
Document Number: 248699-014

Intel® Itanium® Architecture
Software Developer’s Manual Rev 2.3
Specification Update

June 2012

2Intel® Itanium® Architecture Software Developer’s Manual Rev 2.3 Specification Update

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale
and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.
Intel and Itanium are trademarks of Intel Corporation in the U. S. and other countries.
Copyright © 2002-2012, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Itanium® Architecture Software Developer’s Manual Rev 2.3 Specification Update 3

Contents

Preface ...7

Summary Table of Changes ...8

Table of Contents for Replacement Sections ... 10

Section 3.1.8.11... 13

Sections 4.4.6.1, 4.4.6.2, 4.4.6.3 ... 15

Section 4.7.. 25

Section 4.1.1.2 .. 27

Part 2, Sections 5.2.1.1 and 5.2.2.1.. 29

Table 4-2 .. 31

Section 4.1.1.5 .. 33

Section 5.8.3.9 .. 37

Section 7.2.. 39

Sections 7.2.1 and 7.2.3 ... 41

Section 11.5.2 ... 45

Section 11.6.1.3... 47

Section 11.6.1.5... 51

Tables 11-7, 11-12 and 11-16.. 53

Section 11.7.4.1.3 and 11.7.4.3.5 .. 59

Section 11.10 .. 61

PAL_BRAND_INFO .. 65

PAL_HALT_INFO... 67

PAL_MC_DYNAMIC_STATE ... 69

PAL_MC_ERROR_INFO/PAL_MC_ERROR_INJECT ... 71

PAL_PERF_MON_INFO... 93

PAL_VP_INFO .. 95

PAL_VP_REGISTER ... 97

PAL_PLATFORM_ADDR and Table 11-50 .. 99

PAL_PSTATE_INFO ... 101

PAL_GET/SET_HW_POLICY .. 103

PAL_TEST_PROC .. 107

PAL_VM_TR_READ.. 111

PAL_VP_INIT_ENV.. 113

PAL_VP_RESTORE .. 117

PAL_VP_SAVE/PAL_VP_TERMINATE... 119

PAL_PROC_GET/SET FEATURES.. 121

Figure 13-6 ... 127

4 Intel® Itanium® Architecture Software Developer’s Manual Rev 2.3 Specification Update

PMI Flows ..129

br — Branch...131

brl — Branch Long ..141

mov — Move Data Access Hint Register ...145

hint — Performance Hint ..147

itc — Insert Translation Cache ..149

itr - Insert Translation Register ...151

ld — Load ..153

lfetch — Line Prefetch..159

mov — Move Indirect Register ..163

st — Store ...167

Chapter 3 Pseudo-Code Functions ...171

Chapter 4 Instruction Formats ..183

Chapter 5 Resource and Dependency Semantics ...263

CPUID CPU Identification ...289

Intel® Itanium® Architecture Software Developer’s Manual Rev 2.3 Specification Update 5

Revision History

§

Document
Number

Version
Number Description Date

248699 014 This document applies to Version 2.3 of the Intel® Itanium® Architecture
Software Developer’s Manual, published in May 2010. June 2012

6 Intel® Itanium® Architecture Software Developer’s Manual Rev 2.3 Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 7

1 Preface

This document is an update to the Intel® Itanium® Architecture Software Developer’s
Manual, Revision 2.3 which is comprised of the following volumes:

This document is a compilation of specification changes, clarifications, and corrections
that collectively comprise an update to the Intel® Itanium® Architecture Software
Developer’s Manual, Revision 2.3 (also called SDM 2.3 in rest of this document).
Section 2, Summary of Changes, shows the list of specification changes, clarifications,
and corrections. Each entry represents a specific theme where SDM 2.3 is being
updated in this document, each entry has a brief title indicating the relevant topic(s)
involved in the update, and the update text itself can be found in corresponding
“Replacement Sections” which are included in this document and are meant to replace
the relevant sections of SDM 2.3 in its current form. Please take note that any one
entry in the list of changes can have change text in several Replacement Sections, and
any one Replacement Section can contain the changed text of several entries.

Information types defined in Nomenclature are consolidated into the specification
update and are no longer published in other documents.

This document may also contain information that was not previously published.

1.1 Nomenclature
Specification Changes are modifications to the current published specifications for
Intel® Itanium® processors. These changes will be incorporated in the next release of
the specifications.

Specification Clarifications describe a specification in greater detail or further
explain a specification’s interpretation. These clarifications will be incorporated in the
next release of the specification.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in the next release of the
Intel® Itanium® Architecture Software Developer’s Manual.

Title/Volume Document #

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.3,
Volume 1: Application Architecture

245317

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.3,
Volume 2: System Architecture

245318

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.3,
Volume 3: Intel® Itanium® Instruction Set Reference

 323207

Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.3,
Volume 4: IA-32 Instruction Set Reference

323208

8 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

2 Summary Table of Changes

The following tables indicate the specification changes and specification clarifications
that apply to the Intel® Itanium® Architecture Software Developer’s Manual, Rev 2.3.

.

2.1 Specification Changes
No. SPECIFICATION CHANGES Replacement Sections in

this Specification Update

A-926 Framework for configurable data access hints - Vol.1: sections 4.4.6.1,
4.4.6.2, 4.4.6.3 and 4.7
- Vol.3: section 2.2, pages for
branch, branch long, mov-to-
DAHR, lfetch, ld, st, hint
- Vol.3: chapters 3, 4 and 5

A-946 lfetch.count - Vol 1: section 4.4.6.1
- Vol 3: sections 2.2 and 4.1

A-1001 AR.ruc intervals add “approximately” to CR.itc intervals - Vol 1: section 3.1.8.11

A-1002 Promote PMC.vmm and PMC.ch to architectural state Vol 2: sections 7.2.1, 7.2.3 and
11.10.3
(PAL_PROC_GET_PROCEDURE)

A-1003 New implementation-specific policies range to PAL_GET/
SET_HW_POLICY

Vol 2: section 11.10.3
(PAL_SET/GET_HW_POLICY)

A-1004 New DAHR fields and hints Vol 1: section 4.4.6.3

A-1005 Updates to PAL_PLATFORM_ADDR Vol 2: section 11.10.3
(PAL_PLATFORM_ADDR)

A-1006 Updates to TLB insert serialization requirements - Vol 2: Part 1, Section 4.1.1.2
(Translation Cache); Part 2,
Sections 5.2.1.1 and 5.2.2.1
- Vol 3: section 2.2, pages for
itc and itr

A-1007 Correction to faulting on mov-from-DAHR Vol 3: section 2.2, page for
mov - Mov Indirect Register

A-1008 Purge behaviors of VHPT Vol 2: Part 1, Table 4-2 (Purge
behavior of VHPT Inserts)

2.2 Specification Clarifications
No. SPECIFICATION CLARIFICATIONS Replacement Sections in

this Specification Update

D-941 Lfetch.count Clarifications Vol 3: section 2.2, page for
lfetch

D-1001 Clarify CFM/CR.ifs state on SAL return from PALE_PMI Vol 2: section 11.5.2

D-1002 Clarify DAHR dependency semantics vol 3: section 5.3.2 and 5.3.3

D-1004 Clarify PAL procedure calling conventions Vol 2: sections 11.10,
11.10.2.1.1, 11.10.2.2.6,
11.10.2.4, Table 11-48

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 9

D-1005 Clarifications of memory parameters for PAL procedures Vol 2: Sec 11.10.3, pages for
PAL_BRAND_INFO,
PAL_HALT_INFO,
PAL_MC_DYNAMIC_STATE,
PAL_MC_ERROR_INJECT,
PAL_PERF_MON_INFO,
PAL_PSTATE_INFO,
PAL_TEST_PROC
PAL_VM_TR_READ,
PAL_VP_INFO,
PAL_VP_INIT_ENV,
PAL_VP_REGISTER,
PAL_VP_RESTORE,
PAL_VP_SAVE,
PAL_VP_TERMINATE

D-1006 Delete reference to IA-32 Code Performance Accounting Vol 2: Section 7.2

D-1007 Clarifications to PAL_MC_DYNAMIC_STATE buffer alignment Vol 2: Section 11.17

2.3 Documentation Changes
No. DOCUMENTATION Replacement Sections in

this Specification Update

D-1003 Typographical errors in various sections - Vol 2: Sections 4.1.1.5,
5.8.3.9, 11.6.1.3, 11.6.1.5,
Table 11-16, sections
11.7.4.1.3, 11.7.4.3.5, 13.3.3,
Fig.13-6
- Vol. 3: Table 3-1, Sections
4.1, 5.3.5
- Vol.4: pages for CALL,
CPUID, FPTAN, FSIN, FXCH,
FYL2X, FYL2XP1

2.2 Specification Clarifications
No. SPECIFICATION CLARIFICATIONS Replacement Sections in

this Specification Update

10 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

3 Table of Contents for
Replacement Sections

The following is the list of updated sections arranged in sequential order (per volume)
of the Intel® Itanium® Architecture Software Developer’s Manual, Revision 2.3 based
on this specification update:

Replacement Sections Appendix
No.

Page
No.

Vol 1 section 3.1.8.11 V1-A 13

sections 4.4.6.1, 4.4.6.2, 4.4.6.3 V1-B 15

section 4.7 V1-C 25

Vol 2 Part 1, Section 4.1.1.2 V2-A 27

Part 2, Sections 5.2.1.1 and 5.2.2.1 V2-B 29

Part 1 Table 4-2 V2-C 31

Part 1, Section 4.1.1.5 V2-D 33

Part 1 Section 5.8.3.9 V2-E 37

Part 1 Section 7.2 V2-F 39

Part 1 Section 7.2.1 and 7.2.3 V2-G 41

Part 1 Table 11-12 and Section 11.5.2 V2-H 45

Part 1 Section 11.6.1.3 V2-I 47

Part 1 Section 11.6.1.5 V2-J 51

Part 1 Table 11-16 V2-K 53

Part 1 Section 11.7.4.1.3 and 11.7.4.3.5 V2-L 59

Part 1 Section 11.10 V2-M 61

Part 1 Section 11.10.3 PAL_BRAND_INFO V2-N 65

Part 1 Section 11.10.3 PAL_HALT_INFO V2-O 67

Part 1 Section 11.10.3 PAL_MC_DYNAMIC_STATE V2-P 69

Part 1 Section 11.10.3 PAL_MC_ERROR_INFO/
PAL_MC_ERROR_INJECT

V2-Q 71

Part 1 Section 11.10.3 PAL_PERF_MON_INFO V2-R 93

Part 1 Section 11.10.3 PAL_VP_INFO V2-S 95

Part 1 Section 11.10.3 PAL_VP_REGISTER – PAL V2-T 97

Part 1 Section 11.10.3 PAL_PLATFORM_ADDR V2-U 99

Part 1 Section 11.10.3 PAL_PSTATE_INFO V2-V 101

Part 1 Section 11.10.3 PAL_SET_GET V2-W 103

Part 1 Section 11.10.3 PAL_TEST_PROC. V2-X 107

Part 1 Section 11.10.3 PAL_VM_TR_READ V2-Y 111

Part 1 Section 11.10.3 PAL_VP_INIT_ENV V2-Z 113

Part 1 Section 11.10.3 PAL_VP_RESTORE V2-AA 117

Part 1 Section 11.10.3 PAL_VP_SAVE/
PAL_VP_TERMINATE

V2-BB 119

Part 1 Section 11.10.3 PROC_GET/SAVE_FEATURES V2-CC 121

Part 1 Fig 13-6 V2-DD 127

Part 1 Section 13.3.3 V2-EE 129

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 11

Each Replacement Section is provided as separate sections in this document and is
meant to replace the corresponding portion(s) of the Intel® Itanium® Architecture
Software Developer’s Manual, Revision 2.3.

Vol 3 Section 2.2 - branch V3-A 131

Section 2.2 - branch_long V3-B 141

Section 2.2 - DAHR V3-C 145

Section 2.2 - hint V3-D 147

Section 2.2 - Insert Translation Cache V3-E 149

Section 2.2 - itr — Insert Translation Register V3-F 151

Section 2.2 - ld V3-G 153

Section 2.2 - lfetch V3-H 159

Section 2.2 - Move Indirect Register V3-I 163

Section 2.2 - st — Store V3-J 167

Chapter 3 V3-K 157

Chapter 4 V3-L 169

Chapter 5 V3-M 253

Vol 4 Section 2.3 - CPUID V4-A 289

12 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 13

V1-A Section 3.1.8.11

3.1.8.11 Resource Utilization Counter (RUC – AR 45)

The Resource Utilization Counter (RUC) is a 64-bit register which counts up at a fixed relationship to
the input clock to the processor, when the processor is active. RUC provides an estimate of the portion
of resources used by a logical processor with respect to all resources provided by the underlying
physical processor.

The Resource Utilization Counter (RUC) is a 64-bit register which provides an estimate of the portion
of resources used by a logical processor with respect to all resources provided by the underlying
physical processor.

In a given time interval, the difference in the RUC values for all of the logical processors on a given
physical processor add up to approximately the difference seen in the ITC on that physical processor
for that same interval.

A sequence of reads of the RUC is guaranteed to return ever-increasing values (except for the case of
the counter wrapping back to 0) corresponding to the program order of the reads.

System software can secure the resource utilization counter from non-privileged access. When
secured, a read of the RUC at any privilege level other than the most privileged causes a Privileged
Register fault.

The RUC for a logical processor does not count when that logical processor is in LIGHT_HALT, unless
all logical processors on a given physical processor are in LIGHT_HALT, in which case the last logical
on a given physical processor to enter LIGHT_HALT has its RUC continue to count.

With processor virtualization, the RUC can be used to communicate the portion of resources used by a
virtual processor. See Section 3.4, “Processor Virtualization” on page 2:44 and Section 11.7, “PAL
Virtualization Support” on page 2:324 for details on virtual processors.

The RUC register is not supported on all processor implementations. Software can check CPUID
register 4 to determine the availability of this feature. The RUC register is reserved when this feature
is not supported.

14 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 15

V1-B Sections 4.4.6.1, 4.4.6.2,
4.4.6.3

4.4.6.1 Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed
possesses temporal locality. In addition, memory access instructions can specify which
levels of the memory hierarchy are affected by the access. This leads to an architectural
view of the memory hierarchy depicted in Figure 4-1 composed of zero or more levels of
cache between the register files and memory where each level may consist of two
parallel structures: a temporal structure and a non-temporal structure. Note that this
view applies to data accesses and not instruction accesses.

The temporal structures cache memory accessed with temporal locality; the non-
temporal structures cache memory accessed without temporal locality. Both structures
assume that memory accesses possess spatial locality. The existence of separate
temporal and non-temporal structures, as well as the number of levels of cache, is
implementation dependent. Please see the processor-specific documentation for further
information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch;
and implicit prefetch. Locality hints are specified by load, store, and explicit prefetch
(lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1, 2, all). An
access that is temporal with respect to a given hierarchy level is treated as temporal
with respect to all lower (higher numbered) levels. An access that is non-temporal with
respect to a given hierarchy level is treated as temporal with respect to all lower levels.
Finding a cache line closer in the hierarchy than specified in the hint does not demote
the line. This enables the precise management of lines using lfetch and then
subsequent uses by.nta loads and stores to retain that level in the hierarchy. For

Figure 4-1. Memory Hierarchy

Structure
Temporal

Non-
temporal
Structure

Memory
Register

Files

Structure
Temporal

Non-
temporal
Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache

16 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

example, specifying the.nt2 hint by a prefetch indicates that the data should be cached
at level 3. Subsequent loads and stores can specify.nta and have the data remain at
level 3.

Locality hints do not affect the functional behavior of the program and may be ignored
by the implementation. The locality hints available to loads, stores, and explicit prefetch
instructions are given in Table 4-18. Instruction accesses are considered to possess
both temporal and spatial locality with respect to level 1.

Each locality hint implies a particular allocation path in the memory hierarchy. The
allocation paths corresponding to the locality hints are depicted in Figure 4-2. The
allocation path specifies the structures in which the line containing the data being
referenced would best be allocated. If the line is already at the same or higher level in
the hierarchy no movement occurs. Hinting that a datum should be cached in a
temporal structure indicates that it is likely to be read in the near future. Hinting that a
datum should not be cached in a temporal structure indicates that it is not likely to be
read in the near future. For stores, the .nta completer also hints that the store may be
part of a set of streaming stores that would likely overwrite the entire cache line without
any data in that line first being read, enabling the processor to avoid fetching the data.\

Table 4-18.Locality Hints Specified by Each Instruction Class

Locality Hint

Mnemonic Supported by Instruction Type

Loada

a. Hints d4, d5, d6 and d7 cannot be specified in the form of the instruction with address post increment.

Storea Semaphore
lfetch,

lfetch.fault

Temporal, level 1 none or d0 none or d0 none or d0 none or d0

Non-temporal, level 1 nt1 or d1 d1 nt1 or d1 nt1 or d1

Non-temporal, level 2 d2 d2 d2 nt2 or d2

Non-temporal, all levels nta or d3 nta or d3 nta or d3 nta or d3

Hint d4 d4 d4 d4

Hint d5 d5 d5 d5

Hint d6 d6 d6 d6

Hint d7 d7 d7 d7

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 17

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch,
lfetch.fault). The lfetch instructions moves the line containing the addressed byte to
a location in the memory hierarchy specified by the locality hint. If the line is already at
the same or higher level in the hierarchy, no movement occurs. Both immediate and
register post-increment are defined for lfetch and lfetch.fault. The lfetch
instruction does not cause any exceptions, does not affect program behavior, and may
be ignored by the implementation. The lfetch.fault instruction affects the memory
hierarchy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte
load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and
lfetch.fault. The line containing the post-incremented address is moved in the
memory hierarchy based on the locality hint of the originating load, store, lfetch or
lfetch.fault. If the line is already at the same or higher level in the hierarchy then no
movement occurs. Implicit prefetch does not cause any exceptions, does not affect
program behavior, and may be ignored by the implementation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a
hint to the implementation to acquire exclusive ownership of the line containing the
addressed data. The bias hint does not affect program functionality and may be ignored
by the implementation.

The following instructions are defined for flush control: flush cache (fc, fc.i) and flush
write buffers (fwb). The fc instruction invalidates the cache line in all levels of the
memory hierarchy above memory. If the cache line is not consistent with memory, then
it is copied into memory before invalidation. The fc.i instruction ensures the data
cache line associated with an address is coherent with the instruction caches. The fc.i
instruction is not required to invalidate the targeted cache line nor write the targeted
cache line back to memory if it is inconsistent with memory, but may do so if this is
required to make the targeted cache line coherent with the instruction caches. The fwb
instruction provides a hint to flush all pending buffered writes to memory (no indication
of completion occurs).

Figure 4-2. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2

Temporal

Non-temporal

Temporal

Structure Structure

Non-temporal

Memory

Temporal, level 1

Non-temporal, level 1

Non-temporal, all levels

Level 3

Non-temporal

Temporal

Structure

Non-temporal, level 2

Cache

Structure Structure Structure

18 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-19 summarizes the memory hierarchy control instructions and hint
mechanisms.

4.4.6.2 Programmable Data Access Hints

Some processor implementations allow software to refine precisely how the processor
should respond to the locality hints specified by load, store, semaphore and explicit
prefetch (lfetch) instructions. This is done through a set of Data Access Hint Registers
(DAHRs). In processors that implement them, the locality hint specified in the
instruction selects one of the DAHRs, which then provides the hint information for the
memory access. There are eight DAHRs usable by load, store and lfetch instructions
(DAHR[0-7]); semaphore instructions, and load and store instructions with address
post increment can use only the first four of these (DAHR[0-3]). See Figure 4-3.

Each DAHR contains fields which provide the processor with various types of data
access hints. (See Section 4.4.6.3 for information about specific data access hint
fields.) When a DAHR has not been explicitly programmed by software, these data
access hint fields are automatically set to default values that best implement the
generic locality hints as shown in Table 4-20.

Table 4-19.Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation

.nt1, .nta, .d0, .d1, .d2, .d3, .d4, .d5, .d6, .d7 completer on loads Load usage hintsa

a. Hints d4, d5, d6 and d7 cannot be specified in the form of the instruction with address post increment.

.nta, .d0, .d1, .d2, .d3, .d4, .d5, .d6, .d7 completer on stores Store usage hintsa

Prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with .nt1, .nt2, .nta, .d0, .d1, .d2, .d3, .d4, .d5, .d6, .d7 hints Prefetch line

fc, fc.i Flush cache

fwb Flush write buffers

Figure 4-3. Data Access Hint Registers

DAHR 0 1 2 3 4 5 6 7

none/d0 nt1/d1 nt2/d2 nta/d3 d4 d5 d6 d7

usable by semaphore and load/store with address post increment

usable by load, store, lfetch, lfetch.fault

Fields in the selected DAHR provide data access hints

st8.nt2

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 19

DAHRs are not saved and restored as part of process context in Operating Systems, but
are ephemeral state like the ALAT. When DAHR state is lost due to a context switch, the
DAHRs revert to the default values. DAHRs also revert to default values upon execution
of a br.call instruction.

Processors that implement DAHRs may also optionally automatically save and restore
the DAHRs on br.call and br.ret in a structure called the Data Access Hint Stack
(DAHS) within the processor. Each stack level consists of eight elements corresponding
to the eight DAHRs. The number of stack levels is implementation-dependent. On a
br.call (and on interruptions with PSR.ic==1), the elements in the stack are pushed
down one level (the elements in the bottom stack level are lost), the values in the
DAHRs are copied into the elements in the top stack level, and then the DAHRs revert to
default values. See Figure 4-4. On a br.ret (and on return from interruption with
IPSR.ic==1), the elements in the top stack level are copied into the DAHRs, and the
elements in the stack are popped up one level, with the elements in the bottom stack
level reverting to default values. See Figure 4-5. On a mov-to-BSPSTORE instruction
(used in context switch, but rarely otherwise), all DAHRs and all elements at all levels of
the DAHS revert to default values.

Table 4-20.Default values for DAHRs

DAHR Default data access hint settings correspond to

0 Temporal, level 1

1 Non-temporal, level 1

2 Non-temporal, level 2

3 Non-temporal, all levels

4 DAHR[4] default

5 DAHR[5] default

6 DAHR[6] default

7 DAHR[7] default

Figure 4-4. Data Access Hint Stack Operation on br.call

DAHR 0 1 2 3 4 5 6 7

DAHS

top level

bottom level

default
none

default
nt1

default
nt2

default
nta

default default default default

20 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

A DAHR can be programmed with a mov-to-DAHR instruction, which copies a set of data
access hint fields, encoded within an immediate field in the instruction, into the DAHR.
This instruction executes as a nop on processors that do not implement DAHRs, and
hence can be used in generic code.

The value in a DAHR can be copied to a GR with a mov-from-DAHR instruction. This
instruction takes an Illegal Operation fault on processors that do not implement DAHRs.

4.4.6.3 Data Access Hint Fields

This section describes specific data access hints within DAHRs.

The semantics of the hints for these hint fields are described in the following tables.

Figure 4-5. Data Access Hint Stack Operation on br.ret

Figure 4-6.Data Access Hint Register Format
15 11 10 9 8 7 6 5 4 3 2 1 0

ig bias pipe pf_drop pf llc_loc mld_loc fld_loc

5 1 1 2 2 1 2 2

Table 4-21.Data Access Hint Fields

Field Bits Description

fld_loc 1:0 First-level (L1) data cache locality

mld_loc 3:2 Mid-level (L2) data cache locality

llc_loc 4 Last-level (L3) data cache locality

pf 6:5 Data prefetch

pf_drop 8:7 Data prefetch drop

pipe 9 Block pipeline vs. background handling for lfetch and speculative loads

bias 10 Bias cache allocation to shared or exclusive

ig 15:11 Writes are ignored; reads return 0

DAHR 0 1 2 3 4 5 6 7

DAHS

top level

bottom level

default
none

default
nt1

default
nt2

default
nta

default default default default

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 21

The hints specified by the fld_loc field allow software to specify the locality, or likelihood
of data reuse, with regards to the first-level (L1) cache. For example, the fld_nru hint can
be used to indicate that the data has some non-temporal (spatial) locality (meaning
that adjacent memory objects are likely to be referenced as well) but poor temporal
locality (meaning that the referenced data is unlikely to be re-accessed soon).
Processors may implement this hint by placing the data in a separate non-temporal
structure at the first level, if implemented, or by encaching the data in the level 1
cache, but marking the line as eligible for replacement. The fld_no_allocate hint is
stronger, indicating that the data is unlikely to have any kind of locality (or likelihood of
data reuse), with regards to the level 1 cache. Processors may implement this hint by
not allocating space at all for the data at level 1.

The hints specified by the mld_loc field allow software to specify the locality, or likelihood
of data reuse, with regards to the mid-level (L2) cache, similarly to the level 1 cache
hints.

The hints specified by the llc_loc field allow software to specify the locality, or likelihood
of data reuse, with regards to the last-level (L1) cache, similarly to the level 1 and 2
cache hints, except that there isn’t a no-allocate hint.

Table 4-22.fld_loc Hint Field

Bit
pattern

Name Description

00 fld_normal normal cache allocation and fill

01 fld_nru mark cache line as not recently used (most eligible for replacement), whether
the access requires an L1 allocation and fill or the access hits in the L1 cache

10 fld_no_allocate if the access does not hit in the L1 cache, do not allocate nor fill into the L1
cache

11 unused

Table 4-23.mld_loc Hint Field

Bit
pattern

Name Description

00 mld_normal normal cache allocation and fill

01 mld_nru mark cache line as not recently used (most eligible for replacement), whether
the access requires an L2 allocation and fill or the access hits in the L2 cache

10 mld_no_allocate if the access does not hit in the L2 cache, do not allocate nor fill into the L2
cache

11 unused

Table 4-24.llc_loc Hint Field

Bit
pattern

Name Description

0 llc_normal normal cache allocation and fill

1 llc_nru mark cache line as not recently used (most eligible for replacement), whether
the access requires an L3 allocation and fill or the access hits in the L3 cache

Table 4-25.pf Hint Field

Bit
pattern

Name Description

00 pf_normal normal processor-initiated prefetching enabled

01 pf_no_fld disable processor-initiated prefetching into the first-level (L1) data cache; all
other processor-initiated prefetching enabled

22 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

The hints specified by the pf field allow software to control any data prefetching that
may be initiated by the processor based on this reference. Such automatic data
prefetching can be disabled at the first-level cache (pf_no_fld), the mid-level cache
(pf_no_mld), or at all cache levels (pf_none).

The hints specified by the pf_drop field allow software further control over any software-
initiated data prefetching due to this instruction (for the lfetch instruction) or any data
prefetching that may be initiated by the processor based on this reference. Rather than
disabling prefetching into various levels of cache, as provided by hints in the pf field,
hints specified by this field allow software to specify that prefetching should be done,
unless the processor determines that such prefetching would require additional
execution resources. For example, prefetches may be dropped if it is determined that
the virtual address translation needed is not already in the Data TLB (pfd_tlb); if it is
determined that either the translation is not present or the data is not already at least
at the mid-level cache level (pfd_tlb_mld); or if these or any other additional execution
resources are needed in order to perform the prefetch (pfd_any).

The hints specified by the pipe field allow software to specify how likely or soon it is to
need the data specified by an lfetch instruction or a speculative load instruction. The
pipe_defer hint indicates that the data should be prefetched as soon as possible (lfetch
instruction) or copied into the target general register (speculative load instruction) if it
would not be very disruptive to the execution pipeline to do so. If this data movement
might delay the pipeline execution of subsequent instructions (for example, due to TLB
or mid-level cache misses), the instruction is instead executed in the background,
allowing the pipeline to continue executing subsequent instructions. For speculative

10 pf_no_mld disable processor-initiated prefetching into the first-level (L1) data and mid-
level (L2) caches; all other processor-initiated prefetching enabled

11 pf_none disable all processor-initiated prefetching

Table 4-26.pf_drop Hint Field

Bit
pattern

Name Description

00 pfd_normal normal software-initiated and processor-initiated data prefetching

01 pfd_tlb an attempted data prefetch is dropped if the address misses in the data TLB

10 pfd_tlb_mld an attempted data prefetch is dropped if the address misses in the data TLB
or the mid-level (L2) data cache

11 pfd_any an attempted data prefetch is dropped if the address misses in the data TLB
or the mid-level (L2) data cache, or if any other events occur which would
require additional execution resources to handle

Table 4-27.pipe Hint Field

Bit
pattern

Name Description

0 pipe_defer lfetch instructions that miss in the TLB need not block the pipeline, but the
VHPT walker may fill their TLB translations in the background, while the
pipeline continues; speculative loads may be spontaneously deferred on a
TLB miss or an MLD miss

1 pipe_block lfetch instructions block the pipeline until they are done fetching their TLB
translations; speculative loads are not spontaneously deferred and block uses
of their target registers until they have completed

Table 4-25.pf Hint Field

Bit
pattern

Name Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 23

load instructions, if this background execution would take significantly extra time, the
processor may spontaneously defer the speculative load, as allowed by the recovery
model (see SDM vol 2, section 5.5.5, “Deferral of Speculative Load Faults”).

The pipe_block hint indicates that the data should be prefetched as soon as possible
(lfetch instruction) or copied into the target general register (speculative load
instruction) independent of whether this might delay the pipeline execution of
subsequent instructions. For speculative load instructions, no spontaneous deferral is
done.

The hints specified by the bias field allow software to optimize cache coherence
activities. For load instructions and lfetch instructions, if the referenced line is not
already present in the processor’s cache, and if the processor can encache the data in
either the shared or the exclusive MESI states, the bias_excl hint indicates that the
processor should encache the data in the exclusive state, while the bias_shared hint
indicates that the processor should encache the data in the shared state.

§

Table 4-28.bias Hint Field

Bit
pattern

Name Description

0 bias_excl if the processor has a choice of getting a line in either the shared or exclusive
MESI states, it should choose exclusive

1 bias_shared if the processor has a choice of getting a line in either the shared or exclusive
MESI states, it should choose shared

24 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 25

V1-C Section 4.7

4.7 Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register
file and the floating-point, branch, predicate, performance monitor, processor
identification, and application register files. Several of the transfer instructions share
the same mnemonic (mov). The value of the operand identifies which register file is
accessed.

Memory access instructions only target or source the general and floating-point register
files. It is necessary to use the general register file as an intermediary for transfers
between memory and all other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point
registers. The first type moves the significand or the sign/exponent (getf.sig,
setf.sig, getf.exp, setf.exp). The second type moves entire single or double
precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform
a conversion between the deferred exception token formats.

Instructions are provided to transfer between the branch registers and the general
registers. The move to branch register instruction can also optionally include branch
hints. See “Branch Prediction Hints” on page 1:78.

Table 4-32.Register File Transfer Instructions

Mnemonic Operation

getf.exp, getf.sig Move FR exponent or significand to GR

getf.s, getf.d Move single/double precision memory format from FR to GR

setf.s, setf.d Move single/double precision memory format from GR to FR

setf.exp, setf.sig Move from GR to FR exponent or significand

mov =br Move from BR to GR

mov br= Move from GR to BR

mov =pr Move from predicates to GR

mov pr=, mov pr.rot= Move from GR to predicates

mov ar= Move from GR to AR

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.um= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmd[...] Move from performance monitor data register to GR

mov =cpuid[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer

mov =dahr[...] Move from DAHR to GR

mov dahr= Move immediate to DAHR

26 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Instructions are defined to transfer between the predicate register file and a general
register. These instructions operate in a “broadside” manner whereby multiple predicate
registers are transferred in parallel (predicate register N is transferred to and from bit N
of a general register). The move to predicate instruction (mov pr=) transfers a general
register to multiple predicate registers according to a mask specified by an immediate.
The mask contains one bit for each of the static predicate registers (PR 1 through PR 15
– PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through
PR63). A predicate register is written from the corresponding bit in a general register if
the corresponding mask bit is set. If the mask bit is clear then the predicate register is
not modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The
actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate
instruction (mov =pr) transfers the entire predicate register file into a general register
target.

In addition, instructions are defined to move values between the general register file
and the user mask (mov psr.um= and mov =psr.um). The sum and rum instructions set
and reset the user mask. The user mask is the non-privileged subset of the Process
Status Register (PSR).

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD)
register to a general register. If the operating system has not enabled reading of
performance monitor data registers in user level then all zeroes are returned. The mov
=cpuid[] instruction is defined to move from a processor identification register to a
general register.

The mov =ip instruction is provided for copying the current value of the instruction
pointer (IP) into a general register.

Instructions are provided to copy an immediate value into a DAHR and to copy the
current value of a DAHR into a general register.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 27

V2-A Section 4.1.1.2

4.1.1.2 Translation Cache (TC)

The Translation Cache (TC) is an implementation-specific structure defined to hold the
large working set of dynamic translations for memory references (including IA-32).
Please see the processor-specific documentation for further information on Itanium
processor TC implementation details. The processor directly controls the replacement
policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data
Translation Cache (itc.d) and Insert Instruction Translation Cache (itc.i)
instructions. The Purge Translation Cache Local (ptc.l) instruction purges all ITC/DTC
entries in the local processor that match the specified virtual address range and region
identifier. Purges of all ITC/DTC entries matching a specified virtual address range and
region identifier among all processors in a TLB coherence domain can be globally
performed with the Purge Translation Cache Global (ptc.g, ptc.ga) instruction. The
TLB coherence domain covers at least the processors on the same local bus on which
the purge was broadcast. Propagation between multiple TLB coherence domains is
platform dependent. Software must handle the case where a purge does not propagate
to all processors in a multiprocessor system. Translation cache purges do not invalidate
TR entries.

All the entries in a local processor’s ITC and DTC can be purged of all entries with a
sequence of Purge Translation Cache Entry (ptc.e) instructions. A ptc.e does not
propagate to other processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry
in addition to the specified 8 instruction and 8 data translation registers.
Implementations are free to implement translation cache arrays of larger sizes.
Implementations may also choose to implement additional hierarchies for increased
performance. At least one translation cache level is required to support all implemented
page sizes. Additional hierarchy levels may or may not be performance optimized for
the preferred page size specified by the virtual region, may be set-associative or fully
associative, and may support a limited set of page sizes. Please see the processor-
specific documentation for further information on the Itanium processor implementation
details of the translation cache.

The translation cache is managed by both software and hardware. In general, software
cannot assume any entry installed will remain, nor assume the lifetime of any entry
since replacement algorithms are implementation specific. The processor may discard
or replace a translation at any point in time for any reason (subject to the forward
progress rules below). TC purges may remove more entries than explicitly requested. In
the presence of a processor hardware error, the processor may remove TC entries and
optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for Itanium architecture-based code, the following
rules must be observed by the processor and software.

28 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Software may insert multiple translation cache entries per TLB fault, provided that only
the last installed translation is required for forward progress.

• The processor may occasionally invalidate the last TC entry inserted. The
processor must eventually guarantee visibility of the last inserted TC entry to all
references while PSR.ic is zero. The processor must eventually guarantee visibility
of the last inserted TC entry until an rfi sets PSR.ic to 1 and at least one
instruction is executed with PSR.ic equal to 1, and completes without a fault or
interrupt. The last inserted TC entry may be occasionally removed before this
point, and software must be prepared to re-insert the TC entry on a subsequent
fault. For example, eager or mandatory RSE activity, speculative VHPT walks, or
other interruptions of the restart instruction may displace the software-inserted
TC entry, but when software later re-inserts the same TC entry, the processor
must eventually complete the restart instruction to ensure forward progress, even
if that restart instruction takes other faults which must be handled before it can
complete. If PSR.ic is set to 1 by instructions other than rfi, the processor does
not guarantee forward progress.

• If psr.ic is to be set to 1 after the itc instruction with an ssm or mov-to-psr
instruction, a srlz.i instruction is required between the itc and the instruction that
sets psr.ic. This srlz.i instruction must be in a separate instruction group from the
one containing the itc, and must be in a separate instruction group from the one
containing the instruction that sets psr.ic to 1.

• If software inserts an entry into the TLB with an overlapping entry (same or larger
size) in the VHPT, and if the VHPT walker is enabled, forward progress is not
guaranteed. See “VHPT Searching” on page 2:63.

• Software may only make references to memory with physical addresses or with
virtual addresses which are mapped with TRs, or to addresses mapped by the
just-inserted translation, between the insertion of a TC entry, and the execution of
the instruction with PSR.ic equal to 1 which is dependent on that entry for forward
progress. Software may also make repeated attempts to execute the same
instruction with PSR.ic equal to 1. If software makes any other memory
references than these, the processor does not guarantee forward progress.

• Software must not defeat forward progress by consistently displacing a required
TC entry through a global or local translation cache purge.

IA-32 code has more stringent forward progress rules that must be observed by the
processor and software. IA-32 forward progress rules are defined in Section 10.6.3,
“IA-32 TLB Forward Progress Requirements” on page 2:261.

The translation cache can be used to cache TR entries if the TC maintains the instruction
vs. data distinction that is required of the TRs. A data reference cannot be satisfied by a
TC entry that is a cache of an instruction TR entry, nor can an instruction reference be
satisfied by a TC entry that is a cache of a data TR entry. This approach can be useful in
a multi-level TLB implementation.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 29

V2-B Part 2, Sections 5.2.1.1 and
5.2.2.1

5.2.1.1 TR Insertion

To insert a translation into a TR, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of PSR.ic is
observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register. If protection key
checking is enabled, also place the appropriate translation key into the key field of the ITIR
control register. See below for an explanation of protection keys.

4. Place the slot number of the instruction or data TR into which the translation is be inserted into a
general register.

5. Place the base physical address of the translation into another general register.

6. Using the general registers from steps 4. and 5., execute the itr.i or itr.d instruction.

7. If PSR.ic was 1 in step 1 and software wishes to restore the PSR.ic back to its original value of 1
with an ssm or a mov-to-psr instruction, then it is required to execute a srlz.i instruction before
restoring PSR.ic back to a 1.

A data or instruction serialization operation must be performed after the insert (for itr.d or itr.i,
respectively) before the inserted translation can be referenced.

Software may insert a new translation into a TR slot already occupied by another valid translation.
However, software must perform a TR purge to ensure that the overwritten translation is no longer
present in any of the processor's TLB structures.

Instruction TR inserts will purge any instruction TC entries which overlap the inserted translation, and
may purge any data TC entries which overlap it. Data TR inserts will purge any data TC entries which
overlap the inserted translation and may purge any instruction TC entries which overlap it.

Software may insert the same (or overlapping) translation into both the instruction TRs and the data
TRs. This may be desirable for locked pages which contain both code and data, for example.

5.2.2.1 TC Insertion\\

To insert a TC entry, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of PSR.ic is
observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register. If protection key
checking is enabled, also place the appropriate translation key into the key field of the ITIR
control register. See below for an explanation of protection keys.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along with
the rest of the translation. See Section 5.1.1 for details.

30 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4. Place the base physical address of the translation into a general register.

5. Using the general register from step 4., execute the itc.i or itc.d instruction.

6. If PSR.ic was 1 in step 1 and software wishes to restore the PSR.ic back to its original value of 1
with an ssm or a mov-to-psr instruction, then it is required to execute a srlz.i instruction before
restoring PSR.ic back to a 1.

A data or instruction serialization operation must be performed after the insert (for itc.d or itc.i,
respectively) before the inserted translation can be referenced.

Instruction TC inserts always purge overlapping instruction TCs and may purge overlapping data TCs.
Likewise, data TC inserts always purge overlapping data TCs and may purge overlapping instruction
TCs.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 31

V2-C Table 4-2

Table 4-2. Purged behavior of VHPT Inserts

Case

VRN bits used for TLB searching on VHPT insert VRN bits not used for TLB
searching on VHPT insertVRN Match No VRN Match

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

Insert? Purge?
Machine
Check?

[ID]VHPT overlaps [ID]TCa

a. Bracketed notation is intended to specify TC and TR overlaps in the same stream, e.g. itc.i and ITC.

Mustb

b. Must Insert: requires that the translation specified by the operation is inserted into a TC or TR as appropriate. For itc and VHPT
walker inserts, there is no guarantee to software that the entry will exist in the future, with the exception of the relevant forward-
progress requirements specified in Section 4.1.1.2, “Translation Cache (TC)”.

Mustc

c. Must Purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge operation.

Must notd

d. Must not Machine Check: indicates that a processor does not cause a Machine Check abort as a result of the operation.

Must May Must not Must Must Must not

[ID]VHPT overlaps [DI]TCe

e. Bracketed notation is intended to specify TC and TR overlaps in the opposite stream, e.g. itc.i and DTC.

Must Mayf

f. May Purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert or purge operation.
However, software must not rely on the purge.

Must not Must May Must not Must May Must not

[ID]VHPT overlaps [ID]TR Mayg

g. May Insert: indicates that the translation specified by the operation may be inserted into a TC. However, software must not rely
on the insert.

May Musth

h. Must Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is made to insert or purge a
partially or fully overlapped translation. The Machine Check abort may not be delivered synchronously with the TLB insert or
purge operation itself, but is guaranteed to be delivered, at the latest, on a subsequent instruction serialization operation.

May Mayi

i. If the processor actually purges the TR entry, then a Machine Check is required.

Mayi May May Must

[ID]VHPT overlaps [DI]TR
Must

Must
not

Must not Must Must not Must not Must
Must
not

Must not

32 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 33

V2-D Section 4.1.1.5

4.1.1.5 Translation Insertion Format

Figure 4-5 shows the register interface to insert entries into the TLB. TLB insertions are performed by
issuing the Insert Translation Cache (itc.d, itc.i) and Insert Translation Registers (itr.d, itr.i)
instructions. The first 64-bit field containing the physical address, attributes and permissions is
supplied by a general purpose register operand. Additional protection key and page size information is
supplied by the Interruption TLB Insertion Register (ITIR). The Interruption Faulting Address register
(IFA) specifies the virtual address for instruction and data TLB inserts. ITIR and IFA are defined in
“Control Registers” on page 29. The upper 3 bits of IFA (VRN bits{63:61}) select a virtual region
register that supplies the RID field for the TLB entry. The RID of the selected region is tagged to the
translation as it is inserted into the TLB.

Reserved fields or encodings are checked as follows:

• The GR[r] value is checked when a TLB insert instruction is executed, and if reserved fields or
reserved encodings are used, a Reserved Register/Field fault is raised on the TLB insert
instruction. If GR[r]{0} is zero (not-present Translation Insertion Format), the rest of GR[r] is
ignored.

• The RR[vrn] value is checked when a mov to RR instruction is executed, and if reserved fields or
reserved encodings are used, a Reserved Register/Field fault is raised on the mov to RR
instruction.

• The ITIR value is checked either when a mov to ITIR instruction is executed, or when a TLB insert
instruction is executed, depending on the processor implementation. If reserved fields or reserved
encodings are used, a Reserved Register/Field fault is raised on the mov to ITIR or TLB insert
instruction. In implementations where ITIR is checked on a TLB insert instruction, ITIR{63:32}
and ITIR{31:8} may be ignored if GR[r]{0} is zero (not-present Translation Insertion Format).

• The IFA value is checked either when a mov to IFA instruction is executed, or when a TLB insert
instruction is executed, depending on the processor implementation. If an unimplemeted virtual
address is used, an Unimplemented Data Address fault is raised on the mov to IFA or TLB insert
instruction.

Software must issue an instruction serialization operation to ensure installs into the ITLB are observed
by dependent instruction fetches and a data serialization operation to ensure installs into the DTLB
are observed by dependent memory data references.

Table 4-3 describes all the translation interface fields.

Figure 4-5. Translation Insertion Format
63 53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

GR[r] ig ed ci ppn ar pl d a ma ci p

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

34 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-3. Translation Interface Fields

TLB
Field

Source
Field

Description

ci GR[r]{1,51:50} Checked on Insert – Checked on a TLB insert instruction. If reserved fields or
encodings are used, a Reserved Register/Field fault is raised on the TLB
insert instruction.

rv/ci ITIR{1:0,63:32} Reserved/Checked on Insert – Depending on implementation, may be
reserved (checked on a mov to ITIR instruction) or checked on a TLB insert
instruction. If reserved fields or encodings are used, a Reserved Register/
Field fault is raised on the mov to ITIR or TLB insert instruction. In
implementations where ITIR is checked on a TLB insert instruction,
ITIR{63:32} may be ignored if GR[r]{0} is zero (not-present Translation
Insertion Format).

rv RR[vrn]{1,63:32} Reserved – Checked on a mov to RR instruction. If reserved fields or
encodings are used, a Reserved Register/Field fault is raised on the mov to
RR instruction.

p GR[r]{0} Present bit – When 0, references using this translation cause an Instruction or
Data Page Not Present fault. Most other fields are ignored by the processor,
see Figure 4-6 for details. This bit is typically used to indicate that the
mapped physical page is not resident in physical memory. The present bit
is not a valid bit. For each TLB entry, the processor maintains an
additional hidden valid bit indicating if the entry is enabled for matching.

ma GR[r]{4:2} Memory Attribute – describes the cacheability, coherency, write-policy and
speculative attributes of the mapped physical page. See “Memory Attributes”
on page 2:75 for details.

a GR[r]{5} Accessed Bit – When 0 and PSR.da is 0, data references to the page cause a
Data Access Bit fault. When 0 and PSR.ia is 0, instruction references to the
page cause an Instruction Access Bit fault. When 0, IA-32 references to the
page cause an Instruction or Data Access Bit fault. This bit can trigger a fault
on reference for tracing or debugging purposes. The processor does not
update the Accessed bit on a reference.

d GR[r]{6} Dirty Bit – When 0 and PSR.da is 0, Intel Itanium store or semaphore
references to the page cause a Data Dirty Bit fault. When 0, IA-32 store or
semaphore references to the page cause a Data Dirty Bit fault. The processor
does not update the Dirty bit on a store or semaphore reference.

pl GR[r]{8:7} Privilege Level – Specifies the privilege level or promotion level of the page.
See “Page Access Rights” on page 2:56 for complete details.

ar GR[r]{11:9} Access Rights – page granular read, write and execute permissions and
privilege controls. See “Page Access Rights” on page 2:56 for details.

ppn GR[r]{49:12} Physical Page Number – Most significant bits of the mapped physical address.
Depending on the page size used in the mapping, some of the least significant
PPN bits are ignored.

ig GR[r]{63:53}
IFA{11:0},
RR[vrn]{0,7:2}

available – Software can use these fields for operating system defined
parameters. These bits are ignored when inserted into the TLB by the
processor.

ed GR[r]{52} Exception Deferral – For a speculative load that results in an exception, the
speculative load’s instruction page TLB.ed bit is one of the conditions which
determines whether the exception must be deferred. See “Deferral of
Speculative Load Faults” on page 105 for complete details. This bit is ignored
in the data TLB for data memory references and for IA-32 memory references.

ps ITIR{7:2} Page Size – Page size of the mapping. For page sizes larger than 4K bytes
the low-order bits of PPN and VPN are ignored. Page sizes are defined as 2ps

bytes. See “Page Sizes” on page 2:57 for a list of supported page sizes.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 35

The format in Figure 4-6 is defined for not-present translations (P-bit is zero).

key ITIR{31:8} Protection Key – Uniquely tags the translation to a protection domain. If a
translation’s Key is not found in the Protection Key Registers (PKRs), access
is denied and a Data or Instruction Key Miss fault is raised. See “Protection
Keys” on page 2:59 for complete details. In implementations where ITIR is
checked on a TLB insert instruction, ITIR{31:8} may be ignored if GR[r]{0} is
zero (not-present Translation Insertion Format).

vpn IFA{63:12} Virtual Page Number – Depending on a translation’s page size, some of the
least-significant VPN bits specified are ignored in the translation process.
VPN{63:61} (VRN) selects the region register.

rid RR[VRN].rid Virtual Region Identifier – On TLB inserts the Region Identifier selected by
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses
and purges (much like vpn bits).

Figure 4-6. Translation Insertion Format – Not Present
63 32 31 12 11 8 7 2 1 0

GR[r] ig 0

ITIR rv/ci key ps rv/ci

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-3. Translation Interface Fields (Continued)

TLB
Field

Source
Field

Description

36 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 37

V2-E Section 5.8.3.9

5.8.3.9 Local Redirection Registers (LRR0-1 – CR80,81)

Local Redirection Registers (LRR0-1) steer external signal-based interrupts that are
directly connected to the local processor to a specific external interrupt vector.
Processors may optionally support two direct external interrupt pins. When supported
these external interrupt signals (pins) are referred to as Local Interrupt 0 (LINT0) and
Local Interrupt 1 (LINT1). Software can query the presence of these pins via the
PAL_PROC_GET_FEATURES procedure call.

To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of LRR
prior to a given point in program execution, software must perform a data serialization
operation after an LRR write and prior to that point. In the case when LINT0 and LINT1
pins are absent, writes to LRR would have no effect, and reads from LRR would return
0. Software can query the presence of the LINT pins via the PAL_PROC_GET_FEATURES
procedure call. The LRR fields are defined in Figure 5-14 and Table 5-15.

Figure 5-14. Local Redirection Register (LRR – CR80,81)
63 17 16 15 14 13 12 11 10 8 7 0

ignored m tm rv ipp ig rv dm vector

47 1 1 1 1 1 1 3 8

Table 5-15. Local Redirection Register Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an interrupt for this entry. For
INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are
ignored and reserved for future use. For all other delivery modes this field is ignored.

dm 10:8 000 INT – pend an external interrupt for the vector number specified by the vector
field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers
are ignored and reserved for future use.

001 reserved

010 PMI – pend a Platform Management Interrupt Vector number 0 for system
firmware. The vector field is ignored.

011 reserved

100 NMI – pend a Non-Maskable Interrupt. This interrupt is pended at external
interrupt vector number 2. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for system firmware. The vector field is
ignored.

110 reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:130. The vector
field is ignored.

ipp 13 Interrupt Pin Polarity – specifies the polarity of the interrupt signal. When 0, the signal is
active high. When 1, the signal is active low.

38 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

tm 15 Trigger Mode – When 0, specifies edge sensitive interrupts. If the m field is 0, assertion
of the corresponding LINT pin pends an interrupt for the specified vector corresponding
to the dm field. The pending interrupt indication is cleared by software servicing the
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion
of the corresponding LINT pin clears the pending interrupt indication. The processor has
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask – When 1, edge or level occurrences of the local interrupt pins are discarded and
not pended. When 0, edge or level occurrences of local interrupt pins are pended.

Table 5-15. Local Redirection Register Fields (Continued)

Field Bits Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 39

V2-F Section 7.2

7.2 Performance Monitoring

Performance monitors allow processor events to be monitored by programmable
counters or give an external notification (such as a pin or transaction) on the
occurrence of an event. Monitors are useful for tuning application, operating system and
system performance. Two sets of performance monitor registers are defined.
Performance Monitor Configuration (PMC) registers are used to control the monitors.
Performance Monitor Data (PMD) Registers either provide data values from the
monitors, or hold data values used by the PMU. The performance monitors can record
performance values from either the IA-32 or Itanium instruction set.

As shown in Figure 7-3, all processor implementations provide at least four
performance counters (PMC/PMD[4]..PMC/PMD[7] pairs), and four performance counter
overflow status registers (PMC[0]..PMC[3]). Performance monitors are also controlled
by bits in the processor status register (PSR), the default control register (DCR) and the
performance monitor vector register (PMV). Processor implementations may provide
additional implementation-dependent PMC and PMD registers to increase the number of
“generic” performance counters (PMC/PMD pairs). The remainder of the PMC and PMD
register set is implementation dependent.

Event collection for implementation-dependent performance monitors is not specified
by the architecture. Enabling and disabling functions are implementation dependent.
For details, consult processor-specific documentation.

Processor implementations may not populate the entire PMC/PMD register space.
Reading of an unimplemented PMC or PMD register returns zero. Writes to
unimplemented PMC or PMD registers are ignored; i.e., the written value is discarded.

Writes to PMD and PMC and reads from PMC are privileged operations. At non-zero
privilege levels, these operations result in a Privileged Operation fault, regardless of the
register address.

Reading of PMD registers by non-zero privilege level code is controlled by PSR.sp. When
PSR.sp is one, PMD register reads by non-zero privilege level code return zero.

40 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Figure 7-3. Performance Monitor Register Set

Generic Performance Monitoring Register Set

 PSR

Processor Status Register
63 0

pmc0
pmc1

pmc3

Performance Counter
Overflow Status Registers

 PMV
63 0

Performance Monitor
Vector Register

cr73

cr0 DCR
63 0

Default Control Register

pmc2

63 0

Performance Counter
Configuration Registers

63 0

pmd4
pmd5

Performance Counter
Data Registers

63 0
pmdp+1
pmdp+2

pmd255

Implementation-dependent Performance Monitoring Register Set

63 0

pmdp

pmc4
pmc5

63 0

pmcp

63 0
pmcp+1
pmcp+2

pmc255

pmd0
pmd1

pmd3

pmd2

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 41

V2-G Sections 7.2.1 and 7.2.3

7.2.1 Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate
the PMC/PMD name space starting at index 4. At least 4 performance counter register
pairs (PMC/PMD[4]..PMC/PMD[7]) are implemented in all processor models. Each
counter can be configured to monitor events for any combination of privilege levels and
one of several event metrics. The number of performance counters is implementation
specific. The figures and tables use the symbol “p” to represent the index of the last
implemented generic PMC/PMD pair. The bit-width W of the counters is also
implementation specific.

A counter overflow interrupt occurs when the counter wraps; i.e., a carry out from bit
W-1 is detected. Counter overflow interrupts are edge-triggered; that is, the event of a
counter incrementing and causing carry out from bit W-1 thus setting the overflow bit
and the freeze bit, generates one PMU interrupt. Provided that software does not clear
the freeze bit, while either or both of PSR.up and pp are 1, without also clearing the
overflow bit (before or concurrent with the write to the freeze bit), no further interrupts
are generated based on the fact that the carry out had been earlier detected.

Figure 7-4 and Figure 7-5 show the fields in PMD and PMC respectively, while Table 7-3
and Table 7-4 describe the fields in PMD and PMC respectively.

Some implementations do not treat the upper, unimplemented bits of PMDs as ignored
bits on reads, but rather return a copy of bit W-1 in these bit positions so that count
values appear as if they were sign extended. Subsequent implementations will return 0
for these bits on reads.

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])
63 W W-1 0

PMD[4]..PMD[p] ig count

64-W W

Table 7-3. Generic Performance Counter Data Register Fields

Field Bits Description

ig 63:W Writes are ignored. Reads return 0.

count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register
(PMC[4]..PMC[p])

63 35 34 33 32 31 16 15 8 7 6 5 4 3 0

PMC[4]..PMC[p] impl vmm ch impl es ig pm oi ev plm

29 2 1 16 8 1 1 1 1 4

42 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 7-4. Generic Performance Counter Configuration Register Fields
(PMC[4]..PMC[p])

Field Bits Description

plm 3:0 Privilege Level Mask – controls performance monitor operation for a specific privilege
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the
monitor. In this state, the corresponding PMD register(s) do not preserve values, and
the processor may choose to power down the monitor.

ev 4 External visibility – When 1, an external notification (such as a pin or transaction) may
be provided, dependent upon implementation, whenever the monitor overflows.
Overflow occurs when a carry out from bit W-1 is detected.

oi 5 Overflow interrupt – If 1, when the monitor overflows, a Performance Monitor Interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) is set. If 0, no interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) remains unchanged.
Overflow occurs when a carry out from bit W-1 is detected. See “Performance Monitor
Overflow Status Registers (PMC[0]..PMC[3])” for details on configuring interrupt
vectors.

pm 6 Privileged monitor – When 0, the performance monitor is configured as a user monitor,
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read
by privileged software.

ig 7 ignored

es 15:8 Event select – selects the performance event to be monitored. Actual event encodings
are implementation dependent. Some processor models may not implement all event
select (es) bits. At least one bit of es must be implemented on all processors.
Unimplemented es bits are ignored.

impl 31:16 Implementation-specific bits – Reads from implemented bits return implementation-
dependent values. For portability, software should write what was read; i.e., software
may not use these bits as storage. Hardware will ignore writes to unimplemented bits.

ch 32 Count Halted State - controls performance monitor operation depending on which power
state the processor is in (see Figure 11-8 on page 2:316).
If set to 0, the processor will capture events that occur while the processor is in the
NORMAL/LOW-POWER state.
If set to 1, the processor will capture events that occur while the processor is in one of
the HALT states."

NOTE: This bit is not supported on all processor implementations. Software can call
PAL_PROC_GET_FEATURES to determine the availability of this feature, see
“PAL_PROC_GET FEATURES” page 121 for details. The bit is implementation
specific when this feature is not supported.

vmm 34:33 Virtual Machine Mask - controls performance monitor operation depending on whether
or not the processor is operating in Virtual Machine mode (as reflected by the value in
PSR.vm).

 00 - Performance monitoring is enabled regardless of the state of PSR.vm.
 01 - Performance monitoring is enabled if PSR.vm == 0.
 10 - Performance monitoring is enabled if PSR.vm == 1.
 11 - Ignored

NOTE: This field is not supported on all processor implementations. Software can call
PAL_PROC_GET_FEATURES to determine the availability of this feature, see
“PAL_PROC_GET FEATURES” page 121 for details. The field is implementation
specific when this feature is not supported

impl 63:35 Implementation-specific bits – Reads from implemented bits return implementation-
dependent values. For portability, software should write what was read; i.e., software
may not use these bits as storage. Hardware will ignore writes to unimplemented bits.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 43

Event collection is controlled by the Performance Monitor Configuration (PMC) registers
and the processor status register (PSR). Five PSR fields (PSR.up, PSR.pp, PSR.cpl,
PSR.vm and PSR.sp) and the performance monitor freeze bit (PMC[0].fr) affect the
behavior of all generic performance monitor registers. Finer, per monitor, control of
generic performance monitors is provided by three PMC register fields (PMC[i].plm,
PMC[i].vmm and PMC[i].pm). Event collection for a generic monitor is enabled under
the following constraints:

• Generic Monitor Enable[i] = (not PMC[0].fr) and PMC[i].plm[PSR.cpl] and (not
(PMC[i].vmm == 01 and PSR.vm)) and (not (PMC[i].vmm == 10 and not
PSR.vm)) and ((not (PMC[i].pm) and PSR.up) or (PMC[i].pm and PSR.pp))

Generic performance monitor data registers (PMD[i]) can be configured to be user
readable (useful for user level sampling and tracing user level processes) by setting the
PMC[i].pm bit to 0. All user-configured monitors can be started and stopped
synchronously by the user mask instructions (rum and sum) by altering PSR.up. User-
configured monitors can be secured by setting PSR.sp to 1. A user-configured secured
monitor continues to collect performance values; however, reads of PMD, by non-
privileged code, return zeros until the monitor is unsecured.

Monitors configured as privileged (PMC[i].pm is 1) are accessible only at privilege level
0; otherwise, reads return zeros. All privileged monitors can be started and stopped
synchronously by the system mask instructions (rsm and ssm) by altering PSR.pp.
Table 7-5 summarizes the effects of PSR.sp, PMC[i].pm, and PSR.cpl on reading PMD
registers.

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl, vm) require implicit
or explicit data serialization prior to accessing an affected PMD register. The data
serialization ensures that all prior PMD reads and writes as well as all prior PMC writes
have completed.

Generic PMD counter registers may be read by software without stopping the counters.
Under normal counting conditions (PMC[0].fr is zero and has been serialized), the
processor guarantees that a sequence of reads of a given PMD will return non-
decreasing values corresponding to the program order of the reads. Under frozen count
conditions (PMC[0].fr is one and has been serialized), the counters are unchanging and
ordering is irrelevant. When the freeze bit is in-flight, whether counters count events
and reads return non-decreasing values is implementation dependent. Instruction
serialization is required to ensure that the behavior specified by PMC[0].fr is observed.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return

0 0 0 PMD value

0 1 0 PMD value

1 0 0 PMD value

1 1 0 PMD value

0 0 >0 PMD value

0 1 >0 0

1 0 >0 0

1 1 >0 0

44 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Software must accept a level of sampling error when reading the counters due to
various machine stall conditions, interruptions, and bus contention effects, etc. The
level of sampling error is implementation specific. More accurate measurements can be
obtained by disabling the counters and performing an instruction serialize operation for
instruction events or data serialize operation for data events before reading the
monitors. Other (non-counter) implementation-dependent PMD registers can only be
read reliably when event monitoring is frozen (PMC[0].fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is
required between any PMD read and a subsequent ssm or sum (that could toggle PSR.up
or PSR.pp from 0 to 1), or a subsequent epc, demoting br.ret or branch to IA-32
(br.ia) (that could affect PSR.cpl or PSR.is). Note that implicit post-serialization
semantics of sum do not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

7.2.3 Performance Monitor Events

The set of monitored events is implementation-specific. All processor models are
required to provide at least two events:

1. The number of retired instructions. These are defined as all instructions which
execute without a fault, including nops and those which were predicated off.
Generic counters configured for this event count only when the processor is in the
NORMAL or LOW-POWER state (see Figure 11-8 on page 2:316).

2. The number of processor clock cycles. Dependent on the setting of PMC.ch,
generic counters may be configured to count this event when the processor is
either in the NORMAL/LOW-POWER state or one of the HALT states (see
Figure 11-8 on page 2:316).

Events may be monitorable only by a subset of the available counters. PAL calls provide
an implementation-independent interface that provides information on the number of
implemented counters, their bit-width, the number and location of other (non-counter)
monitors, etc.

Table 7-6. Performance Monitor Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov pmd[r3] = r2 Move to performance monitor
data register

PMD[GR[r3]] ← GR[r2] M data/inst

mov r1 = pmd[r3] Move from performance monitor
data register

GR[r1] ← PMD[GR[r3]] M nonea

a. When the freeze bit is in-flight, whether counters count events and reads return non-decreasing values is
implementation dependent. Instruction serialization is required to ensure that the behavior specified by
PMC[0].fr is observed.

mov pmc[r3] = r2 Move to performance monitor
configure register

PMC[GR[r3]] ← GR[r2] M data/inst

mov r1 = pmc[r3] Move from performance monitor
configure register

GR[r1] ← PMC[GR[r3]] M none

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 45

V2-H Section 11.5.2

11.5.2 PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:

• GRs: The contents of non-banked general registers are unchanged from the time of the
interruption.

• Bank 1 GRs: The contents of all bank one general registers are unchanged from
the time of the interruption.

• Bank 0:GR16-23: The contents of these bank zero general registers are
unchanged from the time of the interruption.

• Bank 0:GR24-31: contain parameters which PALE_PMI passes to SALE_PMI:
• GR24 contains the value decoded as follows:

• Bits 7-0: PMI Vector Number
• Bit 63-8: Reserved

• GR25 contains the value of the min-state save area address stored in XR0.
• GR26 contains the value of saved RSC. The contents of this register shall be

preserved by SAL PMI handler.
• GR27 contains the value of saved B0. The contents of this register shall be

preserved by SAL PMI handler.
• GR28 contains the value of saved B1. The contents of this register shall be

preserved by SAL PMI handler.
• GR29 contains the value of the saved predicate registers. The contents of

this register shall be preserved by SAL PMI handler
• GR30-31 are scratch registers available for use.

• FRs: The contents of all floating-point registers are unchanged from the time of the interruption.

• Predicates: The contents of all predicate registers are undefined and available for use.

• BRs: The contents of all branch registers are unchanged, except the following which contain the
defined state.

• BR1 is undefined and available for use.
• BR0 PAL PMI return address.

• ARs: The contents of all application registers are unchanged from the time of the interruption,
except the RSE control register (RSC) and the ITC and RUC counters. The RSC.mode field will be
set to 0 (enforced lazy mode) while the other fields in the RSC are unchanged. The ITC register
will not be directly modified by PAL, but will continue to count during the execution of the PMI
handler. The RUC register will not be directly modified by PAL, but will continue to count during
the execution of the PMI handler while the processor is active.

• CFM: The contents of the CFM register are unchanged from the time of the interruption. On
resuming from the PMI handler, if SAL has done a cover instruction (e.g., to allow it to use stacked
registers itself), then the IFS should contain the value captured by that cover, which will correctly
restore CFM when PAL resumes, otherwise CFM should be unchanged.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time of the
interruption.

46 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

• PSR: PSR.mc, PSR.mfl, PSR.mfh, and PSR.pk are unchanged; all other bits are 0.

• CRs: The contents of all control registers are unchanged from the time of the interruption with the
exception of interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the interruption.

• PKRs: The contents of all protection key registers are unchanged from the time of the
interruption.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the
interruption.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the PMI. The
contents of the PMD registers are not modified by PAL code, but may be modified if events it is
monitoring are encountered

• Cache: The processor internal cache is not specifically modified by the PMI handler but may be
modified due to normal cache activity of running the handler code.

• TLB: The TCs are not modified by the PALE_PMI handler and the TRs are unchanged from the time
of the interruption.

• Interruption Resources:
• IRRs: The contents of IRRs are unchanged from the time of the interruption.
• IIP and IPSR contain the value of IP and PSR. The IFS.v bit is reset to 0.
• IFS: The contents of IFS are unchanged from the time of the interruption. On

resuming from the PMI handler, if SAL has done a cover instruction (e.g., to
allow it to use stacked registers itself), then IFS should contain the value
captured by that cover instruction.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 47

V2-I Section 11.6.1.3

11.6.1.3 PAL Interfaces for P-states

The PAL procedure PAL_PROC_GET_FEATURES returns whether an implementation
supports P-states. If an implementation supports P-states then the
PAL_PROC_SET_FEATURE procedure will allow the caller to enable or disable this
feature.

The Itanium architecture provides three PAL procedures to enable P-state functionality.

PAL_PSTATE_INFO: This procedure returns information about the P-states
implemented on a particular processor. For details on the information returned by this
procedure, please refer to the procedure description on page 2:395. The Itanium
architecture supports a maximum of 16 P-states.

PAL_SET_PSTATE: This procedure allows the caller to request the transition of the
processor to a new P-state. The procedure can either return with transition success
(request was accepted) or transition failure (request was not accepted) depending on
hardware capabilities, implementation-specific event conditions, and the spacing
between successive PAL_SET_PSTATE procedure calls.

If hardware has the ability to either preempt a previous in-progress P-state transition,
or to queue successive P-state requests while the first request is in transition, then the
implementation has a pre-emptive policy for P-state request handling. The architecture
also allows for a non-preemptive policy for P-state request handling, whereby a new
PAL_SET_PSTATE request is not accepted if a previous P-state transition is already in
progress. The PAL_SET_PSTATE procedure returns different status values
corresponding to the accepted and not accepted cases for P-state requests. If the
transition is not accepted, no P-state transition is initiated by the PAL_SET_PSTATE
procedure, and the caller is expected to make another PAL_SET_PSTATE request to
transition to the desired P-state. The transition_latency_2 field in the pstate_buffer
returned by PAL_PSTATE_INFO indicates the time interval the caller needs to wait to
have a reasonable chance of success when initiating another PAL_SET_PSTATE call.

Implementation-specific event conditions may prevent a PAL_SET_PSTATE request
from being accepted (e.g., due to a thermal protection mechanism), in which case the
PAL procedure returns a status of transition failure. Such events are expected to be
rare and to happen only in abnormal situations.

It should be noted that platform power-caps do not cause a PAL_SET_PSTATE request
to fail. The requested P-state is registered with PAL, and the procedure returns a status
of transition success.

SCDD: If the logical processor belongs to a software-coordinated dependency domain,
the PAL_SET_PSTATE procedure will change the domain parameters resulting in a
transition to the requested P-state for all logical processors in that domain.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain,
the PAL_SET_PSTATE procedure will attempt to change the power/performance
characteristics for that logical processor. Since the power/performance characteristics
for the domain depend on the P-state settings of the other logical processors in the
domain, a PAL_SET_PSTATE call on one logical processor may result in either partial or

48 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

complete transition to the requested P-state. In case of partial transition (see
Figure 11-11, “Computation of performance_index” on page 49 for an example, where
the logical processor transitions from state P0 to state P3 in partial increments), the
logical processor may attempt to perform changes at a later time to the local
parameters and/or domain parameters to transition to the originally requested P-state
based on P-state transition requests on other logical processors. Software can also
approximate the behavior of a SCDD by forcing P-state transitions. See the description
of the PAL_SET_PSTATE procedure for more details.

HIDD: If the logical processor belongs to a hardware-independent dependency domain,
the PAL_SET_PSTATE procedure will attempt to change the domain parameters, which
will transition the logical processor in that domain to the requested P-state.

PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state (P0). A value of 100 in P0 represents
the minimum processor performance in the P0 state. For example, if the value returned
by the procedure is 80, this indicates that the performance of the logical processor over
the last time period was 20% lower than the minimum P0 performance. For processors
that support variable P-states, it is possible for a processor to report a number greater
than 100, representing that the processor is running at a performance level greater
than the minimum P0 performance. For example, if the value returned by the processor
is 120, it indicates that the performance of the logical processor over the last time
period was 20% higher than the minimum P0 performance. The performance index is
measured over the time interval since the last PAL_GET_PSTATE call with a type
operand of 1. If the processor supports variable P-state performance then the
PAL_PROC_SET_FEATURE procedure can be used to enable or disable this feature.
Software may choose, on each invocation of the PAL_GET_PSTATE procedure, whether
to reset the internal performance measurement logic; resetting the measurement logic
initiates a new performance_index count, which is reported when the next
PAL_GET_PSTATE procedure call is made. A call to PAL_GET_PSTATE with a type
operand of 1 resets the performance measurement logic.

SCDD: If the logical processor belongs to a software-coordinated dependency domain,
the performance index returned (for either type=0 or 3) corresponds to the target P-
state requested by the most recent successful PAL_SET_PSTATE procedure call. No
weighted average (type=1 or 2) is computed by PAL; calling PAL_GET_PSTATE with
type=1 or 2 on a SCDD logical processor is undefined.

HCDD: If the logical processor belongs to a hardware-coordinated dependency domain,
the performance index returned (type=1 or 2) will be a weighted-average sum of the
performance_index values corresponding to the different P-states that the logical
processor was operating in since performance measurement was last reset. Note that
this return value may not necessarily correspond to the performance index of the
target P-state requested by the most recent PAL_SET_PSTATE procedure call. For
example, let's assume that the previous PAL_GET_PSTATE procedure was called at time
t0, when the processor was operating in state P0. The previous PAL_SET_PSTATE
procedure requested a transition from P0 to P3. The transition happened over a period
of time, such that the logical processor went through states P1 at time t1, P2 at time t2
and P3 at time t3, and was in state P3 at time t4 when the current PAL_GET_PSTATE
procedure was called. The performance_index returned is calculated as:

performance_index =
((time spent in P0 after the previous PAL_GET_PSTATE) * (performance_index for P0)+
(time spent in P1) * (performance_index for P1) +
(time spent in P2) * (performance_index for P2) +
(time spent in P3 up to the current PAL_GET_PSTATE) * (performance_index for P3)) /
(time interval between previous and current PAL_GET_PSTATE) =

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 49

As seen above, for a HCDD, the PAL_GET_PSTATE procedure allows the caller to get
feedback on the dynamic performance of the processor over a software-controlled time
period. The caller can use this information to get better system utilization over a
subsequent time period by changing the P-state in correlation with the current
workload demand. The caller can also use PAL_GET_PSTATE to see the most recent P-
state set for this logical processor (type=0) and the instantaneous current P-state that
the domain parameters are set to (type=3). Platform power-caps do not affect either of
these return values.

HIDD: If the logical processor belongs to a hardware-independent dependency domain,
a weighted-average performance index can be returned by PAL_GET_PSTATE (type=1
or 2). Since software could calculate the performance index based on P-states it set,
the weighted-average performance index is only of value when factoring in the effect of
platform power-caps.

Note that P-state transitions typically do not happen instantaneously. An
implementation-specific amount of time is required for a given transition to complete.
The computation of the weighted-average performance_index may not take into
account the fact that transitions of power/performance are gradual, but may be done
as though they were instantaneous at the point when the transition starts. The
expectation is that any errors in computing the performance_index due to non-
instantaneous transitions to higher and lower P-states will tend to cancel out, and to
the extent that they do not, will be insignificant.

t1 t0–() pf0 t2 t1–() pf1 t3 t2–() pf2 t4 t3–() pf3×+×+×+×
t4 t0–

--

Figure 11-11.Computation of performance_index

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 t2 t3 t4

Performance

Time

(Previous) GET SET(P3) (Current) GET

50 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 51

V2-J Section 11.6.1.5

11.6.1.5 Interaction of P-states with HALT State

It is possible for a logical processor to enter and exit a HALT state between two
consecutive calls to PAL_GET_PSTATE. Since the logical processor is not executing any
instructions while in the HALT state, the performance index contribution during this
period is essentially 0, and will not be accounted for in the performance_index value
returned when the next PAL_GET_PSTATE procedure call is made.

For example, let us assume that the previous PAL_GET_PSTATE procedure was called at
time t0, when the processor was operating in state P2. The previous PAL_SET_PSTATE
procedure initiated a transition from P2 to P3 at time t1. The processor entered HALT
state at time th1, and exited the HALT state at time th2, and was in state P3 at time t2
when the current PAL_GET_PSTATE procedure was called. The performance_index
returned is calculated as:

performance_index =
((time in P2 after the previous PAL_GET_PSTATE) * (performance_index for P2) +
(time in P3 before entering HALT state) * (performance_index for P3) +
(time in P3 after exiting HALT up to current PAL_GET_PSTATE))) * (performance_index for
P3)) /
(time interval between previous and current GET, excluding time spent in HALT) =

Figure 11-12. Interaction of P-states with HALT State

t1 t0–() pf2 th1 t1–() pf3 t2 th2–() pf3×+×+×
t2 t0–() th2 th1–()–

--

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 th1 th2 t2

Performance

(Previous) GET SET(P3) (Current) GET

Time

Enter HALT State Exit HALT State

52 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

As shown above, the value returned for performance_index does not account for the
performance during the time spent by the logical processor in the HALT state. This
provides for better accuracy in the value reported for performance_index, allowing the
caller to make optimal adjustments to the system utilization even in scenarios where we
have interactions between P-states and HALT state.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 53

V2-K Tables 11-7, 11-12 and 11-
16

Table 11-7. Processor State Parameter Fields

Field Bits Description

rsvd 1:0 Reserved

rz 2 The attempted processor rendezvous was successful if set to 1.

ra 3 A processor rendezvous was attempted if set to 1.

me 4 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 Min-state save area has been registered with PAL if set to 1.

sy 6 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and that
no loads or stores beyond that point occurred. See Table 11-8.

co 7 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this bit
is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

ci 8 Machine check is isolated. A value of 1 indicates that the error has been isolated by the
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the
error within the CPU and memory hierarchy. The error may have propagated off the
system (to persistent storage or the network). If ci = 0 then us will be set to 1, and co
and sy are cleared to 0. See Table 11-8.

us 9 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 More information. A value of 1 indicates that more error information about the machine
check event is available by making the PAL_MC_ERROR_INFO procedure call.

pi 13 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 The RSE is valid. (1=valid, 0=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

54 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, 0=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

rr 24 Region registers are valid. (1=valid, 0=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0=not valid)

pr 27 Predicate registers are valid. (1=valid, 0=not valid)

fp 28 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.
This value is always a multiple of 8 bytes.

se 48 Shared Error. Machine check corresponds to structure shared by multiple logical
processors.

rsvd 58:49 Reserved

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information. This bit must not be
set for non-cacheable transaction errors.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

Table 11-12. Processor State Parameter Fields

Field Bits
INIT

value
Description

rsvd 1:0 Reserved

rz 2 xa The attempted processor rendezvous was successful if set to 1.

ra 3 xa A processor rendezvous was attempted if set to 1.

me 4 0 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 xa Min-state save area has been registered with PAL if set to 1.

sy 6 0 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and
that no loads or stores beyond that point occurred. See Table 11-8.

co 7 1 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this
bit is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-8.

Table 11-7. Processor State Parameter Fields (Continued)

Field Bits Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 55

ci 8 1 Machine check is isolated. A value of 1 indicates that the error has been isolated by
the system, it may or may not be recoverable. If 0, the hardware was unable to isolate
the error within the CPU and memory hierarchy. The error may have propagated off
the system (to persistent storage or the network). If ci = 0 then us will be set to 1, and
co and sy are cleared to 0. See Table 11-8.

us 9 0 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-8.

hd 10 0 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 0 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 0 More information. A value of 1 indicates that more error information about the
machine check event is available by making the PAL_MC_ERROR_INFO procedure
call.

pi 13 0 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 0 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 xa Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 1 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 xa The RSE is valid. (1=valid, 0=not valid)

cm 18 0 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 0 A machine check was expected. (1=expected, 0=not expected)

cr 20 xa Control registers are valid. (1=valid, 0=not valid)

pc 21 xa Performance counters are valid. (1=valid, 0=not valid)

dr 22 xa Debug registers are valid. (1=valid, 0=not valid)

tr 23 xa Translation registers are valid. (1=valid, 0=not valid)

rr 24 xa Region registers are valid. (1=valid, 0=not valid)

ar 25 xa Application registers are valid. (1=valid, 0=not valid)

br 26 xa Branch registers are valid. (1=valid, 0=not valid)

pr 27 xa Predicate registers are valid. (1=valid, 0=not valid)

fp 28 xa Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 xa Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 xa Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 xa General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 xa Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.
This value is always of multiple of 8 bytes

se 48 0 Shared Error. Machine check corresponds to structure shared by multiple logical
processors.

rsvd 58:49 Reserved

cc 59 0 Cache check. A value of 1 indicates that a cache related machine check occurred.
See the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 0 TLB check. A value of 1 indicates that a TLB related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description

56 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

bc 61 0 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 0 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 0 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

a. The values of the fields marked with x are set by the PAL INIT handler based on the INIT handling.

Table 11-16. Virtual Processor Descriptor (VPD)

Name Entries Offset Description Class

vac 1 0 Virtualization Acceleration Control – these con-
trol bits enable virtualization acceleration of a
particular resource or instruction. See
Section 11.7.1.1, “Virtualization Controls” on
page 2:331 for details.

Control [always]

vdc 1 8 Virtualization Disable Control – these control
bits disable the virtualization of a particular
resource or instruction. See Section 11.7.1.1,
“Virtualization Controls” on page 2:331 for
details.

Control [always]

virt_env_vaddr 1 16 PAL Virtual Environment Buffer Address – this
field stores the host virtual address of the vir-
tual environment which the virtual processor
belongs to. The value in this field must be the
same as the vbase_addr field during
PAL_VP_INIT_ENV call.

Control [always]

Reserved 29 24 Reserved Area – Reserved for future expan-
sion.

Reserved

vhpi 1 256 Virtual Highest Priority Pending Interrupt –
Specifies the current highest priority pending
interrupt for the virtual processor. See
Table 11-119, “vhpi – Virtual Highest Priority
Pending Interrupt” on page 2:495 for details.

Control [a_int]

Reserved 95 264 Reserved Area – Reserved for future expan-
sion.

Reserved

vgr[16-31] 16 1024 Virtual General Registers – Represent the
bank 1 general registers 16-31 of the virtual
processor. When the virtual processor is run-
ning and vpsr.bn is 1, the values in these
entries are undefined.

Architectural State
[a_bsw]

vbgr[16-31] 16 1152 Virtual Banked General Registers – Represent
the bank 0 general registers 16-31 of the virtual
processor. When the virtual processor is run-
ning and vpsr.bn is 0, the values in these
entries are undefined.

Architectural State
[a_bsw]

vnat 1 1280 Virtual General Register NaTs – Bits 0-15 rep-
resent the NaT values corresponding to vgr16-
31, where the NaT bit for vgr16 is in bit 0. Bits
16-63 are don’t cares.

Architectural State
[a_bsw]

Table 11-12. Processor State Parameter Fields (Continued)

Field Bits
INIT

value
Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 57

vbnat 1 1288 Virtual Banked Register NaTs – Bits 16-31 rep-
resent the NaT values corresponding to
vbgr16-31, where the NaT bit for vbgr16 is in
bit 16. Bits 0-15 and 32-63 are don’t cares.

Architectural State
[a_bsw]

vcpuid[0-4] 5 1296 Virtual CPUID Registers – Represent cpuid
registers 0-4 of the virtual processor.
NOTE: vcpuid[0-1] and vcpuid[4]{63:32} must
contain the same values as the corresponding
values of the logical processor on which this
virtual processor is running.

Architectural State
[a_from_cpuid]

Reserved 11 1336 Reserved Area – Reserved for future expan-
sion.

Reserved

vpsr 1 1424 Virtual Processor Status Register – Represents
the Processor Status Register of the virtual pro-
cessor.

Architectural State
See Table 11-17 for
details.

vpr 1 1432 Virtual Predicate Registers – Represents the
Predicate Registers of the virtual processor.
The bit positions in vpr correspond to predicate
registers in the same manner as with the mov
predicates instruction. The contents in this field
are undefined except at virtualization intercept
handoff. The VMM can not rely on the contents
in this field to be preserved when the virtual
processor is running.

Architectural State
[always]

Reserved 76 1440 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state.

Reserved

vcr[0-127] 128 2048 Virtual Control Registers – Represent the con-
trol registers of the virtual processor. For the
reserved control registers, the corresponding
VPD entries are reserved.

Architectural State
See Table 11-18 for
details.

Reserved 128 3072 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

Reserved 3456 4096 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

vmm_avail 128 31744 Available for VMM use. This area is ignored by
the processor and PAL.

Ignored

Reserved 4096 32768 Reserved Area – Reserved for future expan-
sion. This area may also be used by PAL to
hold additional machine-specific processor
state

Reserved

Table 11-16. Virtual Processor Descriptor (VPD) (Continued)

Name Entries Offset Description Class

58 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 59

V2-L Section 11.7.4.1.3 and
11.7.4.3.5

11.7.4.1.3 Disable VMSW Instruction

The VMSW instruction disable is controlled by the d_vmsw bit in the Virtualization
Disable Control (vdc) field in the VPD. When this control is set to 1, the vmsw instruction
is disabled on the logical processor. Execution of the vmsw instruction, independent of
the state of PSR.vm, results in a virtualization intercept.

If this control is set to 0, the vmsw instruction can be executed by both the VMM and
guest without virtualization intercepts, if PSR.it is 1 and the vmsw instruction is
executed on a page with access rights of 7.

11.7.4.3.5 Disable MOV-to-PMD Virtualization

The MOV-to-PMD1 virtualization disable is controlled by the d_to_pmd bit in the
Virtualization Disable Control (vdc) field in the VPD. When this control is set to 1, writes
to the performance monitor data registers (PMDs) are not virtualized, and code running
with PSR.vm==1 can write these resources directly without any intercepts to the VMM.

If this control is set to 0, writes to the performance monitor data registers with
PSR.vm==1 result in virtualization intercepts.

1. The MOV-from-PMD instruction is not virtualized. Hence there is no need to provide opti-
mizations for the MOV-from-PMD instruction.

60 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 61

V2-M Section 11.10

11.10 PAL Procedures
PAL procedures may be called by higher-level firmware and software to obtain
information about the identification, configuration, and capabilities of the processor
implementation, or to perform implementation-dependent functions such as cache
initialization. These procedures access processor implementation-dependent hardware
to return information that characterizes and identifies the processor or implements a
defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The
PAL procedures are defined to be relocatable from the firmware address space. Higher
level firmware and software must perform this relocation during the reset flow. The PAL
procedures may be called both before and after this relocation occurs, but performance
will usually be better after the relocation. In order to ensure no problems occur due to
the relocation of the PAL procedures, these procedures are written to be position
independent. All references to constant data done by the procedures is done in an IP
relative way.

PAL procedures are provided to return information or allow configuration of the
following processor features:

• Cache and memory features supported by the processor

• Processor identification, features, and configuration

• Machine Check Abort handling

• Power state information and management

• Processor self test

• Firmware utilities

PAL procedures are implemented as a single high level procedure, named PAL_PROC,
whose first argument is an index which specifies which PAL procedure is being called.
Indices are assigned depending on the nature of the PAL procedure being referenced,
according to Table 11-48.

The assignment of indices for all architected procedures is controlled by this document.
The assignment of indices for implementation-specific procedures is controlled by the
specific processor for which the procedures are implemented. No implementation-
specific procedure calls are required for the correct operation of a processor. No SAL or

Table 11-48.PAL Procedure Index Assignment

Index Description

0 Reserved; static register calling conventions

1 - 255 Architected procedures; static register calling conventions

256 - 511 Architected procedures; stacked register calling conventions

512 - 767 Implementation-specific procedures; static registers calling conventions

768 - 1023 Implementation-specific procedures; stacked register calling conventions

1024 + Reserved; static register calling conventions

62 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

operating system code should ever have to call an implementation-specific procedure
call for normal activity. They are reserved for diagnostic and bring-up software and the
results of such calls may be unpredictable.

Architected procedures may be designated as required or optional. If a procedure is
designated as optional, a unique return code will be returned to indicate the procedure
is not present in this PAL implementation. It is the caller’s responsibility to check for
this return code after calling any optional PAL procedure

In addition to the calling conventions described below, PAL procedure calls may be
made in physical mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1,
PSR.rt=1, and PSR.dt=1). All PAL procedures may be called in physical mode. Only
those procedures specified later in this chapter may be called in virtual mode. Reserved
PAL procedure indices and indices for which no procedure is defined may be called
either physically or virtually. (See Section 11.10.2.4, “Unimplemented Procedures”.)
PAL procedures written to support virtual mode, and the caller of PAL procedures
written in virtual mode must obey the restrictions documented in this chapter,
otherwise the results of such procedure calls may be unpredictable.

11.10.2.1.1 Static Registers Only

This calling convention is intended for boot time usage before main memory may be
available or error recovery situations, where memory or the RSE may not be reliable.
All parameters are passed in the lower 32 static general registers. The stacked
registers will not be used within the procedure. No memory arguments may be passed
as parameters to or from PAL procedures written using the static register calling
convention. To avoid RSE activity, static register PAL procedures must be called with
the br.cond instruction, not the br.call instruction. The caller must explicitly put the
return point in BR0 (rp); PAL will branch to this address with a br.cond to return. Please
refer to Table 11-54 for a detailed list of the general register usage for static registers
only calling convention.

11.10.2.2.6 Branch Registers

The conventions for the branch registers follow the Itanium Software Conventions and
Runtime Architecture Guide. For procedures that use the static register calling
conventions, the caller must explicitly put the return point in BR0 (rp); PAL will branch
to this address with a br.cond to return.

11.10.2.3 Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be 8-
byte aligned. Unaligned addresses may cause undefined results.

11.10.2.4 Unimplemented Procedures

If the caller passes in a PAL procedure index value that is unimplemented (either an
index for which no procedure is defined, or an index for which the defined procedure is
optional but not implemented on this processor), PAL will return an Unimplemented
Procedure (-1) status to the caller.

11.10.2.5 Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules
specify certain PSR values, they specify that reserved fields and arguments must be
zero filled and specify that values not defined in a range and defined as reserved must
not be used.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 63

If the caller of a PAL procedure does not follow these rules, an invalid argument return
value may be returned or undefined results may occur during the execution of the
procedure.

64 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 65

V2-N PAL_BRAND_INFO

PAL_BRAND_INFO – Provides Processor Branding Information
(274)

Purpose: Provides processor branding information.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_BRAND_INFO procedure calls are used to ascertain the processor branding
information.

The info_request input argument for PAL_BRAND_INFO describes which processor
branding information is being requested. The info_request values are split into two
categories: architected and implementation-specific. The architected info_request have
values from 0-15. The implementation-specific info_request have values 16 and above.
The architected info_request are described in this document. The implementation-
specific info_request are described in processor-specific documentation.

This call returns the processor brand information as requested with the info_request
argument. Table 11-57 describes the values.

Argument Description
index Index of PAL_BRAND_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer specifying the information that is being requested. (See Table 11-57)
address 64-bit pointer to a 128-byte memory buffer to which the processor brand string shall be

written.
Reserved 0

Return Value Description
status Return status of the PAL_BRAND_INFO procedure.
brand_info Brand information returned. The format of this value is dependent on the input values

passed.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-6 Input argument is not implemented
-9 Call requires PAL memory buffer

66 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

This procedure will return an invalid argument if an unsupported info_request argument
is passed as an input or a -6 if the requested information was not available on the
current processor.

§

Table 11-57. Processor Brand Information Requested

Value Description

0 The ASCII brand identification string will be copied to the address specified in the
address input argument. The processor brand identification string is defined to be a
maximum of 128 characters long; 127 bytes will contain characters and the 128th byte
is defined to be NULL (0). A processor may return less than the 127 ASCII characters
as long as the string is null terminated. The string length will be placed in the
brand_info return argument.

All Other Values Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 67

V2-O PAL_HALT_INFO

PAL_HALT_INFO – Get Halt State Information for Power
Management (257)

Purpose: Returns information about the processor’s power management capabilities.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The power information requested is returned in the data buffer referenced by
power_buffer. Power information is returned about the 8 power states. The low power
states are LIGHT_HALT, HALT, plus 6 other low power states. The LIGHT_HALT state is
index 0 in the buffer, and the HALT state is index 1. All 8 low power states need not be
implemented

The information returned is in the format of Figure 11-14. The information about the
HALT states will be in ascending order of the index values

Argument Description
index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte memory buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_INFO procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid argument

-3 Call completed with error

68 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

.

• exit latency – 16-bit unsigned integer denoting the minimum number of processor
cycles to transition to the NORMAL state.

• entry_latency – 16-bit unsigned integer denoting the minimum number of processor
cycles to transition from the NORMAL state.

• power_consumption – 28-bit unsigned integer denoting the typical power
consumption of the state, measured in milliwatts.

• im – 1-bit field denoting whether this low power state is implemented or not. A
value of 1 indicates that the low power state is implemented, a value of 0 indicates
that it is not implemented. If this value is 0 then all other fields are invalid.

• co – 1-bit field denoting if the low power state maintains cache and TLB coherency.
A value of 1 indicates that the low power state keeps the caches and TLBs coherent,
a value of 0 indicates that it does not.

The latency numbers given are the minimum number of processor cycles that will be
required to transition the states. The maximum or average cannot be determined by
PAL due to its dependency on outstanding bus transactions.
For more information on power management, please refer to Section 11.6, “Power
Management” on page 2:316.

Figure 11-14. Layout of power_buffer Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

entry_latency exit_latency

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv co im power_consumption

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 69

V2-P PAL_MC_DYNAMIC_STATE

PAL_MC_DYNAMIC_STATE – Returns Dynamic Processor State
(24)

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The info_type input argument designates the type of information the procedure will
return. When info_type is 0, the procedure returns the maximum size (in bytes) of
processor dynamic state that can be returned for this processor family in the max_size
return value. The max_size return value will always be a multiple of 8 bytes.

When info_type is 1, the procedure will copy processor dynamic state into memory
pointed to by the input argument dy_buffer. This copy will occur using the addressing
attributes used to make the procedure call (physical or virtual) and the caller needs to
ensure the dy_buffer input pointer matches this addressing attribute.
The amount of data returned can vary depending on the state of the machine at the
time the procedure is called, and may not always return the maximum size for every
call. The amount of data returned is provided in the processor state parameter field
dsize. The dsize parameter will always be a multiple of 8 bytes. Please see Table 11-7
for more information on the processor state parameter. The caller of the procedure
needs to ensure that the buffer is large enough to handle the max_size that is returned
by this procedure.
The contents of the processor dynamic state is implementation dependent. Portions of
this information may be cleared by the PAL_MC_CLEAR_LOG procedure. This procedure
should be invoked before PAL_MC_CLEAR_LOG to ensure all the data is captured.

Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
info_type Unsigned 64-bit value indicating the type of information to return
dy_buffer 64-bit pointer to a memory buffer aligned on an 8-byte boundary.
Reserved 0

Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
max_size Maximum size (in bytes) of the data that can be returned by this procedure for this processor

family. This value is always a multiple of 8 bytes.
Reserved 0
Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

70 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 71

V2-Q PAL_MC_ERROR_INFO/
PAL_MC_ERROR_INJECT

PAL_MC_ERROR_INFO – Get Processor Error Information (25)

Purpose: Returns the Processor Machine Check Information

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure returns error information for machine checks as specified by info_index,
level_index and err_type_index. Higher level software is informed that additional
machine check information is available when the processor state parameter mi bit is set
to one. See Table 11-7, “Processor State Parameter Fields,” on page 2:299 for more
information on the processor state parameter and the mi bit description.

The info_index argument specifies which error information is being requested. See
Table 11-86 for the definition of the info_index values.

Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See

Table 11-86).
level_index 8-byte formatted value identifying the structure to return error information on.(See

Figure 11-19).
err_type_index Unsigned 64-bit integer denoting the type of error information that is being requested for the

structure identified in level_index.

Return Value Description
status Return status of the PAL_MC_ERROR_INFO procedure.
error_info Error information returned. The format of this value is dependant on the input values passed.
inc_err_type If this value is zero, all the error information specified by err_type_index has been returned. If

this value is one, more structure-specific error information is available and the caller needs to
make this procedure call again with level_index unchanged and err_type_index,
incremented.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-6 Argument was valid, but no error information was available

72 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

All other values of info_index are reserved. When info_index is equal to 0 or 1, the
level_index and err_type_index input values are ignored. When info_index is equal to 2,
the level_index and err_type_index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to
obtain the processor error map. This error map informs the caller about the processor
core identification, the processor thread identification and indicates which structure(s)
caused the machine check. If more than one structure generated a machine check,
multiple structure bits will be set. The caller then uses this information to make sub-
sequent calls to this procedure for each structure identified in the processor error map
to obtain detailed error information.

The level_index input argument specifies which processor core, processor thread and
structure for which information is being requested. See Table 11-87 on page 73 for the
definition of the level_index fields. This procedure call can only return information about
one processor structure at a time. The caller is responsible for ensuring that only one
structure bit in the level_index input argument is set at a time when retrieving
information, otherwise the call will return that an invalid argument was passed.

Table 11-86. info_index Values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor
error map. This return value specifies the
processor core identification, the processor
thread identification, and a bit-map indicating
which structure(s) of the processor generated the
machine check. This bit-map has the same layout
as the level_index. A one in the structure bit-map
indicates that there is error information available
for the structure. The layout of the level_index is
described in Figure 11-19, “level_index Layout”
on page 73.

1 Processor State Parameter This info_index value will return the same
processor state parameter that is passed at the
PALE_CHECK exit state for a machine check
event (provided a valid min-state save area has
been registered) or will construct a processor
state parameter for a corrected machine check
events. This parameter describes the severity of
the error and the validity of the processor state
when the machine check or CMCI occurred. This
procedure will not return a valid PSP for INIT
events. The Processor State Parameter is
described in Figure 11-11, “Processor State
Parameter,” on page 2:299.

2 Structure-specific Error Information This info_index value will return error information
specific to a processor structure. The structure is
specified by the caller using the level_index and
err_type_index input parameters. The value
returned in error_info is specific to the structure
and type of information requested.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 73

The convention for levels and hierarchy in the level_index field is such that the least
significant bit in the error information bit-fields represent the lowest level of the
structures hierarchy. For example bit 8 if the eic field represents the first level
instruction cache.

The erf field is 4-bits wide to allow reporting of 4 concurrent register related machine
checks at one time. One bit would be set for each error. The ems field is 16-bits wide to
allow reporting of 16-concurrent micro-architectural structures at one time. There is no
significance in the order of these bits. If only one register file related error occurred, it
could be reported in any one of the 4-bits.

The err_type_index specifies the type of information will be returned in error_info for a
particular structure. See Table 11-88 for the values of err_type_index

Figure 11-19. level_index Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

erf ebh edt eit edc eic tid cid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rsvd ems

Table 11-87. level_index Fields

Field Bits Description

cid 3:0 Processor core ID (default is 0 for processors with a single core)

tid 7:4 Logical thread ID (default is 0 for processors that execute a single thread)

eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches

edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches

eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB

edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB

ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus
hierarchy

erf 31:28 Error information is available on register file structures

ems 47:32 Error information is available on micro-architectural structures

rsvd 63:48 Reserved

Table 11-88. err_type_index Values

err_type_index
value mod 8

Return Value Description

0 Structure-specific error information
specified by level_index

The information returned in error_info is dependant
on the structure specified in level_index. See
Table 11-89 for the error_info return formats.

1 Target address The target address is a 64-bit integer containing the
physical address where the data was to be
delivered or obtained. The target address also can
return the incoming address for external snoops
and TLB shoot-downs that generated a machine
check. The structure-specific error information
informs the caller if there is a valid target address to
be returned for the requested structure.

2 Requester identifier The requester identifier is a 64-bit integer that
specifies the bus agent that generated the
transaction responsible for generating the machine
check. The structure-specific error information
informs the caller if there is a valid requester
identifier.

74 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

See Table 11-89 for the format of error_info when structure-specific information is
requested.

The structure specified by the level_index may have the ability to log distinct multiple
errors. This can occur if the structure is accessed at the same time by more than one
instruction and the processor can log machine check information for each access. To
inform the caller of this occurrence, this procedure will return a value of one in the
inc_err_type return value.

It is important to note, that when the caller sees that the inc_err_type return value is
one, it should make a sub-sequent call with the err_type_index value incremented by 8.
If the structure-specific error information returns that there is a valid target address,
requester identifier, responder identifier or precise instruction pointer these can be
returned as well by incrementing the err_type_index value in the same manner. Refer
to the following example for more information.

For example, to gather information on the first error of a structure that can log multiple
errors, err_type_index would be called with the value of 0 first. The caller examines the
information returned in error_info to know if there is a valid target address, requester
identifier, responder identifier, or precise instruction pointer available for logging. If
there is, it makes sub-sequent calls with err_type_index equal to 1, 2, 3 and/or 4
depending on which valid bits are set. Additionally if the inc_err_type return value was
set to one, the caller knows that this structure logged multiple errors. To get the second
error of the structure it sets the err_type_index = 8 and the structure-specific
information is returned in error_info. The caller examines this error_info to know if
there is a valid target address, requester identifier, responder identifier, or precise

3 Responder identifier The responder identifier is a 64-bit integer that
specifies the bus agent that responded to a
transaction that was responsible for generating the
machine check. The structure-specific error
information informs the caller if there is a valid
responder identifier.

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual
address that points to the bundle that contained the
instruction responsible for the machine check. The
structure-specific error information informs the
caller if there is a valid precise instruction pointer.

5-7 Reserved Reserved

Table 11-89. error_info Return Format when info_index = 2 and
err_type_index = 0

level_index
Field Input

error_info Return Format

eic cache_check return format

edc cache_check return format

eit tlb_check return format

edt tlb_check return format

ebh bus_check return format

erf reg_file_check return format

ems uarch_check return format

Table 11-88. err_type_index Values (Continued)

err_type_index
value mod 8

Return Value Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 75

instruction pointer available for logging on the second error. If there is, it makes sub-
sequent calls with err_type_index equal to 9, 10, 11, and/or 12 depending on which
valid bits are set. The caller continues incrementing the err_type_index value in this
fashion until the inc_err_type return value is zero.

As shown in Table 11-89, the information returned in error_info varies based on which
structure information is being requested on. The next sections describe the error_info
return format for the different structures.

Cache_Check Return Format: The cache check return format is returned in
error_info when the user requests information on any instruction or data/unified caches
in the level_index input argument. The cache_check return format must be used to
report errors in cacheable transactions. These errors may also be reported using the
bus_check return format if the bus structures can detect these errors. The cache_check
return format is a bit-field that is described in Figure 11-20 and Table 11-90.

Figure 11-20. cache_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hlth rsvd dp rv wiv way mv mesi ic dc tl dl rsvd level op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is rsvd index

Table 11-90. cache_check Fields

Field Bits Description

op 3:0 Type of cache operation that caused the machine check:
0 – unknown or internal error
1 – load
2 – store
3 – instruction fetch or instruction prefetch
4 – data prefetch (both hardware and software)
5 – snoop (coherency check)
6 – cast out (explicit or implicit write-back of a cache line)
7 – move in (cache line fill)
All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 – cache line is invalid.
1 – cache line is held shared.
2 – cache line is held exclusive.
3 – cache line is modified.
All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 22 Reserved

dp 23 An uncorrectable (typically multiple-bit) error was detected and data was poisoned for the
corresponding cache line, without any corrupted data being consumed (i.e., no corrupted
data has been copied to processor registers).

76 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

TLB_Check Return Format: The tlb_check return format is returned in error_info
when the user requests information on any instruction or data/unified TLB in the
level_index input argument. The tlb_check return format is a bit-field that is described
in Figure 11-21 and Table 11-91.

rsvd 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the cache type and level reporting this error
supports hardware status tracking and the current status of this cache.
00 – No hardware status tracking is provided for the cache type and level reporting this
event.
01 – Status tracking is provided for this cache type and level and the current status is
normal status.a

10 – Status tracking is provided for the cache type and level and the current status is
cautionary.<Superscript>a When a cache reports a cautionary status the "hardware
damage" bit of the PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299)
will be set as well.
11 – Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds
a pre-defined threshold.

Figure 11-21. tlb_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hlth reserved op itc dtc itr dtr reserved level rv trv tr_slot

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-90. cache_check Fields (Continued)

Field Bits Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 77

Table 11-91. tlb_check Fields

Field Bits Description

tr_slot 7:0 Slot number of the translation register where the failure occurred.

trv 8 The tr_slot field in the TLB_check parameter is valid.

rv 9 Reserved

level 11:10 The level of the TLB where the error occurred. A value of 0 indicates the first level of TLB

reserved 15:12 Reserved

dtr 16 Error occurred in the data translation registers

itr 17 Error occurred in the instruction translation registers

dtc 18 Error occurred in data translation cache

itc 19 Error occurred in the instruction translation cache

op 23:20 Type of cache operation that caused the machine check:
0 – unknown
1 – TLB access due to load instruction
2 – TLB access due to store instruction
3 – TLB access due to instruction fetch or instruction prefetch
4 – TLB access due to data prefetch (both hardware and software)
5 – TLB shoot down access
6 – TLB probe instruction (probe, tpa)
7 – move in (VHPT fill)
8 – purge (insert operation that purges entries or a TLB purge instruction)
All other values are reserved.

reserved 29:24 Reserved

hlth 31:30 Health indicator. This field will report if the tlb type and level reporting this error supports
hardware status tracking and the current status of this tlb.
00 – No hardware status tracking is provided for the tlb type and level reporting this
event.
01 – Status tracking is provided for this tlb type and level and the current status is
normal.a

10 – Status tracking is provided for the tlb type and level and the current status is
cautionary.<Superscript>a When a tlb reports a cautionary status the "hardware
damage" bit of the PSP (see Figure 11-11, “Processor State Parameter,” on page 2:299)
will be set as well.
11 – Reserved

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the TLB_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

78 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Bus_Check Return Format: The bus_check return format is returned in error_info
when the user requests information on any level of hierarchy of the processor bus
structures as specified in the level_index input argument. The bus_check return format
must be used to report errors in uncacheable transactions. These errors must not be
reported using the cache_check return format. The bus_check return format is a bit-
field that is described in Figure 11-22 and Table 11-92.

a. Hardware is tracking the operating status of the structure type and level reporting the error. The hardware
reports a "normal" status when the number of entries within a structure reporting repeated corrections is at or
below a pre-defined threshold. A "cautionary" status is reported when the number of affected entries exceeds
a pre-defined threshold.

Figure 11-22. bus_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bsi dp hier sev type cc eb ib size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-92. bus_check Fields

Field Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.
0 – unknown
1 – partial read
2 – partial write
3 – full line read
4 – full line write
5 – implicit or explicit write-back operation
6 – snoop probe
7 – incoming or outgoing ptc.g
8 – write coalescing transactions
9 – I/O space read
10 – I/O space write
11 – inter-processor interrupt message (IPI)
12 – interrupt acknowledge or external task priority cycle
All other values are reserved

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

dp 23 A multiple-bit error was detected, and data was poisoned for the incoming cache line.

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 79

Reg_File_Check Return Format: The reg_file_check return format is returned in
error_info when the user requests information on any of the registers as specified in the
level_index input argument. The reg_file_check return format is a bit-field that is
described in Figure 11-23 and Table 11-93. When the reg_file_check return format is
returned, the target address, the requester identifier and the responder identifier will
always be invalid.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Figure 11-23. reg_file_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved rnv reg_num op id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rsvd mcc pv pl iv is reserved

Table 11-93. reg_file_check Fields

Field Bits Description

id 3:0 Register file identifier:
0 – unknown/unclassified
1 – General register (bank1)
2 – General register (bank 0)
3 – Floating-point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved

op 7:4 Identifies the operation that caused the machine check
0 – unknown
1 – read
2 – write
All other values are processor specific

reg_num 14:8 Identifies the register number that was responsible for generating the machine check

Table 11-92. bus_check Fields (Continued)

Field Bits Description

80 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Uarch_Check Return Format: The uarch_check return format is returned in
error_info when the user requests information on any of the micro-architectural
structures as specified in the level_index input argument. The uarch_check return
format is a bit-field that is described in Figure 11-24 and Table 11-94.

rnv 15 Specifies if the reg_num field is valid

reserved 53:16 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the reg_file_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the reg_file_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

reserved 62:60 Reserved

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

Figure 11-24. uarch_check Layout
3
1

3
0

2
9

2
8 27

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

reserved x
v

w
v

way op array_id level sid

6
3

6
2

6
1

6
0 59

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

p
i

r
p

r
q

t
v

m
cc

p
v

pl i
v

i
s

reserved index

Table 11-94. uarch_check Fields

Field Bits Description

sid 4:0 Structure identification. These bits identify the micro-architectural structure where the
error occurred. The definition of these bits are implementation specific.

level 7:5 Level of the micro-architectural structure where the error was generated. A value of 0
indicates the first level.

array_id 11:8 Identification of the array in the micro architectural structure where the error was
generated.
0 – unknown/unclassified
All other values are implementation specific

op 15:12 Type of operation that caused the error
0 – unknown
1 – read or load
2 – write or store
All other values are implementation specific

way 21:16 Way of the micro-architectural structure where the error was located.

Table 11-93. reg_file_check Fields

Field Bits Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 81

wv 22 The way field in the uarch_check parameter is valid.

xv 23 The index field in the uarch_check parameter is valid.

reserved 31:24 Reserved

index 39:32 Index or set of the micro-architectural structure where the error was located.

reserved 53:40 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier
has been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.

Table 11-94. uarch_check Fields

Field Bits Description

82 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

PAL_MC_ERROR_INJECT – Inject Processor Error (276)

Purpose: Injects the requested processor error or returns information on the supported injection
capabilities for this particular processor implementation.

Calling Conv: Stacked

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure enables error injection into processor structures based on information
specified by err_type_info, err_struct_info and err_data_buffer. Each invocation of the
procedure enables a single error to be injected. The procedure supports error injection
for at least one error of each severity type (correctable, recoverable, fatal).

The err_type_info argument specifies details of the error injection operation that is being
requested (see Figure 11-25). The err_struct_info and err_data_buffer specify additional
optional information. The format of err_struct_info is specified for each supported
structure type indicated by the err_struct field in err_type_info. err_data_buffer is optional,
depending on the structure type and whether trigger functionality is used. If
err_data_buffer is not required for the error injection, PAL will not attempt to access the
memory location specified in this parameter.

Argument Description

index Index of PAL_MC_ERROR_INJECT within the list of PAL procedures.

err_type_info Unsigned 64-bit integer specifying the first level error information which identifies the error
structure and corresponding structure hierarchy, and the error severity.

err_struct_info Unsigned 64-bit integer identifying the optional structure specific information that provides
the second level details for the requested error.

err_data_buffer 64-bit pointer to a memory buffer providing additional parameters for the requested error.
The address of the buffer must be 8-byte aligned.

Return Value Description

status Return status of the PAL_MC_ERROR_INJECT procedure.

capabilities 64-bit vector specifying the supported error injection capabilities for the input argument
combination of struct_hier, err_struct and err_sev fields in err_type_info.

resources 64-bit vector specifying the architectural resources that are used by the procedure.

Reserved 0

Status Value Description

0 Call completed without error

-1 Unimplemented procedure

-2 Invalid argument

-3 Call completed with error

-4 Call completed with error; the requested error could not be injected due to failure in locating
the target location in the specified structure.

-5 Argument was valid, but requested error injection capability is not supported.

-9 Call requires PAL memory buffer

Figure 11-25. err_type_info
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved struct_hier err_struct err_sev err_inj mode

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Impl_Spec Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 83

If query mode is selected through the mode bit in the err_type_info parameter, the
return value in the capabilities vector indicates which error injection types are
individually supported on the underlying implementation for the corresponding values
of err_struct, struct_hier and err_sev fields in err_type_info. The caller is expected to iterate
through all combinations of err_inj, err_sev, err_struct, and struct_hier to determine the full
extent of individual error injection types supported by the underlying implementation.

The capabilities vector does not indicate which combinations of error injection inputs
from err_struct_info are supported by the implementation. For example, if an
implementation supports tag error injection only for instruction caches and data error
injection only for data caches, this cannot be determined by the capabilities vector. In
this instance, the capabilities vector will report i=1, d=1, tag=1, data=1, indicating that
the error injection is supported individually for instruction and data caches, and for tag
and data fields, but not indicating which combinations of i, d, tag, and data are

Table 11-95. err_type_info

Field Bits Description

mode 2:0 Indicates the mode of operation for this procedure:
0 – Query mode
1 – Error inject mode (err_inj should also be specified)
2 – Cancel outstanding trigger. All other fields in err_type_info, err_struct_info and
err_data_buffer are ignored.
All other values are reserved.

err_inj 5:3 Indicates the mode of error injection:
0 – Error inject only (no error consumption)
1 – Error inject and consume
All other values are reserved.

err_sev 7:6 Indicates the severity desired for error injection/query. Definitions of the different error
severity types is given in Section 11.8, “PAL Glossary” on page 2:349.
0 – Corrected error
1 – Recoverable error
2 – Fatal error
3 – Reserved

err_struct 12:8 Indicates the structure identification for error injection/query:
0 - Any structure (cannot be used during query mode). When selected, the structure type
used for error injection is determined by PAL.
1 – Cache
2 – TLB
3 – Register file
4 – Bus/System interconnect
5-15 – Reserved
16-31 – Processor specific error injection capabilities. err_data_buffer is used to specify
error types. Please refer to the processor specific documentation for additional details.

struct_hier 15:13 Indicates the structure hierarchy for error injection/query:
0 - Any level of hierarchy (cannot be used during query mode). When selected, the
structure hierarchy used for error injection is determined by PAL.
1 – Error structure hierarchy level-1
2 – Error structure hierarchy level-2
3 – Error structure hierarchy level-3
4 – Error structure hierarchy level-4
All other values are reserved.

Reserved 47:16 Reserved

Impl_Spec 63:48 Processor specific error injection capabilities. Please refer to processor specific
documentation for additional details.

84 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

supported for error injection. The caller is required to use the query mode with
appropriate inputs in err_struct_info to determine which combinations of error injection
types are supported. If a given combination is not supported, the procedure returns
with status -5.

The procedure supports both an Error inject and Error inject and consume mode
(selectable through the err_inj field in err_type_info). In the former mode, the procedure
performs the requested error injection in the specified structure, but does not perform
any additional actions that can lead to consumption of the error and generation of the
subsequent machine check. In Error inject and consume mode, the procedure will inject
the error in the specified structure, and will perform additional operations to ensure that
the error condition is encountered resulting in a machine check. Note that in this case,
the machine check will be generated within the context of this procedure.

The procedure also provides the ability to set an error injection trigger. In this case, the
error injection is delayed until the operation specified by the trigger is encountered and
the executing context has the specified privilege level. In the absence of a trigger, the
error injection is performed at the time of procedure execution. If an error injection
trigger is specified, the mode field in err_type_info determines whether the error is
injected, or injected and consumed when the trigger operation is encountered. There
can be only one outstanding trigger programmed at a time. Subsequent procedure calls
that use the trigger functionality will overwrite the previous trigger parameters. Once a
trigger is programmed it remains active until either the trigger operation is encountered
or software cancels the outstanding trigger via this call. Software can cancel
outstanding triggers by specifying Cancel outstanding trigger via the mode bit in
err_type_info. The resources value returned is all zeroes, indicating that the procedure is
no longer using any architectural resources (specified in resources) for triggering
purposes. When using this mode, it is possible that the procedure execution may itself
satisfy the trigger conditions while in the process of cancelling the last programmed
trigger.

To support triggers, PAL may use existing architectural resources. The resources return
value defines the list of resources that are being used by PAL (see Figure 11-26).

In order for triggering to work when PAL is using the IBR or DBR registers, certain PSR
bits are required to be set. Software needs to ensure that the PSR.db and the PSR.ic
bits are set to one when executing the code that it is targeting with the trigger. If either
one of these bits are not set, then triggers will not work as defined.

Procedure operation is undefined if software overwrites or modifies the IBR/DBR
resources that PAL indicates it is using for a trigger. The IBR/DBR resources that PAL is
not using are available for software to program for their own use.

Figure 11-26. resources Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved dbr6 dbr4 dbr2 dbr0 ibr6 ibr4 ibr2 ibr0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 85

Multiprocessor coherency is not guaranteed when error injection is performed using this
procedure. Please refer to the processor-specific documentation for further details
regarding possible scenarios which can result in loss of coherency.

In cases where an error cannot be injected due to failure in locating the specified target
location (cache line, TC, TR, register number) for the given set of input arguments, the
procedure will return with status -4. For example, if the caller requests an error
injection in the cache and specifies cl_id=1 (virtual address provided), then PAL will
attempt to locate the cache line as indicated by the input virtual address. If the
corresponding cache line cannot be found (the cache line could have been evicted from
the cache in the time interval between the procedure call and the search process, or the
cache line may be in invalid state), then the procedure returns with a status value of -4.

The procedure does not check the settings of the error promotion bits (bit 53 and bit 60
in PAL_PROC_GET_FEATURES) before injecting an error in the specified structure.
Based on the configuration of these bits, the severity of the error reported may vary.

The detailed descriptions of err_struct_info and err_data_buffer are shown below.

Table 11-96. resources Return Value

Field Bits Description

ibr0 0 When 1, indicates that IBR0,1 are being used by the procedure for trigger functionality.

ibr2 1 When 1, indicates that IBR2,3 are being used by the procedure for trigger functionality.

ibr4 2 When 1, indicates that IBR4,5 are being used by the procedure for trigger functionality.

ibr6 3 When 1, indicates that IBR6,7 are being used by the procedure for trigger functionality.

dbr0 4 When 1, indicates that DBR0,1 are being used by the procedure for trigger functionality.

dbr2 5 When 1, indicates that DBR2,3 are being used by the procedure for trigger functionality.

dbr4 6 When 1, indicates that DBR4,5 are being used by the procedure for trigger functionality.

dbr6 7 When 1, indicates that DBR6,7 are being used by the procedure for trigger functionality.

Figure 11-27. err_struct_info – Cache
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved cl_dp cl_id cl_p c_t siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

Table 11-97. err_struct_info – Cache

Field Bits Description

siv 0 When 1, indicates that the structure information fields (c_t,cl_p,cl_id) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

c_t 2:1 Indicates which cache should be used for error injection:
0 – Reserved
1 – Instruction cache
2 – Data or unified cache
3 – Reserved

cl_p 5:3 Indicates the portion of the cache line where the error should be injected:
0 – Reserved
1 – Tag
2 – Data
3 – mesi
All other values are reserved.

86 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

cl_id 8:6 Indicates which mechanism is used to identify the cache line to be used for error
injection:
0 – Reserved
1 – Virtual address provided in the inj_addr field of the buffer pointed to by
err_data_buffer should be used to identify the cache line for error injection.
2 – Physical address provided in the inj_addr field of the buffer pointed to by
err_data_buffershould be used to identify the cache line for error injection.
3 – way and index fields provided in err_data_buffer should be used to identify the cache
line for error injection.
All other values are reserved.

cl_dp 9 When 1, indicates that a multiple bit, non-correctable error should be injected in the
cache line specified by cl_id. If this injected error is not consumed, it may eventually
cause a data-poisoning event resulting in a corrected error signal, when the associated
cache line is cast out (implicit or explicit write-back of the cache line). The error severity
specified by err_sev in err_type_info must be set to 0 (corrected error) when this bit is
set.

Reserved 31:10 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 154.
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 154.
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

Figure 11-28. capabilities vector for cache
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved wi va pa Reserved dp mesi data tag rv d i

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-98. capabilities vector for cache

Field Bits Description

i 0 Error injection for instruction caches is supported

d 1 Error injection for data caches is supported

rv 2 Reserved

Table 11-97. err_struct_info – Cache (Continued)

Field Bits Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 87

err_data_buffer needs to be specified for cache only if siv is 1 or tiv is 1, in err_struct_info.

tag 3 Error injection in tag portion of cache line is supported

data 4 Error injection in data portion of cache line is supported

mesi 5 Error injection in mesi portion of cache line is supported

dp 6 Error injection that results in data poisoning events is supported

Reserved 9:6 Reserved

pa 10 Error injection with physical address input is supported

va 11 Error injection with virtual address input is supported

wi 12 Error injection with way and index input is supported

Reserved 31:13 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-29. Buffer pointed to by err_data_buffer – Cache
63 0

trigger_addr

127 64

inj_addr

191 153152 133132 128

Reserved index way

Table 11-99. Buffer pointed to by err_data_buffer – Cache

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument.
This field is ignored if tiv in err_struct_info is 0. The field is defined similar to the addr
field in the debug breakpoint registers, as specified in Table 7-1, “Debug Breakpoint
Register Fields (DBR/IBR)” on page 153.

inj_addr 127:64 64-bit virtual or physical address used to identify the cache line to be used for error
injection. This field is valid only if cl_id in err_struct_info corresponds to either va or pa
(value 1 or 2).

way 132:128 Indicates the way information for error injection. This is used in combination with the
index field to identify the cache line for error injection. This field is valid only if cl_id in
err_struct_info is 3, else it is ignored.

index 152:133 Indicates the index information for error injection. This is used in combination with the
way field to identify the cache line for error injection. This field is valid only if cl_id in
err_struct_info is 3, else it is ignored.

Reserved 191:153 Reserved

Table 11-98. capabilities vector for cache (Continued)

Field Bits Description

88 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Figure 11-30. err_struct_info – TLB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved tr_slot tc_tr tt siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

Table 11-100. err_struct_info – TLB

Field Bits Description

siv 0 When 1, indicates that the structure information fields (tt, tc_tr, tr_slot) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

tt 2:1 Indicates which TLB should be used for error injection:
0 – Reserved
1 – Instruction TLB
2 – Data TLB
3 – Reserved

tc_tr 4:3 Indicates which portion of TLB should be used for error injection:
0 – Reserved
1 – tc: error should in injected in a Translation Cache (TC) entry. For TC insertion, the
entry is identified by the vpn and rid fields in err_data_buffer
2 – tr: error should in injected in a Translation Register (TR) entry. For TR insertion, the
slot number is specified by the tr_slot field.
3 – Reserved

tr_slot 12:5 Indicates the Translation Register (TR) slot number where the error should be injected.
This field is valid only when tc_tr is 2, else it is ignored.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The virtual address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer:
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 154.
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 154..
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 89

err_data_buffer needs to be specified for TLB only if tiv is 1 or if tc_tr value corresponds
to tc, in err_struct_info.

Figure 11-31. capabilities vector for TLB
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved tr tc rv i d

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-101. capabilities vector for TLB

Field Bits Description

d 0 Error injection for data TLB is supported

i 1 Error injection for instruction TLB is supported

rv 2 Reserved

tc 3 Error injection in TC entries is supported

tr 4 Error injection in TR entries is supported

Reserved 31:5 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-32. Buffer pointed to by err_data_buffer – TLB
63 0

trigger_addr

127 115 64

Reserved vpn

191 152151 133132 128

Reserved rid

Table 11-102. Buffer pointed to by err_data_buffer – TLB

Field Bits Description

trigger_addr 63:0 64-bit virtual address to be used by the trigger in the err_struct_info input argument.
The field is defined similar to the addr field in debug breakpoint registers, as specified
in Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 153.

vpn 115:64 Indicates the Virtual page number. This field is valid only when tc_tr in err_struct_info
is 1. vpn used in combination with rid to identify the TC entry for error injection.

Reserved 127:116 Reserved

rid 151:128 Indicates the region identifier. This field is valid only when tc_tr in err_struct_info is 1.
rid is used in combination with vpn to identify the TC entry for error injection.

Reserved 191:152 Reserved

Figure 11-33. err_struct_info – Register File
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved reg_num regfile_id siv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger tiv

90 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 11-103. err_struct_info – Register File

Field Bits Description

siv 0 When 1, indicates that the structure information fields (regfile_id, reg_num) are valid and
should be used for error injection. When 0, the structure information fields are ignored,
and the values of these fields used for error injection are implementation-specific.

regfile_id 4:1 Identifies the register file where the error should be injected:
0 – Any register file type. When selected, the register file used for error injection is
determined by PAL.
1 – General register (bank0)(GR16-31)
2 – General register (bank1)(GR0-127)
3 – Floating point register
4 – Branch register
5 – Predicate register
6 – Application register
7 – Control register
8 – Region register
9 – Protection key register
10 – Data breakpoint register
11 – Instruction breakpoint register
12 – Performance monitor control register
13 – Performance monitor data register
All other values are reserved.

reg_num 12:5 Indicates the register number where the error should be injected. Procedure operation is
undefined if there is a conflict between the register number chosen for error injection,
and the registers being used by the procedure for code execution (see PAL calling
conventions, Section 11.9.2).
0-127: Specific register number corresponding to regfile_id
128-254: Reserved for future use
255: Any register number. When selected, the actual register number used for error
injection is determined by PAL.

Reserved 31:13 Reserved

tiv 32 When 1, indicates that the trigger information fields (trigger, trigger_pl) are valid and
should be used for error injection. When 0, the trigger information fields are ignored and
error injection is performed immediately.

trigger 36:33 Indicates the operation type to be used as the error trigger condition. The address
corresponding to the trigger is specified in the trigger_addr field of the buffer pointed to
by err_data_buffer.
0 – Instruction memory access. The trigger match conditions for this operation type are
similar to the IBR address breakpoint match conditions as outlined in Section 7.1.2,
“Debug Address Breakpoint Match Conditions” on page 154.
1 – Data memory access. The trigger match conditions for this operation type are similar
to the DBR address breakpoint match conditions as outlined in Section 7.1.2, “Debug
Address Breakpoint Match Conditions” on page 154..
All other values are reserved.

trigger_pl 39:37 Indicates the privilege level of the context during which the error should be injected:
0 – privilege level 0
1 – privilege level 1
2 – privilege level 2
3 – privilege level 3
All other values are reserved.
If the implementation does not support privilege level qualifier for triggers (i.e. if
trigger_pl is 0 in the capabilities vector), this field is ignored and triggers can be taken at
any privilege level.

Reserved 63:40 Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 91

err_data_buffer needs to be specified for register file only if tiv in err_struct_info is 1.

Figure 11-34. capabilities Vector for Register File
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved regnum rsvd pmd pmc ibr dbr pkr rr cr ar pr br fr gr_b1 gr_b0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved trigger_pl trigger

Table 11-104. capabilities Vector for Register File

Field Bits Description

gr_b0 0 Error injection for General register (bank0) is supported

gr_b1 1 Error injection for General register (bank1) is supported

fr 2 Error injection for Floating point register is supported

br 3 Error injection for Branch register is supported

pr 4 Error injection for Predicate register is supported

ar 5 Error injection for Application register is supported

cr 6 Error injection for Control register is supported

rr 7 Error injection for Region register is supported

pkr 8 Error injection for Protection key register is supported

dbr 9 Error injection for Data breakpoint register is supported

ibr 10 Error injection for Instruction breakpoint register is supported

pmc 11 Error injection for Performance monitor control register is supported

pmd 12 Error injection for Performance monitor data register is supported

Reserved 15:13 Reserved

regnum 16 Error injection with register number input is supported

Reserved 31:17 Reserved

trigger 32 Error injection with trigger is supported

trigger_pl 33 Error injection with privilege level qualifier for trigger is supported

Reserved 63:34 Reserved

Figure 11-35. Buffer pointed to by err_data_buffer – Register File
63 0

trigger_addr

Table 11-105. Buffer pointed to by err_data_buffer – Register File

Field Bits Description

trigger_addr 63:0 64-bit address to be used by the trigger in the err_struct_info input argument. The field is
defined similar to the addr field in the debug breakpoint registers, as specified in
Table 7-1, “Debug Breakpoint Register Fields (DBR/IBR)” on page 153.

92 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

err_data_buffer does not need to be specified for bus/system interconnect.

Figure 11-36. err_struct_info – Bus/Processor Interconnect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-106. err_struct_info – Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved

Figure 11-37. capabilities vector for Bus/Processor Interconnect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-107. capabilities vector for Bus/Processor Interconnect

Field Bits Description

Reserved 63:0 Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 93

V2-R PAL_PERF_MON_INFO

PAL_PERF_MON_INFO – Get Processor Performance Monitor
Information (15)

Purpose: Returns Performance Monitor information about what can be counted and how to
configure the monitors to count the desired events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PERF_MON_INFO is called to determine the number of performance monitors and
the events which can be counted on the performance monitors. For more information on
performance monitoring, see Section 7.2, “Performance Monitoring” on page 2:155.
pm_info is a formatted 64-bit return register, as shown in Figure 11-40.

.

The pm_buffer argument points to a 128-byte memory area where mask information is
returned. The layout of pm_buffer is shown in Table 11-106.

Argument Description
index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer 64-bit pointer to a 128-byte memory buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PERF_MON_INFO procedure.
pm_info Information about the performance monitors implemented.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-40. Layout of pm_info Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

retired cycles width generic

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-105. pm_info Fields

Field Description

generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.

width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.

cycles Unsigned 8-bit number defining the event type for counting processor cycles.

retired Unsigned 8-bit number defining the event type for retired instruction bundles.

94 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 11-106. pm_buffer Layout

Offset Description

0x0 256-bit mask defining which PMC registers are implemented.

0x20 256-bit mask defining which PMD registers are implemented.

0x40 256-bit mask defining which registers can count cycles.

0x60 256-bit mask defining which registers can count retired bundles.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 95

V2-S PAL_VP_INFO

PAL_VP_INFO – PAL Virtual Processor Information (50)

Purpose: Returns information about virtual processor features.

Calling Conv: Static

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_VP_INFO procedure call is used to describe virtual processor features.

The feature_set input argument for PAL_VP_INFO describes which virtual-processor
feature_set information is being requested, and is composed of two fields as shown:

A vmm_id of 0 indicates architected feature sets, while others are implementation-
specific feature sets. Implementation-specific feature sets are described in VMM-specific
documentation.

This procedure will return a -8 if an unsupported feature_set argument is passed as an
input. The return status is used by the caller to know which feature sets are currently
supported on a particular VMM. This procedure always returns unimplemented (-1)
when called on physical processors.

For each valid feature_set, this procedure returns information about the virtual processor
in vp_info. Additional information may be returned in the memory buffer pointed to by
vp_buffer, as needed. Details, for a given implementation-specific feature_set, of whether
information is returned in the buffer, the size of the buffer, and the representation of
this information in the buffer and in vp_info are described in VMM-specific
documentation.

Argument Description
index Index of PAL_VP_INFO within the list of PAL procedures
feature_set Feature set information is being requested for.
vp_buffer 64-bit pointer to an 8-byte aligned memory buffer (if used).
Reserved 0

Return Value Description
status Return status of the PAL_VP_INFO procedure
vp_info Information about the virtual processor.
vmm_id Unique identifier for the VMM.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-8 Specified feature_set is not implemented

63 48 47 0

vmm_id index

16 48

96 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Architected feature_set 0 (vmm_id 0, index 0) is defined and required to be implemented
(if this procedure is implemented), but there are no architected features defined in it
yet, and so all bits in vp_info are reserved for architected feature_set 0. Other architected
feature sets (vmm_id 0, index>0) are undefined, and return -8 (Specified feature_set is
not implemented). Software can call PAL_VP_INFO with a feature_set argument of 0 to
get the vmm_id, although vmm_id is also returned for any other implemented feature
sets as well. For feature_set 0, the vp_buffer argument is ignored.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 97

V2-T PAL_VP_REGISTER

PAL_VP_REGISTER – PAL Register Virtual Processor (269)

Purpose: Register a different host IVT and/or a different optional virtualization intercept handler
for the virtual processor specified by vpd.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_REGISTER registers a different host IVT and/or a different optional
virtualization intercept handler specific to the virtual processor specified by vpd. On
creation of a virtual processor by PAL_VP_CREATE, the VMM specifies a host IVT specific
to the virtual processor. This procedure allows the VMM to specify a host IVT different
from the one specified during PAL_VP_CREATE.

The host virtual to host physical translation of the 64K region specified by vpd must be
mapped with either a DTR or DTC. See Section 11.10.2.1.3, “Making PAL Procedure
Calls in Physical or Virtual Mode” on page 2:358 for details on data translation
requirements of memory buffer pointers passed as arguments to PAL procedures. The
virt_env_vaddr parameter in the VPD must be setup with the host virtual address of the
PAL virtual environment buffer before calling this procedure.

The host_iva parameter specifies the host IVT to handle IVA-based interruptions when
this virtual processor is running. The VMM can use the same or different host_iva for
each virtual processor. The opt_handler specifies an optional virtualization intercept
handler. If a non-zero value is specified, all virtualization intercepts are delivered to this
handler. If a zero value is specified, all virtualization intercepts are delivered to the
Virtualization vector in the host IVT. Upon completion of this procedure, the VMM must
not relocate the IVT specified by the host_iva parameter and/or the virtualization
intercept handler specified by the opt_handler parameter. The VMM can call this

Argument Description
index Index of PAL_VP_REGISTER within the list of PAL procedures
vpd 64-bit host-virtual pointer to the Virtual Processor Descriptor (VPD)
host_iva 64-bit host-virtual pointer to the host IVT for the virtual processor
opt_handler 64-bit non-zero host-virtual pointer to an optional handler for virtualization intercepts. See

Section 11.7.3, “PAL Intercepts in Virtual Environment” on page 2:334 for details.

Return Value Description
status Return status of the PAL_VP_REGISTER procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

98 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

procedure again in case it wishes to associate a different host IVT and/or virtualization
intercept handler with the virtual processor.

PAL_VP_REGISTER returns invalid argument on unsupported virtualization optimization
combinations in vpd. See Section 11.7.4.4, “Virtualization Optimization Combinations”
on page 2:348 for details.

This procedure can be used by the VMM to:

• Relocate the host IVT associated with the virtual processor.
• Specify a different optional virtualization intercept handler for the virtual processor.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:447
for details.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 99

V2-U PAL_PLATFORM_ADDR and
Table 11-50

PAL_PLATFORM_ADDR – Set Processor Interrupt Block Address and
I/O Port Space Address (16)

Purpose: Specifies the physical address of the processor Interrupt Block and I/O Port Space.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret
as accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEE00000. If an
alternate address is selected by this call, it must be aligned on a 2 MB boundary, else
the procedure will return an error status (-2). Additionally, the address specified must
not overlay any firmware addresses in the 16 MB region immediately below the 4GB
physical address boundary. Some processor implementations may not support
relocation of the Interrupt block pointer, and an invalid argument status (-2) will be
returned. In this case, the default address space will be used.

The default value for the I/O block pointer is to the beginning of the 64 MB block at the
highest physical address supported by the processor. Therefore, its physical address is
implementation dependent. If an alternate address is selected by this call, it must be
aligned on a 64MB boundary, else the procedure will return an invalid argument status
(-2). Additionally, the address specified must not overlay any firmware addresses in the
16 MB region immediately below the 4GB physical address boundary. Some processor

Argument Description
index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.
type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt

block pointer should be initialized. 1 indicates that the processor I/O block pointer should be
initialized.

address Unsigned 64-bit integer specifying the address to which the processor I/O block or interrupt
block shall be set. The address must specify an implemented physical address on the
processor model, bit 63 is ignored.

Reserved 0

Return Value Description
status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

100 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

implementations may not support relocation of the I/O block pointer, and an invalid
argument status (-2) will be returned. In this case, the default address space will be
used.

The Interrupt and I/O Block pointers should be initialized by firmware before any Inter-
Processor Interrupt messages or I/O Port accesses. Otherwise the default block pointer
values will be used.

If a processor implementation supports relocation of neither the interrupt nor the I/O
block pointer, this procedure will not be implemented, and an unimplemented procedure
status (-1) will be returned. In this case, the default address spaces will be used.

Table 11-50.PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx Class Conv. Mode Buffer Description

PAL_BRAND_INFO 274 Opt. Stacked Both No Provides processor branding information.

PAL_BUS_GET_FEATURES 9 Req. Static Phys. No Return configurable processor bus interface
features and their current settings.

PAL_BUS_SET_FEATURESa

a. Calling this procedure may affect resources on multiple processors. Please refer to implementation-specific reference manuals
for details.

10 Req. Static Phys. No Enable or disable configurable features in
processor bus interface.

PAL_DEBUG_INFO 11 Req. Static Both No Return the number of instruction and data
breakpoint registers.

PAL_FIXED_ADDR 12 Req. Static Both No Return the fixed component of a processor’s
directed address.

PAL_FREQ_BASE 13 Opt. Static Both No Return the frequency of the output clock for use
by the platform, if generated by the processor.

PAL_FREQ_RATIOS 14 Req. Static Both No Return ratio of processor, bus, and interval time
counter to processor input clock or output clock
for platform use, if generated by the processor.

PAL_GET_HW_POLICY 48 Opt. Static Both Dep. Get current hardware resource sharing policy.

PAL_LOGICAL_TO_PHYSICAL 42 Opt. Static Both No Return information on which logical processors
map to a physical processor package.

PAL_PERF_MON_INFO 15 Req. Static Both No Return the number and type of performance
monitors.

PAL_PLATFORM_ADDRa 16 Opt. Static Both No Specify processor interrupt block address and I/
O port space address.

PAL_PROC_GET_FEATURES 17 Req. Static Phys. No Return configurable processor features and
their current setting.

PAL_PROC_SET_FEATURESa 18 Req. Static Phys. No Enable or disable configurable processor
features.

PAL_REGISTER_INFO 39 Req. Static Both No Return AR and CR register information.

PAL_RSE_INFO 19 Req. Static Both No Return RSE information.

PAL_SET_HW_POLICYa 49 Opt. Static Both Dep. Set current hardware resource sharing policy.

PAL_VERSION 20 Req. Static Both No Return version of PAL code.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 101

V2-V PAL_PSTATE_INFO

PAL_PSTATE_INFO – Get Information for Power/Performance
States (44)

Purpose: Returns information about the P-states supported by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: Information about available P-states is returned in the data buffer referenced by
pstate_buffer. Entries in the buffer are organized in an ascending order. For example, P0
(the highest performance P-state) state information is index 0 in the buffer, P1 state is
index 1 in the buffer, and so on. The return argument pstate_num indicates the number
of P-states supported on the given implementation. For example, if pstate_num is 4, it
indicates that P-states P0-P3 are available for that implementation. Information in
pstate_buffer is returned only for entries corresponding to the available P-states. Entries
corresponding to unimplemented P-states must be ignored. Figure 11-41 illustrates the
format of the pstate_buffer.

Argument Description
index Index of PAL_PSTATE_INFO within the list of PAL procedures.
pstate_buffer 64-bit pointer to a 256-byte memory buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PSTATE_INFO procedure.
pstate_num Unsigned integer denoting the number of P-states supported. The maximum value of this

field is 16.
dd_info Dependency domain information
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error

Figure 11-41. Layout of pstate_buffer Entry
offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 typical_power_dissipation reserved perf_index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+4 transition_latency_1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+8 transition_latency_2

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+12 reserved

64

102 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

• typical_power_dissipation is a 20-bit field denoting the typical processor package
power dissipation if all logical processors on the package are placed in this P-state,
measured in milliwatts.

• perf_index is a 7-bit field denoting the performance index of this P-state, relative to
the highest available P-state (P0). This field is enumerated relative to the index of
the highest-performing P-state. A value of 100 represents the minimum processor
performance in the P0 state. For example, if the P1-state has a value of 75, and the
next P-state (P2) has a value of 50, it implies that P1 performance is 25% lower
than P0 performance, and P2 performance is 50% lower than P0 performance.

• transition_latency_1 is a 32-bit field indicating the minimum number of processor
cycles required to initiate a transition to this P-state from any other P-state.

• transition_latency_2 is a 32-bit field indicating the minimum recommended number of
processor cycles that the caller should wait, before initiating a new P-state
transition with a reasonable chance of acceptance. This field is intended to give the
caller an estimation of the frequency with which PAL_SET_PSTATE procedure calls
should be made, without having the transition request be not accepted.

Dependency domain details for the logical processor are returned in dd_info. See
Figure 11-42 for dd_info layout.

• ddt (Dependency Domain Type) is a 3-bit unsigned integer denoting the type of
dependency domains that exist on the processor package. The possible values are
shown in Table 11-108. See Section 11.6.1, “Power/Performance States (P-states)”
on page 2:317 for details of the values in this field.

• ddid (Dependency Domain Identifier) is a 6-bit unsigned integer denoting this logical
processor's dependency domain. The ddid values are unique only for a given
processor package. Software can use the ddid field to determine which logical
processors belong to the same dependency domain within the package.

For more information on performance states and power management, refer to
Section 11.6.1, “Power/Performance States (P-states)” on page 2:317.

Figure 11-42. Layout of dd_info Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ddid rv ddt

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-108. Values for ddt Field

Value Description

0 Hardware independent (HIDD)

1 Hardware coordinated (HCDD)

2 Software coordinated (SCDD)

3-7 Reserved

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 103

V2-W PAL_GET/SET_HW_POLICY

PAL_GET_HW_POLICY – Retrieve Current Hardware Resource
Sharing Policy (48)

Purpose: Returns the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to return information on the current hardware resource sharing
policy. This procedure can also be used to identify which logical processors (see
“PAL_LOGICAL_TO_PHYSICAL – Get Information on Logical to Physical Processor
Mappings (42)” on page 2:404 for a definition of a logical processor) are impacted by
the various hardware sharing policies supported on the processor.

The procedure returns information about the current hardware sharing policy, the total
number of logical processors impacted by hardware sharing policies and the logical
address of one of the processors impacted by the hardware sharing policy.

The definition of the hardware sharing policies that can be returned in the cur_policy
value are defined in Table 11-80.

Argument Description
index Index of PAL_GET_HW_POLICY within the list of PAL procedures.
proc_num Unsigned 64-bit integer that specifies for which logical processor information is being

requested. This input argument must be zero for the first call to this procedure and can be a
maximum value of one less than the number of logical processors impacted by the hardware
resource sharing policy, which is returned by the num_impacted return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_HW_POLICY procedure.
cur_policy Unsigned 64-bit integer representing the current hardware resource sharing policy.
num_impacted Unsigned 64-bit integer that returns the number of logical processors impacted by the

policy input argument.
la Unsigned 64-bit integer containing the logical address of one of the logical processors

impacted by policy modification.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

104 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

The return value num_impacted specifies the number of logical processors impacted by
the hardware sharing policy. The return value la returns the logical address of one of the
logical processors impacted by the hardware sharing policy. The return value la is the
same value and format of that is returned by the PAL_FIXED_ADDR procedure, see
“PAL_FIXED_ADDR – Get Fixed Geographical Address of Processor (12)” on page 2:390
for details.

If the caller is interested in identifying all the logical processors impacted by the
hardware sharing policy, this procedure will need to be called a number of times equal
to the value returned in num_impacted return value. For each subsequent call it needs to
increment the 'proc_num' input argument.

The logical processor this procedure is made on can only return information about how
the hardware sharing policy impacts logical processors it is sharing hardware resources
with. For example a physical processor package may contain two multi-threaded cores.
On this example implementation the hardware sharing policy only impacts the two
threads on the core and this procedure would only return the two la's of the threads on
that core, but would not return the la's of the threads on the other core. When this
procedure was made on the other core, then that procedure call would return the la's of
the two threads on that core.

This procedure is only supported on processors that have multiple logical processors
sharing hardware resources that can be configured. On all other processor
implementations, this procedure will return the Unimplemented procedure return
status.

Table 11-80. Hardware policies returned in cur_policy

Value Name Description

0 Performance The processor has its hardware resources configured to achieve
maximum performance across all logical processors that share
hardware with the logical processor the procedure was made on.

1 Fairness The processor has its hardware resources configured to
approximately achieve equal sharing of competing hardware
resources among all the logical processors that share hardware
with the logical processor the procedure was made on.

2 High-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a greater share
of the competing hardware resources.

3 Exclusive High-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a greater share
of the competing hardware resources. See
“PAL_SET_HW_POLICY – Set Current Hardware Resource
Sharing Policy (49)” on page 105 for differences between high-
priority and exclusive high priority.

4 Low-priority The processor has its hardware resources configured such that the
logical processor this procedure was called on has a smaller share
of the competing hardware resources. This occurs when a
competing logical processor has itself set as high priority or
exclusive high priority.

 5-511 Reserved.

512 and above Implementation Specific Policy Information. Please refer to
processor-specific documentation for information on policies in this
range.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 105

PAL_SET_HW_POLICY – Set Current Hardware Resource Sharing
Policy (49)

Purpose: Sets the current hardware resource sharing policy of the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure is used to set the hardware resource sharing policy on the logical
processor it is called on. The setting of this policy will impact other logical processors on
the physical processor package. The logical processors impacted is returned by the
PAL_GET_HW_POLICY procedure, see “PAL_GET_HW_POLICY – Retrieve Current
Hardware Resource Sharing Policy (48)” on page 103 for details.

The input argument policy selects the hardware policy the caller would like to set. The
supported hardware policies are listed in Table 11-116 below. By default the hardware
always sets the processor in the performance policy at reset.

Argument Description
index Index of PAL_SET_HW_POLICY within the list of PAL procedures.
policy Unsigned 64-bit integer specifying the hardware resource sharing policy the caller is setting.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_SET_HW_POLICY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed successfully but could not change the hardware policy since a competing

logical processor is set in exclusive high priority
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Table 11-116. Processor Hardware Sharing Policies

Value Name Description

0 Performance The processor has its hardware resources configured to achieve
maximum performance across all logical processors.

1 Fairness The processor configures hardware resources to approximately
achieve equal sharing of competing hardware resources among all
impacted logical processors.

2 High-priority The processor configures hardware resources to provide the logical
processor this procedure was called on a greater share of the
competing hardware resources. All competing logical processors
will get a smaller share of the competing hardware resources.

106 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

The caller must be aware of which logical processors are impacted by hardware policy
changes, since making a call on one of the logical processors will impact all logical
processors that share the same hardware resources. For example if the caller selects
the high-priority policy on one logical processor A and then later in time selects fairness
policy on one of the competing logical processors B, the procedure will take away high-
priority status from logical processor A and change all impacted logical processors to
the fairness policy without an error.

If a caller wants to ensure that high-priority will not be taken away from a logical
processor, it can use the exclusive high-priority policy. This policy will return an error if
any competing logical processor tries to change the hardware policy. This ensures that
the caller can ensure a certain logical processor will retain high-priority status until that
status is explicitly released by that logical processor.

This procedure is only supported on processors that have multiple logical processors
sharing hardware resources that can be configured. On all other processor
implementations, this procedure will return the Unimplemented procedure return
status.

3 Exclusive High-priority The processor configures hardware resources such that the logical
processor this procedure was called on has a greater share of the
competing hardware resources. All competing logical processors
will get a smaller share of the competing hardware resources. This
policy also ensures that no other competing logical processor can
modify the hardware sharing policy until the logical processor that is
in exclusive high priority releases exclusive high-priority by
selecting a different policy.

4-511 Reserved

512 and above Implementation Specific Policies.
Please refer to processor-specific documentation for information on
policies supported in this range.

Table 11-116. Processor Hardware Sharing Policies (Continued)

Value Name Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 107

V2-X PAL_TEST_PROC

PAL_TEST_PROC – Perform a Processor Self-test (258)

Purpose: Performs the second phase of processor self test.

Calling Conv: Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked Register
calling convention. See additional description below.

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: The PAL_TEST_PROC procedure will perform a phase of the processor self-tests as
directed by the test_info and the test_control input parameters.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC.
This memory region must be aligned as specified by the alignment return value from
PAL_TEST_INFO, otherwise this procedure will return with an invalid argument return
value. The PAL_TEST_PROC routine requires that the memory has been initialized and
that there are no known uncorrected errors in the allocated memory.

The test_info input parameter specifies the size of the memory buffer passed to the
procedure and which phase of the processor self-test is requested to be run (either
phase one or phase two).

Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.
test_address Physical address of the memory buffer to be used by processor self-test. The memory

attribute of the physical memory buffer must be cacheable (i.e., bit 63 must be zero). See
Section 4.4.2 Physical Addressing Memory Attributes for details.

test_info Input argument specifying the size of the memory buffer passed and the phase of the
processor self-test that should be run. See Figure 11-44.

test_params Input argument specifying the self-test control word and the allowable memory attributes that
can be used with the memory buffer. See Figure 11-45.

Return Value Description
status Return status of the PAL_TEST_PROC procedure.
self-test_state Formatted 8-byte value denoting the state of the processor after self-test. The format is

described in Section 11.2.2.3, “Definition of Self Test State Parameter” on page 2:295.
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but hardware failures occurred during self-test
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Figure 11-44. Layout of test_info Argument
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

buffer_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

108 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

• buffer_size indicates the size in bytes of the memory buffer that is passed to this
procedure. buffer_size must be greater than or equal in size to the bytes_needed
return value from PAL_TEST_INFO, otherwise this procedure will return with an
invalid argument return value.

• test_phase defines which phase of the processor self-tests are requested to be run.
A value of zero indicates to run phase two of the processor self-tests. Phase two of
the processor self-tests are ones that require external memory to execute correctly.
A value of one indicates to run phase one of the processor self-tests. Phase one of
the processor self-tests are tests run during PALE_RESET and do not depend on
external memory to run correctly. When the caller requests to have phase one of
the processor self-test run via this procedure call, a memory buffer may be needed
to save and restore state as required by the PAL calling conventions. The procedure
PAL_TEST_INFO informs the caller about the requirements of the memory buffer.

The test_params input argument specifies which memory attributes are allowed to be
used with the memory buffer passed to this procedure as well as the self-test control
word. The self-test control word test_control controls the runtime and coverage of the
processor self-test phase specified in the test_phase parameter.

• attributes specifies the memory attributes that are allowed to be used with the
memory buffer passed to this procedure. The attributes parameter is a vector
where each bit represents one of the virtual memory attributes defined by the
architecture. The bit field position corresponds to the numeric memory attribute
encoding defined in Section 4.4, “Memory Attributes” on page 2:75. The caller is
required to support the cacheable attribute for the memory buffer, otherwise an
invalid argument will be returned.

• test_control is the self-test control word corresponding to the test_phase passed.
This test_control directs the coverage and runtime of the processor self-tests
specified by the test_phase input argument. Information about the self-test control
word can be found in Section 11.2.3, “PAL Self-test Control Word” on page 2:297
and information on if this feature is implemented and the number of bits supported
can be obtained by the PAL_TEST_INFO procedure call. If this feature is
implemented by the processor, the caller can selectively skip parts of the processor
self-test by setting test_control bits to a one. If a bit has a zero, this test will be
run. The values in the unimplemented bits are ignored. If PAL_TEST_INFO indicated
that the self-test control word is not implemented, this procedure will return with an
invalid argument status if the caller sets any of the test_control bits.

PAL_TEST_PROC will classify the processor after the self-test in one of four states:
CATASTROPHIC FAILURE, FUNCTIONALLY RESTRICTED, PERFORMANCE RESTRICTED,
or HEALTHY. These processor self-test states are described in Figure 11-9 on
page 2:295. If PAL_TEST_PROC returns in the FUNCTIONALLY RESTRICTED or
PERFORMANCE RESTRICTED states the self-test_status return value can provide

test_phase buffer_size

Figure 11-45. Layout of test_param Argument
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control reserved attributes

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_control

Figure 11-44. Layout of test_info Argument
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 109

additional information regarding the nature of the failure. In the case of a
CATASTROPHIC FAILURE, the procedure does not return.

The procedure will only perform memory accesses to the buffer passed to it using the
memory attributes indicated in the attributes bit-field. The caller must ensure that the
memory region passed to the procedure is in a coherent state.

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the
processor. These bits or registers must be restored upon exit from PAL_TEST_PROC
with the exception of the translation caches, which are evicted as a result of testing.
PAL_TEST_PROC is free to invalidate all cache contents. If the caller depends on the
contents of the cache, they should be flushed before making this call. PAL_TEST_PROC
requires that the RSE is set up properly to handle spills and fills to a valid memory
location if the contents of the register stack are needed. PAL_TEST_PROC requires that
the memory buffer passed to it is not shared with other processors running this
procedure in the system at the same time. PAL_TEST_PROC will use this memory region
in a non-coherent manner. PAL_TEST_PROC may overwrite floating point registers 32-
127 without restoring their values upon exit.

110 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 111

V2-Y PAL_VM_TR_READ

PAL_VM_TR_READ – Read a Translation Register (261)

Purpose: Reads a translation register.

Calling Conv: Stacked Registers

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: This procedure reads the specified translation register and returns its data in the buffer
starting at tr_buffer. The format of the data is returned in Translation Insertion Format,
as described in Figure 4-5, “Translation Insertion Format,” on page 2:54. In addition, bit
0 of the IFA in Figure 4-5 (an ignored field in the figure) will return whether the
translation is valid. If bit 0 is 1, the translation is valid.

Some fields of the translation register returned may be invalid. The validity of these
fields is indicated by the return argument TR_valid. If these fields are not valid, the
caller should ignore the indicated fields when reading the translation register returned
in tr_buffer.

• av – denotes that the access rights field is valid
• pv – denotes that the privilege level field is valid
• dv – denotes that the dirty bit is valid
• mv – denotes that the memory attributes are valid.

Argument Description
index Index of PAL_VM_TR_READ within the list of PAL procedures.
reg_num Unsigned 64-bit number denoting which TR to read.
tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are

reserved.
tr_buffer Physical address of the 32-byte memory buffer in which translation data is returned.

Return Value Description
status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-50.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-50. Layout of TR_valid Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mv dv pv av

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

112 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

A value of 1 denotes a valid field. A value of 0 denotes an invalid field. Any value
returned in an invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Note: This procedure may have the side effect of flushing all the translation cache
entries depending on the implementation.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 113

V2-Z PAL_VP_INIT_ENV

PAL_VP_INIT_ENV – PAL Initialize Virtual Environment (268)

Purpose: Allows a logical processor to enter a virtual environment.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: This procedure allows a logical processor to enter a virtual environment. This call must
be made after calling PAL_VP_ENV_INFO and before calling other PAL virtualization
procedures and services. All of the logical processors in a virtual environment share the
same PAL virtual environment buffer. The buffer must be 4K aligned. The first
logical processor entering the virtual environment initializes the buffer provided by the
VMM. Subsequent processors can enter the virtual environment at any time and will not
perform initialization to the buffer.

PAL_VP_ENV_INFO must be called before this procedure to determine the configuration
options and size requirements for the virtual environment. The VMM is required to
maintain the ITR and DTR translations of the PAL virtual environment buffer throughout
this procedure. See “PAL_VP_ENV_INFO – PAL Virtual Environment Information (266)”
on page 2:474 for more information on PAL_VP_ENV_INFO.

After this procedure, it is optional for the VMM to maintain the TR mapping for the PAL
virtual environment buffer. If the TR translations for the buffer are not installed, the

Argument Description
index Index of PAL_VP_INIT_ENV within the list of PAL procedures
config_options 64-bit vector of global configuration settings – See Table 11-114. for details
pbase_addr Host-physical base address of a block of contiguous physical memory for the PAL virtual

environment buffer – This memory area must be allocated by the VMM and be 4K aligned.
The first logical processor to enter the environment will initialize the physical block for
virtualization operations.

vbase_addr Host-virtual base address of the corresponding physical memory block for the PAL virtual
environment buffer – The VMM must maintain the host-virtual to host-physical data and
instruction translations in TRs for addresses within the allocated address space. Logical
processors in this virtual environment will use this address when transitioning to virtual mode
operations.

Return Value Description
status Return status of the PAL_VP_INIT_ENV procedure
vsa_base Virtualization Service Address – VSA specifies the virtual base address of the PAL

virtualization services in this virtual environment.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

114 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

VMM must not make any PAL virtualization service calls; and the VMM must be prepared
to handle DTLB faults during any PAL virtualization procedure calls.

Table 11-114 shows the layout of the config_options parameter. The config_options
parameter configures the global configuration options and global virtualization
optimizations for all the logical processors in the virtual environment. All logical
processors in the virtual environment must specify the same value in the config_options
parameter during PAL_VP_INIT_ENV, otherwise processor operation is undefined.

Table 11-114. config_options – Global Configuration Options

Field Bit Description

Global
Configuration
Options

initialize 0 If 1, this procedure will initialize the PAL virtual environment buffer for
this virtual environment. If 0, this procedure will not initialize the PAL
virtual environment buffer. On a multiprocessor system, the VMM must
wait until this procedure completes on the first logical processor before
calling this procedure on additional logical processors; otherwise pro-
cessor operation is undefined.

fr_pmc 1 If 1, for virtualization intercepts the performance counters are disabled
by setting PSR.up and pp to 0, see Section 11.7.3.1, “PAL Virtualiza-
tion Intercept Handoff State” on page 2:335 for details on PSR settings
at virtualization intercepts; for all other IVA-based interruptions PSR.pp
and up are set according to Interruption State column described in Pro-
cessor Status Field table described in Table 3-2, “Processor Status
Register Fields” on page 2:24. The VMM must have DCR.pp equal to 0
when the fr_pmc option is 1, whenever the IVA control register on the
logical processor is set to point to the per-virtual-processor host IVT.
See Section 11.7.2, “Interruption Handling in a Virtual Environment” on
page 2:333 and Table 11-21, “IVA Settings after PAL Virtualization-
related Procedures and Services” on page 2:334 for details on per-vir-
tual-processor host IVT.
If 0, PSR.pp and up are set according to Interruption State column
described in Processor Status Field table described in Table 3-2, “Pro-
cessor Status Register Fields” on page 2:24

be 2 Big-endian – Indicates the endian setting of the VMM. If 1, the values in
the VPD are stored in big-endian format and the PAL services calls are
made with PSR.be bit equal to 1. If 0, the values in the VPD are stored
in little-endian format and the PAL services calls are made with PSR.be
bit equal to 0. The VMM must match DCR.be with the value set in this
field when the IVA control register on the logical processor is set to
point to the per-virtual-processor host IVT. See Section 11.7.2, “Inter-
ruption Handling in a Virtual Environment” on page 2:333 and
Table 11-21, “IVA Settings after PAL Virtualization-related Procedures
and Services” on page 2:334 for details on per-virtual-processor host
IVT.

Reserved 7:3 Reserved.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 115

The fr_pmc bit in the global config_options parameter specifies whether the performance
counters will be frozen when the Virtualization optimizations specified in the
Virtualization Acceleration Control (vac) and Virtualization Disable Control (vdc) are
running. When a virtual processor is running, the vac field in the corresponding VPD
specifies whether a certain virtualization accelerations are enabled. If the fr_pmc in the
virtual environment was also enabled, the performance counters will be frozen when
the enabled virtualization optimizations are running. See Section 11.7.4, “Virtualization
Optimizations” on page 2:337 for details on Virtualization Acceleration Control (vac) and
Virtualization Disable Control (vdc).

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:447
for details.

Global
Virtualization
Optimizations

opcode 8 This bit must be set to 1 – opcode information will be provided to the
VMM during PAL intercepts within the virtual environment. This opcode
may or may not be guaranteed to be the opcode that triggered the
intercept. See Table 11-113, “vp_env_info – Virtual Environment Infor-
mation Parameter” on page 2:474 for details. This procedure returns
an error if this bit is not set to 1.

cause 9 If 1, the causes of virtualization intercepts will be provided to the VMM
during PAL intercept handoffs within the virtual environment. No infor-
mation will be provided if 0. See Section 11.7.3.1, “PAL Virtualization
Intercept Handoff State” on page 2:335 for details of virtualization inter-
cept handoffs.

impl 63 Implementation-specific configuration option. This field is ignored if not
implemented. Please refer to processor-specific documentation for
details.

Table 11-114. config_options – Global Configuration Options (Continued)

Field Bit Description

116 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 117

V2-AA PAL_VP_RESTORE

PAL_VP_RESTORE – PAL Restore Virtual Processor (270)

Purpose: Restores virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_RESTORE performs an implementation-specific restore operation of the virtual
processor specified by the vpd parameter on the logical processor. The host virtual to
host physical translation of the 64K region specified by vpd and the PAL virtual
environment buffer must be mapped by instruction and data translation registers (TR).
The instruction and data translation must be maintained until after the next invocation
of PAL_VP_SAVE or PAL_VPS_SAVE and a different host IVT is set up by the VMM by
writing to the IVA control register. PAL_VP_RESTORE configures the logical processor to
run the specified virtual processor by loading implementation-specific virtual processor
context from the VPD, and returns control back to the VMM.

This procedure performs an implicit PAL_VPS_SYNC_WRITE; there is no need for the
VMM to invoke PAL_VPS_SYNC_WRITE unless the VPD values are modified before
resuming the virtual processor. After the procedure, the caller is responsible for
restoring all of the architectural state before resuming to the new virtual processor
through PAL_VPS_RESUME_NORMAL or PAL_VPS_RESUME_HANDLER.

Upon completion of this procedure, the IVA-based interruptions will be delivered to the
host IVT associated with this virtual processor.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:447
for details.

Argument Description
index Index of PAL_VP_RESTORE within the list of PAL procedures.
vpd 64-bit host-virtual pointer to the Virtual Processor Descriptor (VPD).
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_RESTORE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

118 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 119

V2-BB PAL_VP_SAVE/
PAL_VP_TERMINATE

PAL_VP_SAVE – PAL Save Virtual Processor (271)

Purpose: Saves virtual processor state for the specified vpd on the logical processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: PAL_VP_SAVE performs an implementation-specific save operation of the virtual
processor specified by the vpd parameter on the logical processor. The host virtual to
host physical translation of the 64K region specified by vpd must be mapped by
instruction and data translation registers (TR).

This procedure performs an implicit PAL_VPS_SYNC_READ; there is no need for the
VMM to invoke PAL_VPS_SYNC_READ to synchronize the implementation-specific
control resources before this procedure.

Upon completion of this procedure, the IVA-based interruptions will continue to be
delivered to the host IVT associated with this virtual processor. After this procedure, the
VMM can setup the IVA control register to use a different host IVT.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:447
for details.

Argument Description
index Index of PAL_VP_SAVE within the list of PAL procedures
vpd 64-bit host-virtual pointer to the Virtual Processor Descriptor (VPD)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VP_SAVE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

120 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

PAL_VP_TERMINATE – PAL Terminate Virtual Processor (272)

Purpose: Terminates operation for the specified virtual processor.

Calling Conv: Stacked Registers

Mode: Virtual

Buffer: Dependent

Arguments:

Returns:

Status:

Description: Terminates operation of the virtual processor specified by vpd on the logical processor.
The host virtual to host physical translation of the 64K region specified by vpd must be
mapped by instruction and data translation registers (TR). See Section 11.10.2.1.3,
“Making PAL Procedure Calls in Physical or Virtual Mode” on page 2:359 for details on
data translation requirements of memory buffer pointers passed as arguments to PAL
procedures. All resources allocated for the execution of the virtual machine are freed.

Upon successful execution of PAL_VP_TERMINATE procedure and if the iva parameter is
non-zero, the IVA control register will contain the value from the iva parameter.

This procedure returns unimplemented procedure when virtual machine features are
disabled. See Section 3.4, “Processor Virtualization” on page 2:44 and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on page 2:447
for details.

Argument Description
index Index of PAL_VP_TERMINATE within the list of PAL procedures
vpd 64-bit host virtual pointer to the Virtual Processor Descriptor (VPD)
iva Optional 64-bit host virtual pointer to the IVT when this procedure is done
Reserved 0

Return Value Description
status Return status of the PAL_VP_TERMINATE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-9 Call requires PAL memory buffer

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 121

V2-CC PAL_PROC_GET/SET
FEATURES

PAL_PROC_GET_FEATURES – Get Processor Dependent Features
(17)

Purpose: Provides information about configurable processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES procedure calls are used
together to describe current settings of processor features and to allow modification of
some of these processor features.

The feature_set input argument for PAL_PROC_GET_FEATURES describes which
processor feature_set information is being requested. Table 11-112 describes processor
feature_set zero. The feature_set values are split into two categories: architected and
implementation-specific. The architected feature sets have values from 0-15. The
implementation-specific feature sets are values 16 and above. The architected feature
sets are described in this document. The implementation-specific feature sets are
described in processor-specific documentation.

This procedure will return an invalid argument if an unsupported architectural
feature_set is passed as an input. Implementation-specific feature sets will start at 16
and will expand in an ascending order as new implementation-specific feature sets are
added. The return status is used by the caller to know which implementation-specific
feature sets are currently supported on a particular processor.

Argument Description
index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0
feature_set Feature set information is being requested for.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-112.
feature_status 64-bit vector of current feature settings. See Table 11-112.
feature_control 64-bit vector of features controllable by software.

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported

122 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

For each valid feature_set, this procedure returns which processor features are
implemented in the features_avail return argument, the current feature setting is in
feature_status return argument, and the feature controllability in the feature_control
return argument. Only the processor features which are implemented and controllable
can be changed via PAL_PROC_SET_FEATURES. Features for which features_avail are 0
(unimplemented features) also have features_status and features_control of 0.

In Table 11-112, the class field indicates whether a feature is required to be available
(Req.) or is optional (Opt.). The control field indicates which features are required to be
controllable. Req. indicates that the feature must be controllable, Opt. indicates that the
feature may optionally be controllable, and No indicates that the feature cannot be
controllable. The control field applies only when the feature is available. The sense of
the bits is chosen so that for features which are controllable, the default hand-off value
at exit from PALE_RESET should be 0. PALE_CHECK and PALE_INIT will not modify
these features.

Table 11-112. Processor Features

Bit Class Control Scope Description

63 Opt. Req. Maya Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted
to the Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the
occurrence of each Bus Error. Setting this bit has no effect if BINIT signalling
is disabled. (See PAL_BUS_GET/SET_FEATURES)

62 Opt. Req. May Enable MCA promotion. When 1, machine check aborts (MCAs) are
promoted to the Bus Error signal, and the BERR pin is assert on each
occurrence of an MCA. Setting this bit has no effect if BERR signalling is
disabled. (See PAL_BUS_GET/SET_FEATURES)

61 Opt. Req. May Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs)
are promoted to the Bus Initialization signal, and the BINIT pin is assert on
each occurrence of an MCA. Setting this bit has no effect if BINIT signalling
is disabled. (See PAL_BUS_GET/SET_FEATURES)

60 Opt. Req. Nob Enable CMCI promotion When 1, Corrected Machine Check Interrupts
(CMCI) are promoted to MCAs. They are also further promoted to BERR if
bit 39, Enable MCA promotion, is also set and they are promoted to BINIT if
bit 38, Enable MCA to BINIT promotion, is also set. This bit has no effect if
MCA signalling is disabled (see PAL_BUS_GET/SET_FEATURES)

59 Opt. Req. May Disable Cache. When 0, the processor performs cast outs on cacheable
pages and issues and responds to coherency requests normally. When 1,
the processor performs a memory access for each reference regardless of
cache contents and issues no coherence requests and responds as if the
line were not present. Cache contents cannot be relied upon when the cache
is disabled.
WARNING: Semaphore instructions may not be atomic or may cause
Unsupported Data Reference faults if caches are disabled.

58 Opt. Req. May Disable Coherency. When 0, the processor uses normal coherency requests
and responses. When 1, the processor answers all requests as if the line
were not present.

57 Opt. Req. May Disable Dynamic Power Management (DPM). When 0, the hardware may
reduce power consumption by removing the clock input from idle functional
units. When 1, all functional units will receive clock input, even when idle.

56 Opt. Req. May Disable a BINIT on internal processor time-out. When 0, the processor may
generate a BINIT on an internal processor time-out. When 1, the processor
will not generate a BINIT on an internal processor time-out. The event is
silently ignored.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 123

55 Opt. Req. May Enable external notification when the processor detects hardware errors
caused by environmental factors that could cause loss of deterministic
behavior of the processor. When 1, this bit will enable external notification,
when 0 external notification is not provided. The type of external notification
of these errors is processor-dependent. A loss of processor deterministic
behavior is considered to have occurred if these environmentally induced
errors cause the processor to deviate from its normal execution and
eventually causes different behavior which can be observed at the processor
bus pins. Processor errors that do not have this effects (i.e., software
induced machine checks) may or may not be promoted depending on the
processor implementation.

54 Opt. Req. No Enable the use of the vmsw instruction. When 0, the vmsw instruction
causes a Virtualization fault when executed at the most privileged level.
When 1, this bit will enable normal operation of the vmsw instruction. This bit
has no effect if virtual machine features are disabled (see bit 40).

53 Opt. Req. May Enable MCA signaling on unconsumed data-poisoning event detection.
When 0, a CMCI will be signaled on error detection. When 1, an MCA will be
signaled on error detection. Note that the reported error severity depends on
which method is chosen for signaling; see Section 11.3.2.3, “Unconsumed
Data-Poisoning Event Handling” for details.If this feature is not supported,
then the corresponding argument is ignored when calling
PAL_PROC_SET_FEATURES. Note that the functionality of this bit is
independent of the setting in bit 60 (Enable CMCI promotion), and that the
bit 60 setting does not affect CMCI signaling for data-poisoning related
events.

52 Opt. Req. May Disable P-states. Provides the ability to disable p-states when they are
implemented by the processor. When the feature is available and status is 1
or when the feature is not available, the PAL P-state procedures
(PAL_PSTATE_INFO, PAL_SET_PSTATE, PAL_GET_PSTATE) will return
with a status of -1 (Unimplemented procedure). When the feature is
available and the status is 0, the PAL P-state procedures will operate
normally.

51:48 N/A N/A N/A Reserved

47 Opt. Opt. May Disable Dynamic branch prediction. When 0, the processor may predict
branch targets and speculatively execute, but may not commit results. When
1, the processor must wait until branch targets are known to execute.

46 Opt Opt. May Disable Dynamic Instruction Cache Prefetch. When 0, the processor may
prefetch into the caches any instruction which has not been executed, but
whose execution is likely. When 1, instructions may not be fetched until
needed or hinted for execution. (Prefetch for a hinted branch is allowed even
when dynamic instruction cache prefetch is disabled.)

45 Opt. Opt. May Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch
into the caches any data which has not been accessed by instruction
execution, but which is likely to be accessed. When 1, no data may be
fetched until it is needed for instruction execution or is fetched by an lfetch
instruction.

44 Opt. Req. No Disable Spontaneous Deferral. When 1, the processor may optionally defer
speculative loads that do not encounter any exception conditions, but that
trigger other implementation-dependent conditions (e.g., cache miss). This
behavior is gated by the programming model described in Section 5.5.5,
“Deferral of Speculative Load Faults” on page 2:105. When 0, spontaneous
deferral is disabled.

43 Opt. Opt. No Disable Dynamic Predicate Prediction. When 0, the processor may predict
predicate results and execute speculatively, but may not commit results until
the actual predicates are known. When 1, the processor shall not execute
predicated instructions until the actual predicates are known.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description

124 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

42 Opt. No ROc XR1 through XR3 implemented. Denotes whether XR1 - XR3 are
implemented for machine check recovery. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is
ignored.

41 Opt. No RO XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS
are implemented for machine check recovery. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be enabled or
disabled by PAL_PROC_SET_FEATURES. The corresponding argument is
ignored.

40 Opt. Opt. No Virtual Machine features implemented and enabled. When 1, PSR.vm is
implemented and virtual machines features are not disabled. When 0
(features_status) and when the corresponding features_avail bit is 1, virtual
machines features are implemented but are disabled. When both the
features_avail and features_status bits are 0, virtual machine features are
not implemented.
If implemented and controllable, virtual machine features may be disabled
by writing this bit to 0 with PAL_PROC_SET_FEATURES. However, virtual
machine features cannot be re-enabled except via a power-on; hence, if
virtual machine features are disabled, this bit reads as 0 for both
features_status and features_control (but still 1 for features_avail).

39 Opt. Req. May Variable P-state performance: A value of 1 indicates that the processor is
optimizing performance for the given P-state power budget by dynamically
varying the frequency, such that maximum performance is achieved for the
power budget. A value of 0 indicates that P-states have no frequency
variation or very small frequency variations for their given power budget.

38 Opt. No RO Simple implementation of unimplemented instruction addresses. Denotes
how an unimplemented instruction address is recorded in IIP on an
Unimplemented Instruction Address trap or fault. When 1, the full
unimplemented address is recorded in IIP; when 0, the address is sign
extended (virtual addresses) or zero extended (physical addresses). See
Section 3.3.5.3, “Interruption Instruction Bundle Pointer (IIP – CR19)” for
details. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

37 Opt. No RO INIT, PMI, and LINT pins present. Denotes the absence of INIT, PMI, LINT0
and LINT1 pins on the processor. When 1, the pins are absent. When 0, the
pins are present. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

36 Opt. No RO Unimplemented instruction address reported as fault. Denotes how the
processor reports the detection of unimplemented instruction addresses.
When 1, the processor reports an Unimplemented Instruction Address fault
on the unimplemented address; when 0, it reports an Unimplemented
Instruction Address trap on the previous instruction in program order. This
feature may only be interrogated by PAL_PROC_GET_FEATURES. It may
not be enabled or disabled by PAL_PROC_SET_FEATURES. The
corresponding argument is ignored.

35 Opt. Req. May Disable data speculation and the ALAT. When 1, data speculation checks
(chk.a) always fail (i.e., always branch to the target address), thus
triggering recovery code; check loads (ld.c) always re-load the target
register. When 0, data speculation works as normal.

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 125

PAL_PROC_SET_FEATURES – Set Processor Dependent Features
(18)

Purpose: Enables/disables specific processor features.

Calling Conv: Static Registers Only

Mode: Physical

Buffer: Not dependent

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor
features and their current setting before calling PAL_PROC_SET_FEATURES. The list of
possible processor features is defined in Table 11-112. Any attempt to set processor
features which cannot be set will be ignored.

34 Opt. No RO Interruption Instruction Bundle interruption registers (IIB0, IIB1)
implemented. Denotes whether IIB registers are implemented. This feature
may only be interrogated by PAL_PROC_GET_FEATURES. It may not be
enabled or disabled by PAL_PROC_SET_FEATURES. The corresponding
argument is ignored.

33 Opt. No RO Interval Timer Offset register (ITO) implemented. Denotes whether ITO
register is implemented. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

32 Opt. No RO Performance Monitoring Count Halted and Virtual Memory Mask control bits
implemented. Denotes whether PMC.ch and PMC.vmm have been
implemented. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

31:0 N/A N/A N/A Reserved

a. May-span-multiple-logical-processors. Readers should refer to implementation-specific document for details.
b. Setting this bit affect logical-processor only.
c. Read-only bit.

Argument Description
index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
feature_set Feature set to apply changes to. See PAL_PROC_GET_FEATURES for more information on

feature sets.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported

Table 11-112. Processor Features (Continued)

Bit Class Control Scope Description

126 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 127

V2-DD Figure 13-6

Figure 13-6. Flowchart Showing P-state Feedback Policy

(1) getperfindex = PAL_GET_PSTATE
(2) OS computes newpstate index from
busy ratio and getperfindex

newpstate == getperfindex?

PAL_SET_PSTATE(newpstate)

Check
Return Code

Mark newpstate as Invalid

Current P-state =
newpstate

Reset
busy ratio

Yes

No

Status == -2

Status == 0
(Accepted)

Status == 1
(Not Accepted)

(Invalid)

128 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 129

V2-EE PMI Flows

13.3.3 PMI Flows

Processors based on the Itanium architecture implement the Platform Management
Interrupt (PMI) to enable platform developers to provide high level system functions,
such as power management and security, in a manner that is transparent not only to
the application software but also to the operating system.

When the processor detects a PMI event it will transfer control to the registered PAL PMI
entry point. PAL will set up the hand off state which includes the vector information for
the PMI and hand off control to the registered SAL PMI handler. To reduce the PMI
overhead time, the PAL PMI handler will not save any processor architectural state to
memory. Please see Section 11.5, “Platform Management Interrupt (PMI)” for more
information on PAL PMI handling.

The SAL PMI handler may choose to save some additional register state to SAL allocated
memory to handle the specific platform event that generated the PMI.

The OS will not see the PMI events generated by the platform. The platform developer
can use PMI interrupts to provide features to differentiate their platform.

PMI handling was designed to be executed with minimal overhead. The SAL firmware
code copies the PAL and SAL PMI handlers to RAM during system reset and registers
these entry-points with the processor. This code is then run with the cacheable memory
attribute to improve performance.

Depending on the implementation and the platform, there may be no special hardware
protection of the PMI code's memory area in RAM, and the protection of this code space
may be through the OS memory management’s paging mechanism. SAL sets the
correct attributes for this memory space and passes this information to the OS through
the Memory Descriptor Table from EfiGetMemoryMap() [UEFI].

130 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 131

V3-A br — Branch

br — Branch
Format: (qp) br.btype.bwh.ph.dh target25 ip_relative_form B1

(qp) br.btype.bwh.ph.dh b1 = target25 call_form, ip_relative_form B3
br.btype.bwh.ph.dh target25 counted_form, ip_relative_form B2
br.ph.dh target25 pseudo-op

(qp) br.btype.bwh.ph.dh b2 indirect_form B4
(qp) br.btype.bwh.ph.dh b1 = b2 call_form, indirect_form B5

br.ph.dh b2 pseudo-op

Description: A branch condition is evaluated, and either a branch is taken, or execution continues
with the next sequential instruction. The execution of a branch logically follows the
execution of all previous non-branch instructions in the same instruction group. On a
taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target25
operand, in assembly, specifies a label to branch to. This is encoded in the branch
instruction as a signed immediate displacement (imm21) between the target bundle and
the bundle containing this instruction (imm21 = target25 - IP >> 4). For indirect branches,
the target address is taken from BR b2.

There are two pseudo-ops for unconditional branches. These are encoded like a
conditional branch (btype = cond), with the qp field specifying PR 0, and with the bwh hint
of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For the basic branch types, the

Table 2-6. Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-rel or Indirect

call Conditional procedure call Qualifying predicate IP-rel or Indirect

ret Conditional procedure return Qualifying predicate Indirect

ia Invoke IA-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog
count

IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and
epilog count

IP-rel

132 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

branch condition is simply the value of the specified predicate register. These basic
branch types are:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
• call: If the qualifying predicate is 1, the branch is taken and several other actions

occur:
• The current values of the Current Frame Marker (CFM), the EC application

register and the current privilege level are saved in the Previous Function State
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.
• A return link value is placed in BR b1.
• The values in the DAHRs (if implemented) are pushed onto the DAHS, and the

DAHRs revert to default values.
• return: If the qualifying predicate is 1, the branch is taken and the following

occurs:
• CFM, EC, and the current privilege level are restored from PFS. (The privilege

level is restored only if this does not increase privilege.)
• The caller’s stack frame is restored.
• If the return lowers the privilege, and PSR.lp is 1, then a Lower-Privilege

Transfer trap is taken.
• The values in the DAHRs (if implemented) are copied from the top level of the

DAHS, the DAHS is popped, and the bottom level of the DAHS reverts to default
values.

• ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect
of the branch is to invoke the IA-32 instruction set (by setting PSR.is to 1) and
begin processing IA-32 instructions at the virtual linear target address contained in
BR b2{31:0}. If the qualifying predicate is not PR 0, an Illegal Operation fault is
raised. If instruction set transitions are disabled (PSR.di is 1), then a Disabled
Instruction Set Transition fault is raised.
The IA-32 target effective address is calculated relative to the current code
segment, i.e. EIP{31:0} = BR b2{31:0} - CSD.base. The IA-32 instruction set can
be entered at any privilege level, provided PSR.di is 0. If PSR.dfh is 1, a Disabled FP
Register fault is raised on the target IA-32 instruction. No register bank switch nor
change in privilege level occurs during the instruction set transition.
Software must ensure the code segment descriptor (CSD) and selector (CS) are
loaded before issuing the branch. If the target EIP value exceeds the code segment
limit or has a code segment privilege violation, an IA_32_Exception(GPFault) is
raised on the target IA-32 instruction. For entry into 16-bit IA-32 code, if BR b2 is
not within 64K-bytes of CSD.base a GPFault is raised on the target instruction.
EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
PSR.da, PSR.id, PSR.ia, PSR.dd, and PSR.ed are cleared to zero after br.ia
completes execution and before the first IA-32 instruction begins execution.
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.
Software must set PSR properly before branching to the IA-32 instruction set;
otherwise processor operation is undefined. See Table 3-2, “Processor Status
Register Fields” on page 2:24 for details.
Software must issue a mf instruction before the branch if memory ordering is
required between IA-32 processor consistent and Itanium unordered memory

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 133

references. The processor does not ensure Itanium-instruction-set-generated writes
into the instruction stream are seen by subsequent IA-32 instruction fetches. br.ia
does not perform an instruction serialization operation. The processor does ensure
that prior writes (even in the same instruction group) to GRs and FRs are observed
by the first IA-32 instruction. Writes to ARs within the same instruction group as
br.ia are not allowed, since br.ia may implicitly reads all ARs. If an illegal RAW
dependency is present between an AR write and br.ia, the first IA-32 instruction
fetch and execution may or may not see the updated AR value.
IA-32 instruction set execution leaves the contents of the ALAT undefined. Software
can not rely on ALAT values being preserved across an instruction set transition. All
registers left in the current register stack frame are undefined across an instruction
set transition. On entry to IA-32 code, existing entries in the ALAT are ignored. If
the register stack contains any dirty registers, an Illegal Operation fault is raised on
the br.ia instruction. The current register stack frame is forced to zero. To flush
the register file of dirty registers, the flushrs instruction must be issued in an
instruction group preceding the br.ia instruction. To enhance the performance of
the instruction set transition, software can start the register stack flush in parallel
with starting the IA-32 instruction set by 1) ensuring flushrs is exactly one
instruction group before the br.ia, and 2) br.ia is in the first B-slot. br.ia should
always be executed in the first B-slot with a hint of “static-taken” (default),
otherwise processor performance will be degraded.
If a br.ia causes any Itanium traps (e.g., Single Step trap, Taken Branch trap, or
Unimplemented Instruction Address trap), IIP will contain the original 64-bit target
IP. (The value will not have been zero extended from 32 bits.)

Another branch type is provided for simple counted loops. This branch type uses the
Loop Count application register (LC) to determine the branch condition, and does not
use a qualifying predicate:

• cloop: If the LC register is not equal to zero, it is decremented and the branch is
taken.

In addition to these simple branch types, there are four types which are used for
accelerating modulo-scheduled loops (see also Section 4.5.1, “Modulo-scheduled Loop
Support” on page 1:75). Two of these are for counted loops (which use the LC register),
and two for while loops (which use the qualifying predicate). These loop types use
register rotation to provide register renaming, and they use predication to turn off
instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some
while loops, a portion of the prolog stages. In the epilog phase, EC is decremented each
time around and, for most loops, when EC is one, the pipeline has been drained, and
the loop is exited. For certain types of optimized, unrolled software-pipelined loops, the
target of a br.cexit or br.wexit is set to the next sequential bundle. In this case, the
pipeline may not be fully drained when EC is one, and continues to drain while EC is
zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken
or not depends on the kernel branch condition (LC for counted types, and the qualifying
predicate for while types) and on the epilog condition (whether EC is greater than one
or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop)
are used when the loop decision is located at the bottom of the loop body and therefore
a taken branch will continue the loop while a fall through branch will exit the loop. The

134 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

exit types (cexit and wexit) are used when the loop decision is located somewhere other
than the bottom of the loop and therefore a fall though branch will continue the loop
and a taken branch will exit the loop. The exit types are also used at intermediate
points in an unrolled pipelined loop. (For more details, see Section 4.5.1, “Modulo-
scheduled Loop Support” on page 1:75).

The modulo-scheduled loop types are:

• ctop and cexit: These branch types behave identically, except in the determination
of whether to branch or not. For br.ctop, the branch is taken if either LC is non-
zero or EC is greater than one. For br.cexit, the opposite is true. It is not taken if
either LC is non-zero or EC is greater than one and is taken otherwise.
These branch types also use LC and EC to control register rotation and predicate
initialization. During the prolog and kernel phase, when LC is non-zero, LC counts
down. When br.ctop or br.cexit is executed with LC equal to zero, the epilog
phase is entered, and EC counts down. When br.ctop or br.cexit is executed with
LC equal to zero and EC equal to one, a final decrement of EC and a final register
rotation are done. If LC and EC are equal to zero, register rotation stops. These
other effects are the same for the two branch types, and are described in
Figure 2-3.

wtop and wexit: These branch types behave identically, except in the
determination of whether to branch or not. For br.wtop, the branch is taken if
either the qualifying predicate is one or EC is greater than one. For br.wexit, the
opposite is true. It is not taken if either the qualifying predicate is one or EC is
greater than one, and is taken otherwise.
These branch types also use the qualifying predicate and EC to control register
rotation and predicate initialization. During the prolog phase, the qualifying
predicate is either zero or one, depending upon the scheme used to program the
loop. During the kernel phase, the qualifying predicate is one. During the epilog
phase, the qualifying predicate is zero, and EC counts down. When br.wtop or
br.wexit is executed with the qualifying predicate equal to zero and EC equal to
one, a final decrement of EC and a final register rotation are done. If the qualifying

Figure 2-3. Operation of br.ctop and br.cexit

LC?
== 0 (Epilog)

ctop, cexit

ctop: Branch

cexit: Fall-thru
ctop: Fall-thru
cexit: Branch

EC?

EC--

PR[63] = 0

RRB--

EC = EC

PR[63] = 1

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB = RRB

LC = LCLC-- LC = LC LC = LC

Kernel)

!= 0(Prolog /

(Special
Unrolled
Loops)

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 135

predicate and EC are zero, register rotation stops. These other effects are the same
for the two branch types, and are described in Figure 2-4.

The loop-type branches (br.cloop, br.ctop, br.cexit, br.wtop, and br.wexit) are
only allowed in instruction slot 2 within a bundle. Executing such an instruction in either
slot 0 or 1 will cause an Illegal Operation fault, whether the branch would have been
taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are
slightly different for branch instructions. Changes to BRs, PRs, and PFS by non-branch
instructions are visible to a subsequent branch instruction in the same instruction group
(i.e., a limited RAW is allowed for these resources). This allows for a low-latency
compare-branch sequence, for example. The normal RAW requirements apply to the LC
and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the
reading and writing instructions are branches. For example, a br.wtop or br.wexit
may not use PR[63] as its qualifying predicate and PR[63] cannot be the qualifying
predicate for any branch preceding a br.wtop or br.wexit in the same instruction
group.

For dependency purposes, the loop-type branches effectively always write their
associated resources, whether they are taken or not. The cloop type effectively always
writes LC. When LC is 0, a cloop branch leaves it unchanged, but hardware may
implement this as a re-write of LC with the same value. Similarly, br.ctop and
br.cexit effectively always write LC, EC, the RRBs, and PR[63]. br.wtop and br.wexit
effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether
Prediction Strategy hints are shown in Table 2-7. Sequential Prefetch hints are shown in
Table 2-8. Branch Cache Deallocation hints are shown in Table 2-9. See Section 4.5.2,
“Branch Prediction Hints” on page 1:78.

Figure 2-4. Operation of br.wtop and br.wexit

PR[qp]?

wtop, wexit

wtop: Branch

wexit: Fall-thru

wtop: Fall-thru

wexit: Branch

EC?

EC--

PR[63] = 0

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB--

EC = EC

PR[63] = 0

RRB = RRB

(Prolog /

Epilog) (Epilog)

==0 (Prolog / Epilog)
(Special

Unrolled

Loops)
== 1

Kernel)

(Prolog /

136 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Operation: if (ip_relative_form) // determine branch target
tmp_IP = IP + sign_ext((imm21 << 4), 25);

else // indirect_form
tmp_IP = BR[b2];

if (btype != ‘ia’) // for Itanium branches,
tmp_IP = tmp_IP & ~0xf; // ignore bottom 4 bits of target

lower_priv_transition = 0;

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

dahr_push_onto_dahs();
}

Table 2-7. Branch Whether Hint

bwh Completer Branch Whether Hint

spnt Static Not-Taken

sptk Static Taken

dpnt Dynamic Not-Taken

dptk Dynamic Taken

Table 2-8. Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint

few or none Few lines

many Many lines

Table 2-9. Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint

none Don’t deallocate

clr Deallocate branch information

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 137

break;

case ‘ret’: // return restores stack frame
tmp_taken = PR[qp];
if (tmp_taken) {

// tmp_growth indicates the amount to move logical TOP *up*:
// tmp_growth = sizeof(previous out) - sizeof(current frame)
// a negative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sol) - CFM.sof;
alat_frame_update(-AR[PFS].pfm.sol, 0);
rse_fatal = rse_restore_frame(AR[PFS].pfm.sol,

 tmp_growth, CFM.sof);
if (rse_fatal) {
// See Section 6.4, “RSE Operation” on page 2:137

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else // normal branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();
AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { // ... and restores privilege

PSR.cpl = AR[PFS].ppl;
lower_priv_transition = 1;

}

dahr_pop_from_dahs();
}
break;

case ‘ia’: // switch to IA mode
tmp_taken = 1;
if (PSR.ic == 0 || PSR.dt == 0 || PSR.mc == 1 || PSR.it == 0)

undefined_behavior();
if (qp != 0)

illegal_operation_fault();
if (AR[BSPSTORE] != AR[BSP])

illegal_operation_fault();
if (PSR.di)

disabled_instruction_set_transition_fault();
PSR.is = 1; // set IA-32 Instruction Set Mode
CFM.sof = 0; //force current stack frame
CFM.sol = 0; //to zero
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();

//compute effective instruction pointer
EIP{31:0} = tmp_IP{31:0} - AR[CSD].Base;

// Note the register stack is disabled during IA-32 instruction

138 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

// set execution
break;

case ‘cloop’: // simple counted loop
if (slot != 2)

illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] != 0)

AR[LC]--;
break;

case ‘ctop’:
case ‘cexit’: // SW pipelined counted loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘ctop’) tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if (btype == ‘cexit’)tmp_taken = !((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] != 0) {

AR[LC]--;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_regs();

} else if (AR[EC] != 0) {
AR[LC] = AR[LC];
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

case ‘wtop’:
case ‘wexit’: // SW pipelined while loop

if (slot != 2)
illegal_operation_fault();

if (btype == ‘wtop’) tmp_taken = (PR[qp] || (AR[EC] u> 1));
if (btype == ‘wexit’)tmp_taken = !(PR[qp] || (AR[EC] u> 1));
if (PR[qp]) {

AR[EC] = AR[EC];
PR[63] = 0;
rotate_regs();

} else if (AR[EC] != 0) {
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 139

CFM.rrb.pr = CFM.rrb.pr;
}
break;

}
if (tmp_taken) {

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(lower_priv_transition,

 tmp_IP);
if (lower_priv_transition && PSR.lp)

lower_privilege_transfer_trap();
if (PSR.tb)

taken_branch_trap();
}

Interruptions: Illegal Operation fault Lower-Privilege Transfer trap
Disabled Instruction Set Transition fault Taken Branch trap
Unimplemented Instruction Address trap

Additional Faults on IA-32 target instructions:
IA_32_Exception(GPFault)
Disabled FP Reg Fault if PSR.dfh is 1

140 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 141

V3-B brl — Branch Long

Format: (qp) brl.btype.bwh.ph.dh target64 X3
(qp) brl.btype.bwh.ph.dh b1 = target64 call_form X4

brl.ph.dh target64 pseudo-op

Format:

Description: A branch condition is evaluated, and either a branch is taken, or execution continues
with the next sequential instruction. The execution of a branch logically follows the
execution of all previous non-branch instructions in the same instruction group. On a
taken branch, execution begins at slot 0.

Long branches are always IP-relative. The target64 operand, in assembly, specifies a label
to branch to. This is encoded in the long branch instruction as an immediate
displacement (imm60) between the target bundle and the bundle containing this
instruction (imm60 = target64 - IP >> 4). The L slot of the bundle contains 39 bits of imm60.

There is a pseudo-op for long unconditional branches, encoded like a conditional branch
(btype = cond), with the qp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the
branch has other effects (such as writing a link register). For all long branch types, the
branch condition is simply the value of the specified predicate register:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.
• call: If the qualifying predicate is 1, the branch is taken and several other actions

occur:
• The current values of the Current Frame Marker (CFM), the EC application

register and the current privilege level are saved in the Previous Function State
application register.

• The caller’s stack frame is effectively saved and the callee is provided with a
frame containing only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.
• A return link value is placed in BR b1.
• The values in the DAHRs (if implemented) are pushed onto the DAHS, and the

DAHRs revert to default values.

Read after Write (RAW) and Write after Read (WAR) dependency requirements for long
branch instructions are slightly different than for other instructions but are the same as
for branch instructions. See page 3:26 for details.

This instruction must be immediately followed by a stop; otherwise its behavior is
undefined.

Table 2-10. Long Branch Types

btype Function Branch Condition Target Address

cond or none Conditional branch Qualifying predicate IP-relative

call Conditional procedure call Qualifying predicate IP-relative

142 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Values for various branch hint completers are the same as for branch instructions.
Whether Prediction Strategy hints are shown in Table 2-7 on page 3:27, Sequential
Prefetch hints are shown in Table 2-8 on page 3:27, and Branch Cache Deallocation
hints are shown in Table 2-9 on page 3:27. See Section 4.5.2, “Branch Prediction Hints”
on page 1:78.

This instruction is not implemented on the Itanium processor, which takes an Illegal
Operation fault whenever a long branch instruction is encountered, regardless of
whether the branch is taken or not. To support the Itanium processor, the operating
system is required to provide an Illegal Operation fault handler which emulates taken
and not-taken long branches. Presence of this instruction is indicated by a 1 in the lb bit
of CPUID register 4. See Section 3.1.11, “Processor Identification Registers” on
page 1:34.

Operation: tmp_IP = IP + (imm60 << 4); // determine branch target
if (!followed_by_stop())

undefined_behavior();
if (!instruction_implemented(BRL))

illegal_operation_fault();

switch (btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

dahr_push_onto_dahs();
}
break;

}
if (tmp_taken) {

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if (!impl_uia_fault_supported() &&

((PSR.it && unimplemented_virtual_address(tmp_IP, PSR.vm))
 || (!PSR.it && unimplemented_physical_address(tmp_IP))))
unimplemented_instruction_address_trap(0,tmp_IP);

if (PSR.tb)

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 143

taken_branch_trap();
}

Interruptions: Illegal Operation fault Taken Branch trap
Unimplemented Instruction Address trap

144 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 145

V3-C mov — Move Data Access
Hint Register

mov — Move Data Access Hint Register
Format: (qp) mov dahr3 = imm16 M50

Description: The source operand is copied to the destination register.

The value in imm16 is placed in DAHR dahr3. In processors that do not implement
DAHRs, this instruction executes as a nop.

Accesses of the DAHRs are always implicitly serialized. While implicitly serialized, read-
after-write and write-after-write dependency violations should be avoided (e.g., setting
a DAHR, followed by br.call in the same instruction group).

Operation: if (PR[qp]) {
DAHR[dahr3] = ignored_field_mask(DAHR_TYPE, dahr3, imm16);

}

Interruptions: None

146 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 147

V3-D hint — Performance Hint

Format: (qp) hint imm21 pseudo-op
(qp) hint.i imm21 i_unit_form I18
(qp) hint.b imm21 b_unit_form B9
(qp) hint.m imm19 m_unit_form M49
(qp) hint.f imm21 f_unit_form F16
(qp) hint.x imm62 x_unit_form X5

Description: Provides a performance hint to the processor about the program being executed. It has
no effect on architectural machine state, and operates as a nop instruction except for its
performance effects.

The immediate, imm19, imm21 or imm62, specifies the hint. For the x_unit_form, the L slot
of the bundle contains the upper 41 bits of imm62.

This instruction has five forms, each of which can be executed only on a particular
execution unit type. The pseudo-op can be used if the unit type to execute on is
unimportant.

Operation: if (PR[qp]) {
if (x_unit_form)

hint = imm62;
if (m_unit_form)

hint =imm19;
else // i_unit_form || b_unit_form || f_unit_form

hint = imm21;

Table 2-31. Hint Immediates

imm19, imm21
or imm62

Mnemonic Hint

0x0 @pause Indicates to the processor that the currently executing stream is waiting,
spinning, or performing low priority tasks. This hint can be used by the
processor to allocate more resources or time to another executing stream
on the same processor. For the case where the currently executing stream
is spinning or otherwise waiting for a particular address in memory to
change, an advanced load to that address should be done before
executing a hint @pause; this hint can be used by the processor to
resume normal allocation of resources or time to the currently executing
stream at the point when some other stream stores to that address.

0x1 @priority Indicates to the processor that the currently executing stream is performing
a high priority task. This hint can be used by the processor to allocate more
resources or time to this stream. Implementations will ensure that such
increased allocation is only temporary, and that repeated use of this hint
will not impair longer-term fairness of allocation.

0x02-0x3f These values are available for future architected extensions and will
execute as a nop on all current processors. Use of these values may
cause unexpected performance issues on future processors and should
not be used.

other Implementation specific. Performs an implementation-specific hint action.
Consult processor model-specific documentation for details.

148 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

if (is_supported_hint(hint))
execute_hint(hint);

}

Interruptions: None

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 149

V3-E itc — Insert Translation
Cache

itc — Insert Translation Cache
Format: (qp) itc.i r2 instruction_form M41

(qp) itc.d r2 data_form M41

Description: An entry is inserted into the instruction or data translation cache. GR r2 specifies the
physical address portion of the translation. ITIR specifies the protection key, page size
and additional information. The virtual address is specified by the IFA register and the
region register is selected by IFA{63:61}. The processor determines which entry to
replace based on an implementation-specific replacement algorithm.

The visibility of the itc instruction to externally generated purges (ptc.g, ptc.ga)
must occur before subsequent memory operations. From a software perspective, this is
similar to acquire semantics. Serialization is still required to observe the side-effects of
a translation being present.

itc must be the last instruction in an instruction group; otherwise, its behavior
(including its ordering semantics) is undefined.

The TLB is first purged of any overlapping entries as specified by Table 4-1 on
page 2:52.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

To ensure forward progress, software must ensure that PSR.ic remains 0 until rfi-ing
to the instruction that requires the translation. If psr.ic is to be set to 1 after the itc
instruction with an ssm or mov-to-psr instruction, a srlz.i instruction is required
between the itc and the instruction that sets psr.ic. This srlz.i instruction must be in a
separate instruction group from the one containing the itc, and must be in a separate
instruction group from the one containing the instruction that sets psr.ic.

150 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Operation: if (PR[qp]) {
if (!followed_by_stop())

undefined_behavior();
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r2].nat)

register_nat_consumption_fault(0);

tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(ITC_TYPE);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
slot = tlb_replacement_algorithm(DTC_TYPE);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TC);

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 151

V3-F itr - Insert Translation
Register

itr — Insert Translation Register
Format: (qp) itr.i itr[r3] = r2 instruction_form M42

(qp) itr.d dtr[r3] = r2 data_form M42

Description: A translation is inserted into the instruction or data translation register specified by the
contents of GR r3. GR r2 specifies the physical address portion of the translation. ITIR
specifies the protection key, page size and additional information. The virtual address is
specified by the IFA register and the region register is selected by IFA{63:61}.

As described in Table 4-1, “Purge Behavior of TLB Inserts and Purges” on page 2:52,
the TLB is first purged of any entries that overlap with the newly inserted translation.
The translation previously contained in the TR slot specified by GR r3 is not necessarily
purged from the processor's TLBs and may remain as a TC entry. To ensure that the
previous TR translation is purged, software must use explicit ptr instructions before
inserting the new TR entry.

This instruction can only be executed at the most privileged level, and when PSR.ic and
PSR.vm are both 0.

Operation: if (PR[qp]) {
if (PSR.ic)

illegal_operation_fault();
if (PSR.cpl != 0)

privileged_operation_fault(0);
if (GR[r3].nat || GR[r2].nat)

register_nat_consumption_fault(0);

slot = GR[r3]{7:0};
tmp_size = CR[ITIR].ps;
tmp_va = CR[IFA]{60:0};
tmp_rid = RR[CR[IFA]{63:61}].rid;
tmp_va = align_to_size_boundary(tmp_va, tmp_size);

tmp_tr_type = instruction_form ? ITR_TYPE : DTR_TYPE;

if (is_reserved_reg(tmp_tr_type, slot))
reserved_register_field_fault();

if (is_reserved_field(TLB_TYPE, GR[r2], CR[ITIR]))
reserved_register_field_fault();

if (!impl_check_mov_ifa() &&
unimplemented_virtual_address(CR[IFA], PSR.vm))

unimplemented_data_address_fault(0);
if (PSR.vm == 1)

virtualization_fault();

if (instruction_form) {
tlb_must_purge_itc_entries(tmp_rid, tmp_va, tmp_size);

152 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

tlb_may_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_inst(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

} else { // data_form
tlb_must_purge_dtc_entries(tmp_rid, tmp_va, tmp_size);
tlb_may_purge_itc_entries(tmp_rid, tmp_va, tmp_size);
tlb_insert_data(slot, GR[r2], CR[ITIR], CR[IFA], tmp_rid, TR);

}
}

Interruptions: Machine Check abort Reserved Register/Field fault
Illegal Operation fault Unimplemented Data Address fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For the instruction_form, software must issue an instruction serialization operation
before a dependent instruction fetch access. For the data_form, software must issue a
data serialization operation before issuing a data access or non-access reference
dependent on the new translation.

Notes: The processor may use invalid translation registers for translation cache entries.
Performance can be improved on some processor models by ensuring translation
registers are allocated beginning at translation register zero and continuing
contiguously upwards. If, after execution of the itr instruction, PSR.ic is to be set to a 1
with an ssm or mov-to-psr instruction, software must execute a srlz.i instruction before
setting PSR.ic=1. If a srlz.i is used, it must be in a separate instruction group from the
itr instruction, and must be in a separate instruction group from the instruction that
sets psr.ic to 1.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 153

V3-G ld — Load

ld — Load
Format: (qp) ldsz.ldtype.ldhintx r1 = [r3] no_base_update_form M1

(qp) ldsz.ldtype.ldhint r1 = [r3], r2 reg_base_update_form M2
(qp) ldsz.ldtype.ldhint r1 = [r3], imm9 imm_base_update_form M3
(qp) ld16.ldhintx r1, ar.csd = [r3] sixteen_byte_form, no_base_update_form M1
(qp) ld16.acq.ldhintx r1, ar.csd = [r3] sixteen_byte_form, acquire_form,

no_base_update_form M1
(qp) ld8.fill.ldhintx r1 = [r3] fill_form, no_base_update_form M1
(qp) ld8.fill.ldhint r1 = [r3], r2 fill_form, reg_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], imm9 fill_form, imm_base_update_form M3

Description: A value consisting of sz bytes is read from memory starting at the address specified by
the value in GR r3. The value is then zero extended and placed in GR r1. The values of
the sz completer are given in Table 2-32. The NaT bit corresponding to GR r1 is cleared,
except as described below for speculative loads. The ldtype completer specifies special
load operations, which are described in Table 2-33.

For the sixteen_byte_form, two 8-byte values are loaded as a single, 16-byte memory
read. The value at the lowest address is placed in GR r1, and the value at the highest
address is placed in the Compare and Store Data application register (AR[CSD]). The
only load types supported for this sixteen_byte_form are none and acq.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is
copied into the target register NaT bit. This instruction is used for reloading a spilled
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate value
(imm9) or a value from GR r2, and the result is placed back in GR r3. This base register
update is done after the load, and does not affect the load address. In the
reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then the NaT bit
corresponding to GR r3 is set and no fault is raised. Base register update is not
supported for the ld16 instruction.

Table 2-32. sz Completers

sz Completer Bytes Accessed

1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

154 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

For more details on ordered, biased, speculative, advanced and check loads see
Section 4.4.4, “Control Speculation” on page 1:60 and Section 4.4.5, “Data
Speculation” on page 1:63. For more details on ordered loads see Section 4.4.7,
“Memory Access Ordering” on page 1:73. See Section 4.4.6, “Memory Hierarchy
Control and Consistency” on page 1:69 for details on biased loads. Details on memory
attributes are described in Section 4.4, “Memory Attributes” on page 2:75.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT
Consumption fault is taken. For speculative and speculative advanced loads, no fault is
raised, and the exception is deferred. For the base-update calculation, if the NaT bit
associated with GR r2 is 1, the NaT bit associated with GR r3 is set to 1 and no fault is
raised.

The value of the ldhint completer specifies the locality of the memory access. The values
of the ldhint completer are given in Table 2-34. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r3 after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by ldhint. Prefetch and locality hints do not affect program functionality and may be

Table 2-33. Load Types

ldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault.
Deferral causes the target register’s NaT bit to be set. The NaT bit is
later used to detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for
colliding stores. If the referenced data page has a non-speculative
attribute, the target register and NaT bit is cleared, and the processor
ensures that no ALAT entry exists for the target register. The absence of
an ALAT entry is later used to detect deferral or collision.

sa Speculative
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred.
Deferral causes the target register’s NaT bit to be set, and the
processor ensures that no ALAT entry exists for the target register. The
absence of an ALAT entry is later used to detect deferral or collision.

c.nc Check load
– no clear

The ALAT is searched for a matching entry. If found, no load is done
and the target register is unchanged. Regardless of ALAT hit or miss,
base register updates are performed, if specified. An implementation
may optionally cause the ALAT lookup to fail independent of whether an
ALAT entry matches. If not found, a load is performed, and an entry is
added to the ALAT (unless the referenced data page has a non-
speculative attribute, in which case no ALAT entry is allocated).

c.clr Check load
– clear

The ALAT is searched for a matching entry. If found, the entry is
removed, no load is done and the target register is unchanged.
Regardless of ALAT hit or miss, base register updates are performed, if
specified. An implementation may optionally cause the ALAT lookup to
fail independent of whether an ALAT entry matches. If not found, a clear
check load behaves like a normal load.

c.clr.acq Ordered check load
– clear

This type behaves the same as the unordered clear form, except that
the ALAT lookup (and resulting load, if no ALAT entry is found) is
performed with acquire semantics.

acq Ordered load An ordered load is performed with acquire semantics.

bias Biased load A hint is provided to the implementation to acquire exclusive ownership
of the accessed cache line.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 155

ignored by the implementation. See Section 4.4.6, “Memory Hierarchy Control and
Consistency” on page 1:69 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is
implied.

For the base update forms, specifying the same register address in r1 and r3 will cause
an Illegal Operation fault.

Hardware support for ld16 instructions that reference a page that is neither a cacheable
page with write-back policy nor a NaTPage is optional. On processor models that do not
support such ld16 accesses, an Unsupported Data Reference fault is raised when an
unsupported reference is attempted.

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on
page 1:34 for details.

Table 2-34. Load Hints for the no-base-update forms

ldhintx Completer Interpretation

none or d0 Temporal locality, level 1

nt1 or d1 No temporal locality, level 1

d2 Temporal locality, level 1

nta or d3 No temporal locality, all levels

d4 Hint d4

d5 Hint d5

d6 Hint d6

d7 Hint d7

Table 2-35. Load Hints for the base-update forms

ldhint Completer Interpretation

none or d0 Temporal locality, level 1

nt1 or d1 No temporal locality, level 1

d2 Temporal locality, level 1

nta or d3 No temporal locality, all levels

156 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Operation: if (PR[qp]) {
size = fill_form ? 8 : (sixteen_byte_form ? 16 : sz);

speculative = (ldtype == ‘s’ || ldtype == ‘sa’);
advanced = (ldtype == ‘a’ || ldtype == ‘sa’);
check_clear = (ldtype == ‘c.clr’ || ldtype == ‘c.clr.acq’);
check_no_clear = (ldtype == ‘c.nc’);
check = check_clear || check_no_clear;
acquire = (acquire_form || ldtype == ‘acq’ || ldtype == ‘c.clr.acq’);
otype = acquire ? ACQUIRE : UNORDERED;
bias = (ldtype == ‘bias’) ? BIAS : 0 ;
translate_address = 1;
read_memory = 1;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced) itype |= ADVANCE ;
if (size == 16) itype |= UNCACHE_OPT ;

if (sixteen_byte_form && !instruction_implemented(LD16))
illegal_operation_fault();

if ((reg_base_update_form || imm_base_update_form) && (r1 == r3))
illegal_operation_fault();

check_target_register(r1);
if (reg_base_update_form || imm_base_update_form)

check_target_register(r3);

if (reg_base_update_form) {
tmp_r2 = GR[r2];
tmp_r2nat = GR[r2].nat;

}

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r1)) {
translate_address = alat_translate_address_on_hit(ldtype, GENERAL,

r1);
read_memory = alat_read_memory_on_hit(ldtype, GENERAL, r1);

}
if (!translate_address) {

if (check_clear || advanced) // remove any old alat entry
alat_inval_single_entry(GENERAL, r1);

} else {
if (!defer) {

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&defer);

spontaneous_deferral(paddr, size, UM.be, mattr, otype,
bias | ldhint, &defer);

if (!defer && read_memory) {
if (size == 16) {

mem_read_pair(&val, &val_ar, paddr, size, UM.be, mattr,
 otype, ldhint);

}
else {

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 157

val = mem_read(paddr, size, UM.be, mattr, otype,
 bias | ldhint);

}
}

}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(GENERAL, r1);
if (defer) {

if (speculative) {
GR[r1] = natd_gr_read(paddr, size, UM.be, mattr, otype,

 bias | ldhint);
GR[r1].nat = 1;

} else {
GR[r1] = 0; // ld.a to sequential memory
GR[r1].nat = 0;

}
} else { // execute load normally

if (fill_form) { // fill NaT on ld8.fill
bit_pos = GR[r3]{8:3};
GR[r1] = val;
GR[r1].nat = AR[UNAT]{bit_pos};

} else { // clear NaT on other types
if (size == 16) {

GR[r1] = val;
AR[CSD] = val_ar;

}
else {

GR[r1] = zero_ext(val, size * 8);
}
GR[r1].nat = 0;

}
if ((check_no_clear || advanced) && ma_is_speculative(mattr))

// add entry to ALAT
alat_write(ldtype, GENERAL, r1, paddr, size);

}
}

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + tmp_r2;
GR[r3].nat = GR[r3].nat || tmp_r2nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], ldhint | bias, itype);

}

158 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Interruptions: Illegal Operation fault Data NaT Page Consumption fault
Register NaT Consumption fault Data Key Miss fault
Unimplemented Data Address fault Data Key Permission fault
Data Nested TLB fault Data Access Rights fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 159

V3-H lfetch — Line Prefetch

lfetch — Line Prefetch
Format: (qp) lfetch.lfhint [r3] no_base_update_form M51

(qp) lfetch.fault.lfhint [r3] no_base_update_form, fault_form M13
(qp) lfetch.lftype.lfhint [r3], r2 reg_base_update_form M14
(qp) lfetch.lftype.lfhint [r3], imm9 imm_base_update_form M15
(qp) lfetch.lftype.excl.lfhint [r3] no_base_update_form, exclusive_form M13
(qp) lfetch.lftype.excl.lfhint [r3], r2 reg_base_update_form, exclusive_form M14
(qp) lfetch.lftype.excl.lfhint [r3], imm9 imm_base_update_form, exclusive_form M15
(qp) lfetch.count.lfhint [r3], cnt6, stride5 counted_form M52

Description: The line containing the address specified by the value in GR r3 is moved to the highest
level of the data memory hierarchy. The value of the lfhint modifier specifies the locality
of the memory access; see Section 4.4, “Memory Access Instructions” on page 1:59 for
details. The mnemonic values of lfhint are given in Table 2-39.

The behavior of the memory read is also determined by the memory attribute
associated with the accessed page. See Chapter 4, “Addressing and Protection” in
Volume 2. Line size is implementation dependent but must be a power of two greater
than or equal to 32 bytes. In the exclusive form, the cache line is allowed to be marked
in an exclusive state. This qualifier is used when the program expects soon to modify a
location in that line. If the memory attribute for the page containing the line is not
cacheable, then no reference is made.

The completer, lftype, specifies whether or not the instruction raises faults normally
associated with a regular load. Table 2-38 defines these two options.

In the base update forms, after being used to address memory, the value in GR r3 is
incremented by either the sign-extended value in imm9 (in the imm_base_update_form)
or the value in GR r2 (in the reg_base_update_form). In the reg_base_update_form, if
the NaT bit corresponding to GR r2 is set, then the NaT bit corresponding to GR r3 is set
– no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit
corresponding to GR r3 is clear, then the address specified by the value in GR r3 after the
post-increment acts as a hint to implicitly prefetch the indicated cache line. This implicit
prefetch uses the locality hints specified by lfhint. The implicit prefetch does not affect
program functionality, does not raise any faults, and may be ignored by the
implementation.

In the no_base_update_form, the value in GR r3 is not modified and no implicit prefetch
hint is implied.

Table 2-38. lftype Mnemonic Values

lftype Mnemonic Interpretation

none No faults are raised

fault Raise faults

160 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In
the reg_base_update_form and imm_base_update_form, the post increment of GR r3 is
performed and prefetch is hinted as described above.

lfetch instructions, like hardware prefetches, are not orderable operations, i.e., they
have no order with respect to prior or subsequent memory operations.

A faulting lfetch to an unimplemented address results in an Unimplemented Data
Address fault. A non-faulting lfetch to an unimplemented address does not take the fault
and will not issue a prefetch request, but, if specified, will perform a register post-
increment.

Both the non-faulting and the faulting forms of lfetch can be used speculatively. The
purpose of raising faults on the faulting form is to allow the operating system to resolve
problems with the address to the extent that it can do so relatively quickly. If problems
with the address cannot be resolved quickly, the OS simply returns to the program, and
forces the data prefetch to be skipped over.

Specifically, if a faulting lfetch takes any of the listed faults (other than Illegal Operation
fault), the operating system must handle this fault to the extent that it can do so relatively
quickly and invisibly to the interrupted program. If the fault cannot be handled quickly or
cannot be handled invisibly (e.g., if handling the fault would involve terminating the
program), the OS must return to the interrupted program, skipping over the data
prefetch. This can easily be done by setting the IPSR.ed bit to 1 before executing an rfi
to go back to the process, which will allow the lfetch.fault to perform its base register
post-increment (if specified), but will suppress any prefetch request and hence any
prefetch-related fault. Note that the OS can easily identify that a faulting lfetch was the
cause of the fault by observing that ISR.na is 1, and ISR.code{3:0} is 4. The one
exception to this is the Illegal Operation fault, which can be caused by an lfetch.fault if
base register post-increment is specified, and the base register is outside of the current
stack frame, or is GR0. Since this one fault is not related to the prefetch aspect of
lfetch.fault, but rather to the base update portion, Illegal Operation faults on
lfetch.fault should be handled the same as for any other instruction.

In the counted_form, multiple prefetch operations may optionally be generated. The cnt6
operand specifies the number of prefetches to be done, and can be any number in the
range 1 to 64; it is encoded as cnt6-1 in the instruction. The stride5 operand specifies the
offset to be added to the address to generate each subsequent prefetch. The stride5
operand must be a multiple of 64, and can be any number in the range -16*64, -15*64,
... -1*64, 0, 1*64, ... 15*64; it is encoded as stride5/64 in the instruction. If cnt6 is 1, the
stride5 operands is ignored. In implementations that do not implement counted prefetch,
this instruction behaves the same as an lfetch with lftype of none.

Table 2-39. lfhint Mnemonic Values

lfhint Mnemonic Interpretation

none or d0 Temporal locality, level 1

nt1 or d1 No temporal locality, level 1

nt2 or d2 No temporal locality, level 2

nta or d3 No temporal locality, all levels

d4 Hint d4

d5 Hint d5

d6 Hint d6

d7 Hint d7

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 161

Operation: if (PR[qp]) {
itype = READ|NON_ACCESS;
itype |= (lftype == ‘fault’ || fault_form) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)
check_target_register(r3);

if (itype & LFETCH_FAULT) { // faulting form
if (GR[r3].nat && !PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);
}

excl_hint = (exclusive_form) ? EXCLUSIVE : 0;

if (!GR[r3].nat && !PSR.ed) {// faulting form already faulted if r3 is nat
paddr = tlb_translate(GR[r3], 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)

mem_promote(paddr, mattr, lfhint | excl_hint);
}

if (counted_form && impl_lfetch_count()) {
for (vaddr=GR[r3]+stride5, count=cnt6-1; count>0; count--) {

paddr = tlb_translate(vaddr, 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)

mem_promote(paddr, mattr, lfhint | excl_hint);
}

}

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + GR[r2];
GR[r3].nat = GR[r2].nat || GR[r3].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], lfhint | excl_hint, itype);

}

Interruptions: Illegal Operation fault Data Page Not Present fault
Register NaT Consumption fault Data NaT Page Consumption fault
Unimplemented Data Address fault Data Key Miss fault
Data Nested TLB fault Data Key Permission fault
Alternate Data TLB fault Data Access Rights fault
VHPT Data fault Data Access Bit fault
Data TLB fault Data Debug fault

162 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 163

V3-I mov — Move Indirect
Register

mov — Move Indirect Register
Format: (qp) mov r1 = ireg[r3] from_form M43

(qp) mov ireg[r3] = r2 to_form M42

Description: The source operand is copied to the destination register.

For move from indirect register, GR r3 is read and the value used as an index into the
register file specified by ireg (see Table 2-41 below). The indexed register is read and its
value is copied into GR r1.

For move to indirect register, GR r3 is read and the value used as an index into the
register file specified by ireg. GR r2 is read and its value copied into the indexed register.

For all register files other than the region registers, bits {7:0} of GR r3 are used as the
index. For region registers, bits {63:61} are used. The remainder of the bits are
ignored. Access to machine specific registers is implementation dependent, all bits may
be used as a index.

Instruction and data breakpoint, performance monitor configuration, protection key,
machine specific, and region registers can only be accessed at the most privileged level.
Performance monitor data registers can only be written at the most privileged level.

The CPU identification registers can only be read. There is no to_form of this
instruction.

The DAHR registers can only be read with this instruction. See “mov — Move Data
Access Hint Register” on page 3:180 instruction page for how to write these registers.
DAHRs are unprivileged.

For move to protection key register, the processor ensures uniqueness of protection
keys by checking new valid protection keys against all protection key registers. If any
matching keys are found, duplicate protection keys are invalidated.

Apart from the PMC and PMD register files, access of a non-existent register results in a
Reserved Register/Field fault. All accesses to the implementation-dependent portion of

Table 2-41. Indirect Register File Mnemonics

ireg Register File

cpuid Processor Identification Register

dahr Data Access Hint Register

dbr Data Breakpoint Register

ibr Instruction Breakpoint Register

pkr Protection Key Register

pmc Performance Monitor Configuration Register

pmd Performance Monitor Data Register

rr Region Register

164 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

PMC and PMD register files result in implementation dependent behavior but do not
fault.

Modifying a region register or a protection key register which is being used to translate:

• the executing instruction stream when PSR.it == 1, or
• the data space for an eager RSE reference when PSR.rt == 1

is an undefined operation.

Operation: if (PR[qp]) {
if (ireg == RR_TYPE)

tmp_index = GR[r3]{63:61};
else // all other register types

tmp_index = GR[r3]{7:0};

if (from_form) {
if (ireg == DAHR_TYPE && !instruction_implemented(DAHR))

illegal_operation_fault();
check_target_register(r1);

if (PSR.cpl != 0 && !(ireg == PMD_TYPE || ireg == CPUID_TYPE || ireg ==
DAHR_TYPE))

privileged_operation_fault(0);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved_register_field_fault();

if (PSR.vm == 1 && !(ireg == PMD_TYPE || ireg == DAHR_TYPE))
virtualization_fault();

if (ireg == PMD_TYPE) {
if ((PSR.cpl != 0) && ((PSR.sp == 1) ||

 (tmp_index > 3 &&
 tmp_index <= IMPL_MAXGENERIC_PMCPMD &&
 PMC[tmp_index].pm == 1)))
GR[r1] = 0;

else
GR[r1] = pmd_read(tmp_index);

} else
switch (ireg) {

case CPUID_TYPE: GR[r1] = CPUID[tmp_index]; break;
case DAHR_TYPE: GR[r1] = DAHR[tmp_index]; break;
case DBR_TYPE: GR[r1] = DBR[tmp_index]; break;
case IBR_TYPE: GR[r1] = IBR[tmp_index]; break;
case PKR_TYPE: GR[r1] = PKR[tmp_index]; break;
case PMC_TYPE: GR[r1] = pmc_read(tmp_index); break;
case RR_TYPE: GR[r1] = RR[tmp_index]; break;

}
GR[r1].nat = 0;

} else { // to_form
if (PSR.cpl != 0)

privileged_operation_fault(0);

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 165

if (GR[r2].nat || GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index)
|| ireg == CPUID_TYPE
|| ireg == DAHR_TYPE
|| is_reserved_field(ireg, tmp_index, GR[r2]))
reserved_register_field_fault();

if (PSR.vm == 1)
virtualization_fault();

if (ireg == PKR_TYPE && GR[r2]{0} == 1) { // writing valid prot key
if ((tmp_slot = tlb_search_pkr(GR[r2]{31:8})) != NOT_FOUND)

PKR[tmp_slot].v = 0; // clear valid bit of matching key reg
}
tmp_val = ignored_field_mask(ireg, tmp_index, GR[r2]);
switch (ireg) {

case DBR_TYPE: DBR[tmp_index] = tmp_val; break;
case IBR_TYPE: IBR[tmp_index] = tmp_val; break;
case PKR_TYPE: PKR[tmp_index] = tmp_val; break;
case PMC_TYPE: pmc_write(tmp_index, tmp_val); break;
case PMD_TYPE: pmd_write(tmp_index, tmp_val); break;
case RR_TYPE: RR[tmp_index]= tmp_val; break;

}
}

}

Interruptions: Illegal Operation fault Reserved Register/Field fault
Privileged Operation fault Virtualization fault
Register NaT Consumption fault

Serialization: For move to data breakpoint registers, software must issue a data serialize operation
before issuing a memory reference dependent on the modified register.

For move to instruction breakpoint registers, software must issue an instruction
serialize operation before fetching an instruction dependent on the modified register.

For move to protection key, region, performance monitor configuration, and
performance monitor data registers, software must issue an instruction or data serialize
operation to ensure the changes are observed before issuing any dependent instruction.

To obtain improved accuracy, software can issue an instruction or data serialize
operation before reading the performance monitors.

166 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 167

V3-J st — Store

st — Store
Format: (qp) stsz.sttype.sthintx [r3] = r2 normal_form, no_base_update_form M4

(qp) stsz.sttype.sthint [r3] = r2, imm9 normal_form, imm_base_update_form M5
(qp) st16.sttype.sthintx [r3] = r2, ar.csd sixteen_byte_form, no_base_update_form M4
(qp) st8.spill.sthintx [r3] = r2 spill_form, no_base_update_form M4
(qp) st8.spill.sthint [r3] = r2, imm9 spill_form, imm_base_update_form M5

Description: A value consisting of the least significant sz bytes of the value in GR r2 is written to
memory starting at the address specified by the value in GR r3. The values of the sz
completer are given in Table 2-32 on page 3:151. The sttype completer specifies special
store operations, which are described in Table 2-51. If the NaT bit corresponding to GR
r3 is 1, or in sixteen_byte_form or normal_form, if the NaT bit corresponding to GR r2 is
1, a Register NaT Consumption fault is taken.

In the sixteen_byte_form, two 8-byte values are stored as a single, 16-byte atomic
memory write. The value in GR r2 is written to memory starting at the address specified
by the value in GR r3. The value in the Compare and Store Data application register
(AR[CSD]) is written to memory starting at the address specified by the value in GR r3
plus 8.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r2 is
copied to a bit in the UNAT application register. This instruction is used for spilling a
register/NaT pair. See Section 4.4.4, “Control Speculation” on page 1:60 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value
(imm9) and the result is placed back in GR r3. This base register update is done after the
store, and does not affect the store address, nor the value stored (for the case where r2
and r3 specify the same register). Base register update is not supported for the st16
instruction.

For more details on ordered stores see Section 4.4.7, “Memory Access Ordering” on
page 1:73.

The ALAT is queried using the physical memory address and the access size, and all
overlapping entries are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values
of the sthint completer are given in Table 2-51. A prefetch hint is implied in the base
update forms. The address specified by the value in GR r3 after the base update acts as
a hint to prefetch the indicated cache line. This prefetch uses the locality hints specified
by sthint. See Section 4.4.6, “Memory Hierarchy Control and Consistency” on page 1:69.

Table 2-51. Store Types

sttype
Completer

Interpretation Special Store Operation

none Normal store

rel Ordered store An ordered store is performed with release semantics.

168 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Hardware support for st16 instructions that reference a page that is neither a cacheable
page with write-back policy nor a NaTPage is optional. On processor models that do not
support such st16 accesses, an Unsupported Data Reference fault is raised when an
unsupported reference is attempted.

For the sixteen_byte_form, Illegal Operation fault is raised on processor models that do
not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See Section 3.1.11, “Processor Identification Registers” on
page 1:34 for details.

Operation: if (PR[qp]) {
size = spill_form ? 8 : (sixteen_byte_form ? 16 : sz);
itype = WRITE;
if (size == 16) itype |= UNCACHE_OPT;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (sixteen_byte_form && !instruction_implemented(ST16))
illegal_operation_fault();

if (imm_base_update_form)
check_target_register(r3);

if (GR[r3].nat || ((sixteen_byte_form || normal_form) && GR[r2].nat))
register_nat_consumption_fault(WRITE);

paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,
&tmp_unused);

if (spill_form && GR[r2].nat) {
natd_gr_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}
else {

if (sixteen_byte_form)
mem_write16(GR[r2], AR[CSD], paddr, UM.be, mattr, otype, sthint);

else
mem_write(GR[r2], paddr, size, UM.be, mattr, otype, sthint);

}

Table 2-52. Store Hints for the no-base-update forms

sthintx Completer Interpretation

none or d0 Temporal locality, level 1

d1 Temporal locality, level 1

d2 Temporal locality, level 1

nta or d3 No temporal locality, all levels

d4 Hint d4

d5 Hint d5

d6 Hint d6

d7 Hint d7

Table 2-53. Store Hints for the base-update forms

sthint Completer Interpretation

none or d0 Temporal locality, level 1

d1 Temporal locality, level 1

d2 Temporal locality, level 1

nta or d3 No temporal locality, all levels

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 169

if (spill_form) {
bit_pos = GR[r3]{8:3};
AR[UNAT]{bit_pos} = GR[r2].nat;

}

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;
mem_implicit_prefetch(GR[r3], sthint, WRITE);

}
}

Interruptions: Illegal Operation fault Data Key Miss fault
Register NaT Consumption fault Data Key Permission fault
Unimplemented Data Address fault Data Access Rights fault
Data Nested TLB fault Data Dirty Bit fault
Alternate Data TLB fault Data Access Bit fault
VHPT Data fault Data Debug fault
Data TLB fault Unaligned Data Reference fault
Data Page Not Present fault Unsupported Data Reference fault
Data NaT Page Consumption fault

170 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 171

V3-K Chapter 3 Pseudo-Code
Functions

Pseudo-Code Functions 3

This chapter contains a table of all pseudo-code functions used on the Itanium instruction pages.

Table 3-1. Pseudo-code Functions

Function Operation

xxx_fault(parameters ...) There are several fault functions. Each fault function accepts parameters specific to
the fault, e.g., exception code values, virtual addresses, etc. If the fault is deferred for
speculative load exceptions the fault function will return with a deferral indication.
Otherwise, fault routines do not return and terminate the instruction sequence.

xxx_trap(parameters ...) There are several trap functions. Each trap function accepts parameters specific to
the trap, e.g., trap code values, virtual addresses, etc. Trap routines do not return.

acceptance_fence() Ensures prior data memory references to uncached ordered-sequential memory
pages are “accepted” before subsequent data memory references are performed by
the processor.

alat_cmp(rtype, raddr) Returns a one if the implementation finds an ALAT entry which matches the register
type specified by rtype and the register address specified by raddr, else returns
zero. This function is implementation specific. Note that an implementation may
optionally choose to return zero (indicating no match) even if a matching entry exists
in the ALAT. This provides implementation flexibility in designing fast ALAT lookup
circuits.

alat_frame_update(delta_bof, delta_sof) Notifies the ALAT of a change in the bottom of frame and/or size of frame. This allows
management of the ALAT’s tag bits or other management functions it might need.

alat_inval() Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, size) The ALAT is queried using the physical memory address specified by paddr and the
access size specified by size. All matching ALAT entries are invalidated. No value is
returned.

alat_inval_single_entry(rtype, rega) The ALAT is queried using the register type specified by rtype and the register
address specified by rega. At most one matching ALAT entry is invalidated. No value
is returned.

alat_read_memory_on_hit(ldtype, rtype,
raddr)

Returns a one if the implementation requires that the requested check load should
perform a memory access (requires prior address translation); returns a zero
otherwise.

alat_translate_address_on_hit(ldtype,
rtype, raddr)

Returns a one if the implementation requires that the requested check load should
translate the source address and take associated faults; returns a zero otherwise.

alat_write(ldtype, rtype, raddr, paddr,
size)

Allocates a new ALAT entry or updates an existing entry using the load type specified
by ldtype, the register type specified by rtype, the register address specified by
raddr, the physical memory address specified by paddr, and the access size
specified by size. No value is returned. This function guarantees that at most only
one ALAT entry exists for a given raddr. Based on the load type ldtype, if a
ld.c.nc, ldf.c.nc, or ldfp.c.nc instruction's raddr matches an existing ALAT
entry's register tag, but the instruction's size and/or paddr are different than that of
the existing entry's, then this function may either preserve the existing entry, or
invalidate it and write a new entry with the instruction's specified size and paddr.

align_to_size_boundary(vaddr, size) Returns vaddr aligned to the boundary specified by size.

172 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

branch_predict(wh, ih, ret, target, tag) Implementation-dependent routine which updates the processor’s branch prediction
structures.

check_branch_implemented(check_type) Implementation-dependent routine which returns TRUE or FALSE, depending on
whether a failing check instruction causes a branch (TRUE), or a Speculative
Operation fault (FALSE). The result may be different for different types of check
instructions: CHKS_GENERAL, CHKS_FLOAT, CHKA_GENERAL, CHKA_FLOAT. In
addition, the result may depend on other implementation-dependent parameters.

check_probe_virtualization_fault(type,
cpl)

If implemented, this function may raise virtualization faults for specific probe
instructions. Please refer to the instruction page for probe instruction for details.

check_target_register(r1) If the r1 argument specifies an out-of-frame stacked register (as defined by CFM) or
r1 specifies GR0, an Illegal Operation fault is delivered, and this function does not
return.

check_target_register_sof(r1, newsof) If the r1 argument specifies an out-of-frame stacked register (as defined by the
newsof argument) or r1 specifies GR0, an Illegal Operation fault is delivered and
this function does not return.

concatenate2(x1, x2) Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit result.

concatenate4(x1, x2, x3, x4) Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit result.

concatenate8(x1, x2, x3, x4, x5, x6, x7,
x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

dahr_dahs_revert_to_default() All DAHRs and all elements at all levels of the DAHS revert to default values.

dahr_pop_from_dahs() The elements in the top stack level of the Data Access Hint Stack (DAHS) are copied
into the DAHRs, and the elements in the stack are popped up one level, with the
elements in the bottom stack level reverting to default values.

dahr_push_to_dahs() The elements in the Data Access Hint Stack (DAHS) are pushed down one level (the
elements in the bottom stack level are lost), the values in the DAHRs are copied into
the elements in the top stack level, and then the DAHRs revert to default values.

data_serialize() Ensures all prior register updates with side-effects are observed before subsequent
execution and data memory references are performed.

deliver_unmasked_pending_interrupt() This implementation-specific function checks whether any unmasked external
interrupts are pending, and if so, transfers control to the external interrupt vector.

execute_hint(hint) Executes the hint specified by hint.

fadd(fp_dp, fr2) Adds a floating-point register value to the infinitely precise product and return the
infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(f2, f3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcmp instruction.

fcvt_fx_exception_fault_check(fr2,
signed_form, trunc_form, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fx, fcvt.fxu,
fcvt.fx.trunc and fcvt.fxu.trunc instructions. It propagates NaNs.

fma_exception_fault_check(f2, f3, f4, pc,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It propagates
NaNs and special IEEE results.

fminmax_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, and fmin
instructions.

fms_fnma_exception_fault_check(f2, f3,
f4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fms and fnma instructions. It
propagates NaNs and special IEEE results.

fmul(fr3, fr4) Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop() Returns TRUE if the current instruction is followed by a stop; otherwise, returns
FALSE.

fp_check_target_register(f1) If the specified floating-point register identifier is 0 or 1, this function causes an illegal
operation fault.

fp_decode_fault(tmp_fp_env) Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env) Returns floating-point trap code values for ISR.code.

fp_equal(fr1, fr2) IEEE standard equality relationship test.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 173

fp_fr_to_mem_format(freg, size) Converts a floating-point value in register format to floating-point memory format. It
assumes that the floating-point value in the register has been previously rounded to
the correct precision which corresponds with the size parameter.

fp_ieee_recip(num, den) Returns the true quotient for special sets of operands, or an approximation to the
reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root) Returns the true square root result for special operands, or an approximation to the
reciprocal square root to be used in the software square root algorithm.

fp_is_nan(freg) Returns true when floating register contains a NaN.

fp_is_nan_or_inf(freg) Returns true if the floating-point exception_fault_check functions returned a IEEE
fault disabled default result or a propagated NaN.

fp_is_natval(freg) Returns true when floating register contains a NaTVal

fp_is_normal(freg) Returns true when floating register contains a normal number.

fp_is_pos_inf(freg) Returns true when floating register contains a positive infinity.

fp_is_qnan(freg) Returns true when floating register contains a quiet NaN.

fp_is_snan(freg) Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg) Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg) Returns true when floating register contains an unsupported format.

fp_less_than(fr1, fr2) IEEE standard less-than relationship test.

fp_lesser_or_equal(fr1, fr2) IEEE standard less-than or equal-to relationship test

fp_mem_to_fr_format(mem, size) Converts a floating-point value in memory format to floating-point register format.

fp_normalize(fr1) Normalizes an unnormalized fp value. This function flushes to zero any unnormal
values which can not be represented in the register file

fp_raise_fault(tmp_fp_env) Checks the local instruction state for any faulting conditions which require an
interruption to be raised.

fp_raise_traps(tmp_fp_env) Checks the local instruction state for any trapping conditions which require an
interruption to be raised.

fp_reg_bank_conflict(f1, f2) Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, f3, f4) Check for possible disabled floating-point register faults.

fp_reg_read(freg) Reads the FR and gives canonical double-extended denormals (and pseudo-
denormals) their true mathematical exponent. Other classes of operands are
unaltered.

fp_unordered(fr1, fr2) IEEE standard unordered relationship

fp_update_fpsr(sf, tmp_fp_env) Copies a floating-point instruction’s local state into the global FPSR.

fp_update_psr(dest_freg) Conditionally sets PSR.mfl or PSR.mfh based on dest_freg.

fpcmp_exception_fault_check(f2, f3, frel,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcmp instruction.

fpcvt_exception_fault_check(f2,
signed_form, trunc_form, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpcvt.fx, fpcvt.fxu,
fpcvt.fx.trunc, and fpcvt.fxu.trunc instructions. It propagates NaNs.

fpma_exception_fault_check(f2, f3, f4, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the fpma instruction. It propagates
NaNs and special IEEE results.

fpminmax_exception_fault_check(f2, f3,
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpmin, fpmax, fpamin and
fpamax instructions.

fpms_fpnma_exception_fault_check(f2,
f3, f4, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fpms and fpnma instructions. It
propagates NaNs and special IEEE results.

fprcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprcpa instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

fprsqrta_exception_fault_check(f3, sf,
*tmp_fp_env, *limits_check)

Checks for all floating-point faulting conditions for the fprsqrta instruction. It
propagates NaNs and special IEEE results. It also indicates operand limit violations.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

174 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

frcpa_exception_fault_check(f2, f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frcpa instruction. It
propagates NaNs and special IEEE results.

frsqrta_exception_fault_check(f3, sf,
*tmp_fp_env)

Checks for all floating-point faulting conditions for the frsqrta instruction. It
propagates NaNs and special IEEE results

ignored_field_mask(regclass, reg, value) Boolean function that returns value with bits cleared to 0 corresponding to ignored
bits for the specified register and register type.

impl_check_mov_itir() Implementation-specific function that returns TRUE if ITIR is checked for reserved
fields and encodings on a mov to ITIR instruction.

impl_check_mov_psr_l(gr) Implementation-specific function to check bits {63:32} of gr corresponding to
reserved fields of the PSR for Reserved Register/Field fault.

impl_check_tlb_itir() Implementation-specific function that returns TRUE if all fields of ITIR are checked for
reserved encodings on a TLB insert instruction regardless of whether the translation
is present.

impl_ia32_ar_reserved_ignored(ar3) Implementation-specific function which indicates how the reserved and ignored fields
in the specified IA-32 application register, ar3, behave. If it returns FALSE, the
reserved and/or ignored bits in the specified application register can be written, and
when read they return the value most-recently written. If it returns TRUE, attempts to
write a non-zero value to a reserved field in the specified application register cause a
Reserved Register/Field fault, and reads return 0; writing to an ignored field in the
specified application register is ignored, and reads return the constant value defined
for that field.

impl_iib() Implementation-specific function which indicates whether Interruption Instruction
Bundle registers (IIB0-1) are implemented.

impl_itir_cwi_mask() Implementation-specific function that either returns the value passed to it or the value
passed to it masked with zeros in bit positions {63:32} and/or {1:0}.

impl_ruc() Implementation-specific function which indicates whether Resource Utilization
Counter (RUC) application register is implemented.

impl_uia_fault_supported() Implementation-specific function that either returns TRUE if the processor reports
unimplemented instruction addresses with an Unimplemented Instruction Address
fault, and returns FALSE if the processor reports them with an Unimplemented
Instruction Address trap.

implemented_vm() Returns TRUE if the processor implements the PSR.vm bit (regardless of whether
virtual machine features are enabled or disabled).

instruction_implemented(inst) Implementation-dependent routine which returns TRUE or FALSE, depending on
whether inst is implemented.

instruction_serialize() Ensures all prior register updates with side-effects are observed before subsequent
instruction and data memory references are performed. Also ensures prior SYNC.i
operations have been observed by the instruction cache.

instruction_synchronize() Synchronizes the instruction and data stream for Flush Cache operations. This
function ensures that when prior Flush Cache operations are observed by the local
data cache they are observed by the local instruction cache, and when prior Flush
Cache operations are observed by another processor’s data cache they are observed
within the same processor’s instruction cache.

is_finite(freg) Returns true when floating register contains a finite number.

is_ignored_reg(regnum) Boolean function that returns true if regnum is an ignored application register,
otherwise false.

is_inf(freg) Returns true when floating register contains an infinite number.

is_interruption_cr(regnum) Boolean function that returns true if regnum is one of the Interruption Control
registers (see Section 3.3.5, “Interruption Control Registers” on page 2:36), otherwise
false.

is_kernel_reg(ar_addr) Returns a one if ar_addr is the address of a kernel register application register

is_read_only_reg(rtype, raddr) Returns a one if the register addressed by raddr in the register bank of type rtype
is a read only register.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 175

is_reserved_field(regclass, arg2, arg3) Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum) Returns true if register regnum is reserved in the regclass register file.

is_supported_hint(hint) Returns true if the implementation supports the specified hint. This function may
depend on factors other than the hint value, such as which execution unit it is
executed on or the slot number the instruction was encoded in.

itlb_ar() Returns the page access rights from the ITLB for the page addressed by the current
IP, or INVALID_AR if PSR.it is 0.

make_icache_coherent(paddr) The cache line addressed by the physical address paddr is flushed in an
implementation-specific manner that ensures that the instruction cache is coherent
with the data caches.

mem_flush(paddr) The line addressed by the physical address paddr is invalidated in all levels of the
memory hierarchy above memory and written back to memory if it is inconsistent with
memory.

mem_flush_pending_stores() The processor is instructed to start draining pending stores in write coalescing and
write buffers. This operation is a hint. There is no indication when prior stores have
actually been drained.

mem_implicit_prefetch(vaddr, hint, type) Moves the line addressed by vaddr to the location of the memory hierarchy specified
by hint. This function is implementation dependent and can be ignored. The type
allows the implementation to distinguish prefetches for different instruction types.

mem_promote(paddr, mtype, hint) Moves the line addressed by paddr to the highest level of the memory hierarchy
conditioned by the access hints specified by hint. Implementation dependent and
can be ignored.

mem_read(paddr, size, border, mattr,
otype, hint)

Returns the size bytes starting at the physical memory location specified by paddr
with byte order specified by border, memory attributes specified by mattr, and
access hint specified by hint. otype specifies the memory ordering attribute of this
access, and must be UNORDERED or ACQUIRE.

mem_read_pair(*low_value, *high_value,
paddr, size, border, mattr, otype, hint)

Reads the size / 2 bytes of memory starting at the physical memory address
specified by paddr into low_value, and the size / 2 bytes of memory starting at the
physical memory address specified by (paddr + size / 2) into high_value, with
byte order specified by border, memory attributes specified by mattr, and access
hint specified by hint. otype specifies the memory ordering attribute of this access,
and must be UNORDERED or ACQUIRE. No value is returned.

mem_write(value, paddr, size, border,
mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the physical
memory address specified by paddr with byte order specified by border, memory
attributes specified by mattr, and access hint specified by hint. otype specifies the
memory ordering attribute of this access, and must be UNORDERED or RELEASE.
No value is returned.

mem_write16(gr_value, ar_value, paddr,
border, mattr, otype, hint)

Writes the 8 bytes of gr_value into memory starting at the physical memory address
specified by paddr, and the 8 bytes of ar_value into memory starting at the physical
memory address specified by (paddr + 8), with byte order specified by border,
memory attributes specified by mattr, and access hint specified by hint. otype
specifies the memory ordering attribute of this access, and must be UNORDERED or
RELEASE. No value is returned.

mem_xchg(data, paddr, size, byte_order,
mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. After the read, the least
significant size bytes of data are written to size bytes in memory starting at the
physical address specified by paddr. The read and write are performed atomically.
Both the read and the write are conditioned by the memory attribute specified by
mattr and the byte ordering in memory is specified by byte_order. otype specifies
the memory ordering attribute of this access, and must be ACQUIRE.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

176 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

mem_xchg_add(add_val, paddr, size,
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. The least
significant size bytes of the sum of the value read from memory and add_val is
then written to size bytes in memory starting at the physical address specified by
paddr. The read and write are performed atomically. Both the read and the write are
conditioned by the memory attribute specified by mattr and the byte ordering in
memory is specified by byte_order. otype specifies the memory ordering attribute
of this access, and has the value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, paddr,
size, byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. If the value read
from memory is equal to cmp_val, then the least significant size bytes of data are
written to size bytes in memory starting at the physical address specified by
paddr. If the write is performed, the read and write are performed atomically. Both the
read and the write are conditioned by the memory attribute specified by mattr and
the byte ordering in memory is specified by byte_order. otype specifies the
memory ordering attribute of this access, and has the value ACQUIRE or RELEASE.

mem_xchg16_cond(cmp_val, gr_data,
ar_data, paddr, byte_order, mattr, otype,
hint)

Returns 8 bytes from memory starting at the physical address specified by paddr.
The read is conditioned by the locality hint specified by hint. If the value read from
memory is equal to cmp_val, then the 8 bytes of gr_data are written to 8 bytes in
memory starting at the physical address specified by (paddr & ~0x8), and the 8 bytes
of ar_data are written to 8 bytes in memory starting at the physical address
specified by ((paddr & ~0x8) + 8). If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the memory
attribute specified by mattr and the byte ordering in memory is specified by
byte_order. The byte ordering only affects the ordering of bytes within each of the
8-byte values stored. otype specifies the memory ordering attribute of this access,
and has the value ACQUIRE or RELEASE.

ordering_fence() Ensures prior data memory references are made visible before future data memory
references are made visible by the processor.

partially_implemented_ip() Implementation-dependent routine which returns TRUE if the implementation, on an
Unimplemented Instruction Address trap, writes IIP with the sign-extended virtual
address or zero-extended physical address for what would have been the next value
of IP. Returns FALSE if the implementation, on this trap, simply writes IIP with the full
address which would have been the next value of IP.

pending_virtual_interrupt() Check for unmasked pending virtual interrupt.

pr_phys_to_virt(phys_id) Returns the virtual register id of the predicate from the physical register id, phys_id
of the predicate.

rotate_regs() Decrements the Register Rename Base registers, effectively rotating the register
files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load() If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the RSE.CFLE bit is
set to indicate that mandatory RSE loads are allowed to restore registers in the
current frame (in no other case does the RSE spill or fill registers in the current
frame). This function does not perform mandatory RSE loads. This procedure does
not cause any interruptions.

rse_ensure_regs_loaded(number_of_byt
es)

All registers and NaT collections between AR[BSP] and (AR[BSP]-
number_of_bytes) which are not already in stacked registers are loaded into the
register stack with mandatory RSE loads. If the number of registers to be loaded is
greater than RSE.N_STACK_PHYS an Illegal Operation fault is raised. All registers
starting with backing store address (AR[BSP] - 8) and decrementing down to and
including backing store address (AR[BSP] - number_of_bytes) are made part of the
dirty partition. With exception of the current frame, all other stacked registers are
made part of the invalid partition. Note that number_of_bytes may be zero. The
resulting sequence of RSE loads may be interrupted. Mandatory RSE loads may
cause an interruption; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_invalidate_non_current_regs() All registers outside the current frame are invalidated.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 177

rse_load(type) Restores a register or NaT collection from the backing store (load_address =
RSE.BspLoad - 8). If load_address{8:3} is equal to 0x3f then a NaT collection is
loaded into a NaT dispersal register. (dispersal register may not be the same
as AR[RNAT].) If load_address{8:3} is not equal to 0x3f then the register
RSE.LoadReg - 1 is loaded and the NaT bit for that register is set to
dispersal_register{load_address{8:3}}. If the load is successful
RSE.BspLoad is decremented by 8. If the load is successful and a register was
loaded RSE.LoadReg is decremented by 1 (possibly wrapping in the stacked
registers). The load moves a register from the invalid partition to the current frame if
RSE.CFLE is 1, or to the clean partition if RSE.CFLE is 0. For mandatory RSE loads,
type is MANDATORY. Mandatory RSE loads may cause interruptions. See
Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_new_frame(current_frame_size,
new_frame_size)

A new frame is defined without changing any register renaming. The new frame size
is completely defined by the new_frame_size parameter (successive calls are not
cumulative). If new_frame_size is larger than current_frame_size and the
number of registers in the invalid and clean partitions is less than the size of frame
growth then mandatory RSE stores are issued until enough registers are available.
The resulting sequence of RSE stores may be interrupted. Mandatory RSE stores
may cause interruptions; see Table 6-6, “RSE Interruption Summary” on page 6-145.

rse_preserve_frame(preserved_frame_si
ze)

The number of registers specified by preserved_frame_size are marked to be
preserved by the RSE. Register renaming causes the preserved_frame_size
registers after GR[32] to be renamed to GR[32]. AR[BSP] is updated to contain the
backing store address where the new GR[32] will be stored.

rse_restore_frame(preserved_sol,
growth, current_frame_size)

The first two parameters define how the current frame is about to be updated by a
branch return or rfi: preserved_sol defines how many registers need to be
restored below RSE.BOF; growth defines by how many registers the top of the
current frame will grow (growth will generally be negative). The number of registers
specified by preserved_sol are marked to be restored. Register renaming causes
the preserved_sol registers before GR[32] to be renamed to GR[32]. AR[BSP] is
updated to contain the backing store address where the new GR[32] will be stored. If
the number of dirty and clean registers is less than preserved_sol then mandatory
RSE loads must be issued before the new current frame is considered valid. This
function does not perform mandatory RSE loads. This function returns TRUE if the
preserved frame grows beyond the invalid and clean regions into the dirty region. In
this case the third argument, current_frame_size, is used to force the returned to
frame to zero (see Section 6.5.5, “Bad PFS used by Branch Return” on page 2:143).

rse_store(type) Saves a register or NaT collection to the backing store (store_address =
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collection
AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the register
RSE.StoreReg is stored and the NaT bit from that register is deposited in
AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSPSTORE] is
incremented by 8. If the store is successful and a register was stored RSE.StoreReg
is incremented by 1 (possibly wrapping in the stacked registers). This store moves a
register from the dirty partition to the clean partition. For mandatory RSE stores, type
is MANDATORY. Mandatory RSE stores may cause interruptions. See Table 6-6,
“RSE Interruption Summary” on page 6-145.

rse_update_internal_stack_pointers(new
_store_pointer)

Given a new value for AR[BSPSTORE] (new_store_pointer) this function
computes the new value for AR[BSP]. This value is equal to new_store_pointer
plus the number of dirty registers plus the number of intervening NaT collections. This
means that the size of the dirty partition is the same before and after a write to
AR[BSPSTORE]. All clean registers are moved to the invalid partition.

sign_ext(value, pos) Returns a 64 bit number with bits pos-1 through 0 taken from value and bit pos-1 of
value replicated in bit positions pos through 63. If pos is greater than or equal to 64,
value is returned.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

178 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

spontaneous_deferral(paddr, size,
border, mattr, otype, hint, *defer)

Implementation-dependent routine which optionally forces *defer to TRUE if all of
the following are true: spontaneous deferral is enabled, spontaneous deferral is
permitted by the programming model, and the processor determines it would be
advantageous to defer the speculative load (e.g., based on a miss in some particular
level of cache).

spontaneous_deferral_enabled() Implementation-dependent routine which returns TRUE or FALSE, depending on
whether spontaneous deferral of speculative loads is enabled or disabled in the
processor.

tlb_access_key(vaddr, itype) This function returns, in bits 31:8, the access key from the TLB for the entry
corresponding to vaddr and itype; bits 63:32 and 7:0 return 0. If vaddr is an
unimplemented virtual address, or a matching present translation is not found, the
value 1 is returned.

tlb_broadcast_purge(rid, vaddr, size,
type)

Sends a broadcast purge DTC and ITC transaction to other processors in the
multiprocessor coherency domain, where the region identifier (rid), virtual address
(vaddr) and page size (size) specify the translation entry to purge. The operation
waits until all processors that receive the purge have completed the purge operation.
The purge type (type) specifies whether the ALAT on other processors should also
be purged in conjunction with the TC.

tlb_enter_privileged_code() This function determines the new privilege level for epc from the TLB entry for the
page containing this instruction. If the page containing the epc instruction has
execute-only page access rights and the privilege level assigned to the page is higher
than (numerically less than) the current privilege level, then the current privilege level
is set to the privilege level field in the translation for the page containing the epc
instruction.

tlb_grant_permission(vaddr, type, pl) Returns a boolean indicating if read, write access is granted for the specified virtual
memory address (vaddr) and privilege level (pl). The access type (type) specifies
either read or write. The following faults are checked::

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault
If a fault is generated, this function does not return.

tlb_insert_data(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the DTLB, at the specified slot number. pte0, pte1 compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true the entry is placed in the TR section, otherwise the TC
section.

tlb_insert_inst(slot, pte0, pte1, vaddr, rid,
tr)

Inserts an entry into the ITLB, at the specified slot number. pte0, pte1 compose
the translation. vaddr and rid specify the virtual address and region identifier for the
translation. If tr is true, the entry is placed in the TR section, otherwise the TC
section.

tlb_may_purge_dtc_entries(rid, vaddr,
size)

May locally purge DTC entries that match the specified virtual address (vaddr),
region identifier (rid) and page size (size). May also invalidate entries that partially
overlap the parameters. The extent of purging is implementation dependent. If the
purge size is not supported, an implementation may generate a machine check abort
or over purge the translation cache up to and including removal of all entries from the
translation cache.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 179

tlb_may_purge_itc_entries(rid, vaddr,
size)

May locally purge ITC entries that match the specified virtual address (vaddr), region
identifier (rid) and page size (size). May also invalidate entries that partially overlap
the parameters. The extent of purging is implementation dependent. If the purge size
is not supported, an implementation may generate a machine check abort or over
purge the translation cache up to and including removal of all entries from the
translation cache.

tlb_must_purge_dtc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTC entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing DTR translation, an implementation may generate a
machine check abort.

tlb_must_purge_dtr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, DTR entries matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61}
(VRN) is ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_must_purge_itc_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITC entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache. If the specified purge
values overlap with an existing ITR translation, an implementation may generate a
machine check abort.

tlb_must_purge_itr_entries(rid, vaddr,
size)

Purges all local, possibly overlapping, ITR entry matching the specified region
identifier (rid), virtual address (vaddr) and page size (size). vaddr{63:61} (VRN) is
ignored in the purge, i.e all entries that match vaddr{60:0} must be purged
regardless of the VRN bits. If the purge size is not supported, an implementation may
generate a machine check abort or over purge the translation cache up to and
including removal of all entries from the translation cache.

tlb_purge_translation_cache(loop) Removes 1 to N translations from the local processor’s ITC and DTC. The number of
entries removed is implementation specific. The parameter loop is used to generate
an implementation-specific purge parameter.

tlb_replacement_algorithm(tlb) Returns the next ITC or DTC slot number to replace. Replacement algorithms are
implementation specific. tlb specifies to perform the algorithm on the ITC or DTC.

tlb_search_pkr(key) Searches for a valid protection key register with a matching protection key. The
search algorithm is implementation specific. Returns the PKR register slot number if
found, otherwise returns Not Found.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

180 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

tlb_translate(vaddr, size, type, cpl, *attr,
*defer)

Returns the translated data physical address for the specified virtual memory address
(vaddr) when translation enabled; otherwise, returns vaddr. size specifies the size
of the access, type specifies the type of access (e.g., read, write, advance, spec).
cpl specifies the privilege level for access checking purposes. *attr returns the
mapped physical memory attribute. If any fault conditions are detected and deferred,
tlb_translate returns with *defer set. If a fault is generated but the fault is not
deferred, tlb_translate does not return. tlb_translate checks the following faults:

• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty Bit fault

• Data Access Bit fault

• Data Debug fault

• Unaligned Data Reference fault

• Unsupported Data Reference fault

tlb_translate_nonaccess(vaddr, type) Returns the translated data physical address for the specified virtual memory address
(vaddr). type specifies the type of access (e.g., FC, TPA). If a fault is generated,
tlb_translate_nonaccess does not return. The following faults are checked:

• Unimplemented Data Address fault

• Virtualization fault (tpa only)

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Access Rights fault (fc only)

tlb_vhpt_hash(vrn, vaddr61, rid, size) Generates a VHPT entry address for the specified virtual region number (vrn) and
61-bit virtual offset (vaddr61), region identifier (rid) and page size (size).
Tlb_vhpt_hash hashes vaddr, rid and size parameters to produce a hash index.
The hash index is then masked based on PTA.size and concatenated with PTA.base
to generate the VHPT entry address. The long format hash is implementation
specific.

tlb_vhpt_tag(vaddr, rid, size) Generates a VHPT tag identifier for the specified virtual address (vaddr), region
identifier (rid) and page size (size). Tlb_vhpt_tag hashes the vaddr, rid and size
parameters to produce translation identifier. The tag in conjunction with the hash
index is used to uniquely identify translations in the VHPT. Tag generation is
implementation specific. All processor models tag function must guarantee that bit 63
of the generated tag is zero (ti bit).

undefined() Returns an undefined 64-bit value.

undefined_behavior() Causes undefined processor behavior. Extent of undefined behavior is described in
Section 3.5, “Undefined Behavior” on page 1:44.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 181

§

unimplemented_physical_address(paddr) Return TRUE if the presented physical address is unimplemented on this processor
model; FALSE otherwise. This function is model specific.

unimplemented_virtual_address(vaddr,
vm)

Return TRUE if the presented virtual address is unimplemented on this processor
model; FALSE otherwise. If vm is 1, one additional bit of virtual address is treated as
unimplemented. This function is model specific.

vm_disabled() Returns TRUE if the processor implements the PSR.vm bit and virtual machine
features are disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in
SDM and “PAL_PROC_GET_FEATURES – Get Processor Dependent Features
(17)” on page 2:448 in SDM for details.

vmsw_disabled() Returns TRUE if the processor implements the PSR.vm bit and the vmsw instruction
is disabled. See Section 3.4, “Processor Virtualization” on page 2:44 in SDM and
“PAL_PROC_GET_FEATURES – Get Processor Dependent Features (17)” on
page 2:448 in SDM for details.

zero_ext(value, pos) Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value and
zeroes in bit positions pos through 63. If pos is greater than or equal to 64, value is
returned.

Table 3-1. Pseudo-code Functions (Continued)

Function Operation

182 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 181

V3-L Chapter 4 Instruction
Formats

Instruction Formats 4

Each Itanium instruction is categorized into one of six types; each instruction type may be executed
on one or more execution unit types. Table 4-1 lists the instruction types and the execution unit type
on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-bit instruction slots and a 5-bit template field. The format of a bun-
dle is depicted in Figure 4-1.

The template field specifies two properties: stops within the current bundle, and the mapping of
instruction slots to execution unit types. Not all combinations of these two properties are allowed -
Table 4-2 indicates the defined combinations. The three rightmost columns correspond to the three
instruction slots in a bundle; listed within each column is the execution unit type controlled by that
instruction slot for each encoding of the template field. A double line to the right of an instruction slot
indicates that a stop occurs at that point within the current bundle. See “Instruction Encoding Over-
view” on page 38 for the definition of a stop. Within a bundle, execution order proceeds from slot 0 to
slot 2. Unused template values (appearing as empty rows in Table 4-2) are reserved and cause an
Illegal Operation fault.
Extended instructions, used for long immediate integer and long branch instructions, occupy two
instruction slots. Depending on the major opcode, extended instructions execute on a B-unit (long
branch/call) or an I-unit (all other L+X instructions).

Table 4-1. Relationship between Instruction Type and Execution Unit Type

Instruction
Type

Description Execution Unit Type

A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit/B-unita

a. L+X Major Opcodes 0 - 7 execute on an I-unit. L+X Major Opcodes 8 - F execute on a
B-unit.

Figure 4-1. Bundle Format
127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template

41 41 41 5

182 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.1 Format Summary

All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of each instruc-
tion are the major opcode. Table 4-3 shows the major opcode assignments for each of the 5 instruc-
tion types — ALU (A), Integer (I), Memory (M), Floating-point (F), and Branch (B). Bundle template
bits are used to distinguish among the 4 columns, so the same major op values can be reused in each
column.
Unused major ops (appearing as blank entries in Table 4-3) behave in one of four ways:

• Ignored major ops (white entries in Table 4-3) execute as nop instructions.

Table 4-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2

00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unita

05 M-unit L-unit X-unita

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F

a. The MLX template was formerly called MLI, and for compatibility, the X slot may
encode break.i and nop.i in addition to any X-unit instruction.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 183

• Reserved major ops (light gray in the gray scale version of Table 4-3, brown in the
color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 major ops (dark gray in the gray scale version of Table 4-3,
purple in the color version) cause an Illegal Operation fault if the predicate register
specified by the qp field of the instruction (bits 5:0) is 1 and execute as a nop
instruction if 0.

• Reserved if PR[qp] is 1 B-unit major ops (medium gray in the gray scale version of
Table 4-3, cyan in the color version) cause an Illegal Operation fault if the predicate
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0. These differ from the Reserved if PR[qp] is 1 major ops (purple)
only in their RAW dependency behavior (see “RAW Dependency Table” on
page 374).

Table 4-4 on page 3:184 summarizes all the instruction formats. The instruction fields are color-coded
for ease of identification, as described in Table 4-6 on page 3:186. A color version of this chapter is
available for those heavily involved in working with the instruction encodings.
The instruction field names, used throughout this chapter, are described in Table 4-6 on page 3:186.
The set of special notations (such as whether an instruction is privileged) are listed in Table 4-7 on
page 3:187. These notations appear in the “Instruction” column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one
instruction field. For example, the 14-bit immediate in the Add Imm14 instruction
(format A4) is formed from the imm7b, imm6d, and s fields. Table 4-80 on page 3:259
shows how the immediates are formed from the instruction fields for each instruction
which has an immediate.

Table 4-3. Major Opcode Assignments

Major
Op

(Bits
40:37)

Instruction Type

I/A M/A F B L+X

0 Misc 0 Sys/Mem Mgmt 0 FP Misc 0 Misc/Indirect Branch 0 Misc 0

1 1 Sys/Mem Mgmt 1 FP Misc 1 Indirect Call 1 1

2 2 2 2 Indirect Predict/Nop 2 2

3 3 3 3 3 3

4 Deposit 4 Int Ld +Reg/getf 4 FP Compare 4 IP-relative Branch 4 4

5 Shift/Test Bit 5 Int Ld/St +Imm 5 FP Class 5 IP-rel Call 5 5

6 6 FP Ld/St +Reg/setf 6 6 6 movl 6

7 MM Mpy/Shift 7 FP Ld/St +Imm 7 7 IP-relative Predict 7 7

8 ALU/MM ALU 8 ALU/MM ALU 8 fma 8 e 8 8

9 Add Imm22
9 Add Imm22

9 fma 9 e 9 9

A A A fms A e A A

B B B fms B e B B

C Compare C Compare C fnma C e C Long Branch C

D Compare D Compare D fnma D e D Long Call D

E Compare E Compare E fselect/xma E e E E

F F F F e F F

184 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-4. Instruction Format Summary

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0
ALU A1 8 x2a ve x4 x2b r3 r2 r1 qp

Shift L and Add A2 8 x2a ve x4 ct2d r3 r2 r1 qp
ALU Imm8 A3 8 s x2a ve x4 x2b r3 imm7b r1 qp
Add Imm14 A4 8 s x2a ve imm6d r3 imm7b r1 qp
Add Imm22 A5 9 s imm9d imm5c r3 imm7b r1 qp
Compare A6 C - E tb x2 ta p2 r3 r2 c p1 qp

Compare to Zero A7 C - E tb x2 ta p2 r3 0 c p1 qp
Compare Imm8 A8 C - E s x2 ta p2 r3 imm7b c p1 qp

MM ALU A9 8 za x2a zb x4 x2b r3 r2 r1 qp
MM Shift and Add A10 8 za x2a zb x4 ct2d r3 r2 r1 qp

MM Multiply Shift I1 7 za x2a zb ve ct2d x2b r3 r2 r1 qp
MM Mpy/Mix/Pack I2 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Mux1 I3 7 za x2a zb ve x2c x2b mbt4c r2 r1 qp
MM Mux2 I4 7 za x2a zb ve x2c x2b mht8c r2 r1 qp

Shift R Variable I5 7 za x2a zb ve x2c x2b r3 r2 r1 qp
MM Shift R Fixed I6 7 za x2a zb ve x2c x2b r3 count5b r1 qp
Shift L Variable I7 7 za x2a zb ve x2c x2b r3 r2 r1 qp

MM Shift L Fixed I8 7 za x2a zb ve x2c x2b ccount5c r2 r1 qp
Bit Strings I9 7 za x2a zb ve x2c x2b r3 0 r1 qp

Shift Right Pair I10 5 x2 x count6d r3 r2 r1 qp
Extract I11 5 x2 x len6d r3 pos6b y r1 qp
Dep.Z I12 5 x2 x len6d y cpos6c r2 r1 qp

Dep.Z Imm8 I13 5 s x2 x len6d y cpos6c imm7b r1 qp
Deposit Imm1 I14 5 s x2 x len6d r3 cpos6b r1 qp

Deposit I15 4 cpos6d len4d r3 r2 r1 qp
Test Bit I16 5 tb x2 ta p2 r3 pos6b y c p1 qp

Test NaT I17 5 tb x2 ta p2 r3 x y c p1 qp
Nop/Hint I18 0 i x3 x6 y imm20a qp

Break I19 0 i x3 x6 imm20a qp
Int Spec Check I20 0 s x3 imm13c r2 imm7a qp

Move to BR I21 0 x3 timm9c ih x wh r2 p pbtv b1 qp
Move from BR I22 0 x3 x6 b2 r1 qp
Move to Pred I23 0 s x3 mask8c r2 mask7a qp

Move to Pred Imm44 I24 0 s x3 imm27a qp
Move from Pred/IP I25 0 x3 x6 r1 qp

Move to AR I26 0 x3 x6 ar3 r2 qp
Move to AR Imm8 I27 0 s x3 x6 ar3 imm7b qp

Move from AR I28 0 x3 x6 ar3 r1 qp
Sxt/Zxt/Czx I29 0 x3 x6 r3 r1 qp
Test Feature I30 5 tb x2 ta p2 0 x imm5b y c p1 qp

Int Load M1 4 m x6 hint x r3 h r1 qp
Int Load +Reg M2 4 m x6 hint x r3 r2 r1 qp
Int Load +Imm M3 5 s x6 hint i r3 imm7b r1 qp

Int Store M4 4 m x6 hint x r3 r2 h qp
Int Store +Imm M5 5 s x6 hint i r3 r2 imm7a qp

FP Load M6 6 m x6 hint x r3 h f1 qp
FP Load +Reg M7 6 m x6 hint x r3 r2 f1 qp
FP Load +Imm M8 7 s x6 hint i r3 imm7b f1 qp

FP Store M9 6 m x6 hint x r3 f2 h qp
FP Store +Imm M10 7 s x6 hint i r3 f2 imm7a qp
FP Load Pair M11 6 m x6 hint x r3 f2 f1 qp

FP Load Pair +Imm M12 6 m x6 hint x r3 f2 f1 qp
Line Prefetch M13 6 m x6 hint x r3 h qp

Line Prefetch +Reg M14 6 m x6 hint x r3 r2 h qp
Line Prefetch +Imm M15 7 s x6 hint i r3 imm7b h qp

(Cmp &) Exchg M16 4 m x6 hint x r3 r2 r1 qp
Fetch & Add M17 4 m x6 hint x r3 s i2b r1 qp

Set FR M18 6 m x6 x r2 f1 qp
Get FR M19 4 m x6 x f2 r1 qp

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 185

Int Spec Check M20 1 s x3 imm13c r2 imm7a qp
FP Spec Check M21 1 s x3 imm13c f2 imm7a qp
Int ALAT Check M22 0 s x3 imm20b r1 qp
FP ALAT Check M23 0 s x3 imm20b f1 qp
Sync/Srlz/ALAT M24 0 x3 x2 x4 qp

RSE Control M25 0 x3 x2 x4 0
Int ALAT Inval M26 0 x3 x2 x4 r1 qp
FP ALAT Inval M27 0 x3 x2 x4 f1 qp
Flush Cache M28 1 x x3 x6 r3 qp
Move to AR M29 1 x3 x6 ar3 r2 qp

Move to AR Imm8 M30 0 s x3 x2 x4 ar3 imm7b qp
Move from AR M31 1 x3 x6 ar3 r1 qp

Move to CR M32 1 x3 x6 cr3 r2 qp
Move from CR M33 1 x3 x6 cr3 r1 qp

Alloc M34 1 x3 sor sol sof r1 qp
Move to PSR M35 1 x3 x6 r2 qp

Move from PSR M36 1 x3 x6 r1 qp
Break M37 0 i x3 x2 x4 imm20a qp
Probe M38 1 x3 x6 r3 r2 r1 qp

Probe Imm2 M39 1 x3 x6 r3 i2b r1 qp
Probe Fault Imm2 M40 1 x3 x6 r3 i2b qp

TC Insert M41 1 x3 x6 r2 qp
Mv to Ind/TR Ins M42 1 x3 x6 r3 r2 qp

Mv from Ind M43 1 x3 x6 r3 r1 qp
Set/Reset Mask M44 0 i x3 i2d x4 imm21a qp

Translation Purge M45 1 x3 x6 r3 r2 qp
Translation Access M46 1 x3 x6 r3 r1 qp

TC Entry Purge M47 1 x3 x6 r3 qp
Nop M48 0 i x3 x2 x4 y imm20a qp
Hint M49 0 i x3 x2 x4 y imm14b z imm4a qp

Move to DAHR M50 0 i x3 x2 x4 y dahr3 imm11b z imm4a qp
Line Prefetch M51 6 m x6 hint x r3 y h qp

Counted Line Prefetch M52 6 m x6 hint x r3 y stride5b h cnt6a qp
IP-Relative Branch B1 4 s d wh imm20b p btype qp

Counted Branch B2 4 s d wh imm20b p btype 0
IP-Relative Call B3 5 s d wh imm20b p b1 qp
Indirect Branch B4 0 d wh x6 b2 p btype qp

Indirect Call B5 1 d wh b2 p b1 qp
IP-Relative Predict B6 7 s ih t2e imm20b timm7a p x2 pbtv

Indirect Predict B7 2 ih t2e x6 b2 timm7a p wh pbtv
Misc B8 0 x6 0

Break/Nop/Hint B9 0/2 i x6 imm20a qp
Instr Prefetch B10 7 s f c2e imm20b count7a x2 pbtv
FP Arithmetic F1 8 - D x sf f4 f3 f2 f1 qp

Fixed Multiply Add F2 E x x2 f4 f3 f2 f1 qp
FP Select F3 E x f4 f3 f2 f1 qp

FP Compare F4 4 rb sf ra p2 f3 f2 ta p1 qp
FP Class F5 5 fc2 p2 fclass7c f2 ta p1 qp

FP Recip Approx F6 0 - 1 q sf x p2 f3 f2 f1 qp
FP Recip Sqrt App F7 0 - 1 q sf x p2 f3 f1 qp
FP Min/Max/Pcmp F8 0 - 1 sf x x6 f3 f2 f1 qp
FP Merge/Logical F9 0 - 1 x x6 f3 f2 f1 qp

Convert FP to Fixed F10 0 - 1 sf x x6 f2 f1 qp
Convert Fixed to FP F11 0 x x6 f2 f1 qp

FP Set Controls F12 0 sf x x6 omask7c amask7b qp
FP Clear Flags F13 0 sf x x6 qp
FP Check Flags F14 0 s sf x x6 imm20a qp

Break F15 0 i x x6 imm20a qp
Nop/Hint F16 0 i x x6 y imm20a qp

Table 4-4. Instruction Format Summary (Continued)

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

186 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Break X1 0 i x3 x6 imm20a qp imm41
Move Imm64 X2 6 i imm9d imm5c ic vc imm7b r1 qp imm41
Long Branch X3 C i d wh imm20b p btype qp imm39

Long Call X4 D i d wh imm20b p b1 qp imm39
Nop/Hint X5 0 i x3 x6 y imm20a qp imm41

Table 4-5. Instruction Field Color Key

Field & Color

ALU Instruction Opcode Extension

Integer Instruction Opcode Hint Extension

Memory Instruction Immediate

Branch Instruction Indirect Source

Floating-point Instruction Predicate Destination

Integer Source Integer Destination

Memory Source Memory Source & Destination

Shift Source Shift Immediate

Special Register Source Special Register Destination

Floating-point Source Floating-point Destination

Branch Source Branch Destination

Address Source Branch Tag Immediate

Qualifying Predicate Reserved Instruction

Ignored Field/Instruction Reserved Inst if PR[qp] is 1

Reserved B-type Inst if PR[qp] is 1

Table 4-6. Instruction Field Names

Field Name Description

ar3 application register source/target

b1, b2 branch register source/target

btype branch type opcode extension
c complement compare relation opcode extension
ccount5c multimedia shift left complemented shift count immediate

count5b, count6d multimedia shift right/shift right pair shift count immediate

cposx deposit complemented bit position immediate

cr3 control register source/target

ct2d multimedia multiply shift/shift and add shift count immediate

d branch cache deallocation hint opcode extension
dahr3 data access hint register target

fn floating-point register source/target

fc2, fclass7c floating-point class immediate

hint memory reference hint opcode extension
i, i2b, i2d, immx immediate of length 1, 2, or x

ih branch importance hint opcode extension

Table 4-4. Instruction Format Summary (Continued)

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

4039383736353433323130292827262524232221201918171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 187

The remaining sections of this chapter present the detailed encodings of all instructions. The “A-Unit
Instruction encodings” are presented first, followed by the “I-Unit Instruction Encodings” on
page 198, “M-Unit Instruction Encodings” on page 211, “B-Unit Instruction Encodings” on page 240,
“F-Unit Instruction Encodings” on page 247, and “X-Unit Instruction Encodings” on page 256.
Within each section, the instructions are grouped by function, and appear with their instruction format
in the same order as in Table 4-4, “Instruction Format Summary” on page 3-184. The opcode exten-
sion fields are briefly described and tables present the opcode extension assignments. Unused
instruction encodings (appearing as blank entries in the opcode extensions tables) behave in one of
four ways:

• Ignored instructions (white color entries in the tables) execute as nop instructions.

len4d, len6d extract/deposit length immediate

m memory reference post-modify opcode extension
maskx predicate immediate mask

mbt4c, mht8c multimedia mux1/mux2 immediate

p sequential prefetch hint opcode extension
p1, p2 predicate register target

pos6b test bit/extract bit position immediate

q floating-point reciprocal/reciprocal square-root opcode extension
qp qualifying predicate register source
rn general register source/target

s immediate sign bit
sf floating-point status field opcode extension
sof, sol, sor alloc size of frame, size of locals, size of rotating immediates
ta, tb compare type opcode extension

t2e, timmx branch predict tag immediate

vx reserved opcode extension field

wh branch whether hint opcode extension
x, xn opcode extension of length 1 or n

y extract/deposit/test bit/test NaT/hint opcode extension
za, zb multimedia operand size opcode extension

Table 4-7. Special Instruction Notations

Notation Description

e instruction ends an instruction group when taken, or for Reserved if
PR[qp] is 1 (cyan) encodings and non-branch instructions with a qualifying
predicate, when its PR[qp] is 1, or for Reserved (brown) encodings,
unconditionally

f instruction must be the first instruction in an instruction group and must
either be in instruction slot 0 or in instruction slot 1 of a template having a
stop after slot 0

i instruction is allowed in the I slot of an MLI template
l instruction must be the last in an instruction group
p privileged instruction
t instruction is only allowed in instruction slot 2

Table 4-6. Instruction Field Names (Continued)

Field Name Description

188 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

• Reserved instructions (light gray color in the gray scale version of the tables, brown
color in the color version) cause an Illegal Operation fault.

• Reserved if PR[qp] is 1 instructions (dark gray in the gray scale version of the
tables, purple in the color version) cause an Illegal Operation fault if the predicate
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0.

• Reserved if PR[qp] is 1 B-unit instructions (medium gray in the gray scale version of
the tables, cyan in the color version) cause an Illegal Operation fault if the predicate
register specified by the qp field of the instruction (bits 5:0) is 1 and execute as a
nop instruction if 0. These differ from the Reserved if PR[qp] is 1 instructions
(purple) only in their RAW dependency behavior (see “RAW Dependency Table” on
page 374).

Some processors may implement the Reserved if PR[qp] is 1 (purple) and Reserved if PR[qp] is 1 B-
unit (cyan) encodings in the L+X opcode space as Reserved (brown). These encodings appear in the
L+X column of Table 4-3 on page 3:183, and in Table 4-75 on page 3:257, Table 4-76 on page 3:257,
Table 4-77 on page 3:258, and Table 4-78 on page 3:258. On processors which implement these
encodings as Reserved (brown), the operating system is required to provide an Illegal Operation fault
handler which emulates them as Reserved if PR[qp] is 1 (cyan/purple) by decoding the reserved
opcodes, checking the qualifying predicate, and returning to the next instruction if PR[qp] is 0.
Constant 0 fields in instructions must be 0 or undefined operation results. The undefined operation
may include checking that the constant field is 0 and causing an Illegal Operation fault if it is not. If an
instruction having a constant 0 field also has a qualifying predicate (qp field), the fault or other unde-
fined operation must not occur if PR[qp] is 0. For constant 0 fields in instruction bits 5:0 (normally
used for qp), the fault or other undefined operation may or may not depend on the PR addressed by
those bits.
Ignored (white space) fields in instructions should be coded as 0. Although ignored in this revision of
the architecture, future architecture revisions may define these fields as hint extensions. These hint
extensions will be defined such that the 0 value in each field corresponds to the default hint. It is
expected that assemblers will automatically set these fields to zero by default.
Unused opcode hint extension values (white color entries in Hint Completer tables) should not be
used by software. Processors must perform the architected functional behavior of the instruction
independent of the hint extension value (whether defined or unused), but different processor models
may interpret unused opcode hint extension values in different ways, resulting in undesirable perfor-
mance effects.

4.2 A-Unit Instruction Encodings

4.2.1 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode extension field in
bits 35:34 (x2a) and most have a second 2-bit opcode extension field in bits 28:27 (x2b), a 4-bit
opcode extension field in bits 32:29 (x4), and a 1-bit reserved opcode extension field in bit 33 (ve).
Table 4-8 shows the 2-bit x2a and 1-bit ve assignments, Table 4-9 shows the integer ALU 4-bit+2-bit
assignments, and Table 4-12 on page 3:194 shows the multimedia ALU 1-bit+2-bit assignments
(which also share major opcode 8).

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 189

4.2.1.1 Integer ALU – Register-Register

A1

Table 4-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

ve
Bit 33

0 1

8

0 Integer ALU 4-bit+2-bit Ext (Table 4-9)

1 Multimedia ALU 1-bit+2-bit Ext (Table 4-12)

2 adds – imm14 A4

3 addp4 – imm14 A4

Table 4-9. Integer ALU 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

ve
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 0 0

0 add A1 add +1 A1

1 sub -1 A1 sub A1

2 addp4 A1

3 and A1 andcm A1 or A1 xor A1

4 shladd A2

5

6 shladdp4 A2

7

8

9 sub – imm8 A3

A

B and – imm8 A3 andcm – imm8 A3 or – imm8 A3 xor – imm8 A3

C

D

E

F

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

add
r1 = r2, r3

8 0 0

0
0

r1 = r2, r3, 1 1

sub
r1 = r2, r3

1
1

r1 = r2, r3, 1 0

addp4

r1 = r2, r3

2 0

and

3

0

andcm 1

or 2

xor 3

190 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.2.1.2 Shift Left and Add

A2

4.2.1.3 Integer ALU – Immediate8-Register

A3

4.2.1.4 Add Immediate14

A4

4.2.1.5 Add Immediate22

A5

4.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C - E using a 2-bit opcode exten-
sion field (x2) in bits 35:34 and three 1-bit opcode extension fields in bits 33 (ta), 36 (tb), and 12 (c),
as shown in Table 4-10. The integer compare immediate instructions are encoded within major
opcodes C - E using a 2-bit opcode extension field (x2) in bits 35:34 and two 1-bit opcode extension
fields in bits 33 (ta) and 12 (c), as shown in Table 4-11.

40 373635343332 29282726 2019 1312 6 5 0

8 x2a ve x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4

shladd
r1 = r2, count2, r3 8 0 0

4

shladdp4 6

40 373635343332 29282726 2019 1312 6 5 0

8 s x2a ve x4 x2b r3 imm7b r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

sub

r1 = imm8, r3 8 0 0

9 1

and

B

0

andcm 1

or 2

xor 3

40 373635343332 2726 2019 1312 6 5 0

8 s x2a ve imm6d r3 imm7b r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve

adds
r1 = imm14, r3 8

2
0

addp4 3

40 373635 2726 22212019 1312 6 5 0

9 s imm9d imm5c r3 imm7b r1 qp

4 1 9 5 2 7 7 6

Instruction Operands Opcode

addl r1 = imm22, r3 9

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 191

Table 4-10.Integer Compare Opcode Extensions

x2
Bits

35:34

tb
Bit
36

ta
Bit
33

c
Bit
12

Opcode
Bits 40:37

C D E

0

0

0
0 cmp.lt A6 cmp.ltu A6 cmp.eq A6

1 cmp.lt.unc A6 cmp.ltu.unc A6 cmp.eq.unc A6

1
0 cmp.eq.and A6 cmp.eq.or A6 cmp.eq.or.andcm A6

1 cmp.ne.and A6 cmp.ne.or A6 cmp.ne.or.andcm A6

1

0
0 cmp.gt.and A7 cmp.gt.or A7 cmp.gt.or.andcm A7

1 cmp.le.and A7 cmp.le.or A7 cmp.le.or.andcm A7

1
0 cmp.ge.and A7 cmp.ge.or A7 cmp.ge.or.andcm A7

1 cmp.lt.and A7 cmp.lt.or A7 cmp.lt.or.andcm A7

1

0

0
0 cmp4.lt A6 cmp4.ltu A6 cmp4.eq A6

1 cmp4.lt.unc A6 cmp4.ltu.unc A6 cmp4.eq.unc A6

1
0 cmp4.eq.and A6 cmp4.eq.or A6 cmp4.eq.or.andcm A6

1 cmp4.ne.and A6 cmp4.ne.or A6 cmp4.ne.or.andcm A6

1

0
0 cmp4.gt.and A7 cmp4.gt.or A7 cmp4.gt.or.andcm A7

1 cmp4.le.and A7 cmp4.le.or A7 cmp4.le.or.andcm A7

1
0 cmp4.ge.and A7 cmp4.ge.or A7 cmp4.ge.or.andcm A7

1 cmp4.lt.and A7 cmp4.lt.or A7 cmp4.lt.or.andcm A7

Table 4-11.Integer Compare Immediate Opcode Extensions

x2
Bits

35:34

ta
Bit
33

c
Bit
12

Opcode
Bits 40:37

C D E

2

0
0 cmp.lt – imm8 A8 cmp.ltu – imm8 A8 cmp.eq – imm8 A8

1 cmp.lt.unc – imm8 A8 cmp.ltu.unc – imm8 A8 cmp.eq.unc – imm8 A8

1
0 cmp.eq.and – imm8 A8 cmp.eq.or – imm8 A8 cmp.eq.or.andcm – imm8 A8

1 cmp.ne.and – imm8 A8 cmp.ne.or – imm8 A8 cmp.ne.or.andcm – imm8 A8

3

0
0 cmp4.lt – imm8 A8 cmp4.ltu – imm8 A8 cmp4.eq – imm8 A8

1 cmp4.lt.unc – imm8 A8 cmp4.ltu.unc – imm8 A8 cmp4.eq.unc – imm8 A8

1

0
cmp4.eq.and – imm8 A8 cmp4.eq.or – imm8 A8 cmp4.eq.or.andcm – imm8

A8

1
cmp4.ne.and – imm8 A8 cmp4.ne.or – imm8 A8 cmp4.ne.or.andcm – imm8

A8

192 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.2.2.1 Integer Compare – Register-Register

A6

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 r2 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.lt

p1, p2 = r2, r3

C

0 0

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

1 0

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 193

4.2.2.2 Integer Compare to Zero – Register

A7

40 373635343332 2726 2019 1312 11 6 5 0

C - E tb x2 ta p2 r3 0 c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c

cmp.gt.and

p1, p2 = r0, r3

C

0

1

0

0cmp.gt.or D

cmp.gt.or.andcm E

cmp.le.and C

1cmp.le.or D

cmp.le.or.andcm E

cmp.ge.and C

1

0cmp.ge.or D

cmp.ge.or.andcm E

cmp.lt.and C

1cmp.lt.or D

cmp.lt.or.andcm E

cmp4.gt.and C

1

0

0cmp4.gt.or D

cmp4.gt.or.andcm E

cmp4.le.and C

1cmp4.le.or D

cmp4.le.or.andcm E

cmp4.ge.and C

1

0cmp4.ge.or D

cmp4.ge.or.andcm E

cmp4.lt.and C

1cmp4.lt.or D

cmp4.lt.or.andcm E

194 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.2.2.3 Integer Compare – Immediate-Register

A8

4.2.3 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit opcode extension
fields in bits 36 (za) and 33 (zb) and a 2-bit opcode extension field in bits 35:34 (x2a) as shown in
Table 4-12. The multimedia ALU instructions also have a 4-bit opcode extension field in bits 32:29
(x4), and a 2-bit opcode extension field in bits 28:27 (x2b) as shown in Table 4-13 on page 3:195.

40 373635343332 2726 2019 1312 11 6 5 0

C - E s x2 ta p2 r3 imm7b c p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 ta c

cmp.lt

p1, p2 = imm8, r3

C

2

0

0cmp.ltu D

cmp.eq E

cmp.lt.unc C

1cmp.ltu.unc D

cmp.eq.unc E

cmp.eq.and C

1

0cmp.eq.or D

cmp.eq.or.andcm E

cmp.ne.and C

1cmp.ne.or D

cmp.ne.or.andcm E

cmp4.lt C

3

0

0cmp4.ltu D

cmp4.eq E

cmp4.lt.unc C

1cmp4.ltu.unc D

cmp4.eq.unc E

cmp4.eq.and C

1

0cmp4.eq.or D

cmp4.eq.or.andcm E

cmp4.ne.and C

1cmp4.ne.or D

cmp4.ne.or.andcm E

Table 4-12.Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 40:37

x2a
Bits 35:34

za
Bit 36

zb
Bit 33

8 1

0
0 Multimedia ALU Size 1 (Table 4-13)

1 Multimedia ALU Size 2 (Table 4-14)

1
0 Multimedia ALU Size 4 (Table 4-15)

1

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 195

Table 4-13.Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 0

0 padd1 A9 padd1.sss A9 padd1.uuu A9 padd1.uus A9

1 psub1 A9 psub1.sss A9 psub1.uuu A9 psub1.uus A9

2 pavg1 A9 pavg1.raz A9

3 pavgsub1 A9

4

5

6

7

8

9 pcmp1.eq A9 pcmp1.gt A9

A

B

C

D

E

F

Table 4-14.Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 1

0 padd2 A9 padd2.sss A9 padd2.uuu A9 padd2.uus A9

1 psub2 A9 psub2.sss A9 psub2.uuu A9 psub2.uus A9

2 pavg2 A9 pavg2.raz A9

3 pavgsub2 A9

4 pshladd2 A10

5

6 pshradd2 A10

7

8

9 pcmp2.eq A9 pcmp2.gt A9

A

B

C

D

E

F

196 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-15.Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x2a
Bits

35:34

za
Bit
36

zb
Bit
33

x4
Bits

32:29

x2b
Bits 28:27

0 1 2 3

8 1 1 0

0 padd4 A9

1 psub4 A9

2

3

4

5

6

7

8

9 pcmp4.eq A9 pcmp4.gt A9

A

B

C

D

E

F

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 197

4.2.3.1 Multimedia ALU

A9

4.2.3.2 Multimedia Shift and Add

A10

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 x2b r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4 x2b

padd1

r1 = r2, r3 8 1

0
0

0

0padd2 1

padd4 1 0

padd1.sss
0

0
1

padd2.sss 1

padd1.uuu
0

0
2

padd2.uuu 1

padd1.uus
0

0
3

padd2.uus 1

psub1
0

0

1

0psub2 1

psub4 1 0

psub1.sss
0

0
1

psub2.sss 1

psub1.uuu
0

0
2

psub2.uuu 1

psub1.uus
0

0
3

psub2.uus 1

pavg1
0

0

2

2
pavg2 1

pavg1.raz
0

0
3

pavg2.raz 1

pavgsub1
0

0
3 2

pavgsub2 1

pcmp1.eq
0

0

9

0pcmp2.eq 1

pcmp4.eq 1 0

pcmp1.gt
0

0

1pcmp2.gt 1

pcmp4.gt 1 0

40 373635343332 29282726 2019 1312 6 5 0

8 za x2a zb x4 ct2d r3 r2 r1 qp

4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4

pshladd2
r1 = r2, count2, r3 8 1 0 1

4

pshradd2 6

198 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3 I-Unit Instruction Encodings

4.3.1 Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift instructions are
encoded within major opcode 7 using two 1-bit opcode extension fields in bits 36 (za) and 33 (zb) and
a 1-bit reserved opcode extension in bit 32 (ve) as shown in Table 4-16. They also have a 2-bit
opcode extension field in bits 35:34 (x2a) and a 2-bit field in bits 29:28 (x2b) and most have a 2-bit
field in bits 31:30 (x2c) as shown in Table 4-17.

Table 4-16.Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit 32

0 1

7

0
0 Multimedia Size 1 (Table 4-17)

1 Multimedia Size 2 (Table 4-18)

1
0 Multimedia Size 4 (Table 4-19)

1 Variable Shift (Table 4-20)

Table 4-17.Multimedia Opcode 7 Size 1 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 0 0 0

0

0

1

2

3

1

0

1

2

3

2

0 unpack1.h I2 mix1.r I2

1 pmin1.u I2 pmax1.u I2

2 unpack1.l I2 mix1.l I2

3 psad1 I2

3

0

1

2 mux1 I3

3

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 199

Table 4-18.Multimedia Opcode 7 Size 2 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 0 1 0

0

0 pshr2.u – var I5 pshl2 – var I7

1 pmpyshr2.u I1

2 pshr2 – var I5

3 pmpyshr2 I1

1

0

1 pshr2.u – fixed I6 popcnt I9 clz I9

2

3 pshr2 – fixed I6

2

0 pack2.uss I2 unpack2.h I2 mix2.r I2

1 pmpy2.r I2

2 pack2.sss I2 unpack2.l I2 mix2.l I2

3 pmin2 I2 pmax2 I2 pmpy2.l I2

3

0

1 pshl2 – fixed I8

2 mux2 I4

3

Table 4-19.Multimedia Opcode 7 Size 4 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 1 0 0

0

0 pshr4.u – var I5 pshl4 – var I7

1 mpy4 I2

2 pshr4 – var I5

3 mpyshl4 I2

1

0

1 pshr4.u – fixed I6

2

3 pshr4 – fixed I6

2

0 unpack4.h I2 mix4.r I2

1

2 pack4.sss I2 unpack4.l I2 mix4.l I2

3

3

0

1 pshl4 – fixed I8

2

3

200 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.1.1 Multimedia Multiply and Shift

I1

Table 4-20.Variable Shift Opcode 7 2-bit Opcode Extensions

Opcode
Bits

40:37

za
Bit
36

zb
Bit
33

ve
Bit
32

x2a
Bits

35:34

x2b
Bits

29:28

x2c
Bits 31:30

0 1 2 3

7 1 1 0

0

0 shr.u – var I5 shl – var I7

1

2 shr – var I5

3

1

0

1

2

3

2

0

1

2

3

3

0

1

2

3

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve ct2d x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b

pmpyshr2
r1 = r2, r3, count2 7 0 1 0 0

3

pmpyshr2.u 1

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 201

4.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

I2

4.3.1.3 Multimedia Mux1

I3

4.3.1.4 Multimedia Mux2

I4

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mpy4

r1 = r2, r3 7

1 0

0

0
1

3
mpyshl4 3

pmpy2.r
0 1

2

1
3

pmpy2.l 3

mix1.r 0 0

0

2

mix2.r 0 1

mix4.r 1 0

mix1.l 0 0

2mix2.l 0 1

mix4.l 1 0

pack2.uss 0 1 0

0pack2.sss 0 1
2

pack4.sss 1 0

unpack1.h 0 0

0

1

unpack2.h 0 1

unpack4.h 1 0

unpack1.l 0 0

2unpack2.l 0 1

unpack4.l 1 0

pmin1.u
0 0 1

0

pmax1.u 1

pmin2
0 1 3

0

pmax2 1

psad1 0 0 3 2

40 3736353433323130292827 2423 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mbt4c r2 r1 qp

4 1 2 1 1 2 2 4 4 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux1 r1 = r2, mbtype4 7 0 0 0 3 2 2

40 3736353433323130292827 2019 1312 6 5 0

7 za x2a zb ve x2c x2b mht8c r2 r1 qp

4 1 2 1 1 2 2 8 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

mux2 r1 = r2, mhtype8 7 0 1 0 3 2 2

202 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.1.5 Shift Right – Variable

I5

4.3.1.6 Multimedia Shift Right – Fixed

I6

4.3.1.7 Shift Left – Variable

I7

4.3.1.8 Multimedia Shift Left – Fixed

I8

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, r2 7

0 1

0 0

2

0

pshr4 1 0

shr 1 1

pshr2.u 0 1

0pshr4.u 1 0

shr.u 1 1

40 373635343332313029282726 201918 141312 6 5 0

7 za x2a zb ve x2c x2b r3 count5b r1 qp

4 1 2 1 1 2 2 1 7 1 5 1 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshr2

r1 = r3, count5 7

0 1

0 1

3

0
pshr4 1 0

pshr2.u 0 1
1

pshr4.u 1 0

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 r2 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2
r1 = r2, r3 7

0 1

0 0 0 1pshl4 1 0

shl 1 1

40 3736353433323130292827 2524 2019 1312 6 5 0

7 za x2a zb ve x2c x2b ccount5c r2 r1 qp

4 1 2 1 1 2 2 3 5 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

pshl2
r1 = r2, count5 7

0 1
0 3 1 1

pshl4 1 0

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 203

4.3.1.9 Bit Strings

I9

4.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5 using a 2-bit
opcode extension field in bits 35:34 (x2) and a 1-bit opcode extension field in bit 33 (x). The extract
and test bit instructions also have a 1-bit opcode extension field in bit 13 (y). Table 4-21 shows the
test bit, extract, and shift right pair assignments.
Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). Table 4-22 shows
these assignments.

4.3.2.1 Shift Right Pair

I10

4.3.2.2 Extract

I11

40 373635343332313029282726 2019 1312 6 5 0

7 za x2a zb ve x2c x2b r3 0 r1 qp

4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c

popcnt
r1 = r3 7 0 1 0 1 1

2

clz 3

Table 4-22.Deposit Opcode Extensions

Opcode
Bits 40:37

x2
Bits 35:34

x
Bit 33

y
Bit 26

0 1

5

0

1

Test Bit/Test NaT/Test Feature (Table 4-23)

1 dep.z I12 dep.z – imm8 I13

2

3 dep – imm1 I14

40 373635343332 2726 2019 1312 6 5 0

5 x2 x count6d r3 r2 r1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x2 x

shrp r1 = r2, r3, count6 5 3 0

40 37 36 35 34 33 32 27 26 20 19 14 13 12 6 5 0

5 x2 x len6d r3 pos6b y r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x y

extr.u
r1 = r3, pos6, len6 5 1 0

0

extr 1

204 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.2.3 Zero and Deposit

I12

4.3.2.4 Zero and Deposit Immediate8

I13

4.3.2.5 Deposit Immediate1

I14

4.3.2.6 Deposit

I15

4.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode extension field in bits
35:34 (x2) plus five 1-bit opcode extension fields in bits 33 (ta), 36 (tb), 12 (c), 13 (y) and 19 (x).
Table 4-23 summarizes these assignments.

40 373635343332 272625 2019 1312 6 5 0

5 x2 x len6d y cpos6c r2 r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = r2, pos6, len6 5 1 1 0

40 373635343332 272625 2019 1312 6 5 0

5 s x2 x len6d y cpos6c imm7b r1 qp

4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y

dep.z r1 = imm8, pos6, len6 5 1 1 1

40 373635343332 2726 2019 141312 6 5 0

5 s x2 x len6d r3 cpos6b r1 qp

4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x

dep r1 = imm1, r3, pos6, len6 5 3 1

40 3736 3130 2726 2019 1312 6 5 0

4 cpos6d len4d r3 r2 r1 qp

4 6 4 7 7 7 6

Instruction Operands Opcode

dep r1 = r2, r3, pos6, len4 4

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 205

4.3.3.1 Test Bit

I16

Table 4-23.Test Bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits

35:34

ta
Bit 33

tb
Bit 36

c
Bit 12

y
Bit 13

x
Bit 19

0 1

5 0

0

0

0
0 tbit.z I16

1 tnat.z I17 tf.z I30

1
0 tbit.z.unc I16

1 tnat.z.unc I17 tf.z.unc I30

1

0
0 tbit.z.and I16

1 tnat.z.and I17 tf.z.and I30

1
0 tbit.nz.and I16

1 tnat.nz.and I17 tf.nz.and I30

1

0

0
0 tbit.z.or I16

1 tnat.z.or I17 tf.z.or I30

1
0 tbit.nz.or I16

1 tnat.nz.or I17 tf.nz.or I30

1

0
0 tbit.z.or.andcm I16

1 tnat.z.or.andcm I17 tf.z.or.andcm I30

1
0 tbit.nz.or.andcm I16

1 tnat.nz.or.andcm I17 tf.nz.or.andcm I30

40 373635343332 2726 2019 141312 11 6 5 0

5 tb x2 ta p2 r3 pos6b y c p1 qp

4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c

tbit.z

p1, p2 = r3, pos6 5 0

0

0

0

0

tbit.z.unc 1

tbit.z.and
1

0

tbit.nz.and 1

tbit.z.or

1

0
0

tbit.nz.or 1

tbit.z.or.andcm
1

0

tbit.nz.or.andcm 1

206 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.3.2 Test NaT

I17

4.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension
field (x3) in bits 35:33. Some also have a 6-bit opcode extension field (x6) in bits 32:27. Table 4-24
shows the 3-bit assignments and Table 4-25 summarizes the 6-bit assignments.

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 r3 x y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tnat.z

p1, p2 = r3 5 0

0

0

1 0

0

tnat.z.unc 1

tnat.z.and
1

0

tnat.nz.and 1

tnat.z.or

1

0
0

tnat.nz.or 1

tnat.z.or.andcm
1

0

tnat.nz.or.andcm 1

Table 4-24.Misc I-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-25)

1 chk.s.i – int I20

2 mov to pr.rot – imm44 I24

3 mov to pr I23

4

5

6

7 mov to b I21

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 207

4.3.4.1 Nop/Hint (I-Unit)

I-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (x6), and a 1-bit opcode extension
field in bit 26 (y), as shown in Table 4-26.

I18

Table 4-25.Misc I-Unit 6-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.i I19 zxt1 I29 mov from ip I25

1 1-bit Ext (Table 4-26) zxt2 I29 mov from b I22

2 zxt4 I29 mov.i from ar I28

3 mov from pr I25

4 sxt1 I29

5 sxt2 I29

6 sxt4 I29

7

8 czx1.l I29

9 czx2.l I29

A mov.i to ar – imm8 I27 mov.i to ar I26

B

C czx1.r I29

D czx2.r I29

E

F

Table 4-26.Misc I-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.i

1 hint.i

40 373635 3332 272625 6 5 0

0 i x3 x6 y imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6 y

nop.i i
imm21 0 0 01

0

hint.i 1

208 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.4.2 Break (I-Unit)

I19

4.3.4.3 Integer Speculation Check (I-Unit)

I20

4.3.5 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions”
on page 206 for a summary of the opcode extensions. The mov to BR instruction uses a 2-bit
“whether” prediction hint field in bits 21:20 (wh) as shown in Table 4-27.

The mov to BR instruction also uses a 1-bit opcode extension field (x) in bit 22 to distinguish the
return form from the normal form, and a 1-bit hint extension in bit 23 (ih) (see Table 4-60 on
page 3:244).

4.3.5.1 Move to BR

I21

40 373635 3332 272625 6 5 0

0 i x3 x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x3 x6

break.i i imm21 0 0 00

40 373635 3332 2019 1312 6 5 0

0 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.i r2, target25 0 1

Table 4-27.Move to BR Whether Hint Completer

wh
Bits 21:20

mwh

0 .sptk

1 none

2 .dptk

3

40 373635 3332 242322212019 1312 11 9 8 6 5 0

0 x3 timm9c ih x wh r2 p pbtv b1 qp

4 1 3 9 1 1 2 7 1 3 3 6

Instruction Operands Opcode
Extension

x3 x ih p wh pbtv

mov.mwh.ph.pvec.ih
b1 = r2, tag13 0 7

0
See

Table 4-60
on

page 3:244

See
Table 4-63

on
page 3:245

See
Table 4-27

on
page 3:208

See
Table 4-64

on
page 3:245mov.ret.mwh.ph.pvec.ih 1

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 209

4.3.5.2 Move from BR

I22

4.3.6 GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit
Instructions” on page 206 for a summary of the opcode extensions.

4.3.6.1 Move to Predicates – Register

I23

4.3.6.2 Move to Predicates – Immediate44

I24

4.3.6.3 Move from Predicates/IP

I25

4.3.7 GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (Some ARs are accessed using
system/memory management instructions on the M-unit. See “GR/AR Moves (M-Unit)” on page 232.)
See “Miscellaneous I-Unit Instructions” on page 206 for a summary of the I-Unit GR/AR opcode
extensions.

40 373635 3332 2726 1615 1312 6 5 0

0 x3 x6 b2 r1 qp

4 1 3 6 11 3 7 6

Instruction Operands Opcode
Extension

x3 x6

mov r1 = b2 0 0 31

40 373635 333231 2423 2019 1312 6 5 0

0 s x3 mask8c r2 mask7a qp

4 1 3 1 8 4 7 7 6

Instruction Operands Opcode
Extension

x3

mov pr = r2, mask17 0 3

40 373635 3332 6 5 0

0 s x3 imm27a qp

4 1 3 27 6

Instruction Operands Opcode
Extension

x3

mov pr.rot = imm44 0 2

40 373635 3332 2726 1312 6 5 0

0 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov
r1 = ip

0 0
30

r1 = pr 33

210 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.3.7.1 Move to AR – Register (I-Unit)

I26

4.3.7.2 Move to AR – Immediate8 (I-Unit)

I27

4.3.7.3 Move from AR (I-Unit)

I28

4.3.8 Sign/Zero Extend/Compute Zero Index

I29

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = r2 0 0 2A

40 373635 3332 2726 2019 1312 6 5 0

0 s x3 x6 ar3 imm7b qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i ar3 = imm8 0 0 0A

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.i r1 = ar3 0 0 32

40 373635 3332 2726 2019 1312 6 5 0

0 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

zxt1

r1 = r3 0 0

10

zxt2 11

zxt4 12

sxt1 14

sxt2 15

sxt4 16

czx1.l 18

czx2.l 19

czx1.r 1C

czx2.r 1D

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 211

4.3.9 Test Feature

I30

4.4 M-Unit Instruction Encodings

4.4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 6-bit opcode
extension field in bits 35:30 (x6). Instructions in major opcode 4 (integer load/store, semaphores,
and get FR) use two 1-bit opcode extension fields in bit 36 (m) and bit 27 (x) as shown in Table 4-28.
Instructions in major opcode 6 (floating-point load/store, load pair, and set FR) use two 1-bit opcode
extension fields in bit 36 (m) and bit 27 (x) as shown in Table 4-29.

The integer load/store opcode extensions are summarized in Table 4-30, Table 4-31, and Table 4-32
on page 3:213, and the semaphore and get FR opcode extensions in Table 4-33. The floating-point
load/store opcode extensions are summarized in Table 4-34, Table 4-36, and Table 4-37, the floating-
point load pair and set FR opcode extensions in Table 4-38 and Table 4-39.

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 0 x imm5b y c p1 qp

4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tf.z

p1, p2 = imm5 5 0

0

0

1 1

0

tf.z.unc 1

tf.z.and
1

0

tf.nz.and 1

tf.z.or

1

0
0

tf.nz.or 1

tf.z.or.andcm
1

0

tf.nz.or.andcm 1

Table 4-28.Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

4

0 0 Load/Store (Table 4-30)

0 1 Semaphore/get FR (Table 4-33)

1 0 Load +Reg (Table 4-31)

1 1

Table 4-29.Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

6

0 0 FP Load/Store (Table 4-34)

0 1 FP Load Pair/set FR (Table 4-38)

1 0 FP Load +Reg (Table 4-36)

1 1 FP Load Pair +Imm (Table 4-39)

212 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-30.Integer Load/Store Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 0 0

0 ld1 M1 ld2 M1 ld4 M1 ld8 M1

1 ld1.s M1 ld2.s M1 ld4.s M1 ld8.s M1

2 ld1.a M1 ld2.a M1 ld4.a M1 ld8.a M1

3 ld1.sa M1 ld2.sa M1 ld4.sa M1 ld8.sa M1

4 ld1.bias M1 ld2.bias M1 ld4.bias M1 ld8.bias M1

5 ld1.acq M1 ld2.acq M1 ld4.acq M1 ld8.acq M1

6 ld8.fill M1

7

8 ld1.c.clr M1 ld2.c.clr M1 ld4.c.clr M1 ld8.c.clr M1

9 ld1.c.nc M1 ld2.c.nc M1 ld4.c.nc M1 ld8.c.nc M1

A ld1.c.clr.acq M1 ld2.c.clr.acq M1 ld4.c.clr.acq M1 ld8.c.clr.acq M1

B

C st1 M4 st2 M4 st4 M4 st8 M4

D st1.rel M4 st2.rel M4 st4.rel M4 st8.rel M4

E st8.spill M4

F

Table 4-31.Integer Load +Reg Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 1 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2

1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2

2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2

3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2

4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2

5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2

6 ld8.fill M2

7

8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2

9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2

A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2

B

C

D

E

F

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 213

Table 4-32.Integer Load/Store +Imm Opcode Extensions

Opcode
Bits

40:37

x6

Bits
35:32

Bits 31:30

0 1 2 3

5

0 ld1 M3 ld2 M3 ld4 M3 ld8 M3

1 ld1.s M3 ld2.s M3 ld4.s M3 ld8.s M3

2 ld1.a M3 ld2.a M3 ld4.a M3 ld8.a M3

3 ld1.sa M3 ld2.sa M3 ld4.sa M3 ld8.sa M3

4 ld1.bias M3 ld2.bias M3 ld4.bias M3 ld8.bias M3

5 ld1.acq M3 ld2.acq M3 ld4.acq M3 ld8.acq M3

6 ld8.fill M3

7

8 ld1.c.clr M3 ld2.c.clr M3 ld4.c.clr M3 ld8.c.clr M3

9 ld1.c.nc M3 ld2.c.nc M3 ld4.c.nc M3 ld8.c.nc M3

A ld1.c.clr.acq M3 ld2.c.clr.acq M3 ld4.c.clr.acq M3 ld8.c.clr.acq M3

B

C st1 M5 st2 M5 st4 M5 st8 M5

D st1.rel M5 st2.rel M5 st4.rel M5 st8.rel M5

E st8.spill M5

F

Table 4-33.Semaphore/Get FR/16-Byte Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

4 0 1

0
cmpxchg1.acq

M16
cmpxchg2.acq

M16
cmpxchg4.acq

M16
cmpxchg8.acq M16

1 cmpxchg1.rel M16 cmpxchg2.rel M16 cmpxchg4.rel M16 cmpxchg8.rel M16

2 xchg1 M16 xchg2 M16 xchg4 M16 xchg8 M16

3

4
fetchadd4.acq

M17
fetchadd8.acq M17

5 fetchadd4.rel M17 fetchadd8.rel M17

6

7 getf.sig M19 getf.exp M19 getf.s M19 getf.d M19

8
cmp8xchg16.acq

M16

9
cmp8xchg16.rel

M16

A ld16 M1

B ld16.acq M1

C st16 M4

D st16.rel M4

E

F

214 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-34.Floating-point Load/Store/Lfetch Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 0 0

0 ldfe M6 ldf8 M6 ldfs M6 ldfd M6

1 ldfe.s M6 ldf8.s M6 ldfs.s M6 ldfd.s M6

2 ldfe.a M6 ldf8.a M6 ldfs.a M6 ldfd.a M6

3 ldfe.sa M6 ldf8.sa M6 ldfs.sa M6 ldfd.sa M6

4

5

6 ldf.fill M6

7

8 ldfe.c.clr M6 ldf8.c.clr M6 ldfs.c.clr M6 ldfd.c.clr M6

9 ldfe.c.nc M6 ldf8.c.nc M6 ldfs.c.nc M6 ldfd.c.nc M6

A

B
lfetch

(Table 4-35)
lfetch.excl M13 lfetch.fault M13 lfetch.fault.excl M13

C stfe M9 stf8 M9 stfs M9 stfd M9

D

E stf.spill M9

F

Table 4-35.Lfetch Extensions

y
Bit 19

0 lfetch M51

1 lfetch.count M52

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 215

Table 4-36.Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 1 0

0 ldfe M7 ldf8 M7 ldfs M7 ldfd M7

1 ldfe.s M7 ldf8.s M7 ldfs.s M7 ldfd.s M7

2 ldfe.a M7 ldf8.a M7 ldfs.a M7 ldfd.a M7

3 ldfe.sa M7 ldf8.sa M7 ldfs.sa M7 ldfd.sa M7

4

5

6 ldf.fill M7

7

8 ldfe.c.clr M7 ldf8.c.clr M7 ldfs.c.clr M7 ldfd.c.clr M7

9 ldfe.c.nc M7 ldf8.c.nc M7 ldfs.c.nc M7 ldfd.c.nc M7

A

B lfetch M14 lfetch.excl M14 lfetch.fault M14 lfetch.fault.excl M14

C

D

E

F

Table 4-37.Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode
Bits

40:37

x6

Bits
35:32

Bits 31:30

0 1 2 3

7

0 ldfe M8 ldf8 M8 ldfs M8 ldfd M8

1 ldfe.s M8 ldf8.s M8 ldfs.s M8 ldfd.s M8

2 ldfe.a M8 ldf8.a M8 ldfs.a M8 ldfd.a M8

3 ldfe.sa M8 ldf8.sa M8 ldfs.sa M8 ldfd.sa M8

4

5

6 ldf.fill M8

7

8 ldfe.c.clr M8 ldf8.c.clr M8 ldfs.c.clr M8 ldfd.c.clr M8

9 ldfe.c.nc M8 ldf8.c.nc M8 ldfs.c.nc M8 ldfd.c.nc M8

A

B lfetch M15 lfetch.excl M15 lfetch.fault M15 lfetch.fault.excl M15

C stfe M10 stf8 M10 stfs M10 stfd M10

D

E stf.spill M10

F

216 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

The load and store instructions all have a 2-bit cache locality opcode hint extension field in bits 29:28
(hint). Table 4-39 and Table 4-42 summarize these assignments.

Table 4-38.Floating-point Load Pair/Set FR Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 0 1

0 ldfp8 M11 ldfps M11 ldfpd M11

1 ldfp8.s M11 ldfps.s M11 ldfpd.s M11

2 ldfp8.a M11 ldfps.a M11 ldfpd.a M11

3 ldfp8.sa M11 ldfps.sa M11 ldfpd.sa M11

4

5

6

7 setf.sig M18 setf.exp M18 setf.s M18 setf.d M18

8 ldfp8.c.clr M11 ldfps.c.clr M11 ldfpd.c.clr M11

9 ldfp8.c.nc M11 ldfps.c.nc M11 ldfpd.c.nc M11

A

B

C

D

E

F

Table 4-39.Floating-point Load Pair +Imm Opcode Extensions

Opcode
Bits

40:37

m
Bit
36

x
Bit
27

x6

Bits
35:32

Bits 31:30

0 1 2 3

6 1 1

0 ldfp8 M12 ldfps M12 ldfpd M12

1 ldfp8.s M12 ldfps.s M12 ldfpd.s M12

2 ldfp8.a M12 ldfps.a M12 ldfpd.a M12

3 ldfp8.sa M12 ldfps.sa M12 ldfpd.sa M12

4

5

6

7

8 ldfp8.c.clr M12 ldfps.c.clr M12 ldfpd.c.clr M12

9 ldfp8.c.nc M12 ldfps.c.nc M12 ldfpd.c.nc M12

A

B

C

D

E

F

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 217

Table 4-40.Load Hint Completer

hint Bits 29: 28 ldhint

0 none

1 .nt1

2

3 .nta

Table 4-41.Load Hint Completer for no-base-update forms

h
Bit 19

hint
Bits 29:28

ldhintx

0

0 none

1 .nt1

2 .d2

3 .nta

Table 4-42.Load Hint Completer for base-update forms

hint
Bits 29:28

ldhint

0 none

1 .nt1

2 .d2

3 .nta

Table 4-43.Store Hint Completer

hint
Bits 29:28

sthint

0 none

1

2

3 .nta

Table 4-44.Store Hint Completer

hint
Bits 29:28

sthint

0 none

1 .d1

2 .d2

3 .nta

218 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.1.1 Integer Load

M1

40 373635 3029282726 201918 1312 6 5 0

4 m x6 hint x r3 h r1 qp

4 1 6 2 1 7 1 6 7 6

Instruction Operands Opcode
Extension

m x x6 hint, h

ld1.ldhintx

r1 = [r3]

4

0 0

00

Table 4-39 on
page 216

ld2.ldhintx 01

ld4.ldhintx 02

ld8.ldhintx 03

ld1.s.ldhintx 04

ld2.s.ldhintx 05

ld4.s.ldhintx 06

ld8.s.ldhintx 07

ld1.a.ldhintx 08

ld2.a.ldhintx 09

ld4.a.ldhintx 0A

ld8.a.ldhintx 0B

ld1.sa.ldhintx 0C

ld2.sa.ldhintx 0D

ld4.sa.ldhintx 0E

ld8.sa.ldhintx 0F

ld1.bias.ldhintx 10

ld2.bias.ldhintx 11

ld4.bias.ldhintx 12

ld8.bias.ldhintx 13

ld1.acq.ldhintx 14

ld2.acq.ldhintx 15

ld4.acq.ldhintx 16

ld8.acq.ldhintx 17

ld8.fill.ldhintx 1B

ld1.c.clr.ldhintx 20

ld2.c.clr.ldhintx 21

ld4.c.clr.ldhintx 22

ld8.c.clr.ldhintx 23

ld1.c.nc.ldhintx 24

ld2.c.nc.ldhintx 25

ld4.c.nc.ldhintx 26

ld8.c.nc.ldhintx 27

ld1.c.clr.acq.ldhintx 28

ld2.c.clr.acq.ldhintx 29

ld4.c.clr.acq.ldhintx 2A

ld8.c.clr.acq.ldhintx 2B

ld16.ldhintx
r1, ar.csd = [r3] 0 1

28

ld16.acq.ldhintx 2C

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 219

4.4.1.2 Integer Load – Increment by Register

M2

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ld1.ldhint

r1 = [r3], r2 4 1 0

00

Table 4-39 on
page 216

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

220 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.1.3 Integer Load – Increment by Immediate

M3

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 imm7b r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ld1.ldhint

r1 = [r3], imm9 5

00

Table 4-39 on
page 216

ld2.ldhint 01

ld4.ldhint 02

ld8.ldhint 03

ld1.s.ldhint 04

ld2.s.ldhint 05

ld4.s.ldhint 06

ld8.s.ldhint 07

ld1.a.ldhint 08

ld2.a.ldhint 09

ld4.a.ldhint 0A

ld8.a.ldhint 0B

ld1.sa.ldhint 0C

ld2.sa.ldhint 0D

ld4.sa.ldhint 0E

ld8.sa.ldhint 0F

ld1.bias.ldhint 10

ld2.bias.ldhint 11

ld4.bias.ldhint 12

ld8.bias.ldhint 13

ld1.acq.ldhint 14

ld2.acq.ldhint 15

ld4.acq.ldhint 16

ld8.acq.ldhint 17

ld8.fill.ldhint 1B

ld1.c.clr.ldhint 20

ld2.c.clr.ldhint 21

ld4.c.clr.ldhint 22

ld8.c.clr.ldhint 23

ld1.c.nc.ldhint 24

ld2.c.nc.ldhint 25

ld4.c.nc.ldhint 26

ld8.c.nc.ldhint 27

ld1.c.clr.acq.ldhint 28

ld2.c.clr.acq.ldhint 29

ld4.c.clr.acq.ldhint 2A

ld8.c.clr.acq.ldhint 2B

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 221

4.4.1.4 Integer Store

M4

4.4.1.5 Integer Store – Increment by Immediate

M5

40 373635 3029282726 2019 1312 11 6 5 0

4 m x6 hint x r3 r2 h qp

4 1 6 2 1 7 7 1 6 6

Instruction Operands Opcode
Extension

m x x6 hint, h

st1.sthintx

[r3] = r2
4

0 0

30

Table 4-42 on
page 217

st2.sthintx 31

st4.sthintx 32

st8.sthintx 33

st1.rel.sthintx 34

st2.rel.sthintx 35

st4.rel.sthintx 36

st8.rel.sthintx 37

st8.spill.sthintx 3B

st16.sthintx
[r3] = r2, ar.csd 0 1

30

st16.rel.sthintx 34

40 373635 3029282726 2019 1312 6 5 0

5 s x6 hint i r3 r2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

st1.sthint

[r3] = r2, imm9 5

30

Table 4-42 on
page 217

st2.sthint 31

st4.sthint 32

st8.sthint 33

st1.rel.sthint 34

st2.rel.sthint 35

st4.rel.sthint 36

st8.rel.sthint 37

st8.spill.sthint 3B

222 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.1.6 Floating-point Load

M6

40 373635 3029282726 201918 1312 6 5 0

6 m x6 hint x r3 h f1 qp

4 1 6 2 1 7 1 6 7 6

Instruction Operands Opcode
Extension

m x x6 hint, h

ldfs.ldhintx

f1 = [r3] 6 0 0

02

Table 4-39 on
page 216

ldfd.ldhintx 03

ldf8.ldhintx 01

ldfe.ldhintx 00

ldfs.s.ldhintx 06

ldfd.s.ldhintx 07

ldf8.s.ldhintx 05

ldfe.s.ldhintx 04

ldfs.a.ldhintx 0A

ldfd.a.ldhintx 0B

ldf8.a.ldhintx 09

ldfe.a.ldhintx 08

ldfs.sa.ldhintx 0E

ldfd.sa.ldhintx 0F

ldf8.sa.ldhintx 0D

ldfe.sa.ldhintx 0C

ldf.fill.ldhintx 1B

ldfs.c.clr.ldhintx 22

ldfd.c.clr.ldhintx 23

ldf8.c.clr.ldhintx 21

ldfe.c.clr.ldhintx 20

ldfs.c.nc.ldhintx 26

ldfd.c.nc.ldhintx 27

ldf8.c.nc.ldhintx 25

ldfe.c.nc.ldhintx 24

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 223

4.4.1.7 Floating-point Load – Increment by Register

M7

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfs.ldhint

f1 = [r3], r2 6 1 0

02

Table 4-39 on
page 216

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

224 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.1.8 Floating-point Load – Increment by Immediate

M8

4.4.1.9 Floating-point Store

M9

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 imm7b f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

ldfs.ldhint

f1 = [r3], imm9 7

02

Table 4-39 on
page 216

ldfd.ldhint 03

ldf8.ldhint 01

ldfe.ldhint 00

ldfs.s.ldhint 06

ldfd.s.ldhint 07

ldf8.s.ldhint 05

ldfe.s.ldhint 04

ldfs.a.ldhint 0A

ldfd.a.ldhint 0B

ldf8.a.ldhint 09

ldfe.a.ldhint 08

ldfs.sa.ldhint 0E

ldfd.sa.ldhint 0F

ldf8.sa.ldhint 0D

ldfe.sa.ldhint 0C

ldf.fill.ldhint 1B

ldfs.c.clr.ldhint 22

ldfd.c.clr.ldhint 23

ldf8.c.clr.ldhint 21

ldfe.c.clr.ldhint 20

ldfs.c.nc.ldhint 26

ldfd.c.nc.ldhint 27

ldf8.c.nc.ldhint 25

ldfe.c.nc.ldhint 24

40 373635 3029282726 2019 1312 11 6 5 0

6 m x6 hint x r3 f2 h qp

4 1 6 2 1 7 7 1 6 6

Instruction Operands Opcode
Extension

m x x6 hint, h

stfs.sthintx

[r3] = f2 6 0 0

32

Table 4-42 on
page 217

stfd.sthintx 33

stf8.sthintx 31

stfe.sthintx 30

stf.spill.sthintx 3B

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 225

4.4.1.10 Floating-point Store – Increment by Immediate

M10

4.4.1.11 Floating-point Load Pair

M11

40 373635 3029282726 2019 1312 6 5 0

7 s x6 hint i r3 f2 imm7a qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint

stfs.sthint

[r3] = f2, imm9 7

32

Table 4-42 on
page 217

stfd.sthint 33

stf8.sthint 31

stfe.sthint 30

stf.spill.sthint 3B

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint

f1, f2 = [r3] 6 0 1

02

Table 4-39 on
page 216

ldfpd.ldhint 03

ldfp8.ldhint 01

ldfps.s.ldhint 06

ldfpd.s.ldhint 07

ldfp8.s.ldhint 05

ldfps.a.ldhint 0A

ldfpd.a.ldhint 0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint 0E

ldfpd.sa.ldhint 0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint 22

ldfpd.c.clr.ldhint 23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint 26

ldfpd.c.nc.ldhint 27

ldfp8.c.nc.ldhint 25

226 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.1.12 Floating-point Load Pair – Increment by Immediate

M12

4.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the floating-point
load/store instructions. See “Loads and Stores” on page 211 for a summary of the opcode extensions.
The line prefetch instructions all have a 2-bit cache locality opcode hint extension field in bits 29:28
(hint) as shown in Table 4-48.

40 373635 3029282726 2019 1312 6 5 0

6 m x6 hint x r3 f2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

ldfps.ldhint f1, f2 = [r3], 8

6 1 1

02

See Table 4-39
on page 3:169

ldfpd.ldhint
f1, f2 = [r3], 16

03

ldfp8.ldhint 01

ldfps.s.ldhint f1, f2 = [r3], 8 06

ldfpd.s.ldhint
f1, f2 = [r3], 16

07

ldfp8.s.ldhint 05

ldfps.a.ldhint f1, f2 = [r3], 8 0A

ldfpd.a.ldhint
f1, f2 = [r3], 16

0B

ldfp8.a.ldhint 09

ldfps.sa.ldhint f1, f2 = [r3], 8 0E

ldfpd.sa.ldhint
f1, f2 = [r3], 16

0F

ldfp8.sa.ldhint 0D

ldfps.c.clr.ldhint f1, f2 = [r3], 8 22

ldfpd.c.clr.ldhint
f1, f2 = [r3], 16

23

ldfp8.c.clr.ldhint 21

ldfps.c.nc.ldhint f1, f2 = [r3], 8 26

ldfpd.c.nc.ldhint
f1, f2 = [r3], 16

27

ldfp8.c.nc.ldhint 25

Table 4-45.Line Prefetch Hint Completer

h
Bit 12

hint
Bits 29:28

lfhint

0

0 none

1 .nt1

2 .nt2

3 .nta

1

0 .d4

1 .d5

2 .d6

3 .d7

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 227

4.4.2.1 Line Prefetch

M13

4.4.2.2 Line Prefetch

M51

4.4.2.3 Counted Line Prefetch

M52

4.4.2.4 Line Prefetch – Increment by Register

M14

40 373635 3029282726 2019 1312 11 6 5 0

6 m x6 hint x r3 h qp

4 1 6 2 1 7 7 1 6 6

Instruction Operands Opcode
Extension

m x x6 hint, h

lfetch.excl.lfhint

[r3] 6 0 0

2D
Table 4-45 on

page 226
lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 11 6 5 0

6 m x6 hint x r3 y h qp

4 1 6 2 1 7 1 6 1 6 6

Instruction Operands Opcode
Extension

m x y x6 hint, h

lfetch.lfhint [r3] 6 0 0 0 2C
Table 4-45 on

page 226

40 373635 3029282726 20191817 1312 11 6 5 0

6 m x6 hint x r3 y stride5b h cnt6a qp

4 1 6 2 1 7 1 1 5 1 6 6

Instruction Operands Opcode
Extension

m x y x6 hint, h

lfetch.count.lfhint [r3], cnt6, stride5 6 0 0 1 2C
Table 4-45 on

page 226

40 373635 3029282726 2019 1312 11 6 5 0

6 m x6 hint x r3 r2 h qp

4 1 6 2 1 7 7 1 6 6

Instruction Operands Opcode
Extension

m x x6 hint, h

lfetch.lfhint

[r3], r2 6 1 0

2C

Table 4-45 on
page 226

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

228 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.2.5 Line Prefetch – Increment by Immediate

M15

4.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer load/store instruc-
tions. See “Loads and Stores” on page 211 for a summary of the opcode extensions. These instruc-
tions have the same cache locality opcode hint extension field in bits 29:28 (hint) as load instructions.
See Table 4-39 on page 216.

4.4.3.1 Exchange/Compare and Exchange

M16

40 373635 3029282726 2019 1312 11 6 5 0

7 s x6 hint i r3 imm7b h qp

4 1 6 2 1 7 7 1 6 6

Instruction Operands Opcode
Extension

x6 hint, h

lfetch.lfhint

[r3], imm9 7

2C

Table 4-45 on
page 226

lfetch.excl.lfhint 2D

lfetch.fault.lfhint 2E

lfetch.fault.excl.lfhint 2F

40 373635 3029282726 2019 1312 6 5 0

4 m x6 hint x r3 r2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint

cmpxchg1.acq.ldhint

r1 = [r3], r2, ar.ccv

4 0 1

00

Table 4-39 on
page 216

cmpxchg2.acq.ldhint 01

cmpxchg4.acq.ldhint 02

cmpxchg8.acq.ldhint 03

cmpxchg1.rel.ldhint 04

cmpxchg2.rel.ldhint 05

cmpxchg4.rel.ldhint 06

cmpxchg8.rel.ldhint 07

cmp8xchg16.acq.ldhint
r1 = [r3], r2, ar.csd, ar.ccv

20

cmp8xchg16.rel.ldhint 24

xchg1.ldhint

r1 = [r3], r2

08

xchg2.ldhint 09

xchg4.ldhint 0A

xchg8.ldhint 0B

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 229

4.4.3.2 Fetch and Add – Immediate

M17

13.3.3 Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point load/store
instructions. The get FR instructions are encoded in major opcode 4 along with the integer load/store
instructions. See “Loads and Stores” on page 211 for a summary of the opcode extensions.

4.4.3.3 Set FR

M18

4.4.3.4 Get FR

M19

4.4.4 Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0 and 1 along
with the system/memory management instructions. See “System/Memory Management” on page 234
for a summary of the opcode extensions.

40 373635 3029282726 2019 1615141312 6 5 0

4 m x6 hint x r3 s i2b r1 qp

4 1 6 2 1 7 4 1 2 7 6

Instruction Operands Opcode
Extension

m x x6 hint

fetchadd4.acq.ldhint

r1 = [r3], inc3 4 0 1

12

Table 4-39 on
page 216

fetchadd8.acq.ldhint 13

fetchadd4.rel.ldhint 16

fetchadd8.rel.ldhint 17

40 373635 3029282726 2019 1312 6 5 0

6 m x6 x r2 f1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

setf.sig

f1 = r2 6 0 1

1C

setf.exp 1D

setf.s 1E

setf.d 1F

40 373635 3029282726 2019 1312 6 5 0

4 m x6 x f2 r1 qp

4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6

getf.sig

r1 = f2 4 0 1

1C

getf.exp 1D

getf.s 1E

getf.d 1F

230 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.4.1 Integer Speculation Check (M-Unit)

M20

4.4.4.2 Floating-point Speculation Check

M21

4.4.4.3 Integer Advanced Load Check

M22

4.4.4.4 Floating-point Advanced Load Check

M23

4.4.5 Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along with the
memory management instructions. See “System/Memory Management” on page 234 for a summary
of the opcode extensions.

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c r2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s.m r2, target25 1 1

40 373635 3332 2019 1312 6 5 0

1 s x3 imm13c f2 imm7a qp

4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3

chk.s f2, target25 1 3

40 373635 3332 1312 6 5 0

0 s x3 imm20b r1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
r1, target25 0

4

chk.a.clr 5

40 373635 3332 1312 6 5 0

0 s x3 imm20b f1 qp

4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3

chk.a.nc
f1, target25 0

6

chk.a.clr 7

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 231

4.4.5.1 Sync/Fence/Serialize/ALAT Control

M24

4.4.5.2 RSE Control

M25

4.4.5.3 Integer ALAT Entry Invalidate

M26

4.4.5.4 Floating-point ALAT Entry Invalidate

M27

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 qp

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

invala

0 0

0 1

fwb 0

2mf 2

mf.a 3

srlz.d 0

3srlz.i 1

sync.i 3

40 373635 33323130 2726 6 5 0

0 x3 x2 x4 0

4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2

flushrs f
0 0

C
0

loadrs f A

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 r1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e r1 0 0 2 1

40 373635 33323130 2726 1312 6 5 0

0 x3 x2 x4 f1 qp

4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

invala.e f1 0 0 3 1

232 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.5.5 Flush Cache

M28

13.3.3 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the system/memory
management instructions. (Some ARs are accessed using system control instructions on the I-unit.
See “GR/AR Moves (I-Unit)” on page 209.) See “System/Memory Management” on page 234 for a
summary of the M-Unit GR/AR opcode extensions.

4.4.5.6 Move to AR – Register (M-Unit)

M29

4.4.5.7 Move to AR – Immediate8 (M-Unit)

M30

4.4.5.8 Move from AR (M-Unit)

M31

4.4.6 GR/CR Moves

The GR/CR move instructions are encoded in major opcode 0 along with the system/memory man-
agement instructions. See “System/Memory Management” on page 234 for a summary of the opcode
extensions.

40 373635 3332 2726 2019 6 5 0

1 x x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6 x

fc
r3 1 0 30

0

fc.i 1

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m ar3 = r2 1 0 2A

40 373635 33323130 2726 2019 1312 6 5 0

0 s x3 x2 x4 ar3 imm7b qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3 x4 x2

mov.m ar3 = imm8 0 0 8 2

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 ar3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov.m r1 = ar3 1 0 22

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 233

4.4.6.1 Move to CR

M32

4.4.6.2 Move from CR

M33

4.4.7 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the system/memory
management instructions. See “System/Memory Management” on page 234 for a summary of the
opcode extensions.

4.4.7.1 Allocate Register Stack Frame

M34

Note: The three immediates in the instruction encoding are formed from the operands
as follows:
sof = i + l + o
sol = i + l
sor = r >> 3

4.4.7.2 Move to PSR

M35

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p cr3 = r2 1 0 2C

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 cr3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = cr3 1 0 24

40 373635 33323130 2726 2019 1312 6 5 0

1 x3 sor sol sof r1 qp

4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3

alloc f r1 = ar.pfs, i, l, o, r 1 6

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p psr.l = r2
1 0

2D

mov psr.um = r2 29

234 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.7.3 Move from PSR

M36

4.4.7.4 Break (M-Unit)

M37

13.3.3 System/Memory Management

All system/memory management instructions are encoded within major opcodes 0 and 1 using a 3-bit
opcode extension field (x3) in bits 35:33. Some instructions also have a 4-bit opcode extension field
(x4) in bits 30:27, or a 6-bit opcode extension field (x6) in bits 32:27. Most of the instructions having
a 4-bit opcode extension field also have a 2-bit extension field (x2) in bits 32:31. Table 4-46 shows
the 3-bit assignments for opcode 0, Table 4-47 summarizes the 4-bit+2-bit assignments for opcode 0,
Table 4-48 shows the 3-bit assignments for opcode 1, and Table 4-49 summarizes the 6-bit assign-
ments for opcode 1.

40 373635 3332 2726 1312 6 5 0

1 x3 x6 r1 qp

4 1 3 6 14 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p r1 = psr
1 0

25

mov r1 = psr.um 21

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2

break.m imm21 0 0 0 0

Table 4-46.Opcode 0 System/Memory Management 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0
System/Memory Management 4-bit+2-bit Ext

(Table 4-47)

1

2

3

4 chk.a.nc – int M22

5 chk.a.clr – int M22

6 chk.a.nc – fp M23

7 chk.a.clr – fp M23

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 235

Table 4-47.Opcode 0 System/Memory Management 4-bit+2-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x4
Bits

30:27

x2
Bits 32:31

0 1 2 3

0 0

0 break.m M37 invala M24 fwb M24 srlz.d M24

1
1-bit Ext

(Table 4-51)
srlz.i M24

2 invala.e – int M26 mf M24

3 invala.e – fp M27 mf.a M24 sync.i M24

4 sum M44

5 rum M44

6 ssm M44

7 rsm M44

8 mov.m to ar – imm8 M30

9

A loadrs M25

B

C flushrs M25

D

E

F

Table 4-48.Opcode 1 System/Memory Management 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits

35:33

1

0 System/Memory Management 6-bit Ext (Table 4-49)

1 chk.s.m – int M20

2

3 chk.s – fp M21

4

5

6 alloc M34

7

236 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.7.5 Probe – Register

M38

4.4.7.6 Probe – Immediate2

M39

Table 4-49.Opcode 1 System/Memory Management 6-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

1 0

0 mov to rr M42 mov from rr M43 mov from dahr M43 fc M28

1
mov to dbr M42 mov from dbr M43 mov from psr.um

M36
probe.rw.fault –

imm2 M40

2
mov to ibr M42 mov from ibr M43 mov.m from ar M31 probe.r.fault –

imm2 M40

3
mov to pkr M42 mov from pkr M43 probe.w.fault –

imm2 M40

4 mov to pmc M42 mov from pmc M43 mov from cr M33 ptc.e M47

5 mov to pmd M42 mov from pmd M43 mov from psr M36

6

7 mov from cpuid M43

8 probe.r – imm2 M39 probe.r M38

9 ptc.l M45 probe.w – imm2 M39 mov to psr.um M35 probe.w M38

A ptc.g M45 thash M46 mov.m to ar M29

B ptc.ga M45 ttag M46

C ptr.d M45 mov to cr M32

D ptr.i M45 mov to psr.l M35

E itr.d M42 tpa M46 itc.d M41

F itr.i M42 tak M46 itc.i M41

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, r2 1 0

38

probe.w 39

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b r1 qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.r
r1 = r3, imm2 1 0

18

probe.w 19

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 237

4.4.7.7 Probe Fault – Immediate2

M40

4.4.7.8 Translation Cache Insert

M41

4.4.7.9 Move to Indirect Register/Translation Register Insert

M42

40 373635 3332 2726 2019 15141312 6 5 0

1 x3 x6 r3 i2b qp

4 1 3 6 7 5 2 7 6

Instruction Operands Opcode
Extension

x3 x6

probe.rw.fault

r3, imm2 1 0

31

probe.r.fault 32

probe.w.fault 33

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

itc.d l p

r2 1 0
2E

itc.i l p 2F

40 373635 3332 2726 2019 13 12 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

rr[r3] = r2

1 0

00

dbr[r3] = r2 01

ibr[r3] = r2 02

pkr[r3] = r2 03

pmc[r3] = r2 04

pmd[r3] = r2 05

itr.d p dtr[r3] = r2 0E

itr.i p itr[r3] = r2 0F

238 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.7.10 Move from Indirect Register

M43

4.4.7.11 Set/Reset User/System Mask

M44

4.4.7.12 Translation Purge

M45

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

mov p

r1 = rr[r3]

1 0

10

r1 = dbr[r3] 11

r1 = ibr[r3] 12

r1 = pkr[r3] 13

r1 = pmc[r3] 14

mov

r1 = pmd[r3] 15

r1 = cpuid[r3] 17

r1 = dahr[r3] 20

40 373635 33323130 2726 6 5 0

0 i x3 i2d x4 imm21a qp

4 1 3 2 4 21 6

Instruction Operands Opcode
Extension

x3 x4

sum

imm24 0 0

4

rum 5

ssm p 6

rsm p 7

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r2 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

ptc.l p

r3, r2 1 0

09

ptc.g l p 0A

ptc.ga l p 0B

ptr.d p 0C

ptr.i p 0D

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 239

4.4.7.13 Translation Access

M46

4.4.7.14 Purge Translation Cache Entry

M47

4.4.8 Nop/Hint/Move to DAHR (M-Unit)

M-unit nop, hint and mov to DAHR instructions are encoded within major opcode 0 using a 3-bit
opcode extension field in bits 35:33 (x3), a 2-bit opcode extension field in bits 32:31 (x2), a 4-bit
opcode extension field in bits 30:27 (x4), a 1-bit opcode extension field in bit 26 (y), and a 2-bit
opcode extension field in bits 11:10 (z), as shown in Table 4-50.

4.4.8.1 Nop

M48

40 373635 3332 2726 2019 1312 6 5 0

1 x3 x6 r3 r1 qp

4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension

x3 x6

thash

r1 = r3 1 0

1A

ttag 1B

tpa p 1E

tak p 1F

40 373635 3332 2726 2019 6 5 0

1 x3 x6 r3 qp

4 1 3 6 7 14 6

Instruction Operands Opcode
Extension

x3 x6

ptc.e p r3 1 0 34

Table 4-50.Misc M-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x4
Bits 30:27

x2
Bits 32:31

y
Bit 26

z
Bits 11:10

0 1 2 3

0 0 1 0

0 nop.m M48

1
hint.m
M49

mov to
dahr
M50

40 373635 33323130 272625 6 5 0

0 i x3 x2 x4 y imm20a qp

4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2 y

nop.m imm21 0 0 1 0 0

240 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.4.8.2 Hint

M49

4.4.8.3 Move to DAHR

M50

4.5 B-Unit Instruction Encodings

The branch-unit includes branch, predict, and miscellaneous instructions.

4.5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative branch, and
opcode 5 for IP-relative call.
The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode extension field
in bits 8:6 (btype) to distinguish the branch types as shown in Table 4-51.

The indirect branch, indirect return, and miscellaneous branch-unit instructions are encoded within
major opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6). Table 4-52 summarizes these
assignments.

40 373635 33323130 272625 12 11 10 9 6 5 0

0 i x3 x2 x4 y imm14b z imm4a qp

4 1 3 2 4 1 14 2 4 6

Instruction Operands Opcode
Extension

x3 x4 x2 y z

hint.m imm19 0 0 1 0 1 0

40 373635 33323130 272625 2322 12 11 10 9 6 5 0

0 i x3 x2 x4 y dahr3 imm11b z imm4a qp

4 1 3 2 4 1 3 11 2 4 6

Instruction Operands Opcode
Extension

x3 x4 x2 y z

mov dahr3 = imm16 0 0 1 0 1 1

Table 4-51.IP-Relative Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

4

0 br.cond B1

1 e

2 br.wexit B1

3 br.wtop B1

4 e

5 br.cloop B2

6 br.cexit B2

7 br.ctop B2

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 241

The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in
bits 8:6 (btype) to distinguish the branch types as shown in Table 4-53.

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit opcode extension
field in bits 8:6 (btype) to distinguish the branch types as shown in Table 4-54.

Table 4-52.Indirect/Miscellaneous Branch Opcode Extensions

Opcode
Bits 40:37

x6

Bits
30:27

Bits 32:31

0 1 2 3

0

0 break.b B9 epc B8
Indirect Branch

(Table 4-53)
 e

1 e Indirect Return
(Table 4-54)

 e

2 cover B8 e e e

3 e e e e

4 clrrrb B8 e e e

5 clrrrb.pr B8 e e e

6 e e e e

7 e e e e

8 rfi B8 vmsw.0 B8 e e

9 vmsw.1 B8 e e

A e e e e

B e e e e

C bsw.0 B8 e e e

D bsw.1 B8 e e e

E e e e e

F e e e e

Table 4-53.Indirect Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 20

0 br.cond B4

1 br.ia B4

2 e

3 e

4 e

5 e

6 e

7 e

242 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

All of the branch instructions have a 1-bit sequential prefetch opcode hint extension field, p, in bit 12.
Table 4-55 summarizes these assignments.

The IP-relative and indirect branch instructions all have a 2-bit branch prediction “whether” opcode
hint extension field in bits 34:33 (wh) as shown in Table 4-56. Indirect call instructions have a 3-bit
“whether” opcode hint extension field in bits 34:32 (wh) as shown in Table 4-57.

The branch instructions also have a 1-bit branch cache deallocation opcode hint extension field in bit
35 (d) as shown in Table 4-58.

Table 4-54.Indirect Return Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 21

0 e

1 e

2 e

3 e

4 br.ret B4

5 e

6 e

7 e

Table 4-55.Sequential Prefetch Hint Completer

p
Bit 12 or Bit 5

ph

0 .few

1 .many

Table 4-56.Branch Whether Hint Completer

wh
Bits 34:33

bwh

0 .sptk

1 .spnt

2 .dptk

3 .dpnt

Table 4-57.Indirect Call Whether Hint Completer

wh
Bits 34:32

bwh

0

1 .sptk

2

3 .spnt

4

5 .dptk

6

7 .dpnt

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 243

4.5.1.1 IP-Relative Branch

B1

4.5.1.2 IP-Relative Counted Branch

B2

4.5.1.3 IP-Relative Call

B3

4.5.1.4 Indirect Branch

B4

Table 4-58.Branch Cache Deallocation Hint Completer

d
Bit 35

dh

0 none

1 .clr

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cond.bwh.ph.dh e

target25 4

0 See
Table 4-55 on
page 3:242

See
Table 4-56 on
page 3:242

See
Table 4-58 on
page 3:243

br.wexit.bwh.ph.dh e t 2

br.wtop.bwh.ph.dh e t 3

40 373635343332 1312 11 9 8 6 5 0

4 s d wh imm20b p btype 0

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d

br.cloop.bwh.ph.dh e t

target25 4

5 See
Table 4-55 on
page 3:242

See
Table 4-56 on
page 3:242

See
Table 4-58 on
page 3:243

br.cexit.bwh.ph.dh e t 6

br.ctop.bwh.ph.dh e t 7

40 373635343332 1312 11 9 8 6 5 0

5 s d wh imm20b p b1 qp

4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = target25 5
See Table 4-55
on page 3:242

See Table 4-56
on page 3:242

See Table 4-58
on page 3:243

40 373635343332 2726 1615 1312 11 9 8 6 5 0

0 d wh x6 b2 p btype qp

4 1 1 2 6 11 3 1 3 3 6

Instruction Operands Opcode
Extension

x6 btype p wh d

br.cond.bwh.ph.dh e

b2 0
20

0 See
Table 4-55

on
page 3:242

See
Table 4-56

on
page 3:242

See
Table 4-58

on
page 3:243

br.ia.bwh.ph.dh e 1

br.ret.bwh.ph.dh e 21 4

244 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.5.1.5 Indirect Call

B5

4.5.2 Branch Predict/Nop/Hint

The branch predict, nop, and hint instructions are encoded in major opcodes 2 (Indirect Predict/Nop/
Hint) and 7 (IP-relative Predict). The indirect predict, nop, and hint instructions in major opcode 2 use
a 6-bit opcode extension field in bits 32:27 (x6). Table 4-59 summarizes these assignments.

The branch predict instructions all have a 1-bit branch importance opcode hint extension field in bit 35
(ih). The mov to BR instruction (page 208) also has this hint in bit 23. Table 4-60 shows these assign-
ments.

40 37363534 3231 1615 1312 11 9 8 6 5 0

1 d wh b2 p b1 qp

4 1 1 3 16 3 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh e b1 = b2 1
See Table 4-55
on page 3:242

See Table 4-57
on page 3:242

See Table 4-58
on page 3:243

Table 4-59.Indirect Predict/Nop/Hint Opcode Extensions

Opcode
Bits

40:37

x6

Bits
30:27

Bits 32:31

0 1 2 3

2

0 nop.b B9 brp B7

1 hint.b B9 brp.ret B7

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Table 4-60.Branch Importance Hint Completer

ih
Bit 23 or

Bit 35
ih

0 none

1 .imp

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 245

The IP-relative branch predict instructions have a 2-bit branch prediction “whether” opcode hint
extension field in bits 4:3 (wh) as shown in Table 4-61. Note that the combination of the .loop or .exit
whether hint completer with the none importance hint completer is undefined.

The indirect branch predict instructions have a 2-bit branch prediction “whether” opcode hint exten-
sion field in bits 4:3 (wh) as shown in Table 4-62.

Table 4-61.IP-Relative Predict Whether Hint Completer

wh
Bits 4:3

ipwh

0 .sptk

1 .loop

2 .dptk

3 .exit

Table 4-62.Indirect Predict Whether Hint Completer

wh
Bits 4:3

indwh

0 .sptk

1

2 .dptk

3

Table 4-63.Sequential Prefetch Hint Completer

p
Bit 12

ph

0 none

1 .many

Table 4-64.Prefetch Branch Trace Vector Hint Completer

pbtv
Bits 11:9 or

Bits 2:0
pvec

0 none

1 .dc.nt

2 .tk.dc

3 .tk.tk

4 .tk.nt

5 .nt.dc

6 .nt.tk

7 .nt.nt

246 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.5.2.1 IP-Relative Predict

B6

4.5.2.2 Indirect Predict

B7

4.5.3 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded within major
opcode 0 using a 6-bit opcode extension field in bits 32:27 (x6) as described in Table 4-52 on
page 3:241.

4.5.3.1 Miscellaneous (B-Unit)

B8

40 373635343332 1312 6 5 4 3 2 0

7 s ih t2e imm20b timm7a p x2 pbtv

4 1 1 2 20 7 1 2 3

Instruction Operands Opcode
Extension

x2 ih p pbtv

brp.sptk.ph.pvec.ih

target25, tag13 7

0
See Table 4-60
on page 3:244

See Table 4-63
on page 3:245

See Table 4-64
on page 3:245brp.loop.ph.pvec.ih 1

brp.dptk.ph.pvec.ih 2

40 373635343332 2726 1615 1312 6 5 4 3 2 0

2 ih t2e x6 b2 timm7a p wh pbtv

4 1 1 2 6 11 3 7 1 2 3

Instruction Operands Opcode
Extension

x6 ih p wh pbtv

brp.indwh.ph.pvec.ih
b2, tag13 2

10
See

Table 4-60
on

page 3:244

See
Table 4-63

on
page 3:245

See
Table 4-62

on
page 3:245

See
Table 4-64

on
page 3:245brp.ret.indwh.ph.pvec.ih 11

40 3736 3332 2726 6 5 0

0 x6 0

4 4 6 21 6

Instruction Opcode
Extension

x6

cover l

0

02

clrrrb l 04

clrrrb.pr l 05

rfi e l p 08

bsw.0 l p 0C

bsw.1 l p 0D

epc 10

vmsw.0 p

0
18

vmsw.1 p 19

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 247

4.5.3.2 Break/Nop/Hint (B-Unit)

B9

13.3.3 Instruction Prefetch

B10

4.6 F-Unit Instruction Encodings

The floating-point instructions are encoded in major opcodes 8 – E for floating-point and fixed-point
arithmetic, opcode 4 for floating-point compare, opcode 5 for floating-point class, and opcodes 0 and
1 for miscellaneous floating-point instructions.
The miscellaneous and reciprocal approximation floating-point instructions are encoded within major
opcodes 0 and 1 using a 1-bit opcode extension field (x) in bit 33 and either a second 1-bit extension
field in bit 36 (q) or a 6-bit opcode extension field (x6) in bits 32:27. Table 4-65 shows the 1-bit x
assignments, Table 4-68 shows the additional 1-bit q assignments for the reciprocal approximation
instructions; Table 4-66 and Table 4-67 summarize the 6-bit x6 assignments.

40 373635 3332 272625 6 5 0

0/2 i x6 imm20a qp

4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x6

break.b e

imm21

0
00

nop.b
2

hint.b 01

Table 1: Instruction Prefetch Flush Hint Completer

f
Bit 35

fh

0 none

1 .flush

40 373635343332 1312 6 5 4 3 2 0

7 s f c2e imm20b count7a x2 pbtv

4 1 1 2 20 7 1 2 3

Instruction Operands Opcode
Extension

x2 f pbtv

ifetch.pvec.fh target25, count9 7 3
See Table 1 on

page 3:247
See Table 4-64
on page 3:245

Table 4-65.Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

0
0 6-bit Ext (Table 4-66)

1 Reciprocal Approximation (Table 4-68)

1
0 6-bit Ext (Table 4-67)

1 Reciprocal Approximation (Table 4-68)

248 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Table 4-66.Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits

40:37

x
Bit
33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.f F15 fmerge.s F9

1 1-bit Ext
(Table 4-74)

fmerge.ns F9

2 fmerge.se F9

3

4 fsetc F12 fmin F8 fswap F9

5 fclrf F13 fmax F8 fswap.nl F9

6 famin F8 fswap.nr F9

7 famax F8

8 fchkf F14 fcvt.fx F10 fpack F9

9 fcvt.fxu F10 fmix.lr F9

A fcvt.fx.trunc F10 fmix.r F9

B fcvt.fxu.trunc F10 fmix.l F9

C fcvt.xf F11 fand F9 fsxt.r F9

D fandcm F9 fsxt.l F9

E for F9

F fxor F9

Table 4-67.Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits

40:37

x
Bit
33

x6

Bits
30:27

Bits 32:31

0 1 2 3

1 0

0 fpmerge.s F9 fpcmp.eq F8

1 fpmerge.ns F9 fpcmp.lt F8

2 fpmerge.se F9 fpcmp.le F8

3 fpcmp.unord F8

4 fpmin F8 fpcmp.neq F8

5 fpmax F8 fpcmp.nlt F8

6 fpamin F8 fpcmp.nle F8

7 fpamax F8 fpcmp.ord F8

8 fpcvt.fx F10

9 fpcvt.fxu F10

A fpcvt.fx.trunc F10

B fpcvt.fxu.trunc F10

C

D

E

F

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 249

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) which encodes
the FPSR status field to be used. Table 4-69 summarizes these assignments.

4.6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 – D using a 1-bit
opcode extension field (x) in bit 36 and a 2-bit opcode extension field (sf) in bits 35:34. The opcode
and x assignments are shown in Table 4-70.

The fixed-point arithmetic and parallel floating-point select instructions are encoded within major
opcode E using a 1-bit opcode extension field (x) in bit 36. The fixed-point arithmetic instructions also
have a 2-bit opcode extension field (x2) in bits 35:34. These assignments are shown in Table 4-71.

Table 4-68.Reciprocal Approximation 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

q
Bit 36

0

1

0 frcpa F6

1 frsqrta F7

1
0 fprcpa F6

1 fprsqrta F7

Table 4-69.Floating-point Status Field Completer

sf
Bits 35:34

sf

0 .s0

1 .s1

2 .s2

3 .s3

Table 4-70.Floating-point Arithmetic 1-bit Opcode Extensions

x
Bit 36

Opcode
Bits 40:37

8 9 A B C D

0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1

1 fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fpnma F1

Table 4-71.Fixed-point Multiply Add and Select Opcode Extensions

Opcode
Bits 40:37

x
Bit 36

x2
Bits 35:34

0 1 2 3

E
0 fselect F3

1 xma.l F2 xma.hu F2 xma.h F2

250 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.6.1.1 Floating-point Multiply Add

F1

4.6.1.2 Fixed-point Multiply Add

F2

4.6.2 Parallel Floating-point Select

F3

4.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major opcode 4 using
three 1-bit opcode extension fields in bits 33 (ra), 36 (rb), and 12 (ta), and a 2-bit opcode extension
field (sf) in bits 35:34. The opcode, ra, rb, and ta assignments are shown in Table 4-72. The sf assign-
ments are shown in Table 4-69 on page 3:249.
The parallel floating-point compare instructions are described on page 253.

40 3736353433 2726 2019 1312 6 5 0

8 - D x sf f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x sf

fma.sf

f1 = f3, f4, f2

8
0

See Table 4-69 on
page 3:249

fma.s.sf 1

fma.d.sf
9

0

fpma.sf 1

fms.sf
A

0

fms.s.sf 1

fms.d.sf
B

0

fpms.sf 1

fnma.sf
C

0

fnma.s.sf 1

fnma.d.sf
D

0

fpnma.sf 1

40 3736353433 2726 2019 1312 6 5 0

E x x2 f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x x2

xma.l

f1 = f3, f4, f2 E 1

0

xma.h 3

xma.hu 2

40 3736353433 2726 2019 1312 6 5 0

E x f4 f3 f2 f1 qp

4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x

fselect f1 = f3, f4, f2 E 0

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 251

The floating-point class instructions are encoded within major opcode 5 using a 1-bit opcode exten-
sion field in bit 12 (ta) as shown in Table 4-73.

4.6.3.1 Floating-point Compare

F4

4.6.3.2 Floating-point Class

F5

Table 4-72.Floating-point Compare Opcode Extensions

Opcode
Bits

40:37

ra
Bit 33

rb
Bit 36

ta
Bit 12

0 1

4

0
0 fcmp.eq F4 fcmp.eq.unc F4

1 fcmp.lt F4 fcmp.lt.unc F4

1
0 fcmp.le F4 fcmp.le.unc F4

1 fcmp.unord F4 fcmp.unord.unc F4

Table 4-73.Floating-point Class 1-bit Opcode Extensions

Opcode
Bits 40:37

ta
Bit 12

5
0 fclass.m F5

1 fclass.m.unc F5

40 373635343332 2726 2019 1312 11 6 5 0

4 rb sf ra p2 f3 f2 ta p1 qp

4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ra rb ta sf

fcmp.eq.sf

p1, p2 = f2, f3 4

0
0

0

See Table 4-69
on page 3:249

fcmp.lt.sf 1

fcmp.le.sf
1

0

fcmp.unord.sf 1

fcmp.eq.unc.sf
0

0

1
fcmp.lt.unc.sf 1

fcmp.le.unc.sf
1

0

fcmp.unord.unc.sf 1

40 373635343332 2726 2019 1312 11 6 5 0

5 fc2 p2 fclass7c f2 ta p1 qp

4 2 2 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ta
fclass.m

p1, p2 = f2, fclass9 5
0

fclass.m.unc 1

252 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.6.4 Approximation

4.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes the full register
variant. The second, in major op 1, encodes the parallel variant.

F6

4.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 0, encodes
the full register variant. The second, in major op 1, encodes the parallel variant.

F7

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frcpa.sf
f1, p2 = f2, f3

0
1 0

See Table 4-69 on
page 3:249

fprcpa.sf 1

40 373635343332 2726 2019 1312 6 5 0

0 - 1 q sf x p2 f3 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frsqrta.sf
f1, p2 = f3

0
1 1

See Table 4-69 on
page 3:249fprsqrta.sf 1

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 253

13.3.3 Minimum/Maximum and Parallel Compare

There are two groups of Minimum/Maximum instructions. The first group, in major op 0, encodes the
full register variants. The second group, in major op 1, encodes the parallel variants. The parallel
compare instructions are all encoded in major op 1.

F8

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f3 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fmin.sf

f1 = f2, f3

0

0

14

See Table 4-69 on
page 3:249

fmax.sf 15

famin.sf 16

famax.sf 17

fpmin.sf

1

14

fpmax.sf 15

fpamin.sf 16

fpamax.sf 17

fpcmp.eq.sf 30

fpcmp.lt.sf 31

fpcmp.le.sf 32

fpcmp.unord.sf 33

fpcmp.neq.sf 34

fpcmp.nlt.sf 35

fpcmp.nle.sf 36

fpcmp.ord.sf 37

254 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

13.3.3 Merge and Logical

F9

4.6.5 Conversion

4.6.5.1 Convert Floating-point to Fixed-point

F10

40 3736 343332 2726 2019 1312 6 5 0

0 - 1 x x6 f3 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fmerge.s

f1 = f2, f3

0

0

10

fmerge.ns 11

fmerge.se 12

fmix.lr 39

fmix.r 3A

fmix.l 3B

fsxt.r 3C

fsxt.l 3D

fpack 28

fswap 34

fswap.nl 35

fswap.nr 36

fand 2C

fandcm 2D

for 2E

fxor 2F

fpmerge.s

1

10

fpmerge.ns 11

fpmerge.se 12

40 373635343332 2726 2019 1312 6 5 0

0 - 1 sf x x6 f2 f1 qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fcvt.fx.sf

f1 = f2

0

0

18

See Table 4-69 on
page 3:249

fcvt.fxu.sf 19

fcvt.fx.trunc.sf 1A

fcvt.fxu.trunc.sf 1B

fpcvt.fx.sf

1

18

fpcvt.fxu.sf 19

fpcvt.fx.trunc.sf 1A

fpcvt.fxu.trunc.sf 1B

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 255

4.6.5.2 Convert Fixed-point to Floating-point

F11

4.6.6 Status Field Manipulation

4.6.6.1 Floating-point Set Controls

F12

4.6.6.2 Floating-point Clear Flags

F13

4.6.6.3 Floating-point Check Flags

F14

40 3736 343332 2726 2019 1312 6 5 0

0 x x6 f2 f1 qp

4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6

fcvt.xf f1 = f2 0 0 1C

40 373635343332 2726 2019 1312 6 5 0

0 sf x x6 omask7c amask7b qp

4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fsetc.sf amask7, omask7 0 0 04
See Table 4-69 on

page 3:249

40 373635343332 2726 6 5 0

0 sf x x6 qp

4 1 2 1 6 21 6

Instruction Opcode
Extension

x x6 sf

fclrf.sf 0 0 05 See Table 4-69 on page 3:249

40 373635343332 272625 6 5 0

0 s sf x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 sf

fchkf.sf target25 0 0 08
See Table 4-69 on

page 3:249

256 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

4.6.7 Miscellaneous F-Unit Instructions

4.6.7.1 Break (F-Unit)

F15

4.6.7.2 Nop/Hint (F-Unit)

F-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (x6), and a 1-bit opcode extension
field in bit 26 (y), as shown in Table 4-51.

F16

4.7 X-Unit Instruction Encodings

The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode extensions and
hints, qp, and small immediate fields occupy the X instruction slot. For movl, break.x, and nop.x, the
imm41 field occupies the L instruction slot. For brl, the imm39 field and a 2-bit Ignored field occupy
the L instruction slot.

4.7.1 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension
field (x3) in bits 35:33 and a 6-bit opcode extension field (x6) in bits 32:27. Table 4-75 shows the 3-
bit assignments and Table 4-76 summarizes the 6-bit assignments. These instructions are executed
by an I-unit.

40 373635343332 272625 6 5 0

0 i x x6 imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6

break.f imm21 0 0 00

Table 4-74.Misc F-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit :33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.f

1 hint.f

40 373635343332 272625 6 5 0

0 i x x6 y imm20a qp

4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 y

nop.f
imm21 0 0 01

0

hint.f 1

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 257

4.7.1.1 Break (X-Unit)

X1

4.7.2 Move Long Immediate64

The move long immediate instruction is encoded within major opcode 6 using a 1-bit reserved opcode
extension in bit 20 (vc) as shown in Table 4-77. This instruction is executed by an I-unit.

Table 4-75.Misc X-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table 4-76)

1

2

3

4

5

6

7

Table 4-76.Misc X-Unit 6-bit Opcode Extensions

Opcode
Bits

40:37

x3
Bits

35:33

x6

Bits
30:27

Bits 32:31

0 1 2 3

0 0

0 break.x X1

1 1-bit Ext
(Table 4-79)

2

3

4

5

6

7

8

9

A

B

C

D

E

F

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6

break.x imm62 0 0 00

258 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

X2

4.7.3 Long Branches

Long branches are executed by a B-unit. Opcode C is used for long branch and opcode D for long call.
The long branch instructions encoded within major opcode C use a 3-bit opcode extension field in bits
8:6 (btype) to distinguish the branch types as shown in Table 4-78.

The long branch instructions have the same opcode hint fields in bit 12 (p), bits 34:33 (wh), and
bit 35 (d) as normal IP-relative branches. These are shown in Table 4-55 on page 3:242, Table 4-56
on page 3:242, and Table 4-58 on page 3:243.

4.7.3.1 Long Branch

X3

Table 4-77.Move Long 1-bit Opcode Extensions

Opcode
Bits 40:37

vc
Bit 20

6
0 movl X2

1

40 373635 2726 22212019 1312 6 5 0 40 0

6 i imm9d imm5c ic vc imm7b r1 qp imm41

4 1 9 5 1 1 7 7 6 41

Instruction Operands Opcode
Extension

vc

movl i r1 = imm64 6 0

Table 4-78.Long Branch Types

Opcode
Bits 40:37

btype
Bits 8:6

C

0 brl.cond X3

1

2

3

4

5

6

7

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

C i d wh imm20b p btype qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

btype p wh d

brl.cond.bwh.ph.dh e l target64 C 0
See Table 4-55
on page 3:242

See Table 4-56
on page 3:242

See Table 4-58
on page 3:243

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 259

4.7.3.2 Long Call

X4

4.7.4 Nop/Hint (X-Unit)

X-unit nop and hint instructions are encoded within major opcode 0 using a 3-bit opcode extension
field in bits 35:33 (x3), a 6-bit opcode extension field in bits 32:27 (x6), and a 1-bit opcode extension
field in bit 26 (y), as shown in Table 4-79. These instructions are executed by an I-unit.

X5

4.8 Immediate Formation

Table 4-80 shows, for each instruction format that has one or more immediates, how those immedi-
ates are formed. In each equation, the symbol to the left of the equals is the assembly language
name for the immediate. The symbols to the right are the field names in the instruction encoding.

40 373635343332 1312 11 9 8 6 5 0 40 2 1 0

D i d wh imm20b p b1 qp imm39

4 1 1 2 20 1 3 3 6 39 2

Instruction Operands Opcode
Extension

p wh d

brl.call.bwh.ph.dh e l b1 = target64 D
See Table 4-55
on page 3:242

See Table 4-56
on page 3:242

See Table 4-58
on page 3:243

Table 4-79.Misc X-Unit 1-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

x6
Bits 32:27

y
Bit 26

0 0 01
0 nop.x

1 hint.x

40 373635 3332 272625 6 5 0 40 0

0 i x3 x6 y imm20a qp imm41

4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension

x3 x6 y

nop.x
imm62 0 0 01

0

hint.x 1

Table 4-80.Immediate Formation

Instruction
Format

Immediate Formation

A2 count2 = ct2d + 1

A3 A8 I27 M30 imm8 = sign_ext(s << 7 | imm7b, 8)

A4 imm14 = sign_ext(s << 13 | imm6d << 7 | imm7b, 14)

A5 imm22 = sign_ext(s << 21 | imm5c << 16 | imm9d << 7 | imm7b, 22)

A10 count2 = (ct2d > 2) ? reservedQPa : ct2d + 1

I1 count2 = (ct2d == 0) ? 0 : (ct2d == 1) ? 7 : (ct2d == 2) ? 15 : 16

I3
mbtype4 = (mbt4c == 0) ? @brcst : (mbt4c == 8) ? @mix : (mbt4c == 9) ? @shuf : (mbt4c ==

0xA) ? @alt : (mbt4c == 0xB) ? @rev : reservedQPa

I4 mhtype8 = mht8c

260 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

I6 count5 = count5b

I8 count5 = 31 – ccount5c

I10 count6 = count6d

I11
len6 = len6d + 1

pos6 = pos6b

I12
len6 = len6d + 1

pos6 = 63 – cpos6c

I13
len6 = len6d + 1

pos6 = 63 – cpos6c
imm8 = sign_ext(s << 7 | imm7b, 8)

I14
len6 = len6d + 1

pos6 = 63 – cpos6b
imm1 = sign_ext(s, 1)

I15
len4 = len4d + 1

pos6 = 63 – cpos6d

I16 pos6 = pos6b

I18 I19 M37 M55 imm21 = i << 20 | imm20a

M49 imm19 = i << 18 | imm14b << 4| imm4a

M50 imm16 = i << 15 | imm11b << 4| imm4a

I21 tag13 = IP + (sign_ext(timm9c, 9) << 4)

I23 mask17 = sign_ext(s << 16 | mask8c << 8 | mask7a << 1, 17)

I24 imm44 = sign_ext(s << 43 | imm27a << 16, 44)

I30 imm5 = imm5b + 32

M3 M8 M15 imm9 = sign_ext(s << 8 | i << 7 | imm7b, 9)

M5 M10 imm9 = sign_ext(s << 8 | i << 7 | imm7a, 9)

M17 inc3 = sign_ext(((s) ? –1 : 1) * ((i2b == 3) ? 1 : 1 << (4 – i2b)), 6)

I20 M20 M21 target25 = IP + (sign_ext(s << 20 | imm13c << 7 | imm7a, 21) << 4)

M22 M23 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

M34
il = sol

o = sof – sol
r = sor << 3

M39 M40 imm2 = i2b

M44 imm24 = i << 23 | i2d << 21 | imm21a

M52
cnt6 = cnt6a + 1

stride5 = sign_ext(stride5b, 5) << 6

B1 B2 B3 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

B6
target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B7 tag13 = IP + (sign_ext(t2e << 7 | timm7a, 9) << 4)

B9 imm21 = i << 20 | imm20a

B10
target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

count9 = c2e << 7 | count7a

F5 fclass9 = fclass7c << 2 | fc2

F12
amask7 = amask7b
omask7 = omask7c

F14 target25 = IP + (sign_ext(s << 20 | imm20a, 21) << 4)

F15 F16 imm21 = i << 20 | imm20a

Table 4-80.Immediate Formation (Continued)

Instruction
Format

Immediate Formation

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 261

§

X1 X5 imm62 = imm41 << 21 | i << 20 | imm20a

X2 imm64 = i << 63 | imm41 << 22 | ic << 21 | imm5c << 16 | imm9d << 7 | imm7b

X3 X4 target64 = IP + ((i << 59 | imm39 << 20 | imm20b) << 4)

a. This encoding causes an Illegal Operation fault if the value of the qualifying predicate
is 1.

Table 4-80.Immediate Formation (Continued)

Instruction
Format

Immediate Formation

262 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 263

V3-M Chapter 5 Resource and
Dependency Semantics

Resource and Dependency Semantics 5

5.1 Reading and Writing Resources

An Itanium instruction is said to be a reader of a resource if the instruction’s qualifying predicate is 1
or it has no qualifying predicate or is one of the instructions that reads a resource even when its qual-
ifying predicate is 0, and the execution of the instruction depends on that resource.
An Itanium instruction is said to be an writer of a resource if the instruction’s qualifying predicate is
1 or it has no qualifying predicate or writes the resource even when the qualifying predicate is 0, and
the execution of the instruction writes that resource.
An Itanium instruction is said to be a reader or writer of a resource even if it only sometimes depends
on that resource and it cannot be determined statically whether the resource will be read or written.
For example, cover only writes CR[IFS] when PSR.ic is 0, but for purposes of dependency, it is
treated as if it always writes the resource since this condition cannot be determined statically. On the
other hand, rsm conditionally writes several bits in the PSR depending on a mask which is encoded as
an immediate in the instruction. Since the PSR bits to be written can be determined by examining the
encoded instruction, the instruction is treated as only writing those bits which have a corresponding
mask bit set. All exceptions to these general rules are described in this appendix.

5.2 Dependencies and Serialization

A RAW (Read-After-Write) dependency is a sequence of two events where the first is a writer of a
resource and the second is a reader of the same resource. Events may be instructions, interruptions,
or other ‘uses’ of the resource such as instruction stream fetches and VHPT walks. Table 5-2 covers
only dependencies based on instruction readers and writers.
A WAW (Write-After-Write) dependency is a sequence of two events where both events write the
resource in question. Events may be instructions, interruptions, or other ‘updates’ of the resource.
Table 5-3 covers only dependencies based on instruction writers.
A WAR (Write-After-Read) dependency is a sequence of two instructions, where the first is a reader
of a resource and the second is a writer of the same resource. Such dependencies are always allowed
except as indicated in Table 5-4 and only those related to instruction readers and writers are included.
A RAR (Read-After-Read) dependency is a sequence of two instructions where both are readers of the
same resource. Such dependencies are always allowed.
RAW and WAW dependencies are generally not allowed without some type of serialization event (an
implied, data, or instruction serialization after the first writing instruction. (See Section 3.2, “Serial-
ization” on page 2:17 for details on serialization.) The tables and associated rules in this appendix
provide a comprehensive list of readers and writers of resources and describe the serialization
required for the dependency to be observed and possible outcomes if the required serialization is not
met. Even when targeting code for machines which do not check for particular disallowed dependen-
cies, such code sequences are considered architecturally undefined and may cause code to behave
differently across processors, operating systems, or even separate executions of the code sequence

264 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

during the same program run. In some cases, different serializations may yield different, but well-
defined results.
The serialization of application level (non-privileged) resources is always implied. This means that if a
writer of that resource and a subsequent read of that same resource are in different instruction
groups, then the reader will see the value written. In addition, for dependencies on PRs and BRs,
where the writer is a non-branch instruction and the reader is a branch instruction, the writer and
reader may be in the same instruction group.
System resources generally require explicit serialization, i.e., the use of a srlz.i or srlz.d instruc-
tion, between the writing and the reading of that resource. Note that RAW accesses to CRs are not
exceptional – they require explicit data or instruction serialization. However, in some cases (other
than CRs) where pairs of instructions explicitly encode the same resource, serialization is implied.
There are cases where it is architecturally allowed to omit a serialization, and that the response from
the CPU must be atomic (act as if either the old or the new state were fully in place). The tables in
this appendix indicate dependency requirements under the assumption that the desired result is for
the dependency to always be observed. In some such cases, the programmer may not care if the old
or new state is used; such situations are allowed, but the value seen is not deterministic.
On the other hand, if an impliedF dependency is violated, then the program is incorrectly coded and
the processor's behavior is undefined.

5.3 Resource and Dependency Table Format Notes

• The “Writers” and “Readers” columns of the dependency tables contain instruction
class names and instruction mnemonic prefixes as given in the format section of
each instruction page. To avoid ambiguity, instruction classes are shown in bold,
while instruction mnemonic prefixes are in regular font. For instruction mnemonic
prefixes, all instructions that exactly match the name specified or those that begin
with the specified text and are followed by a ‘.’ and then followed by any other text
will match.

• The dependency on a listed instruction is in effect no matter what values are
encoded in the instruction or what dynamic values occur in operands, unless a
superscript is present or one of the special case instruction rules in Section 5.3.1
applies. Instructions listed are still subject to rules regarding qualifying predicates.

• Instruction classes are groups of related instructions. Such names appear in
boldface for clarity. The list of all instruction classes is contained in Table 5-5. Note
that an instruction may appear in multiple instruction classes, instruction classes
may expand to contain other classes, and that when fully expanded, a set of classes
(e.g., the readers of some resource) may contain the same instruction multiple
times.

• The syntax ‘x\y’ where x and y are both instruction classes, indicates an unnamed
instruction class that includes all instructions in instruction class x but that are not
in instruction class y. Similarly, the notation ‘x\y\z’ means all instructions in
instruction class x, but that are not in either instruction class y or instruction class
z.

• Resources on separate rows of a table are independent resources. This means that
there are no serialization requirements for an event which references one of them
followed by an event which uses a different resource. In cases where resources are
broken into subrows, dependencies only apply between instructions within a
subrow. Instructions that do not appear in a subrow together have no
dependencies (reader/writer or writer/writer dependencies) for the resource in
question, although they may still have dependencies on some other resource.

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 265

• The dependencies listed for pairs of instructions on each resource are not unique –
the same pair of instructions might also have a dependency on some other resource
with a different semantics of dependency. In cases where there are multiple
resource dependencies for the same pair of instructions, the most stringent
semantics are assumed: instr overrides data which overrides impliedF which
overrides implied which overrides none.

• Arrays of numbered resources are represented in a single row of a table using the
% notation as a substitute for the number of the resource. In such cases, the
semantics of the table are as if each numbered resource had its own row in that
table and is thus an independent resource. The range of values that the % can take
are given in the “Resource Name” column.

• An asterisk ‘*’ in the “Resource Name” column indicates that this resource may not
have a physical resource associated with it, but is added to enforce special
dependencies.

• A pound sign ‘#’ in the “Resource Name” column indicates that this resource is an
array of resources that are indexed by a value in a GR. The number of individual
elements in the array is described in the detailed description of each resource.

• The “Semantics of Dependency” column describes the outcome given various
serialization and instruction group boundary conditions. The exact definition for
each keyword is given in Table 5-1.

5.3.1 Special Case Instruction Rules

The following rules apply to the specified instructions when they appear in Table 5-2, Table 5-3,
Table 5-4, or Table 5-5:

• An instruction always reads a given resource if its qualifying predicate is 1 and it
appears in the “Reader” column of the table (except as noted). An instruction
always writes a given resource if its qualifying predicate is 1 and it appears in the
“Writer” column of the table (except as noted). An instruction never reads or writes

Table 5-1. Semantics of Dependency Codes

Semantics of
Dependency Code

Serialization Type Required Effects of Serialization Violation

instr Instruction Serialization (See “Instruction
Serialization” on page 18).

Atomic: Any attempt to read a resource after one or
more insufficiently serialized writes is either the
value previously in the register (before any of the
unserialized writes) or the value of one of any
unserialized writes. Which value is returned is
unpredictable and multiple insufficiently serialized
reads may see different results. No fault will be
caused by the insufficient serialization.

data Data Serialization (See “Data Serialization” on
page 18)

implied Instruction Group Break. Writer and reader must be in
separate instruction groups. (See “Instruction
Sequencing Considerations” on page 39).

impliedF Instruction Group Break (same as above). An undefined value is returned, or an Illegal
Operation fault may be taken. If no fault is taken,
the value returned is unpredictable, and may be
unrelated to past writes, but will not be data which
could not be accessed by the current process (e.g.,
if PSR.cpl != 0, the undefined value to return
cannot be read from some control register).

stop Stop. Writer and reader must be separated by a stop.

none None N/A

specific Implementation Specific

SC Special Case Described elsewhere in book, see referenced
section in the entry.

266 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

the specified resource if its qualifying predicate is 0 (except as noted). These rules
include branches and their qualifying predicate. Instructions in the
unpredicatable-instructions class have no qualifying predicate and thus always
read or write their resources (except as noted).

• An instruction of type mov-from-PR reads all PRs if its PR[qp] is true. If the PR[qp]
is false, then only the PR[qp] is read.

• An instruction of type mov-to-PR writes only those PRs as indicated by the
immediate mask encoded in the instruction.

• A st8.spill only writes AR[UNAT]{X} where X equals the value in bits 8:3 of the
store’s data address. A ld8.fill instruction only reads AR[UNAT]{Y} where Y
equals the value in bits 8:3 of the load’s data address.

• Instructions of type mod-sched-brs always read AR[EC] and the rotating register
base registers in CFM, and always write AR[EC], the rotating register bases in CFM,
and PR[63] even if they do not change their values or if their PR[qp] is false.

• Instructions of type mod-sched-brs-counted always read and write AR[LC], even
if they do not change its value.

• For instructions of type pr-or-writers or pr-and-writers, if their completer is
or.andcm, then only the first target predicate is an or-compare and the second
target predicate is an and-compare. Similarly, if their completer is and.orcm, then
only the second target predicate is an or-compare and the first target predicate is
an and-compare.

• rum and sum only read PSR.sp when the bit corresponding to PSR.up (bit 2) is set in
the immediate field of the instruction.

5.3.2 RAW Dependency Table

Table 5-2 architecturally defines the following information:
• A list of all architecturally-defined, independently-writable resources in the Itanium

architecture. Each row represents an ‘atomic’ resource. Thus, for each row in the
table, hardware will probably require a separate write-enable control signal.

• For each resource, a complete list of readers and writers.
• For each instruction, a complete list of all resources read and written. Such a list

can be obtained by taking the union of all the rows in which each instruction
appears.

Table 5-2. RAW Dependencies Organized by Resource

Resource Name Writers Readers
Semantics of
Dependency

ALAT chk.a.clr,
mem-readers-alat,
mem-writers, invala-all

mem-readers-alat,
mem-writers, chk-a,
invala.e

none

AR[BSP] br.call, brl.call, br.ret, cover, mov-
to-AR-BSPSTORE, rfi

br.call, brl.call, br.ia, br.ret, cover,
flushrs, loadrs,
mov-from-AR-BSP, rfi

impliedF

AR[BSPSTORE] alloc, loadrs, flushrs,
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs,
mov-from-AR-BSPSTORE

impliedF

AR[CCV] mov-to-AR-CCV br.ia, cmpxchg,
mov-from-AR-CCV

impliedF

AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 267

AR[CSD] ld16, mov-to-AR-CSD br.ia, cmp8xchg16,
mov-from-AR-CSD, st16

impliedF

AR[EC] mod-sched-brs, br.ret,
mov-to-AR-EC

br.call, brl.call, br.ia, mod-sched-brs,
mov-from-AR-EC

impliedF

AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0,
fsetc, mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-s1,
mov-from-AR-FPSR

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2,
mov-from-AR-FPSR

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3,
mov-from-AR-FPSR

AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0,
fpcmp-s0, mov-to-AR-FPSR

br.ia, fchkf,
mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.flags fp-arith-s1, fclrf.s1, fcmp-s1,
fpcmp-s1, mov-to-AR-FPSR

br.ia, fchkf.s1,
mov-from-AR-FPSR

AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2,
fpcmp-s2, mov-to-AR-FPSR

br.ia, fchkf.s2,
mov-from-AR-FPSR

AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3,
fpcmp-s3, mov-to-AR-FPSR

br.ia, fchkf.s3,
mov-from-AR-FPSR

AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, mov-
from-AR-FPSR

impliedF

AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp, mov-
from-AR-FPSR

impliedF

AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF

AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF

AR[K%],
% in 0 - 7

mov-to-AR-K1 br.ia, mov-from-AR-K1 impliedF

AR[LC] mod-sched-brs-counted, mov-to-
AR-LC

br.ia, mod-sched-brs-counted, mov-
from-AR-LC

impliedF

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc,
mov-from-AR-PFS

impliedF

mov-to-AR-PFS alloc, br.ia, epc,
mov-from-AR-PFS

impliedF

br.ret none

AR[RNAT] alloc, flushrs, loadrs,
mov-to-AR-RNAT,
mov-to-AR-BSPSTORE

alloc, br.ia, flushrs, loadrs,
mov-from-AR-RNAT

impliedF

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs,
mov-from-AR-RSC,
mov-from-AR-BSPSTORE,
mov-to-AR-RNAT,
mov-from-AR-RNAT,
mov-to-AR-BSPSTORE

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

268 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

AR[RUC] mov-to-AR-RUC br.ia, mov-from-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNAT]{%},
% in 0 - 63

mov-to-AR-UNAT, st8.spill br.ia, ld8.fill,
mov-from-AR-UNAT

impliedF

AR%,
% in 8-15, 20, 22-23, 31, 33-
35, 37-39, 41-43, 46-47, 67-
111

none br.ia, mov-from-AR-rv1 none

AR%,
% in 48-63, 112-127

mov-to-AR-ig1 br.ia, mov-from-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 indirect-brs1, indirect-brp1, mov-
from-BR1

impliedF

mov-to-BR1 indirect-brs1 none

indirect-brp1,
mov-from-BR1

impliedF

CFM mod-sched-brs mod-sched-brs impliedF

cover, alloc, rfi, loadrs, br.ret, br.call,
brl.call

impliedF

cfm-readers2 impliedF

br.call, brl.call, br.ret, clrrrb, cover,
rfi

cfm-readers impliedF

alloc cfm-readers none

CPUID# none mov-from-IND-CPUID3 specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR,
mem-readers-spec

data

CR[EOI] mov-to-CR-EOI none SC Section
5.8.3.4, “End of
External
Interrupt
Register (EOI –
CR67)” on
page 124

CR[GPTA] mov-to-CR-GPTA mov-from-CR-GPTA, thash data

CR[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied

mov-from-CR-IFA data

CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data

rfi implied

cover rfi, mov-from-CR-IFS implied

CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB mov-from-CR-IIB data

CR[IIM] mov-to-CR-IIM mov-from-CR-IIM data

CR[IIP] mov-to-CR-IIP mov-from-CR-IIP data

rfi implied

CR[IIPA] mov-to-CR-IIPA mov-from-CR-IIPA data

CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data

rfi implied

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 269

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR mov-from-CR-IRR1 data

CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data

CR[ITIR] mov-to-CR-ITIR mov-from-CR-ITIR data

itc.i, itc.d, itr.i, itr.d implied

CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data

CR[ITO] mov-to-CR-ITO mov-from-AR-ITC, mov-from-CR-ITO data

CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data

CR[IVA] mov-to-CR-IVA mov-from-CR-IVA instr

CR[IVR] none mov-from-CR-IVR SC Section
5.8.3.2,
“External
Interrupt Vector
Register (IVR –
CR65)” on
page 123

CR[LID] mov-to-CR-LID mov-from-CR-LID SC Section
5.8.3.1, “Local
ID (LID –
CR64)” on
page 122

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 mov-from-CR-LRR1 data

CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data

CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers,
mem-writers, non-access, thash

data

CR[TPR] mov-to-CR-TPR mov-from-CR-TPR,
mov-from-CR-IVR

data

mov-to-PSR-l17, ssm17 SC Section
5.8.3.3, “Task
Priority Register
(TPR – CR66)”
on page 123

rfi implied

CR%,
% in 3, 5-7, 10-15, 18, 28-63,
75-79, 82-127

none mov-from-CR-rv1 none

DAHR%,
% in 0-7

br.call, brl.call, br.ret, mov-to-AR-
BSPSTORE, mov-to-DAHR1, rfi

br.call, brl.call, mem-readers, mem-
writers, mov-from-DAHR1

implied

DBR# mov-to-IND-DBR3 mov-from-IND-DBR3 impliedF

probe-all, lfetch-all,
mem-readers, mem-writers

data

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

mem-readers, mem-writers, non-
access

data

itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i,
itc.d, itr.i, itr.d

impliedF

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

270 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

DTR itr.d mem-readers, mem-writers, non-
access

data

ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF

ptr.d mem-readers, mem-writers, non-
access

data

ptc.g, ptc.ga, ptc.l, ptr.d none

itr.d, itc.d impliedF

FR%,
% in 0 - 1

none fr-readers1 none

FR%,
% in 2 - 127

fr-writers1\ldf-c1\ldfp-c1 fr-readers1 impliedF

ldf-c1, ldfp-c1 fr-readers1 none

GR0 none gr-readers1 none

GR%,
% in 1 - 127

ld-c1,13 gr-readers1 none

gr-writers1\ld-c1,13 gr-readers1 impliedF

IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF

InService* mov-to-CR-EOI mov-from-CR-IVR data

mov-from-CR-IVR mov-from-CR-IVR impliedF

mov-to-CR-EOI mov-to-CR-EOI impliedF

IP all all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d epc, vmsw instr

itc.i, itc.d, itr.i, itr.d impliedF

ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.l none

itc.i, itc.d, itr.i, itr.d epc, vmsw instr

itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g,
ptc.ga, ptc.l

impliedF

ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF

epc, vmsw instr

ptr.i itc.i, itr.i impliedF

ptc.g, ptc.ga, ptc.l, ptr.i none

epc, vmsw instr

memory mem-writers mem-readers none

PKR# mov-to-IND-PKR3 mem-readers, mem-writers,
mov-from-IND-PKR4, probe-all

data

mov-to-IND-PKR4 none

mov-from-IND-PKR3 impliedF

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF

mov-from-IND-PMD3 SC Section
7.2.1, “Generic
Performance
Counter
Registers” for
PMC[0].fr on
page 156

PMD# mov-to-IND-PMD3 mov-from-IND-PMD3 impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 271

PR0 pr-writers1 pr-readers-br1,
pr-readers-nobr-nomovpr1, mov-
from-PR12,
mov-to-PR12

none

PR%,
% in 1 - 15

pr-writers1,
mov-to-PR-allreg7

pr-readers-nobr-nomovpr1, mov-
from-PR,
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7

pr-readers-br1 none

PR%,
% in 16 - 62

pr-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1, mov-
from-PR,
mov-to-PR12

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-br1 none

PR63 mod-sched-brs,
pr-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-nobr-nomovpr1, mov-
from-PR,
mov-to-PR12

impliedF

pr-writers-fp1,
mod-sched-brs

pr-readers-br1 impliedF

pr-writers-int1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-readers-br1 none

PSR.ac user-mask-writers-partial7, mov-
to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7, mov-
to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7, mov-
to-PSR-um,
sys-mask-writers-partial7, mov-
to-PSR-l

mov-from-PSR,
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-
PSR-um

impliedF

PSR.be user-mask-writers-partial7, mov-
to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7, mov-
to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7, mov-
to-PSR-um,
sys-mask-writers-partial7, mov-
to-PSR-l

mov-from-PSR,
mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-
PSR-um

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

272 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

PSR.bn bsw, rfi gr-readers10, gr-writers10 impliedF

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,
mem-writers, lfetch-all

implied

rfi priv-ops, br.call, brl.call, epc,
mov-from-AR-ITC,
mov-from-AR-RUC,
mov-to-AR-ITC,
mov-to-AR-RSC,
mov-to-AR-RUC,
mov-to-AR-K,
mov-from-IND-PMD,
probe-all, mem-readers,

mem-writers, lfetch-all

impliedF

PSR.da rfi mem-readers, lfetch-all, mem-writers,
probe-fault

impliedF

PSR.db mov-to-PSR-l lfetch-all, mem-readers,
mem-writers, probe-fault

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,
mem-writers,
mov-from-PSR, probe-fault

impliedF

PSR.dd rfi lfetch-all, mem-readers, probe-fault,
mem-writers

impliedF

PSR.dfh sys-mask-writers-partial7, mov-
to-PSR-l

fr-readers8, fr-writers8 data

mov-from-PSR impliedF

rfi fr-readers8, fr-writers8, mov-from-
PSR

impliedF

PSR.dfl sys-mask-writers-partial7, mov-
to-PSR-l

fr-writers8, fr-readers8 data

mov-from-PSR impliedF

rfi fr-writers8, fr-readers8, mov-from-
PSR

impliedF

PSR.di sys-mask-writers-partial7, mov-
to-PSR-l

br.ia data

mov-from-PSR impliedF

rfi br.ia, mov-from-PSR impliedF

PSR.dt sys-mask-writers-partial7, mov-
to-PSR-l

mem-readers, mem-writers, non-
access

data

mov-from-PSR impliedF

rfi mem-readers, mem-writers, non-
access, mov-from-PSR

impliedF

PSR.ed rfi lfetch-all,
mem-readers-spec

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 273

PSR.i sys-mask-writers-partial7, mov-
to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ia rfi all none

PSR.ic sys-mask-writers-partial7, mov-
to-PSR-l

mov-from-PSR impliedF

cover, itc.i, itc.d, itr.i, itr.d, mov-from-
interruption-CR, mov-to-interruption-
CR

data

rfi mov-from-PSR, cover, itc.i, itc.d, itr.i,
itr.d, mov-from-interruption-CR, mov-
to-interruption-CR

impliedF

PSR.id rfi all none

PSR.is br.ia, rfi none none

PSR.it rfi branches, mov-from-PSR, chk, epc,
fchkf, vmsw

impliedF

PSR.lp mov-to-PSR-l mov-from-PSR impliedF

br.ret data

rfi mov-from-PSR, br.ret impliedF

PSR.mc rfi mov-from-PSR impliedF

PSR.mfh fr-writers9,
user-mask-writers-partial7, mov-
to-PSR-um,
sys-mask-writers-partial7, mov-
to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.mfl fr-writers9,
user-mask-writers-partial7, mov-
to-PSR-um,
sys-mask-writers-partial7, mov-
to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.pk sys-mask-writers-partial7, mov-
to-PSR-l

lfetch-all, mem-readers,
mem-writers, probe-all

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,

mem-writers, mov-from-
PSR, probe-all

impliedF

PSR.pp sys-mask-writers-partial7, mov-
to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ri rfi all none

PSR.rt mov-to-PSR-l mov-from-PSR impliedF

alloc, flushrs, loadrs data

rfi mov-from-PSR, alloc, flushrs, loadrs impliedF

PSR.si sys-mask-writers-partial7, mov-
to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC, mov-from-AR-RUC data

rfi mov-from-AR-ITC, mov-from-AR-
RUC, mov-from-PSR

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

274 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

5.3.3 WAW Dependency Table

General rules specific to the WAW table:
• All resources require at most an instruction group break to provide sequential

behavior.
• Some resources require no instruction group break to provide sequential behavior.
• There are a few special cases that are described in greater detail elsewhere in the

manual and are indicated with an SC (special case) result.
• Each sub-row of writers represents a group of instructions that when taken in pairs

in any combination has the dependency result indicated. If the column is split in
sub-columns, then the dependency semantics apply to any pair of instructions
where one is chosen from left sub-column and one is chosen from the right sub-
column.

PSR.sp sys-mask-writers-partial7, mov-
to-PSR-l

mov-from-PSR impliedF

mov-from-IND-PMD,
mov-to-PSR-um, rum, sum

data

rfi mov-from-IND-PMD, mov-from-PSR,
mov-to-PSR-um, rum, sum

impliedF

PSR.ss rfi all impliedF

PSR.tb mov-to-PSR-l branches, chk, fchkf data

mov-from-PSR impliedF

rfi branches, chk, fchkf, mov-from-PSR impliedF

PSR.up user-mask-writers-partial7, mov-
to-PSR-um,
sys-mask-writers-partial7, mov-
to-PSR-l, rfi

mov-from-PSR-um,
mov-from-PSR

impliedF

PSR.vm vmsw mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-AR-RUC,
mov-from-IND-CPUID, mov-to-AR-
ITC, mov-to-AR-RUC, priv-ops\vmsw,
cover, thash, ttag

implied

rfi mem-readers, mem-writers, mov-
from-AR-ITC, mov-from-AR-RUC,
mov-from-IND-CPUID, mov-to-AR-
ITC, mov-to-AR-RUC, priv-ops\vmsw,
cover, thash, ttag

impliedF

RR# mov-to-IND-RR6 mem-readers, mem-writers, itc.i, itc.d,
itr.i, itr.d, non-access, ptc.g, ptc.ga,
ptc.l, ptr.i, ptr.d, thash, ttag

data

mov-from-IND-RR6 impliedF

RSE rse-writers14 rse-readers14 impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 275

Table 5-3. WAW Dependencies Organized by Resource

Resource Name Writers
Semantics of
Dependency

ALAT mem-readers-alat, mem-writers, chk.a.clr,
invala-all

none

AR[BSP] br.call, brl.call, br.ret, cover, mov-to-AR-BSPSTORE, rfi impliedF

AR[BSPSTORE] alloc, loadrs, flushrs, mov-to-AR-BSPSTORE impliedF

AR[CCV] mov-to-AR-CCV impliedF

AR[CFLG] mov-to-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD impliedF

AR[EC] br.ret, mod-sched-brs, mov-to-AR-EC impliedF

AR[EFLAG] mov-to-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 impliedF

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 impliedF

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 impliedF

AR[FPSR].sf0.flags fp-arith-s0, fcmp-s0, fpcmp-s0 none

fclrf.s0, fcmp-s0, fp-arith-s0,
fpcmp-s0, mov-to-AR-FPSR

fclrf.s0, mov-to-AR-FPSR impliedF

AR[FPSR].sf1.flags fp-arith-s1, fcmp-s1, fpcmp-s1 none

fclrf.s1, fcmp-s1, fp-arith-s1,
fpcmp-s1, mov-to-AR-FPSR

fclrf.s1, mov-to-AR-FPSR impliedF

AR[FPSR].sf2.flags fp-arith-s2, fcmp-s2, fpcmp-s2 none

fclrf.s2, fcmp-s2, fp-arith-s2,
fpcmp-s2, mov-to-AR-FPSR

fclrf.s2, mov-to-AR-FPSR impliedF

AR[FPSR].sf3.flags fp-arith-s3, fcmp-s3, fpcmp-s3 none

fclrf.s3, fcmp-s3, fp-arith-s3,
fpcmp-s3, mov-to-AR-FPSR

fclrf.s3, mov-to-AR-FPSR impliedF

AR[FPSR].rv mov-to-AR-FPSR impliedF

AR[FPSR].traps mov-to-AR-FPSR impliedF

AR[FSR] mov-to-AR-FSR impliedF

AR[ITC] mov-to-AR-ITC impliedF

AR[K%],
% in 0 - 7

mov-to-AR-K1 impliedF

AR[LC] mod-sched-brs-counted, mov-to-AR-LC impliedF

AR[PFS] br.call, brl.call none

br.call, brl.call mov-to-AR-PFS impliedF

AR[RNAT] alloc, flushrs, loadrs,
mov-to-AR-RNAT,

mov-to-AR-BSPSTORE

impliedF

AR[RSC] mov-to-AR-RSC impliedF

AR[RUC] mov-to-AR-RUC impliedF

AR[SSD] mov-to-AR-SSD impliedF

AR[UNAT]{%},
% in 0 - 63

mov-to-AR-UNAT, st8.spill impliedF

276 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

AR%,
% in 8-15, 20, 22-23, 31, 33-
35, 37-39, 41-43, 46-47, 67-
111

none none

AR%,
% in 48 - 63, 112-127

mov-to-AR-ig1 impliedF

BR%,
% in 0 - 7

br.call1, brl.call1 mov-to-BR1 impliedF

mov-to-BR1 impliedF

br.call1, brl.call1 none

CFM mod-sched-brs, br.call, brl.call, br.ret, alloc, clrrrb, cover, rfi impliedF

CPUID# none none

CR[CMCV] mov-to-CR-CMCV impliedF

CR[DCR] mov-to-CR-DCR impliedF

CR[EOI] mov-to-CR-EOI SC Section
5.8.3.4, “End of
External Interrupt
Register (EOI –
CR67)” on
page 124

CR[GPTA] mov-to-CR-GPTA impliedF

CR[IFA] mov-to-CR-IFA impliedF

CR[IFS] mov-to-CR-IFS, cover impliedF

CR[IHA] mov-to-CR-IHA impliedF

CR[IIB%],
% in 0 - 1

mov-to-CR-IIB impliedF

CR[IIM] mov-to-CR-IIM impliedF

CR[IIP] mov-to-CR-IIP impliedF

CR[IIPA] mov-to-CR-IIPA impliedF

CR[IPSR] mov-to-CR-IPSR impliedF

CR[IRR%],
% in 0 - 3

mov-from-CR-IVR impliedF

CR[ISR] mov-to-CR-ISR impliedF

CR[ITIR] mov-to-CR-ITIR impliedF

CR[ITM] mov-to-CR-ITM impliedF

CR[ITO] mov-to-CR-ITO impliedF

CR[ITV] mov-to-CR-ITV impliedF

CR[IVA] mov-to-CR-IVA impliedF

CR[IVR] none SC

CR[LID] mov-to-CR-LID SC

CR[LRR%],
% in 0 - 1

mov-to-CR-LRR1 impliedF

CR[PMV] mov-to-CR-PMV impliedF

CR[PTA] mov-to-CR-PTA impliedF

CR[TPR] mov-to-CR-TPR impliedF

CR%,
% in 3, 5-7, 10-15, 18, 28-63,
75-79, 82-127

none none

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 277

DAHR%,
% in 0-7

br.call, brl.call, br.ret, mov-to-AR-BSPSTORE, mov-to-DAHR, rfi implied

DBR# mov-to-IND-DBR3 impliedF

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga impliedF

DTR itr.d impliedF

itr.d ptr.d impliedF

ptr.d none

FR%,
% in 0 - 1

none none

FR%,
% in 2 - 127

fr-writers1, ldf-c1, ldfp-c1 impliedF

GR0 none none

GR%,
% in 1 - 127

ld-c1, gr-writers1 impliedF

IBR# mov-to-IND-IBR3 impliedF

InService* mov-to-CR-EOI, mov-from-CR-IVR SC

IP all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

itc.i, itc.d, itr.i, itr.d impliedF

ITR itr.i itr.i, ptr.i impliedF

ptr.i none

memory mem-writers none

PKR# mov-to-IND-PKR3 mov-to-IND-PKR4 none

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 impliedF

PMD# mov-to-IND-PMD3 impliedF

PR0 pr-writers1 none

PR%,
% in 1 - 15

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7

impliedF

PR%,
% in 16 - 62

pr-and-writers1 none

pr-or-writers1 none

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

278 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

PR63 pr-and-writers1 none

pr-or-writers1 none

mod-sched-brs,
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-and-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

mod-sched-brs,
pr-unc-writers-fp1,
pr-unc-writers-int1,
pr-norm-writers-fp1,
pr-norm-writers-int1,

pr-or-writers1,
mov-to-PR-allreg7,
mov-to-PR-rotreg

impliedF

PSR.ac user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.be user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.bn bsw, rfi impliedF

PSR.cpl epc, br.ret, rfi impliedF

PSR.da rfi impliedF

PSR.db mov-to-PSR-l, rfi impliedF

PSR.dd rfi impliedF

PSR.dfh sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dfl sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.di sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.dt sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ed rfi impliedF

PSR.i sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ia rfi impliedF

PSR.ic sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.id rfi impliedF

PSR.is br.ia, rfi impliedF

PSR.it rfi impliedF

PSR.lp mov-to-PSR-l, rfi impliedF

PSR.mc rfi impliedF

PSR.mfh fr-writers9 none

 user-mask-writers-partial7, mov-
to-PSR-um, fr-writers9,

sys-mask-writers-partial7, mov-to-
PSR-l, rfi

user-mask-writers-partial7, mov-
to-PSR-um,

sys-mask-writers-partial7, mov-to-
PSR-l, rfi

impliedF

PSR.mfl fr-writers9 none

user-mask-writers-partial7, mov-
to-PSR-um, fr-writers9,

sys-mask-writers-partial7, mov-to-
PSR-l, rfi

user-mask-writers-partial7, mov-
to-PSR-um,

sys-mask-writers-partial7, mov-to-
PSR-l, rfi

impliedF

PSR.pk sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.pp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.ri rfi impliedF

PSR.rt mov-to-PSR-l, rfi impliedF

PSR.si sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

PSR.sp sys-mask-writers-partial7, mov-to-PSR-l, rfi impliedF

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 279

5.3.4 WAR Dependency Table

A general rule specific to the WAR table:

1. WAR dependencies are always allowed within instruction groups except for the
entry in Table 5-4 below. The readers and subsequent writers specified must be
separated by a stop in order to have defined behavior.

5.3.5 Listing of Rules Referenced in Dependency Tables

The following rules restrict the specific instances in which some of the instructions in the tables cause
a dependency and must be applied where referenced to correctly interpret those entries. Rules only
apply to the instance of the instruction class, or instruction mnemonic prefix where the rule is refer-
enced as a superscript. If the rule is referenced in Table 5-5 where instruction classes are defined,
then it applies to all instances of the instruction class.

Rule 1. These instructions only write a register when that register’s number is explicitly
encoded as a target of the instruction and is only read when it is encoded as a
source of the instruction (or encoded as its PR[qp]).

Rule 2. These instructions only read CFM when they access a rotating GR, FR, or PR.
mov-to-PR and mov-from-PR only access CFM when their qualifying
predicate is in the rotating region.

Rule 3. These instructions use a general register value to determine the specific indirect
register accessed. These instructions only access the register resource specified
by the value in bits {7:0} of the dynamic value of the index register.

Rule 4. These instructions only read the given resource when bits {7:0} of the indirect
index register value does not match the register number of the resource.

Rule 5. All rules are implementation specific.

Rule 6. There is a dependency only when both the index specified by the reader and the
index specified by the writer have the same value in bits {63:61}.

Rule 7. These instructions access the specified resource only when the corresponding
mask bit is set.

PSR.ss rfi impliedF

PSR.tb mov-to-PSR-l, rfi impliedF

PSR.up user-mask-writers-partial7, mov-to-PSR-um,
sys-mask-writers-partial7, mov-to-PSR-l, rfi

impliedF

PSR.vm rfi, vmsw impliedF

RR# mov-to-IND-RR6 impliedF

RSE rse-writers14 impliedF

Table 5-4. WAR Dependencies Organized by Resource

Resource Name Readers Writers Semantics of Dependency

PR63 pr-readers-br1 mod-sched-brs stop

Table 5-3. WAW Dependencies Organized by Resource (Continued)

Resource Name Writers
Semantics of
Dependency

280 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Rule 8. PSR.dfh is only read when these instructions reference FR32-127. PSR.dfl is
only read when these instructions reference FR2-31.

Rule 9. PSR.mfl is only written when these instructions write FR2-31. PSR.mfh is only
written when these instructions write FR32-127.

Rule 10.The PSR.bn bit is only accessed when one of GR16-31 is specified in the
instruction.

Rule 11.The target predicates are written independently of PR[qp], but source registers
are only read if PR[qp] is true.

Rule 12.This instruction only reads the specified predicate register when that register is
the PR[qp].

Rule 13.This reference to ld-c only applies to the GR whose value is loaded with data
returned from memory, not the post-incremented address register. Thus, a stop
is still required between a post-incrementing ld-c and a consumer that reads
the post-incremented GR.

Rule 14.The RSE resource includes implementation-specific internal state. At least one
(and possibly more) of these resources are read by each instruction listed in the
rse-readers class. At least one (and possibly more) of these resources are
written by each instruction listed in the rse-writers class. To determine exactly
which instructions read or write each individual resource, see the corresponding
instruction pages.

Rule 15.This class represents all instructions marked as Reserved if PR[qp] is 1 B-type
instructions as described in “Format Summary” on page 294.

Rule 16.This class represents all instructions marked as Reserved if PR[qp] is 1
instructions as described in “Format Summary” on page 294.

Rule 17.CR[TPR] has a RAW dependency only between mov-to-CR-TPR and mov-to-
PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.

5.4 Support Tables

Table 5-5. Instruction Classes

Class Events/Instructions

all predicatable-instructions, unpredicatable-instructions

branches indirect-brs, ip-rel-brs

cfm-readers fr-readers, fr-writers, gr-readers, gr-writers, mod-sched-brs, predicatable-
instructions, pr-writers, alloc, br.call, brl.call, br.ret, cover, loadrs, rfi, chk-a, invala.e

chk-a chk.a.clr, chk.a.nc

cmpxchg cmpxchg1, cmpxchg2, cmpxchg4, cmpxchg8, cmp8xchg16

czx czx1, czx2

fcmp-s0 fcmp[Field(sf)==s0]

fcmp-s1 fcmp[Field(sf)==s1]

fcmp-s2 fcmp[Field(sf)==s2]

fcmp-s3 fcmp[Field(sf)==s3]

fetchadd fetchadd4, fetchadd8

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 281

fp-arith fadd, famax, famin, fcvt.fx, fcvt.fxu, fcvt.xuf, fma, fmax, fmin, fmpy, fms, fnma, fnmpy, fnorm,
fpamax, fpamin, fpcvt.fx, fpcvt.fxu, fpma, fpmax, fpmin, fpmpy, fpms, fpnma, fpnmpy, fprcpa,
fprsqrta, frcpa, frsqrta, fsub

fp-arith-s0 fp-arith[Field(sf)==s0]

fp-arith-s1 fp-arith[Field(sf)==s1]

fp-arith-s2 fp-arith[Field(sf)==s2]

fp-arith-s3 fp-arith[Field(sf)==s3]

fp-non-arith fabs, fand, fandcm, fclass, fcvt.xf, fmerge, fmix, fneg, fnegabs, for, fpabs, fpmerge, fpack,
fpneg, fpnegabs, fselect, fswap, fsxt, fxor, xma, xmpy

fpcmp-s0 fpcmp[Field(sf)==s0]

fpcmp-s1 fpcmp[Field(sf)==s1]

fpcmp-s2 fpcmp[Field(sf)==s2]

fpcmp-s3 fpcmp[Field(sf)==s3]

fr-readers fp-arith, fp-non-arith, mem-writers-fp, pr-writers-fp, chk.s[Format in {M21}], getf

fr-writers fp-arith, fp-non-arith\fclass, mem-readers-fp, setf

gr-readers gr-readers-writers, mem-readers, mem-writers, chk.s, cmp, cmp4, fc, itc.i, itc.d, itr.i, itr.d,
mov-to-AR-gr, mov-to-BR, mov-to-CR, mov-to-IND, mov-from-IND, mov-to-PR-allreg,
mov-to-PSR-l, mov-to-PSR-um, probe-all, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, setf, tbit,
tnat

gr-readers-writers mov-from-IND, add, addl, addp4, adds, and, andcm, clz, czx, dep\dep[Format in {I13}],
extr, mem-readers-int, ld-all-postinc, lfetch-postinc, mix, mux, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-regular, psad, pshl,
pshladd, pshr, pshradd, psub, shl, shladd, shladdp4, shr, shrp, st-postinc, sub, sxt, tak,
thash, tpa, ttag, unpack, xor, zxt

gr-writers alloc, dep, getf, gr-readers-writers, mem-readers-int, mov-from-AR, mov-from-BR,
mov-from-CR, mov-from-PR, mov-from-PSR, mov-from-PSR-um, mov-ip, movl

indirect-brp brp[Format in {B7}]

indirect-brs br.call[Format in {B5}], br.cond[Format in {B4}], br.ia, br.ret

invala-all invala[Format in {M24}], invala.e

ip-rel-brs mod-sched-brs, br.call[Format in {B3}], brl.call, brl.cond, br.cond[Format in {B1}], br.cloop

ld ld1, ld2, ld4, ld8, ld8.fill, ld16

ld-a ld1.a, ld2.a, ld4.a, ld8.a

ld-all-postinc ld[Format in {M2 M3}], ldfp[Format in {M12}], ldf[Format in {M7 M8}]

ld-c ld-c-nc, ld-c-clr

ld-c-clr ld1.c.clr, ld2.c.clr, ld4.c.clr, ld8.c.clr, ld-c-clr-acq

ld-c-clr-acq ld1.c.clr.acq, ld2.c.clr.acq, ld4.c.clr.acq, ld8.c.clr.acq

ld-c-nc ld1.c.nc, ld2.c.nc, ld4.c.nc, ld8.c.nc

ld-s ld1.s, ld2.s, ld4.s, ld8.s

ld-sa ld1.sa, ld2.sa, ld4.sa, ld8.sa

ldf ldfs, ldfd, ldfe, ldf8, ldf.fill

ldf-a ldfs.a, ldfd.a, ldfe.a, ldf8.a

ldf-c ldf-c-nc, ldf-c-clr

ldf-c-clr ldfs.c.clr, ldfd.c.clr, ldfe.c.clr, ldf8.c.clr

ldf-c-nc ldfs.c.nc, ldfd.c.nc, ldfe.c.nc, ldf8.c.nc

ldf-s ldfs.s, ldfd.s, ldfe.s, ldf8.s

ldf-sa ldfs.sa, ldfd.sa, ldfe.sa, ldf8.sa

ldfp ldfps, ldfpd, ldfp8

ldfp-a ldfps.a, ldfpd.a, ldfp8.a

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

282 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

ldfp-c ldfp-c-nc, ldfp-c-clr

ldfp-c-clr ldfps.c.clr, ldfpd.c.clr, ldfp8.c.clr

ldfp-c-nc ldfps.c.nc, ldfpd.c.nc, ldfp8.c.nc

ldfp-s ldfps.s, ldfpd.s, ldfp8.s

ldfp-sa ldfps.sa, ldfpd.sa, ldfp8.sa

lfetch-all lfetch

lfetch-fault lfetch[Field(lftype)==fault]

lfetch-nofault lfetch[Field(lftype)==]

lfetch-postinc lfetch[Format in {M20 M22}]

mem-readers mem-readers-fp, mem-readers-int

mem-readers-alat ld-a, ldf-a, ldfp-a, ld-sa, ldf-sa, ldfp-sa, ld-c, ldf-c, ldfp-c

mem-readers-fp ldf, ldfp

mem-readers-int cmpxchg, fetchadd, xchg, ld

mem-readers-spec ld-s, ld-sa, ldf-s, ldf-sa, ldfp-s, ldfp-sa

mem-writers mem-writers-fp, mem-writers-int

mem-writers-fp stf

mem-writers-int cmpxchg, fetchadd, xchg, st

mix mix1, mix2, mix4

mod-sched-brs br.cexit, br.ctop, br.wexit, br.wtop

mod-sched-brs-counted br.cexit, br.cloop, br.ctop

mov-from-AR mov-from-AR-M, mov-from-AR-I, mov-from-AR-IM

mov-from-AR-BSP mov-from-AR-M[Field(ar3) == BSP]

mov-from-AR-BSPSTORE mov-from-AR-M[Field(ar3) == BSPSTORE]

mov-from-AR-CCV mov-from-AR-M[Field(ar3) == CCV]

mov-from-AR-CFLG mov-from-AR-M[Field(ar3) == CFLG]

mov-from-AR-CSD mov-from-AR-M[Field(ar3) == CSD]

mov-from-AR-EC mov-from-AR-I[Field(ar3) == EC]

mov-from-AR-EFLAG mov-from-AR-M[Field(ar3) == EFLAG]

mov-from-AR-FCR mov-from-AR-M[Field(ar3) == FCR]

mov-from-AR-FDR mov-from-AR-M[Field(ar3) == FDR]

mov-from-AR-FIR mov-from-AR-M[Field(ar3) == FIR]

mov-from-AR-FPSR mov-from-AR-M[Field(ar3) == FPSR]

mov-from-AR-FSR mov-from-AR-M[Field(ar3) == FSR]

mov-from-AR-I mov_ar[Format in {I28}]

mov-from-AR-ig mov-from-AR-IM[Field(ar3) in {48-63 112-127}]

mov-from-AR-IM mov_ar[Format in {I28 M31}]

mov-from-AR-ITC mov-from-AR-M[Field(ar3) == ITC]

mov-from-AR-K mov-from-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-from-AR-LC mov-from-AR-I[Field(ar3) == LC]

mov-from-AR-M mov_ar[Format in {M31}]

mov-from-AR-PFS mov-from-AR-I[Field(ar3) == PFS]

mov-from-AR-RNAT mov-from-AR-M[Field(ar3) == RNAT]

mov-from-AR-RSC mov-from-AR-M[Field(ar3) == RSC]

mov-from-AR-RUC mov-from-AR-M[Field(ar3) == RUC]

mov-from-AR-rv none

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 283

mov-from-AR-SSD mov-from-AR-M[Field(ar3) == SSD]

mov-from-AR-UNAT mov-from-AR-M[Field(ar3) == UNAT]

mov-from-BR mov_br[Format in {I22}]

mov-from-CR mov_cr[Format in {M33}]

mov-from-CR-CMCV mov-from-CR[Field(cr3) == CMCV]

mov-from-CR-DCR mov-from-CR[Field(cr3) == DCR]

mov-from-CR-EOI mov-from-CR[Field(cr3) == EOI]

mov-from-CR-GPTA mov-from-CR[Field(cr3) == GPTA]

mov-from-CR-IFA mov-from-CR[Field(cr3) == IFA]

mov-from-CR-IFS mov-from-CR[Field(cr3) == IFS]

mov-from-CR-IHA mov-from-CR[Field(cr3) == IHA]

mov-from-CR-IIB mov-from-CR[Field(cr3) in {IIB0 IIB1}]

mov-from-CR-IIM mov-from-CR[Field(cr3) == IIM]

mov-from-CR-IIP mov-from-CR[Field(cr3) == IIP]

mov-from-CR-IIPA mov-from-CR[Field(cr3) == IIPA]

mov-from-CR-IPSR mov-from-CR[Field(cr3) == IPSR]

mov-from-CR-IRR mov-from-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-from-CR-ISR mov-from-CR[Field(cr3) == ISR]

mov-from-CR-ITIR mov-from-CR[Field(cr3) == ITIR]

mov-from-CR-ITM mov-from-CR[Field(cr3) == ITM]

mov-from-CR-ITO mov-from-CR[Field(cr3) == ITO]

mov-from-CR-ITV mov-from-CR[Field(cr3) == ITV]

mov-from-CR-IVA mov-from-CR[Field(cr3) == IVA]

mov-from-CR-IVR mov-from-CR[Field(cr3) == IVR]

mov-from-CR-LID mov-from-CR[Field(cr3) == LID]

mov-from-CR-LRR mov-from-CR[Field(cr3) in {LRR0 LRR1}]

mov-from-CR-PMV mov-from-CR[Field(cr3) == PMV]

mov-from-CR-PTA mov-from-CR[Field(cr3) == PTA]

mov-from-CR-rv none

mov-from-CR-TPR mov-from-CR[Field(cr3) == TPR]

mov-from-DAHR mov_indirect[Format in {M43}]

mov-from-IND mov_indirect[Format in {M43}]

mov-from-IND-CPUID mov-from-IND[Field(ireg) == cpuid]

mov-from-IND-DBR mov-from-IND[Field(ireg) == dbr]

mov-from-IND-IBR mov-from-IND[Field(ireg) == ibr]

mov-from-IND-PKR mov-from-IND[Field(ireg) == pkr]

mov-from-IND-PMC mov-from-IND[Field(ireg) == pmc]

mov-from-IND-PMD mov-from-IND[Field(ireg) == pmd]

mov-from-IND-priv mov-from-IND[Field(ireg) in {dbr ibr pkr pmc rr}]

mov-from-IND-RR mov-from-IND[Field(ireg) == rr]

mov-from-interruption-CR mov-from-CR-ITIR, mov-from-CR-IFS, mov-from-CR-IIB, mov-from-CR-IIM, mov-from-
CR-IIP, mov-from-CR-IPSR, mov-from-CR-ISR, mov-from-CR-IFA, mov-from-CR-IHA,
mov-from-CR-IIPA

mov-from-PR mov_pr[Format in {I25}]

mov-from-PSR mov_psr[Format in {M36}]

mov-from-PSR-um mov_um[Format in {M36}]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

284 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

mov-ip mov_ip[Format in {I25}]

mov-to-AR mov-to-AR-M, mov-to-AR-I

mov-to-AR-BSP mov-to-AR-M[Field(ar3) == BSP]

mov-to-AR-BSPSTORE mov-to-AR-M[Field(ar3) == BSPSTORE]

mov-to-AR-CCV mov-to-AR-M[Field(ar3) == CCV]

mov-to-AR-CFLG mov-to-AR-M[Field(ar3) == CFLG]

mov-to-AR-CSD mov-to-AR-M[Field(ar3) == CSD]

mov-to-AR-EC mov-to-AR-I[Field(ar3) == EC]

mov-to-AR-EFLAG mov-to-AR-M[Field(ar3) == EFLAG]

mov-to-AR-FCR mov-to-AR-M[Field(ar3) == FCR]

mov-to-AR-FDR mov-to-AR-M[Field(ar3) == FDR]

mov-to-AR-FIR mov-to-AR-M[Field(ar3) == FIR]

mov-to-AR-FPSR mov-to-AR-M[Field(ar3) == FPSR]

mov-to-AR-FSR mov-to-AR-M[Field(ar3) == FSR]

mov-to-AR-gr mov-to-AR-M[Format in {M29}], mov-to-AR-I[Format in {I26}]

mov-to-AR-I mov_ar[Format in {I26 I27}]

mov-to-AR-ig mov-to-AR-IM[Field(ar3) in {48-63 112-127}]

mov-to-AR-IM mov_ar[Format in {I26 I27 M29 M30}]

mov-to-AR-ITC mov-to-AR-M[Field(ar3) == ITC]

mov-to-AR-K mov-to-AR-M[Field(ar3) in {K0 K1 K2 K3 K4 K5 K6 K7}]

mov-to-AR-LC mov-to-AR-I[Field(ar3) == LC]

mov-to-AR-M mov_ar[Format in {M29 M30}]

mov-to-AR-PFS mov-to-AR-I[Field(ar3) == PFS]

mov-to-AR-RNAT mov-to-AR-M[Field(ar3) == RNAT]

mov-to-AR-RSC mov-to-AR-M[Field(ar3) == RSC]

mov-to-AR-RUC mov-to-AR-M[Field(ar3) == RUC]

mov-to-AR-SSD mov-to-AR-M[Field(ar3) == SSD]

mov-to-AR-UNAT mov-to-AR-M[Field(ar3) == UNAT]

mov-to-BR mov_br[Format in {I21}]

mov-to-CR mov_cr[Format in {M32}]

mov-to-CR-CMCV mov-to-CR[Field(cr3) == CMCV]

mov-to-CR-DCR mov-to-CR[Field(cr3) == DCR]

mov-to-CR-EOI mov-to-CR[Field(cr3) == EOI]

mov-to-CR-GPTA mov-to-CR[Field(cr3) == GPTA]

mov-to-CR-IFA mov-to-CR[Field(cr3) == IFA]

mov-to-CR-IFS mov-to-CR[Field(cr3) == IFS]

mov-to-CR-IHA mov-to-CR[Field(cr3) == IHA]

mov-to-CR-IIB mov-to-CR[Field(cr3) in {IIB0 IIB1}]

mov-to-CR-IIM mov-to-CR[Field(cr3) == IIM]

mov-to-CR-IIP mov-to-CR[Field(cr3) == IIP]

mov-to-CR-IIPA mov-to-CR[Field(cr3) == IIPA]

mov-to-CR-IPSR mov-to-CR[Field(cr3) == IPSR]

mov-to-CR-IRR mov-to-CR[Field(cr3) in {IRR0 IRR1 IRR2 IRR3}]

mov-to-CR-ISR mov-to-CR[Field(cr3) == ISR]

mov-to-CR-ITIR mov-to-CR[Field(cr3) == ITIR]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 285

mov-to-CR-ITM mov-to-CR[Field(cr3) == ITM]

mov-to-CR-ITO mov-to-CR[Field(cr3) == ITO]

mov-to-CR-ITV mov-to-CR[Field(cr3) == ITV]

mov-to-CR-IVA mov-to-CR[Field(cr3) == IVA]

mov-to-CR-IVR mov-to-CR[Field(cr3) == IVR]

mov-to-CR-LID mov-to-CR[Field(cr3) == LID]

mov-to-CR-LRR mov-to-CR[Field(cr3) in {LRR0 LRR1}]

mov-to-CR-PMV mov-to-CR[Field(cr3) == PMV]

mov-to-CR-PTA mov-to-CR[Field(cr3) == PTA]

mov-to-CR-TPR mov-to-CR[Field(cr3) == TPR]

mov-to-DAHR mov_dahr[Format in {M58}]

mov-to-IND mov_indirect[Format in {M42}]

mov-to-IND-CPUID mov-to-IND[Field(ireg) == cpuid]

mov-to-IND-DBR mov-to-IND[Field(ireg) == dbr]

mov-to-IND-IBR mov-to-IND[Field(ireg) == ibr]

mov-to-IND-PKR mov-to-IND[Field(ireg) == pkr]

mov-to-IND-PMC mov-to-IND[Field(ireg) == pmc]

mov-to-IND-PMD mov-to-IND[Field(ireg) == pmd]

mov-to-IND-priv mov-to-IND

mov-to-IND-RR mov-to-IND[Field(ireg) == rr]

mov-to-interruption-CR mov-to-CR-ITIR, mov-to-CR-IFS, mov-to-CR-IIB, mov-to-CR-IIM, mov-to-CR-IIP, mov-
to-CR-IPSR, mov-to-CR-ISR, mov-to-CR-IFA, mov-to-CR-IHA, mov-to-CR-IIPA

mov-to-PR mov-to-PR-allreg, mov-to-PR-rotreg

mov-to-PR-allreg mov_pr[Format in {I23}]

mov-to-PR-rotreg mov_pr[Format in {I24}]

mov-to-PSR-l mov_psr[Format in {M35}]

mov-to-PSR-um mov_um[Format in {M35}]

mux mux1, mux2

non-access fc, lfetch, probe-all, tpa, tak

none -

pack pack2, pack4

padd padd1, padd2, padd4

pavg pavg1, pavg2

pavgsub pavgsub1, pavgsub2

pcmp pcmp1, pcmp2, pcmp4

pmax pmax1, pmax2

pmin pmin1, pmin2

pmpy pmpy2

pmpyshr pmpyshr2

pr-and-writers pr-gen-writers-int[Field(ctype) in {and andcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-gen-writers-fp fclass, fcmp

pr-gen-writers-int cmp, cmp4, tbit, tf, tnat

pr-norm-writers-fp pr-gen-writers-fp[Field(ctype)==]

pr-norm-writers-int pr-gen-writers-int[Field(ctype)==]

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

286 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

pr-or-writers pr-gen-writers-int[Field(ctype) in {or orcm}],
pr-gen-writers-int[Field(ctype) in {or.andcm and.orcm}]

pr-readers-br br.call, br.cond, brl.call, brl.cond, br.ret, br.wexit, br.wtop, break.b, hint.b, nop.b,
ReservedBQP

pr-readers-nobr-nomovpr add, addl, addp4, adds, and, andcm, break.f, break.i, break.m, break.x, chk.s, chk-a, cmp,
cmp4, cmpxchg, clz, czx, dep, extr, fp-arith, fp-non-arith, fc, fchkf, fclrf, fcmp, fetchadd,
fpcmp, fsetc, fwb, getf, hint.f, hint.i, hint.m, hint.x, invala-all, itc.i, itc.d, itr.i, itr.d, ld, ldf, ldfp,
lfetch-all, mf, mix, mov-from-AR-M, mov-from-AR-IM, mov-from-AR-I, mov-to-AR-M,
mov-to-AR-I, mov-to-AR-IM, mov-to-BR, mov-from-BR, mov-to-CR, mov-from-CR,
mov-to-IND, mov-from-IND, mov-ip, mov-to-PSR-l, mov-to-PSR-um, mov-from-PSR,
mov-from-PSR-um, movl, mux, nop.f, nop.i, nop.m, nop.x, or, pack, padd, pavg,
pavgsub, pcmp, pmax, pmin, pmpy, pmpyshr, popcnt, probe-all, psad, pshl, pshladd,
pshr, pshradd, psub, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.d, ptr.i, ReservedQP, rsm, setf, shl,
shladd, shladdp4, shr, shrp, srlz.i, srlz.d, ssm, st, stf, sub, sum, sxt, sync, tak, tbit, tf, thash,
tnat, tpa, ttag, unpack, xchg, xma, xmpy, xor, zxt

pr-unc-writers-fp pr-gen-writers-fp[Field(ctype)==unc]11, fprcpa11, fprsqrta11, frcpa11, frsqrta11

pr-unc-writers-int pr-gen-writers-int[Field(ctype)==unc]11

pr-writers pr-writers-int, pr-writers-fp

pr-writers-fp pr-norm-writers-fp, pr-unc-writers-fp

pr-writers-int pr-norm-writers-int, pr-unc-writers-int, pr-and-writers, pr-or-writers

predicatable-instructions mov-from-PR, mov-to-PR, pr-readers-br, pr-readers-nobr-nomovpr

priv-ops mov-to-IND-priv, bsw, itc.i, itc.d, itr.i, itr.d, mov-to-CR, mov-from-CR, mov-to-PSR-l,
mov-from-PSR, mov-from-IND-priv, ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, rfi, rsm, ssm, tak,
tpa, vmsw

probe-all probe-fault, probe-regular

probe-fault probe[Format in {M40}]

probe-regular probe[Format in {M38 M39}]

psad psad1

pshl pshl2, pshl4

pshladd pshladd2

pshr pshr2, pshr4

pshradd pshradd2

psub psub1, psub2, psub4

ReservedBQP -15

ReservedQP -16

rse-readers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-from-AR-BSP, mov-from-AR-
BSPSTORE, mov-to-AR-BSPSTORE, mov-from-AR-RNAT, mov-to-AR-RNAT, rfi

rse-writers alloc, br.call, br.ia, br.ret, brl.call, cover, flushrs, loadrs, mov-to-AR-BSPSTORE, rfi

st st1, st2, st4, st8, st8.spill, st16

st-postinc stf[Format in {M10}], st[Format in {M5}]

stf stfs, stfd, stfe, stf8, stf.spill

sxt sxt1, sxt2, sxt4

sys-mask-writers-partial rsm, ssm

unpack unpack1, unpack2, unpack4

unpredicatable-instructions alloc, br.cloop, br.ctop, br.cexit, br.ia, brp, bsw, clrrrb, cover, epc, flushrs, loadrs, rfi, vmsw

user-mask-writers-partial rum, sum

xchg xchg1, xchg2, xchg4, xchg8

zxt zxt1, zxt2, zxt4

Table 5-5. Instruction Classes (Continued)

Class Events/Instructions

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 287

§

288 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 289

V4-A CPUID CPU Identification

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register
before the instruction is executed. Table 2-4 shows the information returned,
depending on the initial value loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction.
If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic
information and extended function information. Basic information is returned by
entering an input value starting at 0 in the EAX register; extended function information
is returned by entering an input value starting at 80000000H. When the input value in
the EAX register is 0, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning basic information. Always use an EAX
parameter value that is equal to or greater than zero and less than or equal to this
highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction
recognizes in the EAX register for returning extended function information. Always use
an EAX parameter value that is equal to or greater than zero and less than or equal to
this highest EAX return value for extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction
execution. Serializing instruction execution guarantees that any modifications to flags,
registers, and memory for previous instructions are completed before the next
instruction is fetched and executed.

Opcode Instruction Description

0F A2 CPUID Returns processor identification and feature information in the
EAX, EBX, ECX, and EDX registers, according to the input value
entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

0 EAX
EBX
ECX
EDX

Maximum CPUID Input Value
756E6547H “Genu” (G in BL)
6C65746EH “ntel” (n in CL)
49656E69H “ineI” (i in DL)

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0:Brand Indexa

Bits 15-8:CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16:Number of logical processors per physical processor
Bits 31-24:Local APIC IDb

Reserved
Feature Information (see Table 2-5)

290 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

When the input value is 1, the processor returns version information in the EAX register
(see Figure 2-4). The version information consists of an Intel architecture family
identifier, a model identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID
instruction will generate two additional fields in the EAX register: the extended family
field and the extended model field. Here, a value of FH in either the model field or the
family field indicates that the extended model or family field, respectively, is valid.
Family and model numbers beyond FH range from 0FH to FFH, with the least significant
hexadecimal digit always FH.

See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number
241618) for more information on identifying Intel architecture processors.

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

Extended Function CPUID Information

8000000H EAX
EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information
Reserved
Reserved
Reserved

8000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently reserved.)
Reserved
Reserved
Reserved

8000002H EAX
EBX
ECX
EDX

Processor Brand String
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

8000003H EAX
EBX
ECX
EDX

Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued
Processor Brand String Continued

Notes:
a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is

returned.
b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor

Figure 2-4. Version Information in Registers EAX

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 291

CPUID—CPU Identification (Continued)

When the input value in EAX is 1, three unrelated pieces of information are returned to
the EBX register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string
table that contains brand strings for IA-32 processors. Please refer to AP-485,
Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for information on brand indices.

Note: The Brand index field is not supported for processors based on Itanium
architecture, zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates
the size of the cache line flushed with CLFLUSH instruction in 8-byte increments.
This field is valid only when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium archi-
tecture, reserved value is returned. Software should check the feature
flags to make sure they are not running on processors based on the Ita-
nium architecture before interpreting the return value in this field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to
loading the processor signature in the EAX register) loads the EDX register with the
feature flags. The feature flags (when a Flag = 1) indicate what features the processor
supports. Table 2-5 lists the currently defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software
should identify Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode
enhancements, including CR4.VME for controlling the feature, CR4.PVI
for protected mode virtual interrupts, software interrupt indirection,
expansion of the TSS with the software indirection bitmap, and
EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE
for controlling the feature, and optional trapping of accesses to DR4 and
DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in PDE
(Page Directory Entries), optional reserved bit trapping in CR3, PDEs,
and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The
RDMSR and WRMSR instructions are supported. Some of the MSRs are
implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits
are supported: extended page table entry formats, an extra level in the
page translation tables is defined, 2 Mbyte pages are supported instead
of 4 Mbyte pages if PAE bit is 1. The actual number of address bits
beyond 32 is not defined, and is implementation specific.

292 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

7 MCE Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature does
not define the model-specific implementations of machine-check error
logging, reporting, and processor shutdowns. Machine Check exception
handlers may have to depend on processor version to do model-specific
processing of the exception, or test for the presence of the Machine
Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped commands
in the physical address range FFFE0000H to FFFE0FFFH (by default –
some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT
and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap
MSR contains feature bits that describe what memory types are
supported, how many variable MTRRs are supported, and whether fixed
MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page
table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The CR4.PGE
bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error
reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction
CMOV is supported. In addition, if x87 FPU is present as indicated by the
CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are
supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are supported.
This feature indicates that the upper four bits of the physical address of
the 4-MByte page is encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 NX Execute Disable Bit.

21 DS Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor temperature to
be monitored and processor performance to be modulated in predefined
duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating point
context. Presence of this bit also indicates that CR4.OSFXSR is available
for an operating system to indicate that it supports the FXSAVE and
FXRSTOR instructions

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 293

When the input value is 2, the processor returns information about the processor’s
internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of
these registers is as follows:

• The least-significant byte in register EAX (register AL) indicates the number of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte
descriptors.

Please see the processor-specific supplement for further information on how to decode
the return values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements Hyper-
Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Processor based on the Intel
Itanium architecture

The processor is based on the Intel Itanium architecture and is capable
of executing the Intel Itanium instruction set. IA-32 application level
software MUST also check with the running operating system to see if
the system can also support Itanium architecture-based code before
switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the FERR#/
PBE# pin when the processor is in the stop-clock state (STPCLK# is
asserted) to signal the processor that an interrupt is pending and that
the processor should return to normal operation to handle the interrupt.
Bit 10 (PBE enable) in the IA32_MISC_ENABLE MSR enables this
capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description

294 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX ← Highest input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor Type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Always zero for processors based on Itanium

architecture *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Number of logical processors per physical processor;
EBX[31:24] ← Initial APIC ID; (* Reserved for processors based on Itanium

architecture *)
ECX ← Reserved;
EDX ← Feature flags;

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
EBX ← Cache and TLB information;
ECX ← Cache and TLB information;
EDX ← Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Extended Processor Signature and Feature Bits; (* Currently
Reserved *)

EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000002H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000003H:

EAX ← Processor Name;

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 295

EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000004H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← Reserved, Undefined;
EBX ← Reserved, Undefined;
ECX ← Reserved, Undefined;
EDX ← Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in
any Intel architecture processor earlier than the Intel486 processor. The ID flag in the
EFLAGS register can be used to determine if this instruction is supported. If a
procedure is able to set or clear this flag, the CPUID is supported by the processor
running the procedure.

§

296 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

	1 Preface
	1.1 Nomenclature

	2 Summary Table of Changes
	2.1 Specification Changes
	2.2 Specification Clarifications
	2.3 Documentation Changes

	3 Table of Contents for Replacement Sections
	V1-A Section 3.1.8.11
	V1-B Sections 4.4.6.1, 4.4.6.2, 4.4.6.3
	V1-C Section 4.7
	V2-A Section 4.1.1.2
	V2-B Part 2, Sections 5.2.1.1 and 5.2.2.1
	V2-C Table 4-2
	V2-D Section 4.1.1.5
	V2-E Section 5.8.3.9
	V2-F Section 7.2
	V2-G Sections 7.2.1 and 7.2.3
	V2-H Section 11.5.2
	V2-I Section 11.6.1.3
	V2-J Section 11.6.1.5
	V2-K Tables 11-7, 11-12 and 11- 16
	V2-L Section 11.7.4.1.3 and 11.7.4.3.5
	V2-M Section 11.10
	11.10 PAL Procedures

	V2-N PAL_BRAND_INFO
	V2-O PAL_HALT_INFO
	V2-P PAL_MC_DYNAMIC_STATE
	V2-Q PAL_MC_ERROR_INFO/ PAL_MC_ERROR_INJECT
	V2-R PAL_PERF_MON_INFO
	V2-S PAL_VP_INFO
	V2-T PAL_VP_REGISTER
	V2-U PAL_PLATFORM_ADDR and Table 11-50
	V2-V PAL_PSTATE_INFO
	V2-W PAL_GET/SET_HW_POLICY
	V2-X PAL_TEST_PROC
	V2-Y PAL_VM_TR_READ
	V2-Z PAL_VP_INIT_ENV
	V2-AA PAL_VP_RESTORE
	V2-BB PAL_VP_SAVE/ PAL_VP_TERMINATE
	V2-CC PAL_PROC_GET/SET FEATURES
	V2-DD Figure 13-6
	V2-EE PMI Flows
	V3-A br — Branch
	V3-B brl — Branch Long
	V3-C mov — Move Data Access Hint Register
	V3-D hint — Performance Hint
	V3-E itc — Insert Translation Cache
	V3-F itr - Insert Translation Register
	V3-G ld — Load
	V3-H lfetch — Line Prefetch
	V3-I mov — Move Indirect Register
	V3-J st — Store
	V3-K Chapter 3 Pseudo-Code Functions
	V3-L Chapter 4 Instruction Formats
	4.1 Format Summary
	4.2 A-Unit Instruction Encodings
	4.3 I-Unit Instruction Encodings
	4.4 M-Unit Instruction Encodings
	4.5 B-Unit Instruction Encodings
	4.6 F-Unit Instruction Encodings
	4.7 X-Unit Instruction Encodings
	4.8 Immediate Formation

	V3-M Chapter 5 Resource and Dependency Semantics
	V4-A CPUID CPU Identification

