
Intel® Itanium® Architecture
Software Developer’s Manual
Specification Update
November 2003
Document Number: 248699-008

Notice: Intel® Itanium® architecture processors may contain design defects or errors known as
errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in processor specification updates.

2 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2002-2003, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Contents

Revision History ...5

Preface...6

Summary Table of Changes ...7

Specification Changes..8

Specification Clarifications.. 13

Documentation Changes..23
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 3

4 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Revision History

Date Version
Number Description

October 2003 008 Added Specification Changes 2-4; added Specification Clarifications 5-15;
added Documentation Changes 1-7.

December 2002 007 Added Specification Change 1; added Specification Clarification 1-4.

June 2002 001-006 Changes from previous Software Developer’s Manual Specification Updates
were incorporated into version 2.1 of the Intel® Itanium® Architecture
Software Developer’s Manual October 2002.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 5

Preface
Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications, and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Nomenclature

Specification Changes are modifications to the current published specifications for Intel®
Itanium® architecture processors. These changes will be incorporated in the next release of the
specifications.

Specification Clarifications describe a specification in greater detail or further explain a
specification’s interpretation. These clarifications will be incorporated in the next release of the
specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These changes will be incorporated in the next release of the Intel® Itanium®

Architecture Software Developer’s Manual.

Title Document #

IIntel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application
Architecture

245317-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference

245319-004
6 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Summary Table of Changes
Summary Table of Changes

The following tables indicate the specification changes, specification clarifications, or
documentation changes that apply to the Intel® Itanium® Architecture Software Developer’s
Manual.

.

Specification Changes
No. Page SPECIFICATION CHANGES

1 8 Volume 1: ao bit added to CPUID Register 4

2 8 MCA architecture extensions for supporting data-poisoning events

3 11 LID enhancements

4 11 Extend PALE_CHECK exit options

Specification Clarifications
No. Page SPECIFICATION CLARIFICATIONS

1 13 Volume 2: PSR.dt serialization clarification

2 13 Volume 2: Unaligned debug fault clarification

3 13 Volume 3: Clarification on PSR requirements for br.ia/rfi instructions during PSR.is
transition

4 14 Volume 3: Added Illegal Operation fault to fnma I-page

5 14 Clarify INTA/XTP definition

6 15 Clarify VHPT insert rules

7 15 Adding FP-readers to support table

8 16 cmpxchg clarifications

9 16 Add Illegal Operation fault

10 17 Non-speculative reference for WBL attribute clarification

11 19 Dirty-bit fault ISR.code clarification

12 20 FC data dependency ordering clarification

13 20 PAL_MC_DRAIN clarification

14 21 Add hint instructions to support table

15 21 Clarify speculative operation fault handler requirements

Documentation Changes
No. Page DOCUMENTATION CHANGES

1 23 Update IA-32 CPUID I-Page

2 29 PAL_BUS_GET/SET_FEATURES fix

3 29 PAL_COPY_PAL update

4 30 Fixing X-Unit text correction

5 30 PAL_CACHE_SHARED_INFO text correction

6 30 PAL_CACHE_FLUSH clarification and minor code sequence fix

7 30 PAL_GET_PROC_FEATURES table fix
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 7

Specification Changes
Specification Changes

1. Volume 1: ao bit added to CPUID Register 4

1. New Figure 3-12 (page 1:30) - added a new bit for ao:

2. Table 3-8 (page 1:30) has a new entry for ao:

2. MCA architecture extensions for supporting data-poisoning events

1. Volume 2: Added the following row to Table 11-54 (page 2:360) of
PAL_PROC_GET_FEATURES:

2. Volume 2: dp bit added to PAL_MC_ERROR_INFO Cache_Check and Bus_Check:

a. Figure 11-37 (page 2:345) – added new bit for dp:

63 3 2 1 0

rv ao sd lb
61 1 1 1

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:88).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and
“cmpxchg — Compare and Exchange” instructions in Volume 3).

rv 63:3 Reserved.

Table 11-54. Processor Features

Bit Class Control Description

53 Opt. Req. Enable MCA signaling on data-poisoning event detection. When 0, a CMCI will be
signaled on error detection. When 1, an MCA will be signaled on error detection. If
this feature is not supported, then the corresponding argument is ignored when
calling PAL_PROC_SET_FEATURES. Note that the functionality of this bit is
independent of the setting in bit 60 (Enable CMCI promotion), and that the bit 60
setting does not affect CMCI signaling for data-poisoning related events.

Figure 11-37. cache_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsvd dp rv wiv way mv mesi ic dc tl dl rsvd level op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is rsvd index
8 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
b. Table 11-47 (page 2:345) – added new entry for dp:

Table 11-47. cache_check Fields

Field Bits Description

op 3:0 Type of cache operation that caused the machine check:

0 – unknown or internal error

1 – load

2 – store

3 – instruction fetch or instruction prefetch

4 – data prefetch (both hardware and software)

5 – snoop (coherency check)

6 – cast out (explicit or implicit write-back of a cache line)

7 – move in (cache line fill)

All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 – cache line is invalid.

1 – cache line is held shared.

2 – cache line is held exclusive.

3 – cache line is modified.

All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 22 Reserved

dp 23 A multiple-bit error was detected, and data was poisoned for the corresponding cache line
during castout.

rsvd 31:24 Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 9

Specification Changes
c. Figure 11-39 (page 2:347) – added new bit for dp:

d. Table 11-49 (page 2:347) – added new entry at bit 23 for dp:

Figure 11-39. bus_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bsi dp hier sev type cc eb ib size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-49. bus_check Fields

Field Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.

0 – unknown

1 – partial read

2 – partial write

3 – full line read

4 – full line write

5 – implicit or explicit write-back operation

6 – snoop probe

7 – incoming or outgoing ptc.g

8 – write coalescing transactions

9 – I/O space read

10 – I/O space write

11 – inter-processor interrupt message (IPI)

12 – interrupt acknowledge or external task priority cycle

All other values are reserved

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

dp 23 A multiple-bit error was detected, and data was poisoned for the incoming cache line.

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
10 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
3. LID enhancements

1. Volume 2, Part I, Section 5.8.3.1, page 2:104, first paragraph should now read:

“The LID register contains the processor's local interrupt identifier. Two fields (id and eid)
serve as the processor's physical name for all interrupt messages (external interrupts, INITs,
and PMIs). LID is loaded by firmware during platform initialization based on the processor's
physical location within the system. Processors receiving an interrupt message on the system
interconnect may or may not compare their id/eid fields with the target address for the
interrupt message, depending on the type of system interconnect. If this comparison is
performed, then a match would indicate that the interrupt received was intended for this
processor. In case of no comparison, processors use other system topology mechanisms to
determine the correct target of the interrupt message.”

2. Volume 2, Part I, Section 5.8.3.1, page 2:104, second paragraph:

— Change from:

“LID is a read-write register.”

to:

“The LID register fields are read-only or read-write. Details of the programmability of
these fields is communicated by PAL at PALE_RESET handoff (see Section 11.2.2:
'PALE_RESET Exit State' for details). Read-only LID bits always return a value of 0.
Writes to read-only bits are ignored.”

3. Volume 2, Part I, Section 11.2.2:

— On page 2:259, change the GR33 bullet from:

“GR33 contains the geographically significant unique processor ID. The value is the
same as that returned by PAL_FIXED_ADDR”

to:

“GR33 contains information about the geographically significant unique processor ID,
and a mask that indicates which bits in the LID register (CR64) are read-only. Firmware
should write the processor's local interrupt identifier in the programmable portion of the
LID register. Writes to the read-only bits are ignored.

[63:48] Reserved

[47:40] Mask indicating which bits in eid are programmable

0 = programmable, 1 = read-only

[39:32] Mask indicating which bits in id are programmable

0 = programmable, 1 = read-only

[31:16] Reserved

[15:0] Geographically significant processor ID

The value returned in bits [15:0] is the same as that returned by PAL_FIXED_ADDR.”

4. Extend PALE_CHECK exit options

1. Volume 2, Part I, Section 11.3.1:

a. On page 2:265, first paragraph, change the following sentence from:

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Table 11-49. bus_check Fields (Continued)

Field Bits Description
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 11

Specification Changes
“PALE_CHECK terminates by branching to SALE_ENTRY, passing the state of the
processor at the time of the error.”

to:

“PALE_CHECK terminates either by returning to the interrupted context or by
branching to SALE_ENTRY, passing the state of the processor at the time of the error.”

b. In the fifth paragraph change the following from:

“PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. PSR.mc will
remain set for the duration of PALE_CHECK, and PALE_CHECK will exit with psr.mc
set.”

to:

“PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. When
PALE_CHECK branches to SALE_ENTRY, PSR.mc remains set (PSR.mc is restored to
its original value if PALE_CHECK terminates by returning to the interrupted context).”

And delete: “PALE_CHECK must attempt to branch to SALE_ENTRY unless code
execution is not possible.”

2. Volume 2, Part II, Section 13.3.1, page 2:493:

a. The second paragraph should read:

When the processor detects an error, control is transferred to the PAL_MCA entrypoint.
PAL_MCA will perform error analysis and processor error correction where possible.
Subsequently, PAL either returns to the interrupted context or hands off control to the
SAL_MCA component. The level of recovery provided by PAL_MCA is implementation
dependent and is beyond the scope of this specification. SAL_MCA will perform error
logging and platform error correction where possible. Errors that are corrected by PAL
and SAL firmware are logged and control is transferred back to the interrupted
process/context. For corrected errors, no OS intervention is required for error handling,
but the OS is notified of the event for logging purposes through a low priority
asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8, “Corrected
Machine Check Vector (CMCV – CR74)” for more information on the CMCI. If the error
was not corrected by firmware, SAL hands off control to the OS_MCA handler.

b. Added correctable machine check flow:

Figure 13-3. Correctable Machine Check Code Flow

PAL_MC_RESUME

PAL_MCA SAL_MCA OS_MCA
Log Error

CMC
Interrupt

MCA
1 2

4

Return to
Execution
Context

3

5 6
12 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
Specification Clarifications

1. Volume 2: PSR.dt serialization clarification
1. Volume 2, Part I, Section 3.3.2, Table 3-2:

— On page 2:20, change the Serialization Required column for PSR.dt from:

“data”

to:

“inst/data”

and add a cross-reference to footnote c.

2. Volume 2: Unaligned debug fault clarification

1. Volume 2, Part I, Section 8.3, Debug vector page:

— On page 2:175, add the following paragraph to the end of the Notes section:

If unaligned accesses are being performed with debug faults enabled, this fault may be
taken even though there is not a match for the address programmed in the breakpoint
register. See Volume 2, Section 7.1.2, “Debug Address Breakpoint Match Conditions.”

3. Volume 3: Clarification on PSR requirements for br.ia/rfi instructions
during PSR.is transition

1. br.ia instruction page (Volume 3, p. 3:18):

a. Under “ia” bullet, add the following paragraph after the 3rd paragraph:

Software must set PSR properly before branching to the IA-32 instruction set; otherwise
processor operation is undefined. See Volume 2, Table 3-2, “Processor Status Register
Fields” on page 2:19 for details.

b. In the “Operation” section on page 3:22 under “case 'ia',” add below “tmp_taken =
1;”:

if (CR[IPSR].ic==0 || CR[IPSR].dt==0 || CR[IPSR].mc==1 ||
CR[IPSR].it==0)

undefined_behavior();

2. rfi instruction page (Volume 3, p. 3:204):

a. In the “Description” section, before the paragraph beginning “Software must issue a mf
instruction...,” add the following paragraph:

If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction set
execution; otherwise processor operation is undefined. See Volume 2, Table 3-2,
“Processor Status Register Fields” on page 2:19 for details.

b. In the “Operation” section:

Add the following below, “if (CR[IPSR].is == 1) {”:

if (CR[IPSR].ic==0 || CR[IPSR].dt==0 || CR[IPSR].mc==1 ||
CR[IPSR].it==0)

undefined_behavior();

3. Table 3-1, Volume 3: Pseudo-Code Functions chapter:

a. On page 3:253, replace the bullet list of faults in the Operation column of the
tlb_translate() row of the Pseudo-Code Functions table with this new bullet list:
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 13

Specification Clarifications
• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty Bit fault

• Data Access Bit fault

• Data Debug fault

• Unaligned Data Reference fault

• Unsupported Data Reference fault

b. Replace the bullet list of faults in the Operation column of the tlb_translate_nonaccess()
row of the Pseudo-Code Functions table with this new bullet list:

• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Access Rights fault (fc only)

4. Volume 3: Added Illegal Operation fault to fnma I-page

1. Volume 3, fnma instruction page:

On page 3:81, add “Illegal Operation fault” to the list of interruptions in the Interruptions
section.

5. Clarify INTA/XTP definition

1. On page 2:112, Volume 2, Part I, Section 5.8.4.3, “Interrupt Acknowledge (INTA) Cycle”:

— Add the following sentence to the end of the 2nd paragraph:

“Any memory operation to the INTA address other than a single byte load is undefined.”

2. On page 2:112, Volume 2, Part I, Section 5.8.4.4, “External Task Priority (XTP) Cycle”:

— Add the following sentence to the end of the 1st paragraph:

“Any memory operation to the XTP address other than a single byte store is undefined.”
14 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
6. Clarify VHPT insert rules

1. Volume 2, Part I, Section 4.1.8:

— Replace the 2nd paragraph and insert new table on the bottom of page 2:58 with:

The VHPT walker's inserts into the TC follow purge-before-insert rules similar to those
for software inserts (see Table 4-1, “Purge Behavior of TLB Instructions,” on page 2:49).
VHPT walker inserts into the DTC behave similar to itc.d; VHPT walker inserts into the
ITC behave similar to itc.i. If an instruction reference results in a VHPT walk that
misses in the data TLB, the DTC insert for the translation for the VHPT acts similar to an
itc.d.

As described in Section 4.1, “Virtual Addressing” on page 2:43, processors may
optionally use VRN bits when searching for a matching translation for a memory
reference (references other than inserts and purges). In processors that do use VRN bits
for such searches, VHPT inserts may also use VRN bits in searching for overlapping
entries. Thus, if a VHPT insertion overlaps a translation in the TC, but the VRN of the
address being inserted does not match the VRN of the existing TC translation, the purge
of the existing TC entry is optional. If a VHPT insertion overlaps a translation in a TR, but
the VRN of the address being inserted does not match the VRN of the TR translation, the
VHPT insertion is allowed, and a machine check is optional. In processors which do not
use VRN bits when searching for a matching translation for a memory reference, the
behavior of VHPT inserts is identical to that of software inserts (see Table 4-1, “Purge
Behavior of TLB Instructions,” on page 2:49).

If a VHPT insert overlaps with an existing TR entry and the VRN of the insertion matches
the VRN of the existing TR entry (for example, if the translation being inserted is for a
large page which overlaps with a small page translation in the TR), the VHPT insertion
can be done, but a machine check must be raised. Software must not create overlapping
translations in the VHPT that are larger than a currently existing TR translation.

The behavior of VHPT inserts is summarized in Table 4-9.

7. Adding FP-readers to support table

1. Volume 3, Table 5-5 - “Instruction Classes”, on page 3:352, add:

 “mem-writers-fp”

 to the row:

 “fr-readers”

Table 4-9. Behavior of VHPT Inserts

VHPT Inserts
VRN bits used for TLB searching VRN bits not used for TLB

searchingVRN match No VRN match

VHPT insert overlaps TC
entry

May inserta

Must purgeb
May insert

May purgec
May insert

Must purge

VHPT insert overlaps TR
entry

May insert

Must Machine
Checkd

May insert

May Machine
Checke

Must not insert

Must Machine Check

a. May insert: indicates that the VHPT may perform an insert into the TC
b. Must purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge operation.
c. May purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert or purge operation.

However, software must not rely on the purge.
d. Must Machine Check: indicates that a processor will cause a Machine Check abort.
e. May Machine Check: indicates that a processor may cause a Machine Check abort based on the implementation.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 15

Specification Clarifications
8. cmpxchg clarifications

1. Volume 2, Section 7.1.2, page 2:134:

— Add a new bullet list item at the bottom of the first bullet list, with this text:

“The cmp8xchg16 operands are treated as 16-byte datums for both read and write
breakpoint matching, even though this instruction only reads 8 bytes.”

2. cmpxchg I-page (Volume 3, page 3:40):

— In first paragraph of the Description section, change this sentence from:

“For cmp8xchg16, if the two are equal, then 8-bytes from GR r2 are stored at the
specified address ignoring bit 3 (GR r3 & ~0x4), and 8 bytes from the Compare and
Store Data application register (AR[CSD]) are stored at that address + 8 ((GR r3 &
~0x4) + 8).”

to:

“For cmp8xchg16, if the two are equal, then 8-bytes from GR r2 are stored at the
specified address ignoring bit 3 (GR r3 & ~0x8), and 8 bytes from the Compare and
Store Data application register (AR[CSD]) are stored at that address + 8 ((GR r3 &
~0x8) + 8).”

9. Add Illegal Operation fault

1. Volume 3, Part I, Chapter 3:

a. On page 3:247, add a new function to Table 3-1:

Function: instruction_implemented (inst)

Operation: Implementation-dependent routine which returns TRUE or FALSE, depending
on whether inst is implemented.

b. Remove the row “long_branch_implemented” from Table 3-1.

2. Volume 3, ld I-page on page 3:131

a. Add the following paragraph to the end of the Description section:

“For the sixteen_byte_form, an Illegal Operation fault is raised on processor models that
do not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

if (size == 16) itype |= UNCACHE_OPT;

add:

if (sixteen_byte_form && !instruction_implemented(LD16))
illegal_operation_fault();

3. Volume 3, st I-page on page 3:219

a. Add the following paragraph to the end of the Description section:

“For the sixteen_byte_form, an Illegal Operation fault is raised on processor models that
do not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

otype = (sttype == ’rel’) ? RELEASE : UNORDERED;

add:

if (sixteen_byte_form && !instruction_implemented(ST16))
illegal_operation_fault();
16 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
4. Volume 3, cmpxchg I-page on page 3:41

a. Add the following paragraph to the end of the Description section:

“For cmp8xchg16, an Illegal Operation fault is raised on processor models that do not
support the instruction. CPUID register 4 indicates the presence of the feature on the
processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

if(PR[qp]) {

add:

if (sixteen_byte_form &&
!instruction_implemented(CMP8XCHG16))

illegal_operation_fault();

5. Volume 3, brl I-page on 3:26, Operation section:

— Replace the following:

if (!long_branch_implemented())
illegal_operation_fault();

with:

if (!instruction_implemented(BRL))
illegal_operation_fault();

10. Non-speculative reference for WBL attribute clarification

1. Volume 2, Part I, add a new Section 4.4.6.1, at the end of Section 4.4.6:

4.4.6.1 Limited Speculation and the WBL Physical Addressing
Attribute

Processors are allowed to reference limited speculation pages (WBL pages) speculatively, in order
to increase performance, but this speculation is limited to prevent speculative references to 4Kbyte
physical pages for which there is no actual memory (which would cause spurious machine checks).

Processors must not make hardware-generated speculative references to a given WBL 4Kbyte page
until a verified reference has been made. Processors may optionally implement storage to hold the
addresses of WBL 4Kbyte pages for which verified references have been made and may make
subsequent hardware-generated speculative references to these pages. Such pages are termed
verified pages.

A verified reference is an instruction or data reference made to the page by an in-order execution of
the program; that is, a reference which would have been made had the instructions from the
program been fetched and executed one at a time. A hardware-generated speculative reference does
not constitute a verified reference. Hardware-generated speculative references include:

• Instruction fetches when the processor has not yet determined whether prior branches were
predicted correctly.

• Instruction fetches when the processor has not yet determined whether prior instructions will
raise faults or traps.

• Data references by instructions when the processor has not yet determined whether prior
branches were predicted correctly.

• Data references by instructions when the processor has not yet determined whether prior
instructions will raise faults or traps.

• Hardware-generated instruction prefetch references.

• Hardware-generated data prefetch references.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 17

Specification Clarifications
• Eager RSE data references.

For an instruction fetch to constitute a verified reference, it must only be determined that an
in-order execution of the program requires that the IP point to this address, independent of whether
the instruction at this address will subsequently take a fault or interrupt.

For a data reference to constitute a verified reference, the instruction must meet one of the
following requirements:

• It executes without any fault or interrupt

• It takes an Unaligned Data Reference fault

• It takes a Data Debug fault

• It takes an External interrupt, but if it had not taken an External interrupt, it would have met
one of the above qualifications (execute without fault, take an Unaligned Data Reference fault,
or take a Data Debug fault)

Data-speculative loads are treated the same as normal loads, and if an in-order execution of the
program requires the execution of a data speculative load, it constitutes a verified reference.
Control-speculative loads to limited-speculation pages always defer and thus never constitute
verified references.

It is not necessary for a processor to determine whether a reference will complete without
generating a machine check for it to be a verified reference. If software actually references a
physical address which will cause a machine check, hardware may generate multiple speculative
references to the same page, potentially causing multiple machine checks.

Processors may access verified pages normally, as they would WB pages, including the use of
caching, pipelining, and hardware-generate speculative references to improve performance.

Calling the PAL_PREFETCH_VISIBILITY procedure forces the processor to clear the storage
holding the addresses of verified pages.

2. Remove the two paragraphs from Volume 2, Part I, Section 4.4.6 that talk about limited
speculation (the paragraphs beginning, “Limited speculation is used to improve
performance...”, and “Unless a limited-speculation page is speculatively accessible,...”).

3. In footnote “d” in Table 4-12 on page 2:68, change this text from:

“The processor may only issue hardware-generated speculative references to a 4K-byte
physical page while the page is speculatively accessible.”

to:

“The processor may only issue hardware-generated speculative references to a 4K-byte
physical page if it is a verified page.”

4. On page 2:76, Volume 2, Part I, Section 4.4.11.2, change these two paragraphs from:

“When a non-speculative reference is made to a physical address with the WBL attribute,
the 4K page containing that address becomes speculatively accessible. This allows the
processor that made the non-speculative reference to subsequently make speculative
references to this page. (See the description of limited speculation in Section 4.4.6,
“Speculation Attributes” on page 2:70.)

If the same physical memory is then to be accessed with the U attribute, software must
first make all such addresses speculatively inaccessible and flush any cached copies from
the cache. Otherwise, an uncacheable reference may hit in cache, causing a Machine
Check abort.”

to:

“When a verified reference is made to a physical address with the WBL attribute, the 4K
page containing that address becomes speculatively accessible. This allows the processor
that made the verified reference to subsequently make speculative references to this page.
18 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
(See the description of limited speculation in Section 4.4.6.1, “Limited Speculation and
the WBL Physical Addressing Attribute” on page 2:70.)

If the same physical memory is then to be accessed with the UC attribute, software must
first cause all such 4K pages to no longer be verified pages and flush any cached copies
from the cache. Otherwise, an uncacheable reference may hit in cache, causing a Machine
Check abort.”

5. Volume 2, Part I, Section 4.4.11.2, bullet point 1 on page 2:76, change this paragraph from:

“Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
makes all WBL pages speculatively inaccessible - see the discussion on limited
speculation in Section 4.4.6.)”

to:

“Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
causes all WBL pages to no longer be verified pages - see the discussion on limited
speculation in Section 4.4.6.1.)”

6. Volume 2, Part I, Section 4.4.11.2 on page 2:77, the very last paragraph of this section is not
part of bullet point 5, but rather a summation of the bulleted sequence.

7. In Volume 2, Part I, Section 11.9.3 PAL Procedure Specification,
PAL_PREFETCH_VISIBILITY (Page 2:358) Description, paragraph 4, last sentence should
be changed from:

“For the processor to make any speculative reference to a limited speculation page after
this call, there must be a non-speculative reference made to that page after this call.”

to:

“For the processor to make any speculative reference to a limited speculation page after
this call, there must be a verified reference made to that page after this call. See the
discussion on limited speculation in Section 4.4.6.1."

11. Dirty-bit fault ISR.code clarification

1. Volume 2, Part I, Section 8.3, Dirty-bit vector on page 2:160:

a. Update diagram for ISR field to indicate that bits[3:0] represent ISR.code as shown
below:

b. Change following ISR statement on same page from:

“ISR - The value for the ISR bits depend upon the type of access performed and are
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32
memory references, ISR.ed, ei, ni, and rs are 0."

to:

“ISR - The value for the ISR bits depend upon the type of access performed and are
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32
memory references, ISR.ed, ei, ni, and rs are 0. If the interruption was due to a
non-access operation then the ISR.code bits {3:0} are set to indicate the type of the
non-access instruction; otherwise they are set to 0."

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni 0 rs 0 na r 1 0
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 19

Specification Clarifications
c. Change following statement after the Notes section on the same page from:

“For probe.w.fault and probe.rw.fault the ISR.na bit is set”

to:

“For probe.w.fault and probe.rw.fault the ISR.na bit is set, and the ISR.code field is
written with a value of 5.”

12. FC data dependency ordering clarification

1. Volume 2, Part I, Section 4.4.7 on page 2:72, change the following sentence from:

“The flush cache instruction (fc, fc.i) instruction follows data dependency ordering.
fc and fc.i are ordered with respect to previous and subsequent load, store, or
semaphore instructions to the same line, regardless of the specified memory attribute.”

to:

“The flush cache instruction (fc, fc.i) instruction follows data dependency ordering.
fc and fc.i are ordered only with respect to previous load, store, or semaphore
instructions to the same line, regardless of the specified memory attribute. Subsequent
memory operations to the same line need not wait for prior fc or fc.i completion before
being globally visible.”

2. Volume 3, fc I-page (page 3:55), 5th paragraph, change the following sentence from:

“These instructions follow data dependency rules; they are ordered with respect to
preceding and following memory references to the same line. fc and fc.i have data
dependencies in the sense that any prior stores by this processor will be included in the
flush operation.”

to:

“These instructions follow data dependency ordering rules; they are ordered only with
respect to previous load, store, or semaphore instructions to the same line. fc and fc.i
have data dependencies in the sense that any prior stores by this processor will be
included in the flush operation. Subsequent memory operations to the same line need not
wait for prior fc or fc.i completion before being globally visible.”

13. PAL_MC_DRAIN clarification

1. Volume 2, Part I, PAL_MC_DRAIN on page 2:339:

— Change the first sentence of the Description section from:

“This call causes all outstanding transactions in the processor to be completed (for
example, loads get their data returned, store updates are completed, and prefetches are
either completed or cancelled).”

to:

“This call causes all outstanding transactions in the processor to be completed. For
example:

i. Flushes (fc) invalidate the cache; lines that have been modified are written back
(issued to the fabric) to memory before invalidation.

ii. Instruction cache coherence flushes (fc.i) invalidate lines and/or write them back
to main memory, if this is required to make the instruction caches coherent with the
data caches.

iii. Loads get their data returned.

iv. Stores either update the cache or issue transactions to the system fabric.

v. Prefetches are either completed or cancelled.”
20 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
14. Add hint instructions to support table

1. Volume 3, page 3:356, Table 5-5:

— Add the following to 'pr-readers-br' (in the appropriate alphabetical location):

“hint.b”

2. Volume 3, page 3:357, Table 5-5:

— Add the following to 'pr-readers-nobr-nomovpr' (in the appropriate alphabetical location):

“hint.f, hint.i, hint.m, hint.x”

15. Clarify speculative operation fault handler requirements

1. On the Speculation vector (0x5700) page in Section 8.3 of Volume 2, Part I, page 2:174 add a
“Notes” section below the ISR diagram that reads:

“The Speculative Operation fault handler is required to perform the following steps:

1. Read the predicates and the IIM, IIP, IPSR, and ISR control registers into scratch bank-0
general registers.

2. Copy the IIP value to IIPA.

3. Sign-extend the IIM value (from 21 bits to 64), shift it left by 4 bits, and add it to the IIP
value.

4. Set the IPSR.ri field to 0.

5. Check whether either IPSR.tb (Taken Branch trap) or IPSR.ss (Single Step enable) is 1. If
not, emulation is complete, so restore the predicates and rfi. If so, then the check
instruction would have taken one of these traps instead of branching to its target, so this
handler needs to branch directly to the appropriate trap handler instead of performing the
rfi (see steps 6 - 7).

6. If IPSR.tb was 1, then update ISR.code with its “tb” bit set to 1 and its “ss” bit also set to
1 if IPSR.ss was 1 and all other bits 0. Restore the predicates, execute a srlz.d, and branch
to the taken branch vector (IVT offset 0x5f00).

7. If IPSR.ss was 1 (but not IPSR.tb), then update ISR.code with its “ss” bit set to 1, and all
other bits 0. Restore the predicates, execute a srlz.d, and branch to the single step vector
(IVT offset 0x6000).”

2. In Table 5-7 “Interruption Vector Table (IVT)”, change the “Reserved” text in the Vector
Name column of the offset 0x5800 row to “Reserved for software use” and attach a footnote to
this entry. The text of the footnote should read:

“Unlike the other Reserved IVT vectors, which may be defined in future revisions of the
architecture, vector 0x5800 is permanently reserved. Software may use this vector for any
purpose, such as placing in this area portions of other handlers that don't fit into their assigned
vector.”

3. Add the following to the Speculation vector (0x5700) page, just below the list added by (A):

“The Speculative Operation fault handler does not need to check for unimplemented
instruction addresses. They will be checked automatically by processor hardware when the
handler executes its rfi. If an emulated check instruction targets an unimplemented address
and also needs to take a Single Step trap or Taken Branch trap (or both), the Unimplemented
Instruction Address trap will not be raised until after the Single Step and/or Taken Branch trap
has been handled, making it appear that the Unimplemented Instruction Address trap has the
wrong priority. A Speculative Operation fault handler with this behavior is architecturally
compliant.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 21

Specification Clarifications
4. In Table 5-6 “Interruption Priorities” on page 2:94, add a footnote to the “Unimplemented
Instruction Address trap” cell, which reads:

“Unimplemented Instruction Address traps on emulated check instructions have a lower
priority than Taken Branch trap and Single Step trap. See Speculation vector (0x5700) on page
2:174.”
22 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
Documentation Changes

1. Update IA-32 CPUID I-Page

Volume 3: Updated IA-32 CPUID Instruction

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register before the
instruction is executed. Table 2-4 shows the information returned, depending on the initial value
loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a
software procedure can set and clear this flag, the processor executing the procedure supports the
CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic information
and extended function information. Basic information is returned by entering an input value
starting at 0 in the EAX register; extended function information is returned by entering an input
value starting at 80000000H. When the input value in the EAX register is 0, the processor returns
the highest value the CPUID instruction recognizes in the EAX register for returning basic
information. Always use an EAX parameter value that is equal to or greater than zero and less than
or equal to this highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction recognizes in
the EAX register for returning extended function information. Always use an EAX parameter value
that is equal to or greater than zero and less than or equal to this highest EAX return value for
extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and memory
for previous instructions are completed before the next instruction is fetched and executed.

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information in the
EAX, EBX, ECX, and EDX registers, according to the input
value entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor

Basic CPUID Information

0 EAX

EBX

ECX

EDX

Maximum CPUID Input Value

756E6547H “Genu” (G in BL)

6C65746EH “ntel” (n in CL)

49656E69H “ineI” (i in DL)
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 23

Documentation Changes
When the input value is 1, the processor returns version information in the EAX register (see
Figure 2-3). The version information consists of an Intel architecture family identifier, a model
identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID instruction will
generate two additional fields in the EAX register: the extended family field and the extended
model field. Here, a value of FH in either the model field or the family field indicates that the
extended model or family field, respectively, is valid. Family and model numbers beyond FH range
from 0FH to FFH, with the least significant hexadecimal digit always FH.

1H EAX

EBX

ECX

EDX

Version Information (Type, Family, Model, and Stepping ID)

Bits 7-0: Brand Indexa

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)

Bits 23-16: Number of logical processors per physical processor

Bits 31-24: Local APIC IDb

Reserved

Feature Information (see Table 2-5)

2H EAX

EBX

ECX

EDX

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

Extended Function CPUID Information

8000000H EAX

EBX

ECX

EDX

Maximum Input Value for Extended Function CPUID Information

Reserved

Reserved

Reserved

8000001H EAX

EBX

ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
reserved.)

Reserved

Reserved

Reserved

8000002H EAX

EBX

ECX
EDX

Processor Brand String

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

8000003H EAX

EBX

ECX
EDX

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is returned.
b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor

Figure 2-3. Version Information in Registers EAX

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type
24 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for more information on identifying Intel architecture processors.

When the input value in EAX is 1, three unrelated pieces of information are returned to the EBX
register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string table that
contains brand strings for IA-32 processors. Please refer to AP-485, Intel® Processor
Identification and the CPUID Instruction (Order Number 241618) for information on brand
indices.

Note: The Brand index field is not supported for processors based on Itanium architecture,
zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates the size of
the cache line flushed with CLFLUSH instruction in 8-byte increments. This field is valid only
when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to the local
APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium architecture,
reserved value is returned. Software should check the feature flags to make sure they are
not running on processors based on the Itanium architecture before interpreting the
return value in this field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to loading the
processor signature in the EAX register) loads the EDX register with the feature flags. The feature
flags (when a Flag = 1) indicate what features the processor supports. Table 2-5 lists the currently
defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software should identify
Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode
enhancements, including CR4.VME for controlling the feature,
CR4.PVI for protected mode virtual interrupts, software interrupt
indirection, expansion of the TSS with the software indirection bitmap,
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including
CR4.DE for controlling the feature, and optional trapping of accesses
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The
RDMSR and WRMSR instructions are supported. Some of the MSRs
are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32
bits are supported: extended page table entry formats, an extra level
in the page translation tables is defined, 2 Mbyte pages are supported
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address
bits beyond 32 is not defined, and is implementation specific.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 25

Documentation Changes
7 MCE Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model-specific processing of the exception, or test for the presence of
the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped
commands in the physical address range FFFE0000H to FFFE0FFFH
(by default – some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and
SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The
MTRRcap MSR contains feature bits that describe what memory
types are supported, how many variable MTRRs are supported, and
whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture,
which provides a compatible mechanism for error reporting is
supported. The MCG_CAP MSR contains feature bits describing how
many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction
CMOV is supported. In addition, if x87 FPU is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are
supported. This feature indicates that the upper four bits of the
physical address of the 4-MByte page is encoded by bits 13-16 of the
page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved.

21 DS Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to be
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
26 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
When the input value is 2, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers is as
follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description of
the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register contains valid
information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.

Please see the processor-specific supplement for further information on how to decode the return
values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating
point context. Presence of this bit also indicates that CR4.OSFXSR is
available for an operating system to indicate that it supports the
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements
Hyper-Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Processor based on the Intel
Itanium architecture

The processor is based on the Intel Itanium architecture and is
capable of executing the Intel Itanium instruction set. IA-32 application
level software MUST also check with the running operating system to
see if the system can also support Itanium architecture-based code
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state
(STPCLK# is asserted) to signal the processor that an interrupt is
pending and that the processor should return to normal operation to
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE
MSR enables this capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 27

Documentation Changes
CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX ← Highest input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor Type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Always zero for processors based on Itanium

architecture *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Number of logical processors per physical processor;
EBX[31:24] ← Initial APIC ID; (* Reserved for processors based on Itanium

architecture *)
ECX ← Reserved;
EDX ← Feature flags;

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
EBX ← Cache and TLB information;
ECX ← Cache and TLB information;
EDX ← Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000002H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000003H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000004H:

EAX ← Processor Name;
EBX ← Processor Name;
28 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← Reserved, Undefined;
EBX ← Reserved, Undefined;
ECX ← Reserved, Undefined;
EDX ← Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register can
be used to determine if this instruction is supported. If a procedure is able to set or clear this flag,
the CPUID is supported by the processor running the procedure.

2. PAL_BUS_GET/SET_FEATURES fix

1. Volume 2, Part I, Table 11-25.

— On page 2:296, change the following bit 52 description from:

“Enable a bus cache line replacement transaction when a cache line in the shared state is
replaced from the highest level processor cache and is not present in the lower level
processor caches. When 0, no bus cache line replacement transaction will be seen on the
bus. When 1, bus cache line replacement transactions will be seen on the bus when the
above condition is detected.”

to:

“Enable a bus cache line replacement transaction when a cache line in the shared or
exclusive state is replaced from the highest level processor cache and is not present in
the lower level processor caches. When 0, no bus cache line replacement transaction
will be seen on the bus. When 1, bus cache line replacement transactions will be seen on
the bus when the above condition is detected.”

3. PAL_COPY_PAL update

1. Volume 2, Part I, page 2:317:

a. Change the following argument in the Arguments section of the PAL_COPY_PAL
procedure from:

“processor - Unsigned integer denoting whether the call is being made on the boot
processor or an application processor.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 29

Documentation Changes
to:

“copy_option - Unsigned integer indicating whether relocatable PAL code and PAL
PMI code should be copied from firmware address space to main memory.”

b. Change the following sentences in the first paragraph of the Description section of
PAL_COPY_PAL from:

“This procedure also updates the PALE_PMI entrypoint in hardware. If the call in made
on a application processor the copy is not performed. The processor argument denotes
whether the call is made on the boot processor (value of 0) or an application processor
(value of 1).”

to:

“A value of 0 for the copy_option indicates that the relocation should be performed; a
value of 1 indicates that the relocation should not be performed. This procedure also
updates the PALE_PMI entrypoint in hardware.”

4. Fixing X-Unit text correction

1. Volume 3, Section 4.7.4 “Nop/Hint (X-Unit)”, Table 4-73 on page 3:332, change:

“nop.m” to “nop.x”

“hint.m” to “hint.x”

5. PAL_CACHE_SHARED_INFO text correction

1. Volume 2, Part I, page 2:311:

For the entire PAL_CACHE_SHARED_INFO pages, change any instance of
“proc_n_log_info” to “proc_n_cache_info”.

6. PAL_CACHE_FLUSH clarification and minor code sequence fix

1. Volume 2, Part I, page 2:431, make a change to the assembly code in Section 5.1.1.3 (first line
of assembly code). The code is trying to address region register 2, but indexed it incorrectly.

Change from: mov r2 = 2

to: movl r2 = (2 << 61)

7. PAL_GET_PROC_FEATURES table fix

1. Volume 2, Part I, PAL_GET_PROC_FEATURES table on page 2:361, fix bit 40.

Change from:

 Bit: 40-0

 Class: N/A

 Control: N/A

 Description: reserved

to:

 Bit: 40

 Class: N/A

 Control: N/A

 Description: reserved
30 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

	Revision History
	Preface
	Summary Table of Changes
	Specification Changes
	Specification Clarifications
	Documentation Changes

