intal.

|A-64 System Abstraction Layer
Specification

July 2000

Document Number: 245359-002

THIS DOCUMENT IS PROVIDED “AS IS” WITH NOWARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel'sTerms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Inte | reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The IA-64 processor may contain design defects or errors known as errata which may cause the product to deviate from published s pecifications.
Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-
4725, or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Copyright © Intel Corporation, 2000
*Third-party brands and names are the property of their respective owners.

intgl.

Contents

1 Introduction
11 ODJECHIVES ...t
1.2 FIrMWAre MOGEIoiiiiiiiiie e et sbb e e ee e
13 System Abstraction Layer Overview...

14 Firmware Entrypoints
141 Processor Abstraction Layer ENtrypointsccccccevveeieiniieninnneeneese e 1-5
14.2 System Abstraction Layer Entrypoints .1-6
1.4.3 Operating System Entrypoints W17
15 Related DOCUMEINEScoiiiiiiiiet ettt site ettt et et e et san e e sabe e e e nnneeennees 1-7
2 Platform Requirements 2-1
2.1 Firmware ADAreSS SPACEcoeiiiiiirieiiie it 2-1
22 PAL/SAL ROM SPACE.....c.uiitiriiiiirit ettt ettt sttt ss ettt ettt nne e nneas 2-1
2.3 Simplified Firmware Address Mapcccoeeevviniieeiinee w2-2
24 Firmware Organization using Protected Boot Block wn2-2
241 Firmware COmponentscccceevvveereriieeieenns w0 2-3
2.5 Firmware Interface Tablecooiuiiiiiii e 2-6
2.6 Resources Required for PC-AT* Compatibilityccoceveiiiiiiiiiiiiiiiiiccccneee 2-7
2.7 Chipset and Shadowing Requirements
2.8 Platform Support for Variant Architectural Features.............ccoovveviiiieeiiiie e 2-9
2.9 Platform Considerations Related to Geographic LOCatioNn............cccceevcvviieeiicriviennnnn 2-10
2.10 Non-volatile Memory Requirements .
2.11 Miscellaneous Platform ReqUIrEMENtScccuiiiiiiiiiiiiie i 2-11
3 Boot Sequence 3-1
3.1 Overview of the Code Flow after Hard ReSetcoovieiiiiiiiiiiieie e 3-1
3.11 Code FIow during RECOVENYccciiiiiiiiiiiicitcie et e 3-2
3.1.2 Normal Code Flow
3.2 SAL_RESET ...ttt
321 Initialization Phase
3.2.2 Bootstrap Processor Identification Phase in an MP Configuration............... 3-4
3.2.3 Platform Initialization Phase
3.24 OS BOOE PRASEieieiiieie ettt
3.25 Firmware to OS Loader Handoff State
3.2.6 OS_BOOT_RENDEZ
3.2.7 SAL System Table..........
3.3 IA-64 OS Loader Requirements "
331 Fault HANAIINGoooiiiiiiiii e
3.3.2 Memory Management ReSources USAgEoovurririeiriiiiiieeee i 3-20
3.33 Other Restrictions 0N the OS........ccooiiiiiiiiei e
4 Machine Checks
4.1 SAL_CHECK ...eiiiiiiieeiiiete e
41.1 SAL_CHECK Processing Details
4.2 Corrected Maching CheCKSoociiiiiiiii e
43 Platform Errors
431
4.4 OS_MCA
4.5 Procedures used in Machine Check Handling

IA-64 System Abstraction Layer Specification iii

4.6 Machine Checks in MP Configurations............coovueeeriuieeeiiieessieeeseeeesseeeeesnee e snnee e
4.7 OS_MCA Handoff Stateccccvveevvvericeeenenn,
4.7.1 Return from OS_MCA Procedure

Initialization Event
51 57 I | PP PP UPUPRRUPTP
5.2 OS_INIT
5.3 OS_INIT Handoff State
5.4 Return from OS_INIT Procedure
5.5 LY L LN T ST U] o] o] o PP PP P PP PPPPPUROt

Platform Management Interruptions
6.1 SALE_PMI OVEIVIEWvieieieee et se e tte et eeente e e sseaessataaesnsaaesnsaeeesnaaeesnnaeeennsenesnsees
6.2 SALE_PMI Initialization
6.3 SALE_PMI Processing
6.4 Special Considerations for Multiprocessor Configurations

IA-32 Support
7.1 1 A TU] o] o T A 1Y (o T [USSR
7.2 IA-32 Support Requirements.....................
721 Resources Supported by SAL
7.2.2 Overview of 1A-32 Support Layer Functionality

7.2.3 IA-32 Instruction Usage GUIdEINESccuvveiiieiiiiiierie e
7.2.4 1A-32 SUPPOIt ENVIFONMENTeiiiiieeeciiieeiiie e seee st e e e seeeeeseaeesnneeeennaee s
7.25 1A-32 Interruption Handler SUPPOIcoovuvieriie e eee e cee e e
Calling Conventions
8.1 SAL Calling CONVENEIONSceeieiiieeiiiieeeieieeseeeeste e e seeessnaeaesrtaeesssaeeesnaeesssseeennseeesnsees
8.1.1 Definition of Terms
8.1.2 PrOCESSOr STALE ... viiiiiiei ettt

8.1.3 System Registers
8.14 General Registers

8.1.5 Floating-point REQISTETScccuvieiieee et seee s ae e sree e nae e eneee e e nneee s 8-4
8.1.6 Predicate REQISIEIS ...c.ccviiii e et s e ee e ere e e ae e eeennnaee s 8-4
8.1.7 Branch Registers

8.1.8 Application Special REQISLEIS.........ccciiieiiiiee e
8.1.9 Parameter BUFEISooiiiiiieiiei e

8.2 Software Interface Conventions for SAL Procedures
8.2.1 Control Flow of the SAL Interface
8.2.2 Calling Architected/OEM SAL Functions

SAL Procedures

9.1 SAL RUNIME SEIVICES OVEIVIEW.......ccviiiiie e ettt e ettt e e e e et ee e e e e eaaaaeaeea s
9.11 Invoking SAL Runtime Services in Virtual Mode ..
9.1.2 Access to Resources not Supported by OS
9.2 SAL ProCedUIre SUMIMAIYcceeeueeeesuueeeaireesssieeeasseeesassesesssseessssnssssssnessssssesssseessssesesssees
Glossary A-1
Error Record Structures B-1
B.1 OVEIVIBW ...ttt et e ettt e e e e e ettt e e e e e et bt e e e e e e e eatasaeeeeseasasbeaeaeesntbeeaaesaennnsaeaens B-1
B.2 Error RECOIM SHIUCTUIE ...ttt e e e et re e e e e e aanaeaeeeas B-1
B.2.1 RECOM HEAUEBTuuiiiiie ettt et e e e e et e e e e e e B-2
B.2.2 SECON HEAE.......ueeiiiiieeiiieeeee ettt e e e B-2

IA-64 System Abstraction Layer Specification

intgl.

B.2.3 Error DEVICE GUIDcoiiiiiiiiiiiieiieie ettt sttt B-4
Figures
1-1 FIMWAIE MOOE ...ttt b e e sb e e et e nbe e e b e e sneeennee e
1-2 Firmware Services Model
1-3 Firmware Entrypoints LOGICal MOGEL..........cceiiiiiriiie et s e eee e seee e saee s e e naee e 1-5
2-1 Simplified Firmware AAAreSS Mapuueiiiieeiiireeiiieessieeeseee e eeestaeeseeeessaeeesnsaeesssaeeeennseeaans 2-3
2-2 Firmware Address Map.................... o 2-4
2-3 Firmware Interface Table............. ..2-6
2-4 Firmware Interface Table Entry26
3-1 Local ID Register FOrMAL.........cccocvveiueieiniieeiie e seee e e sieeeesnneae s .33
3-2 Control Flow of Boot Process in a Multi-processor Configuration ..
3-3 Memory Semaphore FOrMat..........cccuveeriieeiiiieesieee e eseee e .
4-1 Overview Of Maching CheCK FIOWc.ooiiiiiiiiiiiiie ettt
4-2 MaChINE CheCK COOE FIOW.cciuiiiiiiiiie ettt ettt nn e nre e
4-3 SAL_CHECK Detailed Flow on the Monarch Processor .
4-4 Normal SAL RENAEZVOUS FIOWcoviiiiiiiiieiiie ettt ettt ettt ettt nee e
4-5 Failed SAL RENAEZVOUS FIOW..........ciiiiiiiiieiieiiie ettt
5-1 SAL_INIT Control FIOW.........cccocveviieeiiiieeene. .
8-1 Control Flow of the SAL Procedure INterfacecueiiiiiieiiiiiie e
Tables
2-1 FIrmware AOrESS SPACEccuiiiriiiiiiiitie ittt sttt sn e sre e
2-2 FIT TYPES wvceveeeeeeeeeeee e essene s
2-3 1-MB Compatibility Memory Address Space
2-4 I1A-32 Compatibility 1/O POFSccviiiiiiiiiiii e e
3-1 SAL Actions based on Processor Self-test State
3-2 SAL System Table HEAAETccciiiiiiiiiiiie s
3-3 SAL System Table ENrY TYPES ..oc.eoiiiiiiiiiieii ettt
3-4 Entrypoint Descriptor Entry Format .
3-5 MemOry DESCHIPION ENIY......cccuiiiiiiiiiitieite ettt et bbb e s
3-6 Memory Type Information Provided to the EFl...........ccccociiiiiiiiiiiiiicc s
3-7 Platform Features Descriptor Entry

3-8 Translation Register Descriptor Entry
3-9 Purge Translation Cache Coherence Domain Entry ... “
3-10 Coherence Domain INfOrMALIONuveeiiiiiiiiiie et e

3-11 Application Processor Wake-up DeSCriptor ENtrycccovveiiiiiieiiieniie s
8-1 Definition of Terms .
8-2 State Requirements fOr PSR ..o
8-3 System RegiSter CONVENTIONScoiueiiiiieeiititee it ettt et ssie e e sbee e s e e e staeesneeeesabeeesnseeessnees
8-4 General Registers — Standard Calling Conventions....
8-5 SAL RETUIN SEALUS ...ttt s ettt e ettt et e e et e e e e sb bbb e e e e e e s bbnreeeeens

9-1 Y I o (o Tot=To (U] (T

IA-64 System Abstraction Layer Specification v

Vi

IA-64 System Abstraction Layer Specification

intel.

Introduction 1

1.1 Objectives

This document describes the functionality of the |A-64 System Abstraction Layer (SAL).

This document specifies requirements to develop platform firmware for |1A-64 systems. A
companion document, The Extensible Firmware Interface (EFI), describes additional interfaces
that must be implemented to access devices on the platform. The EFI Specification isaplatform
binding specification and is also part of the |A-64 firmware.

This document is intended for firmware/BIOS (basic input/output device) designers, system
designers and writers of diagnostic and low-level OS software. This document is a specification and
does not specify implementation details.

The primary objectives of the |A-64 firmware layer are to:

Enable boot of 1A-64 OSs.

Provide a uniform interface to the boot |oaders of the OSsfor all 1A-64 platforms.

Ensure that the firmware interfaces are sufficient to contain the platform implementation
differences within the hardware abstraction layers and device driver layers of operating
systems.

Separate the abstraction for the platform hardware from the abstraction for the processor
hardware.

Enable hardware innovation and optimization of 1A-64 platforms.

Support OEM capability for platform differentiation.

Support the scaling of systems from the low-end to the high-end including servers,
workstations, mainframe alternatives and supercomputers. Features supported will include
high availability, error logging/recovery, large memory, multiprocessors (MPs), and broader
and deeper 1/O hierarchies (possibly greater than 100 1/O cards).

Enable boot of shrink-wrapped versions of 1A-32 operating systems (OSs). Thiswill involve
support of 1A-32 industry standard calls and A pplication Programming Interfaces (APIs).
Enable reuse of |A-32 BIOS code as part of SAL. The extent of the IA-32 BIOS reuse is
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer
(PAL) will beinthelA-64 Instruction Set Architecture (1SA).

Enable the use of legacy PC peripherals, option ROMs and PCI cards with 1A-32
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals.
However, this document is not intended to redocument the PC infrastructure specifications.

Introduction

1-1

1.2

Firmware Model

Asshownin Figure 1-1, 1A-64 firmware consists of three major components, all of which are

required:

1. Processor Abstraction Layer,
2. System Abstraction Layer, and

3. Extended Firmware Interface Layer.

Figure 1-1. Firmware Model

Operating System Software

Transfers to OS
Entrypoints

for Hardware
Events,

T

[A

OS Boot E'r:olcedure
Handoff

Calls

Extensible Firmware
Interface (EFI)

A

OS Boot

. """“‘\
Selection B

SAL Procedure
Calls

/,———JV

Platform/System Abstraction Layer

(SAL)

Acess to
Platform

Resources

A i
PAL Procedure

Calls
‘““\

N,
\

Transfe‘rs to SAL
Entrypoints

Instruction
Execution
Interrupts,
Traps and
Faults

<

Processor Abstraction Layer
(PAL)

Processor (Hardware)

-+
RN
\
\

Non-pén‘ormance Critical
Hardware Events, e.g.
Reset, Machine Checks

Performance Critical
Hardware Events,

A

e.g. Interrupts

\.

T

Platform (Hardware)

000950

1-2

Introduction

PAL encapsulates the processor model specific hardware and is part of the A-64 Instruction Set
Architecture (ISA). PAL isthe firmware layer that abstracts the processor implementation-specific
features and isindependent of the number of processors. SAL isthe platform specific firmware
component that isolates OS and other higher level software from implementation differencesin the
platform. EFI isthe platform binding specification layer that provides alegacy free API interface to

the OS L oader.

PAL, SAL and EFI together provide system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PMI) handling and other processor and system
functions which would vary between implementations. The interaction of the various functional

firmware blocks is shown in Figure 1-2.

Figure 1-2. Firmware Services Model

Introduction

Operating System Software
OS Machine .
OS Loader Check OS Init
Handler
Handler
Y [Y
A A
L ' EFI
. oS
Runt_lme Boot
Services .
Services
A Y
PR JEE SAL
: Boot :
| Services |
I (Transient) :
Y y L)
Platfgrm Platform Platform Platform Platform
Runtime i
X Reset Error Init PMI
Services Handler Handler Handler Handler
(Procedures) andlel
A A A ; A A
________ Reset Event;
I
T
AR ' v \ PAL
Proce§ sor Processor Processor Processor Processor
Runtime i
Services Reset Error Init PMI
Handler Handler Handler Handler
(Procedures)
Y A Y
Reset / Machine Initialization PMI
Power On Check Event Event
Platform/Processor Hardware

000933

1-3

1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an 1A-64 platform:

* Initialize, configure, and test the platform hardware. This includes the memory and I/O
subsystems, the necessary boot devices and platform specific hardware.

* Select the bootstrap processor (BSP) in a MP platform and set the configurable processor

features. The |A-64 processor provides itsownPAL firmware for initialization and test, but

this abstraction has no knowledge of the platform and so further platform-specific action is

necessary to integrate the processor to the rest of the system. For example, the SAL must

configure, test and initialize memory before the processor cache to memory interface can be

established and tested (SAL_RESET interface).

Optionally, encapsulate and provide the environment necessary to run 1A-32 BIOS and plug-in

cards containing |A-32 Option ROMs.

Provide low level service routines to aid the EFl and the OS Loader in establishing the
environment necessary for the OSto runin.

* Provide common data structures to the OS to convey initialization and configuration
information.

* Provide the necessary services and common infrastructure to support MP configurations.

* Provide Runtime Service routines to encapsulate those functions of the platform necessary for
the EFI and the OS while they are running.

Provide the functions necessary to aid in the logging and recovery from Machine Check
conditions (SAL_CHECK and OS_MCA interface).

Provide the functions necessary to aid in the logging and recovery from INIT conditions
(SAL_INIT and OS_INIT interface).

Provide the functions necessary to handle the platform management events (SALE_PMI
interface).

Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

Optionally, provide an user interface to aid in system configuration, information passing and
troubleshooting.

These SAL functions can be divided into the following interface categories:
» SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.
» OSentrypoints from SAL: OS_MCA, OS INIT and OS BOOT_RENDEZ.
» SAL Runtime Service routines.

1-4 Introduction

intel.

1.4

Firmware Entrypoints

Figure 1-3. Firmware Entrypoints Logical Model

141

Introduction

PAL SAL 0s
SAL_BOOT_ lag — — —Wakeup
_RENDEZ
Firmware Recovery e Bootstrap
Complete (BSP) pAﬁ)pCI('ECSaSt(')Org Processor
(BSP)
¥V (APs) |
Reset o iori £ RESET|-pSALE_ENTRYIBT SAL RESET T8 fanauer (| OS_LOADER
Power-On | o [- Manager -
SAL_MC_ _\Naﬁe up
RENDEZ 1
|
MC_Rendezvous |
InteTrupt
MC Rendezvous complete ' (APs) |
Y Li .
Error
PALE_CHECK | SALE_ENTRY [—® SAL_CHECK |——pm»{ OS_MCA
BSP
Initialize
— | PALE_INIT | SALE_ENTRY SAL_INIT | —pm| OS_INIT
PMI -
4_' PALE_PM| |«@—] SALE_PMI
Resum

Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution ofa PAL entrypoint:
* Power-on/reset
» Hardware errors (both correctable and uncorrectabl e)

« Initialization request

e PMIs

1.4.2

1-6

intel.

These hardware events trigger the execution of one of the followingPAL entrypoints (as shown in
Figure 1-2 and Figure 1-3):

1

PALE_RESET —initializes the processor following power-on or areset. This entrypoint
within PAL callsSALE_ENTRYPOINT in SAL to test for firmware recovery indication.
SALE_ENTRY, in turn, calls a procedure within SAL called SAL_RECOVERY_CHECK
that performs the recovery if firmware recovery indication is present on the platform, else
returnsto PAL viaSALE_ENTRY. If firmware recovery is required, the SAL recovery code
will accomplish the firmware recovery function, reset the recovery indication and then
trigger asystem wide reset causing re-entry into PALE_RESET. If SAL reportsto PAL that a
firmware recovery condition does not exist,PAL conducts additional processor tests and
then branchesto SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL
called SAL_RESET to initialize the system.

PALE_CHECK — saves the minimal processor state, determines if errors are processor
related, saves processor related error information and corrects errors where possible (for
example, by flushing a corrupted instruction cache line and marking the cache line as
unusable). PALE_CHECK then branchesto SALE_ENTRY in SAL. SALE_ENTRY, in
turn, branches to a procedure within SAL called SAL_CHECK to complete the error
logging, correction, and reporting. PALE_CHECK is entered as a response to processor
and/or platform errors.

PALE_INIT — saves the minimal processor state, initializes the processor, and branches to
SALE_ENTRY in SAL. SALE_ENTRY, in turn, branches to a procedure within SAL called
SAL_INIT. PALE_INIT isentered as aresponse to an initialization event.

PALE_PMI —determines the type of platform management event, and branches to
SALE_PMI. PALE_PMI isentered as aresponse to a platform management event.

System Abstraction Layer Entrypoints

Following are the entrypoints fromPAL into SAL:

1

SALE_ENTRY — PAL branches to this SAL entrypoint after a power-on reset, machine
check or initialization event. The code at this entrypoint using the hand-off valuein a
General Register, jumps to different entrypoints within SAL for Reset, Firmware Recovery,
Machine check and Initialization events.

SAL_RESET within SAL isentered for system initialization afterPAL hasinitialized the
processor. SAL_RESET functionality is described in Chapter 3.

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test
if afirmware recovery condition is present. SAL isthe only entity that has knowledge of
platform resources to determine if afirmware recovery condition is present.

SAL_CHECK within SAL isentered for logging errors, and correcting platform related
errors where possible. SAL_CHECK functionality is described in Chapter 4.

SAL_INIT within SAL is entered for saving the state of the system and performing
additional functions as defined in Chapter 5.

SALE_PMI —PAL branchesto this SAL entrypoint for handling platform management
events in an implementation dependent manner.

Introduction

intel.

1.4.3 Operating System Entrypoints

There are several entrypoints from SAL into an OS (or equivalent software):

¢ OS_LOADER — OS Loader. Entered from SAL_RESET on the BSP only, after the system has
been initialized and the OS L oader image has been |oaded by the EFI component from the boot
device. Refer to the EFI Specification for details.

* OS_BOOT_RENDEZ — OS MP Rendezvous Handler. Entered from SAL when OS on the BSP
wakes up the application processors (APs), to permit synchronization of APsinaMP
environment.

¢ OS_MCA —OS Machine Check Abort Handler. Called from SAL_CHECK to alow the OS to
handle the machine checks that are not corrected by hardware, PAL or SAL.

¢ OS_INIT — OSInitialization Handler. Called from SAL_INIT to handle avalid initialization
event.

1.5 Related Documents

The following documents contain additional material related to 1A-64 processors:
* Advanced Configuration and Power Interface Specification, 1996 — Intel/Microsoft/Toshiba
« BIOSBoot Specification, 1996 — Compag/Phoenix/Intel
» BIOS Enhanced Disk Drive Specification version 3.0 — Phoenix
 Bootable CD-ROM Format Specification, 1994 — Phoenix/IBM

CBIOSfor IBM Computers and Compatibles — Phoenix

« Extensible Firmware I nterface Specification — Intel

* |A-64 Software Conventions and Runtime Architecture Guide — HP/Intel

« Intel® |A-64 Architecture Software Developer’s Manual — Intel

 PCI BIOS Specification, 1994 — PCI SIG

Plug and Play 1SA Specification, 1994 — Microsoft

Introduction 1-7

1.6

Revision History

Date of
Revision

Description

July 2000

Clarification of state of IA-64 system registers at the time of handoff to
OS_BOOT_RENDEZ. (Section 3.2.6)

Clarification of Platform Features Description Entry for offset of 1. (Table 3-7)

Added non-volatile memory and ACPI requirements to platform requirements.
(Section 2.11)

Clarification of the Alternate Data TLB fault, Speculation fault, Unaligned fault,
NaT Consumption fault, and General Exception fault descriptions. (Section
3.3.1)

Clarification of machine check overview. (Chapter 4 Introduction)

Clarification of SAL_CHECK processing and conversion of MCA events to
Processor Corrected Machine Checks and Platform Corrected Error Events.
(Section 4.1.1)

Revision of Machine Check Code Flow diagram. (Figure 4-2)

Additional information about Corrected Machine Check categories. (Section 4.2)
New Platform Errors handling information. (Section 4.3)

New description of the scope of platform error handling. (Section 4.3.1)
Clarification of OS_MCA handling. (Section 4.3)

Clarification of multiprocessor machine checks. (Section 4.6)

Clarification of OS_MCA Handoff State. (Section 4.7)

Changes to processor state specification ofr return from OS_INIT. (Section 5.4)
New SAL Return Status of 3 to specify that additional information is available.
(Table 8-5)

Clarification of how to invoke SAL runtime services in virtual mode. (Section
9.1.1)

Addition of mf.a instruction to code sequence to ensure platform acceptance.
(Section 9.1.2)

SAL_CACHE_FLUSH: Addition of i_ord_value of 4 to instruction to make local
instruction caches cohenrent with data caches. (Section 9.2)
SAL_CLEAR_STATE_INFO: New type value of 3 to speclfiy corrected platform
event. Removel of sub-type argument. New return value of 3 to indicate more
error records are available. (Section 9.2)

SAL_FREQ_BASE: New type value of 3 to speclfiy corrected platform event.
Removel of sub-type argument. (Setion 9.2)

SAL_GET_STATE_INFO_SIZE: New type value of 3 to speclfiy corrected
platform event. Removel of sub-type argument. (Section 9.2)
SAL_MC_RENDEZ: New recommendation in footnote for OS to use memory
semaphore for wake-up instead of interrupt. (Section 9.2)
SAL_MC_SET_PARAMS: New param_type of 3 to specify Corrected Platform
Error Interrupt. New rz_always flag to specify a firmware rendezvous. (Section
9.2)

New Glossary definitions for Corrected Error, Corrected Platform Error Interrupt,
Fatal Error, and Recoverable Error. (Appendix A)

New Error Record Structure definition defines a record header and sections with
error information for each error device. (Appendix B)

January 2000

Initial release of document.

Introduction

intel.

Platform Requirements

2.1

Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000
through OxFFFF_FFFF). This address space isshown in Table 2-1.

Table 2-1. Firmware Address Space

2.2

OXFFFF_FFFF
PAL/SAL ROM

SAL Resources

OxFF00_0000

Thefirmware address spaceislogically partitioned into two major functional blocks: the ROM area
(shared by the SAL andPAL) and the SAL Resourcesarea. TheROM areais placed in the address
space such that its ending addressis at OXFFFF_FFH-. The SAL Resources area occupies the
portion of 16 MB firmware address space not occupied by the ROM area. SAL code can use the
specia hardware resources which the platform has implemented in the SAL Resources area. The
hardware resources implemented can optionally include (but are not limited to) scratch RAM,
non-volatile memory (NVM), environment control and status registers. The location of the
hardware resources within the SAL Resources area is platform dependent.

PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code
areas and atable called the Firmware Interface Table (FIT). See Section 2.5.

PAL codeis broken into two subcomponents:
* PAL_A whichisprocessor stepping independent and
* PAL_B which is processor stepping dependent.
These two subcomponents are required and must be separated logically even if they are
physically located in contiguous spaces. The PAL_A block contains a limited subset of PAL
procedures (PAL_PROC) that can be invoked by SAL while performing a firmware recovery

(refer to Volume 2 of the Intel® 1A-64 Architecture Software Devel oper’s Manual for details).
The PAL_B block contains al the PAL procedures that can be invoked by SAL and the OS.

Platform Requirements 2-1

2.3

2.4

2-2

intel.

In asimilar fashion, SAL code can be broken into two subcomponents:
e SAL_A which contains the SALE_ENTRY entrypoint and all the code needed for firmware
recovery.
» SAL_B which contains code to test and initialize the platform.

Unlike the PAL, the SAL subcomponents need not be separated from each other logically or
physically.

The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Codeinthe PAL_A can transition to:

» Codeinthe PAL_B using the FIT. First, the beginning address of the PAL_B block is
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g PAL_RESET)
are determined in a PAL implementation dependent manner.

» Codeinthe SAL_A address space at SALE_ENTRY which serves as the entrypoint for Reset,
Recovery, Machine Check and INIT events.

In order to conserve space in thefirmware ROM, portions of the SAL code may be held in
compressed format. SAL code that isexecuted out of ROM such as early stages of the Reset
sequence, and code for handling Machine check and INIT cannot be held in compressed format.

Simplified Firmware Address Map

Following is asimplified example of the firmware address map that shows the minimum
architectural components. Refer to Section 2.4.1 for description of thefields. Thislayout is not
expected to be used with aflash ROM supporting the protected boot block feature. See Figure 2-2
for adifferent firmware organization supporting the protected boot block.

Firmware Organization using Protected Boot Block

This section describes an example of atypical firmware organization using aflash ROM that
contains a protected boot block.

Protected boot block refers to ablock of the Flash ROM that is prevented from modifications by
hardware. Code in this block can contain logic to restore PAL/SAL code in the erasable portion of
the flash part after a previous flash programming attempt was accidentally aborted. Firmware
organization using protected boot block requires some data structures in addition to the minimum
architectural requirements discussed earlier.

To support the protected boot block, both thePAL_A code and SAL_A code must be within the
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A
part of the protected boot block.

Platform Requirements

intel.

Figure 2-1. Simplified Firmware Address Map

SALE_ENTRY —=]

4 GB -
|IA-32 Reset vector (16 bytes)
j gg:%g " | SAL Entrypoint_(SALE_ENTRY) Goytes) | o
4 GB-32 Firmware Interface Table Entrypoint (8 bytes) | — 64 bytes T
4 GB-48 FIT entry for PAL_A (16 bytes) |
4 GB-64 ~ | Reserved (16 bytes) |
CPU Reset PALE_RESET—= T |
INIT — i i A
PALE_INIT PAL_A binary block (multiple of 16 bytes) (PAL_A size)|
PALE_CHECK—> i |
|
T |
PAL_B binary block ltiple of 1 B |
(multiple of 16 bytes) (PAL_B size)l
4 GB — (A+B+64) - X |
|
. . Y

Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT size) |
-

SAL_A binary block (multiple of 16 bytes)

C
(SAL_A size)

BB — (A+B+64+Y+C) ———»

Available ROM space

4 GB-16 MB =

16 MB
(Maximum R(

24.1

Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries
are implementation dependent. The Firmware Address Space contains several regions and locations
as shown in Figure 2-2 below for atypical implementation.

The firmware address space contains the following regions and locations:
» The 16 bytes at (4GB — 16) contains the A-32 Reset Code. Thisis typicaly an |A-32 far IMP
instruction followed by the Date, the PC-AT* model signature, etc. Thiscodeis never executed

but is present for PC-AT compatibility.

Platform Requirements

2-3

Figure 2-2. Firmware Address Map

4GB >
IA-32 Reset Vector (16 bytes)
4 GB-16 >
SALE_ENTRY Address (8 bytes) F———-F———|-—— 1
4 GB-24 > —
4GB-32 _ | Firmware Interface Table Address (8bytes) r———+———|-—— :— -
R > i |
4GBA8 - PAL_A FIT Entry (16 bytes) 64 bytes M : |
Reserved (16 bytes) l (Protected | :
|
4 GB-64 - Bootblock) | :
|
PALE_RESET—» i
o : A 1
PALE | NI T—s| PAL_A Block (multiple of 16 bytes) (PAL_A Size) : :
PALE_CHECK— L
L
t |
B R
SAL_A Block .) !
! |
(IA-64 and optional IA-32 code) (multiple of 16 bytes) | (SAL_A Size) | :
|
4 GB-X _ Yl
SALE_ENTRY — A - !
) . Y
I
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size) |
4 GB-(X+Y) _ |
FIT_BASE o) TN
Reserved PAL Space (optional) (multiple of 16 bytes)
16 MB
PAL_B Block (multiple of 16 bytes) (Maximum ROM)
C
(PAL_B Size)
4 GB-(X+Y+C) _
PAL_BASE > - i
Reserved SAL Space (optional) (multiple of 16 byte_s)_
SAL_B Block (multiple of 16 bytes)
D
(SAL_B Size)

4 GB-(X+Y+C+D)
SAL_BASE

4 GB-16 MB

\

\

Available ROM Space

000935

2-4

Platform Requirements

* The 8 bytes at (4GB — 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this
address must be set to 1 to indicate the uncacheable memory attribute in physical addressing
mode.

The 8 bytes at (4GB — 32) contain the pointer to the FIT. Bit 63 of this address must be set to 1.
The FIT need not be located immediately before the protected boot block. However, the FIT
cannot be moved to a different location sinceits address is contained in the protected boot
block.

* The 16 bytes at (4GB — 48) describe the characteristics of the PAL_A component inthe ROM
(base address, size, version number, type, etc.) Thisis represented in the FIT entry format for
the sake of uniformity. Bit 63 of the address field within this FIT entry must be set to 1 and the
type field must have a value of OxOF.

The 16 bytes at (4GB — 64) are reserved for future use.

* The PAL_A code resides below the (4GB — 64) address. This area of variable size contains the
hardware-triggered entrypoints PALE_RESET, PALE_INIT, and PALE_CHECK, aswell as
minimal processor initialization code. This code area must be a multiple of 16 bytesin length.
PAL_A usesthe FIT entry of the PAL_B to reach continuation entrypointsin PAL_B for Reset,
Machine check and INIT.

The codeinthe PAL_A block contains enough capability to initialize the processor, invoke the
SALE_ENTRY procedure for test of the recovery indication and continue with normal PAL
executionin the PAL_B code area. The codein this areashall beidentical for all |A-64
processors in the same family. This code shall be unaffected by processor stepping changes.

« SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility
and to conserve space in the protected boot block, thisareawill primarily contain code for
firmware recovery. When entered for other conditions such as Normal Reset, Machine Check
or INIT, the codein this block will find the continuation entrypointsin the SAL_B block
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY
code reaches continuation entrypointsin SAL_B for Reset, Machine check and INIT is SAL
implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during
firmware execution but may be needed by the utility that merges these components to format
the protected boot block portion of the flash ROM.

* Underneath the protected boot block isthe FIT. It comprises 16-byte entries containing starting
address and size information of the remaining firmware components in the non recovery
portion of the flashROM:PAL_B, SAL_B, etc. Refer to Section 2.5 for FIT details.

¢ Underneath the FIT isthe codefor the IA-32 BIOS, EFI, SAL_B andPAL_B components.
There are no ordering requirements for the firmware components within the flash ROM.

* The PAL_B binary block contains thePAL code which is not required for firmware recovery.
The PAL_B code areaisamultiple of 16 bytesin length and must be aligned on a 32K-byte
boundary. PAL_B’s FIT entry contains the address and size of thePAL_B binary block.

¢ The remainder of the SAL/PAL ROM areais occupied by the SAL_B code. SAL_B’sFIT

entry (if present in the FIT), contains the address and size of the SAL_B binary block.

Code within SAL (SAL_A & SAL_B) may include |A-32 code. The location of the SAL_B

and |A-32 BIOS code within the SAL/PAL ROM areaisimplementation dependent. Some

SAL implementations may separate the | A-64 and | A-32 code components as separate

firmware blocks with unique FIT entry types. In asimilar fashion, the SAL_B component may

include the EFl component or a separate FIT entry may point to the EFI component.

Platform Requirements 2-5

2.5

Firmware Interface Table

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components that are outside the protected boot block. Because these code blocks may be compiled
at different times and places, code in one block (such asPAL_A) cannot branch to code in another
block (such as PAL_B) directly. The FIT allows code in one block to find entrypointsin another.
The figure below shows the FIT layout.

Figure 2-3. Firmware Interface Table

1 1
| |
4GB-X ——» —_
Unused entry (16 bytes)
Unused entry (16 bytes)
Y
Unused entry (16 bytes)
Unused entry (16 bytes)
PAL_B entry (16 bytes)
FIT Header entry (16 bytes)
4GB-(X+Y) -
| |
1 I

Each active FIT entry contains information for the corresponding firmware component. The first
two entries are used to describe the FIT table itself and the PAL_B block respectively and these two
entries are architecturally required. FIT entries shall be in ascending order of entry types else
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Figure 2-4. Firmware Interface Table Entry

2-6

Start + 16 63 56 55 54 4847 3231 24 23 0
IChecksum [C_V. Type .
(1 byte) |1bit’ (7y§ns) Version (2 bytes) RTie&Z‘; Size (8 bytes)
Start+8 —» .

Address (8 bytes)

Start of entry ——»

Address is the base address of the component and it must be aligned on a 16-byte boundary. For the
FIT Header entry, thisfield containsthe ASCII value of *_FIT_<sp><sp> <sp>" where <sp>
represents the space character. For thePAL_B entry, bit 63 of the address field must be set to 1 to
indi cate the uncacheable memory attribute in physical addressing mode. ThePAL_B component
must be aligned on a 32K -byte boundary.

Szeisthe size of the component in paragraphs of 16-bytes.

Platform Requirements

\ersion contains the component’s version number. For the FIT Header Entry, the valuein thisfield
will indicate the revision number of the FIT data structure.

C_Visaone hit field that indicates whether the component has avalid checksum. If this bit is zero,
the value in the Chksumfield is not valid.

Type contains the seven-bit type code for the element. Types are defined in Table 2-2.

Table 2-2. FIT Types

Type Meaning
0x00 FIT Header entry
0x01 PAL_B
0x02- 0x0E Reserved
OxOF PAL_A
0x10- OX7E OEM-defined
OX7F Unused

The type code of OxOF isused forPAL_A. SincePAL_A’s binary image is located near the end of
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry
is aso located within the protected boot block (at 4GB — 48), and not in the FIT table. The OEM
may define unique types for one or more blocks of SAL_B, EFI, I1A-32 BIOS, etc., within the
OEM-defined type range of 0x10 to OX7E.

Chksum contains the component' s checksum. The modulo sum of all the bytes in the component
and the value in this field (Chksum) must add up to zero. Thisfield isonly valid if the C_V field is
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum
option is selected for the FIT in the FIT Header entry (FIT type 0), the modulo sum of all the bytes
inthe FIT table must add up to zero. The PAL_A FIT entry isnot part of the FIT table and hence
not included in the checksum computation of theFIT.

With this address layout, when one of the firmware components changes, only that component’s
flash portion requires changes. This address layout can also support multipleROMs for the
firmware components and such ROMs are not restricted to reside below 4GB.

2.6 Resources Required for PC-AT* Compatibility

All platforms shall implement aminimum of 64 MB of memory. The area of memory below 1 MB
is defined as the compatibility area and is used by firmware when initializing and executing 1A-32
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the
platform if PC-AT compatibility is not required.

Table 2-3. 1-MB Compatibility Memory Address Space

0x000F_FFFF

0x000F_0000

Shadowed IA-32 System BIOS

0x000E_FFFF Shadowed IA-32 Extended System
0x000E_0000 BIOS/Option ROM/Memory area

Platform Requirements 2-7

Table 2-3. 1-MB Compatibility Memory Address Space (Continued)
0x000D_FFFF

Shadowed IA-32 Option ROM BIOS
or

0x000C_0000 ISA Bus Expansion Memory

0x000B_FFFF

VGA Frame Buffer

0X000A_0000
0x0009_FFFF

Memory

0x0000_0500
0x0000_04FF
0x0000_0400
0x0000_03FF
0x0000_0000

IA-32 BIOS RAM Data Area

1A-32 Interrupt Vector Area

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system
memory. For example, a server platform may choose to implement the system console on a serial
port and eliminate the VGA frame buffer and the VGA BIOS components. | A-32 stack should be
allocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode |1A-32
BIOS code.

| A-64 platforms may use |/O adapter cards containing |A-32 Option ROMs during the boot
process. A portion of the SAL code may also contain | A-32 code. Such |A-32 code aswell as1A-32
OSs may rely on the existence of PC-AT compatible components. In order to execute such 1A-32
code, al |A-64 platforms shall implement the 1/0 ports specified in Table 2-4. Alternatively, the
SAL can trap some or al 1A-32 1/O instructions and emulate the 1/0 ports that are not present on
the platform. Refer to Section 7.2.4, “I A-32 Support Environment” for more details.

Table 2-4. IA-32 Compatibility I/O Ports

Port Description
0x20-0x21 Programmable Interrupt Controller (Master)
0x40-0x43 Programmable Interval Timer
0x70-0x71 CMOS NVRAM Address, Data Ports
0xA0-0xA1 Programmable Interrupt Controller (Slave)

2.7 Chipset and Shadowing Requirements

Following are the SAL requirements from the chipset implementation:

 The firmware code and data within the firmware address range must be accessible from the
processor without any special system fabric initialization sequence. Thisimplies that the

2-8 Platform Requirements

2.8

system fabric isimplicitly initialized at power on for accessing the firmware address space or
alternatively, the special hardware that contains the firmware code and datais implemented on
the processor and not accessed across the system fabric.

« Firmware may copy ROM based code and data structuresto RAM to increase performance and

to allow for updates of ROM based data structures by initialization firmware. Platforms are not
required to implement any write protection for these shadowed areas. Since hardware events
such as Reset, Machine Check and INIT enter architected PAL entrypointsin the ROM around
the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the
PAL/SAL ROM area subsequent to the shadowing of firmware code.

1A-64 memory management features needed for | A-32 execution can be set up to prevent
writes to the shadowed RAM areas. The |A-64 instruction set architecture provides
instructions to synchronize the instruction and data caches in the presence of self-modifying
code.

 Chipsets need not implement in-line shadowing (Read cycles goingto ROM, Write cycles
going to RAM) for copying | A-32 segments at EOOOO to FFFFF to RAM.

Platform Support for Variant Architectural Features

Different platform implementations may vary with respect to each other in the features they
implement and yet they could be architecturally compliant. As an example, some platforms will
implement bus lock while other platforms will not. This has implications for software running on
these platforms, and therefore this information must be communicated to software. SAL firmware
isresponsible for knowing the architectural variant and correctly communicating the information to
software. How SAL knows about the architectural variant isimplementation dependent. The
following lists the features which fall into this category and describe the method of abstraction to
software.

« BusLock: If the processor supports the Bus Lock signal and the platform implements Bus
Lock, then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.Ic =
0), otherwise the DCR.Ic shall be set to 1. The OS shall not alter DCR.Ic bit setting if it isset to
1. Refer tothe PAL call PAL_BUS SET_FEATURES n the Intel® 1A-64 Architecture
Software Developer’s Manual for information on masking Bus Lock signal and executing the
locked transaction as a series of non-atomic transactions.

» Lowest Priority Interrupt: SAL shall communicate to the OS, through the SAL System Table
(Table 3-7), whether this feature is supported by the platform.

» Address space attributes: SAL shall communicate to software the supportable access attributes
for all valid address space mappings. Thisinformation is provided to the OS by the EFI
component. As an example of this architectural variant, consider two memory controllers
where one supports sub-cache line writes to memory and another which does not. Thefirst
case would be described as write-through or write-back cacheable, whereas the second case
would be described as supporting only write-back cacheable. Similarly, the UCE memory
attribute indicates whether the address space permits the exporting of the fetchadd operation
outside the processor. Memory attribute features for address spaces are fully described in the
Intel® 1A-64 Architecture Software Developer’'s Manual .

Platform Requirements 2-9

intel.

2.9 Platform Considerations Related to Geographic
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of
processorsin a MP configuration:

 The platforms shall provide mechanisms to generate unique geographic identifiers for those
components that have software visibility. As an example, imagine a complex MP
implementation which has more than one main system bus to which processors are attached. A
processor returns its location on the bus viaacall to PAL_FIXED_ADDR, but this PAL call
does not reflect the multi-bus configuration of the platform. It is therefore required that the
platform provide some mechanism for SAL to ascertain which bus a processor is attached to.
SAL will use this value to load the Streamlined Advanced Programmable I nterrupt Controller
(SAPIC) EID field inthe Local ID register (CR.LID) of the processor(s). Thisis necessary for
supporting interprocessor interrupts (IPIs). The above example is not meant to limit this
requirement to processors, as multiple host 1/0 bridges and multiple memory controllers etc.,
may also have asimilar requirement.

Platforms may implement unique ways of providing the SAPIC EID value. For example, in a
non-clustered environment, SAL may use the hardcoded value of O for thisfield. Another
exampleisacluster controller that provides different EID valuesfor processors connected to
different buses on the system. It is expected that these mechanisms/algorithms will be very
simple, to facilitate exchange of |PIs between processors (if needed), to determine the BSP
node and the BSP processor in a MP environment. The BSP selection needs to be done very
early in the boot sequence and during firmware recovery. Since multiple processors may be
attempting to read the EID, a scheme that involves writing an index followed by reading the
value from acluster controller I/O port or the CMOS NVRAM 1/O port may be proneto errors.

A multi-TLB (Translation Lookaside Buffer) coherence domain platform must provide a
mechanism for detecting which TLB coherence domain the processor is located in.

2.10 Non-volatile Memory Requirements

| A-64 platform hardware must provide aminimum of 32KB of NVM to hold the Error log captured
during machine check events. There may be additional NVM requirementsto hold information on
the OSs that can be booted from the platform, the platform configuration, etc. Refer to the EFI
Specification for requirement details aswell asthe interfaces to the NVM space.

The NVM must preserve memory contents when the system power is off. Possible NVM
implementations are battery backed SRAM and flash memory. The physical address and size of
each NVM object in the system will be specified in Table 3-5, “Memory Descriptor Entry” with:

» Memory type classification of Regular Memory and Memory Usage classification of Firmware
Reserved Memory for battery backed SRAM implementation and

» Memory type classification of Firmware Address Space when NVM isimplemented as part of
the firmware flash ROM.

2-10 Platform Requirements

intel.

2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

If firmware recovery feature is supported in SAL, the | A-64 platform must provide an
implementation specific hardware mechanism to reflect the user selected firmware recovery
condition to all the processors on the platform.

1A-64 platforms must support simple hardware and/or software implementations for BSP
selection, e.g. write once port. Thisis necessary since only the BSP is allowed to execute the
firmware recovery code.

1A-64 platforms must provide mechanisms to determine the base frequency of the platform
(clock input to the processor).

1A-64 platform hardware must provide a mechanism for firmware to reset all components
within the platform.

1A-64 platform hardware must provide a switch or other mechanism that produces an INIT
signal. This feature, generally known as the CrashDump switch, may be used to effect a crash
dump on a*“hung system”.

1A-64 platform hardware must provide user friendly mechanismsfor displaying the progress of
the boot and firmware recovery, e.g. LCD display.

Non-volatile memory storage for MCA error records
Interrupt routing information for platform-corrected error interruptsin ACPI tables.

Platform Requirements 2-11

2-12 Platform Requirements

intel.

Boot

Sequence 3

3.1

Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from Reset to OS launch.

On Reset, all the processor(s) begin execution at PALE_RESET, alocation within the PAL_A code
areanear 4 GB in ROM, inthe IA-64 I SA. The exact physical location of PALE_RESET is
processor implementation dependent. PALE_RESET initializes and tests the processor using
stepping independent code. It will then call SALE_ENTRY with the Recovery Check function to
verify if the user has selected firmware recovery in a platform dependent manner.

SALE_ENTRY isthe common entrypoint in SAL_A from code in thePAL_A andPAL_B blocks
for Reset, Recovery, Machine check and INIT events. PAL code obtains SALE_ENTRY entrypoint
from the 8-byte pointer at 4GB — 24. The state of the processor on entry into SALE_ENTRY is
described in the Intel® | A-64 Architecture Software Developer’s Manual. One of the general
registers, indicates the event causing entry into SALE_ENTRY: Reset, Recovery check, Machine
check or INIT. SALE_ENTRY uses this argument to jump to internal entrypoints SAL_RESET,
SAL_RECOVERY_CHECK, SAL_CHECK or SAL_INIT.

PAL_A passes statusinformation to SALE_ENTRY on the health of the processor and whether the
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

Table 3-1. SAL Actions based on Processor Self-test State

Processor

Health SAL Handling
Catastrophic Disable interrupts and Machine Checks, then go into a spin loop
Failure
Healthy Proceed with SAL Reset
Performance Proceed with SAL Reset if this is the only processor on the system. Else, try to
Restricted inform the user. Disable interrupts and Machine Checks, then go into a spin
loop

Functionally Try to inform the user. Disable interrupts and Machine Checks, then go into a
Restricted spin loop

The codein SAL_A will initiate recovery and update the firmware if:
* the platform indicates a recovery condition; or
« the PAL_A code reports an authentication failure on the PAL_B component in the firmware; or
» the PAL_A code reports checksum or other errorsin the FIT or the PAL_B component; or

« the PAL_A code reports on al the processors that the version of thePAL_B in thefirmwareis
incompatible with the stepping level of the processorsin the system.

Boot Sequence 3-1

3.1.1

3.1.2

3.2

3-2

Code Flow during Recovery

If firmware recovery is required, the SAL recovery code shall authenticate the new binary using
codeinthe PAL_A block. The SAL code will then accomplish the firmware recovery function,
reset the recovery indication and trigger a system wide reset causing re-entry into PALE_RESET.
SAL recovery code contains the logic to update one or more of the firmware components from
floppy disk or other OEM supported media. Note that firmware recovery codein SAL_A must be
processor stepping independent and must not invoke code in the PAL_B block.

In amulti-processing environment, the recovery code will first select aBSP. SAL shall not select a
processor as the BSP unlessit is reported as healthy or performance restricted by PAL and the
version of PAL_B on the system is compatible with the processor stepping. The BSP will
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B
component is updated, otherwise the system behavior is unpredictable.

Since PAL_B functionality cannot be invoked during recovery, only alimited set of PAL procedures
inthe PAL_A are availablefor use by the SAL recovery code (refer to the Intel® 1A-64 Architecture
Software Developer’s Manual for details). Further, if the SAL_A invokesthe IA-32 BIOS,
floating-point transcendental instructions listed below cannot be executed from the | A-32
instruction set.

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

Normal Code Flow

If arecovery condition does not exist, SALE_ENTRY shall return toPALE_RESET on al the
processors that are compatible with the version o PAL_B on the system, using the return address
provided by PALE_RESET to effect the second stage of processor test and initiaization. If SAL_A
did not effect such areturn, the processor may run in adegraded mode. In any case, the PAL_PROC
address provided to SALE_ENTRY at the time of Recovery Check supports only a small subset of
the PAL procedures (see the Intel® | A-64 Architecture Software Developer’s Manual for details).

On return from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from
location (4 GB — 32) and then uses the FI T to get the address ofthe PAL_B component in the non
recovery portion of the flash ROM. PAL_A code will locate the address ofthe PAL_RESET in the
PAL_B block and jump to it. The processor stepping dependent code in thePAL_B block will then
perform the complete processor testing and initialization and then re-enter the SALE_ENTRY with
the function value of Normal Reset. Code at SALE_ENTRY will jump to the codeinthe SAL_B
block to continue the boot sequence and will eventually boot the machine to the OS.

SAL_RESET

SAL_RESET isresponsible for performing platform test and initialization, invoking EFl firmware
which, inturn, loads thefirst level of OS Loader and jumpsto it. SAL_RESET may also be entered
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from
PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY isentered from locations
other than PALE_RESET.

Boot Sequence

3.2.1

SAL_RESET functionality can be subdivided into the following phases:
« Initialization phase
» BSPidentification phase
 Platform initialization phase
* OS Boot phase

Initialization Phase

This phase begins execution at SAL_RESET and is performed on al the processorsin the system.
ThelLoca ID (LID register) isarchitected in the Intel® 1A-64 Architecture Software Developer’s
Manual. It isthe SAL's responsibility to uniquely initialize thisregister in each processor prior to
performing BSP selection and enabling interruptsin a MP system. For uniprocessor (UP) systems,
SAL must initialize thisregister prior to enabling interrupts. The OS must not change the val ue that

SAL stored into this register. Otherwise, routing of interrupts to the correct processor may not
function correctly. The LID register’sformat is shown in Figure 3-1.

Figure 3-1. Local ID Register Format

3.2.2

Boot Sequence

‘31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0‘

‘ id ’ eid ’ reserved

‘63 62 61 60‘59 58 57 56‘55 54 53 52‘51 50 49 48‘47 46 45 44‘43 42 41 40‘39 38 37 36‘35 34 33 32‘

‘ ignored

Theidfield isprovided by the PAL during Reset handoff in a general register. Thisvalue is the Bus
Agent ID which corresponds to the slot number on the front side bus that the processor is plugged
into. For proper functioning of the lowest priority interrupt mechanism, theid field must match the

Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors.

SAL must invoke the PAL_PLATFORM_ADDR procedure on al processors to set the physical

address of the SAPIC Interrupt block memory and the |A-32 1/O port space if the default address

values are not used. The default address for the SAPIC Interrupt block memory is

0x00000000_FEE00000 and the default address for the 1A-32 1/0 port space is the 64 MB space

below the highest physical address supported by the processor implementation. SAL will usea

value that does not conflict with other devices on the platform. The OS shall not change both these
address values. SAL will set up the IOBASE register (AR.kO) that provides the high order bits of
the virtual address of the | A-32 1/0 port block, to the same value asits physical address, to maintain
identity mapping. The OSis free to change the virtual address component in the IOBASE register

value but the value must be aligned on a 64 MB address boundary.

Bootstrap Processor Identification Phase in an MP
Configuration

This phase is executed on all the processors. All processors may participate in the selection of the
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the busto
which the processor is connected. SAL will use this address and bus identification information to
derive a unique geographical address for the processor and use the same in the selection of the boot

3-3

3.22.1

3-4

intel.

processor. The derivation of the unique geographical address is implementation-dependent. SAL
shall not select a processor as the BSP unlessit isreported as healthy by PAL and the version of
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing stepsin a MP configuration. The APswill set up
processor-specific resources such as the Interrupt Vector Address (1VA) and enter the rendezvous
state (EM_Rendezvous 1 in Figure 3-2) until the SAL on the BSP wakes them up for further
processing. Processors in rendezvous state will disable external interrupts and poll the rendezvous
interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will continue
with platform initialization and when sufficient amount of memory has been tested, it will send a
rendezvous interrupt to the APs to wake them up to run their late self-test (which requires memory
to run). After the APs have finished late self-test, they will return to the rendezvous state
(EM_Rendezvous_2).

The BSP continues with platform initialization, loading the EFI firmware which, in turn, searches
for bootable devices, loads the OS Loader and transfers control to it. These steps are described in
later sections of this document and the EFI Specification.

Rendezvous Functionality

The rendezvous functionality is required only in MP environments and this functionality is utilized
in two different situations:

 To wake up the APs during boot: The APs stay in aloop until woken up by the SAL layer on
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and
platform tests. Once these tests are compl eted, the APs return to the wait loop within SAL.
Also, oncethe OS kernel takes over, it will wake up the APs based on the wake up information
provided by the SAL (refer to Section 3.2.6 and Table 3-11).

To bring the APs to aspin loop during machine check rendezvous and to wake up the APs after
machine check processing is completed: The OS specifies the external interrupt vector to be
used by SAL to bring the APsto a spin loop as well as the external interrupt vector/memory
semaphore to be used for the wake up. Refer to“SAL_MC_SET_PARAMS’ on page9-14 for
details.

For the wake up functionality, the mechanism could be an external interrupt vector in the range of
0x10 to OxFF or amemory semaphore.

If external interrupt mechanism is chosen, APswill disableinterrupts and poll the local SAPIC IRR
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority
Register (TPR) must be set such that aread of the IVR register will return the rendezvous interrupt
vector (instead of the spurious interrupt), if oneis pending. On receipt of the interrupt, the AP will
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear theinterrupt
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.

Boot Sequence

Figure 3-2. Control Flow of Boot Process in a Multi-processor Configuration

PALE_RESET

PAL_RESET

SALE_ENTRY

SAL_RESET

BSP Selection

Initialization &
Memory Test

PAL Late Self-test

Wake APs for
PAL Late Self-test

v

Load OSLoader
from Boot Device

Update Firmware, do
System Reset

Optional

APs

Rendezvous
Interrupts

EFI

IA-32 0S

IA-64 Initialization

Wake up the APs

0S_Loader

Set Wakeup Entry, |
Wakeup APs

Initializatize 1A-32
system params,
enter IA-32 system
environment

IA-32 0S

IA-64 0S

Rendez
Interrupt?

Rendez
Interrupt?

IA-32 0S

IA-64 Initialization

Initializatize 1A-32
system params,
enter |1A-32 system

Jumpto OS
BOOT_RENDEZ

environment

e

Wait for IA-32
Startup IPI

IA-64 OS will issue
Rendezvous interrupt
to wake up the APs

1A-32 OS will issue
Startup IPI to
wake up the APs

000937

Boot Sequence

intel.

If amemory semaphore mechanism is chosen, APs will disable the interrupts and poll the memory
semaphore for the unique value that matches the contents of their Local ID Register in bits 16-31
and avalue of OxFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake up one
AP at atime. The AP will clear the memory semaphoreto zero, execute the next phase of SAL code
and, if necessary, return to the wait loop.

Figure 3-3. Memory Semaphore Format

3.2.3

3-6

| | | | | | | | |
‘31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 0‘

id \ eid value of OXFFFF

| | | | | | | | |
‘63 62 61 60‘59 58 57 56‘55 54 53 52‘51 50 49 48‘47 46 45 44‘43 42 41 40‘39 38 37 36‘35 34 33 32‘

ignored ‘

SAL exports details of the wake-up mechanism to the OS through the SAL SystemTable (refer to
Table 3-2) so that the OS kernel code on the BSP may wake up the APs when appropriate. While
memory semaphore mechanism may be used by the BSP and A Ps during the platform initialization
phase, SAL shall indicate only the external interrupt wake-up mechanism to the OS. The OS shall
not use the indicated external interrupt vector for its purposes until it takes over the IVA. The OS on
the BSP will invoke the SAL_SET_VECTORS procedure to set the continuation point for the APs
within the OS kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will
transition the APs to the registered OS_BOOT_RENDEZ entrypoint.

Platform Initialization Phase

This phase is primarily executed on the BSP. The APs will execute some of the steps as described
below. This phase will perform the following functions, the ordering of whichis
implementation-dependent:

1. Initidizethe VA to point to a32 KB Interryt Vector Table (IVT) in ROM. Some SAL
implementations may choose to build the IVT in RAM after finding the first 64 MB of
memory. This step must be accomplished on al the processorsin a MP-environment.

2. Initialize the system fabric and chipsets. The method of handling theinitialization is
implementation-dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not be re-initialized. On acold
boot, SAL will initialize at |east the first 4 MB of memory for BSP |ate self-test. This
self-test isdone by calling thePAL_TEST _PROC procedure which returns information on
whether the processor is healthy or not. This PAL procedure tests the path from the processor
to the memory through the caches and returns information on whether the processor isfully
functional (not functionally restricted). This PAL procedure will not return to the SAL if the
processor under test experiences a catastrophic failure. SAL must contain necessary logic to
select anew BSP, if necessary. SAL shall shut down the system if there is not even asingle
healthy or a performance restricted processor on the system.

After this point, the memory stack and RSE can be tested and enabled in the |A-64 system
environment.

4. Issuearendezvousinterrupt to wake up APsfor alate self-test using the PAL_TEST_PROC
procedure. The SAL code on the BSP must contain sufficient logic to detect APsthat
experience a catastrophic failure during the late self-test. On completion of late self-test, the

Boot Sequence

Boot Sequence

10.

11

12.

13.

14.

15.

16.

BSP will set the APs back to the rendezvous state (EM_Rendezvous 2 in Figure 3-2). After
this stage, caches may be relied upon.

Search for console using implementation-dependent algorithms. If found, initialize the
console so that the progress of the boot may be displayed.

Determine and initialize memory. This step is not performed if SAL_RESET is entered from
SAL_INIT. RAM test isimplementation-dependent. RAM test includes test of refresh logic
and testing al the address lines for shorts. On |1A-32 systems, memory controllers aias the
ROM at 0OxEO000 to OxFFFFF and thereby permit memory autoscan algorithm to be run
from the aliased ROM at OxEOO0O to OKFFFFF. Since memory aiasing is not a requirement
for the 1A-64 platforms, the autoscan function needs to be performed by the firmware SAL
codeinthelA-64 1SA.

Initialize the interrupt controllers with all interrupts disabled.

Allocate memory for use by PAL and SAL near the top of physical memory. Thisarea
should be below 4 GB if | A-32 code needsto call the | A-64 SAL code, since |A-32 code can
only address memory up to 4 GB.

Copy the PAL into memory using thePAL_COPY_PAL procedure. ThePAL codein
memory must be aligned such that the entirePAL space in memory may be covered by one
Instruction Translation Register (ITR). Itisvery desirableto copy PAL code and SAL code
to contiguous locations in order that the OS may cover the entire space using the same ITR.
Refer to the Intel® 1A-64 Architecture Software Devel oper’s Manual for PAL’s requirements
on ITR/DTR.

Note: Until this step, the following floating-point transcendental instructions cannot be
executed from the | A-32 instruction set:

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X,
FYL2XP1

Copy SAL, PMI and IA-32 code to memory. The |A-32 BIOS code will be copied to the
appropriate addresses in the address of 0x000C_0000 to Ox000F_FFFF. The |A-64 portion
of the SAL code will be copied to a high memory address which must be above 1 MB.
Copying code to RAM speeds up the boot sequence and additionally permits some portions
of the code to be held in compressed formatin ROM. Firmware code may then be write
protected using the TLB or chipset features.

Set up an IVT in memory aligned on a 32 KB boundary and point the IVA register to it. This
step must be accomplished on al the processorsin a MPenvironment.

Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on al
the processorsin a M P environment.

Call the PAL_MC_REGISTER_MEM procedure specifying where PAL code may deposit
some minimal processor state information so that PAL code has sufficient resources to
perform the necessary machine check or INIT processing. Enable the BERR and BINIT
sampling and signaling by invoking the PAL_BUS SET_FEATURES procedure. Set the
CMCI, MCA and BERR promotion strategy by invoking the
PAL_PROCESSOR_SET_FEATURES procedure. These steps must be accomplished on all
the processors in a M P-environment.

Process configuration information in NVRAM and perform full chipset configuration. If
NVRAM informationisinvalid, initialize NVRAM to default configuration values. Refer to
the EFI Specification for details.

Initialize and configure 1/0 buses.Walk all buses, identify all resource requirements and set
necessary range registers of chipsets. At this point, the complete system topology and
addresses of all fabric segments are known.

Construct theACPI Tables, SAL SystemTable and other common data structures.

3-7

3.24

3-8

17.

18.

1

intel.

Execute the option ROMs as needed. If these contain | A-32 code, some of the |A-32
instructions may cause traps into the 1A-64 and suitable support needs to be provided by the
IA-64 trap/fault handler code. These interactions are more fully described in Volum €2,
Chapter 10 of the Intel® 1A-64 Architecture Software Developer’s Manual, and Chapter 7.
As aside effect of supporting 1A-32 Option ROMSs, it is possible to have some of the SAL
code implemented in |A-32 ISA.

Copy the EFI code into memory and transfer control to it. Branch register BO shall be set up
to point to the instruction following the call to the EFI code. The EFI firmware will search
for bootabl e devices, load the OS L oader image and transfer control to it. EFl may utilize the
underlying SAL and 1A-32 BIOS layers for accesses to platform devices. Refer to the EFI
Secification for interface description.

OS Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specification for details of booting |A-64
OSs. If the selected OSisalegacy 1A-32 OS, SAL does the following:

SAL will construct a MP Information Table that provides the mapping between the 1/0
SAPICID, EID values and the I/O APIC ID value for use by the Legacy 1A-32 OS. This
table is provided as a parameter to the PAL_ENTER_IA_32 ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a
maximum of 16 processors while booting a Legacy |A-32 OS. SAL will keep any additional
processors in aloop within SAL and these processors shall notinvoke the

PAL_ENTER IA_32 ENV procedure.

SAL will assign unique 4-bit id values for the /O APIC entries of the MP table based on the
16-bit eid, id fields of the corresponding SAPIC entries. Theid values assigned by SAL for
the Local APIC and the 1/O APIC entries may overlap.

SAL will provide the physical address of non-existent memory of a minimum of 4K bytes.
Thisareawill be specified in the Memory Descriptor Table (Table 3-5) with the Memory
type classification of Non-existent Memory.

The PAL_ENTER_IA_32_ENV procedure a so enables SAL to emulate some 1/O ports not
present on the platform. SAL conveys information on the emulated portsin the SAL 1/0
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® |A-64 Architecture Software
Developer’s Manual for details.

Construct Memory Descriptor Table entries suitable for the platform.

Load one sector of the Master Boot Record (MBR) code from the boot device at address
0x7C00. Verify that the last two bytes of the sector end with 0x55 OxAA.

Note: In thisdocument, the term sector refersto alogical block of 512 bytes.

Determine the amount of memory neededby PAL in support of 1A-32 OSshy invoking
PAL_COPY_INFO procedure and allocate the same with the requested alignment.
Transition the processor to the | A-32 system environment and jump to the M BR code | oaded
at 0:7CQ00. This switch is effected by calligPAL_ENTER_IA_32 ENV procedure. (Refer
to the Intel® 1 A-64 Architecture Software Developer’s Manual.) The return addressin SAL
and the address of SAL_PROC are passed as a parameter to thiscall. SAL shall set theinitial
IA-32 stack to 0:0x7c00 (SS.ESP).

Boot Sequence

3.25

Boot Sequence

This PAL procedure will set up the appropriate memory attribute values based on the
Memory Descriptor Table (Refer Table 3-5). If the |A-32 OS exits by executing a JIMPE
instruction, PAL will return to the return addressin SAL. When SAL regains control, it will
de-allocate the memory alocated to PAL in support of 1A-32 OSs and attempt to boot a
different OS.

Some additional parameters are needed in a MP environment. The

PAL_ENTER _IA_32_ENV procedure requires an input flag that indicates whether the call
is being made on the BSP or APs and a count of the processors that have already been
transitioned to the IA-32 system environment. Also, the PAL_ENTER _IA_32 ENV
procedure requires that the first processor reach the | A-32 starting address before subsequent
processors invoke the procedure.

SAL implementation is simpler if the BSP transitions to the | A-32 system environment last.
For example, the BSP can instruct APs to call thePAL_ENTER_IA_32_ENV procedure,
one at atime. The APswill specify a starting address within the first MB of memory. The

| A-32 code at this |ocation will perform the check-in to inform the BSP that the transition to
|A-32 system environment is completed, disable interrupts and go into a spin loop awaiting
the Startup I Pl from the BSP.

Once all the APs have transitioned to the | A-32 system environment and checked in, SAL on
the BSP will invoke the PAL_ENTER_IA_32_ENV procedure and specify the starting
address as 0:7C00 where the MBR code from disk has been loaded. The
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs
such that al processors have an identical view of the platform’s memory attributes.

The 1A-32 OS would be |oaded eventually and thiswill send APIC INIT IPIsfollowed by
APIC Startup IPIsto the APs. PAL's APIC emulation layer on the BSP will trap the APIC
ICR writesand will eventually transition the APs to the starting address corresponding to the
vector specified in the Startup IPI.

Firmware to OS Loader Handoff State

The handoff to an 1A-32 OSis compatible with the PC-AT industry standards. The handoff from
firmware to the |A-64 OS Loadersis fully described in the EFI Specification. Included in the
handoff are:

« The pointer to the SAL System Table (Section 3.2.7)

» The pointer to the Root System Description Pointer as described in the Advanced
Configuration and Power Interface Specification.

The state of the |A-64 system registers at the time of handoff to the OS L oader is as follows:
« AR contents are SAL implementation-dependent except the following:

* CFM: The backing store shall contain aminimum of 8 KB of available storage space
defined in the SAL Boot Services data area.

« RSC will indicate enforced lazy mode, little-endian

* GR contents are SAL implementation-dependent except:

* GR12 = Stack pointer with aminimum of 8 KB of available storage space defined in the
SAL Boot Services data area

* PSR:
PSR.ac = 1 (alignment check enabled)
PSR.ic = 1, PSR.i = O (interrupt collection on, interrupts off). There may be some pending
interrupts.

3-9

3.2.6

3.2.7

3-10

intel.

PSR.it, PSR.dt, PSR.rt = 0 (instruction translation, data trandlation and RSE translation off)
PSR.bn = 1 (register bank 1 selected)
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits=0
* CRs.
DCR: Bus lock setting (DCR.Ic) is platform implementation-dependent, al other bits of DCR
=0
IVA = physical address of a SAL implementation-dependent VT
PTA.ve =0 (if the virtual hash page table (VHPT) is disabled)
LID =the unique id/eid value for this processor
» DataBreakpoint Registers— DBRs: Same as on entry to SALE_ENTRY
Instruction Breakpoint Registers— IBRs. Same as on entry to SALE_ENTRY
* RRs
Region Register O will contain an 1D of 0x1000. Other Region Registers will have
implementation-dependent val ues except that RRs 1-3, if non-zero, will contain Region ID
values of 0x1001-0x1003 respectively.
Protection Key Registers— PKRs, are set to 0.
« TLB
TRs: ITR(0) will map an areathat includesthe SAL's VT and PAL code. All other TR entries
areinvalidated
TCs: These areimplementation-dependent but will likely contain identity mappings (virtua
address to physical address)
» Caches
Enabled, coherent and consistent with the contents of memory

OS_BOOT_RENDEZ

OS BOOT_RENDEZ is the entrypoint for OS-dependent MP rendezvous code. The OS code on
the BSP registers this entrypoint by invoking SAL_SET_VECTORS, supplying the physical
address of OS code that is 16-byte aligned. SAL exports details of the wake-up mechanism to the
OS through the SAL System Table (refer to Table 3-11) so that the OS kernel code on the BSP may
wake up the APs when appropriate. When SAL on the APs receives the wake-up, it will transition
the APs to the registered OS_BOOT_RENDEZ entrypoint. Refer to Section 3.2.2.1, “Rendezvous
Functionality” for additional details.

The state of the | A-64 system registers at the time of handoff to the OS_BOOT_RENDEZ issimilar
to that for the BSP with the following exception:
» BO = Return address into the SAL Boot_Rendezvous routine. If the OS_ BOOT_RENDEZ
returnsto the SAL using the Branch register BO, the SAL will re-enter the spin loop awaiting a
wake-up by the BSP.

SAL System Table

SAL usesthe SAL System Table to export avariety of information to the OS Loader. The pointer to
the SAL System Table is provided by EFI to the OS Loader. Refer to the EFI Specification for
handoff details. If arecovery condition is present, the SAL System Tableis not built and a pointer
value of Ois provided.

Boot Sequence

The SAL System table begins with a header which is described in Table 3-2. The SAL System
Table header will befollowed by avariable number of variable length entries. Thefirst byte of each
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each
entry type will have aknown fixed length. Thetotal length of this table depends upon the
configuration of the system. OS software must step through each entry until it reaches the
ENTRY_COUNT. The entries are sorted on entry type in ascending order. 33 describes each entry

type.
Table 3-2. SAL System Table Header

Field

Offset
(in bytes)

Length
(in bytes)

Description

SIGNATURE

0

4

The ASCII string representation of
“SST_", which confirms the presence of
the table.

TOTAL_TABLE_ LENGTH

The length of the entire table in bytes,
starting from offset zero and including
the header and all entries indicated by
the ENTRY_COUNT field.This field aids
in calculation of the checksum.

SAL_REV

The revision number of the IA-64 SAL
specification supported by the SAL
implementation in binary coded decimal
(BCD) format.

Byte 8 — Minor

Byte 9 — Major

SAL revision 2.9 corresponds to SAL
Specification, July 2000.

SAL revision 2.8 corresponds to SAL
Specification , January 2000.

ENTRY_COUNT

10

The number of entries in the variable
portion of the table. This field helps
software in identifying the end of the
table when stepping through the entries.

CHECKSUM

12

A modulo checksum of the entire table
and the entries following this table. All
bytes including the Checksum bytes
must add up to zero.

RESERVED

13

Unused, must be zero.

SAL_A_VERSION

20

Version Number of the SAL_A firmware
implementation in BCD format.

Byte 20 — Minor

Byte 21 — Major

SAL_B_VERSION

22

Version Number of the SAL_B firmware
implementation in BCD format.

Byte 22 — Minor

Byte 23 — Major

Boot Sequence

3-11

Table 3-2. SAL System Table Header (Continued)

Field

Offset
(in bytes)

Length
(in bytes)

Description

OEM_ID

24

32

An ASCII identification string which
uniquely identifies the manufacturer of
the system hardware. This string can be
exactly 32 bytes in length or shorter if
null terminated. Compliance with the
SAL specification requires that this string
be unique with respect to all other
manufacturers. It is forbidden to use
another manufacturer's identification
even if the system is otherwise identical.

PRODUCT_ID

56

32

An ASCII identification string which
uniquely identifies a family of compatible
products from the manufacturer. This
string can be exactly 32 bytes in length
or shorter if null terminated.

RESERVED

88

8

Unused, must be zero.

Following are the entry types of entriesthat follow the SAL System Table Header. Unless otherwise
stated, thereis one entry per entry type.

Table 3-3. SAL System Table Entry Types

Entry Type? Erzitr:ybl;?ensg)th Description

0 48 Entrypoint Descriptor

1 32 Memory descriptor (one entry for each contiguous block with
similar attributes)b

2 16 Platform Features Descriptor

3 32 Translation Register Descriptor (one entry for each TR used by
SAL at the time of handoff to the OS)

4 16 Purge Translation Cache (PTC) Coherence Descriptor

5 16 AP Wake-up Descriptor

a. All other types are reserved.
b. Not required for IA-64 OSs.

3.27.1 Entrypoint Descriptor Entry

The Entrypoint Descriptor entry provides the addresses in memoryof PAL_PROC, SAL_PROC
that may be used by the OS to invoke the procedures within thePAL and the SAL. When the OS
calls SAL_PROC, the gp register must contain the physical or virtual address of the SAL'sgp
value specified in the Entrypoint Descriptor, depending on the mode in which the SAL_PROC
procedureis called.

3-12

Boot Sequence

intel.

Table 3-4. Entrypoint Descriptor Entry Format

3.2.7.2

.Offset 'Length Description
(in bytes) | (in bytes)
0 1 Entry type = 0 denoting Entrypoint Descriptor type
1 7 Reserved (must be zero)
8 8 Physical address of thePAL_PROC entrypoint in memory
16 8 Physical address of the SAL_PROC entrypoint in memory
24 8 Global Data Pointer (physical address value) for SAL procedures
32 16 Reserved (must be zero)

Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries are used only while booting an |A-32 OS. |1A-64 OSs
obtain similar information from the EFI firmware component. The Memory Descriptor Table
entries describe al the main memory, firmware memory, memory mapped 1/O, etc., in the system
address space as well as the memory attributes currently set by SAL. Each contiguous block with
similar memory attribute (WB, WC, UC or UCE) must be aligned on a 64KB boundary as a
minimum, for optimal TLB management. Note that memory usage values (byte 7 of the MDT
entry) may change within a64KB memory block and henceit is lega to have more than one MDT
entry describing a 64KB memory region as long as the memory attribute (WB, WC, UC or UCE)
does not change within that 64K block.

SAL must provide entries that cover the entire system address space. The firmware must indicate
its memory usage in order that the same may be not trampled by the OS. Thus, if the SAL usesan
underlying 1A-32 BIOS layer for part of its functionality, it must report memory usage for the real
mode interrupt vector table (0-0x3FF), the BIOS Data area (0x400-0x4FF) and the Extended BIOS
Data area (downwards from 640K) as Boot Services Datain the Memory Usage field of the
Memory Descriptor Table entries.

The EFI firmware component communicates the SAL’ s requirements for virtual address mappings
to the OS. Once the OS takes control of the memory management and the IVA, it must provide TLB
mappings for both the code and data accesses to the memory areas required by SAL, if those areas
are accessed in virtual mode. The OS must register these virtual addresses prior toinvoking SAL
proceduresin virtual mode.

Table 3-5. Memory Descriptor Entry

Boot Sequence

Offset Length Description?®
(in bytes) | (in bytes) (unsigned integers)
0 1 Entry type = 1 denoting Memory Descriptor entry type
1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes

3-13

3-14

Table 3-5. Memory Descriptor Entry (Continued)

Offset Length Description?
(in bytes) | (in bytes) (unsigned integers)
2 1 Encoded value of current Memory AttributeP setting in bits 0-2:
000: WB
100: UC
101: UCE
110: WC
1 Page Access Rights set up by SAL for the memory rangeb:
4 1 Memory Attributes? supported:
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC
5 1 Reserved (must be zero)
6 2 Memory Type (byte 6) Memory Usage (byte 7)
0 = Regular Memory 0 = Unspecified®
1 =PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = I1A-32 Option ROM
7 = 1A-32 System ROM
8 = ACPI Reclaim Memory®
9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memory®
128-255 = Reserved for OEM
1 = Memory mapped I/O | 0 = Unspecified
1 =120 Hidden space hole
2 = Video Memory
3-127 = Reserved
128-255 = Reserved for OEM
2 = SAPIC IPI Block 0 = Unspecified
3 =1A-32 1/O Port space 0 = Translated by processor to I/O cycles
4 = Firmware address 0 = Unspecified
space
9 = Bad Memory 0 = Unspecified
10 = Non-existent 0 = Unspecified
Memory (Black hole)
8 8 Physical Address of Memory
16 4 Length (multiple of 4K pages)
20 4 Reserved (must be zero)
24 8 OEM Reserved

a. All unused values are reserved.

Boot Sequence

b. Refer to the Intel® IA-64 Architecture Software Developer’s Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.

d. This memory is available to the OS after it reads the Advanced Configuration and Power Interface

Specification tables.
e. This area is not visible in the 1A-32 OS environment.

The SAL also provides the memory type and usage information to the EFI. Refer to the EFI
Soecification for details. The following table specifies the mapping between Memory Descriptor
Table entries and the information provided by the SAL to the EFI.

Table 3-6. Memory Type Information Provided to the EFI

Memory Type

Memory Usage

EFI Memory type

0 = Regular Memory

0 = Unspecified

1 =PAL Code

2 = Boot Services Code

3 = Boot Services Data

4 = Runtime Services Code
5 = Runtime Services Data

6 = 1A-32 Option ROM

7 = 1A-32 System ROM

8 = ACPI Reclaim Memory

9 = ACPI NVS Memory

10 = SAL PMI Code

11 = SAL PMI Data

12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped I/O

<all values>

Information not provided to the EFI

2 = SAPIC IPI Block

0 = Unspecified

Information not provided to the EFI

3 =1A-32 1/0 Port space

0 = Translated by processor to 1/0
cycles

EfiMemoryMappedIOPortSpace

4 = Firmware address space

0 = Unspecified

EfiRuntimeServicesData

9 = Bad Memory

0 = Unspecified

EfiUnusableMemory

10 = Non-existent Memory
(Black hole)

0 = Unspecified

Information not provided to the EFI

3.2.7.3

The Platform Features Descriptor Entry describes the features implemented on the platform. Refer

Platform Features Descriptor Entry

to the |A-64 Platform Architecture Guide for implementation considerations of these platform

features.

Boot Sequence

3-15

Table 3-7. Platform Features Descriptor Entry

3.2.7.4

Offset Length Description
(in bytes) | (in bytes) P
0 1 Entry type = 2 denoting Platform Features type
1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented on the processor as well as the
platform

Bit 1: 1 if the chipset supports redirection hint for interrupt messages
originating from the platform (lowest priority interrupt)

Bit 2: 1 if the chipset supports redirection hint for IPI messages
originating from the processors

Bits 3-7 = Reserved

2 14 Reserved

Translation Register Descriptor Entry

The Translation Register Descriptor entries describe the parameters used by the SAL during
insertion of the TRs. These entrieswill be used by the OS to purgeSAL’s TRs after the OS takes
over the IVA.

Table 3-8. Translation Register Descriptor Entry

3.2.75

3-16

Offset Length .
(in bytes) Description

Y in bytes)

0 1 Entry type = 3 denoting theTranslation Register Descriptor type

1 1 Type ofTranslation Register:
0: InstructionTranslation Register
1: Data Translation Register
Other values: Reserved

2 1 Translation Register number
Reserved

8 8 Virtual address of the area covered by the Translation Register. Bits
61-63 of this field indicate the Region Register number.

16 8 Encoded value of the page size covered by the Translation Register.
Refer to the Intel® IA-64 Architecture Software Developer’s Manual,
Addressing and Protection chapter for the format of this field.

24 8 Reserved

Purge Translation Cache Coherence Domain Entry (optional)
The purge translation cache (PTC) Coherence Domain Entry describes the number of coherence

domains and the scope of PTC instruction propagation for each domain. This entry isoptional. Itis
required only for MP systems that have multiple coherence domains.

Boot Sequence

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives
in. SAL captures thisinformation in an implementation-dependent manner and passes the same to

the OS.

Table 3-9. Purge Translation Cache Coherence Domain Entry

.Offset 'Length Description
(in bytes) | (in bytes)
0 1 Entry type = 4 denoting PTC Coherence Domain Entry type
1 3 Reserved (must be zero)
4 4 Number of coherence domains for the platform
8 8 64-bit memory address of the coherence domain information

The coherence domain information isan array of length of (16* Number of coherence domains). As
shown in Table 3-10, for each coherence domain, there will be two information fields:

1. Number of processorsin the TLB coherence domain.

2. 64-bit memory addressof alist of Local ID register values for the processorswithin the TLB
coherence domain. Each processor will require two bytes of memory (id field in low order
byte and eid field in high order byte) to represent the Local ID information.

Thisinformation is represented in Table 3-10.

Table 3-10. Coherence Domain Information

Offset Length Description
(in bytes) | (in bytes) p
0 8 Number of processors in TLB coherence #1
8 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #1
16 8 Number of processors in TLB coherence #2
24 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #2
16*(N-1) 8 Number of processors in TLB coherence #N
8+16*(N-1) 8 64-bit memory address of a list of Local ID register values for the
processors within the TLB coherence domain #N

3.2.7.6 Application Processor Wake-up Descriptor Entry (optional)

The AP Wake-up Descriptor Entry describes the mechanism for waking up APsin an MP
environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on OS usage of this
entry. Thisentry is required for MP configurations.

Boot Sequence

3-17

Table 3-11. Application Processor Wake-up Descriptor Entry

3.3

3.3.1

3-18

'Offset .Length Description
(in bytes) | (in bytes)
0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type
1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved
2 6 Reserved (must be zero)
8 8 External Interrupt vector in the range of 0x10 to OXFF

IA-64 OS Loader Requirements

The firmware will jump to the |A-64 OS L oader with the handoff state described in the EFI
Specification. Included in this state information is a pointer to the SAL procedures the OS can
invoke. These procedures are described in Chapter 9.

This section describes the requirements on the OS Loader while operating under the SAL execution
environment.

Fault Handling

This section describes the guidelines to the OS Loader code as regards fault handling.

After the OSis completely loaded, it will take over the IVA, and replace the SAL environment with
its own memory management. Until that time, the OS shall use SAL’s virtual memory environment
— VA, Interrupt controller mode, TC mappings, etc., and it shall not change any of these
resources.

The OS Loader code may be executed in physical mode with interrupts disabled, or in virtual mode
with Instruction, Dataand RSE trandation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). While executing
in virtual mode, the OS Loader codeis permitted to cause TLB faults for which SAL shall provide
the appropriate fault handlers. These TLB faults are:

* Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does
not implement the VHPT. If VHPT is not used, the Page Table Address (PTA) need not be
initialized. SAL will turn off the PTA.ve bit to disable the processor walking the VHPT. VHPT
isan optional feature of the | A-64 architecture. Avoiding VHPT usage also permits the 1A-32
support code to operate out of ROM.

Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not
implement the VHPT. The SAL'sfault handler shall test whether the TLB fault surfaced during
specul ative |oad accesses (LDx.s). Such an accessisindicated if the |SR.sp bit isset. If this bit
is set, the SAL shall return to the faulting instruction with the |PSR.ed bit thereby turning on
the NaT bit of the target register for the load.

VHPT related faults: VHPT trandation fault, Data TLB fault and Nested TLB fault, if SAL
implements VHPT.

Boot Sequence

Boot Sequence

« Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with
unified TLBs, Access Rights faults may surface if the TC is present but the required page
permissions are not present, e.g. TC is present with RW page access rightsbut RX page access
rightsis needed for instruction execution.

External interrupt: Hardware interrupts will be received by SAL in the IA-64 ISA. This code
will read the IVR register. If the vector read is 0, it signifies an interrupt from the 8259
interrupt controller and SAL must issue aload to the architected INTA_address (default
address OXFEFE_0000) in the processor interrupt delivery block to issue an interrupt
acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259. SAL will then
jump to the appropriate interrupt handler using itsinternal tables. If the interrupt needs to be
reflected to 1A-32 code, the address will be derived from the 1A-32 Interrupt DescriptorTable.
The OS Loader isrestricted from sending |Pl messages (i.e. causing bitsin the SAPIC IRR
registers to be set) with vector values other than the one specified in the APWake-up
Descriptor Entry (refer to Table 3-11).

* SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid
Page not present, Data Dirty bit and Data Access bit faults.

SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key
miss, Data Key miss and Key Permission faults.

Speculation fault: Speculation faults are caused by CHK.s, CHK.aand FCHK instructions.
SAL will provide the transition mechanism to the recovery code. SAL and OS Loader code
must be compiled with speculation off, thereby avoiding the use of the above instructions.
Turning off speculation should not have any impact on performance since most of SAL code
relies on strong ordering.

Unaligned fault: The OS Loader shall not make data references to misaligned data. However,
this fault may arise during speculative load accesses. Such an accessisindicated if the ISR.sp
bitis set. If thisbit is set, the SAL shall return to the faulting instruction with the IPSR.ed bit
thereby turning on the NaT bit of the target register for the load.

SAL shall not use advanced load (L D.a) or check load (L D.c) instructions, hence ALAT entries
created by OS Loader code are preserved across SAL callsand SAL's fault handlers.

Divide by zero: SAL shall display an error message for the Break interrupts caused by the
run-time checking of integer divide by zero. Refer to the | A-64 Software Conventions and
Runtime Architecture Guide.

The OS must not rely on any other fault handlersinstalled by SAL. SAL will display an error
message if an unsupported fault is encountered. SAL will not provide support for the following
faults:

» Nested TLB fault: ITR(0) will map the SAL’sIVT and the code areas coveringSAL s fault
handlers. All fault handlersin SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested
TLB fault that can occur while accessing the fault handler’ s local variables and data structures.

e NaT Consumption fault: NaT Consumption faults are generated by aload, store or move that
uses a source register containing a NaT value or by accessing a NaTPage. Thisfault can be
avoided by compiling the OS Loader code with speculation off.

» Genera Exception fault: The OS Loader shall not cause the general exception fault by
executing illegal operations, invoking SAL proceduresin physical/virtual mode with
arguments specifying unimplemented data addresses.

« Floating-point faults: The OS Loader shall not disable accesses to the floating-point register
sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point exceptions

3-19

3.3.2

3.3.2.1

3.3.2.2

3.3.2.3

3-20

intel.

* Other trapg/faults: The OS L oader must not cause other traps or faults such as Debug, Single
step, Taken branch, etc. Normally, the OS kernel provides these services after it takes over the
IVA.

Additional fault handlers to support |A-32 execution are described in Chapter 7.

Memory Management Resources Usage

This section describes SAL’ s usage of various memory management resources and provides
guidelines for their use by the OS L oader code.

TLB Resource Partition

SAL will use only TCsand the ITR(0). Use of several TRs by SAL may cause problems with
booting of some 1A-64 OSs. The OS Loader is free to use Trandation Registers (TRs) other than
ITR(0). The advantage of thisresource partition is that hardware interrupts which cause atransition
to SAL will not affect the TRs set up by the OS Loader. Ideally, the OS L oader will set up the TRs
for its memory mappings and not cause TLB faults. However, should the OS Loader code cause a
TLB miss, the TLB Miss handler in SAL would automaticaly install a TC with identity mapping.
The restriction on ITR(0) is not relevant after the OS takes over the memory management and the
IVA.

Useof TCsin SAL code should not cause any performance problems since SAL is not performance
critical. Most of the SAL code will write and read back memory addresses traversing the entire
physical address space. Use of additional TRs will not provide improved performance. SAL will
primarily be limited by memory and /O speeds.

SAL will use TC entries with length of 4KB by default and will try to coal esce contiguous entries
with similar attributesinto larger page sizes.

Identity Mapping Usage

|A-64 virtual addressis 85 bitswide and | A-64 physical addressis 63 bits wide. Bits 0 to 60 of the
virtual address provide the virtual page number and offset. Bits 61 to 63 of the virtual address are
used as an index into the Region Registers which supplies a Region ID value that can be up to 24
bits wide. Thus the 85-bit virtual address comprises the low order 61 bits of the virtual address and
the 24-bit Region ID. This 85-bit virtual addressistransformed into a63-bit physical address by the
|A-64 TLB mechanism as described in the Intel® | A-64 Architecture Software Developer’s
Manual.

SAL will useidentity mappings (virtual addresses = physical addresses). The advantage of identity

mapping is that the same pointer can be used to access the same memory |ocation regardless of the
state of the PSR.dt bit.

Unique Region IDs for SAL

The firmware will load the OS Loader and jump to it. The OS Loader will load the rest of the OS
using the firmware boot services procedures. While SAL can operate with identity mapping, there
may be a need for the OS L oader to use a non-identity mapping. As an example, there may be an

Boot Sequence

3.3.3

Boot Sequence

1/0 device at physical address 2.5 GB for which SAL would have established an identity mapping
with uncacheable memory attribute. The OS Loader may need to load additional layers of software
and fix up address relocations using virtual addressing. The OS Loader may need to load software
at physical address 0.5 GB mapped to virtual address of 2.5 GB. When OS refersto the virtual
address 2.5 GB, it isreferring to RAM at 0.5 GB and when SAL refersto 2.5 GB virtua address, it
isreferring to the 1/O device at 2.5 GB physical address. Clearly, OS Loader cannot use the TLB
mapping set up by SAL for this case.

This problem can be solved by using different Region registers and Region ID values for SAL and
OS. Differing Region ID values ensure that earlier TC/TR entries with a different Region ID value
no longer cause TLB hits. SAL will use Region ID of 0x1000 for al its TLB mappings, if physica
address spaceis less than or equal to 262 bytes and OS L oader shall be restricted from using Region
1D values of 0x1000 to 0x1003 until OSis ready to take over the memory management and the
IVA. If this restriction is not followed by the OS Loader, a machine check abort might result when
SAL attemptsto insert a TC entry using the ITC.i or ITC.d instruction.

Since SAL codeis 64-hit, if the physical address spaceis less than or equal to 281 bytes, SAL will
be capable of addressing the entire physical address space using Region Register 0. SAL will use
only Region Register 0 and set up the same with aRegion ID value of 0x1000, if physical address
spaceisless than or equal to 251 bytes. If physical memory is larger, it will load Region Registers 1
to 3 with Region ID values of 0x1001 to 0x1003 respectively.

The OS Loader will need to refer to the data structures common to SAL and OS in the process of
loading the OS kernel. Similarly, the OS will need to pass parametersto SAL through pointersin
Memory Stack Pointer (SP) and Global Data Pointer (GP) registers. SAL and OS must refer to
these common data structures using Region Register 0, i.e. the virtual addresses used to address the
common data structures must have bits 61-63 set to O.

While operating in the virtual mode, the OS L oader shall not change the contents of Region
Registersthat are in use by SAL. If thevaluein Region Register 0 is changed, accessto the IVT is
lost and the system will crash. Thisrestriction is not relevant after the OS takes over the memory
management and the | VA.

Should the OS Loader set up any of the Region Registers for its use, it must
 Set the ve bit in the Region Register to O, to disable theVHPT.
 Set the ps bitsvalue to indicate preferred page size of 4KB.

Other Restrictions on the OS

The OS shall not change the values of the following system resources:
e LID, theuniqueid/eid value for this processor.

* DCR.lc, the Buslock setting for the platform, if the sameis set to 1. Note that the
PAL_BUS SET_FEATURES procedure may be invoked to execute the locked transactions as
aseries of non-atomic transactions. Refer to the Intel® | A-64 Architecture Software
Developer’s Manual for details.

 Physical address of the Processor Interrupt Block Address.

» Physical address of the |A-32 1/O Port Block.

The OS may lower the CMCI, MCA and BERR promotion strategy set by SAL by invoking the
PAL_PROCESSOR_SET_FEATURES procedure, but thisis not recommended.

3-21

3-22

Boot Sequence

intel.

Machine Checks 4

Machine checks, including Machine Check Aborts (MCAS), and expected machine checks cause
processor execution to vector to PALE_CHECK codein the IA-64 1SA. Please refer to Volume 2,
Chapter 11 in the Intel® | A-64 Architecture Software Devel oper’s Manual for details regarding
PALE_CHECK processing. Also refer to the | A-64 Error Handling Guide for error handling from a
system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY entrypoint in
the IA-64 | SA, which in turn branches to the SAL MCA handler. The entry conditions for
SALE_ENTRY are described in the Intel® |A-64 Architecture Software Developer’s Manual.

This chapter defines the actions required of SAL_CHECK aswell as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.

Figure 4-1. Overview of Machine Check Flow

| |
PAL
L New/Interrupted
context
OS Gorrected MC
Error /!
—| PALE_CHECK [-t ~
-
- — /
Return - e
-
|
| SAL_CHECK | _ __ _ oOptional
| |

4.1

Uncorrected machine checks refer to errorsthat cannot be corrected a& PAL and SAL layers. These
may still be fully or partially recoverable at the OS layer. The control flow differs between
corrected and uncorrected machine checks. For corrected machine checks, the OS Corrected error
interrupt handlers will be invoked some time after returning to the interrupted process. Section 4.1
describes the functionality and processing steps for the uncorrected machine checks and

Section 4.2 describes the corrected machine checks.

SAL_CHECK

SAL_CHECK hasthe basic responsibility for the following:
» Record processor and platform error information.
 Savethe processor and platform state information.

Machine Checks 4-1

411

4-2

* Perform any platform hardware-specific corrections.

* For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.
* Clear the error record resources and re-enabl e future information collection.

» Halt the processor or platform as necessary.

» Handle MP situations.

In addition, it is useful to note that where hardware/firmware cannot fix amachine check condition,
SAL_CHECK should provide the necessary information and conditions to allow the OS to recover
whenever possible. It is expected that most of the error recovery is performed at the OS_MCA
layer. The amount of state information saved by SAL isimplementation-dependent and the
SAL_GET_STATE_INFO procedure provides validation bitsindicating the saved state
information.

SAL_CHECK Processing Details

During boot, SAL_RESET code will cal PAL_MC_REGISTER_MEM to tel|PAL code where it
may deposit some minimal processor state information so thatPAL code has sufficient resourcesto
perform the necessaryPALE_CHECK processing. This step is performed on al the processorsin
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED
procedure to notify PAL that amachine check may surface and that PAL must not attempt to correct
the error. If the machine check was expected by SAL, SAL will check the results of the operation,
invoke PAL_MC_EXPECTED to notify PAL that machine check isno longer expected, and
resume execution by calling PAL_MC_RESUME.

When an unexpected machine check event has occurred and SAL_CHECK is entered, it isthe
responsibility of SAL_CHECK to call back toPAL code (PAL_MC_ERROR_INFO), in order to
retrieve processor-specific error information which pertains to the machine check taken. In
addition, SAL_CHECK should interrogate the platform for any platform-specific information
which pertains to the machine check condition. Thisinformation is preservedin a
platform-dependent location. Once the processor error record information is retrieved,
SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging resources
for capturing future machine check error information. A similar task is necessary to enable platform
error record storage resources for future events. The OS doesthis by invoking

SAL_CLEAR _STATE_INFO.

An error due to an MCA event, when corrected by firmware becomes a Processor Corrected
Machine Check or Platform Corrected Error event condition. An hand off to OS_ MCA isaso not
required during thisevent type transformation.

When multiple processors experience machine checks simultaneoudy, SAL selectsa“ monarch”
machine check processor to accumulate all the error records at the platform level and continue with
the machine check processing.

SAL isresponsible for reporting the state information to the OS via the SAL_PROC get state
information calls so that the OS can make the determination to:

* Fix the error and return,
 Create anew context and continue, or
* Reset the platform.

Machine Checks

SAL_CHECK shall not hide any architectural state from the OS_MCA layer and cannot make
assumptions on whether OS_MCA would return to PAL or SAL. This permitsthe OS_MCA layer
to run unencumbered. OS_MCA can save the processor and platform state and re-enable future
machine checks as soon as possible. Otherwise, OS_MCA would be constrained to operating with
machine checks disabled in order to preserve the architectural information & the PAL and SAL
layers.

When the OS registersthe OS_MCA entrypoint with SAL, it also supplies the length of the code
(or at least the length of thefirst level OS_MCA handler). SAL computes and saves the checksum
of this code area. Prior to entering OS_MCA,, itis SAL_CHECK's responsibility to ensure that the
OS_MCA vector isvalid by verifying the checksum of the OS_MCA code. There may also be
some platform-specific reasons which render the OS_MCA handler invalid. For example, since the
OS_MCA handler isin memory, if the memory controller which handles that portion of memory is
no longer functional, it does not make sense to attempt to branch to that code. If either the
OS_MCA handler was not registered prior to the machine check event, or if the OS_MCA handler
is otherwiseinvalid, SAL_CHECK may halt or reboot the system. This action is SAL
implementation-dependent. When the OS_MCA returns to the SAL indicating that the error has
been corrected by the OS layer, SAL will call thePAL_MC_RESUME procedure to resume
execution. See Section 4.7.1 for other options.

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks.

Figure 4-2. Machine Check Code Flow

v
OS Hndlr. PAL_
Logging [77 RESUME

4.2 Corrected Machine Checks

There are different categories of corrected machine checks pertaining to the | A-64 processor:

Machine Checks 4-3

4.3

intel.

* Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor
cache.

* Corrected by PAL, e.g. double bit data ECC error on a clean processor cache line, during an
instruction fetch operation.

* Corrected by the platform hardware, e.g. single bit data ECC error on system memory.

Corrected by SAL. These are primarily platform errors that can be corrected by SAL without
immediate involvement of the OS.

None of these categories will require rendezvousing of the other processors by the firmware.

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the
uncorrected machine checks. SAL will maintain the processor and platform error information and
save the state of the processor and platform. In the subsequent steps, SAL may do one of the
following:

* If theerror is corrected by PAL, SAL would return to the interrupted context by calling
PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option for generating a
Corrected Machine Check interrupt to the OS for the Processor CMC events. The CMCV
register specifiesthe CMC interrupt vector and its mask status.

o SAL will perform any platform hardware-specific correction as described in Section 4.3,
“Platform Errors’, send a Corrected Platform Error Interrupt to the OS and then call
PAL_MC_RESUME, to return to the interrupted context.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the OSCMC
interrupt handler or the OS Corrected Platform Error interrupt handler will be invoked some time
after returning to the interrupted process, assuming that the CMC or Correced Platform Error
interrupt isenabled in hardware. The CMC or Corrected Platform Error interrupt handler of the OS
shall run with interrupts enabled® and would invoke the SAL_GET_STATE_INFO and the
SAL_CLEAR_STATE_INFO procedures to process the error information associated with the
event(s). The OS must ensure that the entire CMC or Corrected Platform Error interrupt handler
executes on the same processor.

The amount of state information saved by SAL isimplementation-dependent and SAL provides
validation bitsindicating the saved state information. Thus, for performance reasons, a particular
SAL implementation may choose not to save ARs, CRs or floating-point registers during a
corrected machine check.

Platform Errors

Some platforms may use interruptsto signal corrected and/or uncorrected errors to the 1A-64
processor. There may also be requirements for routing the interrupt signals to specific processors as
processors may not have visibility to al the platform componentsin a system. The SAL provides
details of the interrupt input line(s) and the interrupt routing requirements to the OS through the
ACPI Tables. Refer to the ACPI Specification for additional details.

When the OS wants to be notified of this event through an interrupt, the OS driver is responsiblefor
picking a corrected platform error vector (CPEV) and arming the interrupt line(s) to deliver

1. Itisrequired that the OS handlers operate with interrupts enabled, so that system firmware can manage its resources

4-4

(like NVM based error records) without impacting the system performance.

Machine Checks

43.1

4.4

interrupt(s) to the processor. The OSis also required to register the chosen vector number
corresponding to thisinterrupt line with SAL through SAL_MC_SET_PARAMS. On receipt of
such Corrected Platform Error Interrupt(s), the OS shall invoke the SAL_GET_STATE_INFO and
the SAL_CLEAR_STATE_INFO procedures to retrieve and processor the platform error
information.

For SAL corrected platform errors, SAL is responsible for notifying the OS of theevent. SAL can
send an IPI to the OS with the CPEV that is registered by the OS through
SAL_MC_SET_PARAMS. To localize the notification of thisevent, SAL can direct the IPl to a
processor of its choice or to a processor designated by the OS through the ACPI tables, the
Processor |D and EID of which is programmed into the IOSAPIC.

SAL can retrieve and use the OS designated Processor ID, EID for this event notification from the
platform topology. For example, if the interrupt line is connected to an 1/0 SAPIC interrupt
controller, the SAL can read the Processor ID, EID and the interrupt vector number values from the
1/0 SAPIC's redirection table entry. Notification to the OS isimportant from the error logging
perspective.

Note that when an OS choosesto poll for the platform corrected error event, it may not initialize the
IOSAPIC redirection table entry for thisinterrupt or register the CPEV with the SAL.

Scope

The scope of platform errorsis platform & firmware implementation dependent. Depending upon
the platform topology, a single physical platform may comprise of multiple logical platforms, each
with a set of processors and its own error event generation and notification. When
SAL_GET_STATE_INFO iscalled for MCA or Corrected Errors for the platform, SAL would
return error record for the logical platform associated with the processor on which the call is made.

The number of logical partitionsin aplatformisimplicitly indicated by the SAL with the number
of entries for Corrected Platform Error interruptsin the ACPI table with a designated processor
having a processor ID and EID. In a system with fewer number of processors (e.g. 4) and asingle
entry in the ACPI table for the Corrected Platform Error interrupt, the logical and physical
platforms may is the same.

Having logical platform partitions help in efficient management of platform resources for error
event notification and error record building when the system has large number of processors and
platform resources. SAL_GET_STATE_INFO hasto be called on each designated processor of a
logical platform to collate the error information for the entire physical platform.

OS_MCA

When the OS is ready to handle machine check events, it should call SAL_SET_VECTORSto
register the physical address, length and the GP of the OS_MCA handler. It is highly recommended
that a non-zero length be specified so that SAL can ensure the integrity of the OS_MCA code by
verifying its checksum. The OS must use the SAL_SET_VECTORS function if it expectsto be
able to recover from any machine check conditionsin which it may have to beinvolved, or in order
to retrieve error records and state information and dumping such information for subsequent debug
analysis. After registering the OS_MCA address, the OS can re-enable machine checks by clearing

Machine Checks 4-5

intel.

the PSR.mc bit to 0. The OS must call the SAL_GET_STATE_INFO_SIZE procedure to obtain the
maximum size of machine check state information that SAL would return for processor and
platform errors.

When the machine check event occurs, SAL_CHECK will invoke OS MCA. OS MCA
functionality isimplementation-dependent. At aminimum, OS_MCA must call
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished
thistask it must call SAL_CLEAR_STATE_INFO! to release these resources for future logging
and state save. By calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its
machine check handling. OS_MCA can then re-enable machine checks by clearing the PSR.mc hit
to 0. Once the OS has consumed and cleared an error record, it will no longer be available to be
retrieved through the SAL API. SAL error records are always associated with a particular MCA or
Corrected error event and would contain all the relevant information packaged together as a record,
and may contain error information from just the processor or platform or both.

OS may perform any corrections on the OS controlled hardware resources. The OS makes the
decision whether it wants to recover the interrupted context or not, but it must take into account the
state information retrieved from the SAL_GET_STATE_INFO call. Thisinformation contains
relevant data with respect to the continuability of the processor/system. Thus, even if the OS could
correct the error, if PAL reports that it did not capture the entire processor context, (e.g. Processor
state parameter states that the GRs are invalid), resumption of the interrupted context will not be
possible. The OS must a so determine from values in the Min-State Save area whether the machine
check occurred while operating with PSR.ic set to 0 and whether the processor implementsthe XIP,
XPSR and XFS registers necessary for the recovery.

When OS_MCA returnsto SAL or PAL, it is permitted to set new values for the registers that are
passed by PAL in the Min-State Save area. Thisis achieved by constructing a data structure with
the format identical to the Min-State Save area and returning the same to SAL or by passing the
same as an argument to thePAL_MC_RESUME procedure. Refer to the Intel® | A-64 Architecture
Software Developer’s Manual for the layout of this structure.

OS_MCA may select one of the following actions:

« Correct the error and return to SAL_CHECK with the status of “corrected.” Thisisthe
recommended approach for errors corrected by the OS. The OS may set a new context in the
Min-State save areaand SAL will then invoke PAL_MC_RESUME to return to the interrupted
or the new context. If the interrupted context was in the firmware address range and the OS
decidesto set anew context, the OS must take steps for resumption of the firmware code
eventually, otherwise the system may become unstable.

* Correct theerror and invoke PAL_MC_RESUME to return to the interrupted or anew context.

In the event of an uncorrected error, return to SAL_CHECK with the uncorrected statusvalue
and an indication for SAL to halt or reboot the system.

* Inthe event of an uncorrected error, reboot the system.

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

1. The error records maintained by firmware are returned one at atime to the OS. It is necessary for the consumer
(OS) to clear the current error record to be able to retrieve the next unread record.

Machine Checks

intel.

Figure 4-3. SAL_CHECK Detailed Flow on the Monarch Processor

Yes

SAL_CHECK

PAL wants
to Rendezvous

Processors?

Send MC_rendezvous interrupt
if registered, else send INIT
to all other processors

Log processor & platform error info in
SAL implementation-dependent area

Y

Wait for all processorsg
to reach

Call PAL_MC_CLEAR_LOG to clear
processor error log resources

MC_rendezvous state

Send INIT
to failed
processors

Restore original
processor state to
SAL_CHECK entry

OS_MCA

Set OS_INIT entry
for INITed APs*

Wake up APs

Corrected
by OS

Check
Expected
by SAL?

No

PAL Yes

corrected?

Corrected
by SAL2

¢ Yes

If valid
Generate Platform
Corrected Error Interrupt

System Halt/Reboot

Y

Call PAL_MC_RESUME with

CMCI indicator set to restore

state & return to interrupted
process.

Call PAL_MC_RESUME

to restore
state & return to interrupted
Return to PAL process. Resume execution
through GR19

Machine Checks

47

4.5

4.6

Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may,
however, invoke the PAL proceduresin memory after ensuring that the memory area containing the
PAL proceduresisintact.

Following are typical PAL procedures that may be invoked by SAL_CHECK:
« PAL_MC_ERROR_INFO
« PAL_MC_RESUME
« PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:
« PAL_BUS GET_FEATURES
« PAL_BUS SET_FEATURES
« PAL_PROC_GET_FEATURES
« PAL_PROC GET_FEATURES
« PAL_MC_REGISTER_MEM?
« PAL_MC_EXPECTED

SAL may call the following procedure to ensure that all outstanding instructions within a processor
are completed or any potential machine checks due to these transactions get serviced.

« PAL_MC_DRAIN

Following are the SAL procedures that may be invoked by OS to register its machine check layer
interfaces:

« SAL_MC_SET_PARAMS
« SAL_SET VECTORS

OS_MCA may invoke any of the PAL and SAL procedures. Following are typical SAL procedures
that may be invoked:

« SAL_MC_RENDEZ
« SAL_GET_STATE_INFO

« SAL_GET_STATE_INFO_SIZE
« SAL_CLEAR STATE INFO

Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerationsin MP
configurations and hence may require a coordination between all processors, by means of a
processor rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the
rendezvous mechanism works.

1. This procedure is intended for use during firmware initiaization. It shall not be invoked by the OS during run time

48

as this might affect firmware functionality.

Machine Checks

Rendezvous of processors is done for one of the following reasons:
« When PAL initiates a rendezvous request during an MCA.
* When SAL determines on its own accord that the platform error needs rendezvous.
* When OS sets a flag requesting firmware to perform rendezvous for all MCA errors.

PAL Initiated Rendezvous: If the PAL machine check layer determines that other processors must
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the
rendezvous and supplies areturn address within PAL in GR19. Upon return, PALE_CHECK
performs the appropriate action and then calls SAL_CHECK again in the normal manner (with no
rendezvous indicator).

SAL Initiated Rendezvous: Additionally, there may be platform related machine check situations
which require SAL firmware to rendezvous processors. For example, if platform hardware were to
stop forwarding transactions in order to maintain error containment, the other processorsin the
system must be rendezvoused before that platform hardware can resume forwarding transactions.
Also, one can imagine a platform cache situation similar to the one described above. Sufficeit to
say these conditions exist.

OSlnitiated Rendezvous: If therz_alwaysflag is set through SAL_MC_SET_PARAMS by the OS,
SAL isexpected to rendezvous the system for all detected processor and platform MCA conditions,
assuming the errors are not corrected by the firmware. If thisflag isnot set, then rendezvousis done
only when PAL initiates the rendezvous request during an MCA or if SAL decidesto doit onits
own accord for certain platform MCA, as described above.

In order to facilitate these types of situations, the OS does the following:
* Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS
function.

 Invokethe SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL
firmware can signal the non-monarch processors and the mechanism that the OS will employ
to wake up the non-monarch processors at the end of machine check processing.

e Invokethe SAL_MC_SET_PARAMS to specify if arendezvousis aways required for an
MCA.

On receipt of the MC_rendezvous interrupt, the OS on the non-monarch processors will:
« Disable further interrupts.
o Cal SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all

outstanding transactions within the processor and then enter a spin loop within SAL. ThisSAL
procedure shall be MP-safe.

Machine Checks 4-9

Figure 4-4. Normal SAL Rendezvous Flow

(Return) SAPIC
Machine 1 PAL - SAL L3 1 EAS:"jT_ —» OS MC_INT
Check ——P MCA - MCA Interrupt Handler
Timeout
4 10
Loop g
8 A
SAL_Rendezvous > Polling
A
[
[
OS_MCA 9|
|
SAPIC WakeUp |
Monarch Processor I Interrupt | SLAVE Processor
Domain e] I Domain
Direct Flow ————Interrupt Signaling
000289

SAL on the monarch processor will wait a specified amount of time for the signalled processors to
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to
allow the OS to take the appropriate error recovery actions.

In situations where either the OS has not registered an interrupt vector viathe
SAL_MC_SET_PARAMScall, or where the specified time to wait has elapsed and the signalled
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the
remaining processorsin order that the machine check handlersin PAL and SAL can proceed. While
sending an INIT to the other processors may not create an inherently unrecoverable situation, it
certainly increases the risk for recoverability. Thisisthe rationale for registering the
MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS procedure. The monarch
processor must allow sufficient time for the INIT IPI to be processed by the targeted processors and
reach the rendezvous state. If PAL requests rendezvous of al the processors and SAL isunable to
do so, SAL will return to PAL with anon-zero value in GR19. Refer to the Intel® |A-64
Architecture Software Devel oper’s Manual for details regarding PALE_CHECK processing.

After the error is corrected by OS MCA, OS_MCA on the monarch processor will wake up the
rendezvoused processors using the wake up mechanism specified inthe SAL_MC_SET_PARAMS
call. For processors rendezvoused using the MC_rendezvous interrupt message, the continuation
point is merely areturn from the SAL_MC_RENDEZ procedure. It is the responsibility of the OS
to clear the IRR hits for the MC_rendezvous interrupt and the wake up interrupt?, if any. The OS
must re-enable future interrupts and machine checks.

1. The recommended option isfor the OS to use the memory semaphore for wake-up than an interrupt. If a wake-up
interrupt is used by the OS, it will have to take into consideration many race conditions.

4-10

Machine Checks

Figure 4-5. Failed SAL Rendezvous Flow

SAPIC INIT
CPUx Message
Failed - —— ﬁ\‘AI.II: OS_INIT
Rendezvous 15
4&
r———— [~~~ 1
| 1
(Return) : 14 :
10 hd | |
Machine 1 PAL 2 SAL : :
Check ——— MCA n MCA 1 OS MC_INT |
| Interrupt Handler :
|
| [
Timeout] A P |
Loop &9
> Polling

12

SAPIC WakeUp

Monarch Processor | Interrupt
Doman e __ ! Domain

SLAVE Processor

Direct Flow
————Interrupt Signaling

000290

If some non-monarch processors were rendezvoused using an INIT 1Pl message, their continuation
point on wake up would be the OS_INIT procedure registered for the monarch by the
SAL_SET_VECTORS (INIT) call. OS must register this entrypoint prior to the wake up, else SAL
will reset the system. Refer to the Section 5.3, “OS_INIT Handoff State” for the parameters on
entry to the OS_INIT procedure.

It should be noted that some implementations, under certain machine check circumstances, will
cause multiple processors to enter PALE_CHECK and SAL_CHECK. PAL code will be generally
unaware of this, but SAL code should make every effort to take such situations into account. SAL
code must implement methods of detecting which processors have entered the SAL_CHECK
entrypoint and avoid steps to rendezvous such processors (using MC_rendezvous interrupt or
INIT). Some examples of situations when multiple processors experiencing machine checks
simultaneously are as follows:

 Broadcast machine check (BERR signal) from the platform

« Error during a cast out of a cache line in response to an incoming snoop cycle from another
processor

When multiple processors experience machine checks simultaneously, SAL selectsa“monarch”
machine check processor to accumulate all the error records at the platform level. Once thisis done,
the OS_MCA procedure will take control of further error handling on all the processors that
experienced the machine checks. The OS_MCA layer may need to implement a similar “monarch”
processor selection for the error recovery phase.

Machine Checks 4-11

4.7

4.7.1

4-12

OS_ MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the OS machine check
handler, OS_MCA. The contents of non-banked and banked general registers at the time of the
interruption have been saved byPAL in the Min-State Save area and these are available for use by
SAL and OS_MCA. The following register contents define the OS_MCA handoff state.

The state of the processor isthe same as on exitigPALE_CHECK (refer to the Intel® 1A-64
Architecture Software Devel oper’s Manual) except as bel ow:

GR1= OS MCA Global Pointer (GP) registered by OS (OS's GP)
GRs2-7=Unspecified
GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint
GR10= GP (Physica address value) for SAL
GR11= Rendezvous state information
0= Rendezvous of other processors was not required by Firmware and hence
was not done
1= All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt
2 = All other processorsin the system were successfully rendezvoused using a
combination of MC_rendezvousinterrupt and INIT
—1 = Rendezvous of other processors was required by, but was unsuccessful
GR12 = Return address to alocation within the SAL_CHECK procedure
GRs13-31= Refer to the Intel® 1A-64 Architecture Software Developer’s Manual
BRO = Unspecified

Note: Onentry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration.
The OS shall not make cacheable accesses to the MinState area, otherwise unexpected
behavior will occur.

Return from OS_MCA Procedure

The OS_MCA procedure may or may not return to SAL_CHECK in the case of uncorrected
machine checks. If OS_MCA procedure does return to SAL, it must set appropriate valuesin the
Min-State Save area pointed to by GR22, for continuing execution at the interrupted or a new
context. The OS must restore the processor state to the same as on entry to OS_MCA except as
follows:

GRsl-7 = Unspecified
GR8 = 0if error has been corrected by OS MCA
—1if error was not corrected by OS_MCA and SAL must warm boot the system
—2if error was not corrected by OS_MCA and SAL must cold boot the system
=3 if error was not corrected by OS_MCA and SAL must halt the system
GR9 =GP (Physical address value) for SAL
GR10=0if return will be to the same context
1if return will be to anew context
GRsl11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registersin the Min-State Save areg;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values

Machine Checks

Machine Checks

GRs23-31=
PSR =
BRO =

in the Min-State Save area.

Unspecified

Same as on entry from SAL_CHECK except that PSR.mc may be either O or 1
Unspecified

4-13

4-14 Machine Checks

intel.

Initialization Event

5.1

INIT isaninitialization event generated by the platform or by software through a SAPIC message.
The INIT event causes the processor to execute the processor-dependent INIT handler
(PALE_INIT), inthe IA-64 ISA. The PALE_INIT saves minimum register state and branches to
SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT). The state of
the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the Intel® 1A-64
Architecture Software Devel oper’s Manual.

SAL_INIT

SAL_INIT isentered from PALE_INIT viaSALE_ENTRY. SAL_INIT’s purpose isto save the
state of the processor to the platform-specific Processor State Information (PSI) area and either
invoke an OS INIT handler (OS_INIT) if the same has been registered through a
SAL_SET_VECTORScall, or warm boot the system otherwise. The SAL_SET_VECTORS
procedure permits the OS to register separate entrypoints for thefirst processor (monarch) to enter
the SAL_INIT layer and subsequent processors (non-monarchs).

INIT is aso used during machine check handling in MP environments to transition the
non-monarch processors to the rendezvous state. SAL code must recognize this condition using its
internal variables and call SAL_MC_RENDEZ procedure. It must not invoke the OS INIT handler
for this situation.

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will
cause a system-wide warm boot. Note that during the transition from PALE_RESET to
SAL_RESET viaSALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

* During boot, SAL_RESET code will callPAL_MC_REGISTER_MEM to tel|PAL code
whereit may deposit some minimal processor state information so that PAL code has sufficient
resources to perform the necessary machine check or INIT processing. This step is performed
on all the processors on the system.

SAL_INIT saves the minimal processor state information as well as some additional processor
and platform state information in the SAL data area and provides the sameto OS_INIT.
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

If the INIT was intended to transition APs to rendezvous state during a MP platform machine
check, SAL_MC_RENDEZ procedure needs to be invoked. Refer to Section 4.6, “Machine
Checksin MP Configurations” for details.

* If INIT isnot due to a MP platform machine check rendezvous, check if OS_INIT handlersfor
the monarch and non-monarch processors are registered and that both of them are vaid. When
the OS_INIT procedures and their lengths were registered with SAL, SAL would have
computed and saved the checksums of such code. On receipt of INIT, SAL verifiesthe
checksum of the code at the OS_INIT procedure addresses before jumping to the same.

Initialization Event 5-1

5.2

5-2

intel.

* |f thecodefor the OS_INIT handlersareintact, cal the OS_INIT handlersfor the monarch and
non-monarch processors.

* If the OS_INIT handler is not registered, set implementation-dependent SAL warm boot
indicator and reboot the system either by calling SAL_RESET or by generating a reset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT
processor state islogged at least. There is neither arequirement nor away to clear apending INIT
condition.

On some PC-AT platforms, the platform provides aswitch that can generate an NM| signal and this
isused by |A-32 OSsto effect a crash dump on a hung system. On |A-64 systems, asimilar
function will be performed by an INIT switch asthe NMI signal is masked by the PSR.i bit of the
processor. If SAL_INIT gains control due to the platform’s INIT switch while an |A-32 OSis
executing, the SAL_INIT layer shall send an SAPIC IPI message to the same processor with the
interrupt type of NMI and then return to the interrupted context using the PAL_MC_RESUME
procedure.

Figure 5-1 shows a possible flow of control through SAL_INIT.

OS_INIT

OS _INIT isan entrypoint into the OS to deal with the initialization event. The exact definition of
OS _INIT functionality is OS-dependent. SAL_SET _VECTORS s called by the OS prior to the
initialization event to register the physical addresses and the GP of the OS INIT handlers for the
monarch and non-monarch processors. If an OS intends to make the monarch selection in the OS
layer, it could register the same OS_INIT entrypoint for both the monarch and non-monarch
processors. From the SAL's perspective, there are no functionality differences between the two
OS _INIT entrypoints and the hand off state from the SAL to the OS_INIT layer are similar.

When the OS_INIT layer iscalled by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO
to get processor/platform state. When it has finished this task, it must call
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. By
caling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its INIT processing.
OS _INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0.

The OS_INIT handler may return to SAL with an indication to effect awarm reset or areturn to the
interrupted context. OS_INIT may alternatively invoke PAL_MC_RESUME to return to the
interrupted context. OS_INIT may set new values for registersthat are saved by PAL in the
Min-State Save area. Thisis achieved by constructing a data structure with the format identical to
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME
procedure. Refer to the Intel® 1A-64 Architecture Software Developer’s Manual for the layout of
this structure.

Initialization Event

intel.

Figure 5-1. SAL_INIT Control Flow

INIT Event ———p»{ PAL_INIT

Write processor/
platform info to save
area

NIT due to
failure to respond
to rendezvous

interrupt?

Wake up

SAL_MC_RENDEZ

Interrupt — — —

OS_INIT
procedures
valid?

Warm Boot

SAL implementation-
specific warm boot
(SAL_RESET or reset
event)

CrashDump
Switch
& 1A-32 0S?

0S_INIT

Inject NMIIPI into

IA-32 0S
Y
Return value
from OS
Return to
Interrupted
Context
l
A

PAL_MC_RESUME

000938

Initialization Event

5.3

5.4

5-4

OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the OS code, OS _INIT. The
contents of non-banked and bank zero general registers at the time of the interruption have been
saved by PAL in the Min-State Save area and these areavailable for use by SAL and OS_INIT. The
following register contents define the OS_INIT handoff state.

The state of the processor is the same as on exitigPALE_INIT (refer to the Intel® 1A-64
Architecture Software Devel oper’s Manual) except as bel ow:

GR1= Physical address of the OS_INIT Global Pointer (GP) registered by OS (OS s gp)
GRs2-7=Unspecified
GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint
GR10= GPvalue (Physical address) for SAL
GR11 = INIT reason code:
0= Received INIT signal on this processor for events other than CrashDump
switch assertion
1= Received wake up signal on this processor at the end of an OS_MCA corrected
machine check
2 = Received INIT signal on this processor due to CrashDump switch assertion
GR12 = Return address to alocation within the SAL_INIT procedure
GRs13-31= Refer to the Intel® 1A-64 Architecture Software Developer’s Manual
BRO = Unspecified
Note: Onentry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The

OS must not make cacheable accesses to the MinState area, else machine checks might
occur as aresult of acache hit to an uncacheable page.

System state Resources are:
* TLB -TCsand TRs are unchanged.
» Caches— Enabled, coherent and consistent in the absence of hardware failures.
» Memory — Unchanged, except for the updated Processor State Information (PSI) area.

Return from OS_INIT Procedure

If OS_INIT procedure returnsto SAL, it must set appropriate valuesin the Min-State Save area
pointed to by GR22, for continuing execution at the interrupted or anew context. The OS must
restore the processor state to the same as on entry to OS_INIT except as follows:

GRs1-7=Unspecified
GR8= 0if SAL must return to interrupted context using PAL_MC_RESUME
—1if SAL must warm boot the system
GR9= GP (Physical address value) for SAL
GR10=0if return will be to the same context
1if return will be to anew context
GRs11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registersin the Min-State Save areg;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS _INIT must supply this parameter even if it does not change the register values

Initialization Event

5.5

in the Min-State Save area.

GRs23-31=Unspecified

PSR = Sameason entry from SAL_INIT except that PSR.mc may be either O or 1
BRO = Unspecified

If OS_INIT requests SAL to reboot the system, it is SAL's responsibility to rendezvous dl the
processors on the system and then select a BSP for further system initiaization. If rebooting is
required while running an 1A-32 OS, SAL will use the currently selected BSP for performing the
rendezvous of the other processors.

MP INIT Support

There are afew situations when processors enter SAL_INIT in MP configurations which deserve
specific mention.

« If aprocessor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch
and non-monarch processors or their checksums are incorrect, then the processor will reset the
system (warm boot). In the MP environment, the processor performing the reset shall reset the
system, not just itself.

« If aprocessor enters SAL_INIT asthe result of a platform machine check rendezvous event,
then the SAL_INIT must invoke the SAL_MC_RENDEZ procedure. Normally, the OS would
have registered an interrupt using the SAL_MC_SET_PARAMS procedure to register the
external interrupt vector to be used to interrupt the OS on the processorsunaffected by the
machine check. On receipt of such an interrupt, the OSwould invoke the SAL_MC_RENDEZ
procedure. If for some reason any of the processors do not respond to thisinterrupt, or if the
OSfailsto register such an interrupt vector, then the processor handling the machine check
will INIT such processors and they will enter SAL_INIT for the platform machine check
rendezvous event. Since all the processors reach SAL_MC_RENDEZ, the effect isthe same
(almost) asiif the processor had responded to the interrupt. The difference isthat processors
entering SAL_MC_RENDEZ through SAL_INIT will belesslikely to be recoverable.

At the end of machine check processing, OS_MCA procedure on the monarch processor will
wake up all the other processors using the wake up mechanism specified by the
SAL_MC_SET_PARAMS procedure. The processors that received the INIT would jump to
theregistered OS_INIT procedure for the monarch processor. The OS_INIT procedure may
analyze the reason why the processor needed the INIT (or reasons for not responding to the
MC_rendezvous interrupt). If INIT occurred when PSR.ic bit was 1, thereis no loss of
machine state. OS_INIT can return to SAL specifying resumption of theinterrupted context by
invoking PAL_MC_RESUME.

Initialization Event 5-5

5-6

Initialization Event

intel.

Platform Management Interruptions 6

Platform Management Interruptions (PM1s) provide an OS-independent interrupt mechanism to
support OEM and vendor-specific hardware events.

6.1 SALE_PMI Overview

PMI interrupts cause execution of code & PALE_PMI handler. This code saves key processor state
in interruption resources and then callsthe SALE_PMI handler. SALE_PMI shall return to the
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE _PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain
processor-specific events may also cause PMI interrupts. These are handled entirely within the
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® |A-64 Architecture
Software Developer’s Manual for details regarding PALE_PMI processing.

PMI isthe highest priority external interrupt and it ranks after Reset, Machine Check and INIT in
terms of priority. PMI is masked by setting the PSR.ic bit to O (interrupt collection disabled). The
PSR.i hit (interrupt enable) has no effect on masking of PMI events.

Unlike the System Management Interrupt (SMI) on IA32 systems, the OS can mask PMIs by
setting PSR.ic bit to O (interrupt collection disabled). Also, PMI interrupt processing causes
execution of PALE_PMI code before entering the SALE_PMI code To minimize latency in
entering codein the SALE_PMI layer, the OS must avoid operating with PSR.ic bit set to 0 for long
durations. Otherwise, some software in the SALE_PMI layer may fail. Note that some real time
applications may have more stringent timing restrictions as regards operating with interrupt
collection disabled.

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It
also causes specia problems if multiple SAPIC messages of PMI delivery type are targeted to the
same destination processor (see Section 6.4 below).

One method of software entry into the PMI environment is to send a SAPIC message to the same
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for
SAL.

6.2 SALE_PMI Initialization

During power up, SAL copiesthe SALE_PMI handler to memory and then invokes thePAL
procedure PAL_PMI_ENTRY POINT to set the programmable entrypoint of the SALE_PMI
procedure. In aMP-environment, this step must be performed on all the processors. The
SALE_PMI entrypoint can be different for various processorsin an MP configuration.

Platform Management Interruptions 6-1

6.3

6.4

6-2

SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from
SALE_PMI to PALE_PMI are fully documented in the Intel® 1A-64 Architecture Software
Developer’'s Manual.

SALE_PMI isentered in physical mode with PSR.i and PSR.ic bits set to O (interrupt and interrupt
collection bitsdisabled). SALE_PMI isentered in thel A-64 1 SA regardless of the current processor
state. The processing steps for various PMI events within the SAL layer are platform and SAL
implementation-dependent. At the end of processing the PMI, SALE_PMI returnsto PALE_PMI
using branch register BO. Thereis neither arequirement nor away to clear apending PMI interrupt.

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor
simultaneously. In this situation, only one PMI interrupt will be recognized. Thisis analogous to
sending edge triggered external interrupts using the same interrupt vector. To guard against loss of
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for
the PMI using memory data structures.

Special Considerations for Multiprocessor
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with
delivery type of PMI. In a MP-configuration, there could be conflicts between PMI and machine
check. One of the processors could be in SAL_CHECK, trying to bring other processors to
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If the latter werein SALE_PMI,
the MC_rendezvous external interrupt would not be recognized immediately and this might
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since
recoverability from INIT is minimized when PSR.ic is 0, it isrecommended that SALE_PMI
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.

Platform Management Interruptions

intel.

IA-32

Support /

7.1

7.2

7.2.1

IA-32 Support

IA-32 Support Model

This chapter describes the | A-32 support within SAL during the booting process. Additionally, it
provides some guidelines on the choice of 1A-32 instructions to SAL devel opers who plan to re-use
existing 1A-32 BIOS code.

For details on I A-32 instruction execution on |A-64 processors, refer to Volum el, Chapte r6 and
Volume 2, Chapter 10 of the Intel® 1A-64 Architecture Software Devel oper’s Manual.

1A-32 support code in SAL cannot be used after an OS (IA-32 or |A-64) has taken control of the
translation resources. Most | A-64 OSs will provide their own | A-32 support code and not use the
codein SAL. If the user bootsan |A-32 OS, SAL would have invoked the

PAL_ENTER_IA_32 ENV procedure which activates the PAL layer in support of 1A-32 OSs and
this PAL firmware layer configures the processor to behave like a Pentium® 111 processor, obviating
the need for SAL’s | A-32 support code. For more details, refer to Volume 4, Chapter 8 of the Intel®
1A-64 Architecture Software Developer’s Manual .

During the platform initialization phase of the boot sequence, the IVA may pointtoa32 KB IVT in
ROM. Some of the trap handlersin the IVT could support execution of 1A-32 code. Thus, itis
possible to execute | A-32 code early in the boot sequence, if needed. Refer to Chapter 3, for
fault/trap handler support requirementsin SAL.

IA-32 Support Requirements

1A-64 platforms may contain one or more 1A-32 adapter cards containing |A-32 Option ROMs. If
the adapter cards support boot devices, they will need to beinitialized in the process of booting the
OS. The 1A-32 support code in SAL will be exercised while executing the |A-32 code. Also, since
SAL contains | A-32 support code for execution of the |A-32 Option cards, aportion of the |A-64
SAL layer may itself be coded in 1A-32 ISA (i.e. the traditional 1A-32 System ROM BIOS may be
reused).

Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility:
* PC-AT Memory map:
« Interrupt vector area 0 — 0x3FF: Contains entrypoints for software interruptsin
offset:segment format.

* BIOS RAM data area 0x400 — Ox4FF: Data variables stored by System BIOS and Option
ROMs.

e Option ROM space: 0x000C_0000 — 0x000D_FFFF.

7-1

intel.

» PC-AT compatibility entrypoints: Addressesin the 0xO00OF_E000 to 0x000F_FFFF range
pointing to entrypoints and tables.
It is expected that SAL code would be designed to use identical virtual-to-physical memory mappings and
not conflict with the 1A-32 BIOS memory usage.

» PC-AT 1/0 map: Motherboard 1/0 ports are in the range of 00 to OxFF and other |A-32 devices
occupy the rest of the 64K 1/0 space. The most important ports used by BIOS code are
Interrupt controller (0x20, 0x21, 0XAO, 0xA1), Interval timer (0x40 to 0x43) and CMOS RAM
(0x70, 0x71).

7.2.2 Overview of 1A-32 Support Layer Functionality

|A-32 support layer is mainly required for the following areas:

* Memory mapped |/O: The processor needs to provide the uncacheable semantics for memory
mapped 1/0 to devices such as VGA buffer. Also, the search for memory mapped devices need
to be performed without caching artifacts. Caches within the processor are enabled by
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the
uncacheable memory attribute required for 1/O completion is specified by setting bit 63 of the
memory address, in physical addressing mode. Bit 63 of the physical address has no effect
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call.

Sinceit is not possible to generate an address with bit 63 set while operating in the 32-bit
IA-32 ISA mode, | A-32 code needs to be executed with translations enabled and TLBs need to
specify the uncacheable memory attribute. TLBs provide the same functionality asMTRRs on
a Pentium Pro processor.

Handle traps during 1A-32 code execution.

Virtualizing PC-AT peripheras: If some legacy devices are not present on the platform, SAL
may provide the necessary virtualization during |A-32 code execution by setting up TLBsto
trap the accesses.

7.2.3 IA-32 Instruction Usage Guidelines

7-2

|A-32 System BIOS code executing within the SAL environment must follow these guidelinesin its
usage of 1A-32 instructions, in order to limit SAL’s|A-32 support requirements. These restrictions
do not affect operation of existing | A-32 Option ROMs which are restricted to operating in |A-32
real mode. Option ROM code on PC-AT compatible platforms are already compliant with the
following guidelines:

* |A-32 code shall not use protected mode instructions of the |A-32 1SA. Only real mode and big
real mode opcodes are permitted. The transitions between real mode and big real mode will
occur using the IA-64 SAL code that sets up the appropriate |A-32 segment descriptors, and
not by use of the|A-32 LGDT instruction. The traditional 1A-32 BIOS functions requiring
protected mode usage, such as search for PCI Option ROMs near 4 GB address, can be done
easily using the big real mode or in the |A-64 1SA. SAL will provide support the Extended
Memory Move function (IA-32 INT 0x15, sub function 0x87) for moving data to and from
addresses above IMB.

|A-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC.

I A-32 code shall not use codeinvolving I A-32 privileged instructions such as LGDT, RDMSR,
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent | A-64 code. Refer

IA-32 Support

7.2.4

IA-32 Support

to the Intel® 1A-64 Architecture Software Developer’s Manual for a complete list of
instructions that cause the |A-32 Instruction Intercepts. SAL shall provide necessary emulation
support for the following instructions:

* CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS, WBINVD

* |A-32 code shdl not use code involving I1A-32 Call Gates.
* |A-32 stack must be aligned on an even byte boundary. The |A-32 support layer in SAL will

need to retrieve or store valuesinto the | A-32 stack in order to emulate instructions such as
INT, IRET. If the A-32 stack is aligned on an odd byte boundary, an unaigned data reference
fault will result and SAL does not provide a handler for this exception.

The above restrictions are not applicable when the OS kernel takes over. Thus, an 1A-32 or |1A-64
OS may set up the environment for 1A-32 protected mode and invoke protected mode functions of
IA-32 BIOS.

IA-32 Support Environment

This section describes the execution environment for 1A-32 code.

1

IA-32 BIOS code will be executed with Instruction translation on, Data trandation on and
RSE tranglation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be setto 0 to
mask exceptions caused by unaligned memory references during execution of 1A-32 code.

The following traps will be supported in the Interrupt Vector Table (IVT) for supporting
| A-32 execution:

* |A-32_Exception vector
* 1A-32_Intercept vector
* 1A-32_ Interrupt vector
» External interrupt vector

SAL will set up CFLG register which maps to the |A-32 system registers CR0O and CR4.
When SAL procedures are called by the OS Loader, SAL will set up the appropriate valuein
the CFLG register, if transition to IA-32 ISA mode is required.

The CFLG.io bit will be set to 0 to eliminate the need forTask State Segment (TSS) while
executing |A-32 code. |1A-32 EFLAG.iopl field should be set to 3 to permit 1A-32 1/0
instructions without causing any traps. |OBASE register and translation mechanisms within
the processor will be set up to automatically convert the |A-32 |/O accesses to the |A-64
memory load or store operations with the uncacheable memory attribute. If some legacy
devices are not present on the platform, TLBs may be set up to trap the accesses and SAL
can either redirect the 1/0 to a different hardware on the platform or provide suitable
software emulation.

The PSR.i bit may be set to 1 to enable interrupts in the |A-64 system environment and the
CFLG.if bit may be set to 1 to alow IA-32 code to control interrupt masking. With these
settings, the IA-32 EFLAG.if bit will enable or disable external interrupts while executing
|A-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the | A-64
instruction set.

The CFLG.ii bit may be set to O if there is no need to intercept changes to interrupt enable
flag.

7-3

7.2.5

7-4

IA-32 Interruption Handler Support

External interrupts, | A-32 defined exceptions and software interrupts are delivered to the | A-64
software interruption handlers. All interruption handlers may run with PSR.dt, PSR.rt turned off to
avoid the Nested TLB fault that can occur while accessing the fault handle’ s local variables and
data structures. SAL will populate the following handlersin the IVT to handle interruption inits
environment:

* |A-32_Exception vector: This handler will handle exceptions caused by | A-32 instructions
such as Divide by zero fault. These interruptions should not occur while executing debugged
IA-32 BIOS code. The exception should be reflected to 1A-32 code using the |A-32 real mode
Interrupt Descriptor Table (IDT) at locations 0 to Ox3FF. Typically, IA-32 codein the IDT will
display an error message when such exceptions are encountered.

* |A-32_Intercept vector: This handler will handle several categories of intercepted instructions
as described in the Intel® 1A-64 Architecture Software Developer’s Manual .

* Instruction Intercept: Refer to Section 7.2.3for alist of the | A-32 instructions that must be
emulated by SAL.

Lock Intercept: Thisinterruption handler will beinvoked for CMPXCHG, LOCK,
XADD, XCHG instructions. This intercept can be avoided by enabling the lock featurein
the |A-64 Default Control Register (DCR.Ic = 0), if the platform can support locked read
modified writes. If the platform does not support the bus lock signal,

PAL_BUS SET_FEATURES may be invoked to execute the locked transactions as a
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the
Intel® 1A-64 Architecture Software Developer’s Manual for details.

Gate intercept: Support is not needed for trapping privilege transitions using gates. |A-32
System BIOS code shall avoid thisintercept and Option ROM code is not permitted to use
privilege transitions using gates.

|A-32 System Flag intercept: Thisintercept can be avoided for the STI, CLI, POPF and

POPFD instructions by setting CFLG.if bit to 1, which allows the | A-32 code to control

interrupt masking with the 1A-32 EFLAG.if bit. To support the MOV SS and the POP SS

instructions, SAL shall disable interrupts and execute the next 1 A-32 instruction with the

PSR.ss set to 1. This will generate an IA-32_Exception(Debug). The handler for this

exception will restore the previous value of PSR.i and return to the |A-32 code.

* |A-32_Interrupt vector: This handler supportsthe IA-32 INT instruction. SAL will provide the
necessary emulation support for the Extended Memory Move function (INT 0x15, subvention
0x87) in order that real mode code may move data to and from addresses over 1M B without
requiring atransition to the |A-64 instruction set. The rest of the INT instructions will be
emulated by jumping to the address pointed to by the |A-32 real mode IDT. Followingisan
example of pseudo code:

1. Get the Software interrupt nunber nn from | SR vector.

2. Use nn as an index into the I A-32 real node Interrupt
Descriptor Table at |ocati on 0000h and obtain the
segnent : of fset of | A-32 code to be invoked.

3. Store the two byte FLAGS on | A-32 stack.

4. Store the segnent:of fset address of the I A-32 instruction
following the INT nn on | A-32 stack.

5. Store the | A-32 segnent: of fset addresses in the appropriate
| A-64 registers corresponding to IP, CS selector, CS

IA-32 Support

IA-32 Support

segnent descriptor and transition to | A-32 code using RFI
instruction.

6. The 1 A-32 code will terminate by issuing an | RET or a RET 2
instruction and this will return to the 1A-32 instruction
follow ng the INT nn.

« External interrupt vector: Hardware interruptswill be received by SAL in the | A-64 1SA which
will obtain theinterrupt vector corresponding to the interrupting source. For more details, refer
to Section 3.3.1. If the interrupts need to be reflected to | A-32 code, the address will be derived
from the |A-32 Interrupt Descriptor Table.

7-5

7-6

IA-32 Support

intel.

Calling Conventions

8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions:

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

Table 8-1. Definition of Terms

Term Description

entry Start of the first instruction of the SAL procedure.

exit Start of the first instruction after return to caller's code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also
C, it must be the same as the value at entry.

unchanged | The SAL procedure must not change these values from their entry values during
execution of the procedure.

scratch There are no requirements on the state of these values during execution of the
procedure. The SAL procedure may modify them as necessary during execution of
the procedure.

preserved The SAL procedure may modify these values as necessary during execution of the
procedure. However, they must be restored to their entry values prior to exit from
the procedure.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit
from a SAL procedure call. The OS Loader must follow the state requirements for PSR shown
below. SAL callsthat invokePAL procedures may impose additional requirements.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class
be Big-endian memory access enable 0 0 preserved
up User performance monitor enable C C unchanged
ac Alignment check C C preserved
mfl Floating-point registers f2-f15 written C C preserved
Calling Conventions 8-1

Table 8-2. State Requirements for PSR (Continued)

intel.

PSR Bit Description Entry Exit Class
mfh Floating-point registers f16-f127 written C C preserved
ic Interruption state collection enable Cc C preserved?

0 0 unchanged
i Interrupt unmask C C preserved”
pk Protection key validation enable Cc Cc unchanged
dt Data address translation enable C C preserved?
dfl Disabled FP register f2 to f15 C C unchanged
dfh Disabled FP register f16 to 127 Cc Cc unchanged
sp Secure performance monitors Cc Cc unchanged
pp Privileged performance monitor enable Cc Cc unchanged
di Disable ISA transition C C preserved
si Secure interval timer C C unchanged
db Debug breakpoint fault enable C C unchanged
Ip Lower-privilege transfer trap enable C C unchanged
th Taken branch trap enable Cc C unchanged
rt Register stack translation enable Cc C preserved?
cpl Current privilege level 0 0 unchanged
is Instruction set 0 0 preserved
mc Machine check abort mask C C preserved®

1 1 unchanged
it Instruction address translation enable C C unchanged
id Instruction debug fault disable C C unchanged
da Disable Data access/dirty-bit faults 0 0 unchanged
dd Data debug fault disable 0 0 unchanged
ss Single step trap enable 0 0 unchanged
ri Restart instruction 0 0 preserved
ed Exception deferral 0 0 preserved
bn Register bank 1 1 preserved
ia Disable instruction access-bit faults 0 0 unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as

unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. In general, this bit shall be 0 onentry, 0 on exit and of class preserved. If this bit is 1 on entry, the
value on exit shall be 1 and must be classified as unchanged.

Calling Conventions

intel.

8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class
DCR Default Control Register unchanged
IT™ Interval Timer Match Register unchanged
IVA Interruption Vector Address unchanged
PTA Page Table Address unchanged
GPTA Reserved |A-32 Resource unchanged
IPSR Interruption Processor Status Register scratch
ISR Interruption Status Register unchanged?
P Interruption Instruction Bundle Pointer unchanged?®
IFA Interruption Faulting Address unchanged?
ITIR Interruption TLB Insertion Register unchanged?®
IIPA Interruption Instruction Previous Address unchanged?®
IFS Interruption Function State unchanged?®
1LY Interruption Immediate Register unchanged?
IHA Interruption Hash Address unchanged?®
LID Local Interrupt ID unchanged
IVR Interrupt Vector Register (read only) unchanged
TPR Task Priority Register unchanged
EOI End Of Interrupt unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) unchanged?
TV Interval Timer Vector unchanged
PMV Performance Monitoring Vector unchanged
CMCV Corrected Machine Check Vector unchanged
LRRO-LRR1 Local Redirection Registers 0-1 unchanged
RR Region Registers preserved
PKR Protection Key Registers unchanged
TR Translation Registers unchanged®
TC Translation Cache scratch
IBR/DBR Break Point Registers preserved
PMC Performance Monitor Control Registers preserved
PMD Performance Monitor Data Registers unchanged®

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may
cause them to change.
b. If an implementation provides a means to read TRs through aPAL procedure call, this should be

preserved.

c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting
performance monitor events during a procedure call.

Calling Conventions

8-3

8.1.4

General Registers

SAL will use the standard calling convention as described in the | A-64 Software Conventions and
Runtime Architecture Guide. Routines written using this convention may be written either in
assembly or C or other high level languages.

Table 8-4. General Registers —Standard Calling Conventions

8.1.5

8.1.6

8-4

Register Conventions
GRO Always 0
GR1 Special; global data pointer (gp)
GR2 - GR3 Scratch; used with 22 bit immediate add
GR4 - GR7 Preserved
GR8 - GR11 Scratch, procedure return value
GR12 Special, stack pointer. preserved
GR13 Special, thread pointer. preserved
GR14 - GR31 Scratch
Bank 0 Registers Preserved
(GR16 — GR23)
Bank O Registers Scratch
(GR 24 - GR31)
GR32 - GR127 Stacked registers;

in0 -in95: input arguments (SAL index must be in0)
locO — loc95: local variables
out0 — out95: output arguments

The GP for the SAL code should be known to system software as SAL passesit as one of the boot
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum
16 KB bytes must be available for the stack space of the SAL procedure and aminimum of 16 KB
bytes of RSE backing store must be available for SAL.

Floating-point Registers

Although thereis no SAL procedure that passes floating-point parameters, the floating-point
register conventions are the similar to those specified by the | A-64 Software Conventions and
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus
eliminating the need for the OS to save these registers across SAL procedure calls. All the pending
floating-point exceptions must be handled before calling SAL if the execution environment for
calling SAL cannot handle any floating-point exceptions.

Predicate Registers

The conventions for these registers follow the | A-64 Software Conventions and Runtime
Architecture Guide.

Calling Conventions

8.1.7

8.1.8

8.1.9

8.2

Branch Registers

The conventions for these registers follows the 1 A-64 Software Conventions and Runtime
Architecture Guide.

Application Special Registers

The application registers follow the | A-64 Software Conventions and Runtime Architecture Guide.

Parameter Buffers

The parameter buffersto SAL_PROC must be aligned to the greater of its data type size or 8-byte
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of
the parameter buffers depends on the execution environment of the caller. The following
conventions are followed for the parameter buffers:

« Until the OS takes over the IVT and trandation faults, parameter buffers passed to SAL are
identity mapped virtual addresses and are accessible by theregion register 0 (RRO). In this
environment, SAL can handle the access faults while accessing parameter buffersif the buffers
are identity mapped.

» Parameter buffers passed to SAL runtime services can be either physical or virtual. If the
parameter buffers are virtual, the OS runtime execution environment must provide the proper
mapping for the parameter buffers.

Software Interface Conventions for SAL Procedures

A generic |A-64 interface is provided between 1A-64 OS and SAL. |A-64 OS alwaysfollows the
standard calling convention to call SAL functions. The parameters passed to the SAL interface are
defined asfollows:

SAL_PROC(arg0, argl, ..., arg?)
Where, input parameters (maximum of eight 64-bit values) are:

arg0 —functiona identifier. Currently the upper 32 bits are ignored and only the lower 32 bits
are used. The following functional identifiers are defined:

OXOLXXXXXX — Architected SAL functional group

OX02X XX XXX to OXO3XXXXXX — OEM SAL functional group. Each OEM is allowed to
use the entire range in the 0X02X XXX XX range. The 0X03X XXX XX rangeisreserved
exclusively for Firmware vendors.

OXO04XX XXX X to OXFFFFFFFF — Reserved
argl —thefirst parameter of the architected/ OEM specific SAL functions.
arg2 to arg7 — additional parameters for architected/OEM specific SAL functions.
and return parameters (maximum of four 64-bit values) are:
retO — return status: positive number indicates successful, negative number indicates failure.
retl to ret3 — other return parameters.

Calling Conventions 8-5

8.2.1

Control Flow of the SAL Interface

OS/Loader follows the standard calling convention to call both architected and OEM specific SAL
functions. OS/Loader sets up the appropriate parametersin | A-64 general registers according to the
calling convention and calls SAL_PROC. The first parameter passed to SAL_PROC specifies the
functional identifier and based on the functional identifier, SAL dispatches the function to the
appropriate functional block. Figure 8-1 shows the control flow of the SAL interface.

Figure 8-1. Control Flow of the SAL Procedure Interface

8.2.2

8.22.1

8-6

C OS/Loader)

|

SAL defined IA-64 interfaces:
Setup parameters in |1A-64
registers (arg0...arg7)
according to standard calling
convention:

arg0 — Function ID,

arglto arg7 — parameters.

l

‘ SAL_PROC (arg0,...,arg7) ‘

/\

Architected SAL Functions | | OEM SAL Functions

Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the OS/Loader sets up arg0 to the appropriate
architected SAL or OEM specific SAL functional identifier. It then sets up other parametersin argl
to arg7 as specified by the SAL functional description and calls SAL_PROC. SAL_PROC
dispatches this function to either the architected SAL function handler or the OEM specific SAL
function handler based on the functional identifier. The SAL function returns the status in retO and
the additional return parametersin retl to ret3.

SAL Return Status Value

SAL procedures return a 64-hit status value in the r et 0 parameter. Positive numbersindicate
success and negative numbersindicate failure. The following table summarizes the error code.

Calling Conventions

intel.

Table 8-5. SAL Return Status

Register Conventions
0 Call completed without error
1 Call completed without error but some information was lost due to overflow
2 Call completed without error; effect a warm boot of the system to complete the
update
3 More information is available to be retrieved.
-1 Not implemented
-2 Invalid Argument
-3 Call completed with error due to hardware malfunction or firmware error
-4 Virtual address not registered
-5 No information available
-9 Scratch buffer required

Calling Conventions

8-7

Calling Conventions

intel.

SAL Procedures 9

9.1

9.1.1

SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the OSwhen it is
executing. These services provide a platform-independent interface for hardware components.
runtime services contain procedures called by the OS to access platform hardware features on
behalf of the OS. runtime services should take no more time to perform an action than it would take
the OS to perform the same action.

The entire SAL runtime services code must be located in one contiguous memory area. Similarly,
the SAL runtime services data area must be located in one contiguous memory area.

SAL runtime services are called from the following execution environment:
« OS runtime execution environment. The normal OS execution environment is with translation
on and interrupts enabled but OS may choose to call SAL runtime services in physical mode.
* OS Machine Check and INIT handler. The execution environment for these are provided by
SAL and are in physical mode with interrupts disabled.
e SAL PMI handler. The execution environment isin physical mode with interrupts disabled.

The following general rules govern the operational characteristics of the SAL procedures:

e SAL runsin privilegelevel 0 and will return an error if called from other privilege levels.

» SAL runslittle endian.

« SAL procedures follow the standard | A-64 calling convention. SAL runtime services shall be

implemented completely in the IA-64 1SA.

» SAL procedures are not re-entrant with respect to any runtime service (including itself).

» SAL procedures are not MP-safe except for the SAL_MC_RENDEZ, SAL_CACHE_FLUSH
and SAL_CACHE_INIT procedures. The OSisrequired to enforce single threaded access to
the other SAL procedures.

Architected SAL runtime procedures are called either in virtual or physical mode under the OS

execution environment. OEM specific SAL runtime procedures may not support both virtual

and physical modes of operation.

e All SAL procedures that don’t return the status of unimplemented procedure (—1), must be
implemented.

Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal OS execution
environment is with translation on and interrupts enabled but OS may choose to call SAL runtime
servicesin physica mode.

The parameters passed to SAL runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the gp register must contain the physical or
virtual address of the SAL’'sgp value provided to the OS in the Entrypoint Descriptor (refer to

SAL Procedures 9-1

9.1.2

9-2

intel.

Table 3-4 on page3-13). SAL can compute the addresses of code and data objects within SAL
using offsetsrelative to thei p and gp. In other words, SAL code will be position independent.

The hand-off state from the EFI to the OS Loader will indicate the SAL’ s requirements for virtual
address mappings. (Refer to the EFI Specification for details). In a MP configuration, the virtual
addresses registered by the OS must be valid globally on all the processors in the system. The EFI
Specification also provides the interfaces for the OS to register the virtual address mappings. Some
typical requirements for virtual address mappings are described below:

1. Thecodeand dataareasof PAL and SAL in memory must be mapped contiguously in virtua
address space.

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures in memory. Prior to invoking the SAL proceduresin virtual mode, the OS must
register the virtual address of the PAL code space in memory. If SAL needs to invoke aPAL
procedure, SAL shall do so in the same mode in which it was called by the OS (i.e. without
changing the PSR.dt, PSR.rt and PSR.it bits). While invoking these SAL procedures, the OS
must provide the appropriate trandation resources required by PAL (i.e. ITRand DTC
covering the PAL code area). However, if a particular PAL procedure needsto beinvoked in
physical mode, SAL will turn off trandations and theninvaoke PAL.

3. The SAL_UPDATE_PAL procedure will invoke somePAL procedures in thefirmware
address space. The OS must register the virtual address of the firmware address space
(ending at 4 GB). The OS must provide a contiguous virtual address mapping for the entire
firmware address space. If the SAL_UPDATE_PAL procedureiscalled in the virtual mode,
SAL will compute the virtual addresses of the relevant PAL proceduresin the firmware
address space and shall call the same in virtual mode.

4. The OSshal register the virtual addresses of the Firmware Reserved Memory if requested
by the SAL (refer to Table 3-5 on page3-13). Such registration must be done prior to
making SAL calsin virtual mode and the OS must provide a contiguous virtual address
mapping for each of the data areas.

Access to Resources not Supported by OS

In order to access resources for which the OS does not provide the mapping, SAL runtime services
will access the platform resourcesin physical addressing mode. Thiswill be done by disabling the
interrupts and turning the data translation off before accessing the platform resources. SAL will
restore the state of the data translation and interrupt enable bitsin the PSR after accessing the
device. The following is a suggested code sequence:

nmov r2=psr. | //Save current PSR low 32 bits

rsm (1<<14) | (1<<17) //Mask Interrupt (PSR bit 14) and
//disable data translation (PSR bit 17)

. /1 End of instruction group

srlz.d //Serialize

N //End of instruction group

ld/st....... //Performload/store to platformspecific
/] devi ce using physical address

nf.a /] Ensure platform acceptance

SAL Procedures

9.2

HH //End of instruction group

nmov psr.l=r2 //Restore original PSR low 32 bits
. /1 End of instruction group
srlz.d /lSerialize

. /1 End of instruction group

The code sequence (from rsm to the second srlz.d) must exist in asingle page of memory and the
tranglation for this code sequence must exist. The code sequence must not cause any NaT
consumption faults. All the memory accesses in this code sequence must be naturally aligned to
avoid unaligned data reference faults. If disabling of interrupt and data translation are done
separately, interrupts need to be disabled first and then the data trandl ation. The code sequence may
not work if the datatranslation is disabled first followed by interrupt disabling. The restoring of the
processor state must be done in the reverse order. In general, interrupt and data translation should
be disabled to access the devices in physical mode and then interrupt and data translation must be
re-enabled as soon as possible.

The duration of interrupt and data trandation disabled state should be kept at a minimum to
preclude impacting normal OS functions.

SAL Procedure Summary

Table 9-1. SAL Procedures

Procedure Fun(zt;z;'n D Description
SAL_SET_VECTORS 0x01000000 | Register software code locations with SAL
SAL_GET_STATE_INFO 0x01000001 | Return Machine State information obtained

by SAL
SAL_GET_STATE_INFO_SIZE 0x01000002 | Obtain size of Machine State information
SAL_CLEAR_STATE_INFO 0x01000003 | Clear Machine State information
SAL_MC_RENDEZ 0x01000004 | Cause the processor to go into a spin loop
within SAL
SAL_MC_SET_PARAMS 0x01000005 | Register the machine check interface layer
with SAL
SAL_REGISTER_PHYSICAL_ 0x01000006 | Register the physical addresses of locations
ADDR needed by SAL
SAL_CACHE_FLUSH 0x01000008 | Flush the instruction or data caches
SAL_CACHE_INIT 0x01000009 | Initialize the instruction and data caches
SAL_PCI_CONFIG_READ 0x01000010 | Read from the PCI configuration space
SAL_PCI_CONFIG_WRITE 0x01000011 | Write to the PCI configuration space
SAL_FREQ_BASE 0x01000012 | Return the base frequency of the platform
SAL_UPDATE_PAL 0x01000020 | Update the contents of firmware blocks

SAL Procedures 9-3

SAL_CACHE_FLUSH i ntel ®

SAL_CACHE_FLUSH

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

9-4

To flush the instruction or data caches.

Standard. Callable by the OS in virtual or physical mode.

Argument Description

func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures

i_or_d Unsigned 64-bit integer denoting type of cache flush operation:
1 = Flush instruction cache
2 = Flush data cache
3 = Flush instruction & data cache
4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_CACHE_FLUSH procedure

Reserved 0

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

Flushes the instruction and/or data caches, at all levels of cache hierarchy, controlled by the
platform and the processor. The i_or_d parameter specifies the instruction and/or data caches.
Unified caches are flushed with both instruction and data caches. This procedure has the effect of
invalidating all instruction cache lines, or causing a write back and then invalidating all data cache
lines.

With thei_or_d parameter value of 4, the caller specifies SAL to make the local instruction caches

coherent with the data caches. This has the effect of ensuring that the local instruction caches see
the effects of earlier stores of instruction code done by the local processor.

This SAL procedure invokes the corresponding PAL procedure, PAL_CACHE_FLUSH. Refer to
the Intel® 1A-64 Architecture Software Developer’s Manual for details. This PAL procedure may
return to SAL without completing the flush operation should there be an intervening interrupt. The
PAL procedure also returns the external interrupt vector as areturn parameter. In order to execute
the associated external interrupt handler, SAL shall

» Writeto the EOI register (CR.e0i);
* Repost the interrupt by issuing an | Pl message to self with the vector;
» Re-enable interrupts; and

* Onreturn from the external interrupt handler, re-invoke thePAL_CACHE_FLUSH procedure
specifying the continuation point for the cache flush.

SAL Procedures

in'l:el® SAL_CACHE FLUSH

If interrupts need to be handled on atimely basis, this SAL procedure must beinvoked with
interrupts enabled, i.e. PSR.i set to 1.

Platform
Requirements: None

SAL Procedures 9-5

SAL_CACHE_INIT | n‘l‘el o

SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches.
Calling
Conventions: Standard. Callable by the OSin virtual or physica mode.
Arguments: Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-3 Call completed with error
-4 Virtual address not registered

Description: Initidizestheinstruction and data caches controlled by the platform only. The OSisrequired to
invoke the PAL_CACHE_INIT procedure to initialize the instruction and data caches within the
processor. All cache lines will be invalidated without causing a write back.

Platform
Requirements: None

9-6 SAL Procedures

intel.

SAL_CLEAR_STATE_INFO

SAL_CLEAR_STATE_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedure is used to invalidate the error record logged by SAL with respect to the machine
state at the time of MCAS, INITs, CMCs or Corrected Platform Error events.

Standard. Callable by the OSin virtual or physical mode.

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:

0 — MCA event information

1 - INIT event information

2 — Processor CMC event information

3 — Corrected Platform event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description

status Return status of SAL_CLEAR_STATE_INFO

Reserved 0

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

3 More Error Records of the type are available to be retrieved and cleared
-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

Thiscall will invalidate an error record that islogged by SAL for the specified event type. Once the
record has been invalidated, any subsequent callsto SAL_GET_STATE_INFO will get a5 return
value (no information available). In aMP environment, processor record information pertains to
the processor on which this call is executed and the platform record information pertains to the
entire platform. By calling this procedure, the OS al so signifies the completion of its machine
check handling during an MCA or INIT event handling.

If an MCA has been logged and the OS fails to invalidate the record prior to another MCA, then
SAL may save the additional error records and would consider thisto be afatal condition with a
halt or reboot of the system. This means that the error record information should be read as part of
the OS_MCA handler or OS boot loader and then followed by an explicit clear operation.

SAL returns one error record at atimethrough the SAL_GET_STATE_INFO procedure. In certain
cases, SAL may have multiple pending error records, to be retrieved. A return status value of 3
from this call indicates that SAL can be called to get more error records. Unless the current error
record is cleared, further error records shall not be provided by the SAL.

Requirements: None

SAL Procedures 9-7

SAL_FREQ BASE | n‘l‘el o

SAL_FREQ BASE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This call returns the base frequency of the platform and other clock related information.

Standard. Callable by the OSin physical or virtual mode.

Argument Description

func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures

clock_type Unsigned 64-bit integer specifying the type of clock source:
0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional)
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_FREQ_BASE procedure

clock_freq Frequency information in ticks per second

drift_info Drift value in parts per million clock ticks (optional)

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

This procedure is a runtime interface to determine the platform clock frequencies and to facilitate
the OS in selecting the most accurate clock source. This call could, in turn, use the services of
PAL_FREQ _BASE if the processor implementation provides an output that is used as the platform
clock.

The platform base clock frequency (clock_freq return parameter for clock_type of 0), in
conjunction with the ratios returned by the PAL_FREQ_ RATIOS, may be used to determine the
frequencies of the processor, the front side bus and the interval timer within the processor.

This procedure must supply the correct value for the platform base clock frequency (clock_type of
0) and this value returned cannot be -1. Support for the other clock types and drift information is
optional. The value in theclock _freq and drift_info fieldsis set to -1 if the requested information is
not available.

Requirements: 1A-64 platforms must provide mechanisms to determine the base frequency of the platform.

9-8

SAL Procedures

intel.

SAL_GET_STATE_INFO

SAL_GET_STATE_INFO

Purpose:

Calling

Conventions:

Arguments:

Returns:

Status:

Description:

Provide a programmatic interface to the processor and platform information logged by SAL with

respect to the machine state at the time of the MCAs, INITs, CMCs or Corrected Platform events.

Standard. Callable by the OSin virtual or physical mode.

Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:

0 — MCA event information

1 — INIT event information

2 — Processor CMC event information

3 — Corrected Platform Event information
Other values are reserved

Reserved 0
memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description

status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered
-5 No information available

This procedure enables the OS (and diagnostic software) to gather information obtained by SAL
with respect to the machine state at the time of MCAs, INITs, Processor CMCs or Corrected
Platform events.

Thiscall will return any information logged by SAL for the specified event type. In response to the
MCA, Processor CMC or Corrected Platform event, the OS must call this procedure to obtain all
the pending processor and platform error information that triggered the event.

The OSis expected to call this procedure to retrieve the error record related to an event. The OS
may retrieve the same information multiple times prior to clearing the record. The record is cleared
by the OS calling SAL_CLEAR_STATE_INFO. Once al the records have been cleared, any
subsequent calls will get a—5 return value (no information available). The OS must be prepared to
handle the -5 return value. In the case of multiple pending error records of the same type, the OS
has to get and clear the current record before it can get the next one.

The maximum length of the buffer required to hold the requested record information is obtained by
caling the SAL_GET_STATE_INFO_SIZE procedure. The OS is expected to allocate the memory
buffer according to the returned size and provide the same for the memaddr argument. SAL returns
only one error record at atime in the memory buffer area provided by the memaddr argument. SAL

SAL Procedures 9-9

SAL_GET_STATE_INFO inte|®

Platform

may indicate the existence of more than one error record through an appropriate return status
during the call to the SAL_CLEAR_STATE_INFO procedure.

In a MP environment, processor record information pertains to the processor on which this call is
executed and the platform record information pertains to the platform. The information returned in
the memaddr argument will contain the error information logged for an event for al the error
deviceslike the called processor, memory controller, and I/O devices (including host bridges) in the
system. The exact format of the records will be implementation dependent but the record for each
type of device will follow an architected structure to alow the OS to parse the records and extract
the information. Refer to Appendix B, “Error Record Structures” for format of the error record
information returned in the memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedureis
invoked for CMC information on a particular processor, SAL will obtain all of the processor error
information, by invoking the PAL_MC_ERROR_INFO procedure. This procedure will then return
to the caller both the information buffered by SAL and the information collected from the PAL.

If an MCA has been logged and the OS fails to clear the log prior to another MCA, then SAL may

save the additional error records and would consider thisto be afatal condition with ahalt or reboot
of the system. Hence, the MCA log information should be read as part of the OS_MCA handler or

OS boot |oader. On the other hand, if aCMC occurs prior to the OS clearing the CMC error log, the
same shall not befatal. If SAL'sinternal buffers are not sufficient to log multiple errors of the same
type, SAL shall discard the error logs for the latter occurrences.

An error record shall be available acrossrebootsif the OS has not cleared it already. SAL shall have
an implementation specific NVM storage for backing up the error records. An OS is expected to
retrieve and clear al pending error records during system boot time.

Requirements: None

9-10

SAL Procedures

intel.

SAL_GET_STATE_INFO_SIZE

SAL_GET_STATE_INFO_SIZE

Purpose: This procedure is used to obtain the maximum size of the information that could be logged by SAL
with respect to the machine state at the time of MCAs, INITs or CMCs.

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode.

Arguments: Argument
func_id

type

Reserved
Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value

Description

Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL
procedures.

The type of information being requested:

0 — MCA event information

1 - INIT event information

2 — Processor CMC event information

3 — Corrected Platform Event information
Other values are reserved

[eNeoNeoNoNoNe)

Description

status
size
Reserved
Reserved

Status: Status Value

Return status of SAL_GET_STATE_INFO_SIZE

The maximum size of the information logged for the specified type
0

0

Description

0
-2
-3
4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: Thiscall will return the maximum size of the processor or platform information logged by SAL for
the specified event type. The OS must make this call to determine the maximum size of datalogged
by SAL for each type of record. The OS may then allocate suitable buffers, and provide the
pre-allocated buffers as argument to subsequent callsto the SAL_GET_STATE_INFO procedure.

Platform
Requirements: None.

SAL Procedures

9-11

SAL_MC_RENDEZ | n‘l‘el o

SAL_MC_RENDEZ

Purpose:

Calling

Conventions:

Arguments:

Returns:

Status:

Description:

This procedure causes the processor to go into aspin loop within SAL where SAL awaits awake up
from the monarch processor.

Standard. Callable by the OSin virtual or physical mode.

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-3 Call completed with error
-4 Virtual address not registered

This procedure is invoked on non-monarch processors during machine check processing. This
procedure will disable interrupts and set an implementation dependent check-in flag within the
SAL data areato indicate to the monarch processor that the non-monarch processor has reached the
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete all outstanding
transactions within the processor. The non-monarch processor will then go into aspin loop awaiting
awake up signal from the monarch processor. The wake up mechanism may be an external
interrupt Lor amemory semaphore as set up by the SAL_MC_SET_PARAMS procedure. SAL will
return an error if awake up mechanism has not been registered.

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will poll the local
SAPIC IRR register for the bit corresponding to the selected wakeup interrupt to be set.

If amemory semaphore mechanism is chosen, SAL spin loop routine will poll the memory
semaphore for the unique value that includes the contents of the Local ID Register (refer to

Figure 3-1). The monarch processor will set thisvalue to wake up one non-monarch processor at a
time. SAL on the non-monarch processor will clear the memory semaphore to zero and return. This
procedure may be called in virtual or physical mode but when memory semaphore mechanismis
chosen, this procedure must be called in the same mode as the previous call to the
SAL_MC_SET_PARAMS procedure that specified the memory semaphore.

The non-monarch processor will enter the spin loop routine and begin polling the wake up
mechanism within 1 second after invocation of thiscall.

1. The recommended option isfor the OS to use memory semaphore for wake-up than an interrupt. If awake-up
interrupt is used by the OS, it will have to take into consideration many race conditions.

9-12

SAL Procedures

i ntel R SAL_MC_RENDEZ

When this procedure returns, it is the responsibility of the OS to clear the IRR bits for the
MC_rendezvous interrupt and the wake up interrupt, if any.

This procedure is required for MP support. This SAL procedure isrequired to be MP-safein order
that OS on the various non-monarch processors may enter theidle loop within the SAL
simultaneously.

Platform
Requirements: None

SAL Procedures 9-13

SAL_MC_SET_PARAMS

intel.

SAL_MC_SET_PARAMS

Purpose: This procedure allows the OS to specify the interrupt number to be used by SAL to interrupt the OS
during the machine check rendezvous sequence as well as the mechanism to wake up the
non-monarch processors at the end of machine check processing.

Calling

Conventions: Standard. Callable by the OS in virtual or physical mode.

Arguments: Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures

param_type Unsigned 64-bit integer value for the parameter type of the machine check
interface:
1 =rendezvous interrupt
2 = wake up?
3 = Corrected Platform Error Interrupt Vector
Other values are reserved
i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory
address is specified:
1 = interrupt vector
2 = memory address
Other values are reserved
i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory
address associated with the [_or_m parameter specified above.
time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds). The
minimum value is 1 second. Any value less than 1000 defaults to 1000.
rz_always A flag set by OS to indicate if a rendezvous should be done by firmware for all
MCA's. A non-zero value indicates that rendezvous is always required.
Reserved 0
Reserved 0
a. The recommended option is for the OS to use memory semaphore for wake-up than an interrupt. If a
wake-up interrupt is used by the OS, it will have to take into consideration many race conditions.
Returns: Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-1 Not implemented
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered
Description: This procedure is required for MP support. Section 3.2.2.1 provides detailson how the rendezvous

mechanism works in aMP configuration.

There are some machine check conditions which require the other processorsin the system to be
rendezvoused for error containment purposes and to recover from the error condition. This
procedure allows the OS to register the interrupt number it wishesto use for this purpose. Typically,
when the OS on the non-monarch processor receives the rendezvous interrupt, it will turn around
and call SAL_MC_RENDEZ to go into a SAL spin loop routine. If the OS does not register this
interrupt, SAL_CHECK on the monarch processor will be forced to issue INIT and thereby

9-14 SAL Procedures

SAL_MC_SET_PARAMS

compromise the recoverability from the machine check condition. This procedure must be called
before MCAs can be handled by the OS.

The param_type parameter indicates whether the rendezvous interrupt or wake up mechanism or
corrected platform error interrupt vector (CPEV) is being specified. If param_typeis1, thei_or_m
parameter isignored.

Thei_or_m parameter specifies whether an interrupt or memory semaphoreis used. Interrupt isthe
only valid choice for the rendezvous function since the ideais to interrupt the non-monarch
processor as quickly as possible & corrected platform errors. Either interrupt or memory may be
used for the wake up mechanism and this is OS implementation dependent.

Thei_or_m val parameter specifies the interrupt vector number or the memory address associated
with thei_or_m parameter. If memory address is used for the wake up mechanism, the memory
semaphore must be aligned on an 8-byte boundary and coherent across the system fabric.

For the rendezvous interrupt vector, avalue of 0 indicates use of PM| as the interrupt mechanism.
The PMI interrupt mechanism shall not be employed by 1A-64 OSs as either the rendezvous or the
wake-up interrupt. Only the PAL layer to support |A-32 OSs may use the PMI as the rendezvous
interrupt since al the external interrupt vectors may bein use by the 1A-32 OS. The SAPIC IPI
message signalling the MC_rendezvous interrupt of PMI type shall specify avalue of 13in the
vector field of the IPl message. The PMI interrupt mechanism shall not be employed as the
wake-up interrupt by any OS.

The PMI interrupt mechanism needs to be supported only on platformsthat support | A-32 OSsand
SAL may return an error status on other platforms.

If the rz_alwaysflag is set to a non-zero value by the OS, SAL is expected to rendezvous the
system for al detected processor and platform MCA conditions. If thisflag is set to zero, then
rendezvous is done only when PAL initiates the rendezvous request during an MCA or if SAL
decidesto do it for certain platform MCA. This parameter is valid only when the param typeis
rendezvous interrupt.

For the corrected platform error interrupt vector, the OS would register the same interrupt vector
number that is programmed into the IOSAPIC redirection table entry for triggering platform
corrected error interrupts.

Except for the above, the external interrupt vector value must bein the range of 16 to 255 since
these are the acceptable values that can be transferred using SAPIC I Pl messages. A high value
should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if
not using memory semaphore mechanism). Thisis because the OS is responsible for clearing the
IRR bit associated with the wake up interrupt vector by reading the IVR and if the wake up
interrupt bit is not cleared promptly, alater call to the SAL_MC_RENDEZ procedure may return
prematurely.

This procedure may be called in virtual or physical mode but when the i_or_m parameter specifies
amemory address, subsequent calls to the SAL_MC_RENDEZ must be made in the same mode
(virtual/physical) asthiscall.

Thetime_out field defines the rendezvous time out period in milliseconds with a minimum value of
1 second. This parameter is only applicable to the param_type of rendezvous interrupt. If the
non-monarch processor does notinvoke SAL_MC_RENDEZ within the time out period, the
monarch processor will generate an INIT signal to the non-monarch processor. The time out value
must be sufficient to cover situations where other processors may be in local MCA and thus not be
capable of servicing externa interruptsor INIT.

SAL Procedures 9-15

SAL_MC_SET_PARAMS inte|®

Platform
Requirements: None

9-16 SAL Procedures

intel.

SAL_PCI_CONFIG_READ

SAL_PCI_CONFIG_READ

Purpose: This procedure is used to read from the PCI configuration space.

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode. Good programming practices dictate
that indexed accesses to the configuration space be serialized in order to be MP-sefe.

Arguments: Argument

Description

func_id
address

size

Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value

Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
PCI configuration address:

Bits 0..7 — Register address

Bits 8..10 — Function number

Bits 11..15 — Device number

Bits 16..23 — Bus number

Bits 24..31 — Segment number

Bits 32..63 — Reserved (0)

Must be naturally aligned with respect to the size of the read.
PCI config size (1, 2 or 4 bytes)

0

0

0

0

0

Description

status
value
Reserved
Reserved

Status: Status Value

Return status of SAL_PCI_CONFIG_READ procedure
Value read from config space.

0

0

Description

0
-2
-3
4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: This procedure is a runtime interface used to read from PCI configuration space. The mechanism
for accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges
to implement this mechanism in different ways.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

Platform
Requirements: None

SAL Procedures

9-17

SAL_PCI_CONFIG_WRITE

SAL_PCI_CONFIG_WRITE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedure is used to write to the PCI configuration space.

Standard. Callable by the OS in virtual or physical mode. Good programming practices dictate that
indexed accesses to the configuration space be serialized in order to be MP-safe.

Argument Description
func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address:
Bits 0..7 — Register address
Bits 8..10 — Function number
Bits 11..15 — Device number
Bits 16..23 — Bus number
Bits 24..31 — Segment number
Bits 32..63 — Reserved (0)
Must be naturally aligned with respect to the size of the write.
size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This procedure is a runtime interface used to write to PCI configuration space. The mechanism for
accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges to
implement this mechanism in different ways. This procedure will guarantee the completion of the

writeto the calle.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

Requirements:None

9-18

SAL Procedures

intel.

SAL_REGISTER_PHYSICAL_ADDR

SAL_REGISTER_PHYSICAL_ADDR

Arguments: Provide a mechanism for software to register the physical addresses of |ocations needed by SAL

Calling

Conventions: Standard. Callable by the OSin virtual or physical mode.

Arguments: Argument
func_id

phys_entity

p_addr

Reserved
Reserved
Reserved
Reserved
Reserved

Returns: Return Value
status
Reserved
Reserved
Reserved

Status: Status Value

Description

Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL

procedures

The encoded value of the entity whose physical address is registered
0 = PAL_PROC

Other values are reserved

64-bit integer value denoting the physical address

0

0

0

0

0

Description

Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
0

0

0

Description

0
-2
-3
4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

Description: This procedure is used by the OS to register the new physical addresses of the PAL_PROC
procedurein memory. If the OSwereto copy PAL proceduresto adifferent memory location (using
the PAL_COPY _PAL procedure), it must register the new PAL_PROC entrypoint address with the
SAL. The SAL layer will then be in a position toinvoke the PAL proceduresin physical mode.

The phys_entity argument specifies the entity whose physical addressis being registered with the
SAL and the p_addr argument providesits physical address.

Platform
Requirements: None

SAL Procedures

9-19

SAL_SET_VECTORS in‘te|®

SAL_SET_VECTORS

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

9-20

Provide a mechanism for software to register software dependent code locations with SAL. These
locations are “handlers’ or entrypoints where SAL will pass control for the specified event. The
events handled are for the Boot Rendezvous, MCAs and INIT scenarios.

Standard. Callable by the OSin virtual or physical mode.

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:

0 = Machine Check

1=INIT

2 =BOOT_RENDEZ
3-64 = Reserved

other values are implementation dependent
phys_addr_1 Physical address of the event handler.

gp_1 Global pointer (GP) of the event handler. This field must be a 16-byte aligned
address.

length_1 Size of the event handler procedure in bytes

phys_addr_2 Physical address of the event handler.

gp_2 Global pointer (GP) of the event handler. This field must be a 16-byte aligned
address.

length_2 Size of the event handler procedure in bytes

Return Value Description

status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedure enables the OS (and diagnostic software) to inform firmware whether it isready to
handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely where to vector for
each case. Since all three eventsresult in having processor execution being controlled by firmware,
firmware reguires these software addresses of the OS or diagnosticsin order to pass control. The
OS registers the physical address where the specific handler resides. SAL uses these addresses to
vector to on occurrence of the event.

For the INIT event in an MP configuration, separate arguments must be provided for the first
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The
phys addr_1, gp_1 and length_1 arguments specify the entrypoint, gp-value and the length
respectively of the OS_INIT procedure for the monarch and thephys_addr_2, gp_2 and length_2
arguments respectively specify the entrypoint, gp-value and the length of the OS_INIT procedure
for the non-monarch processors. The entrypoints within the OS for the monarch and non-monarch
processors could be the same if the OS intends to perform the monarch selection.

The valuein the phys_addr_n argument must be 16-byte aligned. The phys_addr_n argument may
be checked as to whether it pointsinto legal memory space (as opposed to 1/O space or firmware

SAL Procedures

inte|® SAL_SET VECTORS

space). Specifying avalue of 0 in the phys_addr_n argument invalidates the event handler
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it isnot possible toinvalidate only
one of the two entrypoints.

The gp_n field has the physical address of the GP for theevent handler to be called by SAL. The
length_n argument contains the length in bytes of the OS procedure (or at least the first level

OS _MCA, OS_INIT, OS BOOT_RENDEZ procedure). If thelength_n argument is non-zero, SAL
computes and saves the checksum of the OS procedure. If this procedure were invoked in the
virtual addressing mode, the OS must provide read access to the code area for calculating the
checksum. Before invoking the registered OS procedure, SAL shall authenticate the OS code by
verifying its checksum.

Platform
Requirements: None

SAL Procedures 9-21

SAL_UPDATE_PAL | n‘l‘el o

SAL_UPDATE_PAL

Purpose: This procedure is used to update the contents of the PAL block in the non-volatile storage device.
Calling
Conventions: Standard. Callable by the OSin virtual or physica mode.
Arguments: Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size | Unsigned 64-bit integer value for the size of the scratch buffer in bytes
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req | Size of the scratch buffer needed
Reserved 0
Status: Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update.
-2 Invalid Argument
-3 Call completed with error. See error_code for details
-4 Virtual address not registered
-9 Insufficient scratch buffer provided

Description: This procedure updates the contents of firmware blocks (e.g.PAL_B) in the non-volatile storage
device and revises the FIT entries pertaining to the firmware blocks. If checksum isimplemented
for the FIT table, this procedure will also revise the same. This procedure is capable of selecting the
appropriate location in the storage device for the firmware components. In some flash ROM
architectures, updates may not be possible until the following INIT. This scenario is described later.

Before performing update of PAL, this procedure will utilize resources within the processor and/or
PAL to authenticate the contents of the new version o PAL provided by the caller. If the
authentication is unsuccessful, the currentPAL contents will be left intact.

The param_buf pointsto a 16-byte aligned data structure in memory with alength of 32 bytes that
describes the new firmware. Thisinformation is organized in the form of alinked list with each
element describing onefirmware component. This procedure will update all the specified firmware
components as well astheir FIT entriesif successful, and none of the firmware components if
errors are encountered. The following table shows the format of each element of the data structure.
Refer to Section 2.5, “Firmware Interface Table” for explanation of fields within the FIT.

Offset Length Description

0 8 64-bit pointer to the next element (0 if none present)

8 8 64-bit memory address of the update _data_block containing new firmware
contents

16 1 Checksum flag:

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry
17 15 Reserved

9-22 SAL Procedures

|nte| o SAL_UPDATE_PAL

The update_data_block consists of a header of 64 bytes followed by the code for the firmware
component. The following table shows the contents of the 64 byte header.

Offset Length Description

0 4 Size of the firmware component in bytes including the header (This field
must be a multiple of 16)

4 4 Date of the firmware component in mmddyyyy format: month, day, year
(e.g. 07/18/99 stored as 0x07181999)

8 2 Version number of the firmware component to be stored in its FIT entry

10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)
1=PAL_B; OXOF = PAL_A

11 5 Reserved

16 8 Firmware Vendor ID

24 40 Reserved

This procedure will locate thePAL_B block on a 32K byte aligned boundary on the storage device.

If the scratch buffer size specified in the scratch_buf_size field isinsufficient, the call will fail with
astatus of —7 and the scrbuf_size req return parameter will specify the size of the scratch buffer
required.

SAL reads the CPU identification registers on al the processorsin the system and maintains the
processor stepping information. If the PAL_B component is being updated, SAL will ensure that
the version number of the new PAL_B in theupdate _data_block is compatible with all the
processors on the system else return an error status.

The error_code return parameter provides additional information on the failure when the status
field contains a value of —3. Following are the definitions for the error_code field.

Error Code Description

-1 Version number of supplied PAL firmware is not suitable for one or more
processors in the system

-2 Supplied version of PAL failed the authentication test

-3 Invalid firmware component type

-4 PAL_A firmware not erasable

-5to-9 Reserved

-10 Write failure — inability to write to storage device

-11 Erase failure — inability to erase the storage device

-12 Read failure — inability to read the storage device

-13 Insufficient space in the storage device

In some firmware architectures (e.g. flash), writes to achip or component containing firmware
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL
firmware code for handling machine checks were located on the chip being revised, machine
checks must be masked on all the processors to avoid possible instruction fetch accesses to the
firmware address space. In an MP environment, the OS must rendezvous all the other processors on
the node whose firmware is being updated. At the end of the firmware update, the OS must invoke
the PAL_MC_ERROR_INFO procedure to ascertain whether any machine checks occurred while
they were masked and take corrective actions. The OS must then wake up the rendezvoused
processors and re-enable machine checks. In a multi-node system with multiple copies of firmware,
it may be possible to redirect interrupts to nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash
hardware except immediately following a Reset or INIT. The OS may call this procedure in virtual
mode but it isrequired to fix the pages containing the new firmware contentsin memory, i.e. the OS

SAL Procedures 9-23

SAL_UPDATE_PAL | n‘l‘el o

Platform

Requirements:

9-24

must not change the contents of the corresponding physical pages until the firmware update is
complete. SAL will be aware of flash architecture restrictions and will perform the usual
authentication steps. If the authentication is successful, SAL will accumulate the physical addresses
of the new firmware contents by executing the TPA instruction. (There may be several
non-contiguous physical pagesif the OS had called this procedure in virtual mode). SAL will then
return to the OS a status value of 1 requesting awarm reboot. When SAL regains control following
the warm reboot, it will conduct the authentication steps again and, if successful, update the
contents of firmware.

The firmware update is effective on the next reboot. However, after a successful update, firmware
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM
(new code) will be utilized by the machine check and INIT events while the copy in memory (old
code) will be utilized by the OS. The OS may solve this problem either by rebooting the system
following afirmware update, or by updating the memory copy o PAL procedures by invoking the
PAL_COPY_PAL procedure.

If the OS decides to update the memory copy of PAL procedures, there are additional
considerations in an MP environment:

1. Whiletheruntime copy of PAL isbeing revised (during execution of the PAL_COPY_PAL
procedure), all the processors in the system must be prevented from executing PAL
proceduresin memory.

2. The monarch processor, after invoking thePAL_COPY _PAL procedure, mustinvaidate its
instruction cache by invoking the PAL_CACHE_INIT procedure as it would be
non-coherent with respect to the data cache.

3. The non-monarch processors on being woken up by the monarch processor must invoke the
PAL_COPY_PAL procedure to register the new PAL entrypoints for PAL_PMI and
PAL_FP. The non-monarch processors must do a SRLZ.| instruction to ensure that
modifications to instruction prefetches are observed.

4. If the physical address of thePAL_PROC procedure changes, the OS must register the new
address with SAL by invoking the SAL_REGISTER_PHY SICAL_ADDR procedure.

Platform must provide non-volétile storage space to save firmware components.

SAL Procedures

intel.

Glossary A

Glossary

ACPI

AP

API

BIOS

Advanced Configuration and Power Interface Specification.

Application Processor. One of the processors not responsible for system initialization.

Application Programming Interface.

Basic Input/Output System. A collection of routines that includes Power On Self-test
(POST), system configuration and a software layer between the operating system and
hardware. BIOS iswritten in 1A-32 instruction set.

Boot Block Support

BSP

BSP

CMC

A hardware and/or software implementation that permitsthe end user to recover PAL/SAL
layers of software into the flash part after the previous flash programming attempt was
accidentally aborted.

Bootstrap Processor. The processor responsible for system initialization.

Backing Store Pointer (AR.BSP).

Corrected Machine Check.

Cold Boot vs. Warm Boot

Cold Boot refersto a hardware/software event that sets all circuitry, including all
processors, system components, add-in cards and control logic, to aninitial state. Warm
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any
or all of the processor(s) on the system to an initia state. Warm Boot may be triggered by
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not
corrupt any pending cycles. Destructive memory tests are not performed during warm
boot.

Cold Reset vs. Hard Reset

Cold Reset refersto a hardware signal that setsal circuitry, including all processors,
buses, system components, add-in cards and control logic, to aninitial state. Hard Reset is
triggered by asimilar hardware signal. Hard Reset differs from Cold Reset in that some
sticky error flags in some system components may not be cleared, thereby allowing
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate
without regard to cycle boundaries and are typically asserted by the RESET pin. Both
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.

A-1

intel.

Corrected Platform Error Interrupt
Interrupt generated by the platform following a hardware corrected error. The interrupt
vector is set by the OS (e.g., in the vector field of an I/O SAPIC redirection table entry).

EFI
Extensible Firmware Interface. Firmware that provides alegacy free API interface to the
OS.
EOI
End of Interrupt.
FT
Fault Tolerant.
GP

Global Data Pointer. Every procedure that references statically-allocated data or calls
another procedure requires a pointer to its data segment in the GP register so that it can
access its static dataand its linkage tables.

Hardware-protected Flash Region
Thisterm refersto apart of the flash storage that is hardware-protected against accidental
erasure. Usudly, thisregion is programmed by the OEM only. The hardware protection
can either be on-chip and/or platform supported hardware.

IA-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software
Developer’s Manual.

I1A-64
The new | SA with 64-bit instruction capabilities, new performance enhancing features,
and support for the |A-32 instruction set.
IA-64 0S
An operating system which iswritten using the | A-64 code that can run | A-64 applications
(IA-64, 1A-32 code).
INTA
Interrupt Acknowledge.
1Pl
Interprocessor Interrupts.
IPL
Initial Program Load.
ISA
Instruction Set Architecture.
IVT

Interrupt Vector Table.

Glossary

Glossary

MBR

Master Boot Record.

MC_rendezvous I nterrupt

MCA

An externa interrupt vector provided to SAL by the IA-64 OS for interrupting the |A-64
OS running on the APs.

Machine Check Abort.

Minimal State Save Area

Arearegistered by SAL with PAL for saving minimal processor state during machine
check and INIT processing. This area must be aligned on a 512-byte boundary and must
be in uncacheable memory. See the PAL EASfor details.

Monarch Processor

MP

MPS

NTFS

NVM

oS

PAL

Plabel

PMI

The processor selected by SAL to accumulate al the platform error logs and continue with
the machine check processing, when multiple processors experience machine checks
simultaneously.

Multiprocessor.

Multiprocessor Specification.

Windows NT File System.

Non-volatile Memory.

Operating System.

Processor Abstraction Layer. Firmware that abstracts processor implementati on-specific
features.

Procedure |abel, areference or pointer to afunction. A plabel takes the form of apointer to
aspecial descriptor (a plabel descriptor) that uniquely identifies the function. The plabel
descriptor contains the address of the function’ s actual entrypoint as well asitslinkage
table pointer.

Platform Management Interrupt.

System Abstraction Layer. Firmware that abstracts system implementation differences.

A-3

A4

intel.

SAL_REV

SAPIC

The revision number of the |A-64 SAL specification supported by the SAL
implementation. This information contains two one-bytefields for Major and Minor
revision numbers and the same are represented in binary coded decimal (BCD) format.
For example, if this variable contains 02h, 06h, the SAL revision is2.6. The major version
isincremented when the SAL API changes. The minor version is incremented when
underlying functionality changes but the API remains the same. SAL implementations
pertaining to a particular | A-64 SAL revision specification shall be compatible with each
other at the published SAL external interfaces.

Streamlined Advanced Programmabl e Interrupt Controller. The code name for the high
performance interrupt architecture for the 64-bit IA-64 1SA extensions to the 32-bit Intel
Architecture (I1A-32). The Local SAPIC resides within the processor and accepts
interrupts sent on the system bus. The |/O SAPIC resides on the 1/0 subsystem and
provides the interrupt input pins on which I/O devices inject interruptsinto the system.

Sector
Thisterm refersto alogical block of 512 bytes.
sP
Memory Stack Pointer.
Swizzling
Thisterm refers to mapping a 32-bit virtual linear address space into four virtual regions
of the 64-bit virtual address space. Swizzling is defined as:
virtual _address{63} =0
virtual _address{62: 61} = 32-bit_virtual _address{31: 30}
virtual _address{60:32} =0
virtual _address{31: 0} = 32-bit_virtual _address{31: 0}
TLB
Translation Lookaside Buffer.
TSS
Task State Segment.
usB
Universal Serial Bus.
VHPT
Virtual Hash Page Table.
WBL

Write-back with Limited Speculation.

Corrected Error

All errors of thistype are either corrected by the processor/platform hardware/firmware.

Glossary

Recoverable Error
Recoverable errors cannot be corrected by either the hardware or firmware. These type of
errorsreguires more OS analysis and a corrective action to recover. System operation/state
isimpacted to a some extent.

Fatal Error
Thesetype of errors cannot be corrected by the processor hardware, firmware, and the OS.
Theintegrity of the system, including the 1O devicesis not guaranteed and may require 1O
deviceinitialization and a system reboot to continue.

Glossary A-5

A-6

Glossary

intel.

Error Record Structures B

B.1 Overview

The goals of the |A-64 Error Record structures is to keep it generic and flexible enough to be
extensible and to abstract processor or platform implementation dependencies from the OS layers,
at the same time providing as much error information as possible to the OS for error handling
purposes.

B.2 Error Record Structure

The error record structure consist of many different components called sections. Each error record
captures error information for one error event consisting of multiple sections. The size of the error
record structure isasindicated by RECORD_LEN and is dynamically set based on thetotal size of
all the section headers and section bodies combined.

An error record consists of ageneric header followed by alist of sections with actual error
information for the event. Each section relates to a particular error device (ex: processor, platform
memory, platform PCI Bus, platform ISA Bus etc.), having a section header followed by section
body. Each of the section error information fields will have an associated validation bit(s), which
are part of the section body. A unique GUID is associated with each section for identification of the
error device type (ex: processor, platform memory, platform PCI bus etc.).

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

eee@

Section-n Header

Section-n Body

Error Record Structures B-1

B.2.1

B.2.2

B-2

intel.

Record Header

The format of the header for both the platform and processor error record is as shown below:

Refer to the Intel® |A-64 Architecture Software Developer’s Manual for explanation of fields not
described in this document.

Offset

Length

Field Description

0

8

10

12
16

8 bytes

2 bytes

2 bytes

4 bytes
8 bytes

RECORD_ID Unigue monotonically increasing ID for MCA, INIT and
CMC events Records

REVISION 2-byte Major and Minor revision number of the Record in
BCD format

ByteO — Minor
Bytel — Major
ERR_SEVERITY This encoded field indicates error severity
0 — Recoverable
1 — Fatal
2 — Corrected

Others — Reserved
RECORD_LEN Length of this error record in bytes, including the header
TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred in
BCD format.

Byte 0 — Seconds
Byte 1 — Minutes
Byte 2 — Hours
Byte 3 — Reserved
Byte 4 — Day

Byte 5 — Month
Byte 6 — Year

Byte 7 — Century

The Device specific error section follows the header. For processor errors, this field will contain an
areathat is architected for all 1A-64 processors. For platform errors, this section will contain
information specific to the platform devices.

Section Header

The format of the section header for all error devices is as shown below:

Offset |Length Field Description
0 16 GUID Unique 16-byte GUID for the error device
bytes

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in
BCD format
ByteO — Minor
Bytel — Major

18 2 bytes RESERVED Reserved

20 4 bytes SECTION_LEN Length of this error device section in bytes, including the

header

Error Record Structures

intel.

B.2.2.1 Processor Error Device Info

Offset |Length Field Description
0 16 GUID {0xe429faf1, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80,
bytes 0xc7, 0x3c, 0x88, 0x81}}

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in
BCD format
ByteO — Minor
Bytel — Major

18 2 bytes RESERVED Reserved

20 4 bytes SECTION_LEN Length of this error device section in bytes, including the
header

Refer to the Intel® 1A-64 Architecture Software Developer’s Manual for explanation of fields.

PROCESSCR_SPEC!I FI C_ERROR_RECORD STRUCTURE

{

VALI DATI ON_BI TSt 8 bytes
PROC_ERROR_MAP_VALID BI T Bit 0
PROC_STATE_PARAMETER VALID BI T Bit 1
PROC_CR LID VALID BI T Bit 2
PSI _STATI C_STRUCT_VALID BI T Bit 3
CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15)
TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)
BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)
REG_FI LE_CHECK_NUM Bit 16-19 (REGerrors 0 to 15)
Ms_CHECK_NUM Bit 20-23 (Ms errors 0 to 15)
RESERVED Bits 24-63

PROC_ERROR_NAP 8 bytes

PROC_STATE_PARAMETER 8 bytes

PROC CR LID 8 bytes

struct { Nx48 max. bytes (cache errors 0 to 15)

MOD_ERRCR | NFO_STRUCT

48 bytes each

} CACHE_ERROR STRUCT[CACHE_CHECK_NUM

struct {
MOD_ERROR | NFO_STRUCT

Nx48 max. bytes (TLB errors 0 to 15)
48 bytes each

} TLB_ERROR STRUCT[TLB_CHECK_NUM

struct {
MOD_ERROR | NFO_STRUCT

Nx48 max. bytes (BUS errors 0 to 15)
48 bytes each

} BUS_ERROR STRUCT[BUS_CHECK_NUM

REG FI LE_CHECK | NFOf REG_FI LE_CHECK _NUM Nx8 bytes (Reg. File errors 0 to 15)
Nx8 bytes (Ms errors 0 to 15)

MS_CHECK_| NFQ[M5_CHECK_NUM

struct { Processor Static Information
8 bytes

VALI D_FI ELD BI TS?

1. The amount of information reported by SAL isimplementation dependent. The validity of each field isindicated by
either avalidation bit or an encoded number field. Data corresponding to invalid fieldswill be padded. For
CACHE, TLB, BUS, REG, MSfields, the encoded NUM field indicates number of
MOD_ERROR_INFO_STRUCTsfor each category, ranging from 0-15. If the NUM field is zero for a specific
type, then data corresponding to that field will be absent.

Error Record Structures

B.2.3

M NSTATE_VALID BI T
BR VALID BI T
CRVALID BIT

AR VALID BI T

RR VALID BI T

FR VALID BI T
RESERVED

M nimal State Save Info Structure®

BRs
CRs
ARs
RRs
FRs

0-7
0-127
0-127
0-7
0-127

} PSI_STATI C_STRUCT

}

struct{

48 byt es®(Mbd)

VALI D_FI ELD_BI TS

CHECK_| NFO VALI D BI T
REQUESTOR | DENTI FI ER VALI D BI T
RESPONDER | DENTI FI ER VALI D _BI T
TARGET | DENTI FI ER VALID BI T
PRECI SE | P_VALID BI T

RESERVED VALID BI T

MOD_CHECK_| NFO
MOD_REQUESTOR | DENTI FI ER
MOD_RESPONDER | DENTI FI ER
MOD_TARGET_| DENTI FI ER
MOD_PRECI SE_| P

} MOD’_ERROR_| NFO_STRUCT

Error Device GUID

The GUID structureis as follows:

Bi t
Bi t
Bi t
Bi t
Bi t
Bi t
Bit 6-63
1024 bytes
64 bytes
1024 bytes*®
1024 bytes*®
64 bytes
2048 bytes

o U WNPRFE O

8 bytes
Bit 0

Bi t
Bi t
Bi t
Bit 4
Bit 5-63
byt es
byt es
byt es
byt es
byt es

W NP

0 0 0 0o

Offset \Length Field Description
0 4 bytes DATA1 Datal
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4

2. Invalid fields will be padded
3. The size of the MinState Structure is about 1K bytes. For more details on the size and contents of the structure,

please refer to the Intel® |A-64 Architecture Software Devel oper’s Manual

4. The number of Control and Application registers on a processor is processor implementation dependent.

5. Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. This
information isreturned by the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile
registersin this data structure.

6. The size of this structure will always be 48 bytes, with invalid fields being padded with null values.

7. The MOD structure is common across CACHE, TLB and BUS error records

Error Record Structures

Error Record Structures

B-5

B-6

Error Record Structures

	Introduction 1
	1.1 Objectives
	1.2 Firmware Model
	1.3 System Abstraction Layer Overview
	1.4 Firmware Entrypoints
	1.4.1 Processor Abstraction Layer Entrypoints
	1.4.2 System Abstraction Layer Entrypoints
	1.4.3 Operating System Entrypoints
	1.5 Related Documents
	1.6 Revision History

	Platform Requirements 2
	2.1 Firmware Address Space
	2.2 PAL/SAL ROM Space
	2.3 Simplified Firmware Address Map
	2.4 Firmware Organization using Protected Boot Block
	2.4.1 Firmware Components
	2.5 Firmware Interface Table
	2.6 Resources Required for PC-AT* Compatibility
	2.7 Chipset and Shadowing Requirements
	2.8 Platform Support for Variant Architectural Features
	2.9 Platform Considerations Related to Geographic Location
	2.10 Non-volatile Memory Requirements
	2.11 Miscellaneous Platform Requirements

	Boot Sequence 3
	3.1 Overview of the Code Flow after Hard Reset
	3.1.1 Code Flow during Recovery
	3.1.2 Normal Code Flow
	3.2 SAL_RESET
	3.2.1 Initialization Phase
	3.2.2 Bootstrap Processor Identification Phase in an MP Configuration
	3.2.3 Platform Initialization Phase
	3.2.4 OS Boot Phase
	3.2.5 Firmware to OS Loader Handoff State
	3.2.6 OS_BOOT_RENDEZ
	3.2.7 SAL System Table
	3.3 IA-64 OS Loader Requirements
	3.3.1 Fault Handling
	3.3.2 Memory Management Resources Usage
	3.3.3 Other Restrictions on the OS

	Machine Checks 4
	4.1 SAL_CHECK
	4.1.1 SAL_CHECK Processing Details
	4.2 Corrected Machine Checks
	4.3 Platform Errors
	4.3.1 Scope
	4.4 OS_MCA
	4.5 Procedures used in Machine Check Handling
	4.6 Machine Checks in MP Configurations
	4.7 OS_MCA Handoff State
	4.7.1 Return from OS_MCA Procedure

	Initialization Event 5
	5.1 SAL_INIT
	5.2 OS_INIT
	5.3 OS_INIT Handoff State
	5.4 Return from OS_INIT Procedure
	5.5 MP INIT Support

	Platform Management Interruptions 6
	6.1 SALE_PMI Overview
	6.2 SALE_PMI Initialization
	6.3 SALE_PMI Processing
	6.4 Special Considerations for Multiprocessor Configurations

	IA-32 Support 7
	7.1 IA-32 Support Model
	7.2 IA-32 Support Requirements
	7.2.1 Resources Supported by SAL
	7.2.2 Overview of IA-32 Support Layer Functionality
	7.2.3 IA-32 Instruction Usage Guidelines
	7.2.4 IA-32 Support Environment
	7.2.5 IA-32 Interruption Handler Support

	Calling Conventions 8
	8.1 SAL Calling Conventions
	8.1.1 Definition of Terms
	8.1.2 Processor State
	8.1.3 System Registers
	8.1.4 General Registers
	8.1.5 Floating-point Registers
	8.1.6 Predicate Registers
	8.1.7 Branch Registers
	8.1.8 Application Special Registers
	8.1.9 Parameter Buffers
	8.2 Software Interface Conventions for SAL Procedures
	8.2.1 Control Flow of the SAL Interface
	8.2.2 Calling Architected/OEM SAL Functions

	SAL Procedures 9
	9.1 SAL Runtime Services Overview
	9.1.1 Invoking SAL Runtime Services in Virtual Mode
	9.1.2 Access to Resources not Supported by OS
	9.2 SAL Procedure Summary

	Glossary A
	Error Record Structures B
	B.1 Overview
	B.2 Error Record Structure
	B.2.1 Record Header
	B.2.2 Section Header
	B.2.3 Error Device GUID

