processor core although only one thread is
"active" within the core’s front and back-end pipeline respectively at any moment in
time. This affects how events are generated. Certain events may occur while the thread
they belong to is inactive. This also affects how events are assigned to the threads
occupying the same core. Certain events do not have the concept of a "home" thread.

To help decipher these effects, events have been classified by the following types:

• Active - This event can only occur when the thread that generated it is "active"
(currently executing in the processor core’s pipeline) and is considered to be
generated by the active thread. Example(s): IA64_INST_RETIRED.

• Causal - This event does not belong to a thread. It is assigned to the active thread.
Example(s): CPU_OP_CYCLES.

• Floating - This event belongs to a thread, but could have been generated when its
thread was inactive (or "in the background"). Example(s): MLD_REFERENCES.

Core Performance Monitor Events

134 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

If a monitor's PMC[i].all is not set, only events associated with the monitoring thread
will be captured. If a monitor's PMC[i].all is set, events associated with both threads
will be captured.

4.1.3 Performance Event Associativity
The processor supports a large number of performance events that are collected in a
decentralized manner. Many constraints posed by previous Intel Itanium generations
were eliminated. In turn the processor poses some restriction in terms of counter
associativity.

Each events counter affinity is indicated by the counter affinity field in the event
description table. The field is a hexadecimal number, where a set bit i indicates that
PMC/PMD pair i can count the event. For example, a value of 0x05550 means PMD14,
12, 10, 8, 6 and 4 can count this particular event.

The associativity was designed to allow significant flexibility and be easy to capture
algorithmically. The counters that can be associated with (i.e. count) an event can in
most cases be derived from the event ID (in addition, some fundamental events may
support a superset of this).

 case (EventID[11:10]) // PMC.es[7:6]
 00 : candidate_counters = PMCs 4..19
 if (EventID[0] == 0) // PMC.umask[0]
 possible_counters = even_pmcs(candidate_counters)
 else
 possible_counters = odd_pmcs(candidate_counters)
 10 : candidate_counters = PMCs 4..11, 16..19
 if (EventID[0] == 0) // PMC.umask[0]
 possible_counters = even_pmcs(candidate_counters)
 else
 possible_counters = odd_pmcs(candidate_counters)
 11 :candidate _counters = PMCs 8..19
 possible_counters = pmcs(counter_affinity)
 endcase

In English: most even-numbered events are associated with even-numbered counters,
odd-numbered events are associated with odd-numbered counters, and the counters
available are affected by the top-level collection station, but some RIL collected events
have mod3 and mod4 affinity.

The exact values are indicated by the counter affinity field in the event tables.

4.1.4 Event Description Tables Field Definition
This section elaborates on the fields used in the PMU event tables in the following
chapter.

Description General description of the monitor in question

Max Inc/Cyc Maximum increment of this monitor per core clock cycle

MT Capture Type MT capture type (see Appendix 4.1.2 for more details)

Subevents:

SUBEVENT First subevent name (This document uses the convention: EVENT.SUBEVENT when referring to subevents)

Counter Affinity Indicates which counters are capable of monitoring this event (see Appendix 4.1.3 for more details)

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 135
Reference Manual for Software Development and Optimization Guide

4.1.5 Performance Monitor Events Ordered by Event Code
Table 4-1 presents all of the performance monitors provided in the processor ordered
by their event code. The event code is comprised of PMC.es and PMC.umask
concatenated, PMC.umask forming the lesser significant portion.

Events which include MLD sourced HW prefetching do not respect the Instruction
Address Range filter for those prefetching operations. For these events the prefetches
are always counted. MLD_REF__ANY and LLC_REF_HIT__ANY are two of the events
affected by this.

IAR/OPC/DAR/
DREF

Filtering capability for this monitor, taking a form of "I/O/D/R":
I - the event can be constrained by instruction address matching
O - the event can be constrained by op-code matching
D - the event can be constrained by data address matching
R - the event can be constrained by data reference type matching
- - the event cannot be constrained by the particular constraint type
Lower case i/o/d/r letters indicate that there may be components to an event that are not subject to a
particular type of constraint.

Definition More detailed definition of the event/subevent

Note Particular properties/issues/caveats associated with the event

Table 4-1. All Performance Monitors Ordered by Code (Sheet 1 of 20)

Event
Code Symbol Name Area Section

0x001 CPU_REF_CYCLES Basic 4.2.1.2

0x002 CPU_OP_CYCLES Basic 4.2.1.1

0x003 CPU_OP_CYCLES.HALTED Basic 4.2.1.1

0x004 CPU_OP_CYCLES.TAGGED Basic 4.2.1.1

0x005 RETIRED_INST_TAGGED.IAM0_OPM0 Execution 4.2.3.31

0x005 IA64_INST_RETIRED Basic 4.2.1.4

0x006 RETIRED_INST_TAGGED.IAM1_OPM1 Execution 4.2.3.31

0x007 RETIRED_INST_TAGGED.IAM2_OPM0 Execution 4.2.3.31

0x008 RETIRED_INST_TAGGED.IAM3_OPM1 Execution 4.2.3.31

0x009 RETIRED_PREDICATE_SQUASHED Execution 4.2.3.32

0x00A RETIRED_INST_NOP Execution 4.2.3.25

0x00B RETIRED_INST_FP Execution 4.2.3.21

0x00C FP_FLOP Execution 4.2.3.15

0x00D RETIRED_INST_M.ANY Execution 4.2.3.24

0x00E RETIRED_INST_M.MOVTODAHR Execution 4.2.3.24

0x00F DSPEC_CHKA_LDC.ANY Execution 4.2.3.6

0x010 DSPEC_LDC.HIT Execution 4.2.3.8

0x011 DSPEC_CHKA_LDC_FAIL.ANY Execution 4.2.3.7

0x012 DSPEC_CHKA_LDC_FAIL.INT Execution 4.2.3.7

0x013 DSPEC_CHKA_LDC_FAIL.FP Execution 4.2.3.7

0x014 CSPEC_CHKS.ANY Execution 4.2.3.3

0x015 CSPEC_CHKS_FAIL.ANY Execution 4.2.3.4

0x016 CSPEC_CHKS_FAIL.INT Execution 4.2.3.4

0x017 CSPEC_CHKS_FAIL.FP Execution 4.2.3.4

Core Performance Monitor Events

136 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x018 EAR_EVENT_ETB Execution 4.2.3.10

0x019 EAR_EVENT_DATA Execution 4.2.3.9

0x01A CPU_CPL_CHANGE.ANY System 4.2.20.1

0x01B CPU_CPL_CHANGE.FROM0 System 4.2.20.1

0x01C CPU_CPL_CHANGE.FROM1 System 4.2.20.1

0x01D CPU_CPL_CHANGE.FROM2 System 4.2.20.1

0x01E CPU_CPL_CHANGE.FROM3 System 4.2.20.1

0x01F INTERRUPT_EVENT.MASKED System 4.2.20.2

0x020 INTERRUPT_EVENT.UNMASKED System 4.2.20.2

0x021 SERIALIZATION_EVENT System 4.2.20.3

0x023 CYC_BE_NO_BUBBLE Stall 4.2.4.5

0x024 CYC_BE_BUBBLE.ANY Stall 4.2.4.1

0x025 CYC_BE_IBD_STALL.ANY Stall 4.2.4.4

0x026 CYC_BE_IBD_STALL.RSE_ANY Stall 4.2.4.4

0x027 CYC_BE_IBD_STALL.RSE_CFLE Stall 4.2.4.4

0x028 CYC_BE_IBD_STALL.RSE_ST Stall 4.2.4.4

0x029 CYC_BE_IBD_STALL.RSE_LOAD Stall 4.2.4.4

0x02A CYC_BE_IBD_STALL.RSE_WAIT Stall 4.2.4.4

0x02B CYC_BE_IBD_STALL.THRSW Stall 4.2.4.4

0x02C CYC_BE_IBD_STALL.HPW Stall 4.2.4.4

0x02D CYC_BE_IBD_STALL.OZQFULL Stall 4.2.4.4

0x02E CYC_BE_IBD_STALL.ACQ Stall 4.2.4.4

0x02F CYC_BE_IBD_STALL.GR_LOAD Stall 4.2.4.4

0x030 CYC_BE_IBD_STALL.FR_LOAD Stall 4.2.4.4

0x031 CYC_BE_IBD_STALL.SRLZ Stall 4.2.4.4

0x032 CYC_BE_IBD_STALL.REL Stall 4.2.4.4

0x033 CYC_BE_IBD_STALL.MTOM Stall 4.2.4.4

0x034 CYC_BE_IBD_STALL.FTOF Stall 4.2.4.4

0x035 CYC_BE_IBD_STALL.FLD_DMND Stall 4.2.4.4

0x036 CYC_BE_IBD_STALL.WB2_TRAP Stall 4.2.4.4

0x037 CYC_BE_IBD_STALL.QFULL Stall 4.2.4.4

0x038 CYC_BE_IBD_STALL.FEBUB Stall 4.2.4.4

0x039 CYC_BE_IBD_STALL.DEBUG Stall 4.2.4.4

0x03A CYC_BE_EXE_REPLAY.ANY Stall 4.2.4.3

0x03B CYC_BE_EXE_REPLAY.GR_LOAD_RAW Stall 4.2.4.3

0x03C CYC_BE_EXE_REPLAY.FR_LOAD_RAW Stall 4.2.4.3

0x03D CYC_BE_EXE_REPLAY.GR_LOAD_WAW Stall 4.2.4.3

0x03E CYC_BE_EXE_REPLAY.FR_LOAD_WAW Stall 4.2.4.3

0x03F CYC_BE_EXE_REPLAY.GR_GR Stall 4.2.4.3

0x040 CYC_BE_EXE_REPLAY.FR_FR Stall 4.2.4.3

0x041 CYC_BE_EXE_REPLAY.MT1_HIGH Stall 4.2.4.3

Table 4-1. All Performance Monitors Ordered by Code (Sheet 2 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 137
Reference Manual for Software Development and Optimization Guide

0x042 CYC_BE_EXE_REPLAY.FCMP Stall 4.2.4.3

0x043 CYC_BE_EXE_REPLAY.PRED Stall 4.2.4.3

0x044 CYC_BE_EXE_REPLAY.NOTN Stall 4.2.4.3

0x045 CYC_BE_EXE_REPLAY.FPSR Stall 4.2.4.3

0x046 CYC_BE_EXE_REPLAY.SRLZ Stall 4.2.4.3

0x047 CYC_BE_EXE_REPLAY.REL Stall 4.2.4.3

0x048 CYC_BE_EXE_REPLAY.ARCR Stall 4.2.4.3

0x049 CYC_BE_EXE_REPLAY.MT1_LOW Stall 4.2.4.3

0x04A CYC_BE_DET_REPLAY.ANY Stall 4.2.4.2

0x04B CYC_BE_DET_REPLAY.GR_LOAD Stall 4.2.4.2

0x04C CYC_BE_DET_REPLAY.DCS_HZRD Stall 4.2.4.2

0x04D CYC_BE_DET_REPLAY.STORE_VS_STORE Stall 4.2.4.2

0x04E CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE Stall 4.2.4.2

0x04F CYC_BE_DET_REPLAY.LOAD_ACQ Stall 4.2.4.2

0x050 CYC_BE_DET_REPLAY.FLUSH_STORE Stall 4.2.4.2

0x051 CYC_BE_DET_REPLAY.HPW_HZRD Stall 4.2.4.2

0x052 CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL Stall 4.2.4.2

0x053 CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL Stall 4.2.4.2

0x054 CYC_BE_DET_REPLAY.MT1 Stall 4.2.4.2

0x055 CYC_BE_WB2_REPLAY.ANY Stall 4.2.4.7

0x056 CYC_BE_WB2_REPLAY.LDC Stall 4.2.4.7

0x057 CYC_BE_WB2_REPLAY.PAUSE Stall 4.2.4.7

0x058 CYC_BE_WB2_REPLAY.ALLOC_PEC Stall 4.2.4.7

0x059 CYC_BE_WB2_REPLAY.MOV_PSR_UM Stall 4.2.4.7

0x05A CYC_BE_WB2_REPLAY.VIRT_INT Stall 4.2.4.7

0x05B CYC_BE_WB2_REPLAY.FP_DEN Stall 4.2.4.7

0x05C CYC_BE_WB2_REPLAY.FP_SIR Stall 4.2.4.7

0x05D CYC_BE_WB2_REPLAY.BLK_HPW Stall 4.2.4.7

0x05E CYC_BE_WB2_REPLAY.OZQ_FULL Stall 4.2.4.7

0x05F CYC_BE_WB2_REPLAY.STORE_ALIAS Stall 4.2.4.7

0x060 CYC_BE_WB2_REPLAY.NAT_HZRD Stall 4.2.4.7

0x061 CYC_BE_WB2_REPLAY.DAHR_HZRD Stall 4.2.4.7

0x062 CYC_BE_WB2_REPLAY.LOAD_ACQ Stall 4.2.4.7

0x063 CYC_BE_WB2_REPLAY.MT1 Stall 4.2.4.7

0x064 CYC_BE_WB2_REPLAY.SER Stall 4.2.4.7

0x065 CYC_BE_WB2_FLUSH.ANY Stall 4.2.4.6

0x066 CYC_BE_WB2_FLUSH.XPN Stall 4.2.4.6

0x067 CYC_BE_WB2_FLUSH.BRU Stall 4.2.4.6

0x068 IBL_ISSUE.ANY Dispersal 4.2.2.2

0x069 IBL_ISSUE.M_PIPE Dispersal 4.2.2.2

0x06A IBL_ISSUE_STOP.NONE Dispersal 4.2.2.3

Table 4-1. All Performance Monitors Ordered by Code (Sheet 3 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

138 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x06B IBL_ISSUE_STOP.REPLAY Dispersal 4.2.2.3

0x06C IBL_ISSUE_STOP.EXPLICIT Dispersal 4.2.2.3

0x06D IBL_ISSUE_STOP.POWER Dispersal 4.2.2.3

0x06E IBL_ISSUE_STOP.DROOP Dispersal 4.2.2.3

0x06F IBL_ISSUE_STOP.ASYM_I Dispersal 4.2.2.3

0x070 IBL_ISSUE_STOP.ASYM_M Dispersal 4.2.2.3

0x071 IBL_ISSUE_STOP.FLD_DMND_M0 Dispersal 4.2.2.3

0x072 IBL_ISSUE_STOP.FLD_DMND_M1 Dispersal 4.2.2.3

0x073 IBL_ISSUE_STOP.OVRSUB_M Dispersal 4.2.2.3

0x074 IBL_ISSUE_STOP.OVRSUB_I Dispersal 4.2.2.3

0x075 IBL_ISSUE_STOP.OVRSUB_A Dispersal 4.2.2.3

0x076 IBL_ISSUE_STOP.OVRSUB_F Dispersal 4.2.2.3

0x077 IBL_ISSUE_STOP.STRUCT Dispersal 4.2.2.3

0x078 IBL_ISSUE_STOP.BUNDLE Dispersal 4.2.2.3

0x079 IBL_ISSUE_STOP.9PLUS3 Dispersal 4.2.2.3

0x07A IBL_ISSUE_LOST_BW.ANY Dispersal 4.2.2.1

0x07B IBL_ISSUE_LOST_BW.POWER Dispersal 4.2.2.1

0x07C IBL_ISSUE_LOST_BW.DROOP Dispersal 4.2.2.1

0x07D IBL_ISSUE_LOST_BW.ASYM_I Dispersal 4.2.2.1

0x07E IBL_ISSUE_LOST_BW.ASYM_M Dispersal 4.2.2.1

0x07F IBL_ISSUE_LOST_BW.FLD_DMND_M0 Dispersal 4.2.2.1

0x080 IBL_ISSUE_LOST_BW.FLD_DMND_M1 Dispersal 4.2.2.1

0x081 IBL_ISSUE_LOST_BW.OVRSUB_A Dispersal 4.2.2.1

0x082 IBL_ISSUE_LOST_BW.OVRSUB_F Dispersal 4.2.2.1

0x083 IBL_ISSUE_LOST_BW.OVRSUB_I Dispersal 4.2.2.1

0x084 IBL_ISSUE_LOST_BW.OVRSUB_M Dispersal 4.2.2.1

0x085 IBL_ISSUE_LOST_BW.STRUCT Dispersal 4.2.2.1

0x086 IBL_ISSUE_LOST_BW.9PLUS3 Dispersal 4.2.2.1

0x087 DPFQ_ENQ.ANY DPF 4.2.16.6

0x088 DPFQ_ENQ.INST_ANY DPF 4.2.16.6

0x089 DPFQ_ENQ.LFETCH DPF 4.2.16.6

0x08A DPFQ_ENQ.LFETCH_COUNT DPF 4.2.16.6

0x08B DPFQ_ENQ.MOV_BSPST DPF 4.2.16.6

0x08C DPFQ_ENQ.RSE_ANY DPF 4.2.16.6

0x08D DPFQ_ENQ.RSE_LOAD DPF 4.2.16.6

0x08E DPFQ_ENQ.RSE_STORE DPF 4.2.16.6

0x08F DPFQ_ENQ.FLD_ANY DPF 4.2.16.6

0x090 DPFQ_ENQ.FLD_TARGET DPF 4.2.16.6

0x091 DPFQ_ENQ.FLD_FWD DPF 4.2.16.6

0x092 DPFQ_ENQ.FLD_BWD DPF 4.2.16.6

0x093 DPFQ_ENQ.FLD_BIDI DPF 4.2.16.6

Table 4-1. All Performance Monitors Ordered by Code (Sheet 4 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 139
Reference Manual for Software Development and Optimization Guide

0x094 DPFQ_ENQ.MLD DPF 4.2.16.6

0x095 DPFQ_ENQ_OVERFLOW.ANY DPF 4.2.16.7

0x096 DPFQ_ENQ_OVERFLOW.INST_ANY DPF 4.2.16.7

0x097 DPFQ_ENQ_OVERFLOW.LFETCH DPF 4.2.16.7

0x098 DPFQ_ENQ_OVERFLOW.LFETCH_COUNT DPF 4.2.16.7

0x099 DPFQ_ENQ_OVERFLOW.MOV_BSPST DPF 4.2.16.7

0x09A DPFQ_ENQ_OVERFLOW.RSE_ANY DPF 4.2.16.7

0x09B DPFQ_ENQ_OVERFLOW.RSE_LOAD DPF 4.2.16.7

0x09C DPFQ_ENQ_OVERFLOW.RSE_STORE DPF 4.2.16.7

0x09D DPFQ_ENQ_OVERFLOW.FLD_ANY DPF 4.2.16.7

0x09E DPFQ_ENQ_OVERFLOW.FLD_TARGET DPF 4.2.16.7

0x09F DPFQ_ENQ_OVERFLOW.FLD_FWD DPF 4.2.16.7

0x0A0 DPFQ_ENQ_OVERFLOW.FLD_BWD DPF 4.2.16.7

0x0A1 DPFQ_ENQ_OVERFLOW.FLD_BIDI DPF 4.2.16.7

0x0A2 DPFQ_ENQ_OVERFLOW.MLD DPF 4.2.16.7

0x0A3 DPFQ_DEQ.ANY DPF 4.2.16.2

0x0A4 DPFQ_DEQ.INST_ANY DPF 4.2.16.2

0x0A5 DPFQ_DEQ.LFETCH DPF 4.2.16.2

0x0A6 DPFQ_DEQ.LFETCH_COUNT DPF 4.2.16.2

0x0A7 DPFQ_DEQ.MOV_BSPST DPF 4.2.16.2

0x0A8 DPFQ_DEQ.RSE_ANY DPF 4.2.16.2

0x0A9 DPFQ_DEQ.RSE_LOAD DPF 4.2.16.2

0x0AA DPFQ_DEQ.RSE_STORE DPF 4.2.16.2

0x0AB DPFQ_DEQ.FLD_ANY DPF 4.2.16.2

0x0AC DPFQ_DEQ.FLD_TARGET DPF 4.2.16.2

0x0AD DPFQ_DEQ.FLD_FWD DPF 4.2.16.2

0x0AE DPFQ_DEQ.FLD_BWD DPF 4.2.16.2

0x0AF DPFQ_DEQ.FLD_BIDI DPF 4.2.16.2

0x0B0 DPFQ_DEQ.MLD DPF 4.2.16.2

0x0B1 DPFQ_DEQ_PREEMPT.ANY DPF 4.2.16.3

0x0B2 DPFQ_DEQ_PREEMPT.INST_ANY DPF 4.2.16.3

0x0B3 DPFQ_DEQ_PREEMPT.LFETCH DPF 4.2.16.3

0x0B4 DPFQ_DEQ_PREEMPT.LFETCH_COUNT DPF 4.2.16.3

0x0B5 DPFQ_DEQ_PREEMPT.MOV_BSPST DPF 4.2.16.3

0x0B6 DPFQ_DEQ_PREEMPT.TIMEOUT DPF 4.2.16.3

0x0B7 DPFQ_DEQ_REJECT.ANY DPF 4.2.16.5

0x0B8 DPFQ_DEQ_REJECT.INST_ANY DPF 4.2.16.5

0x0B9 DPFQ_DEQ_REJECT.LFETCH DPF 4.2.16.5

0x0BA DPFQ_DEQ_REJECT.LFETCH_COUNT DPF 4.2.16.5

0x0BB DPFQ_DEQ_REJECT.MOV_BSPST DPF 4.2.16.5

0x0BC DPFQ_DEQ_REJECT.RSE_ANY DPF 4.2.16.5

Table 4-1. All Performance Monitors Ordered by Code (Sheet 5 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

140 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x0BD DPFQ_DEQ_REJECT.RSE_LOAD DPF 4.2.16.5

0x0BE DPFQ_DEQ_REJECT.RSE_STORE DPF 4.2.16.5

0x0BF DPFQ_DEQ_REJECT.FLD_ANY DPF 4.2.16.5

0x0C0 DPFQ_DEQ_REJECT.FLD_TARGET DPF 4.2.16.5

0x0C1 DPFQ_DEQ_REJECT.FLD_FWD DPF 4.2.16.5

0x0C2 DPFQ_DEQ_REJECT.FLD_BWD DPF 4.2.16.5

0x0C3 DPFQ_DEQ_REJECT.FLD_BIDI DPF 4.2.16.5

0x0C4 DPFQ_DEQ_REJECT.MLD DPF 4.2.16.5

0x0C5 DPFQ_DEQ_PREEMPT_REJECT.ANY DPF 4.2.16.4

0x0C6 DPFQ_DEQ_PREEMPT_REJECT.LFETCH DPF 4.2.16.4

0x0C7 DPFQ_DEQ_PREEMPT_REJECT.LFETCH_COUNT DPF 4.2.16.4

0x0C8 DPFQ_DEQ_PREEMPT_REJECT.MOV_BSPST DPF 4.2.16.4

0x0C9 DAHS_UNDERFLOW DPF 4.2.16.1

0x0CA RETIRED_INST_M.MOVTOBSPST Execution 4.2.3.24

0x0CB FLD_HWPREF_INS.ANY DPF 4.2.16.8

0x0CC FLD_HWPREF_INS.CANCEL_FILL DPF 4.2.16.8

0x0CD FLD_HWPREF_INS.DTLB_MISS DPF 4.2.16.8

0x0CE FLD_HWPREF_INS.FLDTLB_MISS DPF 4.2.16.8

0x0CF FLD_HWPREF_INS.NEIGHBOR DPF 4.2.16.8

0x0D0 FLD_HWPREF_INS.STORE_ALIAS DPF 4.2.16.8

0x0D1 FLD_HWPREF_INS.OZQ_FULL DPF 4.2.16.8

0x0D2 FLD_HWPREF_INS.FLUSH_STORE DPF 4.2.16.8

0x0D3 FLD_HWPREF_INS.ACQ_PEND DPF 4.2.16.8

0x0D4 FLD_HWPREF_INS.REL_OP DPF 4.2.16.8

0x0D5 FLD_HWPREF_INS.DTLB_MISS_LFETCH DPF 4.2.16.8

0x0D6 FLD_HWPREF_INS.FLDTLB_MISS_LFETCH DPF 4.2.16.8

0x0D7 FLD_HWPREF_INS.OZQ_FULL_LFETCH DPF 4.2.16.8

0x0D8 FLD_HINT_NO_MULIT_HWPREF FLD 4.2.12.6

0x0D9 PREF_DROP.FLDTLB_MISS DPF 4.2.16.9

0x0DA PREF_DROP.DTLB_MISS DPF 4.2.16.9

0x0DB PREF_DROP.FLD_HIT DPF 4.2.16.9

0x0DC PREF_DROP.FLD_SECONDARY_MISS DPF 4.2.16.9

0x0DD DATA_REF.ANY FLD 4.2.12.1

0x0DE DATA_REF.LOAD_INT FLD 4.2.12.1

0x0DE RETIRED_INST_LD_INT Execution 4.2.3.23

0x0DF DATA_REF.LOAD_FP FLD 4.2.12.1

0x0DF RETIRED_INST_LD_FP Execution 4.2.3.22

0x0E0 DATA_REF.LOAD_RSE FLD 4.2.12.1

0x0E1 DATA_REF.STORE_INT FLD 4.2.12.1

0x0E1 RETIRED_INST_ST_INT Execution 4.2.3.30

0x0E2 DATA_REF.STORE_FP FLD 4.2.12.1

Table 4-1. All Performance Monitors Ordered by Code (Sheet 6 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 141
Reference Manual for Software Development and Optimization Guide

0x0E2 RETIRED_INST_ST_FP Execution 4.2.3.29

0x0E3 DATA_REF.STORE_RSE FLD 4.2.12.1

0x0E4 DATA_REF.LFETCH FLD 4.2.12.1

0x0E5 DATA_REF.SEMAPHORE FLD 4.2.12.1

0x0E5 RETIRED_INST_SEMAPHORE Execution 4.2.3.28

0x0E6 DATA_REF.HW_PREF FLD 4.2.12.1

0x0E7 DATA_REF.LOAD_HPW FLD 4.2.12.1

0x0E8 DATA_REF.LOAD_ANY FLD 4.2.12.1

0x0E9 DATA_REF.STORE_ANY FLD 4.2.12.1

0x0EA FLD_LOAD.ANY FLD 4.2.12.9

0x0EB FLD_LOAD.INT FLD 4.2.12.9

0x0EC FLD_LOAD_MISS.ANY FLD 4.2.12.10

0x0ED FLD_LOAD_MISS.INT FLD 4.2.12.10

0x0EE FLD_LOAD_MISS.RSE FLD 4.2.12.10

0x0EF FLD_HIT.ANY FLD 4.2.12.7

0x0F0 FLD_SPEC_INVAL.ANY FLD 4.2.12.11

0x0F1 FLD_SPEC_INVAL.INST FLD 4.2.12.11

0x0F2 FLD_SPEC_INVAL.FLUSH_STORE FLD 4.2.12.11

0x0F3 FLD_SPEC_INVAL.SNOOP FLD 4.2.12.11

0x0F4 RETIRED_INST_M.ACQ Execution 4.2.3.24

0x0F5 RETIRED_INST_M.REL Execution 4.2.3.24

0x0F6 FLD_HINT_NOALLOC FLD 4.2.12.5

0x0F7 FLD_LINE_DEMOTE FLD 4.2.12.8

0x0F8 FLD_FILL_REQ.ANY FLD 4.2.12.4

0x0F9 FLD_FILL_REQ.LOAD_INT FLD 4.2.12.4

0x0FA FLD_FILL_REQ.LOAD_RSE FLD 4.2.12.4

0x0FB FLD_FILL_REQ.LFETCH FLD 4.2.12.4

0x0FC FLD_FILL_REQ.HW_PREF FLD 4.2.12.4

0x0FD FLD_FILL_CANCEL.ANY FLD 4.2.12.2

0x0FE FLD_FILL_CANCEL.MLD FLD 4.2.12.2

0x0FF FLD_FILL_CANCEL.INFAB FLD 4.2.12.2

0x100 FLD_FILL_CANCEL.POSTFAB FLD 4.2.12.2

0x101 FLD_FILL FLD 4.2.12.1

0x102 FLD_FILL_LRU FLD 4.2.12.3

0x103 FLDTLB_LOAD_MISS.ANY FLDTLB 4.2.14.2

0x104 FLDTLB_LOAD_MISS.INT FLDTLB 4.2.14.2

0x105 FLDTLB_LOAD_MISS.RSE FLDTLB 4.2.14.2

0x106 FLDTLB_INS_REQ.COMPLETE FLDTLB 4.2.14.1

0x107 FLDTLB_INS_REQ.RETIRED FLDTLB 4.2.14.1

0x108 FLDTLB_INS_REQ.NON_RETIRED FLDTLB 4.2.14.1

0x109 FLDTLB_INS_REQ.CANCEL FLDTLB 4.2.14.1

Table 4-1. All Performance Monitors Ordered by Code (Sheet 7 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

142 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x10A M_ASYNC_OP_ISSUE.ANY Dispersal 4.2.2.4

0x10B M_ASYNC_OP_ISSUE.NONE Dispersal 4.2.2.4

0x10C M_ASYNC_OP_ISSUE.SNOOP_PALKUP Dispersal 4.2.2.4

0x10D M_ASYNC_OP_ISSUE.SNOOP Dispersal 4.2.2.4

0x10E M_ASYNC_OP_ISSUE.SNOOP_S Dispersal 4.2.2.4

0x10F M_ASYNC_OP_ISSUE.HPW_LOAD Dispersal 4.2.2.4

0x110 M_ASYNC_OP_ISSUE.CRAB_RET Dispersal 4.2.2.4

0x111 M_ASYNC_OP_ISSUE.HW_PREF Dispersal 4.2.2.4

0x112 M_ASYNC_OP_ISSUE.PAPURGE Dispersal 4.2.2.4

0x113 M_ASYNC_OP_ISSUE.VAMERR_VAPURGE Dispersal 4.2.2.4

0x114 M_ASYNC_OP_ISSUE.DTLBTRNSFR_TLBINSERT Dispersal 4.2.2.4

0x115 M_ASYNC_OP_ISSUE.FLUSH_ST_INVAL Dispersal 4.2.2.4

0x116 M_ASYNC_OP_ISSUE.PAMERR_PAPURGE Dispersal 4.2.2.4

0x117 M_ASYNC_OP_ISSUE.VRNRIDVPN_PURGE Dispersal 4.2.2.4

0x118 M_ASYNC_OP_ISSUE.RIDVPN_PURGE Dispersal 4.2.2.4

0x119 M_ASYNC_OP_ISSUE.TLB_TSWITCH Dispersal 4.2.2.4

0x11A M_ASYNC_OP_ISSUE.TSWITCH Dispersal 4.2.2.4

0x11B M_ASYNC_OP_ISSUE.HPW_TLBINSERT Dispersal 4.2.2.4

0x11C M_ASYNC_OP_ISSUE.HPW_FAULT Dispersal 4.2.2.4

0x11D M_ASYNC_OP_ISSUE.ITC_D Dispersal 4.2.2.4

0x11E M_ASYNC_OP_ISSUE.ITR_D Dispersal 4.2.2.4

0x11F M_ASYNC_OP_ISSUE.PTR_D Dispersal 4.2.2.4

0x120 M_ASYNC_OP_ISSUE.MOVTORR Dispersal 4.2.2.4

0x121 M_ASYNC_OP_ISSUE.MOVTOPKR Dispersal 4.2.2.4

0x122 M_ASYNC_OP_ISSUE.PTC_L Dispersal 4.2.2.4

0x123 M_ASYNC_OP_ISSUE.PTC_E Dispersal 4.2.2.4

0x124 M_ASYNC_OP_ISSUE.PTC_G Dispersal 4.2.2.4

0x125 M_ASYNC_OP_ISSUE.PTC_GA Dispersal 4.2.2.4

0x126 M_ASYNC_OP_ISSUE.SHOOTDOWN_G Dispersal 4.2.2.4

0x127 M_ASYNC_OP_ISSUE.SHOOTDOWN_GA Dispersal 4.2.2.4

0x128 M_ASYNC_OP_ISSUE.RSE_STORE Dispersal 4.2.2.4

0x129 M_ASYNC_OP_ISSUE.RSE_LOAD Dispersal 4.2.2.4

0x12A MT_BE_THRSW_ACTUAL_OUT.ANY Multithreading 4.2.21.6

0x12B MT_BE_THRSW_ACTUAL_OUT.MLD_USE Multithreading 4.2.21.6

0x12C MT_BE_THRSW_ACTUAL_OUT.HPW_MISS Multithreading 4.2.21.6

0x12D MT_BE_THRSW_ACTUAL_OUT.IBQ_EMPTY Multithreading 4.2.21.6

0x12E MT_BE_THRSW_ACTUAL_OUT.ATPAUSE Multithreading 4.2.21.6

0x12F MT_BE_THRSW_ACTUAL_OUT.LP_ENTER Multithreading 4.2.21.6

0x130 MT_BE_THRSW_ACTUAL_OUT.RFIX Multithreading 4.2.21.6

0x131 MT_BE_THRSW_ACTUAL_OUT.INJ_DBG Multithreading 4.2.21.6

0x132 MT_BE_THRSW_ACTUAL_IN.TIMEOUT Multithreading 4.2.21.5

Table 4-1. All Performance Monitors Ordered by Code (Sheet 8 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 143
Reference Manual for Software Development and Optimization Guide

0x133 MT_BE_THRSW_ACTUAL_IN.MLDRTN Multithreading 4.2.21.5

0x134 MT_BE_THRSW_ACTUAL_IN.HPWINS Multithreading 4.2.21.5

0x135 MT_BE_THRSW_ACTUAL_IN.IBQ_NOTEMPTY Multithreading 4.2.21.5

0x136 MT_BE_THRSW_ACTUAL_IN.ALAT_INVAL Multithreading 4.2.21.5

0x137 MT_BE_THRSW_ACTUAL_IN.LP_EXIT Multithreading 4.2.21.5

0x138 MT_BE_THRSW_ACTUAL_IN.FAIR Multithreading 4.2.21.5

0x139 MT_BE_THRSW_DROP Multithreading 4.2.21.8

0x13A MT_BE_THRSW_DISABLE.EXPL Multithreading 4.2.21.7

0x13B MT_BE_THRSW_DISABLE.IMPL Multithreading 4.2.21.7

0x13C MT_BE_THRSW_HOLD Multithreading 4.2.21.9

0x13D MT_BE_THRSW_STALL.ANY Multithreading 4.2.21.10

0x13E MT_BE_THRSW_STALL.SWITCH Multithreading 4.2.21.10

0x13F MT_BE_THRSW_STALL.PIPE Multithreading 4.2.21.10

0x140 MT_BE_THRSW_STALL.RSE Multithreading 4.2.21.10

0x141 MT_BE_THRSW_STALL.CRAB Multithreading 4.2.21.10

0x142 MT_BE_THRSW_STALL.FLD Multithreading 4.2.21.10

0x143 MT_BE_BGND_CYC_IN_STATE.HU Multithreading 4.2.21.2

0x144 MT_BE_BGND_CYC_IN_STATE.HW Multithreading 4.2.21.2

0x145 MT_BE_BGND_CYC_IN_STATE.NU Multithreading 4.2.21.2

0x146 MT_BE_BGND_CYC_IN_STATE.NW Multithreading 4.2.21.2

0x147 MT_BE_BGND_CYC_IN_STATE.LU Multithreading 4.2.21.2

0x148 MT_BE_BGND_CYC_IN_STATE.LW Multithreading 4.2.21.2

0x149 MT_BE_FAIR_STATE.GREEN Multithreading 4.2.21.3

0x14A MT_BE_FAIR_STATE.YELLOW Multithreading 4.2.21.3

0x14B MT_BE_FAIR_STATE.ORANGE Multithreading 4.2.21.3

0x14C MT_BE_FAIR_STATE.RED Multithreading 4.2.21.3

0x14D MT_BE_FAIR_TRANSITION.GRN2YLW Multithreading 4.2.21.4

0x14E MT_BE_FAIR_TRANSITION.YLW2ORN Multithreading 4.2.21.4

0x14F MT_BE_FAIR_TRANSITION.ORN2RED Multithreading 4.2.21.4

0x150 MT_BE_FAIR_TRANSITION.GRN0 Multithreading 4.2.21.4

0x151 ALAT_STORE_HIT Execution 4.2.3.2

0x152 ALAT_ENTRY_REPLACED Execution 4.2.3.1

0x153 RSE_CURRENT_REG.MSB RSE 4.2.18.1

0x154 RSE_CURRENT_REG.LSB RSE 4.2.18.1

0x155 RSE_DIRTY_REG.MSB RSE 4.2.18.2

0x156 RSE_DIRTY_REG.LSB RSE 4.2.18.2

0x157 RETIRED_INST_RSE Execution 4.2.3.27

0x158 RSE_REF_RETIRED.ANY RSE 4.2.18.3

0x159 RSE_REF_RETIRED.LOAD RSE 4.2.18.3

0x15A RSE_REF_RETIRED.STORE RSE 4.2.18.3

0x801 BR_BE_PRED_DETAIL.STG Branch 4.2.6.1

Table 4-1. All Performance Monitors Ordered by Code (Sheet 9 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

144 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x802 BR_BE_PRED_DETAIL.ROT Branch 4.2.6.1

0x803 BR_BE_PRED_DETAIL.PFS Branch 4.2.6.1

0x804 BR_BE_PRED_DETAIL.OTHER Branch 4.2.6.1

0x805 BR_BE_PRED_DETAIL.ANY_RETIRED Branch 4.2.6.1

0x806 BR_BE_PRED_DETAIL.UNRETIRED Branch 4.2.6.1

0x807 BR_BE_PRED_DETAIL.ANY Branch 4.2.6.1

0x808 BR_PATH_PRED.ANY_MISPRED_NOT_TAKEN Branch 4.2.6.3

0x809 BR_PATH_PRED.ANY_MISPRED_TAKEN Branch 4.2.6.3

0x80A BR_PATH_PRED.ANY_OKPRED_NOT_TAKEN Branch 4.2.6.3

0x80B BR_PATH_PRED.ANY_OKPRED_TAKEN Branch 4.2.6.3

0x80C BR_PATH_PRED.IPREL_MISPRED_NOT_TAKEN Branch 4.2.6.3

0x80D BR_PATH_PRED.IPREL_MISPRED_TAKEN Branch 4.2.6.3

0x80E BR_PATH_PRED.IPREL_OKPRED_NOT_TAKEN Branch 4.2.6.3

0x80F BR_PATH_PRED.IPREL_OKPRED_TAKEN Branch 4.2.6.3

0x810 BR_PATH_PRED.RETURN_MISPRED_NOT_TAKEN Branch 4.2.6.3

0x811 BR_PATH_PRED.RETURN_MISPRED_TAKEN Branch 4.2.6.3

0x812 BR_PATH_PRED.RETURN_OKPRED_NOT_TAKEN Branch 4.2.6.3

0x813 BR_PATH_PRED.RETURN_OKPRED_TAKEN Branch 4.2.6.3

0x814 BR_PATH_PRED.NON_RETIND_MISPRED_NOT_TAKEN Branch 4.2.6.3

0x815 BR_PATH_PRED.NON_RETIND_MISPRED_TAKEN Branch 4.2.6.3

0x816 BR_PATH_PRED.NON_RETIND_OKPRED_NOT_TAKEN Branch 4.2.6.3

0x817 BR_PATH_PRED.NON_RETIND_OKPRED_TAKEN Branch 4.2.6.3

0x818 BR_PRED_UNKNOWN.ANY Branch 4.2.6.5

0x819 BR_PRED_UNKNOWN.ANY_TAKEN Branch 4.2.6.5

0x81A BR_PRED_UNKNOWN.IPREL Branch 4.2.6.5

0x81B BR_PRED_UNKNOWN.IPREL_TAKEN Branch 4.2.6.5

0x81C BR_PRED_UNKNOWN.RETURN Branch 4.2.6.5

0x81D BR_PRED_UNKNOWN.RETURN_TAKEN Branch 4.2.6.5

0x81E BR_PRED_UNKNOWN.NON_RETIND Branch 4.2.6.5

0x81F BR_PRED_UNKNOWN.NON_RETIND_TAKEN Branch 4.2.6.5

0x820 BR_PRED_DETAIL.ANY_ANY_PRED Branch 4.2.6.4

0x820 RETIRED_INST_BR Execution 4.2.3.18

0x821 BR_PRED_DETAIL.ANY_CORR_PRED Branch 4.2.6.4

0x822 BR_PRED_DETAIL.ANY_WRONG_PATH Branch 4.2.6.4

0x823 BR_PRED_DETAIL.ANY_WRONG_TARGET Branch 4.2.6.4

0x824 BR_PRED_DETAIL.IPREL_ANY_PRED Branch 4.2.6.4

0x825 BR_PRED_DETAIL.IPREL_CORR_PRED Branch 4.2.6.4

0x826 BR_PRED_DETAIL.IPREL_WRONG_PATH Branch 4.2.6.4

0x827 BR_PRED_DETAIL.IPREL_WRONG_TARGET Branch 4.2.6.4

0x828 BR_PRED_DETAIL.RETURN_ANY_PRED Branch 4.2.6.4

0x829 BR_PRED_DETAIL.RETURN_CORR_PRED Branch 4.2.6.4

Table 4-1. All Performance Monitors Ordered by Code (Sheet 10 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 145
Reference Manual for Software Development and Optimization Guide

0x82A BR_PRED_DETAIL.RETURN_WRONG_PATH Branch 4.2.6.4

0x82B BR_PRED_DETAIL.RETURN_WRONG_TARGET Branch 4.2.6.4

0x82C BR_PRED_DETAIL.NON_RETIND_ANY_PRED Branch 4.2.6.4

0x82D BR_PRED_DETAIL.NON_RETIND_CORR_PRED Branch 4.2.6.4

0x82E BR_PRED_DETAIL.NON_RETIND_WRONG_PATH Branch 4.2.6.4

0x82F BR_PRED_DETAIL.NON_RETIND_WRONG_TARGET Branch 4.2.6.4

0x830 BR_ENC_PRED_DETAIL.ENC_ANY_PRED Branch 4.2.6.2

0x831 BR_ENC_PRED_DETAIL.ENC_CORR_PRED Branch 4.2.6.2

0x832 BR_ENC_PRED_DETAIL.ENC_WRONG_PATH Branch 4.2.6.2

0x833 BR_ENC_PRED_DETAIL.ENC_WRONG_TARGET Branch 4.2.6.2

0x834 BR_ENC_PRED_DETAIL.OVRSUB_ANY_PRED Branch 4.2.6.2

0x835 BR_ENC_PRED_DETAIL.OVRSUB_CORR_PRED Branch 4.2.6.2

0x836 BR_ENC_PRED_DETAIL.OVRSUB_WRONG_PATH Branch 4.2.6.2

0x837 BR_ENC_PRED_DETAIL.OVRSUB_WRONG_TARGET Branch 4.2.6.2

0x838 BR_ENC_PRED_DETAIL.ENC_OVRSUB_ANY_PRED Branch 4.2.6.2

0x839 BR_ENC_PRED_DETAIL.ENC_OVRSUB_CORR_PRED Branch 4.2.6.2

0x83A BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_PATH Branch 4.2.6.2

0x83B BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_TARGET Branch 4.2.6.2

0x83C MLI_READ.ANY_ANY MLI 4.2.9.2

0x83D MLI_READ.ANY_DMND MLI 4.2.9.2

0x83E MLI_READ.ANY_PREF MLI 4.2.9.2

0x83F MLI_READ.HIT_ANY MLI 4.2.9.2

0x840 MLI_READ.HIT_DMND_NOLRU MLI 4.2.9.2

0x841 MLI_READ.HIT_PREF_NOLRU MLI 4.2.9.2

0x842 MLI_READ.HIT_DMND_LRU MLI 4.2.9.2

0x843 MLI_READ.HIT_PREF_LRU MLI 4.2.9.2

0x844 MLI_READ.MISS_ANY MLI 4.2.9.2

0x845 MLI_READ.MISS_DMND MLI 4.2.9.2

0x846 MLI_READ.MISS_PREF MLI 4.2.9.2

0x847 MLI_READ_UC.ANY MLI 4.2.9.3

0x848 MLI_READ_UC.DMND MLI 4.2.9.3

0x849 MLI_READ_UC.PREF MLI 4.2.9.3

0x84A MLI_RECIRCULATE.ANY MLI 4.2.9.4

0x84B MLI_RECIRCULATE.DMND MLI 4.2.9.4

0x84C MLI_RECIRCULATE.PREF MLI 4.2.9.4

0x84D MLI_SNOOP_INVAL_BLK_LOOKUP MLI 4.2.9.6

0x84E MLI_HIT_CONFLICT.ANY MLI 4.2.9.1

0x84F MLI_HIT_CONFLICT.DMND MLI 4.2.9.1

0x850 MLI_HIT_CONFLICT.PREF MLI 4.2.9.1

0x851 MLI_SPEC_ABORT MLI 4.2.9.7

0x852 MLI_SNOOP_HIT MLI 4.2.9.5

Table 4-1. All Performance Monitors Ordered by Code (Sheet 11 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

146 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x853 FP_FCHKF_FAIL Execution 4.2.3.14

0x854 FP_FALSE_SIR Execution 4.2.3.13

0x855 FP_TRUE_SIR Execution 4.2.3.17

0x856 FP_DENORMAL Execution 4.2.3.12

0x857 FP_FLUSH_TO_ZERO.FTZ_REAL Execution 4.2.3.16

0x858 FP_FLUSH_TO_ZERO.FTZ_POSS Execution 4.2.3.16

0x859 FLI_READ.ANY FLI 4.2.8.10

0x85A FLI_READ_MISS.ANY FLI 4.2.8.11

0x85B FLI_READ.DMND FLI 4.2.8.10

0x85C FLI_FILL FLI 4.2.8.3

0x85D FLI_READ_MISS.DMND FLI 4.2.8.11

0x85E FLI_READ.PREF FLI 4.2.8.10

0x85F FLI_READ_MISS.PREF FLI 4.2.8.11

0x860 MLI_RETURN_LINE FLI 4.2.8.14

0x861 FLI_PREF_STALL.ANY FLI 4.2.8.5

0x862 FLI_PREF_STALL.FLOW FLI 4.2.8.5

0x863 FLI_READ.SNOOP FLI 4.2.8.10

0x864 FLI_READ.SNOOP_HIT FLI 4.2.8.10

0x865 FLI_PURGE FLI 4.2.8.6

0x866 FLI_STREAM_PREF FLI 4.2.8.13

0x867 FLI_RAB_FULL FLI 4.2.8.9

0x868 FLI_RAB_ALMOST_FULL FLI 4.2.8.8

0x869 FLI_FETCH_RAB_HIT.DMND FLI 4.2.8.2

0x86A FLI_FETCH_RAB_HIT.PREF FLI 4.2.8.2

0x86B FLI_FETCH_JIT_HIT FLI 4.2.8.1

0x86C FLI_PVAB_OVERFLOW FLI 4.2.8.7

0x86D FLITLB_MISS FLITLB 4.2.10.2

0x86E MLITLB_MISS MLITLB 4.2.11.2

0x86F FLITLB_INSERT_HPW FLITLB 4.2.10.1

0x870 MLITLB_HPW_ABORTS MLITLB 4.2.11.1

0x871 EAR_EVENT_INST Execution 4.2.3.11

0x872 FLI_INST_INSERT_RAB FLI 4.2.8.4

0x873 FLI 4.2.8.12

0x874 MT_FE_BE_IN_SAME_THREAD Multithreading 4.2.21.11

0x875 FE_OP_CYCLES Basic 4.2.1.3

0x876 MT_FE_THRSW_ACTUAL_OUT.ANY Multithreading 4.2.21.14

0x877 MT_FE_THRSW_ACTUAL_OUT.TIMEOUT Multithreading 4.2.21.14

0x878 MT_FE_THRSW_ACTUAL_OUT.IBQ_FULL Multithreading 4.2.21.14

0x879 MT_FE_THRSW_ACTUAL_IN.IBQ_NOTFULL Multithreading 4.2.21.13

0x87A MT_FE_THRSW_ACTUAL_IN.IBQ_EMPTY Multithreading 4.2.21.13

0x87B MT_FE_THRSW_ACTUAL_OUT.IBQ_NOTEMPTY Multithreading 4.2.21.14

Table 4-1. All Performance Monitors Ordered by Code (Sheet 12 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 147
Reference Manual for Software Development and Optimization Guide

0x87C MT_FE_THRSW_ACTUAL_OUT.MLI_WBMISS Multithreading 4.2.21.14

0x87D MT_FE_THRSW_ACTUAL_IN.MLI_WBRTN Multithreading 4.2.21.13

0x87E MT_FE_THRSW_ACTUAL_OUT.MLI_UCMISS Multithreading 4.2.21.14

0x87F MT_FE_THRSW_ACTUAL_IN.MLI_UCRTN Multithreading 4.2.21.13

0x880 MT_FE_THRSW_ACTUAL_OUT.BRQ_BLK Multithreading 4.2.21.14

0x881 MT_FE_THRSW_ACTUAL_IN.BRQ_NON_BLK Multithreading 4.2.21.13

0x882 MT_FE_THRSW_ACTUAL_OUT.HINT_BSWT Multithreading 4.2.21.14

0x883 MT_FE_THRSW_ACTUAL_OUT.BE_FOLLOW Multithreading 4.2.21.14

0x884 MT_FE_THRSW_ACTUAL_OUT.LOCKED Multithreading 4.2.21.14

0x885 MT_FE_THRSW_MISS_OUT.ANY Multithreading 4.2.21.16

0x886 MT_FE_THRSW_MISS_IN.ANY Multithreading 4.2.21.15

0x887 MT_FE_THRSW_MISS_OUT.TIMEOUT Multithreading 4.2.21.16

0x888 MT_FE_THRSW_MISS_OUT.IBQ_FULL Multithreading 4.2.21.16

0x889 MT_FE_THRSW_MISS_IN.IBQ_NOTFULL Multithreading 4.2.21.15

0x88A MT_FE_THRSW_MISS_IN.IBQ_EMPTY Multithreading 4.2.21.15

0x88B MT_FE_THRSW_MISS_OUT.IBQ_NOTEMPTY Multithreading 4.2.21.16

0x88C MT_FE_THRSW_MISS_OUT.MLI_WBMISS Multithreading 4.2.21.16

0x88D MT_FE_THRSW_MISS_IN.MLI_WBRTN Multithreading 4.2.21.15

0x88E MT_FE_THRSW_MISS_OUT.MLI_UCMISS Multithreading 4.2.21.16

0x88F MT_FE_THRSW_MISS_IN.MLI_UCRTN Multithreading 4.2.21.15

0x890 MT_FE_THRSW_MISS_OUT.BRQ_BLK Multithreading 4.2.21.16

0x891 MT_FE_THRSW_MISS_IN.BRQ_NON_BLK Multithreading 4.2.21.15

0x892 MT_FE_THRSW_MISS_OUT.HINT_BSWT Multithreading 4.2.21.16

0x893 MT_FE_THRSW_MISS_OUT.BE_FOLLOW Multithreading 4.2.21.16

0x894 MT_FE_THRSW_MISS_OUT.LOCKED Multithreading 4.2.21.16

0x895 MT_FE_THRSW_STALL.ANY Multithreading 4.2.21.17

0x896 MT_FE_THRSW_STALL.MTLCK Multithreading 4.2.21.17

0x897 MT_FE_THRSW_STALL.EXPL Multithreading 4.2.21.17

0x898 MT_FE_THRSW_STALL.IMPL Multithreading 4.2.21.17

0x899 MT_FE_THRSW_STALL.BLK_ANY Multithreading 4.2.21.17

0x89A MT_FE_THRSW_STALL.BLK_IPC_MISS Multithreading 4.2.21.17

0x89B MT_FE_THRSW_STALL.BLK_IN_PROG Multithreading 4.2.21.17

0x89C MT_FE_THRSW_STALL. Multithreading 4.2.21.17

0x89D MT_FE_THRSW_STALL.BLK_THRESH Multithreading 4.2.21.17

0x89E MT_FE_BGND_CYC_IN_STATE.LOW Multithreading 4.2.21.12

0x89F MT_FE_BGND_CYC_IN_STATE.NOMINAL Multithreading 4.2.21.12

0x8A0 MT_FE_BGND_CYC_IN_STATE.HIGH Multithreading 4.2.21.12

0x8A1 CYC_FE_FWPROG Multithreading 4.2.21.1

0x8A2 CYC_FE_NO_BUBBLE Stall 4.2.5.4

0x8A3 CYC_FE_BUBBLE.ANY Stall 4.2.5.1

0x8A4 CYC_FE_RESTEER.ANY Stall 4.2.5.5

Table 4-1. All Performance Monitors Ordered by Code (Sheet 13 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

148 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x8A5 CYC_FE_RESTEER.IPREL Stall 4.2.5.5

0x8A6 CYC_FE_RESTEER.BR_RETIND Stall 4.2.5.5

0x8A7 CYC_FE_RESTEER.NON_RETIND Stall 4.2.5.5

0x8A8 CYC_FE_RESTEER.SEQ_BR Stall 4.2.5.5

0x8A9 CYC_FE_RESTEER.TSWITCH Stall 4.2.5.5

0x8AA CYC_FE_RESTEER.BE_FLUSH Stall 4.2.5.5

0x8AB CYC_FE_FET_REPLAY.ANY Stall 4.2.5.2

0x8AC CYC_FE_FET_REPLAY.BR_INIT Stall 4.2.5.2

0x8AD CYC_FE_FET_REPLAY.BRQ_FULL Stall 4.2.5.2

0x8AE CYC_FE_FET_REPLAY.BRQ_WAIT Stall 4.2.5.2

0x8AF CYC_FE_FET_REPLAY.BR_INTRLCK Stall 4.2.5.2

0x8B0 CYC_FE_FET_REPLAY.RAB_FULL Stall 4.2.5.2

0x8B1 CYC_FE_FET_REPLAY.MT1 Stall 4.2.5.2

0x8B2 CYC_FE_FET_STALL.ANY Stall 4.2.5.3

0x8B3 CYC_FE_FET_STALL.IBQ_FULL Stall 4.2.5.3

0x8B4 CYC_FE_FET_STALL.FLI_MISS Stall 4.2.5.3

0x8B5 CYC_FE_FET_STALL.FLITLB_MISS Stall 4.2.5.3

0x8B6 CYC_FE_FET_STALL.MT1 Stall 4.2.5.3

0x8B7 FE_RESTEER.ANY Stall 4.2.5.6

0x8B8 FE_RESTEER.FET_REPLAY Stall 4.2.5.6

0x8B9 FE_RESTEER.0B_IPREL Stall 4.2.5.6

0x8BA FE_RESTEER.1B_IPREL Stall 4.2.5.6

0x8BB FE_RESTEER.3B_IPREL Stall 4.2.5.6

0x8BC FE_RESTEER.1B_BR_RETIND Stall 4.2.5.6

0x8BD FE_RESTEER.3B_BR_RETIND Stall 4.2.5.6

0x8BE FE_RESTEER.3B_NON_RETIND Stall 4.2.5.6

0x8BF FE_RESTEER.1B_SEQ_BR Stall 4.2.5.6

0x8C0 FE_RESTEER.3B_SEQ_BR Stall 4.2.5.6

0x8C1 FE_RESTEER.3B_MT Stall 4.2.5.6

0x8C2 FE_RESTEER.4B_MT Stall 4.2.5.6

0x8C3 FE_RESTEER.BE_FLUSH Stall 4.2.5.6

0xC01 RIL_SNOOP_REQ.ANY RIL 4.2.17.28

0xC02 RIL_SNOOP_REQ.CODE_ANY RIL 4.2.17.28

0xC03 RIL_SNOOP_REQ.CODE_SELF RIL 4.2.17.28

0xC04 RIL_SNOOP_REQ.CODE_SIBLING RIL 4.2.17.28

0xC05 RIL_SNOOP_REQ.DATA_ANY RIL 4.2.17.28

0xC06 RIL_SNOOP_REQ.DATA_SELF RIL 4.2.17.28

0xC07 RIL_SNOOP_REQ.DATA_SIBLING RIL 4.2.17.28

0xC08 RIL_SNOOP_REQ.INVAL_ANY RIL 4.2.17.28

0xC09 RIL_SNOOP_REQ.INVAL_SELF RIL 4.2.17.28

0xC0A RIL_SNOOP_REQ.INVAL_SIBLING RIL 4.2.17.28

Table 4-1. All Performance Monitors Ordered by Code (Sheet 14 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 149
Reference Manual for Software Development and Optimization Guide

0xC0B RIL_SNOOP_REQ.INVAL_LLC_EVICT RIL 4.2.17.28

0xC0C RIL_SNOOP_RESP.MLD_MISS RIL 4.2.17.29

0xC0D RIL_SNOOP_RESP.WRQ_HIT_M RIL 4.2.17.29

0xC0E RIL_SNOOP_RESP.MLD_HIT_S RIL 4.2.17.29

0xC0F RIL_SNOOP_RESP.MLD_HIT_E RIL 4.2.17.29

0xC10 RIL_SNOOP_RESP.MLD_HIT_M RIL 4.2.17.29

0xC11 RIL_SNOOP_RESP.MLD_DEFER RIL 4.2.17.29

0xC12 RIL_REQ.ANY RIL 4.2.17.17

0xC13 RIL_REQ_REF.ANY RIL 4.2.17.20

0xC14 RIL_REQ_REF_INST.ANY RIL 4.2.17.22

0xC15 RIL_REQ_REF_INST.NC RIL 4.2.17.22

0xC16 RIL_REQ_REF_INST.WB_ANY RIL 4.2.17.22

0xC17 RIL_REQ_REF_INST.WB_DMND RIL 4.2.17.22

0xC18 RIL_REQ_REF_DATA.ANY RIL 4.2.17.21

0xC19 RIL_REQ_REF_DATA.WB_ANY RIL 4.2.17.21

0xC1A RIL_REQ_REF_DATA.WB_MLD_ANY RIL 4.2.17.21

0xC1B RIL_REQ_REF_DATA.WB_MLD_BUDDY RIL 4.2.17.21

0xC1C RIL_REQ_REF_DATA.WB_CRD RIL 4.2.17.21

0xC1D RIL_REQ_REF_DATA.WB_DRD RIL 4.2.17.21

0xC1E RIL_REQ_REF_DATA.WB_RFO RIL 4.2.17.21

0xC1F RIL_REQ_REF_DATA.WB_SELF_SNOOP RIL 4.2.17.21

0xC20 RIL_REQ_REF_DATA.NC_ANY RIL 4.2.17.21

0xC21 RIL_REQ_REF_DATA.NC_READ_ANY RIL 4.2.17.21

0xC22 RIL_REQ_REF_DATA.NC_READ_UC RIL 4.2.17.21

0xC23 RIL_REQ_REF_DATA.NC_WRITE_ANY RIL 4.2.17.21

0xC24 RIL_REQ_REF_DATA.NC_WRITE_WC_ANY RIL 4.2.17.21

0xC25 RIL_REQ_REF_DATA.NC_WRITE_WC_FULL RIL 4.2.17.21

0xC26 RIL_REQ_REF_DATA.NC_WRITE_UC RIL 4.2.17.21

0xC27 RIL_REQ_REF_DATA.NC_WRITE_WC_MLD RIL 4.2.17.21

0xC28 RIL_REQ_REF_DATA.DRQ_ANY RIL 4.2.17.21

0xC29 RIL_REQ_REF_DATA.WRQ_ANY RIL 4.2.17.21

0xC2A RIL_REQ_OTHER.WRTBCK_WRQ RIL 4.2.17.19

0xC2B RIL_REQ_OTHER.WRQ_FC_FCI RIL 4.2.17.19

0xC2C RIL_REQ_OTHER.WRTBCK_WRQ_SKIP RIL 4.2.17.19

0xC2D RIL_REQ_OTHER.WRQ_SKIP_LRUHINT RIL 4.2.17.19

0xC2E RIL_REQ_OTHER.WRTBCK_MLD_EVICT RIL 4.2.17.19

0xC2F RIL_REQ_OTHER.WRTBCK_MLD_FC RIL 4.2.17.19

0xC30 RIL_REQ_OTHER.FC RIL 4.2.17.19

0xC30 RETIRED_INST_FC Execution 4.2.3.19

0xC31 RIL_REQ_OTHER.FCI RIL 4.2.17.19

0xC31 RETIRED_INST_FCI Execution 4.2.3.20

Table 4-1. All Performance Monitors Ordered by Code (Sheet 15 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

150 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0xC32 RIL_REQ_OTHER.CC RIL 4.2.17.19

0xC33 RIL_REQ_OTHER.DRQ_ANY RIL 4.2.17.19

0xC34 RIL_REQ_OTHER.PTCG RIL 4.2.17.19

0xC34 RETIRED_INST_PTCG Execution 4.2.3.26

0xC35 RIL_REQ_OTHER.PTCG_PEND RIL 4.2.17.19

0xC36 RIL_REQ_OTHER.LRUHINT_FROM_MLD RIL 4.2.17.19

0xC37 RIL_REQ_OTHER.LRUHINT_ANY RIL 4.2.17.19

0xC38 RIL_REQ_OTHER.LRUHINT_MLD RIL 4.2.17.19

0xC39 RIL_REQ_OTHER.LRUHINT_MISS_ANY RIL 4.2.17.19

0xC3A RIL_REQ_OTHER.LRUHINT_MISS_MLD RIL 4.2.17.19

0xC3B RIL_REQ_HINT_NRU RIL 4.2.17.18

0xC3C LLC_REF_HIT.ANY LLC 4.2.19.1

0xC3D LLC_REF_HIT.NO_SNOOP LLC 4.2.19.1

0xC3E LLC_REF_HIT.SNOOP LLC 4.2.19.1

0xC3F LLC_REF_HIT.SNOOP_FWD LLC 4.2.19.1

0xC40 LLC_REF_SYS_ANY LLC 4.2.19.5

0xC41 LLC_REF_MISS.ANY LLC 4.2.19.2

0xC42 LLC_REF_MISS.MEM_LCL_ANY LLC 4.2.19.2

0xC43 LLC_REF_MISS.MEM_RMT_ANY LLC 4.2.19.2

0xC44 LLC_REF_MISS.MEM_LCL_NO_SNOOP LLC 4.2.19.2

0xC45 LLC_REF_MISS.MEM_LCL_SNOOP LLC 4.2.19.2

0xC46 LLC_REF_MISS.MEM_LCL_SNOOP_FWD LLC 4.2.19.2

0xC47 LLC_REF_MISS.MEM_RMT_NO_SNOOP LLC 4.2.19.2

0xC48 LLC_REF_MISS.MEM_RMT_SNOOP LLC 4.2.19.2

0xC49 LLC_REF_MISS.MEM_RMT_SNOOP_FWD LLC 4.2.19.2

0xC4A LLC_REF_UNKNOWN LLC 4.2.19.6

0xC4B LLC_REF_MISS_DATA.ANY LLC 4.2.19.3

0xC4C LLC_REF_MISS_DATA.READ LLC 4.2.19.3

0xC4D LLC_REF_MISS_INST.ANY LLC 4.2.19.4

0xC4E LLC_REF_MISS_INST.PRIMARY LLC 4.2.19.4

0xC4F RIL_SHOOTDOWN RIL 4.2.17.26

0xC50 RIL_SHOOTDOWN_PEND_CYC RIL 4.2.17.27

0xC51 RIL_INTERRUPT RIL 4.2.17.14

0xC52 RIL_CBQ_EVICT.WCB_FLUSH RIL 4.2.17.3

0xC53 RIL_CBQ_EVICT.FULL RIL 4.2.17.3

0xC54 RIL_DATA_RETURN.PRI_ANY RIL 4.2.17.8

0xC55 RIL_DATA_RETURN.PRI_MLD RIL 4.2.17.8

0xC56 RIL_DATA_RETURN.MLD_ANY RIL 4.2.17.8

0xC57 RIL_DATA_RETURN.MLD_CRIT RIL 4.2.17.8

0xC58 RIL_DATA_RETURN.EARLY_FILL_EM RIL 4.2.17.8

0xC59 RIL_DATA_RETURN.EARLY_FILL_S RIL 4.2.17.8

Table 4-1. All Performance Monitors Ordered by Code (Sheet 16 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 151
Reference Manual for Software Development and Optimization Guide

0xC5A RIL_RESP.GO RIL 4.2.17.23

0xC5B RIL_RESP.WRITEPULL RIL 4.2.17.23

0xC5C RIL_BL_WRITE.ANY RIL 4.2.17.2

0xC5D RIL_BL_WRITE.WLB RIL 4.2.17.2

0xC5E RIL_BL_WRITE.WLB_BOGUS RIL 4.2.17.2

0xC5F RIL_BL_WRITE.SLB RIL 4.2.17.2

0xC60 RIL_ARB_PRI_LOST.AD RIL 4.2.17.1

0xC61 RIL_ARB_PRI_LOST.AD_FWD_PROG RIL 4.2.17.1

0xC62 RIL_ARB_PRI_LOST.BL RIL 4.2.17.1

0xC63 RIL_ARB_PRI_LOST.BL_FWD_PROG RIL 4.2.17.1

0xC64 RIL_CRDT_PRI_BLK.AD_ALL RIL 4.2.17.6

0xC65 RIL_CRDT_PRI_BLK.AD_FRQ RIL 4.2.17.6

0xC66 RIL_CRDT_PRI_BLK.AD_DRQ RIL 4.2.17.6

0xC67 RIL_CRDT_PRI_BLK.AD_WRQ RIL 4.2.17.6

0xC68 RIL_CRDT_PRI_BLK.AD_CBQ RIL 4.2.17.6

0xC69 RIL_CRDT_PRI_BLK.AK_ALL RIL 4.2.17.6

0xC6A RIL_CRDT_PRI_BLK.BL_ALL RIL 4.2.17.6

0xC6B RIL_CRDT_PRI_BLK.BL_SNQ RIL 4.2.17.6

0xC6C RIL_CRDT_PRI_BLK.BL_WRQ RIL 4.2.17.6

0xC6D RIL_CRDT_PRI_BLK.BL_CBQ RIL 4.2.17.6

0xC6E RIL_CRDT_MLD_FDB_FULL RIL 4.2.17.4

0xC6F RIL_CRDT_MLD_FDB_FULL_BLK RIL 4.2.17.5

0xC70 RIL_CRDT_SNQ_BLK.ANY RIL 4.2.17.7

0xC71 RIL_CRDT_SNQ_BLK.HALT RIL 4.2.17.7

0xC72 RIL_CRDT_SNQ_BLK.SRLZ RIL 4.2.17.7

0xC73 RIL_CRDT_SNQ_BLK.MLI_FWD_PROG RIL 4.2.17.7

0xC74 RIL_CRDT_SNQ_BLK.MLD_FWD_PROG RIL 4.2.17.7

0xC75 RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FWD_PROG RIL 4.2.17.7

0xC76 RIL_CRDT_SNQ_BLK.MLI_FULL RIL 4.2.17.7

0xC77 RIL_CRDT_SNQ_BLK.MLD_FULL RIL 4.2.17.7

0xC78 RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FULL RIL 4.2.17.7

0xC79 RIL_CRDT_SNQ_BLK.DFRQ RIL 4.2.17.7

0xC7A RIL_CRDT_SNQ_BLK.RSPQ RIL 4.2.17.7

0xC7B RIL_CRDT_SNQ_BLK.SLB_DQ RIL 4.2.17.7

0xC7C RIL_CRDT_SNQ_BLK.WLB_DQ RIL 4.2.17.7

0xC7D RIL_CRDT_SNQ_BLK.ANY_Q_FULL RIL 4.2.17.7

0xC7E RIL_FRQ.EMPTY RIL 4.2.17.12

0xC7F RIL_FRQ.LIMIT_HIT RIL 4.2.17.12

0xC80 RIL_DRQ.EMPTY RIL 4.2.17.9

0xC81 RIL_DRQ.LIMIT_HIT RIL 4.2.17.9

0xC82 RIL_WRQ.EMPTY RIL 4.2.17.32

Table 4-1. All Performance Monitors Ordered by Code (Sheet 17 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

152 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0xC83 RIL_WRQ.LIMIT_HIT RIL 4.2.17.32

0xC84 RIL_RRQ.LIMIT_HIT RIL 4.2.17.24

0xC85 RIL_SNQ.EMPTY RIL 4.2.17.30

0xC86 RIL_SNQ.LIMIT_HIT RIL 4.2.17.30

0xC87 RIL_FRQ_VALID.MSB RIL 4.2.17.13

0xC88 RIL_FRQ_VALID.LSB RIL 4.2.17.13

0xC89 RIL_DRQ_VALID.MSB RIL 4.2.17.11

0xC8A RIL_DRQ_VALID.LSB RIL 4.2.17.11

0xC8B RIL_WRQ_VALID.MSB RIL 4.2.17.33

0xC8C RIL_WRQ_VALID.LSB RIL 4.2.17.33

0xC8D RIL_SNQ_VALID.MSB RIL 4.2.17.31

0xC8E RIL_SNQ_VALID.LSB RIL 4.2.17.31

0xC8F RIL_DRQ_PACE_BUBBLE RIL 4.2.17.10

0xC90 RIL_PRI_THROTTLE_ASSERTED RIL 4.2.17.15

0xC91 RIL_PRI_THROTTLE_RECOV RIL 4.2.17.16

0xC92 RIL_SEB.PTC_QUIESCE_PEND RIL 4.2.17.25

0xC93 RIL_SEB.LDST_QUIESCE_PEND RIL 4.2.17.25

0xC94 RIL_SEB.BGF_QUIESCE_ACTIVE RIL 4.2.17.25

0xC96 RIL_CRDT_SNQ_BLK.USEMANY_ANY RIL 4.2.17.7

0xC97 RIL_CRDT_SNQ_BLK.USEMANY_BYP RIL 4.2.17.7

0xC9B UNCORE_FREEZE System 4.2.20.4

0xC9C DTLB_HPWREQ_BLK_MISS.SUCCEED MLDTLB 4.2.15.2

0xC9D DTLB_REF.NONSPEC MLDTLB 4.2.15.4

0xC9E DTLB_HPWREQ_SPEC_MISS MLDTLB 4.2.15.3

0xC9F DTLB_HPWREQ_BLK_MISS.COAL MLDTLB 4.2.15.2

0xCA0 DTLB_HPWREQ_BLK_MISS.FAIL MLDTLB 4.2.15.2

0xCA1 CSPEC_LOAD.ANY Execution 4.2.3.5

0xCA2 CSPEC_LOAD.NAT Execution 4.2.3.5

0xCA3 DTLB_HPWHINT_BLK MLDTLB 4.2.15.1

0xCA4 DATA_REF.LOAD_UC FLD 4.2.12.1

0xCA5 DATA_REF.STORE_UC FLD 4.2.12.1

0xCA6 DTLB_REF.ANY MLDTLB 4.2.15.4

0xCA7 MLD_ISSUE_SRC.ANY MLD 4.2.13.14

0xCA8 MLD_ISSUE_SRC.BYPASS MLD 4.2.13.14

0xCA9 MLD_ISSUE_SRC.OZQ MLD 4.2.13.14

0xCAA MLD_ISSUE_SRC.SMQ MLD 4.2.13.14

0xCAB MLD_ISSUE_SRC.FAB MLD 4.2.13.14

0xCAC MLD_ISSUE_SRC.SNOOP MLD 4.2.13.14

0xCAD MLD_REF.ANY MLD 4.2.13.23

0xCAE MLD_REF.HIT MLD 4.2.13.23

0xCAF MLD_REF.MISS MLD 4.2.13.23

Table 4-1. All Performance Monitors Ordered by Code (Sheet 18 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 153
Reference Manual for Software Development and Optimization Guide

0xCB0 MLD_REF.PRIMARY MLD 4.2.13.23

0xCB1 MLD_REF.SECONDARY MLD 4.2.13.23

0xCB2 MLD_REF.SECONDARY_DROP MLD 4.2.13.23

0xCB3 MLD_REF.UC_WC_STORE MLD 4.2.13.23

0xCB4 MLD_LOAD.ANY MLD 4.2.13.15

0xCB5 MLD_LOAD.HIT MLD 4.2.13.15

0xCB6 MLD_LOAD.MISS MLD 4.2.13.15

0xCB7 MLD_LOAD.PRIMARY MLD 4.2.13.15

0xCB8 MLD_LOAD.SECONDARY MLD 4.2.13.15

0xCB9 MLD_SMQ_REF.ANY MLD 4.2.13.26

0xCBA MLD_SMQ_REF.HIT MLD 4.2.13.26

0xCBB MLD_SMQ_REF.MISS MLD 4.2.13.26

0xCBC MLD_SMQ_REF.PRIMARY MLD 4.2.13.26

0xCBD MLD_SMQ_REF.SECONDARY MLD 4.2.13.26

0xCBE MLD_SMQ_REF.SECONDARY_DROP MLD 4.2.13.26

0xCBF MLD_FILL_MESI_STATE_PRIMARY.ANY MLD 4.2.13.8

0xCC0 MLD_FILL_MESI_STATE_PRIMARY.M MLD 4.2.13.8

0xCC1 MLD_FILL_MESI_STATE_PRIMARY.E MLD 4.2.13.8

0xCC2 MLD_FILL_MESI_STATE_PRIMARY.S MLD 4.2.13.8

0xCC3 MLD_FILL_MESI_STATE_PRIMARY.I MLD 4.2.13.8

0xCC4 MLD_FILL_MESI_STATE_BUDDY.ANY MLD 4.2.13.7

0xCC5 MLD_FILL_MESI_STATE_BUDDY.E MLD 4.2.13.7

0xCC6 MLD_FILL_MESI_STATE_BUDDY.S MLD 4.2.13.7

0xCC7 MLD_FILL_MESI_STATE_BUDDY.I MLD 4.2.13.7

0xCC8 MLD_SNOOP_DEFER MLD 4.2.13.27

0xCC9 MLD_NOALLOC_FILL MLD 4.2.13.18

0xCCA MLD_NOALLOC_CASTOUT MLD 4.2.13.17

0xCCB MLD_HINT_NOALLOC MLD 4.2.13.10

0xCCC MLD_HINT_NRU MLD 4.2.13.13

0xCCD MLD_HINT_NO_BUDDY MLD 4.2.13.11

0xCCE MLD_HINT_NO_MULTI_HWPREF MLD

0xCCF MLD_HINT_PREF_DROP MLD 4.2.13.12

0xCD0 MLD_HINT_DEFER MLD 4.2.13.9

0xCD1 MLD_FAB_OVERFLOW MLD 4.2.13.6

0xCD2 MLD_OZQ_INSERT MLD 4.2.13.21

0xCD3 MLD_BYPASS_ATTEMPT MLD 4.2.13.3

0xCD4 MLD_BYPASS MLD 4.2.13.2

0xCD5 MLD_OZQ_PREEMPTED MLD 4.2.13.22

0xCD6 MLD_BWMODE_CYC MLD 4.2.13.1

0xCD7 MLD_SMQ_PRIORITY MLD 4.2.13.25

0xCD8 MLD_CYC_STALL.ANY MLD 4.2.13.4

Table 4-1. All Performance Monitors Ordered by Code (Sheet 19 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

154 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0xCD9 MLD_CYC_STALL.RW_BANK MLD 4.2.13.4

0xCDA MLD_CYC_STALL.RAW MLD 4.2.13.4

0xCDB MLD_CYC_STALL.SEMAPHORE MLD 4.2.13.4

0xCDC MLD_CYC_STALL.FILL_W MLD 4.2.13.4

0xCDD MLD_CYC_STALL.CRIT_BYP MLD 4.2.13.4

0xCDE MLD_CYC_STALL.WB_FIFO MLD 4.2.13.4

0xCDF MLD_CYC_STALL.HPW MLD 4.2.13.4

0xCE0 MLD_CYC_STALL.TAG_ERR MLD 4.2.13.4

0xCE1 MLD_CYC_STALL.SPLIT_WW_BANK MLD 4.2.13.4

0xCE2 MLD_CYC_STALL.SPLIT_RR_BANK MLD 4.2.13.4

0xCE3 MLD_CYC_STALL.SPLIT_RW_BANK MLD 4.2.13.4

0xCE4 MLD_CYC_STALL.SPLIT_RAW MLD 4.2.13.4

0xCE5 MLD_CYC_STALL.SPLIT_OVERSUB MLD 4.2.13.4

0xCE6 MLD_CYC_STALL.SPLIT_CRIT_BYP MLD 4.2.13.4

0xCE7 MLD_LOST_BW.ANY MLD 4.2.13.16

0xCE8 MLD_LOST_BW.OZQ_NOP MLD 4.2.13.16

0xCE9 MLD_LOST_BW.OZQ_NOP_ACQ MLD 4.2.13.16

0xCEA MLD_LOST_BW.OZQ_FAB_FULL MLD 4.2.13.16

0xCEB MLD_LOST_BW.OZQ_SMQ_FULL MLD 4.2.13.16

0xCEC MLD_LOST_BW.OZQ_FAB_PREEMPT MLD 4.2.13.16

0xCED MLD_LOST_BW.OZQ_SMQ_PREEMPT MLD 4.2.13.16

0xCEE MLD_LOST_BW.OZQ_SNOOP_PREEMPT MLD 4.2.13.16

0xCEF MLD_LOST_BW.FAB_NOP MLD 4.2.13.16

0xCF0 MLD_LOST_BW.SMQ_NOP MLD 4.2.13.16

0xCF1 MLD_LOST_BW.SPLIT_BUBBLE MLD 4.2.13.16

0xCF2 MLD_LOST_BW.NOP_STALL MLD 4.2.13.16

0xCF3 MLD_LOST_BW.STALL MLD 4.2.13.16

0xCF4 MLD_LOST_BW.NOP MLD 4.2.13.16

0xCF5 MLD_OZQ_COUNT.LSB MLD 4.2.13.20

0xCF6 MLD_OZQ_COUNT.MSB MLD 4.2.13.20

0xCF7 MLD_FAB_COUNT.LSB MLD 4.2.13.5

0xCF8 MLD_FAB_COUNT.MSB MLD 4.2.13.5

0xCF9 MLD_SMQ_COUNT.LSB MLD 4.2.13.24

0xCFA MLD_SMQ_COUNT.MSB MLD 4.2.13.24

0xCFB MLD_WLB_COUNT.LSB MLD 4.2.13.29

0xCFC MLD_WLB_COUNT.MSB MLD 4.2.13.29

0xCFD MLD_WCB_CREDIT MLD 4.2.13.28

0xCFE MLD_OZDATA_COUNT.LSB MLD 4.2.13.19

0xCFF MLD_OZDATA_COUNT.MSB MLD 4.2.13.19

Table 4-1. All Performance Monitors Ordered by Code (Sheet 20 of 20)

Event
Code Symbol Name Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 155
Reference Manual for Software Development and Optimization Guide

4.1.6 Performance Monitor Events Ordered by Event Name
Table 4-2 presents all of the performance monitors provided in the processor ordered
by their event name.

Table 4-2. All Performance Monitors Ordered by Name (Sheet 1 of 20)

Symbol Name Event
Code Area Section

ALAT_ENTRY_REPLACED 0x152 Execution 4.2.3.1

ALAT_STORE_HIT 0x151 Execution 4.2.3.2

BR_BE_PRED_DETAIL.ANY 0x807 Branch 4.2.6.1

BR_BE_PRED_DETAIL.ANY_RETIRED 0x805 Branch 4.2.6.1

BR_BE_PRED_DETAIL.OTHER 0x804 Branch 4.2.6.1

BR_BE_PRED_DETAIL.PFS 0x803 Branch 4.2.6.1

BR_BE_PRED_DETAIL.ROT 0x802 Branch 4.2.6.1

BR_BE_PRED_DETAIL.STG 0x801 Branch 4.2.6.1

BR_BE_PRED_DETAIL.UNRETIRED 0x806 Branch 4.2.6.1

BR_ENC_PRED_DETAIL.ENC_ANY_PRED 0x830 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_CORR_PRED 0x831 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_OVRSUB_ANY_PRED 0x838 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_OVRSUB_CORR_PRED 0x839 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_PATH 0x83A Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_TARGET 0x83B Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_WRONG_PATH 0x832 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.ENC_WRONG_TARGET 0x833 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.OVRSUB_ANY_PRED 0x834 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.OVRSUB_CORR_PRED 0x835 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.OVRSUB_WRONG_PATH 0x836 Branch 4.2.6.2

BR_ENC_PRED_DETAIL.OVRSUB_WRONG_TARGET 0x837 Branch 4.2.6.2

BR_PATH_PRED.ANY_MISPRED_NOT_TAKEN 0x808 Branch 4.2.6.3

BR_PATH_PRED.ANY_MISPRED_TAKEN 0x809 Branch 4.2.6.3

BR_PATH_PRED.ANY_OKPRED_NOT_TAKEN 0x80A Branch 4.2.6.3

BR_PATH_PRED.ANY_OKPRED_TAKEN 0x80B Branch 4.2.6.3

BR_PATH_PRED.IPREL_MISPRED_NOT_TAKEN 0x80C Branch 4.2.6.3

BR_PATH_PRED.IPREL_MISPRED_TAKEN 0x80D Branch 4.2.6.3

BR_PATH_PRED.IPREL_OKPRED_NOT_TAKEN 0x80E Branch 4.2.6.3

BR_PATH_PRED.IPREL_OKPRED_TAKEN 0x80F Branch 4.2.6.3

BR_PATH_PRED.NON_RETIND_MISPRED_NOT_TAKEN 0x814 Branch 4.2.6.3

BR_PATH_PRED.NON_RETIND_MISPRED_TAKEN 0x815 Branch 4.2.6.3

BR_PATH_PRED.NON_RETIND_OKPRED_NOT_TAKEN 0x816 Branch 4.2.6.3

BR_PATH_PRED.NON_RETIND_OKPRED_TAKEN 0x817 Branch 4.2.6.3

BR_PATH_PRED.RETURN_MISPRED_NOT_TAKEN 0x810 Branch 4.2.6.3

BR_PATH_PRED.RETURN_MISPRED_TAKEN 0x811 Branch 4.2.6.3

BR_PATH_PRED.RETURN_OKPRED_NOT_TAKEN 0x812 Branch 4.2.6.3

BR_PATH_PRED.RETURN_OKPRED_TAKEN 0x813 Branch 4.2.6.3

Core Performance Monitor Events

156 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

BR_PRED_DETAIL.ANY_ANY_PRED 0x820 Branch 4.2.6.4

BR_PRED_DETAIL.ANY_CORR_PRED 0x821 Branch 4.2.6.4

BR_PRED_DETAIL.ANY_WRONG_PATH 0x822 Branch 4.2.6.4

BR_PRED_DETAIL.ANY_WRONG_TARGET 0x823 Branch 4.2.6.4

BR_PRED_DETAIL.IPREL_ANY_PRED 0x824 Branch 4.2.6.4

BR_PRED_DETAIL.IPREL_CORR_PRED 0x825 Branch 4.2.6.4

BR_PRED_DETAIL.IPREL_WRONG_PATH 0x826 Branch 4.2.6.4

BR_PRED_DETAIL.IPREL_WRONG_TARGET 0x827 Branch 4.2.6.4

BR_PRED_DETAIL.NON_RETIND_ANY_PRED 0x82C Branch 4.2.6.4

BR_PRED_DETAIL.NON_RETIND_CORR_PRED 0x82D Branch 4.2.6.4

BR_PRED_DETAIL.NON_RETIND_WRONG_PATH 0x82E Branch 4.2.6.4

BR_PRED_DETAIL.NON_RETIND_WRONG_TARGET 0x82F Branch 4.2.6.4

BR_PRED_DETAIL.RETURN_ANY_PRED 0x828 Branch 4.2.6.4

BR_PRED_DETAIL.RETURN_CORR_PRED 0x829 Branch 4.2.6.4

BR_PRED_DETAIL.RETURN_WRONG_PATH 0x82A Branch 4.2.6.4

BR_PRED_DETAIL.RETURN_WRONG_TARGET 0x82B Branch 4.2.6.4

BR_PRED_UNKNOWN.ANY 0x818 Branch 4.2.6.5

BR_PRED_UNKNOWN.ANY_TAKEN 0x819 Branch 4.2.6.5

BR_PRED_UNKNOWN.IPREL 0x81A Branch 4.2.6.5

BR_PRED_UNKNOWN.IPREL_TAKEN 0x81B Branch 4.2.6.5

BR_PRED_UNKNOWN.NON_RETIND 0x81E Branch 4.2.6.5

BR_PRED_UNKNOWN.NON_RETIND_TAKEN 0x81F Branch 4.2.6.5

BR_PRED_UNKNOWN.RETURN 0x81C Branch 4.2.6.5

BR_PRED_UNKNOWN.RETURN_TAKEN 0x81D Branch 4.2.6.5

CPU_CPL_CHANGE.ANY 0x01A System 4.2.20.1

CPU_CPL_CHANGE.FROM0 0x01B System 4.2.20.1

CPU_CPL_CHANGE.FROM1 0x01C System 4.2.20.1

CPU_CPL_CHANGE.FROM2 0x01D System 4.2.20.1

CPU_CPL_CHANGE.FROM3 0x01E System 4.2.20.1

CPU_OP_CYCLES 0x002 Basic 4.2.1.1

CPU_OP_CYCLES.HALTED 0x003 Basic 4.2.1.1

CPU_OP_CYCLES.TAGGED 0x004 Basic 4.2.1.1

CPU_REF_CYCLES 0x001 Basic 4.2.1.2

CSPEC_CHKS_FAIL.ANY 0x015 Execution 4.2.3.4

CSPEC_CHKS_FAIL.FP 0x017 Execution 4.2.3.4

CSPEC_CHKS_FAIL.INT 0x016 Execution 4.2.3.4

CSPEC_CHKS.ANY 0x014 Execution 4.2.3.3

CSPEC_LOAD.ANY 0xCA1 Execution 4.2.3.5

CSPEC_LOAD.NAT 0xCA2 Execution 4.2.3.5

CYC_BE_BUBBLE.ANY 0x024 Stall 4.2.4.1

CYC_BE_DET_REPLAY.ANY 0x04A Stall 4.2.4.2

Table 4-2. All Performance Monitors Ordered by Name (Sheet 2 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 157
Reference Manual for Software Development and Optimization Guide

CYC_BE_DET_REPLAY.DCS_HZRD 0x04C Stall 4.2.4.2

CYC_BE_DET_REPLAY.FLUSH_STORE 0x050 Stall 4.2.4.2

CYC_BE_DET_REPLAY.GR_LOAD 0x04B Stall 4.2.4.2

CYC_BE_DET_REPLAY.HPW_HZRD 0x051 Stall 4.2.4.2

CYC_BE_DET_REPLAY.LOAD_ACQ 0x04F Stall 4.2.4.2

CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE 0x04E Stall 4.2.4.2

CYC_BE_DET_REPLAY.MT1 0x054 Stall 4.2.4.2

CYC_BE_DET_REPLAY.STORE_VS_STORE 0x04D Stall 4.2.4.2

CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL 0x052 Stall 4.2.4.2

CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL 0x053 Stall 4.2.4.2

CYC_BE_EXE_REPLAY.ANY 0x03A Stall 4.2.4.3

CYC_BE_EXE_REPLAY.ARCR 0x048 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.FCMP 0x042 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.FPSR 0x045 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.FR_FR 0x040 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.FR_LOAD_RAW 0x03C Stall 4.2.4.3

CYC_BE_EXE_REPLAY.FR_LOAD_WAW 0x03E Stall 4.2.4.3

CYC_BE_EXE_REPLAY.GR_GR 0x03F Stall 4.2.4.3

CYC_BE_EXE_REPLAY.GR_LOAD_RAW 0x03B Stall 4.2.4.3

CYC_BE_EXE_REPLAY.GR_LOAD_WAW 0x03D Stall 4.2.4.3

CYC_BE_EXE_REPLAY.MT1_HIGH 0x041 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.MT1_LOW 0x049 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.NOTN 0x044 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.PRED 0x043 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.REL 0x047 Stall 4.2.4.3

CYC_BE_EXE_REPLAY.SRLZ 0x046 Stall 4.2.4.3

CYC_BE_IBD_STALL.ACQ 0x02E Stall 4.2.4.4

CYC_BE_IBD_STALL.ANY 0x025 Stall 4.2.4.4

CYC_BE_IBD_STALL.DEBUG 0x039 Stall 4.2.4.4

CYC_BE_IBD_STALL.FEBUB 0x038 Stall 4.2.4.4

CYC_BE_IBD_STALL.FLD_DMND 0x035 Stall 4.2.4.4

CYC_BE_IBD_STALL.FR_LOAD 0x030 Stall 4.2.4.4

CYC_BE_IBD_STALL.FTOF 0x034 Stall 4.2.4.4

CYC_BE_IBD_STALL.GR_LOAD 0x02F Stall 4.2.4.4

CYC_BE_IBD_STALL.HPW 0x02C Stall 4.2.4.4

CYC_BE_IBD_STALL.MTOM 0x033 Stall 4.2.4.4

CYC_BE_IBD_STALL.OZQFULL 0x02D Stall 4.2.4.4

CYC_BE_IBD_STALL.QFULL 0x037 Stall 4.2.4.4

CYC_BE_IBD_STALL.REL 0x032 Stall 4.2.4.4

CYC_BE_IBD_STALL.RSE_ANY 0x026 Stall 4.2.4.4

CYC_BE_IBD_STALL.RSE_CFLE 0x027 Stall 4.2.4.4

Table 4-2. All Performance Monitors Ordered by Name (Sheet 3 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

158 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

CYC_BE_IBD_STALL.RSE_LOAD 0x029 Stall 4.2.4.4

CYC_BE_IBD_STALL.RSE_ST 0x028 Stall 4.2.4.4

CYC_BE_IBD_STALL.RSE_WAIT 0x02A Stall 4.2.4.4

CYC_BE_IBD_STALL.SRLZ 0x031 Stall 4.2.4.4

CYC_BE_IBD_STALL.THRSW 0x02B Stall 4.2.4.4

CYC_BE_IBD_STALL.WB2_TRAP 0x036 Stall 4.2.4.4

CYC_BE_NO_BUBBLE 0x023 Stall 4.2.4.5

CYC_BE_WB2_FLUSH.ANY 0x065 Stall 4.2.4.6

CYC_BE_WB2_FLUSH.BRU 0x067 Stall 4.2.4.6

CYC_BE_WB2_FLUSH.XPN 0x066 Stall 4.2.4.6

CYC_BE_WB2_REPLAY.ALLOC_PEC 0x058 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.ANY 0x055 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.BLK_HPW 0x05D Stall 4.2.4.7

CYC_BE_WB2_REPLAY.DAHR_HZRD 0x061 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.FP_DEN 0x05B Stall 4.2.4.7

CYC_BE_WB2_REPLAY.FP_SIR 0x05C Stall 4.2.4.7

CYC_BE_WB2_REPLAY.LDC 0x056 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.LOAD_ACQ 0x062 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.MOV_PSR_UM 0x059 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.MT1 0x063 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.NAT_HZRD 0x060 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.OZQ_FULL 0x05E Stall 4.2.4.7

CYC_BE_WB2_REPLAY.PAUSE 0x057 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.SER 0x064 Stall 4.2.4.7

CYC_BE_WB2_REPLAY.STORE_ALIAS 0x05F Stall 4.2.4.7

CYC_BE_WB2_REPLAY.VIRT_INT 0x05A Stall 4.2.4.7

CYC_FE_BUBBLE.ANY 0x8A3 Stall 4.2.5.1

CYC_FE_FET_REPLAY.ANY 0x8AB Stall 4.2.5.2

CYC_FE_FET_REPLAY.BRQ_FULL 0x8AD Stall 4.2.5.2

CYC_FE_FET_REPLAY.BRQ_WAIT 0x8AE Stall 4.2.5.2

CYC_FE_FET_REPLAY.BR_INIT 0x8AC Stall 4.2.5.2

CYC_FE_FET_REPLAY.BR_INTRLCK 0x8AF Stall 4.2.5.2

CYC_FE_FET_REPLAY.MT1 0x8B1 Stall 4.2.5.2

CYC_FE_FET_REPLAY.RAB_FULL 0x8B0 Stall 4.2.5.2

CYC_FE_FET_STALL.ANY 0x8B2 Stall 4.2.5.3

CYC_FE_FET_STALL.FLITLB_MISS 0x8B5 Stall 4.2.5.3

CYC_FE_FET_STALL.FLI_MISS 0x8B4 Stall 4.2.5.3

CYC_FE_FET_STALL.IBQ_FULL 0x8B3 Stall 4.2.5.3

CYC_FE_FET_STALL.MT1 0x8B6 Stall 4.2.5.3

CYC_FE_FWPROG 0x8A1 Multithreading 4.2.21.1

CYC_FE_NO_BUBBLE 0x8A2 Stall 4.2.5.4

Table 4-2. All Performance Monitors Ordered by Name (Sheet 4 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 159
Reference Manual for Software Development and Optimization Guide

CYC_FE_RESTEER.ANY 0x8A4 Stall 4.2.5.5

CYC_FE_RESTEER.BE_FLUSH 0x8AA Stall 4.2.5.5

CYC_FE_RESTEER.BR_RETIND 0x8A6 Stall 4.2.5.5

CYC_FE_RESTEER.IPREL 0x8A5 Stall 4.2.5.5

CYC_FE_RESTEER.NON_RETIND 0x8A7 Stall 4.2.5.5

CYC_FE_RESTEER.SEQ_BR 0x8A8 Stall 4.2.5.5

CYC_FE_RESTEER.TSWITCH 0x8A9 Stall 4.2.5.5

DAHS_UNDERFLOW 0x0C9 DPF 4.2.16.1

DATA_REF.ANY 0x0DD FLD 4.2.12.1

DATA_REF.HW_PREF 0x0E6 FLD 4.2.12.1

DATA_REF.LFETCH 0x0E4 FLD 4.2.12.1

DATA_REF.LOAD_ANY 0x0E8 FLD 4.2.12.1

DATA_REF.LOAD_FP 0x0DF FLD 4.2.12.1

DATA_REF.LOAD_HPW 0x0E7 FLD 4.2.12.1

DATA_REF.LOAD_INT 0x0DE FLD 4.2.12.1

DATA_REF.LOAD_RSE 0x0E0 FLD 4.2.12.1

DATA_REF.LOAD_UC 0xCA4 FLD 4.2.12.1

DATA_REF.SEMAPHORE 0x0E5 FLD 4.2.12.1

DATA_REF.STORE_ANY 0x0E9 FLD 4.2.12.1

DATA_REF.STORE_FP 0x0E2 FLD 4.2.12.1

DATA_REF.STORE_INT 0x0E1 FLD 4.2.12.1

DATA_REF.STORE_RSE 0x0E3 FLD 4.2.12.1

DATA_REF.STORE_UC 0xCA5 FLD 4.2.12.1

DPFQ_DEQ_PREEMPT_REJECT.ANY 0x0C5 DPF 4.2.16.4

DPFQ_DEQ_PREEMPT_REJECT.LFETCH 0x0C6 DPF 4.2.16.4

DPFQ_DEQ_PREEMPT_REJECT.LFETCH_COUNT 0x0C7 DPF 4.2.16.4

DPFQ_DEQ_PREEMPT_REJECT.MOV_BSPST 0x0C8 DPF 4.2.16.4

DPFQ_DEQ_PREEMPT.ANY 0x0B1 DPF 4.2.16.3

DPFQ_DEQ_PREEMPT.INST_ANY 0x0B2 DPF 4.2.16.3

DPFQ_DEQ_PREEMPT.LFETCH 0x0B3 DPF 4.2.16.3

DPFQ_DEQ_PREEMPT.LFETCH_COUNT 0x0B4 DPF 4.2.16.3

DPFQ_DEQ_PREEMPT.MOV_BSPST 0x0B5 DPF 4.2.16.3

DPFQ_DEQ_PREEMPT.TIMEOUT 0x0B6 DPF 4.2.16.3

DPFQ_DEQ_REJECT.ANY 0x0B7 DPF 4.2.16.5

DPFQ_DEQ_REJECT.FLD_ANY 0x0BF DPF 4.2.16.5

DPFQ_DEQ_REJECT.FLD_BIDI 0x0C3 DPF 4.2.16.5

DPFQ_DEQ_REJECT.FLD_BWD 0x0C2 DPF 4.2.16.5

DPFQ_DEQ_REJECT.FLD_FWD 0x0C1 DPF 4.2.16.5

DPFQ_DEQ_REJECT.FLD_TARGET 0x0C0 DPF 4.2.16.5

DPFQ_DEQ_REJECT.INST_ANY 0x0B8 DPF 4.2.16.5

DPFQ_DEQ_REJECT.LFETCH 0x0B9 DPF 4.2.16.5

Table 4-2. All Performance Monitors Ordered by Name (Sheet 5 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

160 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

DPFQ_DEQ_REJECT.LFETCH_COUNT 0x0BA DPF 4.2.16.5

DPFQ_DEQ_REJECT.MLD 0x0C4 DPF 4.2.16.5

DPFQ_DEQ_REJECT.MOV_BSPST 0x0BB DPF 4.2.16.5

DPFQ_DEQ_REJECT.RSE_ANY 0x0BC DPF 4.2.16.5

DPFQ_DEQ_REJECT.RSE_LOAD 0x0BD DPF 4.2.16.5

DPFQ_DEQ_REJECT.RSE_STORE 0x0BE DPF 4.2.16.5

DPFQ_DEQ.ANY 0x0A3 DPF 4.2.16.2

DPFQ_DEQ.FLD_ANY 0x0AB DPF 4.2.16.2

DPFQ_DEQ.FLD_BIDI 0x0AF DPF 4.2.16.2

DPFQ_DEQ.FLD_BWD 0x0AE DPF 4.2.16.2

DPFQ_DEQ.FLD_FWD 0x0AD DPF 4.2.16.2

DPFQ_DEQ.FLD_TARGET 0x0AC DPF 4.2.16.2

DPFQ_DEQ.INST_ANY 0x0A4 DPF 4.2.16.2

DPFQ_DEQ.LFETCH 0x0A5 DPF 4.2.16.2

DPFQ_DEQ.LFETCH_COUNT 0x0A6 DPF 4.2.16.2

DPFQ_DEQ.MLD 0x0B0 DPF 4.2.16.2

DPFQ_DEQ.MOV_BSPST 0x0A7 DPF 4.2.16.2

DPFQ_DEQ.RSE_ANY 0x0A8 DPF 4.2.16.2

DPFQ_DEQ.RSE_LOAD 0x0A9 DPF 4.2.16.2

DPFQ_DEQ.RSE_STORE 0x0AA DPF 4.2.16.2

DPFQ_ENQ_OVERFLOW.ANY 0x095 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.FLD_ANY 0x09D DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.FLD_BIDI 0x0A1 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.FLD_BWD 0x0A0 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.FLD_FWD 0x09F DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.FLD_TARGET 0x09E DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.INST_ANY 0x096 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.LFETCH 0x097 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.LFETCH_COUNT 0x098 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.MLD 0x0A2 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.MOV_BSPST 0x099 DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.RSE_ANY 0x09A DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.RSE_LOAD 0x09B DPF 4.2.16.7

DPFQ_ENQ_OVERFLOW.RSE_STORE 0x09C DPF 4.2.16.7

DPFQ_ENQ.ANY 0x087 DPF 4.2.16.6

DPFQ_ENQ.FLD_ANY 0x08F DPF 4.2.16.6

DPFQ_ENQ.FLD_BIDI 0x093 DPF 4.2.16.6

DPFQ_ENQ.FLD_BWD 0x092 DPF 4.2.16.6

DPFQ_ENQ.FLD_FWD 0x091 DPF 4.2.16.6

DPFQ_ENQ.FLD_TARGET 0x090 DPF 4.2.16.6

DPFQ_ENQ.INST_ANY 0x088 DPF 4.2.16.6

Table 4-2. All Performance Monitors Ordered by Name (Sheet 6 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 161
Reference Manual for Software Development and Optimization Guide

DPFQ_ENQ.LFETCH 0x089 DPF 4.2.16.6

DPFQ_ENQ.LFETCH_COUNT 0x08A DPF 4.2.16.6

DPFQ_ENQ.MLD 0x094 DPF 4.2.16.6

DPFQ_ENQ.MOV_BSPST 0x08B DPF 4.2.16.6

DPFQ_ENQ.RSE_ANY 0x08C DPF 4.2.16.6

DPFQ_ENQ.RSE_LOAD 0x08D DPF 4.2.16.6

DPFQ_ENQ.RSE_STORE 0x08E DPF 4.2.16.6

DSPEC_CHKA_LDC_FAIL.ANY 0x011 Execution 4.2.3.7

DSPEC_CHKA_LDC_FAIL.FP 0x013 Execution 4.2.3.7

DSPEC_CHKA_LDC_FAIL.INT 0x012 Execution 4.2.3.7

DSPEC_CHKA_LDC.ANY 0x00F Execution 4.2.3.6

DSPEC_LDC.HIT 0x010 Execution 4.2.3.8

DTLB_HPWHINT_BLK 0xCA3 MLDTLB 4.2.15.1

DTLB_HPWREQ_BLK_MISS.SUCCEED 0xC9C MLDTLB 4.2.15.2

DTLB_HPWREQ_BLK_MISS.COAL 0xC9F MLDTLB 4.2.15.2

DTLB_HPWREQ_BLK_MISS.FAIL 0xCA0 MLDTLB 4.2.15.2

DTLB_HPWREQ_SPEC_MISS 0xC9E MLDTLB 4.2.15.3

DTLB_REF.ANY 0xCA6 MLDTLB 4.2.15.4

DTLB_REF.NONSPEC 0xC9D MLDTLB 4.2.15.4

EAR_EVENT_DATA 0x019 Execution 4.2.3.9

EAR_EVENT_ETB 0x018 Execution 4.2.3.10

EAR_EVENT_INST 0x871 Execution 4.2.3.11

FE_OP_CYCLES 0x875 Basic 4.2.1.3

FE_RESTEER.0B_IPREL 0x8B9 Stall 4.2.5.6

FE_RESTEER.1B_BR_RETIND 0x8BC Stall 4.2.5.6

FE_RESTEER.1B_IPREL 0x8BA Stall 4.2.5.6

FE_RESTEER.1B_SEQ_BR 0x8BF Stall 4.2.5.6

FE_RESTEER.3B_BR_RETIND 0x8BD Stall 4.2.5.6

FE_RESTEER.3B_IPREL 0x8BB Stall 4.2.5.6

FE_RESTEER.3B_MT 0x8C1 Stall 4.2.5.6

FE_RESTEER.3B_NON_RETIND 0x8BE Stall 4.2.5.6

FE_RESTEER.3B_SEQ_BR 0x8C0 Stall 4.2.5.6

FE_RESTEER.4B_MT 0x8C2 Stall 4.2.5.6

FE_RESTEER.ANY 0x8B7 Stall 4.2.5.6

FE_RESTEER.BE_FLUSH 0x8C3 Stall 4.2.5.6

FE_RESTEER.FET_REPLAY 0x8B8 Stall 4.2.5.6

FLDTLB_INS_REQ.CANCEL 0x109 FLDTLB 4.2.14.1

FLDTLB_INS_REQ.COMPLETE 0x106 FLDTLB 4.2.14.1

FLDTLB_INS_REQ.NON_RETIRED 0x108 FLDTLB 4.2.14.1

FLDTLB_INS_REQ.RETIRED 0x107 FLDTLB 4.2.14.1

FLDTLB_LOAD_MISS.ANY 0x103 FLDTLB 4.2.14.2

Table 4-2. All Performance Monitors Ordered by Name (Sheet 7 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

162 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FLDTLB_LOAD_MISS.INT 0x104 FLDTLB 4.2.14.2

FLDTLB_LOAD_MISS.RSE 0x105 FLDTLB 4.2.14.2

FLD_FILL 0x101 FLD 4.2.12.1

FLD_FILL_CANCEL.ANY 0x0FD FLD 4.2.12.2

FLD_FILL_CANCEL.INFAB 0x0FF FLD 4.2.12.2

FLD_FILL_CANCEL.MLD 0x0FE FLD 4.2.12.2

FLD_FILL_CANCEL.POSTFAB 0x100 FLD 4.2.12.2

FLD_FILL_LRU 0x102 FLD 4.2.12.3

FLD_FILL_REQ.ANY 0x0F8 FLD 4.2.12.4

FLD_FILL_REQ.HW_PREF 0x0FC FLD 4.2.12.4

FLD_FILL_REQ.LFETCH 0x0FB FLD 4.2.12.4

FLD_FILL_REQ.LOAD_INT 0x0F9 FLD 4.2.12.4

FLD_FILL_REQ.LOAD_RSE 0x0FA FLD 4.2.12.4

FLD_HINT_NOALLOC 0x0F6 FLD 4.2.12.5

FLD_HINT_NO_MULTI_HWPREF 0x0D8 FLD 4.2.12.6

FLD_HIT.ANY 0x0EF FLD 4.2.12.7

FLD_HWPREF_INS.ACQ_PEND 0x0D3 DPF 4.2.16.8

FLD_HWPREF_INS.ANY 0x0CB DPF 4.2.16.8

FLD_HWPREF_INS.CANCEL_FILL 0x0CC DPF 4.2.16.8

FLD_HWPREF_INS.DTLB_MISS 0x0CD DPF 4.2.16.8

FLD_HWPREF_INS.DTLB_MISS_LFETCH 0x0D5 DPF 4.2.16.8

FLD_HWPREF_INS.FLDTLB_MISS 0x0CE DPF 4.2.16.8

FLD_HWPREF_INS.FLDTLB_MISS_LFETCH 0x0D6 DPF 4.2.16.8

FLD_HWPREF_INS.FLUSH_STORE 0x0D2 DPF 4.2.16.8

FLD_HWPREF_INS.NEIGHBOR 0x0CF DPF 4.2.16.8

FLD_HWPREF_INS.OZQ_FULL 0x0D1 DPF 4.2.16.8

FLD_HWPREF_INS.OZQ_FULL_LFETCH 0x0D7 DPF 4.2.16.8

FLD_HWPREF_INS.REL_OP 0x0D4 DPF 4.2.16.8

FLD_HWPREF_INS.STORE_ALIAS 0x0D0 DPF 4.2.16.8

FLD_LINE_DEMOTE 0x0F7 FLD 4.2.12.8

FLD_LOAD_MISS.ANY 0x0EC FLD 4.2.12.10

FLD_LOAD_MISS.INT 0x0ED FLD 4.2.12.10

FLD_LOAD_MISS.RSE 0x0EE FLD 4.2.12.10

FLD_LOAD.ANY 0x0EA FLD 4.2.12.9

FLD_LOAD.INT 0x0EB FLD 4.2.12.9

FLD_SPEC_INVAL.ANY 0x0F0 FLD 4.2.12.11

FLD_SPEC_INVAL.FLUSH_STORE 0x0F2 FLD 4.2.12.11

FLD_SPEC_INVAL.INST 0x0F1 FLD 4.2.12.11

FLD_SPEC_INVAL.SNOOP 0x0F3 FLD 4.2.12.11

FLITLB_INSERT_HPW 0x86F FLITLB 4.2.10.1

FLITLB_MISS 0x86D FLITLB 4.2.10.2

Table 4-2. All Performance Monitors Ordered by Name (Sheet 8 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 163
Reference Manual for Software Development and Optimization Guide

FLI_FETCH_JIT_HIT 0x86B FLI 4.2.8.1

FLI_FETCH_RAB_HIT.DMND 0x869 FLI 4.2.8.2

FLI_FETCH_RAB_HIT.PREF 0x86A FLI 4.2.8.2

FLI_FILL 0x85C FLI 4.2.8.3

FLI_INST_INSERT_RAB 0x872 FLI 4.2.8.4

FLI_PREF_STALL.ANY 0x861 FLI 4.2.8.5

FLI_PREF_STALL.FLOW 0x862 FLI 4.2.8.5

FLI_PURGE 0x865 FLI 4.2.8.6

FLI_PVAB_OVERFLOW 0x86C FLI 4.2.8.7

FLI_RAB_ALMOST_FULL 0x868 FLI 4.2.8.8

FLI_RAB_FULL 0x867 FLI 4.2.8.9

FLI_READ_MISS.ANY 0x85A FLI 4.2.8.11

FLI_READ_MISS.DMND 0x85D FLI 4.2.8.11

FLI_READ_MISS.PREF 0x85F FLI 4.2.8.11

FLI_READ.ANY 0x859 FLI 4.2.8.10

FLI_READ.DMND 0x85B FLI 4.2.8.10

FLI_READ.PREF 0x85E FLI 4.2.8.10

FLI_READ.SNOOP 0x863 FLI 4.2.8.10

FLI_READ.SNOOP_HIT 0x864 FLI 4.2.8.10

FLI_STEPPING 0x873 FLI 4.2.8.12

FLI_STREAM_PREF 0x866 FLI 4.2.8.13

FP_DENORMAL 0x856 Execution 4.2.8.12

FP_FALSE_SIR 0x854 Execution 4.2.8.13

FP_FCHKF_FAIL 0x853 Execution 4.2.3.14

FP_FLOP 0x00C Execution 4.2.3.15

FP_FLUSH_TO_ZERO.FTZ_POSS 0x858 Execution 4.2.3.16

FP_FLUSH_TO_ZERO.FTZ_REAL 0x857 Execution 4.2.3.16

FP_TRUE_SIR 0x855 Execution 4.2.3.17

IA64_INST_RETIRED 0x005 Basic 4.2.1.4

IBL_ISSUE_LOST_BW.9PLUS3 0x086 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.ANY 0x07A Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.ASYM_I 0x07D Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.ASYM_M 0x07E Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.DROOP 0x07C Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.FLD_DMND_M0 0x07F Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.FLD_DMND_M1 0x080 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.OVRSUB_A 0x081 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.OVRSUB_F 0x082 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.OVRSUB_I 0x083 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.OVRSUB_M 0x084 Dispersal 4.2.2.1

IBL_ISSUE_LOST_BW.POWER 0x07B Dispersal 4.2.2.1

Table 4-2. All Performance Monitors Ordered by Name (Sheet 9 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

164 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IBL_ISSUE_LOST_BW.STRUCT 0x085 Dispersal 4.2.2.1

IBL_ISSUE_STOP.9PLUS3 0x079 Dispersal 4.2.2.3

IBL_ISSUE_STOP.ASYM_I 0x06F Dispersal 4.2.2.3

IBL_ISSUE_STOP.ASYM_M 0x070 Dispersal 4.2.2.3

IBL_ISSUE_STOP.BUNDLE 0x078 Dispersal 4.2.2.3

IBL_ISSUE_STOP.DROOP 0x06E Dispersal 4.2.2.3

IBL_ISSUE_STOP.EXPLICIT 0x06C Dispersal 4.2.2.3

IBL_ISSUE_STOP.FLD_DMND_M0 0x071 Dispersal 4.2.2.3

IBL_ISSUE_STOP.FLD_DMND_M1 0x072 Dispersal 4.2.2.3

IBL_ISSUE_STOP.NONE 0x06A Dispersal 4.2.2.3

IBL_ISSUE_STOP.OVRSUB_A 0x075 Dispersal 4.2.2.3

IBL_ISSUE_STOP.OVRSUB_F 0x076 Dispersal 4.2.2.3

IBL_ISSUE_STOP.OVRSUB_I 0x074 Dispersal 4.2.2.3

IBL_ISSUE_STOP.OVRSUB_M 0x073 Dispersal 4.2.2.3

IBL_ISSUE_STOP.POWER 0x06D Dispersal 4.2.2.3

IBL_ISSUE_STOP.REPLAY 0x06B Dispersal 4.2.2.3

IBL_ISSUE_STOP.STRUCT 0x077 Dispersal 4.2.2.3

IBL_ISSUE.ANY 0x068 Dispersal 4.2.2.2

IBL_ISSUE.M_PIPE 0x069 Dispersal 4.2.2.2

INTERRUPT_EVENT.MASKED 0x01F System 4.2.20.2

INTERRUPT_EVENT.UNMASKED 0x020 System 4.2.20.2

LLC_REF_HIT.ANY 0xC3C LLC 4.2.19.1

LLC_REF_HIT.NO_SNOOP 0xC3D LLC 4.2.19.1

LLC_REF_HIT.SNOOP 0xC3E LLC 4.2.19.1

LLC_REF_HIT.SNOOP_FWD 0xC3F LLC 4.2.19.1

LLC_REF_MISS_DATA.ANY 0xC4B LLC 4.2.19.3

LLC_REF_MISS_DATA.READ 0xC4C LLC 4.2.19.3

LLC_REF_MISS_INST.ANY 0xC4D LLC 4.2.19.4

LLC_REF_MISS_INST.PRIMARY 0xC4E LLC 4.2.19.4

LLC_REF_MISS.ANY 0xC41 LLC 4.2.19.2

LLC_REF_MISS.MEM_LCL_ANY 0xC42 LLC 4.2.19.2

LLC_REF_MISS.MEM_LCL_NO_SNOOP 0xC44 LLC 4.2.19.2

LLC_REF_MISS.MEM_LCL_SNOOP 0xC45 LLC 4.2.19.2

LLC_REF_MISS.MEM_LCL_SNOOP_FWD 0xC46 LLC 4.2.19.2

LLC_REF_MISS.MEM_RMT_ANY 0xC43 LLC 4.2.19.2

LLC_REF_MISS.MEM_RMT_NO_SNOOP 0xC47 LLC 4.2.19.2

LLC_REF_MISS.MEM_RMT_SNOOP 0xC48 LLC 4.2.19.2

LLC_REF_MISS.MEM_RMT_SNOOP_FWD 0xC49 LLC 4.2.19.2

LLC_REF_SYS_ANY 0xC40 LLC 4.2.19.5

LLC_REF_UNKNOWN 0xC4A LLC 4.2.19.6

MLD_BWMODE_CYC 0xCD6 MLD 4.2.13.1

Table 4-2. All Performance Monitors Ordered by Name (Sheet 10 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 165
Reference Manual for Software Development and Optimization Guide

MLD_BYPASS 0xCD4 MLD 4.2.13.2

MLD_BYPASS_ATTEMPT 0xCD3 MLD 4.2.13.3

MLD_CYC_STALL.ANY 0xCD8 MLD 4.2.13.4

MLD_CYC_STALL.CRIT_BYP 0xCDD MLD 4.2.13.4

MLD_CYC_STALL.FILL_W 0xCDC MLD 4.2.13.4

MLD_CYC_STALL.HPW 0xCDF MLD 4.2.13.4

MLD_CYC_STALL.RAW 0xCDA MLD 4.2.13.4

MLD_CYC_STALL.RW_BANK 0xCD9 MLD 4.2.13.4

MLD_CYC_STALL.SEMAPHORE 0xCDB MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_CRIT_BYP 0xCE6 MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_OVERSUB 0xCE5 MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_RAW 0xCE4 MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_RR_BANK 0xCE2 MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_RW_BANK 0xCE3 MLD 4.2.13.4

MLD_CYC_STALL.SPLIT_WW_BANK 0xCE1 MLD 4.2.13.4

MLD_CYC_STALL.TAG_ERR 0xCE0 MLD 4.2.13.4

MLD_CYC_STALL.WB_FIFO 0xCDE MLD 4.2.13.4

MLD_FAB_COUNT.LSB 0xCF7 MLD 4.2.13.5

MLD_FAB_COUNT.MSB 0xCF8 MLD 4.2.13.5

MLD_FAB_OVERFLOW 0xCD1 MLD 4.2.13.6

MLD_FILL_MESI_STATE_BUDDY.ANY 0xCC4 MLD 4.2.13.7

MLD_FILL_MESI_STATE_BUDDY.E 0xCC5 MLD 4.2.13.7

MLD_FILL_MESI_STATE_BUDDY.I 0xCC7 MLD 4.2.13.7

MLD_FILL_MESI_STATE_BUDDY.S 0xCC6 MLD 4.2.13.7

MLD_FILL_MESI_STATE_PRIMARY.ANY 0xCBF MLD 4.2.13.8

MLD_FILL_MESI_STATE_PRIMARY.E 0xCC1 MLD 4.2.13.8

MLD_FILL_MESI_STATE_PRIMARY.I 0xCC3 MLD 4.2.13.8

MLD_FILL_MESI_STATE_PRIMARY.M 0xCC0 MLD 4.2.13.8

MLD_FILL_MESI_STATE_PRIMARY.S 0xCC2 MLD 4.2.13.8

MLD_HINT_DEFER 0xCD0 MLD 4.2.13.9

MLD_HINT_NOALLOC 0xCCB MLD 4.2.13.10

MLD_HINT_NO_BUDDY 0xCCD MLD 4.2.13.11

MLD_HINT_NO_MULTI_HWPREF 0xCCE MLD

MLD_HINT_NRU 0xCCC MLD 4.2.13.13

MLD_HINT_PREF_DROP 0xCCF MLD 4.2.13.12

MLD_ISSUE_SRC.ANY 0xCA7 MLD 4.2.13.14

MLD_ISSUE_SRC.BYPASS 0xCA8 MLD 4.2.13.14

MLD_ISSUE_SRC.FAB 0xCAB MLD 4.2.13.14

MLD_ISSUE_SRC.OZQ 0xCA9 MLD 4.2.13.14

MLD_ISSUE_SRC.SMQ 0xCAA MLD 4.2.13.14

MLD_ISSUE_SRC.SNOOP 0xCAC MLD 4.2.13.14

Table 4-2. All Performance Monitors Ordered by Name (Sheet 11 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

166 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

MLD_LOAD.ANY 0xCB4 MLD 4.2.13.15

MLD_LOAD.HIT 0xCB5 MLD 4.2.13.15

MLD_LOAD.MISS 0xCB6 MLD 4.2.13.15

MLD_LOAD.PRIMARY 0xCB7 MLD 4.2.13.15

MLD_LOAD.SECONDARY 0xCB8 MLD 4.2.13.15

MLD_LOST_BW.ANY 0xCE7 MLD 4.2.13.16

MLD_LOST_BW.FAB_NOP 0xCEF MLD 4.2.13.16

MLD_LOST_BW.NOP 0xCF4 MLD 4.2.13.16

MLD_LOST_BW.NOP_STALL 0xCF2 MLD 4.2.13.16

MLD_LOST_BW.OZQ_FAB_FULL 0xCEA MLD 4.2.13.16

MLD_LOST_BW.OZQ_FAB_PREEMPT 0xCEC MLD 4.2.13.16

MLD_LOST_BW.OZQ_NOP 0xCE8 MLD 4.2.13.16

MLD_LOST_BW.OZQ_NOP_ACQ 0xCE9 MLD 4.2.13.16

MLD_LOST_BW.OZQ_SMQ_FULL 0xCEB MLD 4.2.13.16

MLD_LOST_BW.OZQ_SMQ_PREEMPT 0xCED MLD 4.2.13.16

MLD_LOST_BW.OZQ_SNOOP_PREEMPT 0xCEE MLD 4.2.13.16

MLD_LOST_BW.SMQ_NOP 0xCF0 MLD 4.2.13.16

MLD_LOST_BW.SPLIT_BUBBLE 0xCF1 MLD 4.2.13.16

MLD_LOST_BW.STALL 0xCF3 MLD 4.2.13.16

MLD_NOALLOC_CASTOUT 0xCCA MLD 4.2.13.17

MLD_NOALLOC_FILL 0xCC9 MLD 4.2.13.18

MLD_OZDATA_COUNT.LSB 0xCFE MLD 4.2.13.19

MLD_OZDATA_COUNT.MSB 0xCFF MLD 4.2.13.19

MLD_OZQ_COUNT.LSB 0xCF5 MLD 4.2.13.20

MLD_OZQ_COUNT.MSB 0xCF6 MLD 4.2.13.20

MLD_OZQ_INSERT 0xCD2 MLD 4.2.13.21

MLD_OZQ_PREEMPTED 0xCD5 MLD 4.2.13.22

MLD_REF.ANY 0xCAD MLD 4.2.13.23

MLD_REF.HIT 0xCAE MLD 4.2.13.23

MLD_REF.MISS 0xCAF MLD 4.2.13.23

MLD_REF.PRIMARY 0xCB0 MLD 4.2.13.23

MLD_REF.SECONDARY 0xCB1 MLD 4.2.13.23

MLD_REF.SECONDARY_DROP 0xCB2 MLD 4.2.13.23

MLD_REF.UC_WC_STORE 0xCB3 MLD 4.2.13.23

MLD_SMQ_COUNT.LSB 0xCF9 MLD 4.2.13.24

MLD_SMQ_COUNT.MSB 0xCFA MLD 4.2.13.24

MLD_SMQ_PRIORITY 0xCD7 MLD 4.2.13.25

MLD_SMQ_REF.ANY 0xCB9 MLD 4.2.13.26

MLD_SMQ_REF.HIT 0xCBA MLD 4.2.13.26

MLD_SMQ_REF.MISS 0xCBB MLD 4.2.13.26

MLD_SMQ_REF.PRIMARY 0xCBC MLD 4.2.13.26

Table 4-2. All Performance Monitors Ordered by Name (Sheet 12 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 167
Reference Manual for Software Development and Optimization Guide

MLD_SMQ_REF.SECONDARY 0xCBD MLD 4.2.13.26

MLD_SMQ_REF.SECONDARY_DROP 0xCBE MLD 4.2.13.26

MLD_SNOOP_DEFER 0xCC8 MLD 4.2.13.27

MLD_WCB_CREDIT 0xCFD MLD 4.2.13.28

MLD_WLB_COUNT.LSB 0xCFB MLD 4.2.13.29

MLD_WLB_COUNT.MSB 0xCFC MLD 4.2.13.29

MLITLB_HPW_ABORTS 0x870 MLITLB 4.2.11.1

MLITLB_MISS 0x86E MLITLB 4.2.11.2

MLI_HIT_CONFLICT.ANY 0x84E MLI 4.2.9.1

MLI_HIT_CONFLICT.DMND 0x84F MLI 4.2.9.1

MLI_HIT_CONFLICT.PREF 0x850 MLI 4.2.9.1

MLI_READ_UC.ANY 0x847 MLI 4.2.9.3

MLI_READ_UC.DMND 0x848 MLI 4.2.9.3

MLI_READ_UC.PREF 0x849 MLI 4.2.9.3

MLI_READ.ANY_ANY 0x83C MLI 4.2.9.2

MLI_READ.ANY_DMND 0x83D MLI 4.2.9.2

MLI_READ.ANY_PREF 0x83E MLI 4.2.9.2

MLI_READ.HIT_ANY 0x83F MLI 4.2.9.2

MLI_READ.HIT_DMND_LRU 0x842 MLI 4.2.9.2

MLI_READ.HIT_DMND_NOLRU 0x840 MLI 4.2.9.2

MLI_READ.HIT_PREF_LRU 0x843 MLI 4.2.9.2

MLI_READ.HIT_PREF_NOLRU 0x841 MLI 4.2.9.2

MLI_READ.MISS_ANY 0x844 MLI 4.2.9.2

MLI_READ.MISS_DMND 0x845 MLI 4.2.9.2

MLI_READ.MISS_PREF 0x846 MLI 4.2.9.2

MLI_RECIRCULATE.ANY 0x84A MLI 4.2.9.4

MLI_RECIRCULATE.DMND 0x84B MLI 4.2.9.4

MLI_RECIRCULATE.PREF 0x84C MLI 4.2.9.4

MLI_RETURN_LINE 0x860 FLI 4.2.8.14

MLI_SNOOP_HIT 0x852 MLI 4.2.9.5

MLI_SNOOP_INVAL_BLK_LOOKUP 0x84D MLI 4.2.9.6

MLI_SPEC_ABORT 0x851 MLI 4.2.9.7

MT_BE_BGND_CYC_IN_STATE.HU 0x143 Multithreading 4.2.21.2

MT_BE_BGND_CYC_IN_STATE.HW 0x144 Multithreading 4.2.21.2

MT_BE_BGND_CYC_IN_STATE.LU 0x147 Multithreading 4.2.21.2

MT_BE_BGND_CYC_IN_STATE.LW 0x148 Multithreading 4.2.21.2

MT_BE_BGND_CYC_IN_STATE.NU 0x145 Multithreading 4.2.21.2

MT_BE_BGND_CYC_IN_STATE.NW 0x146 Multithreading 4.2.21.2

MT_BE_FAIR_STATE.GREEN 0x149 Multithreading 4.2.21.3

MT_BE_FAIR_STATE.ORANGE 0x14B Multithreading 4.2.21.3

MT_BE_FAIR_STATE.RED 0x14C Multithreading 4.2.21.3

Table 4-2. All Performance Monitors Ordered by Name (Sheet 13 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

168 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

MT_BE_FAIR_STATE.YELLOW 0x14A Multithreading 4.2.21.3

MT_BE_FAIR_TRANSITION.GRN0 0x150 Multithreading 4.2.21.4

MT_BE_FAIR_TRANSITION.GRN2YLW 0x14D Multithreading 4.2.21.4

MT_BE_FAIR_TRANSITION.ORN2RED 0x14F Multithreading 4.2.21.4

MT_BE_FAIR_TRANSITION.YLW2ORN 0x14E Multithreading 4.2.21.4

MT_BE_THRSW_ACTUAL_IN.ALAT_INVAL 0x136 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.HPWINS 0x134 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.IBQ_NOTEMPTY 0x135 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.LP_EXIT 0x137 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.MLDRTN 0x133 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.TIMEOUT 0x132 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_IN.FAIR 0x138 Multithreading 4.2.21.5

MT_BE_THRSW_ACTUAL_OUT.ANY 0x12A Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.ATPAUSE 0x12E Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.HPW_MISS 0x12C Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.IBQ_EMPTY 0x12D Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.INJ_DBG 0x131 Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.LP_ENTER 0x12F Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.MLD_USE 0x12B Multithreading 4.2.21.6

MT_BE_THRSW_ACTUAL_OUT.RFIX 0x130 Multithreading 4.2.21.6

MT_BE_THRSW_DISABLE.EXPL 0x13A Multithreading 4.2.21.7

MT_BE_THRSW_DISABLE.IMPL 0x13B Multithreading 4.2.21.7

MT_BE_THRSW_DROP 0x139 Multithreading 4.2.21.8

MT_BE_THRSW_HOLD 0x13C Multithreading 4.2.21.9

MT_BE_THRSW_STALL.ANY 0x13D Multithreading 4.2.21.10

MT_BE_THRSW_STALL.CRAB 0x141 Multithreading 4.2.21.10

MT_BE_THRSW_STALL.FLD 0x142 Multithreading 4.2.21.10

MT_BE_THRSW_STALL.PIPE 0x13F Multithreading 4.2.21.10

MT_BE_THRSW_STALL.RSE 0x140 Multithreading 4.2.21.10

MT_BE_THRSW_STALL.SWITCH 0x13E Multithreading 4.2.21.10

MT_FE_BE_IN_SAME_THREAD 0x874 Multithreading 4.2.21.11

MT_FE_BGND_CYC_IN_STATE.HIGH 0x8A0 Multithreading 4.2.21.12

MT_FE_BGND_CYC_IN_STATE.LOW 0x89E Multithreading 4.2.21.12

MT_FE_BGND_CYC_IN_STATE.NOMINAL 0x89F Multithreading 4.2.21.12

MT_FE_THRSW_ACTUAL_IN.BRQ_NON_BLK 0x881 Multithreading 4.2.21.13

MT_FE_THRSW_ACTUAL_IN.IBQ_EMPTY 0x87A Multithreading 4.2.21.13

MT_FE_THRSW_ACTUAL_IN.IBQ_NOTFULL 0x879 Multithreading 4.2.21.13

MT_FE_THRSW_ACTUAL_IN.MLI_UCRTN 0x87F Multithreading 4.2.21.13

MT_FE_THRSW_ACTUAL_IN.MLI_WBRTN 0x87D Multithreading 4.2.21.13

MT_FE_THRSW_ACTUAL_OUT.ANY 0x876 Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.BE_FOLLOW 0x883 Multithreading 4.2.21.14

Table 4-2. All Performance Monitors Ordered by Name (Sheet 14 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 169
Reference Manual for Software Development and Optimization Guide

MT_FE_THRSW_ACTUAL_OUT.BRQ_BLK 0x880 Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.HINT_BSWT 0x882 Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.IBQ_FULL 0x878 Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.IBQ_NOTEMPTY 0x87B Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.LOCKED 0x884 Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.MLI_UCMISS 0x87E Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.MLI_WBMISS 0x87C Multithreading 4.2.21.14

MT_FE_THRSW_ACTUAL_OUT.TIMEOUT 0x877 Multithreading 4.2.21.14

MT_FE_THRSW_MISS_IN.ANY 0x886 Multithreading 4.2.21.15

MT_FE_THRSW_MISS_IN.BRQ_NON_BLK 0x891 Multithreading 4.2.21.15

MT_FE_THRSW_MISS_IN.IBQ_EMPTY 0x88A Multithreading 4.2.21.15

MT_FE_THRSW_MISS_IN.IBQ_NOTFULL 0x889 Multithreading 4.2.21.15

MT_FE_THRSW_MISS_IN.MLI_UCRTN 0x88F Multithreading 4.2.21.15

MT_FE_THRSW_MISS_IN.MLI_WBRTN 0x88D Multithreading 4.2.21.15

MT_FE_THRSW_MISS_OUT.ANY 0x885 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.BE_FOLLOW 0x893 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.BRQ_BLK 0x890 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.HINT_BSWT 0x892 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.IBQ_FULL 0x888 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.IBQ_NOTEMPTY 0x88B Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.LOCKED 0x894 Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.MLI_UCMISS 0x88E Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.MLI_WBMISS 0x88C Multithreading 4.2.21.16

MT_FE_THRSW_MISS_OUT.TIMEOUT 0x887 Multithreading 4.2.21.16

MT_FE_THRSW_STALL.ANY 0x895 Multithreading 4.2.21.17

MT_FE_THRSW_STALL.BLK_ANY 0x899 Multithreading 4.2.21.17

MT_FE_THRSW_STALL.BLK_FW_PROG 0x89C Multithreading 4.2.21.17

MT_FE_THRSW_STALL.BLK_IN_PROG 0x89B Multithreading 4.2.21.17

MT_FE_THRSW_STALL.BLK_IPC_MISS 0x89A Multithreading 4.2.21.17

MT_FE_THRSW_STALL.BLK_THRESH 0x89D Multithreading 4.2.21.17

MT_FE_THRSW_STALL.EXPL 0x897 Multithreading 4.2.21.17

MT_FE_THRSW_STALL.IMPL 0x898 Multithreading 4.2.21.17

MT_FE_THRSW_STALL.MTLCK 0x896 Multithreading 4.2.21.17

M_ASYNC_OP_ISSUE.ANY 0x10A Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.CRAB_RET 0x110 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.DTLBTRNSFR_TLBINSERT 0x114 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.FLUSH_ST_INVAL 0x115 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.HPW_FAULT 0x11C Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.HPW_LOAD 0x10F Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.HPW_TLBINSERT 0x11B Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.HW_PREF 0x111 Dispersal 4.2.2.4

Table 4-2. All Performance Monitors Ordered by Name (Sheet 15 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

170 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

M_ASYNC_OP_ISSUE.ITC_D 0x11D Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.ITR_D 0x11E Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.MOVTOPKR 0x121 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.MOVTORR 0x120 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.NONE 0x10B Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PAMERR_PAPURGE 0x116 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PAPURGE 0x112 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PTC_E 0x123 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PTC_G 0x124 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PTC_GA 0x125 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PTC_L 0x122 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.PTR_D 0x11F Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.RIDVPN_PURGE 0x118 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.RSE_LOAD 0x129 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.RSE_STORE 0x128 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.SHOOTDOWN_G 0x126 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.SHOOTDOWN_GA 0x127 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.SNOOP 0x10D Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.SNOOP_PALKUP 0x10C Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.SNOOP_S 0x10E Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.TLB_TSWITCH 0x119 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.TSWITCH 0x11A Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.VAMERR_VAPURGE 0x113 Dispersal 4.2.2.4

M_ASYNC_OP_ISSUE.VRNRIDVPN_PURGE 0x117 Dispersal 4.2.2.4

PREF_DROP.DTLB_MISS 0x0DA DPF 4.2.16.9

PREF_DROP.FLDTLB_MISS 0x0D9 DPF 4.2.16.9

PREF_DROP.FLD_HIT 0x0DB DPF 4.2.16.9

PREF_DROP.FLD_SECONDARY_MISS 0x0DC DPF 4.2.16.9

RETIRED_INST_BR 0x820 Execution 4.2.3.18

RETIRED_INST_FC 0xC30 Execution 4.2.3.19

RETIRED_INST_FCI 0xC31 Execution 4.2.3.20

RETIRED_INST_FP 0x00B Execution 4.2.3.21

RETIRED_INST_LD_FP 0x0DF Execution 4.2.3.22

RETIRED_INST_LD_INT 0x0DE Execution 4.2.3.23

RETIRED_INST_M.ACQ 0x0F4 Execution 4.2.3.24

RETIRED_INST_M.ANY 0x00D Execution 4.2.3.24

RETIRED_INST_M.MOVTOBSPST 0x0CA Execution 4.2.3.24

RETIRED_INST_M.MOVTODAHR 0x00E Execution 4.2.3.24

RETIRED_INST_M.REL 0x0F5 Execution 4.2.3.24

RETIRED_INST_NOP 0x00A Execution 4.2.3.25

RETIRED_INST_PTCG 0xC34 Execution 4.2.3.26

Table 4-2. All Performance Monitors Ordered by Name (Sheet 16 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 171
Reference Manual for Software Development and Optimization Guide

RETIRED_INST_RSE 0x157 Execution 4.2.3.27

RETIRED_INST_SEMAPHORE 0x0E5 Execution 4.2.3.28

RETIRED_INST_ST_FP 0x0E2 Execution 4.2.3.29

RETIRED_INST_ST_INT 0x0E1 Execution 4.2.3.30

RETIRED_INST_TAGGED.IAM0_OPM0 0x005 Execution 4.2.3.31

RETIRED_INST_TAGGED.IAM1_OPM1 0x006 Execution 4.2.3.31

RETIRED_INST_TAGGED.IAM2_OPM0 0x007 Execution 4.2.3.31

RETIRED_INST_TAGGED.IAM3_OPM1 0x008 Execution 4.2.3.31

RETIRED_PREDICATE_SQUASHED 0x009 Execution 4.2.3.32

RIL_ARB_PRI_LOST.AD 0xC60 RIL 4.2.17.1

RIL_ARB_PRI_LOST.AD_FWD_PROG 0xC61 RIL 4.2.17.1

RIL_ARB_PRI_LOST.BL 0xC62 RIL 4.2.17.1

RIL_ARB_PRI_LOST.BL_FWD_PROG 0xC63 RIL 4.2.17.1

RIL_BL_WRITE.ANY 0xC5C RIL 4.2.17.2

RIL_BL_WRITE.SLB 0xC5F RIL 4.2.17.2

RIL_BL_WRITE.WLB 0xC5D RIL 4.2.17.2

RIL_BL_WRITE.WLB_BOGUS 0xC5E RIL 4.2.17.2

RIL_CBQ_EVICT.FULL 0xC53 RIL 4.2.17.3

RIL_CBQ_EVICT.WCB_FLUSH 0xC52 RIL 4.2.17.3

RIL_CRDT_MLD_FDB_FULL 0xC6E RIL 4.2.17.4

RIL_CRDT_MLD_FDB_FULL_BLK 0xC6F RIL 4.2.17.5

RIL_CRDT_PRI_BLK.AD_ALL 0xC64 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.AD_CBQ 0xC68 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.AD_DRQ 0xC66 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.AD_FRQ 0xC65 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.AD_WRQ 0xC67 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.AK_ALL 0xC69 RIL 4.2.17.6

RIL_CRDT_PRI_BLK.BL_ALL 0xC6A RIL 4.2.17.6

RIL_CRDT_PRI_BLK.BL_CBQ 0xC6D RIL 4.2.17.6

RIL_CRDT_PRI_BLK.BL_SNQ 0xC6B RIL 4.2.17.6

RIL_CRDT_PRI_BLK.BL_WRQ 0xC6C RIL 4.2.17.6

RIL_CRDT_SNQ_BLK.ANY 0xC70 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.ANY_Q_FULL 0xC7D RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.DFRQ 0xC79 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.HALT 0xC71 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLD_FULL 0xC77 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLD_FWD_PROG 0xC74 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLI_FULL 0xC76 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLI_FWD_PROG 0xC73 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FULL 0xC78 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FWD_PROG 0xC75 RIL 4.2.17.7

Table 4-2. All Performance Monitors Ordered by Name (Sheet 17 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

172 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

RIL_CRDT_SNQ_BLK.RSPQ 0xC7A RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.SLB_DQ 0xC7B RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.SRLZ 0xC72 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.USEMANY_ANY 0xC96 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.USEMANY_BYP 0xC97 RIL 4.2.17.7

RIL_CRDT_SNQ_BLK.WLB_DQ 0xC7C RIL 4.2.17.7

RIL_DATA_RETURN.EARLY_FILL_EM 0xC58 RIL 4.2.17.8

RIL_DATA_RETURN.EARLY_FILL_S 0xC59 RIL 4.2.17.8

RIL_DATA_RETURN.MLD_ANY 0xC56 RIL 4.2.17.8

RIL_DATA_RETURN.MLD_CRIT 0xC57 RIL 4.2.17.8

RIL_DATA_RETURN.PRI_ANY 0xC54 RIL 4.2.17.8

RIL_DATA_RETURN.PRI_MLD 0xC55 RIL 4.2.17.8

RIL_DRQ_PACE_BUBBLE 0xC8F RIL 4.2.17.10

RIL_DRQ_VALID.LSB 0xC8A RIL 4.2.17.11

RIL_DRQ_VALID.MSB 0xC89 RIL 4.2.17.11

RIL_DRQ.EMPTY 0xC80 RIL 4.2.17.9

RIL_DRQ.LIMIT_HIT 0xC81 RIL 4.2.17.9

RIL_FRQ_VALID.LSB 0xC88 RIL 4.2.17.13

RIL_FRQ_VALID.MSB 0xC87 RIL 4.2.17.13

RIL_FRQ.EMPTY 0xC7E RIL 4.2.17.12

RIL_FRQ.LIMIT_HIT 0xC7F RIL 4.2.17.12

RIL_INTERRUPT 0xC51 RIL 4.2.17.14

RIL_PRI_THROTTLE_ASSERTED 0xC90 RIL 4.2.17.15

RIL_PRI_THROTTLE_RECOV 0xC91 RIL 4.2.17.16

RIL_REQ_HINT_NRU 0xC3B RIL 4.2.17.18

RIL_REQ_OTHER.CC 0xC32 RIL 4.2.17.19

RIL_REQ_OTHER.DRQ_ANY 0xC33 RIL 4.2.17.19

RIL_REQ_OTHER.FC 0xC30 RIL 4.2.17.19

RIL_REQ_OTHER.FCI 0xC31 RIL 4.2.17.19

RIL_REQ_OTHER.LRUHINT_ANY 0xC37 RIL 4.2.17.19

RIL_REQ_OTHER.LRUHINT_FROM_MLD 0xC36 RIL 4.2.17.19

RIL_REQ_OTHER.LRUHINT_MISS_ANY 0xC39 RIL 4.2.17.19

RIL_REQ_OTHER.LRUHINT_MISS_MLD 0xC3A RIL 4.2.17.19

RIL_REQ_OTHER.LRUHINT_MLD 0xC38 RIL 4.2.17.19

RIL_REQ_OTHER.PTCG 0xC34 RIL 4.2.17.19

RIL_REQ_OTHER.PTCG_PEND 0xC35 RIL 4.2.17.19

RIL_REQ_OTHER.WRQ_FC_FCI 0xC2B RIL 4.2.17.19

RIL_REQ_OTHER.WRQ_SKIP_LRUHINT 0xC2D RIL 4.2.17.19

RIL_REQ_OTHER.WRTBCK_MLD_EVICT 0xC2E RIL 4.2.17.19

RIL_REQ_OTHER.WRTBCK_MLD_FC 0xC2F RIL 4.2.17.19

RIL_REQ_OTHER.WRTBCK_WRQ 0xC2A RIL 4.2.17.19

Table 4-2. All Performance Monitors Ordered by Name (Sheet 18 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 173
Reference Manual for Software Development and Optimization Guide

RIL_REQ_OTHER.WRTBCK_WRQ_SKIP 0xC2C RIL 4.2.17.19

RIL_REQ_REF_DATA.ANY 0xC18 RIL 4.2.17.21

RIL_REQ_REF_DATA.DRQ_ANY 0xC28 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_ANY 0xC20 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_READ_ANY 0xC21 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_READ_UC 0xC22 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_WRITE_ANY 0xC23 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_WRITE_UC 0xC26 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_WRITE_WC_ANY 0xC24 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_WRITE_WC_FULL 0xC25 RIL 4.2.17.21

RIL_REQ_REF_DATA.NC_WRITE_WC_MLD 0xC27 RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_ANY 0xC19 RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_CRD 0xC1C RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_DRD 0xC1D RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_MLD_ANY 0xC1A RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_MLD_BUDDY 0xC1B RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_RFO 0xC1E RIL 4.2.17.21

RIL_REQ_REF_DATA.WB_SELF_SNOOP 0xC1F RIL 4.2.17.21

RIL_REQ_REF_DATA.WRQ_ANY 0xC29 RIL 4.2.17.21

RIL_REQ_REF_INST.ANY 0xC14 RIL 4.2.17.22

RIL_REQ_REF_INST.NC 0xC15 RIL 4.2.17.22

RIL_REQ_REF_INST.WB_ANY 0xC16 RIL 4.2.17.22

RIL_REQ_REF_INST.WB_DMND 0xC17 RIL 4.2.17.22

RIL_REQ_REF.ANY 0xC13 RIL 4.2.17.20

RIL_REQ.ANY 0xC12 RIL 4.2.17.17

RIL_RESP.GO 0xC5A RIL 4.2.17.23

RIL_RESP.WRITEPULL 0xC5B RIL 4.2.17.23

RIL_RRQ.LIMIT_HIT 0xC84 RIL 4.2.17.24

RIL_SEB.BGF_QUIESCE_ACTIVE 0xC94 RIL 4.2.17.25

RIL_SEB.LDST_QUIESCE_PEND 0xC93 RIL 4.2.17.25

RIL_SEB.PTC_QUIESCE_PEND 0xC92 RIL 4.2.17.25

RIL_SHOOTDOWN 0xC4F RIL 4.2.17.26

RIL_SHOOTDOWN_PEND_CYC 0xC50 RIL 4.2.17.27

RIL_SNOOP_REQ.ANY 0xC01 RIL 4.2.17.28

RIL_SNOOP_REQ.CODE_ANY 0xC02 RIL 4.2.17.28

RIL_SNOOP_REQ.CODE_SELF 0xC03 RIL 4.2.17.28

RIL_SNOOP_REQ.CODE_SIBLING 0xC04 RIL 4.2.17.28

RIL_SNOOP_REQ.DATA_ANY 0xC05 RIL 4.2.17.28

RIL_SNOOP_REQ.DATA_SELF 0xC06 RIL 4.2.17.28

RIL_SNOOP_REQ.DATA_SIBLING 0xC07 RIL 4.2.17.28

RIL_SNOOP_REQ.INVAL_ANY 0xC08 RIL 4.2.17.28

Table 4-2. All Performance Monitors Ordered by Name (Sheet 19 of 20)

Symbol Name Event
Code Area Section

Core Performance Monitor Events

174 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2 Performance Monitor Events by Area

4.2.1 Basic Events
This section enumerates Basic performance monitoring events.

4.2.1.1 CPU_OP_CYCLES

RIL_SNOOP_REQ.INVAL_LLC_EVICT 0xC0B RIL 4.2.17.28

RIL_SNOOP_REQ.INVAL_SELF 0xC09 RIL 4.2.17.28

RIL_SNOOP_REQ.INVAL_SIBLING 0xC0A RIL 4.2.17.28

RIL_SNOOP_RESP.MLD_DEFER 0xC11 RIL 4.2.17.29

RIL_SNOOP_RESP.MLD_HIT_E 0xC0F RIL 4.2.17.29

RIL_SNOOP_RESP.MLD_HIT_M 0xC10 RIL 4.2.17.29

RIL_SNOOP_RESP.MLD_HIT_S 0xC0E RIL 4.2.17.29

RIL_SNOOP_RESP.MLD_MISS 0xC0C RIL 4.2.17.29

RIL_SNOOP_RESP.WRQ_HIT_M 0xC0D RIL 4.2.17.29

RIL_SNQ_VALID.LSB 0xC8E RIL 4.2.17.31

RIL_SNQ_VALID.MSB 0xC8D RIL 4.2.17.31

RIL_SNQ.EMPTY 0xC85 RIL 4.2.17.30

RIL_SNQ.LIMIT_HIT 0xC86 RIL 4.2.17.30

RIL_WRQ_VALID.LSB 0xC8C RIL 4.2.17.33

RIL_WRQ_VALID.MSB 0xC8B RIL 4.2.17.33

RIL_WRQ.EMPTY 0xC82 RIL 4.2.17.32

RIL_WRQ.LIMIT_HIT 0xC83 RIL 4.2.17.32

RSE_CURRENT_REG.LSB 0x154 RSE 4.2.18.1

RSE_CURRENT_REG.MSB 0x153 RSE 4.2.18.1

RSE_DIRTY_REG.LSB 0x156 RSE 4.2.18.2

RSE_DIRTY_REG.MSB 0x155 RSE 4.2.18.2

RSE_REF_RETIRED.ANY 0x158 RSE 4.2.18.3

RSE_REF_RETIRED.LOAD 0x159 RSE 4.2.18.3

RSE_REF_RETIRED.STORE 0x15A RSE 4.2.18.3

SERIALIZATION_EVENT 0x021 System 4.2.20.3

UNCORE_FREEZE 0xC9B System 4.2.20.4

Table 4-2. All Performance Monitors Ordered by Name (Sheet 20 of 20)

Symbol Name Event
Code Area Section

Description CPU back-end pipeline execution cycle count

Max Inc/Cyc 1

MT Capture Type C

Subevents:

(ANY) 0x002

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF -/-/-/-

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 175
Reference Manual for Software Development and Optimization Guide

4.2.1.2 CPU_REF_CYCLES

4.2.1.3 FE_OP_CYCLES

4.2.1.4 IA64_INST_RETIRED

Definition CPU cycle count

HALTED 0x003

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Halted state cycle count. Cycles spent in low-power halted state.
Note: In order to count correctly, this event requires PMC.ch to be set as well. It will count halted
cycles spent both in the foreground as well as background thread. To count foreground halted state
cycles: CPU_OP_CYCLES.me(ch=1) - CPU_OP_CYCLES.me(ch=0)

TAGGED 0x004

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

Definition Tagged CPU cycle count. To use this monitor, program tag channel 0 to the (Instruction Address
Range, Opcode) regions of interest, channel 1 to unconstrained tagging. Counting will be enabled
whenever a valid channel 0 tag is seen and continue until a valid channel 1 tag without a channel 0
tag is seen.

Description Back-end execution reference cycle count

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x001

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF -/-/-/-

Definition CPU reference cycle count. This monitor counts the number of ITC timebase reference cycles spent
in the back-end.

Description CPU front-end pipeline execution cycle count

Max Inc/Cyc 1

MT Capture Type F

Event Code 0x875

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition This event counts the cycles the front end spends in its thread, it's the front-end's version of
CPU_OP_CYCLES. Due to the processor's separately threaded front-end, this monitor must be used
to normalize front-end thread specific events.

NOTE -

Description Instructions retired

Max Inc/Cyc 12

MT Capture Type A

Event Code 0x005

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF I/O/-/-

Core Performance Monitor Events

176 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.2 Dispersal Events
This section enumerates Dispersal performance monitoring events.

4.2.2.1 IBL_ISSUE_LOST_BW

The ISSUE_LOST and ISSUE_STOP events work together. See the issue_stop
explanations for more information about the issue_lost event. Both of these events use
the Channel 0 address tag from IBR address matching.

IP-EAR L = 5, P = 1

Definition Retired instructions count

NOTE This is an alias for IA64TAGGED_INST_RETIRED.IAM0OPM0

Description Issue syllables lost estimate

Max Inc/Cyc 11

MT Capture Type A

Definition Counts the number of syllables to the next stop bit that were not issued in this
issue cycle

NOTE This monitor counts syllables as bundle slots and not instructions, i.e., for MLX,
the LX counts as two

Subevents:

9PLUS3 0x086

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to bundle restrictions

ANY 0x07a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost for any of the possible reasons

ASYM_I 0x07d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to I pipe asymmetry

ASYM_M 0x07e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to M pipe asymmetry

DROOP 0x07c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to 3rd droop power management

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 177
Reference Manual for Software Development and Optimization Guide

FLD_DMND_M0 0x07f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to FLD request for M0

FLD_DMND_M1 0x080

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to FLD request for M1

OVRSUB_A 0x081

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to A pipe oversubscription

OVRSUB_F 0x082

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to F pipe oversubscription

OVRSUB_I 0x083

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to I pipe oversubscription

OVRSUB_M 0x084

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to M pipe oversubscription

POWER 0x07b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to TDP power management

STRUCT 0x085

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue syllables lost due to structural limitation

Core Performance Monitor Events

178 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.2.2 IBL_ISSUE

4.2.2.3 IBL_ISSUE_STOP

Description Syllables dispersed at IBD

Max Inc/Cyc 12

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY 0x068

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Syllables dispersed at IBD

M_PIPE 0x069

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition M pipe syllables dispersed at IBD

Description The reason for the size of the instruction issue group (in the backend pipeline)

Max Inc/Cyc 1

MT Capture Type A

Definition Within a 4 bundle wide issue window, what caused the first effective stop bit in an issue cycle.

NOTE Whenever an issue stall is required, or we have no instructions to issue, this event signals NONE.
Only one of these reasons will be signalled per cycle. They are calculated in a priority order such that
effects of the compiler scheduled program instruction stream are reported first, before asynchronous
microarchitecture events. So, explicit stop bit and over-subscription are reported before FLD demand
or power throttling.

Subevents:

9PLUS3 0x079

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to 4th bundle limitations; we encountered an M, I, A, or F in the 4th bundle

ASYM_I 0x06f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to I pipe asymmetry; an instruction was ready to issue on I1, but needed to be on I0

ASYM_M 0x070

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 179
Reference Manual for Software Development and Optimization Guide

Definition Issue stop due to M pipe asymmetry; an instruction was ready to issue on M1, but needed to be on
M0

BUNDLE 0x078

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to lack of bundles; we have less than 4 bundles in the window, issued all the bundles
that we had, and didn’t see some other reason to stop issue.

DROOP 0x06e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to 3rd droop power management

EXPLICIT 0x06c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to explicit stop bit or the end of a non-brp, non-nop.b branch bundle.

FLD_DMND_M0 0x071

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to FLD demand for M0; there was an instruction that was ready to issue on M0, but
an asynchronous cache operation required M0; so, we stopped issue at that M0 instruction

FLD_DMND_M1 0x072

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to FLD demand for M1; there was an instruction that was ready to issue on M1, but
an asynchronous cache operation required M1; so, we stopped issue at that M1 instruction

NONE 0x06a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to issue stall or instruction buffer empty, that is, we did not issue, because we
couldn’t

OVRSUB_A 0x075

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to A pipe oversubscription; we reached the third A instruction in the window

OVRSUB_F 0x076

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to F pipe oversubscription, we reached the third F instruction in the window

Core Performance Monitor Events

180 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.2.4 M_ASYNC_OP_ISSUE

OVRSUB_I 0x074

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to I pipe oversubscription; we reached the third I instruction in the window

OVRSUB_M 0x073

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to M pipe oversubscription; we reached the third M instruction in the window

POWER 0x06d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to TDP power management

REPLAY 0x06b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to a replay event; after a replay we always re-issue as we did the first time.

STRUCT 0x077

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/-/-/-

IP-EAR L = 5, P = 2

Definition Issue stop due to a structural limitation or power throttling of instruction types; the limitation
includes the end of the 4 bundle wide issue group.

Description FLD asynchronous operation

Max Inc/Cyc 2

MT Capture Type A

Definition Asynchronous memory operations injected into the backend execution pipeline

NOTE WARNING: Any kind of PMU event filtering (instruction address, opcode matching, data address,
data reference type) can cause these events to be assigned to the wrong thread.

Subevents:

ANY 0x10a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD asynchronous operation

CRAB_RET 0x110

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation CRAB return

DTLBTRNSFR_TLBINSERT 0x114

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 181
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation DTB transfer TLB insert

FLUSH_ST_INVAL 0x115

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation flushed store invalidate

HPW_FAULT 0x11c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation HPW fault

HPW_LOAD 0x10f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation HPW load

HPW_TLBINSERT 0x11b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation HPW TLB insert

HW_PREF 0x111

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation HW prefetch

ITC_D 0x11d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation ITC.D

ITR_D 0x11e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation ITR.D

MOVTOPKR 0x121

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation move to PKR

MOVTORR 0x120

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation move to RR

NONE 0x10b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation none issued

PAMERR_PAPURGE 0x116

Core Performance Monitor Events

182 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation FLDTLBPAM error pa purge

PAPURGE 0x112

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PA purge

PTC_E 0x123

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PTC.E

PTC_G 0x124

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PTC.G

PTC_GA 0x125

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PTC.GA

PTC_L 0x122

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PTC.L

PTR_D 0x11f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation PTR.D

RIDVPN_PURGE 0x118

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation RID VPN Purge

RSE_LOAD 0x129

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation RSE load

RSE_STORE 0x128

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation RSE store

SHOOTDOWN_G 0x126

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation shootdown G

SHOOTDOWN_GA 0x127

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 183
Reference Manual for Software Development and Optimization Guide

4.2.3 Execution Events
This section enumerates Execution performance monitoring events.

4.2.3.1 ALAT_ENTRY_REPLACED

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation shootdown GA

SNOOP 0x10d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation snoop

SNOOP_PALKUP 0x10c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation snoop PA lookup

SNOOP_S 0x10e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation snoop shared

TLB_TSWITCH 0x119

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation TLB thread switch

TSWITCH 0x11a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation thread switch

VAMERR_VAPURGE 0x113

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation VA purge

VRNRIDVPN_PURGE 0x117

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLD asynchronous operation VRN RID VPN purge

Description ALAT entry replaced

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x152

Counter Affinity 0x55550

Core Performance Monitor Events

184 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.3.2 ALAT_STORE_HIT

4.2.3.3 CSPEC_CHKS

4.2.3.4 CSPEC_CHKS_FAIL

IAR/OPC/DAR/DREF I/O/D/-

IP-EAR L = 6, P = 1

Definition An advanced load which was not already in the ALAT replaced a different ALAT entry because the
ALAT was full. Since M0 ALAT instructions typically use ALAT locations 0 to 15, and M1 16 to 31 this
signal may fire if only one half of the ALAT is full. Both the M0 and M1 signals may be asserted on the
same clock.

Description ALAT store hit

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x151

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/-

Definition This is a per-port and per-thread signal (i.e. 4 of them) which is asserted when a store on M0 or M1
clears an ALAT entry on thread 0 or thread 1. Remember that a store on either thread can clear ALAT
entries from the other thread.

NOTE For counting this event the PMU OR’s together the M0 and M1 bits of this signal together to produce
a 2 bit per-thread signal.

Description Retired CHK.S instructions

Max Inc/Cyc 6

MT Capture Type A

Event Code 0x014

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition Count of 'chk.s.[mi] r2, target25' and 'chk.s f2, target25' instructions that are predicated-on and
retire (inclusive of resteering chk.s).

NOTE -

Description Failed CHK.S instructions

Max Inc/Cyc 1

MT Capture Type A

Definition Count of resteering 'chk.s.[mi] r2, target25' and 'chk.s f2, target25' instructions (implies predicated-
on).

NOTE -

Subevents:

ANY 0x015

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 185
Reference Manual for Software Development and Optimization Guide

4.2.3.5 CSPEC_LOAD

4.2.3.6 DSPEC_CHKA_LDC

Definition Failed integer or floating point CHK.S instructions

FP 0x017

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition Failed floating point CHK.S instructions

INT 0x016

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition Failed integer CHK.S instructions

Description ld.s inst commits

Max Inc/Cyc 2

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY 0xca1

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 1

Definition ld.s inst commits

NAT 0xca2

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 1

Definition ld.s inst commits, fails (i.e. NAT bit is set)

Description ALAT chka ldc

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x00f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition This is a per Mport event which is asserted when a ld.c.* or chk.a (integer or floating point)
instruction retires.

Core Performance Monitor Events

186 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.3.7 DSPEC_CHKA_LDC_FAIL

4.2.3.8 DSPEC_LDC

Correct speculation event ratios depend on speculation resteers being enabled, faulting
mis-speculations are not counted and will distort the computation.

4.2.3.9 EAR_EVENT_DATA

Description ALAT failed chka ldc

Max Inc/Cyc 1

MT Capture Type A

Definition -

Subevents:

ANY 0x011

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 5, P = 1

Definition Any ALAT failed chka ldc

FP 0x013

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 5, P = 1

Definition ALAT failed floating point chka ldc

INT 0x012

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 5, P = 1

Definition ALAT failed integer chka ldc

Description ld.c hitting the ALAT

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x010

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition This is a per Mport event which is asserted when a ld.c.* instruction hits in the ALAT.

Description Data cache EAR capture

Max Inc/Cyc 2

MT Capture Type F

Event Code 0x019

Counter Affinity 0xaaaa0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 187
Reference Manual for Software Development and Optimization Guide

4.2.3.10 EAR_EVENT_ETB

4.2.3.11 EAR_EVENT_INST

4.2.3.12 FP_DENORMAL

4.2.3.13 FP_FALSE_SIR

IAR/OPC/DAR/DREF I/O/D/R

Definition This monitor counts the number of captures by the data cache EAR

NOTE -

Description ETB-EAR capture

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x018

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition This monitor counts the number of captures by the ETB or IP-EAR respectively

NOTE When in ETB mode, exception sources are not counted, only branch source records

Description FLI EAR event captured

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x871

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition This monitor counts the number of captures by the instruction cache EAR

NOTE -

Description FPU DENORM causing REPLAY

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x856

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 1

Definition This counts 1 for every op which has at least 1 denormal input and causes a normalization replay to
occur.

NOTE FPU will only do denormal replay if f2 is not zero which includes Fmult and Fnorm.

Description FPU FALSE SIR

Max Inc/Cyc 1

MT Capture Type A

Core Performance Monitor Events

188 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.3.14 FP_FCHKF_FAIL

4.2.3.15 FP_FLOP

4.2.3.16 FP_FLUSH_TO_ZERO

Event Code 0x854

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 1

Definition This counts 1 for every SIR replay which does not result in a fault after replay.

Description FPU failed FCHKF

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x853

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 1

Definition This counts 1 for every fchkf which fails causing a branch or fault to occur.

Description Floating point weighed flop count

Max Inc/Cyc 4

MT Capture Type A

Event Code 0x00c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 0

Definition This counts FPU flops retired. Flops are defined to be 1 for Adds - 1 for Mults - 2 for FMAs (also
FMS,FNMA). Also counts 1 for Fcvtfx, F[a]max, F[a]min, fcmp, frcpa and frsqrta.

Description FPU flush to zero RES

Max Inc/Cyc 2

MT Capture Type A

Subevents:

FTZ_POSS 0x858

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = -2

Definition This counts 1 for every op that would be flushed to zero if FTZ was enabled.

FTZ_REAL 0x857

Counter Affinity 0xa0aa0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 189
Reference Manual for Software Development and Optimization Guide

4.2.3.17 FP_TRUE_SIR

4.2.3.18 RETIRED_INST_BR

4.2.3.19 RETIRED_INST_FC

4.2.3.20 RETIRED_INST_FCI

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = -2

Definition This counts 1 for every op that was flushed to zero because it was too small to represent as a normal
number.

Description FPU TRUE SIR

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x855

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 1

Definition This counts 1 for every SIR replay which required a fault after the op was replayed.

Description ALIAS for BR_PRED_DETAIL.ANY_ANY_PRED

Max Inc/Cyc 3

MT Capture Type A

Event Code 0x820

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition Retired branch instructions

Description ALIAS for RIL_REQ_OTHER.FC

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc30

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition -

NOTE -

Description ALIAS for RIL_REQ_OTHER.FCI

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc31

Counter Affinity 0x49200

Core Performance Monitor Events

190 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.3.21 RETIRED_INST_FP

4.2.3.22 RETIRED_INST_LD_FP

4.2.3.23 RETIRED_INST_LD_INT

4.2.3.24 RETIRED_INST_M

IAR/OPC/DAR/DREF I/O/D/R

Definition -

NOTE -

Description Floating point ops count

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x00b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition This counts 1 for every FPU op retired.

Description ALIAS for DATA_REF.LD_FP

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0df

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Description ALIAS for DATA_REF.LD_INT

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0de

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Description M ops retired

Max Inc/Cyc 2

MT Capture Type A

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 191
Reference Manual for Software Development and Optimization Guide

4.2.3.25 RETIRED_INST_NOP

4.2.3.26 RETIRED_INST_PTCG

Subevents:

ACQ 0x0f4

Counter Affinity 0xaaaa0

IP-EAR L = 6, P = 0

Definition Includes all predicated on, retired instructions with acquire semantics. (Memory fence semantics are
considered to include acquire semantics.)

ANY 0x00d

Counter Affinity 0xaaaa0

IP-EAR L = 6, P = 0

Definition Any M ops retired

MOVTOBSPST 0x0ca

Counter Affinity 0xaaaa0

IP-EAR L = 6, P = 0

Definition Data prefetch ASB invalidated by BSP store

MOVTODAHR 0x00e

Counter Affinity 0xaaaa0

IP-EAR L = 6, P = 0

Definition M ops retired with DAHR update

REL 0x0f5

Counter Affinity 0xaaaa0

IP-EAR L = 6, P = 0

Definition Includes all predicated on, retired instructions with release semantics. Also includes shootdowns.
(Memory fence semantics are considered to include release semantics.)

Description Nops retired

Max Inc/Cyc 12

MT Capture Type A

Event Code 0x00a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 0

Definition Counts the number of no-ops retired

NOTE When Nop squashing is enabled, this count will include brp

Description ALIAS for RIL_REQ_OTHER.PTCG

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc34

Counter Affinity 0x49200

Core Performance Monitor Events

192 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.3.27 RETIRED_INST_RSE

4.2.3.28 RETIRED_INST_SEMAPHORE

4.2.3.29 RETIRED_INST_ST_FP

IAR/OPC/DAR/DREF I/O/D/R

Definition -

NOTE -

Description RSE event retired

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x157

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition An RSE affecting instruction is retiring and committing architectural state: alloc, flushrs, loadrs, call,
cover, return, or rfi with IFS.v set.

NOTE >Per-instruction PMU tags (address and opcode matching) are not used for this event.

Description ALIAS for DATA_REF.SEMAPHORE

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0e5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Description ALIAS for DATA_REF.ST_FP

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0e2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 193
Reference Manual for Software Development and Optimization Guide

4.2.3.30 RETIRED_INST_ST_INT

4.2.3.31 RETIRED_INST_TAGGED

4.2.3.32 RETIRED_PREDICATE_SQUASHED

Description ALIAS for DATA_REF.ST_INT

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0e1

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Description Instructions retired

Max Inc/Cyc 12

MT Capture Type A

Subevents:

IAM0_OPM0 0x005

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition Instructions retired, tag channel 0 qualified

IAM1_OPM1 0x006

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition Instructions retired, tag channel 1 qualified

IAM2_OPM0 0x007

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition Instructions retired, tag channel 2 qualified

IAM3_OPM1 0x008

Counter Affinity 0xffff0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition Instructions retired, tag channel 3 qualified

Description Instructions retired with predicate off

Max Inc/Cyc 12

MT Capture Type A

Core Performance Monitor Events

194 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.4 Back-End Cycle Accounting
This section enumerates the processor back-end cycle-accounting, also known as stall,
performance monitoring events. The events are ordered by pipe-stage, from earliest to
latest.

The processor’s cycle accounting events are structured in a way that are non-
overlapping down to the sub-event level. This is done by appropriate prioritization
where possible, or by the introduction of "more-than-one" subevents, where multiple
sub-events may assert simultaneously.

At the replay/stall/flush level, the replays are prioritized by the oldest, i.e. latest pipe-
stage involved within the issue group. I.e. WB2 replays trump DET replays.

The non-overlapping property allows for complete sub-level accounting.

4.2.4.1 CYC_BE_BUBBLE

4.2.4.2 CYC_BE_DET_REPLAY

Event Code 0x009

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 5, P = 1

Definition Counts the number of retired instructions with their predicate disabled

NOTE When nop squashing is enabled, this count will exclude predicated off squashed nops

Description Backend cycles stalled

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x024

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition This event captures any cycles lost to replays, flushes or bubbles, including partial replay cycles.

Description Backend DET replay cycles

Max Inc/Cyc 1

MT Capture Type A

Definition A number of structural and data hazards associated with data memory references and a few register
hazards are resolved through DET replay. The pipeline stages emptied by the replay are counted as
"cycles" or bubbles by this event.

NOTE The number of occurrences of DET replays is tightly lower bound by DET_REPLAY.* / 5

Subevents:

ANY 0x04a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 195
Reference Manual for Software Development and Optimization Guide

Definition Any backend DET replay cycles

DCS_HZRD 0x04c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to DCS having a full tracking buffer, a data bug conflict between
synchronous and asynchronous returns, or ITC/RUC reads issued too closely together.

FLUSHED_STORE 0x050

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to flushed store. Details: In the rare event that an FLDST updates
the FLD, fails to commit, and then fails to invalidate the corresponding FLD cache line before an FLD
hitting FLDLD makes it down the pipeline because there is a snoop in the pipeline, that FLDLD is
replayed and these cycles are counted by this event.

GR_LOAD 0x04b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles roughly due to single cycle GR load hazards for loads that do not hit in
FLD. (More precisely, DET replay cycles for single-cycle "memory op producer" to use bypasses that
do not either hit FLD or DCS. Memory op producer: (M1+M2+M3).ldc_op# + M16 + M17 + M19 +
M31.mov_from_urnat# + M33 + M34 + M36 + M38 + M39 + M43 + M46 + M1002).
Includes replay cycles due to speculative predicate replays.

HPW_HZRD 0x051

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to HPW conflict. Details: Mov-to-rr instructions, mov-to-pkr
instructions, and instructions that can cause DTB or IPC purges each take 1 of a particular resource
in HPW. Instructions that can cause DTB or IPC inserts take 2 of the same resource. There are only 2
of these resources in HPW. The resources are freed up after the associated operations have
completed. Any instruction that would require the simultaneous existence of more than 2 resources
will be DET replayed.

LOAD_ACQ 0x04f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to Load Acquire. Details: An FLDLD/FLDST hit, a ld.c, or a chk.a will
replay as long as an operation with acquire semantics from the same thread is outstanding. Previous
processors forced misses on these operations. Replaying instead reduces the number of operations
that can go into the MLD OZQ behind a ld.acq. The other thread may then be able to make better
use of the MLD OZQ. Ld.acq replays are broken into two chunks. DET replays cover the case when an
outstanding operation with acquire semantics has reached WB6 by the time the operation to be
replayed reaches DET. In other words, DET replays cover the case where the outstanding operation
with acquire semantics is at least 6 cycles ahead of the replayed op. In cases where the outstanding
acquire op is less than 6 cycles ahead of the replayed op, a WB2 replay is used. The DET replays
replay to an IBD issue stall. WB2 replays do not.

LOAD_AFTER_WRITE 0x04e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Core Performance Monitor Events

196 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.4.3 CYC_BE_EXE_REPLAY

Definition Backend DET replay cycles due to Load after Write. Details: A hitting FLDLD following an overlapping
hitting FLDWR operation either within the same cycle or one cycle later is replayed. If PSR.ac is set
(alignment checking on), "overlapping" means true overlap. This is better than previous processors.
If PSR.ac is not set, "overlapping" means within the same 8-byte chunk.

MT1 0x054

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to more than 1 reason.

STORE_VS_STORE 0x04d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to Store vs Store hazard. Details: A structural hazard between two
simultaneous hitting FLDSTs with same VA[7:5] and different VA[11:8] causes the second FLDST to
replay. This is similar to a hazard existing in previous processors, but how the specific address bits
conflict has changed.

WRITE_HIT_VS_FILL 0x052

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to Store Hit vs Fill. Details: A hitting FLDST is replayed if it occurs
simultaneously with a fill with same VA[7:6] and different VA[11:8] due to a structural hazard in the
FLD data array. A hitting FLDWR is replayed if it occurs at the same time as or one cycle following a
fill with the same VA[11:6] so that a write targeting a line being replaced will not incorrectly write to
the line that is replacing it.

WRITE_MISS_VS_FILL 0x053

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend DET replay cycles due to Write Miss vs Fill. Details: An FLDST that misses the FLD and has
the same VA[13:6] as a fill that occurs at the same time as or one cycle following the FLDST is DET
replayed. An FLDWR that misses the FLD and has the same VA[13:6] as a fill that occurs one cycle
before the FLDWR is DET replayed. These replays happen because there is not time for the FLDWR to
cancel the fill in the case that the FLDWR and fill are associated with the same VA[63:6].

Description Backend EXE replay cycles

Max Inc/Cyc 1

MT Capture Type A

Definition Register hazards and miscellaneous other hazards are resolved through EXE replay. The pipeline
stages emptied by the replay are counted as "cycles" or bubbles by this event.

NOTE Sometimes the replay ends with an issue stall until a hazard has resolved. The issue stall itself is
counted by another event.
The number of occurrences of EXE replays is tightly lower bound by EXE_REPLAY__* / 4

Subevents:

ANY 0x03a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 197
Reference Manual for Software Development and Optimization Guide

Definition Backend EXE replay cycles due to any reason

ARCR 0x048

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to AR-CR hazard

FCMP 0x042

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to fcmp; a predicate consumer needs a predicate from an fp producer

FPSR 0x045

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to fpsr hazards

FR_FR 0x040

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to FR-FR hazard; a new instruction has a source register targeted by
a prior fp arithmetic operation; the HW uses a combination of replays and issue stalls to perfectly
schedule floating point instructions to the needed 6 cycles of separation between producer and
consumer. No extra wasted cycles are generated.

FR_LOAD_RAW 0x03c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to FR load RAW; a new instruction has a source register targeted by
an outstanding load, or getf instruction.

FR_LOAD_WAW 0x03e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to FR load WAW; a new instruction has a destination register
targeted by an outstanding load, or getf instruction.

GR_GR 0x03f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to GR-GR hazard; a new instruction has a source register targeted by
a prior non-load type instruction; or there is a UNAT register conflict.

GR_LOAD_RAW 0x03b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Core Performance Monitor Events

198 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

There are as many as 11 issued instructions in a cycle that can each need to signal an
EXE replay, (squashed nops will not signal EXE replay) and each of these instructions
can need an EXE replay for more than one reason. For replay reporting, there is a
priority per port, a priority per port pair (e.g., M0 and M1), and a priority across ports.
Per port (highest to lowest): PDU(FCMP or PRED), NOTN, GRLD_RAW(FRLD_RAW),
GRLD_WAW(FRLD_WAW), GRGR(FRFRHERS; Per port pair: For GR replays, PDU on P0
wipes out reason on P1; Across ports: the order of the above table, top to bottom.

Definition Backend EXE replay cycles due to GR load RAW; a new instruction has a source register targeted by
an outstanding load, or outstanding long latency move, or TLB related operation.

GR_LOAD_WAW 0x03d

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to GR load WAW; a new instruction has a destination register
targeted by an outstanding load, or outstanding long latency move, or TLB related operation.

MT1_HIGH 0x041

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to more than one (MT1) of GR_LOAD_*, FR_LOAD_*, GR_GR,
FR_FR.

MT1_LOW 0x049

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to more than one (MT1) of FPSR, SRLZ, REL, ARCR

NOTN 0x044

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to a not-needed replay; predicate prediction turned out wrong

PRED 0x043

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to miscellaneous predicate hazards;

REL 0x047

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to operations with release semantics

SRLZ 0x046

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend EXE replay cycles due to serialization operations

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 199
Reference Manual for Software Development and Optimization Guide

Only one of the non-any replay reasons is recorded per replay event. If a more-then-
one replay reason is given, the individual replay reasons are not available for that
event.

4.2.4.4 CYC_BE_IBD_STALL

Description Backend IBD stall cycles

Max Inc/Cyc 1

MT Capture Type A

Definition Records the reason for each cycle that no instructions are issued from the instruction buffers

NOTE Otherwise known as issue "bubbles"

Subevents:

ACQ 0x02e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to an acquire op outstanding; starts after a DET replay.

ANY 0x025

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles for any reason

DEBUG 0x039

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to debug; a defeaturing mode is active which creates unnecessary stalls

FEBUB 0x038

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to FE bubble; the instruction fetch engine hasn’t provided anything to
issue

FLD_DMND 0x035

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to FLD memory port demands; No instruction can issue because FLD is
using the memory pipeline for a purge, snoop, HW prefetch, etc., and (1) the first instruction trying
to issue is an M-op, or (2) we just replayed and are trying to reissue the same group of instructions,
or (3) any RSE load or store wants to issue.

FR_LOAD 0x030

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to FR load RAW or WAW condition; starts after an EXE replay

Core Performance Monitor Events

200 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FTOF 0x034

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to F to F hazard; floating point scheduling stall

GR_LOAD 0x02f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to GR load RAW or WAW condition; starts after an EXE replay or DET
replay

HPW 0x02c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to HPW; an HW page walk is in progress and a memory op is waiting for
the result; starts after a WB2 replay.

MTOM 0x033

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to M to M hazard; this is the one cycle load to load address scheduling
stall; creates one bubble between a first load and a second load where the second load uses the first
load’s target register as an address register.

OZQFULL 0x02d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to OZQ full or OZ data full; a memory op is denied entry into OZ (MLD
cache control) and is waiting on availability; starts after a WB2 replay.

QFULL 0x037

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to speculative IBQ full bubble. IBL signaled queue full to FE while FE was
trying to hand IBL some instructions, and later that bubble was exposed to the issue logic.

REL 0x032

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to release semantics; a memory instruction with .rel behavior is waiting
for prior TLB operations to complete; starts after an EXE replay.

RSE_ANY 0x026

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to any RSE subreason

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 201
Reference Manual for Software Development and Optimization Guide

Only one of the non-any stall reasons is recorded per cycle. The priority order for the
non-any events is, top to bottom, THRSW down to ARCR, RSE*, MTOM, FTOF, DEBUG,
QFULL, FEBUB, FLDDMND, WB2TRAP. Some of these stall events are mutually
exclusive, so the priority order doesn’t always affect the reporting.

The RSE_WAIT item can be due to a variety of reasons as described in the table below.

RSE_CFLE 0x027

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to injection of RSE fill into the pipeline caused by br.ret or rfi

RSE_LOAD 0x029

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to injection of RSE fill into the pipeline caused by loadrs

RSE_ST 0x028

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to injection of RSE store into the pipeline caused by alloc or flushrs

RSE_WAIT 0x02a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to RSE waiting to inject another load or store; see below for more info

SRLZ 0x031

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to serialization; an rfi, srlz.i, or srlz.d instruction is waiting for prior
resource updates to complete, or sync.i instruction to finish; starts after an EXE replay

THRSW 0x02b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to thread switch controller waiting to switch or in the act of switching

WB2_TRAP 0x036

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend IBD bubbles due to WB2 replay trap; some WB2 replays leave nothing to re-issue for one
cycle after the replay. For example, a ld.c that misses the ALAT is handled as a WB2 replay-trap,
where the load retires but the following instructions replay. If the ld.c is at the end of the issue
group, there will be nothing to re-issue in it’s group.

Core Performance Monitor Events

202 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.4.5 CYC_BE_NO_BUBBLE

4.2.4.6 CYC_BE_WB2_FLUSH

RSE_WAIT can be due to:

1 initial 2 bubble wait before first RSE load or store can be issued

2 initial wait on any AR dependency (like mov to AR[BSPS])

3 initial wait on arch RSE state updates prior to loadrs execution

4 during load/store in pipeline, wait for rnat bit dependencies to clear

5 after an rse rnat load, wait for completion before next load (could miss to memory)

6 unneeded 3-cycle stall due to frontend RSE mis-speculation on RSE.ndirty

Description Backend cycles not stalled

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x023

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition This event counts the number of cycles an entire issue group was able to retire.

NOTE This event differs from its counterpart in a stall-based pipeline in that it assesses a penalty for issue
groups that retire partially. The "any instruction retired" flavor can be obtained by measuring
IA64_INSTS_RETIRED with PMC.thres set to 1.

Description Backend WB2 flush cycles

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY 0x065

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 flush cycles

BRU 0x067

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 flush cycles due to BRU

XPN 0x066

Counter Affinity 0x55550

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 203
Reference Manual for Software Development and Optimization Guide

4.2.4.7 CYC_BE_WB2_REPLAY

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 flush cycles due to XPN

Description Backend WB2 replay cycles

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

ALLOC_PEC 0x058

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to alloc pec hazard

ANY 0x055

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles

BLK_HPW 0x05d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to blocking HPW. Details: An operation that is going to do a blocking
hardware page walk is WB2 replayed to an IBL issue stall.

DAHR_HZRD 0x061

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to DAHR RAW hazard. Details: If the DPFQ back pressure
mechanism is turned on, that is likely the largest component in these replay cycles. DPFQ back
pressure can occur whenever the MLD OZQ is full and the DPFQ is filling up with lfetches from the A-
ports or when the DPFQ is filling up with lfetches from the A-ports and its issuing is blocked. As the
event name suggests, this event also includes Data Access Hint Register (DAHR) hazards typically
involving multiple DAHS modifiers simultaneously in flight in the pipeline.

FP_DEN 0x05b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to FPU denormal

FP_SIR 0x05c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Core Performance Monitor Events

204 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to FPU SIR

LDC 0x056

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to a ld.c.

LOAD_ACQ 0x062

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to load acquire. Details: See the LOAD_ACQ DET replay. This WB2
replay covers the case where the outstanding acquire op is less than 6 cycles ahead of the op to be
replayed.

MOV_PSR_UM 0x059

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to move to psr.um

MT1 0x063

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to more than 1

NAT_HZRD 0x060

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to NaT hazard. Details: If the DTB defers an operation that hits in
the FLD (i.e. any deferral except NAT address consumption or a spontaneous deferral on MLD miss),
then all subsequent operations are WB2 replayed so that any potential consumers of the NAT will see
it. Also, if a ld.a or ld.c.nc in WRB fails to allocate in the ALAT because of some DTB translation issue,
any chk.a or ld.c with same register identifier in DET will be WB2 replayed.

OZQ_FULL 0x05e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to OZQ full. When the MLD OZQ proper is full or the MLD OZ Data
Queue is full, operations that need to go into the MLD OZQ or Data Queue, respectively, are WB2
replayed to an IBL issue stall.

PAUSE 0x057

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to hint \\@pause

SER 0x064

Counter Affinity 0x55550

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 205
Reference Manual for Software Development and Optimization Guide

4.2.4.8 Derived back-end events

At times, cause-centric measurements are desired, i.e. aggregate GR load penalties.
For these, several monitors need to be added up. Using GR loads as example, the
following needs to be done:

GR_LOAD_CYCLES_ALL = IBD_STALL.GR_LOAD + EXE_REPLAY.GR_LOAD_RAW +
EXE_REPLAY.GR_LOAD_WAW + DET_REPLAY.GR_LOAD

4.2.5 Front-End Cycle Accounting
This section enumerates the processor front-end cycle-accounting performance
monitoring events. The events are ordered by pipe-stage, from earliest to latest.

As with the back end, the processor’s cycle accounting events are structured in a way
that are non-overlapping down to the sub-event level.

The non-overlapping property allows for complete sub-level accounting.

4.2.5.1 CYC_FE_BUBBLE.ANY

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to parity and similar errors

STORE_ALIAS 0x05f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to store alias. Details: This replay is to handle a data hazard
between an FLDWR miss (or physical mode FLDWR instrs) followed by an FLDLD hit with the same
PA. The FLDTLB does not allow virtually aliased (VA1->PAx, VA2->PAx) translations (including cross
thread) to coexist in it. Therefore, this case can only arise for a store that misses the FLDTLB (and
thus the FLD). Such stores check the PA portion of the FLDTLB to see if a virtually aliased translation
exists. If such a translation exists, it is purged before any FLDLD hit can use it. This is accomplished
by watching for and replaying any FLDLD hits after an alias has been detected but before the purge
of that translation. FLDWR misses (or physical mode FLDWR instrs) in such a window are also
replayed in order to avoid oversubscribing the purge pipeline. Also, for two such operations in the
same cycle, instead of checking the PA portion of the FLDTLB, the operations are just checked to see
if they potentially overlap by just comparing size and VA[11:0].

VIRT_INT 0x05a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Backend WB2 replay cycles due to virtual interrupt

Description Front end stalled cycles

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x8a3

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Cycles in which no valid bundles were delivered to IBD. Includes any reason for a stall, including
flushes, replays, and bubbles.

Core Performance Monitor Events

206 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.5.2 CYC_FE_FET_REPLAY

4.2.5.3 CYC_FE_FET_STALL

Description Front end bubbles due to FET replay

Max Inc/Cyc 1

MT Capture Type A

Definition Front end bubbles due to FET replay

NOTE CYC_FE_FET_REPLAY.ANY is more accurate than the sum of its sub-events.

Subevents:

ANY 0x8ab

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to FET replay

BRQ_FULL 0x8ad

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to BRQ full FET replay

BRQ_WAIT 0x8ae

Counter Affinity 0x505a5

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to BRQ wait FET replay

BR_INIT 0x8ac

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to Br init FET replay

BR_INTRLCK 0x8af

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to Br interlock FET replay

MT1 0x8b1

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to more than 1 FET replay

RAB_FULL 0x8b0

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to RAB full FET replay

Description Front end FET stall cycles

Max Inc/Cyc 1

MT Capture Type A

Subevents:

ANY 0x8b2

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 207
Reference Manual for Software Development and Optimization Guide

4.2.5.4 CYC_FE_NO_BUBBLE

4.2.5.5 CYC_FE_RESTEER

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end FET stall cycles

FLITLB_MISS 0x8b5

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end FET stall cycles due to FLI TLB miss

FLI_MISS 0x8b4

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end FET stall cycles due to FLI miss

IBQ_FULL 0x8b3

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end FET stall cycles due to IBQ full

MT1 0x8b6

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end FET stall cycles due to more than 1

Description Cycles with valid bundles delivered to IBD

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x8a2

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

IAR/OPC/DAR/DREF -/-/-/-

Definition -

NOTE -

Description Front end bubble cycles

Max Inc/Cyc 1

MT Capture Type A

Subevents:

ANY 0x8a4

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubble cycles

BE_FLUSH 0x8aa

Counter Affinity 0x50550

Core Performance Monitor Events

208 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.5.6 FE_RESTEER

This event provides occurrence counts for the resteer events

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to Back-end resteer

BR_RETIND 0x8a6

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to Br return ind

IPREL 0x8a5

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to IP relative branch

NON_RETIND 0x8a7

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to Br not return ind

SEQ_BR 0x8a8

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to sequential Br

TSWITCH 0x8a9

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end bubbles due to thread switch

Description Front end resteer

Max Inc/Cyc 1

MT Capture Type A

Subevents:

0B_IPREL 0x8b9

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 0-bubble IP relative

1B_BR_RETIND 0x8bc

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 1-bubble BR return indirect

1B_IPREL 0x8ba

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 1-bubble IP relative

1B_SEQ_BR 0x8bf

Counter Affinity 0xa0aa0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 209
Reference Manual for Software Development and Optimization Guide

4.2.6 Branch Events
This section enumerates branch performance monitoring events. Most of these events
record the results of "reached" and "committed" branches. (Exceptions are the
EAR_EVENT_ETB_IP_MT event, and portions of the BR_BE_PRED_DETAIL event).
Itanium architecture allows up to three branches in a bundle, and on current
microprocessors all three branches execute at the same time as a large instruction

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 1-bubble sequential BR

3B_BR_RETIND 0x8bd

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 3-bubble BR return indirect

3B_IPREL 0x8bb

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 3-bubble IP relative

3B_MT 0x8c1

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 3-bubble thread switch

3B_NON_RETIND 0x8be

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 3-bubble BR non-return indirect

3B_SEQ_BR 0x8c0

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 3-bubble sequential BR

4B_MT 0x8c2

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, 4-bubble thread switch

ANY 0x8b7

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer

BE_FLUSH 0x8c3

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, back-end resteer

FET_REPLAY 0x8b8

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end resteer, FET replay

Core Performance Monitor Events

210 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

word. Reached refers to no prior taken branches in the instruction group or bundle, and
committed refers to no prior faults or traps in the instruction group or bundle, and no
fault on the referenced branch. Thus, the branches counted by these events are
"retired" branches.

For the branch events that count aspects of correct predictions and mispredictions, only
the first (oldest) misprediction in a bundle is reported as a misprediction. As a
consequence of this, any retiring branch that is after a predicted taken branch in a
bundle, is logged as a correctly predicted branch whether taken or not taken. This is a
result of the large instruction word (LIW) behavior of all three branches being executed
at the same time, with only one misprediction being reported per bundle. There is at
most one misprediction penalty per bundle of branches.

The reached and committed limitation on reporting these events creates an oddity. For
example, a predicted taken branch that is not taken and not reached, is not itself
counted as a misprediction. Though the prior branch that is taken is counted as a
misprediction.

A similar oddity is caused by the one-hot per-bundle branch path prediction vector
provided by the instruction fetch engine in the frontend. After the first predicted taken
branch in a bundle, the younger branch slots are indicated as predicted not-taken, even
if some part of the HW could have predicted them taken. These younger branch slots’
prediction status is referred to as "unknown." Therefore, branches with a prediction
status of unknown, that are reached and committed, are classified as correctly
predicted.

4.2.6.1 BR_BE_PRED_DETAIL

Description backend branch misprediction detail

Max Inc/Cyc 1

MT Capture Type A

Definition Backend pipeline caused branch mispredictions

NOTE This event records branch related pipeline flushes and some of their causes. These are mostly due to
activity outside of the instruction fetch engine’s target address and taken/not-taken path prediction
machinery. The subevents, STG, ROT, PFS, OTHER, and ANY_RETIRED only record data when no
path or target misprediction occurred on the same bundle of branches.
On Intel Itanium Processor 9300 Series, these events were never complete. On the processor, there
are a few additional sources of backend caused mispredictions such as deconfiguration bit settings,
or, for example, a ld.c missing the ALAT with a dependent cmp instruction targeting the qp of a
branch.

Subevents:

ANY 0x807

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition A b-type instruction was present and a BRU-generated pipeline flush occurred. This subevent is the
sum:
ANY_RETIRED + UNRETIRED + BR_PRED_DETAIL.ANY_WRONG_PATH +
BR_PRED_DETAIL.ANY_WRONG_TARGET

ANY_RETIRED 0x805

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition For convenience, Any_retired is the sum: STG + ROT + PFS + OTHER.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 211
Reference Manual for Software Development and Optimization Guide

4.2.6.2 BR_ENC_PRED_DETAIL

OTHER 0x804

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition There are several OTHER reasons for backend mispredictions, such as an epc in slot 0 or 1 of a
bundle, or privilege level mispredictions on a branch return, or a forced flush due to a prior replayed
unretired flush, etc. OTHER will be recorded if any branch retired during the flush.

PFS 0x803

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition The rename unit (RNM) used the wrong PFS.pfm value to update CFM. A check of this speculative
value with the architectural PFS shows a mismatch. This check is done on predicted taken branch
returns.

ROT 0x802

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition The frontend rename unit (RNM) mispredicted the register rotation. These predictions are based on
a speculative AR[EC] value coupled with FE path prediction.

STG 0x801

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition The backend BRU told the predicate delivery unit (PDU) the wrong stage predicate update in the REG
pipeline stage, and must correct that with a pipeline flush. This is effectively AR[LC] misprediction,
and happens when a move-to-LC is still in flight at the time a rotating branch gets to the REG
pipeline stage.

UNRETIRED 0x806

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition No branch instruction retired, but some b-type instruction was present, and a branch flush occurred.
This is generally due to a WB2 replay taking precedence over a flush, but could be due to an epc in
slot 0 or 1 with no branch in the bundle.

Description Number of "Encoded" Branches Retired

Max Inc/Cyc 3

MT Capture Type A

Definition Counts branches retired for bundles with a branch in slot 0 or bundles which over subscribe MLB

NOTE Bundles with branches in slot 0 (BBB templates with a real branch in slot 0) are termed "encoded,"
because the first level branch cache has to compress information from 3 branch slots into a space
optimized for 2 branches. MLB oversubscription refers to placing information in the second level
(mid-level) branch cache, which is reserved for branch bundle pairs with branches in only one of the
bundles, or with less than 3 branches. Bundle pairs which "over-subscribe" are not placed in MLB on
eviction from the first level branch cache.

Subevents:

ENC_ANY_PRED 0x830

Core Performance Monitor Events

212 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles, regardless of prediction result

ENC_CORR_PRED 0x831

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles, correctly predicted path and target

ENC_OVRSUB_ANY_PRED 0x838

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles that oversubscribe MLB, regardless of prediction result

ENC_OVRSUB_CORR_PR
ED

0x839

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles that oversubscribe MLB, correctly predicted path and target

ENC_OVRSUB_WRONG_P
ATH

0x83a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles that oversubscribe MLB, mispredicted path

ENC_OVRSUB_WRONG_T
ARGET

0x83b

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles that oversubscribe MLB, mispredicted target, but correctly predicted
path

ENC_WRONG_PATH 0x832

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles, mispredicted path

ENC_WRONG_TARGET 0x833

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in encoded bundles, mispredicted target, but correctly predicted path

OVRSUB_ANY_PRED 0x834

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 213
Reference Manual for Software Development and Optimization Guide

4.2.6.3 BR_PATH_PRED

IP-EAR L = 7, P = 2

Definition branches in bundles that oversubscribe MLB, regardless of prediction result

OVRSUB_CORR_PRED 0x835

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in bundles that oversubscribe MLB, correctly predicted path and target

OVRSUB_WRONG_PATH 0x836

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in bundles that oversubscribe MLB, mispredicted path

OVRSUB_WRONG_TARGE
T

0x837

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition branches in bundles that oversubscribe MLB, mispredicted target, but correctly predicted path

Description Frontend Branch Path Prediction Detail

Max Inc/Cyc 3

MT Capture Type A

Definition Counts the number of branches retired based on branch path prediction (taken/not-taken), branch
path outcome, and branch subtype (ip-rel, indirect, br.ret, all).

NOTE This event is intended to work the same as on Intel Itanium Processor 9300 Series.

Subevents:

ANY_MISPRED_NOT_TAK
EN

0x808

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with incorrectly predicted path, and not taken outcome

ANY_MISPRED_TAKEN 0x809

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with incorrectly predicted path, and taken outcome

ANY_OKPRED_NOT_TAKE
N

0x80a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with correctly predicted path, and not taken outcome

ANY_OKPRED_TAKEN 0x80b

Core Performance Monitor Events

214 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with correctly predicted path, and taken outcome

IPREL_MISPRED_NOT_TA
KEN

0x80c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with incorrectly predicted path, and not taken outcome

IPREL_MISPRED_TAKEN 0x80d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with incorrectly predicted path, and taken outcome

IPREL_OKPRED_NOT_TA
KEN

0x80e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with correctly predicted path, and not taken outcome

IPREL_OKPRED_TAKEN 0x80f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with correctly predicted path, and taken outcome

NON_RETIND_MISPRED_
NOT_TAKEN

0x814

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with incorrectly predicted path, and not taken outcome

NON_RETIND_MISPRED_
TAKEN

0x815

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with incorrectly predicted path, and taken outcome

NON_RETIND_OKPRED_N
OT_TAKEN

0x816

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with correctly predicted path, and not taken outcome

NON_RETIND_OKPRED_T
AKEN

0x817

Counter Affinity 0xa0aa0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 215
Reference Manual for Software Development and Optimization Guide

4.2.6.4 BR_PRED_DETAIL

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with correctly predicted path, and taken outcome

RETURN_MISPRED_NOT_
TAKEN

0x810

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with incorrectly predicted path, and not taken outcome

RETURN_MISPRED_TAKE
N

0x811

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with incorrectly predicted path, and taken outcome

RETURN_OKPRED_NOT_T
AKEN

0x812

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with correctly predicted path, and not taken outcome

RETURN_OKPRED_TAKEN 0x813

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with correctly predicted path, and taken outcome

Description Frontend Branch Misprediction Detail

Max Inc/Cyc 3

MT Capture Type A

Definition Counts the number of branches retired based on path prediction result, target prediction result, and
branch type (ip-rel, indirect, br.ret, any)

NOTE The path prediction is the taken/not-taken prediction. The target prediction is for the target address
of the branch. Target address prediction is checked only on the single predicted taken branch in a
bundle, if there is one.
This event is intended to work like the corresponding Intel Itanium Processor 9300 Series event.
The subevents are defined as follows. ANY_PRED just counts the branch type; CORR_PRED counts
branches that had a correctly predicted path and did not have a mispredicted target address;
WRONG_PATH counts mispredicted path branches (with the same kind of overcount as for
BR_PRED_PATH subevents); WRONG_TARG counts branches with correctly predicted path and a
mispredicted target address (implies it was predicted taken and was taken).

Subevents:

ANY_ANY_PRED 0x820

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types, regardless of prediction result

Core Performance Monitor Events

216 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ANY_CORR_PRED 0x821

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types, correctly predicted path and target

ANY_WRONG_PATH 0x822

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types, mispredicted path

ANY_WRONG_TARGET 0x823

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types, mispredicted target, but correctly predicted path

IPREL_ANY_PRED 0x824

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types, regardless of prediction result

IPREL_CORR_PRED 0x825

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types, correctly predicted path and target

IPREL_WRONG_PATH 0x826

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types, mispredicted path

IPREL_WRONG_TARGET 0x827

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types, mispredicted target, but correctly predicted path

NON_RETIND_ANY_PRED 0x82c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types, regardless of prediction result

NON_RETIND_CORR_PRE
D

0x82d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 217
Reference Manual for Software Development and Optimization Guide

4.2.6.5 BR_PRED_UNKNOWN

IP-EAR L = 7, P = 2

Definition non-return indirect branch types, correctly predicted path and target

NON_RETIND_WRONG_P
ATH

0x82e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types, mispredicted path

NON_RETIND_WRONG_T
ARGET

0x82f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types, mispredicted target, but correctly predicted path

RETURN_ANY_PRED 0x828

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types, regardless of prediction result

RETURN_CORR_PRED 0x829

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types, correctly predicted path and target

RETURN_WRONG_PATH 0x82a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types, mispredicted path

RETURN_WRONG_TARGE
T

0x82b

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types, mispredicted target, but correctly predicted path

Description Frontend Branch Path Prediction Unknown

Max Inc/Cyc 2

MT Capture Type A

Definition Counts retirements of slot 1 and slot 2 branches in which a prior slot was predicted taken

NOTE When a prior slot in a branch bundle was predicted taken, the remaining slots have an "unknown"
predicted path (taken/not-taken). These branches, when retiring, are always counted as correctly
predicted, because they do not contribute to a misprediction penalty. When slot 0 is predicted taken,
slot 1 and slot 2 are unknown. When slot 1 is predicted taken, slot 2 is unknown.

Core Performance Monitor Events

218 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Subevents:

ANY 0x818

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with unknown predicted path, and taken or not-taken outcome

ANY_TAKEN 0x819

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition all branch types with unknown predicted path, and taken outcome

IPREL 0x81a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with unknown predicted path, and taken or not-taken outcome

IPREL_TAKEN 0x81b

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition ip-relative branch types with unknown predicted path, and taken outcome

NON_RETIND 0x81e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with unknown predicted path, and taken or not-taken outcome

NON_RETIND_TAKEN 0x81f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition non-return indirect branch types with unknown predicted path, and taken outcome

RETURN 0x81c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with unknown predicted path, and taken or not-taken outcome

RETURN_TAKEN 0x81d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 7, P = 2

Definition return branch types with unknown predicted path, and taken outcome

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 219
Reference Manual for Software Development and Optimization Guide

4.2.7 Memory Hierarchy Events

The following sections contain the PMU events for the processor memory hierarchy
events. The figure below gives an overview of the memory hierarchy and key pertinent
performance monitors. The diagram should be read as a kind of flowchart. The three
arrows entering the diagram (labeled FLI_READ.ANY, DATA_REF.ANY, and
RIL_REQ_REF_DATA.WB_MLD_BUDDY) represent all of the memory references
initiated in the core, and the number of occurrences of each type of memory reference
can be measured by the corresponding event. The arrows leaving the diagram on the
right and left sides represent the memory reference outcomes, and the number of
occurrences of each outcome can be measured by the corresponding event. The
internal arrows represent memory references flowing from one part of the memory
hierarchy to another, and the number of references flowing at each part of the
hierarchy can be measured by the corresponding events.

Core Performance Monitor Events

220 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.7.1 Primary Data Reference Types

Much care has been taken to define and count a consistent set of primary data
reference types across a wide range of pmu events. All of the events in the preceding
diagram count data references if and only if they are from this set of primary data
reference types:

• LOAD_INT: integer loads (see DATA_REF.LOAD_INT)

• LOAD_FP: floating point loads (see DATA_REF.LOAD_FP)

• LOAD_RSE: RSE loads (see DATA_REF.LOAD_RSE)

Figure 4-1. Processor Memory Hierarchy

OZQ

PREF _DROP.FLDTLB_MISSDTLBs
CSPEC_LOAD .NAT

FLD

MLD
SMQ

(FLD _LOAD .ANY – FLD_LOAD _MISS.ANY)

PREF_DROP.FLD_HIT

PREF_DROP.FLD_SECONDARY_MISS

MLD_REF.ANY

MLD_REF.HIT

MLD_SMQ_REF.HIT

MLD_SMQ_REF.SECONDARY_DROP

MLD_REF.SECONDARY_DROP

MLD_HINT_PREF_DROPMLD_REF.SECONDARY +
MLD_SMQ_REF.SECONDARY

MLD_REF.PRIMARY +
MLD_SMQ_REF__PRIMARY +

MLD_REF.UC_WC_STORE

(RIL_REQ_REF_DATA.NC_WRITE_WC_MLD –
RIL_REQ_REF_DATA.NC_WRITE_WC_ANY)

RIL_REQ_REF_DATA.ANY

RIL

LLC_REF.HIT_ANY

LLC _REF_MISS.MEM_LCL_ANY

LLC_REF_MISS.MEM_RMT_ANY

LLC _REF.SYS_ANY

LLC _REF.UNKNOWN

RIL_REQ_REF_INST.ANY

LLC

LOCAL MEMORY

REMOTE MEMORY

NON-RAM MEMORY LOCATIONS

RIL_REQ_REF.ANY

RING

MLIMLI_READ .HIT_ANY

MLI_READ.MISS_ANY

DATA_REF.ANY

RIL_REQ_REF_DATA.WB_MLD_BUDDY

FLIFLI_FETCH_RAB_HIT.DMD

MLIRQ

FLI_READ.ANY –
FLI_READ_MISS.ANY

MLI_READ.ANY

FLI_READ.ANY

ITLBs

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 221
Reference Manual for Software Development and Optimization Guide

• LOAD_HPW: hardware page walker loads (see DATA_REF.LOAD_HPW)

• STORE_INT: integer stores (see DATA_REF.STORE_INT)

• STORE_FP: floating point stores (see DATA_REF.STORE_FP)

• STORE_RSE: RSE stores (see DATA_REF.STORE_RSE)

• SEMAPHORE: semaphores (see DATA_REF.SEMAPHORE)

• LFETCH: software prefetches (see DATA_REF.LFETCH)

• HW_PREF: hardware prefetches (see DATA_REF.HW_PREF and
RIL_REQ_REF_DATA.WB_MLD_BUDDY)

Any reference to LOAD_INT, LOAD_FP, LOAD_RSE, LOAD_HPW, STORE_INT, STORE_FP,
STORE_RSE, SEMAPHORE, LFETCH, or HW_PREF in an event name that also contains
FLD, MLD, RIL, or LLC implies that the event is measuring the specified subset of these
primary data reference types (unless specifically noted otherwise in the event
description.) Also, references to LOAD(_ANY)/STORE(_ANY) in this same set of events
implies that the event is measuring the LOAD_*/STORE_* subset of these primary data
reference types. For example, the event name MLD_LOAD_MISS implies that this event
is measuring all of the data references of types LOAD_INT, LOAD_FP, LOAD_RSE, or
LOAD_HPW that access and miss the MLD. Furthermore, references to REF in any event
name that also contains FLD, MLD, RIL*DATA*, or LLC*DATA* implies that the event is
measuring this set of primary data reference types.

This consistency in definition of and usage of primary data reference types has enabled
definition of the following equations with further clarify and define what various data
cache hierarchy events measure and their relationships to each other:

• DATA_REF.ANY == (PREF_DROP.FLD_HIT + PREF_DROP.FLD_SECONDARY_MISS +
PREF_DROP.FLDTLB_MISS + CSPEC_LOAD.NAT + (FLD_LOAD.ANY −
FLD_LOAD_MISS.ANY) + MLD_REF.ANY)

• MLD_REF.ANY == (MLD_REF.HIT + MLD_HINT_PREF_DROP +
MLD_REF.SECONDARY_DROP + MLD_SMQ_REF.SECONDARY_DROP +
MLD_SMQ_REF.HIT + MLD_REF.PRIMARY + MLD_SMQ_REF.PRIMARY +
MLD_REF.UC_WC_STORE)

• (MLD_REF.PRIMARY + MLD_SMQ_REF.PRIMARY + MLD_REF.UC_WC_STORE +
RIL_REQ_REF_DATA.WB_MLD_BUDDY) == (RIL_REQ_REF_DATA.ANY +
(RIL_REQ_REF_DATA.NC_WRITE_WC_MLD -
RIL_REQ_REF_DATA.NC_WRITE_WC_ANY))

• (RIL_REQ_REF_INST.ANY + RIL_REQ_REF_DATA.ANY -
RIL_REQ_REF_DATA.NC_WRITE_ANY) == (LLC_REF_HIT.ANY +
LLC_REF_MISS.MEM_LCL_ANY + LLC_REF_MISS.MEM_RMT_ANY +
LLC_REF.SYS_ANY + LLC_REF_UNKNOWN)

Note that the last equation above includes more than just data references. However,
the data references could be distinguished by using data reference matching to filter
out all data references and then subtracting the non-data references values from the
values including data references.

4.2.7.2 Asynchronous Data References and Event Matching Constraints

Asynchronous data references (e.g. LOAD_RSE, LOAD_HPW, STORE_RSE, LFETCH, and
HW_PREF) are counted by many PMU events. These references pose a quandary with
respect to instruction matching (address and opcode) because unlike synchronous data
references, they do not have a one-to-one mapping with instructions. These references
could either ignore instruction matching or they could inherit instruction matching from

Core Performance Monitor Events

222 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

their triggering instruction. HW_PREF data references that originate in the MLD
hardware prefetcher and HW_PREF data references that are MLD buddy line prefetches
ignore instruction matching. LOAD_RSE, LOAD_HPW, STORE_RSE, LFETCH, and all
other types of HW_PREF data references inherit instruction address matching from
their triggering instruction.

Therefore, instruction matching can be used on events that include asynchronous data
references with some care as noted in the following guidelines:

• Data reference type matching should typically be used to filter out HW_PREF type
data references

• Data reference type matching should be used to specifically include or exclude the
other types of asynchronous data references desired in the measurement.

MLD buddy line prefetches can also lead to some confusion with respect to data
reference type matching alone. MLD buddy line prefetches are hardware prefetches
that are inserted between MLD and RIL. These hardware prefetches respond to
HW_PREF data reference type matching. In RIL* events, MLD buddy line prefetches
only respond to the HW_PREF data reference type matching. Therefore, although
LOAD_INT, for example, may trigger an MLD buddy line prefetch, for RIL* events it is
the data reference type of HW_PREF that will determine whether or not this buddy line
prefetch is counted. So, if LOAD_INT were excluded by data reference type matching
but HW_PREF were not, then the MLD buddy line prefetches triggered by the LOAD_INT
will still be counted.

However, for all other PMU events that include MLD buddy line prefetches (e.g. LLC
events, MLD fill side events), the triggering data reference also plays a role in data
reference type matching. Specifically, MLD buddy line prefetches will be counted only
when data reference type matching is configured to allow counting of the HW_PREF
type AND the data reference type of the triggering instruction. For example, if data
reference type matching is configured to count only LOAD_INT and HW_PREF data
reference types, then MLD buddy line prefetches that are triggered by LOAD_INT or
HW_PREF data references will be counted and buddy line prefetches triggered by other
types of data references will not be counted.

4.2.7.3 DATA_REF

Description Data references to the memory hierarchy.

Max Inc/Cyc 2

MT Capture Type A

Definition Includes loads, stores, semaphore instructions, virtual mode lfetches, virtual and physical mode
hardware initiated prefetches other than MLD buddy line prefetches, RSE loads, RSE stores, and
VHPT loads. Does NOT include accesses from predicated off instructions, TLB only accesses (e.g. TLB
purges), flush caches operations, snoops, write-backs, ld.c’s that hit in the ALAT, physical mode
lfetches, or MLD buddy line prefetches.

Subevents:

ANY 0x0dd

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition ANY == SUM(LOAD_INT, LOAD_FP, LOAD_RSE, LOAD_HPW, STORE_INT, STORE_FP, STORE_RSE,
SEMAPHORE, LFETCH, HW_PREF)

LOAD_INT 0x0de

Counter Affinity 0x55550

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 223
Reference Manual for Software Development and Optimization Guide

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on, integer load instructions that retire

LOAD_FP 0x0df

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on floating point load instructions that retire

LOAD_RSE 0x0e0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from RSE load operations

LOAD_HPW 0x0e7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from vhpt loads that are accepted by the MLD OZQ

STORE_INT 0x0e1

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on integer store instructions that retire

STORE_FP 0x0e2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on floating point store instructions that retire

STORE_RSE 0x0e3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from RSE store operations

SEMAPHORE 0x0e5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on semaphore instructions (xchg, cmpxhg, fetchadd) that retire

LFETCH 0x0e4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Core Performance Monitor Events

224 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.8 FLI Events
This section enumerates FLI performance monitoring events.

4.2.8.1 FLI_FETCH_JIT_HIT

Definition All LFETCH data references are to addresses requested by lfetch instructions. (Data prefetches to
other addresses are HW_PREF.) However, there are several issues that can prevent a 1-to-1
correspondence with predicated on retired lfetch instructions: 1) Some lfetches issued to A-ports
that don’t retire can still generate data references. 2) Some lfetches issues to A-ports can be
dropped before they generate data references. 3) Lfetches can be dropped due to missing the DTB
and not counted as data references. 4) Lfetch.cnt can, obviously, generate more than one data
reference. 5) Lfetch instructions that miss the FLDTLB often generate 2 data references to the same
address. 6) Data references triggered by lfetch instructions are not counted when data address
translation is disabled.

HW_PREF 0x0e6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition Data references from hardware initiated prefetches that are injected into the M-pipeline as a_dpf
asynchronous operations but are not re-inserted into the DPFQ due to being rejected by a full MLD
OZQ and are not dropped due to missing the DTB. Specifically, this does NOT say that only hardware
initiated prefetches that are accepted by the OZQ are counted. For instance, hardware initiated
prefetches that are dropped due to an FLDTLB miss before they reach the OZQ are counted.

LOAD_ANY 0x0e8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition LOAD_ANY = SUM(LOAD_INT, LOAD_FP, LOAD_RSE, LOAD_HPW)

STORE_ANY 0x0e9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition STORE_ANY = SUM(STORE_INT, STORE_FP, STORE_RSE)

LOAD_UC 0xca4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on uncacheable load instructions that retire

STORE_UC 0xca5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition data references from predicated on uncacheable store instructions that retire

Description FLI demand fetch fill hit

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x86b

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 225
Reference Manual for Software Development and Optimization Guide

4.2.8.2 FLI_FETCH_RAB_HIT

4.2.8.3 FLI_FILL

4.2.8.4 FLI_INST_INSERT_RAB

4.2.8.5 FLI_PREF_STALL

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Bundle data provided by just-in-time fill data that was not yet written to the FLI cache. Note that this
event counts even when the bundles from the just-in-time bypass are not actually written into the
instruction buffer due to replays or flushes.

Description FLI fetch RAB hit

Max Inc/Cyc 1

MT Capture Type A

Definition FLI access to an address that has already been requested to the MLI but it has not yet been filled.

Subevents:

DMND 0x869

Counter Affinity 0xa0aa0

Definition FLI demand fetch RAB hit

PREF 0x86a

Counter Affinity 0x50550

Definition FLI prefetch fetch RAB hit

Description FLI fills

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x85c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition A 32 byte chunk of data has been written to the FLI cache.

Description FLI instruction bundles inserted into the instruction bundle queue

Max Inc/Cyc 2

MT Capture Type C

Event Code 0x872

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition The number of bundles valid out of the front end this cycle (0,1 or 2).

Description FLI Prefetch stall

Max Inc/Cyc 1

MT Capture Type A

Core Performance Monitor Events

226 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.8.6 FLI_PURGE

4.2.8.7 FLI_PVAB_OVERFLOW

4.2.8.8 FLI_RAB_ALMOST_FULL

Definition -

NOTE -

Subevents:

ANY 0x861

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLI Prefetch stall

FLOW 0x862

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FLI Prefetch stall due to flow

Description FLI TLB purges

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x865

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Any purge but ptc.e was detected in the IPC, an IPC miss occurred or a software insert into the IPC
took place.

Description FLI PVAB lost

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x86c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Prefetch virtual address buffer has overflowed such that a requested stream will be lost.

Description FLI RAB almost full

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x868

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition The RAB table has 6 or more entries allocated.

NOTE If RAB entries have been deallocated for debug, those entries are marked as allocated so this event
will still function.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 227
Reference Manual for Software Development and Optimization Guide

4.2.8.9 FLI_RAB_FULL

4.2.8.10 FLI_READ

4.2.8.11 FLI_READ_MISS

Description FLI RAB full

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x867

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition The RAB table has no free entries. No more MLI requests can be generated until an entry frees up.

Description FLI reads all

Max Inc/Cyc 2

MT Capture Type A

Definition The following sub-events describe read access to the FLI cache structures. Note that these events
only increment when valid instructions are written into the instruction buffer.

Subevents:

ANY 0x859

Counter Affinity 0xa0aa0

Definition FLI reads all

DMND 0x85b

Counter Affinity 0xa0aa0

Definition FLI demand fetch reads

PREF 0x85e

Counter Affinity 0x50550

Definition FLI prefetch requests

SNOOP 0x863

Counter Affinity 0xa0aa0

Definition FLI snoop requests

SNOOP_HIT 0x864

Counter Affinity 0x50550

Definition FLI snoop hits

Description FLI read misses all

Max Inc/Cyc 2

MT Capture Type A

Definition The following sub-events account for accesses to the FLI cache that return a miss.

Subevents:

ANY 0x85a

Counter Affinity 0x50550

Definition FLI read misses all

Core Performance Monitor Events

228 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.8.12 FLI_STEPPING

4.2.8.13 FLI_STREAM_PREF

4.2.8.14 MLI_RETURN_LINE

4.2.9 MLI Events
This section enumerates MLI performance monitoring events.

DMND 0x85d

Counter Affinity 0x50550

Definition FLI demand fetch misses

PREF 0x85f

Counter Affinity 0xa0aa0

Definition FLI prefetch request misses

Description Frontend FET pipestage is enabled

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x873

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Cycles that the frontend FET pipestage is enabled

NOTE

Description FLI stream prefetch requests

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x866

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition A streaming prefetch request has been generated.

NOTE There is one event per MLI request of the stream.

Description FLI L1 lines ISB

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x860

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition A 32 byte chunk of data has been returned by the MLI.

NOTE This event includes chunks that will and will not be written to the FLI.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 229
Reference Manual for Software Development and Optimization Guide

4.2.9.1 MLI_HIT_CONFLICT

4.2.9.2 MLI_READ

Description MLI hit conflicts

Max Inc/Cyc 1

MT Capture Type C

Definition The number of times a tagged request from IFR to MLI would have hit a valid line in the MLI cache,
except that MLI was forced to abandon the lookup, either because the internal MLI read buffers don’t
have enough room left to buffer the read data (due to simultaneous higher-priority LLC/RIL fill data
returns), or because a simultaneous snoop might be invalidating the line. In rare cases, this event
may be signalled multiple times for a single request from IFR. The final time the request moves down
the MLI pipeline, it also reports a single MLI_DEMAND/PREFETCH_HITS or MLI_DEMAND/
PREFETCH_(NO_)FILLS event, as appropriate

NOTE

Subevents:

ANY 0x84e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition Any MLI hit conflict

DMND 0x84f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Demand MLI hit conflict

PREF 0x850

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition Prefetch MLI hit conflict

Description MLI reads

Max Inc/Cyc 1

MT Capture Type A

Definition IFR requests to MLI that result in hit or that missed

NOTE This event does include uncacheable accesses

Subevents:

ANY_ANY 0x83c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read all: demand or prefetch

ANY_DMND 0x83d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read all demand

ANY_PREF 0x83e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Core Performance Monitor Events

230 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

HIT RATE = 100% * HIT_ANY/ANY_ANY

4.2.9.3 MLI_READ_UC

Definition MLI read all prefetch

HIT_ANY 0x83f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read hit: demand or prefetch with or with out LRU Hint sent

HIT_DMND_LRU 0x842

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read hit demand with LRU Hint Sent

HIT_DMND_NOLRU 0x840

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read hit demand with no LRU Hint Sent

HIT_PREF_LRU 0x843

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read hit prefetch with LRU Hint Sent

HIT_PREF_NOLRU 0x841

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read hit prefetch with no LRU Hint Sent

MISS_ANY 0x844

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read miss: demand or prefetch

MISS_DMND 0x845

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read miss demand

MISS_PREF 0x846

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI read miss prefetch

Description MLI uncacheable reads

Max Inc/Cyc 1

MT Capture Type A

Definition The number of times a tagged demand uncacheable request from IFR to MLI misses in the MLI cache
and is issued to LLC/RIL, when the data returned from LLC/RIL will only be bypassed to IFR, and will
not fill into MLI.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 231
Reference Manual for Software Development and Optimization Guide

4.2.9.4 MLI_RECIRCULATE

NOTE It is also reported for cacheable requests which have no available way to fill into as a result of MLI
being deconfigured (via disabling the entire MLI cache, disabling one or more ways, or forcing
individual entries into the killed state)

Subevents:

ANY 0x847

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI UC read all

DMND 0x848

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI UC read demand

PREF 0x849

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI UC read prefetch

Description MLI recirculates

Max Inc/Cyc 1

MT Capture Type C

Definition The number of times a tagged request from IFR to MLI matches a line marked pending in the MLI
cache. This means that MLI has already sent another request for this same address (but via a
different RABID) to LLC/RIL, and is still waiting for its data to return. Thus, this new request cannot
yet return data to IFR, as the MLI does not have the data. So the request must enter a loop of
waiting for an event (snoop or fill) which might change the status of the pending line, and then
reissuing through the MLI pipeline; the cycle repeats until the request no longer hits pending. Note
that this event is signalled every time a request reissues, and so it might fire multiple times for a
single request from IFR. The final time the request moves down the MLI pipeline, it also reports
either a single MLI_DEMAND_HITS or MLI_DEMAND_MISS event.

Subevents:

ANY 0x84a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition MLI recirculates

DMND 0x84b

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Demand MLI recirculates

PREF 0x84c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition Prefetch MLI recirculates

Core Performance Monitor Events

232 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.9.5 MLI_SNOOP_HIT

4.2.9.6 MLI_SNOOP_INVAL_BLK_LOOKUP

4.2.9.7 MLI_SPEC_ABORT

4.2.10 FLITLB Events
This section enumerates FLITLB performance monitoring events.

4.2.10.1 FLITLB_INSERT_HPW

Description MLI snoop hits

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x852

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops that hit in the MLI that cause that line to be Invalidated

NOTE Snoops are not associated with a Thread and the thread id is what the active thread was at that
time. Also, snoop are not tagged, so this is for all snoops

Description MLI invalidating snoop hold off lookup

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x84d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition The number of times a snoop that will invalidate a valid line block up a lookup from the IFR.

NOTE Snoops are not associated with a Thread and the thread id is what the active thread was at that
time. Also, snoop are not tagged, so this is for all snoops

Description MLI aborted speculative look-up

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x851

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition The number of times a tagged change-priority-to-demand request from IFR to MLI starts down the
MLI pipeline, but MLI finds that it has already been looked up, and aborts the new lookup. This can
occur because, in order to satisfy demand requests as quickly as possible, MLI starts to look up a
demand request without waiting to check if that request has already been handled (as is possible if it
was originally issued as a prefetch, and later the IFR changes its priority to a demand)

Description FLI HPW insert

Max Inc/Cyc 1

MT Capture Type C

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 233
Reference Manual for Software Development and Optimization Guide

4.2.10.2 FLITLB_MISS

4.2.11 MLITLB Events
This section enumerates MLITLB performance monitoring events.

4.2.11.1 MLITLB_HPW_ABORTS

4.2.11.2 MLITLB_MISS

Event Code 0x86f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Demand fetch missed in the FLITLB and caused an IPC request that resulted in an IPC miss that was
filled with and HPW insert.

Description FLI TLB miss

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x86d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF I/-/-/-

Definition Demand fetch missed in the FLITLB and caused an IPC lookup.

Description FLI HPW abort

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x870

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition -

NOTE -

Description FLI MLI TLB miss

Max Inc/Cyc 1

MT Capture Type C

Event Code 0x86e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF I/-/-/-

Definition -

NOTE -

Core Performance Monitor Events

234 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.12 FLD Events
This section enumerates FLD performance monitoring events. Figure 0-1, “Some
Asynchronous Operation Definitions” and Figure 0-2, “FLD Operation Type Definitions”
contain some definitions used in the event descriptions in this section.

4.2.12.1 FLD_FILL

4.2.12.2 FLD_FILL_CANCEL

Table 0-1. Some Asynchronous Operation Definitions

Name Description

a_snp Snoop (not snoop to shared)

a_snps Snoop to shared

a_dpf data prefetch

a_flsh_stinv Invalidation of an FLD cache line that was updated by a non-committing store

Table 0-2. FLD Operation Type Definitions

Op Type instructions async ops

FLDLD integer loads other than ld16 and ldc.acq; RSE loads;
(note: includes NATed ld.s)

none

FLDPF lfetch a_dpf

FLDCANFILL FLDLD + FLDPF instructions FLDLD + FLDPF ops

FLDST any integer store other than st16; RSE stores none

FLDINVLDT stf, st16, fc, xchg, cmpxchg, fetchadd a_snp, a_snps, a_flsh_stinv

FLDWR FLDST + FLDINVLDT instructions FLDST + FLDINVLDT ops

Description FLD fill

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x101

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a cache line is written to the FLD.

NOTE -

Description FLD fill cancels

Max Inc/Cyc 1

MT Capture Type A

Definition This is a subset of FLD_FILL_REQS. FLD_FILL_CANCELS == FLD_FILL_REQ.ANY −
FLD_FILL_CANCELS

Subevents:

ANY 0x0fd

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 235
Reference Manual for Software Development and Optimization Guide

4.2.12.3 FLD_FILL_LRU

4.2.12.4 FLD_FILL_REQ

Definition FLD_FILL_CANCEL.ANY == (FLD_FILL_CANCEL.MLD + FLD_FILL_CANCEL.INFAB +
FLD_FILL_CANCEL.POSTFAB)

INFAB 0x0ff

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times FLD fills are cancelled while in the FLD FAB. These cancellations can be
caused by FLDWRs to the same cache line as the pending FLD fill, or replacement of an FLDTLB entry
with which the FLD fill is associated.

MLD 0x0fe

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition counts the number of times MLD cancelled an FLD fill

POSTFAB 0x100

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times FLD fills are cancelled due to some sort of fill conflict around the time of
the fill. Writes, snoops, and FLDTLB inserts around the time of the FLD fill can cause these fill
cancellations.

Description FLD fills to "not recently used" state

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x102

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition This is the subset of FLD_FILLS that fill to the "not recently used" state. FLD_FILLS −
FLD_FILLED_NRU computes the FLD_FILLS that fill to the "recently used" state.

Description FLD fill requests

Max Inc/Cyc 2

MT Capture Type A

Definition Counts data references (see .DATA_REF event) that request an FLD. (FLD_FILL_REQS.ANY ≤
DATA_REF.ANY). Only FLDCANFILL operations can request an FLD fill.

NOTE -

Subevents:

ANY 0x0f8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD_FILL_REQS.ANY == (FLD_FILL_REQS.LD_INT + FLD_FILL_REQS.LD_RSE +
FLD_FILL_REQS.LFETCH + FLD_FILL_REQS.HWPF)

HW_PREF 0x0fc

Counter Affinity 0x55550

Core Performance Monitor Events

236 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.12.5 FLD_HINT_NOALLOC

4.2.12.6 FLD_HINT_NO_MULTI_HWPREF

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD fill requests by hardware initiated prefetches

LFETCH 0x0fb

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD fill requests by LFETCHes

LOAD_INT 0x0f9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD fill requests by integer loads (must be FLDLD to request a fill)

LOAD_RSE 0x0fa

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD fill requests by RSE loads

Description FLD no alloc hinted

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0f6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition Counts the number of times an FLD_ALLOCATE hint of NO_ALLOCATE prevents an FLD fill request.

Description FLD no multi HW prefetch hinted

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0d8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition -

NOTE -

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 237
Reference Manual for Software Development and Optimization Guide

4.2.12.7 FLD_HIT

4.2.12.8 FLD_LINE_DEMOTE

4.2.12.9 FLD_LOAD

Description FLD hits

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0ef

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition Counts the data references (see .DATA_REF event description) that hit in the FLD cache. (FLD_HITS
≤ .DATA_REF.ANY) Note that only data references that are FLDLDs, FLDPFs, or FLDWRs can hit in the
FLD. Note that snoops, fc instructions, and a_flsh_stinv async ops are not considered data
references. See FLD_SPEC_INVLDTS to count non-data reference FLDINVLDTs.

Description FLD line demoted to NRU

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0f7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLDLDs, FLDSTs, and non-hardware initiated FLDPFs that have an FLD_LOCALITY hint of MARK_NRU
and hit in the FLD cause the accessed line to be marked "not recently used" (instead of marking
them most recently used). This event counts how many lines are marked NRU in this manner.

Description FLD loads

Max Inc/Cyc 2

MT Capture Type A

Definition FLD_LOAD is the subset of DATA_REF that is composed of FLD LDs. (FLD_LOAD ≤ DATA_REF).

Subevents:

ANY 0x0ea

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD loads

INT 0x0eb

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD integer loads

Core Performance Monitor Events

238 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.12.10 FLD_LOAD_MISS

4.2.12.11 FLD_SPEC_INVAL

Description FLD load misses

Max Inc/Cyc 2

MT Capture Type A

Definition FLD_LOAD_MISS is the subset of FLD_LOAD that missed the FLD. (FLD_LOAD_MISS ≤ FLD_LOAD)

Subevents:

ANY 0x0ec

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD_LOAD_MISSES_ANY == FLD_LOAD_MISSES.INT + FLD_LOAD_MISSES.RSE

INT 0x0ed

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition The subset of FLD_LOAD_MISSES that comes from integer loads.

RSE 0x0ee

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition The subset of FLD_LOAD_MISSES that comes from RSE loads.

Description Operations that invalidate the FLD

Max Inc/Cyc 2

MT Capture Type A

Definition This operation counts all FLDINVLDT operations that invalidate the FLD, including speculative
invalidates due to non-retiring instructions.

NOTE FLD_SPEC_INVAL events that occur simultaneous with and on the same M-port as
FLD_SPEC_INVAL.FLUSH_STORE events will not be counted.

Subevents:

ANY 0x0f0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD_SPEC_INVAL.ANY = (FLD_SPEC_INVAL.INSTR + FLD_SPEC_INVAL.FLUSH_STORE +
FLD_SPEC_INVAL.SNOOP)

FLUSH_STORE 0x0f2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD invalidations caused by flushed stores.

INST 0x0f1

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 239
Reference Manual for Software Development and Optimization Guide

4.2.13 MLD Events
This section enumerates MLD performance monitoring events.

4.2.13.1 MLD_BWMODE_CYC

4.2.13.2 MLD_BYPASS

4.2.13.3 MLD_BYPASS_ATTEMPT

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition FLD invalidations caused by FLDINVLDT instructions.

SNOOP 0x0f3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/D/R

Definition FLD invalidations caused by snoops.

Description Cycles MLD is in bandwidth mode

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xcd6

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition -

NOTE -

Description MLD op that successfully bypassed

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd4

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 2

Definition Counts the number of ops that bypassed around the OZQ. Only ops that were allowed to bypass are
counted.

NOTE Since ops are bypassed speculatively, this may count ops that do not retire.

Description MLD op that attempted to bypass

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd3

Counter Affinity 0x49200

Core Performance Monitor Events

240 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.4 MLD_CYC_STALL

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 2

Definition Counts the number of ops that started to bypass around the OZQ due to the OZQ being empty. May
count ops that are not allowed to bypass due to ordering or structural constraints.

NOTE Since ops are bypassed speculatively, this may count ops that do not retire.

Description Any MLD stall

Max Inc/Cyc 1

MT Capture Type F

Definition Counts and categorizes the causes of MLD pipeline stalls.

Subevents:

ANY 0xcd8

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Any MLD stall

CRIT_BYP 0xcdd

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Return port conflict between P0 and a critical bypass.

FILL_W 0xcdc

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Conflict between fill and older st (P0 only)

HPW 0xcdf

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition MLD stalled due to back to back HPW loads

RAW 0xcda

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition RAW hazard between a multi-bank read on P0 and an older store

RW_BANK 0xcd9

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Bank conflict between a read on P0 and an older store

SEMAPHORE 0xcdb

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 241
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Semaphore stall (P0 only)

SPLIT_CRIT_BYP 0xce6

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Return port conflict between P1 and a critical bypass.

SPLIT_OVERSUB 0xce5

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Return port conflict between P0 and P1

SPLIT_RAW 0xce4

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition RAW hazard between a multi-bank read P1 and an older store

SPLIT_RR_BANK 0xce2

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Bank conflict between reads on P0 and P1

SPLIT_RW_BANK 0xce3

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Bank conflict between a read on P1 and an older store

SPLIT_WW_BANK 0xce1

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Bank conflict between writes on P0 and P1

TAG_ERR 0xce0

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Tag error correction stall

WB_FIFO 0xcde

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Write buffer FIFO full stall

Core Performance Monitor Events

242 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.5 MLD_FAB_COUNT

4.2.13.6 MLD_FAB_OVERFLOW

4.2.13.7 MLD_FILL_MESI_STATE_BUDDY

Description Number of valid FAB entries

Max Inc/Cyc 1

MT Capture Type C

Definition Counts the number of valid FAB entries per cycle

NOTE The maximal number is 16 entries
The full count is computed as follows: MLD_FAB_COUNT = MLD_FAB_COUNT.MSB << 1 +
MLD_FAB_COUNT.LSB

Subevents:

LSB 0xcf7

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid FAB entries

MSB 0xcf8

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid FAB entries

Description MLD FAB overflowed

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd1

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition -

NOTE -

Description MLD fill op to non-crit buddy

Max Inc/Cyc 1

MT Capture Type F

Definition Counts the number of fills for a cacheable MLD miss.

NOTE Does not count "no-allocate" fills.

Subevents:

ANY 0xcc4

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to non-crit buddy

E 0xcc5

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 243
Reference Manual for Software Development and Optimization Guide

4.2.13.8 MLD_FILL_MESI_STATE_PRIMARY

Counter Affinity 0x22200

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to non-crit buddy with MESI=E

I 0xcc7

Counter Affinity 0x88800

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to non-crit buddy with MESI=I

S 0xcc6

Counter Affinity 0x44400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to non-crit buddy with MESI=S

Description MLD fill op to crit

Max Inc/Cyc 1

MT Capture Type F

Definition -

NOTE -

Subevents:

ANY 0xcbf

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to crit buddy

E 0xcc1

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to crit buddy with MESI=E

I 0xcc3

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to crit buddy with MESI=I

M 0xcc0

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to crit buddy with MESI=M

S 0xcc2

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD fill op to crit buddy with MESI=S

Core Performance Monitor Events

244 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.9 MLD_HINT_DEFER

4.2.13.10 MLD_HINT_NOALLOC

4.2.13.11 MLD_HINT_NO_BUDDY

4.2.13.12 MLD_HINT_PREF_DROP

Description MLD ld.s w/miss deferred due to hint

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd0

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of retired loads that were spontaneously deferred on an MLD miss.

Description MLD no-allocate fill due to a hint

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xccb

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a cacheable load, store or semapohore was not filled into the MLD due
to an explicit "no allocate" hint

Description MLD fill w/o buddy due to a hint

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xccd

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times an implicit buddy prefetch was suppressed on a load, store or
semaphore miss to the RIL due to an explicit "no buddy prefetch" hint.

Description MLD lfetch w/miss dropped due to hint

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xccf

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a prefetch was dropped by the MLD on an MLD miss due to an explicit
"drop prefetch on MLD miss" hint.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 245
Reference Manual for Software Development and Optimization Guide

4.2.13.13 MLD_HINT_NRU

4.2.13.14 MLD_ISSUE_SRC

Description MLD NRU fill due to a hint

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xccc

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a line was filled into the MLD but not marked as used due to an explicit
"NRU" hint.

Description Valid MLD op by queue source

Max Inc/Cyc 2

MT Capture Type A

Definition Counts and categorizes valid MLD ops by queue source.

NOTE Only counts ops that "retire" in MLD pipeline. Won’t count bypassed but aborted ops. Scrubs are
issued from OZQ despite not being inserted into the OZQ.

Subevents:

ANY 0xca7

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Any Valid MLD op

BYPASS 0xca8

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Valid Bypassed MLD op

FAB 0xcab

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Valid MLD op issued from FAB

OZQ 0xca9

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Valid MLD op issued from OZQ or a scrub

SMQ 0xcaa

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Valid MLD op issued from SMQ

Core Performance Monitor Events

246 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.15 MLD_LOAD

4.2.13.16 MLD_LOST_BW

SNOOP 0xcac

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Valid MLD op issued from SNQ

Description Valid MLD load issued from OZQ/bypass

Max Inc/Cyc 2

MT Capture Type A

Definition Counts and categorizes the number of load ops issued from the OZQ or bypassed around it.

NOTE Counts "pure" loads only, not semaphores and not prefetches.

Subevents:

ANY 0xcb4

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/O/D/R

Definition Any Valid MLD load issued from OZQ/bypass

HIT 0xcb5

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD load that hit MLD issued from OZQ/bypass

MISS 0xcb6

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD load that missed MLD issued from OZQ/bypass

PRIMARY 0xcb7

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD load that missed the MLD and was a primary miss issued from OZQ/bypass

SECONDARY 0xcb8

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD load that missed the MLD and was a secondary miss issued from OZQ/bypass

Description Invalid ops or stalls

Max Inc/Cyc 2

MT Capture Type C

Definition Counts and categorizes the number of potential MLD ops that could have "retired" out of the MLD
pipeline but didn’t.

NOTE

Subevents:

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 247
Reference Manual for Software Development and Optimization Guide

ANY 0xce7

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Invalid ops or stalls

FAB_NOP 0xcef

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Ready FAB entry did not issue

NOP 0xcf4

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition No valid ops for MLD

NOP_STALL 0xcf2

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition MLD stall on invalid op

OZQ_FAB_FULL 0xcea

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Full FAB/WLB prevented valid OZQ entries from issuing

OZQ_FAB_PREEMPT 0xcec

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition FAB prevented valid OZQ entries from issuing

OZQ_NOP 0xce8

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Ordering or hazards prevented valid OZQ entries from issuing

OZQ_NOP_ACQ 0xce9

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Outstanding acquire prevented valid OZQ entries from issuing

OZQ_SMQ_FULL 0xceb

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Core Performance Monitor Events

248 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.17 MLD_NOALLOC_CASTOUT

4.2.13.18 MLD_NOALLOC_FILL

Definition Full SMQ prevented valid OZQ entries from issuing

OZQ_SMQ_PREEMPT 0xced

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition SMQ prevented valid OZQ entry from issuing

OZQ_SNOOP_PREEMPT 0xcee

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Snoop prevented valid OZQ entry from issuing

SMQ_NOP 0xcf0

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Ready SMQ entry did not issue

SPLIT_BUBBLE 0xcf1

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition MLD split stall forced P0 to be invalid

STALL 0xcf3

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition MLD stall prevented valid ops from retiring

Description MLD no-allocate castout

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xcca

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a write-back transaction was issued to the RIL on behalf of a no-allocate
store or semaphore.

NOTE

Description MLD no-allocate fill

Max Inc/Cyc 1

MT Capture Type C

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 249
Reference Manual for Software Development and Optimization Guide

4.2.13.19 MLD_OZDATA_COUNT

4.2.13.20 MLD_OZQ_COUNT

Event Code 0xcc9

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of times a cacheable load, store or semaphore miss was not filled into the MLD,
due to either a no-allocate hint or due to microarchitectural reasons.

NOTE

Description Number of valid OZDATA entries

Max Inc/Cyc 3

MT Capture Type C

Definition Counts the number of valid OZDATA buffer entries per cycle

NOTE The maximal number is 32 entries
The full count is computed as follows: MLD_OZDATA_COUNT = MLD_OZDATA_COUNT.MSB << 2 +
MLD_OZDATA_COUNT.LSB

Subevents:

LSB 0xcfe

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid OZDATA entries

MSB 0xcff

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid OZDATA entries

Description Number of reserved OZQ entries

Max Inc/Cyc 1

MT Capture Type C

Definition Counts the number of occupied OZQ entries per cycle

NOTE The maximal number is 16 entries
The full count is computed as follows: MLD_OZQ_COUNT = MLD_OZQ_COUNT.MSB << 1 +
MLD_OZQ_COUNT.LSB

Subevents:

LSB 0xcf5

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of reserved OZQ entries

MSB 0xcf6

Counter Affinity 0x24900

Core Performance Monitor Events

250 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.21 MLD_OZQ_INSERT

4.2.13.22 MLD_OZQ_PREEMPTED

4.2.13.23 MLD_REF

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of reserved OZQ entries

Description MLD op inserted into OZQ (incl. bypasses)

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd2

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 2

Definition Counts the number of ops inserted into the OZQ

NOTE This will count bypassed ops and it can also count ops that do not retire. It will not count integer
loads that are satisfied out of the FLD.

Description Valid OZQ op was preempted by the SMQ, FAB or SNQ

Max Inc/Cyc 2

MT Capture Type C

Event Code 0xcd5

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Counts the number of ops that were ready to issue out of the OZQ but could not due to ready entries
in the SMQ, FAB or SNQ.

NOTE

Description Valid MLD memory reference issued from OZQ/bypass

Max Inc/Cyc 2

MT Capture Type A

Definition Counts and categorizes the number of valid MLD ops that constitute a memory reference issued by
the OZQ or bypassed around it. A memory reference consists of lfetches, hardware data prefetches,
loads, stores and semaphores.

NOTE Does not count flushes

Subevents:

ANY 0xcad

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/O/D/R

Definition Any Valid MLD prefetch, ld, st or sem issued from OZQ/bypass

HIT 0xcae

Counter Affinity 0x24900

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 251
Reference Manual for Software Development and Optimization Guide

4.2.13.24 MLD_SMQ_COUNT

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that hit the MLD issued from OZQ/bypass

MISS 0xcaf

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that missed the MLD issued from OZQ/bypass

PRIMARY 0xcb0

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that missed the MLD and was a primary miss issued from OZQ/bypass

SECONDARY 0xcb1

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that missed the MLD was a secondary miss issued from OZQ/bypass

SECONDARY_DROP 0xcb2

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD prefetch, dropped due to secondary miss issued from OZQ/bypass

UC_WC_STORE 0xcb3

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD st to UC or WC space (required to have been issued from OZQ)

Description Number of valid SMQ entries

Max Inc/Cyc 1

MT Capture Type C

Definition Counts the number of valid SMQ entries per cycle

NOTE Max number is 16 entries
The full count is computed as follows: MLD_SMQ_COUNT = MLD_SMQ_COUNT.MSB << 1 +
MLD_SMQ_COUNT.LSB

Subevents:

LSB 0xcf9

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid SMQ entries

MSB 0xcfa

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Number of valid SMQ entries

Core Performance Monitor Events

252 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.13.25 MLD_SMQ_PRIORITY

4.2.13.26 MLD_SMQ_REF

Description MLD SMQ has priority over RIL issue

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xcd7

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Counts the number of cycles a transaction in FAB is prevented from issuing to the RIL due to
"priority" entries in SMQ.

NOTE Priority mechanism is needed to preserve proper ordering within the SMQ.

Description Valid MLD memory reference issued from SMQ

Max Inc/Cyc 2

MT Capture Type A

Definition Counts and categorizes the number of valid MLD ops that constitute a memory reference issued by
the SMQ. A memory reference consists of lfetches, hardware data prefetches, loads, stores and
semaphores.

NOTE Does not count flushes

Subevents:

ANY 0xcb9

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/O/D/R

Definition Any Valid MLD memory reference issued from SMQ

HIT 0xcba

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that hits the MLD issued from SMQ

MISS 0xcbb

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that misses the MLD issued from SMQ

PRIMARY 0xcbc

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that misses the MLD and is a primary miss issued from SMQ

SECONDARY 0xcbd

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD memory reference that misses the MLD and is a secondary miss issued from SMQ

SECONDARY_DROP 0xcbe

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 253
Reference Manual for Software Development and Optimization Guide

4.2.13.27 MLD_SNOOP_DEFER

4.2.13.28 MLD_WCB_CREDIT

4.2.13.29 MLD_WLB_COUNT

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Valid MLD prefetch, dropped due to secondary miss issued from SMQ

Description Deferred MLD snoop

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xcc8

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Counts the number of snoops whose completion was deferred due to a match in the FAB.

NOTE Only FAB entries that have received a GO will cause a snoop to be deferred.

Description Number of reserved WCB entries

Max Inc/Cyc 8

MT Capture Type C

Event Code 0xcfd

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 7, P = 1

Definition Counts the number of WCB credits available per cycle

NOTE Max number is 8 credits

Description Number of reserved WLB entries

Max Inc/Cyc 8

MT Capture Type C

Definition Counts the number of reserved WLB entries per cycle

NOTE Max number is 32 entries
The full count is computed as follows: MLD_WLB_COUNT = MLD_WLB_COUNT.MSB << 2 +
MLD_WLB_COUNT.LSB

Subevents:

LSB 0xcfb

Counter Affinity 0x92400

IP-EAR L = 7, P = 1

IAR/OPC/DAR/DREF -/-/-/-

Definition Number of reserved WLB entries

MSB 0xcfc

Counter Affinity 0x24900

Core Performance Monitor Events

254 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.14 FLDTLB Events
This section enumerates FLDTLB performance monitoring events.

4.2.14.1 FLDTLB_INS_REQ

FLDTLB_INS_REQ events can only be triggered by FLDCANFILL operations (see the FLD
Events section A.2.12). New requests will not be triggered until previous requests are
finished. Therefore, secondary FLDTLB misses and possibly some primary FLDTLB
misses will not trigger this event.

IP-EAR L = 7, P = 1

IAR/OPC/DAR/DREF -/-/-/-

Definition Number of reserved WLB entries

Description FLDTLB insert requests

Max Inc/Cyc 1

MT Capture Type A

Definition Counts the number of times a transfer from DTB transfer to FLDTLB is requested.

NOTE The overall event is not measured. Instead, sub-events that break down the overall event in two
ways are measured. The overall event can thus be calculated from the sub-events in two ways:
FLDTLB_INS_REQ.ANY = FLDTLB_INS_REQ.COMPLETE + FLDTLB_INS_REQ.CANCEL ;
FLDTLB_INS_REQ.ANY = FLDTLB_INS_REQ.RETIRED + FLDTLB_INS_REQ.NON_RETIRED

Subevents:

ANY Calculated, not measured.

Definition The ANY event is not measured. Instead, sub-events that break down the overall event in two ways
are measured. The ANY event can thus be calculated from the sub-events in two ways:
FLDTLB_INS_REQ.ANY = FLDTLB_INS_REQ.COMPLETE + FLDTLB_INS_REQ.CANCEL ;
FLDTLB_INS_REQ.ANY = FLDTLB_INS_REQ.RETIRED + FLDTLB_INS_REQ.NON_RETIRED

CANCEL 0x109

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 5, P = 0

Definition DTB transfer was cancelled.

COMPLETE 0x106

Counter Affinity 0x55550

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 5, P = 0

Definition DTB transfer completed successfully.

NON_RETIRED 0x108

Counter Affinity 0x55550

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 5, P = 0

Definition DTB transfer request came from something other than a retired instruction.

RETIRED 0x107

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 5, P = 0

Definition DTB transfer request came from retired instructions

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 255
Reference Manual for Software Development and Optimization Guide

4.2.14.2 FLDTLB_LOAD_MISS

4.2.15 MLDTLB Events
This section enumerates MLDTLB performance monitoring events.

4.2.15.1 DTLB_HPWHINT_BLK

Description FLD TLB load miss

Max Inc/Cyc 2

MT Capture Type A

Definition Counts FLDLD operations that miss the FLDTLB.

NOTE Note that secondary FLDTLB misses are counted. An FLDTLB load miss rate (including secondary
misses) can be calculated as follows: FLDTLB_LOAD_MISS / FLD_LOAD.

Subevents:

ANY 0x103

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 6, P = 0

Definition Counts any FLDLD operation that misses the FLDTLB.

INT 0x104

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 6, P = 0

Definition Counts integer FLDLD operations that miss the FLDTLB

RSE 0x105

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF Y/Y/Y/Y

IP-EAR L = 6, P = 0

Definition Counts RSE loads that miss the FLDTLB.

Description speculative blocking miss launches hpw req

Max Inc/Cyc 2

MT Capture Type A

Event Code 0xca3

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 0

Definition This per-port signal indicates that what would have been a speculative non-blocking HPW request
has been turned into a blocking HPW request due either to DAHR hints or the itlb.ed or psr.it being
low. Only asserted for one port or the other since a M0 miss causes the M1 instruction to not be
reached and hence not be able to do a blocking request on the same clock. The speculative
instruction includes both ld.s and lfetch.none.

Core Performance Monitor Events

256 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.15.2 DTLB_HPWREQ_BLK_MISS

4.2.15.3 DTLB_HPWREQ_SPEC_MISS

4.2.15.4 DTLB_REF

Description blocking inst misses DTB, launches HPW request

Max Inc/Cyc 2

MT Capture Type A

Definition This per-port signal indicates that a blocking HPW request has been made. This signal is asserted
when the instruction which misses the DTB is reached, so therefore it will be asserted for only one
port at a time, since if the M0 instruction misses, M1 will not be reached. This count includes RSE
ops.

Subevents:

SUCCEED 0xc9c

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 0

Definition blocking inst misses DTB, HPW walk succeeded

COAL 0xc9f

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 0

Definition Blocking walk missed the DTB, coalesced with non-blocking walk

FAIL 0xca0

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 0

Definition Blocking walk missed the DTB, HPW walk failed

Description speculative inst commits and misses the DTB

Max Inc/Cyc 2

MT Capture Type A

Event Code 0xc9e

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 0

Definition This per-port signal indicates that a ld.s instruction was valid, missed the DTB, and committed. A
non-blocking walk may or may not have been taken since the HPW will cancel non-blocking walk
requests if a non-blocking request is already busy. This signal can be asserted for both ports on the
same clock.

Description Committed instruction used the DTB, no spec lfetch, ld.s with spontaneous defer and dcr.dm = 1

Max Inc/Cyc 2

MT Capture Type A

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 257
Reference Manual for Software Development and Optimization Guide

4.2.16 DPF Events
This section enumerates DPF performance monitoring events.

There are 4 main event groupings:

• ASB events, which report on actions that invalidate hints stored in the ASB

• DPF dequeue events, which report on prefetches issued out of the DPFQ

• DPF enqueue events, which report on prefetches inserted into the DPFQ

• FLD events, which report on actions that FLD takes on behalf of the prefetcher

4.2.16.1 DAHS_UNDERFLOW

4.2.16.2 DPFQ_DEQ

Definition This is a per-port signal which is asserted for instructions which are translated by the DTB. It does
not include hardware prefetches, lfetch instructions issued to the ’A’ pipe, or the actual VHPT
request. It does not included instructions issued in the physical mode (psr.dt or psr.rt == 0) which
bypass the DTB. It does include the tpa, tak and probe instructions even if psr.dt == 0. These events
include RSE ops as well.

Subevents:

ANY 0xca6

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 1

Definition Committed instruction used the DTB

NONSPEC 0xc9d

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 7, P = 1

Definition Committed instruction used the DTB, no spec lfetch, ld.s with spontaneous defer and dcr.dm=1

Description Data prefetch ASB stack underflowed

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x0c9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Because the ASB contains a finite number of entries (8), a sequence of more than 7 calls will
overflow the stack and overwrite the oldest DAHS stack frame. This event counts when a subsequent
return underflows, detects that it has no valid DAHS stack frame to reload the DAHRs from, and
must reinitialize the DAHRs to their default values instead.

Description Data prefetch queue dequeue

Max Inc/Cyc 2

MT Capture Type A

Core Performance Monitor Events

258 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Definition This event reports when a prefetch is issued out of the DPFQ (with normal priority), and is inserted
by FLD into the pipeline. The subevents can select only certain types of prefetches to be reported.
See the following events instead for counts of prefetches that are issued with preempt priority and/
or which are rejected by FLD.

NOTE A dequeue event is reported for each individual prefetch. Thus, for example, if there is a single
counted lfetch entry in the DPFQ which issues 7 fetches, then 7 dequeue events will be reported.

Subevents:

ANY 0x0a3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue (includes all of the following subevents)

FLD_ANY 0x0ab

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue any FLD-initiated prefetch (includes FLD_TGT, FLD_FWD, FLD_BWD,
and FLD_BIDI subevents)

FLD_BIDI 0x0af

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue FLD bidirectional

FLD_BWD 0x0ae

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue FLD backward

FLD_FWD 0x0ad

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue FLD forward

FLD_TARGET 0x0ac

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue FLD target

INST_ANY 0x0a4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue any instruction-generated prefetch (includes LFETCH, LFETCH_CNT,
and MV_BSPST subevents)

LFETCH 0x0a5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 259
Reference Manual for Software Development and Optimization Guide

4.2.16.3 DPFQ_DEQ_PREEMPT

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue lfetch

LFETCH_COUNT 0x0a6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue counted lfetch

MLD 0x0b0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue MLD hardware prefetch

MOV_BSPST 0x0a7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue move to bspstore

RSE_ANY 0x0a8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue any RSE-initiated prefetch (includes RSE_LD and RSE_ST subevents)

RSE_LOAD 0x0a9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue RSE load

RSE_STORE 0x0aa

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue RSE store

Description Data prefetch queue dequeue with preempt attribute

Max Inc/Cyc 2

MT Capture Type A

Definition This is like the DPFQ_DEQUEUE event, except that it reports prefetches that are issued with preempt
priority. Note that only software prefetches may preempt, and they begin requesting preemption
after they have been rejected a configurable number of times. After a hardware prefetch has been
rejected for that number of times, it signals a time-out event and gets dropped.

NOTE A dequeue event is reported for each individual prefetch. Thus, for example, if there is a single
counted lfetch entry in the DPFQ which issues 7 fetches, then 7 dequeue events will be reported.

Subevents:

ANY 0x0b1

Core Performance Monitor Events

260 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.16.4 DPFQ_DEQ_PREEMPT_REJECT

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute (includes all of the following subevents)

INST_ANY 0x0b2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute any instruction (includes LFETCH,
LFETCH_CNT, and MV_BSPST subevents)

LFETCH 0x0b3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute lfetch

LFETCH_COUNT 0x0b4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute counted lfetch

MOV_BSPST 0x0b5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute move to bspstore

TIMEOUT 0x0b6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt time-out

Description Data prefetch queue dequeue with preempt attribute rejected

Max Inc/Cyc 2

MT Capture Type A

Definition This is like the DPFQ_DEQ_PREEMPT event, except that it counts prefetch requests that are rejected
by FLD instead of accepted into the pipeline.

NOTE A single fetch can generate multiple reject events, one for each time it attempts to issue into the
pipeline but gets rejected.

Subevents:

ANY 0x0c5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 261
Reference Manual for Software Development and Optimization Guide

4.2.16.5 DPFQ_DEQ_REJECT

Definition Data prefetch queue dequeue with preempt attribute rejected (includes all of the following
subevents)

LFETCH 0x0c6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute rejected lfetch

LFETCH_COUNT 0x0c7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute rejected counted lfetch

MOV_BSPST 0x0c8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue with preempt attribute rejected move to bspstore

Description Data prefetch queue dequeue rejected

Max Inc/Cyc 2

MT Capture Type A

Definition This is like the DPFQ_DEQUEUE event, except that it counts prefetch requests that are rejected by
FLD instead of accepted into the pipeline.

NOTE A single fetch can generate multiple reject events, one for each time it attempts to issue into the
pipeline but gets rejected.

Subevents:

ANY 0x0b7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected (includes all of the following subevents)

FLD_ANY 0x0bf

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected any FLD-initiated prefetch (includes FLD_TGT, FLD_FWD,
FLD_BWD, and FLD_BIDI subevents)

FLD_BIDI 0x0c3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected FLD bidirectional

FLD_BWD 0x0c2

Counter Affinity 0x55550

Core Performance Monitor Events

262 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected FLD backward

FLD_FWD 0x0c1

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected FLD forward

FLD_TARGET 0x0c0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected FLD target

INST_ANY 0x0b8

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected any instruction (includes LFETCH, LFETCH_CNT, and
MV_BSPST subevents)

LFETCH 0x0b9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected lfetch

LFETCH_COUNT 0x0ba

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected counted lfetch

MLD 0x0c4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected MLD hardware prefetch

MOV_BSPST 0x0bb

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected move to bspstore

RSE_ANY 0x0bc

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected any RSE (includes RSE_LD and RSE_ST subevents)

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 263
Reference Manual for Software Development and Optimization Guide

4.2.16.6 DPFQ_ENQ

RSE_LOAD 0x0bd

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected RSE load

RSE_STORE 0x0be

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/-/-

IP-EAR L = 6, P = 1

Definition Data prefetch queue dequeue rejected RSE store

Description Data prefetch queue enqueue

Max Inc/Cyc 2

MT Capture Type A

Definition This event reports when a prefetch is inserted into the DPFQ (and the DPFQ has room for it). The
subevents can select only certain types of prefetches to be reported. See the following event instead
for counts of prefetches that are inserted into the DPFQ when it is full and thus must kick out an old
entry.

NOTE Only a single enqueue event is reported when an entry is inserted into the DPFQ, even if it will
expand into multiple individual fetches. Thus, for example, if an entry is inserted into the DPFQ for a
counted lfetch which will issue 7 fetches, then only 1 enqueue event will be reported.

Subevents:

ANY 0x087

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue (includes all of the following subevents)

FLD_ANY 0x08f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue any FLD-initiated prefetch (includes the FLD_TGT, FLD_FWD,
FLD_BWD, and FLD_BIDI subevents)

FLD_BIDI 0x093

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue FLD bidirectional

FLD_BWD 0x092

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue FLD backward

FLD_FWD 0x091

Core Performance Monitor Events

264 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue FLD forward

FLD_TARGET 0x090

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue FLD target

INST_ANY 0x088

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue any instruction (includes the LFETCH, LFETCH_CNT, and MV_BSPST
subevents)

LFETCH 0x089

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue lfetch

LFETCH_COUNT 0x08a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue counted lfetch

MLD 0x094

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue MLD hardware prefetch. WARNING: THE THREAD ASSIGNMENT FOR
THIS EVENT IS FAIRLY RANDOM.

MOV_BSPST 0x08b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue move to bspstore

RSE_ANY 0x08c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue any RSE (includes the RSE_LD and RSE_ST subevents)

RSE_LOAD 0x08d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 265
Reference Manual for Software Development and Optimization Guide

4.2.16.7 DPFQ_ENQ_OVERFLOW

Definition Data prefetch queue enqueue RSE load

RSE_STORE 0x08e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue RSE store

Description Data prefetch queue enqueue overflow

Max Inc/Cyc 2

MT Capture Type A

Definition This is like the DPFQ_ENQUEUE event, except that it reports on prefetches inserted into the DPFQ
when the DPFQ is full, indicating that the oldest existing entry was deleted to make room. The
subevent still reports the type of prefetch being inserted; no indication is available for the type of the
old prefetch being deleted.

NOTE Only a single enqueue event is reported when an entry is inserted into the DPFQ, even if it will
expand into multiple individual fetches. Thus, for example, if an entry is inserted into the DPFQ for a
counted lfetch which will issue 7 fetches, then only 1 enqueue event will be reported.

Subevents:

ANY 0x095

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow (includes all of the following subevents)

FLD_ANY 0x09d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow any FLD-initiated prefetch (includes FLD_TGT, FLD_FWD,
FLD_BWD, and FLD_BIDI subevents)

FLD_BIDI 0x0a1

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow FLD bidirectional

FLD_BWD 0x0a0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow FLD backward

FLD_FWD 0x09f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow FLD forward

Core Performance Monitor Events

266 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FLD_TARGET 0x09e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow FLD target

INST_ANY 0x096

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow any instruction (includes LFETCH, LFETCH_CNT, and
MV_BSPST subevents)

LFETCH 0x097

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow lfetch

LFETCH_COUNT 0x098

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow counted lfetch

MLD 0x0a2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow MLD hardware prefetch

MOV_BSPST 0x099

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow move to bspstore

RSE_ANY 0x09a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow any RSE (includes RSE_LD and RSE_ST subevents)

RSE_LOAD 0x09b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow RSE load

RSE_STORE 0x09c

Counter Affinity 0x55550

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 267
Reference Manual for Software Development and Optimization Guide

4.2.16.8 FLD_HWPREF_INS

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 2

Definition Data prefetch queue enqueue overflow RSE store

Description Any FLD HW prefetch inserted

Max Inc/Cyc 2

MT Capture Type A

Definition This event provides more detail on an FLD type hardware prefetch that is enqueued in the DPFQ.

Subevents:

ACQ_PEND 0x0d3

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to acquire pending

ANY 0x0cb

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition Any FLD HW prefetch inserted (includes all of the following subevents)

CANCEL_FILL 0x0cc

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to cancelled fill

DTLB_MISS 0x0cd

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to DTB miss

DTLB_MISS_LFETCH 0x0d5

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to lfetch DTB miss

FLDTLB_MISS 0x0ce

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to FLD TLB miss

FLDTLB_MISS_LFETCH 0x0d6

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to lfetch FLD TLB miss

FLUSH_STORE 0x0d2

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to flushed store

NEIGHBOR 0x0cf

Core Performance Monitor Events

268 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.16.9 PREF_DROP

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to neighbor line

OZQ_FULL 0x0d1

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to OZQ full

OZQ_FULL_LFETCH 0x0d7

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to lfetch OZQ full

REL_OP 0x0d4

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to release op

STORE_ALIAS 0x0d0

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

Definition FLD HW prefetch inserted due to store alias

Description HW prefetch dropped

Max Inc/Cyc 2

MT Capture Type A

Definition -

NOTE -

Subevents:

DTLB_MISS 0x0da

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition This event reports when a potential prefetch is not inserted into the DPFQ because it missed the
DTB.

FLDTLB_MISS 0x0d9

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition This event reports when a potential prefetch is not inserted into the DPFQ because it missed the FLD
TLB.

FLD_HIT 0x0db

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 269
Reference Manual for Software Development and Optimization Guide

4.2.17 RIL Events
This section enumerates RIL performance monitoring events. The following
abbreviations are widely used:

• ARB = arbiter or arbitration

• AD = AD ring - transaction requests (think ADdress)

• AK = AK ring (AcKnowledge snoop responses from core to LLC logic)

• ATTR = attribute

• BGF = bubble generator fifo (lives between uncore and core clock domains)

• BL = BL ring - data (think BLock data)

• BLK = block

• BUDDY = buddy line prefetch

• BYP = bypass

• CBQ = coalescing buffer queue (queue of writes to coalescing buffer - includes UC,
WC stores, and PTC requests)

• CC = cleanse cache

• CRD = code read (more properly, bias shared read; D-side can issue this as well to
request a line be returned in S state even if available in E or M.)

• CRDT = credit

• DMND = demand

• DFRQ = Defer Queue (When MLD has to defer the response to a snoop because it
has seen GO but is still waiting for data for use-once, RIL gets this response. It will
be followed by a CMP snoop completion.)

• DRD = data read (biased to return data in E state)

• DRQ = data request queue (load, store misses, FC’s)

• DQ = data queue

• E = exclusive (from MESI)

• FC = flush cache

• FCI = flush cache with .i (instruction) attribute

• FDB = MLD fill data buffer (used to collect data for MLD fill)

• FWD_PROG = forward progress

• FRQ = instruction fetch request queue

• GO = global observability

• M = modified (from MESI)

Definition This event reports when a potential prefetch is not inserted into the DPFQ because it hit the FLD.
This event also includes prefetches dropped due to address NAT consumption.

FLD_SECONDARY_MISS 0x0dc

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 0

Definition HW prefetch dropped due to secondary miss

Core Performance Monitor Events

270 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• MSB = most significant bits (of multi-event count)

• NC = non-cacheable (UC + WC)

• I = invalid (from MESI)

• INST = instruction fetch

• INVAL = invalidate

• LRUHINT = referring to hardware hint from MLD or MLI that causes LLC
replacement state update

• LSB = least significant bits (of multi-event count)

• NTA = non-temporal access

• PEND = pending

• PRI = Ring interface (connects processor cores to ring)

• PTC = purge TC (sometimes synonymous with PTCG)

• PTCG = referring to purge caused by ptc.g instruction

• RECOV = recovery (PRI in recovery ramp after being throttled)

• REQ = request

• REF = reference - specifically a primary data reference

• RESP = response

• RFO = request for ownership (expects E or M state response)

• RRQ = ring request queue (includes requests sent from FRQ, DRQ, WRQ, and/or
CBQ)

• RSPQ = response queue

• S = shared (from MESI)

• SEB = serial event bus (power messages, quiesce requests, etc.)

• SIBLING - snoop due to request that originated from a different core on the same
socket (vs. SELF - snoop due to request from same core or EXT - snoop that
originated off socket)

• SLB = snoop line buffer (buffer for snoop data due to a dirty hit)

• SNQ = snoop queue

• SRLZ = serialize

• UC = uncacheable TLB attribute

• WB = writeback TLB attribute

• WC = write coalescing TLB attribute

• WLB = write line buffer (for dirty MLD evictions and LRU hints)

• WRQ = write request queue for writebacks and LRU hints

• WRTBCK = writeback (eviction from MLD - NOT referring to WB TLB attribute)

4.2.17.1 RIL_ARB_PRI_LOST

Description An arbiter for the AD or BL ring lost arbitration (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type C

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 271
Reference Manual for Software Development and Optimization Guide

4.2.17.2 RIL_BL_WRITE

Definition An arbiter for the AD or BL ring lost arbitration (RIL->PRI)

Subevents:

AD 0xc60

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition An arbiter for the AD ring lost arbitration (RIL->PRI)

AD_FWD_PROG 0xc61

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition One or more AD-ring arbiters are in fwd-prog mode (RIL->PRI)

BL 0xc62

Counter Affinity 0x44400

IAR/OPC/DAR/DREF -/-/-/-

Definition An arbiter for the BL ring lost arbitration (RIL->PRI)

BL_FWD_PROG 0xc63

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition One or more BL-ring arbiters are in fwd-prog mode (RIL->PRI)

Description Information on various data transactions sent to RIL on the BL ring(RIL->PRI)

Max Inc/Cyc 1

MT Capture Type C

Definition Information on various data transactions sent to RIL on the BL ring(RIL->PRI)

Subevents:

ANY 0xc5c

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Data sent from RIL on BL ring (RIL->PRI)

SLB 0xc5f

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition Data sent from SLB on BL ring (RIL->PRI)

WLB 0xc5d

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Data sent from WLB on BL ring (RIL->PRI)

WLB_BOGUS 0xc5e

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition Bogus Data transactions sent (RIL->PRI)

Core Performance Monitor Events

272 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.3 RIL_CBQ_EVICT

4.2.17.4 RIL_CRDT_MLD_FDB_FULL

4.2.17.5 RIL_CRDT_MLD_FDB_FULL_BLK

4.2.17.6 RIL_CRDT_PRI_BLK

Description CBQ is flushing due to a MLD signalling flush instruction (PRI->RIL)

Max Inc/Cyc 1

MT Capture Type C

Definition CBQ is flushing (PRI->RIL)

Subevents:

FULL 0xc53

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition CBQ is flushing due to being full (PRI->RIL)

WCB_FLUSH 0xc52

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition CBQ is flushing due to a MLD signalling flush instruction (PRI->RIL)

Description MLD FDB is out of credits (RIL->MLD)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc6e

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition MLD FDB is out of credits (RIL->MLD)

Description MLD FDB is out of credits and data is pending (RIL->MLD)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc6f

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition MLD FDB is out of credits and data is pending (RIL->MLD)

Description Transaction issue to PRI is blocked due to lack of credits

Max Inc/Cyc 1

MT Capture Type C

Definition Transaction issue to PRI is blocked due to lack of credits

Subevents:

AD_ALL 0xc64

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 273
Reference Manual for Software Development and Optimization Guide

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition AD ring is blocked for all active requestors (RIL->PRI)

AD_CBQ 0xc68

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition AD ring is blocked for CBQ head (RIL->PRI)

AD_DRQ 0xc66

Counter Affinity 0x44400

IAR/OPC/DAR/DREF -/-/-/-

Definition AD ring is blocked for DRQ head (RIL->PRI)

AD_FRQ 0xc65

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition AD ring is blocked for FRQ head (RIL->PRI)

AD_WRQ 0xc67

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition AD ring is blocked for WRQ head (RIL->PRI)

AK_ALL 0xc69

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition AK ring is blocked for all active requestors (RIL->PRI)

BL_ALL 0xc6a

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition BL ring is blocked for all active requestors (RIL->PRI)

BL_CBQ 0xc6d

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition BL ring is blocked for CBQ head (RIL->PRI)

BL_SNQ 0xc6b

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition BL ring is blocked for SNQ head (RIL->PRI)

BL_WRQ 0xc6c

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition BL ring is blocked for WRQ head (RIL->PRI)

Core Performance Monitor Events

274 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.7 RIL_CRDT_SNQ_BLK

Description Snoops ready but blocked for any reason into the core (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type C

Definition -

NOTE -

Subevents:

ANY 0xc70

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops ready but blocked for any reason into the core (RIL->PRI)

ANY_Q_FULL 0xc7d

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No Mli/Mld Full, DFRQ/RSPQ/SLBQ/WLBQ full (RIL->CORE)

DFRQ 0xc79

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No Mli/Mld Full, no credits for MLD DfrQ (RIL->CORE)

HALT 0xc71

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> halt.dg or diag block (RIL->CORE)

MLD_FULL 0xc77

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No FwdProg, blocked for MLD max in core (RIL->CORE)

MLD_FWD_PROG 0xc74

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> MLD Fwd Prog limit (RIL->CORE)

MLI_FULL 0xc76

Counter Affinity 0x44400

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No FwdProg, blocked for MLI max in core (RIL->CORE)

MLI_FWD_PROG 0xc73

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> MLI Fwd Prog limit (RIL->CORE)

MLI_OR_MLD_FULL 0xc78

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No FwdProg, blocked for MLI or MLD max in core (RIL->CORE)

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 275
Reference Manual for Software Development and Optimization Guide

4.2.17.8 RIL_DATA_RETURN

MLI_OR_MLD_FWD_PRO
G

0xc75

Counter Affinity 0x22200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> MLI or MLD Fwd Prog limit (RIL->CORE)

RSPQ 0xc7a

Counter Affinity 0x44400

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No Mli/Mld Full, no credits for PRI RspQ (RIL->CORE)

SLB_DQ 0xc7b

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No Mli/Mld Full, no credits for SLB DataQ (RIL->CORE)

SRLZ 0xc72

Counter Affinity 0x44400

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> no pipelined snoops (RIL->CORE)

USEMANY_ANY 0xc96

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> blocked by UseMany

USEMANY_BYP 0xc97

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> blocked due to a snoop bypass

WLB_DQ 0xc7c

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoops blocked -> No Mli/Mld Full, no credits for WLB DataQ (RIL->CORE)

Description Fill Data return accounting

Max Inc/Cyc 1

MT Capture Type C

Definition Fill Data return accounting

Subevents:

EARLY_FILL_EM 0xc58

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Early-fill to E/M state (PRI->RIL)

EARLY_FILL_S 0xc59

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Core Performance Monitor Events

276 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.9 RIL_DRQ

4.2.17.10 RIL_DRQ_PACE_BUBBLE

Definition Early-fill to S state (PRI->RIL)

MLD_ANY 0xc56

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Data sent to MLD (RIL->MLD)

MLD_CRIT 0xc57

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Crit-bypass data for WB returns sent to MLD (RIL->MLD)

PRI_ANY 0xc54

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Data returning from PRI (PRI->RIL)

PRI_MLD 0xc55

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition MLD Fill return data from PRI (PRI->RIL)

Description DRQ Issue Queue status events

Max Inc/Cyc 1

MT Capture Type C

Definition DRQ Issue Queue status events

Subevents:

EMPTY 0xc80

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition DRQ Issue Queue is empty

LIMIT_HIT 0xc81

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition DRQ Issue Queue throttled due to hitting the issue limit

NOTE

Description DRQ Pacing prevented DRQ from nominating (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc8f

Counter Affinity 0x92400

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 277
Reference Manual for Software Development and Optimization Guide

4.2.17.11 RIL_DRQ_VALID

4.2.17.12 RIL_FRQ

IAR/OPC/DAR/DREF I/O/D/R

Definition -

NOTE -

Description DRQ Transactions in flight on PRI

Max Inc/Cyc 8

MT Capture Type C

Definition DRQ Transactions in flight on PRI

NOTE The maximal number is 32 entries
The full count is computed as follows: RIL_DRQ_VALID = RIL_DRQ_VALID.MSB << 2 +
RIL_DRQ_VALID.LSB

Subevents:

LSB 0xc8a

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition DRQ Transactions in flight on PRI (count[1:0])

MSB 0xc89

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition DRQ Transactions in flight on PRI (count[5:2])

Description FRQ Issue Queue status events

Max Inc/Cyc 1

MT Capture Type C

Definition -

NOTE -

Subevents:

EMPTY 0xc7e

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition FRQ Issue Queue is empty

LIMIT_HIT 0xc7f

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition FRQ Issue Queue throttled due to hitting the issue limit

NOTE

Core Performance Monitor Events

278 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.13 RIL_FRQ_VALID

4.2.17.14 RIL_INTERRUPT

4.2.17.15 RIL_PRI_THROTTLE_ASSERTED

4.2.17.16 RIL_PRI_THROTTLE_RECOV

Description FRQ Transactions in flight on PRI

Max Inc/Cyc 8

MT Capture Type C

Definition FRQ Issue Queue events

NOTE The maximal number is 16 entries
The full count is computed as follows: RIL_FRQ_VALID = RIL_FRQ_VALID.MSB << 1 +
RIL_FRQ_VALID.LSB

Subevents:

LSB 0xc88

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition FRQ Transactions in flight on PRI (count[0])

MSB 0xc87

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition FRQ Transactions in flight on PRI (count[4:1])

Description Incoming Interrupt (PRI->RIL)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc51

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Incoming Interrupt (PRI->RIL)

Description AD issue throttling asserted

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc90

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition -

NOTE -

Description AD issue throttling is not asserted but still recovering

Max Inc/Cyc 1

MT Capture Type C

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 279
Reference Manual for Software Development and Optimization Guide

4.2.17.17 RIL_REQ.ANY

4.2.17.18 RIL_REQ_HINT_NRU

4.2.17.19 RIL_REQ_OTHER

Event Code 0xc91

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition -

NOTE -

Description Any PRI Request sent on the AD ring (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc12

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/o/d/r

Definition Any PRI Request sent on the AD ring (RIL->PRI)

Description PRI Requests with the NRU hint (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc3b

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition -

Description Miscellaneous non-reference requests issued from RIL

Max Inc/Cyc 1

MT Capture Type A

Definition Misc. non-reference requests issued from RIL

Subevents:

CC 0xc32

Counter Affinity 0x92400

Definition CC operations issued to PRI (RIL->PRI)

DRQ_ANY 0xc33

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition MISC DRQ transactions (FC/FCI/CC) (RIL->PRI)

FC 0xc30

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI FC transactions due to an FC instruction (RIL->PRI)

Core Performance Monitor Events

280 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FCI 0xc31

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI FCI transactions due to an FCI instruction (RIL->PRI)

LRUHINT_ANY 0xc37

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition MLI or MLD LRUHints issued to PRI (RIL->PRI)

LRUHINT_FROM_MLD 0xc36

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition LRUHints issued from MLD (MLD->RIL)

LRUHINT_MISS_ANY 0xc39

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition MLI or MLD LRUHints that miss in LLC (PRI->RIL)

LRUHINT_MISS_MLD 0xc3a

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition MLD LRUHints that miss in LLC (PRI->RIL)

LRUHINT_MLD 0xc38

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD LRUHints issued to PRI (RIL->PRI)

PTCG 0xc34

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition PTC.G transactions issued to PRI (RIL->PRI)

PTCG_PEND 0xc35

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition A PTC.G is outstanding (RIL)

WRQ_FC_FCI 0xc2b

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition WRQ-issued FC/FCI transactions (RIL->PRI)

WRQ_SKIP_LRUHINT 0xc2d

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ LRU hint not issued (too many outstanding) (RIL->PRI)

WRTBCK_MLD_EVICT 0xc2e

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Writebacks due to an MLD capacity eviction issued from MLD (MLD->RIL)

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 281
Reference Manual for Software Development and Optimization Guide

4.2.17.20 RIL_REQ_REF.ANY

4.2.17.21 RIL_REQ_REF_DATA

WRTBCK_MLD_FC 0xc2f

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Writebacks due to an FC instruction issued from MLD (MLD->RIL)

WRTBCK_WRQ 0xc2a

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Writebacks issued to PRI as WbMtoS (RIL->PRI)

WRTBCK_WRQ_SKIP 0xc2c

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ Writeback not issued (hit by snoop) (RIL->PRI)

Description Any instruction or data reference (RIL->PRI)

Max Inc/Cyc 1

MT Capture Type A

Event Code 0xc13

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/o/d/r

Definition Any instruction or data reference (RIL->PRI)

Description PRI data references (CRd, DRd, RFO, UC/WC read/write)

Max Inc/Cyc 1

MT Capture Type A

Definition PRI data references (CRd, DRd, RFO, UC/WC read/write)

Subevents:

ANY 0xc18

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/O/D/R

Definition Any PRI data ref (CRd, DRd, RFO, UC/WC read/write) (RIL->PRI)

DRQ_ANY 0xc28

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition All MLD requests that write to the DRQ (MLD->RIL)

NC_ANY 0xc20

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition Any PRI WC or UC data read or write (RIL->PRI)

NC_READ_ANY 0xc21

Counter Affinity 0x22200

Core Performance Monitor Events

282 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IAR/OPC/DAR/DREF I/O/D/R

Definition Any PRI WC or UC data read (RIL->PRI)

NC_READ_UC 0xc22

Counter Affinity 0x44400

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI UC data reads (RIL->PRI)

NC_WRITE_ANY 0xc23

Counter Affinity 0x88800

IAR/OPC/DAR/DREF I/O/D/R

Definition Any PRI WC or UC data write (RIL->PRI)

NC_WRITE_UC 0xc26

Counter Affinity 0x44400

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI UC data writes (RIL->PRI)

NC_WRITE_WC_ANY 0xc24

Counter Affinity 0x11100

IAR/OPC/DAR/DREF I/O/D/R

Definition Any PRI WC data write (RIL->PRI)

NC_WRITE_WC_FULL 0xc25

Counter Affinity 0x22200

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI full-line WC data writes (RIL->PRI)

NC_WRITE_WC_MLD 0xc27

Counter Affinity 0x88800

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD WC transaction issued from MLD (before coalescing) (MLD->RIL)

WB_ANY 0xc19

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/O/D/R

Definition Any CRd, DRd, or RFO issued to PRI (RIL->PRI)

WB_CRD 0xc1c

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI CRd requests (data-side only) (RIL->PRI)

WB_DRD 0xc1d

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI DRd requests (RIL->PRI)

WB_MLD_ANY 0xc1a

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition cacheable MLD requests (not incl. buddy requests) (MLD->RIL)

WB_MLD_BUDDY 0xc1b

Counter Affinity 0x24900

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 283
Reference Manual for Software Development and Optimization Guide

4.2.17.22 RIL_REQ_REF_INST

4.2.17.23 RIL_RESP

IAR/OPC/DAR/DREF I/O/D/R

Definition cacheable MLD buddy requests (MLD->RIL)

WB_RFO 0xc1e

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition PRI RFO requests (RIL->PRI)

WB_SELF_SNOOP 0xc1f

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition MLD requests that hit in the WRQ (RIL)

WRQ_ANY 0xc29

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/O/D/R

Definition All MLD requests that write to the WRQ (MLD->RIL)

Description Instruction references (CRd, PRdCode)

Max Inc/Cyc 1

MT Capture Type A

Definition Instruction references (CRd, PRdCode)

Subevents:

ANY 0xc14

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/-/-/-

Definition Any instruction ref (CRd, PRdCode) (RIL->PRI)

NC 0xc15

Counter Affinity 0x22200

IAR/OPC/DAR/DREF I/-/-/-

Definition Any PRI UC or WC code read (RIL->PRI)

WB_ANY 0xc16

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/-/-/-

Definition PRI WB code reads (RIL->PRI)

WB_DMND 0xc17

IAR/OPC/DAR/DREF I/-/-/-

Counter Affinity 0x92400

Definition PRI demand WB requests (RIL->PRI)

Description PRI responses seen by the core (PRI->RIL)

Max Inc/Cyc 1

MT Capture Type C

Core Performance Monitor Events

284 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.24 RIL_RRQ.LIMIT_HIT

4.2.17.25 RIL_SEB

Definition PRI responses seen by the core (PRI->RIL)

Subevents:

GO 0xc5a

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI GO response (PRI->RIL)

WRITEPULL 0xc5b

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI Writepull response (PRI->RIL)

Description RRQ Issue Queue throttled due to hitting the issue limit

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc84

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition RRQ Issue Queue throttled due to hitting the issue limit

NOTE

Description SEB quiesce events

Max Inc/Cyc 1

MT Capture Type C

Definition -

NOTE -

Subevents:

BGF_QUIESCE_ACTIVE 0xc94

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition BGF quiesce active

LDST_QUIESCE_PEND 0xc93

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Load/store quiesce still pending

PTC_QUIESCE_PEND 0xc92

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition PTC Quiesce still pending

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 285
Reference Manual for Software Development and Optimization Guide

4.2.17.26 RIL_SHOOTDOWN

4.2.17.27 RIL_SHOOTDOWN_PEND_CYC

4.2.17.28 RIL_SNOOP_REQ

Description Incoming shootdowns (PRI->RIL)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc4f

Counter Affinity 0x88800

IAR/OPC/DAR/DREF -/-/-/-

Definition Incoming shootdowns (PRI->RIL)

NOTE -

Description Shootdown is pending (RIL)

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc50

Counter Affinity 0x11100

IAR/OPC/DAR/DREF -/-/-/-

Definition Cycles of pending shootdown

Description PRI snoop requests (PRI->RIL)

Max Inc/Cyc 1

MT Capture Type C

Definition PRI snoop requests (PRI->RIL)

Subevents:

ANY 0xc01

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF -/-/-/-

Definition Any PRI snoop request (PRI->RIL)

CODE_ANY 0xc02

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Any PRI SnpCode request (PRI->RIL)

CODE_SELF 0xc03

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpCode due to request from this core (PRI->RIL)

CODE_SIBLING 0xc04

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpCode due to sibling core request (PRI->RIL)

Core Performance Monitor Events

286 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.29 RIL_SNOOP_RESP

DATA_ANY 0xc05

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF -/-/-/-

Definition Any SnpData request (PRI->RIL)

DATA_SELF 0xc06

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpData due to request from this core (PRI->RIL)

DATA_SIBLING 0xc07

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpData due to sibling core request (PRI->RIL)

INVAL_ANY 0xc08

Counter Affinity 0x55500

IAR/OPC/DAR/DREF -/-/-/-

Definition Any SnpInv request (PRI->RIL)

INVAL_LLC_EVICT 0xc0b

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpInv due to an LLC eviction (PRI->RIL)

INVAL_SELF 0xc09

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpInv due to request from this core (PRI->RIL)

INVAL_SIBLING 0xc0a

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition PRI SnpInv due to sibling core request (PRI->RIL)

Description Snoop missed MLD (MLD->RIL)

Max Inc/Cyc 1

MT Capture Type C

Definition Core Snoop Responses (MLD->RIL)

Subevents:

MLD_DEFER 0xc11

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition MLD Snoop was deferred (MLD->RIL)

MLD_HIT_E 0xc0f

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoop hit MLD Snoop exclusive (MLD->RIL)

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 287
Reference Manual for Software Development and Optimization Guide

4.2.17.30 RIL_SNQ

4.2.17.31 RIL_SNQ_VALID

MLD_HIT_M 0xc10

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoop hit MLD Snoop modified (dirty) (MLD->RIL)

MLD_HIT_S 0xc0e

Counter Affinity 0x92400

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoop hit MLD Snoop shared (MLD->RIL)

MLD_MISS 0xc0c

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoop missed MLD (MLD->RIL)

WRQ_HIT_M 0xc0d

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition Snoop missed MLD, hit WRQ dirty (MLD->RIL)

Description Snoop queue status events

Max Inc/Cyc 1

MT Capture Type C

Definition SNQ events

Subevents:

EMPTY 0xc85

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition No snoops in the issue queue or active in the core

LIMIT_HIT 0xc86

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition SNQ throttled due to hitting the issue limit

NOTE

Description SNQ Transactions in flight in Core

Max Inc/Cyc 15

MT Capture Type C

Definition SNQ Transactions in flight in Core

NOTE The maximal number is 16 entries
The full count is computed as follows: RIL_SNQ_VALID = RIL_SNQ_VALID.MSB << 1 +
RIL_SNQ_VALID.LSB

Subevents:

LSB 0xc8e

Core Performance Monitor Events

288 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.17.32 RIL_WRQ

4.2.17.33 RIL_WRQ_VALID

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition SNQ Transactions in flight in Core (count[0])

MSB 0xc8d

Counter Affinity 0x24900

IAR/OPC/DAR/DREF -/-/-/-

Definition SNQ Transactions in flight in Core (count[4:1])

Description WRQ Issue Queue is empty

Max Inc/Cyc 1

MT Capture Type C

Definition -

NOTE -

Subevents:

EMPTY 0xc82

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ Issue Queue is empty

LIMIT_HIT 0xc83

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ Issue Queue throttled due to hitting the issue limit

Description WRQ Transactions in flight on PRI

Max Inc/Cyc 8

MT Capture Type C

Definition WRQ events

NOTE The maximal number is 32 entries
The full count is computed as follows: RIL_WRQ_VALID = RIL_WRQ_VALID.MSB << 2 +
RIL_WRQ_VALID.LSB

Subevents:

LSB 0xc8c

Counter Affinity 0x94200

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ Transactions in flight on PRI (count[1:0])

MSB 0xc8b

Counter Affinity 0x49200

IAR/OPC/DAR/DREF -/-/-/-

Definition WRQ Transactions in flight on PRI (count[5:2])

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 289
Reference Manual for Software Development and Optimization Guide

4.2.18 RSE Events
This section enumerates RSE performance monitoring events.

4.2.18.1 RSE_CURRENT_REG

4.2.18.2 RSE_DIRTY_REG

Description RSE current registers

Max Inc/Cyc 12

MT Capture Type A

Definition This event counts the number of current frame registers at each RSE_EVENT_RETIRED event

NOTE This event adds to the count the current frame marker size of frame (CFM.sof) just prior to each
retirement event instead of just after. Either way can work. However, this event is dumb, because it
counts two different quantities: CFM.sof and CFM.soo (size of outputs). Due to a call instruction,
CFM.sof ≤ CFM.soo. At the next EVENT, that CFM.soo will be counted. The next event is likely an alloc
instruction setting CFM.sof to a desired value. Also, alloc optimizations may set CFM.sof smaller prior
to a call, and at the call, this will cause another count of a value not really in use. This event works
the same as on prior processor models.
The full count is computed as follows: RSE_CURRENT_REG = RSE_CURRENT_REG.MSB << 3 +
RSE_CURRENT_REG.LSB

Subevents:

LSB 0x154

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition RSE current registers lower bits (count[2:0])

MSB 0x153

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition RSE current registers upper bits (count[2:0])

Description RSE dirty registers

Max Inc/Cyc 15

MT Capture Type A

Definition This event counts the number of dirty registers on the register stack at each RSE_EVENT_RETIRED
event.

NOTE This event adds to the count just prior to each retirement event instead of just after. Either way can
work. This event has a similar frailty to RSE_CURRENT_REGS in that any RSE_EVENT_RETIRED
causes a count irrespective of whether it should. However, from examining a few examples, this
event seems to perform better in allowing a calculation of the average number of dirty registers. This
event works the same as on prior processor models.
The full count is computed as follows: RSE_DIRTY_REG = RSE_DIRTY_REG.MSB << 4 +
RSE_DIRTY_REG.LSB

Subevents:

LSB 0x156

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition RSE dirty registers lower bits (count [3:0])

Core Performance Monitor Events

290 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.18.3 RSE_REF_RETIRED

4.2.19 LLC Events
This section enumerates LLC performance monitoring events measured in the core. For
detailed LLC characterization, refer to the Cbox PMU documentation.

4.2.19.1 LLC_REF_HIT

MSB 0x155

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition RSE dirty registers upper bits (count [7:4])

Description RSE reference retired

Max Inc/Cyc 2

MT Capture Type A

Definition Counts RSE HW generated loads and stores retiring/committing (sometimes called fills and spills).

NOTE RSE generates one or two loads, or one or two stores per cycle. Uses per-instruction PMU tags
(instruction address and opcode matching) on the initiating instruction (alloc, flushrs, loadrs, or
return, but not rfi) which get further qualified by Data EAR matching. The PMU tag on rfi for RSE
loads is always set to true, and then does get qualified with D-EAR.

Subevents:

ANY 0x158

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition RSE reference retired

LOAD 0x159

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition RSE load reference retired

STORE 0x15a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF I/O/D/R

IP-EAR L = 6, P = 1

Definition RSE store reference retired

Description Any LLC hit (PRI->RIL) (DRQ/FRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Definition -

NOTE -

Subevents:

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 291
Reference Manual for Software Development and Optimization Guide

4.2.19.2 LLC_REF_MISS

ANY 0xc3c

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/o/d/r

Definition Any LLC hit (PRI->RIL) (DRQ/FRQ misses only)

NO_SNOOP 0xc3d

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/o/d/r

Definition LLC hit requiring no snoops (PRI->RIL) (DRQ/FRQ misses only)

SNOOP 0xc3e

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/o/d/r

Definition LLC hit requiring snoops, not resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses only)

SNOOP_FWD 0xc3f

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/o/d/r

Definition LLC hit requiring snoops, resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses only)

Description LLC misses (DRQ/FRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Definition These events measure LLC responses to tagged events when the GO message returns from the LLC
on PRI.

Subevents:

ANY 0xc41

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF I/o/d/r

Definition Any LLC miss (PRI->RIL) (DRQ/FRQ misses only)

MEM_LCL_ANY 0xc42

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/o/d/r

Definition Miss to local RAM (PRI->RIL) (DRQ/FRQ misses only)

MEM_LCL_NO_SNOOP 0xc44

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/o/d/r

Definition Miss to local RAM requiring no snoops (PRI->RIL) (DRQ/FRQ misses only)

MEM_LCL_SNOOP 0xc45

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/o/d/r

Definition Miss to local RAM requiring snoops, not resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses
only)

MEM_LCL_SNOOP_FWD 0xc46

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/o/d/r

Core Performance Monitor Events

292 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.19.3 LLC_REF_MISS_DATA

4.2.19.4 LLC_REF_MISS_INST

Definition Miss to local RAM requiring snoops, resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses only)

MEM_RMT_ANY 0xc43

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/o/d/r

Definition Miss to remote RAM (PRI->RIL) (DRQ/FRQ misses only)

MEM_RMT_NO_SNOOP 0xc47

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/o/d/r

Definition Miss to remote RAM requiring no snoops (PRI->RIL) (DRQ/FRQ misses only)

MEM_RMT_SNOOP 0xc48

Counter Affinity 0x24900

Definition Miss to remote RAM requiring snoops, not resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses
only)

IAR/OPC/DAR/DREF I/o/d/r

MEM_RMT_SNOOP_FWD 0xc49

Counter Affinity 0x49200

Definition Miss to remote RAM requiring snoops, resulting in forwarded data (PRI->RIL) (DRQ/FRQ misses
only)

Description Data read or write that misses LLC (PRI->RIL) (DRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Definition -

NOTE -

Subevents:

ANY 0xc4b

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/O/D/R

Definition Any data read or write that misses LLC (PRI->RIL) (DRQ misses only). Note that ld.bias and
lfetch.excl are included.

READ 0xc4c

Counter Affinity 0x49200

IAR/OPC/DAR/DREF I/O/D/R

Definition Any data read that misses LLC (PRI->RIL) (DRQ misses only). Note that ld.bias and lfetch.excl data
references are not included.

Notes: LLC_REF_MISS_DATA.ANY and LLC_REF_MISS_DATA.READ, when constrained to count lfetches
using data reference constraints do not return the same counts. This is due to the fact that
LL_REF_MISS_DATA.READ does not count lfetch.excl nor ld.bias ops.

Description Instruction miss that misses LLC (PRI->RIL) (FRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Definition -

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 293
Reference Manual for Software Development and Optimization Guide

4.2.19.5 LLC_REF_SYS_ANY

4.2.19.6 LLC_REF_UNKNOWN

4.2.20 System Events
This section enumerates System performance monitoring events.

4.2.20.1 CPU_CPL_CHANGE

NOTE -

Subevents:

ANY 0xc4d

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/-/-/-

Definition Any instruction miss that misses LLC (PRI->RIL) (FRQ misses only)

PRIMARY 0xc4e

Counter Affinity 0x24900

IAR/OPC/DAR/DREF I/-/-/-

Definition Any primary instruction miss that misses LLC (PRI->RIL) (FRQ misses only)

Description Request satisfied by non-RAM system address (PRI->RIL) (DRQ/FRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Event Code 0xc40

Counter Affinity 0x55500

IAR/OPC/DAR/DREF I/o/d/r

Definition -

NOTE -

Description Hit/Miss response unknown/NA (DRQ/FRQ misses only)

Max Inc/Cyc 1

MT Capture Type F

Event Code 0xc4a

Counter Affinity 0x92400

IAR/OPC/DAR/DREF I/o/d/r

Definition -

NOTE -

Description CPU privilege level changes

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

Core Performance Monitor Events

294 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.20.2 INTERRUPT_EVENT

ANY 0x01a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition Any CPU privilege level change

FROM0 0x01b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition CPU privilege level change from level 0

FROM1 0x01c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition CPU privilege level change from level 1

FROM2 0x01d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition CPU privilege level change from level 2

FROM3 0x01e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition CPU privilege level change from level 3

Description IVA interrupt event

Max Inc/Cyc 1

MT Capture Type A

Definition Counts the number of IVA interrupts

Note This monitor will not work correctly unless one of the ETB modes is enabled. If the ETB/IP-EAR or
MT-EAR are not used, the least intrusive way to accomplish this is by setting either
PMC_ETB_CFG.plm or PMC_IPEAR_CFG.plm to a non-zero value.

Subevents:

MASKED 0x01f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Masked IVA interrupt event

NOTE INTERRUPT_EVENT.MASKED is further qualified by the address/match values programmed in
PMC_IVAEV_CFG

UNMASKED 0x020

Counter Affinity 0x55550

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 295
Reference Manual for Software Development and Optimization Guide

4.2.20.3 SERIALIZATION_EVENT

4.2.20.4 UNCORE_FREEZE

4.2.21 Multithreading Events
This section enumerates Multithreading performance monitoring events.

4.2.21.1 CYC_FE_FWPROG

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 0

Definition Unmasked IVA interrupt event

Description Serialize event

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x021

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 1

Definition -

NOTE -

Description UNCORE PMU freeze signal from the uncore seen

Max Inc/Cyc 1

MT Capture Type C

Event Code 0xc9b

Counter Affinity 0xaaa00

IAR/OPC/DAR/DREF -/-/-/-

Definition This event counts every time the uncore PMU global enable transitions low

Description Number of cycles in forward progress screen

Max Inc/Cyc 1

MT Capture Type F

Event Code 0x8a1

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Number of cycles in forward progress screen

NOTE This event counts the number of cycles the frontend is deciding to lock onto a thread that is not
making forward progress. The frontend measures lack of forward progress for a particular thread
when it has N switchout events without a valid instruction having been delivered to the instruction
buffers. See the Instruction Fetch MT section for further details on the forward progress screen.

Core Performance Monitor Events

296 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.2 MT_BE_BGND_CYC_IN_STATE

4.2.21.3 MT_BE_FAIR_STATE

Description BE background thread state

Max Inc/Cyc 1

MT Capture Type A

Definition Counts the number of cycles the background thread spends in a particular thread state, further
constrained by the setting of PMC_BEMT_CTL.

NOTE This event is qualified by PMC_BEMT_CTL

Subevents:

HU 0x143

Counter Affinity 0xaaa20

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in high unstalled state

HW 0x144

Counter Affinity 0x54550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in high stalled state

LU 0x147

Counter Affinity 0xaaa20

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in low unstalled state

LW 0x148

Counter Affinity 0x54550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in low stalled state

NU 0x145

Counter Affinity 0xaaa20

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in nominal unstalled state

NW 0x146

Counter Affinity 0x54550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread in background in nominal stalled state

Description Fairness counter state

Max Inc/Cyc 1

MT Capture Type A (GREEN)/F(YELLOW,ORANGE,RED)

Definition Counts the number of cycles the fairness counter spends in the respective fairness state.

NOTE “Threading” for this event reflects the state, rather than the current thread. GREEN will be measured
(and qualified) by either thread, whereas YELLOW, ORANGE and RED will be associated (and counted
by) the respective victimized thread.

Subevents:

GREEN 0x149

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 297
Reference Manual for Software Development and Optimization Guide

Following relationship holds true:

MT_BE_FAIR_STATE.GREEN.all +
MT_BE_FAIR_STATE.YELLOW.T0 + MT_BE_FAIR_STATE.YELLOW.T1 +
MT_BE_FAIR_STATE.ORANGE.T0 + MT_BE_FAIR_STATE.ORANGE.T1+
MT_BE_FAIR_STATE.RED.T0 + MT_BE_FAIR_STATE.RED.T1 == CPU_OP_CYCLES.all

4.2.21.4 MT_BE_FAIR_TRANSITION

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness counter green state cycles

ORANGE 0x14b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness counter orange state cycles

RED 0x14c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness counter red state cycles

YELLOW 0x14a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness counter yellow state cycles

Description Fairness state transitions

Max Inc/Cyc 1

MT Capture Type F

Definition This monitor counts the number of state transitions

NOTE -

Subevents:

GRN0 0x150

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness green 0 transitions - counts 0 crossings within the green state

GRN2YLW 0x14d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness transitions green to yellow

ORN2RED 0x14f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness transitions orange to red

YLW2ORN 0x14e

Core Performance Monitor Events

298 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.5 MT_BE_THRSW_ACTUAL_IN

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Fairness transitions yellow to orange

Description BE thread switch in events

Max Inc/Cyc 1

MT Capture Type A

Definition BE thread switch in events

NOTE These are events that caused the background thread to be switched into the foreground, and thus
are applied/counted to the thread transitioning into the foreground.

Subevents:

ALAT_INVAL 0x136

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to ALAT invalidate

HPWINS 0x134

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to HPW insert

IBQ_NOTEMPTY 0x135

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to IBQ not empty

LP_EXIT 0x137

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to LP exit

MLDRTN 0x133

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to MLD return

TIMEOUT 0x132

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to time-out

FAIR 0x138

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition BE thread switch in due to fairness

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 299
Reference Manual for Software Development and Optimization Guide

4.2.21.6 MT_BE_THRSW_ACTUAL_OUT

Description BE thread switch out events

Max Inc/Cyc 1

MT Capture Type F

Definition BE thread switch out events

NOTE These are events that caused the foreground thread to be switched into the background, and thus
are applied/counted to the thread transitioning into the background.
Summation of this thread switch event set satisfies the following relationship
MT_BE_THRSW_ACTUAL_OUT.ANY.me = sum(MT_BE_THRSW_ACUTAL_OUT.*.me) +
sum(MT_BE_THRSW_ACUTAL_IN.*.other)

Subevents:

ANY 0x12a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition Any BE thread switch, due to either the foreground thread switching out or the background thread
switching in.
Use MT_BE_THRSW_ACTUAL_OUT.ANY, as EAR_EVENT_ETB_IP_MT does not increment

ATPAUSE 0x12e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due to hint \\@pause

HPW_MISS 0x12c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due to HPW miss

IBQ_EMPTY 0x12d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due to IBQ empty

INJ_DBG 0x131

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due random injection/debug

LP_ENTER 0x12f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due to LP enter

MLD_USE 0x12b

Counter Affinity 0xaaaa0

Core Performance Monitor Events

300 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.7 MT_BE_THRSW_DISABLE

4.2.21.8 MT_BE_THRSW_DROP

4.2.21.9 MT_BE_THRSW_HOLD

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out due to mld use

RFIX 0x130

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch out for rfi.x

Description BE thread switch disabled cycles

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

EXPL 0x13a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Explicitly disabled BE thread switch cycles, i.e., at least one of the threads is in LP

IMPL 0x13b

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Implicitly disabled BE thread switch cycles, i.e., PCR.sd is 1

Description BE dropped thread switch

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x139

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition Thread switch opportunities that were dropped due to switching-table/fairness policy, full-slice
mode, and in switch wait window

NOTE -

Description BE thread switch held cycles

Max Inc/Cyc 1

MT Capture Type A

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 301
Reference Manual for Software Development and Optimization Guide

4.2.21.10 MT_BE_THRSW_STALL

Event Code 0x13c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

Definition Cycles when the switch is held up due to BE forward progress camping or other rare pipeline
conditions.

NOTE -

Description BE thread switch stall cycles

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY 0x13d

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles

CRAB 0x141

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles, switch blocked by CRAB

FLD 0x142

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles, switch blocked by FLD

PIPE 0x13f

Counter Affinity 0xaaaa0

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles, switch blocked by pipeline

RSE 0x140

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles, switch blocked by RSE

SWITCH 0x13e

Counter Affinity 0x55550

Core Performance Monitor Events

302 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.11 MT_FE_BE_IN_SAME_THREAD

4.2.21.12 MT_FE_BGND_CYC_IN_STATE

4.2.21.13 MT_FE_THRSW_ACTUAL_IN

IAR/OPC/DAR/DREF -/-/-/-

IP-EAR L = 5, P = 3

Definition BE thread switch stall cycles, switch blocked, in switch

Description Cycles front and back end are in same thread

Max Inc/Cyc 1

MT Capture Type F

Event Code 0x874

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition This event counts the cycles during which front and back-end are in the same thread domain, and
form a continuous pipeline.

NOTE -

Description FE thread state

Max Inc/Cyc 1

MT Capture Type F

Definition -

NOTE -

Subevents:

HIGH 0x8a0

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition FE thread in background with high urgency

LOW 0x89e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition FE thread in background with low urgency

NOMINAL 0x89f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition FE thread in background with nominal urgency

Description Front end thread switch in events

Max Inc/Cyc 1

MT Capture Type A

Definition Front end thread switch in events

NOTE These are events that caused the background thread to be switched into the foreground, and thus
are applied/counted to the thread transitioning into the foreground.

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 303
Reference Manual for Software Development and Optimization Guide

4.2.21.14 MT_FE_THRSW_ACTUAL_OUT

Subevents:

BRQ_NON_BLK 0x881

Counter Affinity 0xa0aa0

Definition Front end thread switch in due to BRQ non blocking

IBQ_EMPTY 0x87a

Counter Affinity 0x50550

Definition Front end thread switch in due to IBQ empty

IBQ_NOTFULL 0x879

Counter Affinity 0xa0aa0

Definition Front end thread switch in due to IBQ not full

MLI_UCRTN 0x87f

Counter Affinity 0xa0aa0

Definition Front end thread switch in due to MLI UC return

MLI_WBRTN 0x87d

Counter Affinity 0xa0aa0

Definition Front end thread switch in due to MLI write back return

Description Front end thread switch out events

Max Inc/Cyc 1

MT Capture Type F

Definition Front end thread switch out events

NOTE These are events that caused the foreground thread to be switched into the background, and thus
are applied/counted to the thread transitioning into the background.
Summation of this thread switch event set satisfies the following relationship
MT_FE_THRSW_ACTUAL_OUT.ANY.me = sum(MT_FE_THRSW_ACUTAL_OUT.*.me) +
sum(MT_fE_THRSW_ACUTAL_IN.*.other)

Subevents:

ANY 0x876

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Any FE thread switch, due to either the foreground thread switching out or the background thread
switching in.

BE_FOLLOW 0x883

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to back-end follow

BRQ_BLK 0x880

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to BRQ blocking

HINT_BSWT 0x882

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to hint bswt

Core Performance Monitor Events

304 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.15 MT_FE_THRSW_MISS_IN

IBQ_FULL 0x878

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to IBQ full

IBQ_NOTEMPTY 0x87b

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to IBQ not empty

LOCKED 0x884

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to locked to BE

MLI_UCMISS 0x87e

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to MLI UC miss

MLI_WBMISS 0x87c

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to MLI write back miss

TIMEOUT 0x877

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition Front end thread switch out due to switch time-out

Description FE missed thread switch in opportunity cycles

Max Inc/Cyc 1

MT Capture Type A

Definition This event counts the number of cycles a thread switch event is not acted on.

Subevents:

ANY 0x886

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition Any FE missed thread switch in opportunity cycles

BRQ_NON_BLK 0x891

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition brqnblk

IBQ_EMPTY 0x88a

Counter Affinity 0x50550

IAR/OPC/DAR/DREF -/-/-/-

Definition qempty

Core Performance Monitor Events

Intel® Itanium® Processor 9500 Series 305
Reference Manual for Software Development and Optimization Guide

4.2.21.16 MT_FE_THRSW_MISS_OUT

IBQ_NOTFULL 0x889

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition qnfull

MLI_UCRTN 0x88f

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition mliucrtn_act

MLI_WBRTN 0x88d

Counter Affinity 0xa0aa0

IAR/OPC/DAR/DREF -/-/-/-

Definition mliwbrtn

Description FE missed thread switch out opportunity cycles

Max Inc/Cyc 1

MT Capture Type A

Definition This event counts the number of cycles a thread switch event is not acted on.

Subevents:

ANY 0x885

Counter Affinity 0xa0aa0

Definition Any FE missed thread switch out opportunity cycles

BE_FOLLOW 0x893

Counter Affinity 0xa0aa0

Definition BE follow

BRQ_BLK 0x890

Counter Affinity 0x50550

Definition brqblk

HINT_BSWT 0x892

Counter Affinity 0x50550

Definition hintbswt

IBQ_FULL 0x888

Counter Affinity 0x50550

Definition qfull

IBQ_NOTEMPTY 0x88b

Counter Affinity 0xa0aa0

Definition qnempty

LOCKED 0x894

Counter Affinity 0x50550

Definition locked to BE

MLI_UCMISS 0x88e

Counter Affinity 0x50550

Definition mliucmiss

Core Performance Monitor Events

306 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

4.2.21.17 MT_FE_THRSW_STALL

§

MLI_WBMISS 0x88c

Counter Affinity 0x50550

Definition mliwbmiss

TIMEOUT 0x887

Counter Affinity 0xa0aa0

Definition tmout

Description Cycles the frontend threadswitch pipe is stalled

Max Inc/Cyc 1

MT Capture Type A

Definition Cycles the frontend threadswitch pipe is stalled and inhibited from issuing a pending threadswitch

Subevents:

ANY 0x895

Counter Affinity 0xa0aa0

Definition Any

BLK_ANY 0x899

Counter Affinity 0xa0aa0

Definition Switch blocked

BLK_FW_PROG 0x89c

Counter Affinity 0x50550

Definition Switch blocked, forward progress screen. The frontend forward progress screen is enabled and
blocking a thread switch to the inactive thread.

BLK_IN_PROG 0x89b

Counter Affinity 0xa0aa0

Definition Switch blocked, other switch in progress

BLK_IPC_MISS 0x89a

Counter Affinity 0x50550

Definition Switch blocked for IPC miss

BLK_THRESH 0x89d

Counter Affinity 0xa0aa0

Definition Switch blocked for threshold

EXPL 0x897

Counter Affinity 0xa0aa0

Definition Explicitly disabled

IMPL 0x898

Counter Affinity 0x50550

Definition Implicitly disabled

MTLCK 0x896

Counter Affinity 0x50550

Definition MT locked

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 307
Reference Manual for Software Development and Optimization Guide

5 Uncore Performance Monitoring

Intel Itanium® processor uncore performance monitoring is supported by PMUs local to
each of the boxes; Bbox, Cbox, Rbox, Sbox, Wbox and Zboxes. PMUs may be frozen
locally (per box) or globally, either manually or due to uncore PMU counter overflow. In
other words, any of the available uncore PMU ‘counters’ may be configured to freeze,
upon overflow, either the other PMUs that reside within its box, or all uncore PMU
counters.

All of the Itanium® processor uncore performance monitoring features are accessed
through privileged Chip Set Registers (CSRs). SAL or the OS may access CSRs directly
rather than asking SAL for access.

The general performance monitoring capabilities in each box are outlined in the
following table:

The following sections provide a breakdown of the performance monitoring capabilities
of each box:

• Section 5.3, “Global Performance Monitoring Control”

• Section 5.4, “Bbox Performance Monitoring”

• Section 5.5, “Cbox Performance Monitoring”

• Section 5.6, “Rbox Performance Monitoring”

• Section 5.7, “Sbox Performance Monitoring”

• Section 5.8, “Wbox Performance Monitoring”

• Section 5.9, “Zbox Performance Monitoring”

• Section 5.10, “Packet Matching Reference”

5.1 Processor Overview
The Intel® Itanium® processor 9500 series processor extends the multi-core family of
Intel® Itanium® processors into the next generation with significant enhancements in
both the core and system interface. The Intel® Itanium® processor 9500 series
processor is upward compatible with the Intel® Itanium® Processor 9300 Series ,
providing the same Intel® QuickPath Interconnect (Intel® QPI) point-to-point links

Table 5-1. Per-Box Performance Monitoring Capabilities

Box # Boxes # Counters/
Box

Generic
Counters?

Packet Match/
Mask Filters? Bit Width

BBox 2 8 N, subctl Y 48

CBox 8 6 Y N 48

RBox 1 (L/R sides) 8
(assign to same

side port)

N, subctl Y 48

SBox 2 4 Y N 48

WBox 1 4 Y Y 48

ZBox 2 6 N, subctl N 48

Uncore Performance Monitoring

308 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

based system design, buffer-based memory technology (Intel® 7500 Scalable Memory
Buffer) and interoperability with Intel® Itanium® Processor 9300 Series based
chipsets.

The processor key features include:

• Fully compatible with binaries for the Intel Itanium processor family

• Implemented on 32-nm process technology

• Chip multiprocessor architecture with up to eight cores per die; two threads per
core

• 64-bit virtual addressing; 50-bit physical addressing

• Each core provides in-order issue and execution of up to twelve instructions per
cycle

• First-level cache (FLC) per core:

— 16 KB FLI instruction cache
— 16 KB FLD write-through data cache

• Mid-level cache (MLC) cache per core:

— 512 KB MLI instruction cache
— 256 KB MLD writeback data cache

• On-chip Last-level cache (LLC):

— Up to 32 MB writeback cache
• Intel® Cache Safe Technology logic to disable cache entries that have become hard

errors

• High-bandwidth, low-latency point-to-point link interface based on the Intel®
QuickPath Interconnect (Intel® QPI):

— Four full width and two half width Intel QuickPath Interconnects
— Aggregate data bandwidth of 19.2 GB/s per each 4.8 GT/s full width Intel

QuickPath Interconnect
— Aggregate data bandwidth of 28.8 GB/s per each 6.4 GT/s full width Intel

QuickPath Interconnect
• Self-healing Intel QuickPath Interconnect via width reduction:

— Automatically configured during reset
— Independent link width per direction

• Support for hot-add and hot-removal at the Intel QuickPath Interconnect

• Two Integrated Memory Controllers

— Each memory controller supports two Intel® Scalable Memory Interconnects
(Intel® SMI)

— Support for one Intel 7500 Scalable Memory Buffer per Intel Scalable Memory
Interconnect; four Intel 7500 Scalable Memory Buffers per processor

• Peak memory bandwidth (DDR3-1067)

— 34.1 GB/s read (plus up to 11.2 GB/s concurrent write)
— 17.0 GB/s write (plus up to 17.0 GB/s concurrent read)

• Memory reliability, availability, and serviceability (RAS) features including:

— Extensive memory ECC support including Single Device Data Correction
(SDDC) for x8 and x4 chip failure and Intel Double Device Data Correction
(Intel DDDC) for x4 chip failure

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 309
Reference Manual for Software Development and Optimization Guide

— Failover mode to operate with a single lane failure per channel, per direction
— Support for Rank Sparing, Memory Mirroring, Memory Scrubbing, and Memory

Migration
• Support for hot-add and hot-removal at the Intel Scalable Memory Interconnect

• ECC or parity Error protection on all major structures

• In-band and out-of-band system and configuration management support

• Power Management Controller for performance, power, and thermal management

• Power management support including memory thermal throttling

• Support for ACPI C-states, P-states, and S-states

• Support for Virtualization (soft-partitioning at the sub-socket level) with hardware
optimizations to increase Virtual Machine performance

• Support for Dynamic Domain Partitioning (hard partitioning at the processor
socket)

5.1.1 Ring Interconnect Overview
The Ring Interconnect is the communication channel connecting cores to the
components of the Shared Cache. The Ring Interconnect is comprised of eight
separately controlled rings which are grouped into four pairs of counter rotating,
clockwise and counter-clockwise, rings. The AD ring pair carries addresses for request
and snoop messages. The BL ring pair carries 32 Byte data blocks, and byte enables.
The AK ring pair carries various coherence messages, and the IV ring pair carries multi-
cast snoop messages from the Cboxes to the cores.

The Ring Interconnect is fully pipelined with a Ring Stop at each Cbox and Sbox. Each
Ring Stop has buffering and arbitration facilities for messages entering the Ring and
messages exiting the Ring. Messages are placed on either the clockwise or counter

Figure 5-1. Intel® Itanium® Processor 9500 Series Processor Block Diagram

Sbox1Sbox0

Rbox
Bbox

0Zbox
0

Zbox
1

Bbox
1 Pbox

PZ1

Pbox
PR1

Pbox
PR0

Pbox
PH4

Pbox
PH5

Pbox
PR3

Pbox
PR2

Intel
SMI

Intel
SMI

Intel
QPI 4

Intel
QPI 0

Intel
QPI 1

Intel
QPI 2

Intel
QPI 3

Intel
QPI 5

Pbox
PZ0Intel

SMI
Intel
SMI

Directory
cache

Directory
cache

Core 3 Core4 Core 6Core 5 Core7

Intel Xeon
processor 9500

series
Core0 Core1 Core2

Ring Architecture

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Uncore Performance Monitoring

310 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

clockwise ring depending on which path is the shortest route from source to
destination. Messages on the Ring have priority over new messages attempting to
enter the Ring.

5.1.2 Cache Control (Cbox) Overview
There are eight Cbox instances, of which each is associated with a processor core and a
4 MB slice of the Last-Level Cache. Collectively, the eight Cboxes and two Sboxes
comprise the two Intel QPI caching agents for the socket.

The Ring Interface section of the Cbox contains the PRI (similar to IDI but tweaked to
accommodate Intel Itanium processor requirements) interface to the core and
frequency/voltage domain crossing circuitry (BGF) to allow for frequency/voltage
scaling of the cores relative to the Shared Cache infrastructure.

Each Cbox can have 16 transactions in-flight at a time, which can be a mix of Mid-Level
cache misses from the cores, LLC cache misses outstanding to Home Agents, and LLC
write-backs outstanding to Home Agents. In addition the Cbox can perform LLC
transactions in response to snoops initiated by Home Agents to maintain Global Cache
Coherence.

Mid-Level Cache misses are distributed amongst the individual slices of the Shared
Cache by the application of a Hash Function to the physical address of each transaction.
The Hash Function attempts to ensure that programs access the LLC slices uniformly.
Additionally, the four Cbox instances on the left side of the die communicate with the
Sbox instance on the left side, and the same for the right side Cbox and Sbox instances
respectively.

The Cbox implements key Intel QPI caching agent functionality which includes the Intel
QPI Source Address Decoder (SAD), outgoing request buffer (ORB), and probe request
queue (PRQ).

Figure 5-2. Intel® Itanium® Processor 9500 Series Ring Architecture

Intel Xeon
processor 9500

series

Rbox

Core3Core2

Ring InterfaceRing Interface

Cbox2

4 MB LLC

Cbox3

4 MB LLC

Sbox 1

Turn
T

ur
n

Core5Core 4

Ring InterfaceRing Interface

Cbox4

4 MB LLC

Cbox5

4 MB LLC

Sbox0

Core1Core0

Ring Interface

Cbox0

4 MB LLC

Cbox1

4 MB LLC

Core 7Core 6

Ring InterfaceRing Interface

Cbox 6

4 MB LLC

Cbox7

4 MB LLC

Ring
Stop

Ring
Stop

Ring
Stop

Ring
Stop

Ring
Stop

Ring
Stop

Ring
Stop

Ring
Stop

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Intel Xeon
processor 9500

series

Ring Interface

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 311
Reference Manual for Software Development and Optimization Guide

The processor contains eight instances of the Cbox numbered 0 through 7. Each Cbox
manages a 4 MB 32-way set-associative last level cache (LLC) slice as well as a
processor interface. The four instances of the Cbox on the left of the floorplan (C0–3)
are associated with the four left processors (P0–3) The other four instances of the Cbox
on the right of the floorplan (C4–7) are associated with the three right processors (P4–
7). The Sbox on the left (S0) handles the left Cboxes. The Sbox on the right (S1),
handles the right Cboxes. The Cboxes, Sboxes, and processors are connected using the
Ring Interconnect. The eight Cboxes, together with the two Sboxes can be viewed as
two Intel® QPI caching agents each with a node id. Each caching agent handles half of
the cacheable address space.

• Address Hash

— The eight 4 MB LLC slices in the processor are addressed via an address hash
function. This function is designed to evenly distribute accesses among the
slices, even if the access pattern is a regular stride. It is also designed to
evenly distribute accesses among the sets (indexes) of each slice, again, even
if the access pattern is a regular stride.

— The hash function takes as an input bits [49:6] of the physical address. It
generates a 14-bit hash, of which 3 bits are used to address the 8 instances of
the Cbox, and 11 bits are used to address the 2048 indexes in the target Cbox.

• LLC Arrays

— Each CDAT unit contains half of a 64B cache line for 2048 sets by 16 ways of
data. Overall, the Cbox can read or write 32B per cycle. The data array is
protected by a DECTED ECC code.

— Each CTAG unit corresponds to 16 ways of tag, LRU, and state/core-valid arrays
for 2048 sets. Each array is protected by a SECTED ECC code.

• Coherence

— Each cache line in the LLC maintains a Intel QPI global coherence state; one of
Modified, Exclusive, Shared or Invalid (MESI).

— Along with the global coherence state for each line, an 8-bit core-valid mask
(directory) is maintained. This mask indicates which cores may also have the
same line in their caches. The core-valid mask may have bits set corresponding
to cores which no longer have the cache line, since cores can silently displace
Exclusive or Shared cache lines.

5.1.3 Last-Level Cache (LLC) Overview
The processor Last-Level Cache is a 32 MB, 64 B per line, write-back cache which is
shared by all eight cores and is inclusive of the data in all caches in the eight cores. The
LLC is organized as eight 4 MB slices. The tag array for the LLC contains address tags,
MESI state bits, and core-valid bits which are used to filter snoop requests to the cores.
The LLC can read or write 32 B per cycle. The data array provides row and column
redundancy and uses DECTED (double-error correct, triple-error detect) for error

Table 5-2. LLC Parameters

Data Type
Supported Policy Size Line

Size Ways Index Queueing Latency

Instruction,
Integer, FP

WB 32MB 64B 32 Hash(PA[49:6]) Variable: depends on
system configuration, max
96 (12 per Cbox)

Variable: depends on
distance along the Ring
between requesting core
and destination Cbox, also
depends on Uncore
Frequency

Uncore Performance Monitoring

312 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

detection and correction. (Like the Intel Itanium processor 9300 series) The processor
implements Intel® Cache Safe Technology which allows individual lines that are found
to be bad during operation to be disabled on the fly.

5.1.4 System Bridge (Sbox) Overview
The Sbox is the interface between the on-die Ring Interconnect domain and the Intel
QPI domain. It buffers and reformats messages in both the Ring-Bound and System-
Bound directions. There are two Sbox instances each of which services messages from
four of the eight Cbox instances. Each Sbox instance has a connection to the Rbox. The
Sboxes have separate nodeIDs to simplify routing but are actually partitioned by
address with each Sbox servicing half of the address space of the shared ring cache.
Refer to the Cbox chapter on the Hashing function for more information on how
addresses are mapped.

5.1.5 Global Coherence Engine (Bbox) Overview
The primary function of the Bbox is to be the coherent Home Agent for the Intel QPI
cache coherence protocol. The Home Agent algorithm requires the Bbox to track
outstanding requests, log snoop responses and other control messages, and make
certain algorithmic decisions on how to respond to requests. The Bbox has additional
requirements on managing interactions with the Memory Controller, including RAS
flows. All requests that are in-flight in the Memory Controller are tracked in the Bbox.

The Bbox is responsible for the protocol side of memory interactions, including the
coherent and non-coherent Home Agent protocols. Additionally, the Bbox is responsible
for ordering memory reads/writes to a given address so that the Memory Controller
does not also have to do this conflict checking. All requests for memory attached to the
coupled Memory Controller must first be ordered through the Bbox.

The Bbox implements directory coherency using a directory stored in main memory.
The Bbox also implements a directory cache to improve the performance of directory
coherency. The Bbox supports up to 64 directory caching agents but has no support for
Source Snoop caching agents.

The Bbox has a 512 entry Tracker File and allows up to 48 operations in-flight to the
Memory Controller from a caching agent.

5.1.6 Integrated Memory Controller (Zbox) Overview
The Zbox is the interface to memory for the processor. In general terms it translates
read and write commands into specific memory commands and schedules them with
respect to memory timing. The other main function of the Zbox is advanced ECC
support. There are two Zboxes implemented in each die, one for each pair of Intel SMI
channels.

The Zbox interfaces to the Rbox through the Bbox. It also interfaces to the Pbox pads.

A memory controller manages two Intel SMI channels operating in lockstep, for a total
of four Intel SMI channels per socket. The processor supports up to 32 DIMMs per
socket.

The Memory Controller supports RAS features including retry on transient errors, Intel
Single Device Data Correction (SDDC) for a single x4 or x8 device, Intel Double Device
Data Correction (DDDC) for two x4 devices, Rank Sparing, and Intel SMI lane fail-over
mode.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 313
Reference Manual for Software Development and Optimization Guide

The Zbox PMU is reserved if memory mirroring is enabled on the platform.

5.1.7 Inter-processor Router (Rbox) Overview
The Rbox on the processor is a 10-port switch/router implementing the Intel QPI
Routing and Link layer. It is responsible for routing and transmitting all intra- and inter-
processor communication and it provides concurrent full duplex bandwidth. The Rbox is
connected directly to the Bbox, Sbox, and Pboxes via 80b interfaces. The Ubox taps off
the Bbox connection. Most boxes can handle the data at full bandwidth but the local
and external Intel QPI links operate at different frequencies and selectively enable
cycles for data transfer in order to match the port bandwidth to the physical link. The
Rbox consists of ten identical ports and a wire crossbar that connects the ports
together. Route-through functionality (data transferred between Intel QPI ports) is
supported by the Crossbar Router. The router is ECC-protected for enhanced reliability,
and supports Link-Level Retry for handling transient link errors.

The Rbox supports the HOM, SNP, DRS, NDR, NCS and NCB message channels and the
VN0, VN1 and VNA virtual routing channels. An 80 entry Route Table (per input port)
supports routing of messages with 10b node-ids.

5.1.8 Port Physical Interfaces (Pbox) Overview
The Pbox contains the Physical layer (PHY) for the processor Intel QPI and Intel SMI
ports. The PHY consists of an electrical sub-block as well as a logical sub-block. The
electrical sub-block contains all the circuitry (mostly analog in nature) related to
transmitting and receiving clock and data signals to/from another component. The
logical sub-block (mostly digital in nature) consists primarily of control logic,
serialization and de-serialization structures, control and status registers, and other
digital logic found in the datapath. In summary, the Pbox is essentially a combination of
digital control logic, digital datapath logic and sophisticated analog circuitry, supporting
high speed differential point-to-point signaling.

There are eight separate Pbox instances (or ports) in the processor, each providing a
communications path to/from the Link-layer agents (Rbox, Zbox) and the off-socket
links.

Four of the Pbox instances are associated exclusively with the Rbox and provide for full-
width, 20-lane, ports for inter-socket connectivity. Two of the Pbox instances are
associated exclusively with the Rbox and provide for half-width, 10-lane, ports for
inter-socket connectivity. The remaining two instances of the Pbox are associated with
the Bbox and Zbox and provide the Intel SMI memory interface. The Intel SMI instance
of the Pbox connects to two Intel SMI channels that are accessed in parallel.

5.1.9 System Utilities Controller (Ubox) Overview
The Ubox is the Intel QPI configuration agent and provides access mechanisms for a
variety of on-die, on-socket, and off-socket resources and communication paths,
including In-Band Configuration, Out-of-Band Configuration, Off-Chip ROM, SMBus
access, and Inter-processor Interrupts.

• In-Band Configuration Access: This feature allows platform firmware running on the
processor to access the processor's Configuration and Status Registers (CSRs)
through Intel QPI.

• Out-of-Band Configuration Access through SMBus and JTAG: This feature includes
the SMBus and JTAG Slave engines which allows a service processor or system

Uncore Performance Monitoring

314 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

management controller to access the CSRs in the Ubox address space via the
SMBus or JTAG pins.

• Off-chip Flash ROM Interface: The off-chip flash ROM interface allows the processor
to be connected to up to four SPI Flash ROM devices. These ROM devices are used
to store PAL code, SAL code and error logs.

• Out-of-Band SMBus Master Engine for Platform Configuration: The SMBus Master
engine allows the processor to be connected to other platform resources (such as
Intel 7500 Scalable Memory Buffer and memory) using the SMBus protocol. The
interface allows firmware or system management controllers to access the SPD
registers on any DIMMs connected to the processor.

• Interruption Utility: The interruption utility facilitates interruptions to the on-chip
processor cores.

5.2 Uncore PMU Programming Overview
Software can access the PMU CSR registers which contain the uncore PMUs.

To access the a specific register, the address is built in hierarchical fashion beginning
with the aperture base address, adding in the socket, then the uncore box of choice
and finally the specific CSR residing within the box.

SAL Aperture Base - 0x8003FFF3.xxxxxxxx

SAL Aperture Length - 0x100000000

Table 5-3. Physical/Virtual Address Offsets for Socket Access

Window Offset [32:0] Description

Current Socket 0xFEB0xxxx This window provides access to the uncore PMU registers
for the current socket, or the socket containing the core
that is executing the CSR access.

Socket 0 0xFC00xxxx This window provides access to the uncore PMU registers
in socket 0.

Socket 1 0xFC01xxxx This window provides access to the uncore PMU registers
in socket 1.

...

Socket 255 0xFCFFxxxx This window provides access to the uncore PMU registers
in socket 255.

Table 5-4. Address Offsets for Per-Box Access (Sheet 1 of 2)

Window Offset [15:0] Description

Ubox -- N/A - LS 16b of address specified.

Bbox 0/Zbox 0 0x3xxx Window to Bbox 0 and Zbox 0 CSRs

Bbox 1/Zbox 1 0xBxxx Window to Bbox 1 and Zbox 1 CSRs

Sbox 0/Wbox 0x7xxx Window to Sbox 0 and the Wbox

Sbox 1 0xFxxx Window to Sbox 1

Rbox 0x2xxx,0x8xxx These windows provide access to Rbox CSRs (see Rbox
Uncore PMU Summary Table for details)

Cbox 0 0x40xx Window to Cbox 0

Cbox 1 0x48xx Window to Cbox 1

Cbox 2 0x50xx Window to Cbox 2

Cbox 3 0x58xx Window to Cbox 3

Cbox 4 0xD8xx Window to Cbox 4

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 315
Reference Manual for Software Development and Optimization Guide

So, by example, the physical address for B_CSR_PERF_CTL0 in Bbox 0 on the current
socket is:

0x8003FFF3.00000000 + // SAL aperture

0x00000000.FEB00000 + // current socket

0x00000000.00003000 + // Bbox 0

0x00000000.00000808 = // offset for B_CSR_PERF_CTL0

0x8003FFF3.FEB03808

5.2.1 On Accessing Uncore PMUs by Virtual Addresses
(Win/Linux*)
Driver software typically does not deal with physical addresses, but remaps these
address ranges to the virtual address space so CSR registers can be more conveniently
accessed with memory-mapped input/output (MMIO) operations. The following C code
samples show how these physical addresses can be mapped and un-mapped in the
virtual address space for Windows and Linux. These addresses must be mapped as un-
cacheable memory.

#define TKWUNC_SAL_APERTURE 0x8003FFF300000000

#define TKWUNC_APERTURE_LEN 0x100000000

void* BaseVirtAddr;

#ifdef linux

static void MapTkwUncCSRsLinux(void)

{

// map the MMIO space using the SAL aperture

BaseVirtAddr =

ioremap_nocache(TKWUNC_SAL_APERTURE, TKWUNC_APERTURE_LEN);

}

static void UnmapTkwUncCSRsLinux(void)

{

// unmap the MMIO space

if (0 != BaseVirtAddr) {

iounmap(BaseVirtAddr);

BasVirtAddr = 0;

}

Cbox 5 0xD0xx Window to Cbox 5

Cbox 6 0xC8xx Window to Cbox 6

Cbox 7 0xC0xx Window to Cbox 7

Table 5-4. Address Offsets for Per-Box Access (Sheet 2 of 2)

Window Offset [15:0] Description

Uncore Performance Monitoring

316 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

}

#else // linux

static void MapTkwUncCSRsWindows(void)

{

PHYSICAL_ADDRESS baseaddr;

// create base physical address

baseaddr.QuadPart = TKWUNC_SAL_APERTURE;

BaseVirtAddr =

MmMapIoSpace(baseaddr, TKWUNC_APERTURE_LEN, MmNonCached);

}

static void UnmapTkwUncCSRsWindows(void)

{

// unmap the MMIO spce

if (0 != BaseVirtAddr) {

MmUnmapIoSpace(BaseVirtAddr, TKWUNC_APERTURE_LEN);

BaseVirtAddr = 0;

}

}

#endif

Using the code listed above, we can map the physical addresses of the SAL CSR
aperture into the virtual address space. Assume that the address mapping operation
yields a base virtual address of 0xFB00D800.00000000. Then, using the example from
the previous section, the B_CSR_PERF_CTL0 CSR register can be accessed in virtual
address space at virtual address:

0xFB00D800.00000000 + // base virtual address

0x00000000.FEB00000 + // current socket

0x00000000.00003000 + // Bbox 0

0x00000000.00000808

= // offset for B_CSR_PERF_CTL0

0xFB00D800.FEB03808

To read the CSR, the following C code may be executed.

unsigned long long val;

val = *((unsigned long long*) 0xFB00D800FEB03808);

and to write the register:

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 317
Reference Manual for Software Development and Optimization Guide

((unsigned long long) 0xFB00D800FEB03808) = val;

Since the uncore performance monitors represent socket-wide resources that are not
context switched by the OS, it is highly recommended that only one piece of software
(per-socket) attempt to program and extract information from the monitors. To keep
things simple, it is also recommended that the monitoring software communicate with
the OS such that it can be executed on coreId = 0, threadId = 0. Although
recommended, this step is not necessary. Software may be notified of an overflowing
uncore counter on any core.

5.2.2 Uncore PMU Summary Tables

Table 5-5. Uncore Performance Monitoring CSRs (Sheet 1 of 3)

Box CSR Addresses Description

Sbox Counters

Sbox 1 0xF8F8 Intel QPI Configuration Register

0xF8F0-0xF8E8 Intel QPI Data Registers

0xF8E0-0xF8D8 Global (Control/Status/Ovf Control)

0xF8B0-0xF878 Counter/Config Registers

0xF858-0xF840 Match/Mask Registers

Sbox 0 0x78F8 Intel QPI Configuration Register

0x78F0-0x78E8 Intel QPI Data Registers

0x78E0-0x78D8 Global (Control/Status/Ovf Control)

0x78B0-0x7878 Counter/Config Registers

0x7858-0x7840 Match/Mask Registers

Wbox Counters AddrOffset [15:0]

Wbox 0x76D0-0x76C0 Global (Control/Status/Ovf Control)

0x74F8-0x74A0 Counter/Config Registers

0x7040 Box Master Register

CBox Counters AddrOffset [16:0]

Cbox 7 0xD8B8-0xD8A0 Box Configuration Registers

0xD898-0xD870 Counter/Control Registers

Cbox 6 0xD0B8-0xD0A0 Box Configuration Registers

0xD098-0xD070 Counter/Control Registers

Cbox 5 0xC8B8-0xC8A0 Box Configuration Registers

0xC898-0xC870 Counter/Control Registers

Cbox 4 0xC0B8-0xC0A0 Box Configuration Registers

0xC098-0xC070 Counter/Control Registers

Cbox 3 0x58B8-0x58A0 Box Configuration Registers

Uncore Performance Monitoring

318 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

0x5898-0x5870 Counter/Control Registers

Cbox 2 0x50B8-0x50A0 Box Configuration Registers

0x5098-0x5070 Counter/Control Registers

Cbox 1 0x48B8-0x48A0 Box Configuration Registers

0x4898-0x4870 Counter/Control Registers

Cbox 0 0x40B8-0x40A0 Box Configuration Registers

0x4098-0x4070 Counter/Control Registers

BBox Counters AddrOffset [15:0]

Bbox 1 0xB9C0-0xB980 DC Registers (Counters/Control/MatchMask)

0xB8F8-0xB8C0 Counter Registers

0xB8A0-0xB890 Subcounters (IMT, ARB)

0xB880 Box Master Register

0xB878-0xB840 Counter Control Registers

0xB830-0xB828 Subcounters (BZ, IOB)

0xB800 Box Control Registers (subcounters, mask/match)

Bbox 0 0x39C0-0x3980 DC Registers (Counters/Control/MatchMask)

0x38F8-0x38C0 Counter Registers

0x38A0-0x3890 Subcounters (IMT, ARB)

0x3880 Box Master Register

0x3878-0x3840 Counter Control Registers

0x3830-0x3828 Subcounters (BZ, IOB)

0x3800 Box Control Registers (subcounters, mask/match)

ZBox Counters AddrOffset [15:0]

Zbox 1 0xB0D8 Box Master Register

0xB0D8-0xBA8 Subconfig Registers (FVC,PLD,PGT,THR,ISS,DSP)

0xB0A0 Box Overflow Status

0xB98-0xB40 Counter/Config Registers

Zbox 0 0x30D8 Box Master Register

0x30D8-0x3A8 Subconfig Registers (FVC,PLD,PGT,THR,ISS,DSP)

0x30A0 Box Overflow Status

0x398-0x340 Counter/Config Registers

RBox Counters AddrOffset [15:0]

Rbox (Both Sides)

0x2AC0 Box Master Register

Table 5-5. Uncore Performance Monitoring CSRs (Sheet 2 of 3)

Box CSR Addresses Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 319
Reference Manual for Software Development and Optimization Guide

5.3 Global Performance Monitoring Control
The Itanium processor 9500 series uncore PMUs support two PMU freeze (or disable)
modes: box-level (local) and processor-level (global).

If an uncore counter (for example, in the Zbox) is configured to generate a box-level
freeze when an overflow is detected from the counter, only the PMUs within the box (for
example, the other Zbox PMUs) are frozen. The overflow will be sent upstream (to the
Sbox) to be recorded, but the PMUs in other boxes remain unaffected by this local
freeze. If, however, the uncore counter is configured to generated a socket-wide freeze,
when a overflow is detected from the counter, all uncore PMUs within the same socket
will be frozen simultaneously.

If a counter is configured to trip an uncore-wide freeze, an interrupt will be sent from
the Ubox as the freeze (disable) signal is sent out.

In socket-level freeze mode, if a second overflow is detected in the window of time it
takes the first overflow to freeze all the uncore PMUs, the additional overflow will be
recorded in the Sbox.

Global control of uncore PMU enabling and disabling is contained within the Ubox.
However, each box has a *PERF_MASTER.glb_lcl bit which allows a box to choose
whether to participate in the global control or stick solely with box-level control.

Rbox R 0x8AB8-0x8A40 Counter/Config Registers(15-8)

0x{88,86,84,82,80}
C8-80

Mask/Match Registers for Ports 9-5

0x{88,86,84,82,80}
78-70

IPERF SubConfig Registers for Ports 9-5 (RIX Events)

0x{88,86,84,82,80}
10

ARB SubConfig Registers for Ports 9-5 (QLX Events)

Rbox L 0x2AB8-0x2A40 Counter/Config Registers(7-0)

0x{28,26,24,22,20}
C8-80

Mask/Match Registers for Ports 9-5

0x{28,26,24,22,20}
78-70

IPERF SubConfig Registers for Ports 4-0 (RIX Events)

0x{28,26,24,22,20}
10

ARB SubConfig Registers for Ports 4-0 (QLX Events)

UBox Counter AddrOffset [15:0]

0x1588 Ubox PMON Global Configuration Register

0x1540 Uncore PMON Interrupt Register

Table 5-5. Uncore Performance Monitoring CSRs (Sheet 3 of 3)

Box CSR Addresses Description

Uncore Performance Monitoring

320 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.3.1 Global Enable/Disable
For each box that accepts global control (*PERF_MASTER.glb_lcl is set to 1),
U_CSR_PERF_CTL.glb_en allows a user to enable/disable uncore performance
monitoring with a single bit.

If a participating (allows global control) box’s counter overflows, and SW set the box’s
mask bit in the appropriate S_CSR_PMON_FRZ_EN register, hardware will clear the
U_CSR_PERF_CTL.glb_en bit to suspend all uncore performance monitoring
participating in the global session.

Similarly, software may manually disable all participating uncore PMUs by writing 0 to
U_CSR_PERF_CTL.glb_en.

Note: When a global uncore disable signal is sent out to the uncore boxes, it is also sent to
each core. Each core PMU capture it as an event (UNCORE_FREEZE - Event Code 0xC9
in the core counters).

5.3.2 Setting Up a Global Monitoring Session
Use the global freeze mechanism (refer to Section 5.3.1, “Global Enable/Disable”) to
ensure that no counting is taking place while the session is being configured:

Global 1) Disable uncore monitoring

• Set U_CSR_PERF_CTL.glb_en to 0.

Global 2) For each box in which SW wants to measure events and have the session
globally controlled:

• Set *PERF_MASTER.glb_lcl to 1

Now, set up monitoring in each box.

Box 1) Select event(s) to monitor:

Determine what events should be captured and program the control registers to
capture them (i.e. refer to individual box sections for details).

• that is, Set B_CSR_PERF_CTL1_3 to 0x1b to capture SNP_REQ_ALL.

Box 2) If necessary, enable counting locally by setting the appropriate enable bits

• For events captured in the C & W boxes, there is an enable bit (b22) in each
individual counter control register as well as an enable bit for each counter in the
C/W_CSR_PMON_GLOBAL_CTL register.

Box 3) Select how to gather data. If polling, skip to Global 3. If sampling:

• To set up a sample interval, software can:

a. pre-program the data register with a value of [2^48- sample interval length]

b. and mask the overflow coming from the box to trigger an interrupt. Doing so
allows software to be notified when the number of events in the sample have
been captured. Capturing a performance monitoring sample every ‘X cycles’ (i.e.
B_CYCLES) is a common use of this mechanism.

That is, to stop counting and receive notification when the 1,000th SNP_REQ_ALL has
been detected,

a. Set B_CSR_PERF_CNT[3] to (2^48- 1000)

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 321
Reference Manual for Software Development and Optimization Guide

b. Set S_CSR_PMON_FRZ_EN.msk_b to 1 in the associated Sbox (S0 for B0, S1 for
B1), else set to 0.

Note: For Sbox counters, the overflow has to be specifically enabled by setting the
S_CSR_PMON_CTLx.ovf_en bit to 1 for counter x.

Note: Even if the box is ‘isolated’ from global control, in sending out the interrupt when an
overflow is detected, the Ubox will also disable counters that are globally enabled.

Global 3) Enable all uncore PMU counters

• Set U_CSR_PERF_CTL.glb_en to 1.

And with that, counting will begin.

5.3.2.1 How Setting Up a Box-level Monitoring Session Differs

If a user wishes to isolate a specific box from global control, the following steps will
differ from those outlined in Section 5.3.2, “Setting Up a Global Monitoring Session”.

The three steps marked Global will be replaced as follows:

1. Make sure the box is isolated from the global network:
• Set *PERF_MASTER.glb_lcl to 0

2. Be sure counting has been stopped in the box:

• Set *PERF_MASTER.en to 0.

Perform steps Box #1-3 found in Section 5.3.2, “Setting Up a Global Monitoring
Session”.

Finally, instead of enabling counting at the global level, enable counting at the box
level:

• Set *PERF_MASTER.en to 1

And with that, counting will begin.

Note: If the Box’s .glb_lcl is 0, a local overflow will always stop the counters within the box.
There is one exception to this rule: In the Sbox, the overflow must be explicitly enabled
in each counter’s control register by setting S_CSR_PMON_CTLx.ovf_en to 1.

5.3.3 Reading the Sample Interval
Software can either poll the counters whenever it chooses, or wait to be notified that
a counter has overflowed (by receiving an interrupt).

a) Polling - before reading, it is recommended that software freeze the counters

• If the box is participating in global control, set U_CSR_PERF_CTRL.glb_en to 0

• Else set the box’s *PERF_MASTER.en to 0

b) Frozen counters - If software set up the counters to freeze on overflow and send
notification when it happens, the next question is: Who caused the freeze?

Overflow bits are stored within each box and summarized in the Sbox. First, software
should read S_CSR_PMON_SUMMARY.ov_{box} bits to determine which box(es)
contain the overflowing counter. Once the box(es) has been identified, read that box’s

Uncore Performance Monitoring

322 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

overflow bits (i.e. {C,S,W}_CSR_PMON_GLOBAL_STATUS.ov, B_CSR_PERF_CNTx.ov,
R_CSR_PERF_CNT_CTRL_x.ov and Z_CSR_PMU_CNT_STATUS.cntX_ov) to find the
overflowing counter.

Note: More than one counter may overflow at any given time.

5.3.4 Enabling a New Sample Interval from Frozen Counters.
a) Clear all relevant uncore counters.

• For each box monitored, set the box’s *PERF_MASTER.clr to 1

b) Clear all relevant overflow bits.

• If monitoring session was globally controlled, clear S_CSR_PMON_SUMMARY.

• All but the Rbox have a box-level status register with overflow bits that should be
cleared (i.e. B_CSR_PMON_PERF_STATUS.ov
{C,S,W}_CSR_PMON_GLOBAL_STATUS.ov, Z_CSR_PMU_CNT_STATUS.ov). The R
and Bbox have overflow bits in the data registers that will need to be cleared. Yes,
there are 2 overflow bits for each Bbox register.

c) Create the next sample: Reinitialize the sample by setting the monitoring data
register to (2^48 - sample_interval). Or set up a new sample interval as outlined in
Section 5.3.2, “Setting Up a Global Monitoring Session”.

d) Re-enable counting:

• If monitoring session was globally controlled, set U_CSR_PERF_CTL.glb_en to 1

• Else set *PERF_MASTER.en to 1 for relevant boxes.

5.3.5 Global Performance Monitors

5.3.5.1 Global PMU Global Control/Status Registers

The following register represents one bit of state governing all PMUs in the uncore - the
global enable bit. Each box may be programmed (through it’s local
*PERF_MASTER.glb_lcl bit) to be governed by this bit global control bit or to ignore it.

Overflow indications from each box are collected in each of the Sboxes
(S_CSR_PMON_SUMMARY).

Note: When a global uncore disable signal is sent out to the uncore boxes, it is also sent to
each core. Each core PMU capture it as an event (UNCORE_FREEZE - Event Code 0xC9
in the core counters).

Table 5-6. U_CSR_PERF_CTL Register Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 31:1 RO_NA 0 Read zero; writes ignored.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 323
Reference Manual for Software Development and Optimization Guide

As previously mentioned, if an overflow is detected by the Ubox and
U_CSR_PERF_CTL.glb_lcl == 1, the Ubox will signal an interrupt. The following register
governs how Uncore PMU interrupt is relayed.

5.4 Bbox Performance Monitoring

5.4.1 Overview of the Bbox
The Bbox is responsible for the protocol side of memory interactions, including the
coherent and non-coherent home agent protocols (as defined in the Intel® QuickPath
Interconnect Specification). Additionally, the Bbox is responsible for ordering memory

glb_en
0 RW_RW 0

Global Enable

1: Enable uncore PMON. Send enable signal to all
boxes.
0:Disable uncore PMON. Send disable signal to all
boxes.

For any box participating in global control
(*PERF_MASTER.glb_lcl == 1):
- HW will reflect updates to this bit in the box’s
*PERF_MASTER.en bit.
- HW will clear this bit on detection of an overflow
from a performance monitor from the box.

Table 5-6. U_CSR_PERF_CTL Register Field Definitions

Field Bits Access
HW

Reset
Val

Description

Table 5-7. U_CSR_IDR[14] (for PMON interrupts) Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:34 RO_NA 0 Read zero; writes ignored. (?)

idle 33 RO_WO 0 If 0, there is something in queue to be delivered to core

pend 32 RW_RW 0 Interrupt pending
If 1: Ubox will remember that it saw this class of interrupt,
but will not process it until this bit is set back to 0

ig 31:29 RO_NA 0 Read zero; writes ignored. (?)

dop 28 RW_RW 0 Delivery operation
0 - NOP
1 - Deliver to core using fields pic and v

pic 27:12 RW_RW 0 Target PIC bit-vector (can be multi-hot). One bit per-thread.

Each bit corresponds to a Core/Thread as specified:
27 - Core 7, Thread 1
26 - Core 7, Thread 0
25 - Core 6, Thread 1
24 - Core 6, Thread 0
...
13 - Core 0, Thread 1
12 - Core 0, Thread 0

ig 11:8 RO_NA 0 Read zero; writes ignored. (?)

v 7:0 RW_RW 0 Vector

Uncore Performance Monitoring

324 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

reads/writes to a given address so that the Zbox does not also have to do this conflict
checking. All requests for memory attached to the coupled Zbox must first be ordered
through the Bbox.

The Bbox has additional requirements on managing interactions with the Zbox,
including RAS flows. All requests in-flight in the Zbox are tracked in the Bbox. The
primary function of the Bbox, is as the coherent home agent for the QuickPath
Interconnect cache coherence protocol. The home agent algorithm requires the Bbox to
track outstanding requests, log snoop responses and other control messages, and
make certain algorithmic decisions about how to respond to requests.

The Bbox only supports directory caching agents. The source snoopy QuickPath
Interconnect protocol flows are not supported.

5.4.2 Bbox Performance Monitoring Overview
The Bbox PMU supports event monitoring through eight 48-bit wide counters
(B_CSR_PERF_CNT{7:0}). Each of these eight counters operates orthogonally, such
that each can be configured to monitor any of the available primary Bbox events. These
counters will increment by a maximum of 1 per cycle.

The count values of all 8 counters can be cleared by writing the
B_CSR_PMON_PERF_MASTER.clr bit.

Bbox PMU allows users to monitor latency related events. Traditionally, latency related
events have been calculated by measuring the number of live transactions per cycle
and accumulating this value in one of the PMU counters. The Bbox offers a different
approach. A number of live counters are dedicated to track live entries in different
queues and structures. Rather than directly accumulate the live counter values in the
PMU counters, they are fed to a number of accumulators (widths ranging from 6 to
11bits). Overflow of these accumulator values are then fed into the main PMU counters.
In order to capture an accurate live entry count for a specific queue, the accumulator
assigned to it will have to be shifted in as the LSB of the count captured in the PMU.

5.4.2.1 Bbox PMU - Overflow, Freeze and Unfreeze

Bbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Bbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Bbox PMU can be frozen due to one of three reasons

• Globally: Ubox sends a disable signal (and B_CSR_PMON_PERF_MASTER.glb_lcl is
1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to B_CSR_PMON_PERF_MASTER.en
when B_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

• Locally: The Bbox was set to local control (B_CSR_PMON_PERF_MASTER.glb_lcl =
0) and a Bbox counter overflowed.

If an overflow is detected from a Bbox performance counter, the overflow bit is set in
the data register (B_CSR_PERF_CNT_x.ov), accumulated at the box level
(B_CSR_PMON_PERF_STATUS.ovX), and forwarded up the chain towards the Sbox
(S_CSR_PMON_SUMMARY.ov_b). Refer to Table , “” to determine how each Bbox’s
overflow bit is accumulated in the attached Sbox.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 325
Reference Manual for Software Development and Optimization Guide

The Ubox may be configured to freeze all uncore counting (refer to Table , “”) when it
receives this signal.

Once a freeze has occurred, in order to see a new freeze, the overflow field(s)
responsible for the freeze, must be cleared by setting them to 0. Once the overflow
bit(s) has been cleared, the Bbox is prepared for a new sample interval. Once the
global controls have been re-enabled (Section 5.3.4, “Enabling a New Sample Interval
from Frozen Counters.”), counting will resume.

5.4.3 Bbox Performance Monitoring CSRs

Table 5-8. Bbox PMU Summary (Sheet 1 of 2)

CSR Name AddrOffset
[11:0]

Priv
Lvl Description

Directory Cache

B_CSR_DC_PERF_MASK_WR2 0x9C8 none DC performance write mask 2

B_CSR_DC_PERF_MATCH_WR2 0x9C0 none DC performance write match 2

B_CSR_DC_PERF_WMARK 0x9B8 none DC performance watermark

B_CSR_DC_PERF_CNT 0x9B0 none DC performance counters

B_CSR_DC_PERF_MASK_WR1 0x9A8 none DC performance write mask 1

B_CSR_DC_PERF_MATCH_WR1 0x9A0 none DC performance write match

B_CSR_DC_PERF_MASK_RD 0x998 none DC performance read mask

B_CSR_DC_PERF_MATCH_RD 0x990 none DC performance read match

B_CSR_DC_PERF_CTL1 0x988 none performance control 1

B_CSR_DC_PERF_CTL0 0x980 none performance control 0

Generic Counters

B_CSR_PERF_CNT_7 0x8F8 none Performance Counter 7

B_CSR_PERF_CNT_6 0x8F0 none Performance Counter 6

B_CSR_PERF_CNT_5 0x8E8 none Performance Counter 5

B_CSR_PERF_CNT_4 0x8E0 none Performance Counter 4

B_CSR_PERF_CNT_3 0x8D8 none Performance Counter 3

B_CSR_PERF_CNT_2 0x8D0 none Performance Counter 2

B_CSR_PERF_CNT_1 0x8C8 none Performance Counter 1

B_CSR_PERF_CNT_0 0x8C0 none Performance Counter 0

SubCounter (for Queues)
Registers

B_CSR_IMT_PERF_CNT 0x8A0 none In-Flight Memory Table (IMT) performance counter

B_CSR_ARB_PERF_CNT_1 0x898 none Arbiter PMU sub-counter 1

B_CSR_ARB_PERF_CNT_0 0x890 none Arbiter PMU sub-counter 0

Box-Level Control/Status

B_CSR_PMON_PERF_MASTER 0x880 none Performance Master Control Register

B_CSR_PMON_PERF_STATUS 0x800 none Performance Status Register

Uncore Performance Monitoring

326 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.4.3.1 Bbox Box Level PMU State

The following registers represent the state governing all PMUs in the Bbox.

B_CSR_PMON_PERF_MASTER controls the general characteristics of the Bbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

Note: SW MUST set .clk_en to 1 to enable Bbox performance monitoring state, by turning on
the clock, in addition to the normal enable mechanisms.

If an overflow is detected from one of the Bbox PMON registers, the corresponding bit
in the _PERF_STATUS.ov field will be set. A user must clear the corresponding bits in
the __PERF_STATUS.ov field before beginning a new sample interval.

And the _CTL0 register contains the bits used to enable queue occupancy monitoring.

Generic Control for Counters

B_CSR_PERF_CTL1_7 0x878 none Performance Counter Control 7

B_CSR_PERF_CTL1_6 0x870 none Performance Counter Control 6

B_CSR_PERF_CTL1_5 0x868 none Performance Counter Control 5

B_CSR_PERF_CTL1_4 0x860 none Performance Counter Control 4

B_CSR_PERF_CTL1_3 0x858 none Performance Counter Control 3

B_CSR_PERF_CTL1_2 0x850 none Performance Counter Control 2

B_CSR_PERF_CTL1_1 0x848 none Performance Counter Control 1

B_CSR_PERF_CTL1_0 0x840 none Performance Counter Control 0

SubControl/SubCounters

B_CSR_BZ_PERF_CNT 0x830 none B-Z Interface counter

B_CSR_IOB_PERF_CNT 0x828 none Input/Output Block (IOB) performance counters

B_CSR_PERF_CTL3 0x818 none Performance Control

B_CSR_PERF_CTL2 0x810 none Performance Control

B_CSR_PERF_CTL0 0x808 none Performance Control 0

Table 5-8. Bbox PMU Summary (Sheet 2 of 2)

CSR Name AddrOffset
[11:0]

Priv
Lvl Description

Table 5-9. B_CSR_PMON_PERF_MASTER Register – Field Definitions (Sheet 1 of 2)

Field Bits Type
HW

Reset
Val

Description

ig 63:4 RO_NA 0 Read zero; writes ignored. (?)

ck_en 3 RW_RW 0 Enables Bbox PMU clock.
Note: Must be set to 1 in order for Bbox counters to capture

events!

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 327
Reference Manual for Software Development and Optimization Guide

It is is necessary to set the appropriate .*_en to 1 before the subcounter will track the
occupancy of the queue it’s associate with (i.e. set .iob_en to 1 to track IOB_OVFL).

clr 2 RW_RW 0 Writing 1 clears all the Bbox counters.
The overflow bits found in B_CSR_PMON_PERF_STATUS will
be cleared in the same operation since they are copies of the
overflow bits found in the counters.

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.
1: Global: Enable/Disable of counters in Bbox will track
U_CSR_PERF_CTL.glb_en. Local overflows will be passed on
to Ubox without freezing local counters.

0: Local: Enable/Disable of counters in Bbox will NOT track
U_CSR_PERF_CTL.glb_en. Allows SW to write the .en bit.
Disables Counters on any local counter overflow.

en 0 RW_RW 0 Enable/disable Bbox PMU counters.

This bit is dependent on the setting of the .glb_lcl bit.

If .glb_lcl is set to 1, SW writes to this bit are ignored and
only HW may affect it’s state.

If .glb_lcl is set to 0, SW may exert control by setting the bit.

In either case, since HW may alter this bit, (due to tracking
the global enable or a local overflow) SW may read it to
determine the state of the Bbox counters.

1: Enable Bbox PMU counting.
0: Disable (freeze) Bbox PMU counters.

Table 5-10. B_CSR_PMON_PERF_STATUS Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:8 RO_NA 0 Read zero; writes ignored. (?)

ov 7:0 RW_RO 0 If an overflow is detected from the corresponding Bbox PMON
register, it’s overflow bit will be set.
Note: These are copies of the bits found in the individual

registers. Therefore, these bits will be cleared when
the counters are cleared.

Table 5-9. B_CSR_PMON_PERF_MASTER Register – Field Definitions (Sheet 2 of 2)

Field Bits Type
HW

Reset
Val

Description

Table 5-11. B_CSR_PERF_CTL0 Register – Field Definitions (Sheet 1 of 2)

Field Bits Access
HW

Reset
Val

Description

ig 63:32 RO_NA 0 Read zero; writes ignored.

rsv 31:16 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

ackcnflt_en 15 RW_RW 0 Include ackcnflt packets in IOB input events.
NOTE: Does not have a completion packet sent. Therefore, this
bit should be kept clear by default.

wrdata_en 14 RW_RW 0 1- include wr*data* (WB{I,S,E} data type) packets in IOB
events.
Note: For each write from the core, the Bbox gets two write

packets. Therefore, this bit should be kept clear by
default to prevent double counting.

iob_en 13 RW_RW 0 Enable IOB PMU sub counters. Only affects IOB overflow.

Uncore Performance Monitoring

328 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Note: A safe default value for this register is 0x37e0 (or 0x3e00 should SW choose to
manually handle enabling the appropriate sub-counters according to the events
selected for the run).

5.4.3.2 Bbox PMU state - Counter/Control Pairs

The control for each of 8 Bbox performance monitors resides in a paired control register
- B_CSR_PERF_CTL1_x. The task of this register is to select the event to be monitored
by its corresponding data counter. Setting the .ev_sel performs the event selection.

The Bbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events.

In this way, software can capture the precise number of events that occurred between
the time uncore counting was enabled and when it was disabled (or ‘frozen’) with
minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

bz_en 12 RW_RW 0 Enable BZ PMU sub counters - needed to measure events
0x21,0x22, 0x24, 0x31 & 0x32 (overflow, first acknowledge and
watermark)

dc_en 11 RW_RW 0 Enable DC PMU sub counters. Only affects DC overflow.

arb_en 10 RW_RW 0 enable arbiter PMU sub counters. Only affects arbiter overflow.

imt_en 9 RW_RW 0 enable IMT PMU sub counters.Only affects IMT overflow.

ig 8:0 RO_NA 0 Read zero; writes ignored.

Table 5-11. B_CSR_PERF_CTL0 Register – Field Definitions (Sheet 2 of 2)

Field Bits Access
HW

Reset
Val

Description

Table 5-12. B_CSR_PERF_CTL1_{7-0} Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:6 RO_NA 0 Read zero; writes ignored.

ev_sel 5:0 RW_RW 0 Performance Counter select. The counter increments by 1 every
clock the input is ’1. B_CSR_PERF_CTL2 and
B_CSR_PERF_CTL3 provide additional controls. See Table 5-11
for event definitions.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 329
Reference Manual for Software Development and Optimization Guide

5.4.3.3 Bbox Performance Monitoring SubControl Register

The _CTL2 register is used to select subevents for the ARB and IOB events (refer to
Section 5.4.5, “BBox Events Ordered By Code” for more detail).

Table 5-13. B_CSR_PERF_CNT{7-0} Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:49 RO_NA 0 Read zero; writes ignored.

ov 48 RW_RW 0 Overflow of the performance counter.
NOTE: Writing 1 to this field may cause a freeze. Writing
capability is for debug purposes and not expected to be used.
See Section 5.4.2 for more information.

cnt 47:0 RW_RW 0 48-bit performance event counter

Table 5-14. B_CSR_PERF_CTL2 Register – Field Definitions (Sheet 1 of 2)

Field Bits Access
HW

Reset
Val

Description

ig 63:47 RO_NA 0 Read zero; writes ignored.

z_wmark_ge_le 46 RW_RW 0 0: BZ watermark is active when z_cnt <= z_wmark
1: BZ watermark is active when z_cnt >= z_wmark

z_wmark 45:40 RW_RW 0 Watermark of outstanding transactions to z box

z_op 39:24 RW_RW 0 Decoded opcode to Zbox. Fill2b events should be counted
separately from any other opcodes.

iob_remote_local 23:22 RW_RW 0 0: count local or remote accesses. This option is only valid
for IOB live transactions.
1: count local accesses
2: count remote accesses

iob_id_out 21 RW_RW 0 if 0: DNID of output Intel QPI packet is used to determine
local or remote socket
if 1: RHNID of output Intel QPI packet is used to determine
local or remote socket

iob_id_in 20 RW_RW 0 if 0: RHNID of input Intel QPI packet is used to determine
local or remote socket
if 1: RSNID of input Intel QPI packet is used to determine
local or remote socket

iob_trans_sel 19:18 RW_RW 0 This field affects selection of types of transactions that are
used in accumulator of outstanding transactions in IOB.

0: match opcode and class (defined in B_CSR_PERF_CTL3
register) to output and input flits.

1: match opcode for input flits and count all outgoing *cmp*
flits that correspond to the input flits.
2: track snoops (class, opcode and iob_id) selection has no
effect.

arbq_wmark 17:12 RW_RW 0 Threshold field that can be used in conjunction with event
0xc

arbq_sel1 17:12 RW_RW 0 Arbiter queue selection for Arbiter event set1.
The value programmed here selects the queue monitored by
the event codes 0x0d to 0x11. However, the combinations
are only meaningful for 0x10 (the non-empty case). For the
other event the subfield is effectively ignored.

Uncore Performance Monitoring

330 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

NOTE regarding the iob_trans_sel, iob_id_in, iob_id_out, and iob_remote_local
events:

If you want to change iob_trans_sel from 0 or 1, you MUST write to PERF_CTL3
immediately afterwards. If iob_trans_sel is 0 or 1 and you want to change iob_id_in,
you must write PERF_CTL3 immediately afterwards.

iob_trans_sel == 1 cannot be used in mirroring configurations.This is because under
mirroring, the primary sometimes issues NcRd* to the slave instead of issuing Cmps for
the incoming packet. Because iob_trans_sel == 1 causes a decrement of the live
counter only on outgoing Cmp* and NOT on outgoing NcRd*, the live counter would
end up with too many increments and no corresponding decrements causing the live
counter to lose count of live transactions.

arbq_sel0 5:0 RW_RW 0 Arbiter queue selection for Arbiter event set0.
The value programmed here selects the queue monitored by
the event codes 0x08 to 0x0c. Possible values for this field
are 0x00-0x35,0x37-0x39. However, not all of these values
are supported by all the events with codes 0x08 to 0x0c.
Refer to Table 5-15, “ARBQ_SEL0 - which queues are
relevant for ARB_Q0* events.” for more details.

Table 5-15. ARBQ_SEL0 - which queues are relevant for ARB_Q0* events.

arbq_sel0 Event 0x8
(OCCUPANCY)

Event 0x9
(INSERTS)

Event 0xA
(REMOVE)

Event 0xB
(NE_CYCLES)

Event 0xC
(Thresholded
OCCUPANCY)

0x3f-0x3a:
NONE

--- --- --- --- ---

0x39: Any Conflict
Queue

--- Insert into any
of the conflict

queues

Remove from
any of the

conflict queues.

Cycles one or
more of the

conflict queues
is not empty.

0x38: SAQ (OR of
CLM, DRS, NCB,
NCS)

--- Insert into any
of the listed

queues.

Remove from
any of the listed

queues.

Cycles one or
more of the

listed queues is
not empty.

0x37: CLM Y Y Y Y Y

0x36: None --- --- --- --- ---

0x35: COHQ Y Y Y Y Y

0x34: NBAQ/NBR Y Y Y Y Y

0x33: BRAQ/DRS Y Y Y Y Y

0x32: WIAQ/NCB Y Y Y Y Y

0x31: RIAQ/NCS Y Y Y Y Y

0x30: Any Conflict
Queue

Number of non-
empty conflict

queues.

Insert into any
of the conflict

queues

Remove from
any of the

conflict queues.

Cycles one or
more of the

conflict queues
is not empty.

0x0-0x2f:
Select one of the
conflict queues

--- Y Y Y ---

Table 5-14. B_CSR_PERF_CTL2 Register – Field Definitions (Sheet 2 of 2)

Field Bits Access
HW

Reset
Val

Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 331
Reference Manual for Software Development and Optimization Guide

iob_trans_sel == 0 - This mode is most useful when mirroring is turned on. However, if
you plan to use events 0x16-0x18 in this config when mirroring is turned on, then you
need to:

Set PERF_CTL0.ackcnflt_en to 1, PERF_CTL2.remote_local to 03.,
PERF_CTL3.{opcode_in,opcode_out} to 0xffff4, PERF_CTL3.class_in to 0xfff9 and
PERF_CTL3.class_out to 0x4014. In effect, if mirroring is enabled, iob_trans_sel== 0
can only be used to measure the average latency of all transactions (including AckCnflt)
that are serviced by the Bbox. We cannot measure the latency of a subset of opcodes.

5.4.3.4 Bbox Register for IOB Related Mask/Match Facility

For many of the IOB events (that is, IOB_IN_PCKTS), it is possible to filter according to
the opcode and message class of the packets. Since the match/mask fields are one-hot
encoded, any combination of opcodes/message classes may be tracked simultaneously.
Details for how to select among the available message classes and opcodes are
included in Table 5-18, “Opcode Match by Message Class for the Bbox” and Table 5-18,
“Opcode Match by Message Class for the Bbox”.

Note: SW should set this register to all 1s by default so that events are not filtered according
to class or opcode.

Table 5-16. B_CSR_PERF_CTL3 Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

opcode_out 63:48 RW 0 Match output message opcodes (decoded)

class_out 47:32 RW 0 Match output message class (decoded)

opcode_in 31:16 RW 0 Match input message opcodes (decoded)

class_in 15:0 RW 0 Match input message class (decoded).
Note.When monitoring IOB latency, this filed should not be set
to include message class “Snoop Responses” (MC=1). If MC=1
is selected by making class_in[1]=1, the latency values could
be grossly exaggerated. Bbox IOB internal counters could be
reset only by another write to this CSR. Until then the IOB live
counters could be incorrect.

Table 5-17. Intel® QuickPath Interconnect Packet Message Classes

Code Name Definition

0x0001 HOM0 Home - Requests

0x0002 HOM1 Home - Responses

0x0004 NDR Non-Data Responses

0x0008 SNP Snoops

0x0010 NCS Non-Coherent Standard

0x0800 NCB Non-Coherent Bypass

0x4000 DRS Data Response

Uncore Performance Monitoring

332 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

1 Only with memory mirroring enabled.

(I) indicates this opcode is only valid as input to the Bbox. (O) indicates this opcode is
only valid as output from the Bbox. All others can be seen as either input or output. For
more information about the opcodes, refer to Table 5-112, “Opcodes (Alphabetical
Listing)”.

Table 5-18. Opcode Match by Message Class for the Bbox

Decoded
Opcode HOM0 (I) HOM1 (I) SNP (O) DRS

0x0001 RdCur RspI SnpCur (O) DataC_(EIMS)

0x0002 RdCode RspS SnpCode ---

0x0004 RdData --- SnpData (O) DataC_(EIMS)_Cmp

0x0008 --- --- --- (O) DataNc

0x0010 RdInvOwn RspCnflt SnpInvOwn (I) WbIData

0x0020 InvXtoI --- SnpInvXtoI (I) WbSData

0x0040 EvctCln --- --- (I) WbEData

0x0080 --- --- --- ---

0x0100 InvItoE RspFwd SnpInvItoE (I) WbIDataPtl

0x0200 --- RspFwdI --- ---

0x0400 --- RspFwdS --- (I) WbEDataPtl

0x0800 --- RspFwdIWb --- ---

0x1000 WbMtoI RspFwdSWb --- ---

0x2000 WbMtoE RspIWb --- ---

0x4000 WbMtoS RspSWb --- ---

0x8000 AckCnflt --- --- ---

NDR NCB NCS

0x0001 Gnt_Cmp NcWr1 NcRd1

0x0002 --- --- ---

0x0004 --- --- ---

0x0008 --- --- ---

0x0010 --- --- NcRdPtl1

0x0020 --- --- ---

0x0040 --- --- ---

0x0080 --- --- ---

0x0100 Cmp --- ---

0x0200 --- --- ---

0x0400 Cmp_FwdCode --- ---

0x0800 Cmp_FwdInvOwn --- ---

0x1000 Cmp_FwdInvItoE NcWrPtl1 ---

0x2000 --- --- ---

0x4000 --- --- ---

0x8000 --- --- ---

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 333
Reference Manual for Software Development and Optimization Guide

5.4.3.5 Bbox PMU Subcounter Registers - Subunit descriptions

For many of the Bbox queues, a subcounter register has been implemented to track
transactions through the queue. Subsequent sections include tables detailing the
subcounters for the following Bbox subunits:

IOB - The Input/Output Block. Tracks events that occur at the interfaces between the
Bbox and Intel QPI ports.

BZ - Tracks requests initiated by the Bbox and end with an acknowledgement of the
request by the Zbox. Each transaction represents only part of the latency between B
and Zbox access. One Bbox read/write request may include more than one ack from its
Zbox.

ARB - The ARB (arbitration queue) contains 37 queues: BRAQ, WIAQ, RIAQ, NBRAQ,
COHQ and 32 conflict queues which are used to arbitrate amongst tracker/IMT entries
for a given resource when the resource is not immediately available. Most ARB queues
correspond to an Intel QPI message class. Each ARB queue is either the depth of the
Tracker (512) or the depth of the IMT (32). Refer to Section 5.4.4.3, “Arbiter Events”
for a more detailed description of each queue.

IMT - The In-flight Memory Table - tracks and serializes in-flight reads and writes to
the Zbox. IMT also performs protocol serialization.

DC - Directory Cache

5.4.3.6 Bbox IOB PMU Register

The following table contains the subcounter for tracking transactions through the IOB.
Overflows from the subcounter can be captured if the IOB_OVFL event is selected.

Note: Wr*data* (WB{I,S,E} data type) packets are not counted as IOB input events by
default. To include Wr*Data* packets in IOB input events, set
B_CSR_PERF_CTL0.wrdata_en=1. This needs to be done in addition to selecting the
corresponding class_in and opcode_in. When both WbM* and Wb*Data* packets are
selected and enabled, B_CSR_IOB_PERF_CNT.live_cnt may be non-0 when Bbox is idle.

IOB transactions have an age state(1bit) to indicate whether the output packet or a
completion packet belongs to the current set of transactions that we want to capture.
Every write to this register flips the age bit.

Table 5-19. B_CSR_IOB_PERF_CNT Register – Field Definitions

Field Bits

Note:A
c
c
e
s
s

HW
Reset

Val
Description

ig 63:41 RO_NA 0 Read zero; writes ignored.

snp_live_cnt_remote 40:31 RO_RW 0 Number of currently outstanding remote snoops

Uncore Performance Monitoring

334 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.4.3.7 Bbox BZ PMU Registers

The following table contains the subcounter for tracking transactions through the BZ.
Overflows from the subcounter can be captured if the BZ_OVFL event is selected.

5.4.3.8 Bbox ARB PMU Registers

The following tables contain the subcounters for tracking transactions through selected
ARB queues. Overflows from the subcounter are accumulated as events. Refer to the
ARB_Q*_OVFL events in Section 5.4.5, “BBox Events Ordered By Code” for more
information.

snp_live_cnt_local 30:21 RO_RW 0 Number of currently outstanding local snoops

iob_live_cnt 20:11 RO_RW 0 Number of currently outstanding IOB transactions. WB{I/
S/E}Data* packets do not have a separate acknowledge
from Bbox. In order for the counter to become 0 when
Bbox becomes idle, these packets are ignored by default.
(class=drs, opcode=(4/5/6/7/8/10/11).To enable count of
these packets, set
B_CSR_.wrdata_en=1and write corresponding
B_CSR_PERF_CTL3.class_in and opcode_in fields. Write to
B_CSR_PERF_CTL3 clears IOB live counter.

accum_cnt 10:0 RW_RW 0 Accumulated outstanding IOB or snoop transactions

Table 5-19. B_CSR_IOB_PERF_CNT Register – Field Definitions

Field Bits

Note:A
c
c
e
s
s

HW
Reset

Val
Description

Table 5-20. B_CSR_BZ_PERF_CNT Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:45 RO_NA 0 Read zero; writes ignored.

bz_state 44:31 RO_RW 0 Valid outstanding transactions in bz interface. Cleared when a
write to B_CSR_PERFC_CTL2 occurs AND
B_CSR_PERFC_CTL2.z_op is different from the previous
setting.

live_cnt 12:7 RO_RW 0 Number of currently outstanding IOB transactions. Fill2Bbox
requests are not acknowledged by Zbox. If
B_CSR_PERF_CTL2.z_op is configured to count FILL2Bbox
requests, a PMU acknowledge is generated one clock later in
order for the live_cnt to become 0 when Bbox becomes idle.
Cleared when a write to B_CSR_PERFC_CTL2 occurs AND
B_CSR_PERFC_CTL2.z_op is different from the previous
setting.

accum_cnt 6:0 RW_RW 0 Accumulated outstanding BZ transactions. Bit 6 is overflow.

Table 5-21. B_CSR_ARB_PERF_CNT0 Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 31:22 RO_NA 0 Read zero; writes ignored.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 335
Reference Manual for Software Development and Optimization Guide

5.4.3.9 Bbox IMT PMU Register

The following table contains the subcounter for tracking transactions through the IMT.
Overflows from the subcounter can be captured if the IMT_OVFL event is selected.

5.4.3.10 Bbox DC PMU Registers

The following tables represent the state used to gather events related to the Directory
Cache. The specified subevents are captured in the generic DC_EVENT* events.

The following table contains the subcounter for tracking transactions through the IMT.
Overflows from the subcounter can be captured if one of the
DC_EVENT*.TRANS_OCCUPANCY events is selected.

live_cnt 21:12 RO_RW 0 This counter reflects the number of currently outstanding
events determined by B_CSR_PERF_CTL2.arbq_sel0

ig 11 RO_NA 0 Read zero; writes ignored.

accum_cnt 10:0 RW_RW 0 This counter accumulates live_cnt. accum_cnt (n) =
accum_cnt(n-1) + live_cnt. MSB is overflow that can trigger
main PMU counters.

Table 5-22. B_CSR_ARB_PERF_CNT1 Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 31:23 RO_NA 0 Read zero; writes ignored.

live_cnt 22:12 RO_RW 0 This counter reflects the number of currently outstanding
events determined by B_CSR_PERF_CTL2.arbq_sel1

accum_cnt 11:0 RW_RW 0 This counter accumulates live_cnt. accum_cnt (n) =
accum_cnt(n-1) + live_cnt. MSB is overflow that can trigger
main PMU counters.

Table 5-21. B_CSR_ARB_PERF_CNT0 Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

Table 5-23. B_CSR_IMT_PERF_CNT Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

imt_valid 63:16 RO_RW 0 IMT Valid Bits - indicates which IMT entries are valid
(occupied)

ig 15:13 RO_NA Read zero; writes ignored.

live_cnt 12:7 RO_RW 0 Outstanding IMT transaction counter.

accum_cnt 6:0 RW_R 0 Accumulated IMT transactions. Overflow (bit 6) drives main
performance counters.

Uncore Performance Monitoring

336 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Table 5-24. B_CSR_DC_PERF_CNT Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:22 RO_NA 0 Read zero; writes ignored.

live_cnt 21:16 RW_RW 0 Outstanding dc transaction counter. The live counter is cleared
by logic reset or a write to B_CSR_DC_PERF_CTL1. Freeze
does not stop the live counter.

accum_cnt 6:0 RW_RW 0 Accumulated dc transactions. Overflow (bit 6) is connected to
main performance counters.

Table 5-25. B_CSR_DC_PERF_CTL0 Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:20 RO_NA 0 Read zero; writes ignored.

event3 19:15 RW_RW 0 Select for dc event 3 - same selection as event0

event2 14:10 RW_RW 0 Select for dc event 2 - same selection as event0

event1 9:5 RW_RW 0 Select for dc event 1 - same selection as event0

event0 4:0 RW_RW 0 Select for dc event 0.
Note: Events 0 through 6 are affected by

B_CSR_DC_PERF_CTL1.dc_opcode.
B_CSR_PERF_CT0.dc_en needs to be set to 1 to
enable events 0 through 7.

See Table 5-27 for a description of selections.

Table 5-26. Mux controls for B_CSR_DC_PERF_CTL1 (Sheet 1 of 2)

Name Code Description

TRANS_OVFL 0x0 Accumulator overflow. Outstanding transactions matching opcodes
(B_CSR_DC_PERF_CTL1.dc_opcode) are accumulated in a 7-bit counter.
Bit 6(oveflow) is connected to the main performance counters. To obtain
the number of matching transactions, multiply the result in main counter
by 2^6 and add B_CSR_DC_PERF_CNT.accum_cnt[5:0]

TRANS_INSERT 0x1 New transaction entering dc (insert). This event counts number of
transactions entering the DC based on opcode matching
(B_CSR_DC_PERF_CTL1.dc_opcode). NCRD and NCWR do not enter dc.
Some RdData commands go through DC twice. The first pass is for a
coarse-share MESI, and the second pass (if there is one) is for an
exclusive MESI.Both passes correspond to the same entry in IMT. Number
of dc inserts may differ from the number of IMT inserts.

TRANS_REMOVE 0x2 Transaction retired from dc (remove). This event counts number of
transactions exiting the DC based on opcode matching
(B_CSR_DC_PERF_CTL1.dc_opcode).

WMARK 0x3 Watermark event. Indicates that a number of currently outstanding
transactions in dc (maximum is 32) is less and equal or greater and equal
than a constant. (defined in B_CSR_DC_PERF_WMARK).

FULL 0x4 dc full. Indicates that DC has 32 outstanding transactions

NON_EMPTY 0x5 dc non-empty.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 337
Reference Manual for Software Development and Optimization Guide

MATCH_READ 0x6 Matching dc read event. Upon receiving a request, dc reads it’s cache.
The data read from the cache is matched to the criteria defined in
B_CSR_DC_PERF_MATCH_RD. The selected events are masked with
B_CSR_DC_PERF_MASK_RD. Affected by
B_CSR_DC_PERF_CTL1.dc_opcode.
dc_read_event =
((DC_CACHE_DATA_RD xnor B_CSR_DC_PERF_MATCH_RD) or
B_CSR_DC_PERF_MASK_RD) and MATCH_DC_OPCODES AND NOT
2nd_LOOKUP

MATCH_WRITE 0x7 Matching dc write event. Upon receiving a request dc may write to it’s
cache. Writes are matched to the criteria defined in
B_CSR_DC_PERF_MATCH_WR. The selected events are masked with
B_CSR_DC_PERF_MASK_WR.
dc_write_event =
(DC_CACHE_DATA_WR xnor B_CSR_DC_PERF_MATCH_WR) or
B_CSR_DC_PERF_MASK_WR.

NEED_SNOOPS 0x8 new transaction requires snoops. Indicates that single or multiple snoops
are required. No matching is performed.

LINE_EVICT 0x9 DC line eviction event

MATCH_READ_2ND_LOOK 0xa Matching DC read second lookup. Works the same way as 6, with the
exception that second DC read lookups cause this event.

SNP_LOC 0xb Measure snoops caused by cell local memory accesses.

MATCH_WRITE 0xc Matching dc write event 2. This utilizes a second set of match/match
registers. Upon receiving a request dc may write to it’s cache. Writes are
matched to the criteria defined in B_CSR_DC_PERF_MATCH_WR2. The
selected events are masked with B_CSR_DC_PERF_MASK_WR2.
dc_write_event2 =
(DC_CACHE_DATA_WR2 xnor B_CSR_DC_PERF_MATCH_WR2) or
B_CSR_DC_PERF_MASK_WR2.

LINE_ALLOCATE 0xd DC line allocation event

Table 5-27. B_CSR_DC_PERF_CTL1 Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:16 RO_NA Read zero; writes ignored.

dc_opcode 15:0 RW_RW 0 Match opcode(decoded) of input/output transactions entering
and leaving dc to be counted by live counter of outstanding
transactions. The same opcode is used to match opcodes
within matching dc read and write events. The opcode types
are defined in Intel QPI. Since the opcode field represents a
decoded opcode, multiple opcodes can be selected
simultaneously. Affects event{0-3} values 0 through 6.
NOTE: Since this acts as a filter, SW should set the default
value of this field to ALL 1s. The DC uses the same Message
Class, Opcode encoding as QP.

Table 5-28. B_CSR_DC_PERF_MATCH_RD Register – Field Definitions (Sheet 1 of 2)

Field Bits Access
HW

Reset
Val

Description

ig 63:37 RO_NA 0 Read zero; writes ignored.

match_2nd_rea
d_pass

36 RW_RW 0 match 2nd read pass

match_buddy 35 RW_RW 0 match buddy bit

Table 5-26. Mux controls for B_CSR_DC_PERF_CTL1 (Sheet 2 of 2)

Name Code Description

Uncore Performance Monitoring

338 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

match_dir 34:23 RW_RW 0 match 11 bits of directory info

match_bank 22 RW_RW 0 match bank bit

match_hit 21:1 RW_RW 0 match dc hit bits

match_hit_or 0 RW_RW 0 match hit (bit OR of 16 dc hits)

Table 5-29. B_CSR_DC_PERF_MASK_RD Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:37 RO_NA 0 Read zero; writes ignored.

mask_2nd_rea
d_pass

36 RW_RW 0 mask 2nd read pass

mask_buddy 35 RW_RW 0 mask buddy bit

mask_dir 34:23 RW_RW 0 mask 11 bits of directory info

mask_bank 22 RW_RW 0 mask bank bit

mask_hit 21:1 RW_RW 0 mask DC hit bits

mask_hit_or 0 RW_RW 0 mask hit (bit OR of 16 DC hits)

Table 5-30. B_CSR_DC_PERF_MATCH_WR{1,2} Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:37 RO_NA 0 Read zero; writes ignored.

match_snp_gen 36 RW_RW 0 match if snoop is generated

match_imt 30 RW_RW 0 match IMT update

match_bank 29 RW_RW 0 match bank

match_buddy 28 RW_RW 0 match buddy bit

match_dir 27:16 RW_RW 0 match directory bits

match_way 15:0 RW_RW 0 match cache way write

Table 5-31. B_CSR_DC_PERF_MASK_WR{1,2} Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:37 RO_NA 0 Read zero; writes ignored.

mask_snp_gen 36 RW_RW 0 mask if snoop is generated

mask_imt 35 RW_RW 0 mask IMT update

mask_bank 34 RW_RW 0 mask bank

mask_buddy 33 RW_RW 0 mask buddy bit

mask_dir 32:21 RW_RW 0 mask directory bits

mask_way 20:0 RW_RW 0 mask cache way write

Table 5-28. B_CSR_DC_PERF_MATCH_RD Register – Field Definitions (Sheet 2 of 2)

Field Bits Access
HW

Reset
Val

Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 339
Reference Manual for Software Development and Optimization Guide

5.4.4 Bbox Performance Monitoring Events

5.4.4.1 IOB Events

IOB events are events that occur at the Bbox Intel QuickPath Interconnect interfaces.
These events can provide information that relates to overall Bbox performance.

Events generated by IOB are configured with the B_CSR_PERF_CTL1 and
B_CSR_PERF_CTL2 registers.

IOB related latency monitoring is made possible by the existence of two sub-counters
inside the IOB. The first is a 10b counter that maintains the current number of live
outstanding transactions that match the criteria determined by
B_CSR_CTL3.{class_in,opcode_in}. The second is an 11b counter which accumulates
these outstanding transactions every cycle. The overflow of this second counter is
connected to the main PMU counters as an IOB event. The two IOB sub-counters are
accessible through the B_CSR_IOB_PERF_CNT register.

IOB events are selected by opcode, class and locality (remote/local/any). Any set of
different class and opcode packets can be selected for counting. To calculate average
latency, snoop requests and responses need to be selected separately. To determine
the latency of non-snoop packets, any completion packet can be selected by setting
B_CSR_PERF_CTL2.iob_trans_sel to 1. Wr*data* (WB{I,S,E} Data Type) packets are
not selected by default in B_CSR_PERF_CTL3. This is done to obtain correct latency
results for WR* packets.

Input packet locality is determined by either RHNID (Requester Home Node ID) or
RSNID (Requester Snoop Node ID). Output packet locality is determined by either
DNID (Destination ID) or RHNID.

Four types of response forward packets can be counted, local to local, remote to local,
local to remote and remote to remote.

5.4.4.2 BZ Events

BZ requests are initiated by the Bbox and are completed when the Zbox acknowledges
(‘ack’s) the request. This is a partial latency of a Bbox to Zbox access. One Bbox read
or write request may include more than one ack from the Zbox.

Two counters exist to compute the average latency of BZ requests. The first is a 6b that
maintains the current number of outstanding requests. The second is a 7b counter
which accumulates these outstanding requests each cycles. The overflow of the second
counter is connected to the main PMU counters as a BZ event (BZ_OVFL).

Table 5-32. B_CSR_DC_PERF_WMARK Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:7 RO_NA 0 Read zero; writes ignored.

wmark_ge_le 6 RW_RW 0 0: Watermark event occurs when DC trans_cnt <= wmark
1: Watermark event occurs when DC trans_cnt >= wmark

wmark 5:0 RW_RW 0 Watermark of outstanding events in DC.
B_CSR_DC_PERF_CNT.trans_cnt is compared to the value in
this field.

Uncore Performance Monitoring

340 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Since FILL2B opcodes are not acknowledged by the Zbox, this opcode should be
excluded from the Zbox opcode selection when average latency data is required.

Note: To determine average Zbox Latency, one can measure BZ_OVFL / BZ_ACK. These
events can be further filtered by Zbox opcode. See appropriate event descriptions for
more information.

5.4.4.3 Arbiter Events

The arbiter contains 37 queues: BRAQ, WIAQ, RIAQ, NBRAQ, COHQ and 32 conflict
queues. The arbiter sub counters are 10 and 11b respectively and can either
accumulate the outstanding transactions in one of the queues or accumulate the
number of non-empty arbiter queues. B_CSR_PERF_ARB_PERF_CNT{1-0} provide
access to these sub-counters. The B_CSR_PERF_CTL2 CSR contains fields controlling
the counters. Overflows of the two counters are connected to main PMU counters as
arbiter events ARB_Q{0,1}_OVFL.

The arbitration queues are used to arbitrate amongst Tracker/IMT entries for a given
resource when the resource is not immediately available. Examples of unavailable
resources are: QuickPath Interconnect credits to send a packet out of the Bbox, the
Rbox output port is busy or the IMT is full. Most ARB queues correspond to QuickPath
Interconnect message classes. Two of the ARB queues (the COHQ and the CNFLTQ) are
used to arbitrate for access to the IMT itself.

Following arbQs are present in the design:

• 1) RIAQ (Read ARBq) – this queue holds failover reads that target a Bbox slave. It
is used only in mirroring flows. 32 entries.

• 2) WIAQ (Write ARBq) – this queue holds writes that target a Bbox slave. It is used
only in migration/mirroring flows. 32 entries.

• 3) BRAQ (Block Response ARBq)- this queue holds requests that are waiting to
send DataC_x_Cmp to the requestor. The reason these are queued up in the BRAQ
is either due to lack of credits or output port (to Rbox) business. 32 entries.

• 4) NBRAQ (Non-Block Response ARBq) – this queue holds requests that are waiting
to send a Cmp (NDR) packet to the requestor. The reason these are queued up in
the NBRAQ is either due to lack of credits or output port (to Rbox) business. Note
that in the case of NBRAQ, the IMT entry may already have been de-allocated (such
is not the case for BRAQ though). 512 entries.

• 5) COHQ (aka RSRCQ) – this queue holds requests that encountered a full IMT.
Since the home message class (new requests) must be sunk due to tracker pre-
allocation, a queue must keep track of entries that could not be immediately
allocated into the IMT. The COHQ serves this purpose. 512 entries.

• 6) CLMQ – (Cell Local Memory Queue) this queue is used to implement the CLM-
mode3 optimization. Writebacks from IOH agents are pushed into this queue till the
DC has written out the hint indicating who the next consumer owner of the line
would be. 32 entries.

• 7) CNFLTQ (Conflict Queues) – this is a collection of 32 separate queues (one per
each IMT entry) of 64 entry deep each. The queue holds all conflictors (max 64
since the Bbox only supports a 6b nid, and each caching agent can have at most
one request to the same address).

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 341
Reference Manual for Software Development and Optimization Guide

5.4.4.4 Directory Cache Events

Two counters have been provided to calculate the average latency of transactions that
enter and leave directory cache. The first is a 6b counter that maintains the current
number of outstanding transactions, and the second is a 7b counter that accumulates
these outstanding transactions. B_CSR_DC_PERF_CNT register provides access to the
counters. The transactions that are counted are gated with transaction opcodes (subset
of QuickPath Interconnect opcodes). Two CSR registers, B_CSR_DC_PERF_CTL0 and
B_CSR_DC_PERF_CTL1 provide control of the DC events. Four DC events are
generated. The four events DC_EVENT{3-0} are connected to the main PMU counters.

In addition, directory cache read and write events can be generated. The read and
write events are gated with match and mask registers(B_CSR_DC_PERF_MATCH_RD,
B_CSR_DC_PERF_MATCH_RD, B_CSR_DC_PERF_MATCH_WR,
B_CSR_DC_PERF_MATCH_WR).

Additional DC events can be found in the B_CSR_DC_ CSR definition.

5.4.4.5 IMT Events

In-flight memory table events enable calculation of average occupation of IMT. There
are 5 IMT events: sub-counter overflow, pop conflict, allocate, non-empty and full. The
number of IMT inserts is a sum of pop conflict and allocate events. All IMT events are
defined in B_CSR_PERF_CTL1.

5.4.5 BBox Events Ordered By Code
Table 5-33 summarizes the directly-measured BBox events.

Table 5-33. Performance Monitor Events for BBox Events (Sheet 1 of 2)

Symbol Name Event
Code

SubCtl
Dep?

Max
Inc/Cyc Description

RFP_LOC_LOC 0x00 1 RFP Local/Local

RFP_REM_LOC 0x01 1 RFP Remote/Local

RFP_LOC_REM 0x02 1 RFP Local/Remote

RFP_REM_REM 0x03 1 RFP Remote/Remote

IMT_OCCUPANCY 0x04 1 IMT Occupancy

IMT_ALLOC 0x05 1 IMT Allocations

IMT_POP_CFL 0x06 1 IMT Pop Conflicts

IMT_NE_CYCLES 0x07 1 Cycles IMT Not Empty

ARB_Q0_OCCUPANCY 0x08 CTL2 1 Arb Queue 0 Occupancy

ARB_Q0_INSERTS 0x09 CTL2 1 Arb Queue 0 Inserts

ARB_Q0_REMOVE 0x0A CTL2 1 Arb Queue 0 Remove

ARB_Q0_NE_CYCES 0x0B CTL2 1 Cycles Arb Queue 0 Not Empty

ARB_Q0_THOCCUPANCY 0x0C CTL2 1 Arb Queue 0 Occupancy (Thresholded)

ARB_Q1_OCCUPANCY 0x0D CTL2 1 Arb Queue 1 Occupancy

ARB_Q1_INSERTS 0x0E CTL2 1 Arb Queue 1 Inserts

ARB_Q1_REMOVE 0x0F CTL2 1 Arb Queue 1 Remove

ARB_Q1_NE_CYCES 0x10 CTL2 1 Cycles Arb Queue 1 Not Empty

ARB_Q1_EMPTY_INSERT 0x11 CTL2 1 Insert to Empty Arbiter Queue

Uncore Performance Monitoring

342 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

DC_EVENT0 0x12 DC_CTL0
,DC_WM

ARK

1 Directory Cache Event 0

DC_EVENT1 0x13 DC_CTL0
,DC_WM

ARK

1 Directory Cache Event 1

DC_EVENT2 0x14 DC_CTL0
,DC_WM

ARK

1 Directory Cache Event 2

DC_EVENT3 0x15 DC_CTL0
,DC_WM

ARK

1 Directory Cache Event 3

IOB_OCCUPANCY 0x16 1 IOB Occupancy

IOB_INSERTS 0x17 CTL2 1 IOB Inserts of Live Trans

IOB_REMOVES 0x18 CTL2 1 IOB Removals of Live Trans

IOB_IN_PKTS 0x19 CTL2 1 IOB Input Packets

IOB_OUT_PKTS 0x1A CTL2 1 IOB Output Packets

SNP_REQ_ALL 0x1B 1 All Snoop Requests

SNP_REQ_LOC 0x1C 1 Local Snoop Requests

SNP_REQ_REM 0x1D 1 Remote Snoop Requests

SNP_RSP_ALL 0x1E 1 All Snoop Responses

SNP_RSP_LOC 0x1F 1 Local Snoop Responses

SNP_RSP_REM 0x20 1 Remote Snoop Responses

BZ_OCCUPANCY 0x21 1 BZ Occupancy

BZ_ACK 0x22 1 BZ Acknowledge

BZ_ACK_ALL 0x23 1 All BZ Acknowledges

BZ_CYCLES_TRANS 0x24 CTL2 1 Cycles Z Transactions Outstanding

B_CYCLES 0x25 1 Bbox Clock Cycles

NSL_SUCC 0x26 1 1 NSL Success

TRACKER_IMT_HAZARD 0x27 1 1 Tracker/IMT Hazard

NSL_REJ 0x28 1 1 NSL Reject

IMT_FULL_CURR_PIPE 0x29 1 1 Cycles IMT Full for Current Pipe Pass

IMT_FULL 0x2A 1 1 Cycles IMT Full

NSL_EVENT0 0x2B 1 1 NSL Event 0

NSL_EVENT1 0x2C 1 1 NSL Event 1

MEM_HINT_DC_LUP 0x2D 1 1 Memory Hint in DC Lookup

MEM_HINT_Z_RESP 0x2E 1 1 Memory Hint in Zbox Response

POISON_RECV 0x2F 1 1 Poison Packet Received

POISON_SENT 0x30 1 1 Poison Packet Sent

BZ_OP_MATCH 0x31 1 1 BZ Request Opcode Match

Z_OPT_V2V 0x32 1 1 Zbox V2V Optimized Requests

Table 5-33. Performance Monitor Events for BBox Events (Sheet 2 of 2)

Symbol Name Event
Code

SubCtl
Dep?

Max
Inc/Cyc Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 343
Reference Manual for Software Development and Optimization Guide

5.4.6 Bbox Performance Monitor Event List
This section enumerates Itanium® processor 9500 series uncore performance
monitoring events for the Bbox.

ARB_Q0_INSERTS
• Title: Arb Queue 0 Inserts
• Category: ARB
• Event Code: 0x9, Max. Inc/Cyc: 1,
• Definition: An insert (write) to the selected ARB queue.

Extension CTL2[5:0] Description

CFL0 0x00 Conflict Queue 0

CFL1 0x01 Conflict Queue 1

CFL2 0x02 Conflict Queue 2

CFL3 0x03 Conflict Queue 3

CFL4 0x04 Conflict Queue 4

CFL5 0x05 Conflict Queue 5

CFL6 0x06 Conflict Queue 6

CFL7 0x07 Conflict Queue 7

CFL8 0x08 Conflict Queue 8

CFL9 0x09 Conflict Queue 9

CFL10 0x0a Conflict Queue 10

CFL11 0x0b Conflict Queue 11

CFL12 0x0c Conflict Queue 12

CFL13 0x0d Conflict Queue 13

CFL14 0x0e Conflict Queue 14

CFL15 0x0f Conflict Queue15

CFL16 0x10 Conflict Queue 16

CFL17 0x11 Conflict Queue 17

CFL18 0x12 Conflict Queue 18

CFL19 0x13 Conflict Queue 19

CFL20 0x14 Conflict Queue 20

CFL21 0x15 Conflict Queue 21

CFL22 0x16 Conflict Queue 22

CFL23 0x17 Conflict Queue 23

CFL24 0x18 Conflict Queue 24

CFL25 0x19 Conflict Queue 25

CFL26 0x1a Conflict Queue 26

CFL27 0x1b Conflict Queue 27

CFL28 0x1c Conflict Queue 28

CFL29 0x1d Conflict Queue 29

CFL30 0x1e Conflict Queue 30

CFL31 0x1f Conflict Queue 31

CFL32 0x20 Conflict Queue 33

Uncore Performance Monitoring

344 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ARB_Q0_NE_CYCLES
• Title: Cycles Arb Queue 0 Not Empty
• Category: ARB
• Event Code: 0xb, Max. Inc/Cyc: 1,
• Definition: Cycles when the selected queue(s) is not empty.

CFL33 0x21 Conflict Queue 32

CFL34 0x22 Conflict Queue 34

CFL35 0x23 Conflict Queue 35

CFL36 0x24 Conflict Queue 36

CFL37 0x25 Conflict Queue 37

CFL38 0x26 Conflict Queue 38

CFL39 0x27 Conflict Queue 39

CFL40 0x28 Conflict Queue 40

CFL41 0x29 Conflict Queue 41

CFL42 0x2a Conflict Queue 44

CFL44 0x2b Conflict Queue 42

CFL44 0x2c Conflict Queue 44

CFL45 0x2d Conflict Queue 45

CFL46 0x2e Conflict Queue 46

CFL47 0x2f Conflict Queue 47

ANY_CFL 0x30 Any Conflict Queue

RIAQ 0x31 RIAQ(NCS) Queue

WIAQ 0x32 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

NBRAQ 0x34 NBAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

SAQ 0x38 Or of RIAQ,WIAQ,BRAQ and CLM Queues

ANY_CFL2 0x39 Any Conflict Queue

NONE 0x3f-0x3a (* nothing will be counted *)

Extension CTL2[5:0] Description

Extension CTL2[5:0] Description

CFL0 0x00 Conflict Queue 0

CFL1 0x01 Conflict Queue 1

CFL2 0x02 Conflict Queue 2

CFL3 0x03 Conflict Queue 3

CFL4 0x04 Conflict Queue 4

CFL5 0x05 Conflict Queue 5

CFL6 0x06 Conflict Queue 6

CFL7 0x07 Conflict Queue 7

CFL8 0x08 Conflict Queue 8

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 345
Reference Manual for Software Development and Optimization Guide

CFL9 0x09 Conflict Queue 9

CFL10 0x0a Conflict Queue 10

CFL11 0x0b Conflict Queue 11

CFL12 0x0c Conflict Queue 12

CFL13 0x0d Conflict Queue 13

CFL14 0x0e Conflict Queue 14

CFL15 0x0f Conflict Queue15

CFL16 0x10 Conflict Queue 16

CFL17 0x11 Conflict Queue 17

CFL18 0x12 Conflict Queue 18

CFL19 0x13 Conflict Queue 19

CFL20 0x14 Conflict Queue 20

CFL21 0x15 Conflict Queue 21

CFL22 0x16 Conflict Queue 22

CFL23 0x17 Conflict Queue 23

CFL24 0x18 Conflict Queue 24

CFL25 0x19 Conflict Queue 25

CFL26 0x1a Conflict Queue 26

CFL27 0x1b Conflict Queue 27

CFL28 0x1c Conflict Queue 28

CFL29 0x1d Conflict Queue 29

CFL30 0x1e Conflict Queue 30

CFL31 0x1f Conflict Queue 31

CFL32 0x20 Conflict Queue 33

CFL33 0x21 Conflict Queue 32

CFL34 0x22 Conflict Queue 34

CFL35 0x23 Conflict Queue 35

CFL36 0x24 Conflict Queue 36

CFL37 0x25 Conflict Queue 37

CFL38 0x26 Conflict Queue 38

CFL39 0x27 Conflict Queue 39

CFL40 0x28 Conflict Queue 40

CFL41 0x29 Conflict Queue 41

CFL42 0x2a Conflict Queue 44

CFL44 0x2b Conflict Queue 42

CFL44 0x2c Conflict Queue 44

CFL45 0x2d Conflict Queue 45

CFL46 0x2e Conflict Queue 46

CFL47 0x2f Conflict Queue 47

ANY_CFL 0x30 Any Conflict Queue

RIAQ 0x31 RIAQ(NCS) Queue

WIAQ 0x32 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

Extension CTL2[5:0] Description

Uncore Performance Monitoring

346 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ARB_Q0_OCCUPANCY
• Title: Arb Queue 0 Occupancy
• Category: ARB
• Event Code: 0x8, Max. Inc/Cyc: 1,
• Definition: Overflow from arbiter subcounter accumulating live events

B_CSR_PERF_CTL2.arbq_sel0 selects which arbiter queue(s) to monitor.
• NOTE: Set B_CSR_PERF_CTL0.arb_en to enable the subcounter which, in turn,

enables this event. To obtain the number of arbiter transactions, multiply by 2^10
and add B_CSR_ARB_PERF_CNT0.accum_cnt[9:0]

ARB_Q0_REMOVE
• Title: Arb Queue 0 Remove
• Category: ARB
• Event Code: 0xa, Max. Inc/Cyc: 1,
• Definition: A remove (read) from the selected ARB queue.

NBRAQ 0x34 NBAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

SAQ 0x38 Or of RIAQ,WIAQ,BRAQ and CLM Queues

ANY_CFL2 0x39 Any Conflict Queue

NONE 0x3f-0x3a (* nothing will be counted *)

Extension CTL2[5:0] Description

Extension CTL2[5:0] Description

NONE 0x2f-0x00 (* nothing will be counted *)

NE_CFL 0x30 Number of non-empty conflict queues.

RIAQ 0x31 RIAQ(NCS) Queue

WIAQ 0x33 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

NBRAQ 0x34 NBAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

NONE2 0x3f-0x38 (* nothing will be counted *)

Extension CTL2[5:0] Description

CFL0 0x00 Conflict Queue 0

CFL1 0x01 Conflict Queue 1

CFL2 0x02 Conflict Queue 2

CFL3 0x03 Conflict Queue 3

CFL4 0x04 Conflict Queue 4

CFL5 0x05 Conflict Queue 5

CFL6 0x06 Conflict Queue 6

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 347
Reference Manual for Software Development and Optimization Guide

CFL7 0x07 Conflict Queue 7

CFL8 0x08 Conflict Queue 8

CFL9 0x09 Conflict Queue 9

CFL10 0x0a Conflict Queue 10

CFL11 0x0b Conflict Queue 11

CFL12 0x0c Conflict Queue 12

CFL13 0x0d Conflict Queue 13

CFL14 0x0e Conflict Queue 14

CFL15 0x0f Conflict Queue15

CFL16 0x10 Conflict Queue 16

CFL17 0x11 Conflict Queue 17

CFL18 0x12 Conflict Queue 18

CFL19 0x13 Conflict Queue 19

CFL20 0x14 Conflict Queue 20

CFL21 0x15 Conflict Queue 21

CFL22 0x16 Conflict Queue 22

CFL23 0x17 Conflict Queue 23

CFL24 0x18 Conflict Queue 24

CFL25 0x19 Conflict Queue 25

CFL26 0x1a Conflict Queue 26

CFL27 0x1b Conflict Queue 27

CFL28 0x1c Conflict Queue 28

CFL29 0x1d Conflict Queue 29

CFL30 0x1e Conflict Queue 30

CFL31 0x1f Conflict Queue 31

CFL32 0x20 Conflict Queue 33

CFL33 0x21 Conflict Queue 32

CFL34 0x22 Conflict Queue 34

CFL35 0x23 Conflict Queue 35

CFL36 0x24 Conflict Queue 36

CFL37 0x25 Conflict Queue 37

CFL38 0x26 Conflict Queue 38

CFL39 0x27 Conflict Queue 39

CFL40 0x28 Conflict Queue 40

CFL41 0x29 Conflict Queue 41

CFL42 0x2a Conflict Queue 44

CFL44 0x2b Conflict Queue 42

CFL44 0x2c Conflict Queue 44

CFL45 0x2d Conflict Queue 45

CFL46 0x2e Conflict Queue 46

CFL47 0x2f Conflict Queue 47

ANY_CFL 0x30 Any Conflict Queue

RIAQ 0x31 RIAQ(NCS) Queue

Extension CTL2[5:0] Description

Uncore Performance Monitoring

348 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ARB_Q0_THOCCUPANCY
• Title: Arbiter Queue 0 Occupancy (Thresholded)
• Category: ARB
• Event Code: 0xc, Max. Inc/Cyc: 1,
• Definition: Cycles selected arbiter queue’s occupancy exceeds threshold.
• NOTE: Set B_CSR_PERF_CTL0.arb_en to enable the subcounter which, in turn,
enables this event. To obtain the number of arbiter transactions, multiply by 2^10 and
add B_CSR_ARB_PERF_CNT0.accum_cnt[9:0]. The occupancy of the selected ARBQ is
tested against the B_CSR_PERF_CTL2.arb_thresh (bits [17:12]). In any given cycle, if
the occupancy exceeds the threshold, this event will be recorded.

ARB_Q1_EMPTY_INSERT
• Title: Insert to Empty Arbiter Queue
• Category: ARB
• Event Code: 0x11, Max. Inc/Cyc: 1,
• Definition: Insert to any empty arb counter(s).

WIAQ 0x32 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

NBRAQ 0x34 NBAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

SAQ 0x38 Or of RIAQ,WIAQ,BRAQ and CLM Queues

ANY_CFL2 0x39 Any Conflict Queue

NONE 0x3f-0x3a (* nothing will be counted *)

Extension CTL2[5:0] Description

Extension CTL2[5:0] Description

NONE 0x30-0x00 (* nothing will be counted *)

RIAQ 0x31 RIAQ(NCS) Queue
NOTE: Number of entries in the queue equals or exceeds the number
set in B_CSR_PERF_CTL2.ARBQ_WMARK

WIAQ 0x32 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

NBRAQ 0x34 NBRAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE2 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

SAQ 0x38 Or of CLM ,BRAQ, RIAQ and WIAQ Queues

ANY_CFL2 0x39 First Insert into any empty conflict queue

NONE 0x3f-0x3a (* nothing will be counted *)

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 349
Reference Manual for Software Development and Optimization Guide

ARB_Q1_INSERTS
• Title: Arb Queue 1 Inserts
• Category: ARB
• Event Code: 0xe, Max. Inc/Cyc: 1,
• Definition: An insert (write) to any conflict queue.

ARB_Q1_NE_CYCLES
• Title: Cycles Arb Queue 1 Not Empty
• Category: ARB
• Event Code: 0x10, Max. Inc/Cyc: 1,
• Definition: Cycles when the selected queue(s) is not empty.

Extension CTL2[11:6] Description

CFL0 0x00 Conflict Queue 0

CFL1 0x01 Conflict Queue 1

CFL2 0x02 Conflict Queue 2

CFL3 0x03 Conflict Queue 3

CFL4 0x04 Conflict Queue 4

CFL5 0x05 Conflict Queue 5

CFL6 0x06 Conflict Queue 6

CFL7 0x07 Conflict Queue 7

CFL8 0x08 Conflict Queue 8

CFL9 0x09 Conflict Queue 9

CFL10 0x0a Conflict Queue 10

CFL11 0x0b Conflict Queue 11

CFL12 0x0c Conflict Queue 12

CFL13 0x0d Conflict Queue 13

CFL14 0x0e Conflict Queue 14

CFL15 0x0f Conflict Queue15

CFL16 0x10 Conflict Queue 16

CFL17 0x11 Conflict Queue 17

CFL18 0x12 Conflict Queue 18

CFL19 0x13 Conflict Queue 19

CFL20 0x14 Conflict Queue 20

CFL21 0x15 Conflict Queue 21

CFL22 0x16 Conflict Queue 22

CFL23 0x17 Conflict Queue 23

CFL24 0x18 Conflict Queue 24

CFL25 0x19 Conflict Queue 25

CFL26 0x1a Conflict Queue 26

CFL27 0x1b Conflict Queue 27

CFL28 0x1c Conflict Queue 28

CFL29 0x1d Conflict Queue 29

CFL30 0x1e Conflict Queue 30

CFL31 0x1f Conflict Queue 31

Uncore Performance Monitoring

350 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ARB_Q1_OCCUPANCY
• Title: Arb Queue 1 Occupancy
• Category: ARB
• Event Code: 0xd, Max. Inc/Cyc: 1,
• Definition: Overflow from arbiter subcounter accumulating live events. The live

counter is fed by the number of entries occupied by all conflict queues.
• NOTE: Set B_CSR_PERF_CTL0.arb_en to enable the subcounter which, in turn,

enables this event. To obtain the number of arbiter transactions, multiply by 2^11
and add B_CSR_ARB_PERF_CNT0.accum_cnt[10:0]

ARB_Q1_REMOVE
• Title: Arb Queue 1 Remove
• Category: ARB
• Event Code: 0xf, Max. Inc/Cyc: 1,
• Definition: A remove (read) from any conflict queue.

CFL32 0x20 Conflict Queue 33

CFL33 0x21 Conflict Queue 32

CFL34 0x22 Conflict Queue 34

CFL35 0x23 Conflict Queue 35

CFL36 0x24 Conflict Queue 36

CFL37 0x25 Conflict Queue 37

CFL38 0x26 Conflict Queue 38

CFL39 0x27 Conflict Queue 39

CFL40 0x28 Conflict Queue 40

CFL41 0x29 Conflict Queue 41

CFL42 0x2a Conflict Queue 44

CFL44 0x2b Conflict Queue 42

CFL44 0x2c Conflict Queue 44

CFL45 0x2d Conflict Queue 45

CFL46 0x2e Conflict Queue 46

CFL47 0x2f Conflict Queue 47

ANY_CFL 0x30 Any Conflict Queue

RIAQ 0x31 RIAQ(NCS) Queue

WIAQ 0x33 WIAQ(NCB) Queue

BRAQ 0x33 BRAQ(DRS) Queue

NBRAQ 0x34 NBAQ(NBR) Queue

COHQ 0x35 COHQ Queue

NONE 0x36 (* nothing will be counted *)

CLM 0x37 CLM Queue

SAQ 0x38 Or of RIAQ,WIAQ,BRAQ and CLM Queues

ANY_CFL2 0x39 Any Conflict Queue

NONE 0x3f-0x3a (* nothing will be counted *)

Extension CTL2[11:6] Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 351
Reference Manual for Software Development and Optimization Guide

B_CYCLES
• Title: Bbox Clock Cycles
• Category: Miscellaneous
• Event Code: 0x25, Max. Inc/Cyc: 1,
• Definition: Increment by 1 every clock (when the counter is enabled)

BZ_ACK
• Title: BZ Acknowledge
• Category: BZ
• Event Code: 0x22, Max. Inc/Cyc: 1,
• Definition: First BZ acknowledge that acknowledges a BZ command that matched

B_CSR_PERF_CTL2.z_op.
• NOTE: Enabled by B_CSR_PERF_CTL0.bz_en. Since fill2b requests are not acknowl-

edged by Zbox, a local acknowledge is created so count of all requests equals count
of all acknowledges. Fill2b events should be counted separately from any other
opcodes (configured by B_CSR_PERF_CTL2.z_op (CTL2[36:21])). Used to compute
avg. Zbox latency; (if this event is used to monitor latency need to exclude fill2b).

BZ_ACK_ALL
• Title: All BZ Acknowledges
• Category: BZ
• Event Code: 0x23, Max. Inc/Cyc: 1,
• Definition: Number of BZ commands acknowledged by Zbox. Not possible to pick

commands; Possible that Zbox sent multiple acks per command it received.
• NOTE: Fill2b requests from the Bbox are not acknowledges by Zbox and therefore

are not included in this event

BZ_OP_MATCH
• Title: BZ Request Opcode Match
• Category: BZ
• Event Code: 0x31, Max. Inc/Cyc: 1,
• Definition: BZ requests that match opcodes selected in B_CSR_PERF_CTL2.z_op

BZ_OCCUPANCY
• Title: BZ Occupancy
• Category: BZ
• Event Code: 0x21, Max. Inc/Cyc: 1,
• Definition: Cumulative number of selected BZ commands outstanding in Zbox.

Fully decoded bits are present to select combination of opcodes
• NOTE: Enabled by B_CSR_PERF_CTL0.bz_en. To obtain correct number of BZ Trans-

actions, multiply by 2^6 and add B_CSR_BZ_PERF_CNT.accum_cnt[5:0]. Since fill2b
are not acknowledged by Zbox, fill2b opcode should be excluded from
B_CSR_PERF_CTL2.z_op (CTL2[36:21]). Used to compute avg. Zbox latency; Partial
latency of Bbox included (customers should program correctly to exclude fill2b)

Uncore Performance Monitoring

352 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

BZ_CYCLES_TRANS_OUT
• Title: Cycles Z Trans Outstanding
• Category: BZ
• Event Code: 0x24, Max. Inc/Cyc: 1,
• Definition: Cycles there are outstanding transactions destined for the Zbox within a

given threshold.
• NOTE: Enabled by B_CSR_PERF_CTL0.bz_en.

DC_EVENT0
• Title: Directory Cache Event 0
• Category: DC
• Event Code: 0x12, Max. Inc/Cyc: 1,
• Definition: Directory Cache Event 0

Extension CTL2[43] Description

LT_THRESH 0x0 less than threshold
Note: Threshold set in CTL2[42:37]

GE_THRESH 0x1 greater than or equal to threshold
Note: Threshold set in CTL2[42:37]

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

TRANS_OCCUPANCY 0x0 Outstanding transactions matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode) that have
overflowed the accumulator (B_CSR_DC_PERF_CNT).
Note: Set B_CSR_PERF_CTL0.dc_en to enable the

subcounter which, in turn, enables this event. To
obtain the number of matching transactions,
multiply the result in main counter by 2^6 and
add B-CSR_DC_PERF_CNT.accum_cnt[5:0].

TRANS_INSERT 0x1 Number of transactions entering DC matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode)
Note: NCRD and NCWR do not enter DC. Some RdData

commands go through DC twice. The first pass is
for a coarse-share MESI, and the second pass (if
there is one) is for an exclusive MESI. Both
passes correspond to the same entry in IMT.
Number of DC inserts may differ from the
number of IMT inserts.

TRANS_REMOVE 0x2 Number of transactions removed from DC matching DC
Opcode (B_CSR_DC_PERF_CTL1.dc_opcode)

CYCLES_TRANS_OUT.THR
ESH_LE

0x3 0x0 Cycles that number of outstanding DC transactions is less
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

CYCLES_TRANS_OUT.THR
ESH_LE

0x3 0x1 Cycles that number of outstanding DC transactions is
greater than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

FULL 0x4 DC is full.
Note: Indicates the DC has 32 outstanding

transactions.

NON_EMPTY 0x5 DC is not empty. DC has some outstanding transactions.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 353
Reference Manual for Software Development and Optimization Guide

DC_EVENT1
• Title: Directory Cache Event 1
• Category: DC
• Event Code: 0x13, Max. Inc/Cyc: 1,
• Definition: Directory Cache Event 1.

MATCH_READ 0x6 Matching DC read event.
Note: Upon receiving a request, DC reads it's cache.

The data read from the cache is matched to the
criteria defined in B_CSR_DC_PERF_MATCH_RD.
The selected events are masked with
B_CSR_DC_PERF_MASK_RD. Affected by
B_CSR_DC_PERF_CTL1.dc_opcode.
DC_READ_EVENT = ((DC_CACHE_DATA_RD xnor
B_CSR_DC_PERF_MATCH_RD) or
(B_CSR_DC_PERF_MASK_RD) and
MATCH_DC_OPCODES AND NOT 2nd_LOOKUP

MATCH_WRITE 0x7 Matching DC write event.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined
in B_CSR_DC_PERF_MATCH_WR. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR. DC_WRITE_EVENT
= (DC_CACHE_DATA_WR xnor
B_CSR_DC_PERF_MATCH_WR) or
B_CSR_DC_PERF_MASK_WR.

NEED_SNOOPS 0x8 New transaction requires snoops.
Note: Indicates that single or multiple snoops are

required. No matching is performed.

LINE_EVICT 0x9 DC line eviction event.

MATCH_READ_2ND_LOOK 0xa Matching DC read second lookup.
Note: Works the same way as the MATCH_READ event,

with the exception that second DC read lookups
cause this event.

SNP_LOC 0xb Snoops caused by cell local memory accesses.

MATCH_WRITE 0xc Matching DC write event 2.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined
in B_CSR_DC_PERF_MATCH_WR2. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR2.
DC_WRITE_EVENT2 = (DC_CACHE_DATA_WR2
xnor B_CSR_DC_PERF_MATCH_WR2) or
B_CSR_DC_PERF_MASK_WR2.

LINE_ALLOC 0xd DC line allocation event.

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

Uncore Performance Monitoring

354 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

TRANS_OCCUPANCY 0x0 Outstanding transactions matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode) that have overflowed
the accumulator (B_CSR_DC_PERF_CNT).
Note: Set B_CSR_PERF_CTL0.dc_en to enable the

subcounter which, in turn, enables this event. To
obtain the number of matching transactions,
multiply the result in main counter by 2^6 and add
B-CSR_DC_PERF_CNT.accum_cnt[5:0].

TRANS_INSERT 0x1 Number of transactions entering DC matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode)
Note: NCRD and NCWR do not enter DC. Some RdData

commands go through DC twice. The first pass is for
a coarse-share MESI, and the second pass (if there
is one) is for an exclusive MESI. Both passes
correspond to the same entry in IMT. Number of DC
inserts may differ from the number of IMT inserts.

TRANS_REMOVE 0x2 Number of transactions removed from DC matching DC
Opcode (B_CSR_DC_PERF_CTL1.dc_opcode)

CYCLES_TRANS_OUT.T
HRESH_LE

0x3 0x0 Cycles that number of outstanding DC transactions is less
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

CYCLES_TRANS_OUT.T
HRESH_LE

0x3 0x1 Cycles that number of outstanding DC transactions is greater
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

FULL 0x4 DC is full.
Note: Indicates the DC has 32 outstanding transactions.

NON_EMPTY 0x5 DC is not empty. DC has some outstanding transactions.

MATCH_READ 0x6 Matching DC read event.
Note: Upon receiving a request, DC reads it's cache. The

data read from the cache is matched to the criteria
defined in B_CSR_DC_PERF_MATCH_RD. The
selected events are masked with
B_CSR_DC_PERF_MASK_RD. Affected by
B_CSR_DC_PERF_CTL1.dc_opcode.
DC_READ_EVENT = ((DC_CACHE_DATA_RD xnor
B_CSR_DC_PERF_MATCH_RD) or
(B_CSR_DC_PERF_MASK_RD) and
MATCH_DC_OPCODES AND NOT 2nd_LOOKUP

MATCH_WRITE 0x7 Matching DC write event.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined in
B_CSR_DC_PERF_MATCH_WR. The selected events
are masked with B_CSR_DC_PERF_MASK_WR.
DC_WRITE_EVENT = (DC_CACHE_DATA_WR xnor
B_CSR_DC_PERF_MATCH_WR) or
B_CSR_DC_PERF_MASK_WR.

NEED_SNOOPS 0x8 New transaction requires snoops.
Note: Indicates that single or multiple snoops are

required. No matching is performed.

LINE_EVICT 0x9 DC line eviction event.

MATCH_READ_2ND_LO
OK

0xa Matching DC read second lookup.
Note: Works the same way as the MATCH_READ event,

with the exception that second DC read lookups
cause this event.

SNP_LOC 0xb Snoops caused by cell local memory accesses.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 355
Reference Manual for Software Development and Optimization Guide

DC_EVENT2
• Title: Directory Cache Event 2
• Category: DC
• Event Code: 0x14, Max. Inc/Cyc: 1,
• Definition: Directory Cache Event 2

MATCH_WRITE 0xc Matching DC write event 2.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined in
B_CSR_DC_PERF_MATCH_WR2. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR2. DC_WRITE_EVENT2
= (DC_CACHE_DATA_WR2 xnor
B_CSR_DC_PERF_MATCH_WR2) or
B_CSR_DC_PERF_MASK_WR2.

LINE_ALLOC 0xd DC line allocation event.

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

TRANS_OCCUPANCY 0x0 Outstanding transactions matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode) that have overflowed
the accumulator (B_CSR_DC_PERF_CNT).
Note: NOTE: Set B_CSR_PERF_CTL0.dc_en to enable the

subcounter which, in turn, enables this event. To
obtain the number of matching transactions,
multiply the result in main counter by 2^6 and add
B-CSR_DC_PERF_CNT.accum_cnt[5:0].

TRANS_INSERT 0x1 Number of transactions entering DC matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode)
Note: NOTE: NCRD and NCWR do not enter DC. Some

RdData commands go through DC twice. The first
pass is for a coarse-share MESI, and the second
pass (if there is one) is for an exclusive MESI. Both
passes correspond to the same entry in IMT.
Number of DC inserts may differ from the number of
IMT inserts.

TRANS_REMOVE 0x2 Number of transactions removed from DC matching DC
Opcode (B_CSR_DC_PERF_CTL1.dc_opcode)

CYCLES_TRANS_OUT.T
HRESH_LE

0x3 0x0 Cycles that number of outstanding DC transactions is less
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

CYCLES_TRANS_OUT.T
HRESH_LE

0x3 0x1 Cycles that number of outstanding DC transactions is greater
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

FULL 0x4 DC is full.
Indicates the DC has 32 outstanding transactions.

NON_EMPTY 0x5 DC is not empty. DC has some outstanding transactions.

MATCH_READ 0x6 Matching DC read event.
Note: Upon receiving a request, DC reads it's cache. The

data read from the cache is matched to the criteria
defined in B_CSR_DC_PERF_MATCH_RD. The
selected events are masked with
B_CSR_DC_PERF_MASK_RD. Affected by
B_CSR_DC_PERF_CTL1.dc_opcode.
DC_READ_EVENT = ((DC_CACHE_DATA_RD xnor
B_CSR_DC_PERF_MATCH_RD) or
(B_CSR_DC_PERF_MASK_RD) and
MATCH_DC_OPCODES AND NOT 2nd_LOOKUP

Uncore Performance Monitoring

356 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

DC_EVENT3
• Title: Directory Cache Event 3
• Category: DC
• Event Code: 0x15, Max. Inc/Cyc: 1,
• Definition: Directory Cache Event 3.

MATCH_WRITE 0x7 Matching DC write event.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined in
B_CSR_DC_PERF_MATCH_WR. The selected events
are masked with B_CSR_DC_PERF_MASK_WR.
DC_WRITE_EVENT = (DC_CACHE_DATA_WR xnor
B_CSR_DC_PERF_MATCH_WR) or
B_CSR_DC_PERF_MASK_WR.

NEED_SNOOPS 0x8 New transaction requires snoops.
Note: Indicates that single or multiple snoops are

required. No matching is performed.

LINE_EVICT 0x9 DC line eviction event.

MATCH_READ_2ND_LO
OK

0xa Matching DC read second lookup.
Note: Works the same way as the MATCH_READ event,

with the exception that second DC read lookups
cause this event.

SNP_LOC 0xb Snoops caused by cell local memory accesses.

MATCH_WRITE 0xc Matching DC write event 2.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined in
B_CSR_DC_PERF_MATCH_WR2. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR2. DC_WRITE_EVENT2
= (DC_CACHE_DATA_WR2 xnor
B_CSR_DC_PERF_MATCH_WR2) or
B_CSR_DC_PERF_MASK_WR2.

LINE_ALLOC 0xd DC line allocation event.

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

TRANS_OCCUPANCY 0x0 Outstanding transactions matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode) that have
overflowed the accumulator (B_CSR_DC_PERF_CNT).
Note: Set B_CSR_PERF_CTL0.dc_en to enable the

subcounter which, in turn, enables this event. To
obtain the number of matching transactions,
multiply the result in main counter by 2^6 and
add B-CSR_DC_PERF_CNT.accum_cnt[5:0].

TRANS_INSERT 0x1 Number of transactions entering DC matching DC Opcode
(B_CSR_DC_PERF_CTL1.dc_opcode)
Note: NOTE: NCRD and NCWR do not enter DC. Some

RdData commands go through DC twice. The first
pass is for a coarse-share MESI, and the second
pass (if there is one) is for an exclusive MESI.
Both passes correspond to the same entry in IMT.
Number of DC inserts may differ from the
number of IMT inserts.

TRANS_REMOVE 0x2 Number of transactions removed from DC matching DC
Opcode (B_CSR_DC_PERF_CTL1.dc_opcode)

CYCLES_TRANS_OUT.THR
ESH_LE

0x3 0x0 Cycles that number of outstanding DC transactions is less
than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 357
Reference Manual for Software Development and Optimization Guide

IMT_ALLOC
• Title: IMT Allocations
• Category: IMT
• Event Code: 0x05, Max. Inc/Cyc: 1,
• Definition: Number of IMT entries allocated.
• NOTE: No rd/wr breakdown.

CYCLES_TRANS_OUT.THR
ESH_LE

0x3 0x1 Cycles that number of outstanding DC transactions is
greater than or equal to number specified in
B_CSR_DC_PERF_WMARK[5:0].

FULL 0x4 DC is full.
Note: Indicates the DC has 32 outstanding

transactions.

NON_EMPTY 0x5 DC is not empty. DC has some outstanding transactions.

MATCH_READ 0x6 Matching DC read event.
Note: Upon receiving a request, DC reads it's cache.

The data read from the cache is matched to the
criteria defined in B_CSR_DC_PERF_MATCH_RD.
The selected events are masked with
B_CSR_DC_PERF_MASK_RD. Affected by
B_CSR_DC_PERF_CTL1.dc_opcode.
DC_READ_EVENT = ((DC_CACHE_DATA_RD xnor
B_CSR_DC_PERF_MATCH_RD) or
(B_CSR_DC_PERF_MASK_RD) and
MATCH_DC_OPCODES AND NOT 2nd_LOOKUP

MATCH_WRITE 0x7 Matching DC write event.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined
in B_CSR_DC_PERF_MATCH_WR. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR. DC_WRITE_EVENT
= (DC_CACHE_DATA_WR xnor
B_CSR_DC_PERF_MATCH_WR) or
B_CSR_DC_PERF_MASK_WR.

NEED_SNOOPS 0x8 New transaction requires snoops.
Note: Indicates that single or multiple snoops are

required. No matching is performed.

LINE_EVICT 0x9 DC line eviction event.

MATCH_READ_2ND_LOOK 0xa Matching DC read second lookup.
Note: Works the same way as the MATCH_READ event,

with the exception that second DC read lookups
cause this event.

SNP_LOC 0xb Snoops caused by cell local memory accesses.

MATCH_WRITE 0xc Matching DC write event 2.
Note: Upon receiving a request, DC may write to its

cache. Writes are matched to the criteria defined
in B_CSR_DC_PERF_MATCH_WR2. The selected
events are masked with
B_CSR_DC_PERF_MASK_WR2.
DC_WRITE_EVENT2 = (DC_CACHE_DATA_WR2
xnor B_CSR_DC_PERF_MATCH_WR2) or
B_CSR_DC_PERF_MASK_WR2.

LINE_ALLOC 0xd DC line allocation event.

Extension DC_CTL0
[4:0]

DC_WM
ARK[6] Description

Uncore Performance Monitoring

358 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IMT_FULL
• Title: Cycles IMT Full
• Category: IMT
• Event Code: 0x2a, Max. Inc/Cyc: 1,
• Definition: Number of cycles the IMT is full.

IMT_FULL_CURR_PIPE
• Title: Cycles IMT Full for Current Pipe Pass
• Category: IMT
• Event Code: 0x29, Max. Inc/Cyc: 1,
• Definition: Indicates that the half of the IMT selected for the current pipeline is full.

IMT_NE_CYCLES
• Title: Cycles IMT Not Empty
• Category: IMT
• Event Code: 0x07, Max. Inc/Cyc: 1,
• Definition: Number of cycles the IMT is not empty.

IMT_OCCUPANCY
• Title: IMT Occupancy
• Category: IMT
• Event Code: 0x04, Max. Inc/Cyc: 1,
• Definition: Number of IMT counter overflows.
• NOTE: Set B_CSR_PERF_CTL0.imt_en to enable the subcounter which, in turn,

enables this event. No rd/wr breakdown. To calculate the number of IMT events, mul-
tiply the counter value by 2^6 and add B_CSR_IMT_PERF_CNT.accum_cnt[5:0].

IMT_POP_CFL
• Title: IMT Pop Conflicts
• Category: IMT
• Event Code: 0x6, Max. Inc/Cyc: 1,
• Definition: Number of IMT pop conflicts.

IOB_IN_PKTS
• Title: IOB Input Packets
• Category: IOB
• Event Code: 0x19, Max. Inc/Cyc: 1,
• Definition: Number of IOB input packets.
• NOTE: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_in, opcode_in}.

Extension
CTL2

[20:19],
[17]

Description

RHNID 0x1,0x0 RHNID of input Intel QPI packet is used to determine local or remote
socket

RSNID 0x1,0x1 RSNID of input Intel QPI packet is used to determine local or remote
socket

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 359
Reference Manual for Software Development and Optimization Guide

IOB_INSERTS
• Title: IOB Inserts of Live Trans
• Category: IOB
• Event Code: 0x17, Max. Inc/Cyc: 1,
• Definition: IOB live transaction increment.

IOB_OUT_PKTS
• Title: IOB Output Packets
• Category: IOB
• Event Code: 0x1a, Max. Inc/Cyc: 1,
• Definition: Number of IOB output packets.
• NOTE: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_out, opcode_out}.

IOB_OCCUPANCY
• Title: IOB Occupancy
• Category: IOB
• Event Code: 0x16, Max. Inc/Cyc: 1,
• Definition: Number of IOB counter overflows.
• NOTE: Set B_CSR_PERF_CTL0.iob_en to enable the subcounter which, in turn,

enables this event. To calculate the number of IOB events, multiply the counter value
by 2^11 and add B_CSR_IOB_PERF_CNT.accum_cnt[10:0].

Extension CTL2 Dep
Bits Description

IN_PKTS.RHNID [16]0x0 &&
[17]0x0 &&
[20:19]x1

New input packets; RHNID of input Intel QPI packet is used to
determine local or remote socket
Note: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_in, opcode_in}

IN_PKTS.RSNID [16]0x0 &&
[17]0x1 &&
[20:19]x1

New input packets; RSNID of input Intel QPI packet is used to
determine local or remote socket
Note: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_in, opcode_in}

SNOOPS [16:15]0x2 Snoop packets launched by Bbox; RHNID of input Intel QPI packet is
used to determine local or remote socket
Note: Not designed to count average latency of snoops. If snoops

responses are selected (B_CSR_PERF_CTL2.class_in[1]=1),
live_cnt is not going to be 0 at the end of the test when
Bbox is idle.

Extension
CTL2

[20:19],
[18]

Description

RHNID 0x1,0x0 RHNID of output Intel QPI packet is used to determine local or
remote socket

RSNID 0x1,0x1 RSNID of output Intel QPI packet is used to determine local or
remote socket

Uncore Performance Monitoring

360 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

IOB_REMOVES
• Title: IOB Removals of Live Trans
• Category: IOB
• Event Code: 0x18, Max. Inc/Cyc: 1,
• Definition: IOB live transaction decrement.

MEM_HINT_DC_LUP
• Title: Memory Hint in DC Lookup
• Category: Mem Hint
• Event Code: 0x2d, Max. Inc/Cyc: 1,
• Definition: Lookup in DC a request that has local memory hint bit set.

MEM_HINT_Z_RESP
• Title: Memory Hint in Zbox Response
• Category: Mem Hint
• Event Code: 0x2e, Max. Inc/Cyc: 1,
• Definition: Received a response from the Zbox that has local memory hint bit set.

NSL_REJ
• Title: NSL Reject
• Category: NSL
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Rejected NSL pipeline pass

NSL_SUCC
• Title: NSL Success
• Category: NSL
• Event Code: 0x26, Max. Inc/Cyc: 1,
• Definition: Successful NSL pipeline pass

POISON_RECV
• Title: Poison Packet Received
• Category: Misc
• Event Code: 0x2f, Max. Inc/Cyc: 1,
• Definition: Received a packet with poison. The received packet poison errors need

to be enabled in B_CSR_ERR_MAS_0.erecv_poison.

Extension CTL2 Dep
Bits Description

OUT_PKTS.RHNID [16]0x0 &&
[17]0x0 &&
[20:19]x1

New output packets; RHNID of input Intel QPI packet is used to
determine local or remote socket
Note: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_in, opcode_in}

OUT_PKTS.RSNID [16]0x0 &&
[17]0x1 &&
[20:19]x1

New output packets; RSNID of input Intel QPI packet is used to
determine local or remote socket
Note: User can filter according to class or opcode by setting bits in

B_CSR_PERF_CTL3.{class_in, opcode_in}

IN_PKT_COMPLETES [16:15]0x1 All completions to packets that matched input packet criteria in
IOB_INSERTS.

SNOOPS [16:15]0x2 Snoop response packets received by Bbox.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 361
Reference Manual for Software Development and Optimization Guide

POISON_SENT
• Title: Poison Packet Sent
• Category: Misc
• Event Code: 0x30, Max. Inc/Cyc: 1,
• Definition: Sent a packet with poison. The sent packet poison errors need to be

enabled in B_CSR_ERR_MAS_0.esent_poison.

RFP_LOC_LOC
• Title: RFP Local/Local
• Category: RFP
• Event Code: 0x00, Max. Inc/Cyc: 1,
• Definition: Response forward packet arriving in Bbox.Local requestor and local

responder.

RFP_LOC_REM
• Title: RFP Local/Remote
• Category: RFP
• Event Code: 0x02, Max. Inc/Cyc: 1,
• Definition: Response forward packet arriving in Bbox.Local requestor and remote

responder.

RFP_REM_LOC
• Title: RFP Remote/Local
• Category: RFP
• Event Code: 0x01, Max. Inc/Cyc: 1,
• Definition: Response forward packet arriving in Bbox. Remote requestor and local

responder.

RFP_REM_REM
• Title: RFP Remote/Remote
• Category: RFP
• Event Code: 0x03, Max. Inc/Cyc: 1,
• Definition: Response forward packet arriving in Bbox. Remote requestor and

remote responder.

SNP_REQ_ALL
• Title: All Snoop Requests
• Category: SNP
• Event Code: 0x1b, Max. Inc/Cyc: 1,
• Definition: All snoop requests (remote or local).

SNP_REQ_LOC
• Title: Local Snoop Requests
• Category: SNP
• Event Code: 0x1c, Max. Inc/Cyc: 1,
• Definition: Local snoop requests.

Uncore Performance Monitoring

362 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

SNP_REQ_REM
• Title: Remote Snoop Requests
• Category: SNP
• Event Code: 0x1d, Max. Inc/Cyc: 1,
• Definition: Remote snoop requests.

SNP_RSP_ALL
• Title: All Snoop Responses
• Category: SNP
• Event Code: 0x1e, Max. Inc/Cyc: 1,
• Definition: All snoop responses (remote or local).

SNP_RSP_LOC
• Title: Local Snoop Responses
• Category: SNP
• Event Code: 0x1f, Max. Inc/Cyc: 1,
• Definition: Local snoop responses.

SNP_RSP_REM
• Title: Remote Snoop Responses
• Category: SNP
• Event Code: 0x20, Max. Inc/Cyc: 1,
• Definition: Remote snoop responses.

TRACKER_IMT_HAZARD
• Title: Tracker/IMT Hazard
• Category: Miscellaneous
• Event Code: 0x27, Max. Inc/Cyc: 1,
• Definition: Tracker/IMT Hazard.

Z_OPT_V2V
• Title: Zbox V2V Optimized Requests
• Category: Misc
• Event Code: 0x32, Max. Inc/Cyc: 1,
• Definition: Zbox V2V requests to Zbox when read optimization is performed.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 363
Reference Manual for Software Development and Optimization Guide

5.5 Cbox Performance Monitoring

5.5.1 Overview of the Cbox
For the Intel Itanium® Processor 9500 Series, the LLC coherence engine (Cbox)
manages the interface between the core and the last level cache (LLC). All core
transactions that access the LLC are directed from the core to a Cbox via the ring
interconnect. The Cbox is responsible for managing data delivery from the LLC to the
requesting core. It is also responsible for maintaining coherence between the cores
within the socket that share the LLC; generating snoops and collecting snoop responses
to the local cores when the MESI protocol requires it.

The Cbox is also the gate keeper for all Intel® QuickPath Interconnect (Intel® QPI)
messages that originate in the core and is responsible for ensuring that all Intel
QuickPath Interconnect messages that pass through the socket’s LLC remain coherent.

The Intel Itanium processor 9500 series contains eight instances of the Cbox, each
assigned to manage a distinct 3MB, 24-way set associative slice of the processor’s total
LLC capacity. For processors with fewer than 8 3MB LLC slices, the Cboxes for missing
slices will still be active and track ring traffic caused by their co-located core even if
they have no LLC related traffic to track (i.e. hits/misses/snoops).

Every physical memory address in the system is uniquely associated with a single Cbox
instance via a proprietary hashing algorithm that is designed to keep the distribution of
traffic across the Cbox instances relatively uniform for a wide range of possible address
patterns. This enables the individual Cbox instances to operate independently, each
managing its slice of the physical address space without any Cbox in a given socket
ever needing to communicate with the other Cboxes in that same socket.

5.5.2 Cbox Performance Monitoring Overview
Each of the Cboxes in the Itanium processor 9500 series supports event monitoring
through six 48-bit wide counters (C_CSR_PMON_CTR{5:0}). Each of these six counters
can be programmed to count any Cbox event. The Cbox counters can increment by a
maximum of 5b per cycle.

The count values of all 6 counters can be cleared by writing the
C_CSR_PMON_PERF_MASTER.clr bit.

For information on how to setup a monitoring session, refer to Section 5.3, “Global
Performance Monitoring Control”.

5.5.2.1 Cbox PMU - Overflow, Freeze and Unfreeze

Cbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Cbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Cbox PMU can be frozen due to one of three reasons:

• Globally: Ubox sends a disable signal (and C_CSR_PMON_PERF_MASTER.glb_lcl is
1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to C_CSR_PMON_PERF_MASTER.en
when C_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

Uncore Performance Monitoring

364 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• Locally: The Cbox was set to local control (C_CSR_PMON_PERF_MASTER.glb_lcl =
0) and a Cbox counter overflowed.

If an overflow is detected from a Cbox performance counter, the overflow bit is set at
the box level (C_CSR_PMON_GLOBAL_STATUS.ov), and forwarded up the chain
towards the Sbox. i.e. If a Cbox0 counter overflows, a notification is sent and stored in
Sbox (S_CSR_PMON_SUMMARY.ov_c0_7). Refer to Table 5-64,
“S_CSR_PMON_SUMMARY Register Fields” to determine how each Cbox’s overflow bit is
accumulated in the attached Sbox.

The Ubox may be configured to freeze all uncore counting (refer to Table 5-65,
“S_CSR_PMON_FRZ_EN Register Fields”) when it receives this signal.

Once a freeze has occurred, in order to see a new freeze, the overflow field responsible
for the freeze, must be cleared. Assuming all the counters have been locally enabled
(.en bit in data registers meant to monitor events) and the overflow bit(s) has been
cleared, the Cbox is prepared for a new sample interval. Once the global controls have
been re-enabled (Section 5.3.4, “Enabling a New Sample Interval from Frozen
Counters.”), counting will resume.

5.5.3 Cbox Performance Monitors

Table 5-34. Cbox Performance Monitoring CSRs

CSR Name
CSR

Address
[7:0]

Size
(bits) Description

Box-Level Control/Status

C_CSR_PMON_PERF_MASTER 0xB8 32 Cbox [x] PMON Performance Master

Legacy Box-Level Control/Status

C_CSR_PMON_GLOBAL_STATUS 0xB0 32 Cbox [x] PMON Global Status

C_CSR_PMON_GLOBAL_CTL 0xA0 32 Cbox [x] PMON Global Control

Generic Counter/Control

C_CSR_PMON_EVT_SEL_5 0x98 64 Cbox [x] PMON Event Select 5

C_CSR_PMON_EVT_SEL_4 0x90 64 Cbox [x] PMON Event Select 4

C_CSR_PMON_EVT_SEL_3 0x88 64 Cbox [x] PMON Event Select 3

C_CSR_PMON_EVT_SEL_2 0x80 64 Cbox [x] PMON Event Select 2

C_CSR_PMON_EVT_SEL_1 0x78 64 Cbox [x] PMON Event Select 1

C_CSR_PMON_EVT_SEL_0 0x70 64 Cbox [x] PMON Event Select 0

C_CSR_PMON_CTR_5 0x68 64 Cbox [x] PMON Counter 5

C_CSR_PMON_CTR_4 0x60 64 Cbox [x] PMON Counter 4

C_CSR_PMON_CTR_3 0x58 64 Cbox [x] PMON Counter 3

C_CSR_PMON_CTR_2 0x50 64 Cbox [x] PMON Counter 2

C_CSR_PMON_CTR_1 0x48 64 Cbox [x] PMON Counter 1

C_CSR_PMON_CTR_0 0x40 64 Cbox [x] PMON Counter 0

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 365
Reference Manual for Software Development and Optimization Guide

5.5.3.1 Cbox Box Level PMON State

The following registers represent the state governing all box-level PMUs in the Cbox.

C_CSR_PMON_PERF_MASTER controls the general characteristics of the Cbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

The _GLOBAL_CTL register contains the bits used to enable monitoring. It is necessary
to set the .ctr_en bit to 1 before the corresponding data register can collect events.

If an overflow is detected from one of the Cbox PMON registers, the corresponding bit
in the _GLOBAL_STATUS.ov field will be set.

Table 5-35. C_CSR_PMON_PERF_MASTER Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:4 RO_NA 0 Read zero; writes ignored. (?)

ck_en 3 RW_RW 0 Enables Cbox PMU clock.

clr 2 RW_RW 0 Writing 1 clears all Cbox counters as well as the overflow bits
in C_CSR_PMON_GLBOAL_STATUS

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.
1: Global: Enable/Disable of counters in Cbox will track
U_CSR_PERF_CTL.glb_en. Local overflows will be passed on
to Ubox without freezing local counters.

0: Local: Enable/Disable of counters in Cbox will NOT track
U_CSR_PERF_CTL.glb_en. Allows SW to write the .en bit.
Disables Counters on any local counter overflow.

en 0 RW_RW 0 Enable/disable Cbox PMU counters.

This bit is dependent on the setting of the .glb_lcl bit.
If .glb_lcl is set to 1, SW writes to this bit are ignored and
only HW may affect it’s state.

If .glb_lcl is set to 0, SW may exert control by setting the bit.

In either case, since HW may alter this bit, (due to tracking
the global enable or a local overflow) SW may read it to
determine the state of the Cbox counters.

1: Enable Cbox PMU counting.
0: Disable (freeze) Cbox PMU counters.

Table 5-36. C_CSR_PMON_GLOBAL_CTL Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 31:6 RO_NA 0 Read zero; writes ignored. (?)

ctr_en 5:0 RW_RO 0 Must be set to enable each Cbox counter.
Note: Ubox/PERF_MASTER enable and per counter enable

must also be set to fully enable the counter.

Uncore Performance Monitoring

366 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.5.3.2 Cbox PMON state - Counter/Control Pairs

The following table defines the layout of the Cbox performance monitor control
registers. The main task of these configuration registers is to select the event to be
monitored by their respective data counter. Setting the .ev_sel and .umask fields
performs the event selection. The .en bit must be set to 1 to enable counting.

Additional control bits include:

- .threshold - since Cbox counters can increment by a value greater than 1, a threshold
can be applied. If the .threshold is set to a non-zero value, that value is compared
against the incoming count for that event in each cycle. If the incoming count is >= the
threshold value, then the event count captured in the data register will be incremented
by 1.

- .invert - Changes the .threshold test condition to ‘<‘

- .edge_detect - Rather than accumulating the raw count each cycle (for events that
can increment by 1 per cycle), the register can capture transitions from no event to an
event incoming.

Table 5-37. C_CSR_PMON_GLOBAL_STATUS Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 31:6 RO_NA 0 Read zero; writes ignored. (?)

ov 5:0 RW_RO 0 If an overflow is detected from the corresponding CBOX PMON
register, it’s overflow bit will be set.

Table 5-38. C_CSR_PMON_EVT_SEL{5-0} Register – Field Definitions (Sheet 1 of 2)

Field Bits Type
HW

Reset
Val

Description

ig 63 RO_NA 0 Read zero; writes ignored. (?)

rsv 62:61 0 0 Reserved; Must write to 0 else behavior is undefined.

ig 60:51 RO_NA 0 Read zero; writes ignored. (?)

rsv 50 0 0 Reserved; Must write to 0 else behavior is undefined.

ig 49:32 RO_NA 0 Read zero; writes ignored. (?)

threshold 31:24 RW_RO 0 Threshold used in counter comparison.

invert 23 RW_RO 0 When 0, the comparison that will be done is threshold <=
event. When set to 1, the comparison that is inverted (i.e.
threshold < event)

en 22 RW_RO 0 Local Counter Enable. When set, the associated counter is
locally enabled.
NOTE: It must also be enabled in C_CSR_PMON_GLOBAL_CTL
and the Ubox to be fully enabled.

ig 21:19 RO_NA 0 Read zero; writes ignored. (?)

edge_detect 18 RW_RO 0 When asserted, the 0 to 1 transition edge of a 1 bit event input
will cause the corresponding counter to increment. When 0, the
counter will increment for however long the event is asserted.

NOTE: .edge_detect is in series following threshold and invert,
so it can be applied to multi-increment events that have been
filtered by the threshold field.

reset_occ_count 17 RW_RO 0 Reset Occupancy Counter

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 367
Reference Manual for Software Development and Optimization Guide

The Cbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events.

In this way, software can capture the precise number of events that occurred between
the time uncore counting was enabled and when it was disabled (or ‘frozen’) with
minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

5.5.4 Cbox Performance Monitoring Events

5.5.4.1 An Overview:

The performance monitoring events within the Cbox include all events internal to the
LLC as well as events which track ring related activity at the Cbox/Core ring stops. The
only ring specific events that are not tracked by the Cbox PMUs are those events that
track ring activity at the Sbox ring stop (see the Sbox chapter for details on those
events).

Cbox performance monitoring events can be used to track LLC access rates, LLC hit/
miss rates, LLC eviction and fill rates, and to detect evidence of back pressure on the
LLC pipelines. In addition, the Cbox has performance monitoring events for tracking
MESI state transitions that occur as a result of data sharing across sockets in a multi-
socket system. And finally, there are events in the Cbox for tracking ring traffic at the
Cbox/Core sink inject points.

Every event in the Cbox (with the exception of the P2C inject and *2P sink counts) are
from the point of view of the LLC and cannot be associated with any specific core since
all cores in the socket send their LLC transactions to all Cboxes in the socket. The P2C
inject and *2P sink counts serve as the exception since those events are tracking ring
activity at the cores’ ring inject/sink points.

There are separate sets of counters for each Cbox instance. For any event, to get an
aggregate count of that event for the entire LLC, the counts across the Cbox instances
must be added together. The counts can be averaged across the Cbox instances to get

ig 16 RO_NA 0 Read zero; writes ignored. (?)

umask 15:8 RW_RO 0 Select subevents to be counted within the selected event.

ev_sel 7:0 RW_RO 0 Select event to be counted.

Table 5-38. C_CSR_PMON_EVT_SEL{5-0} Register – Field Definitions (Sheet 2 of 2)

Field Bits Type
HW

Reset
Val

Description

Table 5-39. C_CSR_PMON_CTR{5-0} Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored. (?)

event_count 47:0 RW_RW 0 48-bit performance event counter

Uncore Performance Monitoring

368 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

a view of the typical count of an event from the perspective of the individual Cboxes.
Individual per-Cbox deviations from the average can be used to identify hot-spotting
across the Cboxes or other evidences of non-uniformity in LLC behavior across the
Cboxes. Such hot-spotting should be rare, though a repetitive polling on a fixed
physical address is one obvious example of a case where an analysis of the deviations
across the Cboxes would indicate hot-spotting.

5.5.4.2 Acronyms frequently used in Cbox Events:

The Rings:

AD (Address) Ring - Core Read/Write Requests and Intel QPI Snoops. Carries Intel QPI
requests and snoop responses from C to Sbox.

BL (Block or Data) Ring - Data == 2 transfers for 1 cache line

AK (Acknowledge) Ring - Acknowledges Sbox to Cbox and Cbox to Core. Carries snoop
responses from Core to Cbox.

IV (Invalidate) Ring - Cbox Snoop requests of core caches

Internal Cbox Queues:

IRQ - Ingress Request Queue on AD Ring. Associated with requests from core.

IPQ - Ingress Probe Queue on AD Ring. Associated with snoops from Sbox.

VIQ - Victim Queue internal to Cbox.

IDQ - Ingress Data Queue on BL Ring. For data from either Core or Sbox.

ICQ - Sbox Ingress Complete Queue on AK Ring

SRQ - Processor Snoop Response Queue on AK ring

IGQ - Ingress GO-pending (tracking GO’s to core) Queue

MAF - Miss Address File. Intel QPI ordering buffer that also tracks local coherence.

5.5.4.3 The Queues:

There are four internal occupancy queue counters, each of which is 5bits wide and
dedicated to its queue: IRQ, IPQ, VIQ, MAF.

Note: IDQ, ICQ, SRQ and IGQ occupancies are not tracked since they are mapped 1:1 to the
MAF and, therefore, can not create back pressure.

There is no need to explicitly reset the occupancy counters in the Cbox since they are
counting from reset de-assertion.

5.5.4.4 Detecting Performance Problems in the Cbox Pipeline:

IRQ occupancy counters should be used to track if the Cbox pipeline is exerting back
pressure on the Core-request path. There is a one-to-one correspondence between the
LLC requests generated by the cores and the IRQ allocations. IPQ occupancy counters
should be used to track if the Cbox pipeline is exerting back pressure on the Intel QPI-
snoop path. There is a one-to-one correspondence between the Intel QPI snoops
received by the socket, and the IPQ allocations in the Cboxes. In both cases, if the
message is in the IRQ/IPQ then the Cbox hasn’t acknowledged it yet and the request

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 369
Reference Manual for Software Development and Optimization Guide

hasn’t yet entered the LLC’s “coherence domain”. It deallocates from the IRQ/IPQ at
the moment that the Cbox does acknowledge it. In optimal performance scenarios,
where there are minimal conflicts between transactions and loads are low enough to
keep latencies relatively near to idle, IRQ and IPQ occupancies should remain very low.

One relatively common scenario in which IRQ back pressure will be high is worth
mentioning: The IRQ will backup when software is demanding data from memory at a
rate that exceeds the available memory BW. The IRQ is designed to be the place where
the extra transactions wait Ubox’s RTIDs to become available when memory becomes
saturated. IRQ back pressure becomes interesting in a scenario where memory is not
operating at or near peak sustainable BW. That can be a sign of a performance problem
that may be correctable with software tuning.

One final warning on LLC pipeline congestion: Care should be taken not to blindly sum
events across Cboxes without also checking the deviation across individual Cboxes
when investigating performance issues that are concentrated in the Cbox pipelines.
Performance problems where congestion in the Cbox pipelines is the cause should be
rare, but if they do occur, the event counts may not be homogeneous across the
Cboxes in the socket. The average count across the Cboxes may be misleading. If
performance issues are found in this area it will be useful to know if they are or are not
localized to specific Cboxes.

5.5.5 Cbox Events Ordered By Code
Table 5-40 summarizes the directly-measured Cbox events.

Table 5-40. Performance Monitor Events for Cbox Events (Sheet 1 of 2)

Symbol Name Event
Code

Max
Inc/Cyc Description

Ring Events

BOUNCES_P2C_AD 0x01 1 Number of P2C AD bounces.

BOUNCES_C2P_AK 0x02 1 Number of C2P AK bounces.

BOUNCES_C2P_BL 0x03 1 Number of C2P BL bounces.

BOUNCES_C2P_IV 0x04 1 Number of C2P IV bounces.

SINKS_P2C 0x05 3 Number of P2C sinks.

SINKS_C2P 0x06 3 Number of C2P sinks.

SINKS_S2C 0x07 3 Number of S2C sinks.

SINKS_S2P_BL 0x08 1 Number of S2P sinks (BL only).

ARB_WINS 0x09 7 Number of ARB wins.

ARB_LOSSES 0x0A 7 Number of ARB losses.

Local Events

STARVED_EGRESS 0x0B 8 Increment on EGR queue starvation

EGRESS_BYPASS_WINS 0x0C 7 Egress Bypass Wins

INGRESS_BYPASS_WINS_AD 0x0E 1 Ingress Sbox/Non-Sbox Bypass Wins

MAF_ACK 0x10 1 MAF Acknowledges

MAF_NACK1 0x11 1 MAF Non-Acknowledgements (First Set)

MAF_NACK2 0x12 1 MAF Non-Acknowledgements (Second Set)

LLC_MISSES 0x14 1 LLC Misses

LLC_HITS 0x15 1 LLC Hits

LLC_S_FILLS 0x16 1 LLC lines filled from Sbox

Uncore Performance Monitoring

370 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.5.6 Cbox Performance Monitor Event List
This section enumerates Itanium processor 9500 series uncore performance
monitoring events for the Cbox.

ARB_LOSSES
• Title: Arbiter Losses.
• Category: Ring - Egress
• Event Code: 0x0A, Max. Inc/Cyc: 7,
• Definition: Number of Ring arbitration losses. A loss occurs when a message injec-

tion on to the ring fails. This could occur either because there was another message
resident on the ring at that ring stop or because the co-located ring agent issued a
message onto the ring in the same cycle.

LLC_VICTIMS 0x17 1 LLC lines victimized

Queue Occupancy Events

OCCUPANCY_IRQ 0x18 24 IRQ Occupancy

TRANS_IRQ 0x19 1 IRQ Transactions (dealloc)

OCCUPANCY_IPQ 0x1A 8 IPQ Occupancy

TRANS_IPQ 0x1B 1 IPQ Transactions

OCCUPANCY_VIQ 0x1C 8 VIQ Occupancy

TRANS_VIQ 0x1D 1 VIQ Transactions

OCCUPANCY_MAF 0x1E 16 MAF Occupancy

TRANS_MAF 0x1F 1 MAF Transactions

Local Events

SEMAPHORE_NACKS 0x20 1 Semaphore NACKs

SNPS 0x27 1 Snoops to LLC

SNP_HITS 0x28 1 Snoop Hits in LLC

LLC_READS_I 0x29 1 LLC Inst Reads

LLC_READS_D 0x2A 1 LLC Data Reads

LLC_WRITES 0x2B 1 LLC Writes

Table 5-40. Performance Monitor Events for Cbox Events (Sheet 2 of 2)

Symbol Name Event
Code

Max
Inc/Cyc Description

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

AD_SB b00000001 AD ring in the direction that points toward the nearest Sbox

AD_NSB b00000010 AD ring in the direction that points away from the nearest Sbox

AD_ALL b00000011 AD ring in either direction.

AK_SB b00000100 AK ring in the direction that points toward the nearest Sbox

AK_NSB b00001000 AK ring in the direction that points away from the nearest Sbox

AK_ALL b00001100 AK ring in either direction.

BL_SB b00010000 BL ring in the direction that points toward the nearest Sbox

BL_NSB b00100000 BL ring in the direction that points away from the nearest Sbox

BL_ALL b00110000 BL ring in either direction.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 371
Reference Manual for Software Development and Optimization Guide

ARB_WINS
• Title: Arbiter Wins
• Category: Ring - Egress
• Event Code: 0x09, Max. Inc/Cyc: 7,
• Definition: Number of Ring arbitration wins. A win is when a message was success-

fully injected onto the ring.

BOUNCES_C2P_AK
• Title: C2P AK Bounces
• Category: Ring - WIR
• Event Code: 0x02, Max. Inc/Cyc: 1,
• Definition: Number of LLC Ack responses to the core that bounced on the AK ring.

IV b01000000 IV ring

ALL b01111111 All rings

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

AD_SB b00000001 AD ring in the direction that points toward the nearest Sbox

AD_NSB b00000010 AD ring in the direction that points away from the nearest Sbox

AD_ALL b00000011 AD ring in either direction.

AK_SB b00000100 AK ring in the direction that points toward the nearest Sbox

AK_NSB b00001000 AK ring in the direction that points away from the nearest Sbox

AK_ALL b00001100 AK ring in either direction.

BL_SB b00010000 BL ring in the direction that points toward the nearest Sbox

BL_NSB b00100000 BL ring in the direction that points away from the nearest Sbox

BL_ALL b00110000 BL ring in either direction.

IV b01000000 IV ring

ALL b01111111 All rings

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

SB b000000x1 Direction that points toward the nearest Sbox

NSB b0000001x Direction that points away from the nearest Sbox

ALL b00000011 Either direction

Uncore Performance Monitoring

372 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

BOUNCES_C2P_BL
• Title: C2P BL Bounces
• Category: Ring - WIR
• Event Code: 0x03, Max. Inc/Cyc: 1,
• Definition: Number of LLC data responses to the core that bounced on the BL ring.

BOUNCES_C2P_IV
• Title: C2P IV Bounces
• Category: Ring - WIR
• Event Code: 0x04, Max. Inc/Cyc: 1,
• Definition: Number of Cbox snoops of a processor’s cache that bounced on the IV

ring.

BOUNCES_P2C_AD
• Title: P2C AD Bounces
• Category: Ring - WIR
• Event Code: 0x01, Max. Inc/Cyc: ,
• Definition: Core request to LLC bounces on AD ring.

EGRESS_BYPASS_WINS
• Title: Egress Bypass Wins
• Category: Local - Egress
• Event Code: 0x0C, Max. Inc/Cyc: 7,
• Definition: Number of times a ring egress bypass was taken when a message was

injected onto the ring. The subevent field allows tracking of each available egress
queue bypass path, including both 0 and 1 cycle versions.

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

SB b000000x1 Direction that points toward the nearest Sbox

NSB b0000001x Direction that points away from the nearest Sbox

ALL b00000011 Either direction

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

SB b000000x1 Direction that points toward the nearest Sbox

NSB b0000001x Direction that points away from the nearest Sbox

ALL b00000011 Either direction

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

AD_BYP0 b00000001 0 cycle AD egress bypass

AD_BYP1 b00000010 1 cycle AD egress bypass

AK_BYP0 b00000100 0 cycle AK egress bypass

AK_BYP1 b00001000 1 cycle AK egress bypass

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 373
Reference Manual for Software Development and Optimization Guide

INGRESS_BYPASS_WINS_AD
• Title: Ingress Sbox/Non Sbox Bypass Wins
• Category: Local - Egress
• Event Code: 0x0E, Max. Inc/Cyc: 1,
• Definition: Number of times that a message, off the AD ring, sunk by the Cbox took

one of the ingress queue bypasses. The subevent field allows tracking of each avail-
able ingress queue bypass path, including both 0 and 1 cycle versions.

LLC_HITS
• Title: LLC Hits
• Category: Local - LLC
• Event Code: 0x15, Max. Inc/Cyc: 1,
• Definition: Last Level Cache Hits
• NOTE: LRU hints are included in count.

LLC_MISSES
• Title: LLC Misses
• Category: Local - LLC
• Event Code: 0x14, Max. Inc/Cyc: 1,
• Definition: Last Level Cache Misses

BL_BYP0 b00010000 0 cycle BL egress bypass

BL_BYP1 b00100000 1 cycle BL egress bypass

IV_BYP0 b01000000 0 cycle IV egress bypass

IV_BYP1 b10000000 1 cycle IV egress bypass

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

IRQ_BYP0 b00000001 0 cycle Ingress Request Queue bypass

IRQ_BYP1 b00000010 1 cycle Ingress Request Queue bypass

IPQ_BYP0 b00000100 0 cycle Ingress Probe Queue bypass

IPQ_BYP1 b00001000 1 cycle Ingress Probe Queue bypass

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

M b00000xx1 Modified

E b00000x1x Exclusive

S b000001xx Shared

ALL b00000111 All hits (to any cacheline state)

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

S b000000x1 Shared - request requires S line to be upgraded (due to RFO)

Uncore Performance Monitoring

374 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

LLC_READS_D
• Title: LLC Data Reads
• Category: Local - LLC
• Event Code: 0x2A, Max. Inc/Cyc: 1,
• Definition: Last Level Cache Data Reads (Opcode is DRd or RFO)

LLC_READS_I
• Title: LLC Inst Reads
• Category: Local - LLC
• Event Code: 0x29, Max. Inc/Cyc: 1,
• Definition: Last Level Cache Instruction Reads (Opcode is CRd)

LLC_S_FILLS
• Title: LLC Sbox Fills
• Category: Local - LLC
• Event Code: 0x16, Max. Inc/Cyc: 1,
• Definition: Last Level Cache lines filled from Sbox

I b0000001x Invalid - address not found

ALL b0000011 All misses

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

HIT b0000xxx1 Hit

MISS b0000xx1x Miss

FILL b0000x1xx Fill

VICTIM b00001xxx Victim

ALL b00001111 All misses

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

HIT b0000xxx1 Hit

MISS b0000xx1x Miss

FILL b0000x1xx Fill

VICTIM b00001xxx Victim

ALL b00001111 All misses

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

M b00000xx1 Filled to LLC in Modified (remote socket forwarded M data without
writing back to memory controller)

E b00000x1x Filled to LLC in Exclusive

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 375
Reference Manual for Software Development and Optimization Guide

LLC_VICTIMS
• Title: LLC Lines Victimized
• Category: Local - LLC
• Event Code: 0x17, Max. Inc/Cyc: 1,
• Definition: Last Level Cache lines victimized

LLC_WRITES
• Title: LLC Writes
• Category: Local - LLC
• Event Code: 0x2B, Max. Inc/Cyc: 1,
• Definition: Last Level Cache Writes (Opcode is WBMtoS or FC)

MAF_ACK
• Title: MAF ACK
• Category: Local - MAF
• Event Code: 0x10, Max. Inc/Cyc: 1,
• Definition: Miss Address File Acknowledgements.

S b000001xx Filled to LLC in Shared

ALL b00000111 All fills to LLC

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

M b0000xxx1 Modified data victimized (explicit WB to memory)

E b0000xx1x Exclusive data victimized

S b0000x1xx Shared data victimized

I b00001xxx LLC fill that occurred without victimizing any data

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

HIT b000000x1 Hit

MISS b0000001x Miss

ALL b00000011 All misses

Uncore Performance Monitoring

376 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

MAF_NACK1
• Title: MAF NACK1
• Category: Local - MAF
• Event Code: 0x11, Max. Inc/Cyc: 1,
• Definition: Rejected (not-acknowledged) LLC pipeline passes (Set 1).

MAF_NACK2
• Title: MAF NACK2
• Category: Local - MAF
• Event Code: 0x12, Max. Inc/Cyc: 1,
• Definition: Rejected (not-acknowledged) LLC pipeline passes (Set 2).

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

GO_PENDING bxxxxxxx1 A message associated with a transaction monitored by the MAF was
delayed because the transaction had a GO pending in the requesting
core.

VIC_PENDING bxxxxxx1x An LLC fill was delayed because the victimized data in the LLC was
still being processed.

SNP_PENDING bxxxxx1xx A message associated with a transaction monitored by the MAF was
delayed because the transaction had a snoop pending.

AC_PENDING bxxxx1xxx An incoming remote Intel QPI snoop was delayed because it conflicted
with an existing MAF transaction that had an Ack Conflict pending.

SCIDX_BLOCK bxxx1xxxx Side-Cam Index Blocking

PA_BLOCK bxx1xxxxx If this count is very high, it likely means that software is frequently
issuing requests to the same physical address from disparate threads
simultaneously. Though there will also sometimes be a small number
of PA_BLOCK nacks in the background due to cases when a pair of
messages associated with the same transaction happen to arrive at
the LLC at the same time and one of them gets delayed.

IDLE_QPI bx1xxxxxx Idle Intel QPI State

ALL_MAF_NACK2 b1xxxxxxx A message was rejected when one or more of the sub-events under
MAF_NACK2 was true. This is included in MAF_NACK1 so that
MAF_NACK1 with sub-event 0xFF will count the total number of
Nacks.

TOTAL_MAF_NACKS b11111111 Total number of LLC pipeline passes that were nacked.

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

MAF_FULL bxxxxxxx1 An incoming local processor RD/WR or remote Intel QPI snoop
request that required a MAF entry was delayed because no MAF entry
was available.

EGRESS_FULL bxxxxxx1x Some incoming message to the LLC that needed to generate a
response message for transmission onto the ring was delayed due to
ring back pressure.

VIQ_FULL bxxxxx1xx An incoming local processor RD request that missed the LLC was
delayed because the LLC victim buffer was full.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 377
Reference Manual for Software Development and Optimization Guide

OCCUPANCY_IPQ
• Title: IPQ Occupancy
• Category: Queue Occupancy
• Event Code: 0x1A, Max. Inc/Cyc: 8,
• Definition: Cumulative count of occupancy in the LLC’s Ingress Probe Queue.

OCCUPANCY_IRQ
• Title: IRQ Occupancy
• Category: Queue Occupancy
• Event Code: 0x18, Max. Inc/Cyc: 24,
• Definition: Cumulative count of occupancy in the LLC’s Ingress Response Queue.

OCCUPANCY_MAF
• Title: MAF Occupancy
• Category: Queue Occupancy
• Event Code: 0x1E, Max. Inc/Cyc: 16,
• Definition: Cumulative count of occupancy in the LLC’s Miss Address File.

OCCUPANCY_VIQ
• Title: VIQ Occupancy
• Category: Queue Occupancy
• Event Code: 0x1C, Max. Inc/Cyc: 8,
• Definition: Cumulative count of the occupancy in the Victim Ingress Queue.

SEMAPHORE_NACKS
• Title: Semaphore NACKs.
• Category: Local - CC
• Event Code: 0x20, Max. Inc/Cyc: 1,
• Definition: Number of Semaphore NACKS. Gives extent of local socket degradation

generated by the fairness logic.

NO_TRACKER_CREDITS bxxxx1xxx An incoming local processor RD or WR request was delayed because it
required a Home tracker credit (for example, LLC RD Miss) and no
credit was available.

NO_S_FIFO_CREDITS bxxx1xxxx Some incoming message to the LLC that needed to generate a
message to the Sbox was delayed due to lack of available buffering
resources in the Sbox.

NO_S_REQTBL_ENTRIES bxx1xxxxx An incoming local processor Rd or WR that needed to generate a
transaction to Home (for example, LLC RD Miss) was delayed because
the Sbox Request Table was full.

WB_PENDING bx1xxxxxx An incoming remote Intel QPI snoop request to the LLC was delayed
because it conflicted with an existing transaction that had a WB to
Home pending.

NACK2_ELSE b1xxxxxxx Some incoming message to the LLC was delayed for a reason not
covered by any of the other MAF_NACK1 or MAF_NACK2 sub-events.

Extension umask
[15:8] Description

Uncore Performance Monitoring

378 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

SINKS_C2P
• Title: C2P Sinks
• Category: Ring - WIR
• Event Code: 0x06, Max. Inc/Cyc: 3,
• Definition: Number of messages sunk by the processor that were sent by one of

the Cboxes.
• NOTE: Each sink represents the transfer of 32 bytes, or 2 sinks per cache line.

SINKS_P2C
• Title: P2C Sinks
• Category: Ring - WIR
• Event Code: 0x05, Max. Inc/Cyc: 3,
• Definition: Number of messages sunk from the ring at the Cbox that were sent by

one of the local processors.
• NOTE: Each sink represents the transfer of 32 bytes, or 2 sinks per cache line.

SINKS_S2C
• Title: S2C Sinks
• Category: Ring - WIR
• Event Code: 0x07, Max. Inc/Cyc: 3,
• Definition: Number of messages sunk from the ring at the Cbox that were sent by

the Sbox.
• NOTE: Each sink represents the transfer of 32 bytes, or 2 sinks per cache line.

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

IV b00000001 IV (Cbox snoops of a processor’s cache)

AK b00000010 AK (GO messages send to the processor)

BL b00000100 BL (LLC data sent back to processor)

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

AD b00000001 AD (Core RD/WR requests to the LLC)

AK b00000010 AK (Core snoop responses to the LLC)

BL b00000100 BL (explicit and implicit WB data from the core to the LLC)

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

AD b00000001 AD (Intel QPI snoop request of LLC)

AK b00000010 AK (Intel QPI completions sent to LLC)

BL b00000100 BL (Data Fills sent to the LLC in response to RD requests)

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 379
Reference Manual for Software Development and Optimization Guide

SINKS_S2P_BL
• Title: S2P Sinks
• Category: Ring - WIRa
• Event Code: 0x08, Max. Inc/Cyc: 1,
• Definition: Number BL ring messages sunk by the processor that were sent from

the Sbox. This covers BL only, because that is the only kind of message the Sbox can
send to a processor.

• NOTE: Each sink represents the transfer of 32 bytes, or 2 sinks per cache line.

SNP_HITS
• Title: Snoop Hits in LLC
• Category: Local - CC
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Number of Intel QPI snoops that hit in the LLC according to state of LLC

when the hit occurred. GotoS: LLC Data or Code Read Snoop Hit ‘x’ state in remote
cache. GotoI: LLC Data Read for Ownership Snoop Hit ‘x’ state in remote cache.

SNPS
• Title: Snoops to LLC
• Category: Local - CC
• Event Code: 0x27, Max. Inc/Cyc: 1,
• Definition: Number of Intel QPI snoops seen by the LLC.
• NOTE: Subtract CACHE_CHAR_QUAL.ANY_HIT from this event to determine how
many snoops missed the LLC.

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

REMOTE_RD_HITM b00xxxxx1 Intel QPI SnpData or SnpCode hit M line in LLC

REMOTE_RD_HITE b00xxxx1x Intel QPI SnpData or SnpCode hit E line in LLC

REMOTE_RD_HITS b00xxx1xx Intel QPI SnpData or SnpCode hit S line in LLC

REMOTE_RFO_HITM b00xx1xxx Intel QPI SnpInvOwn or SnpInvItoE hit M line in LLC

REMOTE_RFO_HITE b00x1xxxx Intel QPI SnpInvOwn or SnpInvItoE hit E line in LLC

REMOTE_RFO_HITS b001xxxxx Intel QPI SnpInvOwn or SnpInvItoE hit S line in LLC

REMOTE_HITM b00xx1xx1 Intel QPI Snoops that hit M line in LLC

REMOTE_HITE b00x1xx1x Intel QPI Snoops that hit E line in LLC

REMOTE_HITS b001xx1xx Intel QPI Snoops that hit S line in LLC

REMOTE_ANY b11111111 Intel QPI Snoops that hit in LLC (any line state)

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

REMOTE_RD b000000x1 Remote Read - Goto S State. Intel QPI snoops (SnpData or SnpCode)
to LLC that caused a transition to S in the cache.
NOTE: ALL SnpData and SnpCode transactions are counted. If
SnpData HITM policy is M->I, this subevent will capture those snoops.

REMOTE_RFO b0000001x Remote RFO - Goto I State. Intel QPI snoops (SnpInvOwn or
SnpInvItoE) to LLC that caused an invalidate of a cache line.

REMOTE_ANY b00000011 Intel QPI snoops to LLC that hit in the cache line

Uncore Performance Monitoring

380 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

STARVED_EGRESS
• Title: Egress Queue Starved
• Category: Local - EGR
• Event Code: 0x0B, Max. Inc/Cyc: 8,
• Definition: Number of cycles that an Egress Queue is in starvation

TRANS_IPQ
• Title: IPQ Transactions
• Category: Queue Occupancy
• Event Code: 0x1B, Max. Inc/Cyc: 1,
• Definition: Number of Intel QPI snoop probes that entered the LLC’s Ingress Probe

Queue.

TRANS_IRQ
• Title: IRQ Transactions
• Category: Queue Occupancy
• Event Code: 0x19, Max. Inc/Cyc: 1,
• Definition: Number of processor RD and/or WR requests to the LLC that entered

the Ingress Response Queue.

TRANS_MAF
• Title: MAF Transactions
• Category: Queue Occupancy
• Event Code: 0x1F, Max. Inc/Cyc: 1,
• Definition: Number of transactions to allocate entries in LLC’s Miss Address File.

Extension umask
[15:8] Description

--- b00000000 (*nothing will be counted*)

P2C_AD_SB b00000001 Processor-to-Cbox AD Egress that injects in the direction toward the
nearest Sbox

C2S_AD_SB b00000010 Cbox to Sbox AD Egress.

AD_SB b00000011 Sum of AD Egresses that injects in the direction toward the nearest
Sbox

AD_NSB b00000100 Sum across both AD Egress that inject in the direction away from the
nearest Sbox.

AD b00000111 Sum across all AD Egresses

AK_SB b00001000 AK Egress that injects in the direction toward the nearest Sbox.

AK_NSB b00010000 AK Egress that injects in the direction away from the nearest Sbox.

AK b00011000 Sum across all AK Egresses.

BL_SB b00100000 BL Egress that injects in the direction toward the nearest Sbox.

BL_NSB b01000000 BL Egress that injects in the direction away from the nearest Sbox.

BL b01100000 Sum across all BL Egresses.

IV b10000000 IV Egress

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 381
Reference Manual for Software Development and Optimization Guide

TRANS_VIQ
• Title: VIQ Transactions
• Category: Queue Occupancy
• Event Code: 0x1D, Max. Inc/Cyc: 1,
• Definition: Number of LLC victims to enter the Victim Ingress Queue. All LLC vic-

tims pass through this queue. Including those that end up not requiring a WB.

5.6 Rbox Performance Monitoring

5.6.1 Overview of the Rbox
The Crossbar Router (Rbox) is a 10 port switch/router implementing the QuickPath
Interconnect Link layers. The Rbox is responsible for routing and transmitting all intra-
and inter-processor communication. The Rbox is connected to 4 full 80b and 2 half-
width 40b QuickPath Interconnect links. The Rbox is also connected to both Bboxes
(one connection is shared with a connection to the Ubox) and both Sboxes by 80b
interfaces.

The Rbox consists of 10 identical ports and a wire crossbar that connects the ports
together. Each port contains three main sections as shown in Figure 5-3: the input port,
the output port, and the arbitration control.

5.6.1.1 Rbox Input Port

The Rbox input port is responsible for storing incoming packets from the Bbox/Sbox/
Uboxs, and Intel QPI Links using the Intel QuickPath Interconnect protocol. Data from
each packet header is consolidated and sent to the Rbox arbiter.

Rbox input ports have two structures of important to performance monitoring; Entry
overflow table (EOT) and Entry Table (ET). Rbox PMU supports performance monitoring
in these two structures.

Figure 5-3. Rbox Block Diagram

Port 0 (QPIh5)

Arb 0

Input Output

Port 1 (B0/U)

Input Output

Port 2 (S0)

Input Output

Port 3 (QPI3)

Input Output

Port 4 (QPI1)

Input Output

Arb 2

Arb 1

Arb 3

Arb 4

Arb 5

Arb 7

Arb 6

Arb 8

Arb 9

Port 5 (QPIh4)

Input Output

Port 6 (B1)

Input Output

Port 7 (S1)

Input Output

Port 8 (QPI2)

Input Output

Port 9 (QPI0)

Input Output

Uncore Performance Monitoring

382 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.6.1.2 Rbox Arbitration Control

The Rbox arbitration control is responsible for selecting when packets move from the
input ports to the output ports and which output port they go to if there are multiple
options specified.

Rbox arbitration does not have any storage structures. This part of the logic basically
determines which port to route the packet and then arbitrate to secure a route to that
port through the cross-bar.

The arbitration is done at 3 levels: queue, port and global arbitration. Rbox PMUs
support performance monitoring at the arbitration control.

5.6.1.3 Rbox Output Port

The Rbox output port acts as a virtual wire that is responsible for de-coupling the
crossbar from further downstream paths to on-chip or off-chip ports while carrying out
the Link layer functions.

5.6.1.4 Rbox Link Layer Resources

Each Rbox port supports up to three virtual networks (VN0, VN1, and VNA) as defined
by the Intel® QuickPath Interconnect Specification.

5.6.2 Rbox Performance Monitoring Overview
The Rbox supports performance event monitoring through its Performance Monitoring
Unit (PMU). At a high level, the Rbox PMU supports features comparable to other
uncore PMUs. Rbox PMUs support both Global and Local PMU freeze/unfreeze. Rbox
PMUs are accessible through Chip-Set Registers (CSRs).

Rbox PMU consists of 16 48b-wide performance monitoring data counters and a
collection of other peripheral control registers. The count values of all 16 counters can
be cleared by writing the R_CSR_PMON_PERF_MASTER.clr bit.

The counters, along with the control register paired with each one, are split. Half of the
counters (0-7) can monitor events occurring on the ‘left’ side of the RBox (ports 0-4)
and the other half (8-15) monitor the ‘right’ side (ports 5-10).

Since the Rbox consists of 10 almost identical ports, Rbox perfmon events consist of an
identical set of events for each port. The Rbox perfmon usage model allows monitoring
of multiple ports at the same time. Rbox PMUs do not provide any global performance
monitoring events.

Table 5-41. Input Buffering Per Port

Message Class Abbr
VNA VN0 VN1

Pkts Flits Pkts Flits Pkts Flits

Home HOM 96 1 up to 2 1 up to 2

Snoop SNP 1 up to 2 1 up to 2

Non-Data Response NDR 1 up to 2 1 up to 2

Data Response DRS 1 up to
11

1 up to
11

Non-Coherent Standard NCS 1 up to 3 1 up to 3

Non-Coherent Bypass NCB 1 up to
11

1 up to
11

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 383
Reference Manual for Software Development and Optimization Guide

Unlike other boxes, event programming in the Rbox is hierarchical. It is necessary to
program multiple CSRs to select the event to be monitored. In order to program an
event, each of the control registers for its accompanying counter must be redirected to
a subcontrol register attached to a specific port by setting the .pt_sel field in the control
register. Once a port is chosen, each control register can then be redirected to one of 2
IPERF control registers (for Rbox Input Port or RIX events), one of 2 fields in a QLX
control register (for Rbox Arbitration Queue or QLX events) or one of 2 mask/match
registers. Therefore, it is possible to monitor up to two of any event per port.

The Rbox also includes a pair of mask/match registers on each port that allow a user
to match packets serviced (packet is transferred from input to output port) by the
Rbox according to various standard packet fields such as message class, opcode, and
so forth.

5.6.2.1 Choosing An Event To Monitor - Example

1) Pick an event to monitor (for example, FLITS_SENT)

2) Pick a port to monitor on (for example, QPI3)

3) Pick a generic counter (control+data) that can monitor an event on that port. (for
example, R_CSR_PERF_CNT/CNT_CTRL4) and set the control to point to it
(R_CSR_PERF_CNT_CTRL_4.pt_sel == 0x3).

4) Pick one of the two sub counters that allow a user to monitor the event
(R_CSR_P03_IPERF1), program it to monitor the chosen event
(R_CSR_P03_IPERF1[31] = 0x1) and set the generic control to point to it
(R_CSR_PERF_CNT_CTRL4.ev_sel == 0x1).

5.6.2.2 Rbox PMU - Overflow, Freeze and Unfreeze

Rbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Rbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Rbox PMU can be frozen due to one of three reasons:

• Globally: Ubox sends a disable signal (and R_CSR_PMON_PERF_MASTER.glb_lcl is
1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to R_CSR_PMON_PERF_MASTER.en
when R_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

• Locally: The Rbox was set to local control (R_CSR_PMON_PERF_MASTER.glb_lcl =
0) and a Rbox counter overflowed.

If an overflow is detected from a Rbox performance counter, the overflow bit is set in
the overflowing data register (R_CSR_PERF_CNT_CTRL_{15-0}.ov), and forwarded up
the chain towards the Sbox. That is, if an Rbox counter overflows, a notification is sent
and stored in Sbox (S_CSR_PMON_SUMMARY.ov_r). Refer to Table 5-64,
“S_CSR_PMON_SUMMARY Register Fields” to determine how each Rbox’s overflow bit is
accumulated in the attached Sbox.

The Ubox may be configured to freeze all uncore counting (refer to Table 5-65,
“S_CSR_PMON_FRZ_EN Register Fields”) when it receives this signal.

Uncore Performance Monitoring

384 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Once a freeze has occurred, in order to see a new freeze, the overflow field responsible
for the freeze, must be cleared at which point the Rbox is prepared for a new sample
interval. Once the global controls have been re-enabled (Section 5.3.4, “Enabling a
New Sample Interval from Frozen Counters.”), counting will resume.

5.6.3 Rbox Performance Monitoring CSRs

Table 5-42. Rbox PMU Summary (Sheet 1 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Counters 15-8

R_CSR_PERF_CNT_15 0x8AB8 Performance Counter 15

R_CSR_PERF_CNT_14 0x8AB0 Performance Counter 14

R_CSR_PERF_CNT_13 0x8AA8 Performance Counter 13

R_CSR_PERF_CNT_12 0x8AA0 Performance Counter 12

R_CSR_PERF_CNT_11 0x8A98 Performance Counter 11

R_CSR_PERF_CNT_10 0x8A90 Performance Counter 10

R_CSR_PERF_CNT_9 0x8A88 Performance Counter 9

R_CSR_PERF_CNT_8 0x8A80 Performance Counter 8

Control for Counters 15-8

R_CSR_PERF_CNT_CTRL_15 0x8A78 Performance Counter 15 Control

R_CSR_PERF_CNT_CTRL_14 0x8A70 Performance Counter 14 Control

R_CSR_PERF_CNT_CTRL_13 0x8A68 Performance Counter 13 Control

R_CSR_PERF_CNT_CTRL_12 0x8A60 Performance Counter 12 Control

R_CSR_PERF_CNT_CTRL_11 0x8A58 Performance Counter 11 Control

R_CSR_PERF_CNT_CTRL_10 0x8A50 Performance Counter 10 Control

R_CSR_PERF_CNT_CTRL_9 0x8A48 Performance Counter 9 Control

R_CSR_PERF_CNT_CTRL_8 0x8A40 Performance Counter 8 Control

IPERF Registers (for RIX Events)
for Ports 9-5

R_CSR_P09_IPERF1 0x8878 RIX Performance Counter Event Config 1 (Port 9)

R_CSR_P09_IPERF0 0x8870 RIX Performance Counter Event Config 0 (Port 9)

R_CSR_P08_IPERF1 0x8678 RIX Performance Counter Event Config 1 (Port 8)

R_CSR_P08_IPERF0 0x8670 RIX Performance Counter Event Config 0 (Port 8)

R_CSR_P07_IPERF1 0x8478 RIX Performance Counter Event Config 1 (Port 7)

R_CSR_P07_IPERF0 0x8470 RIX Performance Counter Event Config 0 (Port 7)

R_CSR_P06_IPERF1 0x8278 RIX Performance Counter Event Config 1 (Port 6)

R_CSR_P06_IPERF0 0x8270 RIX Performance Counter Event Config 0 (Port 6)

R_CSR_P05_IPERF1 0x8078 RIX Performance Counter Event Config 1 (Port 5)

R_CSR_P05_IPERF0 0x8070 RIX Performance Counter Event Config 0 (Port 5)

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 385
Reference Manual for Software Development and Optimization Guide

ARB Registers (for QLX Events)
for Ports 9-5

R_CSR_P04_ARB_PERF9 0x8810 Arbiter PMU Configuration Register for Port 9

R_CSR_P03_ARB_PERF8 0x8610 Arbiter PMU Configuration Register for Port 8

R_CSR_P02_ARB_PERF7 0x8410 Arbiter PMU Configuration Register for Port 7

R_CSR_P01_ARB_PERF6 0x8210 Arbiter PMU Configuration Register for Port 6

R_CSR_P00_ARB_PERF5 0x8010 Arbiter PMU Configuration Register for Port 5

Port 9 Match/Mask Registers

R_CSR_P09_MM_CFG_1 0x88C8 Match/Mask Set 1 Configuration Register for Port 09

R_CSR_P09_MM_CFG_0 0x88C0 Match/Mask Set 0 Configuration Register for Port 09

R_CSR_P09_MATCH_MSB_1 0x88B8 Match Set 1 MSB {63:32} for Port 09

R_CSR_P09_MATCH_MSB_0 0x88B0 Match Set 0 MSB {63:32} for Port 09

R_CSR_P09_MATCH_LSB_1 0x88A8 Match Set 1 LSB {31:0} for Port 09

R_CSR_P09_MATCH_LSB_0 0x88A0 Match Set 0 LSB {31:0} for Port 09

R_CSR_P09_MASK_MSB_1 0x8898 Mask Set 1 MSB {63:32} for Port 09

R_CSR_P09_MASK_MSB_0 0x8890 Mask Set 0 MSB {63:32} for Port 09

R_CSR_P09_MASK_LSB_1 0x8888 Mask Set 1 LSB {31:0} for Port 09

R_CSR_P09_MASK_LSB_0 0x8880 Mask Set 0 LSB {31:0} for Port 09

Port 8 Match/Mask Registers

R_CSR_P08_MM_CFG_1 0x86C8 Match/Mask Set 1 Configuration Register for Port 08

R_CSR_P08_MM_CFG_0 0x86C0 Match/Mask Set 0 Configuration Register for Port 08

R_CSR_P08_MATCH_MSB_1 0x86B8 Match Set 1 MSB {63:32} for Port 08

R_CSR_P08_MATCH_MSB_0 0x86B0 Match Set 0 MSB {63:32} for Port 08

R_CSR_P08_MATCH_LSB_1 0x86A8 Match Set 1 LSB {31:0} for Port 08

R_CSR_P08_MATCH_LSB_0 0x86A0 Match Set 0 LSB {31:0} for Port 08

R_CSR_P08_MASK_MSB_1 0x8698 Mask Set 1 MSB {63:32} for Port 08

R_CSR_P08_MASK_MSB_0 0x8690 Mask Set 0 MSB {63:32} for Port 08

R_CSR_P08_MASK_LSB_1 0x8688 Mask Set 1 LSB {31:0} for Port 08

R_CSR_P08_MASK_LSB_0 0x8680 Mask Set 0 LSB {31:0} for Port 08

Port 7 Match/Mask Registers

R_CSR_P07_MM_CFG_1 0x84C8 Match/Mask Set 1 Configuration Register for Port 07

R_CSR_P07_MM_CFG_0 0x84C0 Match/Mask Set 0 Configuration Register for Port 07

R_CSR_P07_MATCH_MSB_1 0x84B8 Match Set 1 MSB {63:32} for Port 07

R_CSR_P07_MATCH_MSB_0 0x84B0 Match Set 0 MSB {63:32} for Port 07

R_CSR_P07_MATCH_LSB_1 0x84A8 Match Set 1 LSB {31:0} for Port 07

R_CSR_P07_MATCH_LSB_0 0x84A0 Match Set 0 LSB {31:0} for Port 07

R_CSR_P07_MASK_MSB_1 0x8498 Mask Set 1 MSB {63:32} for Port 07

R_CSR_P07_MASK_MSB_0 0x8490 Mask Set 0 MSB {63:32} for Port 07

Table 5-42. Rbox PMU Summary (Sheet 2 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Uncore Performance Monitoring

386 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

R_CSR_P07_MASK_LSB_1 0x8488 Mask Set 1 LSB {31:0} for Port 07

R_CSR_P07_MASK_LSB_0 0x8480 Mask Set 0 LSB {31:0} for Port 07

Port 6 Match/Mask Registers

R_CSR_P06_MM_CFG_1 0x82C8 Match/Mask Set 1 Configuration Register for Port 06

R_CSR_P06_MM_CFG_0 0x82C0 Match/Mask Set 0 Configuration Register for Port 06

R_CSR_P06_MATCH_MSB_1 0x82B8 Match Set 1 MSB {63:32} for Port 06

R_CSR_P06_MATCH_MSB_0 0x82B0 Match Set 0 MSB {63:32} for Port 06

R_CSR_P06_MATCH_LSB_1 0x82A8 Match Set 1 LSB {31:0} for Port 06

R_CSR_P06_MATCH_LSB_0 0x82A0 Match Set 0 LSB {31:0} for Port 06

R_CSR_P06_MASK_MSB_1 0x8298 Mask Set 1 MSB {63:32} for Port 06

R_CSR_P06_MASK_MSB_0 0x8290 Mask Set 0 MSB {63:32} for Port 06

R_CSR_P06_MASK_LSB_1 0x8288 Mask Set 1 LSB {31:0} for Port 06

R_CSR_P06_MASK_LSB_0 0x8280 Mask Set 0 LSB {31:0} for Port 06

Port 5 Match/Mask Registers

R_CSR_P05_MM_CFG_1 0x80C8 Match/Mask Set 1 Configuration Register for Port 05

R_CSR_P05_MM_CFG_0 0x80C0 Match/Mask Set 0 Configuration Register for Port 05

R_CSR_P05_MATCH_MSB_1 0x80B8 Match Set 1 MSB {63:32} for Port 05

R_CSR_P05_MATCH_MSB_0 0x80B0 Match Set 0 MSB {63:32} for Port 05

R_CSR_P05_MATCH_LSB_1 0x80A8 Match Set 1 LSB {31:0} for Port 05

R_CSR_P05_MATCH_LSB_0 0x80A0 Match Set 0 LSB {31:0} for Port 05

R_CSR_P05_MASK_MSB_1 0x8098 Mask Set 1 MSB {63:32} for Port 05

R_CSR_P05_MASK_MSB_0 0x8090 Mask Set 0 MSB {63:32} for Port 05

R_CSR_P05_MASK_LSB_1 0x8088 Mask Set 1 LSB {31:0} for Port 05

R_CSR_P05_MASK_LSB_0 0x8080 Mask Set 0 LSB {31:0} for Port 05

Global Control Register

R_CSR_PMON_PERF_MASTER 0x2AC0 Performance Monitor Master Control

Right Side Counters

Counters 7-0

R_CSR_PERF_CNT_7 0x2AB8 Performance Counter 7

R_CSR_PERF_CNT_6 0x2AB0 Performance Counter 6

R_CSR_PERF_CNT_5 0x2AA8 Performance Counter 5

R_CSR_PERF_CNT_4 0x2AA0 Performance Counter 4

R_CSR_PERF_CNT_3 0x2A98 Performance Counter 3

R_CSR_PERF_CNT_2 0x2A90 Performance Counter 2

R_CSR_PERF_CNT_1 0x2A88 Performance Counter 1

Table 5-42. Rbox PMU Summary (Sheet 3 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 387
Reference Manual for Software Development and Optimization Guide

R_CSR_PERF_CNT_0 0x2A80 Performance Counter 0

Control for Counters 7-0

R_CSR_PERF_CNT_CTRL_7 0x2A78 Performance Counter 7 Control

R_CSR_PERF_CNT_CTRL_6 0x2A70 Performance Counter 6 Control

R_CSR_PERF_CNT_CTRL_5 0x2A68 Performance Counter 5 Control

R_CSR_PERF_CNT_CTRL_4 0x2A60 Performance Counter 4 Control

R_CSR_PERF_CNT_CTRL_3 0x2A58 Performance Counter 3 Control

R_CSR_PERF_CNT_CTRL_2 0x2A50 Performance Counter 2 Control

R_CSR_PERF_CNT_CTRL_1 0x2A48 Performance Counter 1 Control

R_CSR_PERF_CNT_CTRL_0 0x2A40 Performance Counter 0 Control

IPERF Registers (for RIX Events)
for Ports 4-0

R_CSR_P04_IPERF1 0x2878 RIX Performance Counter Event Config 1 (Port 4)

R_CSR_P04_IPERF0 0x2870 RIX Performance Counter Event Config 0 (Port 4)

R_CSR_P03_IPERF1 0x2678 RIX Performance Counter Event Config 1 (Port 3)

R_CSR_P03_IPERF0 0x2670 RIX Performance Counter Event Config 0 (Port 3)

R_CSR_P02_IPERF1 0x2478 RIX Performance Counter Event Config 1 (Port 2)

R_CSR_P02_IPERF0 0x2470 RIX Performance Counter Event Config 0 (Port 2)

R_CSR_P01_IPERF1 0x2278 RIX Performance Counter Event Config 1 (Port 1)

R_CSR_P01_IPERF0 0x2270 RIX Performance Counter Event Config 0 (Port 1)

R_CSR_P00_IPERF1 0x2078 RIX Performance Counter Event Config 1 (Port 0)

R_CSR_P00_IPERF0 0x2070 RIX Performance Counter Event Config 0 (Port 0)

ARB Registers (for QLX Events)
for Ports 9-5

R_CSR_P04_ARB_PERF4 0x2810 Arbiter PMU Configuration Register for Port 4

R_CSR_P03_ARB_PERF3 0x2610 Arbiter PMU Configuration Register for Port 3

R_CSR_P02_ARB_PERF2 0x2410 Arbiter PMU Configuration Register for Port 2

R_CSR_P01_ARB_PERF1 0x2210 Arbiter PMU Configuration Register for Port 1

R_CSR_P00_ARB_PERF0 0x2010 Arbiter PMU Configuration Register for Port 0

Port 4 Match/Mask Registers

R_CSR_P04_MM_CFG_1 0x28C8 Match/Mask Set 1 Configuration Register for Port 04

R_CSR_P04_MM_CFG_0 0x28C0 Match/Mask Set 0 Configuration Register for Port 04

R_CSR_P04_MATCH_MSB_1 0x28B8 Match Set 1 MSB (63:32} for Port 04

R_CSR_P04_MATCH_MSB_0 0x28B0 Match Set 0 MSB (63:32} for Port 04

R_CSR_P04_MATCH_LSB_1 0x28A8 Match Set 1 LSB (31:0} for Port 04

Table 5-42. Rbox PMU Summary (Sheet 4 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Uncore Performance Monitoring

388 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

R_CSR_P04_MATCH_LSB_0 0x28A0 Match Set 0 LSB (31:0} for Port 04

R_CSR_P04_MASK_MSB_1 0x2898 Mask Set 1 MSB (63:32} for Port 04

R_CSR_P04_MASK_MSB_0 0x2890 Mask Set 0 MSB (63:32} for Port 04

R_CSR_P04_MASK_LSB_1 0x2888 Mask Set 1 LSB (31:0} for Port 04

R_CSR_P04_MASK_LSB_0 0x2880 Mask Set 0 LSB (31:0} for Port 04

Port 3 Match/Mask Registers

R_CSR_P03_MM_CFG_1 0x26C8 Match/Mask Set 1 Configuration Register for Port 03

R_CSR_P03_MM_CFG_0 0x26C0 Match/Mask Set 0 Configuration Register for Port 03

R_CSR_P03_MATCH_MSB_1 0x26B8 Match Set 1 MSB (63:32} for Port 03

R_CSR_P03_MATCH_MSB_0 0x26B0 Match Set 0 MSB (63:32} for Port 03

R_CSR_P03_MATCH_LSB_1 0x26A8 Match Set 1 LSB (31:0} for Port 03

R_CSR_P03_MATCH_LSB_0 0x26A0 Match Set 0 LSB (31:0} for Port 03

R_CSR_P03_MASK_MSB_1 0x2698 Mask Set 1 MSB (63:32} for Port 03

R_CSR_P03_MASK_MSB_0 0x2690 Mask Set 0 MSB (63:32} for Port 03

R_CSR_P03_MASK_LSB_1 0x2688 Mask Set 1 LSB (31:0} for Port 03

R_CSR_P03_MASK_LSB_0 0x2680 Mask Set 0 LSB (31:0} for Port 03

Port 2 Match/Mask Registers

R_CSR_P02_MM_CFG_1 0x24C8 Match/Mask Set 1 Configuration Register for Port 02

R_CSR_P02_MM_CFG_0 0x24C0 Match/Mask Set 0 Configuration Register for Port 02

R_CSR_P02_MATCH_MSB_1 0x24B8 Match Set 1 MSB (63:32} for Port 02

R_CSR_P02_MATCH_MSB_0 0x24B0 Match Set 0 MSB (63:32} for Port 02

R_CSR_P02_MATCH_LSB_1 0x24A8 Match Set 1 LSB (31:0} for Port 02

R_CSR_P02_MATCH_LSB_0 0x24A0 Match Set 0 LSB (31:0} for Port 02

R_CSR_P02_MASK_MSB_1 0x2498 Mask Set 1 MSB (63:32} for Port 02

R_CSR_P02_MASK_MSB_0 0x2490 Mask Set 0 MSB (63:32} for Port 02

R_CSR_P02_MASK_LSB_1 0x2488 Mask Set 1 LSB (31:0} for Port 02

R_CSR_P02_MASK_LSB_0 0x2480 Mask Set 0 LSB (31:0} for Port 02

Port 1 Match/Mask Registers

R_CSR_P01_MM_CFG_1 0x22C8 Match/Mask Set 1 Configuration Register for Port 01

R_CSR_P01_MM_CFG_0 0x22C0 Match/Mask Set 0 Configuration Register for Port 01

R_CSR_P01_MATCH_MSB_1 0x22B8 Match Set 1 MSB (63:32} for Port 01

R_CSR_P01_MATCH_MSB_0 0x22B0 Match Set 0 MSB (63:32} for Port 01

R_CSR_P01_MATCH_LSB_1 0x22A8 Match Set 1 LSB (31:0} for Port 01

R_CSR_P01_MATCH_LSB_0 0x22A0 Match Set 0 LSB (31:0} for Port 01

R_CSR_P01_MASK_MSB_1 0x2298 Mask Set 1 MSB (63:32} for Port 01

R_CSR_P01_MASK_MSB_0 0x2290 Mask Set 0 MSB (63:32} for Port 01

R_CSR_P01_MASK_LSB_1 0x2288 Mask Set 1 LSB (31:0} for Port 01

R_CSR_P01_MASK_LSB_0 0x2280 Mask Set 0 LSB (31:0} for Port 01

Port 0 Match/Mask Registers

Table 5-42. Rbox PMU Summary (Sheet 5 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 389
Reference Manual for Software Development and Optimization Guide

5.6.3.1 Rbox Performance Monitors To Port Mapping

5.6.3.2 Rbox Box Level PMON state

R_CSR_PMON_PERF_MASTER controls the general characteristics of the Rbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

R_CSR_P00_MM_CFG_1 0x20C8 Match/Mask Set 1 Configuration Register for Port 00

R_CSR_P00_MM_CFG_0 0x20C0 Match/Mask Set 0 Configuration Register for Port 00

R_CSR_P00_MATCH_MSB_1 0x20B8 Match Set 1 MSB (63:32} for Port 00

R_CSR_P00_MATCH_MSB_0 0x20B0 Match Set 0 MSB (63:32} for Port 00

R_CSR_P00_MATCH_LSB_1 0x20A8 Match Set 1 LSB (31:0} for Port 00

R_CSR_P00_MATCH_LSB_0 0x20A0 Match Set 0 LSB (31:0} for Port 00

R_CSR_P00_MASK_MSB_1 0x2098 Mask Set 1 MSB (63:32} for Port 00

R_CSR_P00_MASK_MSB_0 0x2090 Mask Set 0 MSB (63:32} for Port 00

R_CSR_P00_MASK_LSB_1 0x2088 Mask Set 1 LSB (31:0} for Port 00

R_CSR_P00_MASK_LSB_0 0x2080 Mask Set 0 LSB (31:0} for Port 00

Table 5-43. Rbox Port Map

Port ID Rbox
Port#

L/R
Box

PMU Cnt
0-7

PMU Cnt 8-
15

IPERF
Addresses

ARB_PERF
Addresses

Match/Mask
Addresses

QPIh5 0 L b000 NA 0x2078,0x2070 0x2010 0x2080-0x20C8

B0U 1 L b001 NA 0x2278,0x2270 0x2210 0x2280-0x22C8

S0 2 L b010 NA 0x2478,0x2470 0x2410 0x2480-0x24C8

QPI3 3 L b011 NA 0x2678,0x2670 0x2610 0x2680-0x26C8

QPI1 4 L b100 NA 0x2878,0x2870 0x2810 0x2880-0x28C8

QPIh4 5 R NA b000 0x8078,0x8070 0x8010 0x8080-0x80C8

B1 6 R NA b001 0x8278,0x8270 0x8210 0x8280-0x82C8

S1 7 R NA b010 0x8478,0x8470 0x8410 0x8480-0x84C8

QPI2 8 R NA b011 0x8688,0x8680 0x8610 0x8680-0x86C8

QPI0 9 R NA b100 0x8878,0x8870 0x8810 0x8880-0x88C8

Table 5-42. Rbox PMU Summary (Sheet 6 of 6)

CSR Name AddrOffset
[15:0] Description

Left Side Counters

Table 5-44. R_CSR_PMON_PERF_MASTER Register – Field Definitions (Sheet 1 of 2)

Field Bits Type
HW

Reset
Val

Description

ig 63:3 RO_NA 0 Read zero; writes ignored. (?)

clr 2 RW_RW 0 Writing 1 clears all the Rbox counters as well as the
associated overflow bits found in the control registers
(R_CSR_PERF_CNT_CTRLx.ov)

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.
1: Global. Disable counters on Ubox PMU enable
0: Local. Disables Counters on any local counter overflow.

Uncore Performance Monitoring

390 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.6.3.3 Rbox PMON state - Counter/Control Pairs + Filters

The following table defines the layout of the Itanium processor 9500 series Rbox
performance monitor control registers. The main task of these configuration registers is
to select the port (.pt_sel) to monitor events on and choose the subcontrol register
(.ev_sel) that selects the event to be monitored by the respective data counter.

freeze 0 RW_RW 0 Freeze/unfreeze Rbox PMU counters. Read of this field shows
the freeze state of the PMU counters.
PMU counters can be frozen via CSR write or PMU overflow.
See Freeze and Unfreeze section for more information.

1: write ’1 to freeze Rbox PMU counters
0: Write ’0 to unfreeze Rbox PMU counters. If the counters
are not frozen, writing ’0 has no effect.

Table 5-44. R_CSR_PMON_PERF_MASTER Register – Field Definitions (Sheet 2 of 2)

Field Bits Type
HW

Reset
Val

Description

Table 5-45. R_CSR_PERF_CNT_CTRL_{15-0} Fields

Field Bits Access
HW

Reset
Val

Description

ig 63:25 RO_NA 0 Read zero; writes ignored.

ov 24 RW_RW 0 Performance Counter overflow status bit.

rsv 23 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

ig 22 RO_NA 0 Read zero; writes ignored.

pt_sel 21:19 RW_RW 0 Count Port Select.
Values of 000-100 are valid for the Rbox ports.
111-101 are Reserved.

ev_sel 18:16 RW_RW 0 Count Event Select:

000: Port X RIX Performance Event 0

001: Port X RIX Performance Event 1

NOTE: RIX events are set with R_CSR_IPERF*

010: Port X QLX/GBX Performance Event 0

011: Port X QLX/GBX Performance Event 1

NOTE: QLX events are set with R_CSR_ARB_PERF*

100: Port X Mask & Match 0

101: Port X Mask & Match 1

NOTE: Mask/Match events are set with R_CSR_MATCH

R_CSR

11x: Reserved

ig 15:0 RO_NA 0 Read zero; writes ignored.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 391
Reference Manual for Software Development and Optimization Guide

The Rbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events.

In this way, software can capture the precise number of events that occurred between
the time uncore counting was enabled and when it was disabled (or ‘frozen’) with
minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

5.6.3.4 Rbox RIX Performance Monitoring Control Registers

The following table contains the events that can be monitored if one of the RIX (IPERF)
registers was chosen to select the event.

Table 5-46. R_CSR_PERF_CNT_{15-0} Fields

Field Bits Access
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored.

cnt 47:0 RW_RW 0 Performance Counter Value (47:0)

Table 5-47. R_CSR_P{9-0}_IPERF{1-0} Registers (Sheet 1 of 2)

Field Bits Access
HW

Reset
Val

Description

FLT_SENT 31 RW_RW 0x0 Flit Sent

FLT_RCVD 30 RW_RW 0x0 Flit Received

NSP_SENT 29 RW_RW 0x0 Non-special Flit Sent

NSP_RCVD 28 RW_RW 0x0 Non-special Flit Received

OUTB_OV 27 RW_RW 0x0 Running Counter of Output Buffer depth Overflow

OUTB_WR 26 RW_RW 0x0 Flit written into Output Buffer

OUTB_NE 25 RW_RW 0x0 Output Buffer Not Empty

RETQ_RD 24 RW_RW 0x0 Retry Buffer Read Count

INPCKTERR 23 RW_RW 0x0 Incoming Packet Error

FSTENOUGH 22 RW_RW 0x0 Fast Enough path used

EOT_OV 21 RW_RW 0x0 Running Counter of EOT Depth Overflow

EOT_WR 20 RW_RW 0x0 EOT Entry inserted

Uncore Performance Monitoring

392 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

EOTMSGSEL 19:17 RW_RW 0x0 Message Class select for EOT Depth Overflow and EOT Entry
inserted events.

001: Home0

010: Home1

011: Snoop

100: Non-Data Response

101: Data Response

110: Non-Coherent Standard

111: Non-Coherent Bypass

EOT_NE 16 RW_RW 0x0 Count cycles EOT is not Empty

ARB_MSGSEL 15:9 RW_RW 0x04 Allocation to Arb Select Bit Mask:

0b1XXXXXX: Home

0bX1XXXXX: Home1

0bXX1XXXX: Snoop

0bXXX1XXX: Non-Data Response

0bXXXX1XX: Data Response

0bXXXXX1X: Non-Coherent Standard

0bXXXXXX1: Non-Coherent Bypass

INQ_DEALLOC 8 RW_RW 0x0 De-allocation from Input Queue

PKT_VNSEL 7:6 RW_RW 0x0 New Packet VN Select: Anded with result of New Packet Class
Bit Mask.

11: VNA | VN1 | VN0

10: VNA

01: VN1

00: VN0

PKT_MSGSEL 5:0 RW_RW 0x0 New Packet Class Bit Mask: Bit mask to select which packet
types to count. Anded with New Packet VN Select.

b1XXXXX: Home

bX1XXXX: Snoop

bXX1XXX: Non-Data Response

bXXX1XX: Data Response

bXXXX1X: Non-Coherent Standard

bXXXXX1: Non-Coherent Bypass

Table 5-47. R_CSR_P{9-0}_IPERF{1-0} Registers (Sheet 2 of 2)

Field Bits Access
HW

Reset
Val

Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 393
Reference Manual for Software Development and Optimization Guide

5.6.3.5 Rbox ARB Performance Monitoring Control Registers

The following table contains the events that can be monitored if one of the QLX (ARB)
registers was chosen to select the event.

Table 5-48. R_CSR_ARB_PERF_CTR{4-0} Register Fields (Sheet 1 of 2)

Field Bits Access
HW

Reset
Val

Description

ig 31:24 RO_NA Read zero; writes ignored.

ev1_sub 23 RW_RW 0x0 Performance Event 1 Sub-Class Select:

0: VN0

1: VN1

ev1_cls 22:20 RW_RW 0x0 Performance Event 1 Class Select:

000: HOM

001: SNP

010: NDR

011: NCS

100: DRS

101: NCB

110: VNA - Large (9,10,11 flits) == data packets

111: VNA - Small (1,2,3 flits) == non-data
packets

ev1_type 19:16 RW_RW 0x0 Performance Event 1 Type Select:

0000: Queue Arb Bid

0001: Queue Arb Fail

0010: Queue Home Order Kill

0011: Reserved

0100: Local Arb Bid

0101: Local Arb Fail

0110: Local Home Order Kill

0111: Reserved

1000: Global Arb Bid

1001: Global Arb Fail

1010: Global Home Order Kill

1011: Target Available

1100: Entry Table Depth Overflow

1101-1111: Reserved

ig 15:8 RO_NA Read zero; writes ignored.

Uncore Performance Monitoring

394 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

ev0_sub 7 RW_RW 0x0 Performance Event 0 Sub-Class Select:

0: VN0

1: VN1

ev0_cls 6:4 RW_RW 0x0 Performance Event 0 Class Select:

000: HOM

001: SNP

010: NDR

011: NCS

100: DRS

101: NCB

110: VNA - Large (9,10,11 flits) == data packets

111: VNA - Small (1,2,3 flits) == non-data
packets

ev0_type 3:0 RW_RW 0x0 Performance Event 0 Type Select:

0000: Queue Arb Bid

0001: Queue Arb Fail

0010: Queue Home Order Kill

0011: Reserved

0100: Local Arb Bid

0101: Local Arb Fail

0110: Local Home Order Kill

0111: Reserved

1000: Global Arb Bid

1001: Global Arb Fail

1010: Global Home Order Kill

1011: Target Available

1100: Entry Table Depth Overflow

1101-1111: Reserved

Table 5-48. R_CSR_ARB_PERF_CTR{4-0} Register Fields (Sheet 2 of 2)

Field Bits Access
HW

Reset
Val

Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 395
Reference Manual for Software Development and Optimization Guide

5.6.3.6 Rbox Registers for Mask/Match Facility

In addition to generic event counting, each port of the Rbox provides two pairs of
MATCH/MASK registers pair that allow a user to filter packet traffic serviced (crossing
from an input port to an output port) by the Rbox according to the packet Opcode,
Message Class, Response, HNID and Physical Address. Program the selected Rbox
counter’s IPERF register to capture matched flits as events.

To use the match/mask facility :

a) Set the MM_CFG (see Table 5-49, “R_CSR_PORT{4-0}_MM_CFG_{1-0} Registers”)
.mm_en (bit 21) to 1.

NOTE: In order to monitor packet traffic, instead of the flit traffic associated with each
packet, set .match_flt_cnt to 0x1.

b) Program the match/mask regs (see Table 5-50, “R_CSR_PORT{4-0}_MATCH_{1-
0}_MSB Registers”/Table 5-51, “R_CSR_PORT{4-0}_MATCH_{1-0}_LSB Registers”
and Table 5-52, “R_CSR_PORT{4-0}_MASK_{1-0}_MSB Registers”/Table 5-53,
“R_CSR_PORT{4-0}_MASK_{1-0}_LSB Registers”).

c) Set the counter’s control register event select to the appropriate IPERF subcontrol
register and set the IPERF register’s event select (0x5 for MM1 and 0x4 for MM0) to
capture the mask/match as a performance event.

The following tables contain the packet traffic that can be monitored if one of the mask/
match registers was chosen to select the event.

Table 5-49. R_CSR_PORT{4-0}_MM_CFG_{1-0} Registers

Field Bits
HW

Reset
Val

Description

ig 31:22 0x0 Read zero; writes ignored. (?)

mm_en 21 0x0 Match/Mask enable
Set to 1 to enable mask/match

ig_flt_cnt 20 0x0 Ignore flit count (Mask any flit).
Set to to ignore match_flt_cnt field

match_start 19:16 0x0 Match flit count relative to start of new packet
Set number of flit count in a packet on which to trigger a match
event. Ex: Set to ‘0000’ to match on first flit in header.

match_71_64 15:8 0x0 upper 8 bits [71:64] of match data

mask_71_64 7:0 0x0 upper 8 bits [71:64] of mask data

Uncore Performance Monitoring

396 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Table 5-50. R_CSR_PORT{4-0}_MATCH_{1-0}_MSB Registers

Field Bits
HW

Reset
Val

Description

rsv 31:20 0x0 Reserved; Must write to 0 else behavior is undefined.

RDS 19:16 0x0 Response Data State (valid when MC == DRS and Opcode == 0x0-
2). Bit settings are mutually exclusive.

b1000 - Modified
b0100 - Exclusive
b0010 - Shared
b0001 - Forwarding
b0000 - Invalid (Non-Coherent)

rsv 15:3 0x0 Reserved; Must write to 0 else behavior is undefined.

RNID_4_2 2:0 0x0 Remote Node ID[4:2]

Table 5-51. R_CSR_PORT{4-0}_MATCH_{1-0}_LSB Registers

Field Bits
HW

Reset
Val

Description

RNID_1_0 32:31 0x0 Remote Node ID[1:0]

rsv 30:18 0x0 Reserved; Must write to 0 else behavior is undefined.

DNID 17:13 0x0 Destination Node ID

MC 12:9 0x0 Message Class

b0000 HOM - Requests
b0001 HOM - Responses
b0010 NDR
b0011 SNP
b0100 NCS

b1100 NCB

b1110 DRS

OPC 8:5 0x0 Opcode

DRS,NCB:
[8] Packet Size, 0 == 9 flits, 1 == 11 flits

NCS:
[8] Packet Size, 0 == 1 or 2 flits, 1 == 3 flits

See Section 5.10, “Packet Matching Reference” for a listing of
opcodes that may be filtered per message class.

VNW 4:3 0x0 Virtual Network

b00 - VN0
b01 - VN1
b1x - VNA

rsv 2:0 0x0 Reserved; Must write to 0 else behavior is undefined.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 397
Reference Manual for Software Development and Optimization Guide

Following is a selection of common events that may be derived by using the Rbox
packet matching facility.

Table 5-52. R_CSR_PORT{4-0}_MASK_{1-0}_MSB Registers

Field Bits
HW

Reset
Val

Description

rsv 63:52 0x0 Reserved; Must write to 0 else behavior is undefined.

RDS 51:48 0x0 Response Data State (for certain DRS messages)

rsv 47:36 0x0 Reserved; Must write to 0 else behavior is undefined.

RNID 35:33 0x0 Remote Node ID[4:2]

Table 5-53. R_CSR_PORT{4-0}_MASK_{1-0}_LSB Registers

Field Bits
HW

Reset
Val

Description

RNID_1_0 32:31 0x0 Remote Node ID[1:0]

rsv 30:18 0x0 Reserved; Must write to 0 else behavior is undefined.

DNID 17:13 0x0 Destination Node ID

MC 12:9 0x0 Message Class

OPC 8:5 0x0 Opcode

See Section 5.10, “Packet Matching Reference” for a listing of
opcodes that may be filtered per message class.

VNW 4:3 0x0 Virtual Network

rsv 2:0 0x0 Reserved; Must write to 0 else behavior is undefined.

Table 5-54. Message Events Derived from the Match/Mask filters (Sheet 1 of 2)

Field Match
[15:0]

Mask
[15:0] Description

HOM.AnyReq 0x0000 0x1E00 Any HOM request message. A HOM request message is 1 flit.
There are no HOM messages sent to a Sbox.

HOM.AnyResp 0x0200 0x1E00 Any HOM response message. A HOM response message is 1
flit. There are no HOM messages sent to a Sbox.

SNP.AnySnp 0x0600 0x1E00 Any Snoop message. A Snoop message is 1 flit. There are no
snoop messages sent to a Bbox.

DRS.AnyDataC 0x1C00 0x1F80 Any Data Response message containing a cache line in
response to a core request. The AnyDataC messages are
only sent to an Sbox. The metric DRS.AnyResp -
DRS.AnyDataC will compute the number of DRS writeback
and non snoop write messages.

DRS.DataC_M 0x1C00
&&

Match
[51:48]

0x8

0x1FE0
&&

Mask
[51:48]

0xF

Data Response message of a cache line in M state that is
response to a core request. The DRS.DataC_M messages are
only sent to Sboxes.

DRS.WblData 0x1C80 0x1FE0 Data Response message for Write Back data where cachline
is set to the I state.

DRS.WbSData 0x1CA0 0x1FE0 Data Response message for Write Back data where cachline
is set to the S state.

DRS.WbEData 0x1CC0 0x1FE0 Data Response message for Write Back data where cachline
is set to the E state.

Uncore Performance Monitoring

398 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Note: Bits 71:16 of the match/mask must be 0 in order to derive these events (except where
noted - see DRS.DataC_M). Also the match/mask configuration register should be set
to 0x00210000 (bits 21 and 16 set).

5.6.4 Rbox Performance Monitoring Events

5.6.4.1 An Overview:

The Rbox events provide information on topics such as: a breakdown of traffic as it
flows through each of the Rbox’s ports (NEW_PACKETS_RECV) , raw flit traffic (that is,
FLITS_REC_NON_SPEC or FLITS_SENT), incoming transactions entered into
arbitration for outgoing ports (ALLOC_TO_ARB), transactions that fail arbitration
(GLOBAL_ARB_BID_FAIL), tracking status of various queues (OUTPUTQ_NE),
and so forth.

In addition, the Rbox provides the ability to match/mask against ALL flit traffic that
leaves the Rbox. This is particularly useful for calculating link utilization, throughput
and packet traffic broken down by opcode and message class.

DRS.AnyResp 0x1C00 0x1E00 Any Data Response message. A DRS message can be either
9 flits for a full cache line or 11 flits for partial data.

DRS.AnyResp9flits 0x1C00 0x1F00 Any Data Response message that is 11 flits in length. An 11
flit DRS message contains partial data. Each 8 byte chunk
contains an enable field that specifies if the data is valid.

DRS.AnyResp11flits 0x1D00 0x1F00 Any Non Data Response completion message. A NDR
message is 1 on flit.

NDR.AnyCmp 0x0400 0x1E00 Non-Coherent Standard read messages. The Non-Coherent
read messages is the only NCS message that is 1 flit in
length.

NCS.NcRd 0x0800 0x1FE0 Any HOM request message. A HOM request message is 1 flit.
There are no HOM messages sent to a Sbox.

NCS.AnyMsg1or2flits 0x0800 0x1F00 Any Non-Coherent Standard message that is 1 or 2 flits in
length.

NCS.AnyMsg3flits 0x0900 0x1F00 Any Non-Coherent Standard message that is 3 flits in length.

NCB.AnyMsg9flits 0x1800 0x1F00 Any Non-Coherent Bypass message that is 9 flits in length.
A 9 flit NCB message contains a full 64 byte cache line.

NCB.AnyMsg11flits 0x1900 0x1F00 Any Non-Coherent Bypass message that is 11 flits in length.
An 11 flit NCB message contains either partial data or an
interrupt. For NCB 11 flit data messages, each 8 byte chunk
contains an enable field that specifies if the data is valid.

NCB.AnyInt 0x1900 0x1F80 Any Non-Coherent Bypass interrupt message. NCB interrupt
messages are 11 flits in length.

Table 5-54. Message Events Derived from the Match/Mask filters (Sheet 2 of 2)

Field Match
[15:0]

Mask
[15:0] Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 399
Reference Manual for Software Development and Optimization Guide

5.6.5 RBox Events Ordered By Code
Table 5-80 summarizes the directly-measured RBox events.

Table 5-55. Performance Monitor Events for RBox Events

Symbol Name Event
Code

Max
Inc/Cyc Description

RIX (Ring Input Port) Events IPERF

NEW_PACKETS_RECV [5:0]0xX 1 New Packets Received by Port

INQUE_READ_WIN [8]0x1 1 Input Queue Read Win

ALLOC_TO_ARB [15:9]0xX 1 Transactions allocated to Arb

EOT_NE_CYCLES [16]0x1 1 Cycles EOT Not Empty

EOT_INSERTS [20]0x1 1 Number of Inserts into EOT

EOT_OCCUPANCY [21]0x1 1 EOT Occupancy

FAST_ENOUGH [22]0x1 1 Fast Packets

PCKT_ERR_IN [23]0x1 1 Incoming Packet Errors

RETRYQ_READS [24]0x1 1 Retry Buffer Reads

OUTPUTQ_NE [25]0x1 1 Cycles Output Queue Not Empty

OUTPUTQ_IN [26]0x1 1 Output Queue Inserts

OUTPUTQ_ACC [27]0x1 1 Output Queue Overflow Accumulator
Note: Multiply by 128 for correct value.

FLITS_RCVD_NSP [28]0x1 1 Non-Special Flits Received

FLITS_SENT_NSP [29]0x1 1 Non-Special Flits Sent

FLITS_RCVD [30]0x1 1 Flits Received

FLITS_SENT [31]0x1 1 Flits Sent

QLX (Arbitration Queue) Events QLX[3:0]

QUE_ARB_BID 0x0 1 Queue ARB Bids

QUE_ARB_BID_FAIL 0x1 1 Failed Queue ARB Bids

QUE_HOME_ORDER_KILL 0x2 1 Queue Home Order Kills

LOCAL_ARB_BID 0x4 1 Local ARB Bids

LOCAL_ARB_BID_FAIL 0x5 1 Failed Local ARB Bids

LOCAL_HOME_ORDER_KILL 0x6 1 Local Home Order Kills

GLOBAL_ARB_BID 0x8 1 Global ARB Bids

GLOBAL_ARB_BID_FAIL 0x9 1 Failed Global ARB Bids

GLOBAL_HOME_ORDER_KILL 0xA 1 Global Home Order Kills

TARGET_AVAILABLE 0xB 1 Target Available

ET_ACC 0xB 1 Accumulated Depth of ET
Note: Multiply by 32 for correct value.

Uncore Performance Monitoring

400 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.6.6 Rbox Performance Monitor Event List
This section enumerates Intel® Itanium® processor 9500 series uncore performance
monitoring events for the Rbox.

ALLOC_TO_ARB
• Title: Transactions allocated to Arb
• Category: RIX
• [Bit(s)] Value: See Note, Max. Inc/Cyc: 1,
• Definition: Transactions entered into Entry Table; This also means they are now

available.
• NOTE: Program IPERF bits [15:9] to represent the Message Class(es) to be
measured

. Message Class:
 0b1XXXXXX: Home
 0bX1XXXXX: Home1
 0bXX1XXXX: Snoop
 0bXXX1XXX: Non-Data Response
 0bXXXX1XX: Data Response
 0bXXXXX1X: Non-Coherent Standard
 0bXXXXXX1: Non-Coherent Bypass

EOT_OCCUPANCY
• Title: EOT Occupancy
• Category: RIX
• [Bit(s)] Value: [21]0x1, Max. Inc/Cyc: 1,
• Definition: Accumulated depth Entry Overflow Table which tracks packets that

overflowed the Entry Table (*see NOTE for clarification).
• NOTE: This basically counts VNA. This event collects the overflow of a subcounter

that accurately tracks EOT depth. Multiply this event by 32 to determine the correct
EOT depth count. Unlike other packets, ALL HOM packets go through EOT only to stay
ordered. HOM0 corresponds to VN0/VNA0 packets while HOM1 corresponds to VN1/
VNA1. They are independent meaning HOM0 only need to stay ordered within HOM0
packets and same for HOM1.

Table 5-56. Unit Masks for EOT_DEPTH_ACC

Extension
IPERF Bit

Values
[19:17]

Description

--- b000 (*nothing will be counted*)

HM0 b001 Home0 Messages

HM1 b010 Home1 Messages

SNP b011 Snoop Messages

NDR b100 Non-Data Response Messages

DRS b101 Data Response Messages

NCS b110 Non-Coherent Standard Messages

NCB b111 Non-Coherent Bypass Messages

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 401
Reference Manual for Software Development and Optimization Guide

EOT_INSERTS
• Title: Number of Inserts Into EOT
• Category: RIX
• [Bit(s)] Value: [20]0x1, Max. Inc/Cyc: 1,
• Definition: Used with MC field. Accumulated depth of packets captured in the Entry

Overflow Table for specified message types (i.e. EOT count by MC)
• NOTE: This basically counts VNA.

EOT_NE_CYCLES
• Title: Cycles EOT Not Empty
• Category: RIX
• [Bit(s)] Value: [16]0x1, Max. Inc/Cyc: 1,
• Definition: Number of cycles the Entry Overflow Table buffer is not empty.
• NOTE: Signals only if EOTs for ALL message classes are empty

ET_ACC
• Title: Accumulated Depth Of ET
• Category: QLX
• [Bit(s)] Value: [3:0]0xb, Max. Inc/Cyc: 1,
• Definition: Accumulated Depth of Entry Table for specified message types.
• NOTE: This event collects the overflow of a subcounter that accurately tracks ET

depth. Multiply this event by 32 to determine the correct ET depth count.

Table 5-57. Unit Masks for EOT_INSERTS

Extension
IPERF Bit

Values
[19:17]

Description

--- b000 (*nothing will be counted*)

HM0 b001 Home0 Messages

HM1 b010 Home1 Messages

SNP b011 Snoop Messages

NDR b100 Non-Data Response Messages

DRS b101 Data Response Messages

NCS b110 Non-Coherent Standard Messages

NCB b111 Non-Coherent Bypass Messages

Table 5-58. Unit Masks for ET_DEPTH_ACC

Extension
ARB_PERF
Bit Values

[6:4]
Description

HOM b000 Home Messages

SNP b001 Snoop Messages

NDR b010 Non-Data Response Messages

NCS b011 Non-Coherent Standard Messages

DRS b100 Data Response Messages

NCB b101 Non-Coherent Bypass Messages

--- b110-b111 (*illegal selection*)

Uncore Performance Monitoring

402 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FAST_ENOUGH
• Title: Fast Packets
• Category: RIX
• [Bit(s)] Value: [22]0x1, Max. Inc/Cyc: 1,
• Definition: How often a multi-flit packet uses the optimized path.

FLITS_RCVD
• Title: Flits Received
• Category: RIX
• [Bit(s)] Value: [30]0x1, Max. Inc/Cyc: 1,
• Definition: Counts all flits received.

FLITS_SENT
• Title: Flits Sent
• Category: RIX
• [Bit(s)] Value: [31]0x1, Max. Inc/Cyc: 1,
• Definition: Counts all flits

FLITS_NSP_RCVD
• Title: Non-Special Flits Received
• Category: RIX
• [Bit(s)] Value: [28]0x1, Max. Inc/Cyc: 1,
• Definition: Counts all non-special flits received.

GLOBAL_ARB_BID
• Title: Global ARB Bids
• Category: QLX
• [Bit(s)] Value: [3:0]0x8, Max. Inc/Cyc: 1,
• Definition: Count global arbitration bids from the port. Occurs on output port.

GLOBAL_ARB_BID_FAIL
• Title: Failed Global ARB Bids
• Category: QLX
• [Bit(s)] Value: [3:0]0x9, Max. Inc/Cyc: 1,
• Definition: Count failed global arbitration bids from the port. Occurs on output port.
• NOTE: Multi-flit packets will only receive a single fail signal.

GLOBAL_HOME_ORDER_KILL
• Title: Global Home Order Kills
• Category: QLX
• [Bit(s)] Value: [3:0]0xa, Max. Inc/Cyc: 1,
• Definition: Arbitration attempts killed in the HOM channel of the global ARB that

violate ordering. HOM packets may be issued back to back through the ARBs, but if
the first HOM was not chosen by the ARB, the second one will be killed due to order-
ing rules. This event accounts for how often this situation occurs in the global ARB.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 403
Reference Manual for Software Development and Optimization Guide

INQUE_READ_WIN
• Title: Input Queue Read Win.
• Category: RIX
• [Bit(s)] Value: [8]0x1, Max. Inc/Cyc: 1,
• Definition: Bid wins arbitration. Counts number of IQA reads and drains to XBAR.

LOCAL_ARB_BID
• Title: Local ARB Bids
• Category: QLX
• [Bit(s)] Value: [3:0]0x4, Max. Inc/Cyc: 1,
• Definition: Number of bids to exit port. Occurs on input port.

LOCAL_ARB_BID_FAIL
• Title: Failed Local ARB Bids
• Category: QLX
• [Bit(s)] Value: [3:0]0x5, Max. Inc/Cyc: 1,
• Definition: Number of bids to exit port that failed. Occurs on input port.

LOCAL_HOME_ORDER_KILL
• Title: Local Home Order Kills
• Category: QLX
• [Bit(s)] Value: [3:0]0x6, Max. Inc/Cyc: 1,
• Definition: Arbitration attempts killed in the HOM channel of the local ARB that vio-

late ordering. HOM packets may be issued back to back through the ARBs, but if the
first HOM was not chosen by the ARB, the second one will be killed due to ordering
rules. This event accounts for often this situation occurs in the local ARB.

NEW_PACKETS_RECV
• Title: New Packets Received by Port
• Category: RIX
• [Bit(s)] Value: see table, Max. Inc/Cyc: 1,
• Definition: Counts new packets received according to the Virtual Network and Mes-

sage Class specified.
• NOTE: Program IPERF bits [5:0] to represent the Message Class(es) to be
measured. Each packet gets allocated to the ARB exactly once.

Message Class:
 0b1XXXXX: Snoop
 0bX1XXXX: Home
 0bXX1XXX: Non-Data Response
 0bXXX1XX: Data Response
 0bXXXX1X: Non-Coherent Standard
 0bXXXXX1: Non-Coherent Bypass

Table 5-59. Unit Masks for NEW_PACKETS_RECV (Sheet 1 of 2)

Extension
IPERF Bit

Values
[7:6]

Description

VN0 b00 VN0

VN1 b01 VN1

Uncore Performance Monitoring

404 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

OUTPUTQ_OVFL
• Title: Output Queue Overflow Accumulator
• Category: RIX
• [Bit(s)] Value: [27]0x1, Max. Inc/Cyc: 1,
• Definition: Running count of number of times the Output Buffer overflows.
• NOTE: For a full-width port the output buffer is always by-passed. This event collects
the overflow of a subcounter that accurately tracks the output buffer depth. Multiply
this event by 128 to determine the correct output buffer depth count.

OUTPUTQ_IN
• Title: Output Queue Inserts
• Category: RIX
• [Bit(s)] Value: [26]0x1, Max. Inc/Cyc: 1,
• Definition: Number of flits inserted to the Output Buffer
• NOTE: For a full-width port the output buffer is always by-passed

OUTPUTQ_NE
• Title: Cycles Output Queue Not Empty
• Category: RIX
• [Bit(s)] Value: [25]0x1, Max. Inc/Cyc: 1,
• Definition: Number of cycles the Output Buffer is not empty.
• NOTE: For a full-width port the output buffer is always by-passed

PCKT_ERR_IN
• Title: Incoming Packet Errors
• Category: RIX
• [Bit(s)] Value: [23]0x1, Max. Inc/Cyc: 1,
• Definition: Incoming Packet Error (#times input port requested retry from the

sender?)

QUE_ARB_BID
• Title: Queue ARB Bids
• Category: • Category: QLX
• [Bit(s)] Value: [3:0]0x0, Max. Inc/Cyc: 1,
• Definition: Number of queue ARB bids. Each message class has its own queue.

Occurs on input port.

VNA b10 VNA

ANY b11 VNA | VN1 | VN0

Table 5-59. Unit Masks for NEW_PACKETS_RECV (Sheet 2 of 2)

Extension
IPERF Bit

Values
[7:6]

Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 405
Reference Manual for Software Development and Optimization Guide

QUE_ARB_BID_FAIL
• Title: Failed Queue ARB Bids
• Category: QLX
• [Bit(s)] Value: [3:0]0x1, Max. Inc/Cyc: 1,
• Definition: Number of failed queue ARB bids. Each message class has its own

queue. Occurs on input port. Home order kill only way to receive failed queue arb bid.
f

QUE_HOME_ORDER_KILL
• Title: Queue Home Order Kills
• Category: QLX
• [Bit(s)] Value: [3:0]0x2, Max. Inc/Cyc: 1,
• Definition: Arbitration attempts killed in the HOM channel of the queue ARB that

violate ordering. HOM packets may be issued back to back through the ARBs, but if
the first HOM was not chosen by the ARB, the second one will be killed due to order-
ing rules. This event accounts for often this situation occurs in the queue ARB.

RETRY_BUF_READS
• Title: Retry Buffer Reads
• Category: RIX
• [Bit(s)] Value: [24]0x1, Max. Inc/Cyc: 1,
• Definition: Number of flits sent from the retry buffer.

Table 5-60. Unit Masks for QUE_ARB_BID

Extension
ARB_PERF
Bit Values

[6:4]
Description

HOM b000 Home Messages

SNP b001 Snoop Messages

NDR b010 Non-Data Response Messages

NCS b011 Non-Coherent Standard Messages

DRS b100 Data Response Messages

NCB b101 Non-Coherent Bypass Messages

--- b110-b111 (*illegal selection*)

Table 5-61. Unit Masks for QUE_ARB_BID_FAIL

Extension
ARB_PERF
Bit Values

[6:4]
Description

HOM b000 Home Messages

SNP b001 Snoop Messages

NDR b010 Non-Data Response Messages

NCS b011 Non-Coherent Standard Messages

DRS b100 Data Response Messages

NCB b101 Non-Coherent Bypass Messages

--- b110-b111 (*illegal selection*)

Uncore Performance Monitoring

406 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

TARGET_AVAILABLE
• Title: Target Available
• Category: QLX
• [Bit(s)] Value: [3:0]0xb, Max. Inc/Cyc: 1,
• Definition: There are enough credits on the target port to allow a bid. The target is

unavailable if the output buffer is full or there are no credits. There are target avail-
able bits for each VN0/VN1 per message class as well as one for VNA-small and V

5.7 Sbox Performance Monitoring

5.7.1 Overview of the Sbox
The Sbox represents the interface between the last level cache and the system
interface. It manages flow control between the Cboxes (forming the ring) and the
System (forwarded through the router - the Rbox). The Sbox is broken into system
bound (ring to Intel QPI) and ring bound (Intel QPI to ring) connections.

As such, it shares responsibility with the Cbox(es) as the Intel QPI caching agent(s). It
is responsible for converting Cbox requests to Intel QPI messages (that is, snoop
generation and data response messages from the snoop response) as well as
converting/forwarding ring messages to Intel QPI packets and vice versa.

5.7.2 Sbox Performance Monitoring Overview
Each Sbox in the Itanium processor 9500 series supports event monitoring through 4
48b wide counters (S_CSR_PMON_CTR/CTL{3:0}). Each of these four counters can be
programmed to count any Sbox event. the Sbox counters can increment by a maximum
of 64 per cycle.

Table 5-62. Unit Masks for TARGET_AVAILABLE

Extension
ARB_PERF
Bit Values

[7:4]
Description

VN0.HOM b0000 VN0 Home Messages

VN0.SNP b0001 VN0 Snoop Messages

VN0.NDR b0010 VN0 Non-Data Response Messages

VN0.NCS b0011 VN0 Non-Coherent Standard Messages

VN0.DRS b0100 VN0 Data Response Messages

VN0.NCB b0101 VN0 Non-Coherent Bypass Messages

VN0.VSM b0110 VN0 VNA-small (<= 3 flits) Messages

VN0.VLG b0111 VN0 VNA-large (9-11 flits) Messages

VN1.HOM b1000 VN1 Home Messages

VN1.SNP b1001 VN1Snoop Messages

VN1.NDR b1010 VN1Non-Data Response Messages

VN1.NCS b1011 VN1Non-Coherent Standard Messages

VN1.DRS b1100 VN1Data Response Messages

VN1.NCB b1101 VN1Non-Coherent Bypass Messages

VN1.VSM b1110 VN1 VNA-small (<= 3 flits) Messages

VN1.VLG b1111 VN1 VNA-large (9-11 flits) Messages

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 407
Reference Manual for Software Development and Optimization Guide

The count values of all 4 counters can be cleared by writing the
S_CSR_PMON_PERF_MASTER.clr bit.

The Sbox also includes a mask/match register that allows a user to match packets
leaving the Sbox according to various standard packet fields such as message class,
opcode, etc. (NOTE: specifically goes with event 0, does not effect other events)

For information on how to setup a monitoring session, refer to Section 5.3, “Global
Performance Monitoring Control”.

5.7.2.1 Sbox PMU - Overflow, Freeze and Unfreeze

Sbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Sbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Sbox PMU can be frozen due to one of three reasons:

• Globally: Ubox sends a disable signal (and S_CSR_PMON_PERF_MASTER.glb_lcl is
1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to S_CSR_PMON_PERF_MASTER.en
when S_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

• Locally: The Sbox was set to local control (S_CSR_PMON_PERF_MASTER.glb_lcl =
0) an Sbox counter overflowed and it’s corresponding S_CSR_PMON_CTLx.ovf_en
bit was set to 1.

If an overflow is detected from an Sbox performance counter and the overflow has
been enabled (S_CSR_PMON_CTLx.ovf_en for counter x has been set to 1), the
overflow bit is set at the box level (S_CSR_PMON_GLOBAL_STATUS.ov) and rolled up
for global consumption in S_CSR_PMON_SUMMARY.ov_s.

The Ubox may be configured to freeze all uncore counting (refer to Table 5-65,
“S_CSR_PMON_FRZ_EN Register Fields”) when it receives this signal.

Once a freeze has occurred, in order to see a new freeze, the overflow field responsible
for the freeze, must be cleared. When the overflow bit(s) has been cleared, the Sbox is
prepared for a new sample interval. Once the global controls have been re-enabled
(Section 5.3.4, “Enabling a New Sample Interval from Frozen Counters.”), counting will
resume.

Note: Due to the nature of the subcounters used in the Sbox, if a queue occupancy count
event is set up to be captured, SW should set .reset_occ_cnt in the same write that the
corresponding control register is enabled.

5.7.3 Sbox Performance Monitors

Table 5-63. Sbox Performance Monitoring CSRs (Sheet 1 of 2)

CSR Name CSR
Address

Size
(bits) Description

Intel QPI EAR

S_CSR_QEAR_CTL 0x8F8 32 QPI EAR Control

S_CSR_QEAR_DAT1 0x8F0 32 QPI EAR Data 1

S_CSR_QEAR_DAT0 0x8E8 32 QPI EAR Data 0

Uncore Performance Monitoring

408 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.7.3.1 Sbox PMON for Global State

The S_CSR_PMON_SUMMARY register in each Sbox collects overflow bits from cores
and uncore boxes directly associated with that Sbox such that, apart from the Wbox
which is exclusively managed by Sbox 1, each Sbox manages half of the overflow bits.

And S_CSR_PMON_FRZ_EN allows a user to choose whether the overflow should
trigger a global freeze of all uncore PMU state.

When a global uncore disable signal is sent out to the uncore boxes, it is also sent to
each core. Each core PMU capture it as an event (UNCORE_FREEZE - Event Code 0xC9
in the core counters).

Note: If a user wishes to isolate a box from global control, be sure to set the corresponding
bit in S_CSR_PMON_FRZ_EN to 0.

Global Control/Status

S_CSR_PMON_SUMMARY 0x8E0 32 Sbox PMON Global Summary
Records overflows received from boxes
associated with this Sbox.

S_CSR_PMON_FRZ_EN 0x8D8 32 Sbox PMON Global Freeze Enable
Determines what to do with overflows received
from boxes associated with this Sbox.

Box-Level Control/Status

S_CSR_PMON_GLOBAL_STATUS 0x8D0 32 Sbox PMON Global Overflow Status

S_CSR_PMON_PERF_MASTER 0x8D8 32 Sbox PMON Global Freeze Enable

Generic Counter/Control

S_CSR_PMON_CTR3 0x8B0 64 Sbox PMON Counter 3

S_CSR_PMON_CTL3 0x8A8 64 Sbox PMON Control 3

S_CSR_PMON_CTR2 0x8A0 64 Sbox PMON Counter 2

S_CSR_PMON_CTL2 0x898 64 Sbox PMON Control 2

S_CSR_PMON_CTR1 0x890 64 Sbox PMON Counter 1

S_CSR_PMON_CTL1 0x888 64 Sbox PMON Control 1

S_CSR_PMON_CTR0 0x880 64 Sbox PMON Counter 0

S_CSR_PMON_CTL0 0x878 64 Sbox PMON Control 0

Event Filtering Control

S_CSR_MATCH2 0x858 64 Sbox Match2 Register

S_CSR_MASK 0x850 64 Sbox Mask Register

S_CSR_MATCH 0x848 64 Sbox Match Register

S_CSR_MM_CFG 0x840 64 Sbox Enable Match/Mask Config

Table 5-63. Sbox Performance Monitoring CSRs (Sheet 2 of 2)

CSR Name CSR
Address

Size
(bits) Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 409
Reference Manual for Software Development and Optimization Guide

Table 5-64. S_CSR_PMON_SUMMARY Register Fields

Field Bits Type
HW

Reset
Val

Description

ig 63:17 RO_NA 0 Read zero; writes ignored.

ov_t1_c3_4 16 RO_WO 0 Overflow in Thread 1 of Core 3 (S0) or 4 (S1)

ov_t0_c3_4 15 RO_WO 0 Overflow in Thread 0 of Core 3 (S0) or 4 (S1)

ov_t1_c2_5 14 RO_WO 0 Overflow in Thread 1 of Core 2 (S0) or 5 (S1)

ov_t0_c2_5 13 RO_WO 0 Overflow in Thread 0 of Core 2 (S0) or 5 (S1)

ov_t1_c1_6 12 RO_WO 0 Overflow in Thread 1 of Core 1 (S0) or 6 (S1)

ov_t0_c1_6 11 RO_WO 0 Overflow in Thread 0 of Core 1 (S0) or 6 (S1)

ov_t1_c0_7 10 RO_WO 0 Overflow in Thread 1 of Core 0 (S0) or 7(S1)

ov_t0_c0_7 9 RO_WO 0 Overflow in Thread 0 of Core 0 (S0) or 7(S1)

ov_c3_4 8 RO_WO 0 Overflow in Cbox 3 (S0) or 4 (S1)

ov_c2_5 7 RO_WO 0 Overflow in Cbox 2 (S0) or 5 (S1)

ov_c1_6 6 RO_WO 0 Overflow in Cbox 1 (S0) or 6 (S1)

ov_c0_7 5 RO_WO 0 Overflow in Cbox 0 (S0) or 7 (S1)

ov_w 4 RO_WO 0 Overflow in Wbox (S1 only)

ov_z 3 RO_WO 0 Overflow in Zbox 0 (S0) or 1 (S1)

ov_b 2 RO_WO 0 Overflow in Bbox 0 (S0) or 1 (S1)

ov_r 1 RO_WO 0 Overflow in attached half of Rbox
- Counters 0-7 in S0, Counters 8-15 in S1

ov_s 0 RO_WO 0 Overflow in this Sbox

Table 5-65. S_CSR_PMON_FRZ_EN Register Fields (Sheet 1 of 2)

Field Bits Type
HW

Reset
Val

Description

ig 63:17 RO_NA 0 Read zero; writes ignored.

msk_t1_c3_4 16 RW_RO 0 Mask Overflow in Thread 1 of Core 3 (S0) or 4 (S1)

msk_t0_c3_4 15 RW_RO 0 Mask Overflow in Thread 0 of Core 3 (S0) or 4 (S1)

msk_t1_c2_5 14 RW_RO 0 Mask Overflow in Thread 1 of Core 2 (S0) or 5 (S1)

msk_t0_c2_5 13 RW_RO 0 Mask Overflow in Thread 0 of Core 2 (S0) or 5 (S1)

msk_t1_c1_6 12 RW_RO 0 Mask Overflow in Thread 1 of Core 1 (S0) or 6 (S1)

msk_t0_c1_6 11 RW_RO 0 Mask Overflow in Thread 0 of Core 1 (S0) or 6 (S1)

msk_t1_c0_7 10 RW_RO 0 Mask Overflow in Thread 1 of Core 0 (S0) or 7(S1)

msk_t0_c0_7 9 RW_RO 0 Mask Overflow in Thread 0 of Core 0 (S0) or 7(S1)

msk_c3_4 8 RW_RO 0 Mask Overflow in Cbox 3 (S0) or 4 (S1)

msk_c2_5 7 RW_RO 0 Mask Overflow in Cbox 2 (S0) or 5 (S1)

msk_c1_6 6 RW_RO 0 Mask Overflow in Cbox 1 (S0) or 6 (S1)

msk_c0_7 5 RW_RO 0 Mask Overflow in Cbox 0 (S0) or 7 (S1)

msk_w 4 RW_RO 0 Mask Overflow in Wbox (S1 only)

msk_z 3 RW_RO 0 Mask Overflow in Zbox 0 (S0) or 1 (S1)

msk_b 2 RW_RO 0 Mask Overflow in Bbox 0 (S0) or 1 (S1)

msk_r 1 RW_RO 0 Mask Overflow in attached half of Rbox
- Counters 0-7 in S0, Counters 8-15 in S1

Uncore Performance Monitoring

410 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.7.3.2 Sbox Box Level PMON state

The following registers represent the state governing all box-level PMUs in the Sbox.

S_CSR_PMON_PERF_MASTER controls the general characteristics of the Sbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

If an overflow is detected from one of the Sbox PMON registers, the corresponding bit
in the _GLOBAL_STATUS.ov field will be set.

msk_s 0 RW_RO 0 Mask Overflow in this Sbox

Table 5-65. S_CSR_PMON_FRZ_EN Register Fields (Sheet 2 of 2)

Field Bits Type
HW

Reset
Val

Description

Table 5-66. S_CSR_PMON_PERF_MASTER Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 31:3 RO_NA 0 Read zero; writes ignored. (?)

clr 2 RW_RW 0 Writing 1 clears all the Sbox counters as well as overflow bits
in S_CSR_PMON_GLOBAL_STATUS.

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.
1: Global: Enable/Disable of counters in Sbox will track
U_CSR_PERF_CTL.glb_en. Local overflows will be passed on
to Ubox without freezing local counters.

0: Local: Enable/Disable of counters in Sbox will NOT track
U_CSR_PERF_CTL.glb_en. Allows SW to write the .en bit.
Disables Counters on any local counter overflow.

en 0 RW_RW 0 Enable/disable Sbox PMU counters.

This bit is dependent on the setting of the .glb_lcl bit.
If .glb_lcl is set to 1, SW writes to this bit are ignored and
only HW may affect it’s state.

If .glb_lcl is set to 0, SW may exert control by setting the bit.

In either case, since HW may alter this bit, (due to tracking
the global enable or a local overflow) SW may read it to
determine the state of the Sbox counters.

1: Enable Sbox PMU counting.
0: Disable (freeze) Sbox PMU counters.

Table 5-67. S_CSR_PMON_GLOBAL_STATUS Register Fields

Field Bits Type
HW

Reset
Val

Description

ig 63:4 RO_NA 0 Read zero; writes ignored. (?)

ov 3:0 RW_RO 0 If an overflow is detected from the corresponding SBOX PMON
register and the overflow has been enabled
(S_CSR_PMON_CTLx.ovf_en for counter x is set to 1), its
overflow bit will be set.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 411
Reference Manual for Software Development and Optimization Guide

5.7.3.3 Sbox PMON state - Counter/Control Pairs + Filters

The following table defines the layout of the Sbox performance monitor control
registers. The main task of these configuration registers is to select the event to be
monitored by their respective data counter. Setting the .ev_sel field performs the event
selection. Additional control bits include:

- .threshold - If the .threshold is set to a non-zero value, that value is compared
against the incoming count for that event in each cycle. If the incoming count is >= the
threshold value, then the event count captured in the data register will be incremented
by 1.

- .invert - Changes the .threshold test condition to ‘<‘

- .edge_detect - Rather than accumulating the raw count each cycle (for events that
can increment by 1 per cycle), the register can capture transitions from no event to an
event incoming.

- .reset_occ_cnt - Reset 7b occupancy counter associated with this counter.

The Sbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events. In this way, software can capture the
precise number of events that occurred between the time uncore counting was enabled
and when it was disabled (or ‘frozen’) with minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

Table 5-68. S_CSR_PMON_CTL{3-0} Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63 RO_NA 0 Read zero; writes ignored. (?)

rsv 62 RW_RO 0 Reserved; Must write to 0 else behavior is undefined.

ig 61:32 RO_NA 0 Read zero; writes ignored. (?)

threshold 31:24 RW_RO 0 Threshold used for counter comparison.

invert 23 RW_RO 0 Invert threshold comparison. When ‘0’, the comparison will
be thresh >= event. When ‘1’, the comparison will be
threshold < event.

ovf_en 22 RW_RO 0 On overflow
0: overflow signal is dropped.
1: foveal signal will be sent out.

ig 21:19 RO_NA 0 Read zero; writes ignored. (?)

edge_detect 18 RW_RO 0 Edge Detect. When bit is set, 0->1 transition of a one bit
event input will cause counter to increment. When bit is 0,
counter will increment for however long event is asserted.

reset_occ_cnt 17 WO_RO 0 Reset Occupancy Counter associated with this counter.

ig 16 RO_NA 0 Read zero; writes ignored. (?)

umask 15:8 RW_RO 0 Unit Mask - select subevent of event.

ev_sel 7:0 RW_RO 0 Event Select

Uncore Performance Monitoring

412 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.7.3.4 Sbox Registers for Mask/Match Facility

In addition to generic event counting, the uncore provides a MATCH/MASK registers in
each Sbox. These MATCH/MASK registers allow a user to filter outgoing packet traffic
(system bound) according to the packet Opcode, Message Class, Response, HNID and
Physical Address. Program the selected Sbox counter to capture TO_R_PROG_EV to
capture the filter match as an event.

To use the match/mask facility :

a) Set MM_CFG (see Table 5-70, “S_CSR_MM_CFG Register – Field Definitions”) reg bit
63 to 0.

b) Program match/mask regs (see Table 5-71, “S_CSR_MATCH Register – Field
Definitions” and Table 5-72, “S_CSR_MATCH2 Register – Field Definitions”). (if
MM_CFG[63] == 1, a write to match/mask will produce a GP fault).

NOTE: The address and the Home Node ID have a mask component in the MASK
register. To mask off other fields (for example, opcode or message class), set the field
to all 0s.

c) Set the counter’s control register event select to 0x0 (TO_R_PROG_EV) to capture
the mask/match as a performance event.

d) Set MM_CFG reg bit 63 to 1 to start matching.

Table 5-69. S_CSR_PMON_CTR{3-0} Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored. (?)

event_count 47:0 RW_RW 0 48-bit performance event counter

Table 5-70. S_CSR_MM_CFG Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

mm_en 63 RW_RW 0 Enable Match/Mask

ig 62:0 RO_NA 0 Read zero; writes ignored.

Table 5-71. S_CSR_MATCH Register – Field Definitions (Sheet 1 of 2)

Field Bits Type
HW

Reset
Val

Description

ig 63 RO_NA 0 Read zero; writes ignored. (?)

resp 62:59 RW_RO 0 Match if returning data is in

b1xxx - ‘S’ state
bx1xx - ‘E’ state.
bxx1x - ‘M’ state.
bxxx1 - ‘I’ state.

Note: Response matching is only done on the DRS response to
a HOM0 RdCode, RdData or RdInvOwn request.

Note: Match will be ignored if field set to all 0s.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 413
Reference Manual for Software Development and Optimization Guide

Refer to Table 5-112, “Opcodes (Alphabetical Listing)” for definitions of the opcodes
found in the following table.

mc 58:54 RW_RO 0 Match on Message Class

b1xxxx - NCB
bx1xxx - NCS
bxx1xx - NDR
bxxx1x - HOM1
bxxxx1 - HOM0

Note: Match will be ignored if field set to all 0s.

addr 53:10 RW_RO 0 Match on PA address bits [49:6]

hnid 9:0 RW_RO 0 Match on Home NodeID

Table 5-72. S_CSR_MATCH2 Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 62:11 RO_NA 0 Read zero; writes ignored.

opc 10:0 RW_RO 0 Match on Opcode (see Table 5-73, “S_CSR_MATCH2.opc -
Opcode Match by Message Class”)

Note: Match will be ignored if field set to all 0s.

Table 5-71. S_CSR_MATCH Register – Field Definitions (Sheet 2 of 2)

Field Bits Type
HW

Reset
Val

Description

Table 5-73. S_CSR_MATCH2.opc - Opcode Match by Message Class

bit NCB NCS NDR HOM1 HOM0

10 --- --- --- --- ---

9 --- NcIOWr --- RspFwd EvctCln

8 DebugData --- --- RspSWb InvXtoI

7 WcWrPtl NcCfgWr --- RspIWb AckCnflt

6 NcWrPtl NcIORd --- RspFwdSWb ---

5 --- --- --- RspFwdIWb WbMtoI

4 IntPhysical NcCfgRd --- RspFwdS ---

3 PurgeTC NcRdPtl --- RspFwdI InvItoE

2 NcMsgB --- --- RspCnflt RdInvOwn

1 WcWr IntAck --- RspS RdData

0 --- NcRd --- RspI RdCode

Uncore Performance Monitoring

414 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.7.4 QEAR

The Intel® QuickPath Interconnect (Intel QPI) Event Address Register (QEAR) provides
functionality similar to the Data EAR (DEAR) in the core. On an inbound request to the
Sbox, the following information is captured:

1. Physical Address [49:6].
2. Message Class and Opcode

3. NID of the targeted Home Agent

When the Data for the request is returned for a read, or the Cmp is returned for a
write, the following is also captured.

1. The latency in core clock cycles from send to end. The cycle counter is 15 bits
allowing measurement of latencies up to 32,768 cycles.

2. An overflow bit indicating that the counter overflowed before Data was returned.

3. For Read requests, the QEAR indicates whether the Data was returned with a
DataC*_Cmp. Since only Home agents can return Cmps, this indicates that data
was returned from the Home agent, rather than as a cache to cache transfer.

Note: Some OEM node controller Home agents may send DataC* and Cmp separately, so
having this bit clear may not imply a cache to cache transfer.

The QEAR does not support the measurement of the latency of the Cmp for read
requests. On a completed transaction, the QEAR can signal the QEAR event (0x90) to
the Sbox counters and it will also respond to the subsequent Sbox freeze to halt
sampling. CSR reads may then be used to access the logged information.

Table 5-74. S_CSR_MASK Register – Field Definitions

Field Bits
HW

Reset
Val

Description

ig 62:45 Read zero; writes ignored.

addr 44:1 0 Mask PA address bits [49:6].
For each mask bit that is set, the corresponding bit in the address is
already considered matched (e.g. it is ignored). If it is clear the it must
match the corresponding address match bit in the S_CSR_MATCH
register.

hnid 0 0 Disable HNID matching.
1 - HNID is NOT matched
0 - HNID is compared against the match

Table 5-75. QEAR Performance Monitoring CSRs

CSR Name
CSR

Address
[12:0]

Size
(bits) Description

S_CSR_QEAR_CTL 0x8F8 32 QPI EAR Control

S_CSR_QEAR_DAT1 0x8F0 32 QPI EAR Data 1

S_CSR_QEAR_DAT0 0x8E8 32 QPI EAR Data 0

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 415
Reference Manual for Software Development and Optimization Guide

Since the QEAR is located in the Sbox, responsible for bundling memory requests into
QPI packets, its latency count will not include the latencies induced by any Core or
Caching Agent. It will include the latencies of the Sbox packet building and packet
decoding logic (including any latencies waiting for Intel QPI credits), the clock
synchronizer from Sbox to the sysint, and all sysint and off-socket resources.

5.7.4.1 QEAR Functionality

Aside from the PMU event (0x90 - QEAR_EVENT) and response to PMU freeze, the
QEAR is controlled almost entirely by CSR with no connection to the core Sbox PMU
block.

The QEAR provides the following configurability:

• Count threshold - The QEAR will only signal a PMU event if the captured count is
above 128, 256 or 512 core cycles.

• LFSR - The QEAR includes an LFSR to randomly select either 1 of 8 requests. The
LFSR can be set to be ignored. The LFSR value is not readable or directly writeable.
On a write to CPE_QEAR_CSR_CTL, the LFSR is reset to a fixed value. Then it
progresses each cycle.

• Opcode Match & Mask and Message Class Selects - Latency measurements
can be done on any HOM0, NCS, or NCB opcode that the Sbox supports. Opcode
Match & Mask and Message Class selects can be used to restrict the operations that
are measured.

One limitation of the Intel QPI EAR logic is that when a request is initially targeted for
sampling, the address, message class, opcode and homeNID are automatically logged
into the QEAR CSRs and the counter is reset. The latency counts in the CSRs are free
running until the transaction completes. Thus if software polls the QEAR CSRs while a
measurement is in progress, it will see the address and other information for the
measurement in progress, and will see the free running latency and overflow values for
the current measurement.

Additionally, if the QEAR is not frozen, reads from the various QEAR registers may
correspond to measurements for completely different operations if the QEAR triggers
on a new request. To avoid this problem the QEAR must be configured to use the Sbox’s
overflow mechanism. To do this:

1. Program an Sbox control register (e.g. thru S_CSR_PMON_CTL0) to capture the
QEAR event (0x90). The QEAR event will trigger once for every measurement.

2. The associated data register must be set with a value and configuration to signal
PMD overflow/freeze after the desired number of measurement events.

3. Sampling software should then read the QEAR CSRs only in response to an Uncore
PMD overflow event. In this case, the PMD overflow will prevent the QEAR from
starting a new measurement, and thus all of the logged information will correspond
to the same measurement.

4. No reprogramming of the QEAR CSRs is needed. To re-enable sampling software
only needs to clear the PMD overflow condition.

5.7.4.2 Sequence to Enable QEAR - If Changing LFSRMSK

1) Read S_CSR_QEAR_CTL.lfsrmsk and store value.

If a user wishes to change the value of .lfsrmsk:

2) Disable the QEAR by setting S_CSR_QEAR_CTL.mc to 0.

Uncore Performance Monitoring

416 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

3) Disable Sbox monitoring (set S_MSR_PMON_PERF_MASTER.en to 0).

4) Set S_CSR_QEAR_CTL.lfsrmsk.

5) Re-Enable Sbox monitoring (set S_MSR_PMON_PERF_MASTER.en to 1)

5) Now set the S_CSR_QEAR_CTL to the desired value for sampling, being sure to
maintain the same .lfsrmsk value as set in Step 3.

Else if the .lfsrmsk value will remain the same (i.e. the default value is 0 == enabled
and SW intends to maintain this value throughout the monitoring session):

2) Disable the QEAR by setting S_CSR_QEAR_CTL.mc to 0.

3) Set the S_CSR_QEAR_CTL to the desired value for sampling, being sure to maintain
the .lfsrmsk value as read from Step 1.

5.7.4.3 Sbox PMON state for QEAR

The following tables define the layout of the Sbox QEAR performance monitor registers.

Table 5-76. QEAR Configuration Register Fields (S_CSR_QEAR_CTL)

Field Bit
Range Access

HW
Reset

Val
Description

cnt 31:17 RW_WO 0 Latency count in core clock cycles

rsv 16 RW_NA 0 Reserved; Must write to 0 else behavior is undefined.

thresh 15:14 RW_RO 0 Threshold value of QEAR count to signal a CPE QEAR event to
PMU.

b00 - Any count value
b01 - Count >= 128
b10 - Count >= 256
b11 - Count >= 512

opmsk 13:10 RW_RO 0 Intel QPI Opcode Mask

op 9:6 RW_RO 0 Intel QPI Opcode. A transaction will be measured if its QPI
Opccode[3:0] makes the following statement true:
((Opcode[3:0] XNOR op[3:0]) OR opmsk[3:0]) = 0xF.

NOTE: Refer to Table 5-112, “Opcodes (Alphabetical Listing)” for
more information.

mc 5:3 RW_RO 0 Message Class Select:
xx1 - HOM
x1x - NCB
1xx - NCS
If the msgclass bit is set to 3'b000, then CEAR logic matching is
disabled and "opcode[3:0]" contains the opcode to match.

rsv 2 RW_NA 0 Reserved; Must write to 0 else behavior is undefined.

lfsr_msk 1 RW_RO 0 If set to 1, the QEAR lfsr is ignored for triggering a capture. Once
the QEAR starts fishing for a new sample to watch, it will capture
the first one that comes by.

Recommended: Set this bit to 0 to randomize QEAR captures by
letting some fish (samples) go.

rsv 0 RW_NA 0 Reserved; Must write to 0 else behavior is undefined.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 417
Reference Manual for Software Development and Optimization Guide

5.7.5 Sbox Performance Monitoring Events

5.7.5.1 An Overview

The Sbox provides events to track incoming (ring bound)/outgoing (system bound)
transactions, various queue occupancies/latencies that track those transactions and a
variety of static events such as bypass use (that is, EGRESS_BYPASS) and when output
credit is unavailable (for example, NO_CREDIT_HOM). Many of these events can be
further broken down by message class.

5.7.5.2 On Queue Occupancy Usage

This means two things:

a) none of the physical queues receive more than one entry per cycle

b) The entire 7b from the ‘selected’ (by the event select) queue occ subcounter is sent
to the generic counter each cycle, meaning that the max inc of a generic counter is 64
(for the sys bound HOM buffer).

Associated with each of the four general purpose counters is a 7b queue occupancy
counter which supports the various queue occupancy events found in Section 5.7.6,
“Sbox Events Ordered By Code”.

Table 5-77. QEAR Data Register 0 Fields (CPE_CSR_CEAR_DAT0)

Field Bit
Range Access

HW
Reset

Val
Description

pa_lo 31:6 RW_W
O

0 Intel QPI Physical Address [31:6]

op 5:2 RW_W
O

0 Intel QPI opcode of captured request.

ov 1 RW_W
O

0 Indicates that the last QEAR capture overflowed the latency
counter.

datacmp 0 RW_W
O

0 For measured requests that expect return data, the data packet
returned is a DataC*_Cmp.

This may help indicate whether the data request was satisfied by a
home agent or a caching agent. This will not be set for requests
returned with DataC_*_FrcAckCnflct, even though those are sent
only from home agents.

Table 5-78. QEAR Data Register 1 Fields (CPE_CSR_CEAR_DAT1)

Field Bit
Range Access

HW
Reset

Val
Description

ig 31:30 RO_NA 0 Reads zero; Writes are ignored

hnid 29:20 RW_WO 0 Home NID of request

mc 19:18 RW_WO 0 Message Class:

00 - HOM0
01 - NCB
10 - NCS
11 - [shouldn’t happen]

pa_hi 17:0 RW_WO 0 Core Physical Address [49:32]

Uncore Performance Monitoring

418 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Each System Bound and Ring Bound data storage structure within the Sbox (queue/
FIFO/buffer) has an associated tally counter which can be used to provide input into
one of the Sbox performance counters. The data structure the tally counter is
‘attached’ to then sends increment/decrement signals as it receives/removes new
entries. The tally counter then sends its contents to the performance counter each
cycle.

The following table summarizes the queues (and their associated events) responsible
for buffering traffic into and out of the Sbox.

5.7.5.3 On Packet Transmission Events

For the message classes that have variable length messages, the Sbox has separate
events which count the number of flits of those message classes sent or received (that
is, PKTS_SENT_HOM vs. PKTS/FLITS_SENT_NCB). For message classes that have fixed
length messages, the total number of flits can be calculated by multiplying the total
messages by the number of flits per message (that is, PKTS_RCVD_SNP).

The number of flits sent or received can be divided by the total number of uncore cycles
(see Section 5.8.2, “Wbox Performance Monitoring Overview”) to calculate the link
utilization for each message class. The combined number of flits across message
classes can be used to calculate the total link utilization.

Table 5-79. Sbox Data Structure Occupancy Events

Structure/Event Name Max
Entries

Insta
nces Description/Comment

System Bound (Rbox) HOM Message Queue
TO_R_HOM_MSGQ_OCCUPANCY

64 1 HOM Packet to System

System Bound DRS Message Queue
TO_R_DRS_MSGQ_OCCUPANCY

4 4 DRS Packet to System
1 buffer per attached Cbox

System Bound NCB Message Queue
TO_R_NCB_MSGQ_OCCUPANCY

2 4 NCB Packet to System
1 buffer per attached Cbox

System Bound NCS Message Queue
TO_R_NCS_MSGQ_OCCUPANCY

2 4 NCS Packet to System
1 buffer per attached Cbox

Ring Bound SNP Message Queue
TO_RING_SNP_MSGQ_OCCUPANCY

31 1 SNP Packet from System

Ring Bound NDR Message Queue
TO_RING_NDR_MSGQ_OCCUPANCY

32 1 NDR Packet from System

Ring Bound R2S Message Queue
TO_RING_R2S_MSGQ_OCCUPANCY

8 1 Packets headed to Ring

Request Table 48 1 System Bound Request

Message Class Flits per
Msg (SMP)

Flits per
Msg (EMP) Comment

HOM 1 2

Ring Bound DRS 9 10 R2S DRS messages are always full cacheline messages which
are 9 flits.
Note: Flits are variable in the Sys Bound direction.

Ring Bound SNP 1 2 The only ring bound SNP messages.

Ring Bound NDR 1 2 The only ring bound NDR messages

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 419
Reference Manual for Software Development and Optimization Guide

Note that for S2R and R2S links, there is no single event which counts the total number
of message and credit carrying idle flits sent on the link. The total link utilization can be
approximated by adding together the number of flits of the message classes that are
expected to be most frequent.

5.7.6 Sbox Events Ordered By Code
Table 5-80 summarizes the directly-measured Sbox events.

Table 5-80. Performance Monitor Events for Sbox Events (Sheet 1 of 2)

Symbol Name Event
Code

Max
Inc/Cyc Description

TO_R_PROG_EV 0x00 1 System Bound Programmable Event

TO_R_B_HOM_MSGQ_CYCLES_FULL 0x03 1 Cycles System Bound HOM Message Queue Full.

TO_R_B_HOM_MSGQ_CYCLES_NE 0x06 1 Cycles System Bound HOM Message Queue Not
Empty.

TO_R_B_HOM_MSGQ_OCCUPANCY 0x07 64 System Bound HOM Message Queue Occupancy

TO_R_NDR_MSGQ_OCCUPANCY 0x0D 16 System Bound NDR Message Queue Occupancy

TO_R_DRS_MSGQ_CYCLES_FULL 0x0E 1 Cycles System Bound DRS Message Queue Full

TO_R_DRS_MSGQ_CYCLES_NE 0x0F 1 Cycles System Bound DRS Message Queue Not
Empty

TO_R_DRS_MSGQ_OCCUPANCY 0x10 64 System Bound DRS Message Queue Occupancy

TO_R_NCB_MSGQ_CYCLES_FULL 0x11 1 Cycles System Bound NCB Message Queue Full

TO_R_NCB_MSGQ_CYCLES_NE 0x12 1 Cycles System Bound NCB Message Queue Not
Empty

TO_R_NCB_MSGQ_OCCUPANCY 0x13 64 System Bound NCB Message Queue Occupancy

TO_R_NCS_MSGQ_CYCLES_FULL 0x14 1 Cycles System Bound NCS Message Queue Full

TO_R_NCS_MSGQ_CYCLES_NE 0x15 1 Cycles System Bound NCS Message Queue Not
Empty

TO_R_NCS_MSGQ_OCCUPANCY 0x16 64 System Bound NCS Message Queue Occupancy

TO_RING_SNP_MSGQ_CYCLES_FULL 0x20 1 Cycles Ring Bound SNP Message Queue Full

TO_RING_SNP_MSGQ_CYCLES_NE 0x23 1 Cycles Ring Bound SNP Message Queue Not Empty

TO_RING_MSGQ_OCCUPANCY 0x26 36 Cycles Ring Bound Message Queue Occupancy

TO_RING_NDR_MSGQ_CYCLES_FULL 0x27 1 Cycles Ring Bound NDR Message Queue Full.

TO_RING_NDR_MSGQ_CYCLES_NE 0x28 1 Cycles Ring Bound NDR Message Queue Not Empty

TO_RING_NDR_MSGQ_OCCUPANCY 0x29 32 Ring Bound NDR Message Queue Occupancy

TO_RING_R2S_MSGQ_CYCLES_FULL 0x2A 1 Cycles Ring Bound R2S Message Queue Full.

TO_RING_R2S_MSGQ_CYCLES_NE 0x2C 1 Cycles Ring Bound R2S Message Queue Not Empty

TO_RING_R2S_MSGQ_OCCUPANCY 0x2E 8 Ring Bound R2S Message Queue Occupancy

HALFLINE_BYPASS 0x30 1 Half Cacheline Bypass

REQ_TBL_OCCUPANCY 0x31 48 Request Table Occupancy

EGRESS_BYPASS 0x40 1 Egress Bypass

EGRESS_ARB_WINS 0x41 1 Egress ARB Wins

EGRESS_ARB_LOSSES 0x42 1 Egress ARB Losses

EGRESS_STARVED 0x43 1 Egress Cycles in Starvation

RBOX_HOM_BYPASS 0x50 1 Rbox HOM Bypass

PKTS_SENT_HOM 0x60 1 HOM Packets Sent to System

PKTS_SENT_DRS 0x64 1 DRS Packets Sent to System

Uncore Performance Monitoring

420 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.7.7 Sbox Performance Monitor Event List
This section enumerates Itanium processor 9500 series uncore performance
monitoring events for the Sbox.

EGRESS_ARB_LOSSES
• Title: Egress ARB Losses
• Category: Ring Bound Credits
• Event Code: 0x42, Max. Inc/Cyc: 1,
• Definition: Egress Arbitration Losses.
• NOTE: Enabling multiple subevents in this category will result in the counter being

increased by the number of selected subevents that occur in a given cycle. Because
only one of the even/odd FIFOs can arbitrate to send onto the ring in each cycle, the
event for the even/odd FIFOs in each direction are exclusive. The bypass event for
each direction is the sum of the bypass events of the even/odd FIFOs.

FLITS_SENT_DRS 0x65 1 DRS Flits Sent to System

PKTS_SENT_NCS 0x66 1 NCS Packets Sent to System

FLITS_SENT_NCS 0x67 1 NCS Flits Sent to System

PKTS_SENT_NCB 0x68 1 NCB Packets Sent to System

FLITS_SENT_NCB 0x69 1 NCB Flits Sent to System

RBOX_CREDIT_RETURNS 0x6A 1 Rbox Credit Returns

PKTS_RCVD_NDR 0x70 1 NDR Packets Received from System

PKTS_RCVD_SNP 0x71 1 SNP Packets Received from System

PKTS_RCVD_DRS_FROM_R 0x72 1 DRS Packets Received from Rbox

RBOX_CREDITS 0x76 1 Rbox Credit Carrying Flits

NO_CREDIT_HOM 0x80 1 HOM Credit Unavailable

NO_CREDIT_DRS 0x82 1 DRS Credit Unavailable

NO_CREDIT_NCS 0x83 1 NCS Credit Unavailable

NO_CREDIT_NCB 0x84 1 NCB Credit Unavailable

NO_CREDIT_VNA 0x86 1 VNA Credit Unavailable

NO_CREDIT_AD 0x87 1 AD Credit Unavailable

NO_CREDIT_AK 0x88 1 AK Credit Unavailable

NO_CREDIT_BL 0x89 1 BL Credit Unavailable

NO_CREDIT_IPQ 0x8A 1 IPQ Credit Unavailable

QEAR_EVENT 0x90 1 QPI EAR Event

Table 5-80. Performance Monitor Events for Sbox Events (Sheet 2 of 2)

Symbol Name Event
Code

Max
Inc/Cyc Description

Extension umask
[15:8] Description

--- b000000 (*nothing will be counted*)

AD_CW b000001 AD Clockwise

AD_CCW b000010 AD Counter-Clockwise

AD b000011 AD

AK_CW b000100 AK Clockwise

AK_CCW b001000 AK Counter-Clockwise

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 421
Reference Manual for Software Development and Optimization Guide

EGRESS_ARB_WINS
• Title: Egress ARB Wins
• Category: Ring Bound Transmission
• Event Code: 0x41, Max. Inc/Cyc: 1,
• Definition: Egress Arbitration Wins.
• NOTE: Enabling multiple subevents in this category will result in the counter being

increased by the number of selected subevents that occur in a given cycle. Because
only one of the even/odd FIFOs can arbitrate to send onto the ring in each cycle, the
event for the even/odd FIFOs in each direction are exclusive. The bypass event for
each direction is the sum of the bypass events of the even/odd FIFOs.

EGRESS_BYPASS
• Title: Egress Bypass
• Category: Ring Bound Enhancement
• Event Code: 0x40, Max. Inc/Cyc: 1,
• Definition: Egress Bypass optimization utilized.
• NOTE: Enabling multiple subevents in this category will result in the counter being

increased by the number of selected subevents that occur in a given cycle. Because
only one of the even/odd FIFOs can arbitrate to send onto the ring in each cycle, the
event for the even/odd FIFOs in each direction are exclusive. The bypass event for
each direction is the sum of the bypass events of the even/odd FIFOs.

AK b001100 AK

BL_CW b010000 BL Clockwise

BL_CCW b100000 BL Counter-Clockwise

BL b110000 BL

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b000000 (*nothing will be counted*)

AD_CW b000001 AD Clockwise

AD_CCW b000010 AD Counter-Clockwise

AD b000011 AD

AK_CW b000100 AK Clockwise

AK_CCW b001000 AK Counter-Clockwise

AK b001100 AK

BL_CW b010000 BL Clockwise

BL_CCW b100000 BL Counter-Clockwise

BL b110000 BL

Extension umask
[15:8] Description

--- b000000 (*nothing will be counted*)

AD_CW b000001 AD Clockwise

AD_CCW b000010 AD Counter-Clockwise

AD b000011 AD

AK_CW b000100 AK Clockwise

Uncore Performance Monitoring

422 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

EGRESS_STARVED
• Title: Egress Cycles in Starvation
• Category: Ring Bound Credits
• Event Code: 0x43, Max. Inc/Cyc: 1,
• Definition: Number of cycles the Sbox egress FIFOs are in starvation.
• NOTE: Enabling multiple subevents in this category will result in the counter being

increased by the number of selected subevents that occur in a given cycle. Because
only one of the even/odd FIFOs can arbitrate to send onto the ring in each cycle, the
event for the even/odd FIFOs in each direction are exclusive. The bypass event for
each direction is the sum of the bypass events of the even/odd FIFOs.

FLITS_SENT_DRS
• Title: DRS Flits Sent to System
• Category: System Bound Transmission
• Event Code: 0x65, Max. Inc/Cyc: 1,
• Definition: Number of data response flits the Sbox has transmitted to the system.

FLITS_SENT_NCB
• Title: NCB Flits Sent to System
• Category: System Bound Transmission
• Event Code: 0x69, Max. Inc/Cyc: 11,
• Definition: Number of non-coherent bypass flits the Sbox has transmitted to the
system.

AK_CCW b001000 AK Counter-Clockwise

AK b001100 AK

BL_CW b010000 BL Clockwise

BL_CCW b100000 BL Counter-Clockwise

BL b110000 BL

Extension umask
[15:8] Description

Extension umask
[15:8] Description

--- b000000 (*nothing will be counted*)

AD_CW b000001 AD Clockwise

AD_CCW b000010 AD Counter-Clockwise

AD b000011 AD

AK_CW b000100 AK Clockwise

AK_CCW b001000 AK Counter-Clockwise

AK b001100 AK

BL_CW b010000 BL Clockwise

BL_CCW b100000 BL Counter-Clockwise

BL b110000 BL

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 423
Reference Manual for Software Development and Optimization Guide

FLITS_SENT_NCS
• Title: NCS Flits Sent to System
• Category: System Bound Transmission
• Event Code: 0x67, Max. Inc/Cyc: 1,
• Definition: Number of non-coherent standard flits the Sbox has transmitted to the
system.

HALFLINE_BYPASS
• Title: Half Cacheline Bypass
• Category: Ring Bound Enhancement
• Event Code: 0x30, Max. Inc/Cyc: 1,
• Definition: Half Cacheline Bypass optimization (where the line is sent early) was
utilized.

NO_CREDIT_AD
• Title: AD Ring Credit Unavailable
• Category: Ring Bound Credits
• Event Code: 0x87, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending SNP, NCS or NCB message to
send and there is no credit for the target egress FIFO.

NO_CREDIT_AK
• Title: AK Ring Credit Unavailable
• Category: Ring Bound Credits
• Event Code: 0x88, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending NDR or S2C credit return
message to send but there is no credit for the target egress FIFO.

NO_CREDIT_BL
• Title: BL Ring Credit Unavailable
• Category: Ring Bound Credits
• Event Code: 0x89, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending DRS or debug message to
send and there is no credit for the target egress FIFO.

NO_CREDIT_DRS
• Title: DRS Credit Unavailable
• Category: System Bound Credits
• Event Code: 0x82, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending data response message to
send and there is no DRS or VNA credit available.

NO_CREDIT_HOM
• Title: HOM Credit Unavailable
• Category: System Bound Credits
• Event Code: 0x80, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending home message to send and
there is no HOM or VNA credit available.

Uncore Performance Monitoring

424 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

NO_CREDIT_IPQ
• Title: IPQ Credit Unavailable
• Category: Ring Bound Credits
• Event Code: 0x8A, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has an incoming SNP to send but there is no
IPQ credit available for the target Cbox.

NO_CREDIT_NCB
• Title: NCB Credit Unavailable
• Category: System Bound Credits
• Event Code: 0x84, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending non-coherent bypass message
to send and there is no NCB or VNA credit available.

NO_CREDIT_NCS
• Title: NCS Credit Unavailable
• Category: System Bound Credits
• Event Code: 0x83, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has a pending non-coherent standard
message to send and there is no NCS or VNA credit available.

NO_CREDIT_VNA
• Title: VNA Credit Unavailable
• Category: System Bound Transmission
• Event Code: 0x86, Max. Inc/Cyc: 1,
• Definition: Number of times the Sbox has exhausted its VNA credit pool.

PKTS_RCVD_DRS_FROM_R
• Title: DRS Packets Received from Rbox
• Category: Ring Bound Transmission
• Event Code: 0x72, Max. Inc/Cyc: 9,
• Definition: Number of data response packets the Sbox has received from the Rbox.
• NOTE: DRS messages are always full cacheline messages which are 9 flits. Multiply

this event by 9 to derive flit traffic from the Rbox due to DRS messages.

PKTS_RCVD_NDR
• Title: NDR Packets Received from System
• Category: Ring Bound Transmission
• Event Code: 0x70, Max. Inc/Cyc: 1,
• Definition: Number of non-data response packets the Sbox has received from the
system.

PKTS_RCVD_SNP
• Title: SNP Packets Received from System
• Category: Ring Bound Transmission
• Event Code: 0x71, Max. Inc/Cyc: 1,
• Definition: Number of snoop packets the Sbox has received from the system.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 425
Reference Manual for Software Development and Optimization Guide

PKTS_SENT_DRS
• Title: DRS Packets Sent to System
• Category: System Bound Transmission
• Event Code: 0x64, Max. Inc/Cyc: 1,
• Definition: Number of DRS packets the Sbox has transmitted to the system.
• NOTE: If multiple Cboxes are selected, this event counts the total data response

packets sent by all the selected Cboxes. In the cases where one DRS message
spawns two messages, one to the requester and one to the home, this event only
counts the first DRS message. DRS messages are always full cacheline messages
which are 9 flits.

PKTS_SENT_HOM
• Title: HOM Packets Sent to System
• Category: System Bound Transmission
• Event Code: 0x60, Max. Inc/Cyc: 1,
• Definition: Number of home packets the Sbox has transmitted to the System.

PKTS_SENT_NCB
• Title: NCB Packets Sent to System
• Category: System Bound Transmission
• Event Code: 0x68, Max. Inc/Cyc: 11,
• Definition: Number of NCB packets the Sbox has transmitted to the system.
• NOTE: If multiple Cboxes are selected, this event counts the total non-coherent

bypass packets sent by all the selected Cboxes. The only ring bound NCB message
types are: NcMsgB (StartReq2, VLW), IntLogical, IntPhysical. These are all 11 flit
messages.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 Cboxes 0 and 4

CBOX1_5 bxx1x Cboxes 1 and 5

CBOX2_6 bx1xx Cboxes 2 and 6

CBOX3_7 b1xxx Cboxes 3 and 7

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 Cboxes 0 and 4

CBOX1_5 bxx1x Cboxes 1 and 5

CBOX2_6 bx1xx Cboxes 2 and 6

CBOX3_7 b1xxx Cboxes 3 and 7

Uncore Performance Monitoring

426 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

PKTS_SENT_NCS
• Title: NCS Packets Sent to System
• Category: System Bound Transmission
• Event Code: 0x66, Max. Inc/Cyc: 3,
• Definition: Number of NCS packets the Sbox has transmitted to the system.
• NOTE: If multiple Cboxes are selected, this event counts the total non-coherent

standard packets sent by all the selected Cboxes. The only ring bound NCS message
type is NcMsgS (StopReq1). There are always 3 flits.

QEAR_EVENT
• Title: QEAR Event
• Category: Miscellaneous
• Event Code: 0x90, Max. Inc/Cyc: 1,
• Definition: Event was captured in the QPI EAR.

RBOX_CREDIT_CARRIERS
• Title: Rbox Credit Carrying Flits
• Category: Ring Bound Transmission
• Event Code: 0x76, Max. Inc/Cyc: 1,
• Definition: Number credit carrying idle flits received from the Rbox.

RBOX_CREDIT_RETURNS
• Title: Rbox Credit Returns
• Category: System Bound Transmission
• Event Code: 0x6A, Max. Inc/Cyc: 1,
• Definition: Number credit return idle flits sent to the Rbox.

RBOX_HOM_BYPASS
• Title: Rbox HOM Bypass
• Category: System Bound Enhancement
• Event Code: 0x50, Max. Inc/Cyc: 1,
• Definition: Rbox HOM Bypass optimization was utilized.

REQ_TBL_OCCUPANCY
• Title: Request Table Occupancy
• Category: Ring Bound Queue
• Event Code: 0x31, Max. Inc/Cyc: 48,
• Definition: Number of request table entries occupied by socket requests.
• NOTE: Occupancy is tracked from allocation to deallocation of each entry in the

queue.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 Cboxes 0 and 4

CBOX1_5 bxx1x Cboxes 1 and 5

CBOX2_6 bx1xx Cboxes 2 and 6

CBOX3_7 b1xxx Cboxes 3 and 7

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 427
Reference Manual for Software Development and Optimization Guide

TO_RING_SNP MSGQ_OCCUPANCY
• Title: Ring Bound SNP Message Queue Occupancy
• Category: Ring Bound Queue
• Event Code: 0x26, Max. Inc/Cyc: 1,
• Definition: Number of entries in header buffer containing SNP messages headed for
the Ring.

TO_RING_NDR_MSGQ_CYCLES_FULL
• Title: Cycles Ring Bound NDR Message Queue Full
• Category: Ring Bound Queue
• Event Code: 0x27, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing NDR messages

on their way to the Ring, is full.

TO_RING_NDR_MSGQ_CYCLES_NE
• Title: Cycles Ring Bound NDR Message Queue Not Empty
• Category: Ring Bound Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing NDR messages
on their way to the Ring, has one or more entries allocated.

TO_RING_NDR_MSGQ_OCCUPANCY
• Title: Ring Bound SNP Message Queue Occupancy
• Category: Ring Bound Queue
• Event Code: 0x29, Max. Inc/Cyc: 32,
• Definition: Number of entries in header buffer containing NDR messages on their
way to the Ring.

TO_RING_R2S_MSGQ_CYCLES_FULL
• Title: Cycles Ring Bound R2S Message Queue Full
• Category: Ring Bound Queue
• Event Code: 0x2A, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing R to Sbox

messages on their way to the Ring, is full.

TO_RING_R2S_MSGQ_CYCLES_NE
• Title: Cycles Ring Bound R2S Message Queue Not Empty
• Category: Ring Bound Queue
• Event Code: 0x2C, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing R to Sbox
messages on their way to the Ring, has one or more entries allocated.

TO_RING_R2S_MSGQ_OCCUPANCY
• Title: Ring Bound R2S Message Queue Occupancy
• Category: Ring Bound Queue
• Event Code: 0x2E, Max. Inc/Cyc: 8,
• Definition: Number of entries in header buffer containing R to S messages on their
way to the Ring.

Uncore Performance Monitoring

428 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

TO_RING_SNP_MSGQ_CYCLES_FULL
• Title: Cycles Ring Bound SNP Message Queue Full
• Category: Ring Bound Queue
• Event Code: 0x20, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing SNP messages

on their way to the Ring, is full.

TO_RING_SNP_MSGQ_CYCLES_NE
• Title: Cycles Ring Bound SNP Message Queue Not Empty
• Category: Ring Bound Queue
• Event Code: 0x23, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing SNP messages
on their way to the Ring, has one or more entries allocated.

TO_R_DRS_MSGQ_CYCLES_FULL
• Title: Cycles System Bound DRS Message Queue Full.
• Category: System Bound Queue
• Event Code: 0x0E, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining DRS messages heading to a System Agent (through the Rbox), is full. Only
one Cbox’s DRS header buffer should be selected for the buffer full checking to be
correct, else the result is undefined.

TO_R_DRS_MSGQ_CYCLES_NE
• Title: Cycles System Bound DRS Message Queue Not Empty
• Category: System Bound Queue
• Event Code: 0x0F, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining DRS messages heading to a System Agent (through the Rbox), has one or
more entries allocated. When more than one Cbox is selected, the event is asserted
when any of the selected Cbox DRS header buffers are not empty.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 429
Reference Manual for Software Development and Optimization Guide

TO_R_DRS_MSGQ_OCCUPANCY
• Title: System Bound DRS Message Queue Occupancy
• Category: System Bound Queue
• Event Code: 0x10, Max. Inc/Cyc: 16,
• Definition: Number of entries in the header buffer for the selected Cbox, containing

DRS messages heading to a System Agent (through the Rbox). When more than one
Cbox is selected, the queue occupancy counter counts the total number of occupied
entries in all selected Cbox DRS header buffers.

• NOTE: 1 buffer per Cbox, 4 entries each.

TO_R_HOM_MSGQ_CYCLES_FULL
• Title: Cycles System Bound HOM Message Queue Full.
• Category: System Bound Queue
• Event Code: 0x03, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing HOM messages

heading to the System is full.

TO_R_HOM_MSGQ_CYCLES_NE
• Title: Cycles System Bound HOM Header Not Empty
• Category: System Bound Queue
• Event Code: 0x06, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer, containing HOM messages

heading to the System has one or more entries allocated.

TO_R_HOM_MSGQ_OCCUPANCY
• Title: System Bound HOM Message Queue Occupancy
• Category: System Bound Queue
• Event Code: 0x07, Max. Inc/Cyc: 64,
• Definition: Number of entries in the header buffer containing HOM messages head-

ing to the System.

TO_R_NCB_MSGQ_CYCLES_FULL
• Title: Cycles System Bound NCB Message Queue Full.
• Category: System Bound Queue
• Event Code: 0x11, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining NCB messages heading to a System Agent (through the Rbox), is full. Only
one Cbox’s NCB header buffer should be selected for the buffer full checking to be
correct, else the result is undefined.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ALL b1111 All Cboxes

Uncore Performance Monitoring

430 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

TO_R_NCB_MSGQ_CYCLES_NE
• Title: Cycles System Bound NCB Message Queue Not Empty
• Category: System Bound Queue
• Event Code: 0x12, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining NCB messages heading to a System Agent (through the Rbox), has one or
more entries allocated. When more than one Cbox is selected, the event is asserted
when any of the selected Cbox DRS header buffers are not empty.

TO_R_NCB_MSGQ_OCCUPANCY
• Title: System Bound NCB Message Queue Occupancy
• Category: System Bound Queue
• Event Code: 0x13, Max. Inc/Cyc: 8,
• Definition: Number of entries in the header buffer for the selected Cbox, containing

NCB messages heading to a System Agent (through the Rbox). When more than one
Cbox is selected, the queue occupancy counter counts the total number of occupied
entries in all selected Cbox NCB header buffers.

• NOTE: 1 buffer per Cbox, 2 entries each.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ALL b1111 All Cboxes

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 431
Reference Manual for Software Development and Optimization Guide

TO_R_NCS_MSGQ_CYCLES_FULL
• Title: Cycles System Bound NCS Message Queue Full.
• Category: System Bound Queue
• Event Code: 0x14, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining NCS messages heading to a System Agent (through the Rbox), is full. Only
one Cbox’s NCS header buffer should be selected for the buffer full checking to be
correct, else the result is undefined.

TO_R_NCS_MSGQ_CYCLES_NE
• Title: Cycles System Bound NCS Message Queue Not Empty
• Category: System Bound Queue
• Event Code: 0x15, Max. Inc/Cyc: 1,
• Definition: Number of cycles in which the header buffer for the selected Cbox, con-

taining NCS messages heading to a System Agent (through the Rbox), has one or
more entries allocated. When more than one Cbox is selected, the event is asserted
when any of the selected Cbox NCS header buffers are not empty.

TO_R_NCS_MSGQ_OCCUPANCY
• Title: System Bound NCS Message Queue Occupancy
• Category: System Bound Queue
• Event Code: 0x16, Max. Inc/Cyc: 2,
• Definition: Number of entries in the header buffer for the selected Cbox, containing

NCS messages heading to a System Agent (through the Rbox). When more than one
Cbox is selected, the queue occupancy counter counts the total number of occupied
entries in all selected Cbox NCS header buffers.

• NOTE: 1 buffer per Cbox, 2 entries each.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ANY b1111 Any Cbox

Uncore Performance Monitoring

432 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

TO_R_PROG_EV
• Title: System Bound Programmable Event
• Category: System Bound Queue
• Event Code: 0x00, Max. Inc/Cyc: 1,
• Definition: Programmable Event heading to a System Agent (through the Rbox).
Match/Mask on criteria set in S_CSR_MATCH/MASK registers (Refer to Section 5.7.3.4,
“Sbox Registers for Mask/Match Facility”).

5.8 Wbox Performance Monitoring

5.8.1 Overview of the Wbox
The Wbox is the primary Power Controller for the Itanium processor 9500 series.

5.8.2 Wbox Performance Monitoring Overview
The Wbox supports event monitoring through four 48-bit wide counters
(W_CSR_PERF_CNT{3:0}). Each of these four counters can be programmed to count
any Wbox event. The Wbox counters will increment by a maximum of 1 per cycle.

The Wbox also provides a 48-bit wide fixed counter that increments at the uncore clock
frequency.

The count values of all 5 counters can be cleared by writing the
W_CSR_PMON_PERF_MASTER.clr bit.

For information on how to setup a monitoring session, refer to Section 5.3, “Global
Performance Monitoring Control”.

5.8.2.1 Wbox PMU - Overflow, Freeze and Unfreeze

Wbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Wbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Wbox PMU can be frozen due to one of three reasons:

• Globally: Ubox sends a disable signal (and W_CSR_PMON_PERF_MASTER.glb_lcl is
1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to W_CSR_PMON_PERF_MASTER.en
when W_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

Extension umask
[15:8] Description

--- b0000 (*nothing will be counted*)

CBOX0_4 bxxx1 CBOX 0 and 4

CBOX1_5 bxx1x CBOX 1 and 5

CBOX2_6 bx1xx CBOX 2 and 6

CBOX3_7 b1xxx CBOX 3 and 7

ALL b1111 All Cboxes

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 433
Reference Manual for Software Development and Optimization Guide

• Locally: The Wbox was set to local control (W_CSR_PMON_PERF_MASTER.glb_lcl =
0) and a Wbox counter overflowed.

If an overflow is detected from a Wbox performance counter, the overflow bit is set at
the box level (W_CSR_PMON_GLOBAL_STATUS.ov), and forwarded up the chain
towards the Sbox. That is, if a Wbox counter overflows, a notification is sent and stored
in Sbox (S_CSR_PMON_SUMMARY.ov_w). Refer to Table 5-64,
“S_CSR_PMON_SUMMARY Register Fields” to determine how each Wbox’s overflow bit
is accumulated in the attached Sbox.

The Ubox may be configured to freeze all uncore counting (refer to Table 5-65,
“S_CSR_PMON_FRZ_EN Register Fields”) when it receives this signal.

Once a freeze has occurred, in order to see a new freeze, the overflow field responsible
for the freeze, must be cleared. Assuming all the counters have been locally enabled
(.en bit in data registers meant to monitor events) and the overflow bit(s) has been
cleared, the Wbox is prepared for a new sample interval. Once the global controls have
been re-enabled (Section 5.3.4, “Enabling a New Sample Interval from Frozen
Counters.”), counting will resume.

5.8.3 Wbox Performance Monitors

5.8.3.1 Wbox Box Level PMON state

The following registers represent the state governing all box-level PMUs in the Wbox.

Table 5-81. Wbox Performance Monitoring CSRs

CSR Name Access CSR
Address

Size
(bits

)
Description

SAL Privilege Registers

W_CSR_PMON_GLOBAL_STATUS RW_RW 0x6C8 32 Wbox PMON Global Overflow Status

W_CSR_PMON_GLOBAL_CTL RW_RW 0x6C0 32 Wbox PMON Global Control

W_CSR_PMON_FIXED_CTR_CTL RW_RW 0x4F8 64 Wbox PMON Fixed Counter Control

W_CSR_PMON_FIXED_CTR RW_RW 0x4E8 64 Wbox PMON Fixed Counter

W_CSR_PMON_EVT_SEL_3 RW_RW 0x4E0 64 Wbox PMON Control 3

W_CSR_PMON_EVT_SEL_2 RW_RW 0x4D8 64 Wbox PMON Control 2

W_CSR_PMON_EVT_SEL_1 RW_RW 0x4D0 64 Wbox PMON Control 1

W_CSR_PMON_EVT_SEL_0 RW_RW 0x4C8 64 Wbox PMON Control 0

W_CSR_PMON_CTR_3 RW_RW 0x4C0 64 Wbox PMON Counter 3

W_CSR_PMON_CTR_2 RW_RW 0x4B8 64 Wbox PMON Counter 2

W_CSR_PMON_CTR_1 RW_RW 0x4A8 64 Wbox PMON Counter 1

W_CSR_PMON_CTR_0 RW_RW 0x4A0 64 Wbox PMON Counter 0

NONE Privilege Registers

W_CSR_PMON_PERF_MASTER RW_RW 0x040 32 Wbox PMON Global Overflow Status

Uncore Performance Monitoring

434 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

W_CSR_PMON_PERF_MASTER controls the general characteristics of the Wbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

The _GLOBAL_CTL register contains the bits used to enable monitoring. It is necessary
to set the .ctr_en bit to 1 before the corresponding data register can collect events.

If an overflow is detected from one of the Wbox PMON registers, the corresponding bit
in the _GLOBAL_STATUS.ov field will be set.

Table 5-82. W_CSR_PMON_PERF_MASTER Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:3 RO_NA 0 Read zero; writes ignored. (?)

clr 2 RW_RW 0 Writing 1 clears all the Wbox counter.

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.
1: Global: Enable/Disable of counters in Wbox will track
U_CSR_PERF_CTL.glb_en. Local overflows will be passed on
to Ubox without freezing local counters.

0: Local: Enable/Disable of counters in Wbox will NOT track
U_CSR_PERF_CTL.glb_en. Allows SW to write the .en bit.
Disables Counters on any local counter overflow.

en 0 RW_RW 0 Enable/disable Cbox PMU counters.

This bit is dependent on the setting of the .glb_lcl bit.

If .glb_lcl is set to 1, SW writes to this bit are ignored and
only HW may affect it’s state.

If .glb_lcl is set to 0, SW may exert control by setting the bit.

In either case, since HW may alter this bit, (due to tracking
the global enable or a local overflow) SW may read it to
determine the state of the Wbox counters.

1: Enable Wbox PMU counting.
0: Disable (freeze) Wbox PMU counters.

Table 5-83. W_CSR_PMON_GLOBAL_CTL Register Fields

Field Bits Access
HW

Reset
Val

Description

fixed_en 31 RW_RO 0 Enable the fixed counter

ig 30:4 RO_NA 0 Read zero; writes ignored. (?)

ctr_en 3:0 RW_RO 0 Must be set to enable each WBOX counter (bit 0 to enable
ctr0, and so forth)
Note: Ubox enable and per counter enable must also be

set to fully enable the counter.

Table 5-84. W_CSR_PMON_GLOBAL_STATUS Register Fields

Field Bits Access
HW

Reset
Val

Description

ov_fixed 31 RO_RW 0 If an overflow is detected from the WBOX PMON fixed
counter, this bit will be set.

ig 30:4 RO_NA 0 Read zero; writes ignored. (?)

ov 3:0 RO_RW 0 If an overflow is detected from the corresponding WBOX
PMON register, it’s overflow bit will be set.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 435
Reference Manual for Software Development and Optimization Guide

5.8.3.2 Wbox PMON state - Counter/Control Pairs

The following table defines the layout of the Wbox performance monitor control
registers. The main task of these configuration registers is to select the event to be
monitored by their respective data counter. Setting the .ev_sel and .umask fields
performs the event selection. The .en bit must be set to 1 to enable counting.

Additional control bits include:

- .threshold - since Wbox counters can increment by a value greater than 1, a threshold
can be applied. If the .threshold is set to a non-zero value, that value is compared
against the incoming count for that event in each cycle. If the incoming count is >= the
threshold value, then the event count captured in the data register will be incremented
by 1. (Not present in fixed counter)

- .invert - Changes the .threshold test condition to ‘<‘ (Not present in fixed counter)

- .edge_detect - Rather than accumulating the raw count each cycle (for events that
can increment by 1 per cycle), the register can capture transitions from no event to an
event incoming. (Not present in fixed counter)

Table 5-85. W_MSR_PMON_EVT_SEL_{3-0} Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63 RO_NA 0 Read zero; writes ignored. (?)

rsv 62:61 RW_NA 0 Reserved; Must write to 0 else behavior is undefined.

ig 60:51 RO_NA 0 Read zero; writes ignored. (?)

rsv 50 RW_NA 0 Reserved; Must write to 0 else behavior is undefined.

ig 49:32 RO_NA 0 Read zero; writes ignored. (?)

threshold 31:24 RW_RO 0 Threshold used for counter comparison.
Set to at least 0x1 for ALL events. With a setting of 0x0, the
counter will increment at the Wbox clock rate.

invert 23 RW_RO 0 Invert threshold comparison. When ‘0’, the comparison will
be thresh >= event. When ‘1’, the comparison will be
threshold < event.

en 22 RW_RO 0 Local Counter Enable. When set, the associated counter is
locally enabled.
NOTE: It must also be enabled in
S_MSR_PMON_GLOBAL_CTL and the Ubox to be fully
enabled.

ig 21 RO_NA 0 Read zero; writes ignored. (?)

rsv 20 WO_NA 0 Reserved; Must write to 0 else behavior is undefined.

ig 19 RO_NA 0 Read zero; writes ignored. (?)

edge_detect 18 RW_RO 0 Edge Detect. When bit is set, 0->1 transition of a one bit
event input will cause counter to increment. When bit is 0,
counter will increment for however long event is asserted.

rsv 17 WO_NA 0 Reserved; Must write to 0 else behavior is undefined.

ig 16 RO_NA 0 Read zero; writes ignored. (?)

umask 15:8 RW_RO 0 Unit Mask - select subevent of event.

ev_sel 7:0 RW_RO 0 Event Select

Uncore Performance Monitoring

436 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The Wbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events.

In this way, software can capture the precise number of events that occurred between
the time uncore counting was enabled and when it was disabled (or ‘frozen’) with
minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

5.8.4 Wbox Performance Monitoring Events

5.8.4.1 An Overview:

The Wbox’s primary offering to understanding the impact of the uncore on performance
is the fixed counter. This counter, which increments at the frequency of the uncore
clock, can be used to add a time element to numerous events across the uncore.

Beyond that, the Wbox provides a smattering of events that indicating when, and under
what circumstances, the Wbox throttled the chip due to power constraints.

It is necessary to set the .thresh to 0x1 in order to capture any event. If .thresh is set
to 0x0, the counter will increment at the Wbox clock rate.

Table 5-86. W_MSR_PMON_FIXED_CTR_CTL Register – Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 63:3 RO_NA 0 Read zero; writes ignored. (?)

rsv 2:1 RW_RO 0 Reserved; Must write to 0 else behavior is undefined.

en 0 RW_RO 0 Counter enable

Table 5-87. W_MSR_PMON_CTR_{3-0} Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored. (?)

event_count 47:0 RW_RW 0 48-bit performance event counter

Table 5-88. W_MSR_PMON_FIXED_CTR Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored. (?)

event_count 47:0 RW_RW 0 48-bit performance event counter

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 437
Reference Manual for Software Development and Optimization Guide

5.8.5 Wbox Events Ordered By Code
Table 5-89 summarizes the directly-measured Wbox events.

5.8.6 Wbox Performance Monitor Event List
This section enumerates Itanium processor 9500 series uncore performance monitoring
events for the Wbox.

PSTATE_CHANGE
• Title: P-State Change
• Category: Wbox Events
• Event Code: 0x07, Max. Inc/Cyc: 1,
• Definition: Any P-State Change

RATIO_CHANGE_ABORT
• Title: Ratio Change Abort
• Category: Wbox Events
• Event Code: 0x08, Max. Inc/Cyc: 1,
• Definition: Selected core aborted a ratio change request.

S_P0_STATE
• Title: Socket in P0
• Category: Wbox Events
• Event Code: 0x04, Max. Inc/Cyc: 1,
• Definition: Pcode detects that socket is in P0 P-State

Table 5-89. Performance Monitor Events for Wbox Events

Symbol Name Event
Code

Max
Inc/Cyc Description

S_THROTTLE_TMP 0x01 1 Socket Throttled due to Temp (Lite Throttling)

S_FORCEPR 0x02 1 FORCEPR

S_THROTTLE_PROCHOT 0x03 1 Socket Throttled due to PROCHOT (Heavy Throttling)

S_P0_STATE 0x04 1 Socket in P0 at Turbo

PSTATE_CHANGE 0x05 1 P-State Change

S_C1E_STATE 0x06 1 Socket in C1E

S_P0_REQUEST 0x07 1 P0 state requested

S_PROCHOT 0x09 1 PROCHOT

Extension Umask Description

C0 0xfe-0x00 (* illegal selection *)

ALL 0xff All Cores

Extension Umask Description

C0 0xfe-0x00 (* illegal selection *)

ALL 0xff All Cores

Uncore Performance Monitoring

438 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

S_FORCEPR
• Title: FORCEPR
• Category: Wbox Events
• Event Code: 0x02, Max. Inc/Cyc: 1,
• Definition: Package is asserting the FORCEPR output.

S_PROCHOT
• Title: Prochot
• Category: Wbox Events
• Event Code: 0x09, Max. Inc/Cyc: 1,
• Definition: Package is asserting the PROCHOT output.

S_THROTTLE_PROCHOT
• Title: Socket Throttled due to PROCHOT
• Category: Wbox Events
• Event Code: 0x03, Max. Inc/Cyc: 1,
• Definition: Socket is thermally throttled due to PROCHOT condition (heavy
throttling).

S_THROTTLE_TMP
• Title: Socket Throttled due to Temp
• Category: Wbox Events
• Event Code: 0x01, Max. Inc/Cyc: 1,
• Definition: Socket is thermally throttled due to thermal condition (lite throttling).

5.9 Zbox Performance Monitoring

5.9.1 Overview of the Zbox
The memory controller interfaces to the Intel 7500 scalable memory controller and
translates read and write commands into specific Intel® Scalable Memory Interconnect
operations. Intel® SMI is based on the FB-DIMM architecture, but Intel 7500 scalable
memory controller is not an AMB2 device and has significant exceptions to the FB-
DIMM2 architecture. The memory controller also provides a variety of RAS features,
such as Intel® Double Device Data Correction, memory scrubbing, thermal throttling,
mirroring, and DIMM sparing. Each socket has two independent memory controllers,
and each memory controller has two Intel SMI channels that operate in lockstep.

Note: If memory mirroring is enabled on the platform in the memory controller, then
the Zbox Performance Monitoring registers are reserved.

5.9.2 Functional Overview
The memory controller is the interface between the home node controller (Bbox) and
the the Scalable Memory Interconnect and basically translates read and write
commands into specific memory commands and schedules them with respect to

Extension Umask Description

C0 0xfe-0x00 (* illegal selection *)

ALL 0xff All Cores

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 439
Reference Manual for Software Development and Optimization Guide

memory timing. The other main function of the memory controller is advanced ECC
support. There are two memory controllers per socket, each controlling two Intel SMI
channels in lockstep. Because of the data path affinity to the Bbox data path, each
Bbox is paired with a memory controller, that is, Bboxes and memory controllers come
in pairs.

The memory controller interfaces to the router through the Bbox (home node
coherence controller) and to the Pbox pads. The Pbox pads connect to Intel SMI
memory via a synchronizer (the Jbox). This enables memory controller (which runs at
system interface frequency with the home node controller and router (Bbox/Rbox)) to
interface to various speeds of DIMMs.

5.9.2.1 Intel® 7500 Scalable Memory Controller

The Intel Itanium processor 9500 series supports Intel® 7500 scalable memory
controllers on the Intel SMI channels.

• Intel SMI protocol and signalling includes support for the following:

— 4.8 Gbs, 6.4 Gbs signalling
— forwarded clock fail-over NB and SB.
— 9 data lanes plus 1 CRC lane plus 1 spare lane SB.
— 12 data lanes plus 1 CRC lane plus 1 spare NB.
— Support for integrating RDIMM thermal sensor information into Intel® SMI

Status Frame.

Figure 5-4. Memory Controller Block Diagram

mapper

dispatch
queue

page
table DRAM

command
issue
and

timing
retry

queue

payload queue

accu
mula
tor

byte
mer
ge

victim
buffer

ECC
gen

FBD
packe
tizer

FBD
CRC
gen

err
inject

deacc
umula

tor

fill
buffer

FBD
depack
etizer

FBD
CRC
check

ECC check

control logic

scheduler

data path

Bbox
cmd

Bbox
ack

Bbox
data

data
to

Bbox

Intel®
SMI

Frame

Intel®
SMI

Frame

Uncore Performance Monitoring

440 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• No support for daisy chaining (Intel 7500 scalable memory controller is the only
Intel SMI device in the channel).

• No support for FB-DIMM1 protocol and signaling.

The Intel 7500 scalable memory controller provides an interface to DDR3 DIMMs and
supports the following DDR3 functionality:

• DDR3 protocol and signalling, includes support for the following:

— Up to two RDIMMs per DDR3 bus
— Up to eight physical ranks per DDR3 bus (sixteen per Intel 7500 scalable

memory controller)
— 800 MT/s or 1066 MT/s (both DDR3 buses must operate at the same

frequency)
— Single Rank x4, Dual Rank x4, Single Rank x8, Dual Rank x8, Quad Rank x4,

Quad Rank x8
— 1 GB, 2 GB, 4 GB, 8 GB, 16 GB DIMM
— DRAM device sizes: 1 Gb, 2 Gb
— Mixed DIMM types (no requirement that DIMMs must be the same type, except

that all DIMMs attached to Intel 7500 scalable memory controller must run with
a common frequency and core timings). (Host lockstep requirements may
impose additional requirements on DIMMs on separate Intel SMI channels).

— DDR buses may contain different number of DIMMs, zero through two. (Host
lockstep requirements may impose additional requirements on DIMMs on
separate Intel® SMI channels).

— Cmd/Addr parity generation and error logging.
• No support for non-ECC DIMMs

• No support for DDR2 protocol and signaling

• Support for integrating RDIMM thermal sensor information into Intel® SMI Status
Frame.

See the Intel® 7500 Scalable Memory Buffer – External Design Specification (EDS) for
more information.

5.9.3 Zbox Perfmon Overview
Each of the Zboxes in the Itanium processor 9500 series supports event monitoring
through five 48-bit wide counters (Z_CSR_PMU_CNT_{4-0}). The Zbox counters can
increment by a maximum of 32 per cycle.

Although each of the Z_CSR_PMU_CNT* register can be configured to monitor any
available event through its companion control register, a good chunk of the generic
events defer configuration to various subcontrol registers (as detailed below). Since
there are a limited number of control registers, software must pay attention to various
restrictions as to what events may be counted simultaneously.

The count values of all 5 counters can be cleared by writing the
Z_CSR_PMON_PERF_MASTER.clr bit.

5.9.3.1 Choosing An Event To Monitor - Example using subcontrol registers

As has been stated, monitoring a particular event often requires configuring auxiliary
CSRs.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 441
Reference Manual for Software Development and Optimization Guide

For instance, to count (in counter 0) the number of RAS DRAM commands
(PLD_DRAM_EV.DRAM_CMD.RAS) that have been issued, set up is as follows:

Z_ZSR_PMU_CNT_CTL_0.inc_sel [9:4] = 0xa

Z_CSR_PMU_PLD.cmd [0] = 0x0

Z_CSR_PMU_PLD.dram_cmd [12:8] = 0x2

To count (in counter 2) the number of Victim to Fill Buffer transfers from the B to the
ZBox (FVC_EV*.BBOX_CMDS.V2F), set up is as follows:

Z_CSR_PMU_CNT_CTL_0.inc_sel [9:4] = 0x0f

Z_CSR_PMU_ZDP_CTL_FVC.evnt3 [20:18] = 0x5 (User can chose between 4 different
FVC events, here the 3rd slot was arbitrarily chosen.)

Z_CSR_PMU_ZDP_CTL_FVC.bcmd [8:5] = 0x3

5.9.3.2 Zbox PMU - Overflow, Freeze and Unfreeze

Zbox PMUs support the same overflow and freeze related mechanisms that are
supported by the other uncore PMUs. Users can choose to freeze just the Zbox PMUs,
or all of the uncore PMUs (refer to Section 5.3.1, “Global Enable/Disable”).

Zbox PMU can be frozen due to one of three reasons:

• Globally: Ubox sends a disable signal (and Z_CSR_PMON_PERF_MASTER.glb_lcl
is 1)

• Manually: SW forces a freeze either through the global disable (Section 5.3.1,
“Global Enable/Disable”) or local (SW writes 0 to Z_CSR_PMON_PERF_MASTER.en
when Z_CSR_PMON_PERF_MASTER.glb_lcl is 0) mechanism.

• Locally: The Zbox was set to local control (Z_CSR_PMON_PERF_MASTER.glb_lcl =
0) and a Zbox counter overflowed.

If an overflow is detected from a Zbox performance counter, the overflow bit is set at
the box level (Z_CSR_PMU_CNT_STATUS.ov[x]), and forwarded up the chain towards
the Sbox. i.e. If a Zbox counter overflows, a notification is sent and stored in Sbox
(S_CSR_PMON_SUMMARY.ov_z). Refer to Table 5-90, “Zbox Performance Monitoring
CSRs” to determine how each Zbox’s overflow bit is accumulated in the attached Sbox.

The Ubox may be configured to freeze all uncore counting (refer to Table 5-65,
“S_CSR_PMON_FRZ_EN Register Fields”) when it receives this signal.

Once a freeze has occurred, in order to see a new freeze, the overflow field responsible
for the freeze, must be cleared. Once all the overflow bit(s) have been cleared, the
Zbox is prepared for a new sample interval. Once the global controls have been re-
enabled (Section 5.3.4, “Enabling a New Sample Interval from Frozen Counters.”),
counting will resume.

Uncore Performance Monitoring

442 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

5.9.4 Zbox PerfMon Registers

5.9.4.1 Zbox Perfmon CSR Map

5.9.4.2 Zbox Box Level PMU State

The following register represents the state governing all box-level PMUs in the Zbox.

Z_CSR_PMON_PERF_MASTER controls the general characteristics of the Zbox PMU. It
allows the user to freeze/unfreeze the PMU through software, clear all PMU data
counters, and determine the freeze status of the PMU through SW.

Table 5-90. Zbox Performance Monitoring CSRs

CSRName1
Addr

Offset
[11:0]

Priv
Lvl CSR Description

Box-Level Control

Z_CSR_PMON_PERF_MASTER 0x0D8 None Zbox Performance Monitoring Control

SubControl Registers

Z_CSR_PMU_ZDP_CTL_FVC 0x0D0 None Zbox Subcontrol for FVC events.

Z_CSR_PLD_PMU 0x0C8 None Zbox Subcontrol for PLD events.

Z_CSR_PGT_PMU 0x0C0 None Zbox Subcontrol for PGT events.

Z_CSR_PMU_MSC_THR 0x0B8 None Zbox Subcontrol for THR events.

Z_CSR_ISS_PMU 0x0B0 None Zbox Subcontrol for ISS events.

Z_CSR_DSP_PMU 0x0A8 None Zbox Subcontrol for DSP events.

Box-Level Status

Z_CSR_PMU_CNT_STATUS 0x0A0 None Holds the status flags for the five performance monitor
unit counters.

Generic Counter/Control

Z_CSR_PMU_CNT_CTL_6 0x098 None Zbox Performance Counter Control 5

Z_CSR_PMU_CNT_CTL_4 0x090 None Zbox Performance Counter Control 4

Z_CSR_PMU_CNT_CTL_3 0x088 None Zbox Performance Counter Control 3

Z_CSR_PMU_CNT_CTL_2 0x080 None Zbox Performance Counter Control 2

Z_CSR_PMU_CNT_CTL_1 0x078 None Zbox Performance Counter Control 1

Z_CSR_PMU_CNT_CTL_0 0x070 None Zbox Performance Counter Control 0

Z_CSR_PMU_CNT_5 0x068 None Zbox Performance Counter 5

Z_CSR_PMU_CNT_4 0x060 None Zbox Performance Counter 4

Z_CSR_PMU_CNT_3 0x058 None Zbox Performance Counter 3

Z_CSR_PMU_CNT_2 0x050 None Zbox Performance Counter 2

Z_CSR_PMU_CNT_1 0x048 None Zbox Performance Counter 1

Z_CSR_PMU_CNT_0 0x040 None Zbox Performance Counter 0

1. The above Zbox PMU registers are reserved when memory mirroring is enabled in the memory controller.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 443
Reference Manual for Software Development and Optimization Guide

If an overflow is detected from one of the Zbox PMON registers, the corresponding bit
in the Z_CSR_PMU_CNT_STATUS.ov field will be set. If the counters were set to be
frozen upon detection of an overflow, the .frz bit will be set.

SW must set .unfrz to 1 in order to resume counting.

5.9.4.3 Zbox PMON state - Counter/Control Pairs

The following table defines the layout of the Zbox performance monitor control
registers. The main task of these configuration registers is to select the event to be
monitored by their respective data counter. Setting the .inc_sel field performs the
event selection. Many of the events selected may be broken into components through
use of companion subcontrol registers. See Section 5.9.7, “Zbox Performance Monitor
Event List” for more details.

Additional control bits include:

Table 5-91. Z_CSR_PMON_PERF_MASTER Register – Field Definitions

Field Bits Type
HW

Reset
Val

Description

ig 63:3 RO_NA 0 Read zero; writes ignored. (?)

clr 2 RW_RW 0 Writing 1 clears all Zbox counters as well as the overflow bits
found in Z_CSR_PMON_GLOBAL_STATUS.

glb_lcl 1 RW_RW 0 Used to select whether to exert local or global control.

1: Global: Enable/Disable of counters in Zbox will track
U_CSR_PERF_CTL.glb_en. Local overflows will be passed on
to Ubox without freezing local counters.

0: Local: Enable/Disable of counters in Zbox will NOT track
U_CSR_PERF_CTL.glb_en. Allows SW to write the .en bit.
Disables Counters on any local counter overflow.

en 0 RW_RW 0 Enable/disable Zbox PMU counters.
This bit is dependent on the setting of the .glb_lcl bit.

If .glb_lcl is set to 1, SW writes to this bit are ignored and
only HW may affect it’s state.

If .glb_lcl is set to 0, SW may exert control by setting the bit.

In either case, since HW may alter this bit, (due to tracking
the global enable or a local overflow) SW may read it to
determine the state of the Zbox counters.

1: Enable Zbox PMU counting.
0: Disable (freeze) Zbox PMU counters.

Table 5-92. Z_CSR_PMU_CNT_STATUS Register Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

frz 31 RW_RO 0 Write this bit to a 1 to freeze all the Zbox PMU counters. The
write of a 1 generates a freeze pulse.
Writing this CSR with this bit set to zero has no effect. Reading
this bit will return a 1 if the Zbox PMU counters are frozen
from this bit or from a counter overflowing with the frz_mode
bit set to 1.

unfrz 30 RW1C_WO 0 Write this bit to a 1 to unfreeze all the Zbox PMU counters.
Writing this CSR with this bet set to zero has no effect

ig 29:6 RW_NA Reads 0; writes ignored.

ov 5:0 RW_WO 0 If an overflow is detected from the corresponding Zbox PMON
register, it’s overflow bit will be set.

Uncore Performance Monitoring

444 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The Zbox performance monitor data registers are 48b wide. A counter overflow occurs
when a carry out bit from bit 47 is detected. Software can force uncore counting to
freeze after N events by preloading a monitor with a count value of 248 - N. Upon
receipt of the masked (by S_CSR_PMON_FRZ_EN) overflow signal, the Ubox can
forward the freeze signal to the other uncore boxes (Section 5.3.1, “Global Enable/
Disable”). During the interval of time between overflow and global disable, the counter
value will wrap and continue to collect events.

If .wrap_mode in the counter’s CTRL register was set to 1, during the interval of time
between overflow and global freeze, the counter value will wrap and continue to collect
events. In this way, software can capture the precise number of events that occurred
between the time uncore counting was enabled and when it was disabled (or ‘frozen’)
with minimal skew.

If accessible, software can continuously read the data registers without disabling event
collection.

5.9.4.4 Zbox PMU Subcontrol Registers - Subunit descriptions

The following Tables contain information on how to program the various subcontrol
registers contained within the Zbox which include the DSP, ISS, THR, PGT, PLD and FVC
registers. The subcontrol registers govern events coming from subunits within the Zbox
which can be roughly categorized as follows:

PLD - Payload Queue - Receives command and translated addresses from the MAP
while the PGT translates MAP commands into DRAM command combinations.

Table 5-93. Z_CSR_PMU_CNT_CTRL_{5-0} Register Field Definitions

Field Bits Access
HW

Reset
Val

Description

ig 31:10 RO_NA 0 Read zero; writes ignored.

inc_sel 9:4 RW_RW 0 Selects the increment input signal, the primary event select, for
this counter.
See Table 5-105, “Performance Monitor Events for ZBox Events”
for encodings.

frz_mode 3 RW_RW 0 Counter freeze mode:
0 - On overflow, freeze only this counter
1 - On overflow, freeze all counters (if wrap_mode == 0)
Note: For normal operation, it is suggested to set bits 3:2 to

11

wrap_mode 2 RW_RW 0 Counter wrap mode
0 - On overflow, stop counting
1 - On overflow, wrap:

rsv 1 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

ig 0 RO_NA 0 Read zero; writes ignored.

Table 5-94. Z_CSR_PMU_CNT_{5-0} Fields

Field Bits Access
HW

Reset
Val

Description

ig 63:48 RO_NA 0 Read zero; writes ignored.

cnt 47:0 RW_RW 0x0 Performance Counter Value

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 445
Reference Manual for Software Development and Optimization Guide

Original Bbox transaction’s FVID sent from DSP during subcommand execution where
the appropriate subcommand information is accessed to compose the FBD command
frame.

PGT - Page Table - Keeps track of open pages. Translates the read/write commands
into DRAM command combinations (i.e. PRE, RAS, CASrd, CASwr). The generated
command combination (e.g. PRE_RAS_CASrd) is then sent to the Dispatch Queue.

If

a. there is already a command in the DSP for a particular DIMM (rank/bank)

b. the DSP’s readQ or writeQ is full

c. if a rank requires thermal throttling because the DIMM is heating up

d. or a refresh is executing to a rank.

Then the PGT will detect the conflict and place the command in the retryQ for later
execution.

DSP - Dispatch Queue - receives DRAM command from PGT and stores request in a
read or write subqueue. In the dispatch queue, the command combinations are broken
up into subcommand kinds that are sequenced in the necessary order required to
complete the read/write transaction (i.e. PRE, RAS, CAS, CASpre). All “ready to
execute” subcommands stored within the various DSP queues are presented
simultaneously to the issue logic.

Once the ISS returns the subcommand choice, the oldest DSP entry containing that
subcommand kind (for a particular DIMM) is allowed to execute. During subcommand
execution, the DSP sends the original (BBox) transaction’s FVID (that was stored in the
DSP entry) to the PLD. After subcommand execution, the DSP’s queue entry state is
updated to the next required subcommand kind (based on the original command
combination) to be executed (new state).

ISS - Issue - receives “ready to execute” subcommands from the dispatch queue(s) as
a bit vector that is organized with each bit representing a subcommand kind per DIMM
(i.e. RAS for DIMM0, CAS for DIMM3). Having an overview of all these subcommand
kinds enables the ISS to flexibly schedule/combine subcommands out-of-order. Once a
subcommand kind for a particular DIMM is selected from the issue vector by the ISS,
that subcommand choice is driven back to the DSP

THR - Thermal Throttling

FVC - Fill and Victim Control - drives all the control signals required by the fill datapath
and victim datapath. Additionally, it handles issuing and control of the buffer
maintenance commands (i.e. MRG, F2V, V2V, V2F and F2B). It also contains the logic to
respond to the BBox when commands in the ZBox have completed.

The DSP subcontrol register contains bits to specify subevents of the DSP_FILL event,
breaking it into write queue/read queue occupancy as well as DSP latency.

Uncore Performance Monitoring

446 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The ISS subcontrol register contains bits to specify subevents for the ISS_EV (by Intel
SMI frame) and PLD_DRAM_EV (DRAM commands broken down by scheduling mode in
the ISS) events.

Table 5-95. Z_CSR_DSP_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

ig 31:18 RO_NA 0 Reads 0; writes ignored.

pgtAddr 17:11 RW_RW 0 Address used by increment select for inserts to DSP with this
address(DSP_INSERT_TO_ADDRESS) and inserts to this
address with conflicts(DSP_INSERT_TO_ADDR_CFLT).

dspq_empty 10 RW_RW 0 Generates DSP_FILL trigger when dispatch queue is empty.

--- 9:0 RW_RW 0 (* illegal selection *)

Table 5-96. Z_CSR_ISS_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

ig 31:10 RO_NA Reads 0; writes ignored.

sched_mode_pld_trig 9:7 RW_RW 0 Selects the scheduling mode for which the number of
DRAM commands is counted in ZAD_PLD. Here for
implementation reasons.
Uses same encodings as
Z_CSR_ISSUE_MODE.iss_mode:

000: reserved
001: static tradoff
010: static rd priority
011: reserved
100: static wr priority
111-101: reserved

sched_mode 6:4 RW_RW 0 Selects the scheduling mode for which time-in-mode
is counted. Uses same encodings as
Z_CSR_ISSUE_MODE.iss_mode:

000: reserved
001: static tradoff
010: static rd priority
011: reserved
100: static wr priority
111-101: reserved

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 447
Reference Manual for Software Development and Optimization Guide

The THR subcontrol register contains bits to specify subevents for the
THR_TT_TRP_UP/DN_EV events allowing a user to choose select DIMMs and whether
the temperature is rising or falling.

The PGT subcontrol register contains bits to specify subevents for
ISS_CYC_SCHED_STATIC_EV (counts cycles within the specified scheduler mode) and
PGT_PAGE_EV (op2cls or cls2opn transitions) as well as provide bits to further
breakdown throttling events into ranks (for PGT_CNFLCT_EV).

frm_type 3:0 RW_RW 0 Selects the frame type to be counted.

0000 - 3CMD - Count all 3-command Intel
SMI frames
0001 - WDAT - Count all write data
frames.
0010 - SYNC - Count all SYNC frames.
0011 - CHNL - Count all channel command
frames.
0101 - 0100 - RSVD
1000 - NOP - Count all NOP frames. For
post-silicon debug
1001-1011 - RSVD
1100 - 1CMD - Count all 1-command Intel
SMI frames.
1101-1111 - RSVD

Table 5-96. Z_CSR_ISS_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

Table 5-97. Z_CSR_PMU_MSC_THR Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

ig 31:11 RO_NA Reads 0; writes ignored.

trp_pt_dn_cnd 10:9 RW_RW 0 Selects the condition to count for "downwards" trip point
crossings. See Table 5-98 for encodings.

trp_pt_up_cnd 8:7 RW_RW 0 Selects the condition to count for "upwards" trip point
crossings. See Table 5-98 for encodings.

dimm_trp_pt 6:4 RW_RW 0 Selects the DIMM for which to count the trip point
crossings. Unused when all_dimms_trp_pt field is set.

all_dimms_trp_pt 3 RW_RW 0 Select all DIMMs to provide trip point crossings events
instead of a single particular DIMM.

rsv 2:0 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

Table 5-98. TRP_PT_{DN,UP}_CND Encodings

Name Val Description

ABOVE_TEMPMID_RISE 0b11 Above the mid temperature trip point (rising)

ABOVE_TEMPMID_FALL 0b10 Above the mid temperature trip point (falling)

ABOVE_TEMPLO 0b01 Above the low temperature trip point, but below the mid temperature
trip point.

BELOW_TEMPLO 0b00 Below the low temperature trip point.

Uncore Performance Monitoring

448 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

The PLD subcontrol register contains bits to specify subevents for PLD_DRAM_EV (by
DRAM CMD type), PLD_RETRY_EV (to specify FVID).

Table 5-99. Z_CSR_PGT_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

ig 31:10 RO_NA 0 Reads 0; writes ignored.

trans_cmd_cnd 9:8 RW_RW 0 Selects the translated commands to be counted.
00 - ALL - Count all translated commands.
01 - RD - Count all translated read (read, preall, refresh,
zqcal and auto-close) commands.
10 - WR - Count all translated write commands.

opncls_time 7 RW_RW 0 Selects time counting between open and closed page mode.
0 - CLS - Counts time spent in closed page mode.
1 - OPN - Counts time spent in open page mode.

rsv 6 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

tt_rnk_cnd 5:2 RW_RW 0 Selects which rank is observed for thermal throttling
events.

rnk_cnd 1 RW_RW 0 Selects how thermal throttling events are counted relative
to rank.
0 - ALL - Counts thermal throttling events for all ranks.
1 - SGL - Counts thermal throttling events for the single
rank selected by tt_rnk_cnd.

opn2cls_cnt 0 RW_RW 0 Counts the open/closed page policy transitions.
0 - OPN2CLS - Counts open-to-closed transactions.
1 - CLS2OPN - Counts closed-to-open transactions.

Table 5-100.Z_CSR_PLD_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

ig 31:14 RO_NA Reads 0; writes ignored.

addr_match1 13 RW_RW 0 Qualify trigger with address match as specified by
Z_CSR_INJ_ERR_ADDR_1.
Z_CSR_INJ_ERR_CTL_1.match_* and
Z_CSR_INJ_ERR_CTL_1.inj_err_* fields control the match
condition.

dram_cmd 12:8 RW_RW 0 The DRAM command type to be counted.
0x00 NOP
0x01 Precharge Single
0x02 RAS
0x04 CAS Read (no auto-precharge) (open page mode)
0x08 Refresh
0x09 Precharge All
0x0a Always matched
0x0c CAS read/precharge (closed page mode)
0x10 Write Trickle
0x11 SYNC
0x13 Clock Enable
0x14 CAS write (no auto-precharge) (open page mode)
0x15 Soft Reset
0x16 Write command register
0x17 Read command register
0x18 ZQCAL command
0x1c CAS write/precharge (closed page mode)

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 449
Reference Manual for Software Development and Optimization Guide

The FVC subcontrol register contains bits to break the FVC_EV into events observed by
the Fill and Victim Control logic (i.e. BBOX commands, BBOX responses, various error
conditions, etc). The FVC register can be set up to monitor four independent FVC-
subevents simultaneously. However, many of the FVC-subevents depend on additional
FVC fields which detail BBox response and commands. Therefore, only one BBox
response or command may be monitored at any one time.

rtry_sngl_fvid 7 RW_RW 0 Controls FVID (Fill Victim Index) selection for which the
number of retries is to be counted.
0 - ALL - All retries are counted, regardless of FVID
1 - FVID - Counts only the retries whose FVIDs match this
CSR’s fvid field.

fvid 6:1 RW_RW 0 The FVID for which the number of retries is to be counted.

cmd 0 RW_RW 0 Qualifies the DRAM commands counted by
Z_CSR_ISS_PMU.sched_mode.
Z_CSR_PLD_PMU.dram_cmd always needs to be matched
and has no enable bit.
0 - ALL - Count all DRAM commands.
1 - SCHED - Count only the DRAM commands that come in
while the ZAD_ISS section is in the scheduling mode
selected by Z_CSR_ISS_PMU.sched_mode_pld_trig.

Table 5-100.Z_CSR_PLD_PMU Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

Table 5-101.Z_CSR_PMU_ZDP_CTL_FVC Register – Field Definitions

Field Bits Access
HW

Reset
Val

Reset Type

rsv 31:28 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

evnt3 27:24 RW_RW 0 FVC subevent 3 selection. See Table 5-102,
“Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings”

evnt2 23:20 RW_RW 0 FVC subevent 2 selection. See Table 5-102,
“Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings”

evnt1 19:16 RW_RW 0 FVC subevent 1 selection. See Table 5-102,
“Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings”

evnt0 15:12 RW_RW 0 FVC subevent 0 selection. See Table 5-103,
“Z_CSR_PMU_ZDP_CTL_FVC.RESP Encodings”

resp 11:9 RW_RW 0 Bbox response to match on. See Table 5-104,
“Z_CSR_PMU_ZDP_CTL_FVC.BCMD Encodings”

bcmd 8:5 RW_RW 0 Bbox command to match on. See Table 5-104,
“Z_CSR_PMU_ZDP_CTL_FVC.BCMD Encodings”

rsv 4:0 RW_RW 0 Reserved; Must write to 0 else behavior is undefined.

Table 5-102.Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings (Sheet 1 of 2)

Name Value Description

ecc_corr_mapped_err 0b1110 Correctable Memory Data Check Bit Error with re-mapping
(Corresponds to Z_CSR_ERR_LOG.ecc_corr_mapped_err)

ecc_corr_err 0b1101 Correctable Memory Data Check Bit Error without re-mapping
(Corresponds to Z_CSR_ERR_LOG.ecc_corr_err)

fill_buf_corr_err 0b1100 Correctable Fill Buffer Data ECC Error (Corresponds to
Z_CSR_ERR_LOG.fill_buf_corr_err)

status_frm_dm_err 0b1010 Status fFame Data Merge Error (Corresponds to
Z_CSR_ERR_LOG.status_frm_dm_err)

Uncore Performance Monitoring

450 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

status_frm_par_err 0b1001 Status Frame Parity Error (Corresponds to
Z_CSR_ERR_LOG.status_frm_par_err)

victim_buf_corr_err 0b1000 Victim Buffer Correctible Error (Corresponds to
Z_CSR_ERR_LOG.victim_buf_corr_err)

smi_nb_trig 0b0111 Select Intel SMI Northbound debug event bits from the Intel
SMI status frames as returned from Intel 7500 scalable
memory buffers. These bits are denoted NBDE in the Intel SMI
spec status frame description. An OR of all the bits over all the
memory buffers is selected here as an event.

resp_match 0b0110 Use response match as programmed by
Z_CSR_PMU_ZDP_CTL_FVC.resp to generate trigger.

bcmd_match 0b0101 Use Bbox command match as programmed by
Z_CSR_PMU_ZDP_CTL_FVC.bcmd to generate trigger.

--- 0b0100

alrt_frm 0b0011 An alert frame was detected.

psn_txn 0b0010 The directory of a write to memory was encoded as poisoned.

mem_ecc_err 0b0001 Memory ECC error detected (that is not a link-level CRC error).

smi_crc_err 0b0000 Link level Intel SMI CRC error detected.

Table 5-103.Z_CSR_PMU_ZDP_CTL_FVC.RESP Encodings

Name Value Description

spr_uncor_resp 0b111 Uncorrectable response for command to misbehaving DIMM
during sparing.

--- 0b110

spr_ack_resp 0b101 Positive acknowledgment for command to misbehaving DIMM
during sparing. No error was detected for the transaction.

spec_ack_resp 0b100 Speculative (=early) positive acknowledgment for optimized
read flow. No error was detected for the transaction.

uncor_resp 0b011 Uncorrectable response. Corrections failed.

corr_resp 0b010 Corrected (after, for example, error trials or just by a retry).

retry_resp 0b001 Retry response. Possibly a correctable error. Retries are
generated until it is decided that error was either correctable or
uncorrectable.

ack_resp 0b000 Positive acknowledgment. No was detected.

Table 5-104.Z_CSR_PMU_ZDP_CTL_FVC.BCMD Encodings (Sheet 1 of 2)

Name Value Description

megaop4 0b1111 MegaOp 4: V2V, then a write.

megaop3 0b1010 MegaOp 3: F2B, then a write.

megaop2 0b1100 MegaOp 2: F2V, then a write.

megaop1 0b1000 MegaOp 1: F2B, then a F2V, and then a write.

sprwr_bcmd 0b0111 Spare write.

f2b_bcmd 0b0110 Fill buffer read to Bbox.

f2v_bcmd 0b0101 Fill buffer to victim buffer transfer.

v2v_bcmd 0b0100 Victim buffer to victim buffer transfer.

v2f_bcmd 0b0011 Victim buffer to fill buffer transfer.

Table 5-102.Z_CSR_PMU_ZDP_CTL_FVC.evnt{3-0} Encodings (Sheet 2 of 2)

Name Value Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 451
Reference Manual for Software Development and Optimization Guide

5.9.5 Zbox Performance Monitoring Events

5.9.5.1 An Overview:

The Zbox performance monitors can collect events in many of the substructures found
within the Zbox including the DSP, ISS, THR, PGT, PLD and FVC (refer to
Section 5.9.4.4, “Zbox PMU Subcontrol Registers - Subunit descriptions” for more
detail).

A sampling of events available for monitoring in the ZBox:

• BBox commands - reads, writes, fill2victim, merge, etc. Can be conditioned on
fvid which allows determining average latency of ZBox and memory.

• BBox responses. Incrementing on read command and decrementing on read
response allows one to determine the number of simultaneous reads in the ZBox. A
max detector can log the max number of reads the ZBox received.

• Translated commands: ras_caspre, ras_cas, cas, ras_cas_pre, pre, and so forth
(can be filtered on r/w)

• Memory commands: ras, cas, pre, prefesh, preall, etc.

• Page hits and page misses.

• Auto page closes.

• Open-page to closed-page policy transitions. As well as length of time spent in
each policy.

• Starvation event in scheduler, starvation state and back-pressure to BBox.

• Thermal throttling

and many more.

5.9.6 ZBox Events Ordered By Code
Table 5-80 summarizes the directly-measured ZBox events.

mrg_bcmd 0b0010 Merge command from Bbox.

wr_bcmd 0b0001 Memory write command from Bbox.

rd_bcmd 0b0000 Memory read command from Bbox.

Table 5-104.Z_CSR_PMU_ZDP_CTL_FVC.BCMD Encodings (Sheet 2 of 2)

Name Value Description

Table 5-105.Performance Monitor Events for ZBox Events (Sheet 1 of 3)

Symbol Name CNT_CTLx
[9:4]

SubCtl
Dep

Max
Inc/Cyc Description

DSPQ_CHANGES 0x00 DSP 1 Dispatch Queue Transitions

CYC_ZFULL 0x01 1 Zbox Full Cycles

RETRY_ZFULL 0x02 1 Retry ZFull

RETRY_STARVE 0x03 1 Retry Starve

THERM_TRP_UP 0x04 THR 1 DIMM ‘Up’ Thermal Trip Points Crossed

THERM_TRP_DN 0x05 THR 1 DIMM ‘Down’ Thermal Trip Points
Crossed

REFRESH 0x06 1 Refresh Commands

Uncore Performance Monitoring

452 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

SCHED_MODE_CHANGES 0x08 1 Scheduling Mode Changes

FRM_TYPE 0x09 ISS 1 ISS Related Events

DRAM_CMD 0x0a PLD,ISS 1 DRAM Commands

RETRIES 0x0b PLD 1 Retry Events

SMI_FAST_RESETS 0x0c 1 Fast Resets

FVC_EV0 0x0d FVC 1 FVC Event 0

FVC_EV1 0x0e FVC 1 FVC Event 1

FVC_EV2 0x0f FVC 1 FVC Event 2

FVC_EV3 0x10 FVC 1 FVC Event 3

CYC_PGT_STATE 0x11 PGT 1 Time in Page Table State

TRANS_CMDS 0x12 PGT 1 Translated Commands

PAGE_MISS 0x13 1 Page Table Misses

PAGE_HITS 0x14 1 Page Table Hits

PAGE_AUTOCLS_CMD 0x15 1 Page Table Autoclose Commands

PGT_PAGE_EV 0x16 PGT 1 PGT Related Page Table Events

PAGE_COLLISION 0x18 1 Refresh Commands

TT_CMD_CONFLICT 0x19 PGT 1 Thermal Throttling Command Conflicts

BBOX_CMDS_ALL 0x1a 1 All Bbox Commands

CYCLES 0x1b 1 Zbox Cycles

SCHED_INFLIGHT_CMDS 0x1c 1 Scheduler In-flight Commands

INFLIGHT_CMDS 0x1d 1 In-flight Commands

CYCLES_DSP_FILL 0x20 DSP 1 Time in DSP_FILL state

CYCLES_THROTTLE 0x21 Throttled Cycles

RETRY_OPS 0x22 1 Retry Ops

CYCLES_RETRYQ_STARVED 0x23 1 Time RetryQ Starved

CYCLES_SCHED_MODE 0x24 PGT 1 Time in SCHED_MODE state

DSP_INSERT_ADDR_CNF 0x25 1 Dispatch Queue Insert w/Addr
Conflicts

DSP_INSERT_ADDR 0x26 1 Dispatch Queue Insert w/Addr

DSP_INSERT_CNF 0x27 1 Dispatch Queue Insert Conflicts

DSP_INSERT 0x28 1 Dispatch Queue Insert

CKE_CYCLES_0 0x2b 1 CKE Active Rank 0

CKE_CYCLES_1 0x2c 1 CKE Active Rank 1

CKE_CYCLES_2 0x2d 1 CKE Active Rank 2

CKE_CYCLES_3 0x2e 1 CKE Active Rank 3

CKE_CYCLES_4 0x2f 1 CKE Active Rank 4

CKE_CYCLES_5 0x30 1 CKE Active Rank 5

CKE_CYCLES_6 0x31 1 CKE Active Rank 6

CKE_CYCLES_7 0x32 1 CKE Active Rank 7

CKE_ENTERED_0 0x33 1 CKE Entered Rank 0

CKE_ENTERED_1 0x34 1 CKE Entered Rank 1

CKE_ENTERED_2 0x35 1 CKE Entered Rank 2

Table 5-105.Performance Monitor Events for ZBox Events (Sheet 2 of 3)

Symbol Name CNT_CTLx
[9:4]

SubCtl
Dep

Max
Inc/Cyc Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 453
Reference Manual for Software Development and Optimization Guide

5.9.7 Zbox Performance Monitor Event List
This section enumerates Itanium processor 9500 series uncore performance monitoring
events for the Zbox.

BBOX_CMDS_ALL
• Title: All Bbox Commands
• Category: Zbox Commands Received
• Event Code: 0x1a, Max. Inc/Cyc: 1,
• Definition: Advance counter for all new commands detected from the Bbox to the Z

Box.

CKE_LOW_CYCLES_R0
• Title: CKE Low Active For Rank 0
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 0

CKE_LOW_CYCLES_R1
• Title: CKE Low Active For Rank 1
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 1

CKE_LOW_CYCLES_R2
• Title: CKE Low Active For Rank 2
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 2

CKE_LOW_CYCLES_R3
• Title: CKE Low Active For Rank 3
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 3

CKE_ENTERED_3 0x36 1 CKE Entered Rank 3

CKE_ENTERED_4 0x37 1 CKE Entered Rank 4

CKE_ENTERED_5 0x38 1 CKE Entered Rank 5

CKE_ENTERED_6 0x39 1 CKE Entered Rank 6

CKE_ENTERED_7 0x3a 1 CKE Entered Rank 7

DSPQ_RD_CNT 0x3b 1 Dispatch Queue Read Count

FVID_FIFO_COUNT 0x3c 1 FVID FIFO Count

FVID_FIFO_WRITES 0x3d 1 FVID FIFO Writes

LIVE_OPS_INFLIGHT 0x3e 1 Live Ops In-flight

DSPQ_WR_CNT 0x3f 1 Dispatch Queue Write Count

Table 5-105.Performance Monitor Events for ZBox Events (Sheet 3 of 3)

Symbol Name CNT_CTLx
[9:4]

SubCtl
Dep

Max
Inc/Cyc Description

Uncore Performance Monitoring

454 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

CKE_LOW_CYCLES_R4
• Title: CKE Low Active For Rank 4
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 4

CKE_LOW_CYCLES_R5
• Title: CKE Low Active For Rank 5
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 5

CKE_LOW_CYCLES_R6
• Title: CKE Low Active For Rank 6
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 6

CKE_LOW_CYCLES_R7
• Title: CKE Low Active For Rank 7
• Category: CKE Power Down
• Event Code: 0x2b, Max. Inc/Cyc: 1,
• Definition: Cycles CKE Low power down active for rank/rank-pair 7

CKE_LOW_SENT_R0
• Title: CKE Low Sent to Rank 0
• Category: CKE Power down
• Event Code: 0x33, Max. Inc/Cyc: 1,
• Definition: Number of times CKE Low power down sent to rank/rank-pair 0

CYCLES
• Title: Zbox Cycles
• Category: Cycle Events
• Event Code: 0x1b, Max. Inc/Cyc: 1,
• Definition: Count Zbox cycles

CYCLES_DSP_FILL
• Title: Time in DSP_FILL State
• Category: Cycle Counters
• Event Code: 0x20, Max. Inc/Cyc: 1,
• Definition: Advance counter each cycle that the dispatch queue meets a certain

condition.

Extension DSP
Bit[10] Description

NEMPTY 0x0 Advance counter every cycle that the dispatch queue is not empty.

EMPTY 0x1 Advance counter every cycle that the dispatch queue is empty.

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 455
Reference Manual for Software Development and Optimization Guide

CYCLES_PGT_STATE
• Title: Time in Page Table State
• Category: Cycle Counters
• Event Code: 0x11, Max. Inc/Cyc: 1,
• Definition: Counts cycles the Page Table is in selected mode.

CYCLES_RETRYQ_STARVED
• Title: Time RetryQ Starved
• Category: Cycle Events
• Event Code: 0x23, Max. Inc/Cyc: 1,
• Definition: Counts cycles RetryQ spends in the “badly starved” state.

CYCLES_SCHED_MODE
• Title: Time in SCHED_MODE state
• Category: Cycle Counters
• Event Code: 0x24, Max. Inc/Cyc: 32,
• Definition: Counts cycles spent in scheduling mode specified in

M_CSR_PMU_ISS.sched_mode

CYCLES_THROTTLE
• Title: Throttled Cycles
• Category: Cycle Events
• Event Code: 0x21, Max. Inc/Cyc: 1,
• Definition: Advance counter for every state that the Zbox is in the platform throttle
on state

CYCLES_ZFULL
• Title: Zbox Full Cycles
• Category: Cycle Events
• Event Code: 0x01, Max. Inc/Cyc: 1,
• Definition: Advance counter when the "zfull" state is detected.

Extension PGT
Bit[7] Description

CLS_PAGE_PLCY 0x0 Advance counter every state the page table is in close page mode.

OPN_PAGE_PLCY 0x1 Advance counter every state the page table is in open page mode.

Extension PGT
Bits[6:4] Description

TRDOFF 0x1 Advance counter every state that the scheduler is in static TRDOFF
mode.

RDPRIO 0x2 Advance counter every state that the scheduler is in static RDPRIO
mode.

WRPRIO 0x4 Advance counter every state that the scheduler is in static WRPRIO
mode.

Uncore Performance Monitoring

456 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

DRAM_CMD
• Title: DRAM Commands
• Category: DRAM Commands
• Event Code: 0x0a, Max. Inc/Cyc: 1,
• Definition: Count PLD Related DRAM Events
• NOTE: Tn order to measure a non-filtered version of the .DRAM_CMD events, it is

necessary to make sure the PLD Dep bits [13,7,0] are also set to 0

Extension PLD Dep
Bits

ISS Dep
Bits Description

NOP [12:8]0x0 Count NOP DRAM commands.

PRE [12:8]0x1 Count Precharge Single DRAM commands.

RAS [12:8]0x2 Count RAS DRAM commands.

CAS_RD_OPN [12:80x4 Count CAS Read (no auto-precharge, open page
mode) DRAM commands.

CAS_RD_OPN.TRDOFF [0]0x1 &&
[12:8]0x4

[9:7]0x1 Count CAS Read (no auto-precharge, open page
mode) DRAM commands during "static trade off"
scheduling mode

CAS_RD_OPN.RDPRIO [0]0x1 &&
[12:8]0x4

[9:7]0x2 Count CAS Read (no auto-precharge, open page
mode) DRAM commands during "static read priority"
scheduling mode

CAS_RD_OPN.WRPRIO [0]0x1 &&
[12:8]0x4

[9:7]0x4 Count CAS Read (no auto-precharge, open page
mode) DRAM commands during "static write priority"
scheduling mode

RFR [12:8]0x8 Count Refresh DRAM commands.

PREALL [12:8]0x9 Count Precharge All DRAM commands.

ALL [12:8]0xa Advance counter when a DRAM command is
detected.

ALL.TRDOFF [0]0x1 &&
[12:8]0xa

[9:7]0x1 Count all DRAM commands during "static trade off"
scheduling mode

ALL.RDPRIO [0]0x1 &&
[12:8]0xa

[9:7]0x2 Count all DRAM commands during "static read
priority" scheduling mode

ALL.WRPRIO [0]0x1 &&
[12:8]0xa

[9:7]0x4 Count all DRAM commands during "static write
priority" scheduling mode

CAS_RD_CLS [12:8]0xc Count CAS Read (precharge, closed page mode)
DRAM commands.

CAS_RD_CLS.TRDOFF [0]0x1 &&
[12:8]0xc

[9:7]0x1 Count CAS Read (precharge, closed page mode)
DRAM commands during "static trade off" scheduling
mode

CAS_RD_CLS.RDPRIO [0]0x1 &&
[12:8]0xc

[9:7]0x2 Count CAS Read (precharge, closed page mode)
DRAM commands during "static read priority"
scheduling mode

CAS_RD_CLS.WRPRIO [0]0x1 &&
[12:8]0xc

[9:7]0x4 Count CAS Read (precharge, closed page mode)
DRAM commands during "static write priority"
scheduling mode

TRKL [12:8]0x10 Count Write Trickle DRAM commands.

SYNC [12:8]0x11 Count SYNC DRAM commands.

CAS_WR_OPN [12:8]0x14 Count CAS Write (no auto-precharge, open page
mode) DRAM commands.

CAS_WR_OPN.TRDOFF [0]0x1 &&
[12:8]0x14

[9:7]0x1 Count CAS Write (no auto-precharge, open page
mode) DRAM commands during "static trade off"
scheduling mode

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 457
Reference Manual for Software Development and Optimization Guide

DSPQ_CHANGES
• Title: Dispatch Queue Transitions
• Category: Dispatch Queue
• Event Code: 0x00, Max. Inc/Cyc: 1,
• Definition: Counts DispatchQ transitions to specified state.

DSPQ_INSERT
• Title: Dispatch Queue Insert
• Category: Dispatch Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Command inserted into Dispatch Queue

DSPQ_INSERT_CNF
• Title: Dispatch Queue Insert Conflicts
• Category: Dispatch Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Command inserted into Dispatch Queue with conflict (same address as
existing entry)

CAS_WR_OPN.RDPRIO [0]0x1 &&
[12:8]0x14

[9:7]0x2 Count CAS Write (no auto-precharge, open page
mode) DRAM commands during "static read priority"
scheduling mode

CAS_WR_OPN.WRPRIO [0]0x1 &&
[12:8]0x14

[9:7]0x4 Count CAS Write (no auto-precharge, open page
mode) DRAM commands during "static write priority"
scheduling mode

WR_CFG [12:8]0x16 Count Write Command Register DRAM commands.

RD_CFG [12:8]0x17 Count Read Command Register DRAM commands.

ZQCAL [12:8]0x18 Count ZQCAL DRAM commands.

CAS_WR_CLS [12:8]0x1c Count CAS Write (precharge, closed page mode)
DRAM commands.

CAS_WR_CLS.TRDOFF [0]0x1 &&
[12:8]0x1c

[9:7]0x1 Count CAS Write (precharge, closed page mode)
DRAM DRAM commands during "static trade off"
scheduling mode

CAS_WR_CLS.RDPRIO [0]0x1 &&
[12:8]0x1c

[9:7]0x2 Count CAS Write (precharge, closed page mode)
DRAM DRAM commands during "static read priority"
scheduling mode

CAS_WR_CLS.WRPRIO [0]0x1 &&
[12:8]0x1c

[9:7]0x4 Count CAS Write (precharge, closed page mode)
DRAM DRAM commands during "static write priority"
scheduling mode

Extension PLD Dep
Bits

ISS Dep
Bits Description

Extension DSP
Bit[10] Description

NEMPTY 0x0 Counts number of times DispatchQ becomes non-empty

EMPTY 0x1 Counts number of times DispatchQ becomes empty

Uncore Performance Monitoring

458 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

DSPQ_INSERT_ADDR
• Title: Dispatch Queue Insert w/Address
• Category: Dispatch Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Command inserted into Dispatch Queue. Specify address in

Z_CSR_DSP_PMU.pgtAddr

DSPQ_INSERT_ADDR_CNF
• Title: Dispatch Queue Insert w/Address Conflicts
• Category: Dispatch Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Command inserted into Dispatch Queue with conflict (same address as
existing entry). Specify address in Z_CSR_DSP_PMU.pgtAddr.

DSPQ_INSERT_CNF
• Title: Dispatch Queue Insert Conflicts
• Category: Dispatch Queue
• Event Code: 0x28, Max. Inc/Cyc: 1,
• Definition: Command inserted into Dispatch Queue with conflict (same address as
existing entry)

DSPQ_RD_CNT
• Title: Dispatch Queue Read Count
• Category: Running Depth Counters
• Event Code: 0x3b, Max. Inc/Cyc: 1,
• Definition: Advance counter by the number of read commands in the dispatch

queue. The amount can be zero to 32.

DSPQ_WR_CNT
• Title: Dispatch Queue Write Count
• Category: Running Depth Counters
• Event Code: 0x3f, Max. Inc/Cyc: 1,
• Definition: Advance counter by the number of write commands in the dispatch

queue. The amount can be zero to 32.

FRM_TYPE
• Title: ISS Related Events
• Category: DRAM Commands
• Event Code: 0x09, Max. Inc/Cyc: 1,
• Definition: Count ISS Related Events

Extension ISS[3:0]
Bits Description

3CMD 0x0 Counts 3CMD (3-command) Intel SMI frames

WDAT 0x1 Counts WDAT (Write Data) Intel SMI frames

SYNC 0x2 Counts SYNC Intel SMI frames

CHNL 0x3 Counts CHNL (channel) Intel SMI frames

--- 0x7-0x4 (*illegal selection*)

NOP 0x8 Counts nop Intel SMI frames

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 459
Reference Manual for Software Development and Optimization Guide

FVC_EV0
• Title: FVC Event 0
• Category: FVC Events
• Event Code: 0x0d, Max. Inc/Cyc: 1,
• Definition: Measure an FVC related event.
• NOTE: It is possible to program the FVC register such that up to 4 events from the

FVC can be independently monitored. However, the bcmd_match and resp_match
subevents depend on the setting of additional bits in the FVC register (11:9 and 8:5
respectively). Therefore, only ONE FVC_EVx.bcmd_match event may be monitored
at any given time. The same holds true for VC_EVx.resp_match

--- 0xb-0x9 (*illegal selection*)

1CMD 0xc Counts all 1CMD (1-command) Intel SMI frames

--- 0xf-0xd (*illegal selection*)

Extension ISS[3:0]
Bits Description

Table 5-106.Unit Masks for FVC_EV0 (Sheet 1 of 2)

Extension FVC
[15:12]

FVC
[11:9]

FVC
[8:5] Description

POISON_TXN 0x2 Count poison (directory of a write to memory was
encoded as poisoned) transactions

ALERT_FRAMES 0x3 Counts alert frames

--- 0x4 (*nothing will be counted*)

BBOX_CMDS.READS 0x5 0x0 Reads commands to z from B

BBOX_CMDS.WRITES 0x5 0x1 Write commands from B box to Z box

BBOX_CMDS.MERGE 0x5 0x2 Merge commands from B box to Z box

BBOX_CMDS.V2F 0x5 0x3 Victim buffer to Fill buffer transfer (V2F) command
from B to Z

BBOX_CMDS.V2V 0x5 0x4 Victim buffer to Victim buffer transfer (V2V)
command from B to Z

BBOX_CMDS.F2V 0x5 0x5 Fill buffer to Victim buffer transfer (F2V) command
from B to Z

BBOX_CMDS.F2B 0x5 0x6 Fill buffer read to Bbox (F2B) from Z

BBOX_CMDS.SPRWR 0x5 0x7 spare write commands from b to z

BBOX_CMDS.MEGAOP1 0x5 0x8 MegaOp1 commands (F2B,F2V and then Write)
from B TO Z

BBOX_CMDS.MEGAOP2 0x5 0xc MegaOp2 commands (F2V and then Write) from B
TO Z

BBOX_CMDS.MEGAOP3 0x5 0xa MegaOp3 commands (F2B and then Write) from B
TO Z

BBOX_CMDS.MEGAOP4 0x5 0xf MegaOp4 commands (V2V and then Write) from B
TO Z

BBOX_RSP.ACK 0x6 0x0 Counts positive acknowledgements. No error was
detected.

BBOX_RSP.RETRY 0x6 0x1 Count Retry Responses. Possibly a correctable
error. Retries are generated until it is decided that
the error was either correctable or uncorrectable.

BBOX_RSP.COR 0x6 0x2 Counts corrected (for example, after error trials or
just by a retry)

BBOX_RSP.UNCOR 0x6 0x3 Count Uncorrectable Responses.

Uncore Performance Monitoring

460 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FVC_EV1
• Title: FVC Event 1
• Category: FVC Events
• Event Code: 0x0e, Max. Inc/Cyc: 1,
• Definition: Measure an FVC related event.
• NOTE: It is possible to program the FVC register such that up to 4 events from the

FVC can be independently monitored. However, the bcmd_match and resp_match
subevents depend on the setting of additional bits in the FVC register (11:9 and 8:5
respectively). Therefore, only ONE FVC_EVx.bcmd_match event may be monitored
at any given time. The same holds true for VC_EVx.resp_match

BBOX_RSP.SPEC_ACK 0x6 0x4 Speculative positive acknowledgement for
optimized read flow. No error was detected for the
transaction.

BBOX_RSP.SPR_ACK 0x6 0x5 Count positive acknowledgements for command to
misbehaving DIMM during sparing. No error was
detected for the transaction.

--- 0x6 0x6 (*nothing will be counted*)

BBOX_RSP.SPR_UNCOR 0x6 0x7 Counts Uncorrectable responses to Bbox as a result
of commands issued to misbehaving DIMM during
sparing

SMI_NB_TRIG 0x7 Select Intel SMI Northbound debug event bits from
Intel SMI status frames as returned from the Intel
7500 series memory buffers. Used for Debug
purposes

Table 5-106.Unit Masks for FVC_EV0 (Sheet 2 of 2)

Extension FVC
[15:12]

FVC
[11:9]

FVC
[8:5] Description

Table 5-107.Unit Masks for FVC_EV1 (Sheet 1 of 2)

Extension FVC
[19:16]

FVC
[11:9]

FVC
[8:5] Description

POISON_TXN 0x2 Count poison (directory of a write to memory was
encoded as poisoned) transactions

ALERT_FRAMES 0x3 Counts alert frames

--- 0x4 (*nothing will be counted*)

BBOX_CMDS.READS 0x5 0x0 Reads commands to z from B

BBOX_CMDS.WRITES 0x5 0x1 Write commands from B box to Z box

BBOX_CMDS.MERGE 0x5 0x2 Merge commands from B box to Z box

BBOX_CMDS.V2F 0x5 0x3 Victim buffer to Fill buffer transfer (V2F) command
from B to Z

BBOX_CMDS.V2V 0x5 0x4 Victim buffer to Victim buffer transfer (V2V)
command from B to Z

BBOX_CMDS.F2V 0x5 0x5 Fill buffer to Victim buffer transfer (F2V) command
from B to Z

BBOX_CMDS.F2B 0x5 0x6 Fill buffer read to Bbox (F2B) from Z

BBOX_CMDS.SPRWR 0x5 0x7 spare write commands from b to z

BBOX_CMDS.MEGAOP1 0x5 0x8 MegaOp1 commands (F2B,F2V and then Write)
from B TO Z

BBOX_CMDS.MEGAOP2 0x5 0xc MegaOp2 commands (F2V and then Write) from B
TO Z

BBOX_CMDS.MEGAOP3 0x5 0xa MegaOp3 commands (F2B and then Write) from B
TO Z

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 461
Reference Manual for Software Development and Optimization Guide

FVC_EV2
• Title: FVC Event 2
• Category: FVC Events
• Event Code: 0x0f, Max. Inc/Cyc: 1,
• Definition: Measure an FVC related event.
• NOTE: It is possible to program the FVC register such that up to 4 events from the

FVC can be independently monitored. However, the bcmd_match and resp_match
subevents depend on the setting of additional bits in the FVC register (11:9 and 8:5
respectively). Therefore, only ONE FVC_EVx.bcmd_match event may be monitored
at any given time. The same holds true for VC_EVx.resp_match

BBOX_CMDS.MEGAOP4 0x5 0xf MegaOp4 commands (V2V and then Write) from B
TO Z

BBOX_RSP.ACK 0x6 0x0 Counts positive acknowledgements. No error was
detected.

BBOX_RSP.RETRY 0x6 0x1 Count Retry Responses. Possibly a correctable
error. Retries are generated until it is decided that
the error was either correctable or uncorrectable.

BBOX_RSP.COR 0x6 0x2 Counts corrected (for example, after error trials or
just by a retry)

BBOX_RSP.UNCOR 0x6 0x3 Count Uncorrectable Responses.

BBOX_RSP.SPEC_ACK 0x6 0x4 Speculative positive acknowledgement for
optimized read flow. No error was detected for the
transaction.

BBOX_RSP.SPR_ACK 0x6 0x5 Count positive acknowledgements for command to
misbehaving DIMM during sparing. No error was
detected for the transaction.

--- 0x6 0x6 (*nothing will be counted*)

BBOX_RSP.SPR_UNCOR 0x6 0x7 Counts Uncorrectable responses to Bbox as a
result of commands issued to misbehaving DIMM
during sparing

SMI_NB_TRIG 0x7 Select Intel SMI Northbound debug event bits from
Intel SMI status frames as returned from the Intel
7500 scalable memory buffers. Used for Debug
purposes

Table 5-107.Unit Masks for FVC_EV1 (Sheet 2 of 2)

Extension FVC
[19:16]

FVC
[11:9]

FVC
[8:5] Description

Table 5-108.Unit Masks for FVC_EV2 (Sheet 1 of 2)

Extension FVC
[23:20]

FVC
[11:9]

FVC
[8:5] Description

POISON_TXN 0x2 Count poison (directory of a write to memory was
encoded as poisoned) transactions

ALERT_FRAMES 0x3 Counts alert frames

--- 0x4 (*nothing will be counted*)

BBOX_CMDS.READS 0x5 0x0 Reads commands to z from B

BBOX_CMDS.WRITES 0x5 0x1 Write commands from B box to Z box

BBOX_CMDS.MERGE 0x5 0x2 Merge commands from B box to Z box

BBOX_CMDS.V2F 0x5 0x3 Victim buffer to Fill buffer transfer (V2F) command
from B to Z

BBOX_CMDS.V2V 0x5 0x4 Victim buffer to Victim buffer transfer (V2V)
command from B to Z

Uncore Performance Monitoring

462 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

BBOX_CMDS.F2V 0x5 0x5 Fill buffer to Victim buffer transfer (F2V) command
from B to Z

BBOX_CMDS.F2B 0x5 0x6 Fill buffer read to Bbox (F2B) from Z

BBOX_CMDS.SPRWR 0x5 0x7 spare write commands from b to z

BBOX_CMDS.MEGAOP1 0x5 0x8 MegaOp1 commands (F2B,F2V and then Write)
from B TO Z

BBOX_CMDS.MEGAOP2 0x5 0xc MegaOp2 commands (F2V and then Write) from B
TO Z

BBOX_CMDS.MEGAOP3 0x5 0xa MegaOp3 commands (F2B and then Write) from B
TO Z

BBOX_CMDS.MEGAOP4 0x5 0xf MegaOp4 commands (V2V and then Write) from B
TO Z

BBOX_RSP.ACK 0x6 0x0 Counts positive acknowledgements. No error was
detected.

BBOX_RSP.RETRY 0x6 0x1 Count Retry Responses. Possibly a correctable
error. Retries are generated until it is decided that
the error was either correctable or uncorrectable.

BBOX_RSP.COR 0x6 0x2 Counts corrected (for example, after error trials or
just by a retry)

BBOX_RSP.UNCOR 0x6 0x3 Count Uncorrectable Responses.

BBOX_RSP.SPEC_ACK 0x6 0x4 Speculative positive acknowledgement for
optimized read flow. No error was detected for the
transaction.

BBOX_RSP.SPR_ACK 0x6 0x5 Count positive acknowledgements for command to
misbehaving DIMM during sparing. No error was
detected for the transaction.

--- 0x6 0x6 (*nothing will be counted*)

BBOX_RSP.SPR_UNCOR 0x6 0x7 Counts Uncorrectable responses to Bbox as a
result of commands issued to misbehaving DIMM
during sparing

SMI_NB_TRIG 0x7 Select Intel SMI Northbound debug event bits from
Intel SMI status frames as returned from the Intel
7500 scalable memory buffers. Used for Debug
purposes

VIC_BUF_CORR_ERR 0x8 Count Victim Buffer Correctible Error (Corresponds
to Z_CSR_ERR_LOG.victim_buf_corr_err)

STATUS_FRM_PAR_ERR 0x9 Count Status Frame Parity Error (Corresponds to
Z_CSR_ERR_LOG.status_frm_par_err)

STATUS_FRM_DM_ERR 0xa Count Status Frame Data Merge Error
(Corresponds to
Z_CSR_ERR_LOG.status_frm_dm_err)

FILL_BUF_CORR_ERR 0xc Count Correctable Fill Buffer Data ECC Error
(Corresponds to
Z_CSR_ERR_LOG.fill_buf_corr_err)

ECC_CORR_ERR 0xd Count Correctable Memory Data Check Bit Error
without re-mapping (Corresponds to
Z_CSR_ERR_LOG.ecc_corr_err)

ECC_CORR_ERR_MAP 0xe Count Correctable Memory Data Check Bit Error
with re-mapping (Corresponds to
Z_CSR_ERR_LOG.ecc_corr_mapped_err)

Table 5-108.Unit Masks for FVC_EV2 (Sheet 2 of 2)

Extension FVC
[23:20]

FVC
[11:9]

FVC
[8:5] Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 463
Reference Manual for Software Development and Optimization Guide

FVC_EV3
• Title: FVC Event 3
• Category: FVC Events
• Event Code: 0x10, Max. Inc/Cyc: 1,
• Definition: Measure an FVC related event.
• NOTE: It is possible to program the FVC register such that up to 4 events from the

FVC can be independently monitored. However, the bcmd_match and resp_match
subevents depend on the setting of additional bits in the FVC register (11:9 and 8:5
respectively). Therefore, only ONE FVC_EVx.bcmd_match event may be monitored
at any given time. The same holds true for VC_EVx.resp_match

Table 5-109.Unit Masks for FVC_EV3 (Sheet 1 of 2)

Extension FVC
[27:24]

FVC
[11:9]

FVC
[8:5] Description

POISON_TXN 0x2 Count poison (directory of a write to memory was
encoded as poisoned) transactions

ALERT_FRAMES 0x3 Counts alert frames

--- 0x4 (*nothing will be counted*)

BBOX_CMDS.READS 0x5 0x0 Reads commands to z from B

BBOX_CMDS.WRITES 0x5 0x1 Write commands from B box to Z box

BBOX_CMDS.MERGE 0x5 0x2 Merge commands from B box to Z box

BBOX_CMDS.V2F 0x5 0x3 Victim buffer to Fill buffer transfer (V2F) command
from B to Z

BBOX_CMDS.V2V 0x5 0x4 Victim buffer to Victim buffer transfer (V2V)
command from B to Z

BBOX_CMDS.F2V 0x5 0x5 Fill buffer to Victim buffer transfer (F2V) command
from B to Z

BBOX_CMDS.F2B 0x5 0x6 Fill buffer read to Bbox (F2B) from Z

BBOX_CMDS.SPRWR 0x5 0x7 spare write commands from b to z

BBOX_CMDS.MEGAOP1 0x5 0x8 MegaOp1 commands (F2B,F2V and then Write)
from B TO Z

BBOX_CMDS.MEGAOP2 0x5 0xc MegaOp2 commands (F2V and then Write) from B
TO Z

BBOX_CMDS.MEGAOP3 0x5 0xa MegaOp3 commands (F2B and then Write) from B
TO Z

BBOX_CMDS.MEGAOP4 0x5 0xf MegaOp4 commands (V2V and then Write) from B
TO Z

BBOX_RSP.ACK 0x6 0x0 Counts positive acknowledgements. No error was
detected.

BBOX_RSP.RETRY 0x6 0x1 Count Retry Responses. Possibly a correctable
error. Retries are generated until it is decided that
the error was either correctable or uncorrectable.

BBOX_RSP.COR 0x6 0x2 Counts corrected (for example, after error trials or
just by a retry)

BBOX_RSP.UNCOR 0x6 0x3 Count Uncorrectable Responses.

BBOX_RSP.SPEC_ACK 0x6 0x4 Speculative positive acknowledgement for
optimized read flow. No error was detected for the
transaction.

BBOX_RSP.SPR_ACK 0x6 0x5 Count positive acknowledgements for command to
misbehaving DIMM during sparing. No error was
detected for the transaction.

--- 0x6 0x6 (*nothing will be counted*)

Uncore Performance Monitoring

464 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

FVID_FIFO_COUNT
• Title: FVID FIFO Count
• Category: Running Depth Counters
• Event Code: 0x3c, Max. Inc/Cyc: 1,
• Definition: Advance counter by the number of commands in the FVID FIFO. The

amount can be zero to 32.

FVID_FIFO_WRITES
• Title: FVID FIFO Writes
• Category: Running Depth Counters
• Event Code: 0x3d, Max. Inc/Cyc: 1,
• Definition: Advance counter by the number of writes to the FVID FIFO. The amount

can be zero, one or two.

INFLIGHT_CMD
• Title: In-flight Commands
• Category: Zbox Commands Received
• Event Code: 0x1d, Max. Inc/Cyc: 1,
• Definition: Advance counter when a new memory controller (read and write type)

command is accepted

LIVE_OPS_INFLIGHT
• Title: Live Ops In-flight
• Category: Running Depth
• Event Code: 0x3e, Max. Inc/Cyc: 32,
• Definition: Advance counter by the number of pending commands in the Zbox. The

amount can be zero to 32.

PAGE_AUTOCLS_CMD
• Title: Page Table Autoclose Commands
• Category: Page Table
• Event Code: 0x15, Max. Inc/Cyc: 1,
• Definition: Advance counter when an auto page close command is detected.

PAGE_COLLISION
• Title: Refresh Commands
• Category: Page Table
• Event Code: 0x18, Max. Inc/Cyc: 1,
• Definition: Advance counter when page collision is detected (that is, a command

requires a PRE-RAS-CAS sequence).

BBOX_RSP.SPR_UNCOR 0x6 0x7 Counts Uncorrectable responses to Bbox as a result
of commands issued to misbehaving DIMM during
sparing

SMI_NB_TRIG 0x7 Select Intel SMI Northbound debug event bits from
Intel SMI status frames as returned from the Intel
7500 scalable memory buffers. Used for Debug
purposes

Table 5-109.Unit Masks for FVC_EV3 (Sheet 2 of 2)

Extension FVC
[27:24]

FVC
[11:9]

FVC
[8:5] Description

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 465
Reference Manual for Software Development and Optimization Guide

PAGE_HITS
• Title: Page Table Hits
• Category: Page Table
• Event Code: 0x14, Max. Inc/Cyc: 1,
• Definition: Advance counter when a page hit is detected (that is, a command

requires only a CAS).
• NOTE: Will not increment in closed-page mode.

PAGE_MISS
• Title: Page Table Misses
• Category: Page Table
• Event Code: 0x13, Max. Inc/Cyc: 1,
• Definition: Advance counter when a page miss is detected (that is, a command

requires a RAS-CAS to complete).

PGT_PAGE_EV
• Title: PGT Related Page Table Events
• Category: Page Table
• Event Code: 0x16, Max. Inc/Cyc: 1,
• Definition: Counts PGT Related Page Table Events.

REFRESH
• Title: Refresh Commands
• Category: DRAM Commands
• Event Code: 0x06, Max. Inc/Cyc: 1,
• Definition: Advance counter when a refresh command is detected.

RETRIES
• Title: Retry Events
• Category: Retry Events
• Event Code: 0x0b, Max. Inc/Cyc: 1,
• Definition: Count PLD Related Retry Events

Extension PGT
Bits[0] Description

OPN2CLS 0x1 Advance counter when an open-to-closed page transition is
detected.

CLS2OPN 0x0 Advance counter when an closed-to-open page transition is
detected.

Extension PLD[7] Description

ALL b0 Advance counter when a retry is detected.

FVID b1 Advance counter when a retry to a certain FVID is detected.
Note: The FVID is programmed into PLD[6:1]

Uncore Performance Monitoring

466 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

RETRY_OPS
• Title: Retry Ops
• Category: RetryQ
• Event Code: 0x22, Max. Inc/Cyc: 1,
• Definition: Advance counter for every new command that gets pushed into the

retry queue.

RETRY_STARVE
• Title: Retry Starve
• Category: Retry Events
• Event Code: 0x03, Max. Inc/Cyc: 1,
• Definition: Advance counter every cycle when a retry is detected in the "starved"

state.

RETRY_ZFULL
• Title: Retry ZFull
• Category: Retry Events
• Event Code: 0x02, Max. Inc/Cyc: 1,
• Definition: Advance counter when a retry is detected in the "zfull" state.

SCHDLR_INFLIGHT_CMDS
• Title: Scheduler In-flight Commands
• Category: Zbox Commands Received
• Event Code: 0x1c, Max. Inc/Cyc: 1,
• Definition: Advance counter when a new scheduler command is accepted.

SCHED_MODE_CHANGES
• Title: Scheduling Mode Changes
• Category: DRAM Commands
• Event Code: 0x08, Max. Inc/Cyc: 1,
• Definition: Advance counter when an ISS scheduling mode transition is detected.

SMI_FAST_RESETS
• Title: Fast Resets
• Category: DRAM Commands
• Event Code: 0x0c, Max. Inc/Cyc: 1,
• Definition: Advance counter when an Intel SMI fast reset occurs.

THERM_TRP_DN
• Title: DIMM ‘Down’ Thermal Trip Points Crossed
• Category: Thermal Throttle
• Event Code: 0x05, Max. Inc/Cyc: 1,
• Definition: Counts when a specified thermal trip point is crossed in the “down”

direction.

Extension THR Bits
[10:9],[3] Description

ALL.GT_MID_RISE 0x3,0x1 Advance the counter when the above mid temp thermal trip point
(rising) is crossed in the "down" direction for any DIMM

ALL.GT_MID_FALL 0x2,0x1 Advance the counter when the above mid temp thermal trip point
(falling) is crossed in the "down" direction for any DIMM

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 467
Reference Manual for Software Development and Optimization Guide

THERM_TRP_UP
• Title: DIMM ‘Up’ Thermal Trip Points Crossed
• Category: Thermal Throttle
• Event Code: 0x04, Max. Inc/Cyc: 1,
• Definition: Counts when a specified thermal trip point is crossed in the “up” direc-

tion.

ALL.GT_LO 0x1,0x1 Advance the counter when the above low temp, but below mid
temp thermal trip point is crossed in the "down" direction for any
DIMM.

ALL.LT_LO 0x0,0x1 Advance the counter when the below low temp thermal trip point is
crossed in the "down" direction for any DIMM

DIMM{n}.GT_MID_RISE 0x3,0x0 Advance the counter when the above mid temp thermal trip point
(rising) is crossed in the "down" direction for DIMM #?
Note: THR Bits [6:4] must be programmed with the DIMM #

DIMM{n}.GT_MID_FALL 0x2,0x0 Advance the counter when the above mid temp thermal trip point
(falling) is crossed in the "down" direction for DIMM #?
Note: THR Bits [6:4] must be programmed with the DIMM #

DIMM{n}.GT_LO 0x1,0x0 Advance the counter when the above low temp, but below mid
temp thermal trip point is crossed in the "down" direction for DIMM
#?
Note: THR Bits [6:4] must be programmed with the DIMM #

DIMM{n}.LT_LO 0x0,0x0 Advance the counter when the below low temp, but below mid
temp thermal trip point is crossed in the "down" direction for DIMM
#?
Note: THR Bits [6:4] must be programmed with the DIMM #

Extension THR Bits
[10:9],[3] Description

Extension THR Bits
[10:9],[3] Description

ALL.GT_MID_RISE 0x3,0x1 Advance the counter when the above mid temp thermal
trip point (rising) is crossed in the "up" direction for any
DIMM

ALL.GT_MID_FALL 0x2,0x1 Advance the counter when the above mid temp thermal
trip point (falling) is crossed in the "up" direction for any
DIMM

ALL.GT_LO 0x1,0x1 Advance the counter when the above low temp, but
below mid temp thermal trip point is crossed in the "up"
direction for any DIMM.

ALL.LT_LO 0x0,0x1 Advance the counter when the below low temp thermal
trip point is crossed in the "up" direction for any DIMM

DIMM{n}.GT_MID_RISE 0x3,0x0 Advance the counter when the above mid temp thermal
trip point (rising) is crossed in the "up" direction for
DIMM #?
Note: THR Bits [6:4] must be programmed with the

DIMM #

DIMM{n}.GT_MID_FALL 0x2,0x0 Advance the counter when the above mid temp thermal
trip point (falling) is crossed in the "up" direction for
DIMM #?
Note: THR Bits [6:4] must be programmed with the

DIMM #

Uncore Performance Monitoring

468 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

TRANS_CMDS
• Title: Translated Commands
• Category: Dispatch Queue
• Event Code: 0x12, Max. Inc/Cyc: 1,
• Definition: Counts read/write commands entered into the Dispatch Queue

TT_CMD_CONFLICT
• Title: Thermal Throttling Command Conflicts
• Category: Thermal Throttle
• Event Code: 0x19, Max. Inc/Cyc: 1,
• Definition: Counts command conflicts due to thermal throttling.

5.10 Packet Matching Reference
In the B and R box, the performance monitoring infrastructure allows a user to filter
packet traffic according to certain fields. A couple common fields, the Message Class/
Opcode fields, have been summarized in the following tables.

DIMM{n}.GT_LO 0x1,0x0 Advance the counter when the above low temp, but
below mid temp thermal trip point is crossed in the "up"
direction for DIMM #?
Note: THR Bits [6:4] must be programmed with the

DIMM #

DIMM{n}.LT_LO 0x0,0x0 Advance the counter when the below low temp, but
below mid temp thermal trip point is crossed in the "up"
direction for DIMM #?
Note: THR Bits [6:4] must be programmed with the

DIMM #

Extension THR Bits
[10:9],[3] Description

Extension PGT
Bits[9:8] Description

--- 0x3 (*nothing is counted*)

INSERTS_WR 0x2 Advance counter when a translated command enters any Dispatch
Queue.

INSERTS_RD 0x1 Advance counter when a translated read (includes read, preall,
refresh, zqcal and auto-close) command enters any Dispatch
Queue.

INSERTS_ALL 0x0 Advance counter when a translated command enters any Dispatch
Queue.

Extension PGT[1]
Bits Description

TT_RANK_ALL 0x0 Advance counter when a command conflict occurs due to thermal
throttling.

TT_RANK_N 0x1 Advance counter when a ranked command conflict occurs due to
thermal throttling.
Note: Rank can be specified by the user in PGT Bits[5:2]

Table 5-110.Intel QuickPath Interconnect Packet Message Classes (Sheet 1 of 2)

Code Name Definition

b0000 HOM0 Home - Requests

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 469
Reference Manual for Software Development and Optimization Guide

b0001 HOM1 Home - Responses

b0010 NDR Non-Data Responses

b0011 SNP Snoops

b0100 NCS Non-Coherent Standard

b1100 NCB Non-Coherent Bypass

b1110 DRS Data Response

Table 5-111.Opcode Match by Message Class (Sheet 1 of 2)

Opc HOM0 HOM1 SNP DRS

0000 RdCur RspI SnpCur DataC_(EIMS)

0001 RdCode RspS SnpCode DataC_(EIMS)_FrcAckCnflt

0010 RdData --- SnpData DataC_(EIMS)_Cmp

0011 --- --- --- DataNc

0100 RdInvOwn RspCnflt SnpInvOwn WbIData

0101 InvXtoI --- SnpInvXtoI WbSData

0110 EvctCln --- --- WbEData

0111 --- --- --- ---

1000 InvItoE RspFwd SnpInvItoE WbIDataPtl

1001 --- RspFwdI --- ---

1010 --- RspFwdS --- WbEDataPtl

1011 --- RspFwdIWb --- ---

1100 WbMtoI RspFwdSWb --- ---

1101 WbMtoE RspIWb --- ---

1110 WbMtoS RspSWb --- ---

1111 AckCnflt --- PrefetchHint ---

Opc NDR NCB NCS

0000 Gnt_Cmp NcWr NcRd

0001 Gnt_FrcAckCnflt WcWr ---

0010 --- --- ---

0011 --- --- ---

0100 CmpD --- NcRdPtl

0101 AbortTO --- NcCfgRd

0110 --- --- ---

0111 --- --- NcIORd

1000 Cmp NcMsgB ---

1001 FrcAckCnlft PurgeTC NcCfgWr

1010 Cmp_FwdCode IntPhysical ---

1011 Cmp_FwdInvOwn --- NcIOWr

1100 Cmp_FwdInvItoE NcWrPtl ---

1101 --- WcWrPtl ---

Table 5-110.Intel QuickPath Interconnect Packet Message Classes (Sheet 2 of 2)

Code Name Definition

Uncore Performance Monitoring

470 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

1110 --- --- ---

1111 --- DebugData ---

Table 5-112.Opcodes (Alphabetical Listing) (Sheet 1 of 3)

Name Opc MC Rx/Tx
By? Desc

AbortTO 0101 NDR Sr Abort Time-out Response

AckCnflt 1111 HOM0 Br, St Acknowledge receipt of Data_* and Cmp/FrcAckCnflt,
signal a possible conflict scenario.

Cmp 1000 NDR Brt, Sr,
Urt

All snoop responses gathered, no conflicts

CmpD 0100 NDR Sr Completion with Data

Cmp_FwdCode 1010 NDR Brt, Sr Complete request, forward the line in F (or S) state to
the requestor specified, invalidate local copy or leave it in
S state.

Cmp_FwdInvItoE 1100 NDR Brt, Sr Complete request, invalidate local copy

Cmp_FwdInvOwn 1011 NDR Brt, Sr Complete request, forward the line in E or M state to the
requestor specified, invalidate local copy

DataC_(FEIMS) 0000 DRS Bt, Srt Data Response in (FEIMS) state
Note: Set RDS field to specify which state is to be

measured. Cr for F state, Ct for I state.

DataC_(FEIMS)_Cmp 0010 DRS Bt, Sr Data Response in (EIS) state, Complete
Note: Set RDS field to specify which state is to be

measured.

DataC_(FEIMS)_FrcAck
Cnflt

0001 DRS Sr Data Response in (EIS) state, Force Acknowledge
Note: Set RDS field to specify which state is to be

measured.

DataNc 0011 DRS Bt, Sr,
Ut

Non-Coherent Data

DebugData 1111 NCB St Debug Data.

EvctCln 0110 HOM0 Br, St Clean cache line eviction notification to home agent.

FrcAckCnlft 1001 NDR Sr All snoop responses gathered, force an AckCnflt

Gnt_Cmp 0000 NDR Brt, Sr Signal completion and Grant E state ownership without
data to an InvItoE or ‘null data’ to an InvXtoI

Gnt_FrcAckCnflt 0001 NDR Sr Signal FrcAckCnflt and Grant E state ownership without
data to an InvItoE or ‘null data’ to an InvXtoI

PurgeTC 1001 NCB Urt Purge target’s page table caches

IntAck 1001 NCS St

IntPhysical 1010 NCB St, Ur Physical mode interrupt to processor

InvItoE 1000 HOM0 Br, St Invalidate to E state requests exclusive ownership of a
cache line without data.

InvXtoI 0101 HOM0 Br, St Flush a cache line from all caches (that is, downgrade all
clean copies to I and cause any dirty copy to be written
back to memory).

NcCfgRd 0101 NCS St, Ur Configuration read from configuration space

NcCfgWr 1001 NCS St, Ur Configuration write to configuration space

NcIORd 0111 NCS St Read from legacy I/O space

NcIOWr 1011 NCS St Write to legacy I/O space

NcMsgB 1000 NCB St Non-coherent Message (non-coherent bypass channel)

Table 5-111.Opcode Match by Message Class (Sheet 2 of 2)

Opc HOM0 HOM1 SNP DRS

Uncore Performance Monitoring

Intel® Itanium® Processor 9500 Series 471
Reference Manual for Software Development and Optimization Guide

NcRd 0000 NCS B*1,
St, Ur

Read from non-coherent memory mapped I/O space

NcRdPtl 0100 NCS B*1,
St, Ur

Partial read from non-coherent memory mapped I/O
space
* Home Agent acting as mirroring slave receives,
mirroring primary will transmit

NcWr 0000 NCB B*1, Ur Write to non-coherent memory mapped I/O space
* Home Agent acting as mirroring slave receives,
mirroring primary will transmit

NcWrPtl 1100 NCB B*1,
St, Ur

Partial write to non-coherent memory mapped I/O space
* Home Agent acting as mirroring slave receives,
mirroring primary will transmit

PrefetchHint 1111 SNP Sr

PurgeTC 1001 SNP St

RdCode 0001 HOM0 Br, St Read cache line in F (or S, if the F state not supported)

RdCur 0000 HOM0 Br Request a cache line in I. Typically issued by I/O proxy
entities, RdCur is used to obtain a coherent snapshot of
an uncached cache line.

RdData 0010 HOM0 Br, St Read cache line in either E or F (or S, if F state not
supported). The choice between F (or S) and E is
determined by whether or not per caching agent has
cache line in S state.

RdInvOwn 0100 HOM0 Br, St Read Invalidate Own requests a cache line in M or E
state. M or E is determined by whether requester is
forwarded an M copy by a peer caching agent or sent an
E copy by home agent.

RspCnflt 0100 HOM1 Br, St Peer is left with line in I or S state, and the peer has a
conflicting outstanding request.

RspFwd 1000 HOM1 Br, St Peer has sent data to requestor with no change in cache
state

RspFwdI 1001 HOM1 Br, St Peer has sent data to requestor and is left with line in I
state

RspFwdIWb 1011 HOM1 Br, St Peer has sent data to requestor and a WbIData to the
home, and is left with line in I state

RspFwdS 1010 HOM1 Br, St Peer has sent data to requestor and is left with line in S
state

RspFwdSWb 1100 HOM1 Br, St Peer has sent data to requestor and a WbSData to the
home, and is left with line in S state

RspI 0000 HOM1 Br, St Peer left with line in I-state

RspIWb 1101 HOM1 Br, St Peer has evicted the data with an in-flight WbIData[Ptl]
message to the home and has not sent any message to
the requestor.

RspS 0001 HOM1 Br, St Peer left with line in S-state

RspSWb 1110 HOM1 Br, St Peer has sent a WbSData message to the home, has not
sent any message to the requestor and is left with line in
S-state

SnpCode 0001 SNP Bt, Sr Snoop Code (get data in F or S state)

SnpCur 0000 SNP Bt, Sr Snoop to get data in I state

SnpData 0010 SNP Bt, Sr Snoop Data (get data in F or S state)

SnpInvItoE 1000 SNP Bt, Sr Snoop Invalidate to E state. To invalidate peer caching
agent, flushing any M state data to home

SnpInvOwn 0100 SNP Bt, Sr Snoop Invalidate Own (get data in E or M state)

Table 5-112.Opcodes (Alphabetical Listing) (Sheet 2 of 3)

Name Opc MC Rx/Tx
By? Desc

Uncore Performance Monitoring

472 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

1 Only with memory mirroring enabled.

The ‘Rx/Tx By?’ column denotes which agents transmit (Tx) and receive (Rx) each
opcode. ‘U’ refers to the UBox as the Configuration Agent. ‘B’ refers to the BBox as the
Home Agent. And the ‘S’ refers to the Sbox which acts as the Caching Agent with the
Cbox.

§

SnpInvXtoI 0101 SNP Bt, Sr Snoop Invalidate Writeback M to I state. To invalidate
peer caching agent, flushing any M state data to home.

WbEData 0110 DRS Br Writeback data, downgrade to E state

WbEDataPtl 1010 DRS Br Partial (byte-masked) writeback data, downgrade to E
state

WbIData 0100 DRS Br, St Writeback data, downgrade to I state

WbIDataPtl 1000 DRS Br, St Partial (byte-masked) writeback data, downgrade to I
state

WbMtoI 1100 HOM0 Br, St Write a cache line in M state back to memory and
transition its state to I.

WbMtoE 1101 HOM0 Br Write a cache line in M state back to memory and
transition its state to E.

WbMtoS 1110 HOM0 Br Write a cache line in M state back to memory and
transition its state to S.

WbSData 0101 DRS Br, St Writeback data, downgrade to S state

WcWr 0001 NCB St, Ur Write combinable write to non-coherent memory mapped
I/O space

WcWrPtl 1101 NCB St, Ur Partial write combinable write to non-coherent memory
mapped I/O space

Table 5-112.Opcodes (Alphabetical Listing) (Sheet 3 of 3)

Name Opc MC Rx/Tx
By? Desc

Identifying Multi-Core and Multi-Threading

Intel® Itanium® Processor 9500 Series 473
Reference Manual for Software Development and Optimization Guide

A Identifying Multi-Core and
Multi-Threading

The dual-core Intel® Itanium® processors, the Intel® Itanium® processor 9300
series, and the Intel® Itanium® processor 9500 series support multi-threading and
multi-core technologies. This chapter covers common programming questions related
to these technologies. The rest of the chapter is organized into two parts: the first part
describes architectural support for system software to detect multi-threading and
multi-core technologies as well as cache sharing information by the logical processors,
the second part highlights operating system-specific mechanisms to return such
information to applications.

A.1 Architectural Support

A.1.1 Terminology
Physical Processor / Physical Processor Package – A physical processor or
physical processor package can contain one or more logical processors, organized into
threads and cores.

Logical Processor – A logical processor is a compute-capability-centric view of the
CPU that allows the physical processor package to execute from more than one
instruction stream. A physical processor package that can execute from n instruction
streams has n logical processors.

Threads – Threads are logical processors that share core pipeline execution resources.

Cores – Cores are defined as a collection of hardware that implements the main
execution pipeline of the processor. Multiple cores on a physical processor package do
not share core pipeline resources but may share caches and bus interfaces. A core may
support multiple threads of execution.

A.1.2 Detection of Intel® Hyper-Threading Technology
The PAL procedure PAL_LOGICAL_TO_PHYSICAL can be used to detect the availability
of multi-threading. This PAL procedure is supported on all processor implementations
that contain more than one logical processor in a physical processor package. The tpc
(threads per core) field in log_overview return value indicates whether multi-threading
is available on the physical processor package the procedure called was made.

Please refer to "Processor Abstraction Layer" chapter in Volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_LOGICAL_TO_PHYSICAL procedure.

Identifying Multi-Core and Multi-Threading

474 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

A.1.3 Number of Cores on a Physical Processor
The PAL procedure PAL_LOGICAL_TO_PHYSICAL returns information on logical to
physical processor mappings. When this procedure is called on a logical processor, the
field cpp (cores per processor) in the return value log_overview indicates the number of
cores of the physical processor on which the logical processor belongs to.

Please refer to "Processor Abstraction Layer" chapter in Volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_LOGICAL_TO_PHYSICAL procedure.

A.1.4 Number of Threads in a Core
The PAL procedure PAL_LOGICAL_TO_PHYSICAL returns information on logical to
physical processor mappings. When this procedure is called on a logical processor, the
field tpc (threads per core) in the return value log_overview indicates the number of
threads in the core on which the logical processor belongs to.

Please refer to "Processor Abstraction Layer" chapter in Volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_LOGICAL_TO_PHYSICAL procedure.

A.1.5 Number of Logical Processors Enabled on a Physical
Processor
The PAL procedure PAL_LOGICAL_TO_PHYSICAL returns information on logical to
physical processor mappings. When this procedure is called on a logical processor, the
field num_log in the return value log_overview indicates the number of logical
processors enabled on the physical processor.

Please refer to "Processor Abstraction Layer" chapter in volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_LOGICAL_TO_PHYSICAL procedure.

A.1.6 Logical to Physical Translation
The PAL procedure PAL_LOGICAL_TO_PHYSICAL returns information on logical to
physical processor mappings. When PAL_LOGICAL_TO_PHYSICAL procedure is called
on a logical processor, the procedure returns the unique tid (thread ID), cid (core ID)
and ppid (physical processor package ID) values corresponding of the logical processor.

Please refer to "Processor Abstraction Layer" chapter in volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_LOGICAL_TO_PHYSICAL procedure.

A.1.7 Number of Logical Processors Sharing a Cache
The PAL procedure PAL_CACHE_SHARED_INFO provides information on the number of
logical processors sharing a certain cache level. The num_shared return value indicates
the number of logical processors that share the specified processor cache level.

Please refer to "Processor Abstraction Layer" chapter in volume 2 of the Intel®
Itanium® Architecture Software Developer's Manual for definition and usage of
PAL_CACHE_SHARED_INFO procedure.

Identifying Multi-Core and Multi-Threading

Intel® Itanium® Processor 9500 Series 475
Reference Manual for Software Development and Optimization Guide

A.1.8 Determine which Logical Processors are Sharing a Cache
The steps below can be used to identify the logical processors sharing a certain cache
level within a physical processor package:

1. Call PAL_CACHE_SHARED_INFO to determine the number of threads that shares
the specific cache level. The return value num_shared indicates the number of
logical processors sharing the specified cache level.

2. For the specific cache level, call PAL_CACHE_SHARED_INFO with different
proc_number parameter in a loop and record the tid (thread ID), cid (core ID) and
la (Logical address) of each logical processor sharing that cache level.

Repeat the above steps as needed for other cache levels.

Parse the thread and core information recorded from the steps above to identify the
logical processors sharing the same core. Caches can be shared at core level by
multiple threads or at physical package level by multiple cores.

Please refer to "Processor Abstraction Layer" chapter in volume 2 of the Intel®
Itanium® Architecture Software Developer’s Manual for definition and usage of
PAL_CACHE_SHARED_INFO procedure.

A.2 Operating System Specific Mechanisms
The following sections highlight multi-core and multi-threading support available on
HP-UX*, Linux*, and Microsoft Windows*. For up-to-date information and operating
systems not listed in this section, please refer to documentations from corresponding
operating system vendor.

A.2.1 HP-UX*
Please refer to the following documents for design considerations, system calls and
code samples on multi-core and multi-threading programming for the HP-UX operating
system:

• "Dynamic logical processors for Hyper-Threading on HP-UX 11i v3

• "HP-UX Reference: Section 2: System Calls

Both documents are available at http://www.hp.com.

A.2.2 Linux*
Older versions of Linux provide topology information only through /proc/cpuinfo. Each
online logical processor in the system is listed in turn with entries describing various
attributes of that logical processor. Useful items are:

• "physical id" – This number will be the same for logical processors that are part of
the same physical processor package.

• "siblings" – Total number of logical processors that share a physical processor
package.

• "core id" – Identifies to which core on a package this logical cpu belongs.

• "thread id" – Identifies which thread on a core.

Versions of Linux newer than 2.6.15 provide more information through a number of
files in /sys/devices/system/cpu/cpuN/topology/:

Identifying Multi-Core and Multi-Threading

476 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• "physical_package_id" – same as "physical id" in /proc/cpuinfo.

• "core_id" – same as "core id" in /proc/cpuinfo.

• "core_siblings" – Hexadecimal representation of a bitmask showing which logical
cpus share a physical package. For example, 8881 means that logical cpu numbers
0, 7, 11 and 15 share a package.

• "thread_siblings" – Bitmask showing which logical cpus are threads sharing the
same core. For example, 0801 means cpus 0 and 11.

Linux versions newer than 2.6.17 provide cache topology information in /sys/devices/
system/cpu/cpuN/cache/indexM/*. For each cache level and type the following
informational files are provided:

• "level", "type" – Cache level (1-3), and type (Instruction, Data or Unified).

• "shared_cpu_map" – bit mask of logical cpus that share this cache.

A.2.3 Microsoft Windows*
Windows-based applications can obtain processor topology and cache sharing
information through GetLogicalProcessorInformation API. Please refer to Microsoft
Developer Network (MSDN) for details.

§

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 477
Reference Manual for Software Development and Optimization Guide

B Example Core PMU Event
Reports

B.1 Introduction
This appendix gives a number of examples of possible high level reports based on PMU
event measurements. These reports are provided here both because of the usefulness
of these reports and for the purpose of improving the understanding of what various
PMU events actually measure. Example data is also provided to aid in understanding
what these reports mean, but the data in different reports may be from different data
sets.

All of the reports use the following formatting and naming conventions:

• Each report in this appendix is communicated via a pair of tables. The first table
attempts to visually communicate meaning through variable names, indention, and
sample data. The second table shows how each variable in the first table was
calculated from measured PMU event data.

• Indention of a variable in a report implies that it is a sub-component of the
variable(s) under which it is indented.

• The variable names (at least the part before any “.”) attempt to be informative, but
it is the calculation of the variable that defines it.

• Variables with “.” in the name are calculated from measured events and possibly
other calculated variables.

• Calculations sometimes take multiple lines in the tables. This should be apparent
due to the lack of value and variable names on some lines.

• Variables without “.” in the name are measured PMU events. Any “.” in any PMU
event name as defined in other sections has been converted to an “_”.

• Data reference type matching has been used to measure some events. These
events can be recognized because the names are of the form <pmu event
name>_<data reference type>. See Section 4.2.7.1, “Primary Data Reference
Types”.

B.2 Retired Instruction Types
The report in this section shows for all instructions retired, how many were of various
different types.

variable name	value
IA64_INST_RETIRED	1000.00000
USEFUL_INSTRS_RETIRED.calc	787.02012
LOADS_RETIRED.calc	113.40148
STORES_RETIRED.calc	35.50626
BR_PRED_DETAIL_ANY_ANY_PRED	147.17533
RETIRED_INST_FP	0.16913
OTHER_INSTRS_RETIRED.calc	490.76791
NON_USEFUL_INSTRS_RETIRED.calc	212.97988
RETIRED_INST_NOP	199.95968
RETIRED_PREDICATE_SQUASHED	13.02020

Example Core PMU Event Reports

478 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

calculations	value	variable name
	0.41451	DATA_REF_LOAD_FP
	112.98697	DATA_REF_LOAD_INT
	0.85462	DATA_REF_STORE_FP
	34.65163	DATA_REF_STORE_INT
	1000.00000	IA64_INST_RETIRED
DATA_REF_LOAD_INT +		
DATA_REF_LOAD_FP	113.40148	LOADS_RETIRED.calc
RETIRED_INST_NOP +		
RETIRED_PREDICATE_SQUASHED	212.97988	NON_USEFUL_INSTRS_RETIRED.calc
IA64_INST_RETIRED -		
RETIRED_INST_NOP -		
RETIRED_PREDICATE_SQUASHED -		
LOADS_RETIRED.calc -		
STORES_RETIRED.calc -		
BR_PRED_DETAIL_ANY_ANY_PRED -		
FPOP_RETIRED.calc	490.76791	OTHER_INSTRS_RETIRED.calc
DATA_REF_STORE_INT +		
DATA_REF_STORE_FP	35.50626	STORES_RETIRED.calc
IA64_INST_RETIRED -		
RETIRED_INST_NOP -		
RETIRED_PREDICATE_SQUASHED	787.02012	USEFUL_INSTRS_RETIRED.calc

B.3 Back-End Cycle Accounting
The PMU cycle accounting events provide a way to account for what a the processor
core is doing on each and every clock cycle. Any such accounting is somewhat
subjective because in reality the core is doing many different things on any given cycle.
As discussed in Section 3.2.1.4, “Cycle Accounting”, events occurring later in the
pipeline take precedence over events occurring earlier in the pipeline.

In Section 4.2.4, “Back-End Cycle Accounting”, cycle accounting events are arranged
according to the way they are counted in the hardware. This section attempts to group
the various cycle account events in a way that will be more meaningful people who
work on software performance: unstalled cycles, thread switch cycles, miscellaneous
flush cycles, instruction access cycles, register hazard cycles, data access cycles, and
miscellaneous cycles. These high level groupings provide a rough understanding of
where the core is spending it’s time. Each of these groupings has further subdivisions
that give more detail about how the time in each grouping is being spent. The
instruction access group contains cycles spent waiting for instructions to be fetched,
including flush cycles associated with branch mispredictions. The register hazard
grouping contains cycles spent waiting on results for non-memory operations. The
data access cycles grouping contains cycles spent waiting for load results to return and
other cycles when the pipeline cannot make progress due waiting for a memory
instruction for any reason. See the descriptions of each base PMU event in
Section 4.2.4, “Back-End Cycle Accounting” for more information.

A number of abbreviations are used repeatedly in this report. Other than the overall
count of all CPU_CYCLES, the base PMU events used to generate this report are the
CYC_BE_* events. CYC_BE refers to an accounting of the cycles in the “Back End” of
the core pipeline. EXE_REPLAY, DET_REPLAY, WB2_REPLAY refer to cycles lost due to a
replay from the specified pipeline stage. IBD_STALL refers to cycles when the pipeline
is not being flushed or replayed and no instructions are issued into the pipeline. Some
events produce replays that are then followed by IBD stalls, and so cycles associated
with such an event are split across a replay event and an IBD_STALL event. GR, FR,
and PR refer to general register, floating point register, and predicate register,
respectively. RSE refers to the Register Stack Engine.

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 479
Reference Manual for Software Development and Optimization Guide

The second calculations containing table of this report is fairly trivial because this
report is just a fairly simple regrouping of cycle accounting events.

variable name	value
CPU_CYCLES	541.38471
UNSTALLED_EXE.calc	267.82085
TSWITCH.calc	0.00000
CYC_BE_IBD_STALL_THRSW	0.00000
CYC_BE_WB2_REPLAY_PAUSE	0.00000
MISC_FLUSH.calc	0.00648
INSTR_ACCESS.calc	204.00668
INSTR_FETCH.calc	93.27150
CYC_BE_IBD_STALL_QFULL	0.00050
CYC_BE_IBD_STALL_FEBUB	93.27100
CYC_BE_WB2_FLUSH_BRU	110.73518
REG_HAZARD.calc	18.18289
CYC_BE_EXE_REPLAY_GR_GR	0.08005
FR_FR_HAZARD.calc	6.00917
CYC_BE_IBD_STALL_FTOF	2.47294
CYC_BE_EXE_REPLAY_FR_FR	3.53623
PR_HAZARD.calc	7.05143
CYC_BE_EXE_REPLAY_FCMP	3.61864
CYC_BE_EXE_REPLAY_NOTN	0.18442
CYC_BE_EXE_REPLAY_PRED	3.24837
RSE.calc	4.86850
CYC_BE_IBD_STALL_RSE_ST	1.85476
RSE_UNDERFLOW.calc	1.81191
CYC_BE_IBD_STALL_RSE_WAIT	1.20183
MISC_REG_HAZARD.calc	0.17374
CYC_BE_EXE_REPLAY_ARCR	0.17374
CYC_BE_DET_REPLAY_DCS_HZRD	0.00000
CYC_BE_DET_REPLAY_HPW_HZRD	0.00000
CYC_BE_WB2_REPLAY_MOV_PSR_UM	0.00000
CYC_BE_EXE_REPLAY_FPSR	0.00000
DATA_ACCESS.calc	51.21450
GR_LOAD_HAZARD.calc	34.77740
CYC_BE_IBD_STALL_GR_LOAD	17.14045
CYC_BE_DET_REPLAY_GR_LOAD	13.54817
CYC_BE_EXE_REPLAY_GR_LOAD_RAW	4.00399
CYC_BE_EXE_REPLAY_GR_LOAD_WAW	0.08480
FR_LOAD_HAZARD.calc	7.96142
CYC_BE_IBD_STALL_FR_LOAD	2.96305
CYC_BE_EXE_REPLAY_FR_LOAD_RAW	4.94232
CYC_BE_EXE_REPLAY_FR_LOAD_WAW	0.05605
BACK_PRESSURE.calc	2.25033
MLD_BACK_PRESSURE.calc	2.25033
CYC_BE_IBD_STALL_OZQFULL	1.18762
CYC_BE_WB2_REPLAY_OZQ_FULL	1.06271
CYC_BE_WB2_REPLAY_DAHR_HZRD	0.00000
FLD_CONFLICT.calc	2.39922
FLD_FILL_CONFLICT.calc	0.11063
CYC_BE_DET_REPLAY_WRITE_HIT_VS_FILL	0.08636
CYC_BE_DET_REPLAY_WRITE_MISS_VS_FILL	0.02427
FLD_WRITE_CONFLICT.calc	1.93610
CYC_BE_DET_REPLAY_LOAD_AFTER_WRITE	0.55691
CYC_BE_DET_REPLAY_STORE_VS_STORE	1.37919
CYC_BE_DET_REPLAY_FLUSH_DST	0.00000
FLD_CONFLICT_OTHER.calc	0.35249
CYC_BE_IBD_STALL_FLD_DMND	0.11389
CYC_BE_IBD_STALL_MTOM	0.23841
CYC_BE_DET_REPLAY_MT1	0.00019
DATA_TLB_ACCESS.calc	3.82608
VHPT_WALKER.calc	3.82600
CYC_BE_IBD_STALL_HPW	3.04420
CYC_BE_WB2_REPLAY_BLK_HPW	0.78179
CYC_BE_WB2_REPLAY_STORE_ALIAS	0.00008
ORDERING_HAZARD.calc	0.00000
ACQUIRE_HAZARD.calc	0.00000
CYC_BE_IBD_STALL_ACQ	0.00000
CYC_BE_DET_REPLAY_LOAD_ACQ	0.00000
CYC_BE_WB2_REPLAY_LOAD_ACQ	0.00000
RELEASE_HAZARD.calc	0.00000
CYC_BE_IBD_STALL_ARCR	0.00000
CYC_BE_EXE_REPLAY_REL	0.00000
SRLZ_HAZARD.calc	0.00000
CYC_BE_IBD_STALL_SRLZ	0.00000
CYC_BE_EXE_REPLAY_SRLZ	0.00000
SPEC_PENALTIES.calc	0.00004
SPEC_FAIL_FLUSH.calc	0.00000
SPEC_HAZARD.calc	0.00004
CYC_BE_WB2_REPLAY_NAT_HZRD	0.00000
CYC_BE_WB2_REPLAY_LDC	0.00004
MISC_CYCLES.calc	0.24888
CYC_BE_IBD_STALL_DEBUG	0.00000
CYC_BE_IBD_STALL_WB2_TRAP	0.00000

Example Core PMU Event Reports

480 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

| CYC_BE_EXE_REPLAY_MT1_HIGH | 0.24824
| CYC_BE_EXE_REPLAY_MT1_LOW | 0.00000
| CYC_BE_WB2_REPLAY_VIRT_INT | 0.00000
| CYC_BE_WB2_REPLAY_SER | 0.00000
| CYC_BE_WB2_REPLAY_MT1 | 0.00064
| CYC_BE_WB2_REPLAY_FP_SIR | 0.00000
| CYC_BE_WB2_REPLAY_FP_DEN | 0.00000

calculations	value	variable name
CYC_BE_IBD_STALL_ACQ +		
CYC_BE_DET_REPLAY_LOAD_ACQ +		
CYC_BE_WB2_REPLAY_LOAD_ACQ	0.00000	ACQUIRE_HAZARD.calc
MLD_BACK_PRESSURE.calc +		
CYC_BE_WB2_REPLAY_DAHR_HZRD	2.25033	BACK_PRESSURE.calc
	0.00000	CSPEC_CHKS_FAIL_ANY
	273.56386	CYC_BE_BUBBLE_ANY
	1.81191	CYC_BE_IBD_STALL_RSE_CFLE
	0.00000	CYC_BE_IBD_STALL_RSE_LOAD
	0.00648	CYC_BE_WB2_FLUSH_XPN
GR_LOAD_HAZARD.calc +		
FR_LOAD_HAZARD.calc +		
BACK_PRESSURE.calc +		
FLD_CONFLICT.calc +		
DATA_TLB_ACCESS.calc +		
ORDERING_HAZARD.calc +		
SPEC_PENALTIES.calc	51.21450	DATA_ACCESS.calc
VHPT_WALKER.calc +		
CYC_BE_WB2_REPLAY_STORE_ALIAS	3.82608	DATA_TLB_ACCESS.calc
CYC_BE_IBD_STALL_FLD_DMND +		
CYC_BE_IBD_STALL_MTOM +		
CYC_BE_DET_REPLAY_FLUSH_STORE +		
CYC_BE_DET_REPLAY_LOAD_AFTER_WRITE +		
CYC_BE_DET_REPLAY_STORE_VS_STORE +		
CYC_BE_DET_REPLAY_WRITE_HIT_VS_FILL +		
CYC_BE_DET_REPLAY_WRITE_MISS_VS_FILL +		
CYC_BE_DET_REPLAY_MT1	2.39922	FLD_CONFLICT.calc
CYC_BE_IBD_STALL_FLD_DMND +		
CYC_BE_IBD_STALL_MTOM +		
CYC_BE_DET_REPLAY_MT1	0.35249	FLD_CONFLICT_OTHER.calc
CYC_BE_DET_REPLAY_WRITE_HIT_VS_FILL +		
CYC_BE_DET_REPLAY_WRITE_MISS_VS_FILL	0.11063	FLD_FILL_CONFLICT.calc
CYC_BE_DET_REPLAY_LOAD_AFTER_WRITE +		
CYC_BE_DET_REPLAY_STORE_VS_STORE +		
CYC_BE_DET_REPLAY_FLUSH_STORE	1.93610	FLD_WRITE_CONFLICT.calc
CYC_BE_IBD_STALL_FTOF +		
CYC_BE_EXE_REPLAY_FR_FR	6.00917	FR_FR_HAZARD.calc
CYC_BE_IBD_STALL_FR_LOAD +		
CYC_BE_EXE_REPLAY_FR_LOAD_RAW +		
CYC_BE_EXE_REPLAY_FR_LOAD_WAW	7.96142	FR_LOAD_HAZARD.calc
CYC_BE_IBD_STALL_GR_LOAD +		
CYC_BE_DET_REPLAY_GR_LOAD +		
CYC_BE_EXE_REPLAY_GR_LOAD_RAW +		
CYC_BE_EXE_REPLAY_GR_LOAD_WAW	34.77740	GR_LOAD_HAZARD.calc
CYC_BE_DET_REPLAY_HPW_HZRD	0.00000	HPW_REG_REPLAY.calc
INSTR_FETCH.calc +		
CYC_BE_WB2_FLUSH_BRU	204.00668	INSTR_ACCESS.calc
CYC_BE_IBD_STALL_QFULL +		
CYC_BE_IBD_STALL_FEBUB	93.27150	INSTR_FETCH.calc
CYC_BE_IBD_STALL_DEBUG +		
CYC_BE_IBD_STALL_WB2_TRAP +		
CYC_BE_EXE_REPLAY_MT1_HIGH +		
CYC_BE_EXE_REPLAY_MT1_LOW +		
CYC_BE_WB2_REPLAY_VIRT_INT +		
CYC_BE_WB2_REPLAY_SER +		
CYC_BE_WB2_REPLAY_MT1 +		
CYC_BE_WB2_REPLAY_FP_SIR +		
CYC_BE_WB2_REPLAY_FP_DEN	0.24888	MISC_CYCLES.calc
CYC_BE_WB2_FLUSH_XPN -		
SPEC_FAIL_FLUSH.calc	0.00648	MISC_FLUSH.calc
CYC_BE_EXE_REPLAY_ARCR +		
CYC_BE_DET_REPLAY_DCS_HZRD +		
CYC_BE_DET_REPLAY_HPW_HZRD +		
CYC_BE_WB2_REPLAY_MOV_PSR_UM +		
CYC_BE_EXE_REPLAY_FPSR	0.17374	MISC_REG_HAZARD.calc
CYC_BE_IBD_STALL_OZQFULL +		
CYC_BE_WB2_REPLAY_OZQ_FULL	2.25033	MLD_BACK_PRESSURE.calc
CYC_BE_IBD_STALL_ACQ +		
CYC_BE_IBD_STALL_ARCR +		
CYC_BE_IBD_STALL_SRLZ +		
CYC_BE_EXE_REPLAY_REL +		
CYC_BE_EXE_REPLAY_SRLZ +		
CYC_BE_DET_REPLAY_LOAD_ACQ +		
CYC_BE_WB2_REPLAY_LOAD_ACQ	0.00000	ORDERING_HAZARD.calc

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 481
Reference Manual for Software Development and Optimization Guide

| CYC_BE_EXE_REPLAY_FCMP + |
| CYC_BE_EXE_REPLAY_NOTN + |
| CYC_BE_EXE_REPLAY_PRED| 7.05143|PR_HAZARD.calc
| CYC_BE_EXE_REPLAY_GR_GR + |
| FR_FR_HAZARD.calc + |
| PR_HAZARD.calc + |
| RSE.calc + |
| MISC_REG_HAZARD.calc| 18.18289|REG_HAZARD.calc
| CYC_BE_IBD_STALL_ARCR + |
| CYC_BE_EXE_REPLAY_REL| 0.00000|RELEASE_HAZARD.calc
| CYC_BE_IBD_STALL_RSE_ST + |
| RSE_UNDERFLOW.calc + |
| CYC_BE_IBD_STALL_RSE_WAIT| 4.86850|RSE.calc
| CYC_BE_IBD_STALL_RSE_CFLE + |
| CYC_BE_IBD_STALL_RSE_LOAD| 1.81191|RSE_UNDERFLOW.calc
| CSPEC_CHKS_FAIL_ANY * |
| SPEC_FAIL_FLUSH_PENALTY.psn| 0.00000|SPEC_FAIL_FLUSH.calc
| | 17.00000|SPEC_FAIL_FLUSH_PENALTY.psn
| CYC_BE_WB2_REPLAY_NAT_HZRD + |
| CYC_BE_WB2_REPLAY_LDC| 0.00004|SPEC_HAZARD.calc
| SPEC_FAIL_FLUSH.calc + |
| SPEC_HAZARD.calc| 0.00004|SPEC_PENALTIES.calc
| CYC_BE_IBD_STALL_SRLZ + |
| CYC_BE_EXE_REPLAY_SRLZ| 0.00000|SRLZ_HAZARD.calc
| CYC_BE_IBD_STALL_THRSW + |
| CYC_BE_WB2_REPLAY_PAUSE| 0.00000|TSWITCH.calc
| CYC_BE_IBD_STALL_THRSW| 0.00000|TSWITCH_STALL.calc
| CPU_CYCLES - |
| CYC_BE_BUBBLE_ANY| 267.82085|UNSTALLED_EXE.calc
| CYC_BE_WB2_REPLAY_BLK_HPW + |
| CYC_BE_IBD_STALL_HPW| 3.82600|VHPT_WALKER.calc

B.4 Primary Data Reference Outcomes
The reports in this section demonstrate the final outcome of all primary data
references.

B.4.1 LOAD_ANY
The most obvious load outcomes are hitting in the FLD, MLD, LLC, or memory (LLC
miss). Loads can also be secondary misses at the MLD
(MLD_SMQ_REF_HIT_LOAD_ANY). A secondary miss is an access that at first misses a
cache but waits for another access that is already outstanding to the same line and
then hits. Control speculative loads can also be deferred (CSPEC_LOAD_NAT).
“_LOAD_ANY” refers to data reference type matching for some of these events.

variable name	value
DATA_REF_LOAD_ANY	92.98356
CSPEC_LOAD_NAT	0.01960
FLD_LOAD_HIT	81.58444
MLD_LOAD_HIT	7.93826
MLD_SMQ_REF_HIT_LOAD_ANY	1.10795
LLC_LOAD_HIT.calc	1.98280
LLC_REF_MISS_DATA_LOAD_ANY	0.35181

calculations	value	variable name
RIL_REQ_REF_DATA_LOAD_ANY -		
LLC_REF_MISS_DATA_LOAD_ANY	1.98280	LLC_LOAD_HIT.calc
	2.33462	RIL_REQ_REF_DATA_LOAD_ANY
	0.35181	LLC_REF_MISS_DATA_LOAD_ANY

B.4.2 STORE_ANY
The possible store outcomes are very similar to the possible load outcomes with one
exception. In a write coalescing address space, some stores can be coalesced with
other writes. The number of coalesced stores (MLD_STORE_COALESCED.calc) can be
determined by looking at the difference between the number of stores at the MLD (pre-
coalescing) and the RIL (post-coalescing). “_STORE_ANY” refers to data reference
type matching for some of these events.

Example Core PMU Event Reports

482 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

variable name	value
DATA_REF_STORE_ANY	91.58478
MLD_REF_HIT_STORE_ANY	73.87507
MLD_SMQ_REF_HIT_STORE_ANY	13.01904
MLD_STORE_COALESCED.calc	0.00000
LLC_STORE_HIT.calc	4.61244
LLC_REF_MISS_DATA_STORE_ANY	0.08532

calculations	value	variable name
	0.08532	LLC_REF_MISS_DATA_STORE_ANY
RIL_REQ_REF_DATA_STORE_ANY -		
LLC_REF_MISS_DATA_STORE_ANY	4.61244	LLC_STORE_HIT.calc
RIL_REQ_REF_DATA_NC_WRITE_WC_MLD_STORE_ANY -		
RIL_REQ_REF_DATA_NC_WRITE_WC_ANY_STORE_ANY	0.00000	MLD_STORE_COALESCED.calc
	0.00000	RIL_REQ_REF_DATA_NC_WRITE_WC_ANY_STORE_ANY
	0.00000	RIL_REQ_REF_DATA_NC_WRITE_WC_MLD_STORE_ANY
	4.69775	RIL_REQ_REF_DATA_STORE_ANY

B.4.3 SEMAPHORE
Possible semaphore outcomes are all similar to possible load outcomes. “_SEMAPHORE”
refers to data reference type matching for some of these events.

variable name	value
DATA_REF_SEMAPHORE	0.00000
MLD_REF_HIT_SEMAPHORE	0.00000
MLD_SMQ_REF_HIT_SEMAPHORE	0.00000
LLC_SEMAPHORE_HIT.calc	0.00000
LLC_REF_MISS_DATA_SEMAPHORE	0.00000

calculations	value	variable name
	0.00000	LLC_REF_MISS_DATA_SEMAPHORE
RIL_REQ_REF_DATA_SEMAPHORE -		
LLC_REF_MISS_DATA_SEMAPHORE	0.00000	LLC_SEMAPHORE_HIT.calc
	0.00000	RIL_REQ_REF_DATA_SEMAPHORE

B.4.4 LFETCH
Many possible lfetch outcomes are similar to possible load outcomes. However, lfetches
can also be dropped in some cases when they miss the FLDTLB, hit in the FLD, miss in
the FLD when there is already an outstanding request to the same line, or miss in the
MLD (PREF_DROP_FLDTLB_MISS_LFETCH, PREF_DROP_FLD_HIT_LFETCH,
PREF_DROP_FLD_SECONDARY_MISS_LFETCH, MLD_LFETCH_MISS_DROP.calc).
“_LFETCH” refers to data reference type matching for some of these events.

variable name	value
DATA_REF_LFETCH	23.99696
PREF_DROP_FLDTLB_MISS_LFETCH	0.00000
PREF_DROP_FLD_HIT_LFETCH	1.38983
PREF_DROP_FLD_SECONDARY_MISS_LFETCH	0.03715
MLD_REF_HIT_LFETCH	7.73774
MLD_SMQ_REF_HIT_LFETCH	0.08724
MLD_LFETCH_MISS_DROP.calc	11.59322
LLC_LFETCH_HIT.calc	2.95498
LLC_REF_MISS_DATA_LFETCH	0.11996

calculations	value	variable name
RIL_REQ_REF_DATA_LFETCH -		
LLC_REF_MISS_DATA_LFETCH	2.95498	LLC_LFETCH_HIT.calc
	0.11996	LLC_REF_MISS_DATA_LFETCH
	0.00000	MLD_HINT_PREF_DROP_LFETCH
MLD_HINT_PREF_DROP_LFETCH +		
MLD_REF_SECONDARY_DROP_LFETCH +		
MLD_SMQ_REF_SECONDARY_DROP_LFETCH	11.59322	MLD_LFETCH_MISS_DROP.calc
	11.59196	MLD_REF_SECONDARY_DROP_LFETCH
	0.00127	MLD_SMQ_REF_SECONDARY_DROP_LFETCH
	3.07494	RIL_REQ_REF_DATA_LFETCH

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 483
Reference Manual for Software Development and Optimization Guide

B.4.5 HW_PREF
The possible hardware prefetch outcomes are similar to the possible lfetch outcomes.
MLD buddy line prefetches are excluded from this hardware prefetch outcome
breakdown because including them often leads to confusion. The confusion arises
because MLD buddy line prefetches are inserted between MLD and LLC, and so they
only appear in the LLC and memory data. The buddy line prefetches are accounted for
in a separate report. Excluding the MLD buddy line prefetches from this report requires
an assumption and some fairly tricky calculations. The assumption is that MLD buddy
line prefetches hit in the LLC cache at the same rate as the primary accesses that
trigger them. To the extent that this is not true, this report will be negatively affected.

“_HW_PREF”, “_LFETCH”, “LOAD_ANY”, “STORE_ANY”, and “SEMAPHORE” refer to data
reference type matching for some of these events. The HW_PREF data reference type
includes non-buddy hardware prefetches and MLD buddy line prefetches triggered by
any type of data reference. The hardware enables calculation of the ratio of non-buddy
hardware prefetches to buddy hardware prefetches
(HWDPREF_BUDDY_FRACTION.calc). This ratio is used to figure out how many of the
hardware prefetches at the LLC and memory are MLD buddy line prefetches.

variable name	value
DATA_REF_HW_PREF	18.32937
PREF_DROP_FLDTLB_MISS_HW_PREF	0.00372
PREF_DROP_FLD_HIT_HW_PREF	3.43658
PREF_DROP_FLD_SECONDARY_MISS_HW_PREF	0.54597
MLD_REF_HIT_HW_PREF	8.08746
MLD_SMQ_REF_HIT_HW_PREF	0.35239
MLD_HWDPREF_MISS_DROP.calc	4.55417
LLC_HWDPREF_NOBUDDY_HIT.calc	1.03767
MEM_HWDPREF_NOBUDDY.calc	0.31124

calculations	value	variable name
(LLC_HWDPREF.calc -		
MLD_REF_PRIMARY_HW_PREF)/		
LLC_HWDPREF.calc	0.49846	HWDPREF_BUDDY_FRACTION.calc
RIL_REQ_REF_DATA_HW_PREF -		
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LFETCH -		
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_ANY -		
RIL_REQ_REF_DATA_WB_MLD_BUDDY_STORE_ANY -		
RIL_REQ_REF_DATA_WB_MLD_BUDDY_SEMAPHORE	2.68952	LLC_HWDPREF.calc
LLC_HWDPREF.calc *		
HWDPREF_BUDDY_FRACTION.calc	1.34061	LLC_HWDPREF_BUDDY.calc
LLC_HWDPREF.calc -		
LLC_HWDPREF_BUDDY.calc	1.34891	LLC_HWDPREF_NOBUDDY.calc
LLC_HWDPREF_NOBUDDY.calc -		
MEM_HWDPREF_NOBUDDY.calc	1.03767	LLC_HWDPREF_NOBUDDY_HIT.calc
	0.62056	LLC_REF_MISS_DATA_HW_PREF
LLC_REF_MISS_DATA_HW_PREF *		
HWDPREF_BUDDY_FRACTION.calc	0.31124	MEM_HWDPREF_BUDDY.calc
LLC_REF_MISS_DATA_HW_PREF -		
MEM_HWDPREF_BUDDY.calc	0.30932	MEM_HWDPREF_NOBUDDY.calc
	4.54245	MLD_HINT_PREF_DROP_HW_PREF
MLD_HINT_PREF_DROP_HW_PREF +		
MLD_REF_SECONDARY_DROP_HW_PREF +		
MLD_SMQ_REF_SECONDARY_DROP_HW_PREF	4.55417	MLD_HWDPREF_MISS_DROP.calc
	1.34891	MLD_REF_PRIMARY_HW_PREF
	0.01173	MLD_REF_SECONDARY_DROP_HW_PREF
	0.00000	MLD_SMQ_REF_SECONDARY_DROP_HW_PREF
	12.70759	RIL_REQ_REF_DATA_HW_PREF
	3.07403	RIL_REQ_REF_DATA_WB_MLD_BUDDY_LFETCH
	2.24789	RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_ANY
	0.00000	RIL_REQ_REF_DATA_WB_MLD_BUDDY_SEMAPHORE
	4.69616	RIL_REQ_REF_DATA_WB_MLD_BUDDY_STORE_ANY

Example Core PMU Event Reports

484 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

B.4.6 MLD Buddy Line Prefetches
The possible MLD buddy line prefetch outcomes are simply hitting in the LLC or
accessing memory. Conceptually this report is quite simple, but the calculations to
produce the report are tricky because they must deal with the following issues:

• Data reference type matching works in a way that lumps together non-buddy
hardware prefetches and buddy prefetches triggered by non-buddy hardware
prefetches. (See Section 4.2.7.2, “Asynchronous Data References and Event
Matching Constraints” for more details.) Separating these requires an assumption
and the calculation of HWDPREF_BUDDY_FRACTION.calc as discussed in
Section B.4.5, “HW_PREF”.

• Data reference type matching works a little differently on buddy prefetches for the
RIL* than it does other events. (See Section 4.2.7.2, “Asynchronous Data
References and Event Matching Constraints” for more details.)

“HW_PREF” refers to data reference type matching for some of these events.
“HW_PREF_LOAD_ANY” and other combinations of data reference types refer to data
reference type matching where multiple data references types are being matched.

variable name	value
LLC_BUDDY.calc	11.35868
LLC_BUDDY_HIT.calc	10.48780
LLC_HWDPREF_BUDDY_HIT.calc	1.03129
LLC_LFETCH_BUDDY_HIT.calc	2.95419
LLC_LOAD_BUDDY_HIT.calc	1.90093
LLC_STORE_BUDDY_HIT.calc	4.61038
LLC_SEMAPHORE_BUDDY_HIT.calc	0.00331
MEM_BUDDY.calc	0.85859
MEM_HWDPREF_BUDDY.calc	0.30932
MEM_LFETCH_BUDDY.calc	0.11984
MEM_LOAD_BUDDY.calc	0.34695
MEM_STORE_BUDDY.calc	0.08579
MEM_SEMAPHORE_BUDDY.calc	-0.00331

calculations	value	variable name
(LLC_HWDPREF.calc -		
MLD_REF_PRIMARY_HW_PREF) /		
LLC_HWDPREF.calc	0.49846	HWDPREF_BUDDY_FRACTION.calc
RIL_REQ_REF_DATA_HW_PREF -		
MLD_REF_PRIMARY_HW_PREF	11.35868	LLC_BUDDY.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY -		
MEM_BUDDY.calc	10.48780	LLC_BUDDY_HIT.calc
RIL_REQ_REF_DATA_HW_PREF -		
LLC_LFETCH_BUDDY.calc -		
LLC_LOAD_BUDDY.calc -		
LLC_STORE_BUDDY.calc -		
LLC_SEMAPHORE_BUDDY.calc	2.68952	LLC_HWDPREF.calc
LLC_HWDPREF.calc *		
HWDPREF_BUDDY_FRACTION.calc	1.34061	LLC_HWDPREF_BUDDY.calc
LLC_HWDPREF_BUDDY.io-MEM_HWDPREF_BUDDY.calc	1.03129	LLC_HWDPREF_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LFETCH -		
MEM_LFETCH_BUDDY.calc	2.95419	LLC_LFETCH_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_ANY -		
MEM_LOAD_BUDDY.calc	1.90093	LLC_LOAD_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_FP -		
MEM_LOAD_FP_BUDDY.calc	0.00444	LLC_LOAD_FP_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_HPW -		
MEM_LOAD_HPW_BUDDY.calc	0.00079	LLC_LOAD_HPW_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_INT -		
MEM_LOAD_INT_BUDDY.calc	1.90187	LLC_LOAD_INT_BUDDY_HIT.calc
RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_RSE -		
MEM_LOAD_RSE_BUDDY.calc	0.00072	LLC_LOAD_RSE_BUDDY_HIT.calc
	0.62056	LLC_REF_MISS_DATA_HW_PREF
	0.86036	LLC_REF_MISS_DATA_HW_PREF_LFETCH
	1.31932	LLC_REF_MISS_DATA_HW_PREF_LOAD_ANY
	0.61649	LLC_REF_MISS_DATA_HW_PREF_LOAD_FP
	0.62097	LLC_REF_MISS_DATA_HW_PREF_LOAD_HPW
	1.31596	LLC_REF_MISS_DATA_HW_PREF_LOAD_INT
	0.61984	LLC_REF_MISS_DATA_HW_PREF_LOAD_RSE
	0.61725	LLC_REF_MISS_DATA_HW_PREF_SEMAPHORE
	0.79166	LLC_REF_MISS_DATA_HW_PREF_STORE_ANY
	0.11996	LLC_REF_MISS_DATA_LFETCH
	0.35181	LLC_REF_MISS_DATA_LOAD_ANY

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 485
Reference Manual for Software Development and Optimization Guide

| | 0.00012|LLC_REF_MISS_DATA_LOAD_FP
| | 0.00121|LLC_REF_MISS_DATA_LOAD_HPW
| | 0.34899|LLC_REF_MISS_DATA_LOAD_INT
| | 0.00000|LLC_REF_MISS_DATA_LOAD_RSE
| | 0.00000|LLC_REF_MISS_DATA_SEMAPHORE
| | 0.08532|LLC_REF_MISS_DATA_STORE_ANY
| RIL_REQ_REF_DATA_WB_MLD_BUDDY_SEMAPHORE - |
| MEM_SEMAPHORE_BUDDY.calc| 0.00331|LLC_SEMAPHORE_BUDDY_HIT.calc
| RIL_REQ_REF_DATA_WB_MLD_BUDDY_STORE_ANY - |
| MEM_STORE_BUDDY.calc| 4.61038|LLC_STORE_BUDDY_HIT.calc
| MEM_LFETCH_BUDDY.io + |
| MEM_HWDPREF_BUDDY.io + |
| MEM_LOAD_BUDDY.io + |
| MEM_STORE_BUDDY.io + |
| MEM_SEMAPHORE_BUDDY.calc| 0.85859|MEM_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF * |
| HWDPREF_BUDDY_FRACTION.calc| 0.30932|MEM_HWDPREF_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LFETCH - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LFETCH| 0.11984|MEM_LFETCH_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LOAD_ANY - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LOAD_ANY| 0.34695|MEM_LOAD_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LOAD_FP - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LOAD_FP| -0.00419|MEM_LOAD_FP_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LOAD_HPW - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LOAD_HPW| -0.00079|MEM_LOAD_HPW_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LOAD_INT - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LOAD_INT| 0.34641|MEM_LOAD_INT_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_LOAD_RSE - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_LOAD_RSE| -0.00072|MEM_LOAD_RSE_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_SEMAPHORE - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_SEMAPHORE| -0.00331|MEM_SEMAPHORE_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF_STORE_ANY - |
| LLC_REF_MISS_DATA_HW_PREF - |
| LLC_REF_MISS_DATA_STORE_ANY| 0.08579|MEM_STORE_BUDDY.calc
| | 1.34891|MLD_REF_PRIMARY_HW_PREF
| | 12.70759|RIL_REQ_REF_DATA_HW_PREF
| | 11.34639|RIL_REQ_REF_DATA_WB_MLD_BUDDY
| | 3.07403|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LFETCH
| | 2.24789|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_ANY
| | 0.00025|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_FP
| | 0.00000|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_HPW
| | 2.24828|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_INT
| | 0.00000|RIL_REQ_REF_DATA_WB_MLD_BUDDY_LOAD_RSE
| | 0.00000|RIL_REQ_REF_DATA_WB_MLD_BUDDY_SEMAPHORE
| | 4.69616|RIL_REQ_REF_DATA_WB_MLD_BUDDY_STORE_ANY

B.4.7 DREF
This data reference outcomes report combines all of the types of data references and
their possible outcomes into one report. See the previous sections with reports for the
individual data reference types for more information.

variable name	value
DATA_REF_ANY	226.89468
TLB_DREF.calc	0.02332
CSPEC_LOAD_NAT	0.01960
PREF_DROP_FLDTLB_MISS	0.00372
FLD_DREF.cares	86.99398
FLD_DREAD_HIT.cares	86.41085
FLD_LOAD_HIT.cares	81.58444
FLD_LOAD_INT_HIT.calc	80.47364
FLD_LOAD_RSE_HIT.calc	1.11080
FLD_DPREF_HIT.calc	4.82641
PREF_DROP_FLD_HIT_LFETCH	1.38983
PREF_DROP_FLD_HIT_HW_PREF	3.43658
FLD_DPREF_SECONDARY.calc	0.58313
PREF_DROP_FLD_SECONDARY_MISS_LFETCH	0.03715
PREF_DROP_FLD_SECONDARY_MISS_HW_PREF	0.54597
MLD_DREF.calc	128.32017
MLD_DREF_HIT.calc	97.62069
MLD_DREAD_HIT.calc	23.74735
MLD_LOAD_HIT	7.93826
MLD_REF_HIT_LOAD_INT	7.22803
MLD_REF_HIT_LOAD_FP	0.30201
MLD_LOAD_RSE_HIT.calc	0.18273
MLD_REF_HIT_LOAD_HPW	0.20939

Example Core PMU Event Reports

486 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

| MLD_DPREF_HIT.calc | 15.82520
| MLD_REF_HIT_LFETCH | 7.73774
| MLD_REF_HIT_HW_PREF | 8.08746
| MLD_WRITE_HIT.calc | 73.87334
| MLD_REF_HIT_STORE_INT | 43.51066
| MLD_REF_HIT_STORE_FP | 29.07523
| MLD_REF_HIT_STORE_RSE | 1.28744
| MLD_REF_HIT_SEMAPHORE | 0.00000
| MLD_DREF_SECONDARY.calc | 14.55208
| MLD_SMQ_REF_HIT_LOAD_ANY | 1.10795
| MLD_SMQ_REF_HIT_LOAD_INT | 1.07331
| MLD_SMQ_REF_HIT_LOAD_FP | 0.03241
| MLD_SMQ_REF_HIT_LOAD_RSE | 0.00106
| MLD_SMQ_REF_HIT_LOAD_HPW | 0.00000
| MLD_DPREF_SECONDARY.calc | 0.43963
| MLD_SMQ_REF_HIT_LFETCH | 0.08724
| MLD_SMQ_REF_HIT_HW_PREF | 0.35239
| MLD_WRITE_SECONDARY.calc | 13.03210
| MLD_SMQ_REF_HIT_STORE_INT | 1.49042
| MLD_SMQ_REF_HIT_STORE_FP | 11.53583
| MLD_SMQ_REF_HIT_STORE_RSE | 0.00584
| MLD_SMQ_REF_HIT_SEMAPHORE | 0.00000
| MLD_DPREF_MISS_DROP.calc | 16.14740
| MLD_LFETCH_MISS_DROP.calc | 11.59322
| MLD_HWDPREF_MISS_DROP.calc | 4.55417
| MLD_WRITE_COALESCED.calc | 0.00000
| LLC_DREF_HIT.calc | 10.59260
| LLC_DREAD_HIT.calc | 5.97546
| LLC_LOAD_HIT.calc | 1.98280
| LLC_LOAD_INT_HIT.calc | 1.89929
| LLC_LOAD_FP_HIT.calc | 0.00013
| LLC_LOAD_RSE_HIT.calc | 0.00026
| LLC_LOAD_HPW_HIT.calc | 0.08512
| LLC_DPREF_HIT.calc | 3.99265
| LLC_LFETCH_HIT.calc | 2.95498
| LLC_HWDPREF_NOBUDDY_HIT.calc | 1.03767
| LLC_WRITE_HIT.calc | 4.61714
| LLC_STORE_INT_HIT.calc | 0.12085
| LLC_STORE_FP_HIT.calc | 4.49469
| LLC_STORE_RSE_HIT.calc | 0.00159
| LLC_SEMAPHORE_HIT.calc | 0.00000
| MEM_DREF.calc | 1.17760
| MEM_DREAD.calc | 1.09233
| MEM_LOAD.calc | 0.35181
| LLC_REF_MISS_DATA_LOAD_INT | 0.34899
| LLC_REF_MISS_DATA_LOAD_FP | 0.00012
| LLC_REF_MISS_DATA_LOAD_RSE | 0.00000
| LLC_REF_MISS_DATA_LOAD_HPW | 0.00121
| MEM_DPREF.calc | 0.43120
| LLC_REF_MISS_DATA_LFETCH | 0.11996
| MEM_HWDPREF_NOBUDDY.calc | 0.31124
| MEM_WRITE.calc | 0.08527
| LLC_REF_MISS_DATA_STORE_INT | 0.03493
| LLC_REF_MISS_DATA_STORE_FP | 0.05033
| LLC_REF_MISS_DATA_STORE_RSE | 0.00001
| LLC_REF_MISS_DATA_SEMAPHORE | 0.00000

calculations	value	variable name
FLD_LFETCH_HIT.calc +		
FLD_HWDPREF_HIT.calc	4.82641	FLD_DPREF_HIT.calc
FLD_LFETCH_SECONDARY.io +		
FLD_HWDPREF_SECONDARY.calc	0.58313	FLD_DPREF_SECONDARY.calc
FLD_LOAD_INT_HIT.io +		
FLD_LOAD_RSE_HIT.io +		
FLD_LFETCH_HIT.io +		
FLD_HWDPREF_HIT.calc	86.41085	FLD_DREAD_HIT.calc
FLD_DREAD_HIT.calc +		
FLD_DPREF_SECONDARY.calc	86.06591	FLD_DREF.calc
	92.35311	FLD_LOAD_ANY
FLD_LOAD_ANY -		
FLD_LOAD_MISS_ANY	81.58444	FLD_LOAD_HIT.calc
	91.05830	FLD_LOAD_INT
FLD_LOAD_INT -		
FLD_LOAD_MISS_INT	80.47364	FLD_LOAD_INT_HIT.calc
	10.76867	FLD_LOAD_MISS_ANY
	10.58467	FLD_LOAD_MISS_INT
(LLC_HWDPREF.calc -		
MLD_REF_PRIMARY_HW_PREF) /		
LLC_HWDPREF.calc	0.49846	HWDPREF_BUDDY_FRACTION.calc
FLDTLB_HWDPREF_MISS_DROP.calc +		
FLD_HWDPREF_HIT.calc +		
FLD_HWDPREF_SECONDARY.calc +		
MLD_HWDPREF_HIT.calc +		
MLD_HWDPREF_SECONDARY.calc +		
MLD_HWDPREF_MISS_DROP.calc +		

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 487
Reference Manual for Software Development and Optimization Guide

| LLC_HWDPREF_NOBUDDY_HIT.calc + |
| MEM_HWDPREF_NOBUDDY.calc| 18.32921|HWDPREF_NOBUDDY.calc
| LLC_LFETCH_HIT.calc + |
| LLC_HWDPREF_NOBUDDY_HIT.calc| 3.99265|LLC_DPREF_HIT.calc
| LLC_LOAD_HIT.calc + |
| LLC_DPREF_HIT.calc| 5.97546|LLC_DREAD_HIT.calc
| LLC_DREAD_HIT.calc + |
| LLC_WRITE_HIT.calc| 10.59260|LLC_DREF_HIT.calc
| RIL_REQ_REF_DATA_HW_PREF - |
| LLC_LFETCH_BUDDY.calc - |
| LLC_LOAD_BUDDY.calc - |
| LLC_STORE_BUDDY.calc - |
| LLC_SEMAPHORE_BUDDY.calc| 2.68952|LLC_HWDPREF.calc
| LLC_HWDPREF.calc * |
| HWDPREF_BUDDY_FRACTION.calc| 1.34061|LLC_HWDPREF_BUDDY.calc
| LLC_HWDPREF.calc - |
| LLC_HWDPREF_BUDDY.calc| 1.34891|LLC_HWDPREF_NOBUDDY.calc
| LLC_HWDPREF_NOBUDDY.calc - |
| MEM_HWDPREF_NOBUDDY.calc| 1.03767|LLC_HWDPREF_NOBUDDY_HIT.calc
| RIL_REQ_REF_DATA_LFETCH - |
| LLC_REF_MISS_DATA_LFETCH| 2.95498|LLC_LFETCH_HIT.calc
| RIL_REQ_REF_DATA_LOAD_FP - |
| LLC_REF_MISS_DATA_LOAD_FP| 0.00013|LLC_LOAD_FP_HIT.calc
| RIL_REQ_REF_DATA_LOAD_ANY - |
| LLC_REF_MISS_DATA_LOAD_ANY| 1.98280|LLC_LOAD_HIT.calc
| RIL_REQ_REF_DATA_LOAD_HPW - |
| LLC_REF_MISS_DATA_LOAD_HPW| 0.08512|LLC_LOAD_HPW_HIT.calc
| RIL_REQ_REF_DATA_LOAD_INT - |
| LLC_REF_MISS_DATA_LOAD_INT| 1.89929|LLC_LOAD_INT_HIT.calc
| RIL_REQ_REF_DATA_LOAD_RSE - |
| LLC_REF_MISS_DATA_LOAD_RSE| 0.00026|LLC_LOAD_RSE_HIT.calc
| | 0.62056|LLC_REF_MISS_DATA_HW_PREF
| | 0.11996|LLC_REF_MISS_DATA_LFETCH
| | 0.35181|LLC_REF_MISS_DATA_LOAD_ANY
| | 0.00012|LLC_REF_MISS_DATA_LOAD_FP
| | 0.00121|LLC_REF_MISS_DATA_LOAD_HPW
| | 0.34899|LLC_REF_MISS_DATA_LOAD_INT
| | 0.00000|LLC_REF_MISS_DATA_LOAD_RSE
| | 0.00000|LLC_REF_MISS_DATA_SEMAPHORE
| | 0.05033|LLC_REF_MISS_DATA_STORE_FP
| | 0.03493|LLC_REF_MISS_DATA_STORE_INT
| | 0.00001|LLC_REF_MISS_DATA_STORE_RSE
|RIL_REQ_REF_DATA_NC_WRITE_ANY_SEMAPHORE + |
| RIL_REQ_REF_DATA_WB_RFO_SEMAPHORE| 0.00000|LLC_SEMAPHORE.calc
| RIL_REQ_REF_DATA_SEMAPHORE - |
| LLC_REF_MISS_DATA_SEMAPHORE| 0.00000|LLC_SEMAPHORE_HIT.calc
| RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_FP + |
| RIL_REQ_REF_DATA_WB_RFO_STORE_FP| 4.54502|LLC_STORE_FP.calc
| RIL_REQ_REF_DATA_STORE_FP - |
| LLC_REF_MISS_DATA_STORE_FP| 4.49469|LLC_STORE_FP_HIT.calc
|RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_INT + |
| RIL_REQ_REF_DATA_WB_RFO_STORE_INT| 0.15579|LLC_STORE_INT.calc
| RIL_REQ_REF_DATA_STORE_INT - |
| LLC_REF_MISS_DATA_STORE_INT| 0.12085|LLC_STORE_INT_HIT.calc
|RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_RSE + |
| RIL_REQ_REF_DATA_WB_RFO_STORE_RSE| 0.00160|LLC_STORE_RSE.calc
| RIL_REQ_REF_DATA_STORE_RSE - |
| LLC_REF_MISS_DATA_STORE_RSE| 0.00159|LLC_STORE_RSE_HIT.calc
| LLC_STORE_INT.calc + |
| LLC_STORE_FP.calc + |
| LLC_STORE_RSE.calc + |
| LLC_SEMAPHORE.calc| 4.70241|LLC_WRITE.calc
| LLC_STORE_INT_HIT.calc + |
| LLC_STORE_FP_HIT.calc + |
| LLC_STORE_RSE_HIT.calc + |
| LLC_SEMAPHORE_HIT.calc| 4.61714|LLC_WRITE_HIT.calc
| MEM_LFETCH.calc + |
| MEM_HWDPREF_NOBUDDY.calc| 0.43120|MEM_DPREF.calc
| MEM_LOAD.calc + |
| MEM_LFETCH.calc + |
| MEM_HWDPREF.calc| 1.09233|MEM_DREAD.calc
| MEM_DREAD.calc + |
| MEM_WRITE.calc| 1.17760|MEM_DREF.calc
| LLC_REF_MISS_DATA_HW_PREF * |
| HWDPREF_BUDDY_FRACTION.calc| 0.30932|MEM_HWDPREF_BUDDY.calc
| LLC_REF_MISS_DATA_HW_PREF - |
| MEM_HWDPREF_BUDDY.calc| 0.31124|MEM_HWDPREF_NOBUDDY.calc
| LLC_REF_MISS_DATA_LOAD_ANY| 0.35181|MEM_LOAD.calc
| MEM_STORE_INT.calc + |
| MEM_STORE_FP.calc + |
| MEM_STORE_RSE.calc + |
| MEM_SEMAPHORE.calc | 0.08527|MEM_WRITE.calc
| MLD_LFETCH_HIT.calc + |
| MLD_HWDPREF_HIT.calc| 15.82520|MLD_DPREF_HIT.calc
| MLD_LFETCH_MISS_DROP.calc + |
| MLD_HWDPREF_MISS_DROP.calc| 16.14740|MLD_DPREF_MISS_DROP.calc
| MLD_LFETCH_SECONDARY.calc + |
| MLD_HWDPREF_SECONDARY.calc| 0.43963|MLD_DPREF_SECONDARY.calc

Example Core PMU Event Reports

488 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

| MLD_LOAD_INT_HIT.calc + |
| MLD_LOAD_FP_HIT.calc + |
| MLD_LOAD_RSE_HIT.calc + |
| MLD_LOAD_HPW_HIT.calc + |
| MLD_LFETCH_HIT.calc + |
| MLD_HWDPREF_HIT.calc| 23.74735|MLD_DREAD_HIT.calc
| MLD_DREF_HIT.cares + |
| MLD_SMQ_REF_HIT + |
| MLD_DPREF_MISS_DROP.io + |
| MLD_WRITE_COALESCED.calc| 128.32017|MLD_DREF.calc
| MLD_DREAD_HIT.calc + |
| MLD_WRITE_HIT.calc| 97.62069|MLD_DREF_HIT.calc
| | 4.54245|MLD_HINT_PREF_DROP_HW_PREF
| | 0.00000|MLD_HINT_PREF_DROP_LFETCH
| MLD_HINT_PREF_DROP_HW_PREF + |
| MLD_REF_SECONDARY_DROP_HW_PREF + |
| MLD_SMQ_REF_SECONDARY_DROP_HW_PREF| 4.55417|MLD_HWDPREF_MISS_DROP.calc
| MLD_HINT_PREF_DROP_LFETCH + |
| MLD_REF_SECONDARY_DROP_LFETCH + |
| MLD_SMQ_REF_SECONDARY_DROP_LFETCH| 11.59322|MLD_LFETCH_MISS_DROP.calc
| | 0.18405|MLD_LOAD_LOAD_RSE
| | 0.00132|MLD_LOAD_MISS_LOAD_RSE
| MLD_LOAD_LOAD_RSE - |
| MLD_LOAD_MISS_LOAD_RSE| 0.18273|MLD_LOAD_RSE_HIT.calc
| | 1.34891|MLD_REF_PRIMARY_HW_PREF
| | 0.01173|MLD_REF_SECONDARY_DROP_HW_PREF
| | 11.59196|MLD_REF_SECONDARY_DROP_LFETCH
| | 14.55208|MLD_SMQ_REF_HIT
| | 0.00000|MLD_SMQ_REF_SECONDARY_DROP_HW_PREF
| | 0.00127|MLD_SMQ_REF_SECONDARY_DROP_LFETCH
| RIL_REQ_REF_DATA_NC_WRITE_WC_MLD - |
| RIL_REQ_REF_DATA_NC_WRITE_WC_ANY| 0.00000|MLD_WRITE_COALESCED.calc
| MLD_STORE_INT_HIT.calc + |
| MLD_STORE_FP_HIT.calc + |
| MLD_STORE_RSE_HIT.calc + |
| MLD_SEMAPHORE_HIT.calc| 73.87334|MLD_WRITE_HIT.calc
| MLD_STORE_INT_SECONDARY.calc + |
| MLD_STORE_FP_SECONDARY.calc + |
| MLD_STORE_RSE_SECONDARY.calc + |
| MLD_SEMAPHORE_SECONDARY.calc| 13.03210|MLD_WRITE_SECONDARY.calc
| | 12.70759|RIL_REQ_REF_DATA_HW_PREF
| | 3.07494|RIL_REQ_REF_DATA_LFETCH
| | 2.33462|RIL_REQ_REF_DATA_LOAD_ANY
| | 0.00025|RIL_REQ_REF_DATA_LOAD_FP
| | 0.08633|RIL_REQ_REF_DATA_LOAD_HPW
| | 2.24828|RIL_REQ_REF_DATA_LOAD_INT
| | 0.00026|RIL_REQ_REF_DATA_LOAD_RSE
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_ANY_SEMAPHORE
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_FP
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_INT
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_ANY_STORE_RSE
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_WC_ANY
| | 0.00000|RIL_REQ_REF_DATA_NC_WRITE_WC_MLD
| | 0.00000|RIL_REQ_REF_DATA_SEMAPHORE
| | 4.54502|RIL_REQ_REF_DATA_STORE_FP
| | 0.15579|RIL_REQ_REF_DATA_STORE_INT
| | 0.00160|RIL_REQ_REF_DATA_STORE_RSE
| | 0.00000|RIL_REQ_REF_DATA_WB_RFO_SEMAPHORE
| | 4.54502|RIL_REQ_REF_DATA_WB_RFO_STORE_FP
| | 0.15579|RIL_REQ_REF_DATA_WB_RFO_STORE_INT
| | 0.00160|RIL_REQ_REF_DATA_WB_RFO_STORE_RSE
| DTB_LOAD_NAT.calc + |
| FLDTLB_DPREF_MISS_DROP.calc| 0.02332|TLB_DREF.calc

B.5 Instruction Fetch Outcomes
variable name	value
FLI_READ_ANY	264.38225
FLI_IFETCH.calc	256.75359
FLI_IFETCH_HIT.calc	255.59265
FLI_IDMND_HIT.calc	254.43939
FLI_IPREF_HIT.calc	1.15326
FLI_IFETCH_SECONDARY.calc	1.16094
MLI_IFETCH_HIT.calc	7.41895
MLI_IDMND_HIT.calc	2.58748
MLI_IPREF_HIT.calc	4.83147
LLC_IFETCH_HIT.calc	0.01058
LLC_REF_MISS_INST_ANY	0.00303

calculations	value	variable name
	0.70470	FLI_FETCH_RAB_HIT_DMND
	0.45624	FLI_FETCH_RAB_HIT_PREF
FLI_READ_DMND -		

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 489
Reference Manual for Software Development and Optimization Guide

| FLI_READ_MISS_DMND | 254.43939|FLI_IDMND_HIT.calc
|FLI_IFETCH_HIT.calc + |
|FLI_IFETCH_SECONDARY.calc | 256.75359|FLI_IFETCH.calc
| FLI_IDMND_HIT.calc + |
| FLI_IPREF_HIT.calc | 255.59265|FLI_IFETCH_HIT.calc
| FLI_FETCH_RAB_HIT_DMND + |
| FLI_FETCH_RAB_HIT_PREF | 1.16094|FLI_IFETCH_SECONDARY.calc
| FLI_READ_PREF - |
| FLI_READ_MISS_PREF | 1.15326|FLI_IPREF_HIT.calc
| | 257.73625|FLI_READ_DMND
| | 3.29686|FLI_READ_MISS_DMND
| | 5.29934|FLI_READ_MISS_PREF
| | 6.45260|FLI_READ_PREF
| RIL_REQ_REF_INST_WB_ANY - |
| LLC_REF_MISS_INST_ANY | 0.01058|LLC_IFETCH_HIT.calc
| MLI_READ_HIT_DMND_LRU + |
| MLI_READ_HIT_DMND_NOLRU | 2.58748|MLI_IDMND_HIT.calc
| MLI_IDMND_HIT.calc + |
| MLI_IPREF_HIT.calc | 7.41895|MLI_IFETCH_HIT.calc
| MLI_READ_HIT_PREF_LRU + |
| MLI_READ_HIT_PREF_NOLRU | 4.83147|MLI_IPREF_HIT.calc
| | 0.01806|MLI_READ_HIT_DMND_LRU
| | 2.56941|MLI_READ_HIT_DMND_NOLRU
| | 0.02427|MLI_READ_HIT_PREF_LRU
| | 4.80719|MLI_READ_HIT_PREF_NOLRU
| | 0.01362|RIL_REQ_REF_INST_WB_ANY

B.6 Branch Prediction Outcomes

variable name	value
BR_PRED.calc	122.18199
BR_PRED_CORRECT.calc	116.44795
BR_PRED_WRONG.calc	5.73404
BR_PRED_WRONG_PATH.calc	5.15990
BR_PRED_DETAIL_IPREL_WRONG_PATH	5.14521
BR_PRED_DETAIL_NON_RETIND_WRONG_PATH	0.00051
BR_PRED_DETAIL_RETURN_WRONG_PATH	0.01418
BR_PRED_WRONG_TARG.calc	0.57281
BR_PRED_DETAIL_IPREL_WRONG_TARGET	0.00006
BR_PRED_DETAIL_NON_RETIND_WRONG_TARGET	0.55617
BR_PRED_DETAIL_RETURN_WRONG_TARGET	0.01658
BR_BE_PRED_DETAIL_ANY_RETIRED	0.00133

calculations	value	variable name
BR_PRED_CORRECT.calc +		
BR_PRED_WRONG.calc	122.18199	030_BR_PRED.calc
BR_PRED_DETAIL_ANY_CORR_PRED -		
BR_BE_PRED_DETAIL_ANY_RETIRED	116.44795	BR_PRED_CORRECT.calc
	116.44928	BR_PRED_DETAIL_ANY_CORR_PRED
BR_PRED_WRONG_PATH.calc +		
BR_PRED_WRONG_TARG.calc +		
BR_BE_PRED_DETAIL_ANY_RETIRED	5.73404	BR_PRED_WRONG.calc
BR_PRED_DETAIL_IPREL_WRONG_PATH +		
BR_PRED_DETAIL_NON_RETIND_WRONG_PATH +		
BR_PRED_DETAIL_RETURN_WRONG_PATH	5.15990	BR_PRED_WRONG_PATH.calc
BR_PRED_DETAIL_IPREL_WRONG_TARGET +		
BR_PRED_DETAIL_NON_RETIND_WRONG_TARGET +		
BR_PRED_DETAIL_RETURN_WRONG_TARGET	0.57281	BR_PRED_WRONG_TARG.calc

B.7 Latency Calculations

B.7.1 Replay Latencies
Instead of continuously replaying while waiting for the resolution of some hazard, the
pipeline sometimes replays and then stalls the pipeline at the instruction issue point
until the hazard is resolved. Some of the cycle accounting PMU events associated with
these replays are pairs of events where one event counts the cycles associated with the
initial replay and the other event counts the cycles associated with the resulting

Example Core PMU Event Reports

490 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

instruction issue stall. In these cases, the average latency of the replay event can be
calculated as shown in the report in this section. Note that the constants used in the
calculations are the number of cycles associated with the various different initial
replays.

variable name	value
AVG_BLK_HPW_REPLAY_LATENCY.calc	45.61036
AVG_FR_LOAD_REPLAY_LATENCY.calc	13.62453
AVG_GR_LOAD_REPLAY_LATENCY.calc	45.83577
AVG_LOAD_ACQ_REPLAY_LATENCY.calc	19.08641
AVG_OZQ_FULL_REPLAY_LATENCY.calc	123.77092

calculations	value	variable name
(CYC_BE_WB2_REPLAY_BLK_HPW +		
CYC_BE_IBD_STALL_HPW) /		
(CYC_BE_WB2_REPLAY_BLK_HPW/7)	45.61036	AVG_BLK_HPW_REPLAY_LATENCY.calc
(CYC_BE_IBD_STALL_FR_LOAD +		
CYC_BE_EXE_REPLAY_FR_LOAD_RAW +		
CYC_BE_EXE_REPLAY_FR_LOAD_WAW) /		
((CYC_BE_EXE_REPLAY_FR_LOAD_RAW/4) +		
(CYC_BE_EXE_REPLAY_FR_LOAD_WAW/4))	13.62453	AVG_FR_LOAD_REPLAY_LATENCY.calc
(CYC_BE_IBD_STALL_GR_LOAD +		
CYC_BE_EXE_REPLAY_GR_LOAD_RAW +		
CYC_BE_EXE_REPLAY_GR_LOAD_WAW +		
CYC_BE_DET_REPLAY_GR_LOAD) /		
((CYC_BE_EXE_REPLAY_GR_LOAD_RAW/4) +		
(CYC_BE_EXE_REPLAY_GR_LOAD_WAW/4) +		
(CYC_BE_DET_REPLAY_GR_LOAD/5))	45.83577	AVG_GR_LOAD_REPLAY_LATENCY.calc
(CYC_BE_IBD_STALL_ACQ +		
CYC_BE_WB2_REPLAY_LOAD_ACQ +		
CYC_BE_DET_REPLAY_LOAD_ACQ) /		
(CYC_BE_DET_REPLAY_LOAD_ACQ/5)	19.08641	AVG_LOAD_ACQ_REPLAY_LATENCY.calc
(CYC_BE_IBD_STALL_OZQFULL +		
CYC_BE_WB2_REPLAY_OZQ_FULL) /		
(CYC_BE_WB2_REPLAY_OZQ_FULL/7)	123.77092	AVG_OZQ_FULL_REPLAY_LATENCY.calc
	70.07033	CYC_BE_DET_REPLAY_GR_LOAD
	0.00004	CYC_BE_DET_REPLAY_LOAD_ACQ
	32.51587	CYC_BE_EXE_REPLAY_FR_LOAD_RAW
	0.15557	CYC_BE_EXE_REPLAY_FR_LOAD_WAW
	12.47120	CYC_BE_EXE_REPLAY_GR_LOAD_RAW
	0.21218	CYC_BE_EXE_REPLAY_GR_LOAD_WAW
	0.00006	CYC_BE_IBD_STALL_ACQ
	78.61186	CYC_BE_IBD_STALL_FR_LOAD
	704.92995	CYC_BE_IBD_STALL_GR_LOAD
	112.28562	CYC_BE_IBD_STALL_HPW
	0.49379	CYC_BE_IBD_STALL_OZQFULL
	20.35721	CYC_BE_WB2_REPLAY_BLK_HPW
	0.00006	CYC_BE_WB2_REPLAY_LOAD_ACQ
	0.02960	CYC_BE_WB2_REPLAY_OZQ_FULL

B.7.2 Exposed Data Access Latencies
Some of the cycle accounting events can be associated with specific data reference
types. In these cases, average exposed latencies per associated access can be
calculated.

variable name	value
AVG_DATA_ACCESS_TOTAL_EXPOSED.calc	0.38462
AVG_LOAD_FP_EXPOSED.calc	12.48634
AVG_LOAD_INT_EXPOSED.calc	0.36484

calculations	value	variable name
DATA_ACCESS.calc /		
(DATA_REF_LOAD_INT +		
DATA_REF_LOAD_FP +		
DATA_REF_STORE_INT +		
DATA_REF_STORE_FP +		
DATA_REF_SEMAPHORE)	0.38462	AVG_DATA_ACCESS_TOTAL_EXPOSED_LATENCY.calc
(CYC_BE_IBD_STALL_FR_LOAD +		
CYC_BE_EXE_REPLAY_FR_LOAD_RAW +		
CYC_BE_EXE_REPLAY_FR_LOAD_WAW) /		
DATA_REF_LOAD_FP	12.48634	AVG_LOAD_FP_EXPOSED_LATENCY.calc

Example Core PMU Event Reports

Intel® Itanium® Processor 9500 Series 491
Reference Manual for Software Development and Optimization Guide

|(CYC_BE_IBD_STALL_GR_LOAD + |
| CYC_BE_EXE_REPLAY_GR_LOAD_RAW + |
| CYC_BE_EXE_REPLAY_GR_LOAD_WAW + |
| CYC_BE_DET_REPLAY_GR_LOAD) / |
|DATA_REF_LOAD_INT | 0.36484|AVG_LOAD_INT_EXPOSED_LATENCY.calc
| | 13.54817|CYC_BE_DET_REPLAY_GR_LOAD
| | 4.94232|CYC_BE_EXE_REPLAY_FR_LOAD_RAW
| | 0.05605|CYC_BE_EXE_REPLAY_FR_LOAD_WAW
| | 4.00399|CYC_BE_EXE_REPLAY_GR_LOAD_RAW
| | 0.08480|CYC_BE_EXE_REPLAY_GR_LOAD_WAW
| | 2.96305|CYC_BE_IBD_STALL_FR_LOAD
| | 17.14045|CYC_BE_IBD_STALL_GR_LOAD
| (see Section B.2)| 51.21450|DATA_ACCESS.calc
| | 0.63761|DATA_REF_LOAD_FP
| | 95.32248|DATA_REF_LOAD_INT
| | 0.00000|DATA_REF_SEMAPHORE
| | 2.04434|DATA_REF_STORE_FP
| | 35.15017|DATA_REF_STORE_INT

B.7.3 Average Lifetimes in Queues
The report in this section uses Little’s Law from queueing theory to calculate the
average lifetime of data accesses in various queues in the cache hierarchy.

variable name	value
AVG_LIFETIME_IN_MLD_FAB.calc	54.14154
AVG_LIFETIME_IN_MLD_OZDATA.calc	7.77252
AVG_LIFETIME_IN_MLD_SMQ.calc	33.31547
AVG_LIFETIME_IN_OZQ.calc	3.48710
AVG_LIFETIME_IN_RIL_DRQ.calc	41.02823

calculations	value	variable name
	541.38471	CPU_CYCLES
	0.00000	DATA_REF_SEMAPHORE
	40.65089	DATA_REF_STORE_ANY
MLD_FAB_AVG_OCCUPANCY.mld /		
(MLD_REF_PRIMARY/CPU_CYCLES)	54.14154	AVG_LIFETIME_IN_MLD_FAB.mld
((MLD_FAB_COUNT_MSB * 2) +		
MLD_FAB_COUNT_LSB) /		
CPU_CYCLES	0.06557	MLD_FAB_AVG_OCCUPANCY.mld
	18.02661	MLD_FAB_COUNT_LSB
	8.73487	MLD_FAB_COUNT_MSB
MLD_OZDATA_AVG_OCCUPANCY.calc /		
((DATA_REF_STORE_ANY +		
DATA_REF_SEMAPHORE) /		
CPU_CYCLES)	7.77252	AVG_LIFETIME_IN_MLD_OZDATA.calc
((MLD_OZDATA_COUNT_MSB*4) +		
MLD_OZDATA_COUNT_LSB) /		
CPU_CYCLES	0.58361	MLD_OZDATA_AVG_OCCUPANCY.calc
	161.46801	MLD_OZDATA_COUNT_LSB
	38.62297	MLD_OZDATA_COUNT_MSB
MLD_OZQ_AVG_OCCUPANCY.calc /		
(MLD_OZQ_INSERT / CPU_CYCLES)	3.48710	AVG_LIFETIME_IN_OZQ.calc
((MLD_OZQ_COUNT_MSB*2) +		
MLD_OZQ_COUNT_LSB) /		
CPU_CYCLES	0.44833	MLD_OZQ_AVG_OCCUPANCY.calc
	106.81733	MLD_OZQ_COUNT_LSB
	67.95093	MLD_OZQ_COUNT_MSB
	69.60497	MLD_OZQ_INSERT
	0.65562	MLD_REF_PRIMARY
	0.91615	MLD_REF_SECONDARY
MLD_SMQ_AVG_OCCUPANCY.calc /		
(MLD_REF_SECONDARY /		
CPU_CYCLES)	33.31547	AVG_LIFETIME_IN_MLD_SMQ.calc
((MLD_SMQ_COUNT_MSB*2) +		
MLD_SMQ_COUNT_LSB) /		
CPU_CYCLES	0.05638	MLD_SMQ_AVG_OCCUPANCY.calc
	5.88356	MLD_SMQ_COUNT_LSB
	12.31914	MLD_SMQ_COUNT_MSB
RIL_DRQ_AVG_OCCUPANCY.calc /		
((RIL_REQ_REF_DATA_WB_ANY +		
RIL_REQ_REF_DATA_NC_READ_ANY +		
RIL_REQ_OTHER_DRQ_ANY) /		
CPU_CYCLES)	41.02823	AVG_LIFETIME_IN_RIL_DRQ.calc
((RIL_DRQ_VALID_MSB*4) +		
RIL_DRQ_VALID_LSB) /		
CPU_CYCLES	0.09823	RIL_DRQ_AVG_OCCUPANCY.calc
	31.09798	RIL_DRQ_VALID_LSB
	5.52032	RIL_DRQ_VALID_MSB
	0.00000	RIL_REQ_OTHER_DRQ_ANY

Example Core PMU Event Reports

492 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

| | 0.00000|RIL_REQ_REF_DATA_NC_READ_ANY
| | 1.29616|RIL_REQ_REF_DATA_WB_ANY

B.8 Data Prefetching

B.8.1 Data Prefetch Queue Insertions
The report in this section gives a breakdown of insertions into the data prefetch queue.

variable name	value
DPFQ_ENQ_ANY	34.46540
DPFQ_INS_LFETCH.calc	23.46216
DFFQ_INS_LFETCH_ON_A.calc	22.75452
FLD_HWPREF_INS_OZQ_FULL_LFETCH	0.70764
DPFQ_ENQ_LFETCH_COUNT	0.00000
DPFQ_ENQ_MLD	0.92920
DPFQ_INS_FLD_NBR.calc	8.46529
DPFQ_ENQ_FLD_BIDI	5.48542
DPFQ_ENQ_FLD_BWD	0.53471
DPFQ_ENQ_FLD_FWD	2.44516
DPFQ_INS_FLD_TARGET.calc	1.78725
FLD_HWPREF_INS_ACQ_PEND	0.00109
FLD_HWPREF_INS_CANCEL_FILL	0.25304
FLD_HWPREF_INS_DTLB_MISS	0.00208
FLD_HWPREF_INS_DTLB_MISS_LFETCH	0.38969
FLD_HWPREF_INS_FLDTLB_MISS_LFETCH	0.07785
FLD_HWPREF_INS_FLDTLB_MISS	0.93321
FLD_HWPREF_INS_FLUSH_DST	0.12012
FLD_HWPREF_INS_OZQ_FULL	0.01015
FLD_HWPREF_INS_REL_OP	0.00000
FLD_HWPREF_INS_STORE_ALIAS	0.00002
DPFQ_INS_RSE.calc	0.21248
DPFQ_ENQ_RSE_LOAD	0.07291
DPFQ_ENQ_RSE_STORE	0.13957
DPFQ_ENQ_MOV_BSPST	0.00000

calculations	value	variable name
DPFQ_ENQ_LFETCH -		
FLD_HWPREF_INS_OZQ_FULL_LFETCH	22.75452	DFFQ_INS_LFETCH_ON_A.calc
	23.46216	DPFQ_ENQ_LFETCH
	0.21248	DPFQ_ENQ_RSE_ANY
DPFQ_ENQ_FLD_BIDI +		
DPFQ_ENQ_FLD_BWD +		
DPFQ_ENQ_FLD_FWD	8.46529	DPFQ_INS_FLD_NBR.calc
FLD_HWPREF_INS_ACQ_PEND +		
FLD_HWPREF_INS_CANCEL_FILL +		
FLD_HWPREF_INS_DTLB_MISS +		
FLD_HWPREF_INS_DTLB_MISS_LFETCH +		
FLD_HWPREF_INS_FLDTLB_MISS_LFETCH +		
FLD_HWPREF_INS_FLDTLB_MISS +		
FLD_HWPREF_INS_FLUSH_DST +		
FLD_HWPREF_INS_OZQ_FULL +		
FLD_HWPREF_INS_REL_OP +		
FLD_HWPREF_INS_STORE_ALIAS	1.78725	DPFQ_INS_FLD_TARGET.calc
DPFQ_ENQ_LFETCH +		
DPFQ_ENQ_LFETCH_COUNT	23.46216	DPFQ_INS_LFETCH.calc
DPFQ_ENQ_RSE_ANY+DPFQ_ENQ_MOV_BSPST	0.21248	DPFQ_INS_RSE.calc

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 493
Reference Manual for Software Development and Optimization Guide

C ‘Data Fetch Software
Optimization Opportunities
and Examples

C.1 Transitioning from 4 M-ports to 2
Previous Intel Itanium processors had 2 load pipelines and 2 store pipelines. The
processor has 2 load/store pipelines. Rescheduling for processor’s pipelines can, in
some cases, result in substantial speedup. The following guidelines can be used to help
optimize scheduling for the memory pipelines:

C.1.1 Avoiding 4 M’s in instruction group
A long stream (e.g. in a loop) of instruction groups that require 4 M pipes per group is
an OK schedule for both processor and previous Intel Itanium processors:

 loop:
 st8 [r10]=r6,8
 st8 [r11]=r7,8
 ld8 r6=[r8],8
 ld8 r7=[r9],8
 br.cloop loop;;

The processor will take 2 cycles to issue each instruction group where previous Intel
Itanium processors will take only 1, but there isn’t any re-ordering that software can do
to improve this situation. However, software should avoid scheduling instruction groups
that require 4 M pipes adjacent to instruction groups that require no M pipes:

 loop:
 st8 [r10]=r6,8
 st8 [r11]=r7,8
 ld8 r6=[r8],8
 ld8 r7=[r9],8;;
 add r6=1,r6
 add r7=1,r7
 br.cloop loop;;

An iteration of the loop above would take 3 issue cycles on processor and 2 issue cycles
on previous Intel Itanium processors. A much better processor schedule, when
possible, would be to rearrange the instructions so that there are only 2 M pipes
required by any given instruction group:

 loop:
 add r6=1,r6
 add r7=1,r7

 st8 [r10]=r6,8
 st8 [r11]=r7,8;;
 ld8 r6=[r8],8
 ld8 r7=[r9],8

‘Data Fetch Software Optimization Opportunities and Examples

494 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

 br.cloop loop;;

An iteration of the loop above would take 2 issue cycles on both processor and previous
Intel Itanium processors.

C.1.2 Avoiding 3 M’s in instruction group
Software should avoid scheduling instruction groups that require 3 M pipes to issue:

 loop:
 st8 [r10]=r6,8
 st8 [r11]=r6,8
 ld8 r6=[r8],8
 br.cloop loop;;

An iteration of the above loop would take 2 issue cycles on processor and 1 issue cycle
on previous Intel Itanium processors. Unrolling and rescheduling the loop as follows
would reduce the issue cycles per original iteration to 1.5 on processor and leave issue
cycles unchanged on previous Intel Itanium processors:

 loop:
 st8 [r10]=r6,16
 st8 [r11]=r6,16
 ld8 r6=[r8],16
 st8 [r12]=r7,16
 st8 [r13]=r7,16
 ld8 r7=[r9],16
 br.cloop loop;;

C.1.3 Scheduling lfetches on an A Pipeline

C.1.3.1 Schedule lfetch-on-A When M Not Available

On the processor, most lfetches can be issued to an A pipeline. Therefore, software
should schedule lfetches on A pipes when M pipes are not available. The following loop
will require only 2 issue cycles per iteration on processor:

 loop:
 st8 [r2]=r1,8 // issued on M-pipe
 ld8 r4=[r3],8 // issued on M-pipe
 lfetch [r9],8 // issued on A-pipe
 st8 [r6]=r5,8 // issued on M-pipe
 ld8 r8=[r7],8 // issued on M-pipe
 br.cloop loop;;

C.1.3.2 Avoid Scheduling lfetch-on-A Every Cycle

Lfetches scheduled on A-ports at a rate of at least one every issue cycle are at risk for
being dropped due to overflowing the DPFQ. Therefore, if the cost of dropping some
lfetches is large, software should avoid scheduling lfetches on A-ports every cycle in a
loop probably even at the cost of adding an issue cycle.

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 495
Reference Manual for Software Development and Optimization Guide

C.1.3.3 Keep lfetches from Same Stream on Either A or M Pipelines

On the processor, lfetches issued on the A pipes will be issued out of order (later) with
respect to lfetches issued on the M pipes. The order of a stream of prefetches is often
connected to the order in which a stream of loads or stores accesses memory.
Changing the order of the prefetches with respect to the order of the dependent
memory instructions can lower performance in some cases. Therefore, when software
would prefer a stream of lfetches to be issued in order, it should schedule the entire
stream on either A pipes or M pipes, not both. Assuming the lfetches and loads in the
following two examples are interleaved on the same address stream, the second
schedule below will sometimes outperform the first:

 loop:
 st8 [r2]=r1,8 // issued on M-pipe
 ld8 r4=[r3],8 // issued on M-pipe
 st8 [r6]=r5,8 // issued on M-pipe
 ld8 r8=[r7],8 // issued on M-pipe
 lfetch [r9],8 // issued on A-pipe
 st8 [r12]=r11,8 // issued on M-pipe
 ld8 r14=[r13],8 // issued on M-pipe
 st8 [r16]=r15,8 // issued on M-pipe
 lfetch [r19],8 // issued on M-pipe
 br.cloop loop;;

 loop:
 st8 [r2]=r1,8 // issued on M-pipe
 ld8 r4=[r3],8 // issued on M-pipe
 st8 [r6]=r5,8 // issued on M-pipe
 ld8 r8=[r7],8 // issued on M-pipe
 lfetch [r9],8 // issued on A-pipe
 st8 [r12]=r11,8 // issued on M-pipe
 ld8 r14=[r13],8 // issued on M-pipe
 lfetch [r19],8 // issued on A-pipe
 st8 [r16]=r15,8 // issued on M-pipe
 br.cloop loop;;

C.1.3.4 Potential Conflict Between A-port and M-port

If there is an lfetch on A0 and an lfetch or some other prefetch on M0 that needs to go
into the DPFQ, only the lfetch on A0 will go into the DPFQ and the lfetch/prefetch on M0
will be dropped. The same is true for for A1 vs. M1. Therefore, software should avoid
scheduling an lfetch on A0 simultaneous with a lfetch on M0 that might need to use the
DPFQ (e.g. a counted lfetch or an lfetch that is likely to miss the DTB). The same
applies to A1 vs. M1.

C.2 Data Memory Reference Clustering

C.2.1 Load Clustering
All Intel Itanium processors issue instructions to the execution pipelines in the order
that software schedules them. Data memory references that miss in a cache or TLB do
not block the main pipeline until the queues holding them fill up. However, a use of a
register that is the target of a load that missed a cache or TLB does block the main
pipeline:

 ld8 r4=[r8];;

‘Data Fetch Software Optimization Opportunities and Examples

496 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

 add r5=1,r4
 ld8 r6=[r9];;
 add r7=1,r6

If the first load in the above example misses, the add instruction will block the main
pipeline. If the second load misses, the second add will also block the pipeline. The
execution time will include the sum of the 2 load miss latencies. However, if the code
were rescheduled as follows, execution would include the maximum of the 2 load
latencies instead of the sum:

 ld8 r4=[r8]
 ld8 r6=[r9];;
 add r5=1,r4
 add r7=1,r6

Therefore, software should attempt to cluster loads such that there are no load uses
between them in order to overlap potential cache or TLB miss latencies. The more likely
loads are to miss a cache or TLB, the more potential they have to benefit from being
clustered.

C.2.2 Lfetch/Load Clustering
Just like loads, lfetches can have longer latencies due to cache or TLB misses. The
latency of an lfetch can prevent it from being useful:

 ld8 r4=[r8];;
 add r5=1,r4
 lfetch [r9]
 ld8 r6=[r9];;
 add r7=1,r6

It seems pretty obvious that the lfetch above isn’t going to provide any value. It is
scheduled in the same cycle as the corresponding load. However, it might not at first be
obvious that in the following schedule can be much better:

 ld8 r4=[r8]
 lfetch [r9];;
 add r5=1,r4
 ld8 r6=[r9];;
 add r7=1,r6

The lfetch is now scheduled only one issue cycle before the corresponding load.
However, if both cache lines ([r8] and [r9]) are in the MLD but not the FLD, then
moving the lfetch before the first add saves 8 cycles. The cycles are saved because the
lfetch and the first load issue at the same time, before the add blocks the pipeline. By
the time the first load is finished, so is the lfetch, and the second load hits in the FLD.
Therefore, software should attempt to cluster loads and lfetches such that there are no
load uses between them in order to overlap potential cache or TLB miss latencies. Also,
lfetch/load clustering might be something a post-compilation optimizer could safely do
to improve code with poor load clustering. Section C.5 discusses the tradeoffs between
speculating loads and lfetching.

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 497
Reference Manual for Software Development and Optimization Guide

C.2.3 Store/Load Declustering
Stores cancel in-flight FLD fills:

 ld8 r4=[r8] // say [r8] is not in FLD, triggers FLD fill
 st8 [r8]=r5;; // this store cancels the FLD fill
 add r6=r4,r3
 ld8 r4=[r8] // so this load to the same line misses FLD again

Therefore, software should avoid scheduling stores that might be to the same line as a
load before the first use of that load:

 ld8 r4=[r8];;
 add r6=r4,r3 // blocks pipeline until load has filled the FLD
 st8 [r8]=r5 // no in-flight FLD fill to kill
 ld8 r4=r8 // so this load hits in the FLD

C.3 Control Speculation
The Intel Itanium instruction set provides architectural support for software based
control speculation. Control speculation is defined in the architectural manual as "the
execution of an operation before the branch which guards it." This architectural support
allows software, by following specific rules, to reorder instructions with respect to
preceding branches and still produce the same results as the original code ordering.
The purpose of this capability is to allow software to expose more instruction level
parallelism to the hardware and thus increase performance.

As with all speculation, control mis-speculation can incur performance penalties. For
example, executing an unneeded add instruction utilizes pipeline execution resources
for no benefit. The wasted usage of those resources can prevent more useful usage of
the resources. The trick of speculation is to maximize the difference between the
benefits of correct speculation and the costs associated with mis-speculations. The
processor design contains a number of changes intended to reduce the cost of control
mis-speculation.

In previous Intel Itanium processor designs, control speculation was limited by several
scenarios that incurred significant control mis-speculation penalties.

• blocking DTB misses by mis-speculated control speculative loads

• hazards with the target registers of long latency mis-speculated control speculative
loads

• blocking FLDTLB misses by mis-speculated control speculative loads

The processor design reduces the penalties in each of these scenarios. See the DTB,
MLD, and FLDTLB sections for more details. As a result of these reductions in control
mis-speculation penalties, software should be able to do more control speculation for a
given penalty, and thus, hopefully, see more performance benefit from such
speculation.

‘Data Fetch Software Optimization Opportunities and Examples

498 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

C.4 Software Data Prefetching
The Intel Itanium instruction set provides architectural support for data prefetching via
an lfetch instruction. This lfetch instruction allows software to prefetch a line into
various levels of the cache hierarchy for the purpose of exposing more instruction level
parallelism to the hardware and thus increasing performance.

As with all speculation, data prefetching can incur performance penalties. For example,
executing an unneeded lfetch instruction utilizes pipeline execution resources and
cache hierarchy resources for no benefit. The wasted usage of those resources can
prevent more useful usage of the resources. The trick of data prefetching is to
maximize the difference between the benefits of useful prefetches and the costs
associated with useless prefetches. The processor design contains a number of changes
intended to reduce the cost of data prefetching via lfetch instructions.

• lfetch-on-A: reduces the cost of issuing an lfetch

• higher FLD fill bandwidth: limits the competition for FLD fill bandwidth between
lfetches and other operations

• PF_DROP hints: limits the bandwidth utilization of the cache/TLB hierarchy by
lfetches

• cache LOCALITY hints: limits the pollution of FLD by lfetches

• lower MLD secondary miss penalty: reduces the break-even point for scheduling an
lfetch ahead of an MLD miss to about 7 cycles

• MLD queue optimizations: MLD hitting lfetches use less valuable resources in MLD
than they did in previous Intel Itanium designs

As a result, software should be able to do more lfetching for a given penalty, and thus,
hopefully, see more performance benefit from such prefetching.

C.4.1 Managing the Cost of an lfetch
The less sure software is of the value of an lfetch, the more it will want to minimize the
cost of the lfetch. The more sure software is of the value of an lfetch, the higher cost it
will be willing to pay to complete the prefetch and to treat it with higher priority. The
processor design provides a number of features that allow software to manage the cost
of an lfetch. There is a whole spectrum of cost choices that software can make. The
following are the two extremes.

C.4.1.1 Minimal Cost (Lowest Priority) lfetch

Software can achieve a minimal cost lfetch with the following steps:

• minimal instruction issue cost: insert lfetches into unused M-port and A-port slots
after instruction scheduling has been done

• minimal cache/TLB bandwidth utilization: DAHR.PF_DROP=ON_NON_MIN_COST

• minimal cache pollution: DAHR.FLD_LOCALITY=MARK_NRU

C.4.1.2 Highest Priority (Maximum Cost) lfetch

Software can achieve the highest priority prefetch with the following steps:

• highest priority instruction issue: schedule lfetches and any instructions they
depend on first; schedule lfetches on M-ports

• highest priority cache/TLB bandwidth utilization: DAHR.PF_DROP=NONE

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 499
Reference Manual for Software Development and Optimization Guide

• highest priority cache allocation: DAHR.LLC_LOCALITY=NORMAL,
DAHR.MLD_LOCALITY==NORMAL, DAHR.FLD_LOCALITY=NORMAL

C.4.2 lfetching in Acyclic Code
Lfetching in acyclic code is difficult for at least two reasons. First, an lfetch must be
separated from the first load to that corresponding cache line by at least enough cycles
to hide the latency of the MLD in order to be useful. Lfetching a cache line just 2 cycles
before the corresponding load does not help because the load will still miss and incur at
least an MLD latency. However, software should keep in mind that an lfetch scheduled
between a load from another address and its corresponding use will have additional
latency to hide behind when the load misses the FLD. See Section C.2 on data
reference clustering for more discussion of this issue.

The second reason lfetching in acyclic code is difficult is that such lfetches are often
speculative and not completely free. The benefit of doing an lfetch needs to (on
average) exceed the cost of doing an lfetch. Due to the potentially lower cost of
lfetches on the processor (see Section C.4.1), software should be able to do more
lfetching in acyclic code regions.

C.4.3 Prefetching Data Address Translations
On the processor, FLDTLB and DTB misses are non-blocking. This characteristic is
particularly valuable in that it allow potentially unnecessary speculative accesses (e.g.
lfetch, speculative load) to avoid blocking the pipeline. However, this also implies that
such speculative accesses might not perform a cache line prefetch or might take longer
to perform a cache line prefetch. For example, an access that misses the FLDTLB
cannot perform an FLD fill. Similarly, a ld.s that misses the DTB typically is deferred
and so doesn’t perform a cache fill. An lfetch that misses the DTB is buffered in the
data prefetch queue and may be reissued after the hardware page walk completes.
Therefore, software should consider prefetching translations into the data TLBs in a
manner similar to prefetching cache lines into the data caches. For example, in a
software pipelined loop, software should consider creating a much sparser (page size
dependent) translation lfetch stream of lfetches far enough ahead of the cache line
lfetch stream to hide hardware page walker latency.

C.5 Lfetches vs. Speculative Loads
Lfetches and speculative loads are similar and might be used in similar scenarios.
However, they have some differences that can lead to different usage.

C.5.1 Lfetch advantages
Lfetches have several advantages over speculative loads.

C.5.1.1 lfetches are not orderable

Lfetches are not affected by acquire and release semantics. Therefore, software can
use lfetches to improve performance of loads following operations with acquire
semantics:

 ld8.acq r4=[r8] // let’s say [r8] and [r9] are 2 lines that miss MLD
 lfetch [r9] // this lfetch will not have to wait for ld8.acq
 ld8 r5=[r9] // this load will hit in MLD when ld8.acq is done

‘Data Fetch Software Optimization Opportunities and Examples

500 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

Also, software can use lfetches to improve the performance of stores with release
semantics:

 lfetch.excl [r8] // let’s say [r8] misses all caches
 ld8 r5=[r9] // let’s say [r9] misses all caches
 st.rel [r8]=r4 // if [r8] is not snooped between lfetch and st.rel,
 // store will hit in MLD as soon as ld8 finishes

C.5.1.2 lfetches can be issued to A pipes

 br somewhere;;
 ld8 r4=[r8] // issued to M0, say misses MLD
 st8 [r9]=r5 // issued to M1
 lfetch [r10] // issued to A0 - saved a cycle by not using M pipe
 (p7) br.cond targ;; // branch not taken
 st8 [r12],r4 // blocks pipeline waiting for r4
 ld8 r6=[r10];;
 add r27=r15,r16;;
 add r14=r6,r27 // use not immediately following load
 // (see first speculative load advantage)

It should be noted that issuing an lfetch on an A pipe can be a disadvantage as well due
to the minimum of 7 extra cycles of latency for an lfetch issued on an A pipe vs. an M
pipe. Therefore, software should use lfetches instead of speculative loads when M pipes
are not available and there is some chance that the dynamic cycle distance between
the lfetch and the corresponding load will be at least 15 cycles (7 + minimum MLD
latency) and the cache line being prefetched is not in the FLD. This may sound unlikely,
but it happens all the time in software pipelined loops and can probably happen some
in acyclic code as well.

C.5.1.3 the cost of an lfetch can be limited by DAHR.PF_DROP hints

An lfetch with an appropriate PF_DROP hint can avoid causing various kinds of memory
hierarchy traffic:

 lfetch.d1 [r8] // say d1 contains PF_DROP=ON_DTB_MLD_MISS
 // and [r8] is not in any cache
 (p7) br.cond targ;; // say branch is taken
 ld8 r5=[r8]

The lfetch in the above example will not cause any memory hierarchy traffic past the
MLD. A speculative load in the same place would go all the way out to memory.
Therefore, software should use lfetches instead of speculative loads when it wants to
limit memory hierarchy traffic.

C.5.1.4 lfetches don’t have target registers

Lfetches do not have target registers. Therefore, software should use lfetches instead
of speculative loads when attempting to hide data access latencies after register
allocation (e.g. a late optimization pass in a compiler or a dynamic optimizer). Also,
software should use lfetches instead of speculative loads when register pressure is
likely to be too high to support the live ranges of the speculative load target registers
(e.g. in software pipelined loops where the lfetch is scheduled way ahead of the
corresponding uses).

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 501
Reference Manual for Software Development and Optimization Guide

C.5.2 Speculative load advantages

C.5.2.1 speculative loads can minimize data dependence height

The use of a target of a speculative load can occur in the same cycle as the
corresponding check load:

 ld8.s r5=[r8]
 (p7) br somewhere;;
 ld8.c r5=[r8]
 add r6=r5,r4

A similar sequence using an lfetch instead of a speculative load has a larger data
dependence height:

 lfetch [r8]
 (p7) br somewhere;;
 ld8 r5=[r8];;
 add r6=r5,r4

Therefore, software should use a speculative load instead of an lfetch when elimination
of a single cycle of data dependence height is more important than any advantages of
using an lfetch.

C.5.2.2 speculative loads can be used for indirect prefetching

Some prefetching operations are indirect, meaning they have to first retrieve a value
from a memory location to compute the address from which to prefetch:

 ld8.s r5=[r8];;
 lfetch [r5]

Software should use a speculative load retrieve a value used to compute a prefetch
address.

C.5.2.3 a speculative load doesn’t take up space in the data prefetch queue
when it misses the DTB

On the processor, lfetches that miss the DTB typically are placed into the data prefetch
queue where they attempt to wait until a hardware page walk can be completed and
they can be re-issued. Speculative loads that miss the DTB do not take up space in the
data prefetch queue. They are deferred (target register gets NATed), and any later non-
speculative load will in effect re-try the load. Therefore, software may, in some
circumstances, decide to use speculative loads instead of lfetches in an attempt to
reduce pressure on the data prefetch queue.

C.6 Re-tuning ILP heuristics
The processor has many micro-architecture differences from previous Intel Itanium
processors that may change the optimum settings of many experimentally determined
software code optimization heuristics. Examples of such microarchitecture changes
include:

• reduced and controllable cost of lfetches

‘Data Fetch Software Optimization Opportunities and Examples

502 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

• reduced and controllable cost of control speculation

• reduced cost of data speculation

• changes in instruction issue width and mix

• changes in cache/memory latency/bandwidth

Examples of software code optimization heuristics whose settings may have been
determined experimentally on previous Intel Itanium processors include:

• aggressiveness of predication

• aggressiveness of control speculation

• aggressiveness of data speculation

• code scheduling algorithms

• aggressiveness of lefetching

Therefore, all software code generation and optimization heuristics that were tuned
experimentally on previous Intel Itanium processors should be re-tuned for the
processor.

C.7 Utilizing Data Access Hints
The processor has support for a variety of data access hints via the Data Access Hint
Registers (DAHRs). Many memory instructions (for example, loads, stores, lfetches)
point to a DAHR that contains hints from software to hardware about how to optimize
such memory accesses. This section will suggest ways that software might use such
hints to optimize performance.

C.7.1 Managing data access cost
All of the data access hints defined on the processor have something to do with
managing the costs of data accesses. Via these hints, software can control what
resources hardware will consume as a result of a data access request.

Consumption of resources is highly correlated with a reduction in the cost of future
accesses to the same or related addresses. Therefore, these hints can be thought of as
a communication from software to hardware of the likelihood that it will use the cache
line or translation of interest during its lifetime in various structures. Software could
acquire knowledge of the likelihood of future related cache line usage at a particular
point in the program through some sort of general analysis related to memory
disambiguation and a kind of cache line live range analysis. Software could also
determine that future cache line usage characteristics are correlated with things it
might know about the instruction of interest:

• instruction type: lfetch, ld, ld.s, st, ...

• data structure type: struct, array, linked list, ...

• data structure location: stack, heap, ...

• data structure locality: local, global, ...

• data structure size and alignment

• data structure access pattern: stride, hash, ...

• code region type: acyclic, cyclic, ...

• application characteristics

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 503
Reference Manual for Software Development and Optimization Guide

Data access hints can also be thought of as providing software with a dynamic quality
evaluator for its speculative accesses. For instance, in acyclic code regions, lfetches are
typically much more likely than not to hit in the DTB and the MLD. Therefore, a
speculative lfetch that misses the DTB or the MLD is much more likely to be a useless
prefetch and may be better off being dropped.

C.7.2 Using Cache Locality Hints
There are two main types of cost associated with filling a particular cache line in a
cache. The first is a bandwidth cost associated with copying an entire cache line from
further out in the memory hierarchy. The second is the cost of using a cache entry that
could be used to store something else. The cache locality hints can be used to reduce
both of these costs. They can prevent a line from being copied into a particular cache
and they can reduce the lifetime of this line in a particular cache.

C.7.2.1 Using FLD Locality Hints

• FLD_NO_ALLOCATE
General usage: This hint setting can be used to avoid the space and bandwidth
costs associated with moving a cache line into the FLD.
Useful context: Unlike non-FLD filling accesses, FLD fills use one of the 16 FLDFAB
entries, require extra bandwidth in the MLD pipeline, cause replacement of an
existing FLD cache line, and can cause DET replays due to conflicts in the main
pipeline (see PMU events CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL and
CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL). If software has pretty good reason
to believe that filling the FLD will not provide benefit, then it can potentially
improve performance by using this hint to eliminate the cost of the FLD fill.
Examples of SW opportunities:

— In a loop where loads are all scheduled at least MLD latency ahead of uses, the
loads should probably use this hint.

— This hint should probably be used for an access pattern with a stride bigger
than a cache line.
This hint should probably be used for sparse array or similar scattered access
patterns.

• FLD_NRU
General usage: This hint setting can be used to minimize pollution of the FLD when
lines are allocated more speculatively than normal. This hint setting can also be
used to skew the replacement policy to replace lines that software believes are less
likely than normal to be accessed again within their FLD lifetime. Note that
hardware initiated prefetches will not demote lines to NRU.
Examples of SW opportunities:

— If software is going to free some memory (or in any other way stop using some
memory for an extended period of time), it could mark the last accesses to the
relevant cache lines with this hint. It could also explicitly insert lfetches with
this hint before freeing the memory.

— If software is speculatively lfetching or loading a cache line, it may want to use
this hint so the line will be replaced more quickly in the case the lfetch or
speculative load was not needed. However, software should consider this
carefully because this could cause performance degradations in the case that
the cache line is already in the FLD and in use by other accesses.

• FLD_NORMAL

‘Data Fetch Software Optimization Opportunities and Examples

504 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

C.7.2.2 Using MLD Locality Hints

• MLD_NO_ALLOCATE
General usage: This hint setting can be used to avoid the space and bandwidth
costs associated with moving a cache line into the MLD.
Examples of SW opportunities:

— This hint should probably be used for an access pattern with a stride bigger
than a cache line.

— This hint should probably be used for sparse array or similar scattered access
patterns.

MLD_NRU
General usage: This hint setting can be used to minimize pollution of the MLD when
lines are allocated more speculatively than normal.
Examples of SW opportunities:

— If software is lfetching a line that is unlikely to already be in use in the MLD by
some other access and there is a reasonable chance that the use targeted by
this lfetch may not occur, the software should consider using this hint.

— If the accesses to this line are likely only to be loads serviced by FLD, then
using this hint will likely reduce the time to this line being freed up in the MLD.

• MLD_NORMAL

C.7.2.3 Using LLC Locality Hints

• LLC_NRU
General usage: This hint setting can be used to minimize pollution of the LLC when
lines are allocated more speculatively than normal.
Examples of SW opportunities:

— This hint may be useful when a cache line is only likely to accessed for a
relatively small window of time following this allocation. For example, if
software is striding sequentially through a cache line and then will be done with
it, using this hint will cause that line to be more likely to be replaced in the LLC
and thus in the MLD as well (due to LLC inclusion and MLD selection of invalid
lines for replacement).

— This hint should probably be used for an access pattern with a stride bigger
than a cache line.

— This hint should probably be used for sparse array or similar scattered access
patterns.

• LLC_NORMAL

C.7.3 Using PF Hints
Data prefetches are far from free. They consume bandwidth and space in the cache
hierarchy. Doing unneeded prefetches can hurt performance. Hardware data
prefetchers have to guess when prefetches will be useful. The more aggressive the
prefetcher, the bigger the gains in some cases and the bigger the losses in other. The
aggressiveness and thus the benefits of hardware data prefetchers are often limited by
a desire to minimize the performance losses on any workloads. The purpose of the
HWPF hints is to allow software to use knowledge it has of the workload to
communicate to hardware which instructions should not trigger hardware prefetches in
the hopes that the performance gains can be maximized simultaneously with
minimizing performance losses.

• PF_NORMAL

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 505
Reference Manual for Software Development and Optimization Guide

• PF_NO_FLD
General usage: Improve multi-line FLD hardware data prefetching by filtering out
prefetches that are likely to be useless.
Examples of SW opportunities:

— This hint should probably be used whenever FLD_LOCALITY.NO_ALLOCATE is
used and none of the other HWPF.NO_FLD* hints are being used. On the
processor, FLD_LOCALITY.NO_ALLOCATE actually effectively implies the HW
behavior associated with this hint, but that conceivably might not be the case
on future Intel Itanium processors.

• PF.NO_MLD
General usage: Improve multi-line FLD and multi-line MLD hardware data
prefetching by filtering out prefetches that are likely to be useless.
Examples of SW opportunities:

— This hint should probably be used whenever MLD_LOCALITY.NO_ALLOCATE is
used and none of the other HWPF.NO_*MLD* hints are being used.

• PF_NONE
General usage: Improve multi-line FLD, multi-line MLD, and buddy line prefetching
by filtering out prefetches that are likely to be useless.
Examples of SW opportunities:

— This hint could be useful for an access pattern that is sparse when viewed at
the cache line level but has some locality within a cache line. A more specific
example would be a data structure such as an array of structures where the
array entry access pattern is sparse, but each structure is accessed multiple
times per array entry access.

— Software should consider using this hint with speculative loads. The less likely
the speculative load is to be actually used, the more likely it should use this
hint.

— See section C.7.1 for some more ideas.

C.7.4 Using PF_DROP Hints
Software data prefetches (lfetches) are far from free. They consume bandwidth and
space in the cache hierarchy. Doing unneeded lfetches can hurt performance. Software
has to guess when lfetches will be useful. More aggressive lfetching leads to bigger the
gains in some cases and bigger the losses in other. The aggressiveness and thus the
benefits of lfetching are often limited by a desire to minimize the performance losses on
any workloads. The purpose of the PF_DROP hints is to allow hardware to drop lfetches
based on dynamic events specified by software in the hopes that the performance gains
can be maximized simultaneously with minimizing performance losses.

• PFD_NORMAL
General usage: This setting can be used when the value of a prefetch is believed to
exceed the possible cost of incurring a DTB miss, an MLD miss, or an FLDTLB miss.
Examples of SW opportunities:

— This hint should be used for streams of lfetches in a loop that are highly likely
to be useful.

• PFD_TLB
General usage: This setting can be used when the value of a prefetch is believed to
exceed the possible cost of incurring an MLD miss or an FLDTLB miss, but not a
DTB miss. Also, this setting can be used when DTB miss is considered to be a good
predictor that a data prefetch is not valuable enough to continue.
Examples of SW opportunities:

‘Data Fetch Software Optimization Opportunities and Examples

506 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

— Any lfetches that are not part of a large stream of lfetches in a loop and do not
want to use a more sensitive PF_DROP hint should probably use this one.

• PFD_TLB_MLD
General usage: This setting can be used when the value of a prefetch is believed to
exceed the possible cost of incurring an FLDTLB miss, but not an MLD miss or a
DTB miss. Also, this setting can be used when an MLD miss or a DTB miss is
considered to be a good predictor that a data prefetch is not valuable enough to
continue.
Examples of SW opportunities:

— FLDTLB targeting lfetches in acyclic regions that are of dubious value due to
possibly being speculated from the wrong path or due to possibly being not
enough cycles ahead of a load to the same line should probably use this hint.

— FLDTLB targeting lfetches in OSes with large pages should probably use this
hint because not hitting in the DTB in this case is a pretty good measure of
badness and because data cache lookup and transfer costs should be
minimized since the point of this lfetch is to bring a translation into the FLDTLB.

• PFD_ANY
General usage: This setting can be used when the value of a prefetch is not
believed to exceed the cost of an FLDTLB miss, an MLD miss, or a DTB miss. Also,
this setting can be used when an FLDTLB miss, an MLD miss, or a DTB miss is
considered to be a good predictor that a data prefetch is not valuable enough to
continue.
Examples of SW opportunities:

— FLD targeting lfetches in acyclic regions that are of dubious value due to
possibly being speculated from the wrong path or due to possibly being not
enough cycles ahead of a load to the same line should probably use this hint.

C.7.5 Using PIPE Hint
• PIPE_BLOCK

General usage: Set this bit for speculative loads used for indirect prefetching.
Examples of SW opportunities:

— This hint bit should be used for speculative loads used for indirect prefetching.
• PIPE_DEFER

General usage: Unless there is a reason to use PIPE_BLOCK, this is the PIPE hint
setting that should be used.

C.7.6 Using BIAS_SHARED Hint
General usage: This setting can be used when a load reads data that is never expected
to be written.

C.7.7 Dynamic Optimization Opportunities
These data access hints could be quite useful to dynamic optimizers for two reasons.
First, setting any DAHR to any value hints is functionally safe. Not only are all DAHR
values functionally safe, but the mov-to-DAHR instruction that writes them uses an
immediate source operand and so doesn’t need a general register. Given that one of the
biggest obstacles to using dynamic optimizers is concern about functional correctness,
these hints provide a big opportunity to build a dynamic optimizer that doesn’t have
any functional correctness concerns. Second, dynamic optimizers have the opportunity

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 507
Reference Manual for Software Development and Optimization Guide

to use dynamic performance feedback to direct the setting of these hint bits. Such
dynamic feedback is likely to achieve more optimal settings and thus higher
performance.

C.8 Scheduling High Cache Hierarchy Bandwidth
Applications
High cache hierarchy bandwidth applications can be limited by nominal the bandwidth
limitations of hardware pipelines and communication channels, the ability of hardware
to queue up in flight operations, or data or structural hazards of various types. The
most restrictive hardware limitation will determine the bandwidth achieved in a
bandwidth limited application.

C.8.1 Nominal Hardware Bandwidth Limitations

1 A 128B MLD fill occurs when a 64B request triggers a MLD buddy line prefetch (the default) or when two 64B
requests are made to the same 128B line. Note that if two 64B requests are made, the two outgoing data
requests take 2 slots instead of one.

2 Loads are more expensive that lfetches because of the cost in the MLD pipeline (not the main pipeline as in
previous Intel Itanium processors) of returning the critical chunk of data to the register file.

3 Lfetches that are initially issued on an A-port must eventually be issued on a M-port or be dropped. By default,
software lfetches issued on the A-port are rarely dropped (need to specify when they might be). However,
software can hint them so that they are dropped when the data prefetch queue starts filling up. See section
C.7.4 for details on such hinting.

C.8.2 Schedule to Maximize In-flight Operations Not to Hide
Latency
For high cache hierarchy bandwidth applications, the latency of an operation, and the
latency exposed to the software scheduler are two very different things. Imagine a
simple (blocking) pipeline that stopped processing everything else whenever it was

Table 5-113.Nominal Data Streaming Bandwidth Limitations

Resource Peak Theoretical Bandwidth

main pipeline 2 M-port operation slots and 1 FLD fill / cycle

MLD pipeline 2 operation slots / cycle

Ring to MLI/MLD 32B of instr/data / cycle

MLI/MLD to Ring 1 instr/data request and 16B of instr/data / cycle

LLC to main memory system dependent

Table 5-114.Cost of Various Operations

Operation MLD Pipeline Slots Required

128B MLD fill1 9 MLD pipe slots: 1 for outgoing data request + 8 for data fill

64B MLD fill 7 MLD pipe slots: 1 for outgoing data request + 6 for data fill

load return with no MLD fill 5 MLD pipe slots: 1 for outgoing data requests + 2 for data
bypass to register file2 + 2 for dummy data fill operation

load return with 128B MLD fill 11 MLD pipe slots: 1 for outgoing data request + 2 for data
bypass to register file2 + 8 for data fill

load return with MLD fill 9 MLD pipe slots: 1 for outgoing data request + 2 for data
bypass to register file2 + 4 for data fill

lfetch-on-A 1 main pipe M-slot3

‘Data Fetch Software Optimization Opportunities and Examples

508 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

processing a memory operation (for example, hardware page walks on previous Intel
Itanium processors). Even if the memory operation takes a thousand cycles, none of
this is exposed to the software scheduler. In other words, the software scheduler can’t
do anything to hide this latency by doing other work in parallel. This is why caches are
typically designed to be non-blocking in high performance processors. There is always,
however, a limit to the number of in-flight memory operations that a processor can
handle before it begins blocking the pipeline again. Thus, in a high cache hierarchy
bandwidth application, the maximum amount of latency that can be exposed to and
potentially hidden by the software scheduler is determined by the maximum number of
in-flight memory operations a processor can handle.

The following is a list of the maximum number of in-flight memory operations of
various types for the processor.

1 Lfetches that are secondary MLD misses and do not fill the FLD are dropped, and thus do not count towards the
limit of in flight secondary misses. Therefore, when possible, the software scheduler should either avoid
issuing lfetches to the same 128B line as a previous lfetch, or the software scheduler should avoid allowing
such leftches to fill the FLD.
In a high cache hierarchy bandwidth application, the software scheduler needs to work to expose as much
parallelism as it can up to the above limits. Exposing more parallelism that these limits provides no benefit on
the processor regardless of the actually latency of the memory operations. However, exposing more
parallelism than these limits could provide benefits on future processors with higher limits.

C.8.3 Synchronous Data Hazards
This section discusses hazards between operations in the same pipeline that have
address dependencies with each other. Due to the synchronous timing relationships,
software schedulers may be able to schedule around these hazards. Note that
operation issue from the MLD OZQ is much more in order than it was on previous Intel
Itanium processors, so software schedulers may even be able to avoid synchronous
MLD pipeline hazards.

C.8.3.1 Load Address Generation

Load results cannot be used as addresses until 2 cycles after they are written.
Hardware handles this hazard by stalling IBL issue for a single cycle when needed to
separate the address use from the load, even if one or both of the instructions are
predicated off. Therefore, assuming the memory operations hit in the FLD, the following
loop will iterate once every 3 cycles:

 loop:
 ld8 r9=[r8];;
 st8 [r9]=r5 (st8 is issued stalled at the cost of a cycle)
 add r8=8,r8
 br.cloop loop;;

Table 5-115.Maximum Number of In-flight Memory Operations

Operation Type Maximum Number in Flight

stores 32

MLD hits 32 M-ops when 2 M-ops / issue group; 24 M-ops when 1 M-op /
issue group

MLD primary misses 16 128B lines

MLD secondary misses 16 pairs (same cache line) of secondary misses1

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 509
Reference Manual for Software Development and Optimization Guide

Therefore, when a software scheduler can find other work to do, it should avoid
scheduling memory operations in the cycle immediately following a load that generates
the address of the memory operation even when both operations will not be predicated
on at the same time.

Previous Intel Itanium processors similarly stalled, except that they considered the
predicate values in the stall calculation.

C.8.3.2 FLD RAW

As described in the FLD section of this document, the results of FLD writes are not
available to FLD loads until two cycles later. Hardware handles this hazard by DET
replaying FLD hitting loads that attempt to consume the results of FLD writes too soon.
Therefore, assuming the memory operations hit in the FLD, the following loop will
iterate once every 6 cycles:

 loop:
 st8 [r8]=r4
 ld8 r5=[r8] (ld8 is DET replayed at a cost of 5 cycles)
 add r8=64,r8
 br.cloop loop;;

Altering this loop as follows actually improves the iteration time to 3 cycles.

 loop:
 st8 [r8]=r4;;
 nop 0x0;;
 ld8 r5=[r8] (no DET replay)
 br.cloop loop;;

Software pipelining this loop in a way that separates the load from the store by at least
two cycles, could improve the throughput of this loop to 1 (original) iteration every
cycle. Therefore, software should avoid scheduling loads in the cycle immediately
following stores with which they might overlap.

Previous Intel Itanium processors had a longer FLD write latency but lower penalties for
an attempted read within the latency window.

C.8.3.3 MLD RAW

As described in the MLD section of this document, the results of MLD writes are not
available to the 3 extra banks used by FLD fills until 4 cycles later. Hardware handles
this hazard by stalling the MLD pipeline. Therefore, assuming the memory operations
miss in the FLD and hit in the MLD, the following loop will iterate once every 6 cycles:

 loop:
 st8 [r8]=r4
 ld8 r5=[r8] (ld8 is stalled at a cost of 4 cycles)
 add r8=64,r8
 br.cloop loop;;

If there is no benefit for the load to fill the FLD, then hinting the load to not do an FLD
fill could increase the throughput of the loop to an iteration every cycle:

 mov dahr1 = 0x2;;

‘Data Fetch Software Optimization Opportunities and Examples

510 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

 loop:
 st8 [r8]=r4
 ld8.d1 r5=[r8] (ld8 doesn’t fill FLD)
 add r8=64,r8
 br.cloop loop;;

Alternatively, if the FLD fill is needed, software pipelining the loop in a way that
separates the load from the store by at least 4 cycles could also improve the
throughput of the loop to an iteration every cycle. Therefore, when a software
scheduler can find other work to do, it should avoid scheduling FLD filling operations
closer than 4 cycles from a store that overlaps with a 16-byte chunk of the filling cache
line other than the 16-byte chunk targeted by the FLD filling operation. Alternatively, if
the FLD fill is not needed, software can tell hardware not to do the fill with a DAHR hint.

Previous Intel Itanium processors had a much larger set of MLD data hazards that were
dealt with through a mechanism called effective release. Use of the effective release
mechanism incurred, at times, significant performance costs. The reduction of the
number and cost of these hazards is a significant improvement on the processor. For
example, streams of 1 or 2 bytes stores achieve much better throughputs on the
processor.

C.8.4 Synchronous Structural Hazards
This section discusses hazards between operations in the same pipeline that are
competing for the same resources. Due to the synchronous timing relationships,
software schedulers may be able to schedule around these hazards. Note that
operation issue from the MLD OZQ is much more in order than it was on previous Intel
Itanium processors, so software schedulers may even be able to avoid synchronous
MLD pipeline hazards.

C.8.4.1 FLD hitting st vs. st

As described in the FLD section of this document, the FLD cannot simultaneously
handle two FLD hitting stores with the same VA[7:5] and different VA[11:8]. So, for
example, the stores in a sequence of stores with a power of 2 stride from 256 to 4K
bytes would all have this hazard with each other. The hardware deals with this hazard
by DET replaying the second store. Therefore, assuming the stores hit in the FLD, the
following loop will iterate once every 6 cycles:

 movl r8=0x0100000000000000
 movl r9=0x0100000000000100
 loop:
 st8 [r8]=r4
 st8 [r9]=r5 (st8 is DET replayed at a cost of 5 cycles)
 add r8=8,r8
 add r9=8,r9
 br.cloop loop;;

Altering this loop as follows actually improves the iteration time to 2 cycles:

 movl r8=0x0100000000000000
 movl r9=0x0100000000000100
 loop:
 st8 [r8]=r4;;
 st8 [r9]=r5 (no DET replay)
 add r8=512,r8
 add r9=512,r9

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 511
Reference Manual for Software Development and Optimization Guide

 br.cloop loop;;

Therefore, software should avoid scheduling FLD hitting stores with the same VA[7:5]
and different VA[11:8] in the same cycle, even if it has to insert an additional stop bit
to do so.

Note that previous Intel Itanium processors had a similar hazard that involved both
loads and stores and different address bits.

C.8.4.2 MLD Bank Conflicts

The MLD cannot allow two operations to simultaneously access the same bank
(determined by address bits 7:4). This restriction results in the following hazards:

• RR bank hazards occur when two memory ops flow down the MLD pipeline together
that need to read the same bank, but not the same full address. In this case, the
MLD pipeline will stall for one cycle. Ops issued from the OZQ will never have a RR
bank hazard and thus this hazard will only occur on bypassed ops.

• WW bank hazards occur when two memory ops flow down the MLD pipeline
together than need to write the same bank (address bits 7:4), but not the same full
address. Again, the MLD pipeline will stall for one cycle. Note that if a pair of ops
have both RR bank and WW bank hazards (i.e. Read-Modify-Write (RMW) stores),
only one pipeline stall will occur. Ops issued from the OZQ will never have a WW
bank hazard and thus this hazard will only occur on bypassed ops.

• RW bank hazards occur when a store that is writing a given bank is followed 4
cycles later by a memory op that is reading the same bank, but not the same full
address. The pipeline will stall for one cycle. Note that the stall may cause a
subsequent RW bank hazard with a following store. Because this is an inter-stage
hazard, ops issued from the OZQ may have a RW bank hazard.

Strides that are multiples of 256 bytes result in every access having a bank conflict
with all others. Such a stride will cut the throughput of the MLD to 1-hit per cycle.
Therefore, assuming the stores miss in the FLD, the following loop will iterate once
every 2 cycles:

 movl r8=0x0100000000000000
 movl r9=0x0100000000000100
 loop:
 st8 [r8]=r4
 st8 [r9]=r5 (st8 is OZQ issue or MLD pipeline stalled for a cycle)
 add r8=512,r8
 add r9=512,r9
 br.cloop loop;;

Therefore, software can schedule with a throughput expectation of at most 1 MLD load
hit per cycle for strides that are multiples of 256 bytes.

However, in the case where each access in a stream only has a bank conflict with either
the access before it or the access after it (e.g. an 8-byte stride), the MLD stall will tend
to re-align the operations that get issued together such that they are the pairs that
don’t have bank conflicts. For such a stream, then, the cost of bank conflicts is just a
fractional (~75%) increase in effective MLD latency and no decrease in throughput.
Therefore, assuming the stores miss in the FLD, the following loop will iterate once
every cycle:

 movl r8=0x0100000000000000

‘Data Fetch Software Optimization Opportunities and Examples

512 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

 movl r9=0x0100000000000008
 loop:
 st8 [r8]=r4
 st8 [r9]=r5 (st8 is OZQ issue or MLD pipeline stalled for a cycle)
 add r8=16,r8
 add r9=16,r9
 br.cloop loop;;

Therefore, software should either attempt to avoid MLD bank conflicts for loads or
schedule uses at least 13 cycles after their respective loads.

Previous Intel Itanium processors had a more expansive definition of a MLD bank
conflicts in that accesses to the same line were bank conflicts. Removing the existence
of a bank conflict between two accesses to the same lines is a significant improvement
on the processor. Also, the cost of hardware handling a bank conflict is less on the
processor than on previous Intel Itanium processors. Previous processors retried that
had a bank conflict with an earlier operation in a way that delayed them and any
dependent instructions by 4 cycles.

C.8.4.3 MLD Fill Port Hazards

MLD Fill port hazards occur when two memory ops flow down the MLD pipeline together
and both ops will perform an FLD fill. The pipeline will stall for one cycle. Note that if
the ops also have a RR bank hazard, only one stall will occur. The OZQ will attempt to
avoid these hazards but they are not completely prevented when issuing out of the
OZQ.

C.8.5 Asynchronous Data Hazards
This section discusses hazards between operations that are NOT in the same pipeline
and that have address dependencies with each other. Due to the asynchronous timing
relationships, software schedulers are unlikely to be able to schedule around these
hazards. These hazards are discussed to help software schedulers understand that
streams that have potential for these hazards may achieve less throughput that
streams without potential for these hazards. Some PMU events may provide insight into
when and how often such hazards are being encountered.

C.8.5.1 FLD Fills

As described in the FLD section of this document, FLDWRs can be DET replayed if they
line up close in time with FLD fills that have the same VA[13:6].

As described in the FLD section of this document, the FLD cannot handle FLDWRs and
FLD fills with the same VA[13:6] that occur at about the same time. So, for example, a
stream of stores and FLD filling loads with a power of 2 stride greater than or equal to
16K bytes could encounter this hazard a lot. The hardware deals with this hazard by
DET replaying the FLDWR. Therefore, assuming the loads miss in the FLD and hit in the
MLD, the following loop will iterate once every ? cycles:

 movl r8=0x0100000000000000
 movl r9=0x0100000000004000
 loop:
 ld8 [r8]=r4
 st8 [r8]=r5 (st8 is DET replayed at a cost of 5 cycles)
 add r8=0x4000,r8
 br.cloop loop;;

‘Data Fetch Software Optimization Opportunities and Examples

Intel® Itanium® Processor 9500 Series 513
Reference Manual for Software Development and Optimization Guide

C.8.6 Asynchronous Structural Hazards
This section discusses hazards between operations that are NOT in the same pipeline
that are competing for the same resources. Due to the asynchronous timing
relationships, software schedulers are unlikely to be able to schedule around these
hazards. These hazards are discussed to help software schedulers understand the
expected throughputs of various streams of operations.

C.8.6.1 Asynchronous Data Prefetches

A data prefetch that goes through the Data Prefetch Queue (DPQ) is executed
asynchronously with respect to the instruction that triggered it. The execution of this
data prefetch requires a variety of resources including a main pipe M-port and usually
an OZQ entry. Competition with other operations for these resources can lead to data
prefetches being dropped due to the DPQ overflowing or the data prefetches being held
up so long that they are no longer useful.

An example where these structural hazards are relevant to streaming is when a stream
of lfetches is issued on an A-port. If every issue group contains an lfetch on an A port
for more than 8 cycles in a row, some of these lfetches may be dropped. Therefore,
software should avoid scheduling an lfetch on an A-port every issue cycle for more than
8 cycles in a row.

Streams of lfetches that miss the DTB and are hinted PIPE_DEFER also get inserted into
the DPQ and thus behave similarly to lfetches issued on A-ports. Therefore, software
should avoid scheduling an lfetch that misses the DTB every issue cycle for more than
8 cycles in a row.

C.8.6.2 FLD Fills

An FLD fill can cause a DET replay (see FLD section of this document), but on average,
considerably less than 5% should do so. The impact of FLD fills on the main pipeline is
much less than it was on previous Intel Itanium processors.

C.8.6.3 MLD Fills

MLD Fill-store hazards occur when a store is followed 4 cycles later by an MLD fill
operation, independent of address. The pipeline will stall for one cycle (and may cause
a subsequent Fill-store hazard with a following store.

§

‘Data Fetch Software Optimization Opportunities and Examples

514 Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

	Intel® Itanium® Processor 9500 Series Reference Manual
	1 Introduction
	1.1 Terminology
	1.2 Related Documentation
	1.3 Identifying Intel® Itanium® Processors

	2 The Intel Itanium Processor 9500 series Core
	2.1 Overview
	2.2 The Intel Itanium Processor 9500 Series
	2.2.1 Implementation Specific Behavior
	2.2.2 Processor Core Pipeline
	2.2.3 New Instruction Support
	2.2.4 Advanced Load Address Table (ALAT)
	2.2.5 Data Translation Lookaside Buffers (TLBs)
	2.2.6 Architectural Ordering
	2.2.7 Execution Latencies

	2.3 Data Access Hints, Fetch, Dispersal and Execution
	2.3.1 Data Access Hints
	2.3.2 Instruction Fetch
	2.3.3 Register Fetch
	2.3.4 Data Fetch
	2.3.5 Instruction Execution

	2.4 Intel Itanium Processor 9500 Series Multi- Threading
	2.4.1 Frontend MT Introduction
	2.4.2 BE Thread Domain

	2.5 Intel® Virtualization Technology
	2.5.1 Intel® VT-i3 Support

	2.6 IA-32 Execution
	2.7 Brand Information

	3 Core Performance Monitoring
	3.1 Introduction
	3.2 Performance Monitor Programming Models
	3.2.1 Workload Characterization
	3.2.2 Profiling
	3.2.3 Event Qualification
	3.2.4 References

	3.3 Performance Monitor State
	3.3.1 Performance Monitor Control and Accessibility
	3.3.2 Performance Counter Registers
	3.3.3 Performance Monitor Event Counting Restrictions Overview
	3.3.4 Performance Monitor Overflow Status Registers (PMC0,1,2,3)
	3.3.5 Instruction Address Range Matching
	3.3.6 Opcode Match Check
	3.3.7 Data Address Range Matching (PMC_DAM_CFG)
	3.3.8 Data Reference Type Matching (PMC_DAM_CFG)
	3.3.9 Event Address Registers
	3.3.10 Instruction Cache EAR
	3.3.11 Data Cache EAR
	3.3.12 Execution Trace Buffer
	3.3.13 Thread-State Event Configuration
	3.3.14 Interrupt Counting
	3.3.15 PerfMon Interrupts

	4 Core Performance Monitor Events
	4.1 Introduction
	4.1.1 Categorization of Events
	4.1.2 Multi-Threading and Event Types
	4.1.3 Performance Event Associativity
	4.1.4 Event Description Tables Field Definition
	4.1.5 Performance Monitor Events Ordered by Event Code
	4.1.6 Performance Monitor Events Ordered by Event Name

	4.2 Performance Monitor Events by Area
	4.2.1 Basic Events
	4.2.2 Dispersal Events
	4.2.3 Execution Events
	4.2.4 Back-End Cycle Accounting
	4.2.5 Front-End Cycle Accounting
	4.2.6 Branch Events
	4.2.7 Memory Hierarchy Events
	4.2.8 FLI Events
	4.2.9 MLI Events
	4.2.10 FLITLB Events
	4.2.11 MLITLB Events
	4.2.12 FLD Events
	4.2.13 MLD Events
	4.2.14 FLDTLB Events
	4.2.15 MLDTLB Events
	4.2.16 DPF Events
	4.2.17 RIL Events
	4.2.18 RSE Events
	4.2.19 LLC Events
	4.2.20 System Events
	4.2.21 Multithreading Events

	5 Uncore Performance Monitoring
	5.1 Processor Overview
	5.1.1 Ring Interconnect Overview
	5.1.2 Cache Control (Cbox) Overview
	5.1.3 Last-Level Cache (LLC) Overview
	5.1.4 System Bridge (Sbox) Overview
	5.1.5 Global Coherence Engine (Bbox) Overview
	5.1.6 Integrated Memory Controller (Zbox) Overview
	5.1.7 Inter-processor Router (Rbox) Overview
	5.1.8 Port Physical Interfaces (Pbox) Overview
	5.1.9 System Utilities Controller (Ubox) Overview

	5.2 Uncore PMU Programming Overview
	5.2.1 On Accessing Uncore PMUs by Virtual Addresses (Win/Linux*)
	5.2.2 Uncore PMU Summary Tables

	5.3 Global Performance Monitoring Control
	5.3.1 Global Enable/Disable
	5.3.2 Setting Up a Global Monitoring Session
	5.3.3 Reading the Sample Interval
	5.3.4 Enabling a New Sample Interval from Frozen Counters.
	5.3.5 Global Performance Monitors

	5.4 Bbox Performance Monitoring
	5.4.1 Overview of the Bbox
	5.4.2 Bbox Performance Monitoring Overview
	5.4.3 Bbox Performance Monitoring CSRs
	5.4.4 Bbox Performance Monitoring Events
	5.4.5 BBox Events Ordered By Code
	5.4.6 Bbox Performance Monitor Event List

	5.5 Cbox Performance Monitoring
	5.5.1 Overview of the Cbox
	5.5.2 Cbox Performance Monitoring Overview
	5.5.3 Cbox Performance Monitors
	5.5.4 Cbox Performance Monitoring Events
	5.5.5 Cbox Events Ordered By Code
	5.5.6 Cbox Performance Monitor Event List

	5.6 Rbox Performance Monitoring
	5.6.1 Overview of the Rbox
	5.6.2 Rbox Performance Monitoring Overview
	5.6.3 Rbox Performance Monitoring CSRs
	5.6.4 Rbox Performance Monitoring Events
	5.6.5 RBox Events Ordered By Code
	5.6.6 Rbox Performance Monitor Event List

	5.7 Sbox Performance Monitoring
	5.7.1 Overview of the Sbox
	5.7.2 Sbox Performance Monitoring Overview
	5.7.3 Sbox Performance Monitors
	5.7.4 QEAR
	5.7.5 Sbox Performance Monitoring Events
	5.7.6 Sbox Events Ordered By Code
	5.7.7 Sbox Performance Monitor Event List

	5.8 Wbox Performance Monitoring
	5.8.1 Overview of the Wbox
	5.8.2 Wbox Performance Monitoring Overview
	5.8.3 Wbox Performance Monitors
	5.8.4 Wbox Performance Monitoring Events
	5.8.5 Wbox Events Ordered By Code
	5.8.6 Wbox Performance Monitor Event List

	5.9 Zbox Performance Monitoring
	5.9.1 Overview of the Zbox
	5.9.2 Functional Overview
	5.9.3 Zbox Perfmon Overview
	5.9.4 Zbox PerfMon Registers
	5.9.5 Zbox Performance Monitoring Events
	5.9.6 ZBox Events Ordered By Code
	5.9.7 Zbox Performance Monitor Event List

	5.10 Packet Matching Reference

	A Identifying Multi-Core and Multi-Threading
	A.1 Architectural Support
	A.1.1 Terminology
	A.1.2 Detection of Intel® Hyper-Threading Technology
	A.1.3 Number of Cores on a Physical Processor
	A.1.4 Number of Threads in a Core
	A.1.5 Number of Logical Processors Enabled on a Physical Processor
	A.1.6 Logical to Physical Translation
	A.1.7 Number of Logical Processors Sharing a Cache
	A.1.8 Determine which Logical Processors are Sharing a Cache

	A.2 Operating System Specific Mechanisms
	A.2.1 HP-UX*
	A.2.2 Linux*
	A.2.3 Microsoft Windows*

	B Example Core PMU Event Reports
	B.1 Introduction
	B.2 Retired Instruction Types
	B.3 Back-End Cycle Accounting
	B.4 Primary Data Reference Outcomes
	B.4.1 LOAD_ANY
	B.4.2 STORE_ANY
	B.4.3 SEMAPHORE
	B.4.4 LFETCH
	B.4.5 HW_PREF
	B.4.6 MLD Buddy Line Prefetches
	B.4.7 DREF

	B.5 Instruction Fetch Outcomes
	B.6 Branch Prediction Outcomes
	B.7 Latency Calculations
	B.7.1 Replay Latencies
	B.7.2 Exposed Data Access Latencies
	B.7.3 Average Lifetimes in Queues

	B.8 Data Prefetching
	B.8.1 Data Prefetch Queue Insertions

	C ‘Data Fetch Software Optimization Opportunities and Examples
	C.1 Transitioning from 4 M-ports to 2
	C.1.1 Avoiding 4 M’s in instruction group
	C.1.2 Avoiding 3 M’s in instruction group
	C.1.3 Scheduling lfetches on an A Pipeline

	C.2 Data Memory Reference Clustering
	C.2.1 Load Clustering
	C.2.2 Lfetch/Load Clustering
	C.2.3 Store/Load Declustering

	C.3 Control Speculation
	C.4 Software Data Prefetching
	C.4.1 Managing the Cost of an lfetch
	C.4.2 lfetching in Acyclic Code
	C.4.3 Prefetching Data Address Translations

	C.5 Lfetches vs. Speculative Loads
	C.5.1 Lfetch advantages
	C.5.2 Speculative load advantages

	C.6 Re-tuning ILP heuristics
	C.7 Utilizing Data Access Hints
	C.7.1 Managing data access cost
	C.7.2 Using Cache Locality Hints
	C.7.3 Using PF Hints
	C.7.4 Using PF_DROP Hints
	C.7.5 Using PIPE Hint
	C.7.6 Using BIAS_SHARED Hint
	C.7.7 Dynamic Optimization Opportunities

	C.8 Scheduling High Cache Hierarchy Bandwidth Applications
	C.8.1 Nominal Hardware Bandwidth Limitations
	C.8.2 Schedule to Maximize In-flight Operations Not to Hide Latency
	C.8.3 Synchronous Data Hazards
	C.8.4 Synchronous Structural Hazards
	C.8.5 Asynchronous Data Hazards
	C.8.6 Asynchronous Structural Hazards

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

