
Itanium™ Software Conventions 
and Runtime Architecture Guide

May 2001

Document Number: 245358-003



Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any 
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no 
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties 
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are 
not intended for use in medical, life saving, or life sustaining applications. 

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for 
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. 
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr.

Itanium is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.

*Other brands and names may be claimed as the property of others.

Copyright © 2001, Intel Corporation.



Contents
1 Introduction......................................................................................................................1-1

1.1 Objectives of the Runtime Architecture ..............................................................1-1
1.2 About the Conventions .......................................................................................1-1
1.3 Overview of the Itanium™ Software Conventions and Runtime

Architecture Guide..............................................................................................1-2
1.4 Terminology........................................................................................................1-2

2 Processor Architecture ....................................................................................................2-1

2.1 Application State and Programming Model ........................................................2-1
2.2 Floating-point Programming Model ....................................................................2-2
2.3 System State and Programming Model..............................................................2-2
2.4 Addressing and Protection .................................................................................2-3
2.5 Interruptions .......................................................................................................2-3

3 Memory Model.................................................................................................................3-1

3.1 Program Segments ............................................................................................3-1
3.2 Protection Areas.................................................................................................3-2
3.3 Data Allocation ...................................................................................................3-4

3.3.1 Global Variables ................................................................................3-4
3.3.2 Local Static Data ...............................................................................3-4
3.3.3 Constants and Literals.......................................................................3-4
3.3.4 Local Memory Stack Variables..........................................................3-4

4 Data Representation .......................................................................................................4-1

4.1 Fundamental Types............................................................................................4-1
4.2 Aggregate Types ................................................................................................4-2
4.3 Bit Fields.............................................................................................................4-4
4.4 Fortran Data Types ............................................................................................4-7

5 Register Usage................................................................................................................5-1

5.1 Partitioning .........................................................................................................5-1
5.2 General Registers ..............................................................................................5-1
5.3 Floating-point Registers .....................................................................................5-2
5.4 Predicate Registers ............................................................................................5-3
5.5 Branch Registers................................................................................................5-3
5.6 Application Registers..........................................................................................5-4
5.7 User Mask ..........................................................................................................5-5

6 Register Stack .................................................................................................................6-1

6.1 Input and Local Registers...................................................................................6-1
6.2 Output Registers ................................................................................................6-1
6.3 Rotating Registers..............................................................................................6-2
6.4 Frame Markers ...................................................................................................6-2
6.5 Backing Store for Register Stack .......................................................................6-2

7 Memory Stack .................................................................................................................7-1

7.1 Procedure Frames..............................................................................................7-1
Itanium™ Software Conventions and Runtime Architecture Guide iii



8 Procedure Linkage ..........................................................................................................8-1

8.1 External Naming Conventions............................................................................8-1
8.2 The gp Register..................................................................................................8-1
8.3 Types of Calls ....................................................................................................8-1
8.4 Calling Sequence ...............................................................................................8-2

8.4.1 Direct Calls ........................................................................................8-2
8.4.2 Indirect Calls......................................................................................8-4

8.5 Parameter Passing.............................................................................................8-5
8.5.1 Allocation of Parameter Slots ............................................................8-6
8.5.2 Register Parameters .........................................................................8-7
8.5.3 Memory Stack Parameters..............................................................8-10
8.5.4 Variable Argument Lists ..................................................................8-10
8.5.5 Pointers to Formal Parameters .......................................................8-10
8.5.6 Languages Other than C.................................................................8-10
8.5.7 Rounding Floating-point Values ......................................................8-11
8.5.8 Examples.........................................................................................8-11

8.6 Return Values ..................................................................................................8-13
8.7 Requirements for Unwinding the Stack............................................................8-14

9 Coding Conventions........................................................................................................9-1

9.1 Sample Code Sequences ..................................................................................9-1
9.1.1 Addressing “own” Data in the Short Data Area .................................9-1
9.1.2 Addressing External Data or Data in a Long Data Area....................9-1
9.1.3 Addressing Literals in the Text Segment...........................................9-2
9.1.4 Materializing Function Pointers .........................................................9-2
9.1.5 Direct Procedure Calls ......................................................................9-2
9.1.6 Indirect Procedure Calls ....................................................................9-2
9.1.7 Jump Tables......................................................................................9-3

9.2 Speculation ........................................................................................................9-3
9.3 Multi-threaded Code...........................................................................................9-4
9.4 Use of Temporary Registers around the Call to setjmp .....................................9-4
9.5 Up-level Referencing..........................................................................................9-4
9.6 C++ Conventions ...............................................................................................9-5

10 Context Management....................................................................................................10-1

10.1 Process/Thread Context ..................................................................................10-1
10.2 User-level Thread Switch, Coroutines..............................................................10-2
10.3 setjmp/longjmp .................................................................................................10-2

11 Stack Unwinding and Exception Handling ....................................................................11-1

11.1 Unwinding the Stack ........................................................................................11-2
11.1.1 Initial Context...................................................................................11-2
11.1.2 Step to Previous Frame...................................................................11-2

11.2 Exception Handling Framework .......................................................................11-3
11.3 Coding Conventions for Reliable Unwinding....................................................11-5

11.3.1 Conventions for Prologue Regions..................................................11-5
11.3.2 Conventions for Body Regions........................................................11-6
11.3.3 Conventions for the Spill Area in the Memory Stack Frame............11-7

11.4 Data Structures ................................................................................................11-8
11.4.1 Unwind Table ..................................................................................11-8
11.4.2 Unwind Descriptor Area ..................................................................11-9
11.4.3 Language-specific Data Area........................................................11-19
iv Itanium™ Software Conventions and Runtime Architecture Guide



12 Dynamic Linking ............................................................................................................12-1

12.1 Position-independent Code ..............................................................................12-1
12.2 Procedure Calls and Long Branch Stubs .........................................................12-1
12.3 Access to the Data Segment............................................................................12-1

12.3.1 Access to Constants and Literals in the Text Segment ...................12-2
12.3.2 Materializing Function Pointers .......................................................12-2

12.4 Import Stubs .....................................................................................................12-2
12.5 The Dynamic Loader ........................................................................................12-2

13 System Interfaces..........................................................................................................13-1

13.1 Program Startup ...............................................................................................13-1
13.1.1 Initial Memory Stack ........................................................................13-1
13.1.2 Initial Register Values......................................................................13-1

13.2 System Calls ....................................................................................................13-1
13.3 Traps and Signals ............................................................................................13-2

A Standard Header Files ................................................................................................... A-1

A.1 Implementation Limits ....................................................................................... A-1
A.2 Floating-point Definitions................................................................................... A-1
A.3 Variable Argument List Macros ......................................................................... A-2
A.4 setjmp/longjmp .................................................................................................. A-3

B Unwind Descriptor Record Format ................................................................................. B-1

B.1 Overview ........................................................................................................... B-1
B.2 Region Header Records.................................................................................... B-2
B.3 Descriptor Records for Prologue Regions......................................................... B-3
B.4 Descriptor Records for Body Regions ............................................................... B-7
B.5 Descriptor Records for Body or Prologue Regions ........................................... B-8

Figures

4-1 Structure Smaller Than a Word..........................................................................4-2
4-2 No Padding.........................................................................................................4-3
4-3 Internal Padding .................................................................................................4-3
4-4 Internal and Tail Padding ...................................................................................4-3
4-5 Union Allocation .................................................................................................4-4
4-6 Bit Numbering.....................................................................................................4-5
4-7 Bit Field Allocation..............................................................................................4-5
4-8 Boundary Alignment ...........................................................................................4-5
4-9 Storage Unit Sharing ..........................................................................................4-6
4-10 Union Allocation .................................................................................................4-6
4-11 Unnamed Bit Fields ............................................................................................4-6
6-1 Operation of the Register Stack .........................................................................6-3
7-1 Procedure Frame ...............................................................................................7-1
8-1 Direct Procedure Calls .......................................................................................8-2
8-2 Indirect Procedure Calls .....................................................................................8-4
8-3 Parameter Passing in General Registers and Memory ......................................8-5
8-4 Examples of “LSB” Alignment ............................................................................8-8
8-5 Example of “Byte 0” Alignment...........................................................................8-9
11-1 Components of the Exception Handling Mechanism........................................11-4
11-2 Unwind Table and Example of Language-specific Data Area ..........................11-8
Itanium™ Software Conventions and Runtime Architecture Guide v



Tables

2-1 Software Interrupts.............................................................................................2-2
3-1 Program Segments ............................................................................................3-1
3-2 Protection Areas.................................................................................................3-2
3-3 Alignment Requirements for Global Objects ......................................................3-4
4-1 Scalar Data types Supported by Itanium™ Processors .....................................4-1
4-2 Bit Field Base Types ..........................................................................................4-4
4-3 Fortran Data Types ............................................................................................4-7
5-1 General Registers ..............................................................................................5-1
5-2 Floating-point Registers .....................................................................................5-2
5-3 Predicate Registers............................................................................................5-3
5-4 Branch Registers................................................................................................5-3
5-5 Application Registers .........................................................................................5-4
8-1 Rules for Allocating Parameter Slots .................................................................8-6
8-2 Rules for Return Values ...................................................................................8-13
10-1 Resources to be Saved on Context Switches ..................................................10-1
11-1 Region Header Records.................................................................................11-10
11-2 Prologue Descriptor Records for the Stack Frame ........................................11-11
11-3 Prologue Descriptor Records for the Return Pointer......................................11-11
11-4 Prologue Descriptor Records for the Previous Function State.......................11-12
11-5 Prologue Descriptor Records for Predicate Registers ...................................11-12
11-6 Prologue Descriptor Records for GRs, FRs and BRs ....................................11-13
11-7 Prologue Descriptor Records for the User NaT Collection Register ..............11-14
11-8 Prologue Descriptor Records for the Loop Counter Register.........................11-14
11-9 Prologue Descriptor Records for the Floating-point Status Register .............11-14
11-10 Prologue Descriptor Records for the Primary Unat Collection .......................11-14
11-11 Prologue Descriptor Records for the Backing Store ......................................11-15
11-12 Body Region Descriptor Records...................................................................11-15
11-13 General Unwind Descriptors ..........................................................................11-16
13-1 Initial Value of the Floating-point Status Register ............................................13-1
B-1 Record Formats ................................................................................................ B-1
B-2 Example ULEB128 Encodings .......................................................................... B-2
vi Itanium™ Software Conventions and Runtime Architecture Guide



Introduction 1

This document describes common software conventions for the Itanium architecture. It does not 
define operating-system interfaces or any conventions specific to any single operating system. 

The runtime architecture defines most of the conventions necessary to compile, link, and execute a 
program on an operating system that supports these conventions. Its purpose is to ensure that object 
modules produced by different compilers can be linked together into a single application, and to 
specify the interfaces between compilers and linker, and between linker and operating system. 

The runtime architecture does not specify the Application Programming Interface (API), the set of 
services provided by the operating system to the program, nor does it specify certain conventions 
that are specific to each operating system. Thus, conformance to the runtime architecture alone is 
not sufficient to produce a program that will execute on all Itanium architecture platforms. It does, 
however, allow many of the development tools to be shared among various operating systems. 

When combined with the instruction set architecture, an API, and system-specific conventions, this 
runtime architecture leads to an Application Binary Interface (ABI). In other words, an ABI is 
composed of an API, system-specific conventions, a hardware description, and a runtime 
architecture. 

1.1 Objectives of the Runtime Architecture

This document defines the software interfaces needed to ensure that software for Itanium 
architecture platforms will operate correctly together. The intent is to define as small a set of 
interface specifications as possible, while still meeting the following goals: 

•  Support 64-bit addressing and data types

•  High performance

•  Ease of porting

•  Ease of interfacing with IA-32 

•  Ease of implementation and use

•  Complete enough to insure software compatibility

1.2 About the Conventions

ANSI C serves as the reference programming language. By defining the implementation of C data 
types, the software conventions can give precise system interface information without resorting to 
assembly language. Giving C language bindings for system services does not preclude bindings for 
other programming languages. Moreover, the examples given here are not intended to specify any 
particular C language implementation available on the system.
Itanium™ Software Conventions and Runtime Architecture Guide 1-1



Introduction
1.3 Overview of the Itanium™ Software Conventions 
and Runtime Architecture Guide

Chapter 1, “Introduction” is this introductory material. 

Chapter 2, “Processor Architecture” describes the features of the Itanium architecture that are 
relevant to this guide.

Chapter 3, “Memory Model” explains the memory layout of the application.

Chapter 4, “Data Representation” specifies the representation of a number of data types of 
significance to the software conventions.

Chapter 5, “Register Usage” presents the software conventions for using the user-mode register 
resources of the Itanium architecture.

Chapter 6, “Register Stack” presents the software conventions for using the register stack 
supported by the Itanium architecture.

Chapter 7, “Memory Stack” presents the software conventions for using the traditional memory 
stack.

Chapter 8, “Procedure Linkage” presents the procedure calling conventions.

Chapter 9, “Coding Conventions” presents a number of example code sequences illustrating the 
software conventions.

Chapter 10, “Context Management” identifies the processor state that makes up a process or thread 
context, and discusses various forms of user-level context switching.

Chapter 11, “Stack Unwinding and Exception Handling” explains the framework for processing 
exceptions and unwinding the stack.

Chapter 12, “Dynamic Linking” presents the software conventions related to dynamic linking.

Chapter 13, “System Interfaces” discusses the software conventions related to the underlying 
operating system.

Appendix A, “Standard Header Files” provides example definitions for implementation limits, 
floating-point constants, variable-argument list macros, and setjmp/longjmp.

Appendix B, “Unwind Descriptor Record Format” defines the internal representation of the stack 
unwind tables discussed in Chapter 11.

1.4 Terminology

The following terms will be used in the rest of this document:

Absolute address In this document, the term absolute address refers to a virtual address, 
not a physical address. It is an address within the process’ address space 
that is computed as an absolute number, without the use of a base 
register. 

Binding The process of resolving a symbolic reference in one module by finding 
the definition of the symbol in another module, and substituting the 
1-2 Itanium™ Software Conventions and Runtime Architecture Guide



Introduction
address of the definition in place of the symbolic reference. The linker 
binds relocatable object modules together, and the DLL loader binds 
executable load modules. When searching for a definition, the linker and 
DLL loader search each module in a certain order, so that a definition of 
a symbol in one module has precedence over a definition of the same 
symbol in a later module. This order is called the binding order. 

Dynamic-link library (DLL)
A library that is prepared by the linker for quick loading and binding 
when a program is invoked, or while the program is running. A DLL is 
designed so that its code is shared by all processes that are bound to it. 
(Also called shared library.) 

Execution time The time during which a program is actually executing, not including the 
time during which it and its DLLs are being loaded. 

External alignment The property of an array or structure that specifies the minimum 
alignment boundary for the array or structure as a whole. The array or 
structure must begin at a memory address that is a multiple of its external 
alignment. In general, a structure’s external alignment must be no less 
than the largest of the internal alignment of its elements. 

Function pointer A reference or pointer to a function. A function pointer takes the form of 
a pointer to a special descriptor (a function descriptor) that uniquely 
identifies the function. The function descriptor contains the address of 
the function’s actual entry point as well as its global data pointer (gp).

Global data pointer (gp) The address of a reference location in a load module’s data segment, 
usually kept in a specified general register during execution. Each load 
module has a single such reference point, typically near the middle of the 
load module’s linkage table. Applications use this pointer as a base 
register to access linkage table entries, and data that is local to the load 
module.

Internal alignment The property of an element of an array or structure that specifies the 
minimum alignment boundary for that element relative to the whole 
array or structure.The element must begin at an offset that is a multiple 
of its internal alignment. (compare with external alignment.) 

Link time The time when a program or DLL is processed by the linker. Any activity 
taking place at link time is static. 

Linkage table A table of addresses that contains pointers to code or data that is external 
to the load module, or that cannot be addressed directly. Each load 
module contains a linkage table in its data segment, which allows 
external references to be bound dynamically without modifying the 
application’s code.

Load module An executable unit produced by the linker, either a main program or a 
DLL. A program consists of at least a main program, and may also 
require one or more DLLs to be loaded to satisfy its dependencies. 

Own data Data belonging to a load module that is referenced directly from that load 
module and that is not subject to the binding order. If a module 
references a data item symbolically, and another module earlier in the 
binding order defines an item with the same symbolic name, the 
reference is bound to the data item in the earlier module. If this is the 
case, the data is not “own.” Typically, own data is local in scope. 
Itanium™ Software Conventions and Runtime Architecture Guide 1-3



Introduction
PC-relative addressing Code that uses its own address (commonly called the program counter, 
or “PC”; this is called the instruction pointer, or IP, in the IA-64 
architecture) as a base register for addressing other code and data. 

Position-independent code (PIC)
This term has a dual meaning. First, position-independent code is 
designed so that it contains no dependency on its own load address; 
usually, this is accomplished by using pc-relative addressing so that the 
code does not contain any absolute addresses. Second, it also implies that 
the code is also designed for dynamic binding to global data; this is 
usually done by using indirect addressing through a linkage table. 

Preserved register A register that is guaranteed to be preserved across a procedure call. 

Program invocation time The time when a program or DLL is loaded into memory in preparation 
for execution. Activities taking place at program invocation time are 
generally performed by the system loader or dynamic loader. 

Protection area. A portion of a segment that shares common access protections.

Region The IA-64 architecture divides the address space into four or eight 
regions. In general, the runtime architecture is independent of which 
segments are assigned to which region. 

Scratch register A register that is not preserved across a procedure call. 

Segment An area of memory that has specific attributes, and behaves as a fixed 
unit at runtime. All items within a segment have a fixed address 
relationship to one another at execution time, and have a common set of 
attributes. Items in different segments do not necessarily bear this 
relationship, and an application may not depend on one. For example, the 
program text segment is defined to contain the main program code, 
unwind information, and read-only data. The use of this term is not 
related to the concept of a segment in the IA-32 architecture, nor is it 
directly related to the concept of a segment in an object file.

Static (1) Any data or code object that is allocated at a fixed location in memory 
and whose lifetime is that of the entire process, regardless of its scope.

(2) A binding that takes place at link time rather than program invocation 
or execution time. 
1-4 Itanium™ Software Conventions and Runtime Architecture Guide



Processor Architecture 2

It is assumed that applications conforming to this specification will run in a software environment 
provided by some operating system, and that additional conventions will be specified as part of the 
Application Binary Interface (ABI) for that operating system. It is further assumed that the 
operating system will restrict the application’s access to the physical resources of the machine, by 
limiting the privilege level of the application and by using virtual memory to define the address 
space available to the application.

The Intel® IA-64 Architecture Software Developer’s Manual defines the IA-64 application 
instruction set architecture. Programs intended to execute directly on an IA-64 processor use the 
instruction set, instruction encodings, and instruction semantics defined in the Intel® IA-64 
Architecture Software Developer’s Manual. Three points deserve explicit mention:

• A program may assume all documented instructions exist.

• A program may assume all documented instructions work.

• A program may use only the instructions defined by the architecture.

In other words, from a program’s perspective, the execution environment provides a complete and 
working implementation of IA-64.

This does not imply that the underlying implementation provides all instructions in hardware, only 
that the instructions perform the specified operations and produce the specified results. The 
software conventions neither place performance constraints on systems nor specify what 
instructions must be implemented in hardware. A software emulation of the architecture could 
conform to these conventions.

Some processors might support IA-64 as a subset, providing additional instructions or capabilities. 
Programs that use those capabilities explicitly do not conform to these conventions. Executing 
those programs on machines without the additional capabilities results in undefined behavior.

These conventions are intended for application use, and so use only features found in user mode. 
Applications should assume that they will execute in user mode (privilege level 1, 2, or 3), and that 
any attempt to use processor resources restricted to privilege level 0 will cause a trap that may 
terminate the process.

2.1 Application State and Programming Model

An application may use all features of IA-64 that are described in the Application State and 
Programming Model section of the Intel® IA-64 Architecture Software Developer’s Manual.

Application use of the break instruction is subject to the following conventions:

• Immediate operands whose three highest-order bits are 000 are reserved for architected 
software interrupts. These software interrupts are listed in Table 2-1. Application programs 
(typically language runtime support libraries) may check for these conditions and raise these 
interrupts, but are not required to do so. Immediate operands in this range, and not listed in the 
table, are reserved for future use.

• Immediate operands whose three highest-order bits are 001 are available for application use as 
software interrupts. The behavior of these interrupts, however, is ABI specific.
Itanium™ Software Conventions and Runtime Architecture Guide 2-1



Processor Architecture
• Immediate operands whose two highest-order bits are 01 are reserved for debugger 
breakpoints. Use of debugger breakpoints is ABI specific.

• Immediate operands whose highest-order bit is 1 are reserved for definition by each ABI. It is 
expected that some operating systems may use values in this range for system-level debugging 
features and system calls.

Note: Itanium™ processors do not deliver the immediate operand of a break.b instruction to the cr.iim 
register. The operating system software must therefore decode the break.b instruction to obtain 
the immediate operand.

2.2 Floating-point Programming Model

An application may use all features of the processor architecture that are described in the Floating-
Point Programming Model section of the Intel® IA-64 Architecture Software Developer’s Manual.

2.3 System State and Programming Model

The features of the processor architecture that are described in the System State and Programming 
Model section of the Intel® IA-64 Architecture Software Developer’s Manual are intended for the 
exclusive use of the operating system software, with the following exceptions:

• The Interval Time Counter application register may be read by applications, except when 
running in a secure operating environment that explicitly restricts this access.

• The explicit serialization instructions may be used by an application.

• An application may read and modify the user mask portion of the PSR, although some changes 
may result in unexpected and incorrect interactions with the operating system software. 
Changes to the user mask should be done only as allowed by the ABI.

Table 2-1. Software Interrupts

Operand Software Interrupt

0 Unknown program error (typically an indirect branch through an uninitialized pointer, which often 
leads to a bundle containing all zeroes)

1 Integer divide by zero

2 Integer overflow

3 Range check/bounds check error

4 Nil pointer dereference

5 Misaligned data

6 Decimal overflow

7 Decimal divide by zero

8 Packed decimal error

9 Invalid ASCII digit (unpacked decimal arithmetic)

10 Invalid decimal digit (packed decimal arithmetic)

11 Paragraph stack overflow (COBOL)
2-2 Itanium™ Software Conventions and Runtime Architecture Guide



Processor Architecture
• An application may use the RSE-related instructions, and may read and modify the resources 
associated with the register stack engine that are not restricted to privilege level 0.

Note that the debug and performance monitor control registers are restricted for use by the 
operating system software, which may provide access to the capabilities provided by these 
hardware features through its APIs. Although the performance monitor counter registers are 
readable by user-mode code, effective use of the registers is dependent on ABI-specific services.

2.4 Addressing and Protection

The features of the processor architecture that are described in the Addressing and Protection 
section of the Intel® IA-64 Architecture Software Developer’s Manual are intended for the 
exclusive use of the operating system software, with the following exceptions:

• An application may use the addp4 and shladdp4 instructions to convert a 32-bit virtual 
address to a 64-bit virtual address.

• The operating system software may provide access to certain page attributes, including 
caching and ordering attributes, through its API. The use of such features is ABI specific.

• Applications may use the probe instructions, but a failure result does not necessarily indicate 
a lack of permission. In particular, a probe for write access to a copy-on-write page is not 
guaranteed to return a success result. The operating system software is permitted to nullify a 
faulting probe instruction, so application software must pre-initialize the target register in order 
to distinguish a success result from a nullified probe instruction.

2.5 Interruptions

The features of the processor architecture that are described in the Interruptions section of the 
Intel® IA-64 Architecture Software Developer’s Manual are intended for the exclusive use of the 
operating system software.
Itanium™ Software Conventions and Runtime Architecture Guide 2-3



Processor Architecture
2-4 Itanium™ Software Conventions and Runtime Architecture Guide



Memory Model 3

These conventions define a virtual memory system with a 64-bit virtual address space per process. 
Each operating system may divide this address space into different portions, and assign specific 
uses to each portion. 

This chapter describes the types of memory segments and protection areas that an application 
process uses, and documents the assumptions that an application may make about those segments. 
From a different perspective, it documents the minimum requirements that must be satisfied by an 
operating system with respect to its allocation of these program segments in the virtual address 
space. 

The term segment is used here to identify an area of memory that has a specific use within an 
application and has no fixed address relationship to any other segment. Thus, relative distances 
between any two items belonging to the same segment are constant once the program has been 
linked, but the distance between two items in different segments is not fixed. It does not imply the 
use of hardware segmentation, or any specific allocation of segments to hardware regions. In 
particular, this definition of segment has no relation to the traditional IA-32 segment, nor does it 
necessarily correspond exactly to the definition of a segment in an object file.

Segments may cross region boundaries. Region IDs should be transparent to the application. Note 
that more than one region register may point to the same region.

Segments are composed of one or more protection areas. The term protection area is used to 
indicate an area of memory that has common protection attributes.

3.1 Program Segments

Table 3-1 lists the types of program segments that are defined by the runtime architecture, and 
defines the minimum set of attributes that an operating system must provide for these segments.

Table 3-1. Program Segments

Segment Type Sharable Quantity Address by Contents

Text Yes 1 per load module IP or linkage table Text, unwind information, 
constants and literals

Short Data No 1 per load module gp Static data, bss, linkage tables

Long Data No any linkage table Long data, bss

Heap No any pointer Heap data

Stack No 1 per thread sp Memory stacks

Backing Store No 1 per thread bsp Backing store for register stacks

Thread Data No 1 per thread tp Thread-local storage

Shared Data Yes any pointer Shared memory
Itanium™ Software Conventions and Runtime Architecture Guide 3-1



Memory Model
The sharable attribute indicates whether or not the memory contained within such a segment may 
be shared between two or more processes. For text segments, this implies that an operating system 
will probably not grant write access, in order to make the text segment pure. For this reason, the 
runtime architecture does not place anything into the text segment that may need to be written at 
either program invocation time or execution time. 

The runtime architecture does not specify how an operating system will make a particular segment 
sharable. It may place sharable segments in separate regions, or it may place the entire program in 
a process-private address space and use address aliasing to share memory. The runtime architecture 
is designed to be neutral with respect to this operating system design parameter. Segments may 
cross hardware region boundaries, but only if transparent to the application. Code is not aware of 
region IDs.

A program consists of several load modules: the main program, and one for each DLL that it uses. 
Each load module consists of at least a text segment and a short data segment. The addresses of 
these segments are not fixed at link time, so all accesses to these segments must be either ip-
relative (for text), gp-relative (for short data and the linkage table), or indirect via the linkage table. 
The gp register and its conventions are described in Chapter 8, “Procedure Linkage”. 

DLL data may be allocated at execution time. This implies that DLL data segment sizes need not 
be fixed at linkage time.

Each operating system is expected to provide some form of heap management, although the 
runtime architecture does not have any explicit dependencies on such. The API for obtaining heap 
memory, however, is operating system dependent, and the runtime architecture places no 
restrictions on the locations or contiguity of separately-allocated items from the heap. 

Each thread is provided with two stacks: one for the classical memory stack, and one for the 
register stack backing store. Each thread also has a separate data segment for thread-local storage. 
These segments must all be allocated from the process’ virtual address space, so that one thread 
may use a pointer that refers to another thread’s local storage. The sp register and its conventions 
are described in Chapter 7, “Memory Stack,”, and the bsp register is described in Chapter 6, 
“Register Stack”. The tp register is reserved to provide a handle for accessing thread-local storage, 
but this usage is ABI dependent.

Like the heap, shared data segments are obtained through an operating system-specific API. The 
runtime architecture places no restrictions on the locations of these segments. 

3.2 Protection Areas

Table 3-2 lists the minimum access protection for the protection areas defined in the runtime 
architecture:

Table 3-2. Protection Areas

Segment Protection Area Min. Access

Text

Text X

Constants R

Unwind Tables R

Short data

Static Data R, W

Short Bss R, W

Linkage Tables R, W
3-2 Itanium™ Software Conventions and Runtime Architecture Guide



Memory Model
In order to make the most effective use of the addressing modes available in IA-64, each load 
module’s data is partitioned into one short and some number of long data segments. The short data 
segment, addressed by the gp register in each load module, contains the following areas: 

• A linkage table, containing pointers to imported data symbols and functions, and to data in the 
text segments and long data segments. 

• A short data area, containing small initialized “own” data items. 

• A short bss area, containing small uninitialized “own” data items. 

The long data segments contain either or both of the following areas:

• A long data area, containing large initialized data items, and initialized non-“own” data items 
of any size. 

• A long bss area, containing large uninitialized data items, and uninitialized non-“own” data 
items of any size. 

“Own” data items are those that are either local to a load module, or are such that all references to 
these items from the same load module will always refer to these items. That is, they are not subject 
to being overridden by an exported symbol of the same name in another load module. All data 
items in the main program satisfy this definition, since the main program is always the first load 
module in the binding sequence. Since non-“own” variables cannot be referenced directly, there is 
no benefit to placing them in the short data or bss area. 

Small “own” data items are placed in the short bss or short data, and are guaranteed to be within 
2 megabytes, in either direction, of the gp address, so compilers may use a short direct addressing 
sequence (using the add with 22-bit immediate instruction) to access any data item allocated in 
these areas. The compiler should place all “own” data items that are 8 bytes or less in size, 
regardless of structure, in the short data or short bss areas. 

All other data items, including items that are larger than 8 bytes in size, or that require indirect 
addressing because of load-time binding, must be placed in the long data or long bss area. The 
compiler must address these items indirectly, using a linkage table entry. Linkage table entries are 
typically allocated by the linker in response to a relocation request generated by the compiler; an 
entry in the linkage table is either an 8-byte pointer to a data item, or a 16-byte function descriptor. 
A function descriptor placed in the linkage table is a local copy of an “official” function descriptor 
that is generally allocated by the linker or dynamic loader.

This design allows for a maximum size of 4 megabytes for the short data segment, since everything 
must be addressable via the gp register using the 22-bit add immediate instruction. Given that 
linkage table entries are 8 byte pointers for data references, and 16 bytes long for procedure 
references, this allows for up to 256,000 individually-named variables and functions. If a load 
module requires more than this, the compilers will need to support a “huge” memory model, which 
is not described here. 

Protection areas are required to be aligned only as strictly as their contents.

Long data
Long Data R, W

Bss R, W

Heap Heap R, W

Stack Stack R, W

Backing store Backing store R, W

Thread data Thread data R, W

Shared data Shared data R, W

Table 3-2. Protection Areas (Cont’d)

Segment Protection Area Min. Access
Itanium™ Software Conventions and Runtime Architecture Guide 3-3



Memory Model
3.3 Data Allocation

3.3.1 Global Variables

Common blocks, dynamically allocated regions (for example, from malloc), and external data 
items greater than 8 bytes must all be aligned on a 16-byte boundary. Smaller data items must be 
aligned on the next larger power-of-two boundary. Table 3-3 shows the alignment requirements for 
different size objects.

Access to global variables that are not known (at compile time) to be defined in the same load 
module must be indirect. Each load module has a linkage table in its data segment, pointed to by 
the gp register; code must load a pointer to the global variable from the linkage table, then access 
the global variable through the pointer. Access to globals known to be defined in the same load 
module or to static locals that are placed in short-data section may be made with a gp-relative 
offset. 

3.3.2 Local Static Data

Access to short local static data can be made with a gp-relative offset; access to long local static 
data must be indirect.

3.3.3 Constants and Literals

Constants and literals may be placed in the text segment or in the data segment. If placed in the text 
segment, the access must be ip-relative or indirect using a linkage table entry.

Literals placed in the data segment may be placed in the short initialized data area if they are 
8 bytes or less in size. Larger literals must be placed in the long initialized data area or in the text 
segment. Literals in the long initialized data area require an indirect access using a linkage table 
entry. 

3.3.4 Local Memory Stack Variables

Access is sp-relative. 

Stack frames must always be aligned on a 16-byte boundary. The stack pointer register must 
always be aligned on a 16-byte boundary.

Table 3-3. Alignment Requirements for Global Objects

Size in Bytes Alignment Required

1 none

2 0 mod 2 (even addresses)

3–4 0 mod 4

5–8 0 mod 8

9 and up 0 mod 16
3-4 Itanium™ Software Conventions and Runtime Architecture Guide



Data Representation 4

Applications running in a 64-bit environment use either the “P64” or “LP64” data model: integers 
are always 32 bits, while pointers are 64 bits. Long integers may be either 32 or 64 bits, depending 
on the data model: they are 32 bits in “P64” and 64 bits in “LP64”.

Within this specification, the term halfword refers to a 16-bit object, the term word refers to a 32-
bit object, the term doubleword refers to a 64-bit object, and the term quadword refers to a 128-bit 
object.

The following sections define the size, alignment requirements, and hardware representation of the 
standard C and Fortran data types.

Note: The Itanium™ architecture does not require hardware support for misaligned data access. If 
provided by a processor implementation, the support may be disabled by the alignment check (ac) 
bit in the user mask. Whether supported directly by hardware, by software emulation, or by a 
combination, misaligned data accesses will cause a substantial performance penalty, and these 
conventions do not require the hardware or the OS to support them. The alignment rules in this 
chapter have been chosen to maximize performance, and to guarantee that programs will execute 
correctly on systems with no support for misaligned data accesses.

4.1 Fundamental Types

Table 4-1 lists the scalar data types supported by the architecture. Sizes and alignments are shown 
in bytes. A null pointer (for all types) has the value zero.

The types __int64, __int128, _float80, and __float128 are used in this document for notational 
convenience only; they are not meant to imply that any implementation must support these specific 
type names. Each ABI specification is expected to specify these specific type names for whichever 
of these types are supported by that ABI.

Table 4-1. Scalar Data types Supported by Itanium™ Processors

Type C Size Align Hardware Representation

Integral a

char
signed char 1 1 signed byte

unsigned char 1 1 unsigned byte

short
signed short 2 2 signed halfword

unsigned short 2 2 unsigned halfword

int
signed int
enum

4 4 signed word

unsigned int 4 4 unsigned word

__int64
signed __int64 8 8 signed doubleword

unsigned __int64 8 8 unsigned doubleword

__int128 b

signed __int128 b 16 16 signed 128-bit integer

unsigned __int128 b 16 16 unsigned 128-bit integer
Itanium™ Software Conventions and Runtime Architecture Guide 4-1



Data Representation
4.2 Aggregate Types

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned 
component. The size of any object, including aggregates and unions, is always a multiple of the 
object’s alignment. An array uses the same alignment as its elements. Structure and union objects 
can require padding to meet size and alignment constraints. The contents of any padding is 
undefined.

• An entire structure or union object is aligned on the same boundary as its most strictly aligned 
member.

• Each member is assigned to the lowest available offset with the appropriate alignment. This 
may require internal padding, depending on the previous member.

• A structure’s size is increased, if necessary, to make it a multiple of the alignment. This may 
require tail padding, depending on the last member.

In the following figures, members’ byte offsets appear in the upper right corners for little-endian, in 
the upper left for big-endian.

Pointer any-type *
any-type (*) () 8 8 unsigned doubleword

Floating-point float 4 4 IEEE single precision

double 8 8 IEEE double precision

__float80 c 16 16 IEEE double-extended precision

__float128 d 16 16 quad precision

a. Shift right of signed data types sign-extends.
b. __int128 is not directly supported by the hardware, and these conventions do not require an operating system environment 

to support this type through emulation. Size and alignment conventions are specified here, however, for those 
implementations that do choose to support this type. Note also that the (non-standard) long long data type is not specified 
by these conventions, and its definition is ABI specific. It may be implemented as a 64-bit integer, a 128-bit integer, or not 
at all.

c. __float80 is the IA-64 extended 80-bit quantity, but the software standard is to treat it as a 16-byte quantity. It is referenced 
using ldfe and stfe instructions. This type has the same precision and range as the 80 bit extended data type of the IA-32 
architecture, but with different size and alignment.

d. __float128 is not directly supported by the hardware, and these conventions do not require an operating system 
environment to support this type through emulation. Size, representation, and alignment conventions are specified here, 
however, for those implementations that do choose to support this type. A quad-precision floating-point number is a 128-bit 
quantity with a sign bit, a 15-bit biased exponent, and a 112-bit mantissa with an implicit integer bit.

Table 4-1. Scalar Data types Supported by Itanium™ Processors (Cont’d)

Type C Size Align Hardware Representation

Figure 4-1. Structure Smaller Than a Word

struct {
    char   c;
}; c

0

Byte aligned, sizeof is 1

c0
4-2 Itanium™ Software Conventions and Runtime Architecture Guide



Data Representation
Figure 4-2. No Padding

Figure 4-3. Internal Padding

Figure 4-4. Internal and Tail Padding

struct {
    char   c;
    char   d;
    short  s;
    int n;
};

Little endian, word aligned, sizeof is 8

c
0

d
1

s
2

Big endian, word aligned, sizeof is 8

c
0

d
1 s2

n
4

n
4

struct {
    char   c;
    short  s;
};

Little endian, halfword aligned, sizeof is 4

c
0

pad
1

s
2

Big endian, halfword aligned, sizeof is 4

c
0

pad
1

s
2

struct {
    char   c;
    double d;
    short  s;
};

c
01

pad

pad
4

d (low)
8

c

12

pad
16

pad
20

s

d (high)
18

c
0 1

pad

pad
4

d (high)
8

c

12

pad
16

pad
20

s

d (low)
18

Big endian, doubleword aligned, sizeof is 24

Little endian, doubleword aligned, sizeof is 24
Itanium™ Software Conventions and Runtime Architecture Guide 4-3



Data Representation
4.3 Bit Fields

C struct and union definitions may have bit-fields that define integral objects with a specified 
number of bits. Table 4-2 defines the allowable widths and corresponding range of values for bit 
fields of each base type.

Bit-fields obey the same size and alignment rules as other structure and union members, with the 
following additions:

• Bit-fields are allocated from right to left (least to most significant) for little endian.  They are 
allocated left to right (most to least significant) for big-endian.

• A bit-field must entirely reside in a storage unit appropriate for its declared type. For example, 
a bit field of type short must never cross a halfword boundary.

• Bit-fields may share a storage unit with other struct/union members, including members 
that are not bit-fields. Of course, each struct member occupies a different part of the 
storage unit.

• Unnamed bit-fields do not affect the alignment of a structure or union.

Figure 4-5. Union Allocation

union {
    char   c;
    short  s;
    int j;
};

Little endian, word aligned, sizeof is 4

c
01

pad

cpad
0

j
0

s
2

Big endian, word aligned, sizeof is 4

c
0 1

pad

cpad
0

j
0

s 2

Table 4-2. Bit Field Base Types

Base Type Width w Range

unsigned char 1 to 8 0 to 2w–1

signed char 1 to 8 –2w–1 to 2w–1–1

unsigned short 1 to 16 0 to 2w–1

signed short 1 to 16 –2w–1 to 2w–1–1

unsigned int 1 to 32 0 to 2w–1

signed int 1 to 32 –2w–1 to 2w–1–1

unsigned long 1 to 64 0 to 2w–1

signed long 1 to 64 –2w–1 to 2w–1–1

Byte
Order
4-4 Itanium™ Software Conventions and Runtime Architecture Guide



Data Representation
• Zero-length bit-fields force the alignment of following member of a structure to the next 
alignment boundary corresponding to the type of the bit field. An un-named zero-length bit 
field, however, will not force the external alignment of the structure to that boundary. 

• If an unnamed bit field is used to establish an internal alignment more restrictive than the 
external alignment, it is possible that the stricter alignment will not be maintained when the 
structure or union is allocated in memory.

The following figures show struct and union member byte offsets in the upper corners; bit 
numbers appear in the lower corners.

Figure 4-6. Bit Numbering

Figure 4-7. Bit Field Allocation

Figure 4-8. Boundary Alignment

0xF1F2F3F4

F4
0

07
F3

1

815
F2

2

1623
F1

3

2431

Little endian

F4
0

0 7
F3

1

8 15
F2

2

16 23
F1

3

24 31

Big endian

struct {
    int    j:5;
    int    k:6;
    int    m:7;
};

j
0

04
pad

1831
k

510
m

1117

Little Endian,word aligned, sizeof is 4

0
pad

18

Big Endian, word aligned, sizeof is 4

m
11 17

k
5 10

j
0 4 31

struct {
    short s:9;
    __int64 j:9;
    char c;
    short t:9;
    short u:9;
    char d;
};

s
0

08
c

3
j

917
pad

1823

Little Endian, doubleword aligned, sizeof is 16

t
4

08
pad

6
pad

915
u

09815

dpad
9 8

pad
0

12
31

s
0

0 8
c

3
j

9 17
pad

18 23

Big Endian, doubleword aligned, sizeof is 16

t4

0 8
pad

6
pad

9 15
u

0 8 15

d pad
98

pad
0

12

31

9

Itanium™ Software Conventions and Runtime Architecture Guide 4-5



Data Representation
Note: Unnamed bit fields do not affect the alignment of the structure.

As the examples show, int and __int64 bit-fields (including signed and unsigned) usually 
pack more densely than smaller base types. One can use char and short bit-fields to force 
allocation within those types, but int is generally more efficient.

Figure 4-9. Storage Unit Sharing

Figure 4-10. Union Allocation

Figure 4-11. Unnamed Bit Fields

struct {
    char   c;
    short  s:8;
};

01

15
c

8
s

Little-endian, halfword aligned, sizeof is 2

0 1

15
c

8
s

Big-endian, halfword aligned, sizeof is 2

union {
    char   c;
    short  s:8;
};

0 1
c pad

Big-endian, halfword aligned, sizeof is 2

0

15
s

7 8
pad

0

01
cpad

Little-endian, halfword aligned, sizeof is 2

0

15
s

8 7
pad

0

0 c

pad
15

:9
89

pad
5

d

1
:0

4 6

0

struct {
    char   c;
    int :0;
    char   d;
    short  :9;
    char   e;
    char   :0;
};

0
c

pad

Little-endian, byte aligned, sizeof is 9

15
:9

98
pad

5
d

8

1

e

:0

46

0

Big-endian, byte aligned, sizeof is 9

8
e

4-6 Itanium™ Software Conventions and Runtime Architecture Guide



Data Representation
4.4 Fortran Data Types

Table 4-3 shows the correspondence between ANSI Fortran’s scalar types and the processor’s data 
types. ANSI Fortran requires REAL and INTEGER to be the same size. Many Fortran compilers 
allow INTEGER*n, LOGICAL*n, and REAL*n to specify specific processor sizes. (“n” is in 
bytes). The COMPLEX data type is treated exactly the same as a C structure composed of two 
float members.

Table 4-3. Fortran Data Types

Type Fortran Size Align
(bytes) Hardware Representation

Character CHARACTER*n n 1 byte

Integral
LOGICAL 4 4 word

INTEGER 4 4 signed word

Floating-point

REAL 4 4 IEEE single-precision

DOUBLE PRECISION 8 8 IEEE double-precision

COMPLEX 8 4 2 IEEE single-precision
Itanium™ Software Conventions and Runtime Architecture Guide 4-7



Data Representation
4-8 Itanium™ Software Conventions and Runtime Architecture Guide



Register Usage 5

5.1 Partitioning

Registers are partitioned into the following classes: 

• Scratch registers may be modified by a procedure call; the caller must save these registers 
before a call if needed (“caller save”).

• Preserved registers must not be modified by a procedure call; the callee must save and restore 
these registers if used (“callee-save”). 

• Automatic registers are saved and restored automatically by the call/return mechanism. 

• Constant or Read-only registers contain a fixed value that cannot be changed by the program.

• Special registers are used in the call/return mechanism. The conventions for these registers are 
described individually below.

5.2 General Registers

General registers are used for integer arithmetic and other general-purpose computations. Table 5-1 
lists the general registers.

• r1 is the global data pointer (gp), which is designated to hold the address of the currently 
addressable global data segment. Its use is subject to the following conventions:

a. On entry to a procedure, gp is guaranteed valid for that procedure.

b. At any direct procedure call, gp must be valid (for the caller). This guarantees that an 
import stub (see Section 8.4.1) can access the linkage table.

Table 5-1. General Registers

Register Class Usage

r0 constant Always 0

r1 special Global data pointer (gp)

r2–r3 scratch Use with 22-bit immediate add

r4–r7 preserved

r8 scratch Return value; structure/union return pointer

r8–11 scratch Return values

r12 special Memory stack pointer (sp)

r13 special Reserved as a thread pointer (tp)

r14–r31 scratch

in0–in95 automatic Stacked input registers (see below)

loc0–loc95 automatic Stacked local registers (see below)

out0–out95 scratch Stacked output registers (see below)
Itanium™ Software Conventions and Runtime Architecture Guide 5-1



Register Usage
c. Any procedure call (indirect or direct) may modify gp—unless the call is known to be local 
to the load module.

d. At procedure return, gp must be valid (for the returning procedure). This allows the 
compiler to optimize calls known to be local (i.e., the exceptions to Rule ‘c’).

The effect of these rules is that gp must be treated as a scratch register at a point of call (i.e., it 
must be saved by the caller), and it must be preserved from entry to exit.

• r4–r7 are general-purpose preserved registers, and can be used for any value that needs to 
be preserved across a procedure call. A procedure using one of the preserved general registers 
must save and restore the caller’s original contents, including the NaT bits associated with the 
registers, without generating a NaT consumption fault. This can be done by either copying the 
register to a stacked register or by using the st8.spill and ld8.fill instructions and then 
saving ar.unat. 

• r8 is used as the struct/union return pointer register. If the function being called returns 
a struct or union value larger than 32 bytes, then register GR 8 contains, on entry, the 
appropriately-aligned address of the caller-allocated area to contain the value being returned. 
(See Section 8.6.)

• r8–r11 are used for non-floating-point return values up to 32 bytes. Functions do not have 
to preserve their values for the caller.

• r12 is the stack pointer, which holds the limit of the current stack frame, the address of the 
stack’s bottom-most valid word. At all times, the stack pointer must point to a 0 mod 16 
aligned area. The stack pointer is also used to access any memory arguments upon entry to a 
function. Except in the case of dynamic stack allocation (e.g., alloca), this register is 
preserved across any functions called by the current function. A call to a function that does not 
preserve the stack pointer must notify the compiler, to cause the generation of code that 
behaves properly. Failure to notify the compiler leads to undefined behavior. The standard 
function calling sequence does not include any method to detect such failures. This allows the 
compiler to use the stack pointer to reference stack items without having to set up a frame 
pointer for this purpose.

• r13  is reserved for use as a thread pointer. The usage of this register is ABI specific. 
Programs conforming to these conventions may not modify this register.

• r32–r39 (in0–in7) are used as incoming argument registers. Arguments beyond these 
registers appear in memory, as explained in Chapter 8. Refer to the discussion below on 
structures and unions. 

• r32–r127 are stacked registers. Code may allocate a register stack frame of up to 96 
registers with the alloc instruction, and partition this frame into three regions: input registers 
(in0, in1, ...), local registers (loc0, loc1, ...), and output registers (out0, out1, ...). The 
input and local regions are automatic, and the output region is scratch. See Chapter 6, 
“Register Stack” for more information.

5.3 Floating-point Registers

Floating-point registers are used for floating-point computations and certain integer computations, 
such as multiply and divide. Table 5-2 lists the floating-point registers.

Table 5-2. Floating-point Registers

Register Class Usage

f0 constant Always 0.0

f1 constant Always 1.0
5-2 Itanium™ Software Conventions and Runtime Architecture Guide



Register Usage
• f2–f5 and f16–f31 are preserved floating-point registers, and can be used for any value 
that needs to be preserved across a procedure call. A procedure using one of the preserved 
floating-point registers must save and restore the caller’s original contents without generating 
a NaT consumption fault. This can be done by using the stf.spill and ldf.fill 
instructions.

• f8–f15 are used as incoming floating-point argument registers. Floating-point arguments 
are placed in these registers when possible. Arguments beyond the registers appear in memory, 
as explained in Section 8.5. Within the called function, these are local scratch registers and are 
not preserved for the caller.

Floating-point return values also appear in these registers. Single, double, and extended values 
are all returned using the appropriate format. 

• f32–f127 can be used as rotating registers. They are available as normal scratch registers if 
rotation is not being used.

5.4 Predicate Registers

Predicate registers are single-bit-wide registers used for controlling the execution of predicated 
instructions. Table 5-3 lists the predicate registers.

5.5 Branch Registers

Branch registers are used for making indirect branches. Table 5-4 lists the branch registers.

• b0  contains the return address on entry to a procedure; it is a scratch register otherwise.

f2–f5 preserved

f6–f7 scratch

f8–f15 scratch Argument/return registers

f16–f31 preserved

f32–f127 scratch Rotating registers or scratch

Table 5-2. Floating-point Registers (Cont’d)

Register Class Usage

Table 5-3. Predicate Registers

Register Class Usage

p0 constant always 1

p1–p5 preserved fixed

p6–p15 scratch fixed

p16–p63 preserved rotating

Table 5-4. Branch Registers

Register Class Usage

b0 scratch Return link

b1–b5 preserved

b6–b7 scratch
Itanium™ Software Conventions and Runtime Architecture Guide 5-3



Register Usage
5.6 Application Registers

Application registers are special-purpose registers designated for application use. Table 5-5 lists 
the application registers.

• ar.fpsr is the floating-point status register. This register is divided into several fields:

Trap Disable Bits (bits 5–0). The trap disable bits must be preserved by the callee, 
except for procedures whose documented purpose is to change these bits.

Status Field 0. The control bits must be preserved by the callee; except for procedures 
whose documented purpose is to change these bits. The flag bits are the IEEE floating point 
standard sticky bits and are part of the static state of the machine. 

Status Field 1. This status field is dedicated for use by divide and square root code, and 
must always be set to standard values at any procedure call boundary (including entry to 
exception handlers). These standard values are: trap disable set, round-to-nearest mode, 80-bit 
(extended) precision, widest range for exponent on, and flush-to-zero mode off. The flag bits 
are scratch. 

Status Fields 2 and 3. The control bits in these status fields must agree with the control 
bits in status field 0, and the trap disable bits should always be set at procedure calls and 
returns. The flag bits are always available for scratch use. 

• ar.rnat holds the NaT bits for values stored by the register stack engine. These bits are 
saved automatically in the register stack backing store.

• ar.unat holds the NaT bits for values stored by the st8.spill instruction. As a preserved 
register, it must be saved before a procedure can issue any st8.spill instructions. The saved 
copy of ar.unat in a procedure’s frame hold the NaT bits from the registers spilled by its 
caller; these NaT bits are thus associated with values local to the caller’s caller.

• ar.pfs contains information that records the state of the caller’s register stack frame and 
epilog counter. It is overwritten on a procedure call; therefore, it must be saved before issuing 
any procedure calls, and restored prior to returning.

Table 5-5. Application Registers

Register Class Usage

ar.fpsr see below Floating-point status register

ar.rnat automatic RSE NaT collection register

ar.unat preserved User NaT collection register

ar.pfs special Previous function state

ar.bsp read-only Backing store pointer

ar.bspstore special Backing store store pointer

ar.rsc see below RSE control

ar.lc preserved Loop counter

ar.ec automatic Epilog counter (preserved in ar.pfs)

ar.ccv scratch Compare and Exchange comparison value

ar.itc read-only Interval time counter

ar.k0–ar.k7 read-only Kernel registers

ar.csd scratch Reserved for future use

ar.ssd scratch Reserved for future use
5-4 Itanium™ Software Conventions and Runtime Architecture Guide



Register Usage
• ar.bsp contains the address in the backing store corresponding to the base of the current 
frame. This register may be modified only as a side effect of writing ar.bspstore while the 
Register Stack Engine (RSE) is in enforced lazy mode.

• ar.bspstore contains the address of the next RSE store operation. It may be read or written 
only while the RSE is in enforced lazy mode. Under normal operation, this register is managed 
by the RSE, and application code should not write to it, except when performing a stack 
switching operation.

• ar.rsc is the register stack configuration register. This register is divided into several fields:

Mode. This field controls the RSE behavior, and has scratch behavior. On a return, this field 
may be set to a standard value.

Privilege level. This field controls the privilege level at which the RSE operates, and may 
not be changed by non-privileged software.

Endian mode. This field controls the byte ordering used by the RSE, and should not be 
changed by an application.

• ar.csd and ar.ssd are reserved for use as implicit operand registers in future extensions to 
the Itanium architecture. To ensure forward compatibility, software must treat these registers 
as part of the process state

5.7 User Mask

The User Mask register contains five bits that may be modified by an application program. These 
bits are subject to the following conventions:

• be (Big Endian Memory Access Enable) When an application program starts, the system will 
set/clear the be bit will according to the programming model for which the program was 
compiled. The application must not change the value of this bit. If it does, the behavior is 
undefined.

• up (User Performance Monitor Enable) The use of this bit by an application program is ABI 
dependent.

• ac (Alignment Check) The application may set or clear this bit as desired. If the ac bit is clear, 
an unaligned memory reference may cause the system to deliver an exception to the 
application, or the system may emulate the unaligned reference. If the ac bit is set, an 
unaligned reference will always cause the system to deliver an exception to the application. 
The initial value of this bit is ABI dependent.

• mfl/mfh (Lower/Upper floating-point registers written) The application should not clear 
either of these bits unless the values in the corresponding registers are no longer needed (for 
example, it may clear the mfh bit when returning from a procedure, since the upper set of 
floating-point registers is all scratch). Doing so otherwise may cause unpredictable behavior.
Itanium™ Software Conventions and Runtime Architecture Guide 5-5



Register Usage
5-6 Itanium™ Software Conventions and Runtime Architecture Guide



Register Stack 6

General registers 32 through 127 form a register stack that is automatically managed across 
procedure calls and returns. Each procedure frame on the register stack is divided into two 
dynamically-sized regions—one for input parameters and local variables, and one for output 
parameters. On a procedure call, the registers are automatically renamed by the hardware so that 
the caller’s output registers form the base of the callee’s new register stack frame. On return, the 
registers are restored to the previous state, so that the input and local registers are preserved across 
the call. 

The alloc instruction is used at the beginning of a procedure to allocate the input, local, and 
output regions; the sizes of these regions are supplied as immediate operands. A procedure is not 
required to issue an alloc instruction if it does not need to store any values in its register stack 
frame. It may still read values from input registers, but it may not write to a stack register without 
first issuing an alloc instruction.

Figure 6-1 illustrates the operation of the register stack across an example procedure call. In this 
example, the caller allocates eight input, twelve local, and four output registers, and the callee 
allocates four input, six local, and five output registers. 

The actual registers to which the stacking registers are physically mapped are not directly 
addressable by the application software. 

6.1 Input and Local Registers

The hardware makes no distinction between input and local registers. The caller’s output registers 
automatically become the callee’s entire register stack frame on a procedure call, with all registers 
initially allocated as output registers. An alloc instruction may increase or decrease the total size 
of the register stack frame, and may adjust the boundary between the input and local region and the 
output region.

The software conventions specify that up to eight registers are used for parameter passing. Any 
registers in the input and local region beyond those eight may be allocated for use as preserved 
locals. Floating-point parameters may produce “holes” in the parameter list that is passed in the 
general registers; those unused input registers may also be used for preserved locals. 

The caller’s output registers do not need to be preserved for the caller. Once an input parameter is 
no longer needed, or has been copied elsewhere, that register may be reused for any other purpose 
within the procedure. 

6.2 Output Registers

Up to eight output registers are used for passing parameters. If a procedure call requires fewer than 
eight general registers for its parameters, the calling procedure does not need to allocate more than 
are needed. If the called procedure expects more parameters, it will allocate extra input registers; 
these registers will be uninitialized. 
Itanium™ Software Conventions and Runtime Architecture Guide 6-1



Register Stack
A procedure may also allocate more than eight registers in the output region. While the extra 
registers may not be used for passing parameters, they can be used as extra scratch registers. On a 
procedure call, they will show up in the called procedure’s output area as excess registers, and may 
be modified by that procedure. The called procedure may also allocate few enough total registers in 
its stack frame that the top of the called procedure’s frame is lower than the caller’s top of frame, 
but those registers will become available again when control returns to the caller. 

6.3 Rotating Registers

A subset of the registers in the procedure frame may be designated as rotating registers. The 
rotating register region always starts with r32, and may be any multiple of eight registers in 
number, up to a maximum of 96 rotating registers. The renaming is under control of the Rotating 
Register Base (RRB). 

If the rotating registers include any or all of the output registers, software must be careful when 
using the output registers for passing parameters, since a non-zero RRB will change the virtual 
register numbers that are part of the output region. In general, software should either ensure that the 
rotating region does not overlap the output region, or that the RRB is cleared to zero before setting 
output parameter registers. 

6.4 Frame Markers

The current application-visible state of the stack frame is stored in an architecturally inaccessible 
register called the current frame marker. On a procedure call, this register is automatically saved by 
copying it to an application register, the previous function state (ar.pfs). The current frame 
marker is modified to describe a new stack frame whose input and local area is initially zero size, 
and whose output area is equal in size to the previous output area. On return, the previous frame 
state register is used to restore the current frame marker to its earlier value, and the base of the 
register stack is adjusted accordingly.

It is the responsibility of a procedure to save the previous function state register before issuing any 
procedure calls of its own, and to restore it before returning. 

6.5 Backing Store for Register Stack

When the depth of the procedure call stack exceeds the capacity of the physical register file, the 
hardware frees physical registers by saving them into a memory stack. This backing store is distinct 
from the memory stack described in the next chapter. 

As returns unwind the procedure call stack, the hardware also restores previously-saved physical 
registers from the backing store. 

The operation of this register stack engine (RSE) is mostly transparent to application software. 
While the RSE is running, application software may not examine the contents of the backing store, 
and may not make any assumptions about how much of the register stack is still in physical 
registers or in the backing store. In order to examine previous stack frames, application software 
must synchronize the RSE with the flushrs instruction. Synchronizing the RSE forces all stack 
frames up to, but not including, the current frame to be saved in backing store, allowing the 
software to examine the contents of the backing store without asynchronous operations modifying 
the memory. Modifications to the backing store require setting the RSE to “enforced lazy mode” 
6-2 Itanium™ Software Conventions and Runtime Architecture Guide



Register Stack
after synchronizing it, which prevents the RSE from doing any operations other than those required 
by calls and returns. The procedure for synchronizing the RSE and setting the mode is described in 
Section 10.2, “User-level Thread Switch, Coroutines” on page 10-2. 

The backing store grows towards higher addresses. When the RSE is synchronized and in enforced 
lazy mode, the top of the stack corresponding to the top of the previous procedure frame is 
available in the Backing Store Pointer (bsp) application register. 

Even when the RSE is in enforced lazy mode, the bsp must always point to a valid backing store 
address, since the operating system may need to start the RSE to process an exception. 

A NaT collection register is stored into the backing store after each group of 63 physical registers. 
For each register stored, its NaT bit is shifted into the collection register. When the bsp reaches the 
doubleword just before a 64 doubleword boundary, the RSE stores the collection register. Software 
can determine the position of the NaT collection registers in the backing store by examining the 
memory address. This process is described in greater detail in the Intel® IA-64 Architecture 
Software Developer’s Manual. 

Figure 6-1. Operation of the Register Stack

Caller’s Frame

Callee’s Frame after alloc

Input Local Output

Input Local Output

r32 r40 r52

r32 r36 r42

Callee’s Frame before alloc Output

r32
Itanium™ Software Conventions and Runtime Architecture Guide 6-3



Register Stack
6-4 Itanium™ Software Conventions and Runtime Architecture Guide



Memory Stack 7

The memory stack is used for local dynamic storage, spilled registers, and parameter passing. It is 
organized as a stack of procedure frames, beginning with the main program’s frame at the base of 
the stack, and continuing towards the top of the stack with nested procedure calls. At the top of the 
stack is the frame for the currently active procedure. (There may be some system-dependent frames 
at the base of the stack, prior to the main program’s frame, but an application program may not 
make any assumptions about them.) 

The memory stack begins at an address determined by the operating system, and grows towards 
lower addresses in memory. The stack pointer register, sp, always points to the lowest address in 
the current, top-most, frame on the stack. 

Each procedure creates its frame on entry by subtracting its frame size from the stack pointer, and 
removes its frame from the stack on exit by restoring the previous value of sp (usually by adding 
its frame size, but a procedure may save the original value of sp when its frame size may vary). 

Because the register stack is also used for the same purposes, not all procedures will need a stack 
frame. Every non-leaf procedure, however, needs to save at least its return link and the previous 
frame marker either on the register stack or in the memory stack, so there is an activation record for 
every non-leaf procedure on one or both of the stacks. 

7.1 Procedure Frames

A procedure frame consists of five regions, as illustrated in Figure 7-1.

These regions are:

• Local storage. A procedure may store local variables, temporaries, and spilled registers in 
this region. For conventions affecting the layout of this area for spilled register (see 
Section 11.3, “Coding Conventions for Reliable Unwinding” on page 11-5).

• Dynamically-allocated stack storage. This is a variable-sized region (initially zero 
length), that can be created by the C library alloca routine and similar routines. 

• Frame marker. This optional region may contain information required for unwinding 
through the stack (for example, a copy of the previous stack pointer). 

Figure 7-1. Procedure Frame

previous spsp

frame size

local
storage

dynamic
allocation

frame
marker

outgoing
parameters

scratch
area

16
bytes

lower addresses
Itanium™ Software Conventions and Runtime Architecture Guide 7-1



Memory Stack
• Outgoing parameters. Parameters in excess of those passed in registers are stored in this 
region of the stack frame. A procedure accesses its incoming parameters in the outgoing 
parameter region of its caller’s stack frame. 

• Scratch area. This 16-byte region is provided as scratch storage for procedures that are 
called by the current procedure. Leaf procedures do not need to allocate this region. A 
procedure may use the 16 bytes at the top of its own frame as scratch memory, but the contents 
of this area are not preserved by a procedure call.

The stack pointer must always be aligned at a 16-byte boundary. This implies that all stack frames 
must be a multiple of 16 bytes in size.

An application may not write to memory below the stack pointer, since this memory area may be 
written to asynchronously (for example, as a result of exception processing).

Most procedures are expected to have a fixed size frame, and the conventions are biased in favor of 
this. A procedure with a fixed size frame may reference all regions of the frame with a compile-
time constant offset relative to the stack pointer. Compilers should determine the total size required 
for each region, and pad the local storage area to make the total frame size a multiple of 16 bytes. 
The procedure may then create the frame by subtracting an immediate constant from the stack 
pointer in the prologue, and remove the frame by adding the same immediate to the stack pointer in 
the epilogue. 

If a procedure has a variable-size frame (for example, it contains a call to alloca), it should make 
a copy of sp to serve as a frame pointer before subtracting the initial frame size from the stack 
pointer. It may then restore the previous value of the stack pointer in the epilogue without regard 
for how much dynamic storage has been allocated within the frame. It may also use the frame 
pointer to access the local storage region, since offsets from sp will vary. 

A frame pointer, as described above, is not required, however, provided that the compiler uses an 
equivalent method of addressing the local storage region correctly before and after dynamic 
allocation, and provided that the code satisfies conditions imposed by the stack unwind 
mechanism. 

To expand a stack frame dynamically, the scratch area, outgoing parameters, and frame marker 
regions, which are always located relative to the current stack pointer must be relocated to the new 
top of stack. If the scratch area and outgoing parameter area are both clear of any live values, there 
is no actual work involved in relocating these areas. For procedures with dynamically-sized 
frames, it is recommended that the previous stack pointer value be stored in a local stacked general 
register instead of the frame marker, so that the frame marker is also empty. If the previous stack 
pointer is stored in the frame marker, the code must take care to ensure that the stack is always 
unwindable while the stack is being expanded (see Chapter 11, “Stack Unwinding and Exception 
Handling”).

Other issues depend on the compiler and the code being compiled. The standard calling sequence 
does not define a maximum stack frame size, nor does it restrict how a language system uses any 
stack frame region beyond those purposes described here. For example, the outgoing parameter 
region may be used as scratch storage whenever it is not needed for passing parameters. 
7-2 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage 8

8.1 External Naming Conventions

The standard naming convention, referred to as the “C” convention, specifies that all external 
symbols have linkage names identical to the source language identifier.  There are no leading or 
trailing underscores.  Other languages may establish other conventions, but they should provide a 
mechanism to define and reference symbols with “C” linkage. 

8.2 The gp Register

Every procedure that references statically-allocated data or calls another procedure requires a 
pointer to its data segment in the gp register, so that it can access its static data and its linkage 
tables. Each load module has its own data segment, and the gp register must be set correctly prior 
to calling any entry point within that load module. 

The linkage conventions require that each load module define exactly one gp value to refer to a 
location within its short data segment. It is expected that this location will be chosen to maximize 
the usefulness of short-displacement immediate instructions for addressing scalars and linkage 
table entries. The DLL loader will determine the absolute value of the gp register for each load 
module after loading its data segment into memory. 

For calls within a load module, the gp register will remain unchanged, so calls known to be local 
can be optimized accordingly. 

For calls between load modules, the gp register must be initialized with the correct gp value for the 
new load module, and the calling function must ensure that its own gp value is saved and restored. 

8.3 Types of Calls

The following types of procedure calls are defined:

• Direct calls.  Direct calls within the same load module may be made directly to the entry 
point of the target procedure.  In this case, the gp register does not need to be changed.

• Direct dynamically-linked calls.  These calls are routed through an import stub (which 
may be inlined at compile time if the call is known or suspected to be to another load module).  
The import stub obtains the address of the main entry point and the gp register value from the 
linkage table. Although coded in source as a direct call, dynamically-linked calls become 
indirect. 

• Indirect calls. A function pointer must point to a descriptor that contains both the address 
of the function entry point and the gp register value for the target function. The compiler must 
generate code for an indirect call that sets the new gp value before transferring control to the 
target procedure. 

• Special calls. Other special calling conventions are allowed to the extent that the compiler 
and the runtime library agree on convention, and provided that the stack may be unwound 
through such a call. Such calls are outside the scope of this document. See Section 8.7 for a 
discussion of stack unwind requirements.
Itanium™ Software Conventions and Runtime Architecture Guide 8-1



Procedure Linkage
8.4 Calling Sequence

Direct and indirect procedure calls are described in the following sections. Since the compiler is 
not required to know whether any given call is local or to another load module, the two types of 
direct calls are described together in the first section.

8.4.1 Direct Calls

Direct procedure calls follow the sequence of steps shown in Figure 8-1. The following paragraphs 
describe these steps in detail.

Preparation for call. Values in scratch registers that must be kept live across the call must be 
saved.  They can be saved by copying them into local dynamic registers, or by saving them on the 
memory stack. If the NaT bits associated with any live scratch registers must be saved, the 
compiler should use st8.spill or stf.spill instructions. The User NaT collection register 
itself is preserved by the call, so the NaT bits need no further treatment at this point. 

If the call is not known (at compile time) to be within the same load module, the gp register must 
be saved.

The parameters must be set up in registers and memory as described in Section 8.5. 

Procedure call. All direct calls are made with a br.call instruction, specifying BR 0 (also 
known as rp) for the return link. 

For direct local calls, the pc-relative displacement to the target is computed at link time. Compilers 
may assume that the standard displacement field in the br.call instruction is sufficiently wide to 
reach the target of the call. If the displacement is too large, the linker must supply a branch stub at 

Figure 8-1. Direct Procedure Calls

Caller Callee

Prepare call
• setup args
• save regs, gp

Call
• br.call

Import Stub
• load entry addr
• load new gp
• mov b=
• br

Entry
• alloc reg frame
• alloc mem frame
• save rtn BR
• save regs

Exit
• restore regs
• restore rtn BR
• de-alloc mem 

frame
• br.ret

After the call
• restore regs, gp

procedure body

C
al

le
r’

s 
lo

ad
 m

od
ul

e

C
al

le
e’

s 
lo

ad
 m

od
ul

e

8-2 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
some convenient point in the code; compilers must guarantee the existence of such a point by 
ensuring that code sections in the relocatable object files are no larger than the maximum reach of 
the br.call instruction. With a 25-bit displacement, the maximum reach is 16 megabytes in either 
direction from the point of call. 

Direct calls to other load modules cannot be statically bound at link time, so the linker must supply 
an import stub for the target procedure; the import stub obtains the address of the target procedure 
from the linkage table. The br.call instruction can then be statically bound using the pc-relative 
displacement to the import stub. 

The br.call instruction saves the return link in the return BR, saves the current frame marker in 
the ar.pfs register, and sets the base of the new register stack frame to the beginning of the output 
region of the old frame. 

Import stub (direct external calls only). The import stub is allocated in the load module 
of the caller, so that the br.call instruction may be statically bound to the address of the import 
stub. It must access the linkage table via the current gp (which means that gp must be valid at the 
point of call), and obtain the address of the target procedure’s entry point and its gp value. The 
import stub then establishes the new gp value and branches to the target entry point.

If the compiler knows or suspects that the target of a call is in a separate load module, it may wish 
to generate calling code that performs the functions of the import stub, saving an extra branch. The 
detailed operation of an import stub, however, is ABI specific.

When the target of a call is in the same load module, an import stub is not used (which also means 
that gp must be valid at the point of call). 

Procedure entry. The prologue code in the target procedure is responsible for allocating the 
register stack frame, and a frame on the memory stack, if necessary. It may use the 16 bytes at the 
top of its caller’s memory stack frame as scratch area. 

A non-leaf procedure must save the return BR and previous function state, either in the memory 
stack frame or in a local dynamic GR. 

The prologue must also save any preserved registers that will be used in this procedure.  The NaT 
bits for those registers must be preserved as well, by copying to local stacked general registers, or 
by using st8.spill or stf.spill instructions. The User NaT collection register (ar.unat) 
must be saved first, however, since it is guaranteed to be preserved by the call.

Procedure exit. The epilogue code is responsible for restoring the return BR and previous 
function state, if necessary, and any preserved registers that were saved. The NaT bits must be 
restored using the ld8.fill or ldf.fill instructions. The User NaT collection register must 
also be restored if it was saved. 

If a memory stack frame was allocated, the epilogue code must deallocate it. 

Finally, the procedure exits by branching through the return BR with the br.ret instruction. 

After the call. Any saved values (including gp) should be restored.  
Itanium™ Software Conventions and Runtime Architecture Guide 8-3



Procedure Linkage
8.4.2 Indirect Calls

Indirect procedure calls follow nearly the same sequence, except that the branch target is 
established indirectly. This sequence is illustrated in Figure 8-2. 

Function Pointers. A function pointer is always the address of a function descriptor for the 
target procedure. The function descriptor must be allocated in the data segment of the target 
procedure, because it contains pointers that must be relocated by the DLL loader.

The function descriptor contains at least two 64-bit double-words: the first is the entry point 
address, and the second is the gp value for the target procedure. An indirect call will load the gp 
value into the gp register before branching to the entry point address. 

In order to guarantee the uniqueness of a function pointer, and because its value is determined at 
program invocation time, code must materialize function pointers only by loading a pointer from 
the data segment. The object file format will provide appropriate relocations for this pointer. 

Preparation for call. Indirect calls are made by first loading the function pointer into a 
general register, loading the entry point address and the new gp value, then using the Move to 
Branch Register operation to move the address of the procedure entry point into the BR to be used 
for the call. 

Values in scratch registers that must be kept live across the call must be saved.  They can be saved 
by copying them into local dynamic registers, or by saving them on the memory stack. If the NaT 
bits associated with any live scratch registers must be saved, the compiler should use st8.spill 
or stf.spill instructions. The User NaT collection register itself is preserved by the call, so the 
NaT bits need no further treatment at this point. 

Figure 8-2. Indirect Procedure Calls

Caller Callee

Prepare call
• load func. ptr.
• load entry addr
• setup args
• mov b=
• save regs, gp
• load new gp

Call
• br.call

Entry
• alloc reg frame
• alloc mem frame
• save rtn BR
• save regs

Exit
• restore regs
• restore rtn BR
• de-alloc mem 

frame
• br.ret

After the call
• restore regs, gp

procedure body

C
al

le
r’

s 
lo

ad
 m

od
ul

e

C
al

le
e’

s 
lo

ad
 m

od
ul

e

entry point

gp value

Function DescriptorFunction
Pointer
8-4 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
Unless the call is known (at compile time) to be within the same load module, the gp register must 
be saved before the new gp value is loaded. 

The parameters must be set up in registers and memory as described in Section 8.5.

Procedure call. All indirect calls are made with the indirect form of the br.call instruction, 
specifying BR 0 (also known as rp) for the return link. 

The br.call instruction saves the return link in the return BR, saves the current frame marker in 
the ar.pfs register, and sets the base of the new register stack frame to the beginning of the output 
region of the old frame. Because the indirect call sequence obtains the entry point address and new 
gp value from the function descriptor, control flows directly to the target procedure, without the 
need for any intervening stubs. 

Procedure entry, exit, and return. The remainder of the calling sequence is the same as 
for direct calls. 

8.5 Parameter Passing

Parameters are passed in a combination of general registers, floating-point registers, and memory, 
as described below, and as illustrated in Figure 8-3. 

The parameter list is formed by placing each individual parameter into fixed-size elements of the 
parameter list, referred to as parameter slots. Each parameter slot is 64 bits wide; parameters larger 
than 64 bits are placed in as many consecutive parameter slots as are needed to contain the entire 
parameter. The rules for allocation and alignment of parameter slots are given later in this section.

The contents of the first eight parameter slots are always passed in registers, while the remaining 
parameters are always passed on the memory stack, beginning at the caller’s stack pointer plus 16 
bytes. The caller uses up to eight of the registers in the output region of its register stack for integer 
parameters, and up to eight floating-point registers for floating-point parameters. 

Figure 8-3. Parameter Passing in General Registers and Memory

slot 0 slot 1 slot 2 slot 3 slot 4 slot 5 slot 6 slot 7 slot 8 slot 9 slot 10 slot 11

out0 out1 out2 out3 out4 out5 out6 out7

+16 +24 +32 +40sp +8 +48

Parameter Slots

General Registers

Memory Stack
Itanium™ Software Conventions and Runtime Architecture Guide 8-5



Procedure Linkage
To accommodate variable argument lists in the C language, there is a fixed correspondence 
between parameter slots and output registers used for general register arguments. This allows a 
procedure to spill its register parameters easily to memory before stepping through the parameter 
list with a pointer. Also because of variable argument lists, floating-point parameters are sometimes 
passed in both general output registers and in floating-point registers.

There is no fixed correspondence between parameter slots and floating-point parameter registers. 
Parameters passed in floating-point registers always use the next available floating-point parameter 
register, starting with f8.

A procedure may assume that the NaT bits on its incoming general register arguments are clear, 
and that the incoming floating-point register arguments are not NaTVals. A procedure making a 
call must ensure only that registers containing actual parameters are clear of NaT bits or NaTVals; 
registers not used for actual parameters may contain garbage. 

8.5.1 Allocation of Parameter Slots

Parameters slots are allocated for each parameter, based on the parameter type and size, treating 
each parameter in sequence, from left to right. The rules for allocating parameter slots and placing 
the contents within the slot are given in Table 8-1.

NOTE: These rules are applied based on the type of the parameter after any type promotion rules specified by 
the language have been applied. For example, a short integer passed without a function prototype in C 
would be promoted to the int type, and would be passed according to the rules for the int type.

The allocation column of the table indicates how parameter slots are allocated for each type of 
parameter.

• “Next Available” means that the parameter is placed in the slot immediately following the last 
slot used.

• “Next Even” means that the parameter is placed in the next available even-numbered slot, 
skipping an odd-numbered slot if necessary. If an odd-numbered slot is skipped, it will not be 
used for any subsequent parameters.

• “Next Aligned” means that the allocation is dependent on the external alignment of the 
aggregate; that is, on the alignment boundary required for the aggregate as a whole. For 
aggregates with an external alignment of 1–8 bytes, the “Next Available” policy is used; for 
aggregates with an external alignment of 16 bytes, the “Next Even” policy is used.

This placement policy ensures that parameters will fall on a natural alignment boundary if passed 
in memory.

Table 8-1. Rules for Allocating Parameter Slots

Type Size (Bits) Allocation Number of 
Slots Alignment

Integer/Pointer 1–64 Next Available 1 LSB

Integer 65–128 Next Even 2 LSB

Single-Precision Floating-Point 32 Next Available 1 LSB

Double-Precision Floating-Point 64 Next Available 1 LSB

Double-Extended Floating-Point 80 Next Even 2 Byte 0

Quad-Precision Floating-Point 128 Next Even 2 Byte 0

Aggregates any Next Aligned (size+63)/64 Byte 0
8-6 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
The alignment column of the table indicates how parameters are aligned within a parameter slot. 
There are two kinds of alignment, “LSB” and “Byte 0.” 

• “LSB” alignment specifies that the least-significant bit of the parameter is aligned with the 
least-significant bit of the argument slot or slots (i.e., right aligned). Parameters shorter than 64 
or 128 bits are padded on the left; the padding is undefined (unless specified otherwise). When 
a pair of parameter slots is required, the even-numbered parameter slot contains the most-
significant bits in big-endian environments, and the least-significant bits in little-endian 
environments. See Figure 8-4 for examples.

• “Byte 0” alignment specifies that byte 0 of the parameter is aligned with byte 0 of the 
parameter slot. Parameters that are not a multiple of 64 bits in length are padded at the end; the 
padding is undefined. In big-endian environments, the padding will be at the right end of the 
final parameter slot; in little-endian environments, the padding will be at the left end of the 
final parameter slot. See Figure 8-5 for an example.

8.5.2 Register Parameters

The first eight parameter slots (64 bytes) are passed in registers, according to the rules in this 
section.

• These eight argument slots are associated, one-to-one, with the stacked output GRs, as shown 
in Figure 8-3.

• Integral scalar parameters, quad-precision (128-bit) floating-point parameters, and aggregate 
parameters in these slots are passed only in the corresponding output GRs. Aggregates 
consisting solely of floats, of doubles, or of double-extended values are an exception; see 
below.

• If an aggregate parameter straddles the boundary between slot 7 and slot 8, the part that lies 
within the first eight slots is passed in GRs, and the remainder is passed in memory, as 
described in the next section.

Single-precision, double-precision, and double-extended-precision floating-point scalar parameters 
in these slots are passed according to the available formal parameter information at the point of call 
(for example, from a function prototype).

If an actual parameter is known to correspond to a floating-point formal parameter, the following 
rules apply:

• The actual parameter is passed in the next available floating-point parameter register, if one is 
available. Floating-point parameter registers are allocated as needed from the range f8-f15, 
starting with f8.

• If all available floating-point parameter registers have been used, the actual parameter is 
passed in the appropriate general register(s). (This case can occur only as a result of 
homogeneous floating-point aggregates, described below.)

If a floating-point actual parameter is known to correspond to a variable-argument specification in 
the formal parameter list, the following rule applies:

• The actual parameter is passed in the appropriate general register(s).

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter 
is a varargs parameter, it must generate code that satisfies both of the above conditions. (The 
compiler’s determination may be based on prototype declarations, language standard assumptions, 
analysis, or other user options or information.)

Byte
Order

Byte
Order
Itanium™ Software Conventions and Runtime Architecture Guide 8-7



Procedure Linkage
When floating-point parameters are passed in floating-point registers, they are passed in the 
register format, rounded to the appropriate precision. When passed in general registers, floating-
point values are passed in their memory format.

Parameters allocated beyond the eighth parameter slot are never passed in registers, even when 
floating-point parameter registers remain unused.

Figure 8-4. Examples of “LSB” Alignment

31 0

63 32 31 0

Byte 0 Byte 7
Little-Endian
Big-Endian

int

slot 0

MSB LSB

MSB LSB

Byte 0Byte 7

Padding (undefined)

double MSB LSBSignificandExp.S

51 0526263

Byte 0 Byte 7
Little-Endian
Big-Endian

slot 0

Byte 0Byte 7

63 0

MSB LSBSignificandExp.S

515262

127 0

63 0

Byte 0 Byte 7 Little-EndianBig-Endian

__int128

slot 0

MSB LSB

MSB

63 0
slot 1

LSB

63 0

LSB

Byte 0Byte 7

63 0
slot 1

MSB

Byte 8 Byte 15 Little-EndianBig-Endian Byte 8Byte 15

slot 0
8-8 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
Aggregates whose elements are all single-precision, all double-precision, or all double-extended-
precision values (but not quad-precision), are treated specially. These “homogeneous floating-point 
aggregates” (HFAs) may be arrays of one of these types, structures whose only members are all one 
of these types, or structures that contain other structures, provided that all lowest-level members 
are one of these types, and all are the same type. (This definition includes Fortran COMPLEX data, 
except COMPLEX*32.) 

The following additional rules apply to these types of parameters (but only to the portion of an 
aggregate that lies within the first eight argument slots):

• If an actual parameter is known to correspond to an HFA formal parameter, each element is 
passed in the next available floating-point argument register, until the eight argument registers 
are exhausted. The remaining elements of the aggregate are passed in output GRs, according to 
the normal conventions.

• If an actual parameter is known to correspond to a variable-argument specification, the 
aggregate is passed as any other aggregate.

If the compiler cannot determine, at the point of call, whether the corresponding formal parameter 
is a varargs parameter, the elements of the aggregate must be passed in both the corresponding 
output GRs and in floating-point argument registers.

Note: Because HFAs are mapped to parameter slots as aggregates, single-precision HFAs will be 
allocated with two floating-point values in each parameter slot, but only one value per register. 
Thus, the available floating-point parameter registers may become exhausted before the end of the 
first eight parameter slots, and additional members of the HFA must be passed in general registers.

It is possible for the first of two values in a parameter slot to occupy the last available floating-
point parameter register. In this case, the second value is passed in its designated GR, but the half 
of the GR that would have contained the first value is undefined.

Figure 8-5. Example of “Byte 0” Alignment

__float80 MSB LSBSignificandExp.S

63 0647980

63 0

Byte 0 Byte 7 Little-EndianBig-Endian

slot 0

MSB

63 0
slot 1

63 0

LSB

Byte 0Byte 7

63 0
slot 1

MSB

Byte 8 Byte 15 Little-EndianBig-Endian Byte 8Byte 15

slot 0

SignificandSignificand

LSB

Exp.S

Padding (undefined) Exp.SPadding (undefined)
Itanium™ Software Conventions and Runtime Architecture Guide 8-9



Procedure Linkage
8.5.3 Memory Stack Parameters

The remainder of the parameter list, beginning with slot 8, is passed in the outgoing parameter area 
of the memory stack frame, as described in Section 7.1, “Procedure Frames” on page 7-1. 
Parameters are mapped directly to memory, with slot 8 placed at location sp+16, slot 9 at sp+24, 
and so on. Each argument slot is stored in memory as a 64-bit storage unit according to the byte 
order of the current environment.

8.5.4 Variable Argument Lists

The rules above support variable-argument list functions in both the K&R and the ANSI dialects of 
the C language.  When an ANSI prototype is in scope, any register parameters corresponding to a 
variable-argument specification are passed in GRs.  When no prototype is in scope, a strict ANSI 
compilation may pass parameters as if a non-variable argument prototype were in scope, while a 
K&R (or more relaxed ANSI) compilation may pass floating-point parameters in both GRs and 
FRs to deal with the possibility that the callee may be expecting either a variable or a non-variable 
argument list.

Thus, a function with variable arguments may assume that the variable arguments that lie within 
the first eight argument slots can all be found in the stacked input GRs, in0–in7. It may then store 
these registers to memory, using the 16-byte scratch area for in6 and in7, and using up to 48 bytes 
at the base of its own stack frame for in0–in5, as necessary. This arrangement places all the 
variable parameters in one contiguous block of memory.

When storing registers to memory for this purpose, the code must use the st8.spill instruction, 
since the registers are not guaranteed to contain valid values.

In a big-endian environment, the alignment and padding rules require the code that steps through 
the argument list to distinguish between aggregates and integers smaller than 8 bytes. Aggregates 
will be left-aligned within an 8-byte slot, while integers will be right-aligned.

Examples of the macros from the <stdarg.h> header file are given in Appendix A.

8.5.5 Pointers to Formal Parameters

Whenever the address is formed of a formal parameter that is passed in a register, the compiler 
must store the parameter to the stack, as it would for a variable argument list.

8.5.6 Languages Other than C

Most languages other than C can usually be treated as if prototypes are always in scope, avoiding 
the need to pass floating-point parameters in both GRs and FRs. For example, because Fortran 
passes floating-point parameters by value only when calling an intrinsic function, it may safely 
assume that the callee is expecting the parameter in an FR.

A compiler for another language may need to honor the variable-argument list conventions, 
however, if it provides a mechanism for calling C procedures that may have variable-argument 
lists.

Byte
Order
8-10 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
8.5.7 Rounding Floating-point Values

Floating-point parameters passed in floating-point registers should always be explicitly rounded to 
the proper precision expected by the language. There should be no difference in behavior between 
a floating-point parameter passed directly in registers and a floating-point parameter that has been 
stored to memory and reloaded. 

8.5.8 Examples

The following examples illustrate the parameter passing conventions.

Scalar integers and floats, with prototype:

extern int func(int, double, double, int);
func(i, a, b, j);

The parameters are passed as follows:

i out0
a f8
b f9
j out3

Scalar integers and floats, without prototype:

extern int func();
func(i, a, b, j);

The parameters are passed as follows:

i out0
a out1 and f8
b out2 and f9
j out3

Aggregates passed by value:

extern int func();
struct { int array[20]; } a;
func(i, a);

The structure’s external alignment is only 4 bytes, so no padding is required in the parameter list. 
The parameters are passed as follows:

i out0
a.array[0–13] out1–out7
a.array[14–19]In memory, at sp+16 through sp+39

Aggregates passed by value:

extern int func();
struct { __float128 x; int array[20]; } a;
func(i, a);
Itanium™ Software Conventions and Runtime Architecture Guide 8-11



Procedure Linkage
The structure’s external alignment is 16 bytes, so parameter slot 1 is skipped. The parameters are 
passed as follows:

i out0
a.x out2–out3
a.array[0–7] out4–out7
a.array[8–19] In memory, at sp+16 through sp+63

Floating-point aggregates, without prototype:

struct s { float a, b, c; } x;
extern func();
func(x);

The parameters are passed as follows:

x.a out0 and f8
x.b out0 and f9
x.c out1 and f10

In little-endian environments, x.a and x.c are in the least-significant bits of out0 and out1, 
respectively, while x.b is in the most-significant bits of out0. In big-endian environments, x.a 
and x.c are in the most-significant bits of out0 and out1, respectively, while x.b is in the least-
significant bits of out0. The figure below illustrates this.

Floating-point aggregates, with prototype:

struct s { float a, b, c; } x;
extern void func(struct s);
func(x);

The parameters are passed as follows:

x.a f8
x.b f9
x.c f10

x.a

x.b

x.c

0

4

8

struct s

out0

out1

out0

out1

Little-endianBig-endian

63 032 31 63 032 31
8-12 Itanium™ Software Conventions and Runtime Architecture Guide



Procedure Linkage
8.6 Return Values

Values up to 256 bits and certain aggregates are returned directly in registers, according to the rules 
in Table 8-2.

When multiple registers are used to return a numeric value, the lowest-numbered register contains 
the most-significant bits in big-endian environments, and the least-significant bits in little-endian 
environments. When multiple registers are used to return an aggregate, the lowest-numbered 
register contains the first eight bytes of the aggregate. In big-endian environments, the padding will 
be at the right end of the final register used; in little-endian environments, the padding will be at the 
left end of the final register used.

Integral return values smaller than 32 bits must be zero-filled (if unsigned) or sign-extended (if 
signed) to at least 32 bits.

When floating-point parameters are returned in floating-point registers, they are returned in the 
register format, rounded to the appropriate precision. When they are returned in general registers 
(e.g., as part of an aggregate), they are returned in their memory format.

Homogeneous floating-point aggregates, as defined in Section 8.5, are returned in floating-point 
registers, provided the array or structure contains no more than eight individual values. The 
elements of the aggregate are placed in successive floating-point registers, beginning with f8. If 
the array or structure contains more than eight elements, it is returned according to the rule below 
for aggregates larger than 256 bits. 

Return values larger than 256 bits (except HFAs of up to 8 elements) are returned in a buffer 
allocated by the caller.  A pointer to the buffer is passed to the called procedure in r8. This register 
is not guaranteed to be preserved by the called procedure (that is, the caller must preserve the 
address of the buffer through some other means). The return buffer must be aligned at a 16-byte 
boundary. A procedure may assume that the return buffer does not overlap any data that is visible 
to it through any other names.

A procedure may assume that any procedure it calls will return a valid value (i.e., the NaT bits are 
clear if the return is in general registers, and floating-point values returned are not NaTVals). 

Table 8-2. Rules for Return Values

Type Size (Bits) Location of Return Value Alignment

Integer/Pointer 1–64 r8 LSB

Integer 65–128 r8, r9 LSB

Single-Precision Floating-Point 32 f8 N/A

Double-Precision Floating-Point 64 f8 N/A

Double-Extended Floating-Point 80 f8 N/A

Quad-Precision Floating-Point 128 r8, r9 Byte 0

Single-Precision HFA 32–256 f8–f15 N/A

Double-Precision HFA 64–512 f8–f15 N/A

Double-Extended HFA 128–1024 f8–f15 N/A

Aggregates 1–64 r8 Byte 0

Aggregates 65–256 r8–r11 Byte 0

Aggregates >256 Memory Byte 0

Byte
Order
Itanium™ Software Conventions and Runtime Architecture Guide 8-13



Procedure Linkage
8.7 Requirements for Unwinding the Stack

Certain constraints must be met in order to unwind the stack successfully at any time, both by 
standard procedure calls as described here, and by special-purpose calling conventions. Chapter 11, 
“Stack Unwinding and Exception Handling,” describes how the unwind process works and the 
format of the unwind data structures. To meet the needs of the stack unwind mechanism, the 
following rules must be followed at all times:

• The previous function state register (ar.pfs) must be preserved prior to any call. The 
compiler must record, in the unwind data structures, where this register is stored, and over 
what range of code the saved value is valid.

• For special calls using a return BR other than b0, the compiler must record the BR number 
used for the return link. 

• The return BR must be preserved prior to any call involving the same BR. The compiler must 
record where the return BR is stored and over what range of code the saved value is valid. 

• If a procedure has a memory stack frame, the compiler must record either: (1) how large the 
frame is, or (2) that a previous frame pointer is stored on the stack or in a general register. 

• The return BR must contain an address that can be used to determine the unwind state of the 
calling procedure. For example, a compiler may choose to optimize calls to procedures that do 
not return. If it does so, however, it must ensure that the unwind information for the procedure 
properly describes the unwind state at the return point, even though the return pointer will 
never be used. This may require the insertion of an otherwise unnecessary nop or break 
instruction.
8-14 Itanium™ Software Conventions and Runtime Architecture Guide



Coding Conventions 9

This chapter discusses general coding conventions and presents some example code sequences for 
various tasks. The code sequences shown in this chapter are intended to serve as guidelines and 
examples rather than as required coding conventions. The requirements are documented in other 
chapters in this document.

9.1 Sample Code Sequences

In the sample code sequences in this section, registers of the form t1, t2, etc., are temporary 
registers, and may be assigned to any available scratch register. The code sequences show 
necessary cycle breaks, but no other scheduling considerations have been made. It is assumed that 
these code sequences will be scheduled with surrounding code to make best use of the processor 
resources.

9.1.1 Addressing “own” Data in the Short Data Area

“Own” short data may be addressed with a simple direct reference relative to the gp register, as 
illustrated below.

addl t1=@gprel(var),gp ;; // calc. address of var 
ld8 loc0=[t1] // load contents of var

“Own” long data may be addressed either via the linkage table, as shown in Section 9.1.2, or 
directly as illustrated below.

movl t1=@gprel(var) ;; // form gp-relative offset of var
add t2=t1,gp ;; // calc. address of var
ld8 loc0=[t2] // load contents of var

9.1.2 Addressing External Data or Data in a Long Data Area

When data is not known to be defined in the current load module (i.e., it is not “own”), or if it is too 
large for the short data region, it must be accessed indirectly through the linkage table, as shown 
below.

addl t1=@ltoff(var),gp ;; // calc. address of LT entry
ld8 t2=[t1] ;; // load address of var
ld8 loc0=[t2] // load contents of var
Itanium™ Software Conventions and Runtime Architecture Guide 9-1



Coding Conventions
9.1.3 Addressing Literals in the Text Segment

Literals in the text segment may be addressed either through the linkage table, as in Section 9.1.2 
above, or with pc-relative addressing, as shown below. Note that the first two instructions may be 
moved towards the beginning of the procedure, and the base address of the literal area, in loc0, 
can be shared by other literal references in the same procedure.

L1: mov r3=ip ;; // get current IP
addl loc0=litbase-L1,r3 ;; // calc. addr. of lit. area
add s t2=(lit-litbase),loc0 ;; // calc. address of lit.
ld8 loc1=[t2] // load value of literal

9.1.4 Materializing Function Pointers

Function pointers must always be obtained from the data segment, either as an initialized word or 
through the linkage table, as shown in the following examples:

Materializing function pointers through linkage table:

addl t1=@ltoff(@fptr(func)),gp ;; // calc address of LT entry 
ld8 loc0=[t1] // load function pointer

Materializing function pointers in data:

fptr:
data8 @ftpr(func) // initialize function ptr

9.1.5 Direct Procedure Calls

The following code sequence illustrating a direct procedure call assumes that the parameters have 
already been placed in the proper locations.

mov loc0=gp ;; // save current gp 
br.call rp=func ;; // make the call
mov gp=loc0 // restore gp

9.1.6 Indirect Procedure Calls

The indirect procedure call sequence must load the function’s entry point and gp value from the 
function descriptor. In this example, the function pointer is assumed to have been loaded into 
register loc0. 

mov loc1=gp ;; // save current gp 
ld8 t1=[loc0],8 ;; // load entry point 
ld8 gp=[loc0] ;; // load new gp value 
mov b6=t1 ;; // move ep to call BR
br.call rp=b6 ;; // make the call
mov gp=loc1 // restore gp
9-2 Itanium™ Software Conventions and Runtime Architecture Guide



Coding Conventions
9.1.7 Jump Tables

High-level language constructs such as case and switch statements, where there are several 
possible local targets of a branch, may use a number of different code generation strategies, ranging 
from sequential conditional branches to a direct-lookup branch table. 

If the compiler chooses to generate a branch table, the table should be placed in the text segment, 
and each table entry should be a 64-bit byte displacement from the base of the branch table to the 
branch target for that entry. This allows the displacements to be statically determined at link time, 
and no relocations will need to be applied at program invocation time. With displacements relative 
to the base address of the branch table, the code can easily add the displacement obtained from the 
table to the base address of the table to compute the target branch address. 

A sample indirect branch is shown below. The branch table is assumed to be an array of 64-bit 
entries, each of which is an offset, relative to the beginning of the branch table, to the branch target. 
The branch table index is assumed to have been computed or loaded into register loc0.

addl loc1=@ltoff(brtab),gp // calc. address of
;; // linkage table entry 
ld8 loc2=[loc1] ;; // load addr. of br. table 
shladd loc3=loc0,3,loc2 ;; // calc. address of branch

// table entry
ld8 loc4=[loc3] ;; // load branch table entry 
add loc5=loc4,loc2 ;; // calc. target address 
mov b6=loc5 ;; // move address to b6... 
br.cond b6 ;; // ...and branch

Alternatively, the code could use a pc-relative addressing sequence to obtain the base address of the 
jump table, using code similar to that in Section 9.1.3.

9.2 Speculation

Data speculation, using advanced load instructions, across procedure calls will not work correctly 
if the target of the advanced load is not one of the registers in the in/local region of the register 
stack frame. Upon return from the procedure call, the information in the ALAT could refer to an 
unchecked (or uncleared) advanced load to the same register from within the called procedure, 
rather than the information from the original load prior to the call.

Speculation recovery code may be placed within the procedure, outside the procedure but 
contiguous with it, or in a completely different section of memory. In any case, the target of the 
check instruction must be placed in or contiguous with the procedure in order to guarantee that a 
22-bit pc-relative displacement in the check instruction will reach the target. If the recovery code is 
distant, the target of the check instruction may be a small piece of “trampoline” code that branches 
to the recovery code.

If a speculative load is issued to an unaligned address, the OS may deliver a NaT. An application 
cannot expect to use a user-level trap handler to emulate the unaligned load unless the code is 
compiled with recovery code.
Itanium™ Software Conventions and Runtime Architecture Guide 9-3



Coding Conventions
9.3 Multi-threaded Code

In multi-threaded applications, the use of the volatile type qualifier should be interpreted to 
mean that the variables designated with that type may be modified asynchronously by any thread. 
The compiler must observe ordering restrictions with respect to loads and stores, and should not 
remove otherwise unnecessary memory references to these variables.

In addition, the compiler must generate appropriate ordered load and store instructions to prevent 
the hardware from executing volatile references out of order. All loads to a volatile type must use 
acquire semantics (using the “.acq” completer), and all stores to a volatile type must use release 
semantics (using the “.rel” completer). These completers ensure that no load will complete prior 
to an earlier load with acquire, and all earlier stores will complete prior to a subsequent store with 
release.

The use of a memory fence operation prior to a load with acquire implements stronger ordering, but 
is not required by these conventions.

9.4 Use of Temporary Registers around the Call to 
setjmp

Implementation Note: The contents of a procedure’s register stack frame are not preserved in a jump 
buffer by a call to setjmp. If the compiler has a temporary value live in a stacked 
register before the call to setjmp, with a subsequent use after the call to setjmp, 
that value will not be saved and restored by a setjmp/longjmp. Instead, after a 
longjmp, the register will have whatever value it had at the point in time when 
longjmp was called. If the original value reaches all subsequent call points in the 
procedure, the code will behave as expected. If the register is reused or otherwise 
modified, however, the value in that register following a longjmp is 
unpredictable.

To keep a stacked register live across a call to setjmp, the compiler can do one of three things: (1) 
dedicate that register for the rest of the procedure, (2) copy it to a real preserved register (r4–r7), 
or (3) spill it to a dedicated memory stack location. Alternatively, the compiler can simply 
rematerialize it after the call to setjmp.

See Section 10.3 for more information on setjmp and longjmp.

9.5 Up-level Referencing

Local variables visible to nested procedures must be saved in memory at any procedure call or 
exception control point; a procedure’s local registers are not visible to its nested procedures. 

These conventions suggest, but do not require, the use of a static link passed as an implicit 
parameter to nested procedures. The static link can be used by the nested procedure to access local 
variables in its enclosing scope. The rules for forming and passing static links are as follows:

• A level-one procedure (outermost) calling a level-two procedure should pass, as the static link, 
the address of a known reference point within its stack frame (for example, its frame pointer). 

• A nested procedure calling another procedure at the same level should pass, as the static link, 
the static link that it received. 
9-4 Itanium™ Software Conventions and Runtime Architecture Guide



Coding Conventions
• A nested procedure calling a procedure nested within it should store the static link that it 
received at a known place within its own stack frame, then pass, as the static link to the new 
procedure, the address of a known reference point within its own stack frame (for example, a 
pointer to the static link that it saved).

• A nested procedure calling a less-deeply nested procedure must follow the chain of static links 
to obtain the correct static link to pass.

When forming function pointers that refer to nested procedures, the same rules apply. The static 
link must be determined at the time the function pointer is materialized, and stored with the 
function pointer.

To reference local variables in enclosing scopes, the chain of static links must be followed to obtain 
a pointer to the enclosing scope’s stack frame. The compiler can determine statically the offset of 
the desired local variable relative to the reference point used for the static link.

An alternate implementation is a display pointer, also passed as an implicit parameter to each 
nested procedure.

9.6 C++ Conventions

Language specific conventions for C++ are beyond the scope of this document, although they must 
be built upon the base set of software conventions provided here.

<Move the below to ABI document>

The “this” pointer is passed as an implicit first parameter to all non-static class member functions.

Any object that requires a copy constructor must be passed by copy-reference rather than by value 
(that is, the compiler must copy it to a temporary location in memory and pass the address of this 
location in the argument list). This guarantees that the object will have a valid memory address as 
required by the copy constructor. The temporary location should be in the caller’s memory stack 
frame.
Itanium™ Software Conventions and Runtime Architecture Guide 9-5



Coding Conventions
9-6 Itanium™ Software Conventions and Runtime Architecture Guide



Context Management 10

10.1 Process/Thread Context

The following table lists the resources that constitute the context that is visible to the user-mode 
process or thread (not including the program’s address space). These are the registers that must be 
saved and restored on an asynchronous context switch (i.e. a context switch triggered by an outside 
event, such as a signal). For a synchronous context switch (i.e. a direct call to a context-switch 
routine), scratch registers do not need to be saved.

Note: The User NaT collection register must be saved separately from the NaT bits for the general 
registers, since it contains the NaT bits for preserved general registers that a procedure has spilled 
on behalf of its caller. This register must be saved before any general registers are saved, as the 

Table 10-1. Resources to be Saved on Context Switches

Resource Synchronous Asynchronous

Instruction pointer (ip) • •

Global data pointer (gp) • •

Stack pointer (sp) • •

Thread pointer (tp) • •

Backing store pointer (ar.bsp/ar.bspstore) • •

Floating-point status register (ar.fpsr) • •

RSE NaT collection register (ar.rnat) • •

User NaT collection register (ar.unat) • •

Previous function state (ar.pfs) • •

Current frame marker •

RSE control register (ar.rsc) •

Loop counter (ar.lc) • •

Epilogue counter (ar.ec) •

Compare and exchange comparison value (ar.ccv) •

Preserved general registers (r4-r7) (including NaT bits) • •

Scratch general registers (r2-r3, r8-r11, r14-r31) 
(including NaT bits) •

Preserved floating-point registers (f2-f5, f16-f31) • •

Scratch floating-point registers (f6-f15, f32-f127) •

Preserved predicate registers (p1-p5, p16-p63) • •

Scratch predicate registers (p6-p15) •

Preserved branch registers (b1-b5) • •

Scratch branch registers (b0, b6-b7) •

Scratch reserved for future use (ar.csd) •

Scratch reserved for future use (ar.ssd) •
Itanium™ Software Conventions and Runtime Architecture Guide 10-1



Context Management
saving of general registers writes to this register. Once the general registers have been saved as part 
of the state save procedure, the User NaT collection register will contain the NaT bits for the 
newly-saved registers, and can then be saved again.

10.2 User-level Thread Switch, Coroutines

Thread switches and coroutine calls can be done with a procedure call, so no scratch registers need 
to be saved as part of the context. The first part of this routine saves the current thread context on 
the stack: 

1. Save ar.rsc, ar.bsp and ar.pfs.

2. Use flushrs instruction to flush dirty registers to the backing store. 

3. Set the RSE in enforced lazy mode by clearing both rsc.mode bits. 

4. Save ar.rnat and other registers that must be saved for a synchronous context switch. 

At this point, the RSE is frozen, and all dynamic registers up to the current procedure frame are 
saved in the backing store. We can now change the memory stack pointer (sp) to point to the new 
thread’s stack, and restore the new thread’s context from there: 

1. Invalidate the ALAT using the invala instruction.

2. Restore ar.bspstore (the saved ar.bsp).

3. Restore ar.rnat and ar.pfs.

4. Restore ar.rsc. If eager loads are enabled, it will begin restoring dynamic registers from 
previous stack frames. Otherwise, it will restore registers from the backing store when needed 
for a return branch.

5. Restore the remaining preserved registers. 

6. Return to the new thread. 

10.3 setjmp/longjmp

The setjmp and longjmp routines provide a mechanism to save and restore a particular context 
within a running thread. The effect is similar to a synchronous thread switch, except that the new 
context must always be a frame that is still active on the stack of the current thread. Setjmp must 
save, and longjmp must restore, all of the resources listed in Table 10-1 for a synchronous context 
switch, with the following exceptions:

• The thread pointer need not be saved and restored, because longjmp may not be used to jump 
to a context established by a different thread.

• The state of the RSE needs to be saved only to the extent that longjmp can reestablish the 
same register stack frame that was active when setjmp was called. The contents of the local 
stacked registers do not need to be saved and restored.

Implementation Note: The values of the backing store pointer (ar.bsp) and the previous function state 
(ar.pfs, which preserves the current frame marker associated with the caller of 
setjmp) are sufficient to record the RSE state for a subsequent longjmp. 
Setjmp need not, and should not, flush the RSE. Longjmp should determine if 
10-2 Itanium™ Software Conventions and Runtime Architecture Guide



Context Management
the target frame lies partially in the physical registers or not; if so, it must then 
flush the RSE before restoring the saved register stack frame.

The gp register does not need to be saved in the jmpbuf, because the compiler must always restore 
gp after the call to setjmp, as it must after a call to any other non-local procedure.

The RSE NaT collection register (ar.rnat) must not be saved in the jmpbuf, because that could 
put the NaT bits out of sync with the local stacked registers. If ar.rnat were saved in the jmpbuf, but 
a local stacked register is modified later in the same procedure that called setjmp but before 
longjmp is called, the change to the value of the register would be visible after the longjmp, but 
the change in the NaT bit would not be. Thus, the NaT bits must come from the backing store at the 
time of the longjmp; if the current ar.rnat is valid for the target frame, longjmp does not need to 
change it.

The user NaT collection register (ar.unat) is itself a preserved register, and must be saved in the 
jump buffer before any preserved general registers are spilled. The bits in this register represent the 
NaT bits for registers that were preserved by the caller of setjmp.

The NaT bits for the preserved registers will be copied to ar.unat as each register is spilled to the 
jmpbuf. Once the preserved registers have been spilled, ar.unat must be saved once again to 
preserve the NaT bits corresponding to the registers preserved by setjmp itself. When saving this 
set of NaT bits, care must be taken that the representation is not dependent on the address of the 
jump buffer itself: the st8.spill instruction saves the NaT bit in ar.unat based on the memory 
address.

The implementation of longjmp must invalidate the ALAT.
Itanium™ Software Conventions and Runtime Architecture Guide 10-3



Context Management
10-4 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception 
Handling 11

Stack unwinding is the process of tracing backwards through a process’ stack of activation records. 
Every procedure in an Itanium architecture program has at least a frame on the register stack, and 
may also have a frame on the memory stack. In order to print a stack trace, debuggers require the 
ability to identify every frame on these stacks, and to show the process context associated with 
each one. Exception handling often requires the ability to remove a number of frames from the 
stack and to transfer control to an exception handling routine that may have been far down the 
stack.

For the register stack, the ar.pfs register contains sufficient information to identify the previous 
frame, given the state of the current register stack frame. This works for only one level of nesting, 
however, since there is no architected stack of ar.pfs registers. Thus, in order to unwind the 
register stack, we must impose a convention for saving and recovering the ar.pfs register in each 
frame. 

For the memory stack, there is no architected mechanism for recording the sp value for each stack 
frame, or for associating memory stack frames with register stack frames. While different 
procedures will need differently-sized stack frames, we expect that most procedures will allocate a 
frame whose size does not change while the procedure is active. Thus, for most procedures, we can 
simply record this fixed frame size in a static table, and use the instruction pointer (IP) as a key to 
this table. For procedures whose frames can vary in size, we must impose a convention for saving 
and recovering the sp value for the previous frame on the stack.

As the stacks are unwound, it is also necessary to recover the values of preserved registers that 
were saved by each procedure in the activation stack, so that debuggers have access to correct 
values of local variables, and so that exception handlers can operate correctly. This requirement 
also imposes conventions for saving and recovering the values of these preserved registers. 

In all cases, we wish to retain as much flexibility as possible for the compiler in its use of registers 
and code generation. Thus, these conventions allow the compiler to save the necessary values in a 
variety of locations, and with a variety of code sequences. We use the IP as a key for locating an 
unwind table entry that describes everything necessary for locating the previous register and 
memory stack frames, as well as the previous IP. The compiler is responsible for generating this 
static unwind table entry for each procedure that it generates code for. 

In most operating environments, unwinding the stack will be done via an unwind library that can be 
called from the process itself, from a debugger, or for exception handling.  It operates on context 
records; the primary routine reconstructs the context for a previous frame given the context for its 
descendent frame.  Because the structure of a context record, and the interface between the 
operating system and exception handling mechanism is environment dependent, this unwind 
library is also environment-dependent, and is not defined as part of the runtime architecture. This 
chapter describes the framework for unwinding the stack and for processing exceptions, including 
the format of the static unwind tables constructed by the compilers, and the code generation 
conventions imposed as a result. 
Itanium™ Software Conventions and Runtime Architecture Guide 11-1



Stack Unwinding and Exception Handling
11.1 Unwinding the Stack

The process of unwinding the stack begins with an initial context record describing the process 
state in the most recent procedure activation, at the point of interruption. From this initial state, the 
stack is unwound one procedure frame at a time, using static information generated by the 
compilers about each procedure to help it reconstruct a context record describing the previous 
procedure, which is suspended at a point just after the procedure call or an asynchronous 
interruption. 

11.1.1 Initial Context

Every stack unwind starts with an initial context, obtained from one of three sources:

• The debugger. The context record is obtained from the operating system through the 
debugging API. 

• The unwind library. The context is constructed as for the first half of a user-mode thread 
switch. 

• From exception handler. The context is constructed by the operating system and passed to the 
exception handler. 

11.1.2 Step to Previous Frame

This process builds a context record corresponding to the next older frame on the stack. This 
context record can, in turn, be used to unwind to the next frame. The following steps will 
reconstruct the context for the previous frame:

1. Find the return link in the current context, and set IP in the previous context to that address. 

2. Find the previous frame marker in the current context (e.g., in the ar.pfs register), and copy 
it to the current frame marker (cfm) in the previous context. 

3. Determine the value of gp for the new IP, and set gp in the previous context to that value. 

4. Set sp in previous context to sp from current context plus the current memory frame size. 

5. Set ar.bsp in the previous context to ar.bsp from the current context minus size of the 
input/local region of the frame (taking NaT collections that may have been saved to the 
backing store into account).  The frame size can be calculated from the frame marker. 

6. Find the saved copies of the preserved registers in the current context, and copy them to the 
previous context. 

The bottom of the call stack is identified by a saved return link of 0.

The information needed to execute these steps correctly is recorded by the compilers in static 
unwind information, stored in the text segment of the program itself. The structure of this 
information is described in Section 11.4. Each text segment contains a table of unwind information, 
and the dynamic loader is expected to provide an API for finding the unwind table, given a known 
IP. This API is specific to the operating environment, and is not described here.

When a process is delivered an asynchronous interruption (via a mechanism that is environment 
dependent), the full process context needs to be saved so that the process can continue executing 
correctly once the interruption has been handled. Typically, this context will be saved on the 
memory stack, and a new procedure frame will be constructed for the interruption handler. The first 
procedure frame in the interruption processing must be marked in such a way that the unwind 
11-2 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
routine can recognize that unwinding past the point of interruption requires a restoration of the full 
context. This, unfortunately, is also an environment-dependent operation, and cannot be described 
in the runtime architecture.

When the operating system delivers a context to the application, it may be necessary for the register 
stack backing store to be split into two or more non-contiguous pieces. An application that 
examines its backing store should be prepared to deal with this; this also is an environment-
dependent operation.

11.2 Exception Handling Framework

The exception handling model for Itanium architecture is partitioned into a language-independent 
component and a language-dependent component. The language-independent component is 
responsible for fielding an exception, searching for an exception handler, and unwinding the stack 
prior to processing an exception. Each source language that supports exception handling must 
provide, as part of its runtime library, a “personality” routine that implements the language-
dependent component of this model. 

This document uses the C++ exception handling mechanism as an example of the 
language-dependent component. The description of the C++-specific data structures and 
routines should be treated as an example, rather than a specification of the C++ design. 
Text that discusses language-specific implementation appears indented and italicized like 
this paragraph. 

The exception handling model is oriented around procedure frames on the memory and register 
stacks. Each frame corresponds to an activation of a procedure, which may or may not have 
associated exception handling requirements. A procedure may have two kinds of exception 
handling requirements: 

• It may allocate some objects that require deallocation or some other form of cleanup if the 
procedure or any of its blocks are terminated abnormally. 

• It may have one or more try regions, which are regions of code that specify an action to be 
taken if an exception occurs while control is within them. 

In either of these cases, the compiler records the requirements in the static unwind information for 
the procedure, and stores a reference to the personality routine for that procedure. Typically, a 
language will use a single personality routine for all procedures, but this is not a requirement (for 
example, a language may define a separate personality routine for procedures that require cleanup, 
but have no try regions.)

Try regions may be nested both statically, within the procedure, and dynamically, through 
procedure calls. When an exception occurs, each try region is inspected to determine if it has 
specified an action for that particular exception. The try regions are inspected in order, beginning 
with the innermost region. 

In C++, a try/catch statement defines a try region, and the filter controls which 
exceptions are to be caught and handled within that region. 

Exceptions are raised by invoking a routine in the language-independent component called the 
exception dispatcher, which initiates the process of handling the exception. Synchronous 
exceptions may be raised directly by the application through a language-specific construct; 
asynchronous exceptions may be raised in response to hardware-detected traps or faults.
Itanium™ Software Conventions and Runtime Architecture Guide 11-3



Stack Unwinding and Exception Handling
In C++, synchronous exceptions can be raised with the throw statement. This statement 
creates an exception object, which is matched against the prototype in each catch 
clause for each active try statement. C++ does not define asynchronous exceptions. 

The dispatcher unwinds each frame on the stack non-destructively, beginning with the topmost 
frame, searching for frames with one or more try regions. For each frame that has exception 
handling information, the dispatcher invokes the personality routine, which determines which try 
regions, if any, are currently active. For each active try region, starting with the most deeply nested 
one, the personality routine determines whether to dismiss the exception, handle it, or continue the 
search with the next try region, or with the previous frame on the stack. If the personality routine 
does find a try region with a handler for the exception, it invokes the unwinder to unwind the stack 
a second time. During this second unwind, the unwinder invokes the personality routines for each 
frame again so that cleanup actions may be executed as necessary. When the unwind reaches the 
frame that contains the exception handler, control is transferred to the handler. 

The relationships among these components are illustrated in Figure 11-1. The shaded boxes 
identify the components that are specific to C++. 

Figure 11-1. Components of the Exception Handling Mechanism

User Code System Code

Application
Code

Personality
Routine

Filter

Dispatcher

Raise
Exception

Unwinder

Cleanup
Actions

Exception
Handler

Personality
Routine
11-4 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
11.3 Coding Conventions for Reliable Unwinding

This section describes the coding conventions that must be observed to guarantee unwindability 
from every point in the program. For the purposes of unwinding, we divide every procedure up into 
one or more regions, which are classified as either “prologue” or “body” regions. 

A “prologue” region is one where the register stack and memory stack frames are established and 
where key registers are saved. In order to unwind correctly when the IP is is one of these regions, 
the unwinder must have a detailed description of the order of operations within the region, so that it 
knows what state has changed, and which registers have been saved at any given point in that 
region. 

A “body” region may change the state of the stack frame and save and restore preserved registers 
(for example, to “shrink-wrap” the save and restore of a register), but the unwind data structures 
are tuned for body regions that have few such operations. 

For both types of regions, the unwinder needs to know the state of the stack frames and preserved 
registers upon entry to the region. There are four ways to establish the entry state for an unwind 
region:

• The first region in the procedure assumes that both stack frames are unallocated, and no 
registers have been saved upon entry to the region. 

• A region may modify the state of the stack frames and preserved registers; each subsequent 
region takes the previous region’s exit state as its entry state.

• When control does not flow into a region from directly above it, the region may copy the entry 
state from an alternate region that has been described earlier.

• Zero-length prologue regions may be inserted just prior to a prologue or body region to set up 
the correct entry state.

Regions may begin and end at arbitrary instructions, without regard to bundle boundaries or cycle 
breaks. 

11.3.1 Conventions for Prologue Regions

A typical prologue region will do some or all of the following steps:

• Allocate a new register stack frame. The placement of this step is not important to the unwind 
process (although it must precede any other operations in the prologue that require the use of 
local stack registers). 

• Allocate a new memory stack frame. For fixed-size frames, the stack pointer (sp) must be 
modified in a single instruction (either with a single add immediate, or by performing 
intermediate calculations in a scratch register before modifying sp). The location of this 
instruction and the fixed frame size must be recorded in the unwind descriptor. For variable-
size frames, the stack pointer must be saved in a general register that is kept valid throughout 
the remainder of the prologue region and the following body region(s). This copy of the 
previous stack pointer is called psp. The location of the copy instruction, and the GR number 
must be recorded in the unwind descriptor. 

• Save the previous function state (ar.pfs), either in a general register or on the memory 
stack. The location of this instruction, and the GR number or stack offset must be recorded in 
the unwind descriptor. Normally, the previous function state is copied to a GR by the alloc 
instruction that allocates a new register stack frame. If the previous function state is to be 
stored in the memory stack, however, the location of the instruction that stores the GR to 
memory should be recorded, and the original pfs may not be modified until after the store.
Itanium™ Software Conventions and Runtime Architecture Guide 11-5



Stack Unwinding and Exception Handling
• Save the return pointer (rp), either in a general register or on the memory stack. The location 
of this instruction, and the GR number or stack offset must be recorded in the unwind 
descriptor. Saving to the memory stack requires two steps—one to copy it to a GR, and another 
to store it; the location of the store is the one to record, and the original rp may not be 
modified before the store. 

• Save preserved registers, either on the memory stack or in local registers in the current register 
stack frame. In general, the location of each instruction used to save a preserved register, and 
the GR number or stack offset must be recorded. There are five groups of preserved registers: 
GRs, FRs, BRs, predicates, and ARs (ar.unat , ar.rnat, ar.lc, ar.fpsr, ar.bsp, 
and ar.bspstore). The predicates must be copied as a whole to a GR with a single Move 
from Predicates instruction; if they are to be stored on the memory stack, the Store instruction 
is the one to record. Any arbitrary subset of preserved GRs, FRs, and BRs may be saved in a 
prologue, but they must be saved in ascending order by register number within each group 
(saves from different groups may be interleaved). Saving a BR to memory (other than rp) 
requires two steps—a move to GR, and a store; the location of the store is the one to record, 
and the value of the BR may not be modified until the store is completed. 

The unwinder must also know where preserved registers are saved in the memory stack frame, 
because it needs to reconstruct the values of these registers as it unwinds the stack. The 
conventions for the spill area are discussed below. 

A prologue region may also contain any amount of other code that is irrelevant to the unwind 
process. For better efficiency during the unwind process, however, the size of the prologue region 
should be kept as small as possible, and it should be defined to end immediately after the last of the 
above steps. 

Prologue regions may occur in the interior of a procedure. These typically represent register spill 
sequences that have been “shrink-wrapped” into a small block of conditional code.

The encoding of the unwind descriptors for prologue regions recognizes several common cases that 
reduce the size of the unwind information significantly. Compilers are encouraged to observe these 
conventions for low optimization levels and whenever it would not adversely affect the quality of 
optimization. These cases include:

• The prologue saves rp, ar.pfs, psp, and the predicates (as needed) in consecutive registers 
in the ins/locals area of the current register stack frame. 

• The prologue saves all of its subset of preserved registers before modifying any of them. In 
this case, the locations of individual save instructions do not need to be recorded, and the 
restrictions on their relative ordering are eliminated. 

• A leaf procedure that does not create a memory stack frame or save any preserved registers 
does not require any unwind descriptors.

11.3.2 Conventions for Body Regions

In general, body regions may do anything that does not invalidate the state of the stack frames and 
preserved registers as recorded for that region. In particular, a body region must obey the following 
restrictions:

• If the memory stack frame is fixed size, it may not modify the sp register.

• If the memory stack frame is variable size, it may modify sp at any point, but the unwind 
descriptors must indicate where a valid psp value can be found at any point within the body 
region.
11-6 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
• The unwind descriptors must indicate where a valid copy of the previous frame marker can be 
found at any point within a body region. The body region code may not make a procedure call 
while the previous frame marker remains in ar.pfs.

• The unwind descriptors must indicate where a valid copy of the return IP can be found at any 
point within the body region. The body region code may not make a procedure call while the 
saved return IP remains in rp.

• The unwind descriptors must indicate where a valid copy of each preserved register can be 
found at any point within the body region.

At every point in a body region, the unwind descriptors identify a single location where a valid 
value for every item listed above can be found. The code must not modify a register or memory 
location while the unwind descriptors indicate that one of these items is currently stored there.

Generally, the locations of the saved values listed above remain constant throughout the body 
region, in locations specified in the prologue descriptor records. When this is not the case, 
however, the general unwind descriptors described in Table 11-13 may be used to mark changes in 
the unwind state within a body region.

A body region may restore ar.pfs, rp, and any preserved registers. The unwinder does not need 
a specific “epilogue” region that is distinct from the body region.

The memory stack pointer (sp) is typically restored just before executing a return branch. In a 
normal epilogue at the end of a body region, the compiler may place the instruction that restores the 
previous sp value anywhere within a few instructions of the end of the region; the unwind 
descriptor format provides a place to record the exact location of this instruction. If the procedure 
has a memory stack frame, and has returns in the middle of the body, the compiler must separate 
the procedure into separate body regions, each ending at the point of each return. 

11.3.3 Conventions for the Spill Area in the Memory Stack Frame

The spill area for preserved general registers, floating-point registers, and branch registers is near 
the base of the stack frame, in a continuous range ending, by default, at the base of the stack frame 
plus 16 bytes (psp+16). In other words, the 16-byte scratch area in the caller’s stack frame 
normally contains the last 16 bytes of the spill area. If the scratch area is needed for saving register 
parameters for a variable-argument list procedure, the spill area may be moved so that it ends at a 
lower address, but the ending address must be a fixed location relative to the base of the frame 
(psp).

Locations in the spill area are reserved for each preserved GR, FR, and BR that is saved anywhere 
within the procedure (including shrink-wrapped regions). Locations are allocated, from low 
address to high, first for general registers, then for branch registers, and finally for floating-point 
registers. Registers are saved in numerical order, lower-numbered registers at lower addresses. The 
spill area must end at a 16-byte boundary, so that all the floating-point spill locations are 16-byte 
aligned.

It is not required that all registers preserved in the spill area be consecutive from each register file. 
If, for example, GR 4 and GR 7 are preserved, but GR 5 and GR 6 are not, space is allocated only 
for GR 4 and GR 7.

A compiler may need to spill scratch registers in addition to preserved registers. There are no 
required conventions for spilling scratch registers, since they do not need to be recovered during a 
stack unwind. It is expected, however, that general register spills will be adjacent to the preserved 
general register spill area in order to make the best use of the User NaT collection register.

Normally, the unwinder expects to find the NaT bits for the preserved registers in the User NaT 
collection register, ar.unat. If the total spill area for general registers (scratch and preserved 
Itanium™ Software Conventions and Runtime Architecture Guide 11-7



Stack Unwinding and Exception Handling
combined) exceeds 64 double-words, the compiler may be forced to save the User NaT collection 
register in order to spill up to an additional 64 general registers. In this overflow situation, the 
compiler must manage two or more NaT collections by swapping them in and out of the single 
collection register. The NaT collection that contains the NaT bits for the preserved registers is 
called the “primary unat collection,” and the unwinder must know where to find these bits. In 
procedures where the NaT collection register is multiplexed, the compiler must record the location 
of the primary unat collection in the unwind information.

11.4 Data Structures

The exception handling mechanism uses three data structures:

• An unwind table, which allows the dispatcher and unwinder to associate an IP value with a 
procedure and its unwind and exception handling information. Every procedure that has either 
a memory stack frame or exception handling requirements, or both, has one entry in this table. 
(If the compiler has generated more than one non-contiguous region of code for a procedure, 
there will be one entry in this table for each region.) Each unwind table entry points to an 
information block that contains the other two data structures. 

• A set of unwind descriptors for each procedure. 

• An optional language-specific data area for each procedure. 

The dispatcher and unwinder both use the unwind table to locate an unwind entry for a procedure, 
given an IP value. The unwinder also uses the unwind descriptor list so that it can properly unwind 
the stack from any point in the procedure. 

The language-specific data area is used to store cleanup actions and a try region table. 

11.4.1 Unwind Table

The unwind table entries contain three fields, as illustrated in Figure 11-2; each field is a 64-bit 
doubleword. The first two fields define the starting and ending addresses of the procedure, 
respectively, and the third field points to a variable-size information block containing the unwind 
descriptor list and language-specific data area. The ending address is the address of the first bundle 
beyond the end of the procedure. These values are all segment-relative offsets, not absolute 
addresses, so they do not require run-time relocations. The unwind table is sorted by the procedure 
start address. The shaded area in the figure represents the language-specific data area. 

Figure 11-2. Unwind Table and Example of Language-specific Data Area

start

end

v

Unwind Table Info. Block

try/catch

cleanup

start

end

catch

tcnt

language-

info ptr.

unwind

personality

descriptors

specific
data area

f ulen

ccnt

region
table

action
table

handler

start

end

action
11-8 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
If a leaf procedure has no stack frame, has no exception handling requirements, and keeps its return 
pointer in b0, no unwind table entry is necessary for the procedure. The unwinder must assume 
these conditions when the IP does not correspond to any procedure table entry. 

The first doubleword of the information block consists of three fields: a 16-bit version number for 
the unwind descriptors, 16 flag bits, and a 32-bit length field. These fields may be accessed with 
the following macros:

#define UNW_VER(x) ((x) >> 48)
#define UNW_FLAG_MASK 0x0000f f f f 00000000L
#define UNW_FLAG_OSMASK 0x0000f 00000000000L
#define UNW_FLAG_EHANDLER(x) ((x) & 0x0000000100000000L)
#define UNW_FLAG_UHANDLER(x) ((x) & 0x0000000200000000L)
#define UNW_LENGTH(x) ((x) & 0x00000000f f f f f f f f L)

The unwind version number identifies the version of the unwind descriptor format. For this 
specification, the version number is 1.

The unwind length field identifies the length (in doublewords) of the unwind descriptor area. 

Two flag bits are currently defined, and the four defined by UNW_FLAG_OSMASK are reserved for 
implementation-specific use; the remaining bits are reserved for future use. The EHANDLER flag is 
set if the personality routine should be called during search for an exception handler. The 
UHANDLER flag is set if this routine should be called during the second unwind. If neither bit is set, 
there is no frame handler for this procedure, and the personality routine identifier should be 
omitted, along with the entire language-specific data area. 

In C++, the EHANDLER bit is set if the procedure contains any try/catch regions, and 
the UHANDLER bit is set if there are any cleanup actions. 

The personality routine identifier is accessed by adding the size of the unwind descriptor area 
(ulen, which is the count of doublewords, not bytes), plus the size of the header doubleword, to 
the information block pointer. The format and contents of this identifier are ABI-specific, and 
enable the implementation to obtain a function pointer to the personality routine. The dispatcher 
should call this routine during the first unwind only if the EHANDLER bit is set, and during the 
second unwind only if the UHANDLER bit is set. The language specific data immediately follows 
the personality routine identifier, so the address of this area must be made available to the 
personality routine.

The unwind table and the unwind information block must each be aligned at an 8-byte boundary. 
Within the information block, the personality routine pointer must also be aligned at an 8-byte 
boundary.

11.4.2 Unwind Descriptor Area

The unwind descriptor area contains a contiguous sequence of records describing the unwind 
regions in the procedure. Each group of records begins with a region header record identifying the 
type and length of the region. The region header record is followed by any number of descriptor 
records that supply additional unwind information about the region. 

The unwind descriptor records are divided into three categories: region header records, descriptor 
records for prologue regions, and descriptor records for body regions. This section describes the 
record types in each of these categories, lists rules for using unwind descriptor records, and 
explains how the records should be processed.
Itanium™ Software Conventions and Runtime Architecture Guide 11-9



Stack Unwinding and Exception Handling
The information is encoded in variable-length records with a record type and one or more 
additional fields. The length of each record is implicit from the record type and its fields. All 
records are an integral number of bytes in length. In the descriptor record tables in the next three 
sections, the third column lists the format of each record type. These record formats are described 
in Appendix B.

Since the unwind descriptor area must be a multiple of 8 bytes, the last unwind descriptor must be 
followed by zero bytes as necessary to pad the area to an 8-byte boundary. These zero bytes will be 
interpreted as prologue region header records, specifying a zero-length prologue region, and serve 
as no-ops.

11.4.2.1 Region Header Records

The region header records are listed in Table 11-1. 

The fields in these records are used as follows:

• rlen contains the length of the region, measured in instruction slots (three slots per bundle, 
counting X-unit instructions as two slots). 

• mask indicates which registers are saved in the prologue. The prologue_gr region type 
is used for entry prologues that save one or more preserved registers in the local register area 
of the register stack frame. This field defines what combination of rp, ar.pfs, psp, and the 
predicates are preserved in standard GRs in the local area of the register stack frame. This 
mask is four bits; see Appendix B, “Unwind Descriptor Record Format,” for the allocation of 
these bits. Other registers may be preserved in the prologue, but additional descriptor records 
are required for registers other than these four.

• grsave identifies the first GR used to save the preserved registers identified in the mask 
field. Normally, this should identify a register in the procedure’s local stack frame (i.e., it 
should be greater than or equal to 32). Leaf procedures, however, may choose to use any 
consecutive sequence of scratch registers.

The entry state for a region matches the exit state of the preceding region, except for body regions 
that contain a “copy_state” descriptor record, described in Table 11-12.

The exit state of a region is determined as follows:

• For prologue regions, and for body regions with no epilogue code, the exit state is the logical 
combination of the entry state with the modifications described by the descriptor records for 
the region.

• For body regions with epilogue code, the exit state is the same as the entry state of the 
corresponding prologue whose effect is being undone. When shrink-wrap regions are nested, it 
is possible to reverse the effects of multiple prologues at once.

Table 11-1. Region Header Records

Record Type Fields Format Description

body rlen R1/R3 Defines a body region.

prologue rlen R1/R3 Defines a general prologue region.

prologue_gr rlen, mask, grsave R2 Defines a prologue region with a mask of saved 
registers, and a set of GRs used for saving preserved 
registers.
11-10 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
11.4.2.2 Descriptor Records for Prologue Regions

This section lists the descriptor records that may be used to describe prologue regions. In the 
absence of any descriptor records or information in the region header record, a prologue is assumed 
to create no memory stack frame and save no registers. Descriptors need to be supplied only to 
override these defaults.

The following descriptor records are used to record information about the stack frame and the state 
of the previous stack pointer (psp).

The fields in these records are used as follows:

• t describes a time, t, when a particular action occurs within the prologue. The time is 
specified as an instruction slot number, counting three slots per bundle. The first instruction 
slot in the prologue is numbered 0. For procedures with a memory stack frame, the instruction 
that modifies sp (fixed-size frame) or that saves psp (variable-size frame) must be identified 
with either a mem_stack_f or a mem_stack_v record. In all other cases, if the time is not 
specified, the unwinder may assume that the original contents of the register is valid through 
the end of the prologue, and that the saved copy is valid by the end of the prologue. In a zero-
length prologue region, the time parameter is irrelevant, and should be specified as 0.

• size contains the fixed size of the memory stack frame, measured in 16-byte units.

• gr identifies a general register, or the first in a consecutive group of general registers, that is 
used for preserving the value of another register (as implied by the record type). Typically, this 
field will identify a general register in the procedure’s local stack frame. A leaf procedure, 
however, may choose to use scratch registers. (A non-leaf procedure may also use scratch 
registers through a body region that makes no calls, but it would need to move any values 
saved in scratch registers to a more permanent save location prior to making any calls. It 
would need a second prologue region to describe this movement.)

• spoff identifies a location in the memory stack where a register or group of registers are 
spilled to memory. This location is specified relative to the current stack pointer. See 
Appendix B, “Unwind Descriptor Record Format,” for the encoding of this field.

The following descriptor records are used to record the state of the return pointer (rp).

Table 11-2. Prologue Descriptor Records for the Stack Frame

Record Type Fields Format Description

mem_stack_f t, size P7 Specifies a fixed-size memory stack frame, when sp is 
modified, and size of frame.

mem_stack_v t P7 Specifies a variable-size memory stack frame, and when 
psp is saved.

psp_gr gr P3 Specifies GR where psp is saved.

psp_sprel spoff P7 Specifies memory location where psp is saved, as an sp-
relative offset.

Table 11-3. Prologue Descriptor Records for the Return Pointer

Record Type Fields Format Description

rp_when t P7 Specifies when rp is saved.

rp_gr gr P3 Specifies GR where rp is saved.
Itanium™ Software Conventions and Runtime Architecture Guide 11-11



Stack Unwinding and Exception Handling
The fields in these records are used as follows:

• br identifies a branch register that contains the return link, when the return link is not either 
in b0 or saved to another location.

• pspoff identifies a location in the memory stack where a register or group of registers are 
spilled to memory. The location is specified relative to the previous stack pointer (which is 
equal to the current stack pointer plus the frame size). See Appendix B, “Unwind Descriptor 
Record Format,” for the encoding of this field.

The following descriptor records are used to record the state of the previous function state register 
(ar.pfs).

The following descriptor records are used to record the state of the preserved predicates.

The following descriptor records are used to record the state of the preserved general registers, 
floating-point registers, and branch registers.

rp_br br P3 Specifies alternate BR used as return pointer.

rp_psprel pspoff P7 Specifies memory location where rp is saved, as a psp-
relative offset.

rp_sprel spoff P8 Specifies memory location where rp is saved, as an sp-
relative offset.

Table 11-3. Prologue Descriptor Records for the Return Pointer (Cont’d)

Record Type Fields Format Description

Table 11-4. Prologue Descriptor Records for the Previous Function State

Record Type Fields Format Description

pfs_when t P7 Specifies when ar.pfs is saved.

pfs_gr gr P3 Specifies GR where ar.pfs is saved.

pfs_psprel pspoff P7 Specifies memory location where ar.pfs is saved, as a 
psp-relative offset.

pfs_sprel spoff P8 Specifies memory location where ar.pfs is saved, as an 
sp-relative offset.

Table 11-5. Prologue Descriptor Records for Predicate Registers

Record Type Fields Format Description

preds_when t P7 Specifies when the predicates are saved.

preds_gr gr P3 Specifies GR where predicates are saved.

preds_psprel pspoff P7 Specifies memory location where predicates are saved, as a 
psp-relative offset.

preds_sprel spoff P8 Specifies memory location where predicates are saved, as an 
sp-relative offset.
11-12 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
The fields in these records are used as follows:

• rmask, frmask, grmask, brmask identify which preserved FRs, GRs, and BRs are 
saved by the prologue region. The fr_mem record uses a short rmask field, which can be 
used when a subset of floating-point registers from the range f2-f5 is saved. The 
frgr_mem record can be used for any number of saved floating-point and general registers. 
The gr_mem record can be used when only general registers (r4–r7) are saved.

• imask identifies when each preserved FR, GR, and BR is saved. It contains a two-bit field 
for each instruction slot in the prologue, indicating whether the instruction in that slot saves 
one of these preserved registers. The length of this field is implied by the size of the prologue 
region as given in the region header record. It contains two bits for each instruction slot in the 
region, and the length of the field is rounded up to the next whole byte boundary.

If a prologue saves one or more preserved FRs, GRs, or BRs, and the spill_mask record is 
omitted, the unwinder may assume that the original contents of those preserved registers are valid 
through the end of the prologue, and that the saved copies are valid by the end of the prologue.

There may be only one spill_base and one spill_mask record per prologue region.

Each gr_gr and br_gr record describes a set of registers that is saved to a consecutive set of 
general registers (typically in the local register stack frame). To represent registers saved to non-
consecutive general registers, two or more of each of these records may be used.

The following descriptor records are used to record the state of the User NaT Collection register 
(ar.unat).

Table 11-6. Prologue Descriptor Records for GRs, FRs and BRs

Record Type Fields Format Description

fr_mem rmask P6 Specifies which preserved floating-point registers are spilled 
to memory by this prologue, as a bit mask.

frgr_mem grmask, 
frmask

P5 Specifies which preserved general and floating-point registers 
are spilled to memory by this prologue, as a bit mask.

gr_gr grmask, gr P9 Specifies which preserved general registers are saved in 
other general registers, as a bit mask, and GR where first 
preserved GR is saved.

gr_mem rmask P6 Specifies which preserved general registers are spilled to 
memory by this prologue, as a bit mask.

br_mem brmask P1 Specifies which preserved branch registers are spilled to 
memory by this prologue, as a bit mask.

br_gr brmask, gr P2 Specifies which preserved branch registers are saved in 
general registers by this prologue, as a bit mask, and GR 
where first BR is saved.

spill_base pspoff P7 Specifies base of spill area in memory stack frame, as a 
psp-relative offset.

spill_mask imask P4 Specifies when preserved registers are spilled, as a bit mask.
Itanium™ Software Conventions and Runtime Architecture Guide 11-13



Stack Unwinding and Exception Handling
The following descriptor records are used to record the state of the Loop Counter register (ar.lc).

The following descriptor records are used to record the state of the floating-point status register 
(ar.fpsr).

The following descriptor records are used to record the state of the primary unat collection.

Table 11-7. Prologue Descriptor Records for the User NaT Collection Register

Record Type Fields Format Description

unat_when t P7 Specifies when ar.unat is saved.

unat_gr gr P3 Specifies GR where ar.unat is saved.

unat_psprel pspoff P7 Specifies memory location where ar.unat is saved, as 
a psp-relative offset.

unat_sprel spoff P8 Specifies memory location where ar.unat is saved, as 
an sp-relative offset.

Table 11-8. Prologue Descriptor Records for the Loop Counter Register

Record Type Fields Format Description

lc_when t P7 Specifies when ar.lc is saved.

lc_gr gr P3 Specifies GR where ar.lc is saved.

lc_psprel pspoff P7 Specifies memory location where ar.lc is saved, as a 
psp-relative offset.

lc_sprel spoff P8 Specifies memory location where ar.lc is saved, as an 
sp-relative offset.

Table 11-9. Prologue Descriptor Records for the Floating-point Status Register

Record Type Fields Format Description

fpsr_when t P7 Specifies when the floating-point status register is saved.

fpsr_gr gr P3 Specifies GR where the floating-point status register is 
saved.

fpsr_psprel pspoff P7 Specifies memory location where the floating-point status 
register is saved, as a psp-relative offset.

fpsr_sprel spoff P8 Specifies memory location where the floating-point status 
register is saved, as an sp-relative offset.

Table 11-10. Prologue Descriptor Records for the Primary Unat Collection

Record Type Fields Format Description

priunat_when_gr t P8 Specifies when the primary unat collection is copied to a GR.

priunat_when_m
em

t P8 Specifies when the primary unat collection is saved in 
memory.

priunat_gr gr P3 Specifies GR where the primary unat collection is copied.

priunat_psprel pspoff P8 Specifies memory location where the primary unat collection 
is saved, as a psp-relative offset.

priunat_sprel spoff P8 Specifies memory location where the primary unat collection 
is saved, as an sp-relative offset.
11-14 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
The following descriptor records are used to record the state of the backing store, when it is 
necessary to record a discontinuity.

11.4.2.3 Descriptor Records for Body Regions

The following table lists the optional descriptor records that may be used to describe body regions. 
In the absence of these descriptors, a body region is assumed to inherit its entry state from the 
previous region.

• t indicates the location of the instruction that restores the previous sp value, relative to the 
end of the region. The number is a count of the remaining instruction slots to the end of the 
region (thus, a value of 0 indicates the final slot in the region).

• ecount indicates how many additional levels of nested shrink-wrap regions are being 
popped at the end of a body region with epilogue code. A value of 0 indicates that one level 
should be popped.

• label identifies a previously-specified body region, whose entry state should be copied for 
this body region.

Table 11-11. Prologue Descriptor Records for the Backing Store

Record Type Fields Format Description

bsp_when t P8 Specifies when ar.bsp is saved. The backing store pointer 
may be saved, along with the ar.bspstore pointer and 
the ar.rnat register, to indicate a discontinuity in the 
backing store.

bsp_gr gr P3 Specifies GR where ar.bsp is saved.

bsp_psprel pspoff P8 Specifies memory location where ar.bsp is saved, as a 
psp-relative offset.

bsp_sprel spoff P8 Specifies memory location where ar.bsp is saved, as an 
sp-relative offset.

bspstore_when t P8 Specifies when ar.bspstore is saved.

bspstore_gr gr P3 Specifies GR where ar.bspstore is saved.

bspstore_psprel pspoff P8 Specifies memory location where ar.bspstore is saved, 
as a psp-relative offset.

bspstore_sprel spoff P8 Specifies memory location where ar.bspstore is saved, 
as an sp-relative offset.

rnat_when t P8 Specifies when ar.rnat is saved.

rnat_gr gr P3 Specifies GR where ar.rnat is saved.

rnat_psprel pspoff P8 Specifies memory location where ar.rnat is saved, as a 
psp-relative offset.

rnat_sprel spoff P8 Specifies memory location where ar.rnat is saved, as an 
sp-relative offset.

Table 11-12. Body Region Descriptor Records

Record Type Fields Format Description

epilogue t, ecount B2/B3 Body region contains epilogue code for one or more 
prologues.

label_state label B1/B4 Labels the entry state for future reference.

copy_state label B1/B4 Use labeled entry state as entry state for this region.
Itanium™ Software Conventions and Runtime Architecture Guide 11-15



Stack Unwinding and Exception Handling
Prologue regions nest within other prologue regions, and are balanced by body regions with an 
epilogue descriptor. An epilogue descriptor with an ecount of n serves to balance (n+1) earlier 
prologue regions.

When the label_state descriptor is used to label an entry state, it must appear prior to any general 
unwind descriptors in the same body region.

A copy_state descriptor must appear prior to any general unwind descriptors in the same body 
region.

A labelled entry state not only includes the record of where current valid copies of all preserved 
values can be found, but also references the states that are currently on the stack of nested 
prologues. For example, consider the following sequence of regions:

Prologue region A
Body region B (no epilogue)
Prologue region C
Body region C (label_state 1, epilogue count 2)
Body region D (copy_state 1, epilogue count 2)

The effect of the copy_state in body region D restores the entry state of body region C, as well as 
the two prologue regions within which the body region is nested.

The scope of a label is restricted to a single unwind descriptor area.

11.4.2.4 Descriptor Records for Body or Prologue Regions

This section lists the descriptor records that may be used to describe either prologue or body 
regions. These descriptors provide complete generality for compilers to perform register spills and 
restores anywhere in the procedure, without creating an arbitrary boundary between prologue and 
body.

• reg identifies the register being spilled or restored at the given point in the code. This field 
may indicate any of the preserved GRs, FRs, BRs, ARs, predicates, previous sp, primary unat, 
or return pointer. See Appendix B, “Unwind Descriptor Record Format,” for the encoding of 
this field.

• treg identifies a target register to which the value being spilled is copied. This field may 
indicate any GR, FR, or BR; it may also contain the special “Restore” target, indicating the 

Table 11-13. General Unwind Descriptors

Record Type Fields Format Description

spill_psprel t, reg, pspoff X1 Specifies when and where reg is saved, as a psp-
relative offset.

spill_sprel t, reg, spoff X1 Specifies when and where reg is saved, as an sp-
relative offset.

spill_reg t, reg, treg X2 Specifies when and where reg is saved in another 
register, treg, or restored.

spill_psprel_p qp, t, reg, pspoff X3 Specifies when and where reg is saved, as a psp-
relative offset, under predicate qp.

spill_sprel_p qp, t, reg, spoff X3 Specifies when and where reg is saved, as an sp-
relative offset, under predicate qp.

spill_reg_p qp, t, reg, treg X4 Specifies when and where reg is saved in another 
register, treg, or restored, under predicate qp.
11-16 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
point at which a register is restored. See Appendix B, “Unwind Descriptor Record Format,” 
for the encoding of this field.

• qp identifies a qualifying predicate, which determines whether the indicated spill or restore 
instruction executes. The qualifying predicate must be a preserved predicate if there are any 
procedure calls in the range between the spill and restore, and it must remain live throughout 
the range.

If a body region contains any general descriptors and an epilogue descriptor, the effects of the 
general descriptors are undone when the unwind state is restored by popping one or more 
prologues. By the end of the body region, the code must have restored any preserved registers that 
the new unwind state indicates are restored. It is not necessary, however, to record the points at 
which registers are restored unless the locations used to save the values are modified before the end 
of the region.

11.4.2.5 Rules for Using Unwind Descriptors

Preserved registers that are saved in the prologue region must be specified with one or more of the 
following descriptor records: 

• prologue_gr (rp, ar.pfs, psp, and the predicates).

• mem_stack_v (psp is saved in a GR).

• rp_when, rp_gr, rp_psprel, or rp_sprel (rp).

• pfs_when, pfs_gr, pfs_psprel, or pfs_sprel (ar.pfs).

• unat_when, unat_gr, unat_psprel, or unat_sprel (ar.unat).

• lc_when, lc_gr, lc_psprel, or lc_sprel (ar.lc).

• fpsr_when, fpsr_gr, fpsr_psprel, or fpsr_sprel (ar.fpsr).

• fr_mem, frgr_mem, or gr_mem (FRs and GRs).

• br_mem or br_gr (BRs).

• spill_psprel, spill_sprel, spill_reg, spill_psprel_p, spill_sprel_p, spill_reg_p (any register).

If a preserved register is not named by one or more of these records, it is assumed that the prologue 
does not save or modify that register.

The locations where preserved registers are saved are determined as follows:

1. Certain descriptor records explicitly name a save location for a register (records whose names 
end with “_gr,” “_psprel,” or “_sprel”). If a register is described by one of these 
records, the unwinder uses the named location.

2. Some descriptor records specify that registers are saved to the spill area (fr_mem, 
frgr_mem, gr_mem, br_mem). These locations are determined by the conventions for the 
spill area.

3. Any remaining registers that are named as saved, but do not have an explicit save location, are 
assigned consecutive GRs, beginning with the GR identified by the prologue_gr region 
header record. If the prologue region uses a prologue header record, the first GR is assumed 
to be GR 32. The registers are saved as needed in the following order: 

a. Return pointer, rp.

b. Previous function state, ar.pfs.

c. Previous stack pointer, psp.
Itanium™ Software Conventions and Runtime Architecture Guide 11-17



Stack Unwinding and Exception Handling
d. Predicates.

e. User NaT collection register, ar.unat.

f. Loop counter, ar.lc.

g. Floating-point status register, ar.fpsr.

h. Primary unat collection.

Note that the only way to indicate that any of the last four groups of registers are saved, 
without explicitly specifying a save location, is to use one of the corresponding _when 
descriptor records.

11.4.2.6 Processing Unwind Descriptors

The unwind process for a frame begins by locating the unwind table entry for a given IP. If there is 
no unwind table entry, the unwinder should use the default conditions for this frame: leaf 
procedure, no memory stack frame, and no saved registers.

If there is an unwind table entry, the unwinder then locates the unwind information block and 
checks the size of the unwind descriptor area. If this area is zero length, the unwinder should use 
the default conditions as above.

In preparation for reading the unwind descriptor records, the unwinder should start with an initial 
current state record, and an empty stack of state records. A state record describes the locations of 
all preserved registers at entry to a region. The initial value of the current state record should 
describe the frame in its default conditions.

The unwind descriptor records should be read and processed sequentially, beginning with the first 
descriptor record for a procedure, continuing until the IP is contained within the current region. For 
each prologue region header, the current state record should be pushed on the stack, and the 
descriptor records for the prologue region should be applied to the current state record. When a 
body region with epilogue code is seen, one or more states should be popped from the stack, and 
the entry state for the next region is taken as the last state popped. This restores the current state to 
the entry state of the matching prologue.

When a body region contains a label_state descriptor, the unwind processor should replicate the 
current unwind state, including the current stack of prologues. When a body region contains a 
copy_state descriptor, the unwind processor should discard the current state and stack, and restore 
the replicated state and stack that corresponds with the label.

When the current IP is within a body region, the unwinder can generate the context of the previous 
frame by restoring registers as indicated by the current state record. If the body region has epilogue 
code, and the IP is beyond the indicated point where sp is restored, the unwinder should assume 
that sp has already been restored, and that all registers spilled to the memory stack frame except 
those between psp and psp+16 have also been restored. Registers spilled to the scratch area in 
the caller’s frame may not have been restored at that point, and the unwinder should use the values 
in memory.

When the current IP is within a prologue region, the unwinder must look for descriptor records that 
specify a time parameter that is at or beyond the current IP. It should ignore these state 
modifications when applying descriptor records to the current state. If a register is saved but does 
not have a specified time, the unwind may assume that the original value is not modified within the 
prologue, so it may ignore it.

The layout and size of the preserved register spill area cannot be determined without reading all the 
prologue region descriptor records in the procedure, and merging the save masks for the general 
registers, floating-point registers, and branch registers.
11-18 Itanium™ Software Conventions and Runtime Architecture Guide



Stack Unwinding and Exception Handling
11.4.3 Language-specific Data Area

The try region table for C++ could be divided into two parts: a try/catch table and a 
cleanup action table. As illustrated in Figure 11-2, the table consists of two 32-bit integers 
followed by the two tables. The first field, tcnt, contains the number of try/catch 
table entries, and the second field, ccnt, contains the number of cleanup action table 
entries. The try/catch table consists of a list of four-word entries, sorted by the 
region end address. The first two words of each entry identify the starting and ending 
addresses of the region, the third word points to the catch clause, and the fourth word 
points to the exception handler. The cleanup action table consists of a list of three-word 
entries, also sorted by the region end address. The first two words of each entry identify 
the starting and ending addresses of the region, and the third word points to a list of 
cleanup actions. 
Itanium™ Software Conventions and Runtime Architecture Guide 11-19



Stack Unwinding and Exception Handling
11-20 Itanium™ Software Conventions and Runtime Architecture Guide



Dynamic Linking 12

12.1 Position-independent Code

All code conforming to these conventions must be position independent (PIC). This allows their 
text segments to remain pure so they can be shared among many processes. Position-independence 
imposes two requirements on generated code: 

• Code that forms an absolute address referring to any address in the load module’s text or data 
segments is not allowed, since the code would have to be relocated at load time, making it non-
sharable. All branches must be pc-relative, references to constants and literals in the text 
segment must be either pc-relative or indirect via the linkage table, and references to the data 
segment must be relative to a base register (typically gp). 

• Code that references symbols that are or may be imported from other load modules must use 
indirect addressing through a linkage table. The linker is expected to resolve procedure calls 
by creating import stubs, but the compilers must generate indirect loads and stores for data 
items that may be dynamically bound. In both cases, the indirection is made through the 
linkage table, allocated by the linker, and initialized by the dynamic loader; the linkage table is 
described below. 

12.2 Procedure Calls and Long Branch Stubs

Normal procedure calls can be made with the br.call instruction, which uses pc-relative 
addressing. There are three possible cases at link time: 

• If the target is not within the same load module, or if it is subject to pre-emption by an earlier 
definition from another load module, the linker must allocate an import stub and resolve the 
br.call instruction to the stub. 

• If the target is known to be within the same load module and the displacement is small enough, 
this instruction can be statically resolved to the call target. 

• If the target is within the same load module, but the displacement is too large for the br.call 
instruction, the linker must allocate a long branch stub, as described in Section 8.4, “Calling 
Sequence” on page 8-2. The long branch stub itself must satisfy the PIC requirements. If the 
target is within range of the stub, the stub may use a pc-relative br instruction; otherwise, it 
must load the address of the target from the linkage table. 

12.3 Access to the Data Segment

The DLL’s short data segment must be accessed through the gp register, which is defined to point 
to the short data segment on entry to any DLL procedure. The gp register is used to access both the 
linkage tables and statically-allocated data. The DLL’s long data segments must be accessed via the 
linkage table. 

There are several cases here:

• Global variables that are imported from another load module, or that are subject to pre-
emption by an earlier definition in another load module, must be accessed indirectly through 
Itanium™ Software Conventions and Runtime Architecture Guide 12-1



Dynamic Linking
the linkage table. The compiler must generate code to load a pointer from the linkage table, 
using gp-relative addressing, then access the data item using that pointer. The compiler does 
not have to allocate the linkage table; there are relocations defined in the object file format that 
instruct the linker to allocate a linkage table slot and supply the gp-relative address of that slot. 

• Small, statically-allocated variables of local scope, or global variables whose definitions are 
not subject to pre-emption, may be placed in the short data segment and accessed directly with 
gp-relative addressing. 

• Large variables, regardless of scope or pre-emption, must be placed in a long data segment, 
and accessed via the linkage table or pointer table. 

The partitioning of the data into the short and long data segments is described in Section 3.2, 
“Protection Areas” on page 3-2.

12.3.1 Access to Constants and Literals in the Text Segment

Constants and literals allocated in the text segment should be accessed with pc-relative addressing, 
or with indirect addressing via the linkage table.

12.3.2 Materializing Function Pointers

Function pointers must be materialized by loading a word from the data segment. They may not be 
materialized from immediate operands. 

12.4 Import Stubs

When the linker determines that a procedure call refers to an entry point in a different load module, 
it resolves the reference locally by building an import stub with the same name as the intended 
target. The import stub contains code that obtains the entry point and gp value from the linkage 
table, then transfers control, as described in Section 8.4, “Calling Sequence” on page 8-2.

If the compiler is provided with enough information to know that a particular entry point is in a 
different load module, it may generate a calling sequence that obviates the need for the linker to 
build an import stub. This calling sequence, however, is ABI specific, and is not specified in this 
document.

12.5 The Dynamic Loader

The dynamic loader is a component of the operating system software that locates all the load 
modules belonging to an application, loads them into memory, and binds the symbolic references 
among them. Most of the operation of the dynamic loader is specific to the particular operating 
system environment, and is further described in the ABIs for those environments. The common 
runtime architecture has been designed to minimize the amount of work involved in the binding 
process, by concentrating most of the relocation required in the linkage tables, and by prohibiting 
any items in the text segment that may require dynamic relocation.
12-2 Itanium™ Software Conventions and Runtime Architecture Guide



System Interfaces 13

13.1 Program Startup

An application begins its execution at a specified program entry point, which depends on the 
primary language in which the application is written. For C programs, the function main is the 
program entry point. On most operating systems, however, some system-dependent initialization 
must take place before control is transferred to this entry point. This initialization may take place in 
the operating system or in the DLL loader. 

This section presents a general overview of what an application expects when its program entry 
point receives control. The ABI document for each operating system is expected to contain the 
details. 

13.1.1 Initial Memory Stack

The memory stack pointer, sp, must be properly aligned, and must contain an address that is 
suitable for allocation of the program’s first stack frame. There must be a 16-byte scratch area 
available for use, beginning at the address in sp, but the application may make no further 
assumptions about the contents of the memory stack beyond the scratch area. 

13.1.2 Initial Register Values

The sp and gp registers must be initialized correctly, sp as described above and gp to the global 
pointer value for the main program’s short data segment. 

The floating-point status register should be initialized as shown in Table 13-1. The global trap 
disable bits (ar.fpsr bits 0–5) should all be initialized to ones.

The initial stack frame must be setup with 0 input and local registers, and at least 4 output registers 
(as if the program entry point had been called with at least four parameters). The contents of the 
parameter registers, in0-in7, are system-dependent, and are typically used for transmitting the 
program arguments. 

13.2 System Calls

System API routines are called using the standard calling conventions described in Chapter 8, 
“Procedure Linkage,”. Any special interfaces between these API routines and the operating system 
itself is system-dependent, and these API routines are typically supplied in a system DLL. 

Table 13-1. Initial Value of the Floating-point Status Register

Status Field Flags td rc pc wre ftz

sf0 000000 0 00 11 0 0

sf1 000000 1 00 11 1 0

sf2 and sf3 000000 1 00 11 0 0
Itanium™ Software Conventions and Runtime Architecture Guide 13-1



System Interfaces
13.3 Traps and Signals

When the operating system delivers a signal or an exception to a user process, it must make the 
following available to the process: 

• A context record, containing the full user-visible context, as described in Chapter 10, “Context 
Management,”. 

• The cause of the trap. If the trap was caused by an instruction, the information must be 
sufficient to identify the bundle and slot. 

When a trap or signal handler returns, operating system help is necessary for restoring the complete 
context (via RFI). Thus, the operating system must build a dummy stack frame for the handler, so 
that a return from the handler will transfer to an operating system entry point that can restore the 
full context.

The operating system must provide a new 16-byte scratch area prior to the stack frame created for 
the signal handler, so that the scratch area belonging to the interrupted procedure is not disturbed 
during signal processing.

The operating system must also set the floating-point status register to the initial value specified in 
Table 13-1 prior to delivering a signal or exception.

Trap handlers will often need to look at the state of the registers at the time of the trap. Since the 
dynamic general registers are all hidden in the register stack backing store in memory, the 
application may need to perform some careful calculations to obtain access to the values of these 
registers. In addition, the operating system may deliver a context in which the backing store is split 
into two non-contiguous areas. The system-specific runtime library should provide an API routine 
to build an image of the dynamic registers from the context record. 
13-2 Itanium™ Software Conventions and Runtime Architecture Guide



Standard Header Files A

A.1 Implementation Limits

The following constants are defined in the <limits.h> header file:

#define CHAR_BIT 8
#define SCHAR_MIN (-128)
#define SCHAR_MAX 127
#define UCHAR_MAX 255

/* MB_LEN_MAX determined by locale information */

#define CHAR_MIN SCHAR_MIN
#define CHAR_MAX SCHAR_MAX

#define SHRT_MIN (-32768)
#define SHRT_MAX 32767
#define USHRT_MAX 65535

#define INT_MIN (-2147483647-1)
#define INT_MAX 2147483647
#define UINT_MAX 4294967295

#define __INT64_MIN (-9223372036854775807-1)
#define __INT64_MAX 9223372036854775807
#define __UINT64_MAX 18446744073709551615

A.2 Floating-point Definitions

The following constants are defined in the <float.h> header file. The constants beginning with 
“EXT_” and “QUAD_” are shown here to provide the values of the respective parameters for 80-
bit and 128-bit floating-point types; the names of these constants are a notational convenience only. 
Each ABI is expected to specify an appropriate set of constants. Similarly, the suffixes “W” and 
“Q” should be replaced by the appropriate suffixes for each ABI.

#define FLT_DIG 6 /* Max (decimal) digits of prec. */
#define FLT_EPSILON 1.19209290E-07F
#define FLT_MANT_DIG 24
#define FLT_MAX 3.40282347E+38F
#define FLT_MAX_10_EXP 38
#define FLT_MAX_EXP 128
#define FLT_MIN 1.17549435E-38F
#define FLT_MIN_10_EXP (-37)
#define FLT_MIN_EXP (-125)
#define FLT_RADIX 2

#define DBL_DIG 15 /* Max (decimal) digits of prec. */
#define DBL_EPSILON 2.2204460492503131E-16
#define DBL_MANT_DIG 53
#define DBL_MAX 1.7976931348623157E+308
#define DBL_MAX_10_EXP 308
Itanium™ Software Conventions and Runtime Architecture Guide A-1



Standard Header Files
#define DBL_MAX_EXP 1024
#define DBL_MIN 2.2250738585072014E-308
#define DBL_MIN_10_EXP (-307)
#define DBL_MIN_EXP (-1021)

#define __EXT_DIG 18 /* Max (decimal) digits of prec. */
#define __EXT_EPSILON 1.0842021724855044340075E-19W
#define __EXT_MANT_DIG 64
#define __EXT_MAX 1.18973149535723176502e+4932W
#define __EXT_MAX_10_EXP (+4932)
#define __EXT_MAX_EXP (+16384)
#define __EXT_MIN 3.36210314311209350626e-4932W
#define __EXT_MIN_10_EXP (-4931)
#define __EXT_MIN_EXP (-16381)

#define __QUAD_DIG 33 /* Max (decimal) digits of prec. */
#define __QUAD_EPSILON 1.92592994438723585305597794258492732E-34Q
#define __QUAD_MANT_DIG 113
#define __QUAD_MAX 1.18973149535723176508575932662800702E+4932Q
#define __QUAD_MAX_10_EXP (+4932)
#define __QUAD_MAX_EXP (+16384)
#define __QUAD_MIN 3.36210314311209350626267781732175260E-4932Q
#define __QUAD_MIN_10_EXP (-4931)
#define __QUAD_MIN_EXP (-16381)

A.3 Variable Argument List Macros

The following definitions roughly define the operation of the variable argument list macros 
provided in the <stdarg.h> header file. Similar definitions for K&R C may be found in 
<varargs.h>.

typedef char *va_list;
#define _VA_ALIGN(list, align) \

(va_list)(((unsigned __int64)(list) + (align) - 1) & ~((align) - 1))

#define va_start(list, parmN) (list = (va_list)(&parmN + 1))

#ifdef __LITTLE_ENDIAN__

#define va_arg(list, mode) ( \
list = _VA_ALIGN(list, ((__alignof(mode) > 8) ? 16 : 8)) + sizeof(mode),\
((mode *)list)[-1] \
)

#else /* __BIG_ENDIAN__ */

#define va_arg(list, mode) ( \
list = _VA_ALIGN(list, ((__alignof(mode) > 8) ? 16 : 8)) +\

( ((sizeof(mode) < 8) && !__is_aggregate(mode)) ?\
8 - sizeof(mode) : 0 ) + sizeof(mode),\

((mode *)list)[-1] \
)

#endif /* __BIG_ENDIAN__ */

The big endian version of the va_arg macro requires built-in __alignof and __is__aggregate 
functions in the compiler; the latter returns true if the type given as the argument is an aggregate 
type.
A-2 Itanium™ Software Conventions and Runtime Architecture Guide



Standard Header Files
A.4 setjmp/longjmp

The following definition is provided in the <setjmp.h> header file:

typedef __float80 jmp_buf[_JBLEN];

The jump buffer must be long enough to contain the context defined in Section 10.3, and should 
include additional space reserved for future use. It must be declared to guarantee 16-byte alignment 
(for example, as an array of __float80). Its contents include the following registers:

• Instruction address (ip)—the return BR from the call to setjmp

• Stack pointer (sp)

• Frame state—the ar.pfs register from the call to setjmp

• Backing store pointer (ar.bsp)

• General registers r4-r7

• NaT bits for general registers r4-r7 (shifted to a consistent position independent of the jump 
buffer address)

• Floating-point registers f2-f5 and f16-f31

• Floating-point status register (ar.fpsr)

• Predicates p1-p5 and p16-p63

• Branch registers b1-b5

• User NaT collection register (ar.unat)

• Loop counter (ar.lc)

Note that the epilog counter (ar.ec) is automatically preserved with the ar.pfs register.

The jump buffer contents should also include a “signature” to identify its version number and 
architecture for compatibility with future hardware and software releases.

The size of the jump buffer (the value of _JBLEN) and the locations of individual items within the 
jump buffer are ABI specific.
Itanium™ Software Conventions and Runtime Architecture Guide A-3



Standard Header Files
A-4 Itanium™ Software Conventions and Runtime Architecture Guide



Unwind Descriptor Record Format B

B.1 Overview

The unwind descriptor records are encoded in variable-length byte strings. The various record 
formats are described in this appendix.

The first byte of each record is sufficient to determine its format. The high-order bit of this byte 
determines whether it is a header record (if the bit is zero), or a region descriptor record (if the bit is 
one). The remaining bits and any subsequent bytes are divided into separate fields. In most formats, 
the first field, r, identifies the record type. The record formats are listed by the bit pattern of the 
first byte in Table B-1.

Some fields in the unwind descriptor records are variable in length. The variable-length encoding 
uses the ULEB128 (Unsigned Little-Endian Base 128) encoding, described below:

• Divide the number into groups of 7 bits, beginning at the low-order end. 

• Discard all groups of leading zeroes, but keep at least the first (low-order) group if the number 
is all zeroes.

• Place a 1 bit to the left of of all but the last group; place a 0 bit to the left of the last group. This 
forms one or more 8-bit groups.

Table B-1. Record Formats

Region Header Records Prologue Descriptor Records Body Descriptor Records

Bit Pattern Format Bit Pattern Format Bit Pattern Format

00-- ---- R1 100- ---- P1 10-- ---- B1

0100 0--- R2 1010 ---- P2

0110 00-- R3 1011 0--- P3

1011 1000 P4

1011 1001 P5

110- ---- P6 110- ---- B2

1110 ---- P7 1110 0000 B3

1111 0000 P8 1111 -000 B4

1111 0001 P9

1111 1001 X1 1111 1001 X1

1111 1010 X2 1111 1010 X2

1111 1011 X3 1111 1011 X3

1111 1100 X4 1111 1100 X4

1111 1111 P10
Itanium™ Software Conventions and Runtime Architecture Guide B-1



Unwind Descriptor Record Format
The following table shows example ULEB128 encodings for several numbers:

Fields in the ULEB128 format always follow the fixed fields, and begin on a byte boundary.

B.2 Region Header Records

The prologue and body region header records can appear in either format R1 or R3, depending on 
the magnitude of the region length field. If the region length is no greater than 31 instructions, the 
R1 format may be used; otherwise, format R3 must be used.

This format is used for the short forms of the prologue and body region header records. The r bit 
identifies the record type, as shown in the following table:

This format is used only for the prologue_gr region header record. The following table shows 
the meaning of the bits in the mask field:

Table B-2. Example ULEB128 Encodings

Value Encoding Interpretation

0 00000000 0

127 01111111 127

128 10000000 00000001 0 + (1 << 7)

1544 10001000 00001100 8 + (12 << 7)

49,802 10001010 10000101 00000011 10 + (5 << 7) + (3 << 14)

01234567

0 0 r

Byte 0

Format R1 rlen

Record Type r

prologue 0

body 1

01234567

0 1 0 0 0

Byte 0 Byte 1
01234567

grsaveFormat R2 mask rlen (ULEB128)

Mask bit Meaning when bit is set

byte 0, bit 2 rp is saved in standard GR

byte 0, bit 1 ar.pfs is saved in standard GR

byte 0, bit 0 psp is saved in standard GR

byte 1, bit 7 predicates are saved in standard GR
B-2 Itanium™ Software Conventions and Runtime Architecture Guide



Unwind Descriptor Record Format
The grsave field identifies the general register in which the first of these values is stored. 
Additional general registers are used as needed. For example, assume that rp, ar.pfs, and the 
predicates are stored, but not psp. The mask bits would be 1101, and grsave might be set to 39, 
indicating that the three values are stored in r39, r40, and r41, respectively.

This format is used for the long forms of the prologue and body region header records. The r 
field identifies the record type, as shown in the following table:

B.3 Descriptor Records for Prologue Regions

This format is used only for the br_mem descriptor record. 

The five bits in the brmask field are used to indicate which of the five preserved branch registers 
(b1–b5) are saved in the prologue. Bit 0 corresponds to b1; bit 4 corresponds to b5. If the bit is 
clear, the corresponding register is not saved; if the bit is set, the corresponding register is saved.

This format is used only for the br_gr descriptor record.

The five bits in the brmask field are used to indicate which of the five preserved branch registers 
(b1–b5) are saved in the prologue. Bit 7 of byte 1 corresponds to b1; bit 3 of byte 0 corresponds to 
b5. If the bit is clear, the corresponding register is not saved; if the bit is set, the corresponding 
register is saved.

The gr field identifies the general register in which the first of these registers is stored. Additional 
general registers are used as needed. For example, assume that b1, b4, and b5 are stored. The mask 
bits would be 11001, and gr might be set to 37, indicating that the three branch registers are stored 
in r37, r38, and r39, respectively. 

01234567

0 1 1 0 0 0 r

Byte 0

Format R3 rlen (ULEB128)

Record Type r

prologue 00

body 01

01234567

1 0 0 brmask

Byte 0

Format P1

01234567

1 0 1 0 brmask

Byte 0 Byte 1
01234567

grFormat P2
Itanium™ Software Conventions and Runtime Architecture Guide B-3



Unwind Descriptor Record Format
This format is used by the group of descriptor records that specify a GR or BR number. The record 
type is identified by the r field, which is read as a four bit number whose low-order bit is bit 7 of 
byte 1. The following table shows the record types:

This format is used only by the spill_mask descriptor record. The first byte is followed by the 
imask field, whose length is determined by the length of the current prologue region as given by 
the region header record. The imask field contains two bits for each instruction slot in the region, 
and the size is rounded up to the next whole number of bytes, if necessary.

The high-order (leftmost) two bits of the first byte of the imask field correspond to the first 
instruction slot of the region. Bit pairs are read from left to right (high-order bits to low-order bits) 
within each byte, and bytes are read from increasing memory addresses. Each bit field describes 
the behavior of the corresponding instruction slot as follows:

This format is used only by the frgr_mem descriptor record. 

The bits in the grmask field correspond to the preserved general registers (r4–r7). The bits are 
read from right to left: bit 4 of byte 1 corresponds to r4, and bit 7 corresponds to r7. 

01234567

1 0 1 1 0 r

Byte 0 Byte 1
01234567

gr/brFormat P3

Record Type r Record Type r

psp_gr 0 rp_br 6

rp_gr 1 rnat_gr 7

pfs_gr 2 bsp_gr 8

preds_gr 3 bspstore_gr 9

unat_gr 4 fpsr_gr 10

lc_gr 5 priunat_gr 11

01234567

1 0 1 1 1

Byte 0

Format P4 0 0 0 imask

Bit Pair Meaning

00 The instruction slot does not save one of these registers

01 the instruction slot saves the next floating-point register

10 the instruction slot saves the next general register

11 the instruction slot saves the next branch register

01234567

1 0 1 1 1

Byte 0 Byte 1 Byte 2
01234567

grmask frmask

01234567

Format P5

Byte 3
01234567

0 0 1
B-4 Itanium™ Software Conventions and Runtime Architecture Guide



Unwind Descriptor Record Format
The bits in the frmask field correspond to the preserved floating-point registers (f2–f5 and f16–
f31). The bits are read from right to left: bit 0 of byte 3 corresponds to f2, and bit 3 of byte 1 
corresponds to f31.

A value of 1 in each bit position indicates that the corresponding register is saved.

This format is used by the fr_mem and gr_mem descriptor records. The r bit identifies the record 
type, as shown in the following table:

The bits in the rmask field correspond to either the preserved general registers (r4–r7) or the set 
of the first four preserved floating-point registers (f2–f5). The bits are read from right to left: bit 0 
corresponds to r4 or f2, and bit 3 corresponds to r7 or f5. A value of 1 in each bit position 
indicates that the corresponding register is saved.

This format is used for a number of descriptor records. The r field identifies the record type, as 
shown in the following table:

01234567

1 1 0 r rmask

Byte 0

Format P6

Record Type r

fr_mem 0

gr_mem 1

01234567

1 1 1

Byte 0

Format P7 r t/spoff/pspoff (ULEB128) size (ULEB128)

(mem_stack_f only)

0

Record Type r Additional ULEB128 Fields

mem_stack_f 0 t, size

mem_stack_v 1 t

spill_base 2 pspoff

psp_sprel 3 spoff

rp_when 4 t

rp_psprel 5 pspoff

pfs_when 6 t

pfs_psprel 7 pspoff

preds_when 8 t

preds_psprel 9 pspoff

lc_when 10 t
lc_psprel 11 pspoff

unat_when 12 t
unat_psprel 13 pspoff

fpsr_when 14 t

fpsr_psprel 15 pspoff
Itanium™ Software Conventions and Runtime Architecture Guide B-5



Unwind Descriptor Record Format
Stack pointer offsets (spoff) are represented as positive word offsets from the top of the stack 
frame (i.e., the location is sp + 4 * spoff). Previous stack pointer offsets (pspoff) are encoded 
as positive numbers representing a negative word offset relative to psp+16 (i.e., the location is psp 
+ 16 – 4 * pspoff).

This format is used for a number of descriptor records. The r field identifies the record type, as 
shown in the following table:

Stack pointer offsets (spoff) are represented as positive word offsets from the top of the stack 
frame (i.e., the location is sp + 4 * spoff). Previous stack pointer offsets (pspoff) are encoded 
as positive numbers representing a negative word offset relative to psp+16 (i.e., the location is psp 
+ 16 – 4 * pspoff).

This format is used only by the gr_gr descriptor record.

01234567

1 1 1

Byte 0

Format P8 t/spoff/pspoff (ULEB128)1
01234567

Byte 1

r0 0 0 0

Record Type r Additional ULEB128 Fields

rp_sprel 1 spoff

pfs_sprel 2 spoff

preds_sprel 3 spoff

lc_sprel 4 spoff

unat_sprel 5 spoff

fpsr_sprel 6 spoff

bsp_when 7 t

bsp_psprel 8 pspoff

bsp_sprel 9 spoff

bspstore_when 10 t

bspstore_psprel 11 pspoff

bspstore_sprel 12 spoff

rnat_when 13 t

rnat_psprel 14 pspoff

rnat_sprel 15 spoff

priunat_when_gr 16 t

priunat_psprel 17 pspoff

priunat_sprel 18 spoff

priunat_when_mem 19 t

01234567

1 1 1

Byte 0

Format P9 1
01234567

Byte 1

0 0 0 1 grmask0 0 0 0
01234567

Byte 2

gr0
B-6 Itanium™ Software Conventions and Runtime Architecture Guide



Unwind Descriptor Record Format
The bits in the grmask field correspond to the preserved general registers (r4–r7). The bits are 
read from right to left: bit 0 of byte 1 corresponds to r4, and bit 3 corresponds to r7. 

The gr field identifies the general register in which the first of these registers is stored. Additional 
general registers are used as needed. For example, assume that r4, r5, and r7 are stored. The mask 
bits would be 1011, and gr might be set to 37, indicating that the three preserved general registers 
are stored in r37, r38, and r39, respectively. 

This format is reserved for ABI-specific unwind descriptor records, typically to identify a region 
whose stack frame indicates some saved context record (e.g., a Unix signal context).

The values currently defined for the abi field are shown in the following table:

The interpretation of the context field is ABI dependent.

B.4 Descriptor Records for Body Regions

The epilogue, label_state, and copy_state descriptor records can each appear in two 
formats, depending on the magnitudes of their fields.

This record is used for the short form of label_state and copy_state descriptor records. If the 
label is no greater than 31, this format may be used; otherwise, format B4 must be used. The 
record types are shown in the following table:

01234567

1 1 1

Byte 0

Format P10 1 1 1 1 1

01234567
Byte 1

abi

01234567
Byte 2

context

Value ABI

0 Unix SVR4

1 HP-UX

2 Windows NT

01234567

1 0 r label

Byte 0

Format B1

Record Type r

label_state 0

copy_state 1
Itanium™ Software Conventions and Runtime Architecture Guide B-7



Unwind Descriptor Record Format

28)
This format is used only for the short form of the epilogue descriptor record. If the ecount field 
is no greater than 31, this format may be used; otherwise, format B3 must be used.

This format is used only for the long form of the epilogue descriptor record.

This format is used only for the long form of the label_state and copy_state descriptor 
records. The record types are shown in the following table:

B.5 Descriptor Records for Body or Prologue Regions

The record formats listed here describe general spills and restores, and may appear in either body 
or prologue regions.

This format is used by the spill_psprel and spill_sprel descriptor records, which identify 
when a register is saved by spilling to the memory stack. The r bit identifies the record type, as 
shown in the following table:

01234567

1 1 0 ecount

Byte 0

Format B2 t (ULEB128)

01234567

1 1 1 0 0 0 0 0

Byte 0

Format B3 t (ULEB128) ecount (ULEB128)

01234567

1 1 1 1 r 0 0 0

Byte 0

Format B4 label (ULEB128)

Record Type r

label_state 0

copy_state 1

01234567

1 1 1

Byte 0

Format X1 1

01234567
Byte 1

reg1 0 0 1 r a b t (ULEB128)

spoff/pspoff (ULEB1

Record Type r

spill_psprel 0

spill_sprel 1
B-8 Itanium™ Software Conventions and Runtime Architecture Guide



Unwind Descriptor Record Format
The a, b, and reg fields identify the register being spilled. The encodings are given in the 
following table:

This format is used only by the spill_reg descriptor record, which identifies when a register is 
saved by copying to another register, or when a register is restored from its spill location. The 
register being saved or restored is identified by the a, b, and reg fields, using the same encodings 
given above for Format X1. The target register to which the saved register is copied is identified by 
the x, y, and treg fields; a special encoding also indicates the “restore” operation. The encodings for 
these fields are given in the following table:

Record Type a b reg

GR 4–7 0 0 gr

FR 2–5 or 16–31 0 1 fr

BR 1–5 1 0 br

Predicates 1 1 0

psp 1 1 1

priunat 1 1 2

rp 1 1 3

ar.bsp 1 1 4

ar.bspstore 1 1 5

ar.rnat 1 1 6

ar.unat 1 1 7

ar.fpsr 1 1 8

ar.pfs 1 1 9

ar.lc 1 1 10

01234567

1 1 1

Byte 0

Format X2 1

01234567
Byte 1

1 0 1 0 regx a b

01234567
Byte 2

tregy t (ULEB128)

Record Type x y treg

Restore 0 0 0

GR 1–127 0 0 gr

FR 2–127 0 1 fr

BR 0–7 1 0 br
Itanium™ Software Conventions and Runtime Architecture Guide B-9



Unwind Descriptor Record Format

8)
This format is used by the spill_psprel_p and spill_sprel_p descriptor records, which 
identify when a register is saved under control of a predicate. The r bit identifies the record type, as 
shown in the following table:

The qp field identifies the controlling predicate. The remaining fields are encoded the same as 
Format X1.

This format is used only by the spill_reg_p descriptor record, which identifies when a register is 
saved to another register under control of a predicate, or when a register is restored under control of 
a predicate.

The qp field identifies the controlling predicate. The remaining fields are encoded the same as 
Formats X1 and X2.

01234567

1 1 1

Byte 0

Format X3 1

01234567
Byte 1

1 0 1 1 qpr 0

t (ULEB128) spoff/pspoff (ULEB12

01234567
Byte 2

reg0 a b

Record Type r

spill_psprel_p 0

spill_sprel_p 1

01234567

1 1 1

Byte 0

Format X4 1 1 1 0 0

t (ULEB128)

01234567
Byte 2

regx a b

01234567
Byte 3

tregy

01234567
Byte 1

qp0 0
B-10 Itanium™ Software Conventions and Runtime Architecture Guide


	1 Introduction
	1.1 Objectives of the Runtime Architecture
	1.2 About the Conventions
	1.3 Overview of the Itanium™ Software Conventions and Runtime Architecture Guide
	1.4 Terminology

	2 Processor Architecture
	2.1 Application State and Programming Model
	2.2 Floating-point Programming Model
	2.3 System State and Programming Model
	2.4 Addressing and Protection
	2.5 Interruptions

	3 Memory Model
	3.1 Program Segments
	3.2 Protection Areas
	3.3 Data Allocation
	3.3.1 Global Variables
	3.3.2 Local Static Data
	3.3.3 Constants and Literals
	3.3.4 Local Memory Stack Variables


	4 Data Representation
	4.1 Fundamental Types
	4.2 Aggregate Types
	4.3 Bit Fields
	4.4 Fortran Data Types

	5 Register Usage
	5.1 Partitioning
	5.2 General Registers
	5.3 Floating-point Registers
	5.4 Predicate Registers
	5.5 Branch Registers
	5.6 Application Registers
	5.7 User Mask

	6 Register Stack
	6.1 Input and Local Registers
	6.2 Output Registers
	6.3 Rotating Registers
	6.4 Frame Markers
	6.5 Backing Store for Register Stack

	7 Memory Stack
	7.1 Procedure Frames

	8 Procedure Linkage
	8.1 External Naming Conventions
	8.2 The gp Register
	8.3 Types of Calls
	8.4 Calling Sequence
	8.4.1 Direct Calls
	8.4.2 Indirect Calls

	8.5 Parameter Passing
	8.5.1 Allocation of Parameter Slots
	8.5.2 Register Parameters
	8.5.3 Memory Stack Parameters
	8.5.4 Variable Argument Lists
	8.5.5 Pointers to Formal Parameters
	8.5.6 Languages Other than C
	8.5.7 Rounding Floating-point Values
	8.5.8 Examples

	8.6 Return Values
	8.7 Requirements for Unwinding the Stack

	9 Coding Conventions
	9.1 Sample Code Sequences
	9.1.1 Addressing “own” Data in the Short Data Area
	9.1.2 Addressing External Data or Data in a Long Data Area
	9.1.3 Addressing Literals in the Text Segment
	9.1.4 Materializing Function Pointers
	9.1.5 Direct Procedure Calls
	9.1.6 Indirect Procedure Calls
	9.1.7 Jump Tables

	9.2 Speculation
	9.3 Multi-threaded Code
	9.4 Use of Temporary Registers around the Call to setjmp
	9.5 Up-level Referencing
	9.6 C++ Conventions

	10 Context Management
	10.1 Process/Thread Context
	10.2 User-level Thread Switch, Coroutines
	10.3 setjmp/longjmp

	11 Stack Unwinding and Exception Handling
	11.1 Unwinding the Stack
	11.1.1 Initial Context
	11.1.2 Step to Previous Frame

	11.2 Exception Handling Framework
	11.3 Coding Conventions for Reliable Unwinding
	11.3.1 Conventions for Prologue Regions
	11.3.2 Conventions for Body Regions
	11.3.3 Conventions for the Spill Area in the Memory Stack Frame

	11.4 Data Structures
	11.4.1 Unwind Table
	11.4.2 Unwind Descriptor Area
	11.4.3 Language-specific Data Area


	12 Dynamic Linking
	12.1 Position-independent Code
	12.2 Procedure Calls and Long Branch Stubs
	12.3 Access to the Data Segment
	12.3.1 Access to Constants and Literals in the Text Segment
	12.3.2 Materializing Function Pointers

	12.4 Import Stubs
	12.5 The Dynamic Loader

	13 System Interfaces
	13.1 Program Startup
	13.1.1 Initial Memory Stack
	13.1.2 Initial Register Values

	13.2 System Calls
	13.3 Traps and Signals

	A Standard Header Files
	A.1 Implementation Limits
	A.2 Floating-point Definitions
	A.3 Variable Argument List Macros
	A.4 setjmp/longjmp

	B Unwind Descriptor Record Format
	B.1 Overview
	B.2 Region Header Records
	B.3 Descriptor Records for Prologue Regions
	B.4 Descriptor Records for Body Regions
	B.5 Descriptor Records for Body or Prologue Regions


