
IA-64 System Abstraction Layer
Specification

July 2000

Document Number: 245359-002

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Inte l reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-64 processor may contain design defects or errors known as errata which may cause the product to deviate from published s pecifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel’s website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000

*Third-party brands and names are the property of their respective owners.

Contents
1 Introduction 1-1

1.1 Objectives ...1-1
1.2 Firmware Model ..1-2
1.3 System Abstraction Layer Overview...1-4
1.4 Firmware Entrypoints..1-5

1.4.1 Processor Abstraction Layer Entrypoints ...1-5
1.4.2 System Abstraction Layer Entrypoints..1-6
1.4.3 Operating System Entrypoints..1-7

1.5 Related Documents ..1-7

2 Platform Requirements 2-1
2.1 Firmware Address Space ...2-1
2.2 PAL/SAL ROM Space...2-1
2.3 Simplified Firmware Address Map ..2-2
2.4 Firmware Organization using Protected Boot Block ...2-2

2.4.1 Firmware Components ...2-3
2.5 Firmware Interface Table..2-6
2.6 Resources Required for PC-AT* Compatibility ...2-7
2.7 Chipset and Shadowing Requirements ..2-8
2.8 Platform Support for Variant Architectural Features ...2-9
2.9 Platform Considerations Related to Geographic Location..2-10
2.10 Non-volatile Memory Requirements ...2-10
2.11 Miscellaneous Platform Requirements ...2-11

3 Boot Sequence 3-1
3.1 Overview of the Code Flow after Hard Reset ...3-1

3.1.1 Code Flow during Recovery ...3-2
3.1.2 Normal Code Flow..3-2

3.2 SAL_RESET...3-2
3.2.1 Initialization Phase..3-3
3.2.2 Bootstrap Processor Identification Phase in an MP Configuration...............3-4
3.2.3 Platform Initialization Phase ...3-6
3.2.4 OS Boot Phase...3-8
3.2.5 Firmware to OS Loader Handoff State ...3-9
3.2.6 OS_BOOT_RENDEZ ...3-10
3.2.7 SAL System Table..3-10

3.3 IA-64 OS Loader Requirements ...3-18
3.3.1 Fault Handling ..3-18
3.3.2 Memory Management Resources Usage ...3-20
3.3.3 Other Restrictions on the OS..3-21

4 Machine Checks 4-1
4.1 SAL_CHECK ..4-1

4.1.1 SAL_CHECK Processing Details ...4-2
4.2 Corrected Machine Checks ..4-3
4.3 Platform Errors..4-4

4.3.1 Scope ...4-5
4.4 OS_MCA...4-5
4.5 Procedures used in Machine Check Handling..4-7
IA-64 System Abstraction Layer Specification iii

4.6 Machine Checks in MP Configurations...4-9
4.7 OS_MCA Handoff State ...4-12

4.7.1 Return from OS_MCA Procedure...4-12

5 Initialization Event 5-1
5.1 SAL_INIT ..5-1
5.2 OS_INIT..5-2
5.3 OS_INIT Handoff State...5-4
5.4 Return from OS_INIT Procedure ..5-4
5.5 MP INIT Support...5-5

6 Platform Management Interruptions 6-1
6.1 SALE_PMI Overview ..6-1
6.2 SALE_PMI Initialization ..6-1
6.3 SALE_PMI Processing ...6-2
6.4 Special Considerations for Multiprocessor Configurations ...6-2

7 IA-32 Support 7-1
7.1 IA-32 Support Model...7-1
7.2 IA-32 Support Requirements ..7-1

7.2.1 Resources Supported by SAL ..7-1
7.2.2 Overview of IA-32 Support Layer Functionality ..7-2
7.2.3 IA-32 Instruction Usage Guidelines ..7-2
7.2.4 IA-32 Support Environment ..7-3
7.2.5 IA-32 Interruption Handler Support ..7-4

8 Calling Conventions 8-1
8.1 SAL Calling Conventions..8-1

8.1.1 Definition of Terms ...8-1
8.1.2 Processor State..8-1
8.1.3 System Registers ...8-3
8.1.4 General Registers ..8-4
8.1.5 Floating-point Registers ...8-4
8.1.6 Predicate Registers ..8-4
8.1.7 Branch Registers..8-5
8.1.8 Application Special Registers ...8-5
8.1.9 Parameter Buffers ..8-5

8.2 Software Interface Conventions for SAL Procedures ...8-5
8.2.1 Control Flow of the SAL Interface ..8-6
8.2.2 Calling Architected/OEM SAL Functions..8-6

9 SAL Procedures 9-1
9.1 SAL Runtime Services Overview..9-1

9.1.1 Invoking SAL Runtime Services in Virtual Mode ..9-1
9.1.2 Access to Resources not Supported by OS ...9-2

9.2 SAL Procedure Summary ...9-3

A Glossary A-1

B Error Record Structures B-1
B.1 Overview ... B-1
B.2 Error Record Structure ... B-1

B.2.1 Record Header ... B-2
B.2.2 Section Header... B-2
iv IA-64 System Abstraction Layer Specification

B.2.3 Error Device GUID ... B-4

Figures

1-1 Firmware Model ...1-2
1-2 Firmware Services Model ..1-3
1-3 Firmware Entrypoints Logical Model..1-5
2-1 Simplified Firmware Address Map ...2-3
2-2 Firmware Address Map..2-4
2-3 Firmware Interface Table...2-6
2-4 Firmware Interface Table Entry ...2-6
3-1 Local ID Register Format...3-3
3-2 Control Flow of Boot Process in a Multi-processor Configuration ...3-5
3-3 Memory Semaphore Format..3-6
4-1 Overview of Machine Check Flow ...4-1
4-2 Machine Check Code Flow..4-3
4-3 SAL_CHECK Detailed Flow on the Monarch Processor ...4-8
4-4 Normal SAL Rendezvous Flow..4-10
4-5 Failed SAL Rendezvous Flow..4-11
5-1 SAL_INIT Control Flow..5-3
8-1 Control Flow of the SAL Procedure Interface ..8-6

Tables

2-1 Firmware Address Space ..2-1
2-2 FIT Types ..2-7
2-3 1-MB Compatibility Memory Address Space...2-7
2-4 IA-32 Compatibility I/O Ports ...2-8
3-1 SAL Actions based on Processor Self-test State ..3-1
3-2 SAL System Table Header..3-11
3-3 SAL System Table Entry Types ..3-12
3-4 Entrypoint Descriptor Entry Format ..3-13
3-5 Memory Descriptor Entry...3-13
3-6 Memory Type Information Provided to the EFI..3-15
3-7 Platform Features Descriptor Entry ...3-16
3-8 Translation Register Descriptor Entry ...3-16
3-9 Purge Translation Cache Coherence Domain Entry ...3-17
3-10 Coherence Domain Information ..3-17
3-11 Application Processor Wake-up Descriptor Entry ...3-18
8-1 Definition of Terms ..8-1
8-2 State Requirements for PSR ...8-1
8-3 System Register Conventions ...8-3
8-4 General Registers – Standard Calling Conventions..8-4
8-5 SAL Return Status...8-7
9-1 SAL Procedures ..9-3
IA-64 System Abstraction Layer Specification v

vi IA-64 System Abstraction Layer Specification

Introduction 1

1.1 Objectives

This document describes the functionality of the IA-64 System Abstraction Layer (SAL).

This document specifies requirements to develop platform firmware for IA-64 systems. A
companion document, The Extensible Firmware Interface (EFI), describes additional interfaces
that must be implemented to access devices on the platform. The EFI Specification is a platform
binding specification and is also part of the IA-64 firmware.

This document is intended for firmware/BIOS (basic input/output device) designers, system
designers and writers of diagnostic and low-level OS software. This document is a specification and
does not specify implementation details.

The primary objectives of the IA-64 firmware layer are to:

• Enable boot of IA-64 OSs.

• Provide a uniform interface to the boot loaders of the OSs for all IA-64 platforms.

• Ensure that the firmware interfaces are sufficient to contain the platform implementation
differences within the hardware abstraction layers and device driver layers of operating
systems.

• Separate the abstraction for the platform hardware from the abstraction for the processor
hardware.

• Enable hardware innovation and optimization of IA-64 platforms.

• Support OEM capability for platform differentiation.

• Support the scaling of systems from the low-end to the high-end including servers,
workstations, mainframe alternatives and supercomputers. Features supported will include
high availability, error logging/recovery, large memory, multiprocessors (MPs), and broader
and deeper I/O hierarchies (possibly greater than 100 I/O cards).

• Enable boot of shrink-wrapped versions of IA-32 operating systems (OSs). This will involve
support of IA-32 industry standard calls and Application Programming Interfaces (APIs).

• Enable reuse of IA-32 BIOS code as part of SAL. The extent of the IA-32 BIOS reuse is
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer
(PAL) will be in the IA-64 Instruction Set Architecture (ISA).

• Enable the use of legacy PC peripherals, option ROMs and PCI cards with IA-32
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals.
However, this document is not intended to redocument the PC infrastructure specifications.
Introduction 1-1

1.2 Firmware Model

As shown in Figure 1-1, IA-64 firmware consists of three major components, all of which are
required:

1. Processor Abstraction Layer,

2. System Abstraction Layer, and

3. Extended Firmware Interface Layer.

Figure 1-1. Firmware Model

000950

Operating System Software

Transfers to OS
Entrypoints
for Hardware
Events

SAL Procedure
Calls

Platform (Hardware)

Platform/System Abstraction Layer
(SAL) Interrupts,

Traps and
Faults

PAL Procedure
Calls

Transfers to SAL
Entrypoints

Acess to
Platform

Resources

Non-performance Critical
Hardware Events, e.g.

Reset, Machine Checks

Performance Critical
Hardware Events,

e.g. Interrupts

Instruction
Execution

Extensible Firmware
Interface (EFI)

OS Boot
Handoff

EFI
Procedure
Calls

OS Boot
Selection

Processor (Hardware)

Processor Abstraction Layer
(PAL)
1-2 Introduction

PAL encapsulates the processor model specific hardware and is part of the IA-64 Instruction Set
Architecture (ISA). PAL is the firmware layer that abstracts the processor implementation-specific
features and is independent of the number of processors. SAL is the platform specific firmware
component that isolates OS and other higher level software from implementation differences in the
platform. EFI is the platform binding specification layer that provides a legacy free API interface to
the OS Loader.

PAL, SAL and EFI together provide system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PMI) handling and other processor and system
functions which would vary between implementations. The interaction of the various functional
firmware blocks is shown in Figure 1-2.

Figure 1-2. Firmware Services Model

000933

Platform/Processor Hardware

Operating System Software

OS Loader
OS Init
Handler

Boot
Services

(Transient)

Platform
Runtime
Services

(Procedures)

Platform
Reset

Handler

Platform
Error

Handler

Platform
PMI

Handler

Processor
Runtime
Services

(Procedures)

Processor
Reset

Handler

Processor
Error

Handler

Processor
Init

Handler

Processor
PMI

Handler

SAL

PAL

Machine
Check

Initialization
Event

PMI
Event

Platform
Init

Handler

Reset Event

Reset /
Power On

Runtime
Services

OS
Boot

Services

EFI

OS Machine
Check

Handler
Introduction 1-3

1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an IA-64 platform:

• Initialize, configure, and test the platform hardware. This includes the memory and I/O
subsystems, the necessary boot devices and platform specific hardware.

• Select the bootstrap processor (BSP) in a MP platform and set the configurable processor
features. The IA-64 processor provides its own PAL firmware for initialization and test, but
this abstraction has no knowledge of the platform and so further platform-specific action is
necessary to integrate the processor to the rest of the system. For example, the SAL must
configure, test and initialize memory before the processor cache to memory interface can be
established and tested (SAL_RESET interface).

• Optionally, encapsulate and provide the environment necessary to run IA-32 BIOS and plug-in
cards containing IA-32 Option ROMs.

• Provide low level service routines to aid the EFI and the OS Loader in establishing the
environment necessary for the OS to run in.

• Provide common data structures to the OS to convey initialization and configuration
information.

• Provide the necessary services and common infrastructure to support MP configurations.

• Provide Runtime Service routines to encapsulate those functions of the platform necessary for
the EFI and the OS while they are running.

• Provide the functions necessary to aid in the logging and recovery from Machine Check
conditions (SAL_CHECK and OS_MCA interface).

• Provide the functions necessary to aid in the logging and recovery from INIT conditions
(SAL_INIT and OS_INIT interface).

• Provide the functions necessary to handle the platform management events (SALE_PMI
interface).

• Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

• Optionally, provide an user interface to aid in system configuration, information passing and
troubleshooting.

These SAL functions can be divided into the following interface categories:

• SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.

• OS entrypoints from SAL: OS_MCA, OS_INIT and OS_BOOT_RENDEZ.

• SAL Runtime Service routines.
1-4 Introduction

1.4 Firmware Entrypoints

1.4.1 Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization request

• PMIs

Figure 1-3. Firmware Entrypoints Logical Model

PALE_RESETR eset
Pow er-O n

SAL_RESET O S_LOADER

PAL OS

M C _Rendezvous

In itia lize

SAL

SALE_ENTRY O S_M CA
Error

SAL_CHECK

(APs)
In terrupt

PALE_PM I SALE_PMI
PM I

SALE_ENTRY

PALE_CHECK

SALE_ENTRY O S_IN ITSAL_INITPALE_INIT

M C Rendezvous com ple te

Resum e

W ake up
SAL_M C_
REN DE Z

SA L_BO O T_
_RE ND EZ

W ake up

Processor

BSP

Boots trapApplication
P rocessors

(APs)

F irm ware R ecovery
Com ple te (BSP)

EFI Boot

(BSP)

M anager
Introduction 1-5

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 1-2 and Figure 1-3):

1. PALE_RESET – initializes the processor following power-on or a reset. This entrypoint
within PAL calls SALE_ENTRYPOINT in SAL to test for firmware recovery indication.
SALE_ENTRY, in turn, calls a procedure within SAL called SAL_RECOVERY_CHECK
that performs the recovery if firmware recovery indication is present on the platform, else
returns to PAL via SALE_ENTRY. If firmware recovery is required, the SAL recovery code
will accomplish the firmware recovery function, reset the recovery indication and then
trigger a system wide reset causing re-entry into PALE_RESET. If SAL reports to PAL that a
firmware recovery condition does not exist, PAL conducts additional processor tests and
then branches to SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL
called SAL_RESET to initialize the system.

2. PALE_CHECK – saves the minimal processor state, determines if errors are processor
related, saves processor related error information and corrects errors where possible (for
example, by flushing a corrupted instruction cache line and marking the cache line as
unusable). PALE_CHECK then branches to SALE_ENTRY in SAL. SALE_ENTRY, in
turn, branches to a procedure within SAL called SAL_CHECK to complete the error
logging, correction, and reporting. PALE_CHECK is entered as a response to processor
and/or platform errors.

3. PALE_INIT – saves the minimal processor state, initializes the processor, and branches to
SALE_ENTRY in SAL. SALE_ENTRY, in turn, branches to a procedure within SAL called
SAL_INIT. PALE_INIT is entered as a response to an initialization event.

4. PALE_PMI – determines the type of platform management event, and branches to
SALE_PMI. PALE_PMI is entered as a response to a platform management event.

1.4.2 System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1. SALE_ENTRY – PAL branches to this SAL entrypoint after a power-on reset, machine
check or initialization event. The code at this entrypoint using the hand-off value in a
General Register, jumps to different entrypoints within SAL for Reset, Firmware Recovery,
Machine check and Initialization events.

SAL_RESET within SAL is entered for system initialization after PAL has initialized the
processor. SAL_RESET functionality is described in Chapter 3.

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test
if a firmware recovery condition is present. SAL is the only entity that has knowledge of
platform resources to determine if a firmware recovery condition is present.

SAL_CHECK within SAL is entered for logging errors, and correcting platform related
errors where possible. SAL_CHECK functionality is described in Chapter 4.

SAL_INIT within SAL is entered for saving the state of the system and performing
additional functions as defined in Chapter 5.

2. SALE_PMI – PAL branches to this SAL entrypoint for handling platform management
events in an implementation dependent manner.
1-6 Introduction

1.4.3 Operating System Entrypoints

There are several entrypoints from SAL into an OS (or equivalent software):

• OS_LOADER – OS Loader. Entered from SAL_RESET on the BSP only, after the system has
been initialized and the OS Loader image has been loaded by the EFI component from the boot
device. Refer to the EFI Specification for details.

• OS_BOOT_RENDEZ – OS MP Rendezvous Handler. Entered from SAL when OS on the BSP
wakes up the application processors (APs), to permit synchronization of APs in a MP
environment.

• OS_MCA – OS Machine Check Abort Handler. Called from SAL_CHECK to allow the OS to
handle the machine checks that are not corrected by hardware, PAL or SAL.

• OS_INIT – OS Initialization Handler. Called from SAL_INIT to handle a valid initialization
event.

1.5 Related Documents

The following documents contain additional material related to IA-64 processors:

• Advanced Configuration and Power Interface Specification, 1996 – Intel/Microsoft/Toshiba

• BIOS Boot Specification, 1996 – Compaq/Phoenix/Intel

• BIOS Enhanced Disk Drive Specification version 3.0 – Phoenix

• Bootable CD-ROM Format Specification, 1994 – Phoenix/IBM

• CBIOS for IBM Computers and Compatibles – Phoenix

• Extensible Firmware Interface Specification – Intel

• IA-64 Software Conventions and Runtime Architecture Guide – HP/Intel

• Intel® IA-64 Architecture Software Developer’s Manual – Intel

• PCI BIOS Specification, 1994 – PCI SIG

• Plug and Play ISA Specification, 1994 – Microsoft
Introduction 1-7

1.6 Revision History

Date of
Revision Description

July 2000 Clarification of state of IA-64 system registers at the time of handoff to
OS_BOOT_RENDEZ. (Section 3.2.6)

Clarification of Platform Features Description Entry for offset of 1. (Table 3-7)

Added non-volatile memory and ACPI requirements to platform requirements.
(Section 2.11)

Clarification of the Alternate Data TLB fault, Speculation fault, Unaligned fault,
NaT Consumption fault, and General Exception fault descriptions. (Section
3.3.1)

Clarification of machine check overview. (Chapter 4 Introduction)

Clarification of SAL_CHECK processing and conversion of MCA events to
Processor Corrected Machine Checks and Platform Corrected Error Events.
(Section 4.1.1)

Revision of Machine Check Code Flow diagram. (Figure 4-2)

Additional information about Corrected Machine Check categories. (Section 4.2)

New Platform Errors handling information. (Section 4.3)

New description of the scope of platform error handling. (Section 4.3.1)

Clarification of OS_MCA handling. (Section 4.3)

Clarification of multiprocessor machine checks. (Section 4.6)

Clarification of OS_MCA Handoff State. (Section 4.7)

Changes to processor state specification ofr return from OS_INIT. (Section 5.4)

New SAL Return Status of 3 to specify that additional information is available.
(Table 8-5)

Clarification of how to invoke SAL runtime services in virtual mode. (Section
9.1.1)

Addition of mf.a instruction to code sequence to ensure platform acceptance.
(Section 9.1.2)

SAL_CACHE_FLUSH: Addition of i_ord_value of 4 to instruction to make local
instruction caches cohenrent with data caches. (Section 9.2)

SAL_CLEAR_STATE_INFO: New type value of 3 to speclfiy corrected platform
event. Removel of sub-type argument. New return value of 3 to indicate more
error records are available. (Section 9.2)

SAL_FREQ_BASE: New type value of 3 to speclfiy corrected platform event.
Removel of sub-type argument. (Setion 9.2)

SAL_GET_STATE_INFO_SIZE: New type value of 3 to speclfiy corrected
platform event. Removel of sub-type argument. (Section 9.2)

SAL_MC_RENDEZ: New recommendation in footnote for OS to use memory
semaphore for wake-up instead of interrupt. (Section 9.2)

SAL_MC_SET_PARAMS: New param_type of 3 to specify Corrected Platform
Error Interrupt. New rz_always flag to specify a firmware rendezvous. (Section
9.2)

New Glossary definitions for Corrected Error, Corrected Platform Error Interrupt,
Fatal Error, and Recoverable Error. (Appendix A)

New Error Record Structure definition defines a record header and sections with
error information for each error device. (Appendix B)

January 2000 Initial release of document.
1-8 Introduction

Platform Requirements 2

2.1 Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000
through 0xFFFF_FFFF). This address space is shown in Table 2-1.

The firmware address space is logically partitioned into two major functional blocks: the ROM area
(shared by the SAL and PAL) and the SAL Resources area. The ROM area is placed in the address
space such that its ending address is at 0xFFFF_FFFF. The SAL Resources area occupies the
portion of 16 MB firmware address space not occupied by the ROM area. SAL code can use the
special hardware resources which the platform has implemented in the SAL Resources area. The
hardware resources implemented can optionally include (but are not limited to) scratch RAM,
non-volatile memory (NVM), environment control and status registers. The location of the
hardware resources within the SAL Resources area is platform dependent.

2.2 PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code
areas and a table called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:

• PAL_A which is processor stepping independent and

• PAL_B which is processor stepping dependent.

These two subcomponents are required and must be separated logically even if they are
physically located in contiguous spaces. The PAL_A block contains a limited subset of PAL
procedures (PAL_PROC) that can be invoked by SAL while performing a firmware recovery
(refer to Volume 2 of the Intel® IA-64 Architecture Software Developer’s Manual for details).
The PAL_B block contains all the PAL procedures that can be invoked by SAL and the OS.

Table 2-1. Firmware Address Space

0xFFFF_FFFF

PAL/SAL ROM

SAL Resources

0xFF00_0000
Platform Requirements 2-1

In a similar fashion, SAL code can be broken into two subcomponents:

• SAL_A which contains the SALE_ENTRY entrypoint and all the code needed for firmware
recovery.

• SAL_B which contains code to test and initialize the platform.

Unlike the PAL, the SAL subcomponents need not be separated from each other logically or
physically.

The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Code in the PAL_A can transition to:

• Code in the PAL_B using the FIT. First, the beginning address of the PAL_B block is
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET)
are determined in a PAL implementation dependent manner.

• Code in the SAL_A address space at SALE_ENTRY which serves as the entrypoint for Reset,
Recovery, Machine Check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be held in
compressed format. SAL code that is executed out of ROM such as early stages of the Reset
sequence, and code for handling Machine check and INIT cannot be held in compressed format.

2.3 Simplified Firmware Address Map

Following is a simplified example of the firmware address map that shows the minimum
architectural components. Refer to Section 2.4.1 for description of the fields. This layout is not
expected to be used with a flash ROM supporting the protected boot block feature. See Figure 2-2
for a different firmware organization supporting the protected boot block.

2.4 Firmware Organization using Protected Boot Block

This section describes an example of a typical firmware organization using a flash ROM that
contains a protected boot block.

Protected boot block refers to a block of the Flash ROM that is prevented from modifications by
hardware. Code in this block can contain logic to restore PAL/SAL code in the erasable portion of
the flash part after a previous flash programming attempt was accidentally aborted. Firmware
organization using protected boot block requires some data structures in addition to the minimum
architectural requirements discussed earlier.

To support the protected boot block, both the PAL_A code and SAL_A code must be within the
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A
part of the protected boot block.
2-2 Platform Requirements

2.4.1 Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries
are implementation dependent. The Firmware Address Space contains several regions and locations
as shown in Figure 2-2 below for a typical implementation.

The firmware address space contains the following regions and locations:

• The 16 bytes at (4GB – 16) contains the IA-32 Reset Code. This is typically an IA-32 far JMP
instruction followed by the Date, the PC-AT* model signature, etc. This code is never executed
but is present for PC-AT compatibility.

Figure 2-1. Simplified Firmware Address Map

4 GB

4 GB-16
4 GB-24
4 GB-32

4 GB – (A+B+64)

GB – (A+B+64+Y+C)

4 GB-16 MB

IA-32 Reset vector

SAL Entrypoint

Firmware Interface Table Entrypoint

PAL_A binary block

PAL_B binary block

Firmware Interface Table (FIT)

SAL_A binary block

Available ROM space

(16 bytes)

(8 bytes)

(multiple of 16 bytes)

(8 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

CPU Reset

INIT

H/W Error

PALE_RESET

PALE_INIT

PALE_CHECK

C
16 MB

(Maximum RO

4 GB-48
4 GB-64 Reserved (16 bytes)

FIT entry for PAL_A (16 bytes)

(SAL_A size)

Y
(FIT size)

B
(PAL_B size)

A
(PAL_A size)

64 bytes

SALE_ENTRY

(SALE_ENTRY)
Platform Requirements 2-3

Figure 2-2. Firmware Address Map

000935

SALE_ENTRY Address
Firmware Interface Table Address
PAL_A FIT Entry

IA-32 Reset Vector

Reserved

(16 bytes)

(8 bytes)
(8 bytes)

(16 bytes)

(16 bytes)

PAL_A Block (multiple of 16 bytes)

SAL_A Block
(IA-64 and optional IA-32 code) (multiple of 16 bytes)

Firmware Interface Table (FIT) (multiple of 16 bytes)

Reserved PAL Space (optional) (multiple of 16 bytes)

PAL_B Block (multiple of 16 bytes)

Reserved SAL Space (optional) (multiple of 16 bytes)

SAL_B Block (multiple of 16 bytes)

Available ROM Space

64 bytes

A
(PAL_A Size)

Y
(FIT Size)

B
(SAL_A Size)

C
(PAL_B Size)

D
(SAL_B Size)

X
(Protected
Bootblock)

16 MB
(Maximum ROM)

4 GB

4 GB-16
4 GB-24
4 GB-32
4 GB-48

4 GB-64

4 GB-X
SALE_ENTRY

4 GB-(X+Y)
FIT_BASE

4 GB-(X+Y+C)
PAL_BASE

4 GB-(X+Y+C+D)
SAL_BASE

4 GB-16 MB

PALE_RESET

PALE_INIT

PALE_CHECKH/W Error

Init

CPU Reset
2-4 Platform Requirements

• The 8 bytes at (4GB – 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this
address must be set to 1 to indicate the uncacheable memory attribute in physical addressing
mode.

• The 8 bytes at (4GB – 32) contain the pointer to the FIT. Bit 63 of this address must be set to 1.
The FIT need not be located immediately before the protected boot block. However, the FIT
cannot be moved to a different location since its address is contained in the protected boot
block.

• The 16 bytes at (4GB – 48) describe the characteristics of the PAL_A component in the ROM
(base address, size, version number, type, etc.) This is represented in the FIT entry format for
the sake of uniformity. Bit 63 of the address field within this FIT entry must be set to 1 and the
type field must have a value of 0x0F.

• The 16 bytes at (4GB – 64) are reserved for future use.

• The PAL_A code resides below the (4GB – 64) address. This area of variable size contains the
hardware-triggered entrypoints PALE_RESET, PALE_INIT, and PALE_CHECK, as well as
minimal processor initialization code. This code area must be a multiple of 16 bytes in length.
PAL_A uses the FIT entry of the PAL_B to reach continuation entrypoints in PAL_B for Reset,
Machine check and INIT.

The code in the PAL_A block contains enough capability to initialize the processor, invoke the
SALE_ENTRY procedure for test of the recovery indication and continue with normal PAL
execution in the PAL_B code area. The code in this area shall be identical for all IA-64
processors in the same family. This code shall be unaffected by processor stepping changes.

• SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility
and to conserve space in the protected boot block, this area will primarily contain code for
firmware recovery. When entered for other conditions such as Normal Reset, Machine Check
or INIT, the code in this block will find the continuation entrypoints in the SAL_B block
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY
code reaches continuation entrypoints in SAL_B for Reset, Machine check and INIT is SAL
implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during
firmware execution but may be needed by the utility that merges these components to format
the protected boot block portion of the flash ROM.

• Underneath the protected boot block is the FIT. It comprises 16-byte entries containing starting
address and size information of the remaining firmware components in the non recovery
portion of the flash ROM: PAL_B, SAL_B, etc. Refer to Section 2.5 for FIT details.

• Underneath the FIT is the code for the IA-32 BIOS, EFI, SAL_B and PAL_B components.
There are no ordering requirements for the firmware components within the flash ROM.

• The PAL_B binary block contains the PAL code which is not required for firmware recovery.
The PAL_B code area is a multiple of 16 bytes in length and must be aligned on a 32K-byte
boundary. PAL_B’s FIT entry contains the address and size of the PAL_B binary block.

• The remainder of the SAL/PAL ROM area is occupied by the SAL_B code. SAL_B’s FIT
entry (if present in the FIT), contains the address and size of the SAL_B binary block.

• Code within SAL (SAL_A & SAL_B) may include IA-32 code. The location of the SAL_B
and IA-32 BIOS code within the SAL/PAL ROM area is implementation dependent. Some
SAL implementations may separate the IA-64 and IA-32 code components as separate
firmware blocks with unique FIT entry types. In a similar fashion, the SAL_B component may
include the EFI component or a separate FIT entry may point to the EFI component.
Platform Requirements 2-5

2.5 Firmware Interface Table

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components that are outside the protected boot block. Because these code blocks may be compiled
at different times and places, code in one block (such as PAL_A) cannot branch to code in another
block (such as PAL_B) directly. The FIT allows code in one block to find entrypoints in another.
The figure below shows the FIT layout.

Each active FIT entry contains information for the corresponding firmware component. The first
two entries are used to describe the FIT table itself and the PAL_B block respectively and these two
entries are architecturally required. FIT entries shall be in ascending order of entry types else
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Address is the base address of the component and it must be aligned on a 16-byte boundary. For the
FIT Header entry, this field contains the ASCII value of ‘_FIT_<sp><sp> <sp>’ where <sp>
represents the space character. For the PAL_B entry, bit 63 of the address field must be set to 1 to
indicate the uncacheable memory attribute in physical addressing mode. The PAL_B component
must be aligned on a 32K-byte boundary.

Size is the size of the component in paragraphs of 16-bytes.

Figure 2-3. Firmware Interface Table

Figure 2-4. Firmware Interface Table Entry

4GB-X

4GB-(X+Y)
FIT Header entry

Y

Unused entry

PAL_B entry

Unused entry

Unused entry

(16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

Unused entry

Address (8 bytes)

Size (3 bytes)

Start of entry

Start + 16

Start + 8
Version (2 bytes)

TypeC_V
(7 bits)1 bit

63 56 55 32 31 23 054 48 47 24

(1 byte)
ReservedChecksum

(1 byte)
2-6 Platform Requirements

Version contains the component’s version number. For the FIT Header Entry, the value in this field
will indicate the revision number of the FIT data structure.

C_V is a one bit field that indicates whether the component has a valid checksum. If this bit is zero,
the value in the Chksum field is not valid.

Type contains the seven-bit type code for the element. Types are defined in Table 2-2.

The type code of 0x0F is used for PAL_A. Since PAL_A’s binary image is located near the end of
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry
is also located within the protected boot block (at 4GB – 48), and not in the FIT table. The OEM
may define unique types for one or more blocks of SAL_B, EFI, IA-32 BIOS, etc., within the
OEM-defined type range of 0x10 to 0x7E.

Chksum contains the component’s checksum. The modulo sum of all the bytes in the component
and the value in this field (Chksum) must add up to zero. This field is only valid if the C_V field is
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum
option is selected for the FIT in the FIT Header entry (FIT type 0), the modulo sum of all the bytes
in the FIT table must add up to zero. The PAL_A FIT entry is not part of the FIT table and hence
not included in the checksum computation of the FIT.

With this address layout, when one of the firmware components changes, only that component’s
flash portion requires changes. This address layout can also support multiple ROMs for the
firmware components and such ROMs are not restricted to reside below 4GB.

2.6 Resources Required for PC-AT* Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB
is defined as the compatibility area and is used by firmware when initializing and executing IA-32
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the
platform if PC-AT compatibility is not required.

Table 2-2. FIT Types

Type Meaning

0x00
0x01
0x02-0x0E
0x0F
0x10-0x7E
0x7F

FIT Header entry
PAL_B
Reserved
PAL_A
OEM-defined
Unused

Table 2-3. 1-MB Compatibility Memory Address Space

0x000F_FFFF
Shadowed IA-32 System BIOS

0x000F_0000

0x000E_FFFF Shadowed IA-32 Extended System
BIOS/Option ROM/Memory area0x000E_0000
Platform Requirements 2-7

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system
memory. For example, a server platform may choose to implement the system console on a serial
port and eliminate the VGA frame buffer and the VGA BIOS components. IA-32 stack should be
allocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode IA-32
BIOS code.

IA-64 platforms may use I/O adapter cards containing IA-32 Option ROMs during the boot
process. A portion of the SAL code may also contain IA-32 code. Such IA-32 code as well as IA-32
OSs may rely on the existence of PC-AT compatible components. In order to execute such IA-32
code, all IA-64 platforms shall implement the I/O ports specified in Table 2-4. Alternatively, the
SAL can trap some or all IA-32 I/O instructions and emulate the I/O ports that are not present on
the platform. Refer to Section 7.2.4, “IA-32 Support Environment” for more details.

2.7 Chipset and Shadowing Requirements

Following are the SAL requirements from the chipset implementation:

• The firmware code and data within the firmware address range must be accessible from the
processor without any special system fabric initialization sequence. This implies that the

0x000D_FFFF Shadowed IA-32 Option ROM BIOS
or

ISA Bus Expansion Memory0x000C_0000

0x000B_FFFF

VGA Frame Buffer

0x000A_0000

0x0009_FFFF

Memory

0x0000_0500

0x0000_04FF
IA-32 BIOS RAM Data Area

0x0000_0400

0x0000_03FF
IA-32 Interrupt Vector Area

0x0000_0000

Table 2-4. IA-32 Compatibility I/O Ports

Port Description

0x20-0x21 Programmable Interrupt Controller (Master)

0x40-0x43 Programmable Interval Timer

0x70-0x71 CMOS NVRAM Address, Data Ports

0xA0-0xA1 Programmable Interrupt Controller (Slave)

Table 2-3. 1-MB Compatibility Memory Address Space (Continued)
2-8 Platform Requirements

system fabric is implicitly initialized at power on for accessing the firmware address space or
alternatively, the special hardware that contains the firmware code and data is implemented on
the processor and not accessed across the system fabric.

• Firmware may copy ROM based code and data structures to RAM to increase performance and
to allow for updates of ROM based data structures by initialization firmware. Platforms are not
required to implement any write protection for these shadowed areas. Since hardware events
such as Reset, Machine Check and INIT enter architected PAL entrypoints in the ROM around
the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the
PAL/SAL ROM area subsequent to the shadowing of firmware code.

IA-64 memory management features needed for IA-32 execution can be set up to prevent
writes to the shadowed RAM areas. The IA-64 instruction set architecture provides
instructions to synchronize the instruction and data caches in the presence of self-modifying
code.

• Chipsets need not implement in-line shadowing (Read cycles going to ROM, Write cycles
going to RAM) for copying IA-32 segments at E0000 to FFFFF to RAM.

2.8 Platform Support for Variant Architectural Features

Different platform implementations may vary with respect to each other in the features they
implement and yet they could be architecturally compliant. As an example, some platforms will
implement bus lock while other platforms will not. This has implications for software running on
these platforms, and therefore this information must be communicated to software. SAL firmware
is responsible for knowing the architectural variant and correctly communicating the information to
software. How SAL knows about the architectural variant is implementation dependent. The
following lists the features which fall into this category and describe the method of abstraction to
software.

• Bus Lock: If the processor supports the Bus Lock signal and the platform implements Bus
Lock, then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.lc =
0), otherwise the DCR.lc shall be set to 1. The OS shall not alter DCR.lc bit setting if it is set to
1. Refer to the PAL call PAL_BUS_ SET_FEATURES in the Intel® IA-64 Architecture
Software Developer’s Manual for information on masking Bus Lock signal and executing the
locked transaction as a series of non-atomic transactions.

• Lowest Priority Interrupt: SAL shall communicate to the OS, through the SAL System Table
(Table 3-7), whether this feature is supported by the platform.

• Address space attributes: SAL shall communicate to software the supportable access attributes
for all valid address space mappings. This information is provided to the OS by the EFI
component. As an example of this architectural variant, consider two memory controllers
where one supports sub-cache line writes to memory and another which does not. The first
case would be described as write-through or write-back cacheable, whereas the second case
would be described as supporting only write-back cacheable. Similarly, the UCE memory
attribute indicates whether the address space permits the exporting of the fetchadd operation
outside the processor. Memory attribute features for address spaces are fully described in the
Intel® IA-64 Architecture Software Developer’s Manual.
Platform Requirements 2-9

2.9 Platform Considerations Related to Geographic
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of
processors in a MP configuration:

• The platforms shall provide mechanisms to generate unique geographic identifiers for those
components that have software visibility. As an example, imagine a complex MP
implementation which has more than one main system bus to which processors are attached. A
processor returns its location on the bus via a call to PAL_FIXED_ADDR, but this PAL call
does not reflect the multi-bus configuration of the platform. It is therefore required that the
platform provide some mechanism for SAL to ascertain which bus a processor is attached to.
SAL will use this value to load the Streamlined Advanced Programmable Interrupt Controller
(SAPIC) EID field in the Local ID register (CR.LID) of the processor(s). This is necessary for
supporting interprocessor interrupts (IPIs). The above example is not meant to limit this
requirement to processors, as multiple host I/O bridges and multiple memory controllers etc.,
may also have a similar requirement.

Platforms may implement unique ways of providing the SAPIC EID value. For example, in a
non-clustered environment, SAL may use the hardcoded value of 0 for this field. Another
example is a cluster controller that provides different EID values for processors connected to
different buses on the system. It is expected that these mechanisms/algorithms will be very
simple, to facilitate exchange of IPIs between processors (if needed), to determine the BSP
node and the BSP processor in a MP environment. The BSP selection needs to be done very
early in the boot sequence and during firmware recovery. Since multiple processors may be
attempting to read the EID, a scheme that involves writing an index followed by reading the
value from a cluster controller I/O port or the CMOS NVRAM I/O port may be prone to errors.

• A multi-TLB (Translation Lookaside Buffer) coherence domain platform must provide a
mechanism for detecting which TLB coherence domain the processor is located in.

2.10 Non-volatile Memory Requirements

IA-64 platform hardware must provide a minimum of 32KB of NVM to hold the Error log captured
during machine check events. There may be additional NVM requirements to hold information on
the OSs that can be booted from the platform, the platform configuration, etc. Refer to the EFI
Specification for requirement details as well as the interfaces to the NVM space.

The NVM must preserve memory contents when the system power is off. Possible NVM
implementations are battery backed SRAM and flash memory. The physical address and size of
each NVM object in the system will be specified in Table 3-5, “Memory Descriptor Entry” with:

• Memory type classification of Regular Memory and Memory Usage classification of Firmware
Reserved Memory for battery backed SRAM implementation and

• Memory type classification of Firmware Address Space when NVM is implemented as part of
the firmware flash ROM.
2-10 Platform Requirements

2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

• If firmware recovery feature is supported in SAL, the IA-64 platform must provide an
implementation specific hardware mechanism to reflect the user selected firmware recovery
condition to all the processors on the platform.

• IA-64 platforms must support simple hardware and/or software implementations for BSP
selection, e.g. write once port. This is necessary since only the BSP is allowed to execute the
firmware recovery code.

• IA-64 platforms must provide mechanisms to determine the base frequency of the platform
(clock input to the processor).

• IA-64 platform hardware must provide a mechanism for firmware to reset all components
within the platform.

• IA-64 platform hardware must provide a switch or other mechanism that produces an INIT
signal. This feature, generally known as the CrashDump switch, may be used to effect a crash
dump on a “hung system”.

• IA-64 platform hardware must provide user friendly mechanisms for displaying the progress of
the boot and firmware recovery, e.g. LCD display.

• Non-volatile memory storage for MCA error records

• Interrupt routing information for platform-corrected error interrupts in ACPI tables.
Platform Requirements 2-11

2-12 Platform Requirements

Boot Sequence 3

3.1 Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from Reset to OS launch.

On Reset, all the processor(s) begin execution at PALE_RESET, a location within the PAL_A code
area near 4 GB in ROM, in the IA-64 ISA. The exact physical location of PALE_RESET is
processor implementation dependent. PALE_RESET initializes and tests the processor using
stepping independent code. It will then call SALE_ENTRY with the Recovery Check function to
verify if the user has selected firmware recovery in a platform dependent manner.

SALE_ENTRY is the common entrypoint in SAL_A from code in the PAL_A and PAL_B blocks
for Reset, Recovery, Machine check and INIT events. PAL code obtains SALE_ENTRY entrypoint
from the 8-byte pointer at 4GB – 24. The state of the processor on entry into SALE_ENTRY is
described in the Intel® IA-64 Architecture Software Developer’s Manual. One of the general
registers, indicates the event causing entry into SALE_ENTRY: Reset, Recovery check, Machine
check or INIT. SALE_ENTRY uses this argument to jump to internal entrypoints SAL_RESET,
SAL_RECOVERY_CHECK, SAL_CHECK or SAL_INIT.

PAL_A passes status information to SALE_ENTRY on the health of the processor and whether the
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

The code in SAL_A will initiate recovery and update the firmware if:

• the platform indicates a recovery condition; or

• the PAL_A code reports an authentication failure on the PAL_B component in the firmware; or

• the PAL_A code reports checksum or other errors in the FIT or the PAL_B component; or

• the PAL_A code reports on all the processors that the version of the PAL_B in the firmware is
incompatible with the stepping level of the processors in the system.

Table 3-1. SAL Actions based on Processor Self-test State

Processor
Health

SAL Handling

Catastrophic
Failure

Disable interrupts and Machine Checks, then go into a spin loop

Healthy Proceed with SAL Reset

Performance
Restricted

Proceed with SAL Reset if this is the only processor on the system. Else, try to
inform the user. Disable interrupts and Machine Checks, then go into a spin
loop

Functionally
Restricted

Try to inform the user. Disable interrupts and Machine Checks, then go into a
spin loop
Boot Sequence 3-1

3.1.1 Code Flow during Recovery

If firmware recovery is required, the SAL recovery code shall authenticate the new binary using
code in the PAL_A block. The SAL code will then accomplish the firmware recovery function,
reset the recovery indication and trigger a system wide reset causing re-entry into PALE_RESET.
SAL recovery code contains the logic to update one or more of the firmware components from
floppy disk or other OEM supported media. Note that firmware recovery code in SAL_A must be
processor stepping independent and must not invoke code in the PAL_B block.

In a multi-processing environment, the recovery code will first select a BSP. SAL shall not select a
processor as the BSP unless it is reported as healthy or performance restricted by PAL and the
version of PAL_B on the system is compatible with the processor stepping. The BSP will
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B
component is updated, otherwise the system behavior is unpredictable.

Since PAL_B functionality cannot be invoked during recovery, only a limited set of PAL procedures
in the PAL_A are available for use by the SAL recovery code (refer to the Intel® IA-64 Architecture
Software Developer’s Manual for details). Further, if the SAL_A invokes the IA-32 BIOS,
floating-point transcendental instructions listed below cannot be executed from the IA-32
instruction set.

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

3.1.2 Normal Code Flow

If a recovery condition does not exist, SALE_ENTRY shall return to PALE_RESET on all the
processors that are compatible with the version of PAL_B on the system, using the return address
provided by PALE_RESET to effect the second stage of processor test and initialization. If SAL_A
did not effect such a return, the processor may run in a degraded mode. In any case, the PAL_PROC
address provided to SALE_ENTRY at the time of Recovery Check supports only a small subset of
the PAL procedures (see the Intel® IA-64 Architecture Software Developer’s Manual for details).

On return from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from
location (4 GB – 32) and then uses the FIT to get the address of the PAL_B component in the non
recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in the
PAL_B block and jump to it. The processor stepping dependent code in the PAL_B block will then
perform the complete processor testing and initialization and then re-enter the SALE_ENTRY with
the function value of Normal Reset. Code at SALE_ENTRY will jump to the code in the SAL_B
block to continue the boot sequence and will eventually boot the machine to the OS.

3.2 SAL_RESET

SAL_RESET is responsible for performing platform test and initialization, invoking EFI firmware
which, in turn, loads the first level of OS Loader and jumps to it. SAL_RESET may also be entered
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from
PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY is entered from locations
other than PALE_RESET.
3-2 Boot Sequence

SAL_RESET functionality can be subdivided into the following phases:

• Initialization phase

• BSP identification phase

• Platform initialization phase

• OS Boot phase

3.2.1 Initialization Phase

This phase begins execution at SAL_RESET and is performed on all the processors in the system.
The Local ID (LID register) is architected in the Intel® IA-64 Architecture Software Developer’s
Manual. It is the SAL's responsibility to uniquely initialize this register in each processor prior to
performing BSP selection and enabling interrupts in a MP system. For uniprocessor (UP) systems,
SAL must initialize this register prior to enabling interrupts. The OS must not change the value that
SAL stored into this register. Otherwise, routing of interrupts to the correct processor may not
function correctly. The LID register’s format is shown in Figure 3-1.

The id field is provided by the PAL during Reset handoff in a general register. This value is the Bus
Agent ID which corresponds to the slot number on the front side bus that the processor is plugged
into. For proper functioning of the lowest priority interrupt mechanism, the id field must match the
Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors.

SAL must invoke the PAL_PLATFORM_ADDR procedure on all processors to set the physical
address of the SAPIC Interrupt block memory and the IA-32 I/O port space if the default address
values are not used. The default address for the SAPIC Interrupt block memory is
0x00000000_FEE00000 and the default address for the IA-32 I/O port space is the 64 MB space
below the highest physical address supported by the processor implementation. SAL will use a
value that does not conflict with other devices on the platform. The OS shall not change both these
address values. SAL will set up the IOBASE register (AR.k0) that provides the high order bits of
the virtual address of the IA-32 I/O port block, to the same value as its physical address, to maintain
identity mapping. The OS is free to change the virtual address component in the IOBASE register
value but the value must be aligned on a 64 MB address boundary.

3.2.2 Bootstrap Processor Identification Phase in an MP
Configuration

This phase is executed on all the processors. All processors may participate in the selection of the
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the bus to
which the processor is connected. SAL will use this address and bus identification information to
derive a unique geographical address for the processor and use the same in the selection of the boot

Figure 3-1. Local ID Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

id eid reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored
Boot Sequence 3-3

processor. The derivation of the unique geographical address is implementation-dependent. SAL
shall not select a processor as the BSP unless it is reported as healthy by PAL and the version of
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing steps in a MP configuration. The APs will set up
processor-specific resources such as the Interrupt Vector Address (IVA) and enter the rendezvous
state (EM_Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for further
processing. Processors in rendezvous state will disable external interrupts and poll the rendezvous
interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will continue
with platform initialization and when sufficient amount of memory has been tested, it will send a
rendezvous interrupt to the APs to wake them up to run their late self-test (which requires memory
to run). After the APs have finished late self-test, they will return to the rendezvous state
(EM_Rendezvous_2).

The BSP continues with platform initialization, loading the EFI firmware which, in turn, searches
for bootable devices, loads the OS Loader and transfers control to it. These steps are described in
later sections of this document and the EFI Specification.

3.2.2.1 Rendezvous Functionality

The rendezvous functionality is required only in MP environments and this functionality is utilized
in two different situations:

• To wake up the APs during boot: The APs stay in a loop until woken up by the SAL layer on
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and
platform tests. Once these tests are completed, the APs return to the wait loop within SAL.
Also, once the OS kernel takes over, it will wake up the APs based on the wake up information
provided by the SAL (refer to Section 3.2.6 and Table 3-11).

• To bring the APs to a spin loop during machine check rendezvous and to wake up the APs after
machine check processing is completed: The OS specifies the external interrupt vector to be
used by SAL to bring the APs to a spin loop as well as the external interrupt vector/memory
semaphore to be used for the wake up. Refer to “SAL_MC_SET_PARAMS” on page9-14 for
details.

For the wake up functionality, the mechanism could be an external interrupt vector in the range of
0x10 to 0xFF or a memory semaphore.

If external interrupt mechanism is chosen, APs will disable interrupts and poll the local SAPIC IRR
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority
Register (TPR) must be set such that a read of the IVR register will return the rendezvous interrupt
vector (instead of the spurious interrupt), if one is pending. On receipt of the interrupt, the AP will
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.
3-4 Boot Sequence

Figure 3-2. Control Flow of Boot Process in a Multi-processor Configuration

000937

N o

Y e s

Y e s

Y e sY e s

N o

IA -3 2 O S

P o w e r O n

B S P ?
R e n de z

In terru p t?

N o

O S T yp e ?

N o

P A L E _ R E S E T

P A L _ R E S E T

S A L E _ E N T R Y

S A L _ R E S E T

B S P S e le c tio n

In it ia liza t io n &
M e m o ry T e st

P A L L a te S e lf-te s t

W a ke A P s fo r
P A L L a te S e lf-te s t

L o a d O S L o a d e r
fro m B o o t D e v ice

IA -6 4 O S W a ke up th e A P s

In it ia liza t ize IA -3 2
sys te m pa ra m s,

e n te r IA -32 sys te m
e n viro n m e n t

IA -32 O S

EFI

IA -64 O S w ill issu e
R e nd e zvo u s in te rru p t
to w a ke u p th e A P s

IA -32 O S w ill issu e
S ta rtu p IP I to
w a ke u p th e A P s

R e nd e zvo u s_ 1

P A L L a te S e lf-te s t

R e nd e zvo u s_ 2

R e n de z
In terru p t?

O S T yp e ?

IA -64 In itia liza tio n

Jum p to O S
B O O T _R E N D E Z

IA -3 2 O SIA -6 4 O S

In it ia liza t ize IA -3 2
sys te m pa ra m s,

e n te r IA -32 sys te m
e n viro n m e n t

W a it fo r IA -3 2
S ta rtu p IP I

R e co ve ry?
U p d ate F irm w a re , d o

S y s te m R e s et

APs

Optional

PAL

IA -64 In itia liza tio n

O S _ L o a d e r

S et W a ke u p E n try,
W a ke u p A P s

R e nd e zvo u s
In terru p ts
Boot Sequence 3-5

If a memory semaphore mechanism is chosen, APs will disable the interrupts and poll the memory
semaphore for the unique value that matches the contents of their Local ID Register in bits 16-31
and a value of 0xFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake up one
AP at a time. The AP will clear the memory semaphore to zero, execute the next phase of SAL code
and, if necessary, return to the wait loop.

SAL exports details of the wake-up mechanism to the OS through the SAL System Table (refer to
Table 3-2) so that the OS kernel code on the BSP may wake up the APs when appropriate. While
memory semaphore mechanism may be used by the BSP and APs during the platform initialization
phase, SAL shall indicate only the external interrupt wake-up mechanism to the OS. The OS shall
not use the indicated external interrupt vector for its purposes until it takes over the IVA. The OS on
the BSP will invoke the SAL_SET_VECTORS procedure to set the continuation point for the APs
within the OS kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will
transition the APs to the registered OS_BOOT_RENDEZ entrypoint.

3.2.3 Platform Initialization Phase

This phase is primarily executed on the BSP. The APs will execute some of the steps as described
below. This phase will perform the following functions, the ordering of which is
implementation-dependent:

1. Initialize the IVA to point to a 32 KB Interrupt Vector Table (IVT) in ROM. Some SAL
implementations may choose to build the IVT in RAM after finding the first 64 MB of
memory. This step must be accomplished on all the processors in a MP-environment.

2. Initialize the system fabric and chipsets. The method of handling the initialization is
implementation-dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not be re-initialized. On a cold
boot, SAL will initialize at least the first 4 MB of memory for BSP late self-test. This
self-test is done by calling the PAL_TEST_PROC procedure which returns information on
whether the processor is healthy or not. This PAL procedure tests the path from the processor
to the memory through the caches and returns information on whether the processor is fully
functional (not functionally restricted). This PAL procedure will not return to the SAL if the
processor under test experiences a catastrophic failure. SAL must contain necessary logic to
select a new BSP, if necessary. SAL shall shut down the system if there is not even a single
healthy or a performance restricted processor on the system.

After this point, the memory stack and RSE can be tested and enabled in the IA-64 system
environment.

4. Issue a rendezvous interrupt to wake up APs for a late self-test using the PAL_TEST_PROC
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that
experience a catastrophic failure during the late self-test. On completion of late self-test, the

Figure 3-3. Memory Semaphore Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

id eid value of 0xFFFF

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored
3-6 Boot Sequence

BSP will set the APs back to the rendezvous state (EM_Rendezvous_2 in Figure 3-2). After
this stage, caches may be relied upon.

5. Search for console using implementation-dependent algorithms. If found, initialize the
console so that the progress of the boot may be displayed.

6. Determine and initialize memory. This step is not performed if SAL_RESET is entered from
SAL_INIT. RAM test is implementation-dependent. RAM test includes test of refresh logic
and testing all the address lines for shorts. On IA-32 systems, memory controllers alias the
ROM at 0xE0000 to 0xFFFFF and thereby permit memory autoscan algorithm to be run
from the aliased ROM at 0xE0000 to 0xFFFFF. Since memory aliasing is not a requirement
for the IA-64 platforms, the autoscan function needs to be performed by the firmware SAL
code in the IA-64 ISA.

7. Initialize the interrupt controllers with all interrupts disabled.

8. Allocate memory for use by PAL and SAL near the top of physical memory. This area
should be below 4 GB if IA-32 code needs to call the IA-64 SAL code, since IA-32 code can
only address memory up to 4 GB.

9. Copy the PAL into memory using the PAL_COPY_PAL procedure. The PAL code in
memory must be aligned such that the entire PAL space in memory may be covered by one
Instruction Translation Register (ITR). It is very desirable to copy PAL code and SAL code
to contiguous locations in order that the OS may cover the entire space using the same ITR.
Refer to the Intel® IA-64 Architecture Software Developer’s Manual for PAL’s requirements
on ITR/DTR.
Note: Until this step, the following floating-point transcendental instructions cannot be
executed from the IA-32 instruction set:

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X,
FYL2XP1

10. Copy SAL, PMI and IA-32 code to memory. The IA-32 BIOS code will be copied to the
appropriate addresses in the address of 0x000C_0000 to 0x000F_FFFF. The IA-64 portion
of the SAL code will be copied to a high memory address which must be above 1 MB.
Copying code to RAM speeds up the boot sequence and additionally permits some portions
of the code to be held in compressed format in ROM. Firmware code may then be write
protected using the TLB or chipset features.

11. Set up an IVT in memory aligned on a 32 KB boundary and point the IVA register to it. This
step must be accomplished on all the processors in a MP environment.

12. Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on all
the processors in a MP environment.

13. Call the PAL_MC_REGISTER_MEM procedure specifying where PAL code may deposit
some minimal processor state information so that PAL code has sufficient resources to
perform the necessary machine check or INIT processing. Enable the BERR and BINIT
sampling and signaling by invoking the PAL_BUS_SET_FEATURES procedure. Set the
CMCI, MCA and BERR promotion strategy by invoking the
PAL_PROCESSOR_SET_FEATURES procedure. These steps must be accomplished on all
the processors in a MP-environment.

14. Process configuration information in NVRAM and perform full chipset configuration. If
NVRAM information is invalid, initialize NVRAM to default configuration values. Refer to
the EFI Specification for details.

15. Initialize and configure I/O buses. Walk all buses, identify all resource requirements and set
necessary range registers of chipsets. At this point, the complete system topology and
addresses of all fabric segments are known.

16. Construct the ACPI Tables, SAL System Table and other common data structures.
Boot Sequence 3-7

17. Execute the option ROMs as needed. If these contain IA-32 code, some of the IA-32
instructions may cause traps into the IA-64 and suitable support needs to be provided by the
IA-64 trap/fault handler code. These interactions are more fully described in Volum e2,
Chapter 10 of the Intel® IA-64 Architecture Software Developer’s Manual, and Chapter 7.
As a side effect of supporting IA-32 Option ROMs, it is possible to have some of the SAL
code implemented in IA-32 ISA.

18. Copy the EFI code into memory and transfer control to it. Branch register B0 shall be set up
to point to the instruction following the call to the EFI code. The EFI firmware will search
for bootable devices, load the OS Loader image and transfer control to it. EFI may utilize the
underlying SAL and IA-32 BIOS layers for accesses to platform devices. Refer to the EFI
Specification for interface description.

3.2.4 OS Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specification for details of booting IA-64
OSs. If the selected OS is a Legacy IA-32 OS, SAL does the following:

1. SAL will construct a MP Information Table that provides the mapping between the I/O
SAPIC ID, EID values and the I/O APIC ID value for use by the Legacy IA-32 OS. This
table is provided as a parameter to the PAL_ENTER_IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a
maximum of 16 processors while booting a Legacy IA-32 OS. SAL will keep any additional
processors in a loop within SAL and these processors shall not invoke the
PAL_ENTER_IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the I/O APIC entries of the MP table based on the
16-bit eid, id fields of the corresponding SAPIC entries. The id values assigned by SAL for
the Local APIC and the I/O APIC entries may overlap.

SAL will provide the physical address of non-existent memory of a minimum of 4K bytes.
This area will be specified in the Memory Descriptor Table (Table 3-5) with the Memory
type classification of Non-existent Memory.

2. The PAL_ENTER_IA_32_ENV procedure also enables SAL to emulate some I/O ports not
present on the platform. SAL conveys information on the emulated ports in the SAL I/O
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® IA-64 Architecture Software
Developer’s Manual for details.

3. Construct Memory Descriptor Table entries suitable for the platform.

4. Load one sector of the Master Boot Record (MBR) code from the boot device at address
0x7C00. Verify that the last two bytes of the sector end with 0x55 0xAA.

Note: In this document, the term sector refers to a logical block of 512 bytes.

5. Determine the amount of memory needed by PAL in support of IA-32 OSs by invoking
PAL_COPY_INFO procedure and allocate the same with the requested alignment.
Transition the processor to the IA-32 system environment and jump to the MBR code loaded
at 0:7C00. This switch is effected by calling PAL_ENTER_IA_32_ENV procedure. (Refer
to the Intel® IA-64 Architecture Software Developer’s Manual.) The return address in SAL
and the address of SAL_PROC are passed as a parameter to this call. SAL shall set the initial
IA-32 stack to 0:0x7c00 (SS:ESP).
3-8 Boot Sequence

This PAL procedure will set up the appropriate memory attribute values based on the
Memory Descriptor Table (Refer Table 3-5). If the IA-32 OS exits by executing a JMPE
instruction, PAL will return to the return address in SAL. When SAL regains control, it will
de-allocate the memory allocated to PAL in support of IA-32 OSs and attempt to boot a
different OS.

6. Some additional parameters are needed in a MP environment. The
PAL_ENTER_IA_32_ENV procedure requires an input flag that indicates whether the call
is being made on the BSP or APs and a count of the processors that have already been
transitioned to the IA-32 system environment. Also, the PAL_ENTER_IA_32_ENV
procedure requires that the first processor reach the IA-32 starting address before subsequent
processors invoke the procedure.

SAL implementation is simpler if the BSP transitions to the IA-32 system environment last.
For example, the BSP can instruct APs to call the PAL_ENTER_IA_32_ENV procedure,
one at a time. The APs will specify a starting address within the first MB of memory. The
IA-32 code at this location will perform the check-in to inform the BSP that the transition to
IA-32 system environment is completed, disable interrupts and go into a spin loop awaiting
the Startup IPI from the BSP.

Once all the APs have transitioned to the IA-32 system environment and checked in, SAL on
the BSP will invoke the PAL_ENTER_IA_32_ENV procedure and specify the starting
address as 0:7C00 where the MBR code from disk has been loaded. The
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs
such that all processors have an identical view of the platform’s memory attributes.

The IA-32 OS would be loaded eventually and this will send APIC INIT IPIs followed by
APIC Startup IPIs to the APs. PAL's APIC emulation layer on the BSP will trap the APIC
ICR writes and will eventually transition the APs to the starting address corresponding to the
vector specified in the Startup IPI.

3.2.5 Firmware to OS Loader Handoff State

The handoff to an IA-32 OS is compatible with the PC-AT industry standards. The handoff from
firmware to the IA-64 OS Loaders is fully described in the EFI Specification. Included in the
handoff are:

• The pointer to the SAL System Table (Section 3.2.7)

• The pointer to the Root System Description Pointer as described in the Advanced
Configuration and Power Interface Specification.

The state of the IA-64 system registers at the time of handoff to the OS Loader is as follows:

• AR contents are SAL implementation-dependent except the following:

• CFM: The backing store shall contain a minimum of 8 KB of available storage space
defined in the SAL Boot Services data area.

• RSC will indicate enforced lazy mode, little-endian

• GR contents are SAL implementation-dependent except:

• GR12 = Stack pointer with a minimum of 8 KB of available storage space defined in the
SAL Boot Services data area.

• PSR:
PSR.ac = 1 (alignment check enabled)
PSR.ic = 1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending
interrupts.
Boot Sequence 3-9

PSR.it, PSR.dt, PSR.rt = 0 (instruction translation, data translation and RSE translation off)
PSR.bn = 1 (register bank 1 selected)
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits = 0

• CRs:
DCR: Bus lock setting (DCR.lc) is platform implementation-dependent, all other bits of DCR
= 0
IVA = physical address of a SAL implementation-dependent IVT
PTA.ve = 0 (if the virtual hash page table (VHPT) is disabled)
LID = the unique id/eid value for this processor

• Data Breakpoint Registers – DBRs: Same as on entry to SALE_ENTRY

• Instruction Breakpoint Registers – IBRs: Same as on entry to SALE_ENTRY

• RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registers will have
implementation-dependent values except that RRs 1-3, if non-zero, will contain Region ID
values of 0x1001-0x1003 respectively.

• Protection Key Registers – PKRs, are set to 0.

• TLB
TRs: ITR(0) will map an area that includes the SAL’s IVT and PAL code. All other TR entries
are invalidated
TCs: These are implementation-dependent but will likely contain identity mappings (virtual
address to physical address)

• Caches
Enabled, coherent and consistent with the contents of memory

3.2.6 OS_BOOT_RENDEZ

OS_BOOT_RENDEZ is the entrypoint for OS-dependent MP rendezvous code. The OS code on
the BSP registers this entrypoint by invoking SAL_SET_VECTORS, supplying the physical
address of OS code that is 16-byte aligned. SAL exports details of the wake-up mechanism to the
OS through the SAL System Table (refer to Table 3-11) so that the OS kernel code on the BSP may
wake up the APs when appropriate. When SAL on the APs receives the wake-up, it will transition
the APs to the registered OS_BOOT_RENDEZ entrypoint. Refer to Section 3.2.2.1, “Rendezvous
Functionality” for additional details.

The state of the IA-64 system registers at the time of handoff to the OS_BOOT_RENDEZ is similar
to that for the BSP with the following exception:

• B0 = Return address into the SAL Boot_Rendezvous routine. If the OS_BOOT_RENDEZ
returns to the SAL using the Branch register B0, the SAL will re-enter the spin loop awaiting a
wake-up by the BSP.

3.2.7 SAL System Table

SAL uses the SAL System Table to export a variety of information to the OS Loader. The pointer to
the SAL System Table is provided by EFI to the OS Loader. Refer to the EFI Specification for
handoff details. If a recovery condition is present, the SAL System Table is not built and a pointer
value of 0 is provided.
3-10 Boot Sequence

The SAL System table begins with a header which is described in Table 3-2. The SAL System
Table header will be followed by a variable number of variable length entries. The first byte of each
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each
entry type will have a known fixed length. The total length of this table depends upon the
configuration of the system. OS software must step through each entry until it reaches the
ENTRY_COUNT. The entries are sorted on entry type in ascending order. 3-3 describes each entry
type.

.
Table 3-2. SAL System Table Header

Field
Offset

(in bytes)
Length

(in bytes)
Description

SIGNATURE 0 4 The ASCII string representation of
“SST_”, which confirms the presence of
the table.

TOTAL_TABLE_ LENGTH 4 4 The length of the entire table in bytes,
starting from offset zero and including
the header and all entries indicated by
the ENTRY_COUNT field.This field aids
in calculation of the checksum.

SAL_REV 8 2 The revision number of the IA-64 SAL
specification supported by the SAL
implementation in binary coded decimal
(BCD) format.
Byte 8 – Minor
Byte 9 – Major
SAL revision 2.9 corresponds to SAL
Specification, July 2000.
SAL revision 2.8 corresponds to SAL
Specification , January 2000.

ENTRY_COUNT 10 2 The number of entries in the variable
portion of the table. This field helps
software in identifying the end of the
table when stepping through the entries.

CHECKSUM 12 1 A modulo checksum of the entire table
and the entries following this table. All
bytes including the Checksum bytes
must add up to zero.

RESERVED 13 7 Unused, must be zero.

SAL_A_VERSION 20 2 Version Number of the SAL_A firmware
implementation in BCD format.
Byte 20 – Minor
Byte 21 – Major

SAL_B_VERSION 22 2 Version Number of the SAL_B firmware
implementation in BCD format.
Byte 22 – Minor
Byte 23 – Major
Boot Sequence 3-11

Following are the entry types of entries that follow the SAL System Table Header. Unless otherwise
stated, there is one entry per entry type.

3.2.7.1 Entrypoint Descriptor Entry

The Entrypoint Descriptor entry provides the addresses in memory of PAL_PROC, SAL_PROC
that may be used by the OS to invoke the procedures within the PAL and the SAL. When the OS
calls SAL_PROC, the gp register must contain the physical or virtual address of the SAL’s gp
value specified in the Entrypoint Descriptor, depending on the mode in which the SAL_PROC
procedure is called.

OEM_ID 24 32 An ASCII identification string which
uniquely identifies the manufacturer of
the system hardware. This string can be
exactly 32 bytes in length or shorter if
null terminated. Compliance with the
SAL specification requires that this string
be unique with respect to all other
manufacturers. It is forbidden to use
another manufacturer's identification
even if the system is otherwise identical.

PRODUCT_ID 56 32 An ASCII identification string which
uniquely identifies a family of compatible
products from the manufacturer. This
string can be exactly 32 bytes in length
or shorter if null terminated.

RESERVED 88 8 Unused, must be zero.

Table 3-3. SAL System Table Entry Types

Entry Typea

a. All other types are reserved.

Entry Length
(in bytes)

Description

0 48 Entrypoint Descriptor

1 32 Memory descriptor (one entry for each contiguous block with
similar attributes)b

b. Not required for IA-64 OSs.

2 16 Platform Features Descriptor

3 32 Translation Register Descriptor (one entry for each TR used by
SAL at the time of handoff to the OS)

4 16 Purge Translation Cache (PTC) Coherence Descriptor

5 16 AP Wake-up Descriptor

Table 3-2. SAL System Table Header (Continued)

Field
Offset

(in bytes)
Length

(in bytes)
Description
3-12 Boot Sequence

3.2.7.2 Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries are used only while booting an IA-32 OS. IA-64 OSs
obtain similar information from the EFI firmware component. The Memory Descriptor Table
entries describe all the main memory, firmware memory, memory mapped I/O, etc., in the system
address space as well as the memory attributes currently set by SAL. Each contiguous block with
similar memory attribute (WB, WC, UC or UCE) must be aligned on a 64KB boundary as a
minimum, for optimal TLB management. Note that memory usage values (byte 7 of the MDT
entry) may change within a 64KB memory block and hence it is legal to have more than one MDT
entry describing a 64KB memory region as long as the memory attribute (WB, WC, UC or UCE)
does not change within that 64K block.

SAL must provide entries that cover the entire system address space. The firmware must indicate
its memory usage in order that the same may be not trampled by the OS. Thus, if the SAL uses an
underlying IA-32 BIOS layer for part of its functionality, it must report memory usage for the real
mode interrupt vector table (0-0x3FF), the BIOS Data area (0x400-0x4FF) and the Extended BIOS
Data area (downwards from 640K) as Boot Services Data in the Memory Usage field of the
Memory Descriptor Table entries.

The EFI firmware component communicates the SAL’s requirements for virtual address mappings
to the OS. Once the OS takes control of the memory management and the IVA, it must provide TLB
mappings for both the code and data accesses to the memory areas required by SAL, if those areas
are accessed in virtual mode. The OS must register these virtual addresses prior to invoking SAL
procedures in virtual mode.

Table 3-4. Entrypoint Descriptor Entry Format

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 0 denoting Entrypoint Descriptor type

1 7 Reserved (must be zero)

8 8 Physical address of the PAL_PROC entrypoint in memory

16 8 Physical address of the SAL_PROC entrypoint in memory

24 8 Global Data Pointer (physical address value) for SAL procedures

32 16 Reserved (must be zero)

Table 3-5. Memory Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Descriptiona

(unsigned integers)

0 1 Entry type = 1 denoting Memory Descriptor entry type

1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes
Boot Sequence 3-13

2 1 Encoded value of current Memory Attributeb setting in bits 0-2:
000: WB
100: UC
101: UCE
110: WC

3 1 Page Access Rights set up by SAL for the memory rangeb:

4 1 Memory Attributesb supported:
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC

5 1 Reserved (must be zero)

6 2 Memory Type (byte 6)
0 = Regular Memory

Memory Usage (byte 7)
0 = Unspecifiedc

1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memoryd

9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memorye
128-255 = Reserved for OEM

1 = Memory mapped I/O 0 = Unspecified
1 = I2O Hidden space hole
2 = Video Memory
3-127 = Reserved
128-255 = Reserved for OEM

2 = SAPIC IPI Block 0 = Unspecified

3 = IA-32 I/O Port space 0 = Translated by processor to I/O cycles

4 = Firmware address
space

0 = Unspecified

9 = Bad Memory 0 = Unspecified

10 = Non-existent
Memory (Black hole)

0 = Unspecified

8 8 Physical Address of Memory

16 4 Length (multiple of 4K pages)

20 4 Reserved (must be zero)

24 8 OEM Reserved

a. All unused values are reserved.

Table 3-5. Memory Descriptor Entry (Continued)

Offset
(in bytes)

Length
(in bytes)

Descriptiona

(unsigned integers)
3-14 Boot Sequence

The SAL also provides the memory type and usage information to the EFI. Refer to the EFI
Specification for details. The following table specifies the mapping between Memory Descriptor
Table entries and the information provided by the SAL to the EFI.

3.2.7.3 Platform Features Descriptor Entry

The Platform Features Descriptor Entry describes the features implemented on the platform. Refer
to the IA-64 Platform Architecture Guide for implementation considerations of these platform
features.

b. Refer to the Intel® IA-64 Architecture Software Developer’s Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.
d. This memory is available to the OS after it reads the Advanced Configuration and Power Interface

Specification tables.
e. This area is not visible in the IA-32 OS environment.

Table 3-6. Memory Type Information Provided to the EFI

Memory Type Memory Usage EFI Memory type

0 = Regular Memory 0 = Unspecified
1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memory
9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped I/O <all values> Information not provided to the EFI

2 = SAPIC IPI Block 0 = Unspecified Information not provided to the EFI

3 = IA-32 I/O Port space 0 = Translated by processor to I/O
cycles

EfiMemoryMappedIOPortSpace

4 = Firmware address space 0 = Unspecified EfiRuntimeServicesData

9 = Bad Memory 0 = Unspecified EfiUnusableMemory

10 = Non-existent Memory
(Black hole)

0 = Unspecified Information not provided to the EFI
Boot Sequence 3-15

3.2.7.4 Translation Register Descriptor Entry

The Translation Register Descriptor entries describe the parameters used by the SAL during
insertion of the TRs. These entries will be used by the OS to purge SAL’s TRs after the OS takes
over the IVA.

3.2.7.5 Purge Translation Cache Coherence Domain Entry (optional)

The purge translation cache (PTC) Coherence Domain Entry describes the number of coherence
domains and the scope of PTC instruction propagation for each domain. This entry is optional. It is
required only for MP systems that have multiple coherence domains.

Table 3-7. Platform Features Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 2 denoting Platform Features type

1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented on the processor as well as the
platform
Bit 1: 1 if the chipset supports redirection hint for interrupt messages
originating from the platform (lowest priority interrupt)
Bit 2: 1 if the chipset supports redirection hint for IPI messages
originating from the processors
Bits 3-7 = Reserved

2 14 Reserved

Table 3-8. Translation Register Descriptor Entry

Offset
(in bytes)

Length

in bytes)
Description

0 1 Entry type = 3 denoting the Translation Register Descriptor type

1 1 Type of Translation Register:
0: Instruction Translation Register
1: Data Translation Register
Other values: Reserved

2 1 Translation Register number

3 5 Reserved

8 8 Virtual address of the area covered by the Translation Register. Bits
61-63 of this field indicate the Region Register number.

16 8 Encoded value of the page size covered by the Translation Register.
Refer to the Intel® IA-64 Architecture Software Developer’s Manual,
Addressing and Protection chapter for the format of this field.

24 8 Reserved
3-16 Boot Sequence

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives
in. SAL captures this information in an implementation-dependent manner and passes the same to
the OS.

The coherence domain information is an array of length of (16*Number of coherence domains). As
shown in Table 3-10, for each coherence domain, there will be two information fields:

1. Number of processors in the TLB coherence domain.

2. 64-bit memory address of a list of Local ID register values for the processors within the TLB
coherence domain. Each processor will require two bytes of memory (id field in low order
byte and eid field in high order byte) to represent the Local ID information.

This information is represented in Table 3-10.

3.2.7.6 Application Processor Wake-up Descriptor Entry (optional)

The AP Wake-up Descriptor Entry describes the mechanism for waking up APs in an MP
environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on OS usage of this
entry. This entry is required for MP configurations.

Table 3-9. Purge Translation Cache Coherence Domain Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 4 denoting PTC Coherence Domain Entry type

1 3 Reserved (must be zero)

4 4 Number of coherence domains for the platform

8 8 64-bit memory address of the coherence domain information

Table 3-10. Coherence Domain Information

Offset
(in bytes)

Length
(in bytes)

Description

0 8 Number of processors in TLB coherence #1

8 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #1

16 8 Number of processors in TLB coherence #2

24 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #2

...

...

16*(N-1) 8 Number of processors in TLB coherence #N

8+16*(N-1) 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #N
Boot Sequence 3-17

3.3 IA-64 OS Loader Requirements

The firmware will jump to the IA-64 OS Loader with the handoff state described in the EFI
Specification. Included in this state information is a pointer to the SAL procedures the OS can
invoke. These procedures are described in Chapter 9.

This section describes the requirements on the OS Loader while operating under the SAL execution
environment.

3.3.1 Fault Handling

This section describes the guidelines to the OS Loader code as regards fault handling.

After the OS is completely loaded, it will take over the IVA, and replace the SAL environment with
its own memory management. Until that time, the OS shall use SAL’s virtual memory environment
— IVA, Interrupt controller mode, TC mappings, etc., and it shall not change any of these
resources.

The OS Loader code may be executed in physical mode with interrupts disabled, or in virtual mode
with Instruction, Data and RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). While executing
in virtual mode, the OS Loader code is permitted to cause TLB faults for which SAL shall provide
the appropriate fault handlers. These TLB faults are:

• Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does
not implement the VHPT. If VHPT is not used, the Page Table Address (PTA) need not be
initialized. SAL will turn off the PTA.ve bit to disable the processor walking the VHPT. VHPT
is an optional feature of the IA-64 architecture. Avoiding VHPT usage also permits the IA-32
support code to operate out of ROM.

• Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not
implement the VHPT. The SAL’s fault handler shall test whether the TLB fault surfaced during
speculative load accesses (LDx.s). Such an access is indicated if the ISR.sp bit is set. If this bit
is set, the SAL shall return to the faulting instruction with the IPSR.ed bit thereby turning on
the NaT bit of the target register for the load.

• VHPT related faults: VHPT translation fault, Data TLB fault and Nested TLB fault, if SAL
implements VHPT.

Table 3-11. Application Processor Wake-up Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type

1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved

2 6 Reserved (must be zero)

8 8 External Interrupt vector in the range of 0x10 to 0xFF
3-18 Boot Sequence

• Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with
unified TLBs, Access Rights faults may surface if the TC is present but the required page
permissions are not present, e.g. TC is present with RW page access rights but RX page access
rights is needed for instruction execution.

• External interrupt: Hardware interrupts will be received by SAL in the IA-64 ISA. This code
will read the IVR register. If the vector read is 0, it signifies an interrupt from the 8259
interrupt controller and SAL must issue a load to the architected INTA_address (default
address 0xFEFE_0000) in the processor interrupt delivery block to issue an interrupt
acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259. SAL will then
jump to the appropriate interrupt handler using its internal tables. If the interrupt needs to be
reflected to IA-32 code, the address will be derived from the IA-32 Interrupt Descriptor Table.
The OS Loader is restricted from sending IPI messages (i.e. causing bits in the SAPIC IRR
registers to be set) with vector values other than the one specified in the AP Wake-up
Descriptor Entry (refer to Table 3-11).

• SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid
Page not present, Data Dirty bit and Data Access bit faults.

• SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key
miss, Data Key miss and Key Permission faults.

• Speculation fault: Speculation faults are caused by CHK.s, CHK.a and FCHK instructions.
SAL will provide the transition mechanism to the recovery code. SAL and OS Loader code
must be compiled with speculation off, thereby avoiding the use of the above instructions.
Turning off speculation should not have any impact on performance since most of SAL code
relies on strong ordering.

• Unaligned fault: The OS Loader shall not make data references to misaligned data. However,
this fault may arise during speculative load accesses. Such an access is indicated if the ISR.sp
bit is set. If this bit is set, the SAL shall return to the faulting instruction with the IPSR.ed bit
thereby turning on the NaT bit of the target register for the load.

• SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT entries
created by OS Loader code are preserved across SAL calls and SAL’s fault handlers.

• Divide by zero: SAL shall display an error message for the Break interrupts caused by the
run-time checking of integer divide by zero. Refer to the IA-64 Software Conventions and
Runtime Architecture Guide.

The OS must not rely on any other fault handlers installed by SAL. SAL will display an error
message if an unsupported fault is encountered. SAL will not provide support for the following
faults:

• Nested TLB fault: ITR(0) will map the SAL’s IVT and the code areas covering SAL’s fault
handlers. All fault handlers in SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested
TLB fault that can occur while accessing the fault handler’s local variables and data structures.

• NaT Consumption fault: NaT Consumption faults are generated by a load, store or move that
uses a source register containing a NaT value or by accessing a NaTPage. This fault can be
avoided by compiling the OS Loader code with speculation off.

• General Exception fault: The OS Loader shall not cause the general exception fault by
executing illegal operations, invoking SAL procedures in physical/virtual mode with
arguments specifying unimplemented data addresses.

• Floating-point faults: The OS Loader shall not disable accesses to the floating-point register
sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point exceptions
Boot Sequence 3-19

• Other traps/faults: The OS Loader must not cause other traps or faults such as Debug, Single
step, Taken branch, etc. Normally, the OS kernel provides these services after it takes over the
IVA.

Additional fault handlers to support IA-32 execution are described in Chapter 7.

3.3.2 Memory Management Resources Usage

This section describes SAL’s usage of various memory management resources and provides
guidelines for their use by the OS Loader code.

3.3.2.1 TLB Resource Partition

SAL will use only TCs and the ITR(0). Use of several TRs by SAL may cause problems with
booting of some IA-64 OSs. The OS Loader is free to use Translation Registers (TRs) other than
ITR(0). The advantage of this resource partition is that hardware interrupts which cause a transition
to SAL will not affect the TRs set up by the OS Loader. Ideally, the OS Loader will set up the TRs
for its memory mappings and not cause TLB faults. However, should the OS Loader code cause a
TLB miss, the TLB Miss handler in SAL would automatically install a TC with identity mapping.
The restriction on ITR(0) is not relevant after the OS takes over the memory management and the
IVA.

Use of TCs in SAL code should not cause any performance problems since SAL is not performance
critical. Most of the SAL code will write and read back memory addresses traversing the entire
physical address space. Use of additional TRs will not provide improved performance. SAL will
primarily be limited by memory and I/O speeds.

SAL will use TC entries with length of 4KB by default and will try to coalesce contiguous entries
with similar attributes into larger page sizes.

3.3.2.2 Identity Mapping Usage

IA-64 virtual address is 85 bits wide and IA-64 physical address is 63 bits wide. Bits 0 to 60 of the
virtual address provide the virtual page number and offset. Bits 61 to 63 of the virtual address are
used as an index into the Region Registers which supplies a Region ID value that can be up to 24
bits wide. Thus the 85-bit virtual address comprises the low order 61 bits of the virtual address and
the 24-bit Region ID. This 85-bit virtual address is transformed into a 63-bit physical address by the
IA-64 TLB mechanism as described in the Intel® IA-64 Architecture Software Developer’s
Manual.

SAL will use identity mappings (virtual addresses = physical addresses). The advantage of identity
mapping is that the same pointer can be used to access the same memory location regardless of the
state of the PSR.dt bit.

3.3.2.3 Unique Region IDs for SAL

The firmware will load the OS Loader and jump to it. The OS Loader will load the rest of the OS
using the firmware boot services procedures. While SAL can operate with identity mapping, there
may be a need for the OS Loader to use a non-identity mapping. As an example, there may be an
3-20 Boot Sequence

I/O device at physical address 2.5 GB for which SAL would have established an identity mapping
with uncacheable memory attribute. The OS Loader may need to load additional layers of software
and fix up address relocations using virtual addressing. The OS Loader may need to load software
at physical address 0.5 GB mapped to virtual address of 2.5 GB. When OS refers to the virtual
address 2.5 GB, it is referring to RAM at 0.5 GB and when SAL refers to 2.5 GB virtual address, it
is referring to the I/O device at 2.5 GB physical address. Clearly, OS Loader cannot use the TLB
mapping set up by SAL for this case.

This problem can be solved by using different Region registers and Region ID values for SAL and
OS. Differing Region ID values ensure that earlier TC/TR entries with a different Region ID value
no longer cause TLB hits. SAL will use Region ID of 0x1000 for all its TLB mappings, if physical
address space is less than or equal to 261 bytes and OS Loader shall be restricted from using Region
ID values of 0x1000 to 0x1003 until OS is ready to take over the memory management and the
IVA. If this restriction is not followed by the OS Loader, a machine check abort might result when
SAL attempts to insert a TC entry using the ITC.i or ITC.d instruction.

Since SAL code is 64-bit, if the physical address space is less than or equal to 261 bytes, SAL will
be capable of addressing the entire physical address space using Region Register 0. SAL will use
only Region Register 0 and set up the same with a Region ID value of 0x1000, if physical address
space is less than or equal to 261 bytes. If physical memory is larger, it will load Region Registers 1
to 3 with Region ID values of 0x1001 to 0x1003 respectively.

The OS Loader will need to refer to the data structures common to SAL and OS in the process of
loading the OS kernel. Similarly, the OS will need to pass parameters to SAL through pointers in
Memory Stack Pointer (SP) and Global Data Pointer (GP) registers. SAL and OS must refer to
these common data structures using Region Register 0, i.e. the virtual addresses used to address the
common data structures must have bits 61-63 set to 0.

While operating in the virtual mode, the OS Loader shall not change the contents of Region
Registers that are in use by SAL. If the value in Region Register 0 is changed, access to the IVT is
lost and the system will crash. This restriction is not relevant after the OS takes over the memory
management and the IVA.

Should the OS Loader set up any of the Region Registers for its use, it must

• Set the ve bit in the Region Register to 0, to disable the VHPT.

• Set the ps bits value to indicate preferred page size of 4KB.

3.3.3 Other Restrictions on the OS

The OS shall not change the values of the following system resources:

• LID, the unique id/eid value for this processor.

• DCR.lc, the Bus lock setting for the platform, if the same is set to 1. Note that the
PAL_BUS_SET_FEATURES procedure may be invoked to execute the locked transactions as
a series of non-atomic transactions. Refer to the Intel® IA-64 Architecture Software
Developer’s Manual for details.

• Physical address of the Processor Interrupt Block Address.

• Physical address of the IA-32 I/O Port Block.

The OS may lower the CMCI, MCA and BERR promotion strategy set by SAL by invoking the
PAL_PROCESSOR_SET_FEATURES procedure, but this is not recommended.
Boot Sequence 3-21

3-22 Boot Sequence

Machine Checks 4

Machine checks, including Machine Check Aborts (MCAs), and expected machine checks cause
processor execution to vector to PALE_CHECK code in the IA-64 ISA. Please refer to Volume 2,
Chapter 11 in the Intel® IA-64 Architecture Software Developer’s Manual for details regarding
PALE_CHECK processing. Also refer to the IA-64 Error Handling Guide for error handling from a
system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY entrypoint in
the IA-64 ISA, which in turn branches to the SAL MCA handler. The entry conditions for
SALE_ENTRY are described in the Intel® IA-64 Architecture Software Developer’s Manual.

This chapter defines the actions required of SAL_CHECK as well as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These
may still be fully or partially recoverable at the OS layer. The control flow differs between
corrected and uncorrected machine checks. For corrected machine checks, the OS Corrected error
interrupt handlers will be invoked some time after returning to the interrupted process. Section 4.1
describes the functionality and processing steps for the uncorrected machine checks and
Section 4.2 describes the corrected machine checks.

4.1 SAL_CHECK

SAL_CHECK has the basic responsibility for the following:

• Record processor and platform error information.

• Save the processor and platform state information.

Figure 4-1. Overview of Machine Check Flow

Error
PALE_CHECK

SAL_CHECK

Corrected?

OS_MCA? OS_MCA New/InterruptedSystem No Yes

No

Yes

OS Corrected MC

Return

PAL SAL OSUncorrected MC

Halt/
Reboot

PAL_MC_RESUME

 context

Optional

SALE_

ENTRY CHECK

SAL_
Machine Checks 4-1

• Perform any platform hardware-specific corrections.

• For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.

• Clear the error record resources and re-enable future information collection.

• Halt the processor or platform as necessary.

• Handle MP situations.

In addition, it is useful to note that where hardware/firmware cannot fix a machine check condition,
SAL_CHECK should provide the necessary information and conditions to allow the OS to recover
whenever possible. It is expected that most of the error recovery is performed at the OS_MCA
layer. The amount of state information saved by SAL is implementation-dependent and the
SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state
information.

4.1.1 SAL_CHECK Processing Details

During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code where it
may deposit some minimal processor state information so that PAL code has sufficient resources to
perform the necessary PALE_CHECK processing. This step is performed on all the processors in
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED
procedure to notify PAL that a machine check may surface and that PAL must not attempt to correct
the error. If the machine check was expected by SAL, SAL will check the results of the operation,
invoke PAL_MC_EXPECTED to notify PAL that machine check is no longer expected, and
resume execution by calling PAL_MC_RESUME.

When an unexpected machine check event has occurred and SAL_CHECK is entered, it is the
responsibility of SAL_CHECK to call back to PAL code (PAL_MC_ERROR_INFO), in order to
retrieve processor-specific error information which pertains to the machine check taken. In
addition, SAL_CHECK should interrogate the platform for any platform-specific information
which pertains to the machine check condition. This information is preserved in a
platform-dependent location. Once the processor error record information is retrieved,
SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging resources
for capturing future machine check error information. A similar task is necessary to enable platform
error record storage resources for future events. The OS does this by invoking
SAL_CLEAR_STATE_INFO.

An error due to an MCA event, when corrected by firmware becomes a Processor Corrected
Machine Check or Platform Corrected Error event condition. An hand off to OS_MCA is also not
required during this event type transformation.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch”
machine check processor to accumulate all the error records at the platform level and continue with
the machine check processing.

SAL is responsible for reporting the state information to the OS via the SAL_PROC get state
information calls so that the OS can make the determination to:

• Fix the error and return,

• Create a new context and continue, or

• Reset the platform.
4-2 Machine Checks

SAL_CHECK shall not hide any architectural state from the OS_MCA layer and cannot make
assumptions on whether OS_MCA would return to PAL or SAL. This permits the OS_MCA layer
to run unencumbered. OS_MCA can save the processor and platform state and re-enable future
machine checks as soon as possible. Otherwise, OS_MCA would be constrained to operating with
machine checks disabled in order to preserve the architectural information at the PAL and SAL
layers.

When the OS registers the OS_MCA entrypoint with SAL, it also supplies the length of the code
(or at least the length of the first level OS_MCA handler). SAL computes and saves the checksum
of this code area. Prior to entering OS_MCA, it is SAL_CHECK's responsibility to ensure that the
OS_MCA vector is valid by verifying the checksum of the OS_MCA code. There may also be
some platform-specific reasons which render the OS_MCA handler invalid. For example, since the
OS_MCA handler is in memory, if the memory controller which handles that portion of memory is
no longer functional, it does not make sense to attempt to branch to that code. If either the
OS_MCA handler was not registered prior to the machine check event, or if the OS_MCA handler
is otherwise invalid, SAL_CHECK may halt or reboot the system. This action is SAL
implementation-dependent. When the OS_MCA returns to the SAL indicating that the error has
been corrected by the OS layer, SAL will call the PAL_MC_RESUME procedure to resume
execution. See Section 4.7.1 for other options.

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks.

4.2 Corrected Machine Checks

There are different categories of corrected machine checks pertaining to the IA-64 processor:

Figure 4-2. Machine Check Code Flow

PAL_CHECK

SAL_CHECK

Yes Did
OS fix
Error?

OS_MCA

No

System
Reset

PAL_
RESUME

Yes

Did
FW Fix
Error?

No

OS Notified (intr)

EM & Physical
Mode Execution

Error Logged Physical Mode Hand off

OS Hndlr.
Logging

Corrected Error Intr.
Machine Checks 4-3

• Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor
cache.

• Corrected by PAL, e.g. double bit data ECC error on a clean processor cache line, during an
instruction fetch operation.

• Corrected by the platform hardware, e.g. single bit data ECC error on system memory.

• Corrected by SAL. These are primarily platform errors that can be corrected by SAL without
immediate involvement of the OS.

None of these categories will require rendezvousing of the other processors by the firmware.

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the
uncorrected machine checks. SAL will maintain the processor and platform error information and
save the state of the processor and platform. In the subsequent steps, SAL may do one of the
following:

• If the error is corrected by PAL, SAL would return to the interrupted context by calling
PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option for generating a
Corrected Machine Check interrupt to the OS for the Processor CMC events. The CMCV
register specifies the CMC interrupt vector and its mask status.

• SAL will perform any platform hardware-specific correction as described in Section 4.3,
“Platform Errors”, send a Corrected Platform Error Interrupt to the OS and then call
PAL_MC_RESUME, to return to the interrupted context.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the OS CMC
interrupt handler or the OS Corrected Platform Error interrupt handler will be invoked some time
after returning to the interrupted process, assuming that the CMC or Correced Platform Error
interrupt is enabled in hardware. The CMC or Corrected Platform Error interrupt handler of the OS
shall run with interrupts enabled1 and would invoke the SAL_GET_STATE_INFO and the
SAL_CLEAR_STATE_INFO procedures to process the error information associated with the
event(s). The OS must ensure that the entire CMC or Corrected Platform Error interrupt handler
executes on the same processor.

The amount of state information saved by SAL is implementation-dependent and SAL provides
validation bits indicating the saved state information. Thus, for performance reasons, a particular
SAL implementation may choose not to save ARs, CRs or floating-point registers during a
corrected machine check.

4.3 Platform Errors

Some platforms may use interrupts to signal corrected and/or uncorrected errors to the IA-64
processor. There may also be requirements for routing the interrupt signals to specific processors as
processors may not have visibility to all the platform components in a system. The SAL provides
details of the interrupt input line(s) and the interrupt routing requirements to the OS through the
ACPI Tables. Refer to the ACPI Specification for additional details.

When the OS wants to be notified of this event through an interrupt, the OS driver is responsible for
picking a corrected platform error vector (CPEV) and arming the interrupt line(s) to deliver

1. It is required that the OS handlers operate with interrupts enabled, so that system firmware can manage its resources
(like NVM based error records) without impacting the system performance.
4-4 Machine Checks

interrupt(s) to the processor. The OS is also required to register the chosen vector number
corresponding to this interrupt line with SAL through SAL_MC_SET_PARAMS. On receipt of
such Corrected Platform Error Interrupt(s), the OS shall invoke the SAL_GET_STATE_INFO and
the SAL_CLEAR_STATE_INFO procedures to retrieve and processor the platform error
information.

For SAL corrected platform errors, SAL is responsible for notifying the OS of the event. SAL can
send an IPI to the OS with the CPEV that is registered by the OS through
SAL_MC_SET_PARAMS. To localize the notification of this event, SAL can direct the IPI to a
processor of its choice or to a processor designated by the OS through the ACPI tables, the
Processor ID and EID of which is programmed into the IOSAPIC.

SAL can retrieve and use the OS designated Processor ID, EID for this event notification from the
platform topology. For example, if the interrupt line is connected to an I/O SAPIC interrupt
controller, the SAL can read the Processor ID, EID and the interrupt vector number values from the
I/O SAPIC’s redirection table entry. Notification to the OS is important from the error logging
perspective.

Note that when an OS chooses to poll for the platform corrected error event, it may not initialize the
IOSAPIC redirection table entry for this interrupt or register the CPEV with the SAL.

4.3.1 Scope

The scope of platform errors is platform & firmware implementation dependent. Depending upon
the platform topology, a single physical platform may comprise of multiple logical platforms, each
with a set of processors and its own error event generation and notification. When
SAL_GET_STATE_INFO is called for MCA or Corrected Errors for the platform, SAL would
return error record for the logical platform associated with the processor on which the call is made.

The number of logical partitions in a platform is implicitly indicated by the SAL with the number
of entries for Corrected Platform Error interrupts in the ACPI table with a designated processor
having a processor ID and EID. In a system with fewer number of processors (e.g. 4) and a single
entry in the ACPI table for the Corrected Platform Error interrupt, the logical and physical
platforms may is the same.

Having logical platform partitions help in efficient management of platform resources for error
event notification and error record building when the system has large number of processors and
platform resources. SAL_GET_STATE_INFO has to be called on each designated processor of a
logical platform to collate the error information for the entire physical platform.

4.4 OS_MCA

When the OS is ready to handle machine check events, it should call SAL_SET_VECTORS to
register the physical address, length and the GP of the OS_MCA handler. It is highly recommended
that a non-zero length be specified so that SAL can ensure the integrity of the OS_MCA code by
verifying its checksum. The OS must use the SAL_SET_VECTORS function if it expects to be
able to recover from any machine check conditions in which it may have to be involved, or in order
to retrieve error records and state information and dumping such information for subsequent debug
analysis. After registering the OS_MCA address, the OS can re-enable machine checks by clearing
Machine Checks 4-5

the PSR.mc bit to 0. The OS must call the SAL_GET_STATE_INFO_SIZE procedure to obtain the
maximum size of machine check state information that SAL would return for processor and
platform errors.

When the machine check event occurs, SAL_CHECK will invoke OS_MCA. OS_MCA
functionality is implementation-dependent. At a minimum, OS_MCA must call
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished
this task it must call SAL_CLEAR_STATE_INFO1 to release these resources for future logging
and state save. By calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its
machine check handling. OS_MCA can then re-enable machine checks by clearing the PSR.mc bit
to 0. Once the OS has consumed and cleared an error record, it will no longer be available to be
retrieved through the SAL API. SAL error records are always associated with a particular MCA or
Corrected error event and would contain all the relevant information packaged together as a record,
and may contain error information from just the processor or platform or both.

OS may perform any corrections on the OS controlled hardware resources. The OS makes the
decision whether it wants to recover the interrupted context or not, but it must take into account the
state information retrieved from the SAL_GET_STATE_INFO call. This information contains
relevant data with respect to the continuability of the processor/system. Thus, even if the OS could
correct the error, if PAL reports that it did not capture the entire processor context, (e.g. Processor
state parameter states that the GRs are invalid), resumption of the interrupted context will not be
possible. The OS must also determine from values in the Min-State Save area whether the machine
check occurred while operating with PSR.ic set to 0 and whether the processor implements the XIP,
XPSR and XFS registers necessary for the recovery.

When OS_MCA returns to SAL or PAL, it is permitted to set new values for the registers that are
passed by PAL in the Min-State Save area. This is achieved by constructing a data structure with
the format identical to the Min-State Save area and returning the same to SAL or by passing the
same as an argument to the PAL_MC_RESUME procedure. Refer to the Intel® IA-64 Architecture
Software Developer’s Manual for the layout of this structure.

OS_MCA may select one of the following actions:

• Correct the error and return to SAL_CHECK with the status of “corrected.” This is the
recommended approach for errors corrected by the OS. The OS may set a new context in the
Min-State save area and SAL will then invoke PAL_MC_RESUME to return to the interrupted
or the new context. If the interrupted context was in the firmware address range and the OS
decides to set a new context, the OS must take steps for resumption of the firmware code
eventually, otherwise the system may become unstable.

• Correct the error and invoke PAL_MC_RESUME to return to the interrupted or a new context.

• In the event of an uncorrected error, return to SAL_CHECK with the uncorrected status value
and an indication for SAL to halt or reboot the system.

• In the event of an uncorrected error, reboot the system.

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

1. The error records maintained by firmware are returned one at a time to the OS. It is necessary for the consumer
(OS) to clear the current error record to be able to retrieve the next unread record.
4-6 Machine Checks

Figure 4-3. SAL_CHECK Detailed Flow on the Monarch Processor

SAL_CHECK

Call PAL_MC_RESUME with
CMCI indicator set to restore
state & return to interrupted

If valid

Resume execution

No

OS_MCA

Check
Expected

PAL
corrected?

Yes

No

Yes

Corrected
by SAL?

Yes

OS_MCA

valid?

No

Yes

Yes

No

Log processor & platform error info in

Call PAL_MC_CLEAR_LOG to clear

 Send MC_rendezvous interrupt
if registered, else send INIT

to all other processors

 Wait for all processors
 to reach

Timed out?

 Send INIT
to failed

processors

Yes

 Restore original
processor state to
SAL_CHECK entry

Return to PAL

No

through GR19

No

process.

 SAL implementation-dependent area

Corrected

Uncorrected

System Halt/Reboot

processor error log resources

MC_rendezvous state

Set OS_INIT entry
for INITed APs
Wake up APs

. by OS

by OS

by SAL?

Call PAL_MC_RESUME
 to restore

state & return to interrupted
process.

PAL wants
to Rendezvous

Processors?

Generate Platform
Corrected Error Interrupt
Machine Checks 4-7

4.5 Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may,
however, invoke the PAL procedures in memory after ensuring that the memory area containing the
PAL procedures is intact.

Following are typical PAL procedures that may be invoked by SAL_CHECK:

• PAL_MC_ERROR_INFO

• PAL_MC_RESUME

• PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:

• PAL_BUS_GET_FEATURES

• PAL_BUS_SET_FEATURES

• PAL_PROC_GET_FEATURES

• PAL_PROC_GET_FEATURES

• PAL_MC_REGISTER_MEM1

• PAL_MC_EXPECTED

SAL may call the following procedure to ensure that all outstanding instructions within a processor
are completed or any potential machine checks due to these transactions get serviced.

• PAL_MC_DRAIN

Following are the SAL procedures that may be invoked by OS to register its machine check layer
interfaces:

• SAL_MC_SET_PARAMS

• SAL_SET_VECTORS

OS_MCA may invoke any of the PAL and SAL procedures. Following are typical SAL procedures
that may be invoked:

• SAL_MC_RENDEZ

• SAL_GET_STATE_INFO

• SAL_GET_STATE_INFO_SIZE

• SAL_CLEAR_STATE_INFO

4.6 Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerations in MP
configurations and hence may require a coordination between all processors, by means of a
processor rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the
rendezvous mechanism works.

1. This procedure is intended for use during firmware initialization. It shall not be invoked by the OS during run time
as this might affect firmware functionality.
4-8 Machine Checks

Rendezvous of processors is done for one of the following reasons:

• When PAL initiates a rendezvous request during an MCA.

• When SAL determines on its own accord that the platform error needs rendezvous.

• When OS sets a flag requesting firmware to perform rendezvous for all MCA errors.

PAL Initiated Rendezvous: If the PAL machine check layer determines that other processors must
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the
rendezvous and supplies a return address within PAL in GR19. Upon return, PALE_CHECK
performs the appropriate action and then calls SAL_CHECK again in the normal manner (with no
rendezvous indicator).

SAL Initiated Rendezvous: Additionally, there may be platform related machine check situations
which require SAL firmware to rendezvous processors. For example, if platform hardware were to
stop forwarding transactions in order to maintain error containment, the other processors in the
system must be rendezvoused before that platform hardware can resume forwarding transactions.
Also, one can imagine a platform cache situation similar to the one described above. Suffice it to
say these conditions exist.

OS Initiated Rendezvous: If the rz_always flag is set through SAL_MC_SET_PARAMS by the OS,
SAL is expected to rendezvous the system for all detected processor and platform MCA conditions,
assuming the errors are not corrected by the firmware. If this flag is not set, then rendezvous is done
only when PAL initiates the rendezvous request during an MCA or if SAL decides to do it on its
own accord for certain platform MCA, as described above.

In order to facilitate these types of situations, the OS does the following:

• Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS
function.

• Invoke the SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL
firmware can signal the non-monarch processors and the mechanism that the OS will employ
to wake up the non-monarch processors at the end of machine check processing.

• Invoke the SAL_MC_SET_PARAMS to specify if a rendezvous is always required for an
MCA.

On receipt of the MC_rendezvous interrupt, the OS on the non-monarch processors will:

• Disable further interrupts.

• Call SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all
outstanding transactions within the processor and then enter a spin loop within SAL. This SAL
procedure shall be MP-safe.
Machine Checks 4-9

SAL on the monarch processor will wait a specified amount of time for the signalled processors to
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to
allow the OS to take the appropriate error recovery actions.

In situations where either the OS has not registered an interrupt vector via the
SAL_MC_SET_PARAMS call, or where the specified time to wait has elapsed and the signalled
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the
remaining processors in order that the machine check handlers in PAL and SAL can proceed. While
sending an INIT to the other processors may not create an inherently unrecoverable situation, it
certainly increases the risk for recoverability. This is the rationale for registering the
MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS procedure. The monarch
processor must allow sufficient time for the INIT IPI to be processed by the targeted processors and
reach the rendezvous state. If PAL requests rendezvous of all the processors and SAL is unable to
do so, SAL will return to PAL with a non-zero value in GR19. Refer to the Intel® IA-64
Architecture Software Developer’s Manual for details regarding PALE_CHECK processing.

After the error is corrected by OS_MCA, OS_MCA on the monarch processor will wake up the
rendezvoused processors using the wake up mechanism specified in the SAL_MC_SET_PARAMS
call. For processors rendezvoused using the MC_rendezvous interrupt message, the continuation
point is merely a return from the SAL_MC_RENDEZ procedure. It is the responsibility of the OS
to clear the IRR bits for the MC_rendezvous interrupt and the wake up interrupt1, if any. The OS
must re-enable future interrupts and machine checks.

Figure 4-4. Normal SAL Rendezvous Flow

000289

1. The recommended option is for the OS to use the memory semaphore for wake-up than an interrupt. If a wake-up
interrupt is used by the OS, it will have to take into consideration many race conditions.

PAL
MCA

SAL
MCA

6
2
7

1Machine
Check

Test CheckIn

Timeout
Loop 5

OS_MCA

8

(Return)

SLAVE Processor
Domain

9

SAPIC WakeUp
Interrupt

Polling

SAPIC
MC_INT OS MC_INT

Interrupt Handler
3

4 10

Monarch Processor
Domain

Direct Flow Interrupt Signaling

SAL_Rendezvous
4-10 Machine Checks

If some non-monarch processors were rendezvoused using an INIT IPI message, their continuation
point on wake up would be the OS_INIT procedure registered for the monarch by the
SAL_SET_VECTORS (INIT) call. OS must register this entrypoint prior to the wake up, else SAL
will reset the system. Refer to the Section 5.3, “OS_INIT Handoff State” for the parameters on
entry to the OS_INIT procedure.

It should be noted that some implementations, under certain machine check circumstances, will
cause multiple processors to enter PALE_CHECK and SAL_CHECK. PAL code will be generally
unaware of this, but SAL code should make every effort to take such situations into account. SAL
code must implement methods of detecting which processors have entered the SAL_CHECK
entrypoint and avoid steps to rendezvous such processors (using MC_rendezvous interrupt or
INIT). Some examples of situations when multiple processors experiencing machine checks
simultaneously are as follows:

• Broadcast machine check (BERR signal) from the platform

• Error during a cast out of a cache line in response to an incoming snoop cycle from another
processor

When multiple processors experience machine checks simultaneously, SAL selects a “monarch”
machine check processor to accumulate all the error records at the platform level. Once this is done,
the OS_MCA procedure will take control of further error handling on all the processors that
experienced the machine checks. The OS_MCA layer may need to implement a similar “monarch”
processor selection for the error recovery phase.

Figure 4-5. Failed SAL Rendezvous Flow

000290

PAL
MCA

SAL
MCA

10
2

11
1Machine

Check

Test CheckIn

Timeout
Loop 5, 9

OS_MCA

12

(Return)

CPUx
Failed

Rendezvous

SAPIC INIT
Message

7 15

OS MC_INT
Interrupt Handler

SAL
INIT OS_INIT

8

14

SLAVE Processor
Domain

13

SAPIC WakeUp
Interrupt

SAL_Rendezvous Polling

Monarch Processor
Domain

Direct Flow

Interrupt Signaling

6

Machine Checks 4-11

4.7 OS_MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the OS machine check
handler, OS_MCA. The contents of non-banked and banked general registers at the time of the
interruption have been saved by PAL in the Min-State Save area and these are available for use by
SAL and OS_MCA. The following register contents define the OS_MCA handoff state.

The state of the processor is the same as on exiting PALE_CHECK (refer to the Intel® IA-64
Architecture Software Developer’s Manual) except as below:

GR1 = OS_MCA Global Pointer (GP) registered by OS (OS’s GP)
GRs2-7 = Unspecified

GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint

GR10 = GP (Physical address value) for SAL
GR11 = Rendezvous state information

0 = Rendezvous of other processors was not required by Firmware and hence
was not done

1 = All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt

2 = All other processors in the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT

–1 = Rendezvous of other processors was required by, but was unsuccessful
GR12 = Return address to a location within the SAL_CHECK procedure

GRs13-31 = Refer to the Intel® IA-64 Architecture Software Developer’s Manual
BR0 = Unspecified

Note: On entry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration.
The OS shall not make cacheable accesses to the MinState area, otherwise unexpected
behavior will occur.

4.7.1 Return from OS_MCA Procedure

The OS_MCA procedure may or may not return to SAL_CHECK in the case of uncorrected
machine checks. If OS_MCA procedure does return to SAL, it must set appropriate values in the
Min-State Save area pointed to by GR22, for continuing execution at the interrupted or a new
context. The OS must restore the processor state to the same as on entry to OS_MCA except as
follows:

GRs1-7 = Unspecified
GR8 = 0 if error has been corrected by OS_MCA

–1 if error was not corrected by OS_MCA and SAL must warm boot the system
–2 if error was not corrected by OS_MCA and SAL must cold boot the system
–3 if error was not corrected by OS_MCA and SAL must halt the system

GR9 = GP (Physical address value) for SAL
GR10 = 0 if return will be to the same context

1 if return will be to a new context
GRs11-21 = Unspecified

GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values
4-12 Machine Checks

in the Min-State Save area.
GRs23-31 = Unspecified

PSR = Same as on entry from SAL_CHECK except that PSR.mc may be either 0 or 1
BR0 = Unspecified
Machine Checks 4-13

4-14 Machine Checks

Initialization Event 5

INIT is an initialization event generated by the platform or by software through a SAPIC message.
The INIT event causes the processor to execute the processor-dependent INIT handler
(PALE_INIT), in the IA-64 ISA. The PALE_INIT saves minimum register state and branches to
SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT). The state of
the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the Intel® IA-64
Architecture Software Developer’s Manual.

5.1 SAL_INIT

SAL_INIT is entered from PALE_INIT via SALE_ENTRY. SAL_INIT’s purpose is to save the
state of the processor to the platform-specific Processor State Information (PSI) area and either
invoke an OS INIT handler (OS_INIT) if the same has been registered through a
SAL_SET_VECTORS call, or warm boot the system otherwise. The SAL_SET_VECTORS
procedure permits the OS to register separate entrypoints for the first processor (monarch) to enter
the SAL_INIT layer and subsequent processors (non-monarchs).

INIT is also used during machine check handling in MP environments to transition the
non-monarch processors to the rendezvous state. SAL code must recognize this condition using its
internal variables and call SAL_MC_RENDEZ procedure. It must not invoke the OS INIT handler
for this situation.

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will
cause a system-wide warm boot. Note that during the transition from PALE_RESET to
SAL_RESET via SALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

• During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code
where it may deposit some minimal processor state information so that PAL code has sufficient
resources to perform the necessary machine check or INIT processing. This step is performed
on all the processors on the system.

SAL_INIT saves the minimal processor state information as well as some additional processor
and platform state information in the SAL data area and provides the same to OS_INIT.
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

• If the INIT was intended to transition APs to rendezvous state during a MP platform machine
check, SAL_MC_RENDEZ procedure needs to be invoked. Refer to Section 4.6, “Machine
Checks in MP Configurations” for details.

• If INIT is not due to a MP platform machine check rendezvous, check if OS_INIT handlers for
the monarch and non-monarch processors are registered and that both of them are valid. When
the OS_INIT procedures and their lengths were registered with SAL, SAL would have
computed and saved the checksums of such code. On receipt of INIT, SAL verifies the
checksum of the code at the OS_INIT procedure addresses before jumping to the same.
Initialization Event 5-1

• If the code for the OS_INIT handlers are intact, call the OS_INIT handlers for the monarch and
non-monarch processors.

• If the OS_INIT handler is not registered, set implementation-dependent SAL warm boot
indicator and reboot the system either by calling SAL_RESET or by generating a reset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT
processor state is logged at least. There is neither a requirement nor a way to clear a pending INIT
condition.

On some PC-AT platforms, the platform provides a switch that can generate an NMI signal and this
is used by IA-32 OSs to effect a crash dump on a hung system. On IA-64 systems, a similar
function will be performed by an INIT switch as the NMI signal is masked by the PSR.i bit of the
processor. If SAL_INIT gains control due to the platform’s INIT switch while an IA-32 OS is
executing, the SAL_INIT layer shall send an SAPIC IPI message to the same processor with the
interrupt type of NMI and then return to the interrupted context using the PAL_MC_RESUME
procedure.

Figure 5-1 shows a possible flow of control through SAL_INIT.

5.2 OS_INIT

OS_INIT is an entrypoint into the OS to deal with the initialization event. The exact definition of
OS_INIT functionality is OS-dependent. SAL_SET_VECTORS is called by the OS prior to the
initialization event to register the physical addresses and the GP of the OS INIT handlers for the
monarch and non-monarch processors. If an OS intends to make the monarch selection in the OS
layer, it could register the same OS_INIT entrypoint for both the monarch and non-monarch
processors. From the SAL’s perspective, there are no functionality differences between the two
OS_INIT entrypoints and the hand off state from the SAL to the OS_INIT layer are similar.

When the OS_INIT layer is called by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO
to get processor/platform state. When it has finished this task, it must call
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. By
calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its INIT processing.
OS_INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0.

The OS_INIT handler may return to SAL with an indication to effect a warm reset or a return to the
interrupted context. OS_INIT may alternatively invoke PAL_MC_RESUME to return to the
interrupted context. OS_INIT may set new values for registers that are saved by PAL in the
Min-State Save area. This is achieved by constructing a data structure with the format identical to
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME
procedure. Refer to the Intel® IA-64 Architecture Software Developer’s Manual for the layout of
this structure.
5-2 Initialization Event

Figure 5-1. SAL_INIT Control Flow

000938

S A L_ IN IT

W rite p rocesso r/
p la tfo rm in fo to save

a rea

Y es

N o

IN IT due to
fa ilu re to respond

to rendezvous
in te rrup t?

S A L_M C _R E N D E Z

O S _IN IT
p rocedu res

va lid?

C rashD um p
S w itc h

& IA -32 O S ?

Y es

N o

O S _ IN IT

N o

S A L im p lem en ta tion -
specific w a rm boo t

(S A L_R E S ET o r rese t
even t)

R e turn va lue
from O S

P A L_M C _R E SU M E

Y es

In ject N M I IP I in to
IA -32 O S

W ake up
In te rrup t

R e turn to
In te rrup ted
C on tex t

W arm B oo t

P A L_ IN ITIN IT E v en t
Initialization Event 5-3

5.3 OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the OS code, OS_INIT. The
contents of non-banked and bank zero general registers at the time of the interruption have been
saved by PAL in the Min-State Save area and these are available for use by SAL and OS_INIT. The
following register contents define the OS_INIT handoff state.

The state of the processor is the same as on exiting PALE_INIT (refer to the Intel® IA-64
Architecture Software Developer’s Manual) except as below:

GR1 = Physical address of the OS_INIT Global Pointer (GP) registered by OS (OS’s gp)
GRs2-7 = Unspecified

GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint

GR10 = GP value (Physical address) for SAL
GR11 = INIT reason code:

0 = Received INIT signal on this processor for events other than CrashDump
switch assertion

1 = Received wake up signal on this processor at the end of an OS_MCA corrected
machine check

2 = Received INIT signal on this processor due to CrashDump switch assertion
GR12 = Return address to a location within the SAL_INIT procedure

GRs13-31 = Refer to the Intel® IA-64 Architecture Software Developer’s Manual
BR0 = Unspecified

Note: On entry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The
OS must not make cacheable accesses to the MinState area, else machine checks might
occur as a result of a cache hit to an uncacheable page.

System state Resources are:

• TLB –TCs and TRs are unchanged.

• Caches – Enabled, coherent and consistent in the absence of hardware failures.

• Memory – Unchanged, except for the updated Processor State Information (PSI) area.

5.4 Return from OS_INIT Procedure

If OS_INIT procedure returns to SAL, it must set appropriate values in the Min-State Save area
pointed to by GR22, for continuing execution at the interrupted or a new context. The OS must
restore the processor state to the same as on entry to OS_INIT except as follows:

GRs1-7 = Unspecified
GR8 = 0 if SAL must return to interrupted context using PAL_MC_RESUME

–1 if SAL must warm boot the system
GR9 = GP (Physical address value) for SAL

GR10 = 0 if return will be to the same context
1 if return will be to a new context

GRs11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;

PAL_MC_RESUME procedure will restore the register values from this structure;
OS_INIT must supply this parameter even if it does not change the register values
5-4 Initialization Event

in the Min-State Save area.
GRs23-31 = Unspecified

PSR = Same as on entry from SAL_INIT except that PSR.mc may be either 0 or 1
BR0 = Unspecified

If OS_INIT requests SAL to reboot the system, it is SAL’s responsibility to rendezvous all the
processors on the system and then select a BSP for further system initialization. If rebooting is
required while running an IA-32 OS, SAL will use the currently selected BSP for performing the
rendezvous of the other processors.

5.5 MP INIT Support

There are a few situations when processors enter SAL_INIT in MP configurations which deserve
specific mention.

• If a processor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch
and non-monarch processors or their checksums are incorrect, then the processor will reset the
system (warm boot). In the MP environment, the processor performing the reset shall reset the
system, not just itself.

• If a processor enters SAL_INIT as the result of a platform machine check rendezvous event,
then the SAL_INIT must invoke the SAL_MC_RENDEZ procedure. Normally, the OS would
have registered an interrupt using the SAL_MC_SET_PARAMS procedure to register the
external interrupt vector to be used to interrupt the OS on the processors unaffected by the
machine check. On receipt of such an interrupt, the OS would invoke the SAL_MC_RENDEZ
procedure. If for some reason any of the processors do not respond to this interrupt, or if the
OS fails to register such an interrupt vector, then the processor handling the machine check
will INIT such processors and they will enter SAL_INIT for the platform machine check
rendezvous event. Since all the processors reach SAL_MC_RENDEZ, the effect is the same
(almost) as if the processor had responded to the interrupt. The difference is that processors
entering SAL_MC_RENDEZ through SAL_INIT will be less likely to be recoverable.

At the end of machine check processing, OS_MCA procedure on the monarch processor will
wake up all the other processors using the wake up mechanism specified by the
SAL_MC_SET_PARAMS procedure. The processors that received the INIT would jump to
the registered OS_INIT procedure for the monarch processor. The OS_INIT procedure may
analyze the reason why the processor needed the INIT (or reasons for not responding to the
MC_rendezvous interrupt). If INIT occurred when PSR.ic bit was 1, there is no loss of
machine state. OS_INIT can return to SAL specifying resumption of the interrupted context by
invoking PAL_MC_RESUME.
Initialization Event 5-5

5-6 Initialization Event

Platform Management Interruptions 6

Platform Management Interruptions (PMIs) provide an OS-independent interrupt mechanism to
support OEM and vendor-specific hardware events.

6.1 SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state
in interruption resources and then calls the SALE_PMI handler. SALE_PMI shall return to the
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain
processor-specific events may also cause PMI interrupts. These are handled entirely within the
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® IA-64 Architecture
Software Developer’s Manual for details regarding PALE_PMI processing.

PMI is the highest priority external interrupt and it ranks after Reset, Machine Check and INIT in
terms of priority. PMI is masked by setting the PSR.ic bit to 0 (interrupt collection disabled). The
PSR.i bit (interrupt enable) has no effect on masking of PMI events.

Unlike the System Management Interrupt (SMI) on IA32 systems, the OS can mask PMIs by
setting PSR.ic bit to 0 (interrupt collection disabled). Also, PMI interrupt processing causes
execution of PALE_PMI code before entering the SALE_PMI code. To minimize latency in
entering code in the SALE_PMI layer, the OS must avoid operating with PSR.ic bit set to 0 for long
durations. Otherwise, some software in the SALE_PMI layer may fail. Note that some real time
applications may have more stringent timing restrictions as regards operating with interrupt
collection disabled.

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It
also causes special problems if multiple SAPIC messages of PMI delivery type are targeted to the
same destination processor (see Section 6.4 below).

One method of software entry into the PMI environment is to send a SAPIC message to the same
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for
SAL.

6.2 SALE_PMI Initialization

During power up, SAL copies the SALE_PMI handler to memory and then invokes the PAL
procedure PAL_PMI_ENTRYPOINT to set the programmable entrypoint of the SALE_PMI
procedure. In a MP-environment, this step must be performed on all the processors. The
SALE_PMI entrypoint can be different for various processors in an MP configuration.
Platform Management Interruptions 6-1

6.3 SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from
SALE_PMI to PALE_PMI are fully documented in the Intel® IA-64 Architecture Software
Developer’s Manual.

SALE_PMI is entered in physical mode with PSR.i and PSR.ic bits set to 0 (interrupt and interrupt
collection bits disabled). SALE_PMI is entered in the IA-64 ISA regardless of the current processor
state. The processing steps for various PMI events within the SAL layer are platform and SAL
implementation-dependent. At the end of processing the PMI, SALE_PMI returns to PALE_PMI
using branch register B0. There is neither a requirement nor a way to clear a pending PMI interrupt.

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor
simultaneously. In this situation, only one PMI interrupt will be recognized. This is analogous to
sending edge triggered external interrupts using the same interrupt vector. To guard against loss of
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for
the PMI using memory data structures.

6.4 Special Considerations for Multiprocessor
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with
delivery type of PMI. In a MP-configuration, there could be conflicts between PMI and machine
check. One of the processors could be in SAL_CHECK, trying to bring other processors to
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If the latter were in SALE_PMI,
the MC_rendezvous external interrupt would not be recognized immediately and this might
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since
recoverability from INIT is minimized when PSR.ic is 0, it is recommended that SALE_PMI
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.
6-2 Platform Management Interruptions

IA-32 Support 7

7.1 IA-32 Support Model

This chapter describes the IA-32 support within SAL during the booting process. Additionally, it
provides some guidelines on the choice of IA-32 instructions to SAL developers who plan to re-use
existing IA-32 BIOS code.

For details on IA-32 instruction execution on IA-64 processors, refer to Volum e1, Chapte r6 and
Volume 2, Chapter 10 of the Intel® IA-64 Architecture Software Developer’s Manual.

IA-32 support code in SAL cannot be used after an OS (IA-32 or IA-64) has taken control of the
translation resources. Most IA-64 OSs will provide their own IA-32 support code and not use the
code in SAL. If the user boots an IA-32 OS, SAL would have invoked the
PAL_ENTER_IA_32_ENV procedure which activates the PAL layer in support of IA-32 OSs and
this PAL firmware layer configures the processor to behave like a Pentium® III processor, obviating
the need for SAL’s IA-32 support code. For more details, refer to Volume 4, Chapter 8 of the Intel®
IA-64 Architecture Software Developer’s Manual.

During the platform initialization phase of the boot sequence, the IVA may point to a 32 KB IVT in
ROM. Some of the trap handlers in the IVT could support execution of IA-32 code. Thus, it is
possible to execute IA-32 code early in the boot sequence, if needed. Refer to Chapter 3, for
fault/trap handler support requirements in SAL.

7.2 IA-32 Support Requirements

IA-64 platforms may contain one or more IA-32 adapter cards containing IA-32 Option ROMs. If
the adapter cards support boot devices, they will need to be initialized in the process of booting the
OS. The IA-32 support code in SAL will be exercised while executing the IA-32 code. Also, since
SAL contains IA-32 support code for execution of the IA-32 Option cards, a portion of the IA-64
SAL layer may itself be coded in IA-32 ISA (i.e. the traditional IA-32 System ROM BIOS may be
reused).

7.2.1 Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility:

• PC-AT Memory map:

• Interrupt vector area 0 – 0x3FF: Contains entrypoints for software interrupts in
offset:segment format.

• BIOS RAM data area 0x400 – 0x4FF: Data variables stored by System BIOS and Option
ROMs.

• Option ROM space: 0x000C_0000 – 0x000D_FFFF.
IA-32 Support 7-1

• PC-AT compatibility entrypoints: Addresses in the 0x000F_E000 to 0x000F_FFFF range
pointing to entrypoints and tables.

It is expected that SAL code would be designed to use identical virtual-to-physical memory mappings and
not conflict with the IA-32 BIOS memory usage.

• PC-AT I/O map: Motherboard I/O ports are in the range of 00 to 0xFF and other IA-32 devices
occupy the rest of the 64K I/O space. The most important ports used by BIOS code are
Interrupt controller (0x20, 0x21, 0xA0, 0xA1), Interval timer (0x40 to 0x43) and CMOS RAM
(0x70, 0x71).

7.2.2 Overview of IA-32 Support Layer Functionality

IA-32 support layer is mainly required for the following areas:

• Memory mapped I/O: The processor needs to provide the uncacheable semantics for memory
mapped I/O to devices such as VGA buffer. Also, the search for memory mapped devices need
to be performed without caching artifacts. Caches within the processor are enabled by
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the
uncacheable memory attribute required for I/O completion is specified by setting bit 63 of the
memory address, in physical addressing mode. Bit 63 of the physical address has no effect
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call.

Since it is not possible to generate an address with bit 63 set while operating in the 32-bit
IA-32 ISA mode, IA-32 code needs to be executed with translations enabled and TLBs need to
specify the uncacheable memory attribute. TLBs provide the same functionality as MTRRs on
a Pentium Pro processor.

• Handle traps during IA-32 code execution.

• Virtualizing PC-AT peripherals: If some legacy devices are not present on the platform, SAL
may provide the necessary virtualization during IA-32 code execution by setting up TLBs to
trap the accesses.

7.2.3 IA-32 Instruction Usage Guidelines

IA-32 System BIOS code executing within the SAL environment must follow these guidelines in its
usage of IA-32 instructions, in order to limit SAL’s IA-32 support requirements. These restrictions
do not affect operation of existing IA-32 Option ROMs which are restricted to operating in IA-32
real mode. Option ROM code on PC-AT compatible platforms are already compliant with the
following guidelines:

• IA-32 code shall not use protected mode instructions of the IA-32 ISA. Only real mode and big
real mode opcodes are permitted. The transitions between real mode and big real mode will
occur using the IA-64 SAL code that sets up the appropriate IA-32 segment descriptors, and
not by use of the IA-32 LGDT instruction. The traditional IA-32 BIOS functions requiring
protected mode usage, such as search for PCI Option ROMs near 4 GB address, can be done
easily using the big real mode or in the IA-64 ISA. SAL will provide support the Extended
Memory Move function (IA-32 INT 0x15, sub function 0x87) for moving data to and from
addresses above 1MB.

• IA-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC.

• IA-32 code shall not use code involving IA-32 privileged instructions such as LGDT, RDMSR,
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent IA-64 code. Refer
7-2 IA-32 Support

to the Intel® IA-64 Architecture Software Developer’s Manual for a complete list of
instructions that cause the IA-32 Instruction Intercepts. SAL shall provide necessary emulation
support for the following instructions:

• CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS, WBINVD

• IA-32 code shall not use code involving IA-32 Call Gates.

• IA-32 stack must be aligned on an even byte boundary. The IA-32 support layer in SAL will
need to retrieve or store values into the IA-32 stack in order to emulate instructions such as
INT, IRET. If the IA-32 stack is aligned on an odd byte boundary, an unaligned data reference
fault will result and SAL does not provide a handler for this exception.

The above restrictions are not applicable when the OS kernel takes over. Thus, an IA-32 or IA-64
OS may set up the environment for IA-32 protected mode and invoke protected mode functions of
IA-32 BIOS.

7.2.4 IA-32 Support Environment

This section describes the execution environment for IA-32 code.

1. IA-32 BIOS code will be executed with Instruction translation on, Data translation on and
RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to
mask exceptions caused by unaligned memory references during execution of IA-32 code.

2. The following traps will be supported in the Interrupt Vector Table (IVT) for supporting
IA-32 execution:

• IA-32_Exception vector

• IA-32_Intercept vector

• IA-32_ Interrupt vector

• External interrupt vector

3. SAL will set up CFLG register which maps to the IA-32 system registers CR0 and CR4.
When SAL procedures are called by the OS Loader, SAL will set up the appropriate value in
the CFLG register, if transition to IA-32 ISA mode is required.

4. The CFLG.io bit will be set to 0 to eliminate the need for Task State Segment (TSS) while
executing IA-32 code. IA-32 EFLAG.iopl field should be set to 3 to permit IA-32 I/O
instructions without causing any traps. IOBASE register and translation mechanisms within
the processor will be set up to automatically convert the IA-32 I/O accesses to the IA-64
memory load or store operations with the uncacheable memory attribute. If some legacy
devices are not present on the platform, TLBs may be set up to trap the accesses and SAL
can either redirect the I/O to a different hardware on the platform or provide suitable
software emulation.

5. The PSR.i bit may be set to 1 to enable interrupts in the IA-64 system environment and the
CFLG.if bit may be set to 1 to allow IA-32 code to control interrupt masking. With these
settings, the IA-32 EFLAG.if bit will enable or disable external interrupts while executing
IA-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the IA-64
instruction set.

6. The CFLG.ii bit may be set to 0 if there is no need to intercept changes to interrupt enable
flag.
IA-32 Support 7-3

7.2.5 IA-32 Interruption Handler Support

External interrupts, IA-32 defined exceptions and software interrupts are delivered to the IA-64
software interruption handlers. All interruption handlers may run with PSR.dt, PSR.rt turned off to
avoid the Nested TLB fault that can occur while accessing the fault handler’s local variables and
data structures. SAL will populate the following handlers in the IVT to handle interruption in its
environment:

• IA-32_Exception vector: This handler will handle exceptions caused by IA-32 instructions
such as Divide by zero fault. These interruptions should not occur while executing debugged
IA-32 BIOS code. The exception should be reflected to IA-32 code using the IA-32 real mode
Interrupt Descriptor Table (IDT) at locations 0 to 0x3FF. Typically, IA-32 code in the IDT will
display an error message when such exceptions are encountered.

• IA-32_Intercept vector: This handler will handle several categories of intercepted instructions
as described in the Intel® IA-64 Architecture Software Developer’s Manual.

• Instruction Intercept: Refer to Section 7.2.3 for a list of the IA-32 instructions that must be
emulated by SAL.

• Lock Intercept: This interruption handler will be invoked for CMPXCHG, LOCK,
XADD, XCHG instructions. This intercept can be avoided by enabling the lock feature in
the IA-64 Default Control Register (DCR.lc = 0), if the platform can support locked read
modified writes. If the platform does not support the bus lock signal,
PAL_BUS_SET_FEATURES may be invoked to execute the locked transactions as a
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the
Intel® IA-64 Architecture Software Developer’s Manual for details.

• Gate intercept: Support is not needed for trapping privilege transitions using gates. IA-32
System BIOS code shall avoid this intercept and Option ROM code is not permitted to use
privilege transitions using gates.

• IA-32 System Flag intercept: This intercept can be avoided for the STI, CLI, POPF and
POPFD instructions by setting CFLG.if bit to 1, which allows the IA-32 code to control
interrupt masking with the IA-32 EFLAG.if bit. To support the MOV SS and the POP SS
instructions, SAL shall disable interrupts and execute the next IA-32 instruction with the
PSR.ss set to 1. This will generate an IA-32_Exception(Debug). The handler for this
exception will restore the previous value of PSR.i and return to the IA-32 code.

• IA-32_Interrupt vector: This handler supports the IA-32 INT instruction. SAL will provide the
necessary emulation support for the Extended Memory Move function (INT 0x15, subvention
0x87) in order that real mode code may move data to and from addresses over 1MB without
requiring a transition to the IA-64 instruction set. The rest of the INT instructions will be
emulated by jumping to the address pointed to by the IA-32 real mode IDT. Following is an
example of pseudo code:

1. Get the Software interrupt number nn from ISR.vector.

2. Use nn as an index into the IA-32 real mode Interrupt
Descriptor Table at location 0000h and obtain the
segment:offset of IA-32 code to be invoked.

3. Store the two byte FLAGS on IA-32 stack.

4. Store the segment:offset address of the IA-32 instruction
following the INT nn on IA-32 stack.

5. Store the IA-32 segment:offset addresses in the appropriate
IA-64 registers corresponding to IP, CS selector, CS
7-4 IA-32 Support

segment descriptor and transition to IA-32 code using RFI
instruction.

6. The IA-32 code will terminate by issuing an IRET or a RET 2
instruction and this will return to the IA-32 instruction
following the INT nn.

• External interrupt vector: Hardware interrupts will be received by SAL in the IA-64 ISA which
will obtain the interrupt vector corresponding to the interrupting source. For more details, refer
to Section 3.3.1. If the interrupts need to be reflected to IA-32 code, the address will be derived
from the IA-32 Interrupt Descriptor Table.
IA-32 Support 7-5

7-6 IA-32 Support

Calling Conventions 8

8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions:

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit
from a SAL procedure call. The OS Loader must follow the state requirements for PSR shown
below. SAL calls that invoke PAL procedures may impose additional requirements.

Table 8-1. Definition of Terms

Term Description

entry Start of the first instruction of the SAL procedure.

exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also
C, it must be the same as the value at entry.

unchanged The SAL procedure must not change these values from their entry values during
execution of the procedure.

scratch There are no requirements on the state of these values during execution of the
procedure. The SAL procedure may modify them as necessary during execution of
the procedure.

preserved The SAL procedure may modify these values as necessary during execution of the
procedure. However, they must be restored to their entry values prior to exit from
the procedure.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class

be Big-endian memory access enable 0 0 preserved

up User performance monitor enable C C unchanged

ac Alignment check C C preserved

mfl Floating-point registers f2-f15 written C C preserved
Calling Conventions 8-1

mfh Floating-point registers f16-f127 written C C preserved

ic Interruption state collection enable C C preserveda

0 0 unchanged

i Interrupt unmask C C preservedb

pk Protection key validation enable C C unchanged

dt Data address translation enable C C preserveda

dfl Disabled FP register f2 to f15 C C unchanged

dfh Disabled FP register f16 to f127 C C unchanged

sp Secure performance monitors C C unchanged

pp Privileged performance monitor enable C C unchanged

di Disable ISA transition C C preserved

si Secure interval timer C C unchanged

db Debug breakpoint fault enable C C unchanged

lp Lower-privilege transfer trap enable C C unchanged

tb Taken branch trap enable C C unchanged

rt Register stack translation enable C C preserveda

cpl Current privilege level 0 0 unchanged

is Instruction set 0 0 preserved

mc Machine check abort mask C C preservedc

1 1 unchanged

it Instruction address translation enable C C unchanged

id Instruction debug fault disable C C unchanged

da Disable Data access/dirty-bit faults 0 0 unchanged

dd Data debug fault disable 0 0 unchanged

ss Single step trap enable 0 0 unchanged

ri Restart instruction 0 0 preserved

ed Exception deferral 0 0 preserved

bn Register bank 1 1 preserved

ia Disable instruction access-bit faults 0 0 unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as
unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the

value on exit shall be 1 and must be classified as unchanged.

Table 8-2. State Requirements for PSR (Continued)

PSR Bit Description Entry Exit Class
8-2 Calling Conventions

8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class

DCR Default Control Register unchanged

ITM Interval Timer Match Register unchanged

IVA Interruption Vector Address unchanged

PTA Page Table Address unchanged

GPTA Reserved IA-32 Resource unchanged

IPSR Interruption Processor Status Register scratch

ISR Interruption Status Register unchangeda

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may
cause them to change.

IIP Interruption Instruction Bundle Pointer unchangeda

IFA Interruption Faulting Address unchangeda

ITIR Interruption TLB Insertion Register unchangeda

IIPA Interruption Instruction Previous Address unchangeda

IFS Interruption Function State unchangeda

IIM Interruption Immediate Register unchangeda

IHA Interruption Hash Address unchangeda

LID Local Interrupt ID unchanged

IVR Interrupt Vector Register (read only) unchanged

TPR Task Priority Register unchanged

EOI End Of Interrupt unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) unchangeda

ITV Interval Timer Vector unchanged

PMV Performance Monitoring Vector unchanged

CMCV Corrected Machine Check Vector unchanged

LRR0-LRR1 Local Redirection Registers 0-1 unchanged

RR Region Registers preserved

PKR Protection Key Registers unchanged

TR Translation Registers unchangedb

b. If an implementation provides a means to read TRs through a PAL procedure call, this should be
preserved.

TC Translation Cache scratch

IBR/DBR Break Point Registers preserved

PMC Performance Monitor Control Registers preserved

PMD Performance Monitor Data Registers unchangedc

c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting
performance monitor events during a procedure call.
Calling Conventions 8-3

8.1.4 General Registers

SAL will use the standard calling convention as described in the IA-64 Software Conventions and
Runtime Architecture Guide. Routines written using this convention may be written either in
assembly or C or other high level languages.

The GP for the SAL code should be known to system software as SAL passes it as one of the boot
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum
16 KB bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB
bytes of RSE backing store must be available for SAL.

8.1.5 Floating-point Registers

Although there is no SAL procedure that passes floating-point parameters, the floating-point
register conventions are the similar to those specified by the IA-64 Software Conventions and
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus
eliminating the need for the OS to save these registers across SAL procedure calls. All the pending
floating-point exceptions must be handled before calling SAL if the execution environment for
calling SAL cannot handle any floating-point exceptions.

8.1.6 Predicate Registers

The conventions for these registers follow the IA-64 Software Conventions and Runtime
Architecture Guide.

Table 8-4. General Registers – Standard Calling Conventions

Register Conventions

GR0 Always 0

GR1 Special; global data pointer (gp)

GR2 – GR3 Scratch; used with 22 bit immediate add

GR4 – GR7 Preserved

GR8 – GR11 Scratch, procedure return value

GR12 Special, stack pointer. preserved

GR13 Special, thread pointer. preserved

GR14 – GR31 Scratch

Bank 0 Registers
(GR16 – GR23)

Preserved

Bank 0 Registers
(GR 24 – GR31)

Scratch

GR32 – GR127 Stacked registers;
in0 -in95: input arguments (SAL index must be in0)
loc0 – loc95: local variables
out0 – out95: output arguments
8-4 Calling Conventions

8.1.7 Branch Registers

The conventions for these registers follows the IA-64 Software Conventions and Runtime
Architecture Guide.

8.1.8 Application Special Registers

The application registers follow the IA-64 Software Conventions and Runtime Architecture Guide.

8.1.9 Parameter Buffers

The parameter buffers to SAL_PROC must be aligned to the greater of its data type size or 8-byte
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of
the parameter buffers depends on the execution environment of the caller. The following
conventions are followed for the parameter buffers:

• Until the OS takes over the IVT and translation faults, parameter buffers passed to SAL are
identity mapped virtual addresses and are accessible by the region register 0 (RR0). In this
environment, SAL can handle the access faults while accessing parameter buffers if the buffers
are identity mapped.

• Parameter buffers passed to SAL runtime services can be either physical or virtual. If the
parameter buffers are virtual, the OS runtime execution environment must provide the proper
mapping for the parameter buffers.

8.2 Software Interface Conventions for SAL Procedures

A generic IA-64 interface is provided between IA-64 OS and SAL. IA-64 OS always follows the
standard calling convention to call SAL functions. The parameters passed to the SAL interface are
defined as follows:

SAL_PROC(arg0, arg1, ..., arg7)

Where, input parameters (maximum of eight 64-bit values) are:

arg0 – functional identifier. Currently the upper 32 bits are ignored and only the lower 32 bits
are used. The following functional identifiers are defined:

0x01XXXXXX – Architected SAL functional group

0x02XXXXXX to 0x03XXXXXX – OEM SAL functional group. Each OEM is allowed to
use the entire range in the 0x02XXXXXX range. The 0x03XXXXXX range is reserved
exclusively for Firmware vendors.

0x04XXXXXX to 0xFFFFFFFF – Reserved

arg1 – the first parameter of the architected/OEM specific SAL functions.

arg2 to arg7 – additional parameters for architected/OEM specific SAL functions.

and return parameters (maximum of four 64-bit values) are:

ret0 – return status: positive number indicates successful, negative number indicates failure.

ret1 to ret3 – other return parameters.
Calling Conventions 8-5

8.2.1 Control Flow of the SAL Interface

OS/Loader follows the standard calling convention to call both architected and OEM specific SAL
functions. OS/Loader sets up the appropriate parameters in IA-64 general registers according to the
calling convention and calls SAL_PROC. The first parameter passed to SAL_PROC specifies the
functional identifier and based on the functional identifier, SAL dispatches the function to the
appropriate functional block. Figure 8-1 shows the control flow of the SAL interface.

8.2.2 Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the OS/Loader sets up arg0 to the appropriate
architected SAL or OEM specific SAL functional identifier. It then sets up other parameters in arg1
to arg7 as specified by the SAL functional description and calls SAL_PROC. SAL_PROC
dispatches this function to either the architected SAL function handler or the OEM specific SAL
function handler based on the functional identifier. The SAL function returns the status in ret0 and
the additional return parameters in ret1 to ret3.

8.2.2.1 SAL Return Status Value

SAL procedures return a 64-bit status value in the ret0 parameter. Positive numbers indicate
success and negative numbers indicate failure. The following table summarizes the error code.

Figure 8-1. Control Flow of the SAL Procedure Interface

OS/Loader

SAL defined IA-64 interfaces:
Setup parameters in IA-64
registers (arg0...arg7)
according to standard calling
convention:
arg0 – Function ID,
arg1 to arg7 – parameters.

SAL_PROC (arg0,...,arg7)

Architected SAL Functions OEM SAL Functions
8-6 Calling Conventions

Table 8-5. SAL Return Status

Register Conventions

0 Call completed without error

1 Call completed without error but some information was lost due to overflow

2 Call completed without error; effect a warm boot of the system to complete the
update

3 More information is available to be retrieved.

–1 Not implemented

–2 Invalid Argument

–3 Call completed with error due to hardware malfunction or firmware error

–4 Virtual address not registered

–5 No information available

–9 Scratch buffer required
Calling Conventions 8-7

8-8 Calling Conventions

SAL Procedures 9

9.1 SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the OS when it is
executing. These services provide a platform-independent interface for hardware components.
runtime services contain procedures called by the OS to access platform hardware features on
behalf of the OS. runtime services should take no more time to perform an action than it would take
the OS to perform the same action.

The entire SAL runtime services code must be located in one contiguous memory area. Similarly,
the SAL runtime services data area must be located in one contiguous memory area.

SAL runtime services are called from the following execution environment:

• OS runtime execution environment. The normal OS execution environment is with translation
on and interrupts enabled but OS may choose to call SAL runtime services in physical mode.

• OS Machine Check and INIT handler. The execution environment for these are provided by
SAL and are in physical mode with interrupts disabled.

• SAL PMI handler. The execution environment is in physical mode with interrupts disabled.

The following general rules govern the operational characteristics of the SAL procedures:

• SAL runs in privilege level 0 and will return an error if called from other privilege levels.

• SAL runs little endian.

• SAL procedures follow the standard IA-64 calling convention. SAL runtime services shall be
implemented completely in the IA-64 ISA.

• SAL procedures are not re-entrant with respect to any runtime service (including itself).

• SAL procedures are not MP-safe except for the SAL_MC_RENDEZ, SAL_CACHE_FLUSH
and SAL_CACHE_INIT procedures. The OS is required to enforce single threaded access to
the other SAL procedures.

• Architected SAL runtime procedures are called either in virtual or physical mode under the OS
execution environment. OEM specific SAL runtime procedures may not support both virtual
and physical modes of operation.

• All SAL procedures that don’t return the status of unimplemented procedure (–1), must be
implemented.

9.1.1 Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal OS execution
environment is with translation on and interrupts enabled but OS may choose to call SAL runtime
services in physical mode.

The parameters passed to SAL runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the gp register must contain the physical or
virtual address of the SAL’s gp value provided to the OS in the Entrypoint Descriptor (refer to
SAL Procedures 9-1

Table 3-4 on page3-13). SAL can compute the addresses of code and data objects within SAL
using offsets relative to the ip and gp. In other words, SAL code will be position independent.

The hand-off state from the EFI to the OS Loader will indicate the SAL’s requirements for virtual
address mappings. (Refer to the EFI Specification for details). In a MP configuration, the virtual
addresses registered by the OS must be valid globally on all the processors in the system. The EFI
Specification also provides the interfaces for the OS to register the virtual address mappings. Some
typical requirements for virtual address mappings are described below:

1. The code and data areas of PAL and SAL in memory must be mapped contiguously in virtual
address space.

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures in memory. Prior to invoking the SAL procedures in virtual mode, the OS must
register the virtual address of the PAL code space in memory. If SAL needs to invoke a PAL
procedure, SAL shall do so in the same mode in which it was called by the OS (i.e. without
changing the PSR.dt, PSR.rt and PSR.it bits). While invoking these SAL procedures, the OS
must provide the appropriate translation resources required by PAL (i.e. ITR and DTC
covering the PAL code area). However, if a particular PAL procedure needs to be invoked in
physical mode, SAL will turn off translations and then invoke PAL.

3. The SAL_UPDATE_PAL procedure will invoke some PAL procedures in the firmware
address space. The OS must register the virtual address of the firmware address space
(ending at 4 GB). The OS must provide a contiguous virtual address mapping for the entire
firmware address space. If the SAL_UPDATE_PAL procedure is called in the virtual mode,
SAL will compute the virtual addresses of the relevant PAL procedures in the firmware
address space and shall call the same in virtual mode.

4. The OS shall register the virtual addresses of the Firmware Reserved Memory if requested
by the SAL (refer to Table 3-5 on page3-13). Such registration must be done prior to
making SAL calls in virtual mode and the OS must provide a contiguous virtual address
mapping for each of the data areas.

.

9.1.2 Access to Resources not Supported by OS

In order to access resources for which the OS does not provide the mapping, SAL runtime services
will access the platform resources in physical addressing mode. This will be done by disabling the
interrupts and turning the data translation off before accessing the platform resources. SAL will
restore the state of the data translation and interrupt enable bits in the PSR after accessing the
device. The following is a suggested code sequence:

mov r2=psr.l //Save current PSR, low 32 bits
rsm (1<<14) | (1<<17) //Mask Interrupt (PSR bit 14) and

//disable data translation (PSR bit 17)
;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

ld/st....... //Perform load/store to platform specific
//device using physical address

mf.a // Ensure platform acceptance
9-2 SAL Procedures

;; //End of instruction group
mov psr.l=r2 //Restore original PSR, low 32 bits
;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

The code sequence (from rsm to the second srlz.d) must exist in a single page of memory and the
translation for this code sequence must exist. The code sequence must not cause any NaT
consumption faults. All the memory accesses in this code sequence must be naturally aligned to
avoid unaligned data reference faults. If disabling of interrupt and data translation are done
separately, interrupts need to be disabled first and then the data translation. The code sequence may
not work if the data translation is disabled first followed by interrupt disabling. The restoring of the
processor state must be done in the reverse order. In general, interrupt and data translation should
be disabled to access the devices in physical mode and then interrupt and data translation must be
re-enabled as soon as possible.

The duration of interrupt and data translation disabled state should be kept at a minimum to
preclude impacting normal OS functions.

9.2 SAL Procedure Summary

.
Table 9-1. SAL Procedures

Procedure
Function ID

(hex)
Description

SAL_SET_VECTORS 0x01000000 Register software code locations with SAL

SAL_GET_STATE_INFO 0x01000001 Return Machine State information obtained
by SAL

SAL_GET_STATE_INFO_SIZE 0x01000002 Obtain size of Machine State information

SAL_CLEAR_STATE_INFO 0x01000003 Clear Machine State information

SAL_MC_RENDEZ 0x01000004 Cause the processor to go into a spin loop
within SAL

SAL_MC_SET_PARAMS 0x01000005 Register the machine check interface layer
with SAL

SAL_REGISTER_PHYSICAL_
ADDR

0x01000006 Register the physical addresses of locations
needed by SAL

SAL_CACHE_FLUSH 0x01000008 Flush the instruction or data caches

SAL_CACHE_INIT 0x01000009 Initialize the instruction and data caches

SAL_PCI_CONFIG_READ 0x01000010 Read from the PCI configuration space

SAL_PCI_CONFIG_WRITE 0x01000011 Write to the PCI configuration space

SAL_FREQ_BASE 0x01000012 Return the base frequency of the platform

SAL_UPDATE_PAL 0x01000020 Update the contents of firmware blocks
SAL Procedures 9-3

SAL_CACHE_FLUSH
SAL_CACHE_FLUSH

Purpose: To flush the instruction or data caches.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: Flushes the instruction and/or data caches, at all levels of cache hierarchy, controlled by the
platform and the processor. The i_or_d parameter specifies the instruction and/or data caches.
Unified caches are flushed with both instruction and data caches. This procedure has the effect of
invalidating all instruction cache lines, or causing a write back and then invalidating all data cache
lines.

With the i_or_d parameter value of 4, the caller specifies SAL to make the local instruction caches
coherent with the data caches. This has the effect of ensuring that the local instruction caches see
the effects of earlier stores of instruction code done by the local processor.

This SAL procedure invokes the corresponding PAL procedure, PAL_CACHE_FLUSH. Refer to
the Intel® IA-64 Architecture Software Developer’s Manual for details. This PAL procedure may
return to SAL without completing the flush operation should there be an intervening interrupt. The
PAL procedure also returns the external interrupt vector as a return parameter. In order to execute
the associated external interrupt handler, SAL shall

• Write to the EOI register (CR.eoi);

• Repost the interrupt by issuing an IPI message to self with the vector;

• Re-enable interrupts; and

• On return from the external interrupt handler, re-invoke the PAL_CACHE_FLUSH procedure
specifying the continuation point for the cache flush.

Argument Description
func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures
i_or_d Unsigned 64-bit integer denoting type of cache flush operation:

1 = Flush instruction cache
2 = Flush data cache
3 = Flush instruction & data cache
4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_FLUSH procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
9-4 SAL Procedures

SAL_CACHE_FLUSH
If interrupts need to be handled on a timely basis, this SAL procedure must be invoked with
interrupts enabled, i.e. PSR.i set to 1.

Platform
Requirements: None
SAL Procedures 9-5

SAL_CACHE_INIT
SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: Initializes the instruction and data caches controlled by the platform only. The OS is required to
invoke the PAL_CACHE_INIT procedure to initialize the instruction and data caches within the
processor. All cache lines will be invalidated without causing a write back.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–3 Call completed with error
–4 Virtual address not registered
9-6 SAL Procedures

SAL_CLEAR_STATE_INFO
SAL_CLEAR_STATE_INFO

Purpose: This procedure is used to invalidate the error record logged by SAL with respect to the machine
state at the time of MCAs, INITs, CMCs or Corrected Platform Error events.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will invalidate an error record that is logged by SAL for the specified event type. Once the
record has been invalidated, any subsequent calls to SAL_GET_STATE_INFO will get a –5 return
value (no information available). In a MP environment, processor record information pertains to
the processor on which this call is executed and the platform record information pertains to the
entire platform. By calling this procedure, the OS also signifies the completion of its machine
check handling during an MCA or INIT event handling.

If an MCA has been logged and the OS fails to invalidate the record prior to another MCA, then
SAL may save the additional error records and would consider this to be a fatal condition with a
halt or reboot of the system. This means that the error record information should be read as part of
the OS_MCA handler or OS boot loader and then followed by an explicit clear operation.

SAL returns one error record at a time through the SAL_GET_STATE_INFO procedure. In certain
cases, SAL may have multiple pending error records, to be retrieved. A return status value of 3
from this call indicates that SAL can be called to get more error records. Unless the current error
record is cleared, further error records shall not be provided by the SAL.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
3 More Error Records of the type are available to be retrieved and cleared
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
SAL Procedures 9-7

SAL_FREQ_BASE
SAL_FREQ_BASE

Purpose: This call returns the base frequency of the platform and other clock related information.

Calling
Conventions: Standard. Callable by the OS in physical or virtual mode.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface to determine the platform clock frequencies and to facilitate
the OS in selecting the most accurate clock source. This call could, in turn, use the services of
PAL_FREQ_BASE if the processor implementation provides an output that is used as the platform
clock.

The platform base clock frequency (clock_freq return parameter for clock_type of 0), in
conjunction with the ratios returned by the PAL_FREQ_RATIOS, may be used to determine the
frequencies of the processor, the front side bus and the interval timer within the processor.

This procedure must supply the correct value for the platform base clock frequency (clock_type of
0) and this value returned cannot be -1. Support for the other clock types and drift information is
optional. The value in the clock_freq and drift_info fields is set to -1 if the requested information is
not available.

Platform
Requirements: IA-64 platforms must provide mechanisms to determine the base frequency of the platform.

Argument Description
func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures
clock_type Unsigned 64-bit integer specifying the type of clock source:

0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional)
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_FREQ_BASE procedure
clock_freq Frequency information in ticks per second
drift_info Drift value in parts per million clock ticks (optional)
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
9-8 SAL Procedures

SAL_GET_STATE_INFO
SAL_GET_STATE_INFO

Purpose: Provide a programmatic interface to the processor and platform information logged by SAL with
respect to the machine state at the time of the MCAs, INITs, CMCs or Corrected Platform events.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the OS (and diagnostic software) to gather information obtained by SAL
with respect to the machine state at the time of MCAs, INITs, Processor CMCs or Corrected
Platform events.

This call will return any information logged by SAL for the specified event type. In response to the
MCA, Processor CMC or Corrected Platform event, the OS must call this procedure to obtain all
the pending processor and platform error information that triggered the event.

The OS is expected to call this procedure to retrieve the error record related to an event. The OS
may retrieve the same information multiple times prior to clearing the record. The record is cleared
by the OS calling SAL_CLEAR_STATE_INFO. Once all the records have been cleared, any
subsequent calls will get a –5 return value (no information available). The OS must be prepared to
handle the –5 return value. In the case of multiple pending error records of the same type, the OS
has to get and clear the current record before it can get the next one.

The maximum length of the buffer required to hold the requested record information is obtained by
calling the SAL_GET_STATE_INFO_SIZE procedure. The OS is expected to allocate the memory
buffer according to the returned size and provide the same for the memaddr argument. SAL returns
only one error record at a time in the memory buffer area provided by the memaddr argument. SAL

Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
–5 No information available
SAL Procedures 9-9

SAL_GET_STATE_INFO
may indicate the existence of more than one error record through an appropriate return status
during the call to the SAL_CLEAR_STATE_INFO procedure.

In a MP environment, processor record information pertains to the processor on which this call is
executed and the platform record information pertains to the platform. The information returned in
the memaddr argument will contain the error information logged for an event for all the error
devices like the called processor, memory controller, and I/O devices (including host bridges) in the
system. The exact format of the records will be implementation dependent but the record for each
type of device will follow an architected structure to allow the OS to parse the records and extract
the information. Refer to Appendix B, “Error Record Structures” for format of the error record
information returned in the memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedure is
invoked for CMC information on a particular processor, SAL will obtain all of the processor error
information, by invoking the PAL_MC_ERROR_INFO procedure. This procedure will then return
to the caller both the information buffered by SAL and the information collected from the PAL.

If an MCA has been logged and the OS fails to clear the log prior to another MCA, then SAL may
save the additional error records and would consider this to be a fatal condition with a halt or reboot
of the system. Hence, the MCA log information should be read as part of the OS_MCA handler or
OS boot loader. On the other hand, if a CMC occurs prior to the OS clearing the CMC error log, the
same shall not be fatal. If SAL's internal buffers are not sufficient to log multiple errors of the same
type, SAL shall discard the error logs for the latter occurrences.

An error record shall be available across reboots if the OS has not cleared it already. SAL shall have
an implementation specific NVM storage for backing up the error records. An OS is expected to
retrieve and clear all pending error records during system boot time.

Platform
Requirements: None
9-10 SAL Procedures

SAL_GET_STATE_INFO_SIZE
SAL_GET_STATE_INFO_SIZE

Purpose: This procedure is used to obtain the maximum size of the information that could be logged by SAL
with respect to the machine state at the time of MCAs, INITs or CMCs.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will return the maximum size of the processor or platform information logged by SAL for
the specified event type. The OS must make this call to determine the maximum size of data logged
by SAL for each type of record. The OS may then allocate suitable buffers, and provide the
pre-allocated buffers as argument to subsequent calls to the SAL_GET_STATE_INFO procedure.

Platform
Requirements: None.

Argument Description
func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL

procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO_SIZE
size The maximum size of the information logged for the specified type
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
SAL Procedures 9-11

SAL_MC_RENDEZ
SAL_MC_RENDEZ

Purpose: This procedure causes the processor to go into a spin loop within SAL where SAL awaits a wake up
from the monarch processor.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is invoked on non-monarch processors during machine check processing. This
procedure will disable interrupts and set an implementation dependent check-in flag within the
SAL data area to indicate to the monarch processor that the non-monarch processor has reached the
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete all outstanding
transactions within the processor. The non-monarch processor will then go into a spin loop awaiting
a wake up signal from the monarch processor. The wake up mechanism may be an external
interrupt 1or a memory semaphore as set up by the SAL_MC_SET_PARAMS procedure. SAL will
return an error if a wake up mechanism has not been registered.

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will poll the local
SAPIC IRR register for the bit corresponding to the selected wakeup interrupt to be set.

If a memory semaphore mechanism is chosen, SAL spin loop routine will poll the memory
semaphore for the unique value that includes the contents of the Local ID Register (refer to
Figure 3-1). The monarch processor will set this value to wake up one non-monarch processor at a
time. SAL on the non-monarch processor will clear the memory semaphore to zero and return. This
procedure may be called in virtual or physical mode but when memory semaphore mechanism is
chosen, this procedure must be called in the same mode as the previous call to the
SAL_MC_SET_PARAMS procedure that specified the memory semaphore.

The non-monarch processor will enter the spin loop routine and begin polling the wake up
mechanism within 1 second after invocation of this call.

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented
–3 Call completed with error
–4 Virtual address not registered

1. The recommended option is for the OS to use memory semaphore for wake-up than an interrupt. If a wake-up
interrupt is used by the OS, it will have to take into consideration many race conditions.
9-12 SAL Procedures

SAL_MC_RENDEZ
When this procedure returns, it is the responsibility of the OS to clear the IRR bits for the
MC_rendezvous interrupt and the wake up interrupt, if any.

This procedure is required for MP support. This SAL procedure is required to be MP-safe in order
that OS on the various non-monarch processors may enter the idle loop within the SAL
simultaneously.

Platform
Requirements: None
SAL Procedures 9-13

SAL_MC_SET_PARAMS
SAL_MC_SET_PARAMS

Purpose: This procedure allows the OS to specify the interrupt number to be used by SAL to interrupt the OS
during the machine check rendezvous sequence as well as the mechanism to wake up the
non-monarch processors at the end of machine check processing.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is required for MP support. Section 3.2.2.1 provides details on how the rendezvous
mechanism works in a MP configuration.

There are some machine check conditions which require the other processors in the system to be
rendezvoused for error containment purposes and to recover from the error condition. This
procedure allows the OS to register the interrupt number it wishes to use for this purpose. Typically,
when the OS on the non-monarch processor receives the rendezvous interrupt, it will turn around
and call SAL_MC_RENDEZ to go into a SAL spin loop routine. If the OS does not register this
interrupt, SAL_CHECK on the monarch processor will be forced to issue INIT and thereby

Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures
param_type Unsigned 64-bit integer value for the parameter type of the machine check

interface:
1 = rendezvous interrupt
2 = wake upa
3 = Corrected Platform Error Interrupt Vector
Other values are reserved

a. The recommended option is for the OS to use memory semaphore for wake-up than an interrupt. If a
wake-up interrupt is used by the OS, it will have to take into consideration many race conditions.

i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory
address is specified:
1 = interrupt vector
2 = memory address
Other values are reserved

i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory
address associated with the i_or_m parameter specified above.

time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds). The
minimum value is 1 second. Any value less than 1000 defaults to 1000.

rz_always A flag set by OS to indicate if a rendezvous should be done by firmware for all
MCA’s. A non-zero value indicates that rendezvous is always required.

Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
9-14 SAL Procedures

SAL_MC_SET_PARAMS
compromise the recoverability from the machine check condition. This procedure must be called
before MCAs can be handled by the OS.

The param_type parameter indicates whether the rendezvous interrupt or wake up mechanism or
corrected platform error interrupt vector (CPEV) is being specified. If param_type is 1, the i_or_m
parameter is ignored.

The i_or_m parameter specifies whether an interrupt or memory semaphore is used. Interrupt is the
only valid choice for the rendezvous function since the idea is to interrupt the non-monarch
processor as quickly as possible & corrected platform errors. Either interrupt or memory may be
used for the wake up mechanism and this is OS implementation dependent.

The i_or_m_val parameter specifies the interrupt vector number or the memory address associated
with the i_or_m parameter. If memory address is used for the wake up mechanism, the memory
semaphore must be aligned on an 8-byte boundary and coherent across the system fabric.

For the rendezvous interrupt vector, a value of 0 indicates use of PMI as the interrupt mechanism.
The PMI interrupt mechanism shall not be employed by IA-64 OSs as either the rendezvous or the
wake-up interrupt. Only the PAL layer to support IA-32 OSs may use the PMI as the rendezvous
interrupt since all the external interrupt vectors may be in use by the IA-32 OS. The SAPIC IPI
message signalling the MC_rendezvous interrupt of PMI type shall specify a value of 13 in the
vector field of the IPI message. The PMI interrupt mechanism shall not be employed as the
wake-up interrupt by any OS.

The PMI interrupt mechanism needs to be supported only on platforms that support IA-32 OSs and
SAL may return an error status on other platforms.

If the rz_always flag is set to a non-zero value by the OS, SAL is expected to rendezvous the
system for all detected processor and platform MCA conditions. If this flag is set to zero, then
rendezvous is done only when PAL initiates the rendezvous request during an MCA or if SAL
decides to do it for certain platform MCA. This parameter is valid only when the param_type is
rendezvous interrupt.

For the corrected platform error interrupt vector, the OS would register the same interrupt vector
number that is programmed into the IOSAPIC redirection table entry for triggering platform
corrected error interrupts.

Except for the above, the external interrupt vector value must be in the range of 16 to 255 since
these are the acceptable values that can be transferred using SAPIC IPI messages. A high value
should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if
not using memory semaphore mechanism). This is because the OS is responsible for clearing the
IRR bit associated with the wake up interrupt vector by reading the IVR and if the wake up
interrupt bit is not cleared promptly, a later call to the SAL_MC_RENDEZ procedure may return
prematurely.

This procedure may be called in virtual or physical mode but when the i_or_m parameter specifies
a memory address, subsequent calls to the SAL_MC_RENDEZ must be made in the same mode
(virtual/physical) as this call.

The time_out field defines the rendezvous time out period in milliseconds with a minimum value of
1 second. This parameter is only applicable to the param_type of rendezvous interrupt. If the
non-monarch processor does not invoke SAL_MC_RENDEZ within the time out period, the
monarch processor will generate an INIT signal to the non-monarch processor. The time out value
must be sufficient to cover situations where other processors may be in local MCA and thus not be
capable of servicing external interrupts or INIT.
SAL Procedures 9-15

SAL_MC_SET_PARAMS
Platform
Requirements: None
9-16 SAL Procedures

SAL_PCI_CONFIG_READ
SAL_PCI_CONFIG_READ

Purpose: This procedure is used to read from the PCI configuration space.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode. Good programming practices dictate

that indexed accesses to the configuration space be serialized in order to be MP-safe.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to read from PCI configuration space. The mechanism
for accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges
to implement this mechanism in different ways.

A non-zero value in the segment field can be used to access devices on platforms with greater than
256 buses.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
address PCI configuration address:

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the read.

size PCI config size (1, 2 or 4 bytes)
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_READ procedure
value Value read from config space.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
SAL Procedures 9-17

SAL_PCI_CONFIG_WRITE
SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode. Good programming practices dictate that

indexed accesses to the configuration space be serialized in order to be MP-safe.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to write to PCI configuration space. The mechanism for
accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges to
implement this mechanism in different ways. This procedure will guarantee the completion of the
write to the caller.

A non-zero value in the segment field can be used to access devices on platforms with greater than
256 buses.

Platform
Requirements:None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address:

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the write.

size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
9-18 SAL Procedures

SAL_REGISTER_PHYSICAL_ADDR
SAL_REGISTER_PHYSICAL_ADDR

Arguments: Provide a mechanism for software to register the physical addresses of locations needed by SAL
Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is used by the OS to register the new physical addresses of the PAL_PROC
procedure in memory. If the OS were to copy PAL procedures to a different memory location (using
the PAL_COPY_PAL procedure), it must register the new PAL_PROC entrypoint address with the
SAL. The SAL layer will then be in a position to invoke the PAL procedures in physical mode.

The phys_entity argument specifies the entity whose physical address is being registered with the
SAL and the p_addr argument provides its physical address.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL

procedures
phys_entity The encoded value of the entity whose physical address is registered

0 = PAL_PROC
Other values are reserved

p_addr 64-bit integer value denoting the physical address
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
SAL Procedures 9-19

SAL_SET_VECTORS
SAL_SET_VECTORS

Purpose: Provide a mechanism for software to register software dependent code locations with SAL. These
locations are “handlers” or entrypoints where SAL will pass control for the specified event. The
events handled are for the Boot Rendezvous, MCAs and INIT scenarios.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the OS (and diagnostic software) to inform firmware whether it is ready to
handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely where to vector for
each case. Since all three events result in having processor execution being controlled by firmware,
firmware requires these software addresses of the OS or diagnostics in order to pass control. The
OS registers the physical address where the specific handler resides. SAL uses these addresses to
vector to on occurrence of the event.

For the INIT event in an MP configuration, separate arguments must be provided for the first
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The
phys_addr_1, gp_1 and length_1 arguments specify the entrypoint, gp-value and the length
respectively of the OS_INIT procedure for the monarch and the phys_addr_2, gp_2 and length_2
arguments respectively specify the entrypoint, gp-value and the length of the OS_INIT procedure
for the non-monarch processors. The entrypoints within the OS for the monarch and non-monarch
processors could be the same if the OS intends to perform the monarch selection.

The value in the phys_addr_n argument must be 16-byte aligned. The phys_addr_n argument may
be checked as to whether it points into legal memory space (as opposed to I/O space or firmware

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:

0 = Machine Check
1 = INIT
2 = BOOT_RENDEZ
3–64 = Reserved
other values are implementation dependent

phys_addr_1 Physical address of the event handler.
gp_1 Global pointer (GP) of the event handler. This field must be a 16-byte aligned

address.
length_1 Size of the event handler procedure in bytes
phys_addr_2 Physical address of the event handler.
gp_2 Global pointer (GP) of the event handler. This field must be a 16-byte aligned

address.
length_2 Size of the event handler procedure in bytes

Return Value Description
status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered
9-20 SAL Procedures

SAL_SET_VECTORS
space). Specifying a value of 0 in the phys_addr_n argument invalidates the event handler
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it is not possible to invalidate only
one of the two entrypoints.

The gp_n field has the physical address of the GP for the event handler to be called by SAL. The
length_n argument contains the length in bytes of the OS procedure (or at least the first level
OS_MCA, OS_INIT, OS_BOOT_RENDEZ procedure). If the length_n argument is non-zero, SAL
computes and saves the checksum of the OS procedure. If this procedure were invoked in the
virtual addressing mode, the OS must provide read access to the code area for calculating the
checksum. Before invoking the registered OS procedure, SAL shall authenticate the OS code by
verifying its checksum.

Platform
Requirements: None
SAL Procedures 9-21

SAL_UPDATE_PAL
SAL_UPDATE_PAL

Purpose: This procedure is used to update the contents of the PAL block in the non-volatile storage device.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure updates the contents of firmware blocks (e.g. PAL_B) in the non-volatile storage
device and revises the FIT entries pertaining to the firmware blocks. If checksum is implemented
for the FIT table, this procedure will also revise the same. This procedure is capable of selecting the
appropriate location in the storage device for the firmware components. In some flash ROM
architectures, updates may not be possible until the following INIT. This scenario is described later.

Before performing update of PAL, this procedure will utilize resources within the processor and/or
PAL to authenticate the contents of the new version of PAL provided by the caller. If the
authentication is unsuccessful, the current PAL contents will be left intact.

The param_buf points to a 16-byte aligned data structure in memory with a length of 32 bytes that
describes the new firmware. This information is organized in the form of a linked list with each
element describing one firmware component. This procedure will update all the specified firmware
components as well as their FIT entries if successful, and none of the firmware components if
errors are encountered. The following table shows the format of each element of the data structure.
Refer to Section 2.5, “Firmware Interface Table” for explanation of fields within the FIT.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size Unsigned 64-bit integer value for the size of the scratch buffer in bytes
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req Size of the scratch buffer needed
Reserved 0

Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update.

–2 Invalid Argument
–3 Call completed with error. See error_code for details
–4 Virtual address not registered
–9 Insufficient scratch buffer provided

Offset Length Description
0 8 64-bit pointer to the next element (0 if none present)
8 8 64-bit memory address of the update_data_block containing new firmware

contents
16 1 Checksum flag:

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry

17 15 Reserved
9-22 SAL Procedures

SAL_UPDATE_PAL
The update_data_block consists of a header of 64 bytes followed by the code for the firmware
component. The following table shows the contents of the 64 byte header.

This procedure will locate the PAL_B block on a 32K byte aligned boundary on the storage device.

If the scratch buffer size specified in the scratch_buf_size field is insufficient, the call will fail with
a status of –7 and the scrbuf_size_req return parameter will specify the size of the scratch buffer
required.

SAL reads the CPU identification registers on all the processors in the system and maintains the
processor stepping information. If the PAL_B component is being updated, SAL will ensure that
the version number of the new PAL_B in the update_data_block is compatible with all the
processors on the system else return an error status.

The error_code return parameter provides additional information on the failure when the status
field contains a value of –3. Following are the definitions for the error_code field.

In some firmware architectures (e.g. flash), writes to a chip or component containing firmware
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL
firmware code for handling machine checks were located on the chip being revised, machine
checks must be masked on all the processors to avoid possible instruction fetch accesses to the
firmware address space. In an MP environment, the OS must rendezvous all the other processors on
the node whose firmware is being updated. At the end of the firmware update, the OS must invoke
the PAL_MC_ERROR_INFO procedure to ascertain whether any machine checks occurred while
they were masked and take corrective actions. The OS must then wake up the rendezvoused
processors and re-enable machine checks. In a multi-node system with multiple copies of firmware,
it may be possible to redirect interrupts to nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash
hardware except immediately following a Reset or INIT. The OS may call this procedure in virtual
mode but it is required to fix the pages containing the new firmware contents in memory, i.e. the OS

Offset Length Description
0 4 Size of the firmware component in bytes including the header (This field

must be a multiple of 16)
4 4 Date of the firmware component in mmddyyyy format: month, day, year

(e.g. 07/18/99 stored as 0x07181999)
8 2 Version number of the firmware component to be stored in its FIT entry
10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)

1 = PAL_B; 0x0F = PAL_A
11 5 Reserved
16 8 Firmware Vendor ID
24 40 Reserved

Error Code Description
–1 Version number of supplied PAL firmware is not suitable for one or more

processors in the system
–2 Supplied version of PAL failed the authentication test
–3 Invalid firmware component type
–4 PAL_A firmware not erasable
–5 to –9 Reserved
–10 Write failure – inability to write to storage device
–11 Erase failure – inability to erase the storage device
–12 Read failure – inability to read the storage device
–13 Insufficient space in the storage device
SAL Procedures 9-23

SAL_UPDATE_PAL
must not change the contents of the corresponding physical pages until the firmware update is
complete. SAL will be aware of flash architecture restrictions and will perform the usual
authentication steps. If the authentication is successful, SAL will accumulate the physical addresses
of the new firmware contents by executing the TPA instruction. (There may be several
non-contiguous physical pages if the OS had called this procedure in virtual mode). SAL will then
return to the OS a status value of 1 requesting a warm reboot. When SAL regains control following
the warm reboot, it will conduct the authentication steps again and, if successful, update the
contents of firmware.

The firmware update is effective on the next reboot. However, after a successful update, firmware
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM
(new code) will be utilized by the machine check and INIT events while the copy in memory (old
code) will be utilized by the OS. The OS may solve this problem either by rebooting the system
following a firmware update, or by updating the memory copy of PAL procedures by invoking the
PAL_COPY_PAL procedure.

If the OS decides to update the memory copy of PAL procedures, there are additional
considerations in an MP environment:

1. While the runtime copy of PAL is being revised (during execution of the PAL_COPY_PAL
procedure), all the processors in the system must be prevented from executing PAL
procedures in memory.

2. The monarch processor, after invoking the PAL_COPY_PAL procedure, must invalidate its
instruction cache by invoking the PAL_CACHE_INIT procedure as it would be
non-coherent with respect to the data cache.

3. The non-monarch processors on being woken up by the monarch processor must invoke the
PAL_COPY_PAL procedure to register the new PAL entrypoints for PAL_PMI and
PAL_FP. The non-monarch processors must do a SRLZ.I instruction to ensure that
modifications to instruction prefetches are observed.

4. If the physical address of the PAL_PROC procedure changes, the OS must register the new
address with SAL by invoking the SAL_REGISTER_PHYSICAL_ADDR procedure.

Platform
Requirements: Platform must provide non-volatile storage space to save firmware components.
9-24 SAL Procedures

Glossary A

ACPI
Advanced Configuration and Power Interface Specification.

AP
Application Processor. One of the processors not responsible for system initialization.

API
Application Programming Interface.

BIOS
Basic Input/Output System. A collection of routines that includes Power On Self-test
(POST), system configuration and a software layer between the operating system and
hardware. BIOS is written in IA-32 instruction set.

Boot Block Support
A hardware and/or software implementation that permits the end user to recover PAL/SAL
layers of software into the flash part after the previous flash programming attempt was
accidentally aborted.

BSP
Bootstrap Processor. The processor responsible for system initialization.

BSP
Backing Store Pointer (AR.BSP).

CMC
Corrected Machine Check.

Cold Boot vs. Warm Boot
Cold Boot refers to a hardware/software event that sets all circuitry, including all
processors, system components, add-in cards and control logic, to an initial state. Warm
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any
or all of the processor(s) on the system to an initial state. Warm Boot may be triggered by
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not
corrupt any pending cycles. Destructive memory tests are not performed during warm
boot.

Cold Reset vs. Hard Reset
Cold Reset refers to a hardware signal that sets all circuitry, including all processors,
buses, system components, add-in cards and control logic, to an initial state. Hard Reset is
triggered by a similar hardware signal. Hard Reset differs from Cold Reset in that some
sticky error flags in some system components may not be cleared, thereby allowing
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate
without regard to cycle boundaries and are typically asserted by the RESET pin. Both
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.
Glossary A-1

Corrected Platform Error Interrupt
Interrupt generated by the platform following a hardware corrected error. The interrupt
vector is set by the OS (e.g., in the vector field of an I/O SAPIC redirection table entry).

EFI
Extensible Firmware Interface. Firmware that provides a legacy free API interface to the
OS.

EOI
End of Interrupt.

FT
Fault Tolerant.

GP
Global Data Pointer. Every procedure that references statically-allocated data or calls
another procedure requires a pointer to its data segment in the GP register so that it can
access its static data and its linkage tables.

Hardware-protected Flash Region
This term refers to a part of the flash storage that is hardware-protected against accidental
erasure. Usually, this region is programmed by the OEM only. The hardware protection
can either be on-chip and/or platform supported hardware.

IA-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software
Developer’s Manual.

IA-64
The new ISA with 64-bit instruction capabilities, new performance enhancing features,
and support for the IA-32 instruction set.

IA-64 OS
An operating system which is written using the IA-64 code that can run IA-64 applications
(IA-64, IA-32 code).

INTA
Interrupt Acknowledge.

IPI
Interprocessor Interrupts.

IPL
Initial Program Load.

ISA
Instruction Set Architecture.

IVT
Interrupt Vector Table.
A-2 Glossary

MBR
Master Boot Record.

MC_rendezvous Interrupt
An external interrupt vector provided to SAL by the IA-64 OS for interrupting the IA-64
OS running on the APs.

MCA
Machine Check Abort.

Minimal State Save Area
Area registered by SAL with PAL for saving minimal processor state during machine
check and INIT processing. This area must be aligned on a 512-byte boundary and must
be in uncacheable memory. See the PAL EAS for details.

Monarch Processor
The processor selected by SAL to accumulate all the platform error logs and continue with
the machine check processing, when multiple processors experience machine checks
simultaneously.

MP
Multiprocessor.

MPS
Multiprocessor Specification.

NTFS
Windows NT File System.

NVM
Non-volatile Memory.

OS
Operating System.

PAL
Processor Abstraction Layer. Firmware that abstracts processor implementation-specific
features.

Plabel
Procedure label, a reference or pointer to a function. A plabel takes the form of a pointer to
a special descriptor (a plabel descriptor) that uniquely identifies the function. The plabel
descriptor contains the address of the function’s actual entrypoint as well as its linkage
table pointer.

PMI
Platform Management Interrupt.

SAL
System Abstraction Layer. Firmware that abstracts system implementation differences.
Glossary A-3

SAL_REV
The revision number of the IA-64 SAL specification supported by the SAL
implementation. This information contains two one-byte fields for Major and Minor
revision numbers and the same are represented in binary coded decimal (BCD) format.
For example, if this variable contains 02h, 06h, the SAL revision is 2.6. The major version
is incremented when the SAL API changes. The minor version is incremented when
underlying functionality changes but the API remains the same. SAL implementations
pertaining to a particular IA-64 SAL revision specification shall be compatible with each
other at the published SAL external interfaces.

SAPIC
Streamlined Advanced Programmable Interrupt Controller. The code name for the high
performance interrupt architecture for the 64-bit IA-64 ISA extensions to the 32-bit Intel
Architecture (IA-32). The Local SAPIC resides within the processor and accepts
interrupts sent on the system bus. The I/O SAPIC resides on the I/O subsystem and
provides the interrupt input pins on which I/O devices inject interrupts into the system.

Sector
This term refers to a logical block of 512 bytes.

SP
Memory Stack Pointer.

Swizzling
This term refers to mapping a 32-bit virtual linear address space into four virtual regions
of the 64-bit virtual address space. Swizzling is defined as:

virtual_address{63} = 0
virtual_address{62:61} = 32-bit_virtual_address{31:30}
virtual_address{60:32} = 0
virtual_address{31:0} = 32-bit_virtual_address{31:0}

TLB
Translation Lookaside Buffer.

TSS
Task State Segment.

USB
Universal Serial Bus.

VHPT
Virtual Hash Page Table.

WBL
Write-back with Limited Speculation.

Corrected Error
All errors of this type are either corrected by the processor/platform hardware/firmware.
A-4 Glossary

Recoverable Error
Recoverable errors cannot be corrected by either the hardware or firmware. These type of
errors requires more OS analysis and a corrective action to recover. System operation/state
is impacted to a some extent.

Fatal Error
These type of errors cannot be corrected by the processor hardware, firmware, and the OS.
The integrity of the system, including the IO devices is not guaranteed and may require IO
device initialization and a system reboot to continue.
Glossary A-5

A-6 Glossary

Error Record Structures B

B.1 Overview

The goals of the IA-64 Error Record structures is to keep it generic and flexible enough to be
extensible and to abstract processor or platform implementation dependencies from the OS layers,
at the same time providing as much error information as possible to the OS for error handling
purposes.

B.2 Error Record Structure

The error record structure consist of many different components called sections. Each error record
captures error information for one error event consisting of multiple sections. The size of the error
record structure is as indicated by RECORD_LEN and is dynamically set based on the total size of
all the section headers and section bodies combined.

An error record consists of a generic header followed by a list of sections with actual error
information for the event. Each section relates to a particular error device (ex: processor, platform
memory, platform PCI Bus, platform ISA Bus etc.), having a section header followed by section
body. Each of the section error information fields will have an associated validation bit(s), which
are part of the section body. A unique GUID is associated with each section for identification of the
error device type (ex: processor, platform memory, platform PCI bus etc.).

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

Section-n Header

Section-n Body
Error Record Structures B-1

B.2.1 Record Header

The format of the header for both the platform and processor error record is as shown below:

Refer to the Intel® IA-64 Architecture Software Developer’s Manual for explanation of fields not
described in this document.

The Device specific error section follows the header. For processor errors, this field will contain an
area that is architected for all IA-64 processors. For platform errors, this section will contain
information specific to the platform devices.

B.2.2 Section Header

The format of the section header for all error devices is as shown below:

Offset Length Field Description
0 8 bytes RECORD_ID Unique monotonically increasing ID for MCA, INIT and

CMC events Records
8 2 bytes REVISION 2-byte Major and Minor revision number of the Record in

BCD format
Byte0 – Minor
Byte1 – Major

10 2 bytes ERR_SEVERITY This encoded field indicates error severity
0 – Recoverable
1 – Fatal
2 – Corrected
Others – Reserved

12 4 bytes RECORD_LEN Length of this error record in bytes, including the header
16 8 bytes TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred in

BCD format.
Byte 0 – Seconds
Byte 1 – Minutes
Byte 2 – Hours
Byte 3 – Reserved
Byte 4 – Day
Byte 5 – Month
Byte 6 – Year
Byte 7 – Century

Offset Length Field Description
0 16

bytes
GUID Unique 16-byte GUID for the error device

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in
BCD format
Byte0 – Minor
Byte1 – Major

18 2 bytes RESERVED Reserved
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the

header
B-2 Error Record Structures

B.2.2.1 Processor Error Device Info

Refer to the Intel® IA-64 Architecture Software Developer’s Manual for explanation of fields.

PROCESSOR_SPECIFIC_ERROR_RECORD STRUCTURE

{

VALIDATION_BITS1 8 bytes

PROC_ERROR_MAP_VALID_BIT Bit 0

PROC_STATE_PARAMETER_VALID_BIT Bit 1

PROC_CR_LID_VALID_BIT Bit 2

PSI_STATIC_STRUCT_VALID_BIT Bit 3

CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15)

TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)

BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)

REG_FILE_CHECK_NUM Bit 16-19 (REG errors 0 to 15)

MS_CHECK_NUM Bit 20-23 (MS errors 0 to 15)

RESERVED Bits 24-63

PROC_ERROR_MAP 8 bytes

PROC_STATE_PARAMETER 8 bytes

PROC_CR_LID 8 bytes

struct { Nx48 max. bytes (cache errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} CACHE_ERROR_STRUCT[CACHE_CHECK_NUM]

struct { Nx48 max. bytes (TLB errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} TLB_ERROR_STRUCT[TLB_CHECK_NUM]

struct { Nx48 max. bytes (BUS errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} BUS_ERROR_STRUCT[BUS_CHECK_NUM]

REG_FILE_CHECK_INFO[REG_FILE_CHECK_NUM]Nx8 bytes (Reg. File errors 0 to 15)

MS_CHECK_INFO[MS_CHECK_NUM] Nx8 bytes (MS errors 0 to 15)

struct { Processor Static Information

VALID_FIELD_BITS2 8 bytes

Offset Length Field Description
0 16

bytes
GUID {0xe429faf1, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80,

0xc7, 0x3c, 0x88, 0x81}}
16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in

BCD format
Byte0 – Minor
Byte1 – Major

18 2 bytes RESERVED Reserved
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the

header

1. The amount of information reported by SAL is implementation dependent. The validity of each field is indicated by
either a validation bit or an encoded number field. Data corresponding to invalid fields will be padded. For
CACHE, TLB, BUS, REG, MS fields, the encoded NUM field indicates number of
MOD_ERROR_INFO_STRUCTs for each category, ranging from 0-15. If the NUM field is zero for a specific
type, then data corresponding to that field will be absent.
Error Record Structures B-3

MINSTATE_VALID_BIT Bit 0

BR_VALID_BIT Bit 1

CR_VALID_BIT Bit 2

AR_VALID_BIT Bit 3

RR_VALID_BIT Bit 4

FR_VALID_BIT Bit 5

RESERVED Bit 6-63

Minimal State Save Info Structure3 1024 bytes

BRs 0-7 64 bytes

CRs 0-127 1024 bytes4,5

ARs 0-127 1024 bytes4,5

RRs 0-7 64 bytes

FRs 0-127 2048 bytes

} PSI_STATIC_STRUCT

}

struct{ 48 bytes6(Mod)

VALID_FIELD_BITS 8 bytes

CHECK_INFO_VALID_BIT Bit 0

REQUESTOR_IDENTIFIER_VALID_BIT Bit 1

RESPONDER_IDENTIFIER_VALID_BIT Bit 2

TARGET_IDENTIFIER_VALID_BIT Bit 3

PRECISE_IP_VALID_BIT Bit 4

RESERVED_VALID_BIT Bit 5-63

MOD_CHECK_INFO 8 bytes

MOD_REQUESTOR_IDENTIFIER 8 bytes

MOD_RESPONDER_IDENTIFIER 8 bytes

MOD_TARGET_IDENTIFIER 8 bytes

MOD_PRECISE_IP 8 bytes

} MOD7_ERROR_INFO_STRUCT

B.2.3 Error Device GUID

The GUID structure is as follows:

2. Invalid fields will be padded
3. The size of the MinState Structure is about 1Kbytes. For more details on the size and contents of the structure,

please refer to the Intel® IA-64 Architecture Software Developer’s Manual
4. The number of Control and Application registers on a processor is processor implementation dependent.
5. Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. This

information is returned by the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile
registers in this data structure.

6. The size of this structure will always be 48 bytes, with invalid fields being padded with null values.
7. The MOD structure is common across CACHE, TLB and BUS error records

Offset Length Field Description
0 4 bytes DATA1 Data1
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4
B-4 Error Record Structures

Error Record Structures B-5

B-6 Error Record Structures

	Introduction 1
	1.1 Objectives
	1.2 Firmware Model
	1.3 System Abstraction Layer Overview
	1.4 Firmware Entrypoints
	1.4.1 Processor Abstraction Layer Entrypoints
	1.4.2 System Abstraction Layer Entrypoints
	1.4.3 Operating System Entrypoints
	1.5 Related Documents
	1.6 Revision History

	Platform Requirements 2
	2.1 Firmware Address Space
	2.2 PAL/SAL ROM Space
	2.3 Simplified Firmware Address Map
	2.4 Firmware Organization using Protected Boot Block
	2.4.1 Firmware Components
	2.5 Firmware Interface Table
	2.6 Resources Required for PC-AT* Compatibility
	2.7 Chipset and Shadowing Requirements
	2.8 Platform Support for Variant Architectural Features
	2.9 Platform Considerations Related to Geographic Location
	2.10 Non-volatile Memory Requirements
	2.11 Miscellaneous Platform Requirements

	Boot Sequence 3
	3.1 Overview of the Code Flow after Hard Reset
	3.1.1 Code Flow during Recovery
	3.1.2 Normal Code Flow
	3.2 SAL_RESET
	3.2.1 Initialization Phase
	3.2.2 Bootstrap Processor Identification Phase in an MP Configuration
	3.2.3 Platform Initialization Phase
	3.2.4 OS Boot Phase
	3.2.5 Firmware to OS Loader Handoff State
	3.2.6 OS_BOOT_RENDEZ
	3.2.7 SAL System Table
	3.3 IA-64 OS Loader Requirements
	3.3.1 Fault Handling
	3.3.2 Memory Management Resources Usage
	3.3.3 Other Restrictions on the OS

	Machine Checks 4
	4.1 SAL_CHECK
	4.1.1 SAL_CHECK Processing Details
	4.2 Corrected Machine Checks
	4.3 Platform Errors
	4.3.1 Scope
	4.4 OS_MCA
	4.5 Procedures used in Machine Check Handling
	4.6 Machine Checks in MP Configurations
	4.7 OS_MCA Handoff State
	4.7.1 Return from OS_MCA Procedure

	Initialization Event 5
	5.1 SAL_INIT
	5.2 OS_INIT
	5.3 OS_INIT Handoff State
	5.4 Return from OS_INIT Procedure
	5.5 MP INIT Support

	Platform Management Interruptions 6
	6.1 SALE_PMI Overview
	6.2 SALE_PMI Initialization
	6.3 SALE_PMI Processing
	6.4 Special Considerations for Multiprocessor Configurations

	IA-32 Support 7
	7.1 IA-32 Support Model
	7.2 IA-32 Support Requirements
	7.2.1 Resources Supported by SAL
	7.2.2 Overview of IA-32 Support Layer Functionality
	7.2.3 IA-32 Instruction Usage Guidelines
	7.2.4 IA-32 Support Environment
	7.2.5 IA-32 Interruption Handler Support

	Calling Conventions 8
	8.1 SAL Calling Conventions
	8.1.1 Definition of Terms
	8.1.2 Processor State
	8.1.3 System Registers
	8.1.4 General Registers
	8.1.5 Floating-point Registers
	8.1.6 Predicate Registers
	8.1.7 Branch Registers
	8.1.8 Application Special Registers
	8.1.9 Parameter Buffers
	8.2 Software Interface Conventions for SAL Procedures
	8.2.1 Control Flow of the SAL Interface
	8.2.2 Calling Architected/OEM SAL Functions

	SAL Procedures 9
	9.1 SAL Runtime Services Overview
	9.1.1 Invoking SAL Runtime Services in Virtual Mode
	9.1.2 Access to Resources not Supported by OS
	9.2 SAL Procedure Summary

	Glossary A
	Error Record Structures B
	B.1 Overview
	B.2 Error Record Structure
	B.2.1 Record Header
	B.2.2 Section Header
	B.2.3 Error Device GUID

