
Document Number: 248699-013

Intel® Itanium® Architecture
Software Developer’s Manual
Specification Update
October 2009

2 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks of Intel Corporation in the U. S. and other countries.

Copyright © 2002-2009, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 3

Contents

1 Preface ..5

2 Summary Table of Changes ...6

3 Specification Changes..7

4 Specification Clarifications .. 59

5 Documentation Changes .. 66

4 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Revision History

§

Document
Number

Version
Number Description Date

248699 -013 Specification change 20. October 2009

248699 -012 Specification changes 15 - 19. June 2008

248699 -011 Specification changes 1-14, Specification Clarifications 1-10, and Document
Change 1. October 2007

248699 -001-
-010

Changes from previous Software Developer’s Manual Specification Updates
were incorporated into version 2.2 of the Intel® Itanium® Architecture
Software Developer’s Manual January 2006.

January 2006

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 5

1 Preface

This document is an update to the specifications contained in the Affected Documents/
Related Documents table below. This document is a compilation of device and
documentation errata, specification clarifications, and changes. It is intended for
hardware system manufacturers and software developers of applications, operating
systems, or tools.

Information types defined in Nomenclature are consolidated into the specification
update and are no longer published in other documents.

This document may also contain information that was not previously published.

1.1 Affected Documents/Related Documents

1.2 Nomenclature
Specification Changes are modifications to the current published specifications for
Intel® Itanium® processors. These changes will be incorporated in the next release of
the specifications.

Specification Clarifications describe a specification in greater detail or further
explain a specification’s interpretation. These clarifications will be incorporated in the
next release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in the next release of the
Intel® Itanium® Architecture Software Developer’s Manual.

Title Document #

Intel® Itanium® Architecture Software Developer’s Manual, Volume 1:
Application Architecture, Revision 2.2

245317-005

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2:
System Architecture, Revision 2.2

245318-005

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3:
Instruction Set Reference, Revision 2.2

245319-005

6 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

2 Summary Table of Changes

The following tables indicate the specification changes and specification clarifications
that apply to the Intel® Itanium® Architecture Software Developer’s Manual.

.

2.1 Specification Changes
No. Page SPECIFICATION CHANGES

1 8 Illegal VAC/VDC combinations and IIPA requirements

2 9 Resource Utilization Counter

3 20 PAL_VP_INIT and VPD.vpr changes

4 19 New PAL_VPS_RESUME_HANDLER to indicate RSE Current Frame Load Enable setting
at the target instruction

5 20 PAL_VP_INIT_ENV Implementation-specific Configuration Option

6 20 Increase in minimum number of virtual address bits

7 21 PAL_MC_ERROR_INFO health indicator

8 24 New implementation-specific bit fields for PAL_MC_ERROR_INJECT

9 24 MOV-to-PSR.L Reserved Field Checking

10 24 Virtual Machine Disable

11 27 Removal of pal_proc_vector argument from PAL_VP_SAVE and PAL_VP_RESTORE

12 27 Variable Frequency Mode Additions to ACPI P-states

13 30 PAL_MC_DYNAMIC_STATE Changes

14 32 Min-State Save Area Size Change

15 33 Data Speculation Disable

16 34 Interruption Instruction Bundle Registers

17 44 Data-Poisoning Promotion Changes

18 45 ACPI P-State Clarifications

19 54 Synchronization Requirements for Virtualization Opcode Optimization

20 58 New Priority Hint and Recommendations for Multi-Threading Hints

2.2 Specification Clarifications
No. Page SPECIFICATION CLARIFICATIONS

1 62 Clarification of ptc.g release semantics

2 62 Clarification of PAL_MC_ERROR_INFO reporting of uncacheable transactions

3 63 Clarification of behavior when ptc.g overlaps a translation register

4 63 INT3 Clarifications

5 63 Test feature instruction clarifications

6 63 Clarification of performance counter behavior under halt states

7 65 PMI Clarifications

8 66 PAL_MC_ERROR_INJECT Clarifications

9 67 Min-state Save Area Clarifications

10 67 Semaphore Code Corrections

2.3 Documentation Changes
No. Page DOCUMENTATION CHANGES

1 69 Revision 2.2 Documentation Changes

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 7

3 Specification Changes

1. Illegal VAC/VDC combinations and IIPA requirements

1. In Volume 2, Part I, Chapter 11, add a new Section 11.7.4.3 “Virtualization
Optimization Combinations”. In the new Section 11.7.4.3, add the following
description and table to indicate the allowed vac and vdc combinations:

11.7.4.3 Virtualization Optimization Combinations

Table 11-35 describes the supported combinations of virtualization accelerations and
disables.

2. In Volume 2, Part I, Chapter 11, Section 11.7.4.2.7, “Disable PSR Interrupt-bit
Virtualization”, replace the note:

Note: This field overrides the a_int Virtualization Acceleration Control (vac)
described in Section 11.7.4.1.1, “Virtual External Interrupt Optimization”
on page 2:323. If this control is enabled (set to 1), the a_int Virtualization
Acceleration Control (vac) is ignored.

with:

Note: This field cannot be enabled together with a_int, a_from_psr or a_bsw vir-
tualization accelerations. If this control is enabled together with any one of
the described accelerations, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3 for details.

3. In Volume 2, Part I, Chapter 11, Section 11.7.4.2.2 “Disable External Interrupt
Control Register Virtualization”, replace the note:

Note: This field overrides the a_int Virtualization Acceleration Control (vac)
described in Section 11.7.4.1.1, “Virtual External Interrupt Optimization”
on page 2:323. If this control is enabled (set to 1), the a_int Virtualization
Acceleration Control (vac) is ignored.

with:

Note: This field cannot be enabled together with the a_int virtualization accelera-
tion control (vac) described in Section 11.7.4.1.1. If this control is enabled
together with the a_int control, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3 for details.

Table 11-35. Supported Virtualization Optimization Combinations

d_vmsw d_extint d_ibr_dbr d_pmc d_to_pmd d_itm d_psr_i

a_int oa xb o o o o x

a_from_int_cr o o o o o o o

a_to_int_cr o o o o o o o

a_from_psr o o o o o o x

a_from_cpuid o o o o o o o

a_cover o o o o o o o

a_bsw o o o o o o x

Notes:
a. “o” indicates the corresponding virtualization acceleration and disable can be enabled together.
b. “x” indicates the corresponding virtualization acceleration and disable cannot be enabled together.

8 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

4. In Volume 2, Part I, Chapter 11, Section 11.10, “PAL Procedures”, PAL_VP_CREATE
page. In the Description section, after the second paragraph, last sentence:

The vac, vdc and virt_env_vaddr parameters in the VPD must already be
initialized before calling this procedure.

Add the following sentence:
Invalid argument is returned on unsupported vac/vdc combinations. See
Section 11.7.4.3 for details.

5. In Volume 2, Part I, Chapter 11, Section 11.10, “PAL Procedures”,
PAL_VP_REGISTER page. In the Description section, add the following paragraph
before the last paragraph:

PAL_VP_REGISTER returns invalid argument on unsupported virtualization
optimization combinations in vpd. See Section 11.7.4.3, “Virtualization
Optimization Combinations” for details.

6. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.1 “Virtual External Interrupt
Optimization”, add the following note to the end of the section:

Note: This field cannot be enabled together with d_extint or d_psr_i virtualization
disables. If this control is enabled together with any one of described dis-
ables, an error will be returned during PAL_VP_CREATE and
PAL_VP_REGISTER. See Section 11.7.4.3, “Virtualization Optimization
Combinations” for details.

7. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.4 “MOV-from-PSR Optimization”,
add the following note to the end of the section:

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.2.7, “Disable PSR Interrupt-bit
Virtualization”. If this control is enabled together with the d_psr_i control,
an error will be returned during PAL_VP_CREATE and PAL_VP_REGISTER.
See Section 11.7.4.3, “Virtualization Optimization Combinations” for
details.

8. In Volume 2, Part I, Chapter 11, Section 11.7.4.1.7 “Bank Switch Optimization”,
add the following note to the end of the section:

Note: This field cannot be enabled together with the d_psr_i virtualization disable
control (vdc) described in Section 11.7.4.2.7. If this control is enabled
together with the d_psr_i control, an error will be returned during
PAL_VP_CREATE and PAL_VP_REGISTER. See Section 11.7.4.3, “Virtualiza-
tion Optimization Combinations” for details.

2. Resource Utilization Counter

The existing Interval Time Counter application register is clocked at a constant rate,
independent of logical processor and virtual processor context switches on a processor
core.

The new Resource Utilization Counter application register is clocked like the ITC, but is
provided per logical or virtual processor and provides an estimate of the portion of
resources used by a logical or virtual processor with respect to all resources provided
by the underlying physical processor.

1. Add AR.ruc to Volume 1, Part I, Section 3.1.1, “Reserved and Ignored Registers and
Fields”. In Figure 3-1, add RUC, AR 45 directly below and directly next to ITC, AR
44.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 9

2. In Volume I, Part I, Section 3.1.8, “Application Registers”, Table 3-3, add the RUC
entry as shown:

a. Add a new Resource Utilization Counter section just after Section 3.1.8.10,
“Interval Time Counter”:

3.1.8.11 Resource Utilization Counter (RUC - AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate
of the portion of resources used by a logical or virtual processor with respect to all
resources provided by the underlying physical processor.
In a given time interval, the difference in the RUC values for all of the logical or virtual
processors on a given physical processor add up to approximately the difference seen
in the ITC on that physical processor for that same interval. (See Vol 2, Section 11.7 for
details on virtual processors.)
A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads.
System software can secure the resource utilization counter from non-privileged
access. When secured, a read of the RUC at any privilege level other than the most
privileged causes a Privileged Register fault.

3. Add CPUID[4] bit for non-privileged discovery of the Resource Utilization Counter

a. In Volume 1, Part I, section 3.1.11, “Processor Identification Registers”, Figure
3-12, add a new ru bit as shown:

b. In Volume 1, Part I, Section 3.1.11, “Processor Identification Registers”, add
the ru entry to Table 3-8 as shown:

4. In Volume 1, Part I, Section 6.2, “IA-32 Application Register State Model”, add
AR.ruc to Fig 6-3 and Table 6-1.

a. In Figure 6-3, add RUC, AR 45 directly below and directly next to ITC, AR 44.

b. In Table 6-1, add a new row, just under the row for ITC, with this information:

Register Name Description Execution Unit
Type

AR 44 ITC Interval Time Counter

AR 45 RUC Resource Utilization Counter

AR 46 - AR 47 Reserved

Figure 3-12. CPUID Register 4 – General Features/Capability Bits
63 3 2 1 0

rv ru ao sd lb

60 1 1 1 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description

ru 3 Processor implements the Resource Utilization Counter (AR 45).

rv 63:4 Reserved.

RUC Unmodified 64 RUC continues to count while in IA-32
execution mode

10 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

5. Describe serialization for RUC in Volume 2, Part I, Section 3.2.2 “Data
Serialization”.

a. In the second paragraph, change:
... RR, PKR, DTR, ...

to:
... RR, PKR, RUC, DTR, ...

6. Add AR.ruc to Volume 2, Part I, Section 3.3.1 “System State Overview”.

a. In the bullet list, just after the bullet for “Interval Timer Facilities”, add a new
bullet:

• Resource Utilization Facility - A 64-bit resource utilization counter is
provided for privileged and non-privileged use. This counts the number of
Interval Timer cycles consumed by this logical processor. See Section
3.1.8.11, “Resource Utilization Counter” on page 1:29.

b. Add AR.ruc to Figure 3-1:
Add RUC, AR 45 directly below and directly next to ITC, AR 44.

7. Update the description of PSR.si to cover RUC.

In Volume 2, Part I, Section 3.3.2 “Processor Status Register (PSR)”, Table 3-2,
change this part of the description of the PSR.si bit:

When 1, the Interval Time Counter (ITC) register is readable only by privileged
code; non-privileged reads result in a Privileged Register fault. When 0, ITC is
readable at any privilege level.

to:
When 1, the Interval Time Counter (ITC) register and the Resource Utilization
Counter (RUC) are readable only by privileged code; non-privileged reads
result in a Privileged Register fault. When 0, ITC and RUC are readable at any
privilege level.

8. Add AR.ruc to Volume 2, Part I, Section 3.3.4 “Global Control Registers”.

a. Add a new section, just after 3.3.4.2 “Interval Time Counter and Match
Register”:

3.3.4.3 Resource Utilization Counter (AR 45)

The Resource Utilization Counter (RUC) is a 64-bit counter that counts up at a fixed
relationship to the input clock to the processor, when the processor is active.
Processors may be inactive due to hardware multi-threading. Virtual processors may be
inactive when not scheduled to run by the VMM. (See Vol 2, section 11.7 for details on
virtual processors.)

The RUC is clocked such that, in a given time interval, the difference in the RUC values
for all of the logical or virtual processors on a given physical processor add up to
approximately the difference seen in the ITC on that physical processor for that same
interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except
for the case of the counter wrapping back to 0) corresponding to the program order of
the reads. Applications can directly sample the RUC for active-running-time
calculations.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 11

A 64-bit overflow condition can occur without notification. The RUC can be read at any
privilege level if PSR.si is zero. The timer can be secured from non-privileged access by
setting PSR.si to one. When secured, a read of the RUC by non-privileged code results
in a Privileged Register fault. Writes to the RUC can only be performed at privilege level
0; otherwise, a Privileged Register fault is raised.

Modification of the RUC is not necessarily serialized with respect to instruction
execution. Software can issue a data serialization operation to ensure the RUC updates
are observed by a given point in program execution. Software must accept a level of
sampling error when reading the resource utilization counter due to various machine
stall conditions, interruptions, bus contention effects, and so forth. Please see the
processor-specific documentation for further information on the level of sampling error
of the Itanium processor.

RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

9. Update Volume 2, Part I, Section 3.4, “Processor Virtualization”, Table 3-10.
Change the last two rows to the following:

10. Update Volume 2, Part I, Section 11.3.2, “PALE_CHECK Exit State”.

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
MCA, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
MCA, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC and RUC counters.

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the MCA handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the MCA handler. The RUC register will not be
directly modified by PAL, but will Continue to count during the execution of
the MCA handler while the processor is active.

11. Update Volume 2, Part I, Section 11.4.2, “PALE_INIT Exit State”.

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
INIT, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
INIT, except the RSE control register (RSC), the RSE backing store pointer
(BSP), and the ITC and RUC counters.

Class Virtualized Instructions

Reading AR[ITC] or
AR[RUC] with PSR.si == 1
(virtualized at all privilege
levels)

mov from ar.itc
mov from ar.ruc

Instructions which write
privileged registers

mov to itc
mov to ar.ruc

12 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the INIT handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the INIT handler. The RUC register will not be
directly modified by PAL, but will continue to count during the execution of
the INIT handler while the processor is active.

12. Update Volume 2, Part I, Section 11.5.2, “PALE_PMI Exit State”.

a. In the bullet for ARs, change the following:
The contents of all application registers are unchanged from the time of the
interruption, except the RSE control register (RSC) and the ITC counter.

to:
The contents of all application registers are unchanged from the time of the
interruption, except the RSE control register (RSC) and the ITC and RUC
counters.

b. In that same AR bullet, change the following:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the PMI handler.

to:
The ITC register will not be directly modified by PAL, but will continue to
count during the execution of the PMI handler. The RUC register will not be
directly modified by PAL, but will continue to count during the execution of
the PMI handler while the processor is active.

13. Update Volume 2, Part I, Section 11.7.3.1, “PAL Virtualization Intercept Handoff
State”.

a. In the bullet for ARs, change the following:
The contents of all application registers are preserved from the time of the
interruption, except the ITC counter. The ITC register will not be directly
modified by PAL, but will continue to count during the execution of the
virtualization intercept handler.

to:
The contents of all application registers are preserved from the time of the
interruption, except the ITC and RUC counters. The ITC register will not be
directly modified by PAL, but will continue to count during the execution of
the virtualization intercept handler. The RUC register will not be directly
modified by PAL, but will continue to count during the execution of the
virtualization intercept handler while the processor is active.

14. Update Volume 2, Part I, Section 11.10.2.2.7, “Application Registers”. Add a new
row to Table 11-48, just below the ITC row, with this information:

c. No PAL procedure writes to the RUC. The value at exit is the value at entry
plus the number of cycles provided to the processor during the procedure
call.

Register Description Class

RUC Resource Utilization Counter unchangedc

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 13

15. Update Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_ENTER_IA_32_ENV page.

a. Add a new row to the bottom of Table 11-67:

b. Add a new row to Table 11-71 just below the row for ITC:

16. Add a new PAL_VP_INFO procedure for privileged discovery of the Resource
Utilization Counter.

a. Add a new PAL procedure to Volume 2, Part I, Section 11.10.3, “PAL Procedure
Specifications”, just before PAL_VP_INIT_ENV:

Intel® Itanium®
Register IA-32 State Description

RUC -- RUC continues to count while in IA-32 execution mode

Intel® Itanium®
Register IA-32 State Description

RUC -- Final value of RUC

14 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_VP_INFO – PAL Virtual Processor Information (50)

Purpose: Returns information about virtual processor features.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_VP_INFO procedure call is used to describe virtual processor features.

The feature_set input argument for PAL_VP_INFO describes which virtual-processor
feature_set information is being requested, and is composed of two fields as shown:

A vmm_id of 0 indicates architected feature sets, while others are implementation-
specific feature sets. Implementation-specific feature sets are described in VMM-specific
documentation.

This procedure will return a -8 if an unsupported feature_set argument is passed as an
input. The return status is used by the caller to know which feature sets are currently
supported on a particular VMM. This procedure always returns unimplemented (-1)
when called on physical processors.

For each valid feature_set, this procedure returns information about the virtual
processor in vp_info. Additional information may be returned in the memory buffer
pointed to by vp_buffer, as needed. Details, for a given implementation-specific
feature_set, of whether information is returned in the buffer, the size of the buffer, and
the representation of this information in the buffer and in vp_info are described in VMM-
specific documentation.

Architected feature_set 0 (vmm_id 0, index 0) is defined and required to be
implemented (if this procedure is implemented), but there are no architected features
defined in it yet, and so all bits in vp_info are reserved for architected feature_set 0.

Argument Description

index Index of PAL_VP_INFO within the list of PAL procedures.

feature_set Feature set information is being requested for.

vp_buffer An address to an 8-byte aligned memory buffer (if used).

Reserved 0.

Return Value Description

status Return status of the PAL_VP_INFO procedure.

vp_info Information about the virtual processor..

vmm_id Unique identifier for the VMM.

Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

-8 Specified feature_set is not implemented

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

vmm_id index

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 15

Other architected feature sets (vmm_id 0, index>0) are undefined, and return -8
(Specified feature_set is not implemented). SW can call PAL_VP_INFO with a
feature_set argument of 0 to get the vmm_id, although vmm_id is also returned for any
other implemented feature sets as well. For feature_set 0, the vp_buffer arg is ignored.

b. Add PAL_VP_INFO to Volume 2, Part I, Section 11.10.1, “PAL Procedure
Summary”, Table 11-42.

17. In Volume 3, Part I, Section 2.2, “Instruction Descriptions”, update the “mov ar”
instruction page pseudo-code.

a. In the Operation section, change the following “from form” code:
if (ar3 == ITC && PSR.si && PSR.cpl != 0)
 privileged_register_fault();

if (ar3 == ITC && PSR.si && PSR.vm == 1)
 virtualization_fault();”
to:
if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.cpl != 0)
 privileged_register_fault();

if ((ar3 == ITC || ar3 == RUC) && PSR.si && PSR.vm == 1)
 virtualization_fault();”

b. In the to_form code, change the following “to form” code:
if ((is_kernel_reg(ar3) || ar3 == ITC) && (PSR.cpl != 0))
 privileged_register_fault();

if (ar3 == ITC && PSR.vm == 1)
 virtualization_fault();
to:
if ((is_kernel_reg(ar3) || ar3 == ITC || ar3 == RUC) && (PSR.cpl != 0))
 privileged_register_fault();

 if ((ar3 == ITC || ar3 == RUC) && PSR.vm == 1)
 virtualization_fault();

c. At the beginning of the Operation section, change the following code:
if (is_reserved_reg(tmp_type, ar3))
 illegal_operation_fault();
to:
if (!instruction_implemented(MOV_AR_RUC))
 illegal_operation_fault();

if (is_reserved_reg(tmp_type, ar3))
 illegal_operation_fault();

18. In Volume 3, Part I, Section 5.3.2, “RAW Dependency Table”, add AR.ruc to the
resource dependency tables.

a. In Table 5-2, add a row just under the row for AR[RSC] with this information:

Procedure Idx Class Conv. Mode Buffer Description

PAL_VP_INFO 50 Opt. Static Phys. No. Returns information about virtual processor
features.

Resource Name Writers Readers Semantics of
Dependency

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

16 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. In Table 5-2, in the row for PSR.cpl, add mov-from-AR-RUC and mov-to-AR-
RUC to the readers in both of the sub-rows as shown:

c. In Table 5-2, update the PSR.si row, as shown:

d. In Table 5-2, update the row for PSR.vm as shown:

e. In Volume 2, Part I, Section 5.3.3, “WAW Dependency Table”, Table 5-3, add a
row just under the row for AR[RSC] with this information:

Resource Name Writers Readers Semantics of
Dependency

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,
PAL_VP_INIT_ENV Implementation-
specific Configuration Option,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all,
mov-from-AR-RUC, mov-to-AR-RUC

implied

rfi priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all,
mov-from-AR-RUC, mov-to-AR-RUC

impliedF

Resource Name Writers Readers Semantics of
Dependency

PSR.si sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC, mov-from-AR-
RUC,

data

rfi mov-from-AR-ITC, mov-from-AR-
RUC, mov-from-PSR

impliedF

Resource Name Writers Readers Semantics of
Dependency

PSR.vm vmsw mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag, mov-from-AR-RUC,
mov-to-AR-RUC

implied

rfi mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-IND-CPUID,
mov-to-AR-ITC, priv-ops\vmsw, cover,
thash, ttag, mov-from-AR-RUC,
mov-to-AR-RUC

impliedF

Resource Name Writers Semantics of
Dependency

AR[RUC] mov-to-AR-RUC impliedF

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 17

f. In Volume 3, Part I, Section 5.4 “Support Tables”, Table 5-5, add a row just
under the row for mov-from-AR-RSC with this information:

g. In Volume 3, Part I, Section 5.4 “Support Tables”, Table 5-5, add a row just
under the row for mov-to-AR-RSC with this information:

19. In Volume 2, Part II, add a new section just after Section 10.5.5, “Interval Timer
Usage Example”:

10.5.6 Resource Utilization Counter Usage Example

The Itanium architecture provides a 64-bit counter to provide information on how many
execution cycles a given logical processor is getting. It is similar to the Interval Timer
(ITC, AR 44), except that it is clocked only when the logical processor is active.
Optimizations such as hardware multi-threading and processor virtualization may cause
a logical processor to sometimes be inactive. The Resource Utilization Counter allows
for better cycle accounting for logical processors, given these types of optimizations.
RUC should only be written by Virtual Machine Monitors; other Operating Systems
should not write to RUC, but should only read it.

3. PAL_VP_INIT and VPD.vpr Changes
1. PAL_VP_INIT_ENV currently freezes performance registers by clearing PMC[0].fr

when fr_pmc is enabled. The following change removes the race condition that can
occur when a counter overflow happens just before the write to PMC[0].fr, causing
PAL to overwrite the overflow bit, and losing overflow information.

a. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV procedure, Table 11-110, change the fr_pmc description
from:

to:

b. Volume 2, Part I, Section 11.7.3.1, “PAL Virtualization Handoff State”, PSR
description. Change the following bullet:

• PSR: PSR fields are set according to the “Interruption State” column in
Table 3-2, “Processor Status Register Fields” on page 2:21.

to:

• PSR: PSR fields are set according to the “Interruption State” column in
Table 3-2, “Processor Status Register Fields” on page 2:21. PSR.up and pp

Class Events/Instructions

mov-from-AR-RUC mov-from-AR-M[Field(ar3) == RUC]

Class Events/Instructions

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

fr_pmc 1 If 1, performance counters are frozen on all IVA-based interruptions when virtual pro-
cessors are running. If 0, the performance counters will not be frozen on IVA-based
interruptions when virtual processors are running.

fr_pmc 1 If 1, for virtualization intercepts the performance counters are disabled by setting
PSR.up and pp to 0, see Section 11.7.3.1 for details on PSR settings at virtualization
intercepts; for all other IVA-based interruptions PSR.pp and up are set according to
Interruption State column described in Processor Status Field table described in Vol 2
Table 3-2. If 0, PSR.pp and up are set according to Interruption State column
described in Processor Status Field table described in Vol 2 Table 3-2.

18 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

are set to 0 when fr_pmc field in config_options parameter during
PAL_VP_INIT_ENV is 1.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV page, Table 11-110, change the be config_options description
from:

to:

3. Volume 2, Part I, Section 11.7.1, ”Virtual Processor Descriptor”, Table 11-14,
Update the vpr row from:

to:

4. New PAL_VPS_RESUME_HANDLER to Indicate RSE Current Frame
Load Enable Setting at the Target Instruction

This change adds a parameter to PAL_VPS_RESUME_HANDLER to allow a virtual
machine monitor to specify the register stack engine Current Frame Load Enable
setting at the target guest handler.

1. Volume 2, Part I, Section 11.11.12, “PAL Virtualization Service Specifications”,
PAL_VPS_RESUME_HANDLER page.

a. Change the description of GR26 from:
Virtualization Acceleration Control (vac) field from the VPD specified in GR25

to:
Virtualization Acceleration Control (vac) field from the VPD specified in GR25
and CFLE setting at the target instruction.

b. In the second paragraph, change the following paragraph from:
The VMM specifies the BR0 of the virtual processor in GR24, the 64-bit
virtual pointer to the VPD in GR25 and the vac field of the VPD in GR26.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit equals
to 1. If 0, the values in the VPD are stored in little-endian format and the PAL services
calls are made with PSR.be bit equals to 0.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in the VPD are
stored in big-endian format and the PAL services calls are made with PSR.be bit equals
to 1. If 0, the values in the VPD are stored in little-endian format and the PAL services
calls are made with PSR.be bit equals to 0. The VMM must match DCR.be with the
value set in this field when the IVA control register on the logical processor is set to
point to the per-virtual-processor host IVT. See Section 11.17.2 “Interruption Handling
in a Virtual Environment” and Table 11-17 “IVA Settings after PAL Virtualization-
related Procedures and Services” for details on per-virtual-processor host IVT.

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction.

Architectural State
[always]

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction. The contents in this field
are undefined except at virtualization intercept
handoff. The VMM can not rely on the contents
in this field to be preserved when the virtual
processor is running.

Architectural State
[always]

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 19

Behavior is undefined if the vac in GR26 does not match the vac field in the
VPD argument specified in GR25.

to:
GR24 specifies the BR0 of the virtual processor; GR25 specifies the 64-bit
virtual pointer to the VPD; GR26 specifies the vac field of the VPD in GR26;
bit 63 of GR26 specifies the value of CFLE setting at the target instruction.
Behavior is undefined if the vac in GR26 does not match the vac field in the
VPD argument specified in GR25.

2. In Volume 3, Part I, Section 2.2, “Instruction Descriptions”, “tf” page:

a. In the Description section, remove the following text:
Implementation of PSR.vm is optional. If it is implemented but the
instruction is disabled, this instruction takes Virtualization fault when
executed with PSR.vm equals to 1.

b. In the Operation section, remove both instances of the following lines:
if (PSR.vm == 1 && vm_tf_disabled())
virtualization_fault();

c. In the Interruptions section, remove “Virtualization fault” from the list of
interruptions.

5. PAL_VP_INIT_ENV Implementation-specific Configuration Option

This change defines an implementation-specific configuration bit for PAL_VP_INIT_ENV.
A separate update to the Dual-Core Update to the Itanium 2 Processor Reference
Manual will define this implementation-specific bit to optimize performance for virtual
machine monitors using data translation cache for pages containing virtualized
instructions.

1. Volume 2, Part 1, Section 11.10.3, “PAL Procedures Specifications”,
PAL_VP_INIT_ENV page. Add the impl bit to Table 11-110:

2. A future revision of the Dual-Core Update to the Itanium 2 Processor Reference
Manual will include the following change:

 Add a section to describe PAL_VP_INIT_ENV:

Table 11-62. PAL_VP_INIT_ENV Implementation-specific Behavior

6. Increase in Minimum Number of Virtual Address Bits

This change increases the minimum number of implemented virtual address bits from
51 to 54. Note that Itanium 2 processors and Dual Core Itanium 2 processors already
support the 54 bit virtual address minimum.

1. Volume 2, Part 1, Section 4.3.2, “Unimplemented Virtual Address Bits” change the
first paragraph:

Field Bit Description

impl 63 Implementation-specific configuration option. This field is ignored if not implemented.
Please refer to processor-specific documentation for details.

Field Bit Description

hint_dtc 63 If 1, this hint indicates the VMM is using data translation
cache for pages containing virtualized instructions.
Instruction TLB misses will happen during virtualized
instruction execution if the corresponding data translation
does not exist in the TLB hierarchy

20 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

... all processor models implement at least 51 virtual address bits; i.e., the
smallest IMPL_VA_MSB is 50.

to:
... all processor models implement at least 54 virtual address bits; i.e., the
smallest IMPL_VA_MSB is 53.

2. Change the second paragraph of Volume 2, Part 1, Section 4.3.2, “Unimplemented
Virtual Address Bits” from:

If the PSR.vm bit is implemented, at least 52 virtual address bits must be
implemented.

to:
If the PSR.vm bit is implemented, at least 55 virtual address bits must be
implemented.

7. PAL_MC_ERROR_INFO Health Indicator

This change defines PAL_MC_ERROR_INFO cache_check, tlb_check, and uarch_check
fields to allow hardware status tracking to be reported for processor structures. A new
PAL_MC_HW_TRACKING procedure allows software to determine which processor
structures provide hardware status tracking.

1. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page, Table 11-82, add a hlth field row and a table note to
the cache_check definition:

(a) Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a “normal” status when the number of entries within a structure reporting repeated corrections is at
or below a pre-defined threshold. A “cautionary” status is reported when the number of affected entries
exceeds a pre-defined threshold.

2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page, Table 11-83, add a new hlth field row and a table note
to the tlb_check definition:

(a) Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a “normal” status when the number of entries within a structure reporting repeated corrections is at
or below a pre-defined threshold. A “cautionary” status is reported when the number of affected entries
exceeds a pre-defined threshold.

Field Bits Description

hlth 31:30 Health indicator. This field will report if the cache type and level reporting this error supports
hardware status tracking and the current status of this cache.
00 - No hardware status tracking is provided for the cache type and level reporting this
event.
01 - Status tracking is provided for this cache type and level and the current status is normal
status.(a)
10 - Status tracking is provided for the cache type and level and the current status is
cautionary. (a) When a cache reports a cautionary status the "hardware damage" bit of the
PSP (See Section 11.3.2.1, “Processor State Parameter (GR18)”) will be set as well.
11 - Reserved

rsvd 31:24 Reserved

Field Bits Description

hlth 31:30 Health indicator. This field will report if the tlb type and level reporting this error supports
hardware status tracking and the current status of this tlb.
00 - No hardware status tracking is provided for the tlb type and level reporting this event.
01 - Status tracking is provided for this tlb type and level and the current status is normal.(a)

10 - Status tracking is provided for the tlb type and level and the current status is
cautionary(a) When a tlb reports a cautionary status the "hardware damage" bit of the PSP
(See Section 11.3.2.1, “Processor State Parameter (GR18)”) will be set as well.
11 - Reserved

rsvd 31:24 Reserved

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 21

3. Add a new PAL procedure called PAL_MC_HW_TRACKING

a. Add PAL_MC_HW_TRACKING to Volume 2, Part I, Section 11.10.1, “PAL
Procedure Summary”, Table 11-38:

b. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”, add a new
PAL_MC_HW_TRACKING page after the PAL_MC_EXPECTED page:

Procedure Idx Class Conv. Mode Buffe
r Description

PAL_MC_HW_TRACKING 51 Opt. Static Both Yes Query which hardware structures are performing
hardware status tracking.

22 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_MC_HW_TRACKING - Query which Hardware Structures
are Performing Hardware Status Tracking (51)

Purpose: Provide a way to query which hardware structures are performing hardware status
tracking for corrected machine check events.

Calling Conv: Static

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

This procedure will return information about which hardware structures are providing
hardware status tracking for corrected machine check events. This information is also
returned in the error logs for corrected machine check events.

The layout of the tracked return value is showing in Fig 11-64.

Figure 11-64. Layout of hw_track return value

Argument Description

index Index of PAL_MC_HW_TRACKING within the list of PAL procedures.

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of the PAL_MC_HW_TRACKING procedure.

hw_track 64-bit vector denoting which hardware structures are providing hardware status tracking. See
Fig 11-100.

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved DTT ITT DCT ICT

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-100. hw_track Description

Field Bits Description

ICT 3:0 Instruction cache tracking. This is a 4-bit vector denoting which levels of instruction
cache provide hardware tracking.

DCT 7:4 Data cache tracking. This is a 4-bit vector denoting which levels of the data/unified
caches provide hardware tracking.

ITT 11:8 Instruction TLB tracking. This is a 4-bit vector denoting which levels of the instruction
TLB provide hardware tracking.

DTT 15:12 Data TLB tracking. This is a 4-bit vector denoting which levels of data/unified TLB
provide hardware tracking

rsvd 63:16 Reserved.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 23

The convention for the levels in the hw_track field is such that the least significant bit in
the field represents the lowest level of the structures hierarchy. For example bit 0 of the
ICT field represents the first level instruction cache.

8. New Implementation-specific Bit Fields for PAL_MC_ERROR_INJECT

This change defines implementation-specific bits for PAL_MC_ERROR_INJECT.

1. In Volume 2, Part I, Section 11.10.3, PAL_MC_ERROR_INJECT procedure, Figure
11-51 change bits 63:48 from Reserved to implementation specific in Figure 11-51
as shown:

2. In Volume 2, Part I, Section 11.10.3, PAL_MC_ERROR_INJECT procedure, Table 11-
87, change bits 63:48 from Reserved to implementation specific as shown:

9. MOV-to-PSR.L Reserved Field Checking

This change relaxes the architectural requirement for checking the reserved upper 32
bits on MOV-to-PSR.L, making this check implementation-specific.

Volume 3, Part I, Section 2.2, “Instruction Descriptions, “mov - Move Processor Status
Register” page. In the Description, change the third paragraph from:

For move to processor status register, GR r2 is read, bits {31:0} copied into
PSR{31:0} and bits{45:32} are ignored. All bits of GR r2 corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.

 to:

For move to processor status register, GR r2 is read, bits {31:0} copied into
PSR{31:0} and bits {63:32} are ignored. Bits {31:0} of GR r2 corresponding to
reserved fields of the PSR must be 0 or a Reserved Register/Field fault will result.
An implementation may also raise Reserved Register/Field fault if bits {63:32} in
GR r2 corresponding to reserved fields of the PSR are non-zero.

10. Virtual Machine Disable

This change defines a mechanism to disable processor virtualization features.

1. 2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES page, Table 11-103, change bit 40 to the following:

Figure 11-51. err_type_info
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved struct_hier err_struct err_sev err_inj mode

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Impl_Spec Reserved

Field Bits Description

Reserved 47:16 Reserved

impl_spec 63:48 Processor specific error injection capabilities. Please refer to processor specific
documentation for additional details.

24 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

2. Volume 2, Part I, Section 3.4, “Processor Virtualization”. Add the following
paragraph before the last paragraph:

Processors which support processor virtualization may provide an
implementation-dependent mechanism to disable virtual machine features, see
PAL_PROC_GET_FEATURES on page 2:429 for details.

3. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, vmsw page. In the last
sentence of the last paragraph:

See Section 3.4, “Processor Virtualization” on page 2:40 and
PAL_PROC_GET_FEATURES on page 2:433 for details.

add a reference to PAL_PROC_SET_FEATURES:
See Section 3.4, “Processor Virtualization” on page 2:40,
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES on page 2:429 and
page 2:433 for details.

4. Volume 2, Part I, Section 11.8, “PAL Glossary”, add the following two definitions:

Power-on
The reset event that occurs when the power input to the processor is applied and
the reset input to the processor is asserted.

Reset
The reset event that occurs when the reset input to the processor is asserted.

5. Volume 2, Part I, Section 11.2.1, “PALE_RESET”. In the first sentence, change the
following text:

Upon receipt of a power-on reset event the processor begins executing code
from...

 to:
Upon receipt of a power-on/reset event the processor begins executing code
from...

6. Volume 3, Part I, Chapter 3, Table 3-1, “Pseudo-code Functions.” Change the
description of the function “implemented_vm” from:

Returns TRUE if the processor implements the PSR.vm bit.

to:
Returns TRUE if the processor implements the PSR.vm bit (regardless of
whether virtual machine features are enabled or disabled).

7. Volume 3, Part I, Chapter 3, Table 3-1 “Pseudo-code Functions”, rename the
function “vm_disabled” to “vmsw_disabled”.

8. Volume 3, Part I, Chapter 3, Table 3-1 “Pseudo-code Function”, add a new function
“vm_disabled”:

Bit Class Control Description

40 Opt. Opt Virtual Machine features implemented and enabled. When 1, PSR.vm is implemented
and virtual machines features are not disabled. When 0 (features_status) and when
the corresponding features_avail bit is 1, virtual machines features are implemented
but are disabled. When both the features_avail and features_status bits are 0, virtual
machine features are not implemented.

If implemented and controllable, virtual machine features may be disabled by writing
this bit to 0 with PAL_PROC_SET_FEATURES. However, virtual machine features
cannot be re-enabled except via a reset; hence, if virtual machine features are
disabled, this bit reads as 0 for both features_status and features_control (but still 1
for features_avail).

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 25

9. Volume 3, Part I, Chapter 2, VMSW I-page, change the line:
 if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled())

to:
 if (!(PSR.it == 1 && itlb_ar() == 7) || vm_disabled() ||
 vmsw_disabled())

10. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, vmsw page. In the
description section, change the last paragraph from:

Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it is implemented but is disabled, this
instruction takes Virtualization fault when executed at the most privileged level.
See Section 3.4, “Processor Virtualization” on page 2:40 and
PAL_PROC_GET_FEATURES on page 2:433 for details.

 to:
Implementation of PSR.vm is optional. If it is not implemented, this instruction
takes Illegal Operation fault. If it is implemented but either virtual machine
features or the vmsw instruction are disabled, this instruction takes
Virtualization fault when executed at the most privileged level. See Section 3.4,
“Processor Virtualization” on page 2:40 and PAL_PROC_GET_FEATURES on
page 2:433 for details.

11. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the
PAL_VP_ENV_INFO page, add the following paragraph to the end of the section
(just before Table 11-109):

This procedure returns unimplemented procedure when virtual machine
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:40
and PAL_PROC_GET_FEATURES on page 2:433 for details.

12. Volume 2, Part I, Chapter 11, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_INIT_ENV page, add the following paragraph at the end of the Description:

This procedure returns unimplemented procedure when virtual machine
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:40
and PAL_PROC_GET_FEATURES on page 2:433 for details.

13. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications,
PAL_PROC_GET_FEATURES procedure, Table 11-103, add the following sentence to
the end of the description for bit 54, “Enable the use of the vmsw instruction”:

This bit has no effect if virtual machine features are disabled (see bit 40).

14. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES procedure, add a sentence to the following existing
paragraph on the PAL_PROC_GET_FEATURES page:

For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting
is in feature_status return argument, and the feature controllability in the
feature_control return argument. Only the processor features which are
implemented and controllable can be changed via PAL_PROC_SET_FEATURES.

to:
For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting

Function Operation

vm_disabled Returns TRUE if the processor implements the PSR.vm bit and virtual machine features
are disabled. See Section 3.4, "Processor Virtualization" on page 2:40 in SDM and
"PAL_PROC_GET_FEATURES - Get Processor Dependent Features (17)" on page 2:433
for details.

26 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

is in feature_status return argument, and the feature controllability in the
feature_control return argument. Only the processor features which are
implemented and controllable can be changed via PAL_PROC_SET_FEATURES.
Features for which features_avail are 0 (unimplemented features) also have
features_status and features_control of 0.

11. Removal of pal_proc_vector Argument from PAL_VP_SAVE and
PAL_VP_RESTORE

This change simplifies PAL_VP_SAVE and PAL_VP_RESTORE implementations by
removing the pal_proc_vector argument from these calls.

1. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_VP_RESTORE page:

a. In the Argument section, change “pal_proc_vector” and corresponding
description to “Reserved” and “0”.

b. In the Description section, remove the paragraph:
The pal_proc_vector parameter for PAL_VP_RESTORE allows the VMM to
control the PAL procedure implementation-specific state to be saved. Table 11-
111 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
restored by PAL_VP_RESTORE. When a bit is set to 0 in the vector, no
implementation-specific state will be restored for the corresponding PAL
procedures.

c. Remove Table 11-111, “Format of pal_proc_vector”.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”, PAL_VP_SAVE
page:

a. In the Argument section, change “pal_proc_vector” and corresponding
description to “Reserved” and “0”.

b. In the Description section, remove the following paragraph:
The pal_proc_vector parameter for PAL_VP_SAVE allows the VMM to control the
PAL procedure implementation-specific state to be saved. Table 11-111 on page
2:463 shows the format of pal_proc_vector. When a bit is set to 1 in the vector,
the implementation-specific state for the corresponding PAL procedures will be
saved by PAL_VP_SAVE. When a bit is set to 0 in the vector, no
implementation-specific state will be saved for the corresponding PAL
procedures.

12. Variable Frequency Mode Additions to ACPI P-states
1. In Volume 2, Part I, Section 11.6.1, “Power/Performance States (P-states)”, change

the following text before Figure 11-22:
PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state P0 which has an index value
of 100. For example, if the value returned by the procedure is 80, it indicates
that the performance of the logical processor over the last time period was
20% lower than the P0 performance capability of the logical processor. The
performance index is measured over the time interval since the last
PAL_GET_PSTATE call.

to:
PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state P0. A value of 100 in P0
represents the minimum processor performance in the P0 state. For example, if
the value returned by the procedure is 80, this indicates that the performance

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 27

of the logical processor over the last time period was 20% lower than the
minimum P0 performance. For processors that support variable P-states, it is
possible for a processor to report a number greater than 100, representing that
the processor is running at a performance level greater than the minimum P0
performance. For example, if the value returned by the processor is 120, it
indicates that the performance of the logical processor over the last time period
was 20% higher than the minimum P0 performance. The performance index is
measured over the time interval since the last PAL_GET_PSTATE call with a
type operand of 1. If the processor supports variable P-state performance then
the PAL_PROC_SET_FEATURE procedure can be used to enable or disable this
feature.

2. Add the following text to Volume 2, Part I, Section 11.6.1, “Power/Performance
States (P-states)”, just before section 11.6.1.1:

Some processors may support variable P-state performance where the
frequency within a given P-state may vary to achieve the maximum
performance for that P-state's power budget. The PAL_PROC_GET_FEATURES
procedure on page 2:429 indicates if the processor supports variable P-state
performance.
The performance index calculation is slightly different when a processor
supports variable P-state performance, since the frequency within a P-state can
vary. These frequencies for a given P-state are represented by an index value
Fx,y. The value x is the P-state number and y represents a frequency point in
the range from 0 to N. A value of 0 represents the minimum frequency index
value for the given P-state. For example:

F0,0 to F0,N - Frequency index values for the P0 state
F1,0 to F1,N - Frequency index values for the P1 state
etc..

F0,0 is the minimum frequency index for the P0 state and its value is 100. F0,1
represents a higher frequency point for P0 and will have a value greater than
100. For example if F0,1 frequency is 5% greater than F0,0 it would have a
value of 105.
The performance_index equation for P0 is calculated as follows:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time
spent in F0,N)) / (Total Time spent in P0)

For example let's say the minimum frequency of P0 is 1GHz and the maximum
frequency of P0 is 1.5GHz. If we are at 1GHz for a time period of 4, 1.25GHz for
a time period of 16 and 1.5GHz for a time period of 20, the average
performance index is: ((100*4) + (125*16) + (150*20)) / (5+15+20) = 135
The performance_index equation for other P-states can be calculated in a
similar manner using their respective frequency index values.
The total performance_index equation for a processor with four P-states (P0,
P1, P2, P3) would be:

((F0,0 * time spent in F0,0) + (F0,1 * time spent in F0,1)+ .. (F0,N * time
spent in F0,N)+
(F1,0 * time spent in F1,0) + (F1,1 * time spent in F1,1)+ .. (F1,N * time
spent in F1,N)+
(F2,0 * time spent in F2,0) + (F2,1 * time spent in F2,1)+ .. (F2,N * time
spent in F2,N)+
(F3,0 * time spent in F3,0) + (F3,1 * time spent in F3,1)+ .. (F3,N * time
spent in F3,N))
 / (Total Time)

28 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

3. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_GET_PSTATES page.

a. Change the performance_index return value definition from:
Unsigned integer denoting the processor performance for the time duration
since the last PAL_GET_PSTATE procedure call was made. The value
returned is between 0 and 100, and is relative to the performance index of
the highest available P-state.

to:
Unsigned integer denoting the processor performance for the time duration
since the last PAL_GET_PSTATE procedure call was made. The value
returned is relative to the performance index of the highest available P-
state.

b. Change the first paragraph of the Description section:
This procedure returns the performance index of the processor over the
time period between the previous and the current invocations of
PAL_GET_PSTATE, and is relative to the highest available P-state. For
processors that belong to a software-coordinated dependency domain or a
hardware-independent dependency domain, the performance_index value
returned will correspond to the target P-state requested by the most recent
PAL_SET_PSTATE procedure call.

to:
This procedure returns the performance index of the processor over the
time period between the previous and the current invocations of
PAL_GET_PSTATE, and is relative to the highest available P-state, P0. A
value of 100 represents the minimum processor performance in the P0
state. For processors that support variable P-state performance, it is
possible for a processor to report a number greater than 100, representing
that the processor is running at a performance level greater than the
minimum P0 performance. The PAL procedure PAL_PROC_GET_FEATURES
on page 2:429 indicates if the processor supports variable P-state
performance.

For processors that belong to a software-coordinated dependency domain or
a hardware-independent dependency domain, the performance_index value
returned will correspond to the target P-state requested by the most recent
PAL_SET_PSTATE procedure call in cases where variable P-state
performance is not supported. When variable P-states performance is
supported, the performance_index may be higher than the target P-state
requested. Please see Section 11.6.1 for more information about variable P-
state performance.

c. In the Description section, change the second paragraph after Table 11-73.
If there was a thermal-throttling event or any hardware-initiated event,
which affected the processor power/performance for the current time period
and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1. The performance_index
returned in this case will still have a value between 0 and 100.

to:
If there was a thermal-throttling event or any hardware-initiated event
which affected the processor power/performance for the current time period
and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1. The performance_index
returned in this case will still have a value that falls within the range of

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 29

possible performance_index values for this processor implementation. (i.e.
0 up to the highest variable p-state performance_index value)

4. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_PROC_GET_FEATURES page, modify the bit 39 description as shown:

13. PAL_MC_DYNAMIC_STATE Changes
1. Volume 2, Part I, Section 11.10.1, “PAL Procedure Summary”, Table 11-38. Change

the PAL_MC_DYNAMIC_STATE “Mode” value from “Phys.” to “Both”.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. Update the
PAL_MC_DYNAMIC page as follows:

Bit Class Control Description

39 Opt. Req. Variable P-state performance: A value of 1 indicates that the processor is optimizing
performance for the given P-state power budget by dynamically varying the frequency,
such that maximum performance is achieved for the power budget. A value of 0
indicates that P-states have no frequency variation or very small frequency variations
for their given power budget.

30 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

PAL_MC_DYNAMIC_STATE – Returns Dynamic Processor State
(24)

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The info_type input argument designates the type of information the procedure will
return. When info_type is 0, the procedure returns the maximum size in bytes of
processor dynamic state that can be returned for this processor family in the max_size
return value.

When info_type is 1, the procedure will copy processor dynamic state into memory
pointed to by the input argument dy_buffer. This copy will occur using the addressing
attributes used to make the procedure call (physical or virtual) and the caller needs to
ensure the dy_buffer input pointer matches this addressing attribute.

The amount of data returned can vary depending on the state of the machine when
called and may not always return the maximum size for every call. The amount of data
returned is provided in the processor state parameter field dsize. Please see Table 11-7
for more information on the processor state parameter. The caller of the procedure
needs to ensure that the buffer is large enough to handle the max_size that is returned
by this procedure.

The contents of the processor dynamic state is implementation dependent. Portions of
this information may be cleared by the PAL_MC_CLEAR_LOG procedure. This procedure
should be invoked before PAL_MC_CLEAR_LOG to ensure all the data is captured.

Arguments Description

index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.

info_type Unsigned 64-bit value indicating the type of information to return

dy_buffer 64-bit pointer to a buffer aligned on an 8-byte boundary

Reserved 0

Return Value Description

status Return status of the PAL_MC_DYNAMIC_STATE procedure.

max_size Maximum size in bytes of the data that can be returned by this procedure for this processor
family.

Reserved 0

Reserved 0

Status Value
Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 31

14. Min-State Save Area Size Change
1. In Volume 2, Part I, Section 11.2.2.1, “Definition of SALE_ENTRY State Parameter”,

change the reset hand-off state to return a min-state save area size.

Page 2:282 - Modify the existing SALE_ENTRY state parameter for reset and
recovery check to pass the size of the min-state save area using some previously
reserved fields

a. Modify Figure 11-8 to add a new field called min-state_size as shown:

b. Add a bullet at the end of Section 11.2.2.1, after the sentence “For the case of
RECOVERY CHECK, authentication of PAL_A and PAL_B should be completed
before call to SAL_ENTRY:

• min-state_size - An 8-bit field indicating the size in kilobytes (KB) of the
min-state save area required for this implementation. A value of zero
indicates a size of 4 KB. A value greater than zero indicates the actual size
in KB of the min-state save area required for this implementation. Values
of 1-4 are reserved. For more information about the min-state save area,
please refer to Section 11.3.2.3.

2. Volume 2, Part I, Section 11.3.2.3, “Processor Min-state Save Area Layout”.

a. Change the first paragraph of Section 11.3.2.3 from:
The processor min-state save area is 4 KB in size and must be in an
uncacheable region. The first 1 KB of this area is architectural state needed
by the PAL code to resume during MCA and INIT events (architected min-
state save area + reserved). The remaining 3KB is a scratch buffer reserved
exclusively for PAL use, therefore SAL and OS must not use this area. The
layout of the processor min-state save area is shown in Figure 11-13.

to:
The processor min-state save area is minimally 4 KB in size, but an
implementation may require larger sizes. The reset hand-off state indicates
if a size greater than 4 KB is required and also provides the required size.
Please refer to Section 11.2.2.1 for more information on the reset hand-off
state. The required size is referred to as MIN_STATE_REQ. The min-state
save area is required to be in an uncacheable region. The first 1 KB of this
area is architectural state needed by the PAL code to resume during MCA
and INIT events (architected min-state save area + reserved). The
remaining space in the buffer is a scratch space reserved exclusively for PAL
use, therefore SAL and OS must not use this area. The layout of the
processor min-state save area is shown in Figure 11-13.

b. Figure 11-13 needs to be modified in two places to use the MIN_STATE_REQ
variable:
Change “Min-state save ptr + 4KB” to “Min-state save ptr + MIN_STATE_REQ”
and change “3KB” to “MIN_STATE_REQ - 1KB”.

Figure 11-8. SALE_ENTRY State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved status function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

min-state_size reserved

32 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

c. Change the third paragraph of Section 11.3.2.3 from:
The base address of the min-state save area must minimally be aligned on a
512-byte boundary, but larger alignments like 4 KB are fine.

to:
The base address of the min-state save area must minimally be aligned on a
512-byte boundary with, but larger alignments are allowed.

3. Change the PAL_MC_REGISTER_MEM procedure as shown:

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 33

PAL_MC_REGISTER_MEM – Register Memory with PAL for
Machine Check and Init (27)

Purpose: Registers a platform dependent location with PAL to which it can save minimal
processor state in the event of a machine check or initialization event.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL places the address passed in the XR0 register, which is used by PAL as the min-
state save area

This procedure is used to register with PAL an uncacheable min-state save area
memory buffer that is used for machine check and initialization event handling. The
size of the min-state save area is either 4 KB or a larger size that is indicated in the
reset hand-off state described in Section 11.2.2.1. The input argument size indicates
the size of the min-state save buffer in kilobytes (KB) when it is greater than 4 KB. If
the size input argument does not match the required size, the procedure returns an
invalid argument return status and a min-state area is not registered. The procedure
will also return the required size of the min-state save area in the reg_size return
value.

The layout of the min-state save area is defined in Section 11.3.2.3 “Processor Min-
state Save Area Layout” on page 2:294. The address passed has a minimum alignment
requirement of 512-bytes.

15. Data Speculation Disable

This specification change provides a mechanism for disabling data speculation to force
code execution to be more reproducible.

4. Volume 2, Part I, Section 11.10.3, PAL_PROC_GET_FEATURES page. Add a new bit
35 to Table 11-103, “Processor Features” as shown:

Argument Description

index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.

address Physical address of the buffer to be registered with PAL.

size Unsigned integer indicating the size in kilobytes (KB) of the buffer passed. This input argument
is only required when passing in a size greater than 4KB. The implementation indicates when a
size greater than 4KB is required at the reset hand-off. Refer to Section 11.2.2.1 for more
information.

Reserved 0

Return Value Description

status Return status of the PAL_MC_REGISTER_MEM procedure.

req_size Returns the required size of the min-state save area in kilobytes (KB) if the 'size' input argument
did not match the required size for this implementation.

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid argument

-3 Call completed with error

34 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

16. Interruption Instruction Bundle Registers

This specification change defines Interruption Instruction Bundle registers, which
provide instruction bundle information for certain IVA-based faults and traps.

1. Volume 2, Part I, Chapter 3 “System State and Programming Model”.

a. In Figure 3-1, “System Register Model”, add CR26 IIB0 and CR27 IIB1 to the
diagram.

b. In Table 3-3, “Control Registers” add CR26 and CR27 rows as shown:

c. Section 3.3.5, “Interruption Control Registers”. Change the first sentence from:
Registers CR16 - CR25 record information at the time of an interruption...

to:
Registers CR16 - CR27 record information at the time of an interruption...

d. Add a new Section 3.3.5.10 after the current Section 3.3.5.9:

3.3.5.10 Interruption Instruction Bundle Registers (IIB0-1 - CR26,27)

On an interruption and if PSR.ic is 1, the IIB registers receive the 16-byte instruction
bundle corresponding to the interruption. The bundle reported in the IIB registers is the
bundle exactly as it was fetched for execution of the instruction which raised the
interruption. Figure 3-16 shows the format of the IIB0 and IIB1 registers. For details on
instruction bundle format, see Vol. 1, Section 3.3, “Instruction Encoding Overview”.

Figure 3-16. Interruption Instruction Bundle Registers (IIB0-1, – CR26, 27)

If the interruption is a fault, the IIB registers record the instruction bundle pointed to
by IIP. If the interruption is a trap, the IIB registers record the instruction bundle
pointed to by IIPA.

The IIB registers only provide valid interruption bundle information on certain IVA-
based faults and traps. Please refer to Table 8-1, “Writing of Interruption Resources by
Vector” and corresponding interruption vector pages in Section 8.3, “Interruption

Bit Class Control Description

35 Opt. Req Disable data speculation and the ALAT. When 1, data speculation checks (chk.a)
always fail (i.e., always branch to the target address), thus triggering recovery code;
check loads (ld.c) always re-load the target register. When 0, data speculation
works as normal.

34:0 N/A N/A Reserved

Register Name Description
Serialization

Required

Interruption
Control
Registers

CR26 IIB0 Interruption Instruction Bundle 0 impliedc

CR27 IIB1 Interruption Instruction Bundle 1 impliedc

Reserved CR28-63 reserved

63 46 45 5 4 0

IIB0 Instruction slot 1 {17:0} Instruction slot 0 Template

18 41 5
63 23 22 0

IIB1 Instruction slot 2 Instruction slot 1 {40:18}

41 23

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 35

Vector Definition” for information on which faults and traps these registers are valid.
For faults and traps that indicate IIB is not valid, updates to the register may occur, but
the information is undefined.

For IA-32 interruptions, instruction bundle information is not provided and the values in
IIB registers are undefined.

The IIB registers are not supported on all processor implementations. Software can call
PAL_PROC_GET_FEATURES to determine the availability of this feature. The IIB
registers are reserved when this feature is not supported.

2. Volume 2, Part I, Chapter 5, “Interruptions”.

a. Section 5.2, last paragraph, add the following to the end of the list of control
registers in parentheses:

, IIB0-1

b. In Section 5.5, change the line after “1. (If PSR.ic is 0)” from:
IPSR, IIP, IIPA, and IFS.v are unchanged.

to:
IPSR, IIP, IIPA, IIB0-1, and IFS.v are unchanged.

c. In Section 5.5, change the fourth bullet under “If PSR.ic is 1" from:
• The interruption resources IFA, IIM, IHA, and ITIR are written with

information...
to:

• The interruption resources IFA, IIB0-1, IIM, IHA, and ITIR are written
with information...

d. In Section 5.5, change the line after “If PSR.ic is in-flight” from:
Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA,
IIM and IHA.

to:
Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA,
IIM, IIB0-1 and IHA.

3. Volume 2, Part I, Chapter 8, “Interruption Vector Descriptions”

a. Replace Table 8-1 with the following:

Table 8-1. Writing of Interruption Resources by Vector

Interruption Resource

IIP,
IPSR,
IIPA,
IFS.v

IFA ITIR IHA IIM ISR IIB0,
IIB1

PSR.ic at time of
interruption 0 1 0 1 0 1 0 1 0 1 0 1 0

Alternate Data TLB vector

Alternate Data TLB fault N/Aa Wb N/A W N/A W N/A xc N/A x N/A W N/A

IR Alternate Data TLB fault N/A W N/A W N/A W N/A x N/A x N/A W N/A

Alternate Instruction TLB vector

Alternate Instruction TLB fault -d W - W - W x x x x W W -

Break Instruction vector

Break Instruction fault - W x x x x x x - W W W -

Data Access Rights vector

Data Access Rights fault - W - W - W x x x x W W -

IR Data Access Rights fault - W - W - W x x x x W W -

36 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Data Access-Bit vector

Data Access Bit fault - W - W - W x x x x W W -

IR Data Key Miss fault - W - W - W x x x x W W -

Data Key Miss vector

Data Key Miss fault - W - W - W x x x x W W -

IR Data Key Miss fault - W - W - W x x x x W W -

Data Nested TLB vector

Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A -

IR Data Nested TLB fault - N/A - N/A - N/A - N/A x N/A - N/A -

Data TLB vector

Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A

IR Data TLB fault N/A W N/A W N/A W N/A W N/A x N/A W N/A

Debug vector

Data Debug fault - W - W x x x x x x W W -

Instruction Debug fault - W - W x x x x x x W W -

IR Data Debug fault - W - W x x x x x x W W -

Dirty-Bit vector

Data Dirty Bit fault - W - W - W x x x x W W -

Disabled FP-Register vector

Disabled Floating-Point
Register fault

- W x x x x x x x x W W -

External Interrupt vector

External Interrupt - W x x x x x x x x W W -

Floating-point Fault vector

Floating-Point Exception fault - W x x x x x x x x W W -

Floating-point Trap vector

Floating-Point Exception trap - W x x x x x x x x W W -

General Exception vector

Disabled ISA Transition fault - W x x x x x x x x W W -

Illegal Dependency fault - W x x x x x x x x W W -

Illegal Operation fault - W x x x x x x x x W W -

IR Unimplemented Data
Address fault

- W x x x x x x x x W W -

Privileged Operation fault - W x x x x x x x x W W -

Privileged Register fault - W x x x x x x x x W W -

Reserved Register/Field fault - W x x x x x x x x W W -

Unimplemented Data
Address fault

- W x x x x x x x x W W -

IA-32 Exception vector N/A W N/A x N/A x N/A x N/A x N/A W N/A

IA-32 Intercept vector N/A W N/A x N/A x N/A x N/A W N/A W N/A

IA-32 Interrupt vector N/A W N/A x N/A x N/A x N/A x N/A W N/A

Instruction Access Rights vector

Instruction Access Rights
fault

- W - W - W x x x x W W -

Instruction Access-Bit vector

Instruction Access Bit fault - W - W - W x x x x W W -

Instruction Key Miss vector

Interruption Resource

IIP,
IPSR,
IIPA,
IFS.v

IFA ITIR IHA IIM ISR IIB0,
IIB1

PSR.ic at time of
interruption 0 1 0 1 0 1 0 1 0 1 0 1 0

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 37

Instruction Key Miss fault - W - W - W x x x x W W -

Instruction TLB vector

Instruction TLB fault - W - W - W - W x x W W -

Key Permission vector

Data Key Permission fault - W - W - W x x x x W W -

Instruction Key Permission
fault

- W - W - W x x x x W W -

IR Data Key Permission fault - W - W - W x x x x W W -

Lower-Privilege Transfer Trap vector

Unimplemented Instruction
Address fault

- W x W x x x x x x W W -

Lower-Privilege Transfer trap - W x x x x x x x x W W -

Unimplemented Instruction
Address trap

- W x x x x x x x x W W -

NaT Consumption vector

Data NaT Page Consumption
fault

- W - W x x x x x x W W -

Instruction NaT Page
Consumption fault

- W - W x x x x x x W W -

IR Data NaT Page
Consumption fault

- W - W x x x x x x W W -

Register NaT Consumption
fault

- W - x x x x x x x W W -

Page Not Present vector

Data Page Not Present fault - W - W - W x x x x W W -

Instruction Page Not Present
fault

- W - W - W x x x x W W -

IR Data Page Not Present
fault

- W - W - W x x x x W W -

Single Step Trap vector

Single Step trap - W x x x x x x x x W W -

Speculation vector

Speculative Operation fault - W x x x x x x - W W W -

Taken Branch Trap vector

Taken Branch trap - W x x x x x x x x W W -

Unaligned Reference vector

Unaligned Data Reference
fault

- W - W x x x x x x W W -

Unsupported Data Reference vector

Unsupported Data Reference
fault

- W - W x x x x x x W W -

VHPT Translation vector

IR VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A

VHPT Data fault N/A W N/A W N/A W N/A W N/A x N/A W N/A

VHPT Instruction fault N/A W N/A W N/A W N/A W N/A x N/A W N/A

Virtual External Interrupt vector

Virtual External Interrupt - W x x x x x x x x W W -

Interruption Resource

IIP,
IPSR,
IIPA,
IFS.v

IFA ITIR IHA IIM ISR IIB0,
IIB1

PSR.ic at time of
interruption 0 1 0 1 0 1 0 1 0 1 0 1 0

38 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. Volume 2, Part I, Section 8.3. On page 2:163, “VHPT Translation vector
(0x0000)” in the Parameters section, add the following after “ITIR”:

IIB0, IIB1 - If implemented, for VHPT Data faults, the IIB registers contain
the instruction bundle pointed to by IIP. The IIB registers are undefined for
IR VHPT Data and VHPT Instruction faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page
2:39 for details on the IIB registers.

c. Volume 2, Part I, Section 8.3. On page 2:165, “Instruction TLB vector
(0x0400)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

d. Volume 2, Part I, Section 8.3. On page 2:166, “Data TLB vector (0x0800)” in
the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, for Data TLB faults, the IIB registers contain
the instruction bundle pointed to by IIP. The IIB registers are undefined for
IR Data TLB faults. Please refer to Section 3.3.5.10, “Interruption
Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details
on the IIB registers.

e. Volume 2, Part I, Section 8.3. On page 2:167, “Alternate Instruction TLB vector
(0x0c00)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instructions Bundle Registers (IIB0-1 -
CR26, 27)” on page 2:39 for details on the IIB registers.

f. Volume 2, Part I, Section 8.3. On page 2:168, “Alternate Data TLB vector
(0x1000)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, for Alternate Data TLB faults, the IIB registers
contain the instruction bundle pointed to by IIP. The IIB registers are
undefined for IR Alternate Data TLB faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page
2:39 for details on the IIB registers.

g. Volume 2, Part I, Section 8.3. On page 2:169, “Data Nested TLB vector
(0x1400)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are unchanged from their
previous values. Please refer to Section 3.3.5.10, ”Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

Virtualization vector

Virtualization fault - W x x x x x x x x W W -

Notes:

a. “N/A” indicates that this cannot happen.
b. “W” indicates that the resource is written with a new value.
c. “x” indicates that the resource may or may not be written; whether it is written and with what value is

implementation specific.
d. “-” indicates that the resource is not written.

Interruption Resource

IIP,
IPSR,
IIPA,
IFS.v

IFA ITIR IHA IIM ISR IIB0,
IIB1

PSR.ic at time of
interruption 0 1 0 1 0 1 0 1 0 1 0 1 0

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 39

h. Volume 2, Part I, Section 8.3. On page 2:170, “Instruction Key Miss vector
(0x1800)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

i. Volume 2, Part I, Section 8.3. On page 2:171, “Data Key Miss vector (0x1c00)”
in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, for Data Key Miss faults, the IIB registers
contain the instruction bundle pointed to by IIP. The IIB registers are
undefined for IR Data Key Miss faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page
2:39 for details on the IIB registers.

j. Volume 2, Part I, Section 8.3. On page 2:172, “Dirty-Bit vector (0x2000)” in
the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

k. Volume 2, Part I, Section 8.3. On page 2:173, “Instruction Access-Bit vector
(0x2400)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

l. Volume 2, Part I, Section 8.3. On page 2:174, “Data Access-Bit vector
(0x2800)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, for Data Access Bit faults, the IIB registers
contain the instruction bundle pointed to by IIP. The IIB registers are
undefined for IR Data Access Bit faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page
2:39 for details on the IIB registers.

m. Volume 2, Part I, Section 8.3. On page 2:175, “Break Instruction vector
(0x2c00)” in the Parameters section, add the following after “IIM”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

n. Volume 2, Part I, Section 8.3. On page 2:176, “External Interrupt vector
(0x3000)” in the Parameters section, add the following after “IVR”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

o. Volume 2, Part I, Section 8.3. On page 2:177, “Virtual External Interrupt vector
(0x3400)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

p. Volume 2, Part I, Section 8.3. On page 2:178, “Page Not Present vector
(0x5000)” in the Parameters section, add the following after “ITIR”:

IIB0, IIB1 - If implemented, for Data Page Not Present faults, the IIB
registers contain the instruction bundle pointed to by IIP. The IIB registers

40 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

are undefined for IR Data Page Not Present and Instruction Page Not
Present faults. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

q. Volume 2, Part I, Section 8.3. On page 2:179, “Key Permission vector
(0x5100)” in the Parameters section, add the following after “ITIR”:

IIB0, IIB1 - If implemented, for Data Key Permission faults, the IIB registers
contain the instruction bundle pointed to by IIP. The IIB registers are
undefined for IR Data Key Permission and Instruction Key Permission faults.
Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB registers.

r. Volume 2, Part I, Section 8.3. On page 2:180, “Instruction Access Rights vector
(0x5200)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

s. Volume 2, Part I, Section 8.3. On page 2:181, “Data Access Rights vector
(0x5300)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, for Data Access Rights faults, the IIB registers
contain the instruction bundle pointed to by IIP. The IIB registers are
undefined for IR Data Access Rights faults. Please refer to Section 3.3.5.10,
“Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page
2:39 for details on the IIB registers.

t. Volume 2, Part I, Section 8.3. On page 2:182, “General Exception vector
(0x5400)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers contain the
instruction bundle pointed to by IIP for the following faults:
 Illegal Operation fault
 Illegal Dependency fault
 Privileged Operation fault
 Disabled Instruction Set Transition fault
 Reserved Register/Field fault
 Unimplemented Data Address fault
 Privileged Register fault
The IIB registers are undefined for IR Unimplemented Data Address faults.
Please refer to Section 3.3.5.10, “Interruption Instruction Bundle Registers
(IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB registers.

u. Volume 2, Part I, Section 8.3. On page 2:184, “Disabled FP-Register vector
(0x5500)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

v. Volume 2, Part I, Section 8.3. On page 2:185, “NaT Consumption vector
(0x5600)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, for Register NaT Consumption and Data NaT
Page Consumption faults, the IIB registers contain the instruction bundle
pointed to by IIP. The IIB registers are undefined for IR Data NaT Page

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 41

Consumption and Instruction NaT Page Consumption faults. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1- CR26,
27)” on page 2:39 for details on the IIB registers.

w. Volume 2, Part I, Section 8.3. On page 2:187, “Speculation vector (0x5700)” in
the Parameters section, add the following after “IIM”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, ”Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

x. Volume 2, Part I, Section 8.3. On page 2:189, “Debug vector (0x5900)” in the
Parameters section, add the following after “IIP, IPSR, IIPA, IFS”:

IIB0, IIB1 - If implemented, for Data Debug faults, the IIB registers contain
the instruction bundle pointed to by IIP. The IIB registers are undefined for
IR Data Debug and Instruction Debug faults. Please refer to Section
3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26, 27)” on
page 2:39 for details on the IIB registers.

y. Volume 2, Part I, Section 8.3. On page 2:190, “Unaligned Reference vector
(0x5a00)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, ”Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

z. Volume 2, Part I, Section 8.3. On page 2:191, “Unsupported Data Reference
vector (0x5b00)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

aa. Volume 2, Part I, Section 8.3. On page 2:192, “Floating-point Fault vector
(0x5c00)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, ”Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

ab. Volume 2, Part I, Section 8.3. On page 2:193, “Floating-point Trap vector
(0x5d00)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIPA. Please refer to Section 3.3.5.10, “Interruption
Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details
on the IIB registers.

ac. Volume 2, Part I, Section 8.3. On page 2:194, “Lower-Privilege Transfer Trap
vector (0x5e00)” in the Parameters section, add the following after “Note:”

IIB0, IIB1 - If implemented, for Lower-Privilege Transfer traps, the IIB
registers contain the instruction bundle pointed to by IIPA. The IIB registers
are undefined for Unimplemented Instruction Address faults. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

ad. Volume 2, Part I, Section 8.3. On page 2:196, “Taken Branch Trap vector
(0x5f00)” in the Parameters section, add the following after “Note:”

42 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIPA. Please refer to Section 3.3.5.10, “Interruption
Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details
on the IIB registers.

ae. Volume 2, Part I, Section 8.3. On page 2:197, “Single Step Trap vector
(0x6000)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIPA. Please refer to Section 3.3.5.10, ”Interruption
Instruction Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details
on the IIB registers.

af. Volume 2, Part I, Section 8.3. On page 2:198, “Virtualization vector (0x6100)”
in the Parameters section, add the following after “IIP, IPSR, IIPA, IFS”:

IIB0, IIB1 - If implemented, the IIB registers contain the instruction bundle
pointed to by IIP. Please refer to Section 3.3.5.10, “Interruption Instruction
Bundle Registers (IIB0-1 - CR26, 27)” on page 2:39 for details on the IIB
registers.

ag. Volume 2, Part I, Section 8.3. On page 2:199, “IA-32 Exception vector
(0x6900)” in the Parameters section, add the following after “IFA”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

ah. Volume 2, Part I, Section 8.3. On page 2:200, “IA-32 Intercept vector
(0x6a00)” in the Parameters section, add the following after “IIM”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

ai. Volume 2, Part I, Section 8.3. On page 2:201, “IA-32 Interrupt vector
(0x6b00)” in the Parameters section, add the following after “IIP, IPSR, IIPA,
IFS”:

IIB0, IIB1 - If implemented, the IIB registers are undefined. Please refer to
Section 3.3.5.10, “Interruption Instruction Bundle Registers (IIB0-1 - CR26,
27)” on page 2:39 for details on the IIB registers.

4. Volume 2, Part I, Chapter 10, “Itanium® Architecture-based Operating System
Interaction Model with IA-32 Applications”.

a. Table 10-1, “IA-32 System Register Mapping: Under “Control Registers”,
change the following:

IFA, IIP, IPSR, ISR, IIM, IIPA, ITTR, IHA, IFS, IVA
to:

IFA, IIP, IPSR, ISR, IIM, IIPA, ITIR, IHA, IIB0-1, IFS, IVA

5. Volume 2, Part I, Chapter 11 “Processor Abstraction Layer”.

a. Table 11-14, “Virtual Processor Descriptor (VPD)”. In footnote (g), add “, viib0-
1” to the end of the list of control registers in parentheses

b. Section 11.7.4.1.2, “Interruption Control Register Read Optimization”.
In the first paragraph, change:

(vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha)
to:

(vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1)

c. Section 11.7.4.1.2, “Interruption Control Register Read Optimization”.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 43

In Table 11-23, “Synchronization Requirements for Interruption Control
Register Read Optimization”, add “, viib0-1” to the end of the list.

d. Section 11.7.4.1.3, “Interruption Control Register Write Optimization”.
In the first paragraph, change:

(vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha)
to:

(vipsr, visr, viip, vifa, vitir, viipa, vifs, viim, viha, viib0-1)

e. Section 11.7.4.1.3, “Interruption Control Register Write Optimization”.
In Table 11-23, “Synchronization Requirements for Interruption Control
Register Read Optimization”, add “, viib0-1:” to the end of the list.

f. Section 11.10.2.2.2, “System Registers”. In Table 11-45, “System Register
Conventions”, add the following row under “IHA”:

g. Section 11.10.3, PAL_ENTER_IA_32_ENV procedure. In Table 11-71, “Register
Values at IA-32 System Environment Termination, in the following row:

add “IIB0-1,” after “IHA” as shown:

h. Section 11.10.3, PAL_PROC_GET_FEATURES procedure, Modify bit 35 of Table
11-103, “Processor Features” as shown:

i. Section 11.7.1.1, “Virtualization Controls.” In Table 11-15, “Virtualization
Acceleration Control (vac) Fields”, change the two instances of “(CR16-25)” to
“(CR16-27)”.

Name Description Class

IIB0-1 Interruption Instruction Bundle Registers scratch

Intel® Itanium®
Register

IA-32 State Description

IFA, IIP, IPSR, ISR,
IIM, IIPA, ITTR, IHA,
IFS, IVA, GPTA,
ITM, IVR, TPR,
IRR0-3, ITV, PMV,
LRR0, LRR1, CMCV

Undefined

Intel® Itanium®
Register

IA-32 State Description

IFA, IIP, IPSR, ISR,
IIM, IIPA, ITTR, IHA,
IIB0-1, IFS, IVA,
GPTA, ITM, IVR,
TPR, IRR0-3, ITV,
PMV, LRR0, LRR1,
CMCV

Undefined

Bit Class Control Description

35 Opt. No Interruption Instruction Bundle interruption registers (IIB0, IIB1) implemented.
Denotes whether IIB registers are implemented. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or disabled
by PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

34:0 N/A N/A Reserved

44 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

j. Section 11.7.2, “Interruption Handling in a Virtual Environment”. Three
paragraphs after Table 11-17, change the following bullet items from:

• mov-from-interruption-CR (CRs 16, 17, 19-25)
• mov-to-interruption-CR (CRs 16, 17, 19-25)

to:
• mov-from-interruption-CR (CRs 16, 17, 19-27)
• mov-to-interruption-CR (CRs 16, 17, 19-27)

6. Volume 2, Part II, Chapter 3, “Interruptions and Serialization”.

a. Section 3.3.2, “Interruption Register State”. Add the following to the list of
control registers after “IFS”:

• IIB0, IIB1 - Contain the 16-byte instruction bundle related to the
interruption. Note that the IIB registers do not provide bundle information
for all interruptions and are not supported on all processor
implementations; please refer to Chapter 8, “Interruption Vector
Descriptions” for details. Software can use the instruction bundle
information for debug and emulation purposes.

b. Section 3.4.2, “Heavyweight Interruptions”. In numbered lists #1, #4, and #17
add “, IIB0-1” to the list of control registers in parentheses.

7. Volume 3, Part I, Chapter 5, “Resource and Dependency Semantics”.

a. Section 5.4, “Support Tables”. In Table 5-5, “Instruction Classes”. Add the
following row after “mov-from-CR-IHA”:

b. Section 5.4, “Support Tables”. In Table 5-5, “Instruction Classes”. Add the
following row after “mov-to-CR-IHA”:

c. Section 5.3.2, “RAW Dependency Table”. In Table 5-2, “RAW Dependencies
Organized by Resource” add the following row after “CR[IHA]”:

d. Table 5-3, “WAW Dependencies Organized by Resource”. Add the following row
after “CR[IHA]”:

8. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, “mov cr” instruction page.
In the last paragraph of the Description section, change “(CR16-CR25)” to “(CR16-
CR27)”

17. Data-Poisoning Promotion Changes

This specification changes the Processor State Parameter Hand-off State when data-
poisoning promotion is enabled by setting PAL_PROC_SET_FEATURES bit 53.

1. Volume 2, Part I, Section 11.10.3, PAL_PROC_GET_FEATURES procedure. In Table
11-103, change the description of bit 53 from:

Class Events/Instructions

mov-from-CR-IIB mov-from-CR[Field(cr3) in {IIB0 IIB1}]

Class Events/Instructions

mov-to-CR-IIB mov-to-CR[Field(cr3) in {IIB0 IIB1}]

Resource Name Writers Readers
Semantics of
Dependency

CR[IIB%], % in 0 - 1 mov-to-CR-IIB mov-from-CR-IIB data

Resource Name Writers
Semantics of
Dependency

CR[IIB%], % in 0 - 1 mov-to-CR-IIB impliedF

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 45

Enable MCA signaling on data-poisoning event detection. When 0, a CMCI will
be signaled on error detection. When 1, an MCA will be signaled on error
detection. If this feature is not supported, then the corresponding argument is
ignored when calling PAL_PROC_SET_FEATURES. Note that the functionality of
this bit is independent of the setting in bit 60 (Enable CMCI promotion), and
that the bit 60 setting does not affect CMCI signaling for data-poisoning related
events.

to:
Enable MCA signaling on unconsumed data-poisoning event detection. When 0,
a CMCI will be signaled on error detection. When 1, an MCA will be signaled on
error detection. Note that the reported error severity depends on which method
is chosen for signaling; see section 11.3.2.3 for details. If this feature is not
supported, then the corresponding argument is ignored when calling
PAL_PROC_SET_FEATURES. Note that the functionality of this bit is
independent of the setting in bit 60 (Enable CMCI promotion), and that the bit
60 setting does not affect CMCI signaling for data-poisoning related events.

2. Add a new Section 11.3.2.3, “Multiprocessor Rendezvous Requirements for
Handling Machine Checks” just after current Section 11.3.2.2:

11.3.2.3 Unconsumed Data-Poisoning Event Handling

The transfer/access of information between levels of the cache/memory hierarchy
where the data has an uncorrectable error and is therefore marked as poison may raise
error reporting events. If the processor being reported to is not a consumer of the data
in question, then the error is termed a “unconsumed data-poisoning event”.

Unconsumed data-poisoning events are by default reported as a CMC and can
optionally be promoted to an MCA via bit 53 of feature_set 0 of
PAL_PROC_SET_FEATURES. When they are signaled as a CMC the PSP.cm is set to 1 to
indicate that the error has been corrected (in the sense that the line has been marked
with poison, preventing any silent data corruption).

If bit 53 is 1, unconsumed data-poisoning events are reported as MCAs. The caller can
set bit 53 to 1 in order to handle unconsumed data-poisoning events immediately as
uncorrected errors (in the sense that the data in question has been lost). PSP settings
for a data-poisoning event with bit 53 equal to 1 are given in the table below. See also
Table 11-8.

PSP bit settings for unconsumed data-poisoning events on MCA:

When promotion is enabled (bit 51 is 1), and a continuable data-poisoning event is
indicated (i.e., the PSP bits are set as in the above table, and either or both of
cache_check.dp or bus_check.dp are 1), and if no other MCAs occur at the same time
(i.e., no other errors are indicated in the error information from
PAL_MC_ERROR_INFO), the interrupted process is always continuable. Promotion to
MCA with bit 53 allows the OS to take proactive measures to recover from the poisoned
data, but this is not required in order for the interrupted process to be continuable.

3. In Section 11.10.3, PAL_MC_ERROR_INFO description, Table 11-82, “cache_check
fields”, change the description of the dp field (bit 23) from:

A multiple-bit error was detected, and data was poisoned for the corresponding
cache line during castout.

cm us ci co sy

0 0 1 1 0

46 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

to:
An uncorrectable (typically multiple-bit) error was detected, and data was
poisoned for the corresponding cache line, without any corrupted data being
consumed (i.e., no corrupted data has been copied to processor registers).

18. ACPI P-State Clarifications
1. Volume 2, Part I, Section 11.6.1:

a. In the first paragraph, replace:
(hence to be referred as P-states)

with:
(hence to be referred to as P-states)

a. In the second paragraph, replace the sentence:
Successive P-states continue to have reduced performance capabilities and
reduced power consumption than the corresponding lower state.

with:
Successive P-states continue to have reduced performance capabilities and
reduced power consumption.

b. Just after Figure 11-21, “Example of a P-state Transition Policy” and before the
paragraph that begins, “The concept of P-states...”, add this section heading:

11.6.1.1 Power Dependency Domains

c. In the paragraph that begins, “The concept of P-states...”, replace the last
sentence:

To allow the architecture definition to comprehend for multi-threaded/multi-
core designs, we define the concept of dependency domain and coordination
mechanisms.

with:
To allow the architecture definition to comprehend multi-threaded/multi-
core designs, we define the concept of dependency domain and coordination
mechanisms.

d. In the paragraph that begins “A dependency domain is comprised...”, replace
the sentence:

As an example, a processor package comprising of two cores controlled by
the same clock and power distribution network are part of the same
dependency domain, since changing either the operating frequency or
voltage will affect power consumption and performance for both cores.

with:
As an example, a processor package comprised of two cores controlled by
the same clock and power distribution network are part of the same
dependency domain, since changing either the operating frequency or
voltage will affect power consumption and performance for both cores.

e. In the paragraph that begins, “A dependency domain is comprised...”, replace
the sentence:

Software can utilize P-states to affect changes in the domain parameters.
with:

Software can utilize P-states to effect changes in the domain parameters.

f. In the paragraph that begins, “A software-coordinated dependency domain...”,
replace the beginning of the sentence:

A software-coordinated dependency domain relies on the software...

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 47

with:
A software-coordinated dependency domain (SCDD) relies on the
software...

g. In the paragraph that begins, “A software-coordinated dependency domain...”,
replace the sentence:

As an example, let us assume that the software-coordinated dependency
domain consisted of two cores with the same clock and power distribution
networks and the intent of the software policy was to lower power/
performance only when the workload utilization was low on both cores.

with:
As an example, let us assume that the SCDD consisted of two cores with the
same clock and power distribution networks and the intent of the software
policy was to lower power/performance only when the workload utilization
was low on both cores.

h. In the paragraph that begins, “A software-coordinated dependency domain...”,
replace the sentence:

This transition would simultaneously reduce performance and power
dissipation for both cores, and would result in both cores operating at the
same P-state.

with:
This transition would simultaneously reduce performance and power
dissipation for both cores, and would result in both cores operating at the
same lower P-state.

i. In the paragraph that begins, “A hardware-coordinated dependency domain...”,
replace the beginning of the sentence:

A hardware-coordinated dependency domain relies on the software...
with:

A hardware-coordinated dependency domain (HCDD) relies on the
software...

j. In the paragraph that begins, “A hardware-coordinated dependency domain...”,
replace the sentence:

Software can make independent P-state change requests on individual
processors, recognizing that hardware is responsible for the required
coordination with other processors in the same hardware-coordinated
dependency domain.

with:
Software can make independent P-state change requests on individual
processors, recognizing that hardware is responsible for the required
coordination with other processors in the same HCDD.

k. In the paragraph that begins, “A hardware-coordinated dependency domain...”,
replace the following text:

As an example, let us assume that the hardware-coordinated dependency
domain consisted of two cores with the same clock and power distribution
networks, and that there were also some other techniques to affect power
and performance which were local to each logical processor. When software
initiates a P-state transition on the first core, hardware would use only the
local parameters to carry out the request. When software requests the same
P-state change on the second core, then hardware can undo the changes to
the local parameters for the first core, and then initiate changes to the
domain parameters, which would allow both cores to operate at the same P-
state.

48 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

with:
Domain parameters are set by hardware according to the highest requested
power/performance level (that is, the lowest numbered P-state) of the
logical processors in the power domain. As an example, let us assume that
the HCDD consisted of two cores with the same clock and power distribution
networks, and that there were also some other techniques to affect power
and performance which were local to each logical processor. Let us also
assume that software has initially set both cores to the P0 state. When
software initiates a P-state transition to P1 (which is a lower power/
performance level) on the first core, hardware would use only the local
parameters to carry out the request, and the domain parameters would
remain at P0. Suppose software on the second core then initiates a P-state
transition to P3. Hardware would then set the local parameters for the
second core to reflect this request, undo the changes to the local
parameters for the first core plus initiate changes to the domain parameters
to transition the domain to the P1 state (the highest requested power/
performance level of the two cores).

l. In the paragraph that begins, “A hardware-independent dependency domain...”,
replace the following text:

A hardware-independent dependency domain relies on the software...
with:

A hardware-independent dependency domain (HIDD) relies on the
software...

m. Just after the paragraph that begins, “A hardware-independent dependency
domain...” and just before the paragraph that begins, “The PAL procedure
PAL_PROC_GET_FEATURES...”, add the following text (including two section
headers, to provide clarity):

11.6.1.2 Platform Power-Cap and P-states

Some processor implementations include mechanisms which allow the platform
hardware and firmware to temporarily decrease the operating frequency of logical
processors, to implement fast-response power capping. This is referred to as a Platform
Power-Cap. In such implementations, the P-state requested by software is not changed
by platform power-cap. Software is able to change its P-state request during platform
power-caps, and when the platform power-cap is removed, the processor operating
frequency returns to that of the P-state determined by software's most recent P-state
settings.

The intention with platform power-caps is that they be of very short duration and very
low duty cycle such that they do not have a significant effect on software-based
methods for managing power through P-states. Platform power-caps do not affect the
instantaneous operating P-state observed by software, but do affect the weighted-
average performance index reported to software by PAL, so that software may take into
account any small effects. (See the PAL_GET_PSTATE procedure for details.)

11.6.1.3 PAL Interfaces for P-states

n. Replace the sentence:
The Itanium architecture provides three new PAL procedures to enable P-
state functionality.

with:
The Itanium architecture provides three PAL procedures to enable P-state
functionality.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 49

o. In the text portion that talks about “PAL_SET_PSTATE” and just before the
paragraph that begins, “If the logical processor belongs to a software-
coordinated dependency domain”, add the following text:

Implementation-specific event conditions may also cause a
PAL_SET_PSTATE request to not be accepted. For example, thermal
protection mechanisms to prevent over-temperature, if in effect, may cause
PAL_SET_PSTATE to return a status of transition failure. These are expected
to be rare, and to happen only in abnormal situations.
Note that platform power-caps do not cause PAL_SET_PSTATE requests to
return status of transition failure. The newly requested P-state is registered
with PAL, and the procedure returns a status of transition success.

p. Replace the paragraph:
If the logical processor belongs to a software-coordinated dependency
domain, the PAL_SET_PSTATE procedure will change the domain
parameters, which will result in all logical processors in that domain to
transition to the requested P-state. If the logical processor belongs to a
hardware-coordinated dependency domain, the PAL_SET_PSTATE procedure
will attempt to change the power/performance characteristics only for that
logical processor, which will result in either partial or complete transition to
the requested P-state. In case of partial transition (see Figure 11-22,
“Computation of performance_index” on page 2:311 for an example, where
the logical processor transitions from state P0 to state P3 in partial
increments), the logical processor may attempt to perform changes at a
later time to the local parameters and/or domain parameters to transition to
the originally requested P-state. If the logical processor belongs to a
hardware-independent dependency domain, the PAL_SET_PSTATE
procedure will attempt to change the domain parameters, which will
transition the logical processor in that domain to the requested P-state.

with:
SCDD: If the logical processor belongs to a software-coordinated
dependency domain, the PAL_SET_PSTATE procedure will change the
domain parameters, which will result in all logical processors in that domain
to transition to the requested P-state.
HCDD: If the logical processor belongs to a hardware-coordinated
dependency domain, the PAL_SET_PSTATE procedure will attempt to change
the power/performance characteristics for that logical processor; since the
power/performance characteristics for the domain depend on the P-state
settings of the other logical processors in the domain, a PAL_SET_PSTATE
call on one logical processor may result in either partial or complete
transition to the requested P-state. In case of partial transition (see Figure
11-22, “Computation of performance_index” on page 2:311 for an example,
where the logical processor transitions from state P0 to state P3 in partial
increments), the logical processor may attempt to perform changes at a
later time to the local parameters and/or domain parameters to transition to
the originally requested P-state based on P-state transition requests on
other logical processors. Software can also approximate the behavior of a
SCDD by forcing P-state transitions. See the description of the
PAL_SET_PSTATE procedure for more details.
HIDD: If the logical processor belongs to a hardware-independent
dependency domain, the PAL_SET_PSTATE procedure will attempt to change
the domain parameters, which will transition the logical processor in that
domain to the requested P-state.

q. In the paragraph that begins, “PAL_GET_PSTATE:...”, replace the last sentence:

50 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Every invocation of the PAL_GET_PSTATE procedure resets the internal
performance measurement logic, and initiates a new performance_index
count, which is reported when the next PAL_GET_PSTATE procedure call is
made.

with:
Software may choose, on each invocation of the PAL_GET_PSTATE
procedure, whether to reset the internal performance measurement logic;
resetting the measurement logic initiates a new performance_index count,
which is reported when the next PAL_GET_PSTATE procedure call is made. A
call to PAL_GET_PSTATE with a type operand of 1 resets the performance
measurement logic.

r. Replace the following paragraph:
If the logical processor belongs to a software-coordinated dependency
domain or a hardware-independent dependency domain, the performance
index returned corresponds to the target P-state requested by the most
recent successful PAL_SET_PSTATE procedure call.

with:
SCDD: If the logical processor belongs to a software-coordinated
dependency domain, the performance index returned (for either type=0 or
3) corresponds to the target P-state requested by the most recent
successful PAL_SET_PSTATE procedure call. No weighted average (type=1
or 2) is computed by PAL; calling PAL_GET_PSTATE with type=1 or 2 on a
SCDD logical processor is undefined.

s. Replace the following sentence:
If the logical processor belongs to a hardware-coordinated dependency
domain, the performance index returned will be a weighted-average sum of
the perf_index values corresponding to the different P-states that the logical
processor was operating in before the PAL_GET_PSTATE procedure was
called.

with:
HCDD: If the logical processor belongs to a hardware-coordinated
dependency domain, the performance index returned (type=1 or 2) will be a
weighted-average sum of the performance_index values corresponding to
the different P-states that the logical processor was operating in since
performance measurement was last reset.

t. Replace the following paragraph:
As seen above, for a hardware-coordinated dependency domain, the
PAL_GET_PSTATE procedure allows the caller to get feedback on the
dynamic performance of the processor over the last time period. The caller
can use this information to get better system utilization over the next time
period by changing the P-state in correlation with the current workload
demand.

with:
As seen above, for a HCDD, the PAL_GET_PSTATE procedure allows the
caller to get feedback on the dynamic performance of the processor over a
software-controlled time period. The caller can use this information to get
better system utilization over a subsequent time period by changing the P-
state in correlation with the current workload demand. The caller can also
use PAL_GET_PSTATE to see the most recent P-state set for this logical
processor (type=0) and the instantaneous current P-state that the domain
parameters are set to (type=3). Platform power-caps do not affect either of
these return values.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 51

HIDD: If the logical processor belongs to a hardware-independent
dependency domain, a weighted-average performance index can be
returned by PAL_GET_PSTATE (type=1 or 2). Since software could calculate
on its own the performance index based on P-states set by software, the
value of the weighted-average performance index is only in factoring in the
effect of platform power-caps.
Note that P-state transitions typically do not happen instantaneously. An
implementation-specific amount of time is required for a given transition to
complete. The computation of the weighted-average performance_index
may not take into account the fact that transitions of power/performance
are gradual, but may be done as though they were instantaneous at the
point when the transition starts. The expectation is that any errors in
computing the performance_index due to non-instantaneous transitions to
higher and lower P-states will tend to cancel out, and to the extent that they
do not, will be insignificant.

u. Just before the paragraph that begins “Some processors may support variable
P-state performance...”, add this section heading:

11.6.1.4 Variable P-state Performance

2. Volume 2, Part I, Section 11.10.3, PAL_GET_PSTATE procedure:

a. Replace the first three paragraphs of the description section:
This procedure returns the performance index of the processor over the
time period between the previous and the current invocations of
PAL_GET_PSTATE, and is relative to the highest available P-state, P0. A
value of 100 represents the minimum processor performance in the P0
state. For processors that support variable P-state performance, it is
possible for a processor to report a number greater than 100, representing
that the processor is running at a performance level greater than the
minimum P0 performance. The PAL procedure PAL_PROC_GET_FEATURES
on page 2:429 indicates if the processor supports variable P-state
performance.
For processors that belong to a software-coordinated dependency domain or
a hardware-independent dependency domain, the performance_index value
returned will correspond to the target P-state requested by the most recent
PAL_SET_PSTATE procedure call in cases where variable P-state
performance is not supported. When variable P-states performance is
supported, the 'performance_index' may be higher than the target P-state
requested. Please see Section 11.6.1 for more information about variable P-
state performance.
For processors that belong to a hardware-coordinated dependency domain,
the type argument allows the caller to select the performance_index value
that will be returned. See Table 11-73 below for details.

with:
This procedure returns a performance index of the processor, and is relative
to the highest available P-state, P0. A value of 100 represents the minimum
processor performance in the P0 state. For processors that support variable
P-state performance, it is possible for a processor to report a number
greater than 100, representing that the processor is running at a
performance level greater than the minimum P0 performance. The PAL
procedure PAL_PROC_GET_FEATURES on page 2:429 indicates if the
processor supports variable P-state performance.
The type argument allows the caller to select the performance_index value
that will be returned. See Table 11-73 below for details.

52 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

b. Replace the following description of type 0 in Table 11-73:
The performance_index returned will correspond to the target P-state
requested by the most recent PAL_SET_PSTATE procedure call.

with:
The performance_index returned will correspond to the target P-state
requested by software.
* For SCDD (software-coordinated dependency domain) logical processors,
this is the P-state requested by the most recent PAL_SET_PSTATE procedure
call made by any logical processor in the domain.
* For HCDD (hardware-coordinated dependency domain) or HIDD
(hardware-independent dependency domain) logical processors, this is
simply the P-state requested by the most recent PAL_SET_PSTATE
procedure call on this logical processor.
The value returned is not affected by platform power-caps.

c. Replace the description of type 3 in Table 11-73:
The performance_index returned will correspond to the current
instantaneous P-state of the logical processor, at the time of the procedure
call.

with:
The performance_index returned will correspond to the current
instantaneous P-state of the dependency domain containing the logical
processor, at the time of the procedure call. The value returned is not
affected by platform power-caps. When variable P-states performance is
supported, the performance_index may be higher than the P-state
requested. Please see Section 11.6.4 for more information about variable
P-state performance.

d. Replace the following paragraph:
For processors that belong to a software-coordinated dependency domain or
a hardware-independent dependency domain, the PAL_GET_PSTATE
procedure should always be called with type argument value of 0 or 3. Note
that the performance_index returned for type=0 and type=3 will have
identical values for these coordination domains. This is because the most
recent PAL_SET_PSTATE procedure call will always succeed in transitioning
to the requested performance state for these coordination domains (see
PAL_SET_PSTATE procedure description for additional details).

with:
For SCDD logical processors, or HIDD logical processors that do not support
platform power-caps, note that the performance_index returned for type=0
and type=3 will have identical values. This is because the most recent
PAL_SET_PSTATE procedure call that returned a status of 0 will always
succeed in transitioning to the requested performance state for these
coordination domains (see PAL_SET_PSTATE procedure description for
additional details).
For SCDD logical processors, the PAL_GET_PSTATE procedure should always
be called with type argument value of 0 or 3. On such processors, calling
PAL_GET_PSTATE with type argument value of 1 or 2 is undefined.
For HIDD logical processors, the type argument values of 1 and 2 are
supported, since such processors can also support platform power-caps,
which affect the weighted-average performance index.

e. Replace the following sentence:
If there was a thermal-throttling event or any hardware-initiated event,
which affected the processor power/performance for the current time period

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 53

and the accuracy of the performance_index value has been impacted by the
event, then the procedure will return with status=1.

with:
If there was a thermal-throttling event or any hardware-initiated event
other than platform power-caps which affected the processor power/
performance for the current time period and the accuracy of the
performance_index value has been impacted by the event, then the
procedure will return with status=1.

f. Replace the following paragraph:
The procedure returns with a performance_index value of 100 when invoked
for the first time. For subsequent invocations, the procedure will return the
performance_index value corresponding to the processor performance in
the time duration between the previous and current calls to
PAL_GET_PSTATE.

with:
The procedure, when called with type=1 or type=2, returns with a fixed
performance_index value of 100 until after the procedure has been called
with type=1 to reset computation of the weighted-average
performance_index. For subsequent invocations with type=1 or type=2, the
procedure will return the performance_index value corresponding to the
processor performance in the time duration between the previous call to
PAL_GET_PSTATE with type=1 and the current call.

3. Volume 2, Part I, Section 11.10.3, PAL_SET_PSTATE procedure:

a. Replace the following text from the Description section:
PAL_SET_PSTATE is used to request the transition of the processor to the P-
state specified by the p_state input parameter. The PAL_SET_PSTATE
procedure does not wait for the transition to complete before returning back
to the caller. The request may either be accepted (status = 0) or not
accepted (status = 1), depending on hardware capabilities and
implementation-specific event conditions. If the request is not accepted,
then no transition is performed, and it is up to the caller to make another
PAL_SET_PSTATE procedure call to transition to the desired P-state. When
the request is accepted, it will attempt to initiate a transition to the
requested performance state. For processors that belong to a software-
coordinated dependency domain or a hardware-independent dependency
domain, the procedure will always succeed in transitioning to the requested
performance state. If the processor belongs to a hardware-coordinated
dependency domain, the procedure will make a best-case attempt at
fulfilling the transition request, based on the nature of the dependencies
that exist between the logical processors in the domain. In such
circumstances, the procedure may initiate no transition, partial transition or
full transition to the requested P-state. Since there is the possibility that the
procedure may initiate no processor transition, there are implementation-
specific forward progress requirements.
The force_pstate argument may be used for a hardware-coordinated
dependency domain when it is necessary to get a deterministic response for
the P-state transition at the expense of compromising the power/
performance of other logical processors in same domain. If the force_pstate
argument is non-zero, and if the request is accepted, the procedure will
initiate the P-state transition on the logical processor regardless of any
dependencies that exist in the dependency domain at the time the
procedure is called. The force_pstate argument is ignored for software-
coordinated and hardware-independent dependency domain.

54 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

with:
PAL_SET_PSTATE is used to request the transition of the processor to the P-
state specified by the p_state input parameter. The PAL_SET_PSTATE
procedure does not wait for the transition to complete before returning back
to the caller. The request may either be accepted (status = 0) or not
accepted (status = 1), depending on hardware capabilities and
implementation-specific event conditions. The presence of a platform
power-cap does not prevent the request from being accepted. (See Volume
2, Section 11.6.1 for details.) If the request is not accepted, then no
transition is performed, and it is up to the caller to make another
PAL_SET_PSTATE procedure call to transition to the desired P-state. When
the request is accepted, the processor will attempt to initiate a transition to
the requested performance state. For SCDD or HIDD logical processors, the
procedure will always succeed in transitioning to the requested performance
state. For HCDD logical processors, the procedure will make a best-case
attempt at fulfilling the transition request, based on the nature of the
dependencies that exist between the logical processors in the domain. In
such circumstances, the procedure may initiate no transition, partial
transition or full transition to the requested P-state.
The force_pstate argument may be used for a HCDD when it is necessary to
get a deterministic response for the P-state transition at the expense of
compromising the power/performance of other logical processors in same
domain. If the force_pstate argument is non-zero, and if the request is
accepted, the procedure will initiate the P-state transition on the logical
processor regardless of any dependencies that exist in the dependency
domain at the time the procedure is called. Forcing the P-state does not
change the P-states requested by other logical processors in the
dependency domain, nor the value seen on other logical processors when
they do a PAL_GET_PSTATE with type=0; rather, forcing the P-state
effectively suspends hardware coordination. A subsequent call to
PAL_SET_PSTATE on any logical processor in the dependency domain (with
a force_pstate argument of zero) reinstates hardware coordination. The
force_pstate argument is ignored on SCDD and HIDD logical processors.

4. Volume 2, Section 11.10.3, PAL_PSTATE_INFO procedure:

a. In the bullet item describing perf_index, replace the sentence:
This field is enumerated on a scale of 0.100, with the value of 100
corresponding to the P0 state.

with:
This field is enumerated relative to the index of the highest-performing P-
state, with the value of 100 corresponding to the minimum processor
performance in the P0 state.

b. In table 11-104, change the descriptions to read:
Hardware independent (HIDD)
Hardware coordinated (HCDD)
Software coordinated (SCDD)

19. Synchronization Requirements for Virtualization Opcode Optimization

This architectural change describes additional synchronization requirements for opcode
optimization and makes the implicit SYNC_READ and SYNC_WRITE optional for
PAL_VPS_SAVE and PAL_VPS_RESTORE respectively.

1. Volume 2, Part I, Section 11.7.4, "Virtualization Optimizations".

a. Delete the last two sentences from the first paragraph:

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 55

Virtualization optimizations allow these instructions to execute, with
PSR.vm==1, without causing intercepts to the VMM. Virtualization
optimizations are divided into two classes:

b. Append the following to the end of first paragraph:
Virtualization optimizations reduce overall virtualization overhead, such as,
for example, allowing these instructions to execute, with PSR.vm==1,
without causing intercepts to the VMM. There are two types of virtualization
optimizations - global and local. Local virtualization optimizations are further
divided into virtualization accelerations and virtualization disables.
Global virtualization optimizations are specified during initialization of the
virtual environment (that is, during PAL_VP_INIT_ENV). The specified
optimizations are applicable to all the virtual processors running in the
virtual environment. See Section 11.7.4.1, "Global Virtualization
Optimizations" for details on the global virtualization optimizations
supported in the architecture.
Local virtualization optimizations are specified during the creation of the
virtual processor (i.e., during PAL_VP_CREATE). The optimization settings
were specified in the VPD and hence local to each virtual processor. The
VMM can specify different local optimization settings for different virtual
processors. The two classes of local virtualization optimizations are:

2. Volume 2, Part I. Add a new Section 11.7.4.1, "Global Virtualization Optimizations":

11.7.4.1 Global Virtualization Optimizations

Table 11-19 summarizes the global virtualization optimizations supported in Itanium
architecture.

For specific global virtualization optimizations, certain virtual processor control and
architectural state is referenced directly by hardware/firmware, and hence must be
maintained in the VPD, and synchronization is required when the VMM reads or writes
this state in the VPD. Please refer to the corresponding section of each global
virtualization optimizations for synchronization requirements.

11.7.4.1.1 Virtualization Opcode Optimization

Virtualization opcode optimization is enabled by the opcode bit in the config_option
parameter of PAL_VP_INIT_ENV. Opcode information is provided to the VMM during PAL
intercepts in the virtual environment. In some processor implementations, the opcode
provided may not be guaranteed to be the opcode that triggered the intercept; virtual
machine monitors can determine whether this is guaranteed from the vp_env_info
return value of PAL_VP_ENV_INFO.

Table 11-20 and Table 11-14, “Virtual Processor Descriptor (VPD)” on page 2:314
shows the synchronization requirements and the VPD states that will be accessed for
this optimization.

Table 11-19. Global Virtualization Optimizations Summary

Optimization config_optiona Description

Virtualization Opcode Optimization opcode Section 11.7.4.1.1

Virtualization Cause Optimization cause Section 11.7.4.1.2

Notes:

a. config_option is a parameter for the PAL_VP_INIT_ENV procedure. See “PAL_VP_INIT_ENV – PAL
Initialize Virtual Environment (268)” on page 2:462 for details.

56 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

11.7.4.1.2 Virtualization Cause Optimization

Virtualization cause optimization is enabled by the cause bit in the config_option
parameter of PAL_VP_INIT_ENV. When enabled, the causes of virtualization intercepts
will be provided to the VMM during PAL intercept handoffs within the virtual
environment. When disabled, no cause information will be provided during PAL
intercept handoffs.

This optimization requires no special synchronization.

3. Volume 2, Part I, Section 11.10.3, PAL_VP_INIT_ENV procedure.

a. In the fourth paragraph change the following:
Table 11-110 shows the layout of the config_options parameter. The
config_options parameter configures the global configuration options for all
the logical processors in the virtual environment. All logical processors in
the virtual environment must specify the same configuration options in the
config_options parameter, otherwise processor operation is undefined.

to:
Table 11-113 shows the layout of the config_options parameter. d The
config_options parameter configures the global configuration options [and
global virtualization optimizations] for all the logical processors in the virtual
environment. All logical processors in the virtual environment must specify
the same [value] in the config_options parameter [during
PAL_VP_INIT_ENV], otherwise processor operation is undefined.

b. In the existing Table 11-110 "config_options - Global Configuration Options",
add a new column on the left to classify bits into "Global Configuration Options"
and "Global Virtualization Optimizations". (Note that Step 2 inserts two tables,
renumbering Table 11-110 to Table 11-112.)

Table 11-20. Synchronization Requirements for Virtualization Opcode Optimization

VPD Resource Synchronization Required

vpsr.ic Write

vpsr.si Write

vifa Write

vitir Write

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 57

4. Volume 2, Part I, Section 11.11, "PAL Virtualization Services".

a. PAL_VPS_RESTORE page. In the Arguments section, change the description of
GR26-31 from “Scratch” to “Reserved”.

b. PAL_VPS_SAVE page. In the Arguments section, change the description of
GR26-31 from “Scratch” to “Reserved”.

5. Volume 2, Part I, Section 11.11, "PAL Virtualization Services", PAL_VPS_SAVE
page.

a. In the Arguments section, change the argument of GR26 from “Scratch” to
“Skip implicit synchronization”.

b. In the Description section, change the second paragraph from:
This service performs an implicit PAL_VPS_SYNC_READ; there is no need for
the VMM to invoke PAL_VPS_SYNC_READ to synchronize the
implementation-specific control resources before this service.

to:

Table 11-112. config_options – Global Configuration Options

Field Bit Description

Global
Configuration
Options

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for this
virtual environment. If 0, this procedure will not initialize the PAL virtual
environment buffer. On a multiprocessor system, the VMM must wait until
this procedure completes on the first logical processor before calling this
procedure on additional logical processors; otherwise processor operation
is undefined.

fr_pmc 1 If 1, performance counters are frozen on all IVA-based interruptions when
virtual processors are running. If 0, the performance counters will not be
frozen on IVA-based interruptions when virtual processors are running.

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in
the VPD are stored in big-endian format and the PAL services calls are
made with PSR.be bit equals to 1. If 0, the values in the VPD are stored in
little-endian format and the PAL services calls are made with PSR.be bit
equals to 0.

Reserved 7:3 Reserved.

Global
Virtualization
Optimizations

opcode 8 If 1, opcode information will be provided to the VMM during PAL intercepts
within the virtual environment. This opcode may or may not be guaranteed
to be the opcode that triggered the intercept. See Table 11-111,
“vp_env_info – Virtual Environment Information Parameter” on page 2:460
for details.
If 0, most virtualization optimizations cannot be enabled through the virtu-
alization acceleration control (vac) and virtualization disable control (vdc)
fields in the VPD. For details on specific optimizations supported in vac
and vdc, see Table 11-15, “Virtualization Acceleration Control (vac) Fields”
on page 2:316 and Table 11-16, “Virtualization Disable Control (vdc)
Fields” on page 2:317.
The value of this field also determines how virtualization events and Gen-
eral Exception faults are delivered to the VMM on certain instructions. See
Section 11.7.2, “Interruption Handling in a Virtual Environment” on
page 2:317 for details.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM
during PAL intercept handoffs within the virtual environment. No informa-
tion will be provided if 0. If this field is 1, the opcode field also be 1, other-
wise processor operation is undefined. See Section 11.7.3.1, “PAL
Virtualization Intercept Handoff State” on page 2:320 for details of virtual-
ization intercept handoffs.

Reserved 63:10 Reserved.

58 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_READ;
there is no need for the VMM to invoke PAL_VPS_SYNC_READ to
synchronize the implementation-specific control resources before this
service. If GR26 is one (0x1), no implicit synchronization will be performed
by this service.

6. Volume 2, Part I, Section 11.11, "PAL Virtualization Services", PAL_VPS_RESTORE
page.

a. In the Arguments section, change the argument of GR26 from “Scratch” to
“Skip implicit synchronization”.

b. In the Description section, change the first sentence in second paragraph from:
This service performs an implicit PAL_VPS_SYNC_WRITE; there is no need
for the VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are
modified before resuming the virtual processor.

to:

If GR26 is zero, this service performs an implicit PAL_VPS_SYNC_WRITE; there is no
need for the VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are modified
before resuming the virtual processor. If GR26 is one (0x1), no implicit synchronization
will be performed by this service.

20. New Priority Hint and Recommendations for Multi-Threading Hints
1. On the hint instruction page in Volume 3, update Table 2-31 as shown:

2. In Part II of Volume 1, add a new Section 4.5 after the current section 4.4 "Branch
and Prefetch Hints":

4.5 Hints for Controlling Multi-threading
Some processors support multi-threading; that is, they support the simultaneous
execution of multiple threads (multiple logical processors) through a common set of
execution resources (data paths, functional units, TLBs, etc.). Functionally, each of
these hardware threads fully implements the Itanium architecture; therefore, software
need not be aware of multi-threading nor do anything special to support it. From

Table 2-31. Hint Immediates

imm21 or imm62 Mnemonic Hint

0x0 @pause Indicates to the processor that the currently executing stream is waiting,
spinning, or performing low priority tasks. This hint can be used by the
processor to allocate more resources or time to another executing stream
on the same processor. For the case where the currently executing stream
is spinning or otherwise waiting for a particular address in memory to
change, an advanced load to that address should be done before executing
a hint @pause; this hint can be used by the processor to resume normal
allocation of resources or time to the currently executing stream at the
point when some other stream stores to that address.

0x1 @priority Indicates to the processor that the currently executing stream is doing a
high priority task. This hint can be used by the processor to allocate more
resources or time to this stream. Implementations will ensure that such
increased allocation is only temporary, and that repeated use of this hint
cannot impair longer-term fairness of allocation.

0x02-0x3f These values are available for future architected extensions and will
execute as a nop on all current processors. Use of these values may cause
unexpected performance issues on future processors and should not be
used.

other Implementation specific. Performs an implementation-specific hint action.
Consult processor model-specific documentation for details.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 59

performance standpoint, there are a few circumstances where it may be beneficial for
software to provide information about its future resource requirements, which can be
done with the hint instruction. Such a hint could allow the processor to optimize
resource allocation among the hardware threads.

Note that, although not all implementations support all types of hint instruction, those
that do not support them execute the hint instruction as a nop, and hence there is little
penalty for software to provide these hints.

4.5.1 Wait Loops

Say a thread is waiting for another software thread to complete a task and, during that
time, doesn't expect to need significant processor resources but would like to receive
its fair share of resources once the task is complete. In such a situation, the waiting
thread can communicate this information to the processor as a hint. This encourages
the processor to allocate more processor resources to other threads of execution while
this thread is waiting.

Typically, the completion signal in question is a store, by some other software thread,
to a particular memory location. For example, a software thread may be waiting to
acquire a spinlock and may have little work to do until such time as it is able to acquire
the lock. A store to the spinlock in question may be an indication that the lock is now
available for this software thread to acquire.

This scenario can be hinted to the processor by executing an advanced load (ld.a or
ld.sa) to the address that this software thread is waiting on, and then by executing a
hint @pause instruction (in a subsequent instruction group). This encourages the
processor to devote more resources to other threads, yet if an entry is invalidated from
this thread's ALAT, normal processor resource allocation is resumed for this thread.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a wait loop. Conversely, while
software is in such a wait loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is waiting.

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into a wait loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to executing the advanced load to the
address to be waited on. This may reduce the restoration of resource allocation to this
thread in cases where ALAT entries get invalidated other than the one for the address
being waited on, hence providing more processor resources to other threads.

4.5.2 Idle Loops

Another situation where a software thread expects not to need significant processor
resources for the next little while is when the software thread is executing an OS-kernel
idle loop. It can provide this information to the processor also by executing a hint
@pause instruction. This encourages the processor to allocate more processor resources
to other threads of execution for the next while.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in an idle loop. Conversely, while
software is in such an idle loop, it would be best to re-execute the hint @pause as part
of that loop, to continue to assert the hint for as long as that thread is idle.

60 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Note that if there is some high likelihood that the ALAT may contain a large number of
valid entries upon entering into an idle loop, there may be some advantage to removing
these (e.g., with an invala instruction) prior to entering the idle loop. This may reduce
the restoration of resource allocation to this thread in cases where these ALAT entries
get invalidated, hence providing more processor resources to other threads.

4.5.3 Critical Sections

The opposite case exists if software expects that, given extra resources for the next
period of time, overall system performance and throughput would be optimized. For
example, this software thread may be about to acquire a highly contested spinlock and
enter a critical section of code, and expeditious progress through that critical section
and the resultant speedy release of the spinlock may disproportionately benefit overall
system performance and throughput.

This scenario can be hinted to the processor by executing a hint @priority
instruction. This encourages the processor to devote more processor resources to this
thread (at the expense of other threads) for some period of time.

Resource allocation within the processor eventually reverts to a fair allocation, so
there's no need for software to hint that it is no longer in a critical section. Processors
that support this hint also ensure that it cannot be abused to affect overall longer-term
fairness of processor resource allocation.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 61

4 Specification Clarifications

1. Clarification of ptc.g Release Semantics

1. Volume 3, Part I, Section 2.2, “Instruction Descriptions”, ptc.g page: Change the
following text in the Description section:

ptc.g has release semantics and is guaranteed to be made visible after all
previous data memory accesses are made visible. The memory fence
instruction forces all processors to complete the purge prior to any subsequent
memory operations. Serialization is still required to observe the side-effects of
a translation being removed.

to:
ptc.g has release semantics and is guaranteed to be made visible after all
previous data memory accesses are made visible. Serialization is still required
to observe the side-effects of a translation being removed. If it is desired that
the ptc.g become visible before any subsequent data memory accesses are
made visible, a memory fence instruction (mf) should be executed immediately
following the ptc.g.

2. Volume 2, Part I, Section 4.4.7, "Sequentiality Attribute and Ordering”. Change the
following text in the fifth paragraph:

Global TLB purge instructions (ptc.g and ptc.ga) follow release semantics on
the local processor as well as on remote processors, except with respect to
global purge instructions being executed by that remote processor.

to:
Global TLB purge instructions (ptc.g and ptc.ga) follow release semantics on
the local processor. They are also broadcast to all other processors in the TLB
coherence domain; on each such remote processor, a point is chosen in its
program-order execution and a local TLB purge operation is inserted at that
point; this local TLB purge operation follows release semantics, except with
respect to global purge instructions being executed by that remote processor.

2. Clarification of PAL_MC_ERROR_INFO Reporting of Uncacheable
Transactions
1. In Volume 2, Part I, Section 11.3.2.1, “Processor State Parameter (GR 18)”, Table

11-7. For the cc field, add the following statement at the end of the text in the
description box:

This bit must not be set for non-cacheable transaction errors.

2. In Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”,
PAL_MC_ERROR_INFO page:

a. In the paragraph beginning “Cache_Check Return Format:”, add the
following sentence immediately after the sentence ending: “...caches in the
level_index input argument.”:

The cache_check return format must be used to report errors in cacheable
transactions. These errors may also be reported using the bus_check return
format if the bus structures can detect these errors.

b. In the paragraph beginning “Bus_check Return Format:”, add the following
sentence immediately after the sentence ending: “...bus structure as specified
in the level_index input argument.”:

62 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

The bus_check return format must be used to report errors in uncacheable
transactions. These errors must not be reported using the cache_check
return format.

3. Clarification of behavior when ptc.g overlaps a translation register
1. Volume 2, Part II, Section 5.2.2.2.3, “ptc.g, ptc.ga”, fourth paragraph from the

end, change the following:
The ptc.g instruction does not modify the page tables nor any other memory
location. It affects both the local and all remote TC entries in the TLB coherence
domain. It does not remove translations from either local or remote TR entries,
and if a ptc.g overlaps a translation contained in a TR on either the local
processor or on any remote processor in the coherence domain, the processor
containing the overlapping translation will raise a Machine Check Abort.

to:
The ptc.g instruction does not modify the page tables nor any other memory
location. It affects both the local and all remote TC entries in the TLB coherence
domain. It does not remove translations from either local or remote TR entries.
If a ptc.g overlaps a translation contained in a TR on the local processor, the
local processor will raise a Machine Check Abort; if the ptc.g overlaps a
translation contained in a TR on any remote processor in the coherence
domain, no Machine Check Abort is raised.

4. INT3 Clarifications
1. Volume 2, Part I, Section 5.6, “Interruption Priorities”, Table 5-6. Change the

following row:
 80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug)

 to:
 80 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Break)

2. Volume 2, Part I, Section 7.1, “Debugging”. In the “Break Instruction fault”
bullet, change the following sentence:

Execution of the IA-32 INT 3 (break) instruction results in a
IA_32_Exception(Debug) trap.

 to:
Execution of the IA-32 INT 3 (break) instruction results in a
IA_32_Exception(Break) trap.

5. Test feature instruction clarifications
1. Volume 1, Part I, Section 4.3.2, “Compare Instructions”.

a. Change the first paragraph from:
Predicate registers are written by the following instructions: general register
compare (cmp, cmp4), floating-point register compare (fcmp), test bit and
test NaT (tbit, tnat), floating-point class (fclass), and floating-point
reciprocal approximation and reciprocal square root approximation (frcpa,
fprcpa, frsqrta, fprsqrta). Most of these compare instructions (all but
frcpa, fprcpa, frsqrta and fprsqrta) set two predicate registers based on
the outcome of the comparison. The setting of the two target registers is
described below in Compare Types on page 1:53. Compare instructions are
summarized in Table 4-8.

to:
Predicate registers are written by the following instructions: general register
compare (cmp, cmp4), floating-point register compare (fcmp), test bit and
test NaT (tbit, tnat), test feature (tf), floating-point class (fclass), and

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 63

floating-point reciprocal approximation and reciprocal square root
approximation (frcpa, fprcpa, frsqrta, fprsqrta). Most of these compare
instructions (all but frcpa, fprcpa, frsqrta and fprsqrta) set two
predicate registers based on the outcome of the comparison. The setting of
the two target registers is described below in Compare Types on page 1:53.
Compare instructions are summarized in Table 4-8.

b. Volume 1, Part I, Section 4.3.2, “Compare Instructions”, Table 4-8, add a new
row, just under the row for tnat, with the following information:

c. Volume 1, Part I, Section 4.3.2, “Compare Instructions”, at the end of the
following paragraph:

The test bit (tbit) instruction sets two predicate registers according to the
state of a single bit in a general register (the position of the bit is specified
by an immediate). The test NaT (tnat) instruction sets two predicate
registers according to the state of the NaT bit corresponding to a general
register.

add the following sentence:
The test feature (tf) instruction sets two predicate registers according to
whether or not the selected feature is implemented in the processor.

d. Volume 1, Part I, Section 4.3.3, “Compare Types”, Table 4-11, change the row
for

tbit, tnat
to read:

tbit, tnat, tf

2. Volume 1, Part I, Section 3.4.2, “WAW Dependency Special Cases”, change the first
sentence of the second paragraph from:

The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, fcmp,
frsqrta, frcpa, and fclass.

to:
The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, tf, fcmp,
frsqrta, frcpa, and fclass.

6. Clarification of Performance Counter Behavior Under Halt States

Volume 2, Part I, Section 7.2.3. “Performance Monitor Events”. Change the following
text:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.

2. The number of processor clock cycles the CPU is in either the NORMAL or LOW-
POWER state (see Figure 11-19 on page 2:303).

to:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.

Mnemonic Operation

tf Test feature

64 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

Generic counters configured for this event count only when the processor is in the
NORMAL or LOW-POWER state (see Figure 11-19 on page 2:303).

 2. The number of processor clock cycles. Generic counters configured for this
event count only when the processor is in the NORMAL or LOW-POWER state (see
Figure 11-19 on page 2:303).

7. PMI Clarifications
1. Clarifications to Volume 2, Part I, Chapter 5, “Interruptions”.

a. Volume 2, Part I, Section 5.1, “Interruption Definitions”, change the following
bullet:

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform
error handling, memory scrubbing, or power management has been
received by a processor. The PALE_PMI entry point is entered to service
the request. Program execution may be resumed at the point of
interruption. PMIs are distinguished by unique vector numbers. Vectors 0
through 3 are available for platform firmware use and are present on
every processor model. Vectors 4 and above are reserved for processor
firmware use. The size of the vector space is model specific.

to:

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform
error handling, memory scrubbing, or power management has been
received by a processor. The PALE_PMI entry point is entered to service
the request. Program execution may be resumed at the point of
interruption. PMIs are distinguished by unique vector numbers. Vectors 0
through 3 are available for platform firmware use and are present on
every processor model. Vectors 4 through 15 are reserved for processor
firmware use. See section 11.5, “Platform Management Interrupt (PMI)”
for details.

b. Volume 2, Part I, Section 5.8.1, “Interrupt Vectors and Priorities”, change the
following paragraph:

PMIs have a separate vector space from external interrupts. PMI vectors 0-3
can be used by platform firmware. PMI vectors 4 and above are reserved for
use by processor firmware. Assertion of the processor's PMI pin, when
present, results in PMI vector number 0. PMI vector priorities are described
in Chapter 11, “Processor Abstraction Layer.”

to:
PMIs have a separate vector space from external interrupts. PMI vectors 0-3
can be used by platform firmware. PMI vectors 4 through 15 are reserved
for use by processor firmware. Assertion of the processor's PMI pin, when
present, results in PMI vector number 0. PMI vector priorities are described
in “Platform Management Interrupt (PMI)”.

c. Volume 2, Part I, Section 5.8.4.1, “Inter-processor Interrupt Messages”, Table
5-17. At the end of the description for the PMI delivery mode:

PMI - pend a PMI interrupt for the specified vector to the processor listed in
the destination. Allowed PMI vector values are 0-3. All other PMI vector
values are reserved for use by processor firmware.

Add the following:
See Section 11.5, “Platform Management Interrupt (PMI)” for details.

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 65

2. Volume 2, Part I, Section 11.5.1, “PMI Overview”:

a. In the fifth paragraph (just above table 11-13), delete the last sentence:
“Vectors described as Intel reserved will be ignored by the processor.”

b. In Table 11-13, change the text of second column from the left from:
Intel Reserved PAL

to:
PAL Reserved

c. In Table 11-13, in the Description column, change both instances of
Intel Reserved

to:
PAL Reserved

3. Volume 2, Part I, Section 11.5.1 “PMI Overview”.

a. Change the first sentence of the first paragraph from:
 PMI is an asynchronous highest-priority external interrupt that
encapsulates...

to:
PMI is an asynchronous interrupt that encapsulates...

b. Change the second sentence of the third paragraph from:
PMI events are the highest priority external interrupts...

to:
PMI events are asynchronous interrupts higher priority than all external
interrupts...

8. PAL_MC_ERROR_INJECT Clarifications
1. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the

PAL_MC_ERROR_INJECT procedure, change the 'err_data_buffer' argument
description from:

64-bit physical address of a buffer providing additional parameters for the
requested error. The address of this buffer must be 8-byte aligned.

to:
Unsigned 64-bit integer specifying the address of the buffer providing
additional parameters for the requested error. The address of this buffer must
be 8-byte aligned.

2. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications”. In the
PAL_MC_ERROR_INJECT specification, Table 11-95 “err_struct_info - Register File.”

a. For the “reg_num” field, change the “Bits” value from:
11:5

to:
12:5

b. For the “Reserved” field just under “reg_num” change the “Bits” value from:
31:12

to:
31:13

66 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

9. Min-state Save Area Clarifications
1. In Volume 2, Part I, Section 11.3.2.3, “Processor Min-state Save Area Layout”. Add

the following text, figure and table after Figure 11.14:

The NaT bits stored in the first entry of the min-state save area have the following
layout.

2. Volume 2, Part I, Section 11.3.2, “PALE_CHECK Exit State”. Change the first
sentence from:

The state of the processor on exiting PALE_CHECK is:

to:
The state of the processor on exiting PALE_CHECK is listed below. For registers
described as being saved to the min-state save area and available for use, the
actual values in these registers are undefined unless specifically stated
otherwise.

3. Volume 2, Part I, Section 11.4.2, “PALE_INIT Exit State”. Change the first sentence
from:

The state of the processor on exiting PALE_INIT is:

to:
The state of the processor on exiting PALE_INIT is listed below. For registers
described as being saved to the min-state save area and available for use, the
actual values in these registers are undefined unless specifically stated
otherwise.

10. Semaphore Code Corrections
1. Volume 2, Part II, Section 2.4.1 “Spin Lock”. In Figure 2-4 change the instruction:

cmpxchg8.acq r1 = [lock], r2 ;; // attempt to grab lock

to:
cmpxchg8.acq r1 = [lock], r2, ar.ccv ;; // attempt to grab lock

2. Volume 2, Part II, Section 2.4.3, “Dekker's Algorithm”. In Figure 2-6, change the
“cmp.eq” in the following code sequence from:

ld8 r2 = [flag_you] ;;// is other's flag 0?
cmp.eq p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;;// if not, resource in use

Figure 11-15. Min-state Save Area NaT Bits
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NaT bits for Bank 1 GR16 to GR31 NaT bits for GR15 to GR1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Undefined (not used) NaT bits for Bank 1 GR16 to GR31.

Table 11-9. Min-state Save Area Nat Bits Description

Bits Description

0 Undefined (not used)

15:1 NaT bits for GR15 to GR1. Bit 1 represents GR1 and subsequent bits follow the ascending
pattern

31:16 NaT bits for Bank 0 GR16 to GR31. Bit 16 represents Bank 0 GR16 and subsequent bits
follow the ascending pattern.

47:32 NaT bits for Bank 1 GR16 to GR31. Bit 32 represents Bank 1 GR16 and subsequent bits
follow the ascending pattern.

63:48 Undefined (not used).

Intel® Itanium® Architecture Software Developoer’s Manual Specification Update 67

to “cmp.ne” as shown:
ld8 r2 = [flag_you] ;;// is other's flag 0?
cmp.eq p1, p0 = 0, r2

(p1) br.cond.spnt cs_skip ;;// if not, resource in use

68 Intel® Itanium® Architecture Software Developoer’s Manual Specification Update

5 Documentation Changes

1. Revision 2.2 Documentation Changes

1. Volume 2, Part I, Section 8.3, “Interruption Vector Definition, Table 8-2. Change
the second to last vector from:

External Interrupt vector

to:
Virtual External Interrupt vector

2. Volume 2, Part I, Section 8.3, “Interruption Vector Definition, Page 2:162, Table 8-
4. Add the following vector to the table:

3. Volume 2, Part I, Section 11.10.3, “PAL Procedure Specifications,
PAL_PSTATE_INFO page, Figure 11-67. Change the name of the field {10:5} from
“ddit” to “ddid”.

§

Vector Name Offset Page

Virtual External Interrupt vector 0x3400 2:177

	Intel® Itanium® Architecture Software Developer’s Manual Specification Update
	Contents
	Revision History

	1 Preface
	1.1 Affected Documents/Related Documents
	1.2 Nomenclature

	2 Summary Table of Changes
	2.1 Specification Changes
	2.2 Specification Clarifications
	2.3 Documentation Changes

	3 Specification Changes
	4.5 Hints for Controlling Multi-threading

	4 Specification Clarifications
	5 Documentation Changes

