
Document Number: 248699-011

Intel® Itanium® Architecture
Software Developer’s Manual
Specification Update
October 2007

2 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2002-2007, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 3

Contents

Preface..5

Summary Table of Changes..6

Specification Changes..7

Specification Clarifications .. 34

Documentation Changes .. 41

4 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Revision History

§§

Document
Number

Version
Number Description Date

248699 -011 • Specification changes 1-12, Specification Clarifications 1-10, and
Document Change 1. October 2007

248699 -001-
-010

• Changes from previous Software Developer’s Manual Specification
Updates were incorporated into version 2.2 of the Intel® Itanium®

Architecture Software Developer’s Manual January 2006.
January 2006

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 5

1 Preface

This document is an update to the specifications contained in the Affected Documents/
Related Documents table below. This document is a compilation of device and
documentation errata, specification clarifications, and changes. It is intended for
hardware system manufacturers and software developers of applications, operating
systems, or tools.

Information types defined in Nomenclature are consolidated into the specification
update and are no longer published in other documents.

This document may also contain information that was not previously published.

1.1 Affected Documents/Related Documents

1.2 Nomenclature
Specification Changes are modifications to the current published specifications for
Intel® Itanium® architecture processors. These changes will be incorporated in the
next release of the specifications.

Specification Clarifications describe a specification in greater detail or further
explain a specification’s interpretation. These clarifications will be incorporated in the
next release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in the next release of the
Intel® Itanium® Architecture Software Developer’s Manual.

Title Document #

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.2,
Volume 1: Application Architecture

245317-005

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.2,
Volume 2: System Architecture

245318-005

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.2,
Volume 3: Instruction Set Reference

245319-005

6 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

2 Summary Table of Changes

The following tables indicate the specification changes and specification clarifications
that apply to the Intel® Itanium® Architecture Software Developer’s Manual.

.

2.1 Specification Changes
No. Page SPECIFICATION CHANGES

1 7 Illegal VAC/VDC combinations and IIPA requirements

2 8 Resouce Utilization Counter

3 19 PAL_VP_INIT and VPD.vpr changes

4 18 New PAL_VPS_RESUME_HANDLER to indicate RSE Current Frame Load Enable setting
at the target instruction

5 19 PAL_VP_INIT_ENV Implementation-specific Configuration Option

6 19 Increase in minimum number of virtual address bits

7 20 PAL_MC_ERROR_INFO health indicator

8 23 New implementation-specific bit fields for PAL_MC_ERROR_INJECT

9 23 MOV-to-PSR.L Reserved Field Checking

10 23 Virtual Machine Disable

11 26 Removal of pal_proc_vector argument from PAL_VP_SAVE and PAL_VP_RESTORE

12 26 Variable Frequency Mode Additions to ACPI P-states

13 29 PAL_MC_DYNAMIC_STATE Changes

14 31 Min-State Save Area Size Change

2.2 Specification Clarifications
No. Page SPECIFICATION CLARIFICATIONS

1 34 Clarification of ptc.g release semantics

2 34 Clarification of PAL_MC_ERROR_INFO reporting of uncacheable transactions

3 35 Clarification of behavior when ptc.g overlaps a translation register

4 35 INT3 Clarifications

5 35 Test feature instruction clarifications

6 35 Clarification of performance counter behavior under halt states

7 37 PMI Clarifications

8 38 PAL_MC_ERROR_INJECT Clarifications

9 39 Min-state Save Area Clarifications

10 39 Semaphore Code Corrections

2.3 Documentation Changes
No. Page DOCUMENTATION CHANGES

1 41 Revision 2.2 Documentation Changes

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 7

3 Specification Changes

1. Illegal VAC/VDC combinations and IIPA requirements

1. In Volume 2, Part I, Chapter 11, add a new Section 11.7.4.3 “Virtualization
Optimization Combinations”. In the new Section 11.7.4.3, add the following
description and table to indicate the allowed vac and vdc combinations:

11.7.4.3 Virtualization Optimization Combinations

Table 11-35 describes the supported combinations of virtualization accelerations and
disables.

2. In Volume 2, Part I, Chapter 11, Section 11.7.4.2.7, "Disable PSR Interrupt-bit
Virtualization", replace the note:

Note: This field overrides the a_int Virtualization Acceleration Control (vac)
described in Section 11.7.4.1.1, "Virtual External Interrupt Optimization"
on page 2:323. If this control is enabled (set to 1), the a_int Virtualization
Acceleration Control (vac) is ignored.

with:

Note: This field cannot be enabled together with a_int, a_from_psr or a_bsw vir-
tualization accelerations. If this control is enabled together with any one of
the described accelerations, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3 for details.

3. In Volume 2, Part I, Chapter 11, Section 11.7.4.2.2 "Disable External Interrupt
Control Register Virtualization”, replace the note:

Note: This field overrides the a_int Virtualization Acceleration Control (vac)
described in Section 11.7.4.1.1, "Virtual External Interrupt Optimization"
on page 2:323. If this control is enabled (set to 1), the a_int Virtualization
Acceleration Control (vac) is ignored.

with:

Note: This field cannot be enabled together with the a_int virtualization accelera-
tion control (vac) described in Section 11.7.4.1.1. If this control is enabled
together with the a_int control, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3 for details.

Table 11-35. Supported Virtualization Optimization Combinations

d_vmsw d_extint d_ibr_dbr d_pmc d_to_pmd d_itm d_psr_i

a_int oa xb o o o o x

a_from_int_cr o o o o o o o

a_to_int_cr o o o o o o o

a_from_psr o o o o o o x

a_from_cpuid o o o o o o o

a_cover o o o o o o o

a_bsw o o o o o o x

Notes:
a. “o” indicates the corresponding virtualization acceleration and disable can be enabled together.
b. “x” indicates the corresponding virtualization acceleration and disable cannot be enabled together.

8 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

4. In Volume 2, Part I, Chapter 11, Section 11.10, “PAL Procedures”, PAL_VP_CREATE
page. In the Description section, after the second paragraph, last sentence:

The vac, vdc and virt_env_vaddr parameters in the VPD must already be
initialized before calling this procedure.

Add the following sentence:
Invalid argument is returned on unsupported vac/vdc combinations. See
Section 11.7.4.3 for details.

5. In Volume 2, Part I, Chapter 11, Section 11.10, “PAL Procedures”,
PAL_VP_REGISTER page. In the Description section, add the following paragraph
before the last paragraph:

PAL_VP_REGISTER returns invalid argument on unsupported virtualization
optimization combinations in vpd. See Section 11.7.4.3, “Virtualization
Optimization Combinations” for details.

6. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.1 "Virtual External Interrupt
Optimization", add the following note to the end of the section:

Note: This field cannot be enabled together with d_extint or d_psr_i virtualization
disables. If this control is enabled together with any one of described dis-
ables, an error will be returned during PAL_VP_CREATE and
PAL_VP_REGISTER. See Section 11.7.4.3, “Virtualization Optimization
Combinations” for details.

7. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.4 "MOV-from-PSR Optimization",
add the following note to the end of the section:

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.2.7, “Disable PSR Interrupt-bit
Virtualization”. If this control is enabled together with the d_psr_i control,
an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER.
See Section 11.7.4.3, “Virtualization Optimization Combinations” for
details.

8. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.7 "Bank Switch Optimization",
add the following note to the end of the section:

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.2.7. If this control is enabled
together with the d_psr_i control, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3, “Virtualiza-
tion Optimization Combinations” for details.

2. Resouce Utilization Counter

The existing Interval Time Counter application register is clocked at a constant rate,
independent of logical processor and virtual processor context switches on a processor
core.

The new Resource Utilization Counter application register is clocked like the ITC, but is
provided per logical or virtual processor and provides an estimate of the portion of
resources used by a logical or virtual processor with respect to all resources provided
by the underlying physical processor.

1. Add AR.ruc to Volume 1, Part I, Section 3.1.1, “Reserved and Ignored Registers and
Fields”. In Figure 3-1, add RUC, AR 45 directly below and directly next to ITC, AR
44.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 9

2. In Volume I, Part I, Section 3.1.8, “Application Registers”, Table 3-3, add the RUC
entry as shown:

a. Add a new Resource Utilization Counter section just after Section 3.1.8.10,
"Interval Time Counter":

3.1.8.11 Resource Utilization Counter (RUC - AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate
of the portion of resources used by a logical or virtual processor with respect to all
resources provided by the underlying physical processor.
In a given time interval, the difference in the RUC values for all of the logical or virtual
processors on a given physical processor add up to approximately the difference seen
in the ITC on that physical processor for that same interval. (See Vol 2, Section 11.7
for details on virtual processors.)
A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads.
System software can secure the resource utilization counter from non-privileged
access. When secured, a read of the RUC at any privilege level other than the most
privileged causes a Privileged Register fault.

3. Add CPUID[4] bit for non-privileged discovery of the Resource Utilization Counter

a. In Volume 1, Part I, section 3.1.11, "Processor Identification Registers", Figure
3-12, add a new ru bit as shown:

b. In Volume 1, Part I, Section 3.1.11, “Processor Identification Registers”, add
the ru entry to Table 3-8 as shown:

4. In Volume 1, Part I, Section 6.2, “IA-32 Application Register State Model”, add
AR.ruc to Fig 6-3 and Table 6-1.

a. In Figure 6-3, add RUC, AR 45 directly below and directly next to ITC, AR 44.

b. In Table 6-1, add a new row, just under the row for ITC, with this information:

Register Name Description Execution Unit
Type

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

Figure 3-12. CPUID Register 4 – General Features/Capability Bits
63 3 2 1 0

rv ru ao sd lb

60 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 63:4 Reserved.

RUC Unmodified 64 RUC continues to count while in IA-32
execution mode

10 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

5. Describe serialization for RUC in Volume 2, Part I, Section 3.2.2 “Data
Serialization”.

a. In the second paragraph, change:
... RR, PKR, DTR, ...

to:
... RR, PKR, RUC, DTR, ...

6. Add AR.ruc to Volume 2, Part I, Section 3.3.1 “System State Overview”.

a. In the bullet list, just after the bullet for "Interval Timer Facilities", add a new
bullet:

• Resource Utilization Facility - A 64-bit resource utilization counter is
provided for privileged and non-privileged use. This counts the number of
Interval Timer cycles consumed by this logical processor. See Section
3.1.8.11, “Resource Utilization Counter” on page 1:29.

b. Add AR.ruc to Figure 3-1:
Add RUC, AR 45 directly below and directly next to ITC, AR 44.

7. Update the description of PSR.si to cover RUC.

In Volume 2, Part I, Section 3.3.2 “Processor Status Register (PSR)”, Table 3-2,
change this part of the description of the PSR.si bit:

When 1, the Interval Time Counter (ITC) register is readable only by privileged
code; non-privileged reads result in a Privileged Register fault. When 0, ITC is
readable at any privilege level.

to:
When 1, the Interval Time Counter (ITC) register and the Resource Utilization
Counter (RUC) are readable only by privileged code; non-privileged reads
result in a Privileged Register fault. When 0, ITC and RUC are readable at any
privilege level.

8. Add AR.ruc to Volume 2, Part I, Section 3.3.4 “Global Control Registers”.

a. Add a new section, just after 3.3.4.2 "Interval Time Counter and Match
Register":

3.3.4.3 Resource Utilization Counter (AR 45)

The Resource Utilization Counter (RUC) is a 64-bit counter that counts up at a fixed
relationship to the input clock to the processor, when the processor is active.
Processors may be inactive due to hardware multi-threading. Virtual processors may be
inactive when not scheduled to run by the VMM. (See Vol 2, section 11.7 for details on
virtual processors.)

The RUC is clocked such that, in a given time interval, the difference in the RUC values
for all of the logical or virtual processors on a given physical processor add up to
approximately the difference seen in the ITC on that physical processor for that same
interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the RUC for active-running-time
calculations.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 11

A 64-bit overflow condition can occur without notification. The RUC can be read at any
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by
setting PSR.si to one. When secured, a read of the RUC by non-privileged code results
in a Privileged Register fault. Writes to the RUC can only be performed at privilege level
0; otherwise, a Privileged Register fault is raised.

Modification of the RUC is not necessarily serialized with respect to instruction
execution. Software can issue a data serialization operation to ensure the RUC updates
are observed by a given point in program execution. Software must accept a level of
sampling error when reading the resource utilization counter due to various machine
stall conditions, interruptions, bus contention effects, etc. Please see the processor-
specific documentation for further information on the level of sampling error of the
Itanium processor.

RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

9. Update Volume 2, Part I, Section 3.4, “Processor Virtualization”, Table 3-10.
Change the last two rows to the following:

10. Update Volume 2, Part I, Section 11.3.2, "PALE_CHECK Exit State".

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
MCA, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
MCA, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC and RUC counters.

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the MCA handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the MCA handler. The RUC register will not be
directly modified by PAL, but will Continue to count during the execution of
the MCA handler while the processor is active.

11. Update Volume 2, Part I, Section 11.4.2, "PALE_INIT Exit State".

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
INIT, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
INIT, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC and RUC counters.

Class Virtualized Instructions

Reading AR[ITC] with
PSR.si==1 takes
(virtualized at all privilege
levels)

mov from ar.itc
mov from ar.ruc

Instructions which write
privileged registers

mov to itc
mov to ar.ruc

12 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the INIT handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the INIT handler. The RUC register will not be
directly modified by PAL, but will continue to count during the execution of
the INIT handler while the processor is active.

12. Update Volume 2, Part I, Section 11.5.2, "PALE_PMI Exit State".

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
interruption, except the RSE control register (RSC) and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
interruption, except the RSE control register (RSC) and the ITC and RUC
counters.

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the PMI handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the PMI handler. The RUC register will not be
directly modified by PAL, but will continue to count during the execution of
the PMI handler while the processor is active.

13. Update Volume 2, Part I, Section 11.7.3.1, "PAL Virtualization Intercept Handoff
State".

a. In the bullet for ARs, change the following:
The contents of all application registers are preserved from the time of the
interruption, except the ITC counter. The ITC register will not be directly
modified by PAL, but will continue to count during the execution of the
virtualization intercept handler.

to:
The contents of all application registers are preserved from the time of the
interruption, except the ITC and RUC counters. The ITC register will not be
directly modified by PAL, but will continue to count during the execution of
the virtualization intercept handler. The RUC register will not be directly
modified by PAL, but will continue to count during the execution of the
virtualization intercept handler while the processor is active.

14. Update Volume 2, Part I, Section 11.10.2.2.7, "Application Registers". Add a new
row to Table 11-48, just below the ITC row, with this information:

c. No PAL procedure writes to the RUC. The value at exit is the value at entry
plus the number of cycles provided to the processor during the procedure
call.

Register Description Class

RUC Resource Utilization Counter unchangedc

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 13

15. Update Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_ENTER_IA_32_ENV page.

a. Add a new row to the bottom of Table 11-67:

b. Add a new row to Table 11-71 just below the row for ITC:

16. Add a new PAL_VP_INFO procedure for privileged discovery of the Resource
Utilization Counter.

a. Add a new PAL procedure to Volume 2, Part I, Section 11.10.3, “PAL Procedure
Specifications”, just before PAL_VP_INIT_ENV:

Intel® Itanium®
Register IA-32 State Description

RUC -- RUC continues to count while in IA-32 execution mode

Intel® Itanium®
Register IA-32 State Description

RUC -- Final value of RUC

14 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_VP_INFO – PAL Virtual Processor Information (50)

Purpose: Returns information about virtual processor features.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_VP_INFO procedure call is used to describe virtual processor features.

The feature_set input argument for PAL_VP_INFO describes which virtual-processor
feature_set information is being requested, and is composed of two fields as shown:

A vmm_id of 0 indicates architected feature sets, while others are implementation-
specific feature sets. Implementation-specific feature sets are described in VMM-specific
documentation.

This procedure will return a -8 if an unsupported feature_set argument is passed as an
input. The return status is used by the caller to know which feature sets are currently
supported on a particular VMM. This procedure always returns unimplemented (-1)
when called on physical processors.

For each valid feature_set, this procedure returns information about the virtual
processor in vp_info. Additional information may be returned in the memory buffer
pointed to by vp_buffer, as needed. Details, for a given implementation-specific
feature_set, of whether information is returned in the buffer, the size of the buffer, and
the representation of this information in the buffer and in vp_info are described in VMM-
specific documentation.

Architected feature_set 0 (vmm_id 0, index 0) is defined and required to be
implemented (if this procedure is implemented), but there are no architected features
defined in it yet, and so all bits in vp_info are reserved for architected feature_set 0.

Argument Description

index Index of PAL_VP_INFO within the list of PAL procedures.

feature_set Feature set information is being requested for.

vp_buffer An address to an 8-byte aligned memory buffer (if used).

Reserved 0.

Return Value Description

status Return status of the PAL_VP_INFO procedure.

vp_info Information about the virtual processor..

vmm_id Unique identifier for the VMM.

Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

-8 Specified feature_set is not implemented

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

vmm_id index

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 15

Other architected feature sets (vmm_id 0, index>0) are undefined, and return -8
(Specified feature_set is not implemented). SW can call PAL_VP_INFO with a
feature_set argument of 0 to get the vmm_id, although vmm_id is also returned for any
other implemented feature sets as well. For feature_set 0, the vp_buffer arg is ignored.

b. Add PAL_VP_INFO to Volume 2, Part I, Section 11.10.1, “PAL Procedure
Summary”, Table 11-42.

17. In Volume 3, Part I, Section 2.2, “Instruction Descriptions”, update the “mov ar”
instruction page pseudo-code.

a. In the Operation section, change the following “from form” code:
if (ar3 == ITC && PSR.si && PSR.cpl != 0)
 privileged_register_fault();

if (ar3 == ITC && PSR.si && PSR.vm == 1)
 virtualization_fault();”
to:
if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.cpl != 0)
 privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.vm == 1)
 virtualization_fault();”

b. In the to_form code, change the following “to form” code:
if ((is_kernel_reg(ar3) || ar3 == ITC) && (PSR.cpl != 0))
 privileged_register_fault();

if (ar3 == ITC && PSR.vm == 1)
 virtualization_fault();
to:
if ((is_kernel_reg(ar3) || ar3 == ITC || ar3 == RUC) && (PSR.cpl != 0))
 privileged_register_fault();

 if ((ar3 == ITC || ar3 == RUC) && PSR.vm == 1)
 virtualization_fault();

c. At the beginning of the Operation section, change the following code:
if (is_reserved_reg(tmp_type, ar3))
 illegal_operation_fault();
to:
if (!instruction_implemented(MOV_AR_RUC))
 illegal_operation_fault();

if (is_reserved_reg(tmp_type, ar3))
 illegal_operation_fault();

18. In Volume 3, Part I, Section 5.3.2, “RAW Dependency Table”, add AR.ruc to the
resource dependency tables.

a. In Table 5-2, add a row just under the row for AR[RSC] with this information:

Procedure Idx Class Conv. Mode Buffer Description

PAL_VP_INFO 50 Opt. Static Phys. No. Returns information about virtual processor
features.

Resource Name Writers Readers Semantics of
Dependency

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

16 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. In Table 5-2, in the row for PSR.cpl, add mov-from-AR-RUC and mov-to-AR-
RUC to the readers in both of the sub-rows as shown:

c. In Table 5-2, update the PSR.si row, as shown:

d. In Table 5-2, update the row for PSR.vm as shown:

e. In Volume 2, Part I, Section 5.3.3, "WAW Dependency Table", Table 5-3, add a
row just under the row for AR[RSC] with this information:

Resource Name Writers Readers Semantics of
Dependency

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all,
mov-from-AR-RUC, mov-to-AR-RUC

implied

rfi priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all,
mov-from-AR-RUC, mov-to-AR-RUC

impliedF

Resource Name Writers Readers Semantics of
Dependency

PSR.si sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC, mov-from-AR-
RUC,

data

rfi mov-from-AR-ITC, mov-from-AR-
RUC, mov-from-PSR

impliedF

Resource Name Writers Readers Semantics of
Dependency

PSR.vm vmsw mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag, mov-from-AR-RUC,
mov-to-AR-RUC

implied

rfi mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag, mov-from-AR-RUC,
mov-to-AR-RUC

impliedF

Resource Name Writers Semantics of
Dependency

AR[RUC] mov-to-AR-RUC impliedF

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 17

f. In Volume 3, Part I, Section 5.4 "Support Tables", Table 5-5, add a row just
under the row for mov-from-AR-RSC with this information:

g. In Volume 3, Part I, Section 5.4 "Support Tables", Table 5-5, add a row just
under the row for mov-to-AR-RSC with this information:

19. In Volume 2, Part II, add a new section just after Section 10.5.5, "Interval Timer
Usage Example":

3.3.5 10.5.6 Resource Utilization Counter Usage Example

The Itanium architecture provides a 64-bit counter to provide information on how many
execution cycles a given logical processor is getting. It is similar to the Interval Timer
(ITC, AR 44), except that it is clocked only when the logical processor is active.
Optimizations such as hardware multi-threading and processor virtualization may cause
a logical processor to sometimes be inactive. The Resource Utilization Counter allows
for better cycle accounting for logical processors, given these types of optimizations.
RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

3. PAL_VP_INIT and VPD.vpr changes
1. PAL_VP_INIT_ENV currently freezes performance registers by clearing PMC[0].fr

when fr_pmc is enabled. The following change removes the race condition that can
occur when a counter overflow happens just before the write to PMC[0].fr, causing
PAL to overwrite the overflow bit, and losing overflow information.

a. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV procedure, Table 11-110, change the fr_pmc description
from:

to:

b. Volume 2, Part I, Section 11.7.3.1, "PAL Virtualization Handoff State", PSR
description. Change the following bullet:

• PSR: PSR fields are set according to the "Interruption State" column in
Table 3-2, "Processor Status Register Fields" on page 2:21.

to:

• PSR: PSR fields are set according to the "Interruption State" column in
Table 3-2, "Processor Status Register Fields" on page 2:21. PSR.up and pp

Class Events/Instructions

mov-from-AR-RUC mov-from-AR-M[Field(ar3) == RUC]

Class Events/Instructions

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

fr_pmc 1 If 1, performance counters are frozen on all IVA-based interruptions when virtual pro-
cessors are running. If 0, the performance counters will not be frozen on IVA-based
interruptions when virtual processors are running.

fr_pmc 1 If 1, for virtualization intercepts the performance counters are disabled by setting
PSR.up and pp to 0, see Section 11.7.3.1 for details on PSR settings at virtualization
intercepts; for all other IVA-based interruptions PSR.pp and up are set according to
Interruption State column described in Processor Status Field table described in Vol 2
Table 3-2. If 0, PSR.pp and up are set according to Interruption State column
described in Processor Status Field table described in Vol 2 Table 3-2.

18 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

are set to 0 when fr_pmc field in config_options parameter during
PAL_VP_INIT_ENV is 1.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV page, Table 11-110, change the be config_options description
from:

to:

3. Volume 2, Part I, Section 11.7.1,"Virtual Processor Descriptor", Table 11-14,
Update the vpr row from:

to:

4. New PAL_VPS_RESUME_HANDLER to indicate RSE Current Frame Load
Enable setting at the target instruction

This change adds a parameter to PAL_VPS_RESUME_HANDLER to allow a virtual
machine monitor to specify the register stack engine Current Frame Load Enable
setting at the target guest handler.

1. Volume 2, Part I, Section 11.11.12, “PAL Virtualization Service Specifications”,
PAL_VPS_RESUME_HANDLER page.

a. Change the description of GR26 from:
Virtualization Acceleration Control (vac) field from the VPD specified in GR25

to:
Virtualization Acceleration Control (vac) field from the VPD specified in GR25
and CFLE setting at the target instruction.

b. In the second paragraph, change the following paragraph from:
The VMM specifies the BR0 of the virtual processor in GR24, the 64-bit
virtual pointer to the VPD in GR25 and the vac field of the VPD in GR26.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit equals
to 1. If 0, the values in the VPD are stored in little-endian format and the PAL services
calls are made with PSR.be bit equals to 0.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit equals
to 1. If 0, the values in the VPD are stored in little-endian format and the PAL services
calls are made with PSR.be bit equals to 0. The VMM must match DCR.be with the
value set in this field when the IVA control register on the logical processor is set to
point to the per-virtual-processor host IVT. See Section 11.17.2 "Interruption Handling
in a Virtual Environment" and Table 11-17 "IVA Settings after PAL Virtualization-
related Procedures and Services" for details on per-virtual-processor host IVT".

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction.

Architectural State
[always]

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction. The contents in this field
are undefined except at virtualization intercept
handoff. The VMM can not rely on the contents
in this field to be preserved when the virtual
processor is running.

Architectural State
[always]

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 19

Behavior is undefined if the vac in GR26 does not match the vac field in the
VPD argument specified in GR25.

to:
GR24 specifies the BR0 of the virtual processor; GR25 specifies the 64-bit
virtual pointer to the VPD; GR26 specifies the vac field of the VPD in GR26;
bit 63 of GR26 specifies the value of CFLE setting at the target instruction.
Behavior is undefined if the vac in GR26 does not match the vac field in the
VPD argument specified in GR25.

2. In Volume 3, Part I, Section 2.2, “Instruction Descriptions”, “tf” page:

a. In the Description section, remove the following text:
Implementation of PSR.vm is optional. If it is implemented but the
instruction is disabled, this instruction takes Virtualization fault when
executed with PSR.vm equals to 1.

b. In the Operation section, remove both instances of the following lines:
if (PSR.vm == 1 && vm_tf_disabled())
virtualization_fault();

c. In the Interruptions section, remove "Virtualization fault" from the list of
interruptions.

5. PAL_VP_INIT_ENV Implementation-specific Configuration Option

This change defines an implementation-specific configuration bit for PAL_VP_INIT_ENV.
A separate update to the “Dual-Core Update to the Itanium 2 Processor Reference
Manual” will define this implementation-specific bit to optimize performance for virtual
machine monitors using data translation cache for pages containing virtualized
instructions.

1. Volume 2, Part 1, Section 11.10.3, “PAL Procedures Specifications”,
PAL_VP_INIT_ENV page. Add the impl bit to Table 11-110:

2. A future revision of the “Dual-Core Update to the Itanium 2 Processor Reference
Manual” will include the following change:

 Add a section to describe PAL_VP_INIT_ENV:

Table 11-62. PAL_VP_INIT_ENV Implementation-specific Behavior

6. Increase in minimum number of virtual address bits

This change increases the minimum number of implemented virtual address bits from
51 to 54. Note that Itanium 2 processors and Dual Core Itanium 2 processors already
support the 54 bit virtual address minimum.

1. Volume 2, Part 1, Section 4.3.2, “Unimplemented Virtual Address Bits” change the
first paragraph:

Field Bit Description

impl 63 Implementation-specific configuration option. This field is ignored if not implemented.
Please refer to processor-specific documentation for details..

Field Bit Description

hint_dtc 63 If 1, this hint indicates the VMM is using data translation
cache for pages containing virtualized instructions.
Instruction TLB misses will happen during virtualized
instruction execution if the corresponding data translation
does not exist in the TLB hierarchy

20 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

... all processor models implement at least 51 virtual address bits; i.e., the
smallest IMPL_VA_MSB is 50.

to:
... all processor models implement at least 54 virtual address bits; i.e., the
smallest IMPL_VA_MSB is 53.

2. Change the second paragraph of Volume 2, Part 1, Section 4.3.2, “Unimplemented
Virtual Address Bits” from:

If the PSR.vm bit is implemented, at least 52 virtual address bits must be
implemented.

to:
If the PSR.vm bit is implemented, at least 55 virtual address bits must be
implemented.

7. PAL_MC_ERROR_INFO health indicator

This change defines PAL_MC_ERROR_INFO cache_check, tlb_check, and uarch_check
fields to allow hardware status tracking to be reported for processor structures. A new
PAL_MC_HW_TRACKING procedure allows software to determine which processor
structures provide hardware status tracking.

1. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page, Table 11-82, add a hlth field row and a table note to
the cache_check definiton:

(a) Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at
or below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries
exceeds a pre-defined threshold.

2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page, Table 11-83, add a new hlth field row and a table note
to the tlb_check definition:

(a) Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at
or below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries
exceeds a pre-defined threshold.

Field Bits Description

hlth 31:30 Health indicator. This field will report if the cache type and level reporting this error supports
hardware status tracking and the current status of this cache.
00 - No hardware status tracking is provided for the cache type and level reporting this
event.
01 - Status tracking is provided for this cache type and level and the current status is normal
status.(a)
10 - Status tracking is provided for the cache type and level and the current status is
cautionary. (a) When a cache reports a cautionary status the "hardware damage" bit of the
PSP (See Section 11.3.2.1, “Processor State Parameter (GR18)”) will be set as well.
11 - Reserved

rsvd 31:24 Reserved

Field Bits Description

hlth 31:30 Health indicator. This field will report if the tlb type and level reporting this error supports
hardware status tracking and the current status of this tlb.
00 - No hardware status tracking is provided for the tlb type and level reporting this event.
01 - Status tracking is provided for this tlb type and level and the current status is normal.(a)

10 - Status tracking is provided for the tlb type and level and the current status is
cautionary(a) When a tlb reports a cautionary status the "hardware damage" bit of the PSP
(See Section 11.3.2.1, “Processor State Parameter (GR18)”) will be set as well.
11 - Reserved

rsvd 31:24 Reserved

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 21

3. Add a new PAL procedure called PAL_MC_HW_TRACKING

a. Add PAL_MC_HW_TRACKING to Volume 2, Part I, Section 11.10.1, “PAL
Procedure Summary”, Table 11-38:

b. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”, add a new
PAL_MC_HW_TRACKING page after the PAL_MC_EXPECTED page:

Procedure Idx Class Conv. Mode Buffe
r Description

PAL_MC_HW_TRACKING 51 Opt. Static Both Yes Query which hardware structures are performing
hardware status tracking.

22 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_MC_HW_TRACKING - Query which hardware structures
are performing hardware status tracking (51)

Purpose: Provide a way to query which hardware structures are performing hardware status
tracking for corrected machine check events.

Calling Conv: Static

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

This procedure will return information about which hardware structures are providing
hardware status tracking for corrected machine check events. This information is also
returned in the error logs for corrected machine check events.

The layout of the tracked return value is showing in Fig 11-64.

Figure 11-64. Layout of hw_track return value

Argument Description

index Index of PAL_MC_HW_TRACKING within the list of PAL procedures.

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_MC_HW_TRACKING procedure.

hw_track 64-bit vector denoting which hardware structures are providing hardware status tracking. See
Fig 11-100.

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DTT ITT DCT ICT

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-100. hw_track Description

Field Bits Description

ICT 3:0 Instruction cache tracking. This is a 4-bit vector denoting which levels of instruction
cache provide hardware tracking.

DCT 7:4 Data cache tracking. This is a 4-bit vector denoting which levels of the data/unified
caches provide hardware tracking.

ITT 11:8 Instruction TLB tracking. This is a 4-bit vector denoting which levels of the instruction
TLB provide hardware tracking.

DTT 15:12 Data TLB tracking. This is a 4-bit vector denoting which levels of data/unified TLB
provide hardware tracking

rsvd 63:16 Reserved.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 23

The convention for the levels in the hw_track field is such that the least significant bit in
the field represents the lowest level of the structures hierarchy. For example bit 0 of
the ICT field represents the first level instruction cache.

8. New implementation-specific bit fields for PAL_MC_ERROR_INJECT

This change defines implementation-specific bits for PAL_MC_ERROR_INJECT.

1. In Volume 2, Part I, Section 11.10.3, PAL_MC_ERROR_INJECT procedure, Figure
11-51 change bits 63:48 from Reserved to implementation specific in Figure 11-51
as shown:

2. In Volume 2, Part I, Section 11.10.3, PAL_MC_ERROR_INJECT procedure, Table 11-
87, change bits 63:48 from Reserved to implementation specific as shown:

9. MOV-to-PSR.L Reserved Field Checking

This change relaxes the architectural requirement for checking the reserved upper 32
bits on MOV-to-PSR.L, making this check implementation-specific.

Volume 3, Part I, Section 2.2, “Instruction Descriptions, “mov - Move Processor Status
Register” page. In the Description, change the third paragraph from:

For move to processor status register, GR r2 is read, bits {31:0} copied into
PSR{31:0} and bits{45:32} are ignored. All bits of GR r2 corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.

 to:

For move to processor status register, GR r2 is read, bits {31:0} copied into
PSR{31:0} and bits {63:32} are ignored. Bits {31:0} of GR r2 corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.
An implementation may also raise Reserved Register/Field fault if bits {63:32} in
GR r2 corresponding to reserved fields of the PSR are non-zero.

10. Virtual Machine Disable

This change defines a mechanism to disable processor virtualization features.

1. 2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES page, Table 11-103, change bit 40 to the following:

Figure 11-51. err_type_info
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved struct_hier err_struct err_sev err_inj mode

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Impl_Spec Reserved

Field Bits Description

Reserved 47:16 Reserved

impl_spec 63:48 Processor specific error injection capabilities. Please refer to processor specific
documentation for additional details.

24 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

2. Volume 2, Part I, Section 3.4, "Processor Virtualization". Add the following
paragraph before the last paragraph:

Processors which support processor virtualization may provide an
implementation-dependent mechanism to disable virtual machine features, see
PAL_PROC_GET_FEATURES on page 2:429 for details.

3. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, vmsw page. In the last
sentence of the last paragraph:

See Section 3.4, "Processor Virtualization" on page 2:40 and
PAL_PROC_GET_FEATURES on page 2:433 for details.

add a reference to PAL_PROC_SET_FEATURES:
See Section 3.4, "Processor Virtualization" on page 2:40,
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES on page 2:429 and
page 2:433 for details.

4. Volume 2, Part I, Section 11.8, "PAL Glossary", add the following two definitions:

Power-on
The reset event that occurs when the power input to the processor is applied and
the reset input to the processor is asserted.

Reset
The reset event that occurs when the reset input to the processor is asserted.

5. Volume 2, Part I, Section 11.2.1, “PALE_RESET”. In the first sentence, change the
following text:

Upon receipt of a power-on reset event the processor begins executing code
from...

 to:
Upon receipt of a power-on/reset event the processor begins executing code
from...

6. Volume 3, Part I, Chapter 3, Table 3-1, "Pseudo-code Functions.” Change the
description of the function "implemented_vm" from:

Returns TRUE if the processor implements the PSR.vm bit.

to:
Returns TRUE if the processor implements the PSR.vm bit (regardless of
whether virtual machine features are enabled or disabled).

7. Volume 3, Part I, Chapter 3, Table 3-1 "Pseudo-code Functions", rename the
function "vm_disabled" to "vmsw_disabled".

8. Volume 3, Part I, Chapter 3, Table 3-1 "Pseudo-code Function", add a new function
"vm_disabled":

Bit Class Control Description

40 Opt. Opt Virtual Machine features implemented and enabled. When 1, PSR.vm is implemented
and virtual machines features are not disabled. When 0 (features_status) and when
the corresponding features_avail bit is 1, virtual machines features are implemented
but are disabled. When both the features_avail and features_status bits are 0, virtual
machine features are not implemented.

If implemented and controllable, virtual machine features may be disabled by writing
this bit to 0 with PAL_PROC_SET_FEATURES. However, virtual machine features
cannot be re-enabled except via a reset; hence, if virtual machine features are
disabled, this bit reads as 0 for both features_status and features_control (but still 1
for features_avail).

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 25

9. Volume 3, Part I, Chapter 2, VMSW I-page, change the line:
 if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled())

to:
 if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled() ||
 vmsw_disabled())

10. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, vmsw page. In the
description section, change the last paragraph from:

Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it is implemented but is disabled, this
instruction takes Virtualization fault when executed at the most privileged level.
See Section 3.4, "Processor Virtualization" on page 2:40 and
PAL_PROC_GET_FEATURES on page 2:433 for details.

 to:
Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it is implemented but either virtual machine
features or the vmsw instruction are disabled, this instruction takes
Virtualization fault when executed at the most privileged level. See Section 3.4,
"Processor Virtualization" on page 2:40 and PAL_PROC_GET_FEATURES on
page 2:433 for details.

11. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the
PAL_VP_ENV_INFO page, add the following paragraph to the end of the section
(just before Table 11-109):

This procedure returns unimplemented procedure when virtual machine
features are disabled. See Section 3.4, "Processor Virtualization" on page 2:40
and PAL_PROC_GET_FEATURES on page 2:433 for details.

12. Volume 2, Part I, Chapter 11, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV page, add the following paragraph at the end of the Description:

This procedure returns unimplemented procedure when virtual machine
features are disabled. See Section 3.4, "Processor Virtualization" on page 2:40
and PAL_PROC_GET_FEATURES on page 2:433 for details.

13. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications,
PAL_PROC_GET_FEATURES procedure, Table 11-103, add this sentence to the end
of the description for bit 54, "Enable the use of the vmsw instruction":

This bit has no effect if virtual machine features are disabled (see bit 40).

14. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES procedure, add a sentence to the following existing
paragraph on the PAL_PROC_GET_FEATURES page:

For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting
is in feature_status return argument, and the feature controllability in the
feature_control return argument. Only the processor features which are
implemented and controllable can be changed via PAL_PROC_SET_FEATURES.

to:
For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting

Function Operation

vm_disabled Returns TRUE if the processor implements the PSR.vm bit and virtual machine features
are disabled. See Section 3.4, "Processor Virtualization" on page 2:40 in SDM and
"PAL_PROC_GET_FEATURES - Get Processor Dependent Features (17)" on page 2:433
for details.

26 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

is in feature_status return argument, and the feature controllability in the
feature_control return argument. Only the processor features which are
implemented and controllable can be changed via PAL_PROC_SET_FEATURES.
Features for which features_avail are 0 (unimplemented features) also have
features_status and features_control of 0.

11. Removal of pal_proc_vector argument from PAL_VP_SAVE and
PAL_VP_RESTORE

This change simplifies PAL_VP_SAVE and PAL_VP_RESTORE implementations by
removing the pal_proc_vector argument from these calls.

1. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_RESTORE page:

a. In the Argument section, change "pal_proc_vector" and corresponding
description to "Reserved" and "0".

b. In the Description section, remove the paragraph:
The pal_proc_vector parameter for PAL_VP_RESTORE allows the VMM to
control the PAL procedure implementation-specific state to be saved. Table 11-
111 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
restored by PAL_VP_RESTORE. When a bit is set to 0 in the vector, no
implementation-specific state will be restored for the corresponding PAL
procedures.

c. Remove Table 11-111, "Format of pal_proc_vector".

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”, PAL_VP_SAVE
page:

a. In the Argument section, change "pal_proc_vector" and corresponding
description to "Reserved" and "0".

b. In the Description section, remove the following paragraph:
The pal_proc_vector parameter for PAL_VP_SAVE allows the VMM to control the
PAL procedure implementation-specific state to be saved. Table 11-111 on page
2:463 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
saved by PAL_VP_SAVE. When a bit is set to 0 in the vector, no
implementation-specific state will be saved for the corresponding PAL
procedures.

12. Variable Frequency Mode Additions to ACPI P-states
1. In Volume 2, Part I, Section 11.6.1, “Power/Performance States (P-states)”, change

the following text before Figure 11-22:
PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state P0 which has an index value
of 100. For example, if the value returned by the procedure is 80, it indicates
that the performance of the logical processor over the last time period was
20% lower than the P0 performance capability of the logical processor. The
performance index is measured over the time interval since the last
PAL_GET_PSTATE call.

to:
PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state P0. A value of 100 in P0
represents the minimum processor performance in the P0 state. For example,
if the value returned by the procedure is 80, this indicates that the

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 27

performance of the logical processor over the last time period was 20% lower
than the minimum P0 performance. For processors that support variable P-
states, it is possible for a processor to report a number greater than 100,
representing that the processor is running at a performance level greater than
the minimum P0 performance. For example, if the value returned by the
processor is 120, it indicates that the performance of the logical processor over
the last time period was 20% higher than the minimum P0 performance. The
performance index is measured over the time interval since the last
PAL_GET_PSTATE call with a type operand of 1. If the processor supports
variable P-state performance then the PAL_PROC_SET_FEATURE procedure can
be used to enable or disable this feature.

2. Add the following text to Volume 2, Part I, Section 11.6.1, “Power/Performance
States (P-states)”, just before section 11.6.1.1:

Some processors may support variable P-state performance where the
frequency within a given P-state may vary to achieve the maximum
performance for that P-state's power budget. The PAL_PROC_GET_FEATURES
procedure on page 2:429 indicates if the processor supports variable P-state
performance.
The performance index calculation is slightly different when a processor
supports variable P-state performance, since the frequency within a P-state can
vary. These frequencies for a given P-state are represented by an index value
Fx,y. The value x is the P-state number and y represents a frequency point in
the range from 0 to N. A value of 0 represents the minimum frequency index
value for the given P-state. For example:

F0,0 to F0,N - Frequency index values for the P0 state
F1,0 to F1,N - Frequency index values for the P1 state
etc..

F0,0 is the minimum frequency index for the P0 state and its value is 100. F0,1
represents a higher frequency point for P0 and will have a value greater than
100. For example if F0,1 frequency is 5% greater than F0,0 it would have a
value of 105.
The performance_index equation for P0 is calculated as follows:

(F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time spent
in F0,N) / (Total Time spent in P0)

For example let's say the minimum frequency of P0 is 1GHz and the maximum
frequency of P0 is 1.5GHz. If we are at 1GHz for a time period of 4, 1.25GHz
for a time period of 16 and 1.5GHz for a time period of 20, the average
performance index is: (100*4) + (125*16) + (150*20) / (5+15+20) = 135
The performance_index equation for other P-states can be calculated in a
similar manner using their respective frequency index values.
The total performance_index equation for a processor with four P-states (P0,
P1, P2, P3) would be:

(F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time
spent in F0,N)+
(F1,0 * time spent in F1,0) + (F1,1 * time spent in F1,1)+ .. (F1,N * time
spent in F1,N)+
(F2,0 * time spent in F2,0) + (F2,1 * time spent in F2,1)+ .. (F2,N * time
spent in F2,N)+
(F3,0 * time spent in F3,0) + (F3,1 * time spent in F3,1)+ .. (F3,N * time
spent in F3,N)
 / (Total Time)

28 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

3. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_GET_PSTATES page.

a. Change the performance_index return value definition from:
Unsigned integer denoting the processor performance for the time duration
since the last PAL_GET_PSTATE procedure call was made. The value
returned is between 0 and 100, and is relative to the performance index of
the highest available P-state."

to:
Unsigned integer denoting the processor performance for the time duration
since the last PAL_GET_PSTATE procedure call was made. The value
returned is relative to the performance index of the highest available P-
state.

b. Change the first paragraph of the Description section:
This procedure returns the performance index of the processor over the
time period between the previous and the current invocations of
PAL_GET_PSTATE, and is relative to the highest available P-state. For
processors that belong to a software-coordinated dependency domain or a
hardware-independent dependency domain, the performance_index value
returned will correspond to the target P-state requested by the most recent
PAL_SET_PSTATE procedure call.

to:
This procedure returns the performance index of the processor over the
time period between the previous and the current invocations of
PAL_GET_PSTATE, and is relative to the highest available P-state, P0. A
value of 100 represents the minimum processor performance in the P0
state. For processors that support variable P-state performance, it is
possible for a processor to report a number greater than 100, representing
that the processor is running at a performance level greater than the
minimum P0 performance. The PAL procedure PAL_PROC_GET_FEATURES
on page 2:429 indicates if the processor supports variable P-state
performance.

For processors that belong to a software-coordinated dependency domain or
a hardware-independent dependency domain, the performance_index value
returned will correspond to the target P-state requested by the most recent
PAL_SET_PSTATE procedure call in cases where variable P-state
performance is not supported. When variable P-states performance is
supported, the performance_index may be higher than the target P-state
requested. Please see Section 11.6.1 for more information about variable P-
state performance.

c. In the Description section, change the second paragraph after Table 11-73.
If there was a thermal-throttling event or any hardware-initiated event,
which affected the processor power/performance for the current time period
and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1. The performance_index
returned in this case will still have a value between 0 and 100.

to:
If there was a thermal-throttling event or any hardware-initiated event
which affected the processor power/performance for the current time period
and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1. The
performance_index returned in this case will still have a value that falls
within the range of possible performance_index values for this processor

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 29

implementation. (i.e. 0 up to the highest variable p-state
performance_index value)

4. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES page, modify the bit 39 description as shown:

13. PAL_MC_DYNAMIC_STATE Changes
1. Volume 2, Part I, Setction 11.10.1, “PAL Procedure Summary”, Table 11-38.

Change the PAL_MC_DYNAMIC_STATE “Mode” value from “Phys.” to “Both”.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. Update the
PAL_MC_DYNAMIC page as follows:

Bit Class Control Description

39 Opt. Req. Variable P-state performance: A value of 1 indicates that the processor is optimizing
performance for the given P-state power budget by dynamically varying the frequency,
such that maximum performance is achieved for the power budget. A value of 0
indicates that P-states have no frequency variation or very small frequency variations
for their given power budget.

30 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_MC_DYNAMIC_STATE – Returns Dynamic Processor State
(24)

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The info_type input argument designates the type of information the procedure will
return. When info_type is 0, the procedure returns the maximum size in bytes of
processor dynamic state that can be returned for this processor family in the max_size
return value.

When info_type is 1, the procedure will copy processor dynamic state into memory
pointed to by the input argument dy_buffer. This copy will occur using the addressing
attributes used to make the procedure call (physical or virtual) and the caller needs to
ensure the dy_buffer input pointer matches this addressing attribute.

The amount of data returned can vary depending on the state of the machine when
called and may not always return the maximum size for every call. The amount of data
returned is provided in the processor state parameter field dsize. Please see Table 11-
7 for more information on the processor state parameter. The caller of the procedure
needs to ensure that the buffer is large enough to handle the max_size that is returned
by this procedure.

The contents of the processor dynamic state is implementation dependent. Portions of
this information may be cleared by the PAL_MC_CLEAR_LOG procedure. This
procedure should be invoked before PAL_MC_CLEAR_LOG to ensure all the data is
captured.

Arguments Description

index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.

info_type Unsigned 64-bit value indicating the type of information to return

dy_buffer 64-bit pointer to a buffer aligned on an 8-byte boundary

Reserved 0

Return Value Description

status Return status of the PAL_MC_DYNAMIC_STATE procedure.

max_size Maximum size in bytes of the data that can be returned by this procedure for this processor
family.

Reserved 0

Reserved 0

Status Value
Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 31

14. Min-State Save Area Size Change
1. In Volume 2, Part I, Section 11.2.2.1, “Definition of SALE_ENTRY State Parameter”,

change the reset hand-off state to return a min-state save area size.

Page 2:282 - Modify the existing SALE_ENTRY state parameter for reset and
recovery check to pass the size of the min-state save area using some previously
reserved fields

a. Modify Figure 11-8 to add a new field called min-state_size as shown:

b. Add a bullet at the end of Section 11.2.2.1, after the sentence "For the case of
RECOVERY CHECK, authentication of PAL_A and PAL_B should be completed
before call to SAL_ENTRY:

• min-state_size - An 8-bit field indicating the size in kilobytes (KB) of the
min-state save area required for this implementation. A value of zero
indicates a size of 4KB. A value greater than zero indicates the actual size
in KB of the min-state save area required for this implementation. Values
of 1-4 are reserved. For more information about the min-state save area,
please refer to Section 11.3.2.3.

2. Volume 2, Part I, Section 11.3.2.3, “Processor Min-state Save Area Layout”.

a. Change the first paragraph of Section 11.3.2.3 from:
The processor min-state save area is 4KB in size and must be in an
uncacheable region. The first 1KB of this area is architectural state needed
by the PAL code to resume during MCA and INIT events (architected min-
state save area + reserved). The remaining 3KB is a scratch buffer reserved
exclusively for PAL use, therefore SAL and OS must not use this area. The
layout of the processor min-state save area is shown in Figure 11-13.

to:
The processor min-state save area is minimally 4KB in size, but an
implementation may require larger sizes. The reset hand-off state indicates
if a size greater than 4KB is required and also provides the required size.
Please refer to Section 11.2.2.1 for more information on the reset hand-off
state. The required size is referred to as MIN_STATE_REQ. The min-state
save area is required to be in an uncacheable region. The first 1KB of this
area is architectural state needed by the PAL code to resume during MCA
and INIT events (architected min-state save area + reserved). The
remaining space in the buffer is a scratch space reserved exclusively for PAL
use, therefore SAL and OS must not use this area. The layout of the
processor min-state save area is shown in Figure 11-13.

b. Figure 11-13 needs to be modified in two places to use the MIN_STATE_REQ
variable:
Change "Min-state save ptr + 4KB" to "Min-state save ptr + MIN_STATE_REQ"
and change "3KB" to "MIN_STATE_REQ - 1KB".

Figure 11-8. SALE_ENTRY State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved status function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

min-state_size reserved

32 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

c. Change the third paragraph of Section 11.3.2.3 from:
The base address of the min-state save area must minimally be aligned on a
512-byte boundary, but larger alignments like 4 KB are fine."

to:
The base address of the min-state save area must minimally be aligned on a
512-byte boundary with, but larger alignments are allowed"

3. Change the PAL_MC_REGISTER_MEM procedure as shown:

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 33

PAL_MC_REGISTER_MEM – Register Memory with PAL for
Machine Check and Init (27)

Purpose: Registers a platform dependent location with PAL to which it can save minimal
processor state in the event of a machine check or initialization event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL places the address passed in the XR0 register, which is used by PAL as the min-
state save area

This procedure is used to register with PAL an uncacheable min-state save area
memory buffer that is used for machine check and initialization event handling. The
size of the min-state save area is either 4KB or a larger size that is indicated in the
reset hand-off state described in Section 11.2.2.1. The input argument size indicates
the size of the min-state save buffer in kilobytes (KB) when it is greater than 4KB. If
the size input argument does not match the required size, the procedure returns an
invalid argument return status and a min-state area is not registered. The procedure
will also return the required size of the min-state save area in the reg_size return
value.

The layout of the min-state save area is defined in Section 11.3.2.3 "Processor Min-
state Save Area Layout" on page 2:294. The address passed has a minimum alignment
requirement of 512-bytes.

Argument Description

index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.

address Physical address of the buffer to be registered with PAL.

size Unsigned integer indicating the size in kilobytes (KB) of the buffer passed. This input argument
is only required when passing in a size greater than 4KB. The implementation indicates when a
size greater than 4KB is required at the reset hand-off. Refer to Section 11.2.2.1 for more
information.

Reserved 0

Return Value Description

status Return status of the PAL_MC_REGISTER_MEM procedure.

req_size Returns the required size of the min-state save area in kilobytes (KB) if the 'size' input argument
did not match the required size for this implementation.

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid argument

-3 Call completed with error

34 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

4 Specification Clarifications

1. Clarification of ptc.g release semantics

1. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, ptc.g page: Change the
following text in the Description section:

ptc.g has release semantics and is guaranteed to be made visible after all
previous data memory accesses are made visible. The memory fence
instruction forces all processors to complete the purge prior to any subsequent
memory operations. Serialization is still required to observe the side-effects of
a translation being removed.

to:
ptc.g has release semantics and is guaranteed to be made visible after all
previous data memory accesses are made visible. Serialization is still required
to observe the side-effects of a translation being removed. If it is desired that
the ptc.g become visible before any subsequent data memory accesses are
made visible, a memory fence instruction (mf) should be executed immediately
following the ptc.g.

2. Volume 2, Part I, Section 4.4.7, "Sequentiality Attribute and Ordering”. Change the
following text in the fifth paragraph:

Global TLB purge instructions (ptc.g and ptc.ga) follow release semantics on
the local processor as well as on remote processors, except with respect to
global purge instructions being executed by that remote processor.

to:
Global TLB purge instructions (ptc.g and ptc.ga) follow release semantics on
the local processor. They are also broadcast to all other processors in the TLB
coherence domain; on each such remote processor, a point is chosen in its
program-order execution and a local TLB purge operation is inserted at that
point; this local TLB purge operation follows release semantics, except with
respect to global purge instructions being executed by that remote processor.

2. Clarification of PAL_MC_ERROR_INFO reporting of uncacheable trans-
actions
1. In Volume 2, Part I, Section 11.3.2.1, “Processor State Parameter (GR 18)”, Table

11-7. For the cc field, add the following statement at the end of the text in the
description box:

This bit must not be set for non-cacheable transaction errors.

2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page:

a. In the paragraph beginning "Cache_Check Return Format:", add the
following sentence immediately after the sentence ending: "...caches in the
level_index input argument.":

The cache_check return format must be used to report errors in cacheable
transactions. These errors may also be reported using the bus_check return
format if the bus structures can detect these errors.

b. In the paragraph beginning "Bus_check Return Format:", add the following
sentence immediately after the sentence ending: "...bus structure as specified
in the level_index input argument.":

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 35

The bus_check return format must be used to report errors in uncacheable
transactions. These errors must not be reported using the cache_check
return format.

3. Clarification of behavior when ptc.g overlaps a translation register
1. Volume 2, Part II, Section 5.2.2.2.3, "ptc.g, ptc.ga", fourth paragraph from the

end, change the following:
The ptc.g instruction does not modify the page tables nor any other memory
location. It affects both the local and all remote TC entries in the TLB coherence
domain. It does not remove translations from either local or remote TR entries,
and if a ptc.g overlaps a translation contained in a TR on either the local
processor or on any remote processor in the coherence domain, the processor
containing the overlapping translation will raise a Machine Check Abort.

to:
The ptc.g instruction does not modify the page tables nor any other memory
location. It affects both the local and all remote TC entries in the TLB coherence
domain. It does not remove translations from either local or remote TR entries.
If a ptc.g overlaps a translation contained in a TR on the local processor, the
local processor will raise a Machine Check Abort; if the ptc.g overlaps a
translation contained in a TR on any remote processor in the coherence
domain, no Machine Check Abort is raised.

4. INT3 Clarifications
1. Volume 2, Part I, Section 5.6, “Interruption Priorities”, Table 5-6. Change the

following row:
 80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug)

 to:
 80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Break)

2. Volume 2, Part I, Section 7.1, “Debugging”. In the “Break Instruction fault”
bullet, change the following sentence:

Execution of the IA-32 INT 3 (break) instruction results in a
IA_32_Exception(Debug) trap.

 to:
Execution of the IA-32 INT 3 (break) instruction results in a
IA_32_Exception(Break) trap.

5. Test feature instruction clarifications
1. Volume 1, Part I, Section 4.3.2, “Compare Instructions”.

a. Change the first paragraph from:
Predicate registers are written by the following instructions: general register
compare (cmp, cmp4), floating-point register compare (fcmp), test bit and
test NaT (tbit, tnat), floating-point class (fclass), and floating-point
reciprocal approximation and reciprocal square root approximation (frcpa,
fprcpa, frsqrta, fprsqrta). Most of these compare instructions (all but
frcpa, fprcpa, frsqrta and fprsqrta) set two predicate registers based on
the outcome of the comparison. The setting of the two target registers is
described below in Compare Types on page 1:53. Compare instructions are
summarized in Table 4-8.

to:
Predicate registers are written by the following instructions: general register
compare (cmp, cmp4), floating-point register compare (fcmp), test bit and
test NaT (tbit, tnat), test feature (tf), floating-point class (fclass), and

36 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

floating-point reciprocal approximation and reciprocal square root
approximation (frcpa, fprcpa, frsqrta, fprsqrta). Most of these compare
instructions (all but frcpa, fprcpa, frsqrta and fprsqrta) set two
predicate registers based on the outcome of the comparison. The setting of
the two target registers is described below in Compare Types on page 1:53.
Compare instructions are summarized in Table 4-8.

b. Volume 1, Part I, Section 4.3.2, “Compare Instructions”, Table 4-8, add a new
row, just under the row for tnat, with the following information:

c. Volume 1, Part I, Section 4.3.2, “Compare Instructions”, at the end of the
following paragraph:

The test bit (tbit) instruction sets two predicate registers according to the
state of a single bit in a general register (the position of the bit is specified
by an immediate). The test NaT (tnat) instruction sets two predicate
registers according to the state of the NaT bit corresponding to a general
register.

add the following sentence:
The test feature (tf) instruction sets two predicate registers according to
whether or not the selected feature is implemented in the processor.

d. Volume 1, Part I, Section 4.3.3, “Compare Types”, Table 4-11, change the row
for

tbit, tnat
to read:

tbit, tnat, tf

2. Volume 1, Part I, Section 3.4.2, "WAW Dependency Special Cases", change the first
sentence of the second paragraph from:

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, fcmp,
frsqrta, frcpa, and fclass.

to:
The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp,
frsqrta, frcpa, and fclass.

6. Clarification of performance counter behavior under halt states

Volume 2, Part I, Section 7.2.3. "Performance Monitor Events". Change the following
text:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.

2. The number of processor clock cycles the CPU is in either the NORMAL or LOW-
POWER state (see Figure 11-19 on page 2:303).

to:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.

Mnemonic Operation

tf Test feature

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 37

Generic counters configured for this event count only when the processor is in the
NORMAL or LOW-POWER state (see Figure 11-19 on page 2:303).

 2. The number of processor clock cycles. Generic counters configured for this
event count only when the processor is in the NORMAL or LOW-POWER state (see
Figure 11-19 on page 2:303).

7. PMI Clarifications
1. Clarifications to Volume 2, Part I, Chapter 5, “Interruptions”.

a. Volume 2, Part I, Section 5.1, "Interruption Definitions", change the following
bullet:

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform
error handling, memory scrubbing, or power management has been
received by a processor. The PALE_PMI entry point is entered to service
the request. Program execution may be resumed at the point of
interruption. PMIs are distinguished by unique vector numbers. Vectors 0
through 3 are available for platform firmware use and are present on
every processor model. Vectors 4 and above are reserved for processor
firmware use. The size of the vector space is model specific.

to:

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform
error handling, memory scrubbing, or power management has been
received by a processor. The PALE_PMI entry point is entered to service
the request. Program execution may be resumed at the point of
interruption. PMIs are distinguished by unique vector numbers. Vectors 0
through 3 are available for platform firmware use and are present on
every processor model. Vectors 4 through 15 are reserved for processor
firmware use. See section 11.5, "Platform Management Interrupt (PMI)"
for details.

b. Volume 2, Part I, Section 5.8.1, "Interrupt Vectors and Priorities", change the
following paragraph:

PMIs have a separate vector space from external interrupts. PMI vectors 0-3
can be used by platform firmware. PMI vectors 4 and above are reserved for
use by processor firmware. Assertion of the processor's PMI pin, when
present, results in PMI vector number 0. PMI vector priorities are described
in Chapter 11, "Processor Abstraction Layer."

to:
PMIs have a separate vector space from external interrupts. PMI vectors 0-3
can be used by platform firmware. PMI vectors 4 through 15 are reserved
for use by processor firmware. Assertion of the processor's PMI pin, when
present, results in PMI vector number 0. PMI vector priorities are described
in "Platform Management Interrupt (PMI)".

c. Volume 2, Part I, Section 5.8.4.1, “Inter-processor Interrupt Messages”, Table
5-17. At the end of the description for the PMI delivery mode:

PMI - pend a PMI interrupt for the specified vector to the processor listed in
the destination. Allowed PMI vector values are 0-3. All other PMI vector
values are reserved for use by processor firmware.

Add the following:
See Section 11.5, "Platform Management Interrupt (PMI)" for details.

38 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

2. Volume 2, Part I, Section 11.5.1, "PMI Overview":

a. In the fifth paragraph (just above table 11-13), delete the last sentence:
"Vectors described as Intel reserved will be ignored by the processor."

b. In Table 11-13, change the text of second column from the left from:
Intel Reserved PAL

to:
PAL Reserved

c. In Table 11-13, in the Description column, change both instances of
Intel Reserved

to:
PAL Reserved

3. Volume 2, Part I, Section 11.5.1 "PMI Overview".

a. Change the first sentence of the first paragraph from:
 PMI is an asynchronous highest-priority external interrupt that
encapsulates...

to:
PMI is an asynchronous interrupt that encapsulates...

b. Change the second sentence of the third paragraph from:
PMI events are the highest priority external interrupts...

to:
PMI events are asynchronous interrupts higher priority than all external
interrupts...

8. PAL_MC_ERROR_INJECT Clarifications
1. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the

PAL_MC_ERROR_INJECT procedure, change the 'err_data_buffer' argument
description from:

64-bit physical address of a buffer providing additional parameters for the
requested error. The address of this buffer must be 8-byte aligned.

to:
Unsigned 64-bit integer specifying the address of the buffer providing
additional parameters for the requested error. The address of this buffer must
be 8-byte aligned.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the
PAL_MC_ERROR_INJECT specification, Table 11-95 "err_struct_info - Register File."

a. For the “reg_num” field, change the “Bits” value from:
11:5

to:
12:5

b. For the “Reserved” field just under “reg_num” change the "Bits" value from:
31:12

to:
31:13

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 39

9. Min-state Save Area Clarifications
1. In Volume 2, Part I, Section 11.3.2.3, “Processor Min-state Save Area Layout”. Add

the following text, figure and table after Figure 11.14:

The NaT bits stored in the first entry of the min-state save area have the following
layout.

2. Volume 2, Part I, Section 11.3.2, “PALE_CHECK Exit State”. Change the first
sentence from:

The state of the processor on exiting PALE_CHECK is:

to:
The state of the processor on exiting PALE_CHECK is listed below. For registers
described as being saved to the min-state save area and available for use, the
actual values in these registers are undefined unless specifically stated
otherwise.

3. Volume 2, Part I, Section 11.4.2, “PALE_INIT Exit State”. Change the first sentence
from:

The state of the processor on exiting PALE_INIT is:

to:
The state of the processor on exiting PALE_INIT is listed below. For registers
described as being saved to the min-state save area and available for use, the
actual values in these registers are undefined unless specifically stated
otherwise.

10. Semaphore Code Corrections
1. Volume 2, Part II, Section 2.4.1 "Spin Lock". In Figure 2-4 change the instruction:

cmpxchg8.acq r1 = [lock], r2 ;; // attempt to grab lock

to:
cmpxchg8.acq r1 = [lock], r2, ar.ccv ;; // attempt to grab lock

2. Volume 2, Part II, Section 2.4.3, "Dekker's Algorithm". In Figure 2-6, change the
"cmp.eq" in the following code sequence from:

ld8 r2 = [flag_you] ;;// is other's flag 0?
cmp.eq p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;;// if not, resource in use

Figure 11-15. Min-state Save Area NaT Bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NaT bits for Bank 1 GR16 to GR31 NaT bits for GR15 to GR1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Undefined (not used) NaT bits for Bank 1 GR16 to GR31.

Table 11-9. Min-state Save Area Nat Bits Description

Bits Description

0 Undefined (not used)

15:1 NaT bits for GR15 to GR1. Bit 1 represents GR1 and subsequent bits follow the ascending
pattern

31:16 NaT bits for Bank 0 GR16 to GR31. Bit 16 represents Bank 0 GR16 and subsequent bits
follow the ascending pattern.

47:32 NaT bits for Bank 1 GR16 to GR31. Bit 32 represents Bank 1 GR16 and subsequent bits
follow the ascending pattern.

63:48 Undefined (not used).

40 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

to “cmp.ne” as shown:
ld8 r2 = [flag_you] ;;// is other's flag 0?
cmp.eq p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;;// if not, resource in use

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 41

5 Documentation Changes

1. Revision 2.2 Documentation Changes

1. Volume 2, Part I, Section 8.3, “Interruption Vector Definition, Table 8-2. Change
the second to last vector from:

External Interrupt vector

to:
Virtual External Interrupt vector

2. Volume 2, Part I, Section 8.3, “Interruption Vector Definition, Page 2:162, Table 8-
4. Add the following vector to the table:

3. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications,
PAL_PSTATE_INFO page, Figure 11-67. Change the name of the field {10:5} from
“ddit” to “ddid”.

§

Vector Name Offset Page

Virtual External Interrupt vector 0x3400 2:177

42 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

	Intel® Itanium® Architecture Software Developer’s Manual Specification Update
	Preface
	Summary Table of Changes
	Specification Changes
	Specification Clarifications
	Documentation Changes

