intal.

ltanium™ Software Conventions
and Runtime Architecture Guide

May 2001

Document Number: 245358-003

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Itanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
*Other brands and names may be claimed as the property of others.
Copyright © 2001, Intel Corporation.

In

tel

Contents

T oo 18 L1 o] o P RO PPPTTPP 1-1
1.1 Objectives of the Runtime ArchiteCture ... 1-1
1.2 ADOUL the CONVENTIONSoiiiiiiiiiiiitie ettt e e e e e e 11
1.3 Overview of the Itanium™ Software Conventions and Runtime
AFCHItECTUIE GUIE.t e e e e e e 1-2
1.4 = 10411 aTo] (o])2 TP PURRPPPR 1-2
ProCESSOr AFCNITECIUIE ...ceiiiii ittt e e e e e bbb e e eaaa e as 2-1
2.1 Application State and Programming Model...........ccccviveiiiieii e 2-1
2.2 Floating-point Programming Modelc.ceuviieiiiiiiiiieee e 2-2
2.3 System State and Programming Model...........cccuvvevieeieeeei i 2-2
2.4 Addressing and ProteCtONccuuuiiiiiiieie e e rrre e ee e e e s e s eanes 2-3
2.5 INEEITUPLIONS .oeeiee e e e e e e e e s r e e e e e e e e s s e s nnr e e eeeeeeeeannnnnns 2-3
Y1 o g Y1 o T [SRR 3-1
3.1 Program SEOMENLTScooiiiiiiiiiiiiiiiiit e e e e e e e e e e e e et e e e e e e aeaeeearrrereaaeneaaas 3-1
3.2 PrOtECHION AFBAS ettt ettt e e e e e e e e e n e e eeaaae e e e s 3-2
3.3 Data AllOCALION ...ttt e e e a e e e e e 3-4
3.3.1 Global Variablesoeiiiiiiiii e 3-4
3.3.2 Local Static Datacccouviiiiiiii e 3-4
3.3.3 Constants and LiteralS...........ccuuvuiiiiiiiiieiieeee e 3-4
3.34 Local Memory Stack Variables............oooooiii e, 3-4
Data REPIESENTATIONeeiiiiiiii ittt ettt e e e s e et e e e e e e e e e e e e snnbaebeeeeaeas 4-1
4.1 FUNAMENTAL TYPES. ...ttt a e e e e bbb e e e e e e e e e as 4-1
4.2 AQOIEGALE TYPES .ot e e e e e e e e e e e e aeaaeaes 4-2
4.3 2 1= [0 L PRSP RSR 4-4
4.4 FOrtran Data TYPEScooeeei ettt e e e e e e e e e e e e e e e e e ae e neebaeananas 4-7
REGISTEN USBOE. ...ttt ettt e e e e e e e e e sttt e et e e e e e e e e e e s nnbeebeeeeaeas 5-1
5.1 V11 T0] o 11 T PR 5-1
5.2 GENETAl REJISIEIS .uviiiiiiiie e i et e e e e e e s e s s e e eeeeeaeesananns 5-1
5.3 Floating-point REQISTEISviiiiii e e e e e e e e 5-2
5.4 Predicate REQISIEIS e e e e s r e e e e e e e 5-3
5.5 BranCh REQISEISueiiiiiiiiiie et 5-3
5.6 APPHCALION REGISTEIS. ..cii ittt e e 5-4
5.7 LS g 1 - T PR 5-5
REGISIEN SEACKee ittt ettt et e e e s bt e e s anaaeeeeas 6-1
6.1 INput and LOCAl REQISIEIS.cciiiiiii ittt 6-1
6.2 OULPUL REGISTEIS ...eeiiiiiieeiee ettt e e e e e e e e e bbb e e e e e e e e e e e e nneanes 6-1
6.3 ROtAtING REGISIEIS ... et ee e e 6-2
6.4 Frame MArKEIS ...ttt e e e e e e e e e e e e 6-2
6.5 Backing Store for Register Stackeeeeiiiiiiiiiiiiiiii e 6-2
IMEIMOIY STACK ...ttt ettt e e e e e e s e bbbt e e e e e e e e e e e e anneebbeeeeeas 7-1
7.1 ProCeAUIE FramEsS. . ..ot eee e e 7-1

Itanium™ Software Conventions and Runtime Architecture Guide iii

10

11

ProCedure LINKAOEcooi ittt ettt ettt e e e e e e et eeeeeaa e e e e e 8-1
8.1 External Naming CONVENTIONS........uuiiiiieeeeeiiii it e e e e e e e e s s ssnrere e e e e e e e e e e snnnnnes 8-1
8.2 THE GP REGISIEI ...eeiiiiei e r e e e e e e e e e e nraees 8-1
8.3 TYPES OF CallS ceveiiiieee i a e e e 8-1
8.4 (O 1111970 IS T=To [1T oo = PSR 8-2
8.4.1 DIFeCt CallSeeeieie e 8-2
8.4.2 INAIFECT CaAllS....eiiiiiiiiiiie e 8-4
8.5 V= L= (= gl == TS o S 8-5
8.5.1 Allocation of Parameter SIOtS..........ooocveiiiiiiiienie e 8-6
8.5.2 REQIStEr PArametersceuiiiieeeeeiiiiciiiiieereee e e s s s s er e e e e e e e annnes 8-7
8.5.3 Memory Stack Parameters.......ocecevvicecvieiiieeee e 8-10
8.5.4 Variable Argument LiStSoovviiiiiiiiiiii e 8-10
8.5.5 Pointers to Formal Parametersccccvveeiiiiiiiiiiiiiiiieeceee e 8-10
8.5.6 Languages Other than C............ooiiiiiiiiiieeeee e 8-10
8.5.7 Rounding Floating-point Valuesccuuviiieiiiiiiiiiiiieecceeee e 8-11
8.5.8 EXAMPIES. ... 8-11
8.6 RELUIMN VAIUBS ...ttt e e e e e e eanaees 8-13
8.7 Requirements for Unwinding the Stack............cccciiiii 8-14
[07aTo [1aTo [@] 01V =T o] 1Te] o S J PP RPT T PP 9-1
9.1 SaAMPIE COUE SEUUENCES ...covvvieeeie ittt e e e e e e s e e e e e e e e s e s s areeaeeaeeean 9-1
9.1.1 Addressing “own” Data in the Short Data Areacccccccevveveeeeiininns 9-1
9.1.2 Addressing External Data or Data in a Long Data Area.................... 9-1
9.1.3 Addressing Literals in the Text Segment...........cooecevviiivieeeee s 9-2
9.1.4 Materializing FUNCtion POINLEISccvvviiiiiiee e 9-2
9.15 Direct Procedure CallScoviiiiiiiieiiiiiiice e 9-2
9.1.6 Indirect Procedure CallS..........oocvviiiiiiiiiieiiiiee e 9-2
9.1.7 [0] o T 1= o L= 9-3
9.2 S 0= Tod U] =1 o] o R 9-3
9.3 Multi-threaded COUE.........veiiiiiiiiiiie e 9-4
9.4 Use of Temporary Registers around the Call to setjmpccccovvvveeeeeeiiiiinnnns 9-4
9.5 Up-level REfEIrENCING.......uuiiiiiiiiee et 9-4
9.6 (00 70 017 o1 i o] =SSR 9-5
CONEXE MANAGEIMENT......eeiiiiiiiie ittt e e e e e s e e e e e s e e s s s 10-1
10.1 ProceSS/TNread CONIEXLc.uiiiiiiiiiiiiiiiiiiie et e e e e 10-1
10.2 User-level Thread Switch, COrOULINES.........eiieiiiiiiiiiiiiiei e 10-2
10.3 SEtMP/IONGIMP c.ciiiiiiiiie ettt e e e e e e e a s 10-2
Stack Unwinding and Exception Handlingcocuuiiiiiiiiiiiiiee e 11-1
11.1 Unwinding the STACKueeiiiiii e 11-2
1111 INItIAl CONEEXL. ...t 11-2
11.1.2 Step t0 Previous Frame. 11-2
11.2 Exception Handling Frameworkc..uuuiiiiiiiiiiii e 11-3
11.3 Coding Conventions for Reliable UnwWinding..........coooooiiiiiiiiiiiiiiniiiiiieeeeeenn 11-5
11.31 Conventions for Prologue Regions...........c.uueeeiiiieeiiiiiiiiiiiiiieeeeeeen 11-5
11.3.2 Conventions for Body RegIONS.........coouiiiiiiiiiiiiiiiieeeeeiieeeee e 11-6
11.3.3 Conventions for the Spill Area in the Memory Stack Frame............ 11-7
11.4 DaAta SIIUCKIUIES ...ttt e e e e e e e e e et e e e e e e et e eeaseeeeebnbabe s 11-8
11.4.1 UNWING TabIE ..o 11-8
11.4.2 UNWING DESCHPLOI AT Aveeieeiieeieeiiiiiiiie et e e e e e e 11-9
11.4.3 Language-specific Data Ar€a..........ooccuuuviiiiiiiiaeeeeies e 11-19

Itanium™ Software Conventions and Runtime Architecture Guide

13

Figures

DYNAMIC LINKING ..ttt ettt e et e e e e e e e e e e anbbseeeeeaeas 12-1
12.1 Position-independent CodEuuuiiiieiieiiiiiiiieeie e 12-1
12.2 Procedure Calls and Long Branch Stubsccccccveiiiiiiciiiieiecee e, 12-1
12.3 Access to the Data SEQMENT........uuiiiiiiie e e e e s ee e e e e e e ennnees 12-1

12.3.1 Access to Constants and Literals in the Text Segment................... 12-2

12.3.2 Materializing FUNCLiON POINtEISccoociiiiieeeeee e 12-2
D 11 0T o o] 4 A (1] o S 12-2
12.5 The DYNamMIC LOAUETcccce ittt e a e e e e e neee e 12-2
SYSIEM INEEITACES. . .ii i r e e e e e e e e st rereeeeaeeaeannnnne 13-1
R 0t R o (0T [= 0 Y= g (U o 13-1

13.1.1 Initial MemOry Stackccccuuviiiiiiiee e 13-1

13.1.2 Initial Register ValUES...........uueviiiiiieii et 13-1
13.2 SYSEM CallS ..o e e e e e e 13-1
13.3 Traps @nd SIGNAISeeeeiieie e a e e 13-2
Standard HEAder FIlEScoiiiiiiiiiiiie et A-1
Al Implementation LIMILSeeiiiiiiaiiie e A-1
A.2 Floating-point DefinitioNS...........ooaiiieei e A-1
A3 Variable Argument LiSt MACIOSuuuieiiiiiiiiiiiiiiiieiiee e A-2
A4 SEHMPIONGIMP <.t e e e e e e e e e e e e e s e nnbbaeeee s A-3
Unwind Descriptor ReCOrd FOrMAL.........vuvieeiiiiii e e e e B-1
B.1 OVEBIVIBW ...ttt e e e e oo ettt e e e e e e e e et bbb beeeeeaaaaeeseaannbbneaeees B-1
B.2 Region Header RECOIS.......coiii it B-2
B.3 Descriptor Records for Prologue RegiONS.........ccooviiiiiiiiiiiiieieee e B-3
B.4 Descriptor Records for Body REQIONScceiiiiiiiiiiiiiiiiiiiiee et B-7
B.5 Descriptor Records for Body or Prologue Regionscccceeiiiiiiiiiiiiieeneneennn. B-8
4-1 Structure Smaller Than @ WOrd...........oooiiiiiiiiiie e 4-2
4-2 NN o I == o o {1 o PSSR 4-3
4-3 INternal Paddingccccuuviiiiiiiie e e e e e e e e e s s e e e e e e e e 4-3
4-4 Internal and Tail Paddingcoooooiiiiiiiiiiiee e e e 4-3
4-5 UNION AHOCALION ..ottt et 4-4
4-6 2 11 N0 0 T= T T o PR 4-5
4-7 Bit Field AllOCAION........eiiiiiiiiie e 4-5
4-8 Boundary AlIGNMENT.........ueiiiiiiiee i e e e e e s e e e e e e e e e 4-5
4-9 Storage Unit SNAINGcooi i e e e e s 4-6
7O I © T 1o o I [0 Tox 11T PP PP PRSP 4-6
4-11 Unnamed Bit FIEIAScoooiiiiiiieiiii e 4-6
6-1 Operation of the RegiSter Stackcuveeiiiiiiiiiiiiiiiiecc e 6-3
7-1 Procedure FIame ... 7-1
8-1 Direct Procedure CallSeuiiiiiiiiiiiiiiee et 8-2
8-2 Indirect Procedure CallS ...t 8-4
8-3 Parameter Passing in General Registers and MemOrycccooevecvvvveeeeeneeennn, 8-5
8-4 Examples of “LSB” AlINMENT ... e e e e 8-8
8-5 Example of “Byte 0" AIGNMENT ..o e 8-9
11-1 Components of the Exception Handling Mechanism............ccccccccveeiiiviiiinnnee. 11-4
11-2 Unwind Table and Example of Language-specific Data Area...............ccc.uu.... 11-8

Itanium™ Software Conventions and Runtime Architecture Guide v

Tables

Vi

2-1

3-2
3-3
4-1
4-2

5-1
5-2
5-3
5-4

8-1
8-2
10-1
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
13-1

B-2

SOftWAIE INTEITUPLS ...t e e e e e e bbb e re e e e e e e an 2-2
Program SEOMENESu e a s 3-1
PrOTECHION ATBAS. .. .eeiiiiieitiiie ettt e e e e s nneneee s 3-2
Alignment Requirements for Global ObjectS ... 3-4
Scalar Data types Supported by [tanium™ ProCessorscccovvvvimvviieiieeneeeennn. 4-1
Bit Field BASE TYPES ittt ettt e e e et e e e e e e e e e e e e aannnes 4-4
FOrtran Data TYPESeueieuiiiitiiee ettt e e e e e e e ae s 4-7
GENEral REQISTEISttt e e e e e e s e e e e e e e e e e e e aaas 5-1
Floating-point REGISTEISooiiiiiieeie et e e e e 5-2
Predicate REQISIEIScoo i e 5-3
BranCh REQISIEIS.cuiiiiiiieiii ettt e e e e e e e e e e aaeees 5-3
APPlICAtIoON REGISIEIS ...t 5-4
Rules for Allocating Parameter SIOtS ...t 8-6
RUIES fOr REIUIMN VAIUESeoiiiiiiiiie e 8-13
Resources to be Saved on Context SWItChesccccoccvviiiiiinee, 10-1
Region Header RECOIAS.cocuuiiiiiieiieee ettt 11-10
Prologue Descriptor Records for the Stack Frame ... 11-11
Prologue Descriptor Records for the Return Pointer............cccveeviieiiiiiniiinnns 11-11
Prologue Descriptor Records for the Previous Function State....................... 11-12
Prologue Descriptor Records for Predicate Registerscccccceceeeeeiininiiins 11-12
Prologue Descriptor Records for GRs, FRs and BRScccciiiiiiiins 11-13
Prologue Descriptor Records for the User NaT Collection Register 11-14
Prologue Descriptor Records for the Loop Counter Register..............c.oueee 11-14
Prologue Descriptor Records for the Floating-point Status Register 11-14
Prologue Descriptor Records for the Primary Unat Collection........................ 11-14
Prologue Descriptor Records for the Backing Storecceveeeieeeeeiiniiiinnns 11-15
Body Region DescCriptor RECOIScuuiai it 11-15
General UNWIiNd DESCHPLOIScoiiiiiiiiiiiiiiieie et 11-16
Initial Value of the Floating-point Status RegiStercccovviiiiiiiiiiiieeieniis 13-1
RECOII FOIMALSeeiiiiiiiieie ettt B-1
Example ULEB128 ENCOAINGSuuutiiiiiaiiiiiiiiiiiie it B-2

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Introduction 1

1.1

1.2

This document describes common software conventions for the Itanium architecture. It does not
define operating-system interfaces or any conventions specific to any single operating system.

The runtime architecture defines most of the conventions necessary to compile, link, and execute a
program on an operating system that supports these conventions. Its purposeis to ensure that object
modules produced by different compilers can be linked together into asingle application, and to
specify the interfaces between compilers and linker, and between linker and operating system.

The runtime architecture does not specify the Application Programming Interface (API), the set of
services provided by the operating system to the program, nor does it specify certain conventions
that are specific to each operating system. Thus, conformance to the runtime architecture aloneis
not sufficient to produce a program that will execute on all Itanium architecture platforms. It does,
however, allow many of the development tools to be shared among various operating systems.

When combined with the instruction set architecture, an API, and system-specific conventions, this
runtime architecture leads to an Application Binary Interface (ABI). In other words, an ABlI is
composed of an API, system-specific conventions, a hardware description, and aruntime
architecture.

Objectives of the Runtime Architecture

This document defines the software interfaces needed to ensure that software for Itanium
architecture platforms will operate correctly together. The intent is to define as small a set of
interface specifications as possible, while still meeting the following goals:

* Support 64-bit addressing and data types
¢ High performance

¢ Ease of porting

* Ease of interfacing with |A-32

* Ease of implementation and use

* Complete enough to insure software compatibility

About the Conventions

ANSI C serves as the reference programming language. By defining the implementation of C data
types, the software conventions can give precise system interface information without resorting to
assembly language. Giving C language bindings for system services does not preclude bindings for
other programming languages. Moreover, the examples given here are not intended to specify any
particular C language implementation available on the system.

Itanium™ Software Conventions and Runtime Architecture Guide 1-1

Introduction

1.3

1.4

1-2

intel.

Overview of the Itanium™ Software Conventions
and Runtime Architecture Guide

Chapter 1, “Introduction” is thisintroductory material.

Chapter 2, “Processor Architecture” describes the features of the Itanium architecture that are
relevant to this guide.

Chapter 3, “Memory Model” explains the memory layout of the application.

Chapter 4, “Data Representation” specifies the representation of a number of datatypes of
significance to the software conventions.

Chapter 5, “Register Usage” presents the software conventions for using the user-mode register
resources of the Itanium architecture.

Chapter 6, “Register Stack” presents the software conventions for using the register stack
supported by the Itanium architecture.

Chapter 7, “Memory Stack” presents the software conventions for using the traditional memory
stack.

Chapter 8, “Procedure Linkage” presents the procedure calling conventions.

Chapter 9, “Coding Conventions’ presents a number of example code sequencesillustrating the
software conventions.

Chapter 10, “Context Management” identifies the processor state that makes up a process or thread
context, and discusses various forms of user-level context switching.

Chapter 11, “ Stack Unwinding and Exception Handling” explains the framework for processing
exceptions and unwinding the stack.

Chapter 12, “Dynamic Linking” presents the software conventions related to dynamic linking.

Chapter 13, “ System Interfaces’ discusses the software conventions related to the underlying
operating system.

Appendix A, “Standard Header Files’ provides example definitions for implementation limits,
floating-point constants, variable-argument list macros, and setjmp/longjmp.

Appendix B, “Unwind Descriptor Record Format” defines the internal representation of the stack
unwind tables discussed in Chapter 11.

Terminology

The following terms will be used in the rest of this document:

Absolute address In this document, the term absol ute address refers to a virtual address,
not aphysical address. It is an address within the process' address space
that is computed as an absolute number, without the use of a base
register.

Binding The process of resolving a symbolic reference in one module by finding
the definition of the symbol in another module, and substituting the

Itanium™ Software Conventions and Runtime Architecture Guide

Introduction

address of the definition in place of the symbolic reference. The linker
binds relocatable object modules together, and the DLL loader binds
executable load modul es. When searching for adefinition, thelinker and
DLL loader search each module in acertain order, so that a definition of
asymbol in one module has precedence over adefinition of the same
symbol in alater module. This order is called the binding order.

Dynamic-link library (DLL)

Execution time

External alignment

Function pointer

Global data pointer (gp)

Internal alignment

Link time

Linkage table

Load module

Own data

A library that is prepared by the linker for quick loading and binding
when a program is invoked, or while the program is running. A DLL is
designed so that its code is shared by all processes that are bound to it.
(Also called shared library.)

Thetime during which aprogram isactually executing, not including the
time during which it and its DLLs are being loaded.

The property of an array or structure that specifies the minimum
alignment boundary for the array or structure as awhole. The array or
structure must begin at amemory addressthat isamultiple of itsexternal
alignment. In general, a structure’s external alignment must be no less
than the largest of the internal alignment of its elements.

A reference or pointer to afunction. A function pointer takes the form of
apointer to a special descriptor (afunction descriptor) that uniquely
identifies the function. The function descriptor contains the address of
the function’s actual entry point aswell asits global data pointer (gp).

The address of areference location in aload module's data segment,
usually kept in a specified general register during execution. Each load
module hasasingle such reference point, typically near the middle of the
load modul€’s linkage table. Applications use this pointer as a base
register to access linkage table entries, and data that islocal to the load
module.

The property of an element of an array or structure that specifiesthe
minimum alignment boundary for that element relative to the whole
array or structure.The element must begin at an offset that is amultiple
of itsinternal alignment. (compare with external alignment.)

Thetimewhen aprogram or DLL isprocessed by thelinker. Any activity
taking place at link time is static.

A table of addressesthat contains pointersto code or datathat isexternal
to the load module, or that cannot be addressed directly. Each load
module contains a linkage table in its data segment, which alows
external references to be bound dynamically without modifying the
application’s code.

An executable unit produced by the linker, either a main program or a
DLL. A program consists of at least amain program, and may also
reguire one or more DLLsto be loaded to satisfy its dependencies.

Databelonging to aload modul ethat isreferenced directly fromthat load
module and that is not subject to the binding order. If amodule
references a data item symbolically, and another module earlier in the
binding order defines an item with the same symbolic name, the
reference is bound to the data item in the earlier module. If thisisthe
case, the datais not “own.” Typically, own dataislocal in scope.

Itanium™ Software Conventions and Runtime Architecture Guide 1-3

Introduction

1-4

PC-relative addressing

intel.

Code that usesits own address (commonly called the program counter,
or “PC”; thisis called the instruction pointer, or IP, in the |A-64
architecture) as a base register for addressing other code and data.

Position-independent code (PIC)

Preserved register

Program invocation time

Protection area.

Region

Scratch register
Segment

Static

Thisterm has a dual meaning. First, position-independent codeis
designed so that it contains no dependency on its own load address;
usualy, thisis accomplished by using pc-relative addressing so that the
code does not contain any absol ute addresses. Second, it alsoimpliesthat
the code is also designed for dynamic binding to global data; thisis
usually done by using indirect addressing through alinkage table.

A register that is guaranteed to be preserved across a procedure call.

The time when a program or DLL isloaded into memory in preparation
for execution. Activities taking place at program invocation time are
generally performed by the system loader or dynamic loader.

A portion of a segment that shares common access protections.

The |A-64 architecture divides the address space into four or eight
regions. In general, the runtime architecture is independent of which
segments are assigned to which region.

A register that is not preserved across a procedure call.

An area of memory that has specific attributes, and behaves as a fixed
unit at runtime. All items within a segment have afixed address
relationship to one another at execution time, and have a common set of
attributes. Itemsin different segments do not necessarily bear this
relationship, and an application may not depend on one. For example, the
program text segment is defined to contain the main program code,
unwind information, and read-only data. The use of thisterm is not
related to the concept of a segment in the | A-32 architecture, nor isit
directly related to the concept of a segment in an object file.

(1) Any dataor code object that isallocated at afixed locationin memory
and whose lifetimeis that of the entire process, regardless of its scope.

(2) A binding that takes place at link time rather than programinvocation
or execution time.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Processor Architecture 2

2.1

It is assumed that applications conforming to this specification will run in a software environment
provided by some operating system, and that additional conventionswill be specified as part of the
Application Binary Interface (ABI) for that operating system. It is further assumed that the
operating system will restrict the application’s access to the physical resources of the machine, by
limiting the privilege level of the application and by using virtual memory to define the address
space available to the application.

The Intel® 1A-64 Architecture Software Devel oper’s Manual defines the | A-64 application
instruction set architecture. Programs intended to execute directly on an 1A-64 processor use the
instruction set, instruction encodings, and instruction semantics defined in the Intel® 1A-64
Architecture Software Developer’s Manual. Three points deserve explicit mention:

¢ A program may assume all documented instructions exist.
* A program may assume all documented instructions work.

* A program may use only the instructions defined by the architecture.

In other words, from a program’s perspective, the execution environment provides a complete and
working implementation of |A-64.

This does not imply that the underlying implementation provides all instructionsin hardware, only
that the instructions perform the specified operations and produce the specified results. The
software conventions neither place performance constraints on systems nor specify what
instructions must be implemented in hardware. A software emulation of the architecture could
conform to these conventions.

Some processors might support 1A-64 as a subset, providing additional instructions or capabilities.
Programs that use those capabilities explicitly do not conform to these conventions. Executing
those programs on machines without the additional capabilities results in undefined behavior.

These conventions are intended for application use, and so use only features found in user mode.
Applications should assume that they will execute in user mode (privilegelevel 1, 2, or 3), and that
any attempt to use processor resources restricted to privilege level O will cause atrap that may
terminate the process.

Application State and Programming Model

An application may use all features of 1A-64 that are described in the Application State and
Programming Model section of the Intel® |A-64 Architecture Software Developer’s Manual.

Application use of the br eak instruction is subject to the following conventions:

¢ Immediate operands whose three highest-order bits are 000 are reserved for architected
software interrupts. These software interrupts are listed in Table 2-1. Application programs
(typically language runtime support libraries) may check for these conditions and raise these
interrupts, but are not required to do so. Immediate operandsin thisrange, and not listed in the
table, are reserved for future use.

* Immediate operands whose three highest-order bits are 001 are available for application use as
software interrupts. The behavior of these interrupts, however, is ABI specific.

Itanium™ Software Conventions and Runtime Architecture Guide 2-1

Processor Architecture I ntel ®

¢ Immediate operands whose two highest-order bits are 01 are reserved for debugger
breakpoints. Use of debugger breakpoints is ABI specific.

¢ |Immediate operands whose highest-order bit is 1 are reserved for definition by each ABI. It is
expected that some operating systems may use valuesin thisrange for system-level debugging
features and system calls.

Note: Itanium™ processors do not deliver the immediate operand of abr eak. b instruction to the cr.iim
register. The operating system software must therefore decode the br eak. b instruction to obtain
the immediate operand.

Table 2-1. Software Interrupts

Operand Software Interrupt
0 Unknown program error (_typically an indirect branch through an uninitialized pointer, which often
leads to a bundle containing all zeroes)
1 Integer divide by zero
2 Integer overflow
3 Range check/bounds check error
4 Nil pointer dereference
5 Misaligned data
6 Decimal overflow
7 Decimal divide by zero
8 Packed decimal error
9 Invalid ASCII digit (unpacked decimal arithmetic)
10 Invalid decimal digit (packed decimal arithmetic)
11 Paragraph stack overflow (COBOL)
2.2 Floating-point Programming Model

An application may use all features of the processor architecture that are described in the Floating-
Point Programming Model section of the Intel® | A-64 Architecture Software Developer’s Manual.

2.3 System State and Programming Model

The features of the processor architecture that are described in the System State and Programming
Model section of the Intel® |A-64 Architecture Software Developer’s Manual are intended for the
exclusive use of the operating system software, with the following exceptions:

¢ Thelnterval Time Counter application register may be read by applications, except when
running in a secure operating environment that explicitly restricts this access.

* Theexplicit serialization instructions may be used by an application.

¢ An application may read and modify the user mask portion of the PSR, although some changes
may result in unexpected and incorrect interactions with the operating system software.
Changes to the user mask should be done only as allowed by the ABI.

2-2 Itanium™ Software Conventions and Runtime Architecture Guide

I ntel ® Processor Architecture

* An application may use the RSE-related instructions, and may read and modify the resources
associated with the register stack engine that are not restricted to privilege level 0.

Note that the debug and performance monitor control registers are restricted for use by the
operating system software, which may provide access to the capabilities provided by these
hardware features through its APIs. Although the performance monitor counter registers are
readable by user-mode code, effective use of the registersis dependent on ABI-specific services.

2.4 Addressing and Protection

The features of the processor architecture that are described in the Addressing and Protection
section of the Intel® |A-64 Architecture Software Developer’s Manual are intended for the
exclusive use of the operating system software, with the following exceptions:

* An application may use the addp4 and shl addp4 instructions to convert a 32-bit virtual
address to a 64-bit virtual address.

* The operating system software may provide access to certain page attributes, including
caching and ordering attributes, through its API. The use of such featuresis ABI specific.

* Applications may use the pr obe instructions, but afailure result does not necessarily indicate
alack of permission. In particular, a probe for write access to a copy-on-write page is not
guaranteed to return a success result. The operating system software is permitted to nullify a
faulting probe instruction, so application software must pre-initialize the target register in order
to distinguish a success result from a nullified probe instruction.

2.5 Interruptions

The features of the processor architecture that are described in the Interruptions section of the
Intel® 1A-64 Architecture Software Devel oper’s Manual are intended for the exclusive use of the
operating system software.

Itanium™ Software Conventions and Runtime Architecture Guide 2-3

Processor Architecture

2-4

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Memory Model 3

3.1

These conventions define avirtual memory system with a 64-bit virtual address space per process.
Each operating system may divide this address space into different portions, and assign specific
uses to each portion.

This chapter describes the types of memory segments and protection areas that an application
process uses, and documents the assumptions that an application may make about those segments.
From a different perspective, it documents the minimum requirements that must be satisfied by an
operating system with respect to its allocation of these program segments in the virtual address
space.

The term segment is used here to identify an area of memory that has a specific use within an
application and has no fixed address relationship to any other segment. Thus, relative distances
between any two items belonging to the same segment are constant once the program has been
linked, but the distance between two itemsin different segmentsis not fixed. It does not imply the
use of hardware segmentation, or any specific allocation of segments to hardware regions. In
particular, this definition of segment has no relation to the traditional 1 A-32 segment, nor does it
necessarily correspond exactly to the definition of a segment in an object file.

Segments may cross region boundaries. Region 1Ds should be transparent to the application. Note
that more than one region register may point to the same region.

Segments are composed of one or more protection areas. The term protection area is used to
indicate an area of memory that has common protection attributes.

Program Segments

Table 3-1 lists the types of program segments that are defined by the runtime architecture, and
defines the minimum set of attributes that an operating system must provide for these segments.

Table 3-1. Program Segments

Segment Type | Sharable Quantity Address by Contents

Text Yes 1 per load module | P or linkage table Igﬁts’tgggigﬂénﬁggfgion’

Short Data No 1 per load module ap Static data, bss, linkage tables
Long Data No any linkage table Long data, bss

Heap No any pointer Heap data

Stack No 1 per thread sp Memory stacks

Backing Store | No 1 per thread bsp Backing store for register stacks
Thread Data No 1 per thread tp Thread-local storage

Shared Data Yes any pointer Shared memory

Itanium™ Software Conventions and Runtime Architecture Guide 3-1

Memory Model

3.2

intel.

The sharable attribute indicates whether or not the memory contained within such a segment may
be shared between two or more processes. For text segments, thisimplies that an operating system
will probably not grant write access, in order to make the text segment pure. For this reason, the
runtime architecture does not place anything into the text segment that may need to be written at
either program invocation time or execution time.

The runtime architecture does not specify how an operating system will make a particular segment
sharable. It may place sharable segmentsin separate regions, or it may place the entire program in
aprocess-private address space and use address aliasing to share memory. The runtime architecture
is designed to be neutral with respect to this operating system design parameter. Segments may
cross hardware region boundaries, but only if transparent to the application. Code is not aware of
region IDs.

A program consists of several load modules: the main program, and one for each DLL that it uses.
Each load module consists of at least a text segment and a short data segment. The addresses of
these segments are not fixed at link time, so all accesses to these segments must be either i p-
relative (for text), gp-relative (for short data and the linkage table), or indirect viathe linkage table.
The gp register and its conventions are described in Chapter 8, “ Procedure Linkage”.

DLL datamay be allocated at execution time. Thisimpliesthat DLL data segment sizes need not
be fixed at linkage time.

Each operating system is expected to provide some form of heap management, although the
runtime architecture does not have any explicit dependencies on such. The API for obtaining heap
memory, however, is operating system dependent, and the runtime architecture places no
restrictions on the locations or contiguity of separately-allocated items from the heap.

Each thread is provided with two stacks: one for the classical memory stack, and one for the
register stack backing store. Each thread also has a separate data segment for thread-local storage.
These segments must all be allocated from the process' virtual address space, so that one thread
may use a pointer that refers to another thread’s local storage. The sp register and its conventions
are described in Chapter 7, “Memory Stack,”, and the bsp register is described in Chapter 6,
“Register Stack”. Thet p register isreserved to provide a handle for accessing thread-local storage,
but this usage is ABI dependent.

Like the heap, shared data segments are obtained through an operating system-specific API. The
runtime architecture places no restrictions on the locations of these segments.

Protection Areas

Table 3-2 lists the minimum access protection for the protection areas defined in the runtime
architecture:

Table 3-2. Protection Areas

3-2

Segment Protection Area Min. Access
Text X

Text Constants R
Unwind Tables R
Static Data R, W

Short data Short Bss R, W
Linkage Tables R, W

Itanium™ Software Conventions and Runtime Architecture Guide

In

tel.

Memory Model

Table 3-2. Protection Areas (Cont’d)

Segment Protection Area Min. Access
Long Data R, W
Long data
Bss R, W
Heap Heap R, W
Stack Stack R, W
Backing store Backing store R, W
Thread data Thread data R, W
Shared data Shared data R, W

In order to make the most effective use of the addressing modes available in 1A-64, each load
modul€’s datais partitioned into one short and some number of long data segments. The short data
segment, addressed by the gp register in each load module, contains the following areas:

* A linkagetable, containing pointersto imported data symbols and functions, and to datain the
text segments and long data segments.

* A short data area, containing small initialized “own” dataitems.
¢ A short bss area, containing small uninitialized “own” dataitems.

The long data segments contain either or both of the following areas:

* A long data area, containing large initialized data items, and initialized non-“own” dataitems
of any size.

¢ A long bss area, containing large uninitialized data items, and uninitialized non-“own” data
items of any size.

“Own” dataitems are those that are either local to aload module, or are such that all references to
these items from the same load module will alwaysrefer to theseitems. That is, they are not subject
to being overridden by an exported symbol of the same name in another load module. All data
itemsin the main program satisfy this definition, since the main program is always the first load
module in the binding sequence. Since non-“own” variables cannot be referenced directly, thereis
no benefit to placing them in the short data or bss area.

Small “own” dataitems are placed in the short bss or short data, and are guaranteed to be within
2 megabytes, in either direction, of the gp address, so compilers may use a short direct addressing
sequence (using the add with 22-bit immediate instruction) to access any dataitem allocated in
these areas. The compiler should place all “own” dataitemsthat are 8 bytesor lessin size,
regardless of structure, in the short data or short bss aress.

All other dataitems, including itemsthat are larger than 8 bytesin size, or that require indirect
addressing because of 1oad-time binding, must be placed in the long data or long bss area. The
compiler must address these items indirectly, using a linkage table entry. Linkage table entries are
typically alocated by the linker in response to a relocation request generated by the compiler; an
entry in the linkage table is either an 8-byte pointer to a dataitem, or a 16-byte function descriptor.
A function descriptor placed in the linkage tableis alocal copy of an “official” function descriptor
that is generally allocated by the linker or dynamic loader.

Thisdesign alows for amaximum size of 4 megabytesfor the short data segment, since everything
must be addressable viathe gp register using the 22-bit add immediate instruction. Given that
linkage table entries are 8 byte pointers for data references, and 16 bytes long for procedure
references, this allows for up to 256,000 individually-named variables and functions. If aload
module requires more than this, the compilerswill need to support a“huge” memory model, which
is not described here.

Protection areas are required to be aligned only as strictly astheir contents.

Itanium™ Software Conventions and Runtime Architecture Guide 3-3

Memory Model

3.3

3.3.1

Table 3-3.

3.3.2

3.3.3

3.3.4

3-4

Data Allocation

Global Variables

Common blocks, dynamically allocated regions (for example, from mal | oc), and external data
items greater than 8 bytes must all be aligned on a 16-byte boundary. Smaller data items must be
aligned on the next larger power-of-two boundary. Table 3-3 shows the alignment requirements for
different size objects.

Alignment Requirements for Global Objects

Size in Bytes Alignment Required

1 none

2 0 mod 2 (even addresses)
3-4 0 mod 4

5-8 0 mod 8

9 and up 0 mod 16

Access to global variables that are not known (at compile time) to be defined in the same load
module must be indirect. Each load module has alinkage table in its data segment, pointed to by
the gp register; code must load a pointer to the global variable from the linkage table, then access
the global variable through the pointer. Access to globals known to be defined in the same load
module or to static locals that are placed in short-data section may be made with agp-relative
offset.

Local Static Data

Access to short local static data can be made with agp-relative offset; accessto long local static
data must be indirect.

Constants and Literals

Constants and literals may be placed in the text segment or in the data segment. If placed in the text
segment, the access must bei p-relative or indirect using a linkage table entry.

Literals placed in the data segment may be placed in the short initialized data areaif they are
8 bytes or lessin size. Larger literals must be placed in the long initialized data area or in the text

segment. Literalsin the long initialized data area require an indirect access using alinkage table
entry.

Local Memory Stack Variables

Accessissp-relative.

Stack frames must always be aligned on a 16-byte boundary. The stack pointer register must
always be aligned on a 16-byte boundary.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Data Representation 4

4.1

Note:

Applications running in a 64-bit environment use either the “P64" or “LP64" data model: integers
are always 32 bits, while pointers are 64 bits. Long integers may be either 32 or 64 bits, depending
on the data model: they are 32 bitsin “P64” and 64 bitsin “LP64".

Within this specification, the term halfword refers to a 16-bit object, the term word refersto a 32-
bit object, the term doubleword refersto a 64-bit object, and the term quadword refersto a 128-bit
object.

The following sections define the size, alignment requirements, and hardware representation of the
standard C and Fortran data types.

The Itanium™ architecture does not require hardware support for misaligned data access. If
provided by a processor implementation, the support may be disabled by the alignment check (ac)
bit in the user mask. Whether supported directly by hardware, by software emulation, or by a
combination, misaligned data accesses will cause a substantial performance penalty, and these
conventions do not require the hardware or the OS to support them. The alignment rulesin this
chapter have been chosen to maximize performance, and to guarantee that programs will execute
correctly on systems with no support for misaligned data accesses.

Fundamental Types

Table 4-1 lists the scalar data types supported by the architecture. Sizes and alignments are shown
in bytes. A null pointer (for al types) has the value zero.

Thetypes __int64, _int128, float80, and __ float128 are used in this document for notational
convenience only; they are not meant to imply that any implementation must support these specific
type names. Each ABI specification is expected to specify these specific type names for whichever
of these types are supported by that ABI.

Table 4-1. Scalar Data types Supported by Itanium™ Processors

Type C Size Align Hardware Representation

char :
signed char 1 1 signed byte
unsigned char 1 1 unsigned byte
short .
signed short 2 2 signed halfword
unsigned short 2 2 unsigned halfword
int
signed int 4 4 signed word

Integral & enum
unsigned int 4 4 unsigned word
__int64)
signed __int64 8 8 signed doubleword
unsigned __int64 8 8 unsigned doubleword
__int128° . L
signed __int128 b 16 16 signed 128-bit integer
unsigned __int128 b 16 16 unsigned 128-bit integer

Itanium™ Software Conventions and Runtime Architecture Guide 4-1

Data Representation

intel.

Table 4-1. Scalar Data types Supported by Itanium™ Processors (Cont’d)

4.2

Type C Size Align Hardware Representation
Pointer Zgz:ggg Z*) 0 8 8 unsigned doubleword
Floating-point float 4 4 IEEE single precision

double 8 8 IEEE double precision
__float80 © 16 16 IEEE double-extended precision
__float128 9 16 16 quad precision

S

Shift right of signed data types sign-extends.

__int128 is not directly supported by the hardware, and these conventions do not require an operating system environment
to support this type through emulation. Size and alignment conventions are specified here, however, for those
implementations that do choose to support this type. Note also that the (non-standard) long long data type is not specified
by these conventions, and its definition is ABI specific. It may be implemented as a 64-bit integer, a 128-bit integer, or not
at all.

__float80 is the |1A-64 extended 80-bit quantity, but the software standard is to treat it as a 16-byte quantity. It is referenced
using Idfe and stfe instructions. This type has the same precision and range as the 80 bit extended data type of the 1A-32
architecture, but with different size and alignment.

__float128 is not directly supported by the hardware, and these conventions do not require an operating system
environment to support this type through emulation. Size, representation, and alignment conventions are specified here,
however, for those implementations that do choose to support this type. A quad-precision floating-point number is a 128-bit
quantity with a sign bit, a 15-bit biased exponent, and a 112-bit mantissa with an implicit integer bit.

Aggregate Types

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned
component. The size of any object, including aggregates and unions, is always a multiple of the
object’s alignment. An array uses the same alignment as its elements. Structure and union objects
can require padding to meet size and alignment constraints. The contents of any padding is
undefined.

¢ An entire structure or union object is aligned on the same boundary as its most strictly aligned

member.

¢ Each member is assigned to the lowest avail able offset with the appropriate alignment. This

may require internal padding, depending on the previous member.

¢ A structure's sizeisincreased, if necessary, to make it amultiple of the alignment. This may

require tail padding, depending on the last member.

Inthefollowing figures, members' byte offsets appear in the upper right cornersfor little-endian, in
the upper left for big-endian.

Figure 4-1. Structure Smaller Than a Word

4-2

struct { Byte aligned, sizeof is 1
0

char c; 0
}: c c

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Figure 4-2. No Padding

Data Representation

struct {
char c;
char d;
short s;
intn;

h

Little endian, word aligned, sizeof is8

S d C

2 1 0

4|

Big endian, word aligned, sizeof is 8

0 1
c d |? s

4

Figure 4-3. Internal Padding

struct {
char c;
short s;

H

s4
0

Little endian, halfword aligned, sizeof i
s ? pad T ¢

Big endian, halfword aligned, sizeof is
0 1

4

c pad 2 s

Figure 4-4. Internal and Tail Padding

struct {

char c;
double d;
short s;

H

Little endian, doubleword aligned, sizeof is 24

il
pad c

q

pad

7

d (low)

8

d (high)

12

pad S

18 16

pad

20

Big endian, doubleword aligned, sizeof is 24

° ¢ ! pad

* pad

8 d (high)

2 d (low)

16 18

20 pad

Itanium™ Software Conventions and Runtime Architecture Guide

4-3

Data Representation I ntel ®

Figure 4-5. Union Allocation

Little endian, word aligned, sizeof is4
7]

0
pad c
ad ? S °
union { s 5
char c; j
short s;
intj;
}; Big endian, word aligned, sizeof is4
° ¢ ! pad
0 s 2 pad

0

4.3 Bit Fields

Cstruct anduni on definitions may have bit-fields that define integral objects with a specified
number of bits. Table 4-2 defines the allowable widths and corresponding range of values for bit
fields of each base type.

Table 4-2. Bit Field Base Types

Base Type Width w Range
unsigned char 1to8 0to 2%-1
signed char 1to8 oWl oWl g
unsigned short 1to 16 0to 2%-1
signed short 1to 16 oWl oWl g
unsigned int 1to 32 0to 2%-1
signed int 1t032 oWl oWl g
unsigned long 1to 64 0to 2%-1
signed long 1to 64 —oW-lyo oWl g

Bit-fields obey the same size and alignment rules as other structure and union members, with the
following additions:

Byte ¢ Bit-fieldsare allocated from right to left (Ieast to most significant) for little endian. They are
Order allocated left to right (most to least significant) for big-endian.

¢ A hit-field must entirely reside in a storage unit appropriate for its declared type. For example,
abit field of typeshort must never cross a halfword boundary.

¢ Bit-fields may share a storage unit with other st r uct / uni on members, including members
that are not bit-fields. Of course, each st r uct member occupies a different part of the
storage unit.

¢ Unnamed bit-fields do not affect the alignment of a structure or union.

4-4 Itanium™ Software Conventions and Runtime Architecture Guide

I ntel ® Data Representation

* Zero-length bit-fields force the alignment of following member of a structure to the next
alignment boundary corresponding to the type of the bit field. An un-named zero-length bit
field, however, will not force the external alignment of the structure to that boundary.

¢ |f an unnamed hit field is used to establish an internal alignment more restrictive than the
external alignment, it is possible that the stricter alignment will not be maintained when the
structure or union is allocated in memory.

Thefollowing figures show st r uct and uni on member byte offsetsin the upper corners; bit
numbers appear in the lower corners.

Figure 4-6. Bit Numbering

Little endian
3 2] 1 0
F1 F2 F3 F4
31 24123 16| 15 8|7
OxF1F2F3F4 Big endian
0 1 2 3
F1 F2 F3 F4
0 718 15| 16 23124 31

Figure 4-7. Bit Field Allocation

Little Endian,word aligned, sizeof is4

0]

strpct{ . 31 pad whz ™ ulo k 514 J 0
int j:5;
@nt K:6;
: int m:7; Big Endian, word aligned, sizeof is4
, 0
j k m pad
0 4|5 0l 1718 kil

Figure 4-8. Boundary Alignment

Little Endian, doubleword aligned, sizeof is 16
8]

3 ad i
¢ 23 P 18 12 | 918 S 2
‘ 15 pad QL u oj15 pad 93 t 0
struct 8
d
short s:9; b3 d -
__int64j:9; pad
char c; 3 0
short t:9;)))))
short u:9; Big Endian, doubleword aligned, sizeof is 16
char d; 0 - ad °
}; 0 ° glo | 17|18 P 23 ¢
4 ad I° U pad
0 8C9 P 15 (0 819 15
S B pad
12
Q pad 31

Itanium™ Software Conventions and Runtime Architecture Guide 4-5

Data Representation

Figure 4-9. Storage Unit Sharing

struct {
char c;
short s:8;

b

Little-endian, halfword aligned, sizeof is 2

1]
S
15 8

c

Big-endian, halfword aligned, sizeof is2

0 1
Cc

8

S

15

Figure 4-10. Union Allocation

union {
char c;
short s:8;

H

Little-endian, halfword aligned, sizeof is 2

pad !

Cc

0]

15 pad 8r

S

0]

0

0 1

pad

0 7B

pad

15

Big-endian, halfword aligned, sizeof is 2

Figure 4-11. Unnamed Bit Fields

struct {
char c;
int :0;
char d;
short :9;
char e
char :0;

Little-endian, byte aligned, sizeof is 9

1

:0 c
5 2
5 pad & 9 pad d
8
e
Big-endian, byte aligned, sizeof is9
° ' 0
4 5 6
d pad 0 9 o pad 5
8
e

Note: Unnamed bit fields do not affect the alignment of the structure.

Asthe examplesshow, i nt and __i nt 64 bit-fields (including si gned and unsi gned) usually
pack more densely than smaller base types. One can usechar and short bit-fieldsto force
allocation within those types, but i nt is generally more efficient.

4-6

Itanium™ Software Conventions and Runtime Architecture Guide

4.4 Fortran Data Types

Data Representation

Table 4-3 shows the correspondence between ANSI Fortran’s scalar types and the processor’s data
types. ANSI Fortran requires REAL and | NTEGER to be the same size. Many Fortran compilers
allow | NTEGER* n, LOG CAL* n, and REAL* n to specify specific processor sizes. (“n” isin
bytes). The COMPLEX datatype is treated exactly the same as a C structure composed of two

f 1 oat members.

Table 4-3. Fortran Data Types

Type Fortran Size (bA)I/It%Z) Hardware Representation
Character CHARACTER*n n 1 byte
LOGICAL 4 4 word
Integral -
INTEGER 4 4 signed word
REAL 4 4 IEEE single-precision
Floating-point DOUBLE PRECISION 8 8 IEEE double-precision
COMPLEX 8 4 2 IEEE single-precision

Itanium™ Software Conventions and Runtime Architecture Guide

Data Representation

4-8

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Register Usage)

5.1 Partitioning

Registers are partitioned into the following classes:

Scratch registers may be modified by a procedure call; the caller must save these registers
before acal if needed (“caller save”).

Preserved registers must not be modified by a procedure call; the callee must save and restore
these registersif used (“callee-save’).

Automatic registers are saved and restored automatically by the call/return mechanism.
Constant or Read-only registers contain afixed value that cannot be changed by the program.

Special registers are used in the call/return mechanism. The conventions for theseregisters are
described individually below.

5.2 General Registers

General registersare used for integer arithmetic and other general-purpose computations. Table 5-1
lists the general registers.

Table 5-1. General Registers

Register Class Usage

r0 constant Always 0

rl special Global data pointer (gp)

r2—r3 scratch Use with 22-bit immediate add

rd—r7 preserved

r8 scratch Return value; structure/union return pointer
rg-11 scratch Return values

ri2 special Memory stack pointer (Sp)

ri3 special Reserved as a thread pointer (t p)
ri4—r31 scratch

in0—in95 automatic Stacked input registers (see below)
locO-loc95 automatic Stacked local registers (see below)
outO—out95 scratch Stacked output registers (see below)

rl istheglobal datapointer (gp), which is designated to hold the address of the currently
addressable global data segment. Its useis subject to the following conventions:

a. On entry to a procedure, gp is guaranteed valid for that procedure.

b. At any direct procedure call, gp must be valid (for the caller). This guarantees that an
import stub (see Section 8.4.1) can access the linkage table.

Itanium™ Software Conventions and Runtime Architecture Guide 5-1

Register Usage

5.3

intel.

C. Any procedure call (indirect or direct) may modify gp—unlessthe call is known to be local
to the load module.

d. At procedure return, gp must be valid (for the returning procedure). This allows the
compiler to optimize calls known to belocal (i.e., the exceptionsto Rule‘c’).

The effect of these rulesisthat gp must be treated as a scratch register at a point of call (i.e,, it
must be saved by the caller), and it must be preserved from entry to exit.

r4—7 aregeneral-purpose preserved registers, and can be used for any value that needs to

be preserved across a procedure call. A procedure using one of the preserved general registers
must save and restore the caller’s original contents, including the NaT bits associated with the
registers, without generating a NaT consumption fault. This can be done by either copying the
register to a stacked register or by usingthest 8. spi || andl d8. fill instructionsand then
savingar . unat .

r8 isusedasthestruct/ uni on return pointer register. If the function being called returns
astruct oruni on value larger than 32 bytes, then register GR 8 contains, on entry, the
appropriately-aligned address of the caller-allocated area to contain the value being returned.
(See Section 8.6.)

r8—+11 areused for non-floating-point return values up to 32 bytes. Functions do not have
to preserve their values for the caller.

r12 isthe stack pointer, which holds the limit of the current stack frame, the address of the
stack’s bottom-most valid word. At all times, the stack pointer must point to a0 mod 16
aligned area. The stack pointer is also used to access any memory arguments upon entry to a
function. Except in the case of dynamic stack allocation (e.g., al | oca), thisregister is
preserved across any functions called by the current function. A call to afunction that does not
preserve the stack pointer must notify the compiler, to cause the generation of code that
behaves properly. Failure to notify the compiler leads to undefined behavior. The standard
function calling sequence does not include any method to detect such failures. This allowsthe
compiler to use the stack pointer to reference stack items without having to set up aframe
pointer for this purpose.

r13 isreserved for use as athread pointer. The usage of this register is ABI specific.
Programs conforming to these conventions may not modify this register.

r32—+39 (in0-n7) are used asincoming argument registers. Arguments beyond these
registers appear in memory, as explained in Chapter 8. Refer to the discussion below on
structures and unions.

r32—127 are stacked registers. Code may allocate aregister stack frame of up to 96
registerswith theal | oc instruction, and partition this frameinto three regions:. input registers
(in0,in1,..),loca registers(l ocO, | oc1, ...), and output registers (out 0, out 1, ...). The
input and local regions are automatic, and the output region is scratch. See Chapter 6,
“Register Stack” for more information.

Floating-point Registers

Floating-point registers are used for floating-point computations and certain integer computations,
such as multiply and divide. Table 5-2 lists the floating-point registers.

Table 5-2. Floating-point Registers

5-2

Register Class Usage
constant Always 0.0
constant Always 1.0

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Table 5-2.

5.4

Floating-point Registers (Cont’d)

Register Class Usage

f2—f5 preserved

f6—f7 scratch

f8—f15 scratch Argument/return registers
f16-f31 preserved

f32-f127 scratch Rotating registers or scratch

Register Usage

o f2—f5and 1631 are preserved floating-point registers, and can be used for any value
that needs to be preserved across a procedure call. A procedure using one of the preserved
floating-point registers must save and restore the caller’s original contents without generating
aNaT consumption fault. This can be done by usingthestf. spill andldf.fill
instructions.

e 815 areused asincoming floating-point argument registers. Floating-point arguments
are placed in these registers when possible. Arguments beyond the registers appear in memory,
as explained in Section 8.5. Within the called function, these are local scratch registers and are
not preserved for the caller.

Floating-point return values also appear in these registers. Single, double, and extended values
are all returned using the appropriate format.

o 32127 canbe used asrotating registers. They are available as normal scratch registersif
rotation is not being used.

Predicate Registers

Predicate registers are single-bit-wide registers used for controlling the execution of predicated
instructions. Table 5-3 lists the predicate registers.

Table 5-3. Predicate Registers

Register Class Usage
pO constant always 1
pl-p5 preserved fixed
p6—p15 scratch fixed
pl6—p63 preserved rotating

5.5

Branch Registers

Branch registers are used for making indirect branches. Table 5-4 lists the branch registers.

Table 5-4. Branch Registers

Register Class Usage
b0 scratch Return link
b1l-b5 preserved
b6—b7 scratch
* b0

contains the return address on entry to a procedure; it is a scratch register otherwise.

Itanium™ Software Conventions and Runtime Architecture Guide

Register Usage

5.6

Table 5-5.

intel.

Application Registers

Application registers are special -purpose registers designated for application use. Table 5-5 lists
the application registers.

Application Registers

Register Class Usage

ar.fpsr see below Floating-point status register

ar.rnat automatic RSE NaT collection register

ar.unat preserved User NaT collection register

ar.pfs special Previous function state

ar.bsp read-only Backing store pointer

ar.bspstore special Backing store store pointer

ar.rsc see below RSE control

ar.lc preserved Loop counter

ar.ec automatic Epilog counter (preserved in ar . pf s)
ar.ccv scratch Compare and Exchange comparison value
ar.itc read-only Interval time counter

ar.kO-ar.k7 read-only Kernel registers

ar.csd scratch Reserved for future use

ar.ssd scratch Reserved for future use

o ar.fpsr isthefloating-point status register. This register is divided into several fields:
Trap Disable Bits (bits 5-0). The trap disable bits must be preserved by the callee,
except for procedures whose documented purpose is to change these bits.

Satus Field 0. The control bits must be preserved by the callee; except for procedures
whose documented purpose is to change these bits. The flag bits are the | EEE floating point
standard sticky bits and are part of the static state of the machine.

Satus Field 1. Thisstatusfield is dedicated for use by divide and square root code, and
must always be set to standard values at any procedure call boundary (including entry to

exception handlers). These standard values are: trap disable set, round-to-nearest mode, 80-bit
(extended) precision, widest range for exponent on, and flush-to-zero mode off. The flag bits
are scratch.

Satus Fields 2 and 3. The control bitsin these status fields must agree with the control
bitsin status field 0, and the trap disable bits should always be set a procedure calls and
returns. The flag bits are always available for scratch use.

ar.rnat holdsthe NaT bits for values stored by the register stack engine. These bits are
saved automatically in the register stack backing store.

ar.unat holdsthe NaT bitsfor values stored by the st 8. spi | | instruction. As apreserved
register, it must be saved before a procedure canissue any st 8. spi | | instructions. The saved
copy of ar. unat in aprocedure’s frame hold the NaT bits from the registers spilled by its
caller; these NaT bits are thus associated with valueslocal to the caller’s caller.

ar.pfs containsinformation that records the state of the caller’s register stack frame and
epilog counter. It is overwritten on a procedure call; therefore, it must be saved before issuing
any procedure calls, and restored prior to returning.

Itanium™ Software Conventions and Runtime Architecture Guide

5.

~

Register Usage

ar.bsp contains the address in the backing store corresponding to the base of the current
frame. This register may be modified only as a side effect of writing ar . bspst or e whilethe
Register Stack Engine (RSE) isin enforced lazy mode.

ar.bspstore contains the address of the next RSE store operation. It may be read or written
only whilethe RSE isin enforced lazy mode. Under normal operation, thisregister is managed
by the RSE, and application code should not write to it, except when performing a stack
switching operation.

ar.rsc istheregister stack configuration register. Thisregister is divided into several fields:
M ode. Thisfield controls the RSE behavior, and has scratch behavior. On areturn, thisfield
may be set to a standard value.

Privilege level. Thisfield controls the privilege level at which the RSE operates, and may
not be changed by non-privileged software.

Endian mode. Thisfield controls the byte ordering used by the RSE, and should not be
changed by an application.

ar.csd and ar.ssd arereserved for use asimplicit operand registersin future extensions to
the Itanium architecture. To ensure forward compatibility, software must treat these registers
as part of the process state

User Mask

The User Mask register contains five bits that may be modified by an application program. These
bits are subject to the following conventions:

» be (Big Endian Memory Access Enable) When an application program starts, the system will

set/clear the be bit will according to the programming model for which the program was
compiled. The application must not change the value of this bit. If it does, the behavior is
undefined.

up (User Performance Monitor Enable) The use of this bit by an application program is ABI
dependent.

ac (Alignment Check) The application may set or clear thisbit asdesired. If the ac bit is clear,
an unaligned memory reference may cause the system to deliver an exception to the
application, or the system may emulate the unaligned reference. If the ac bit is set, an
unaligned reference will always cause the system to deliver an exception to the application.
Theinitia value of this bit is ABI dependent.

mfl/mfh (Lower/Upper floating-point registers written) The application should not clear
either of these bits unless the values in the corresponding registers are no longer needed (for
example, it may clear the mfh bit when returning from a procedure, since the upper set of
floating-point registersis all scratch). Doing so otherwise may cause unpredictable behavior.

Itanium™ Software Conventions and Runtime Architecture Guide 5-5

Register Usage

5-6

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Register Stack 6

6.1

6.2

General registers 32 through 127 form aregister stack that is automatically managed across
procedure calls and returns. Each procedure frame on the register stack is divided into two
dynamically-sized regions—one for input parameters and local variables, and one for output
parameters. On a procedure cal, the registers are automatically renamed by the hardware so that
the caller’s output registers form the base of the callee’s new register stack frame. On return, the
registers are restored to the previous state, so that the input and local registers are preserved across
the call.

Theal | oc instruction is used at the beginning of a procedure to allocate the input, local, and
output regions; the sizes of these regions are supplied asimmediate operands. A procedure is not
required to issuean al | oc instruction if it does not need to store any valuesin its register stack
frame. It may till read values from input registers, but it may not write to a stack register without
firstissuing an al | oc instruction.

Figure 6-1 illustrates the operation of the register stack across an example procedure call. In this
example, the caller allocates eight input, twelve local, and four output registers, and the callee
allocates four input, six local, and five output registers.

The actual registers to which the stacking registers are physically mapped are not directly
addressable by the application software.

Input and Local Registers

The hardware makes no distinction between input and local registers. The caller’s output registers
automatically become the callee’s entire register stack frame on a procedure call, with all registers
initially allocated as output registers. Anal | oc instruction may increase or decrease the total size

of the register stack frame, and may adjust the boundary between the input and local region and the
output region.

The software conventions specify that up to eight registers are used for parameter passing. Any
registersin theinput and local region beyond those eight may be allocated for use as preserved

locals. Floating-point parameters may produce “holes’ in the parameter list that is passed in the
general registers; those unused input registers may also be used for preserved locals.

The caller’s output registers do not need to be preserved for the caller. Once an input parameter is
no longer needed, or has been copied elsewhere, that register may be reused for any other purpose
within the procedure.

Output Registers

Up to eight output registers are used for passing parameters. If a procedure call requires fewer than
eight general registersfor its parameters, the calling procedure does not need to allocate more than
are needed. If the called procedure expects more parameters, it will alocate extrainput registers;
these registers will be uninitialized.

Itanium™ Software Conventions and Runtime Architecture Guide 6-1

Register Stack

6.3

6.4

6.5

6-2

intel.

A procedure may also allocate more than eight registersin the output region. While the extra
registers may not be used for passing parameters, they can be used as extra scratch registers. On a
procedure call, they will show up in the called procedure’s output area as excess registers, and may
be modified by that procedure. The called procedure may also allocate few enough total registersin
its stack frame that the top of the called procedure’s frame is lower than the caller’s top of frame,
but those registers will become available again when control returns to the caller.

Rotating Registers

A subset of the registersin the procedure frame may be designated as rotating registers. The
rotating register region always starts with r 32, and may be any multiple of eight registersin
number, up to amaximum of 96 rotating registers. The renaming is under control of the Rotating
Register Base (RRB).

If the rotating registersinclude any or all of the output registers, software must be careful when
using the output registers for passing parameters, since a non-zero RRB will change the virtual
register numbersthat are part of the output region. In general, software should either ensure that the
rotating region does not overlap the output region, or that the RRB is cleared to zero before setting
output parameter registers.

Frame Markers

The current application-visible state of the stack frame is stored in an architecturally inaccessible
register called the current frame marker. On aprocedure call, thisregister is automatically saved by
copying it to an application register, the previous function state (ar . pf s). The current frame
marker is modified to describe a new stack frame whose input and local areaisinitially zero size,
and whose output areais equal in size to the previous output area. On return, the previous frame
state register is used to restore the current frame marker to its earlier value, and the base of the
register stack is adjusted accordingly.

It isthe responsibility of a procedure to save the previous function state register before issuing any
procedure calls of its own, and to restore it before returning.

Backing Store for Register Stack

When the depth of the procedure call stack exceeds the capacity of the physical register file, the
hardware frees physical registers by saving them into amemory stack. Thisbacking storeisdistinct
from the memory stack described in the next chapter.

Asreturns unwind the procedure call stack, the hardware also restores previously-saved physical
registers from the backing store.

The operation of this register stack engine (RSE) is mostly transparent to application software.
While the RSE is running, application software may not examine the contents of the backing store,
and may not make any assumptions about how much of the register stack is still in physical
registers or in the backing store. In order to examine previous stack frames, application software
must synchronize the RSE with the f | ushr s instruction. Synchronizing the RSE forces all stack
frames up to, but not including, the current frame to be saved in backing store, allowing the
software to examine the contents of the backing store without asynchronous operations modifying
the memory. Modifications to the backing store require setting the RSE to “enforced lazy mode”

Itanium™ Software Conventions and Runtime Architecture Guide

i ntel ® Register Stack

after synchronizing it, which prevents the RSE from doing any operations other than those required
by calls and returns. The procedure for synchronizing the RSE and setting the mode is described in
Section 10.2, “User-level Thread Switch, Coroutines’ on page 10-2.

Figure 6-1. Operation of the Register Stack

r32 r40 r52

Input Local Output Caller’s Frame

Callee’s Frame before alloc Output

r32 r36 r42
Callee’s Frame after alloc Input Local Output

The backing store grows towards higher addresses. When the RSE is synchronized and in enforced
lazy mode, the top of the stack corresponding to the top of the previous procedure frame is
available in the Backing Store Pointer (bsp) application register.

Even when the RSE isin enforced lazy mode, the bsp must always point to a valid backing store
address, since the operating system may need to start the RSE to process an exception.

A NaT collection register is stored into the backing store after each group of 63 physical registers.
For each register stored, its NaT bit is shifted into the collection register. When the bsp reachesthe
doubleword just before a 64 doubleword boundary, the RSE stores the collection register. Software
can determine the position of the NaT collection registersin the backing store by examining the
memory address. This process is described in greater detail in the Intel® 1A-64 Architecture
Software Developer’s Manual .

Itanium™ Software Conventions and Runtime Architecture Guide 6-3

Register Stack

6-4

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Memory Stack !

7.1

The memory stack is used for local dynamic storage, spilled registers, and parameter passing. Itis
organized as a stack of procedure frames, beginning with the main program’s frame at the base of
the stack, and continuing towards the top of the stack with nested procedure calls. At the top of the
stack isthe frame for the currently active procedure. (There may be some system-dependent frames
at the base of the stack, prior to the main program'’s frame, but an application program may not
make any assumptions about them.)

The memory stack begins at an address determined by the operating system, and grows towards
lower addresses in memory. The stack pointer register, sp, always points to the lowest address in
the current, top-most, frame on the stack.

Each procedure creates its frame on entry by subtracting its frame size from the stack pointer, and
removes its frame from the stack on exit by restoring the previous value of sp (usually by adding
its frame size, but a procedure may save the original value of sp when its frame size may vary).

Because the register stack is also used for the same purposes, not all procedures will need a stack
frame. Every non-leaf procedure, however, needsto save at least its return link and the previous

frame marker either on the register stack or in the memory stack, so thereisan activation record for
every non-leaf procedure on one or both of the stacks.

Procedure Frames

A procedure frame consists of five regions, asillustrated in Figure 7-1.

Figure 7-1. Procedure Frame

frame size
< 16
bytes
scratch outgoing frame dynamic local
area parameters marker allocation storage
sp previous sp

lower addresses

Theseregions are;

» Local storage. A procedure may store local variables, temporaries, and spilled registersin
thisregion. For conventions affecting the layout of this areafor spilled register (see
Section 11.3, “Coding Conventions for Reliable Unwinding” on page 11-5).

» Dynamically-allocated stack storage. Thisis avariable-sized region (initially zero
length), that can be created by the C library al | oca routine and similar routines.

* Frame marker. This optional region may contain information required for unwinding
through the stack (for example, a copy of the previous stack pointer).

Itanium™ Software Conventions and Runtime Architecture Guide 7-1

Memory Stack

7-2

intel.

» Qutgoing parameter s. Parametersin excess of those passed in registers are stored in this
region of the stack frame. A procedure accesses itsincoming parametersin the outgoing
parameter region of its caller’s stack frame.

» Scratch area. This 16-byte region is provided as scratch storage for procedures that are
called by the current procedure. Leaf procedures do not need to allocate this region. A
procedure may use the 16 bytes at the top of its own frame as scratch memory, but the contents
of thisarea are not preserved by a procedure call.

The stack pointer must always be aligned at a 16-byte boundary. Thisimpliesthat all stack frames
must be a multiple of 16 bytesin size.

An application may not write to memory below the stack pointer, since this memory area may be
written to asynchronously (for example, as aresult of exception processing).

M ost procedures are expected to have afixed size frame, and the conventions are biased in favor of
this. A procedure with a fixed size frame may reference all regions of the frame with a compile-
time constant offset relative to the stack pointer. Compilers should determine the total size required
for each region, and pad the local storage areato make the total frame size a multiple of 16 bytes.
The procedure may then create the frame by subtracting an immediate constant from the stack
pointer in the prologue, and remove the frame by adding the sameimmediate to the stack pointer in
the epilogue.

If aprocedure has a variable-size frame (for example, it containsacall to al | oca), it should make
acopy of sp to serve as aframe pointer before subtracting the initial frame size from the stack
pointer. It may then restore the previous value of the stack pointer in the epilogue without regard
for how much dynamic storage has been allocated within the frame. It may also use the frame
pointer to access the local storage region, since offsets from sp will vary.

A frame pointer, as described above, is not required, however, provided that the compiler uses an
equivalent method of addressing the local storage region correctly before and after dynamic
allocation, and provided that the code satisfies conditions imposed by the stack unwind
mechanism.

To expand a stack frame dynamically, the scratch area, outgoing parameters, and frame marker
regions, which are always |ocated relative to the current stack pointer must be rel ocated to the new
top of stack. If the scratch area and outgoing parameter area are both clear of any live values, there
isno actual work involved in relocating these areas. For procedures with dynamically-sized
frames, it is recommended that the previous stack pointer value be stored in alocal stacked general
register instead of the frame marker, so that the frame marker is also empty. If the previous stack
pointer is stored in the frame marker, the code must take care to ensure that the stack is aways
unwindable while the stack is being expanded (see Chapter 11, “ Stack Unwinding and Exception
Handling”).

Other issues depend on the compiler and the code being compiled. The standard calling sequence
does not define a maximum stack frame size, nor does it restrict how alanguage system uses any
stack frame region beyond those purposes described here. For example, the outgoing parameter
region may be used as scratch storage whenever it is not needed for passing parameters.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Procedure Linkage 8

8.1

8.2

8.3

External Naming Conventions

The standard naming convention, referred to asthe “C” convention, specifiesthat all external
symbols have linkage names identical to the source language identifier. There are no leading or
trailing underscores. Other languages may establish other conventions, but they should provide a
mechanism to define and reference symbols with “C” linkage.

The gp Register

Every procedure that references statically-allocated data or calls another procedure requires a
pointer to its data segment in the gp register, so that it can accessiits static data and its linkage
tables. Each load module has its own data segment, and the gp register must be set correctly prior
to calling any entry point within that load module.

The linkage conventions require that each load module define exactly one gp valueto refer to a
location within its short data segment. It is expected that this location will be chosen to maximize
the usefulness of short-displacement immediate instructions for addressing scalars and linkage
table entries. The DLL loader will determine the absolute value of the gp register for each load
module after loading its data segment into memory.

For calls within aload module, the gp register will remain unchanged, so calls known to be local
can be optimized accordingly.

For calls between |oad modul es, the gp register must beinitialized with the correct gp value for the
new load module, and the calling function must ensure that its own gp value is saved and restored.

Types of Calls

The following types of procedure calls are defined:

 Direct calls. Direct callswithin the same load module may be made directly to the entry
point of the target procedure. In this case, the gp register does not need to be changed.

» Direct dynamically-linked calls. These callsare routed through an import stub (which
may be inlined at compiletimeif the call isknown or suspected to be to another load module).
Theimport stub obtains the address of the main entry point and the gp register value from the
linkage table. Although coded in source as adirect call, dynamically-linked calls become
indirect.

 Indirect calls. A function pointer must point to a descriptor that contains both the address
of the function entry point and the gp register value for the target function. The compiler must
generate code for an indirect call that sets the new gp value before transferring control to the
target procedure.

» Special calls. Other special calling conventions are allowed to the extent that the compiler
and the runtime library agree on convention, and provided that the stack may be unwound
through such a call. Such calls are outside the scope of this document. See Section 8.7 for a
discussion of stack unwind requirements.

Itanium™ Software Conventions and Runtime Architecture Guide 8-1

Procedure Linkage inte|®

8.4 Calling Sequence

8.4.

Direct and indirect procedure calls are described in the following sections. Since the compiler is
not required to know whether any given call islocal or to another load module, the two types of
direct calls are described together in the first section.

1 Direct Calls

Direct procedure callsfollow the sequence of steps shown in Figure 8-1. The following paragraphs
describe these steps in detail .

Figure 8-1. Direct Procedure Calls

Caller Callee
* — mport Stub Entry
Prepare call « load entry addr « dlocreg frame
* Setup args « load new gp « aloc mem frame
* Saveregs gp « mov b= « savertn BR
e br * saveregs
|
Call |
ebrecal — | _ _ _ _ _ _% % procedure body
8 |8 -
After the call B = £ Exit
* restoreregs, gp - e * restoreregs
8 8 * restorertn BR
* v | » + de-aloc mem
v |8 frame
T | ® * brret =]
O |0

8-2

Preparation for call. Valuesin scratch registers that must be kept live across the call must be
saved. They can be saved by copying them into local dynamic registers, or by saving them on the
memory stack. If the NaT bits associated with any live scratch registers must be saved, the
compiler should usest 8. spi | | orstf.spill instructions. The User NaT collection register
itself is preserved by the call, so the NaT bits need no further treatment at this point.

If the call is not known (at compile time) to be within the same load module, the gp register must
be saved.

The parameters must be set up in registers and memory as described in Section 8.5.
Procedure call. All direct callsare made with abr . cal | instruction, specifying BR 0 (also
known asr p) for the return link.

For direct local calls, the pc-relative displacement to the target is computed at link time. Compilers
may assume that the standard displacement field inthebr . cal | instructionis sufficiently wideto
reach the target of the call. If the displacement istoo large, the linker must supply a branch stub at

Itanium™ Software Conventions and Runtime Architecture Guide

Procedure Linkage

some convenient point in the code; compilers must guarantee the existence of such a point by
ensuring that code sectionsin the relocatable object files are no larger than the maximum reach of
thebr. cal | instruction. With a 25-hit displacement, the maximum reach is 16 megabytesin either
direction from the point of call.

Direct callsto other load modules cannot be statically bound at link time, so the linker must supply
an import stub for the target procedure; the import stub obtains the address of the target procedure
from thelinkage table. Thebr . cal | instruction can then be statically bound using the pc-relative
displacement to the import stub.

Thebr. cal | instruction savesthe return link in the return BR, saves the current frame marker in
thear . pf s register, and sets the base of the new register stack frame to the beginning of the output
region of the old frame.

Import stub (direct external callsonly). Theimport stubisallocated in theload module
of the caller, so that the br . cal | instruction may be statically bound to the address of the import
stub. It must access the linkage table viathe current gp (which means that gp must be valid at the
point of call), and obtain the address of the target procedure’s entry point and its gp value. The
import stub then establishes the new gp value and branches to the target entry point.

If the compiler knows or suspects that the target of a call isin a separate load module, it may wish
to generate calling code that performs the functions of the import stub, saving an extrabranch. The
detailed operation of an import stub, however, is ABI specific.

When the target of acall isin the same load module, an import stub is not used (which also means
that gp must be valid at the point of call).

Procedure entry. The prologue code in the target procedure is responsible for allocating the
register stack frame, and a frame on the memory stack, if necessary. It may use the 16 bytes at the
top of its caller’'s memory stack frame as scratch area.

A non-leaf procedure must save the return BR and previous function state, either in the memory
stack frame or in alocal dynamic GR.

The prologue must also save any preserved registers that will be used in this procedure. The NaT
bits for those registers must be preserved as well, by copying to local stacked general registers, or
by usingst 8. spil | orstf.spill instructions. The User NaT collection register (ar . unat)
must be saved first, however, since it is guaranteed to be preserved by the call.

Procedure exit. The epilogue code is responsible for restoring the return BR and previous

function state, if necessary, and any preserved registers that were saved. The NaT bits must be

restored usingthel dg8. fill orldf.fill instructions. The User NaT collection register must
also be restored if it was saved.

If amemory stack frame was allocated, the epilogue code must deallocate it.

Finally, the procedure exits by branching through the return BR with the br . r et instruction.

After thecall. Any saved values (including gp) should be restored.

Itanium™ Software Conventions and Runtime Architecture Guide 8-3

Procedure Linkage inte|®

8.4.2

8-4

Indirect Calls

Indirect procedure calls follow nearly the same sequence, except that the branch target is
established indirectly. This sequenceisillustrated in Figure 8-2.

Figure 8-2. Indirect Procedure Calls

Caller Function Function Descriptor Callee
Pointer
’ - entry point L Entry
Prepare call @ @ « dlocreg frame
« load func. ptr. =N op value . aloc rr?gem frame
* load entry addr -é -é » savertn BR
* setup args = e saveregs
* mov b= g -§
* saveregs, gp w | »
« load new gp -25 '83 procedure body
T | ® .
O O Exit
Cal * restoreregs
* br.cal * restorertn BR
< * de-alloc mem
After the call frame
* restoreregs, gp e brret —

Function Pointers. A function pointer is always the address of a function descriptor for the
target procedure. The function descriptor must be allocated in the data segment of the target
procedure, because it contains pointers that must be relocated by the DLL loader.

The function descriptor contains at least two 64-bit double-words: the first is the entry point
address, and the second is the gp value for the target procedure. An indirect call will load the gp
value into the gp register before branching to the entry point address.

In order to guarantee the uniqueness of a function pointer, and because its value is determined at
program invocation time, code must materialize function pointers only by loading a pointer from
the data segment. The object file format will provide appropriate relocations for this pointer.

Preparation for call. Indirect calls are made by first loading the function pointer into a
genera register, loading the entry point address and the new gp value, then using the Move to
Branch Register operation to move the address of the procedure entry point into the BR to be used
for the call.

Valuesin scratch registers that must be kept live across the call must be saved. They can be saved
by copying them into local dynamic registers, or by saving them on the memory stack. If the NaT
bits associated with any live scratch registers must be saved, the compiler should use st 8. spi | |
orstf.spill instructions. The User NaT collection register itself is preserved by the call, so the
NaT bits need no further treatment at this point.

Itanium™ Software Conventions and Runtime Architecture Guide

Procedure Linkage

Unlessthe call is known (at compile time) to be within the same load module, the gp register must
be saved before the new gp value is loaded.

The parameters must be set up in registers and memory as described in Section 8.5.

Figure 8-3. Parameter Passing in General Registers and Memory

Par ameter Slots

slot 0

dotl | dot2 | dot3 | dot4 | dot5 | dot6 | dot 7 | dot 8 | dot 9 | dot 10 | Slot 11

General Registers

outO

outl out2 out3 out4 outb out6 out?7

Memory Stack

P +8 +16 +24 +32 +40 +48

8.5

Procedure call. All indirect cals are made with the indirect form of thebr . cal | instruction,
specifying BR 0 (also known asr p) for the return link.

Thebr . cal I instruction savesthe return link in the return BR, saves the current frame marker in
thear . pf s register, and sets the base of the new register stack frame to the beginning of the output
region of the old frame. Because the indirect call sequence obtains the entry point address and new
gp value from the function descriptor, control flows directly to the target procedure, without the
need for any intervening stubs.

Procedure entry, exit, and return. Theremainder of the calling sequence is the same as
for direct calls.

Parameter Passing

Parameters are passed in a combination of general registers, floating-point registers, and memory,
as described below, and asillustrated in Figure 8-3.

The parameter list isformed by placing each individual parameter into fixed-size elements of the
parameter list, referred to as parameter dots. Each parameter slot is 64 bits wide; parameters larger
than 64 bits are placed in as many consecutive parameter dlots as are needed to contain the entire
parameter. The rules for alocation and alignment of parameter slots are given later in this section.

The contents of the first eight parameter dots are always passed in registers, while the remaining
parameters are always passed on the memory stack, beginning at the caller’s stack pointer plus 16
bytes. The caller uses up to eight of the registersin the output region of its register stack for integer
parameters, and up to eight floating-point registers for floating-point parameters.

Itanium™ Software Conventions and Runtime Architecture Guide 8-5

Procedure Linkage inte|®

8.5.1

To accommodate variable argument lists in the C language, there is afixed correspondence
between parameter slots and output registers used for general register arguments. Thisallowsa
procedure to spill its register parameters easily to memory before stepping through the parameter
list with a pointer. Also because of variable argument lists, floating-point parameters are sometimes
passed in both general output registers and in floating-point registers.

There is no fixed correspondence between parameter slots and floating-point parameter registers.
Parameters passed in floating-point registers always use the next avail abl e floating-point parameter
register, starting with f 8.

A procedure may assume that the NaT bits on its incoming general register arguments are clear,
and that the incoming floating-point register arguments are not NaTVals. A procedure making a
call must ensure only that registers containing actual parameters are clear of NaT bitsor NaTVals;
registers not used for actual parameters may contain garbage.

Allocation of Parameter Slots

Parameters slots are allocated for each parameter, based on the parameter type and size, treating
each parameter in sequence, from left to right. The rules for allocating parameter slots and placing
the contents within the dot are given in Table 8-1.

Table 8-1. Rules for Allocating Parameter Slots

Type Size (Bits) Allocation Nug\lgg of Alignment
Integer/Pointer 1-64 Next Available 1 LSB
Integer 65-128 Next Even 2 LSB
Single-Precision Floating-Point 32 Next Available 1 LSB
Double-Precision Floating-Point | 64 Next Available 1 LSB
Double-Extended Floating-Point | 80 Next Even 2 Byte 0
Quad-Precision Floating-Point 128 Next Even 2 Byte 0
Aggregates any Next Aligned (size+63)/64 Byte 0

NOTE: These rules are applied based on the type of the parameter after any type promotion rules specified by
the language have been applied. For example, a short integer passed without a function prototype in C
would be promoted to the i nt type, and would be passed according to the rules for the i nt type.

The alocation column of the table indicates how parameter slots are allocated for each type of
parameter.

* “Next Available’ meansthat the parameter is placed in the slot immediately following the last
slot used.

* “Next Even” means that the parameter is placed in the next available even-numbered slot,
skipping an odd-numbered slot if necessary. If an odd-numbered slot is skipped, it will not be
used for any subsequent parameters.

* “Next Aligned’ meansthat the alocation is dependent on the external alignment of the
aggregate; that is, on the alignment boundary required for the aggregate as a whole. For
aggregates with an external alignment of 1-8 bytes, the “Next Available” policy is used; for
aggregates with an external alignment of 16 bytes, the “Next Even” policy is used.

This placement policy ensures that parameters will fall on anatural alignment boundary if passed
in memory.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Byte
Order
Byte
Order

8.5.2

Procedure Linkage

The alignment column of the table indicates how parameters are aligned within a parameter dot.
There are two kinds of alignment, “LSB” and “Byte 0.”

e “LSB” alignment specifies that the least-significant bit of the parameter is aligned with the
least-significant bit of the argument slot or slots (i.e., right aligned). Parameters shorter than 64
or 128 bits are padded on the left; the padding is undefined (unless specified otherwise). When
apair of parameter slotsis required, the even-numbered parameter slot contains the most-
significant bits in big-endian environments, and the least-significant bitsin little-endian
environments. See Figure 8-4 for examples.

¢ “Byte 0" alignment specifies that byte 0 of the parameter is aligned with byte 0 of the
parameter dot. Parameters that are not a multiple of 64 bitsin length are padded at the end; the
padding is undefined. In big-endian environments, the padding will be at the right end of the
final parameter slot; in little-endian environments, the padding will be at the left end of the
final parameter slot. See Figure 8-5 for an example.

Register Parameters

Thefirst eight parameter slots (64 bytes) are passed in registers, according to the rulesin this
section.

* These eight argument slots are associated, one-to-one, with the stacked output GRS, as shown
in Figure 8-3.

* Integral scalar parameters, quad-precision (128-bit) floating-point parameters, and aggregate
parameters in these dots are passed only in the corresponding output GRs. Aggregates
consisting solely of floats, of doubles, or of double-extended val ues are an exception; see
below.

* |f an aggregate parameter straddles the boundary between slot 7 and slot 8, the part that lies
within the first eight slotsis passed in GRs, and the remainder is passed in memory, as
described in the next section.

Single-precision, doubl e-precision, and double-extended-precision floating-point scalar parameters
in these dots are passed according to the available formal parameter information at the point of call
(for example, from a function prototype).

If an actual parameter is known to correspond to a floating-point formal parameter, the following
rules apply:

* Theactual parameter is passed in the next available floating-point parameter register, if oneis
available. Floating-point parameter registers are all ocated as needed from the range f 8- f 15,
starting with f 8.

¢ |f al available floating-point parameter registers have been used, the actual parameter is
passed in the appropriate general register(s). (This case can occur only as aresult of
homogeneous floating-point aggregates, described below.)

If afloating-point actual parameter is known to correspond to a variable-argument specification in
the formal parameter list, the following rule applies:

* Theactual parameter is passed in the appropriate general register(s).

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter
isavarargs parameter, it must generate code that satisfies both of the above conditions. (The
compiler’s determination may be based on prototype declarations, language standard assumptions,
analysis, or other user options or information.)

Itanium™ Software Conventions and Runtime Architecture Guide 8-7

Procedure Linkage

When floating-point parameters are passed in floating-point registers, they are passed in the

tel.

register format, rounded to the appropriate precision. When passed in general registers, floating-
point values are passed in their memory format.

Parameters allocated beyond the eighth parameter slot are never passed in registers, even when
floating-point parameter registers remain unused.

Figure 8-4. Examples of “LSB” Alignment

int

double

_int128

31 0
MSB L SB

slot 0
63 3231 0
Padding (undefinet{lyl SB L SB

Byte 0 Big-Endian Byte 7
l_étl te 7 Little-Endian Byte (

6362 5251 0
S| Exp. |MSB Significand L SB

slot 0
6362 5251 0

S| Exp. |MSB Significand L SB

Byte 0 Big-Endian Byte 7
l_§ te7 Little-Endian B tlt

127 0

MSB) LSB

slot 0 slot 0

63 0 63 0
MSB LSB
Byte 0 Big-Endian Byte7 Byte 7 Little Endian Byte
slot 1 slot 1

63 0 63 v 0

LSB MSB
Byte 8 Big-Endian Byte 15 Byte 15 Little-Endian Byte §

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Figure 8-5.

Note:

Itanium™ Software Conventions and Runtime Architecture Guide

Procedure Linkage

Example of “Byte 0" Alignment

8079 6463 0
__float80 |S| Exp. |[MSB Significand LS%
|

| |
dot O dot O I
63 0 63

0
S| Exp. |[MSB Significand MSB Significand L SB
Byte O Big-Endian Byte 7 Byte 7 Little-Endian te
dot/L dot 1
63 0 63 0
LSB Padding (undefined) Padding (undefined) S| Exp.
Byte 8 Big-Endian Byte 15 Byte 15 Little-Endian Byte §

Aggregates whose elements are all single-precision, all double-precision, or al double-extended-
precision values (but not quad-precision), are treated specially. These “ homogeneous floating-point
aggregates” (HFAs) may be arrays of one of these types, structures whose only membersare all one
of these types, or structures that contain other structures, provided that all lowest-level members
are one of these types, and all are the sametype. (This definition includes Fortran COMPLEX data,
except COMPLEX*32.)

The following additional rules apply to these types of parameters (but only to the portion of an
aggregate that lies within the first eight argument slots):

¢ |f an actual parameter is known to correspond to an HFA formal parameter, each element is
passed in the next available floating-point argument register, until the eight argument registers
are exhausted. The remaining elements of the aggregate are passed in output GRs, according to
the normal conventions.

¢ |f an actual parameter is known to correspond to a variable-argument specification, the
aggregate is passed as any other aggregate.

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter
is avarargs parameter, the elements of the aggregate must be passed in both the corresponding
output GRs and in floating-point argument registers.

Because HFAs are mapped to parameter slots as aggregates, single-precision HFAs will be
allocated with two floating-point valuesin each parameter sot, but only one value per register.
Thus, the available floating-point parameter registers may become exhausted before the end of the
first eight parameter slots, and additional members of the HFA must be passed in general registers.

It is possible for the first of two valuesin a parameter slot to occupy the last available floating-

point parameter register. In this case, the second value is passed in its designated GR, but the half
of the GR that would have contained the first value is undefined.

8-9

Procedure Linkage inte|®

8.5.3

8.5.4

Byte
Order

8.5.5

8.5.6

8-10

Memory Stack Parameters

Theremainder of the parameter list, beginning with slot 8, is passed in the outgoing parameter area
of the memory stack frame, as described in Section 7.1, “Procedure Frames’ on page 7-1.
Parameters are mapped directly to memory, with slot 8 placed at location sp+16, slot 9 at sp+24,
and so on. Each argument dlot is stored in memory as a 64-bit storage unit according to the byte
order of the current environment.

Variable Argument Lists

The rules above support variable-argument list functionsin both the K& R and the ANSI dial ects of
the C language. When an ANSI prototype isin scope, any register parameters corresponding to a
variable-argument specification are passed in GRs. When no prototypeisin scope, astrict ANSI
compilation may pass parameters as if a non-variable argument prototype were in scope, while a
K&R (or more relaxed ANSI) compilation may pass floating-point parametersin both GRs and
FRsto deal with the possibility that the callee may be expecting either avariable or a non-variable
argument list.

Thus, afunction with variable arguments may assume that the variable arguments that lie within
the first eight argument slots can all be found in the stacked input GRS, i n0—i n7. It may then store
these registers to memory, using the 16-byte scratch areafori n6 andi n7, and using up to 48 bytes
at the base of its own stack frame for i n0— n5, as necessary. This arrangement places all the
variable parameters in one contiguous block of memory.

When storing registers to memory for this purpose, the code must usethe st 8. spi | | instruction,
since the registers are not guaranteed to contain valid values.

In abig-endian environment, the alignment and padding rules require the code that steps through
the argument list to distinguish between aggregates and integers smaller than 8 bytes. Aggregates
will beleft-aligned within an 8-byte slot, while integers will be right-aligned.

Examples of the macros from the <st dar g. h> header file are given in Appendix A.

Pointers to Formal Parameters

Whenever the address is formed of aformal parameter that is passed in a register, the compiler
must store the parameter to the stack, as it would for a variable argument list.

Languages Other than C

M ost languages other than C can usualy be treated as if prototypes are always in scope, avoiding
the need to pass floating-point parameters in both GRs and FRs. For example, because Fortran
passes floating-point parameters by value only when calling an intrinsic function, it may safely
assume that the callee is expecting the parameter in an FR.

A compiler for another language may need to honor the variable-argument list conventions,

however, if it provides a mechanism for calling C procedures that may have variable-argument
lists.

Itanium™ Software Conventions and Runtime Architecture Guide

8.5.8

Rounding Floating-point Values

Procedure Linkage

Floating-point parameters passed in floating-point registers should always be explicitly rounded to
the proper precision expected by the language. There should be no difference in behavior between
afloating-point parameter passed directly in registers and a floating-point parameter that has been

stored to memory and rel oaded.

Examples

The following examples illustrate the parameter passing conventions.

Scalar integersand floats, with prototype:

extern int func(int, double, double, int);
func(i, a, b, j);

The parameters are passed as follows:

i out 0
a f8
b fo
j out 3

Scalar integers and floats, without prototype:

extern int func();
func(i, a, b, j);

The parameters are passed as follows:

i out 0
a outl and f8
b out2 and f9
j out 3

Aggregates passed by value:

extern int func();
struct { int array[20]; } &
func(i, a);

The structure’s external alignment is only 4 bytes, so no padding is required in the parameter list.

The parameters are passed as follows:

i out0
a.array[0-13] out 1-out 7

a. array[14-19] In memory, at sp+16 through sp+39

Aggregates passed by value:

extern int func();
struct{ __ float128 x; int array[20]; } &
func(i, a);

Itanium™ Software Conventions and Runtime Architecture Guide

8-11

Procedure Linkage inte|®

8-12

The structure’s external alignment is 16 bytes, so parameter slot 1 is skipped. The parameters are
passed as follows:

i outO

a. X out 2—out 3

a.array[0-7] out4—out?7

a. array[8-19] In memory, at sp+16 through sp+63

Floating-point aggregates, without prototype:

struct s{ float a, b, ¢; } x;
extern func();
func(x);

The parameters are passed as follows:

X. a out0 and f8
X.b out0 and f9
X. C outl and f10

In little-endian environments, x. a and x. ¢ arein the least-significant bits of out 0 and out 1,
respectively, while x. b isin the most-significant bits of out 0. In big-endian environments, x. a
and x. ¢ are in the most-significant bits of out 0 and out 1, respectively, whilex. b isin the least-
significant bits of out 0. The figure below illustrates this.

Big-endian gruct Little-endian
% xa
A xb
8 xc
63 3231 0 63 3231 0
v outO outO v
v outl outl v

Floating-point aggr egates, with prototype:

struct s{ float a, b, ¢; } x;
extern void func(struct s);
func(x);

The parameters are passed as follows:

X.a f8
X. b fo
X.C f10

Itanium™ Software Conventions and Runtime Architecture Guide

Return Values

in Table 8-2.

Table 8-2. Rules for Return Values

Procedure Linkage

Values up to 256 bits and certain aggregates are returned directly in registers, according to therules

Type Size (Bits) Location of Return Value Alignment
Integer/Pointer 1-64 r8 LSB
Integer 65-128 r8, r9 LSB
Single-Precision Floating-Point 32 f8 N/A
Double-Precision Floating-Point 64 8 N/A
Double-Extended Floating-Point 80 f8 N/A
Quad-Precision Floating-Point 128 r8, r9 Byte 0
Single-Precision HFA 32-256 f8—f15 N/A
Double-Precision HFA 64-512 f8—f15 N/A
Double-Extended HFA 128-1024 f8—f15 N/A
Aggregates 1-64 r8 Byte O
Aggregates 65-256 r8—rll Byte O
Aggregates >256 Memory Byte O

When multiple registers are used to return a numeric value, the lowest-numbered register contains
the most-significant bits in big-endian environments, and the least-significant bitsin little-endian
environments. When multiple registers are used to return an aggregate, the lowest-numbered
register containsthefirst eight bytes of the aggregate. In big-endian environments, the padding will
be at theright end of thefinal register used; in little-endian environments, the padding will be at the
left end of the final register used.

Byte
Order

Integral return values smaller than 32 bits must be zero-filled (if unsigned) or sign-extended (if
signed) to at least 32 bits.

When floating-point parameters are returned in floating-point registers, they are returned in the
register format, rounded to the appropriate precision. When they are returned in general registers
(e.g., as part of an aggregate), they are returned in their memory format.

Homogeneous floating-point aggregates, as defined in Section 8.5, are returned in floating-point
registers, provided the array or structure contains no more than eight individual values. The
elements of the aggregate are placed in successive floating-point registers, beginning with f 8. If
the array or structure contains more than eight elements, it is returned according to the rule below
for aggregates larger than 256 hits.

Return values larger than 256 bits (except HFAs of up to 8 elements) are returned in a buffer
allocated by the caller. A pointer to the buffer is passed to the called procedureinr 8. This register
is not guaranteed to be preserved by the called procedure (that is, the caller must preserve the
address of the buffer through some other means). The return buffer must be aligned at a 16-byte
boundary. A procedure may assume that the return buffer does not overlap any datathat isvisible
to it through any other names.

A procedure may assume that any procedure it callswill return avalid value (i.e., the NaT bitsare
clear if thereturn isin genera registers, and floating-point values returned are not NaTVals).

Itanium™ Software Conventions and Runtime Architecture Guide 8-13

Procedure Linkage

8.7

8-14

intel.

Requirements for Unwinding the Stack

Certain constraints must be met in order to unwind the stack successfully at any time, both by
standard procedure calls as described here, and by special-purpose calling conventions. Chapter 11,
“Stack Unwinding and Exception Handling,” describes how the unwind process works and the
format of the unwind data structures. To meet the needs of the stack unwind mechanism, the
following rules must be followed at al times:

The previous function state register (ar . pf s) must be preserved prior to any call. The
compiler must record, in the unwind data structures, where this register is stored, and over
what range of code the saved value isvalid.

For special calls using areturn BR other than b0, the compiler must record the BR number
used for the return link.

The return BR must be preserved prior to any call involving the same BR. The compiler must
record where the return BR is stored and over what range of code the saved value isvalid.

If aprocedure has a memory stack frame, the compiler must record either: (1) how large the
frameis, or (2) that a previous frame pointer is stored on the stack or in a general register.

The return BR must contain an address that can be used to determine the unwind state of the
calling procedure. For example, acompiler may choose to optimize calls to procedures that do
not return. If it does so, however, it must ensure that the unwind information for the procedure
properly describes the unwind state at the return point, even though the return pointer will
never be used. This may require the insertion of an otherwise unnecessary nop or break
instruction.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Coding Conventions 9

This chapter discusses general coding conventions and presents some example code sequences for
various tasks. The code sequences shown in this chapter are intended to serve as guidelines and
examples rather than as required coding conventions. The requirements are documented in other
chaptersin this document.

9.1 Sample Code Sequences

In the sample code sequences in this section, registers of theformt 1, t 2, etc., are temporary
registers, and may be assigned to any available scratch register. The code sequences show
necessary cycle breaks, but no other scheduling considerations have been made. It is assumed that
these code sequences will be scheduled with surrounding code to make best use of the processor
resources.

9.1.1 Addressing “own” Data in the Short Data Area

“Own” short data may be addressed with a simple direct reference relative to the gp register, as

illustrated below.
addl t1=@gprel(var),op ;; I/ calc. address of var
Id8 locO=[t1] /I load contents of var

“Own” long data may be addressed either viathe linkage table, as shown in Section 9.1.2, or
directly asillustrated bel ow.

movl tl=@gprel (var) ;; // form gp-relative offset of var
add t2=tl,gp;; /I calc. address of var
1d8 locO=[t2] /I'load contents of var
9.1.2 Addressing External Data or Data in a Long Data Area

When datais not known to be defined in the current load module (i.e., itisnot “own”), or if itistoo
large for the short dataregion, it must be accessed indirectly through the linkage table, as shown

below.
addl t1=@ltoff(var),gp ;; /I calc. address of LT entry
Id8 t2=[t1] ;; /I'load address of var
Id8 loc0=[t2] /I load contents of var

Itanium™ Software Conventions and Runtime Architecture Guide 9-1

Coding Conventions I ntel ®

9.1.3

9.1.4

9.1.5

9.1.6

9-2

Addressing Literals in the Text Segment

Literalsin the text segment may be addressed either through the linkage table, asin Section 9.1.2
above, or with pc-relative addressing, as shown below. Note that the first two instructions may be
moved towards the beginning of the procedure, and the base address of the literal area, inl ocO,
can be shared by other literal referencesin the same procedure.

L1 mov r3=ip ;; /I get current |P
addl locO=litbase-L1,r3;; /I calc. addr. of lit. area
add s t2=(lit-litbase),locO0 ;; /I calc. address of lit.
1d8 loc1=[t2] /I load value of literal

Materializing Function Pointers

Function pointers must always be obtained from the data segment, either as an initialized word or
through the linkage table, as shown in the following examples:

Materializing function pointersthrough linkage table:

addl t1=@Itoff(@fptr(func)),gp ;; /I calc address of LT entry
1d8 locO=[t1] /I load function pointer

Materializing function pointersin data:

fptr:
data8 @ftpr(func) /I initialize function ptr

Direct Procedure Calls

The following code sequence illustrating a direct procedure call assumes that the parameters have
already been placed in the proper locations.

mov locO=gp ;; /I save current gp
br.call rp=func ;; /I make the call
mov gp=loc0 /I restore gp

Indirect Procedure Calls

Theindirect procedure call sequence must load the function’s entry point and gp value from the
function descriptor. In this example, the function pointer is assumed to have been loaded into
register | ocO.

mov locl=gp;; /I save current gp

Id8 t1=[loc0],8;; /I load entry point
1d8 gp=[locO] ;; //'load new gp value
mov b6=t1;; /l move ep to cal BR
br.call rp=b6 ;; // make the call

mov gp=locl Il restore gp

Itanium™ Software Conventions and Runtime Architecture Guide

9.2

Coding Conventions

Jump Tables

High-level language constructs such as case and switch statements, where there are several
possiblelocal targets of abranch, may use anumber of different code generation strategies, ranging
from sequential conditional branches to a direct-lookup branch table.

If the compiler chooses to generate a branch table, the table should be placed in the text segment,
and each table entry should be a 64-hit byte displacement from the base of the branch table to the
branch target for that entry. This allows the displacements to be statically determined at link time,
and no relocations will need to be applied at program invocation time. With displacements relative
to the base address of the branch table, the code can easily add the displacement obtained from the
table to the base address of the table to compute the target branch address.

A sampleindirect branch is shown below. The branch table is assumed to be an array of 64-bit
entries, each of which is an offset, relative to the beginning of the branch table, to the branch target.
The branch table index is assumed to have been computed or loaded into register | ocO.

addl locl=@ltoff(brtab),gp /I calc. address of

N /I linkage table entry

Id8 loc2=[loc1] ;; /I'load addr. of br. table

shladd loc3=loc0,3,loc2 ;; /I calc. address of branch
/[table entry

1d8 loc4=[loc3] ;; /I load branch table entry

add locb=loc4,loc2 ;; /I calc. target address

mov b6=loc5 ;; /I move addressto b6...

br.cond b6 ;; /I ...and branch

Alternatively, the code could use a pc-rel ative addressing sequence to obtain the base address of the
jump table, using code similar to that in Section 9.1.3.

Speculation

Data speculation, using advanced load instructions, across procedure calls will not work correctly
if the target of the advanced load is not one of the registersin the in/local region of the register
stack frame. Upon return from the procedure call, the information in the ALAT could refer to an
unchecked (or uncleared) advanced load to the same register from within the called procedure,
rather than the information from the original load prior to the call.

Speculation recovery code may be placed within the procedure, outside the procedure but
contiguous with it, or in a completely different section of memory. In any case, the target of the
check instruction must be placed in or contiguous with the procedure in order to guarantee that a
22-hit pc-relative displacement in the check instruction will reach the target. If the recovery codeis
distant, the target of the check instruction may be asmall piece of “trampoline” code that branches
to the recovery code.

If a speculative load isissued to an unaligned address, the OS may deliver aNaT. An application
cannot expect to use a user-level trap handler to emulate the unaligned load unless the code is
compiled with recovery code.

Itanium™ Software Conventions and Runtime Architecture Guide 9-3

Coding Conventions I ntel ®

9.3

9.4

9.5

9-4

Multi-threaded Code

In multi-threaded applications, the use of thevol at i | e type qualifier should be interpreted to
mean that the variables designated with that type may be modified asynchronously by any thread.
The compiler must observe ordering restrictions with respect to loads and stores, and should not
remove otherwise unnecessary memory references to these variables.

In addition, the compiler must generate appropriate ordered load and store instructions to prevent

the hardware from executing volatile references out of order. All loadsto avolatile type must use

acquire semantics (using the . acq” completer), and all storesto avolatile type must use release

semantics (using the “. rel ” completer). These completers ensure that no load will complete prior
to an earlier load with acquire, and all earlier storeswill complete prior to a subsequent store with
release.

The use of amemory fence operation prior to aload with acquire implements stronger ordering, but
is not required by these conventions.

Use of Temporary Registers around the Call to
setimp

Implementation Note: The contents of a procedure’s register stack frame are not preserved in ajump

buffer by acall toset j np. If the compiler hasatemporary valuelivein a stacked
register beforethe call to set j np, with asubsequent use after thecall toset j np,
that value will not be saved and restored by aset j np/ | ongj np. Instead, after a
| ongj np, the register will have whatever value it had at the point in time when

| ongj mp wascalled. If the original value reachesall subsequent call pointsinthe
procedure, the code will behave as expected. If the register is reused or otherwise
modified, however, the value in that register following al ongj np is
unpredictable.

To keep a stacked register live acrossacall to set j np, the compiler can do one of three things: (1)
dedicate that register for the rest of the procedure, (2) copy it to area preserved register (r 4—r 7),
or (3) spill it to adedicated memory stack location. Alternatively, the compiler can simply
rematerialize it after the call toset j np.

See Section 10.3 for more information onset j np and | ongj np.

Up-level Referencing

Local variables visible to nested procedures must be saved in memory at any procedure call or
exception control point; a procedure’s local registers are not visible to its nested procedures.

These conventions suggest, but do not require, the use of a static link passed as an implicit
parameter to nested procedures. The static link can be used by the nested procedure to access local
variablesin its enclosing scope. The rules for forming and passing static links are as follows:

* A level-one procedure (outermost) calling alevel-two procedure should pass, asthe static link,
the address of a known reference point within its stack frame (for example, its frame pointer).

* A nested procedure calling another procedure at the same level should pass, as the static link,
the static link that it received.

Itanium™ Software Conventions and Runtime Architecture Guide

9.6

Coding Conventions

* A nested procedure calling a procedure nested within it should store the static link that it
received at a known place within its own stack frame, then pass, as the static link to the new
procedure, the address of a known reference point within its own stack frame (for example, a
pointer to the static link that it saved).

* A nested procedure calling aless-deeply nested procedure must follow the chain of static links
to obtain the correct static link to pass.

When forming function pointers that refer to nested procedures, the same rules apply. The static
link must be determined at the time the function pointer is materialized, and stored with the
function pointer.

To reference local variablesin enclosing scopes, the chain of static links must be followed to obtain
a pointer to the enclosing scope’s stack frame. The compiler can determine statically the offset of
the desired local variable relative to the reference point used for the static link.

An alternate implementation is a display pointer, also passed as an implicit parameter to each
nested procedure.

C++ Conventions

Language specific conventions for C++ are beyond the scope of this document, although they must
be built upon the base set of software conventions provided here.

<Move the below to ABI document>
The“this” pointer is passed as an implicit first parameter to all non-static class member functions.

Any object that requires a copy constructor must be passed by copy-reference rather than by value
(that is, the compiler must copy it to atemporary location in memory and pass the address of this
location in the argument list). This guarantees that the object will have avalid memory address as
required by the copy constructor. The temporary location should be in the caller’s memory stack
frame.

Itanium™ Software Conventions and Runtime Architecture Guide 9-5

Coding Conventions

9-6

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Context Management

10

10.1

Process/Thread Context

The following table lists the resources that constitute the context that is visible to the user-mode
process or thread (not including the program’s address space). These are the registers that must be
saved and restored on an asynchronous context switch (i.e. a context switch triggered by an outside
event, such asasignal). For a synchronous context switch (i.e. adirect call to a context-switch

routine), scratch registers do not need to be saved.

Table 10-1. Resources to be Saved on Context Switches

Note:

Resource

Synchronous

Asynchronous

Instruction pointer (i p)

Global data pointer (gp)

Stack pointer (Sp)

Thread pointer (t p)

Backing store pointer (ar . bsp/ ar . bspst ore)

Floating-point status register (ar . f psr)

RSE NaT collection register (ar . r nat)

User NaT collection register (ar . unat)

Previous function state (ar . pf s)

Current frame marker

RSE control register (ar . r sc)

Loop counter (ar . | ¢)

Epilogue counter (ar . ec)

Compare and exchange comparison value (ar . cCvV)

Preserved general registers (r 4- r 7) (including NaT bits)

Scratch general registers (r 2-r3, r8-r11, r14-r31)
(including NaT bits)

Preserved floating-point registers (f 2-f 5, f16-f31)

Scratch floating-point registers (f 6- f 15, f32-f 127)

Preserved predicate registers (p1- p5, pl6- p63)

Scratch predicate registers (p6- p15)

Preserved branch registers (b1- b5)

Scratch branch registers (00, b6- b7)

Scratch reserved for future use (ar.csd)

Scratch reserved for future use (ar.ssd)

The User NaT collection register must be saved separately from the NaT bits for the general
registers, since it contains the NaT bits for preserved general registers that a procedure has spilled
on behalf of itscaller. Thisregister must be saved before any general registers are saved, asthe

Itanium™ Software Conventions and Runtime Architecture Guide

10-1

Context Management I ntel ®

10.2

10.3

10-2

saving of general registerswritesto thisregister. Once the general registers have been saved as part
of the state save procedure, the User NaT collection register will contain the NaT bits for the
newly-saved registers, and can then be saved again.

User-level Thread Switch, Coroutines

Thread switches and coroutine calls can be done with a procedure call, so no scratch registers need
to be saved as part of the context. The first part of this routine saves the current thread context on
the stack:

1. Savear.rsc,ar.bspandar. pfs.
2. Usef |l ushrs instruction to flush dirty registers to the backing store.
3. Set the RSE in enforced lazy mode by clearing both r sc. node hits.
4. Savear . rnat and other registers that must be saved for a synchronous context switch.
At this point, the RSE isfrozen, and all dynamic registers up to the current procedure frame are

saved in the backing store. We can now change the memory stack pointer (sp) to point to the new
thread's stack, and restore the new thread’s context from there:

1. Invalidatethe ALAT using thei nval a instruction.
2. Restorear . bspst or e (the saved ar . bsp).

3. Restorear.rnat andar. pfs.
4

. Restorear . r sc. If eager loads are enabled, it will begin restoring dynamic registers from
previous stack frames. Otherwise, it will restore registers from the backing store when needed
for areturn branch.

5. Restore the remaining preserved registers.
6. Return to the new thread.

setimp/longjmp

Theset j np and | ongj np routines provide a mechanism to save and restore a particular context
within arunning thread. The effect is similar to a synchronous thread switch, except that the new
context must always be aframe that is till active on the stack of the current thread. Set j np must
save, and | ongj np must restore, al of the resources listed in Table 10-1 for a synchronous context
switch, with the following exceptions:

¢ Thethread pointer need not be saved and restored, because| ongj np may not be used to jump
to a context established by a different thread.

* The state of the RSE needs to be saved only to the extent that | ongj np can reestablish the
same register stack frame that was active when set j np was called. The contents of the local
stacked registers do not need to be saved and restored.

Implementation Note: The values of the backing store pointer (ar.bsp) and the previous function state

(ar . pf s, which preserves the current frame marker associated with the caller of
set j np) are sufficient to record the RSE state for a subsequent | ongj np.
Set j np need not, and should not, flush the RSE. Longj np should determine if

Itanium™ Software Conventions and Runtime Architecture Guide

Context Management

the target frame lies partially in the physical registers or not; if so, it must then
flush the RSE before restoring the saved register stack frame.

The gp register does not need to be saved in thej npbuf , because the compiler must always restore
gp after the call to set j np, asit must after acall to any other non-local procedure.

The RSE NaT collection register (ar . r nat) must not be saved in the jmpbuf, because that could
put the NaT bits out of sync with thelocal stacked registers. If ar.rnat were saved in the jmpbuf, but
alocal stacked register is modified later in the same procedure that called set j np but before

| ongj np is called, the change to the value of the register would be visible after the | ongj np, but
the change in the NaT bit would not be. Thus, the NaT bits must come from the backing store at the
time of the | ongj np; if the current ar.rnat isvalid for the target frame, | ongj np does not need to
changeit.

The user NaT collection register (ar . unat) isitself a preserved register, and must be saved in the
jump buffer before any preserved general registers are spilled. The bitsin thisregister represent the
NaT bitsfor registers that were preserved by the caller of set j np.

The NaT hits for the preserved registers will be copied to ar.unat as each register is spilled to the
jmpbuf. Once the preserved registers have been spilled, ar.unat must be saved once again to
preserve the NaT bits corresponding to the registers preserved by set j mp itself. When saving this
set of NaT bits, care must be taken that the representation is not dependent on the address of the
jump buffer itself: the st8.spill instruction saves the NaT bit in ar.unat based on the memory
address.

Theimplementation of | ongj np must invalidate the ALAT.

Itanium™ Software Conventions and Runtime Architecture Guide 10-3

Context Management

10-4

Itanium™ Software Conventions and Runtime Architecture Guide

intgl.
Stack Unwinding and Exception
Handling 11

Stack unwinding isthe process of tracing backwards through a process’ stack of activation records.
Every procedure in an Itanium architecture program has at least a frame on the register stack, and
may also have a frame on the memory stack. In order to print a stack trace, debuggers require the
ability to identify every frame on these stacks, and to show the process context associated with
each one. Exception handling often requires the ability to remove a number of frames from the
stack and to transfer control to an exception handling routine that may have been far down the
stack.

For the register stack, thear . pf s register contains sufficient information to identify the previous
frame, given the state of the current register stack frame. Thisworks for only one level of nesting,
however, since there is no architected stack of ar . pf s registers. Thus, in order to unwind the
register stack, we must impose a convention for saving and recovering thear . pf s register in each
frame.

For the memory stack, there is no architected mechanism for recording the s p value for each stack
frame, or for associating memory stack frames with register stack frames. While different
procedures will need differently-sized stack frames, we expect that most procedures will allocate a
frame whose size does not change while the procedure is active. Thus, for most procedures, we can
simply record this fixed frame size in a static table, and use the instruction pointer (1P) as akey to
thistable. For procedures whose frames can vary in size, we must impose a convention for saving
and recovering the sp value for the previous frame on the stack.

Asthe stacks are unwound, it is also necessary to recover the values of preserved registers that
were saved by each procedure in the activation stack, so that debuggers have access to correct
values of local variables, and so that exception handlers can operate correctly. This requirement
also imposes conventions for saving and recovering the values of these preserved registers.

In all cases, we wish to retain as much flexibility as possible for the compiler in its use of registers
and code generation. Thus, these conventions allow the compiler to save the necessary valuesin a
variety of locations, and with a variety of code sequences. We use the IP as a key for locating an
unwind table entry that describes everything necessary for locating the previous register and
memory stack frames, as well as the previous IP. The compiler is responsible for generating this
static unwind table entry for each procedure that it generates code for.

In most operating environments, unwinding the stack will be done viaan unwind library that can be
called from the process itself, from a debugger, or for exception handling. It operates on context
records; the primary routine reconstructs the context for a previous frame given the context for its
descendent frame. Because the structure of a context record, and the interface between the
operating system and exception handling mechanism is environment dependent, this unwind
library is aso environment-dependent, and is not defined as part of the runtime architecture. This
chapter describes the framework for unwinding the stack and for processing exceptions, including
the format of the static unwind tables constructed by the compilers, and the code generation
conventions imposed as a resullt.

Itanium™ Software Conventions and Runtime Architecture Guide 11-1

Stack Unwinding and Exception Handling Inte|®

11.1

11.1.1

11.1.2

11-2

Unwinding the Stack

The process of unwinding the stack begins with aninitial context record describing the process
state in the most recent procedure activation, at the point of interruption. From thisinitial state, the
stack is unwound one procedure frame at atime, using static information generated by the
compilers about each procedure to help it reconstruct a context record describing the previous
procedure, which is suspended at a point just after the procedure call or an asynchronous
interruption.

Initial Context

Every stack unwind starts with an initial context, obtained from one of three sources:

¢ The debugger. The context record is obtained from the operating system through the
debugging API.

* The unwind library. The context is constructed as for the first half of a user-mode thread
switch.

¢ From exception handler. The context is constructed by the operating system and passed to the
exception handler.

Step to Previous Frame

This process builds a context record corresponding to the next older frame on the stack. This
context record can, in turn, be used to unwind to the next frame. The following steps will
reconstruct the context for the previous frame:

1. Findthereturn link in the current context, and set | P in the previous context to that address.

2. Find the previous frame marker in the current context (e.g., inthear . pf s register), and copy
it to the current frame marker (cf m in the previous context.

3. Determine the value of gp for the new | P, and set gp in the previous context to that value.
4. Setsp inprevious context to sp from current context plus the current memory frame size.

5. Setar . bsp inthe previous context to ar . bsp from the current context minus size of the
input/local region of the frame (taking NaT collections that may have been saved to the
backing store into account). The frame size can be calculated from the frame marker.

6. Find the saved copies of the preserved registersin the current context, and copy them to the
previous context.

The bottom of the call stack isidentified by a saved return link of O.

The information needed to execute these steps correctly is recorded by the compilersin static
unwind information, stored in the text segment of the program itself. The structure of this
information is described in Section 11.4. Each text segment contains atable of unwind information,
and the dynamic loader is expected to provide an API for finding the unwind table, given a known
IP. This API is specific to the operating environment, and is not described here.

When a process is delivered an asynchronous interruption (viaa mechanism that is environment
dependent), the full process context needs to be saved so that the process can continue executing
correctly once the interruption has been handled. Typically, this context will be saved on the
memory stack, and anew procedure frame will be constructed for the interruption handler. The first
procedure frame in the interruption processing must be marked in such away that the unwind

Itanium™ Software Conventions and Runtime Architecture Guide

11.2

Stack Unwinding and Exception Handling

routine can recognize that unwinding past the point of interruption requires arestoration of the full
context. This, unfortunately, is aso an environment-dependent operation, and cannot be described
in the runtime architecture.

When the operating system delivers a context to the application, it may be necessary for the register
stack backing store to be split into two or more non-contiguous pieces. An application that
examines its backing store should be prepared to deal with this; this aso is an environment-
dependent operation.

Exception Handling Framework

The exception handling model for Itanium architecture is partitioned into a language-independent
component and a language-dependent component. The language-independent component is
responsible for fielding an exception, searching for an exception handler, and unwinding the stack
prior to processing an exception. Each source language that supports exception handling must
provide, as part of its runtime library, a“personality” routine that implements the language-
dependent component of this model.

This document uses the C++ exception handling mechanism as an example of the
language-dependent component. The description of the C++-specific data structures and
routines should be treated as an example, rather than a specification of the C++ design.
Text that discusses language-specific implementation appears indented and italicized like
this paragraph.

The exception handling model is oriented around procedure frames on the memory and register
stacks. Each frame corresponds to an activation of a procedure, which may or may not have
associated exception handling requirements. A procedure may have two kinds of exception
handling requirements:

* It may allocate some objects that require deallocation or some other form of cleanup if the
procedure or any of its blocks are terminated abnormally.

* It may have one or moretry regions, which are regions of code that specify an action to be
taken if an exception occurs while control iswithin them.

In either of these cases, the compiler records the requirementsin the static unwind information for
the procedure, and stores areference to the personality routine for that procedure. Typically, a
language will use a single personality routine for all procedures, but thisis not a requirement (for
example, alanguage may define a separate personality routine for procedures that require cleanup,
but have no try regions.)

Try regions may be nested both statically, within the procedure, and dynamically, through
procedure calls. When an exception occurs, each try region isinspected to determineif it has
specified an action for that particular exception. The try regions are inspected in order, beginning
with the innermost region.

InC++,atry/ cat ch statement defines a try region, and the filter controls which
exceptions are to be caught and handled within that region.

Exceptions are raised by invoking a routine in the language-independent component called the
exception dispatcher, which initiates the process of handling the exception. Synchronous
exceptions may be raised directly by the application through alanguage-specific construct;
asynchronous exceptions may be raised in response to hardware-detected traps or faults.

Itanium™ Software Conventions and Runtime Architecture Guide 11-3

Stack Unwinding and Exception Handling Inte|®

11-4

In C++, synchronous exceptions can be raised with thet hr ow statement. This statement
creates an exception object, which is matched against the prototypein each cat ch
clause for each activet r y statement. C++ does not define asynchronous exceptions.

The dispatcher unwinds each frame on the stack non-destructively, beginning with the topmost
frame, searching for frames with one or more try regions. For each frame that has exception
handling information, the dispatcher invokes the personality routine, which determines which try
regions, if any, are currently active. For each active try region, starting with the most deeply nested
one, the personality routine determines whether to dismiss the exception, handle it, or continue the
search with the next try region, or with the previous frame on the stack. If the personality routine
doesfind atry region with a handler for the exception, it invokes the unwinder to unwind the stack
a second time. During this second unwind, the unwinder invokes the personality routines for each
frame again so that cleanup actions may be executed as necessary. When the unwind reaches the
frame that contains the exception handler, control is transferred to the handler.

The relationships among these components are illustrated in Figure 11-1. The shaded boxes
identify the components that are specific to C++.

Figure 11-1. Components of the Exception Handling Mechanism

User Code System Code
Application
Code *
Raise
Exception
Per sonality .
Routine” [Dispatcher

- ¢

Filter Unwinder

\

Per sonality
Routine

¢

Cleanup Exception
Actions Handler

Itanium™ Software Conventions and Runtime Architecture Guide

11.3.1

Stack Unwinding and Exception Handling

Coding Conventions for Reliable Unwinding

This section describes the coding conventions that must be observed to guarantee unwindability
from every point in the program. For the purposes of unwinding, we divide every procedure up into
one or more regions, which are classified as either “prologue” or “body” regions.

A “prologue’ region is one where the register stack and memory stack frames are established and
where key registers are saved. In order to unwind correctly when the IP isis one of these regions,
the unwinder must have adetailed description of the order of operations within the region, so that it
knows what state has changed, and which registers have been saved at any given point in that
region.

A “body” region may change the state of the stack frame and save and restore preserved registers
(for example, to “shrink-wrap” the save and restore of aregister), but the unwind data structures
are tuned for body regions that have few such operations.

For both types of regions, the unwinder needs to know the state of the stack frames and preserved
registers upon entry to the region. There are four ways to establish the entry state for an unwind
region:

* Thefirst region in the procedure assumes that both stack frames are unallocated, and no
registers have been saved upon entry to the region.

* A region may modify the state of the stack frames and preserved registers; each subsequent
region takes the previous region’s exit state as its entry state.

* When control does not flow into aregion from directly aboveit, the region may copy the entry
state from an alternate region that has been described earlier.

* Zero-length prologue regions may be inserted just prior to a prologue or body region to set up
the correct entry state.

Regions may begin and end at arbitrary instructions, without regard to bundle boundaries or cycle
breaks.

Conventions for Prologue Regions

A typical prologue region will do some or al of the following steps:

* Allocate anew register stack frame. The placement of this step is not important to the unwind
process (although it must precede any other operations in the prologue that require the use of
local stack registers).

¢ Allocate anew memory stack frame. For fixed-size frames, the stack pointer (sp) must be
modified in asingle instruction (either with asingle add immediate, or by performing
intermediate calculations in a scratch register before modifying sp). The location of this
instruction and the fixed frame size must be recorded in the unwind descriptor. For variable-
size frames, the stack pointer must be saved in ageneral register that is kept valid throughout
the remainder of the prologue region and the following body region(s). This copy of the
previous stack pointer iscalled psp. The location of the copy instruction, and the GR number
must be recorded in the unwind descriptor.

* Savethe previousfunction state (ar . pf s), either in a general register or on the memory
stack. The location of thisinstruction, and the GR number or stack offset must be recorded in
the unwind descriptor. Normally, the previous function state is copied to a GR by the al | oc
instruction that allocates a new register stack frame. If the previous function stateisto be
stored in the memory stack, however, the location of the instruction that stores the GR to
memory should be recorded, and the original pf s may not be modified until after the store.

Itanium™ Software Conventions and Runtime Architecture Guide 11-5

Stack Unwinding and Exception Handling Inte|®

11.3.2

11-6

* Savethereturn pointer (r p), either in ageneral register or on the memory stack. The location
of thisinstruction, and the GR number or stack offset must be recorded in the unwind
descriptor. Saving to the memory stack requirestwo steps—oneto copy it to aGR, and another
to store it; the location of the storeisthe one to record, and the original r p may not be
modified before the store.

* Save preserved registers, either on the memory stack or in local registersin the current register
stack frame. In general, the location of each instruction used to save a preserved register, and
the GR number or stack offset must be recorded. There are five groups of preserved registers:
GRs, FRs, BRs, predicates, and ARs (ar . unat ,ar.rnat,ar.lc,ar.fpsr,ar. bsp,
and ar . bspst or e). The predicates must be copied as awhole to a GR with asingle Move
from Predicates instruction; if they are to be stored on the memory stack, the Store instruction
isthe oneto record. Any arbitrary subset of preserved GRs, FRs, and BRs may be saved in a
prologue, but they must be saved in ascending order by register number within each group
(saves from different groups may be interleaved). Saving a BR to memory (other thanr p)
reguires two steps—a move to GR, and a store; the location of the store is the one to record,
and the value of the BR may not be modified until the store is completed.

The unwinder must also know where preserved registers are saved in the memory stack frame,
because it needs to reconstruct the values of these registers as it unwinds the stack. The
conventions for the spill area are discussed bel ow.

A prologue region may also contain any amount of other code that isirrelevant to the unwind
process. For better efficiency during the unwind process, however, the size of the prologue region
should be kept as small as possible, and it should be defined to end immediately after the last of the
above steps.

Prologue regions may occur in theinterior of a procedure. These typically represent register spill
sequences that have been “shrink-wrapped” into a small block of conditional code.

The encoding of the unwind descriptorsfor prologue regions recognizes several common cases that
reduce the size of the unwind information significantly. Compilers are encouraged to observe these
conventions for low optimization levels and whenever it would not adversely affect the quality of
optimization. These cases include:

* Theprologue savesr p, ar . pf s, psp, and the predicates (as needed) in consecutive registers
in the ing/locals area of the current register stack frame.

* The prologue saves all of its subset of preserved registers before modifying any of them. In
this case, the locations of individual save instructions do not need to be recorded, and the
restrictions on their relative ordering are eliminated.

* A leaf procedure that does not create a memory stack frame or save any preserved registers
does not require any unwind descriptors.

Conventions for Body Regions

In general, body regions may do anything that does not invalidate the state of the stack frames and
preserved registers asrecorded for that region. In particular, abody region must obey the following
restrictions:

¢ |f the memory stack frame isfixed size, it may not modify the sp register.

¢ If the memory stack frameisvariable size, it may modify sp at any point, but the unwind
descriptors must indicate where avalid psp value can be found at any point within the body
region.

Itanium™ Software Conventions and Runtime Architecture Guide

11.3.3

Stack Unwinding and Exception Handling

* The unwind descriptors must indicate where avalid copy of the previous frame marker can be
found at any point within a body region. The body region code may not make a procedure call
while the previous frame marker remainsinar . pf s.

* The unwind descriptors must indicate where avalid copy of the return | P can be found at any
point within the body region. The body region code may not make a procedure call while the
saved return | P remainsinr p.

¢ The unwind descriptors must indicate where a valid copy of each preserved register can be
found at any point within the body region.

At every point in abody region, the unwind descriptorsidentify a single location where avalid
value for every item listed above can be found. The code must not modify aregister or memory
location while the unwind descriptors indicate that one of theseitemsis currently stored there.

Generally, the locations of the saved values listed above remain constant throughout the body
region, in locations specified in the prologue descriptor records. When thisis not the case,
however, the general unwind descriptors described in Table 11-13 may be used to mark changesin
the unwind state within abody region.

A body region may restorear . pf s, r p, and any preserved registers. The unwinder does not need
a specific “epilogue” region that is distinct from the body region.

The memory stack pointer (sp) istypicaly restored just before executing areturn branch. In a
normal epilogue at the end of abody region, the compiler may place theinstruction that restoresthe
previous sp value anywhere within a few instructions of the end of the region; the unwind
descriptor format provides a place to record the exact location of thisinstruction. If the procedure
has a memory stack frame, and has returns in the middle of the body, the compiler must separate
the procedure into separate body regions, each ending at the point of each return.

Conventions for the Spill Area in the Memory Stack Frame

The spill areafor preserved genera registers, floating-point registers, and branch registersis near
the base of the stack frame, in a continuous range ending, by default, at the base of the stack frame
plus 16 bytes (psp+16). In other words, the 16-byte scratch areain the caller’s stack frame
normally containsthe last 16 bytes of the spill area. If the scratch areais needed for saving register
parameters for a variable-argument list procedure, the spill area may be moved so that it ends at a
lower address, but the ending address must be a fixed location relative to the base of the frame

(Psp).

Locations in the spill area are reserved for each preserved GR, FR, and BR that is saved anywhere
within the procedure (including shrink-wrapped regions). Locations are allocated, from low
addressto high, first for general registers, then for branch registers, and finally for floating-point
registers. Registers are saved in numerical order, lower-numbered registers at lower addresses. The
spill areamust end at a 16-byte boundary, so that all the floating-point spill locations are 16-byte
aligned.

It isnot required that all registers preserved in the spill area be consecutive from each register file.
If, for example, GR 4 and GR 7 are preserved, but GR 5 and GR 6 are not, space is allocated only
for GR4and GR 7.

A compiler may need to spill scratch registersin addition to preserved registers. There are no
required conventions for spilling scratch registers, since they do not need to be recovered during a
stack unwind. It is expected, however, that general register spills will be adjacent to the preserved
general register spill areain order to make the best use of the User NaT collection register.

Normally, the unwinder expectsto find the NaT bits for the preserved registers in the User NaT
collection register, ar . unat . If the total spill areafor general registers (scratch and preserved

Itanium™ Software Conventions and Runtime Architecture Guide 11-7

Stack Unwinding and Exception Handling Inte|®

11.4

11.4.1

combined) exceeds 64 double-words, the compiler may be forced to save the User NaT collection
register in order to spill up to an additional 64 general registers. In this overflow situation, the
compiler must manage two or more NaT collections by swapping them in and out of the single
collection register. The NaT collection that contains the NaT bits for the preserved registersis
called the “primary unat collection,” and the unwinder must know where to find these bits. In
procedures where the NaT collection register is multiplexed, the compiler must record the location
of the primary unat collection in the unwind information.

Data Structures

The exception handling mechanism uses three data structures:

¢ Anunwind table, which allows the dispatcher and unwinder to associate an IP value with a
procedure and its unwind and exception handling information. Every procedure that has either
amemory stack frame or exception handling requirements, or both, has one entry in thistable.
(If the compiler has generated more than one non-contiguous region of code for a procedure,
there will be one entry in this table for each region.) Each unwind table entry pointsto an
information block that contains the other two data structures.

¢ A set of unwind descriptors for each procedure.
¢ Anoptiona language-specific data areafor each procedure.

The dispatcher and unwinder both use the unwind table to locate an unwind entry for a procedure,
given an IP value. The unwinder also uses the unwind descriptor list so that it can properly unwind
the stack from any point in the procedure.

The language-specific data area is used to store cleanup actions and a try region table.

Unwind Table

The unwind table entries contain three fields, asillustrated in Figure 11-2; each field is a 64-bit
doubleword. Thefirst two fields define the starting and ending addresses of the procedure,
respectively, and the third field points to a variable-size information block containing the unwind
descriptor list and language-specific data area. The ending addressis the address of the first bundle
beyond the end of the procedure. These values are al segment-relative offsets, not absolute
addresses, so they do not require run-time relocations. The unwind table is sorted by the procedure
start address. The shaded area in the figure represents the language-specific data area.

Figure 11-2. Unwind Table and Example of Language-specific Data Area

Unwind Table Info. Block tent | cent
start v| f | ulen Start
try/catch end
end unwind region
info ptr. descriptors table catch
per sonality handler
start
language- cleanup
specific action end
data area table
action

11-8

Itanium™ Software Conventions and Runtime Architecture Guide

11.4.2

Stack Unwinding and Exception Handling

If aleaf procedure has no stack frame, has no exception handling requirements, and keepsits return
pointer in b0, no unwind table entry is necessary for the procedure. The unwinder must assume
these conditions when the | P does not correspond to any procedure table entry.

Thefirst doubleword of the information block consists of three fields: a 16-bit version number for
the unwind descriptors, 16 flag bits, and a 32-bit length field. These fields may be accessed with
the following macros:

#define UNW_VER(x) ((x) >> 48)
#define UNW_FLAG_MASK 0x0000f f f f 00000000L
#define UNW_FLAG_OSMASK 0x0000f 00000000000L

#define UNW_FLAG_EHANDLER(x) ((X) & 0x0000000100000000L)
#define UNW_FLAG_UHANDLER(X) ((x) & 0x0000000200000000L)
#define UNW_LENGTH(x) ((X) & 0x00000000F fFfFFffL)

The unwind version number identifies the version of the unwind descriptor format. For this
specification, the version number is 1.

The unwind length field identifies the length (in doublewords) of the unwind descriptor area.

Two flag bits are currently defined, and the four defined by UNW FLAG OSMASK are reserved for
implementation-specific use; the remaining bits are reserved for future use. The EHANDLERflag is
set if the personality routine should be called during search for an exception handler. The
UHANDL ER flag is set if this routine should be called during the second unwind. If neither bit is set,
thereis no frame handler for this procedure, and the personality routine identifier should be
omitted, along with the entire language-specific data area.

InC++, the EHANDL ER bit is set if the procedure containsany t r y/ cat ch regions, and
the UHANDLER bit is set if there are any cleanup actions.

The personality routine identifier is accessed by adding the size of the unwind descriptor area

(ul en, whichisthe count of doublewords, not bytes), plus the size of the header doubleword, to
the information block pointer. The format and contents of thisidentifier are ABI-specific, and
enabl e the implementation to obtain a function pointer to the personality routine. The dispatcher
should call this routine during the first unwind only if the EHANDL ER bhit is set, and during the
second unwind only if the UHANDLER hit is set. The language specific dataimmediately follows
the personality routine identifier, so the address of this area must be made available to the
personality routine.

The unwind table and the unwind information block must each be aligned at an 8-byte boundary.
Within the information block, the personality routine pointer must also be aligned at an 8-byte
boundary.

Unwind Descriptor Area

The unwind descriptor area contains a contiguous sequence of records describing the unwind
regions in the procedure. Each group of records begins with a region header record identifying the
type and length of the region. The region header record is followed by any number of descriptor
records that supply additional unwind information about the region.

The unwind descriptor records are divided into three categories:. region header records, descriptor
records for prologue regions, and descriptor records for body regions. This section describes the
record types in each of these categories, lists rules for using unwind descriptor records, and
explains how the records should be processed.

Itanium™ Software Conventions and Runtime Architecture Guide 11-9

Stack Unwinding and Exception Handling Inte|®

11.4.2.1

Theinformation is encoded in variable-length records with a record type and one or more
additional fields. The length of each record isimplicit from the record type and itsfields. All
records are an integral number of bytesin length. In the descriptor record tables in the next three
sections, the third column lists the format of each record type. These record formats are described
in Appendix B.

Since the unwind descriptor area must be a multiple of 8 bytes, the last unwind descriptor must be
followed by zero bytes as necessary to pad the areato an 8-byte boundary. These zero byteswill be
interpreted as prologue region header records, specifying a zero-length prologue region, and serve
as no-ops.

Region Header Records

The region header records are listed in Table 11-1.

Table 11-1. Region Header Records

11-10

Record Type Fields Format Description
body rlen R1/R3 Defines a body region.
prologue rlen R1/R3 Defines a general prologue region.
prologue_gr rlen, mask, grsave | R2 Defines a prologue region with a mask of saved
registers, and a set of GRs used for saving preserved
registers.

The fields in these records are used as follows:

e rlen containsthe length of the region, measured in instruction slots (three slots per bundle,
counting X-unit instructions as two slots).

e mask indicates which registers are saved in the prologue. The pr ol ogue_gr region type
isused for entry prologues that save one or more preserved registersin the local register area
of the register stack frame. Thisfield defines what combination of r p, ar . pf s, psp, and the
predicates are preserved in standard GRsin the local area of the register stack frame. This
mask is four bits; see Appendix B, “Unwind Descriptor Record Format,” for the allocation of
these bits. Other registers may be preserved in the prologue, but additional descriptor records
arerequired for registers other than these four.

e grsave identifiesthefirst GR used to save the preserved registersidentified in the mask
field. Normally, this should identify aregister in the procedure’s local stack frame (i.e., it
should be greater than or equal to 32). Leaf procedures, however, may choose to use any
consecutive sequence of scratch registers.

The entry state for a region matches the exit state of the preceding region, except for body regions
that contain a“copy_state” descriptor record, described in Table 11-12.

The exit state of aregion is determined as follows:

¢ For prologue regions, and for body regions with no epilogue code, the exit state is the logical
combination of the entry state with the modifications described by the descriptor records for
the region.

* For body regions with epilogue code, the exit state is the same as the entry state of the
corresponding prologue whose effect is being undone. When shrink-wrap regions are nested, it
is possible to reverse the effects of multiple prologues at once.

Itanium™ Software Conventions and Runtime Architecture Guide

Stack Unwinding and Exception Handling

Descriptor Records for Prologue Regions

This section lists the descriptor records that may be used to describe prologue regions. In the
absence of any descriptor records or information in the region header record, aprologue is assumed
to create no memory stack frame and save no registers. Descriptors need to be supplied only to
override these defaullts.

The following descriptor records are used to record information about the stack frame and the state
of the previous stack pointer (psp).

Table 11-2. Prologue Descriptor Records for the Stack Frame

Record Type Fields Format Description
mem_stack_f t, size P7 Specifies a fixed-size memory stack frame, when Sp is
modified, and size of frame.
mem_stack_v t P7 Specifies a variable-size memory stack frame, and when
psp is saved.
psp_gar or P3 Specifies GR where PSP is saved.
psp_sprel spoff P7 Specifies memory location where PSP is saved, as an SP-

relative offset.

Thefieldsin these records are used as follows:

e t describesatime, t, when a particular action occurs within the prologue. Thetimeis

specified as an instruction slot number, counting three dots per bundle. The first instruction
slot in the prologue is numbered 0. For procedures with a memory stack frame, the instruction
that modifies sp (fixed-size frame) or that saves psp (variable-size frame) must be identified
with either amem st ack_f oranmem st ack_v record. In all other cases, if thetimeisnot
specified, the unwinder may assume that the original contents of the register isvalid through
the end of the prologue, and that the saved copy isvalid by the end of the prologue. In a zero-
length prologue region, the time parameter isirrelevant, and should be specified as 0.

Size containsthe fixed size of the memory stack frame, measured in 16-byte units.

gr identifiesageneral register, or the first in aconsecutive group of general registers, that is
used for preserving the value of another register (asimplied by the record type). Typically, this
field will identify a general register in the procedure’s local stack frame. A leaf procedure,
however, may choose to use scratch registers. (A non-leaf procedure may also use scratch
registers through a body region that makes no calls, but it would need to move any values
saved in scratch registers to a more permanent save location prior to making any calls. It
would need a second prologue region to describe this movement.)

spoff identifies alocation in the memory stack where a register or group of registers are
spilled to memory. Thislocation is specified relative to the current stack pointer. See
Appendix B, “Unwind Descriptor Record Format,” for the encoding of thisfield.

The following descriptor records are used to record the state of the return pointer (r p).

Table 11-3. Prologue Descriptor Records for the Return Pointer

Record Type Fields Format Description
rp_when t P7 Specifies when I P is saved.
rp_gr or P3 Specifies GR where I' P is saved.

Itanium™ Software Conventions and Runtime Architecture Guide 11-11

Stack Unwinding and Exception Handling

Table 11-3. Prologue Descriptor Records for the Return Pointer (Cont’'d)

Record Type Fields Format Description
rp_br br P3 Specifies alternate BR used as return pointer.
rp_psprel pspoff P7 Specifies memory location where I' P is saved, as a PSP-
relative offset.
rp_sprel spoff P8 Specifies memory location where I' P is saved, as an SP-

relative offset.

The fields in these records are used as follows:

e br

in b0 or saved to another |ocation.

identifies a branch register that contains the return link, when the return link is not either

* pspoff identifies alocation in the memory stack where a register or group of registers are
spilled to memory. The location is specified relative to the previous stack pointer (which is
equal to the current stack pointer plus the frame size). See Appendix B, “Unwind Descriptor
Record Format,” for the encoding of thisfield.

The following descriptor records are used to record the state of the previous function state register

(ar. pfs).
Table 11-4. Prologue Descriptor Records for the Previous Function State
Record Type Fields Format Description

pfs_when t P7 Specifies when ar . pf S is saved.

pfs_gr ar P3 Specifies GR where ar . pf S is saved.

pfs_psprel pspoff P7 Specifies memory location where ar . pf S is saved, as a
pSp-relative offset.

pfs_sprel spoff P8 Specifies memory location where ar . pf S is saved, as an
Sp-relative offset.

The following descriptor records are used to record the state of the preserved predicates.

Table 11-5. Prologue Descriptor Records for Predicate Registers

11-12

Record Type Fields Format Description
preds_when t pP7 Specifies when the predicates are saved.
preds_gr gr P3 Specifies GR where predicates are saved.
preds_psprel pspoff pP7 Specifies memory location where predicates are saved, as a
PS p-relative offset.
preds_sprel spoff P8 Specifies memory location where predicates are saved, as an

Sp-relative offset.

The following descriptor records are used to record the state of the preserved general registers,
floating-point registers, and branch registers.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Stack Unwinding and Exception Handling

Table 11-6. Prologue Descriptor Records for GRs, FRs and BRs

Record Type Fields Format Description

fr_mem rmask P6 Specifies which preserved floating-point registers are spilled
to memory by this prologue, as a bit mask.

frgr_mem grmask, P5 Specifies which preserved general and floating-point registers

frmask are spilled to memory by this prologue, as a bit mask.

gr_gr grmask, gr P9 Specifies which preserved general registers are saved in
other general registers, as a bit mask, and GR where first
preserved GR is saved.

gr_mem rmask P6 Specifies which preserved general registers are spilled to
memory by this prologue, as a bit mask.

br_mem brmask P1 Specifies which preserved branch registers are spilled to
memory by this prologue, as a bit mask.

br_gr brmask, gr P2 Specifies which preserved branch registers are saved in
general registers by this prologue, as a bit mask, and GR
where first BR is saved.

spill_base pspoff P7 Specifies base of spill area in memory stack frame, as a
pSp-relative offset.

spill_mask imask P4 Specifies when preserved registers are spilled, as a bit mask.

The fields in these records are used as follows:

e rmask, frmask, grmask, brmask identify which preserved FRs, GRs, and BRs are
saved by the prologue region. Thef r _memrecord uses a short r mask field, which can be
used when a subset of floating-point registers from therange f 2- f 5 issaved. The
f r gr _memrecord can be used for any number of saved floating-point and general registers.
The gr _nmemrecord can be used when only general registers (r 4—r 7) are saved.

¢ imask

identifies when each preserved FR, GR, and BR is saved. It contains atwo-bit field

for each instruction dot in the prologue, indicating whether the instruction in that slot saves
one of these preserved registers. The length of thisfield isimplied by the size of the prologue
region as given in the region header record. It contains two bits for each instruction slot in the
region, and the length of the field is rounded up to the next whole byte boundary.

If a prologue saves one or more preserved FRS, GRs, or BRs, and thespi | | _nask record is
omitted, the unwinder may assume that the original contents of those preserved registers are valid
through the end of the prologue, and that the saved copies are valid by the end of the prologue.

There may be only onespi | | _base andonespi I | _mask record per prologue region.

Eachgr _gr and br _gr record describes a set of registersthat is saved to a consecutive set of
genera registers (typically in thelocal register stack frame). To represent registers saved to non-
consecutive general registers, two or more of each of these records may be used.

The following descriptor records are used to record the state of the User NaT Collection register

(ar. unat).

Itanium™ Software Conventions and Runtime Architecture Guide 11-13

Stack Unwinding and Exception Handling

Table 11-7. Prologue Descriptor Records for the User NaT Collection Register

Record Type Fields Format Description
unat_when t P7 Specifies when ar . unat is saved.
unat_gr ar P3 Specifies GR where ar . unat is saved.
unat_psprel pspoff P7 Specifies memory location where ar . unat is saved, as
a pSp-relative offset.
unat_sprel spoff P8 Specifies memory location where ar . unat is saved, as
an SP-relative offset.

The following descriptor records are used to record the state of the Loop Counter register (ar . | ¢).

Table 11-8. Prologue Descriptor Records for the Loop Counter Register

Record Type Fields Format Description
Ic_when t P7 Specifies when ar . | C is saved.
Ic_gr ar P3 Specifies GR where ar . | C is saved.
Ic_psprel pspoff P7 Specifies memory location where ar . | C is saved, as a
pSp-relative offset.
Ic_sprel spoff P8 Specifies memory location where ar . | C is saved, as an
Sp-relative offset.

The following descriptor records are used to record the state of the floating-point status register

(ar. fpsr).
Table 11-9. Prologue Descriptor Records for the Floating-point Status Register
Record Type Fields Format Description

fpsr_when t P7 Specifies when the floating-point status register is saved.

fpsr_gr ar P3 Specifies GR where the floating-point status register is
saved.

fpsr_psprel pspoff P7 Specifies memory location where the floating-point status
register is saved, as a PS P-relative offset.

fpsr_sprel spoff P8 Specifies memory location where the floating-point status
register is saved, as an SP-relative offset.

The following descriptor records are used to record the state of the primary unat collection.

Table 11-10. Prologue Descriptor Records for the Primary Unat Collection

11-14

Record Type Fields Format Description
priunat_when_gr |t P8 Specifies when the primary unat collection is copied to a GR.
priunat when_m |t P8 Specifies when the primary unat collection is saved in
em memory.
priunat_gr gr P3 Specifies GR where the primary unat collection is copied.
priunat_psprel pspoff P8 Specifies memory location where the primary unat collection
is saved, as a PSP-relative offset.
priunat_sprel spoff P8 Specifies memory location where the primary unat collection
is saved, as an S P-relative offset.
Itanium™ Software Conventions and Runtime Architecture Guide

In

11

Itanium™ Software Conventions and Runtime Architecture Guide

tel.

Stack Unwinding and Exception Handling

The following descriptor records are used to record the state of the backing store, whenitis

necessary to record a discontinuity.

Table 11-11. Prologue Descriptor Records for the Backing Store

Record Type Fields Format Description

bsp_when t P8 Specifies when ar . bs p is saved. The backing store pointer
may be saved, along with the ar . bs pst or e pointer and
the ar . r nat register, to indicate a discontinuity in the
backing store.

bsp_gr ar P3 Specifies GR where ar . bSp is saved.

bsp_psprel pspoff P8 Specifies memory location where ar . bSp is saved, as a
pSp-relative offset.

bsp_sprel spoff P8 Specifies memory location where ar . bSp is saved, as an
Sp-relative offset.

bspstore_when t P8 Specifies when ar . bs pst or e is saved.

bspstore_gr ar P3 Specifies GR where ar . bs pst or e is saved.

bspstore_psprel pspoff P8 Specifies memory location where ar . bs pst or e is saved,
as a PSp-relative offset.

bspstore_sprel spoff P8 Specifies memory location where ar . bs pst or e is saved,
as an S P-relative offset.

rnat_when t P8 Specifies when ar . r nat is saved.

rnat_gr ar P3 Specifies GR where ar . r nat is saved.

rnat_psprel pspoff P8 Specifies memory location where ar . r nat is saved, as a
pSp-relative offset.

rnat_sprel spoff P8 Specifies memory location where ar . r nat is saved, as an
Sp-relative offset.

4.2.3

Descriptor Records for Body Regions

Thefollowing table lists the optional descriptor records that may be used to describe body regions.
In the absence of these descriptors, abody region is assumed to inherit its entry state from the

previous region.

Table 11-12. Body Region Descriptor Records

Record Type Fields Format Description
epilogue t, ecount B2/B3 Body region contains epilogue code for one or more
prologues.
label_state label B1/B4 Labels the entry state for future reference.
copy_state label B1/B4 Use labeled entry state as entry state for this region.
e { indicatesthelocation of the instruction that restores the previous sp value, relative to the

end of the region. The number is a count of the remaining instruction sots to the end of the
region (thus, avalue of 0 indicates the final slot in the region).

* ecount

indicates how many additional levels of nested shrink-wrap regions are being

popped at the end of a body region with epilogue code. A value of 0 indicates that one level

should be popped.

* |abel
this body region.

identifies a previoudy-specified body region, whose entry state should be copied for

11-15

Stack Unwinding and Exception Handling Inte|®

11.4.2.4

Prologue regions nest within other prologue regions, and are balanced by body regions with an
epilogue descriptor. An epilogue descriptor with an ecount of n servesto balance (n+1) earlier
prologue regions.

When the label _state descriptor is used to label an entry state, it must appear prior to any general
unwind descriptorsin the same body region.

A copy_state descriptor must appear prior to any general unwind descriptorsin the same body
region.

A labelled entry state not only includes the record of where current valid copies of all preserved
values can be found, but also references the states that are currently on the stack of nested
prologues. For example, consider the following sequence of regions:

Prologue region A

Body region B (no epilogue)

Prologue region C

Body region C (label_state 1, epilogue count 2)

Body region D (copy_state 1, epilogue count 2)

The effect of the copy_state in body region D restores the entry state of body region C, aswell as
the two prologue regions within which the body region is nested.

The scope of alabel isrestricted to asingle unwind descriptor area.

Descriptor Records for Body or Prologue Regions

This section lists the descriptor records that may be used to describe either prologue or body
regions. These descriptors provide complete generality for compilers to perform register spills and
restores anywhere in the procedure, without creating an arbitrary boundary between prologue and

body.

Table 11-13. General Unwind Descriptors

11-16

Record Type Fields Format Description

spill_psprel t, reg, pspoff X1 Specifies when and where I €Q is saved, as a PSp-
relative offset.

spill_sprel t, reg, spoff X1 Specifies when and where I' € is saved, as an SP-
relative offset.

spill_reg t, reg, treg X2 Specifies when and where I €Q is saved in another
register, t I €g, or restored.

spill_psprel_p qp, t, reg, pspoff | X3 Specifies when and where I' €9 is saved, as a PSp-
relative offset, under predicate (.

spill_sprel_p qp, t, reg, spoff X3 Specifies when and where I' €Q is saved, as an SP-
relative offset, under predicate (.

spill_reg_p qp, t, reg, treg X4 Specifies when and where I' €9 is saved in another
register, t I €4, or restored, under predicate qp.

* reg identifiesthe register being spilled or restored at the given point in the code. Thisfield
may indicate any of the preserved GRs, FRs, BRs, ARs, predicates, previous sp, primary unat,
or return pointer. See Appendix B, “Unwind Descriptor Record Format,” for the encoding of
thisfield.

* treg identifiesatarget register to which the value being spilled is copied. Thisfield may
indicate any GR, FR, or BR; it may also contain the specia “Restore” target, indicating the

Itanium™ Software Conventions and Runtime Architecture Guide

Stack Unwinding and Exception Handling

point at which aregister is restored. See Appendix B, “Unwind Descriptor Record Format,”
for the encoding of thisfield.

gp identifies a qualifying predicate, which determines whether the indicated spill or restore
instruction executes. The qualifying predicate must be a preserved predicate if there are any
procedure calls in the range between the spill and restore, and it must remain live throughout
the range.

If abody region contains any general descriptors and an epilogue descriptor, the effects of the
general descriptors are undone when the unwind state is restored by popping one or more
prologues. By the end of the body region, the code must have restored any preserved registers that
the new unwind state indicates are restored. It is not necessary, however, to record the points at
which registers are restored unless the | ocations used to save the values are modified before the end
of the region.

11.4.2.5 Rules for Using Unwind Descriptors

Preserved registersthat are saved in the prologue region must be specified with one or more of the
following descriptor records:

prol ogue_gr (rp,ar. pfs, psp, and the predicates).

mem st ack_v (psp issaved in aGR).
rp_when,rp_gr,rp_psprel,orrp_sprel (rp).
pfs_when,pfs_gr,pfs_psprel,orpfs _sprel (ar. pfs).

unat _when,unat _gr,unat _psprel ,orunat_sprel (ar.unat).

I c_when,lc_gr,lc_psprel,orlc_sprel (ar.!1c).

f psr_when,fpsr_gr,fpsr_psprel ,orfpsr_sprel (ar.fpsr).
fr_memfrgr_memorgr_nmem(FRsand GRS).

br _nmemor br _gr (BRS).

spill_psprel, spill_sprel, spill_reg, spill_psprel_p, spill_sprel_p, spill_reg_p (any register).

If apreserved register is not named by one or more of these records, it is assumed that the prologue
does not save or modify that register.

The locations where preserved registers are saved are determined as follows:

1.

Certain descriptor records explicitly name a save location for aregister (records whose names
endwith®_gr,”“ _psprel ,” or“_sprel ”).If aregister is described by one of these
records, the unwinder uses the named | ocation.

Some descriptor records specify that registers are saved to the spill area(f r _nmem
frgr_memgr_nmembr _nem. Theselocations are determined by the conventions for the
spill area.

Any remaining registers that are named as saved, but do not have an explicit savelocation, are
assigned consecutive GRs, beginning with the GR identified by the pr ol ogue_gr region
header record. If the prologueregion usesapr ol ogue header record, thefirst GR is assumed
to be GR 32. The registers are saved as needed in the following order:

a. Return pointer, r p.
b. Previousfunction state, ar . pf s.

¢. Previous stack pointer, psp.

Itanium™ Software Conventions and Runtime Architecture Guide 11-17

Stack Unwinding and Exception Handling Inte|®

11.4.2.6

11-18

d. Predicates.

e. User NaT collection register, ar . unat .

—h

Loop counter, ar . | c.
Floating-point status register, ar . f psr.

E)

Primary unat collection.

Note that the only way to indicate that any of the last four groups of registers are saved,
without explicitly specifying a save location, isto use one of the corresponding _when
descriptor records.

Processing Unwind Descriptors

The unwind process for a frame begins by locating the unwind table entry for agiven IP. If thereis
no unwind table entry, the unwinder should use the default conditions for this frame: leaf
procedure, no memory stack frame, and no saved registers.

If thereis an unwind table entry, the unwinder then locates the unwind information block and
checks the size of the unwind descriptor area. If this areais zero length, the unwinder should use
the default conditions as above.

In preparation for reading the unwind descriptor records, the unwinder should start with an initial
current state record, and an empty stack of state records. A state record describes the locations of
all preserved registers at entry to aregion. Theinitial value of the current state record should
describe the frame in its default conditions.

The unwind descriptor records should be read and processed sequentially, beginning with the first
descriptor record for a procedure, continuing until the IPis contained within the current region. For
each prologue region header, the current state record should be pushed on the stack, and the
descriptor records for the prologue region should be applied to the current state record. When a
body region with epilogue code is seen, one or more states should be popped from the stack, and
the entry state for the next region is taken as the last state popped. Thisrestores the current state to
the entry state of the matching prologue.

When a body region contains alabel _state descriptor, the unwind processor should replicate the
current unwind state, including the current stack of prologues. When a body region contains a
copy_state descriptor, the unwind processor should discard the current state and stack, and restore
the replicated state and stack that corresponds with the label.

When the current IPiswithin a body region, the unwinder can generate the context of the previous
frame by restoring registers asindicated by the current state record. If the body region has epilogue
code, and the IP is beyond the indicated point where sp is restored, the unwinder should assume
that sp has already been restored, and that all registers spilled to the memory stack frame except
those between psp and psp+16 have also been restored. Registers spilled to the scratch areain
the caller’s frame may not have been restored at that point, and the unwinder should use the values
in memory.

When the current | P iswithin a prologue region, the unwinder must look for descriptor records that
specify atime parameter that is at or beyond the current IP. It should ignore these state
modifications when applying descriptor records to the current state. If aregister is saved but does
not have a specified time, the unwind may assume that the original value is not modified within the
prologue, so it may ignore it.

Thelayout and size of the preserved register spill area cannot be determined without reading all the

prologue region descriptor records in the procedure, and merging the save masks for the general
registers, floating-point registers, and branch registers.

Itanium™ Software Conventions and Runtime Architecture Guide

Inte|® Stack Unwinding and Exception Handling

11.4.3 Language-specific Data Area

Thetry region table for C++ could be divided into two parts: at ry/ cat ch tableanda
cleanup action table. Asillustrated in Figure 11-2, the table consists of two 32-hit integers
followed by the two tables. Thefirst field, t cnt , contains the number of t ry/ cat ch
table entries, and the second field, ccnt , contains the number of cleanup action table
entries. Thet ry/ cat ch tableconsists of a list of four-word entries, sorted by the
region end address. The first two words of each entry identify the starting and ending
addresses of the region, the third word points to the catch clause, and the fourth word
points to the exception handler. The cleanup action table consists of a list of three-word
entries, also sorted by the region end address. The first two words of each entry identify
the starting and ending addresses of the region, and the third word pointsto a list of
cleanup actions.

Itanium™ Software Conventions and Runtime Architecture Guide 11-19

Stack Unwinding and Exception Handling

11-20

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Dynamic Linking 12

12.1 Position-independent Code

All code conforming to these conventions must be position independent (PIC). This allows their
text segments to remain pure so they can be shared among many processes. Position-independence
imposes two reguirements on generated code:

* Code that forms an absolute address referring to any address in the load modul€e's text or data
segmentsis not allowed, since the code would have to be relocated at load time, making it non-
sharable. All branches must be pc-relative, referencesto constants and literals in the text
segment must be either pc-relative or indirect viathe linkage table, and references to the data
segment must be relative to a base register (typically gp).

* Code that references symbols that are or may be imported from other |oad modules must use
indirect addressing through a linkage table. The linker is expected to resolve procedure calls
by creating import stubs, but the compilers must generate indirect loads and stores for data
items that may be dynamically bound. In both cases, the indirection is made through the
linkage table, allocated by the linker, and initialized by the dynamic loader; the linkage tableis
described below.

12.2 Procedure Calls and Long Branch Stubs

Normal procedure calls can be made with thebr . cal | instruction, which uses pc-relative
addressing. There are three possible cases at link time:

* If thetarget is not within the same load module, or if it is subject to pre-emption by an earlier
definition from another load module, the linker must allocate an import stub and resolve the
br. cal | instruction to the stub.

¢ |f thetarget is known to be within the same |oad modul e and the displacement is small enough,
thisinstruction can be statically resolved to the call target.

¢ |f thetarget is within the same load module, but the displacement istoo large for the br . cal |
instruction, the linker must allocate along branch stub, as described in Section 8.4, “ Calling
Sequence” on page 8-2. The long branch stub itself must satisfy the PIC requirements. If the
target is within range of the stub, the stub may use a pc-relative br instruction; otherwise, it
must load the address of the target from the linkage table.

12.3 Access to the Data Segment

The DLL’s short data segment must be accessed through the gp register, which is defined to point
to the short data segment on entry to any DLL procedure. The gp register is used to access both the
linkage tables and statically-allocated data. The DLL’s long data segments must be accessed viathe
linkage table.

There are several cases here:

* Global variablesthat are imported from another load module, or that are subject to pre-
emption by an earlier definition in another load module, must be accessed indirectly through

Itanium™ Software Conventions and Runtime Architecture Guide 12-1

Dynamic Linking inte|®

12.3.1

12.3.2

12.4

12.5

12-2

the linkage table. The compiler must generate code to load a pointer from the linkage table,
using gp-relative addressing, then access the data item using that pointer. The compiler does
not have to all ocate the linkage tabl e; there are rel ocations defined in the object file format that
instruct the linker to allocate a linkage table slot and supply the gp-relative address of that slot.

* Small, statically-allocated variables of local scope, or global variables whose definitions are
not subject to pre-emption, may be placed in the short data segment and accessed directly with
gp-relative addressing.

¢ Large variables, regardless of scope or pre-emption, must be placed in along data segment,
and accessed viathe linkage table or pointer table.

The partitioning of the datainto the short and long data segments is described in Section 3.2,
“Protection Areas’ on page 3-2.

Access to Constants and Literals in the Text Segment

Constants and literals allocated in the text segment should be accessed with pc-relative addressing,
or with indirect addressing via the linkage table.

Materializing Function Pointers

Function pointers must be materialized by loading aword from the data segment. They may not be
materialized from immediate operands.

Import Stubs

When the linker determines that a procedure call refersto an entry point in a different load module,
it resolves the reference locally by building an import stub with the same name as the intended
target. The import stub contains code that obtains the entry point and gp value from the linkage
table, then transfers control, as described in Section 8.4, “Calling Sequence’ on page 8-2.

If the compiler is provided with enough information to know that a particular entry pointisin a
different load module, it may generate a calling sequence that obviates the need for the linker to
build an import stub. This calling sequence, however, is ABI specific, and is not specified in this
document.

The Dynamic Loader

The dynamic loader is a component of the operating system software that locates all the load
modules belonging to an application, |oads them into memory, and binds the symbolic references
among them. Most of the operation of the dynamic loader is specific to the particular operating
system environment, and is further described in the ABIs for those environments. The common
runtime architecture has been designed to minimize the amount of work involved in the binding
process, by concentrating most of the relocation required in the linkage tables, and by prohibiting
any itemsin the text segment that may require dynamic relocation.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

System Interfaces 13

13.1 Program Startup

An application begins its execution at a specified program entry point, which depends on the
primary language in which the application is written. For C programs, the function nai n isthe
program entry point. On most operating systems, however, some system-dependent initialization
must take place before control istransferred to thisentry point. Thisinitialization may take placein
the operating system or in the DLL loader.

This section presents ageneral overview of what an application expects when its program entry

point receives control. The ABI document for each operating system is expected to contain the
details.

13.1.1 Initial Memory Stack

The memory stack pointer, sp, must be properly aligned, and must contain an address that is
suitable for allocation of the program’s first stack frame. There must be a 16-byte scratch area
available for use, beginning at the addressin sp, but the application may make no further
assumptions about the contents of the memory stack beyond the scratch area.

13.1.2 Initial Register Values

The sp and gp registers must be initialized correctly, sp as described above and gp to the globa
pointer value for the main program’s short data segment.

The floating-point status register should be initialized as shown in Table 13-1. The global trap
disable bits (ar . f psr bits 0-5) should all be initialized to ones.

Table 13-1. Initial Value of the Floating-point Status Register

Status Field Flags td rc pc wre ftz
sfo 000000 0 00 11 0 0
sfl 000000 1 00 11 1 0
sf2 and sf3 000000 1 00 11 0 0

Theinitial stack frame must be setup with O input and local registers, and at least 4 output registers
(asif the program entry point had been called with at least four parameters). The contents of the
parameter registers, i n0- i n7, are system-dependent, and are typically used for transmitting the
program arguments.

13.2 System Calls

System API routines are called using the standard calling conventions described in Chapter 8,
“Procedure Linkage,” . Any special interfaces between these API routines and the operating system
itself is system-dependent, and these API routines are typically supplied in a system DLL.

Itanium™ Software Conventions and Runtime Architecture Guide 13-1

System Interfaces i ntel ®

13.3

13-2

Traps and Signals

When the operating system deliversa signal or an exception to a user process, it must make the
following available to the process:

¢ A context record, containing the full user-visible context, as described in Chapter 10, “Context
Management,”.

* The cause of thetrap. If thetrap was caused by an instruction, the information must be
sufficient to identify the bundle and slot.

When atrap or signal handler returns, operating system help is necessary for restoring the complete
context (via RFI). Thus, the operating system must build adummy stack frame for the handler, so
that areturn from the handler will transfer to an operating system entry point that can restore the
full context.

The operating system must provide a new 16-byte scratch area prior to the stack frame created for
the signal handler, so that the scratch area belonging to the interrupted procedure is not disturbed
during signal processing.

The operating system must also set the floating-point status register to the initial value specified in
Table 13-1 prior to delivering asignal or exception.

Trap handlers will often need to ook at the state of the registers at the time of the trap. Since the
dynamic general registers are al hidden in the register stack backing store in memory, the
application may need to perform some careful calculations to obtain access to the values of these
registers. In addition, the operating system may deliver a context in which the backing store is split
into two non-contiguous areas. The system-specific runtime library should provide an API routine
to build an image of the dynamic registers from the context record.

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Standard Header Files A

Al

A.2

Implementation Limits

The following constants are defined in the <l i mi t s. h> header file:

#define CHAR_BIT 8
#define SCHAR_MIN (-128)
#define SCHAR_MAX 127
#define UCHAR_MAX 255

/* MB_LEN_MAX determined by locale information */

#define CHAR_MIN SCHAR_MIN

#define CHAR_MAX SCHAR_MAX

#define SHRT_MIN (-32768)

#define SHRT_MAX 32767

#define USHRT_MAX 65535

#define INT_MIN (-2147483647-1)
#define INT_MAX 2147483647

#define UINT_MAX 4294967295
#define__INT64_MIN (-9223372036854775807-1)
#define __INT64_MAX 9223372036854775807
#define__UINT64_MAX 18446744073709551615

Floating-point Definitions

The following constants are defined in the <f | oat . h> header file. The constants beginning with
“EXT_" and “QUAD_" are shown here to provide the values of the respective parameters for 80-
bit and 128-bit floating-point types; the names of these constants are a notational convenience only.
Each ABI is expected to specify an appropriate set of constants. Similarly, the suffixes “W” and
“Q" should be replaced by the appropriate suffixes for each ABI.

#define FLT_DIG 6 /* Max (decimal) digits of prec. */
#define FLT_EPSILON 1.19209290E-07F

#define FLT_MANT_DIG 24

#define FLT_MAX 3.40282347E+38F

#define FLT_MAX_10_EXP 38

#define FLT_MAX_EXP 128

#define FLT_MIN 1.17549435E-38F

#define FLT_MIN_10_EXP (-37)

#define FLT_MIN_EXP (-125)

#define FLT_RADIX 2

#define DBL_DIG 15 /* Max (decimal) digits of prec. */
#define DBL_EPSILON 2.2204460492503131E-16

#define DBL_MANT_DIG 53

#define DBL_MAX 1.7976931348623157E+308

#define DBL_MAX_10_EXP 308

Itanium™ Software Conventions and Runtime Architecture Guide A-1

Standard Header Files In

A.3

A-2

#define DBL_MAX_EXP 1024

#define DBL_MIN 2.2250738585072014E-308

#define DBL_MIN_10 EXP (-307)

#define DBL_MIN_EXP (-1021)

#define_ EXT_DIG 18 /* Max (decimal) digits of prec. */

#define__ EXT_EPSILON 1.0842021724855044340075E-19W
#define__EXT_MANT_DIG 64

#define__ EXT_MAX 1.18973149535723176502e+4932W
#define_EXT_MAX_10 EXP (+4932)

#define__EXT_MAX_EXP (+16384)

#define_ EXT_MIN 3.36210314311209350626e-4932W
#define__EXT_MIN_10_EXP (-4931)

#define__EXT_MIN_EXP (-16381)

#define__ QUAD_DIG 33 /* Max (decimal) digits of prec. */

#define__ QUAD_EPSILON 1.92592994438723585305597794258492732E-34Q
#define__ QUAD_MANT _DIG 113

#define__ QUAD_MAX 1.18973149535723176508575932662800702E+4932Q
#define__ QUAD_MAX_10 EXP (+4932)

#define__QUAD_MAX_EXP (+16384)

#define__QUAD_MIN 3.36210314311209350626267781732175260E-4932Q
#define__ QUAD_MIN_10_EXP (-4931)

#define__ QUAD_MIN_EXP (-16381)

Variable Argument List Macros

The following definitions roughly define the operation of the variable argument list macros
provided in the <st dar g. h> header file. Similar definitions for K&R C may be found in
<varargs. h>.

typedef char *va list;
#define_VA_ALIGN(list, align) \

(va_list)(((unsigned __int64)(list) + (align) - 1) & ~((align) - 1))
#define va_start(list, parmN) (list = (va_list)(&parmN + 1))

#ifdef _ LITTLE_ENDIAN__

#define va_arg(list, mode) (\
list=_VA_ALIGN(list, ((__alignof(mode) > 8) ? 16 : 8)) + sizeof(mode),\
((mode *)list)[-1] \
)

#else/* _ BIG_ENDIAN__*/

#define va_arg(list, mode) (\
list=_VA_ALIGN(list, ((__alignof(mode) > 8) ?16 : 8)) +\
(((sizeof(mode) < 8) && !__is aggregate(mode)) A
8 - sizeof(mode) : 0) + sizeof(mode),\
((mode *)list)[-1] \
)

#endif /* __BIG_ENDIAN__*/

The big endian version of theva_ar g macro requiresbuilt-in__al i gnof and__is__aggregate
functionsin the compiler; the latter returns true if the type given as the argument is an aggregate

type.

Itanium™ Software Conventions and Runtime Architecture Guide

Standard Header Files

A.4 setimp/longjmp

Thefollowing definition is provided in the <set j np. h> header file:

typedef _ float80 jmp_buf[JBLEN];

The jump buffer must be long enough to contain the context defined in Section 10.3, and should
include additional spacereserved for future use. It must be declared to guarantee 16-byte alignment
(for example, asan array of __f | oat 80) . Its contents include the following registers:

Instruction address (i p)—the return BR from the call toset j np
Stack pointer (sp)

Frame state—the ar . pf s register from the call to set j np
Backing store pointer (ar . bsp)

General registersr4-r7

NaT bitsfor general registersr 4- r 7 (shifted to a consistent position independent of the jump
buffer address)

Floating-point registersf 2-f 5 and f 16- f 31
Floating-point status register (ar . f psr)
Predicatesp1- p5 and p16- p63

Branch registersb1- b5

User NaT collection register (ar . unat)

Loop counter (ar . | c)

Note that the epilog counter (ar . ec) isautomatically preserved with the ar . pf s register.

The jump buffer contents should also include a“signature” to identify its version number and
architecture for compatibility with future hardware and software releases.

The size of the jump buffer (the value of _JBLEN) and the locations of individual items within the
jump buffer are ABI specific.

Itanium™ Software Conventions and Runtime Architecture Guide A-3

Standard Header Files

A-4

Itanium™ Software Conventions and Runtime Architecture Guide

intel.

Unwind Descriptor Record Format B

B.1 Overview

The unwind descriptor records are encoded in variable-length byte strings. The various record
formats are described in this appendix.

Thefirst byte of each record is sufficient to determine its format. The high-order bit of this byte
determines whether it isaheader record (if the bit is zero), or aregion descriptor record (if the bit is
one). The remaining bits and any subsequent bytes are divided into separate fields. In most formats,
thefirst field, r, identifies the record type. The record formats are listed by the bit pattern of the
first bytein Table B-1.

Table B-1. Record Formats

Region Header Records Prologue Descriptor Records Body Descriptor Records
Bit Pattern Format Bit Pattern Format Bit Pattern Format
00-- ---- R1 100- ---- P1 10-- ---- B1
0100 O--- R2 1010 ---- P2
0110 00-- R3 1011 0--- P3
1011 1000 P4
1011 1001 P5
110- ---- P6 110- ---- B2
1110 ---- P7 1110 0000 B3
1111 0000 P8 1111 -000 B4
1111 0001 P9
1111 1001 X1 1111 1001 X1
1111 1010 X2 1111 1010 X2
1111 1011 X3 1111 1011 X3
1111 1100 X4 1111 1100 X4
1111 1111 P10

Some fields in the unwind descriptor records are variable in length. The variable-length encoding
uses the ULEB128 (Unsigned Little-Endian Base 128) encoding, described below:

¢ Divide the number into groups of 7 bits, beginning at the low-order end.

* Discard all groups of leading zeroes, but keep at least the first (low-order) group if the number
isall zeroes.

* Placeal hit totheleft of of al but the last group; place a0 bit to the left of thelast group. This
forms one or more 8-bit groups.

Itanium™ Software Conventions and Runtime Architecture Guide B-1

Unwind Descriptor Record Format Intel o

The following table shows example ULEB128 encodings for several numbers:

Table B-2. Example ULEB128 Encodings

Value Encoding Interpretation
0 00000000 0
127 01111111 127
128 10000000 00000001 0+(1<<7)
1544 10001000 00001100 8+ (12<<7)
49,802 10001010 10000101 00000011 10+ (5<<7)+(3<<14)

Fieldsin the ULEB128 format always follow the fixed fields, and begin on a byte boundary.

B.2 Region Header Records

The prologue and body region header records can appear in either format R1 or R3, depending on
the magnitude of the region length field. If the region length is no greater than 31 instructions, the
R1 format may be used; otherwise, format R3 must be used.

ByteO
76543210

Format R1 [0 O|r rlen

Thisformat isused for the short forms of the pr ol ogue and body region header records. Ther bit
identifies the record type, as shown in the following table:

Record Type r
prologue 0
body 1
ByteO Bytel
76543210 76543210
Format R2 [0 10[00| mask grsave rlen (ULEB128)

Thisformat is used only for the pr ol ogue_gr region header record. The following table shows
the meaning of the bitsin the mask field:

Mask bit Meaning when bit is set

byte 0, bit 2 r p is saved in standard GR

byte 0, bit 1 ar . pf s is saved in standard GR
byte 0, bit 0 psp is saved in standard GR

byte 1, bit 7 predicates are saved in standard GR

B-2 Itanium™ Software Conventions and Runtime Architecture Guide

B.3

Unwind Descriptor Record Format

Thegr save field identifies the general register in which the first of these valuesis stored.
Additional general registers are used as needed. For example, assumethat r p, ar . pf s, and the
predicates are stored, but not psp. The mask bits would be 1101, and gr save might be set to 39,
indicating that the three values are stored in r 39, r 40, and r 41, respectively.

ByteO
76543210

Format R3 [011|000] r rlen (ULEB128)

Thisformat is used for the long forms of the pr ol ogue and body region header records. The r
field identifies the record type, as shown in the following table;

Record Type r
prologue 00
body 01

Descriptor Records for Prologue Regions

ByteO
76543210

Format P1 |1 00| brmask

Thisformat is used only for the br _memdescriptor record.

Thefive bitsin the br mask field are used to indicate which of the five preserved branch registers
(b1-b5) are saved in the prologue. Bit O corresponds to b1; bit 4 corresponds to b5. If the bit is
clear, the corresponding register is not saved; if the bit is set, the corresponding register is saved.

ByteO Byte 1l
76543210 76543210
Format P2 [1010| brmask ar

Thisformat isused only for the br _gr descriptor record.

Thefive bitsin the br mask field are used to indicate which of the five preserved branch registers
(b1-b5) are saved in the prologue. Bit 7 of byte 1 correspondsto b1; bit 3 of byte O corresponds to
b5. If the bit is clear, the corresponding register is not saved; if the bit is set, the corresponding
register is saved.

Thegr field identifies the general register in which the first of these registersis stored. Additional
general registersare used as needed. For example, assumethat b1, b4, and b5 are stored. The mask
bits would be 11001, and gr might be set to 37, indicating that the three branch registers are stored
inr37,r38,andr 39, respectively.

Itanium™ Software Conventions and Runtime Architecture Guide B-3

Unwind Descriptor Record Format

B-4

Format P3

ByteO Bytel
76543210 76543210
10110 r gr/br

Thisformat is used by the group of descriptor records that specify a GR or BR number. The record
typeisidentified by ther field, which isread as afour bit number whose low-order bit is bit 7 of
byte 1. The following table shows the record types:

Record Type r Record Type r
psp_ar 0 rp_br 6
rp_gr 1 rnat_gr 7
pfs_gr 2 bsp_gr 8
preds_gr 3 bspstore_gr 9
unat_gr 4 fpsr_gr 10
lc_ogr 5 priunat_gr 11
ByteO
76543210
FormatP4 (10111000 imask

Thisformat isused only by thespi | | _mask descriptor record. Thefirst byteis followed by the

i mask field, whose length is determined by the length of the current prologue region as given by
the region header record. Thei mask field contains two bits for each instruction slot in the region,
and the size is rounded up to the next whole number of bytes, if necessary.

The high-order (Ieftmost) two bits of the first byte of theimask field correspond to the first
instruction slot of the region. Bit pairs are read from left to right (high-order bits to low-order bits)
within each byte, and bytes are read from increasing memory addresses. Each bit field describes

the behavior of the corresponding instruction slot as follows:

Bit Pair Meaning

00 The instruction slot does not save one of these registers

01 the instruction slot saves the next floating-point register

10 the instruction slot saves the next general register

11 the instruction slot saves the next branch register
ByteO Bytel Byte 2 Byte 3
76543210 76543210 76543210 76543210

FormatP5 |{10111/001| |grmask frmask

Thisformat is used only by thef r gr _memdescriptor record.

The bitsin the gr mask field correspond to the preserved general registers (r 4—r 7). The bits are
read from right to |eft: bit 4 of byte 1 correspondstor 4, and bit 7 correspondstor 7.

Itanium™ Software Conventions and Runtime Architecture Guide

Unwind Descriptor Record Format

The bitsin the frmask field correspond to the preserved floating-point registers (f 2—f 5 and f 16—
f 31). The bits are read from right to left: bit O of byte 3 correspondsto f 2, and bit 3 of byte 1
correspondsto f 31.

A value of 1in each bit position indicates that the corresponding register is saved.

ByteO
76543210

Format P6 |1 1 0|r| rmask

Thisformat isused by thef r _memand gr _nemdescriptor records. Ther bit identifies the record
type, as shown in the following table:

Record Type r
fr_mem 0
gr_mem 1

Thebitsinther mask field correspond to either the preserved general registers (r 4-r 7) or the set
of the first four preserved floating-point registers (f 2—f 5). The bits are read from right to left: bit O
correspondstor 4 or f 2, and bit 3 correspondstor 7 or f 5. A value of 1 in each bit position
indicates that the corresponding register is saved.

ByteO
76543210 (mem_stack_f only)
FormatP7 (1110 r t/spoff/pspoff (UL EB128) size (ULEB128)

Thisformat isused for anumber of descriptor records. Ther field identifies the record type, as
shown in the following table:

Record Type r Additional ULEB128 Fields
mem_stack_f 0 t, size
mem_stack_v 1 t
spill_base 2 pspoff
psp_sprel 3 spoff
rp_when 4 t
rp_psprel 5 pspoff
pfs_when 6 t
pfs_psprel 7 pspoff
preds_when 8 t
preds_psprel 9 pspoff
Ic_when 10 t
Ic_psprel 11 pspoff
unat_when 12 t
unat_psprel 13 pspoff
fpsr_when 14 t
fpsr_psprel 15 pspoff

Itanium™ Software Conventions and Runtime Architecture Guide B-5

Unwind Descriptor Record Format Intel o

B-6

Stack pointer offsets (spof f) are represented as positive word offsets from the top of the stack
frame(i.e., thelocationissp + 4 * spof f). Previous stack pointer offsets (pspof f) are encoded
as positive numbers representing a negative word offset relativetopsp+16 (i.e., thelocationispsp
+ 16 — 4 * pspoff).

ByteO Bytel
76543210 76543210
FormatPg [1111/0000 r t/spoff/pspoff (UL EB128)

Thisformat is used for a number of descriptor records. Ther field identifies the record type, as
shown in the following table:

Record Type r Additional ULEB128 Fields
rp_sprel 1 spoff
pfs_sprel 2 spoff
preds_sprel 3 spoff
Ic_sprel 4 spoff
unat_sprel 5 spoff
fpsr_sprel 6 spoff
bsp_when 7 t
bsp_psprel 8 pspoff
bsp_sprel 9 spoff
bspstore_when 10 t
bspstore_psprel 11 pspoff
bspstore_sprel 12 spoff
rnat_when 13 t
rnat_psprel 14 pspoff
rnat_sprel 15 spoff
priunat_when_gr 16 t
priunat_psprel 17 pspoff
priunat_sprel 18 spoff
priunat_when_mem 19 t

Stack pointer offsets (spof f) are represented as positive word offsets from the top of the stack
frame(i.e., thelocationissp + 4 * spof f). Previous stack pointer offsets (pspof f) are encoded
as positive numbers representing a negative word offset relativetopsp+16 (i.e., thelocationispsp
+ 16 — 4 * pspoff).

ByteO Bytel Byte 2
76543210 76543210 76543210
FormatP9 (11110001 [0000|grmask |0 ar

Thisformat is used only by thegr _gr descriptor record.

Itanium™ Software Conventions and Runtime Architecture Guide

Inte|® Unwind Descriptor Record Format

Thebitsin the gr mask field correspond to the preserved general registers (r 4—r 7). The bitsare
read from right to left: bit O of byte 1 correspondstor 4, and bit 3 correspondstor 7.

Thegr field identifiesthe general register in which the first of these registersis stored. Additional
general registersare used as needed. For example, assumethatr 4, r 5, and r 7 are stored. The mask

bits would be 1011, and gr might be set to 37, indicating that the three preserved general registers
arestoredinr 37, r 38, and r 39, respectively.

ByteO Bytel Byte 2
76543210 76543210 76543210
Format P10 1111|1111 abi context

Thisformat isreserved for ABI-specific unwind descriptor records, typically to identify aregion
whose stack frame indicates some saved context record (e.g., a Unix signal context).

The values currently defined for the abi field are shown in the following table:

Value ABI

0 Unix SVR4
1 HP-UX

2 Windows NT

Theinterpretation of the cont ext field is ABI dependent.

B.4 Descriptor Records for Body Regions

Theepi | ogue, | abel _st at e, and copy_st at e descriptor records can each appear in two
formats, depending on the magnitudes of their fields.

ByteO
76543210
Format B1 |10|r| label

Thisrecord isused for the short form of | abel _st at e and copy_st at e descriptor records. If the

| abel isno greater than 31, this format may be used; otherwise, format B4 must be used. The
record types are shown in the following table:

Record Type r
label_state 0
copy_state 1

Itanium™ Software Conventions and Runtime Architecture Guide B-7

Unwind Descriptor Record Format

Format B2

ByteO

76543210

11 0| ecount

t (ULEB128)

Thisformat is used only for the short form of the epi | ogue descriptor record. If the ecount field
isno greater than 31, thisformat may be used; otherwise, format B3 must be used.

Format B3

Thisformat is used only for the long form of the epilogue descriptor record.

Format B4

ByteO

76543210

11100000

t (ULEB128)

ecount (ULEB128)

ByteO

76543210

1111|ri000

label (ULEB128)

Thisformat is used only for the long form of thel abel _st at e and copy_st at e descriptor
records. The record types are shown in the following table:

Record Type

label_state 0
copy_state 1
B.5 Descriptor Records for Body or Prologue Regions

The record formats listed here describe general spills and restores, and may appear in either body
or prologue regions.

Format X1

ByteO
76543210 76543210
1111j2001 reg t (ULEB128)

spoff/pspoff (ULEB128)

Thisformat isused by thespi I | _psprel andspil | _sprel descriptor records, which identify
when aregister is saved by spilling to the memory stack. Ther bit identifies the record type, as
shown in the following table:

Record Type

spill_psprel

spill_sprel

B-8

Itanium™ Software Conventions and Runtime Architecture Guide

Inte|® Unwind Descriptor Record Format

Thea, b, andr eg fieldsidentify the register being spilled. The encodings are given in the
following table:

Record Type

@

reg

GR 4-7
FR 2-5 or 16-31

= Q
Q

BR 1-5

o
=

Predicates
psp

priunat

rp

ar.bsp
ar.bspstore
ar.rnat
ar.unat

ar.fpsr

© 0 N oo o b~ wWw N P O

ar.pfs

e N T = T = T = T = S S S S S = B o)
[R e N N N T = = = = S = N I = 5

ar.lc

=
o

ByteO Bytel Byte 2
76543210 76543210 76543210

Format X2 [11111010| (x|albl reg y treg t (ULEB128)

Thisformat isused only by the spi | | _r eg descriptor record, which identifies when aregister is
saved by copying to another register, or when aregister is restored from its spill location. The
register being saved or restored isidentified by the a, b, and reg fields, using the same encodings
given above for Format X 1. The target register to which the saved register is copied isidentified by
thex, y, and treg fields; aspecial encoding also indicatesthe “restore” operation. The encodings for
these fields are given in the following table;

Record Type X y treg
Restore 0 0 0
GR 1-127 0 0 gr
FR 2-127 0 1 fr
BR 0-7 1 0 br

Itanium™ Software Conventions and Runtime Architecture Guide B-9

Unwind Descriptor Record Format Intel o

B-10

ByteO Byte 1l Byte 2
76543210 76543210 76543210
Format X3 (11111011} |ri0 ap Olalb| reg
t (ULEB128) spoff/pspoff (ULEB128)

Thisformat isused by thespi I | _psprel _p andspi || _sprel _p descriptor records, which

identify when aregister is saved under control of apredicate. Ther bit identifiesthe record type, as
shown in the following table:

Record Type r
spill_psprel_p 0
spill_sprel_p 1

The gp field identifies the controlling predicate. The remaining fields are encoded the same as
Format X1.

ByteO Bytel Byte 2 Byte 3
76543210 76543210 76543210 76543210
Format X4 [1111/1100] |00 ap x|lalb| reg y treg

t (ULEB128)

Thisformat isused only by thespi | | _r eg_p descriptor record, which identifieswhen aregister is

saved to another register under control of apredicate, or when aregister isrestored under control of
apredicate.

The gp field identifies the controlling predicate. The remaining fields are encoded the same as
Formats X1 and X2.

Itanium™ Software Conventions and Runtime Architecture Guide

	1 Introduction
	1.1 Objectives of the Runtime Architecture
	1.2 About the Conventions
	1.3 Overview of the Itanium™ Software Conventions and Runtime Architecture Guide
	1.4 Terminology

	2 Processor Architecture
	2.1 Application State and Programming Model
	2.2 Floating-point Programming Model
	2.3 System State and Programming Model
	2.4 Addressing and Protection
	2.5 Interruptions

	3 Memory Model
	3.1 Program Segments
	3.2 Protection Areas
	3.3 Data Allocation
	3.3.1 Global Variables
	3.3.2 Local Static Data
	3.3.3 Constants and Literals
	3.3.4 Local Memory Stack Variables

	4 Data Representation
	4.1 Fundamental Types
	4.2 Aggregate Types
	4.3 Bit Fields
	4.4 Fortran Data Types

	5 Register Usage
	5.1 Partitioning
	5.2 General Registers
	5.3 Floating-point Registers
	5.4 Predicate Registers
	5.5 Branch Registers
	5.6 Application Registers
	5.7 User Mask

	6 Register Stack
	6.1 Input and Local Registers
	6.2 Output Registers
	6.3 Rotating Registers
	6.4 Frame Markers
	6.5 Backing Store for Register Stack

	7 Memory Stack
	7.1 Procedure Frames

	8 Procedure Linkage
	8.1 External Naming Conventions
	8.2 The gp Register
	8.3 Types of Calls
	8.4 Calling Sequence
	8.4.1 Direct Calls
	8.4.2 Indirect Calls

	8.5 Parameter Passing
	8.5.1 Allocation of Parameter Slots
	8.5.2 Register Parameters
	8.5.3 Memory Stack Parameters
	8.5.4 Variable Argument Lists
	8.5.5 Pointers to Formal Parameters
	8.5.6 Languages Other than C
	8.5.7 Rounding Floating-point Values
	8.5.8 Examples

	8.6 Return Values
	8.7 Requirements for Unwinding the Stack

	9 Coding Conventions
	9.1 Sample Code Sequences
	9.1.1 Addressing “own” Data in the Short Data Area
	9.1.2 Addressing External Data or Data in a Long Data Area
	9.1.3 Addressing Literals in the Text Segment
	9.1.4 Materializing Function Pointers
	9.1.5 Direct Procedure Calls
	9.1.6 Indirect Procedure Calls
	9.1.7 Jump Tables

	9.2 Speculation
	9.3 Multi-threaded Code
	9.4 Use of Temporary Registers around the Call to setjmp
	9.5 Up-level Referencing
	9.6 C++ Conventions

	10 Context Management
	10.1 Process/Thread Context
	10.2 User-level Thread Switch, Coroutines
	10.3 setjmp/longjmp

	11 Stack Unwinding and Exception Handling
	11.1 Unwinding the Stack
	11.1.1 Initial Context
	11.1.2 Step to Previous Frame

	11.2 Exception Handling Framework
	11.3 Coding Conventions for Reliable Unwinding
	11.3.1 Conventions for Prologue Regions
	11.3.2 Conventions for Body Regions
	11.3.3 Conventions for the Spill Area in the Memory Stack Frame

	11.4 Data Structures
	11.4.1 Unwind Table
	11.4.2 Unwind Descriptor Area
	11.4.3 Language-specific Data Area

	12 Dynamic Linking
	12.1 Position-independent Code
	12.2 Procedure Calls and Long Branch Stubs
	12.3 Access to the Data Segment
	12.3.1 Access to Constants and Literals in the Text Segment
	12.3.2 Materializing Function Pointers

	12.4 Import Stubs
	12.5 The Dynamic Loader

	13 System Interfaces
	13.1 Program Startup
	13.1.1 Initial Memory Stack
	13.1.2 Initial Register Values

	13.2 System Calls
	13.3 Traps and Signals

	A Standard Header Files
	A.1 Implementation Limits
	A.2 Floating-point Definitions
	A.3 Variable Argument List Macros
	A.4 setjmp/longjmp

	B Unwind Descriptor Record Format
	B.1 Overview
	B.2 Region Header Records
	B.3 Descriptor Records for Prologue Regions
	B.4 Descriptor Records for Body Regions
	B.5 Descriptor Records for Body or Prologue Regions

