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Introduction 1

1.1 Objectives

This document describes the functionality of the IA-64 System Abstraction Layer (SAL). 

This document specifies requirements to develop platform firmware for IA-64 systems. A 
companion document, The Extensible Firmware Interface (EFI), describes additional interfaces 
that must be implemented to access devices on the platform. The EFI Specification is a platform 
binding specification and is also part of the IA-64 firmware.

This document is intended for firmware/BIOS (basic input/output device) designers, system 
designers and writers of diagnostic and low-level OS software. This document is a specification and 
does not specify implementation details. 

The primary objectives of the IA-64 firmware layer are to:

• Enable boot of IA-64 OSs.

• Provide a uniform interface to the boot loaders of the OSs for all IA-64 platforms.

• Ensure that the firmware interfaces are sufficient to contain the platform implementation 
differences within the hardware abstraction layers and device driver layers of operating 
systems.

• Separate the abstraction for the platform hardware from the abstraction for the processor 
hardware.

• Enable hardware innovation and optimization of IA-64 platforms.

• Support OEM capability for platform differentiation.

• Support the scaling of systems from the low-end to the high-end including servers, 
workstations, mainframe alternatives and supercomputers. Features supported will include 
high availability, error logging/recovery, large memory, multiprocessors (MPs), and broader 
and deeper I/O hierarchies (possibly greater than 100 I/O cards).

• Enable boot of shrink-wrapped versions of IA-32 operating systems (OSs). This will involve 
support of IA-32 industry standard calls and Application Programming Interfaces (APIs).

• Enable reuse of IA-32 BIOS code as part of SAL. The extent of the IA-32 BIOS reuse is 
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer 
(PAL) will be in the IA-64 Instruction Set Architecture (ISA). 

• Enable the use of legacy PC peripherals, option ROMs and PCI cards with IA-32 
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals. 
However, this document is not intended to redocument the PC infrastructure specifications. 
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1.2 Firmware Model

As shown in Figure 1-1, IA-64 firmware consists of three major components, all of which are 
required:

1. Processor Abstraction Layer, 

2. System Abstraction Layer, and 

3. Extended Firmware Interface Layer. 

Figure 1-1. Firmware Model
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PAL encapsulates the processor model specific hardware and is part of the IA-64 Instruction Set 
Architecture (ISA). PAL is the firmware layer that abstracts the processor implementation-specific 
features and is independent of the number of processors. SAL is the platform specific firmware 
component that isolates OS and other higher level software from implementation differences in the 
platform. EFI is the platform binding specification layer that provides a legacy free API interface to 
the OS Loader.

PAL, SAL and EFI together provide system initialization and boot, Machine Check Abort (MCA) 
handling, Platform Management Interrupt (PMI) handling and other processor and system 
functions which would vary between implementations. The interaction of the various functional 
firmware blocks is shown in Figure 1-2.

Figure 1-2. Firmware Services Model
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1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an IA-64 platform: 

• Initialize, configure, and test the platform hardware. This includes the memory and I/O 
subsystems, the necessary boot devices and platform specific hardware.

• Select the bootstrap processor (BSP) in a MP platform and set the configurable processor 
features. The IA-64 processor provides its own PAL firmware for initialization and test, but 
this abstraction has no knowledge of the platform and so further platform-specific action is 
necessary to integrate the processor to the rest of the system. For example, the SAL must 
configure, test and initialize memory before the processor cache to memory interface can be 
established and tested (SAL_RESET interface).

• Optionally, encapsulate and provide the environment necessary to run IA-32 BIOS and plug-in 
cards containing IA-32 Option ROMs.

• Provide low level service routines to aid the EFI and the OS Loader in establishing the 
environment necessary for the OS to run in. 

• Provide common data structures to the OS to convey initialization and configuration 
information.

• Provide the necessary services and common infrastructure to support MP configurations.

• Provide Runtime Service routines to encapsulate those functions of the platform necessary for 
the EFI and the OS while they are running.

• Provide the functions necessary to aid in the logging and recovery from Machine Check 
conditions (SAL_CHECK and OS_MCA interface).

• Provide the functions necessary to aid in the logging and recovery from INIT conditions 
(SAL_INIT and OS_INIT interface).

• Provide the functions necessary to handle the platform management events (SALE_PMI 
interface).

• Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

• Optionally, provide an user interface to aid in system configuration, information passing and 
troubleshooting. 

These SAL functions can be divided into the following interface categories:

• SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.

• OS entrypoints from SAL: OS_MCA, OS_INIT and OS_BOOT_RENDEZ.

• SAL Runtime Service routines.
1-4 Introduction



1.4 Firmware Entrypoints

1.4.1 Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization request

• PMIs

Figure 1-3. Firmware Entrypoints Logical Model
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These hardware events trigger the execution of one of the following PAL entrypoints (as shown in 
Figure 1-2 and Figure 1-3):

1. PALE_RESET – initializes the processor following power-on or a reset. This entrypoint 
within PAL calls SALE_ENTRYPOINT in SAL to test for firmware recovery indication. 
SALE_ENTRY, in turn, calls a procedure within SAL called SAL_RECOVERY_CHECK 
that performs the recovery if firmware recovery indication is present on the platform, else 
returns to PAL via SALE_ENTRY. If firmware recovery is required, the SAL recovery code 
will accomplish the firmware recovery function, reset the recovery indication and then 
trigger a system wide reset causing re-entry into PALE_RESET. If SAL reports to PAL that a 
firmware recovery condition does not exist, PAL conducts additional processor tests and 
then branches to SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL 
called SAL_RESET to initialize the system. 

2. PALE_CHECK – saves the minimal processor state, determines if errors are processor 
related, saves processor related error information and corrects errors where possible (for 
example, by flushing a corrupted instruction cache line and marking the cache line as 
unusable). PALE_CHECK then branches to SALE_ENTRY in SAL. SALE_ENTRY, in 
turn, branches to a procedure within SAL called SAL_CHECK to complete the error 
logging, correction, and reporting. PALE_CHECK is entered as a response to processor 
and/or platform errors.

3. PALE_INIT – saves the minimal processor state, initializes the processor, and branches to 
SALE_ENTRY in SAL. SALE_ENTRY, in turn, branches to a procedure within SAL called 
SAL_INIT. PALE_INIT is entered as a response to an initialization event. 

4. PALE_PMI – determines the type of platform management event, and branches to 
SALE_PMI. PALE_PMI is entered as a response to a platform management event.

1.4.2 System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1. SALE_ENTRY – PAL branches to this SAL entrypoint after a power-on reset, machine 
check or initialization event. The code at this entrypoint using the hand-off value in a 
General Register, jumps to different entrypoints within SAL for Reset, Firmware Recovery, 
Machine check and Initialization events. 

SAL_RESET within SAL is entered for system initialization after PAL has initialized the 
processor. SAL_RESET functionality is described in Chapter 3.

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test 
if a firmware recovery condition is present. SAL is the only entity that has knowledge of 
platform resources to determine if a firmware recovery condition is present. 

SAL_CHECK within SAL is entered for logging errors, and correcting platform related 
errors where possible. SAL_CHECK functionality is described in Chapter 4.

SAL_INIT within SAL is entered for saving the state of the system and performing 
additional functions as defined in Chapter 5.

2. SALE_PMI – PAL branches to this SAL entrypoint for handling platform management 
events in an implementation dependent manner.
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1.4.3 Operating System Entrypoints

There are several entrypoints from SAL into an OS (or equivalent software):

• OS_LOADER – OS Loader. Entered from SAL_RESET on the BSP only, after the system has 
been initialized and the OS Loader image has been loaded by the EFI component from the boot 
device. Refer to the EFI Specification for details. 

• OS_BOOT_RENDEZ – OS MP Rendezvous Handler. Entered from SAL when OS on the BSP 
wakes up the application processors (APs), to permit synchronization of APs in a MP 
environment. 

• OS_MCA – OS Machine Check Abort Handler. Called from SAL_CHECK to allow the OS to 
handle the machine checks that are not corrected by hardware, PAL or SAL.

• OS_INIT – OS Initialization Handler. Called from SAL_INIT to handle a valid initialization 
event.

1.5 Related Documents

The following documents contain additional material related to IA-64 processors:

• Advanced Configuration and Power Interface Specification, 1996 – Intel/Microsoft/Toshiba

• BIOS Boot Specification, 1996 – Compaq/Phoenix/Intel

• BIOS Enhanced Disk Drive Specification version 3.0 – Phoenix

• Bootable CD-ROM Format Specification, 1994 – Phoenix/IBM

• CBIOS for IBM Computers and Compatibles – Phoenix

• Extensible Firmware Interface Specification – Intel

• IA-64 Software Conventions and Runtime Architecture Guide – HP/Intel

• Intel® IA-64 Architecture Software Developer’s Manual – Intel

• PCI BIOS Specification, 1994 – PCI SIG

• Plug and Play ISA Specification, 1994 – Microsoft
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1.6 Revision History

Date of 
Revision Description

July 2000 Clarification of state of IA-64 system registers at the time of handoff to 
OS_BOOT_RENDEZ. (Section 3.2.6)

Clarification of Platform Features Description Entry for offset of 1. (Table 3-7)

Added non-volatile memory and ACPI requirements to platform requirements. 
(Section 2.11)

Clarification of the Alternate Data TLB fault, Speculation fault, Unaligned fault, 
NaT Consumption fault, and General Exception fault descriptions. (Section 
3.3.1)

Clarification of machine check overview. (Chapter 4 Introduction)

Clarification of SAL_CHECK processing and conversion of MCA events to 
Processor Corrected Machine Checks and Platform Corrected Error Events. 
(Section 4.1.1)

Revision of Machine Check Code Flow diagram. (Figure 4-2)

Additional information about Corrected Machine Check categories. (Section 4.2)

New Platform Errors handling information. (Section 4.3)

New description of the scope of platform error handling. (Section 4.3.1)

Clarification of OS_MCA handling. (Section 4.3)

Clarification of multiprocessor machine checks. (Section 4.6)

Clarification of OS_MCA Handoff State. (Section 4.7)

Changes to processor state specification ofr return from OS_INIT. (Section 5.4)

New SAL Return Status of 3 to specify that additional information is available. 
(Table 8-5)

Clarification of how to invoke SAL runtime services in virtual mode. (Section 
9.1.1)

Addition of mf.a instruction to code sequence to ensure platform acceptance. 
(Section 9.1.2)

SAL_CACHE_FLUSH: Addition of i_ord_value of 4 to instruction to make local 
instruction caches cohenrent with data caches. (Section 9.2)

SAL_CLEAR_STATE_INFO: New type value of 3 to speclfiy corrected platform 
event. Removel of sub-type argument. New return value of 3 to indicate more 
error records are available. (Section 9.2)

SAL_FREQ_BASE: New type value of 3 to speclfiy corrected platform event. 
Removel of sub-type argument. (Setion 9.2)

SAL_GET_STATE_INFO_SIZE: New type value of 3 to speclfiy corrected 
platform event. Removel of sub-type argument. (Section 9.2)

SAL_MC_RENDEZ: New recommendation in footnote for OS to use memory 
semaphore for wake-up instead of interrupt. (Section 9.2)

SAL_MC_SET_PARAMS: New param_type of 3 to specify Corrected Platform 
Error Interrupt. New rz_always flag to specify a firmware rendezvous. (Section 
9.2)

New Glossary definitions for Corrected Error, Corrected Platform Error Interrupt, 
Fatal Error, and Recoverable Error. (Appendix A)

New Error Record Structure definition defines a record header and sections with 
error information for each error device. (Appendix B)

January 2000 Initial release of document.
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Platform Requirements 2

2.1 Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000 
through 0xFFFF_FFFF). This address space is shown in Table 2-1.

The firmware address space is logically partitioned into two major functional blocks: the ROM area 
(shared by the SAL and PAL) and the SAL Resources area. The ROM area is placed in the address 
space such that its ending address is at 0xFFFF_FFFF. The SAL Resources area occupies the 
portion of 16 MB firmware address space not occupied by the ROM area. SAL code can use the 
special hardware resources which the platform has implemented in the SAL Resources area. The 
hardware resources implemented can optionally include (but are not limited to) scratch RAM, 
non-volatile memory (NVM), environment control and status registers. The location of the 
hardware resources within the SAL Resources area is platform dependent. 

2.2 PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code 
areas and a table called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:

• PAL_A which is processor stepping independent and 

• PAL_B which is processor stepping dependent. 

These two subcomponents are required and must be separated logically even if they are 
physically located in contiguous spaces. The PAL_A block contains a limited subset of PAL 
procedures (PAL_PROC) that can be invoked by SAL while performing a firmware recovery 
(refer to Volume 2 of the Intel® IA-64 Architecture Software Developer’s Manual for details). 
The PAL_B block contains all the PAL procedures that can be invoked by SAL and the OS. 

Table 2-1. Firmware Address Space

0xFFFF_FFFF

PAL/SAL ROM

SAL Resources

0xFF00_0000
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In a similar fashion, SAL code can be broken into two subcomponents:

• SAL_A which contains the SALE_ENTRY entrypoint and all the code needed for firmware 
recovery. 

• SAL_B which contains code to test and initialize the platform.

Unlike the PAL, the SAL subcomponents need not be separated from each other logically or 
physically.

The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Code in the PAL_A can transition to: 

• Code in the PAL_B using the FIT. First, the beginning address of the PAL_B block is 
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET) 
are determined in a PAL implementation dependent manner. 

• Code in the SAL_A address space at SALE_ENTRY which serves as the entrypoint for Reset, 
Recovery, Machine Check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be held in 
compressed format. SAL code that is executed out of ROM such as early stages of the Reset 
sequence, and code for handling Machine check and INIT cannot be held in compressed format.

2.3 Simplified Firmware Address Map

Following is a simplified example of the firmware address map that shows the minimum 
architectural components. Refer to Section 2.4.1 for description of the fields. This layout is not 
expected to be used with a flash ROM supporting the protected boot block feature. See Figure 2-2 
for a different firmware organization supporting the protected boot block.

2.4 Firmware Organization using Protected Boot Block

This section describes an example of a typical firmware organization using a flash ROM that 
contains a protected boot block. 

Protected boot block refers to a block of the Flash ROM that is prevented from modifications by 
hardware. Code in this block can contain logic to restore PAL/SAL code in the erasable portion of 
the flash part after a previous flash programming attempt was accidentally aborted. Firmware 
organization using protected boot block requires some data structures in addition to the minimum 
architectural requirements discussed earlier.

To support the protected boot block, both the PAL_A code and SAL_A code must be within the 
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A 
part of the protected boot block. 
2-2 Platform Requirements



2.4.1 Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries 
are implementation dependent. The Firmware Address Space contains several regions and locations 
as shown in Figure 2-2 below for a typical implementation.

The firmware address space contains the following regions and locations:

• The 16 bytes at (4GB – 16) contains the IA-32 Reset Code. This is typically an IA-32 far JMP 
instruction followed by the Date, the PC-AT* model signature, etc. This code is never executed 
but is present for PC-AT compatibility.

Figure 2-1. Simplified Firmware Address Map
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Figure 2-2. Firmware Address Map
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• The 8 bytes at (4GB – 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this 
address must be set to 1 to indicate the uncacheable memory attribute in physical addressing 
mode.

• The 8 bytes at (4GB – 32) contain the pointer to the FIT. Bit 63 of this address must be set to 1. 
The FIT need not be located immediately before the protected boot block. However, the FIT 
cannot be moved to a different location since its address is contained in the protected boot 
block. 

• The 16 bytes at (4GB – 48) describe the characteristics of the PAL_A component in the ROM 
(base address, size, version number, type, etc.) This is represented in the FIT entry format for 
the sake of uniformity. Bit 63 of the address field within this FIT entry must be set to 1 and the 
type field must have a value of 0x0F.

• The 16 bytes at (4GB – 64) are reserved for future use.

• The PAL_A code resides below the (4GB – 64) address. This area of variable size contains the 
hardware-triggered entrypoints PALE_RESET, PALE_INIT, and PALE_CHECK, as well as 
minimal processor initialization code. This code area must be a multiple of 16 bytes in length. 
PAL_A uses the FIT entry of the PAL_B to reach continuation entrypoints in PAL_B for Reset, 
Machine check and INIT. 

The code in the PAL_A block contains enough capability to initialize the processor, invoke the 
SALE_ENTRY procedure for test of the recovery indication and continue with normal PAL 
execution in the PAL_B code area. The code in this area shall be identical for all IA-64 
processors in the same family. This code shall be unaffected by processor stepping changes. 

• SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility 
and to conserve space in the protected boot block, this area will primarily contain code for 
firmware recovery. When entered for other conditions such as Normal Reset, Machine Check 
or INIT, the code in this block will find the continuation entrypoints in the SAL_B block 
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY 
code reaches continuation entrypoints in SAL_B for Reset, Machine check and INIT is SAL 
implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during 
firmware execution but may be needed by the utility that merges these components to format 
the protected boot block portion of the flash ROM.

• Underneath the protected boot block is the FIT. It comprises 16-byte entries containing starting 
address and size information of the remaining firmware components in the non recovery 
portion of the flash ROM: PAL_B, SAL_B, etc. Refer to Section 2.5 for FIT details. 

• Underneath the FIT is the code for the IA-32 BIOS, EFI, SAL_B and PAL_B components. 
There are no ordering requirements for the firmware components within the flash ROM. 

• The PAL_B binary block contains the PAL code which is not required for firmware recovery. 
The PAL_B code area is a multiple of 16 bytes in length and must be aligned on a 32K-byte 
boundary. PAL_B’s FIT entry contains the address and size of the PAL_B binary block.

• The remainder of the SAL/PAL ROM area is occupied by the SAL_B code. SAL_B’s FIT 
entry (if present in the FIT), contains the address and size of the SAL_B binary block. 

• Code within SAL (SAL_A & SAL_B) may include IA-32 code. The location of the SAL_B 
and IA-32 BIOS code within the SAL/PAL ROM area is implementation dependent. Some 
SAL implementations may separate the IA-64 and IA-32 code components as separate 
firmware blocks with unique FIT entry types. In a similar fashion, the SAL_B component may 
include the EFI component or a separate FIT entry may point to the EFI component. 
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2.5 Firmware Interface Table

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware 
components that are outside the protected boot block. Because these code blocks may be compiled 
at different times and places, code in one block (such as PAL_A) cannot branch to code in another 
block (such as PAL_B) directly. The FIT allows code in one block to find entrypoints in another. 
The figure below shows the FIT layout.

Each active FIT entry contains information for the corresponding firmware component. The first 
two entries are used to describe the FIT table itself and the PAL_B block respectively and these two 
entries are architecturally required. FIT entries shall be in ascending order of entry types else 
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Address is the base address of the component and it must be aligned on a 16-byte boundary. For the 
FIT Header entry, this field contains the ASCII value of ‘_FIT_<sp><sp> <sp>’ where <sp> 
represents the space character. For the PAL_B entry, bit 63 of the address field must be set to 1 to 
indicate the uncacheable memory attribute in physical addressing mode. The PAL_B component 
must be aligned on a 32K-byte boundary. 

Size is the size of the component in paragraphs of 16-bytes. 

Figure 2-3. Firmware Interface Table

Figure 2-4. Firmware Interface Table Entry
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Version contains the component’s version number. For the FIT Header Entry, the value in this field 
will indicate the revision number of the FIT data structure.

C_V is a one bit field that indicates whether the component has a valid checksum. If this bit is zero, 
the value in the Chksum field is not valid.

Type contains the seven-bit type code for the element. Types are defined in Table 2-2.

The type code of 0x0F is used for PAL_A. Since PAL_A’s binary image is located near the end of 
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry 
is also located within the protected boot block (at 4GB – 48), and not in the FIT table. The OEM 
may define unique types for one or more blocks of SAL_B, EFI, IA-32 BIOS, etc., within the 
OEM-defined type range of 0x10 to 0x7E.

Chksum contains the component’s checksum. The modulo sum of all the bytes in the component 
and the value in this field (Chksum) must add up to zero. This field is only valid if the C_V field is 
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum 
option is selected for the FIT in the FIT Header entry (FIT type 0), the modulo sum of all the bytes 
in the FIT table must add up to zero. The PAL_A FIT entry is not part of the FIT table and hence 
not included in the checksum computation of the FIT. 

With this address layout, when one of the firmware components changes, only that component’s 
flash portion requires changes. This address layout can also support multiple ROMs for the 
firmware components and such ROMs are not restricted to reside below 4GB. 

2.6 Resources Required for PC-AT* Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB 
is defined as the compatibility area and is used by firmware when initializing and executing IA-32 
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the 
platform if PC-AT compatibility is not required.

Table 2-2. FIT Types

Type Meaning

0x00
0x01
0x02-0x0E
0x0F
0x10-0x7E
0x7F

FIT Header entry
PAL_B
Reserved
PAL_A
OEM-defined
Unused

Table 2-3. 1-MB Compatibility Memory Address Space

0x000F_FFFF
Shadowed IA-32 System BIOS

0x000F_0000

0x000E_FFFF Shadowed IA-32 Extended System 
BIOS/Option ROM/Memory area0x000E_0000
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Within the 1 MB compatibility memory address space, empty spaces can be mapped to system 
memory. For example, a server platform may choose to implement the system console on a serial 
port and eliminate the VGA frame buffer and the VGA BIOS components. IA-32 stack should be 
allocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode IA-32 
BIOS code. 

IA-64 platforms may use I/O adapter cards containing IA-32 Option ROMs during the boot 
process. A portion of the SAL code may also contain IA-32 code. Such IA-32 code as well as IA-32 
OSs may rely on the existence of PC-AT compatible components. In order to execute such IA-32 
code, all IA-64 platforms shall implement the I/O ports specified in Table 2-4. Alternatively, the 
SAL can trap some or all IA-32 I/O instructions and emulate the I/O ports that are not present on 
the platform. Refer to Section 7.2.4, “IA-32 Support Environment” for more details. 

2.7 Chipset and Shadowing Requirements

Following are the SAL requirements from the chipset implementation: 

• The firmware code and data within the firmware address range must be accessible from the 
processor without any special system fabric initialization sequence. This implies that the 

0x000D_FFFF Shadowed IA-32 Option ROM BIOS
or

ISA Bus Expansion Memory0x000C_0000

0x000B_FFFF

VGA Frame Buffer

0x000A_0000

0x0009_FFFF

Memory

0x0000_0500

0x0000_04FF
IA-32 BIOS RAM Data Area

0x0000_0400

0x0000_03FF
IA-32 Interrupt Vector Area

0x0000_0000

Table 2-4. IA-32 Compatibility I/O Ports

Port Description

0x20-0x21 Programmable Interrupt Controller (Master)

0x40-0x43 Programmable Interval Timer

0x70-0x71 CMOS NVRAM Address, Data Ports

0xA0-0xA1 Programmable Interrupt Controller (Slave)

Table 2-3. 1-MB Compatibility Memory Address Space (Continued)
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system fabric is implicitly initialized at power on for accessing the firmware address space or 
alternatively, the special hardware that contains the firmware code and data is implemented on 
the processor and not accessed across the system fabric.

• Firmware may copy ROM based code and data structures to RAM to increase performance and 
to allow for updates of ROM based data structures by initialization firmware. Platforms are not 
required to implement any write protection for these shadowed areas. Since hardware events 
such as Reset, Machine Check and INIT enter architected PAL entrypoints in the ROM around 
the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the 
PAL/SAL ROM area subsequent to the shadowing of firmware code. 

IA-64 memory management features needed for IA-32 execution can be set up to prevent 
writes to the shadowed RAM areas. The IA-64 instruction set architecture provides 
instructions to synchronize the instruction and data caches in the presence of self-modifying 
code. 

• Chipsets need not implement in-line shadowing (Read cycles going to ROM, Write cycles 
going to RAM) for copying IA-32 segments at E0000 to FFFFF to RAM. 

2.8 Platform Support for Variant Architectural Features

Different platform implementations may vary with respect to each other in the features they 
implement and yet they could be architecturally compliant. As an example, some platforms will 
implement bus lock while other platforms will not. This has implications for software running on 
these platforms, and therefore this information must be communicated to software. SAL firmware 
is responsible for knowing the architectural variant and correctly communicating the information to 
software. How SAL knows about the architectural variant is implementation dependent. The 
following lists the features which fall into this category and describe the method of abstraction to 
software.

• Bus Lock: If the processor supports the Bus Lock signal and the platform implements Bus 
Lock, then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.lc = 
0), otherwise the DCR.lc shall be set to 1. The OS shall not alter DCR.lc bit setting if it is set to 
1. Refer to the PAL call PAL_BUS_ SET_FEATURES in the Intel® IA-64 Architecture 
Software Developer’s Manual for information on masking Bus Lock signal and executing the 
locked transaction as a series of non-atomic transactions.

• Lowest Priority Interrupt: SAL shall communicate to the OS, through the SAL System Table 
(Table 3-7), whether this feature is supported by the platform.

• Address space attributes: SAL shall communicate to software the supportable access attributes 
for all valid address space mappings. This information is provided to the OS by the EFI 
component. As an example of this architectural variant, consider two memory controllers 
where one supports sub-cache line writes to memory and another which does not. The first 
case would be described as write-through or write-back cacheable, whereas the second case 
would be described as supporting only write-back cacheable. Similarly, the UCE memory 
attribute indicates whether the address space permits the exporting of the fetchadd operation 
outside the processor. Memory attribute features for address spaces are fully described in the 
Intel® IA-64 Architecture Software Developer’s Manual. 
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2.9 Platform Considerations Related to Geographic 
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of 
processors in a MP configuration: 

• The platforms shall provide mechanisms to generate unique geographic identifiers for those 
components that have software visibility. As an example, imagine a complex MP 
implementation which has more than one main system bus to which processors are attached. A 
processor returns its location on the bus via a call to PAL_FIXED_ADDR, but this PAL call 
does not reflect the multi-bus configuration of the platform. It is therefore required that the 
platform provide some mechanism for SAL to ascertain which bus a processor is attached to. 
SAL will use this value to load the Streamlined Advanced Programmable Interrupt Controller 
(SAPIC) EID field in the Local ID register (CR.LID) of the processor(s). This is necessary for 
supporting interprocessor interrupts (IPIs). The above example is not meant to limit this 
requirement to processors, as multiple host I/O bridges and multiple memory controllers etc., 
may also have a similar requirement. 

Platforms may implement unique ways of providing the SAPIC EID value. For example, in a 
non-clustered environment, SAL may use the hardcoded value of 0 for this field. Another 
example is a cluster controller that provides different EID values for processors connected to 
different buses on the system. It is expected that these mechanisms/algorithms will be very 
simple, to facilitate exchange of IPIs between processors (if needed), to determine the BSP 
node and the BSP processor in a MP environment. The BSP selection needs to be done very 
early in the boot sequence and during firmware recovery. Since multiple processors may be 
attempting to read the EID, a scheme that involves writing an index followed by reading the 
value from a cluster controller I/O port or the CMOS NVRAM I/O port may be prone to errors. 

• A multi-TLB (Translation Lookaside Buffer) coherence domain platform must provide a 
mechanism for detecting which TLB coherence domain the processor is located in.

2.10 Non-volatile Memory Requirements

IA-64 platform hardware must provide a minimum of 32KB of NVM to hold the Error log captured 
during machine check events. There may be additional NVM requirements to hold information on 
the OSs that can be booted from the platform, the platform configuration, etc. Refer to the EFI 
Specification for requirement details as well as the interfaces to the NVM space. 

The NVM must preserve memory contents when the system power is off. Possible NVM 
implementations are battery backed SRAM and flash memory. The physical address and size of 
each NVM object in the system will be specified in Table 3-5, “Memory Descriptor Entry” with:

• Memory type classification of Regular Memory and Memory Usage classification of Firmware 
Reserved Memory for battery backed SRAM implementation and

• Memory type classification of Firmware Address Space when NVM is implemented as part of 
the firmware flash ROM.
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2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

• If firmware recovery feature is supported in SAL, the IA-64 platform must provide an 
implementation specific hardware mechanism to reflect the user selected firmware recovery 
condition to all the processors on the platform. 

• IA-64 platforms must support simple hardware and/or software implementations for BSP 
selection, e.g. write once port. This is necessary since only the BSP is allowed to execute the 
firmware recovery code.

• IA-64 platforms must provide mechanisms to determine the base frequency of the platform 
(clock input to the processor).

• IA-64 platform hardware must provide a mechanism for firmware to reset all components 
within the platform.

• IA-64 platform hardware must provide a switch or other mechanism that produces an INIT 
signal. This feature, generally known as the CrashDump switch, may be used to effect a crash 
dump on a “hung system”. 

• IA-64 platform hardware must provide user friendly mechanisms for displaying the progress of 
the boot and firmware recovery, e.g. LCD display. 

• Non-volatile memory storage for MCA error records

• Interrupt routing information for platform-corrected error interrupts in ACPI tables.
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Boot Sequence 3

3.1 Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from Reset to OS launch.

On Reset, all the processor(s) begin execution at PALE_RESET, a location within the PAL_A code 
area near 4 GB in ROM, in the IA-64 ISA. The exact physical location of PALE_RESET is 
processor implementation dependent. PALE_RESET initializes and tests the processor using 
stepping independent code. It will then call SALE_ENTRY with the Recovery Check function to 
verify if the user has selected firmware recovery in a platform dependent manner. 

SALE_ENTRY is the common entrypoint in SAL_A from code in the PAL_A and PAL_B blocks 
for Reset, Recovery, Machine check and INIT events. PAL code obtains SALE_ENTRY entrypoint 
from the 8-byte pointer at 4GB – 24. The state of the processor on entry into SALE_ENTRY is 
described in the Intel® IA-64 Architecture Software Developer’s Manual. One of the general 
registers, indicates the event causing entry into SALE_ENTRY: Reset, Recovery check, Machine 
check or INIT. SALE_ENTRY uses this argument to jump to internal entrypoints SAL_RESET, 
SAL_RECOVERY_CHECK, SAL_CHECK or SAL_INIT.

PAL_A passes status information to SALE_ENTRY on the health of the processor and whether the 
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows 
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

The code in SAL_A will initiate recovery and update the firmware if: 

• the platform indicates a recovery condition; or

• the PAL_A code reports an authentication failure on the PAL_B component in the firmware; or 

• the PAL_A code reports checksum or other errors in the FIT or the PAL_B component; or 

• the PAL_A code reports on all the processors that the version of the PAL_B in the firmware is 
incompatible with the stepping level of the processors in the system. 

Table 3-1. SAL Actions based on Processor Self-test State 

Processor 
Health 

SAL Handling

Catastrophic 
Failure

Disable interrupts and Machine Checks, then go into a spin loop

Healthy Proceed with SAL Reset

Performance 
Restricted

Proceed with SAL Reset if this is the only processor on the system. Else, try to 
inform the user. Disable interrupts and Machine Checks, then go into a spin 
loop

Functionally 
Restricted

Try to inform the user. Disable interrupts and Machine Checks, then go into a 
spin loop
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3.1.1 Code Flow during Recovery

If firmware recovery is required, the SAL recovery code shall authenticate the new binary using 
code in the PAL_A block. The SAL code will then accomplish the firmware recovery function, 
reset the recovery indication and trigger a system wide reset causing re-entry into PALE_RESET. 
SAL recovery code contains the logic to update one or more of the firmware components from 
floppy disk or other OEM supported media. Note that firmware recovery code in SAL_A must be 
processor stepping independent and must not invoke code in the PAL_B block.

In a multi-processing environment, the recovery code will first select a BSP. SAL shall not select a 
processor as the BSP unless it is reported as healthy or performance restricted by PAL and the 
version of PAL_B on the system is compatible with the processor stepping. The BSP will 
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that 
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B 
component is updated, otherwise the system behavior is unpredictable. 

Since PAL_B functionality cannot be invoked during recovery, only a limited set of PAL procedures 
in the PAL_A are available for use by the SAL recovery code (refer to the Intel® IA-64 Architecture 
Software Developer’s Manual for details). Further, if the SAL_A invokes the IA-32 BIOS, 
floating-point transcendental instructions listed below cannot be executed from the IA-32 
instruction set.

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

3.1.2 Normal Code Flow

If a recovery condition does not exist, SALE_ENTRY shall return to PALE_RESET on all the 
processors that are compatible with the version of PAL_B on the system, using the return address 
provided by PALE_RESET to effect the second stage of processor test and initialization. If SAL_A 
did not effect such a return, the processor may run in a degraded mode. In any case, the PAL_PROC 
address provided to SALE_ENTRY at the time of Recovery Check supports only a small subset of 
the PAL procedures (see the Intel® IA-64 Architecture Software Developer’s Manual for details). 

On return from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from 
location (4 GB – 32) and then uses the FIT to get the address of the PAL_B component in the non 
recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in the 
PAL_B block and jump to it. The processor stepping dependent code in the PAL_B block will then 
perform the complete processor testing and initialization and then re-enter the SALE_ENTRY with 
the function value of Normal Reset. Code at SALE_ENTRY will jump to the code in the SAL_B 
block to continue the boot sequence and will eventually boot the machine to the OS. 

3.2 SAL_RESET

SAL_RESET is responsible for performing platform test and initialization, invoking EFI firmware 
which, in turn, loads the first level of OS Loader and jumps to it. SAL_RESET may also be entered 
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed 
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from 
PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY is entered from locations 
other than PALE_RESET.
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SAL_RESET functionality can be subdivided into the following phases:

• Initialization phase

• BSP identification phase

• Platform initialization phase

• OS Boot phase

3.2.1 Initialization Phase

This phase begins execution at SAL_RESET and is performed on all the processors in the system. 
The Local ID (LID register) is architected in the Intel® IA-64 Architecture Software Developer’s 
Manual. It is the SAL's responsibility to uniquely initialize this register in each processor prior to 
performing BSP selection and enabling interrupts in a MP system. For uniprocessor (UP) systems, 
SAL must initialize this register prior to enabling interrupts. The OS must not change the value that 
SAL stored into this register. Otherwise, routing of interrupts to the correct processor may not 
function correctly. The LID register’s format is shown in Figure 3-1.

The id field is provided by the PAL during Reset handoff in a general register. This value is the Bus 
Agent ID which corresponds to the slot number on the front side bus that the processor is plugged 
into. For proper functioning of the lowest priority interrupt mechanism, the id field must match the 
Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors. 

SAL must invoke the PAL_PLATFORM_ADDR procedure on all processors to set the physical 
address of the SAPIC Interrupt block memory and the IA-32 I/O port space if the default address 
values are not used. The default address for the SAPIC Interrupt block memory is 
0x00000000_FEE00000 and the default address for the IA-32 I/O port space is the 64 MB space 
below the highest physical address supported by the processor implementation. SAL will use a 
value that does not conflict with other devices on the platform. The OS shall not change both these 
address values. SAL will set up the IOBASE register (AR.k0) that provides the high order bits of 
the virtual address of the IA-32 I/O port block, to the same value as its physical address, to maintain 
identity mapping. The OS is free to change the virtual address component in the IOBASE register 
value but the value must be aligned on a 64 MB address boundary. 

3.2.2 Bootstrap Processor Identification Phase in an MP 
Configuration

This phase is executed on all the processors. All processors may participate in the selection of the 
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the bus to 
which the processor is connected. SAL will use this address and bus identification information to 
derive a unique geographical address for the processor and use the same in the selection of the boot 

Figure 3-1. Local ID Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

id eid reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored
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processor. The derivation of the unique geographical address is implementation-dependent. SAL 
shall not select a processor as the BSP unless it is reported as healthy by PAL and the version of 
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing steps in a MP configuration. The APs will set up 
processor-specific resources such as the Interrupt Vector Address (IVA) and enter the rendezvous 
state (EM_Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for further 
processing. Processors in rendezvous state will disable external interrupts and poll the rendezvous 
interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will continue 
with platform initialization and when sufficient amount of memory has been tested, it will send a 
rendezvous interrupt to the APs to wake them up to run their late self-test (which requires memory 
to run). After the APs have finished late self-test, they will return to the rendezvous state 
(EM_Rendezvous_2). 

The BSP continues with platform initialization, loading the EFI firmware which, in turn, searches 
for bootable devices, loads the OS Loader and transfers control to it. These steps are described in 
later sections of this document and the EFI Specification.

3.2.2.1 Rendezvous Functionality

The rendezvous functionality is required only in MP environments and this functionality is utilized 
in two different situations:

• To wake up the APs during boot: The APs stay in a loop until woken up by the SAL layer on 
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and 
platform tests. Once these tests are completed, the APs return to the wait loop within SAL. 
Also, once the OS kernel takes over, it will wake up the APs based on the wake up information 
provided by the SAL (refer to Section 3.2.6 and Table 3-11). 

• To bring the APs to a spin loop during machine check rendezvous and to wake up the APs after 
machine check processing is completed: The OS specifies the external interrupt vector to be 
used by SAL to bring the APs to a spin loop as well as the external interrupt vector/memory 
semaphore to be used for the wake up. Refer to “SAL_MC_SET_PARAMS” on page9-14  for 
details. 

For the wake up functionality, the mechanism could be an external interrupt vector in the range of 
0x10 to 0xFF or a memory semaphore. 

If external interrupt mechanism is chosen, APs will disable interrupts and poll the local SAPIC IRR 
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority 
Register (TPR) must be set such that a read of the IVR register will return the rendezvous interrupt 
vector (instead of the spurious interrupt), if one is pending. On receipt of the interrupt, the AP will 
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt 
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.
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Figure 3-2. Control Flow of Boot Process in a Multi-processor Configuration
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If a memory semaphore mechanism is chosen, APs will disable the interrupts and poll the memory 
semaphore for the unique value that matches the contents of their Local ID Register in bits 16-31 
and a value of 0xFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake up one 
AP at a time. The AP will clear the memory semaphore to zero, execute the next phase of SAL code 
and, if necessary, return to the wait loop. 

SAL exports details of the wake-up mechanism to the OS through the SAL System Table (refer to 
Table 3-2) so that the OS kernel code on the BSP may wake up the APs when appropriate. While 
memory semaphore mechanism may be used by the BSP and APs during the platform initialization 
phase, SAL shall indicate only the external interrupt wake-up mechanism to the OS. The OS shall 
not use the indicated external interrupt vector for its purposes until it takes over the IVA. The OS on 
the BSP will invoke the SAL_SET_VECTORS procedure to set the continuation point for the APs 
within the OS kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will 
transition the APs to the registered OS_BOOT_RENDEZ entrypoint.

3.2.3 Platform Initialization Phase

This phase is primarily executed on the BSP. The APs will execute some of the steps as described 
below. This phase will perform the following functions, the ordering of which is 
implementation-dependent:

1. Initialize the IVA to point to a 32 KB Interrupt Vector Table (IVT) in ROM. Some SAL 
implementations may choose to build the IVT in RAM after finding the first 64 MB of 
memory. This step must be accomplished on all the processors in a MP-environment.

2. Initialize the system fabric and chipsets. The method of handling the initialization is 
implementation-dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not be re-initialized. On a cold 
boot, SAL will initialize at least the first 4 MB of memory for BSP late self-test. This 
self-test is done by calling the PAL_TEST_PROC procedure which returns information on 
whether the processor is healthy or not. This PAL procedure tests the path from the processor 
to the memory through the caches and returns information on whether the processor is fully 
functional (not functionally restricted). This PAL procedure will not return to the SAL if the 
processor under test experiences a catastrophic failure. SAL must contain necessary logic to 
select a new BSP, if necessary. SAL shall shut down the system if there is not even a single 
healthy or a performance restricted processor on the system. 

After this point, the memory stack and RSE can be tested and enabled in the IA-64 system 
environment.

4. Issue a rendezvous interrupt to wake up APs for a late self-test using the PAL_TEST_PROC 
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that 
experience a catastrophic failure during the late self-test. On completion of late self-test, the 

Figure 3-3. Memory Semaphore Format
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BSP will set the APs back to the rendezvous state (EM_Rendezvous_2 in Figure 3-2). After 
this stage, caches may be relied upon. 

5. Search for console using implementation-dependent algorithms. If found, initialize the 
console so that the progress of the boot may be displayed.

6. Determine and initialize memory. This step is not performed if SAL_RESET is entered from 
SAL_INIT. RAM test is implementation-dependent. RAM test includes test of refresh logic 
and testing all the address lines for shorts. On IA-32 systems, memory controllers alias the 
ROM at 0xE0000 to 0xFFFFF and thereby permit memory autoscan algorithm to be run 
from the aliased ROM at 0xE0000 to 0xFFFFF. Since memory aliasing is not a requirement 
for the IA-64 platforms, the autoscan function needs to be performed by the firmware SAL 
code in the IA-64 ISA.

7. Initialize the interrupt controllers with all interrupts disabled. 

8. Allocate memory for use by PAL and SAL near the top of physical memory. This area 
should be below 4 GB if IA-32 code needs to call the IA-64 SAL code, since IA-32 code can 
only address memory up to 4 GB. 

9. Copy the PAL into memory using the PAL_COPY_PAL procedure. The PAL code in 
memory must be aligned such that the entire PAL space in memory may be covered by one 
Instruction Translation Register (ITR). It is very desirable to copy PAL code and SAL code 
to contiguous locations in order that the OS may cover the entire space using the same ITR. 
Refer to the Intel® IA-64 Architecture Software Developer’s Manual for PAL’s requirements 
on ITR/DTR.
Note: Until this step, the following floating-point transcendental instructions cannot be 
executed from the IA-32 instruction set:

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, 
FYL2XP1

10. Copy SAL, PMI and IA-32 code to memory. The IA-32 BIOS code will be copied to the 
appropriate addresses in the address of 0x000C_0000 to 0x000F_FFFF. The IA-64 portion 
of the SAL code will be copied to a high memory address which must be above 1 MB. 
Copying code to RAM speeds up the boot sequence and additionally permits some portions 
of the code to be held in compressed format in ROM. Firmware code may then be write 
protected using the TLB or chipset features. 

11. Set up an IVT in memory aligned on a 32 KB boundary and point the IVA register to it. This 
step must be accomplished on all the processors in a MP environment. 

12. Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on all 
the processors in a MP environment.

13. Call the PAL_MC_REGISTER_MEM procedure specifying where PAL code may deposit 
some minimal processor state information so that PAL code has sufficient resources to 
perform the necessary machine check or INIT processing. Enable the BERR and BINIT 
sampling and signaling by invoking the PAL_BUS_SET_FEATURES procedure. Set the 
CMCI, MCA and BERR promotion strategy by invoking the 
PAL_PROCESSOR_SET_FEATURES procedure. These steps must be accomplished on all 
the processors in a MP-environment.

14. Process configuration information in NVRAM and perform full chipset configuration. If 
NVRAM information is invalid, initialize NVRAM to default configuration values. Refer to 
the EFI Specification for details.

15. Initialize and configure I/O buses. Walk all buses, identify all resource requirements and set 
necessary range registers of chipsets. At this point, the complete system topology and 
addresses of all fabric segments are known. 

16. Construct the ACPI Tables, SAL System Table and other common data structures. 
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17. Execute the option ROMs as needed. If these contain IA-32 code, some of the IA-32 
instructions may cause traps into the IA-64 and suitable support needs to be provided by the 
IA-64 trap/fault handler code. These interactions are more fully described in Volum e2, 
Chapter 10 of the Intel® IA-64 Architecture Software Developer’s Manual, and Chapter 7. 
As a side effect of supporting IA-32 Option ROMs, it is possible to have some of the SAL 
code implemented in IA-32 ISA.

18. Copy the EFI code into memory and transfer control to it. Branch register B0 shall be set up 
to point to the instruction following the call to the EFI code. The EFI firmware will search 
for bootable devices, load the OS Loader image and transfer control to it. EFI may utilize the 
underlying SAL and IA-32 BIOS layers for accesses to platform devices. Refer to the EFI 
Specification for interface description.

3.2.4 OS Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specification for details of booting IA-64 
OSs. If the selected OS is a Legacy IA-32 OS, SAL does the following:

1. SAL will construct a MP Information Table that provides the mapping between the I/O 
SAPIC ID, EID values and the I/O APIC ID value for use by the Legacy IA-32 OS. This 
table is provided as a parameter to the PAL_ENTER_IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on 
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL 
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a 
maximum of 16 processors while booting a Legacy IA-32 OS. SAL will keep any additional 
processors in a loop within SAL and these processors shall not invoke the 
PAL_ENTER_IA_32_ENV procedure. 

SAL will assign unique 4-bit id values for the I/O APIC entries of the MP table based on the 
16-bit eid, id fields of the corresponding SAPIC entries. The id values assigned by SAL for 
the Local APIC and the I/O APIC entries may overlap. 

SAL will provide the physical address of non-existent memory of a minimum of 4K bytes. 
This area will be specified in the Memory Descriptor Table (Table 3-5) with the Memory 
type classification of Non-existent Memory. 

2. The PAL_ENTER_IA_32_ENV procedure also enables SAL to emulate some I/O ports not 
present on the platform. SAL conveys information on the emulated ports in the SAL I/O 
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® IA-64 Architecture Software 
Developer’s Manual for details.

3. Construct Memory Descriptor Table entries suitable for the platform.

4. Load one sector of the Master Boot Record (MBR) code from the boot device at address 
0x7C00. Verify that the last two bytes of the sector end with 0x55 0xAA.

Note: In this document, the term sector refers to a logical block of 512 bytes. 

5. Determine the amount of memory needed by PAL in support of IA-32 OSs by invoking 
PAL_COPY_INFO procedure and allocate the same with the requested alignment. 
Transition the processor to the IA-32 system environment and jump to the MBR code loaded 
at 0:7C00. This switch is effected by calling PAL_ENTER_IA_32_ENV procedure. (Refer 
to the Intel® IA-64 Architecture Software Developer’s Manual.) The return address in SAL 
and the address of SAL_PROC are passed as a parameter to this call. SAL shall set the initial 
IA-32 stack to 0:0x7c00 (SS:ESP).
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This PAL procedure will set up the appropriate memory attribute values based on the 
Memory Descriptor Table (Refer Table 3-5). If the IA-32 OS exits by executing a JMPE 
instruction, PAL will return to the return address in SAL. When SAL regains control, it will 
de-allocate the memory allocated to PAL in support of IA-32 OSs and attempt to boot a 
different OS. 

6. Some additional parameters are needed in a MP environment. The 
PAL_ENTER_IA_32_ENV procedure requires an input flag that indicates whether the call 
is being made on the BSP or APs and a count of the processors that have already been 
transitioned to the IA-32 system environment. Also, the PAL_ENTER_IA_32_ENV 
procedure requires that the first processor reach the IA-32 starting address before subsequent 
processors invoke the procedure.

SAL implementation is simpler if the BSP transitions to the IA-32 system environment last. 
For example, the BSP can instruct APs to call the PAL_ENTER_IA_32_ENV procedure, 
one at a time. The APs will specify a starting address within the first MB of memory. The 
IA-32 code at this location will perform the check-in to inform the BSP that the transition to 
IA-32 system environment is completed, disable interrupts and go into a spin loop awaiting 
the Startup IPI from the BSP. 

Once all the APs have transitioned to the IA-32 system environment and checked in, SAL on 
the BSP will invoke the PAL_ENTER_IA_32_ENV procedure and specify the starting 
address as 0:7C00 where the MBR code from disk has been loaded. The 
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs 
such that all processors have an identical view of the platform’s memory attributes.

The IA-32 OS would be loaded eventually and this will send APIC INIT IPIs followed by 
APIC Startup IPIs to the APs. PAL's APIC emulation layer on the BSP will trap the APIC 
ICR writes and will eventually transition the APs to the starting address corresponding to the 
vector specified in the Startup IPI. 

3.2.5 Firmware to OS Loader Handoff State 

The handoff to an IA-32 OS is compatible with the PC-AT industry standards. The handoff from 
firmware to the IA-64 OS Loaders is fully described in the EFI Specification. Included in the 
handoff are:

• The pointer to the SAL System Table (Section 3.2.7)

• The pointer to the Root System Description Pointer as described in the Advanced 
Configuration and Power Interface Specification.

The state of the IA-64 system registers at the time of handoff to the OS Loader is as follows:

• AR contents are SAL implementation-dependent except the following:

• CFM: The backing store shall contain a minimum of 8 KB of available storage space 
defined in the SAL Boot Services data area.

• RSC will indicate enforced lazy mode, little-endian

• GR contents are SAL implementation-dependent except:

• GR12 = Stack pointer with a minimum of 8 KB of available storage space defined in the 
SAL Boot Services data area.

• PSR:
PSR.ac = 1 (alignment check enabled) 
PSR.ic = 1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending 
interrupts.
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PSR.it, PSR.dt, PSR.rt = 0 (instruction translation, data translation and RSE translation off)
PSR.bn = 1 (register bank 1 selected)
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits = 0

• CRs:
DCR: Bus lock setting (DCR.lc) is platform implementation-dependent, all other bits of DCR 
= 0 
IVA = physical address of a SAL implementation-dependent IVT
PTA.ve = 0 (if the virtual hash page table (VHPT) is disabled)
LID = the unique id/eid value for this processor 

• Data Breakpoint Registers – DBRs: Same as on entry to SALE_ENTRY

• Instruction Breakpoint Registers – IBRs: Same as on entry to SALE_ENTRY

• RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registers will have 
implementation-dependent values except that RRs 1-3, if non-zero, will contain Region ID 
values of 0x1001-0x1003 respectively. 

• Protection Key Registers – PKRs, are set to 0.

• TLB
TRs: ITR(0) will map an area that includes the SAL’s IVT and PAL code. All other TR entries 
are invalidated 
TCs: These are implementation-dependent but will likely contain identity mappings (virtual 
address to physical address)

• Caches
Enabled, coherent and consistent with the contents of memory

3.2.6 OS_BOOT_RENDEZ

OS_BOOT_RENDEZ is the entrypoint for OS-dependent MP rendezvous code. The OS code on 
the BSP registers this entrypoint by invoking SAL_SET_VECTORS, supplying the physical 
address of OS code that is 16-byte aligned. SAL exports details of the wake-up mechanism to the 
OS through the SAL System Table (refer to Table 3-11) so that the OS kernel code on the BSP may 
wake up the APs when appropriate. When SAL on the APs receives the wake-up, it will transition 
the APs to the registered OS_BOOT_RENDEZ entrypoint. Refer to Section 3.2.2.1, “Rendezvous 
Functionality” for additional details. 

The state of the IA-64 system registers at the time of handoff to the OS_BOOT_RENDEZ is similar 
to that for the BSP with the following exception: 

• B0 = Return address into the SAL Boot_Rendezvous routine. If the OS_BOOT_RENDEZ 
returns to the SAL using the Branch register B0, the SAL will re-enter the spin loop awaiting a 
wake-up by the BSP. 

3.2.7 SAL System Table

SAL uses the SAL System Table to export a variety of information to the OS Loader. The pointer to 
the SAL System Table is provided by EFI to the OS Loader. Refer to the EFI Specification for 
handoff details. If a recovery condition is present, the SAL System Table is not built and a pointer 
value of 0 is provided. 
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The SAL System table begins with a header which is described in Table 3-2. The SAL System 
Table header will be followed by a variable number of variable length entries. The first byte of each 
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each 
entry type will have a known fixed length. The total length of this table depends upon the 
configuration of the system. OS software must step through each entry until it reaches the 
ENTRY_COUNT. The entries are sorted on entry type in ascending order. 3-3 describes each entry 
type.

.
Table 3-2. SAL System Table Header

Field
Offset

(in bytes)
Length

(in bytes)
Description

SIGNATURE 0 4 The ASCII string representation of 
“SST_”, which confirms the presence of 
the table.

TOTAL_TABLE_ LENGTH 4 4 The length of the entire table in bytes, 
starting from offset zero and including 
the header and all entries indicated by 
the ENTRY_COUNT field.This field aids 
in calculation of the checksum.

SAL_REV 8 2 The revision number of the IA-64 SAL 
specification supported by the SAL 
implementation in binary coded decimal 
(BCD) format.
Byte 8 – Minor
Byte 9 – Major 
SAL revision 2.9 corresponds to SAL 
Specification, July 2000.
SAL revision 2.8 corresponds to SAL 
Specification , January 2000.

ENTRY_COUNT 10 2 The number of entries in the variable 
portion of the table. This field helps 
software in identifying the end of the 
table when stepping through the entries.

CHECKSUM 12 1 A modulo checksum of the entire table 
and the entries following this table. All 
bytes including the Checksum bytes 
must add up to zero.

RESERVED 13 7 Unused, must be zero.

SAL_A_VERSION 20 2 Version Number of the SAL_A firmware 
implementation in BCD format.
Byte 20 – Minor
Byte 21 – Major 

SAL_B_VERSION 22 2 Version Number of the SAL_B firmware 
implementation in BCD format.
Byte 22 – Minor
Byte 23 – Major 
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Following are the entry types of entries that follow the SAL System Table Header. Unless otherwise 
stated, there is one entry per entry type.

3.2.7.1 Entrypoint Descriptor Entry

The Entrypoint Descriptor entry provides the addresses in memory of PAL_PROC, SAL_PROC 
that may be used by the OS to invoke the procedures within the PAL and the SAL. When the OS 
calls SAL_PROC, the gp register must contain the physical or virtual address of the SAL’s gp 
value specified in the Entrypoint Descriptor, depending on the mode in which the SAL_PROC 
procedure is called. 

OEM_ID 24 32 An ASCII identification string which 
uniquely identifies the manufacturer of 
the system hardware. This string can be 
exactly 32 bytes in length or shorter if 
null terminated. Compliance with the 
SAL specification requires that this string 
be unique with respect to all other 
manufacturers. It is forbidden to use 
another manufacturer's identification 
even if the system is otherwise identical.

PRODUCT_ID 56 32 An ASCII identification string which 
uniquely identifies a family of compatible 
products from the manufacturer. This 
string can be exactly 32 bytes in length 
or shorter if null terminated.

RESERVED 88 8 Unused, must be zero.

Table 3-3. SAL System Table Entry Types

Entry Typea

a. All other types are reserved.

Entry Length 
(in bytes)

Description

0 48 Entrypoint Descriptor 

1 32 Memory descriptor (one entry for each contiguous block with 
similar attributes)b

b. Not required for IA-64 OSs.

2 16 Platform Features Descriptor

3 32 Translation Register Descriptor (one entry for each TR used by 
SAL at the time of handoff to the OS)

4 16 Purge Translation Cache (PTC) Coherence Descriptor

5 16 AP Wake-up Descriptor

Table 3-2. SAL System Table Header (Continued)

Field
Offset

(in bytes)
Length

(in bytes)
Description
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3.2.7.2 Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries are used only while booting an IA-32 OS. IA-64 OSs 
obtain similar information from the EFI firmware component. The Memory Descriptor Table 
entries describe all the main memory, firmware memory, memory mapped I/O, etc., in the system 
address space as well as the memory attributes currently set by SAL. Each contiguous block with 
similar memory attribute (WB, WC, UC or UCE) must be aligned on a 64KB boundary as a 
minimum, for optimal TLB management. Note that memory usage values (byte 7 of the MDT 
entry) may change within a 64KB memory block and hence it is legal to have more than one MDT 
entry describing a 64KB memory region as long as the memory attribute (WB, WC, UC or UCE) 
does not change within that 64K block. 

SAL must provide entries that cover the entire system address space. The firmware must indicate 
its memory usage in order that the same may be not trampled by the OS. Thus, if the SAL uses an 
underlying IA-32 BIOS layer for part of its functionality, it must report memory usage for the real 
mode interrupt vector table (0-0x3FF), the BIOS Data area (0x400-0x4FF) and the Extended BIOS 
Data area (downwards from 640K) as Boot Services Data in the Memory Usage field of the 
Memory Descriptor Table entries. 

The EFI firmware component communicates the SAL’s requirements for virtual address mappings 
to the OS. Once the OS takes control of the memory management and the IVA, it must provide TLB 
mappings for both the code and data accesses to the memory areas required by SAL, if those areas 
are accessed in virtual mode. The OS must register these virtual addresses prior to invoking SAL 
procedures in virtual mode. 

Table 3-4. Entrypoint Descriptor Entry Format

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 0 denoting Entrypoint Descriptor type

1 7 Reserved (must be zero)

8 8 Physical address of the PAL_PROC entrypoint in memory

16 8 Physical address of the SAL_PROC entrypoint in memory

24 8 Global Data Pointer (physical address value) for SAL procedures 

32 16 Reserved (must be zero)

Table 3-5. Memory Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Descriptiona

(unsigned integers)

0 1 Entry type = 1 denoting Memory Descriptor entry type

1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes
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2 1 Encoded value of current Memory Attributeb setting in bits 0-2: 
000: WB
100: UC
101: UCE
110: WC

3 1 Page Access Rights set up by SAL for the memory rangeb: 

4 1 Memory Attributesb supported: 
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC

5 1 Reserved (must be zero)

6 2 Memory Type (byte 6)
0 = Regular Memory

Memory Usage (byte 7) 
0 = Unspecifiedc

1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memoryd

9 = ACPI NVS Memory
10 = SAL PMI Code 
11 = SAL PMI Data
12 = Firmware Reserved Memorye 
128-255 = Reserved for OEM

1 = Memory mapped I/O 0 = Unspecified
1 = I2O Hidden space hole
2 = Video Memory
3-127 = Reserved
128-255 = Reserved for OEM

2 = SAPIC IPI Block 0 = Unspecified

3 = IA-32 I/O Port space 0 = Translated by processor to I/O cycles

4 = Firmware address 
space

0 = Unspecified

9 = Bad Memory 0 = Unspecified

10 = Non-existent 
Memory (Black hole)

0 = Unspecified

8 8 Physical Address of Memory 

16 4 Length (multiple of 4K pages)

20 4 Reserved (must be zero)

24 8 OEM Reserved 

a. All unused values are reserved.

Table 3-5. Memory Descriptor Entry (Continued)

Offset
(in bytes)

Length
(in bytes)

Descriptiona

(unsigned integers)
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The SAL also provides the memory type and usage information to the EFI. Refer to the EFI 
Specification for details. The following table specifies the mapping between Memory Descriptor 
Table entries and the information provided by the SAL to the EFI. 

3.2.7.3 Platform Features Descriptor Entry

The Platform Features Descriptor Entry describes the features implemented on the platform. Refer 
to the IA-64 Platform Architecture Guide for implementation considerations of these platform 
features. 

b. Refer to the Intel® IA-64 Architecture Software Developer’s Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.
d. This memory is available to the OS after it reads the Advanced Configuration and Power Interface 

Specification tables.
e. This area is not visible in the IA-32 OS environment.

Table 3-6. Memory Type Information Provided to the EFI

Memory Type Memory Usage EFI Memory type 

0 = Regular Memory 0 = Unspecified
1 = PAL Code 
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memory
9 = ACPI NVS Memory
10 = SAL PMI Code 
11 = SAL PMI Data
12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped I/O <all values> Information not provided to the EFI

2 = SAPIC IPI Block 0 = Unspecified Information not provided to the EFI

3 = IA-32 I/O Port space 0 = Translated by processor to I/O 
cycles

EfiMemoryMappedIOPortSpace

4 = Firmware address space 0 = Unspecified EfiRuntimeServicesData

9 = Bad Memory 0 = Unspecified EfiUnusableMemory

10 = Non-existent Memory 
(Black hole)

0 = Unspecified Information not provided to the EFI
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3.2.7.4 Translation Register Descriptor Entry

The Translation Register Descriptor entries describe the parameters used by the SAL during 
insertion of the TRs. These entries will be used by the OS to purge SAL’s TRs after the OS takes 
over the IVA. 

3.2.7.5 Purge Translation Cache Coherence Domain Entry (optional)

The purge translation cache (PTC) Coherence Domain Entry describes the number of coherence 
domains and the scope of PTC instruction propagation for each domain. This entry is optional. It is 
required only for MP systems that have multiple coherence domains. 

Table 3-7. Platform Features Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 2 denoting Platform Features type

1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented on the processor as well as the 
platform
Bit 1: 1 if the chipset supports redirection hint for interrupt messages 
originating from the platform (lowest priority interrupt)
Bit 2: 1 if the chipset supports redirection hint for IPI messages 
originating from the processors 
Bits 3-7 = Reserved

2 14 Reserved

Table 3-8. Translation Register Descriptor Entry

Offset
(in bytes)

Length

in bytes)
Description

0 1 Entry type = 3 denoting the Translation Register Descriptor type

1 1 Type of Translation Register: 
0: Instruction Translation Register
1: Data Translation Register 
Other values: Reserved 

2 1 Translation Register number

3 5 Reserved

8 8 Virtual address of the area covered by the Translation Register. Bits 
61-63 of this field indicate the Region Register number. 

16 8 Encoded value of the page size covered by the Translation Register. 
Refer to the Intel® IA-64 Architecture Software Developer’s Manual, 
Addressing and Protection chapter for the format of this field. 

24 8 Reserved
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Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives 
in. SAL captures this information in an implementation-dependent manner and passes the same to 
the OS.

The coherence domain information is an array of length of (16*Number of coherence domains). As 
shown in Table 3-10, for each coherence domain, there will be two information fields: 

1. Number of processors in the TLB coherence domain.

2. 64-bit memory address of a list of Local ID register values for the processors within the TLB 
coherence domain. Each processor will require two bytes of memory (id field in low order 
byte and eid field in high order byte) to represent the Local ID information.

This information is represented in Table 3-10. 

3.2.7.6 Application Processor Wake-up Descriptor Entry (optional)

The AP Wake-up Descriptor Entry describes the mechanism for waking up APs in an MP 
environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on OS usage of this 
entry. This entry is required for MP configurations. 

Table 3-9. Purge Translation Cache Coherence Domain Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 4 denoting PTC Coherence Domain Entry type

1 3 Reserved (must be zero)

4 4 Number of coherence domains for the platform

8 8 64-bit memory address of the coherence domain information

Table 3-10. Coherence Domain Information

Offset
(in bytes)

Length
(in bytes)

Description

0 8 Number of processors in TLB coherence #1

8 8 64-bit memory address of a list of Local ID register values for the 
processors within the TLB coherence domain #1 

16 8 Number of processors in TLB coherence #2

24 8 64-bit memory address of a list of Local ID register values for the 
processors within the TLB coherence domain #2 

... ... ...

... ... ...

16*(N-1) 8 Number of processors in TLB coherence #N

8+16*(N-1) 8 64-bit memory address of a list of Local ID register values for the 
processors within the TLB coherence domain #N 
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3.3 IA-64 OS Loader Requirements 

The firmware will jump to the IA-64 OS Loader with the handoff state described in the EFI 
Specification. Included in this state information is a pointer to the SAL procedures the OS can 
invoke. These procedures are described in Chapter 9.

This section describes the requirements on the OS Loader while operating under the SAL execution 
environment. 

3.3.1 Fault Handling

This section describes the guidelines to the OS Loader code as regards fault handling. 

After the OS is completely loaded, it will take over the IVA, and replace the SAL environment with 
its own memory management. Until that time, the OS shall use SAL’s virtual memory environment 
— IVA, Interrupt controller mode, TC mappings, etc., and it shall not change any of these 
resources. 

The OS Loader code may be executed in physical mode with interrupts disabled, or in virtual mode 
with Instruction, Data and RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). While executing 
in virtual mode, the OS Loader code is permitted to cause TLB faults for which SAL shall provide 
the appropriate fault handlers. These TLB faults are:

• Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does 
not implement the VHPT. If VHPT is not used, the Page Table Address (PTA) need not be 
initialized. SAL will turn off the PTA.ve bit to disable the processor walking the VHPT. VHPT 
is an optional feature of the IA-64 architecture. Avoiding VHPT usage also permits the IA-32 
support code to operate out of ROM. 

• Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not 
implement the VHPT. The SAL’s fault handler shall test whether the TLB fault surfaced during 
speculative load accesses (LDx.s). Such an access is indicated if the ISR.sp bit is set. If this bit 
is set, the SAL shall return to the faulting instruction with the IPSR.ed bit thereby turning on 
the NaT bit of the target register for the load. 

• VHPT related faults: VHPT translation fault, Data TLB fault and Nested TLB fault, if SAL 
implements VHPT.

Table 3-11. Application Processor Wake-up Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type

1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved

2 6 Reserved (must be zero)

8 8 External Interrupt vector in the range of 0x10 to 0xFF 
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• Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level 
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with 
unified TLBs, Access Rights faults may surface if the TC is present but the required page 
permissions are not present, e.g. TC is present with RW page access rights but RX page access 
rights is needed for instruction execution.

• External interrupt: Hardware interrupts will be received by SAL in the IA-64 ISA. This code 
will read the IVR register. If the vector read is 0, it signifies an interrupt from the 8259 
interrupt controller and SAL must issue a load to the architected INTA_address (default 
address 0xFEFE_0000) in the processor interrupt delivery block to issue an interrupt 
acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259. SAL will then 
jump to the appropriate interrupt handler using its internal tables. If the interrupt needs to be 
reflected to IA-32 code, the address will be derived from the IA-32 Interrupt Descriptor Table. 
The OS Loader is restricted from sending IPI messages (i.e. causing bits in the SAPIC IRR 
registers to be set) with vector values other than the one specified in the AP Wake-up 
Descriptor Entry (refer to Table 3-11).

• SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid 
Page not present, Data Dirty bit and Data Access bit faults. 

• SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key 
miss, Data Key miss and Key Permission faults.

• Speculation fault: Speculation faults are caused by CHK.s, CHK.a and FCHK instructions. 
SAL will provide the transition mechanism to the recovery code. SAL and OS Loader code 
must be compiled with speculation off, thereby avoiding the use of the above instructions. 
Turning off speculation should not have any impact on performance since most of SAL code 
relies on strong ordering. 

• Unaligned fault: The OS Loader shall not make data references to misaligned data. However, 
this fault may arise during speculative load accesses. Such an access is indicated if the ISR.sp 
bit is set. If this bit is set, the SAL shall return to the faulting instruction with the IPSR.ed bit 
thereby turning on the NaT bit of the target register for the load. 

• SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT entries 
created by OS Loader code are preserved across SAL calls and SAL’s fault handlers. 

• Divide by zero: SAL shall display an error message for the Break interrupts caused by the 
run-time checking of integer divide by zero. Refer to the IA-64 Software Conventions and 
Runtime Architecture Guide.

The OS must not rely on any other fault handlers installed by SAL. SAL will display an error 
message if an unsupported fault is encountered. SAL will not provide support for the following 
faults:

• Nested TLB fault: ITR(0) will map the SAL’s IVT and the code areas covering SAL’s fault 
handlers. All fault handlers in SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested 
TLB fault that can occur while accessing the fault handler’s local variables and data structures. 

• NaT Consumption fault: NaT Consumption faults are generated by a load, store or move that 
uses a source register containing a NaT value or by accessing a NaTPage. This fault can be 
avoided by compiling the OS Loader code with speculation off.

• General Exception fault: The OS Loader shall not cause the general exception fault by 
executing illegal operations, invoking SAL procedures in physical/virtual mode with 
arguments specifying unimplemented data addresses.

• Floating-point faults: The OS Loader shall not disable accesses to the floating-point register 
sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point exceptions
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• Other traps/faults: The OS Loader must not cause other traps or faults such as Debug, Single 
step, Taken branch, etc. Normally, the OS kernel provides these services after it takes over the 
IVA. 

Additional fault handlers to support IA-32 execution are described in Chapter 7. 

3.3.2 Memory Management Resources Usage

This section describes SAL’s usage of various memory management resources and provides 
guidelines for their use by the OS Loader code.

3.3.2.1 TLB Resource Partition

SAL will use only TCs and the ITR(0). Use of several TRs by SAL may cause problems with 
booting of some IA-64 OSs. The OS Loader is free to use Translation Registers (TRs) other than 
ITR(0). The advantage of this resource partition is that hardware interrupts which cause a transition 
to SAL will not affect the TRs set up by the OS Loader. Ideally, the OS Loader will set up the TRs 
for its memory mappings and not cause TLB faults. However, should the OS Loader code cause a 
TLB miss, the TLB Miss handler in SAL would automatically install a TC with identity mapping. 
The restriction on ITR(0) is not relevant after the OS takes over the memory management and the 
IVA. 

Use of TCs in SAL code should not cause any performance problems since SAL is not performance 
critical. Most of the SAL code will write and read back memory addresses traversing the entire 
physical address space. Use of additional TRs will not provide improved performance. SAL will 
primarily be limited by memory and I/O speeds. 

SAL will use TC entries with length of 4KB by default and will try to coalesce contiguous entries 
with similar attributes into larger page sizes. 

3.3.2.2 Identity Mapping Usage

IA-64 virtual address is 85 bits wide and IA-64 physical address is 63 bits wide. Bits 0 to 60 of the 
virtual address provide the virtual page number and offset. Bits 61 to 63 of the virtual address are 
used as an index into the Region Registers which supplies a Region ID value that can be up to 24 
bits wide. Thus the 85-bit virtual address comprises the low order 61 bits of the virtual address and 
the 24-bit Region ID. This 85-bit virtual address is transformed into a 63-bit physical address by the 
IA-64 TLB mechanism as described in the Intel® IA-64 Architecture Software Developer’s 
Manual.

SAL will use identity mappings (virtual addresses = physical addresses). The advantage of identity 
mapping is that the same pointer can be used to access the same memory location regardless of the 
state of the PSR.dt bit. 

3.3.2.3 Unique Region IDs for SAL

The firmware will load the OS Loader and jump to it. The OS Loader will load the rest of the OS 
using the firmware boot services procedures. While SAL can operate with identity mapping, there 
may be a need for the OS Loader to use a non-identity mapping. As an example, there may be an 
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I/O device at physical address 2.5 GB for which SAL would have established an identity mapping 
with uncacheable memory attribute. The OS Loader may need to load additional layers of software 
and fix up address relocations using virtual addressing. The OS Loader may need to load software 
at physical address 0.5 GB mapped to virtual address of 2.5 GB. When OS refers to the virtual 
address 2.5 GB, it is referring to RAM at 0.5 GB and when SAL refers to 2.5 GB virtual address, it 
is referring to the I/O device at 2.5 GB physical address. Clearly, OS Loader cannot use the TLB 
mapping set up by SAL for this case. 

This problem can be solved by using different Region registers and Region ID values for SAL and 
OS. Differing Region ID values ensure that earlier TC/TR entries with a different Region ID value 
no longer cause TLB hits. SAL will use Region ID of 0x1000 for all its TLB mappings, if physical 
address space is less than or equal to 261 bytes and OS Loader shall be restricted from using Region 
ID values of 0x1000 to 0x1003 until OS is ready to take over the memory management and the 
IVA. If this restriction is not followed by the OS Loader, a machine check abort might result when 
SAL attempts to insert a TC entry using the ITC.i or ITC.d instruction.

Since SAL code is 64-bit, if the physical address space is less than or equal to 261 bytes, SAL will 
be capable of addressing the entire physical address space using Region Register 0. SAL will use 
only Region Register 0 and set up the same with a Region ID value of 0x1000, if physical address 
space is less than or equal to 261 bytes. If physical memory is larger, it will load Region Registers 1 
to 3 with Region ID values of 0x1001 to 0x1003 respectively.

The OS Loader will need to refer to the data structures common to SAL and OS in the process of 
loading the OS kernel. Similarly, the OS will need to pass parameters to SAL through pointers in 
Memory Stack Pointer (SP) and Global Data Pointer (GP) registers. SAL and OS must refer to 
these common data structures using Region Register 0, i.e. the virtual addresses used to address the 
common data structures must have bits 61-63 set to 0. 

While operating in the virtual mode, the OS Loader shall not change the contents of Region 
Registers that are in use by SAL. If the value in Region Register 0 is changed, access to the IVT is 
lost and the system will crash. This restriction is not relevant after the OS takes over the memory 
management and the IVA. 

Should the OS Loader set up any of the Region Registers for its use, it must

• Set the ve bit in the Region Register to 0, to disable the VHPT.

• Set the ps bits value to indicate preferred page size of 4KB.

3.3.3 Other Restrictions on the OS

The OS shall not change the values of the following system resources:

• LID, the unique id/eid value for this processor.

• DCR.lc, the Bus lock setting for the platform, if the same is set to 1. Note that the 
PAL_BUS_SET_FEATURES procedure may be invoked to execute the locked transactions as 
a series of non-atomic transactions. Refer to the Intel® IA-64 Architecture Software 
Developer’s Manual for details.

• Physical address of the Processor Interrupt Block Address.

• Physical address of the IA-32 I/O Port Block.

The OS may lower the CMCI, MCA and BERR promotion strategy set by SAL by invoking the 
PAL_PROCESSOR_SET_FEATURES procedure, but this is not recommended.
Boot Sequence 3-21



3-22 Boot Sequence



Machine Checks 4

Machine checks, including Machine Check Aborts (MCAs), and expected machine checks cause 
processor execution to vector to PALE_CHECK code in the IA-64 ISA. Please refer to Volume 2, 
Chapter 11 in the Intel® IA-64 Architecture Software Developer’s Manual for details regarding 
PALE_CHECK processing. Also refer to the IA-64 Error Handling Guide for error handling from a 
system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY entrypoint in 
the IA-64 ISA, which in turn branches to the SAL MCA handler. The entry conditions for 
SALE_ENTRY are described in the Intel® IA-64 Architecture Software Developer’s Manual. 

This chapter defines the actions required of SAL_CHECK as well as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.
 

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These 
may still be fully or partially recoverable at the OS layer. The control flow differs between 
corrected and uncorrected machine checks. For corrected machine checks, the OS Corrected error 
interrupt handlers will be invoked some time after returning to the interrupted process. Section 4.1 
describes the functionality and processing steps for the uncorrected machine checks and 
Section 4.2 describes the corrected machine checks.

4.1 SAL_CHECK

SAL_CHECK has the basic responsibility for the following:

• Record processor and platform error information.

• Save the processor and platform state information.

Figure 4-1. Overview of Machine Check Flow
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• Perform any platform hardware-specific corrections.

• For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.

• Clear the error record resources and re-enable future information collection.

• Halt the processor or platform as necessary.

• Handle MP situations. 

In addition, it is useful to note that where hardware/firmware cannot fix a machine check condition, 
SAL_CHECK should provide the necessary information and conditions to allow the OS to recover 
whenever possible. It is expected that most of the error recovery is performed at the OS_MCA 
layer. The amount of state information saved by SAL is implementation-dependent and the 
SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state 
information. 

4.1.1 SAL_CHECK Processing Details

During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code where it 
may deposit some minimal processor state information so that PAL code has sufficient resources to 
perform the necessary PALE_CHECK processing. This step is performed on all the processors in 
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED 
procedure to notify PAL that a machine check may surface and that PAL must not attempt to correct 
the error. If the machine check was expected by SAL, SAL will check the results of the operation, 
invoke PAL_MC_EXPECTED to notify PAL that machine check is no longer expected, and 
resume execution by calling PAL_MC_RESUME. 

When an unexpected machine check event has occurred and SAL_CHECK is entered, it is the 
responsibility of SAL_CHECK to call back to PAL code (PAL_MC_ERROR_INFO), in order to 
retrieve processor-specific error information which pertains to the machine check taken. In 
addition, SAL_CHECK should interrogate the platform for any platform-specific information 
which pertains to the machine check condition. This information is preserved in a 
platform-dependent location. Once the processor error record information is retrieved, 
SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging resources 
for capturing future machine check error information. A similar task is necessary to enable platform 
error record storage resources for future events. The OS does this by invoking 
SAL_CLEAR_STATE_INFO. 

An error due to an MCA event, when corrected by firmware becomes a Processor Corrected 
Machine Check or Platform Corrected Error event condition. An hand off to OS_MCA is also not 
required during this event type transformation.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch” 
machine check processor to accumulate all the error records at the platform level and continue with 
the machine check processing. 

SAL is responsible for reporting the state information to the OS via the SAL_PROC get state 
information calls so that the OS can make the determination to: 

• Fix the error and return, 

• Create a new context and continue, or 

• Reset the platform. 
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SAL_CHECK shall not hide any architectural state from the OS_MCA layer and cannot make 
assumptions on whether OS_MCA would return to PAL or SAL. This permits the OS_MCA layer 
to run unencumbered. OS_MCA can save the processor and platform state and re-enable future 
machine checks as soon as possible. Otherwise, OS_MCA would be constrained to operating with 
machine checks disabled in order to preserve the architectural information at the PAL and SAL 
layers. 

When the OS registers the OS_MCA entrypoint with SAL, it also supplies the length of the code 
(or at least the length of the first level OS_MCA handler). SAL computes and saves the checksum 
of this code area. Prior to entering OS_MCA, it is SAL_CHECK's responsibility to ensure that the 
OS_MCA vector is valid by verifying the checksum of the OS_MCA code. There may also be 
some platform-specific reasons which render the OS_MCA handler invalid. For example, since the 
OS_MCA handler is in memory, if the memory controller which handles that portion of memory is 
no longer functional, it does not make sense to attempt to branch to that code. If either the 
OS_MCA handler was not registered prior to the machine check event, or if the OS_MCA handler 
is otherwise invalid, SAL_CHECK may halt or reboot the system. This action is SAL 
implementation-dependent. When the OS_MCA returns to the SAL indicating that the error has 
been corrected by the OS layer, SAL will call the PAL_MC_RESUME procedure to resume 
execution. See Section 4.7.1 for other options. 

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks. 

4.2 Corrected Machine Checks

There are different categories of corrected machine checks pertaining to the IA-64 processor:

Figure 4-2. Machine Check Code Flow
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• Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor 
cache.

• Corrected by PAL, e.g. double bit data ECC error on a clean processor cache line, during an 
instruction fetch operation. 

• Corrected by the platform hardware, e.g. single bit data ECC error on system memory.

• Corrected by SAL. These are primarily platform errors that can be corrected by SAL without 
immediate involvement of the OS. 

None of these categories will require rendezvousing of the other processors by the firmware. 

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the 
uncorrected machine checks. SAL will maintain the processor and platform error information and 
save the state of the processor and platform. In the subsequent steps, SAL may do one of the 
following:

• If the error is corrected by PAL, SAL would return to the interrupted context by calling 
PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option for generating a 
Corrected Machine Check interrupt to the OS for the Processor CMC events. The CMCV 
register specifies the CMC interrupt vector and its mask status.

• SAL will perform any platform hardware-specific correction as described in Section 4.3, 
“Platform Errors”, send a Corrected Platform Error Interrupt to the OS and then call 
PAL_MC_RESUME, to return to the interrupted context.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the OS CMC 
interrupt handler or the OS Corrected Platform Error interrupt handler will be invoked some time 
after returning to the interrupted process, assuming that the CMC or Correced Platform Error 
interrupt is enabled in hardware. The CMC or Corrected Platform Error interrupt handler of the OS 
shall run with interrupts enabled1 and would invoke the SAL_GET_STATE_INFO and the 
SAL_CLEAR_STATE_INFO procedures to process the error information associated with the 
event(s). The OS must ensure that the entire CMC or Corrected Platform Error interrupt handler 
executes on the same processor.

The amount of state information saved by SAL is implementation-dependent and SAL provides 
validation bits indicating the saved state information. Thus, for performance reasons, a particular 
SAL implementation may choose not to save ARs, CRs or floating-point registers during a 
corrected machine check. 

4.3 Platform Errors

Some platforms may use interrupts to signal corrected and/or uncorrected errors to the IA-64 
processor. There may also be requirements for routing the interrupt signals to specific processors as 
processors may not have visibility to all the platform components in a system. The SAL provides 
details of the interrupt input line(s) and the interrupt routing requirements to the OS through the 
ACPI Tables. Refer to the ACPI Specification for additional details. 

When the OS wants to be notified of this event through an interrupt, the OS driver is responsible for 
picking a corrected platform error vector (CPEV) and arming the interrupt line(s) to deliver 

1. It is required that the OS handlers operate with interrupts enabled, so that system firmware can manage its resources 
(like NVM based error records) without impacting the system performance.
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interrupt(s) to the processor. The OS is also required to register the chosen vector number 
corresponding to this interrupt line with SAL through SAL_MC_SET_PARAMS. On receipt of 
such Corrected Platform Error Interrupt(s), the OS shall invoke the SAL_GET_STATE_INFO and 
the SAL_CLEAR_STATE_INFO procedures to retrieve and processor the platform error 
information.

For SAL corrected platform errors, SAL is responsible for notifying the OS of the event. SAL can 
send an IPI to the OS with the CPEV that is registered by the OS through 
SAL_MC_SET_PARAMS. To localize the notification of this event, SAL can direct the IPI to a 
processor of its choice or to a processor designated by the OS through the ACPI tables, the 
Processor ID and EID of which is programmed into the IOSAPIC.

SAL can retrieve and use the OS designated Processor ID, EID for this event notification from the 
platform topology. For example, if the interrupt line is connected to an I/O SAPIC interrupt 
controller, the SAL can read the Processor ID, EID and the interrupt vector number values from the 
I/O SAPIC’s redirection table entry. Notification to the OS is important from the error logging 
perspective. 

Note that when an OS chooses to poll for the platform corrected error event, it may not initialize the 
IOSAPIC redirection table entry for this interrupt or register the CPEV with the SAL.

4.3.1 Scope

The scope of platform errors is platform & firmware implementation dependent. Depending upon 
the platform topology, a single physical platform may comprise of multiple logical platforms, each 
with a set of processors and its own error event generation and notification. When 
SAL_GET_STATE_INFO is called for MCA or Corrected Errors for the platform, SAL would 
return error record for the logical platform associated with the processor on which the call is made. 

The number of logical partitions in a platform is implicitly indicated by the SAL with the number 
of entries for Corrected Platform Error interrupts in the ACPI table with a designated processor 
having a processor ID and EID. In a system with fewer number of processors (e.g. 4) and a single 
entry in the ACPI table for the Corrected Platform Error interrupt, the logical and physical 
platforms may is the same. 

Having logical platform partitions help in efficient management of platform resources for error 
event notification and error record building when the system has large number of processors and 
platform resources. SAL_GET_STATE_INFO has to be called on each designated processor of a 
logical platform to collate the error information for the entire physical platform.

4.4 OS_MCA

When the OS is ready to handle machine check events, it should call SAL_SET_VECTORS to 
register the physical address, length and the GP of the OS_MCA handler. It is highly recommended 
that a non-zero length be specified so that SAL can ensure the integrity of the OS_MCA code by 
verifying its checksum. The OS must use the SAL_SET_VECTORS function if it expects to be 
able to recover from any machine check conditions in which it may have to be involved, or in order 
to retrieve error records and state information and dumping such information for subsequent debug 
analysis. After registering the OS_MCA address, the OS can re-enable machine checks by clearing 
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the PSR.mc bit to 0. The OS must call the SAL_GET_STATE_INFO_SIZE procedure to obtain the 
maximum size of machine check state information that SAL would return for processor and 
platform errors.

When the machine check event occurs, SAL_CHECK will invoke OS_MCA. OS_MCA 
functionality is implementation-dependent. At a minimum, OS_MCA must call 
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished 
this task it must call SAL_CLEAR_STATE_INFO1 to release these resources for future logging 
and state save. By calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its 
machine check handling. OS_MCA can then re-enable machine checks by clearing the PSR.mc bit 
to 0. Once the OS has consumed and cleared an error record, it will no longer be available to be 
retrieved through the SAL API. SAL error records are always associated with a particular MCA or 
Corrected error event and would contain all the relevant information packaged together as a record, 
and may contain error information from just the processor or platform or both.

OS may perform any corrections on the OS controlled hardware resources. The OS makes the 
decision whether it wants to recover the interrupted context or not, but it must take into account the 
state information retrieved from the SAL_GET_STATE_INFO call. This information contains 
relevant data with respect to the continuability of the processor/system. Thus, even if the OS could 
correct the error, if PAL reports that it did not capture the entire processor context, (e.g. Processor 
state parameter states that the GRs are invalid), resumption of the interrupted context will not be 
possible. The OS must also determine from values in the Min-State Save area whether the machine 
check occurred while operating with PSR.ic set to 0 and whether the processor implements the XIP, 
XPSR and XFS registers necessary for the recovery. 

When OS_MCA returns to SAL or PAL, it is permitted to set new values for the registers that are 
passed by PAL in the Min-State Save area. This is achieved by constructing a data structure with 
the format identical to the Min-State Save area and returning the same to SAL or by passing the 
same as an argument to the PAL_MC_RESUME procedure. Refer to the Intel® IA-64 Architecture 
Software Developer’s Manual for the layout of this structure. 

OS_MCA may select one of the following actions: 

• Correct the error and return to SAL_CHECK with the status of “corrected.” This is the 
recommended approach for errors corrected by the OS. The OS may set a new context in the 
Min-State save area and SAL will then invoke PAL_MC_RESUME to return to the interrupted 
or the new context. If the interrupted context was in the firmware address range and the OS 
decides to set a new context, the OS must take steps for resumption of the firmware code 
eventually, otherwise the system may become unstable. 

• Correct the error and invoke PAL_MC_RESUME to return to the interrupted or a new context. 

• In the event of an uncorrected error, return to SAL_CHECK with the uncorrected status value 
and an indication for SAL to halt or reboot the system. 

• In the event of an uncorrected error, reboot the system. 

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

1. The error records maintained by firmware are returned one at a time to the OS. It is necessary for the consumer 
(OS) to clear the current error record to be able to retrieve the next unread record.
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Figure 4-3. SAL_CHECK Detailed Flow on the Monarch Processor
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4.5 Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may, 
however, invoke the PAL procedures in memory after ensuring that the memory area containing the 
PAL procedures is intact. 

Following are typical PAL procedures that may be invoked by SAL_CHECK: 

• PAL_MC_ERROR_INFO

• PAL_MC_RESUME

• PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:

• PAL_BUS_GET_FEATURES

• PAL_BUS_SET_FEATURES

• PAL_PROC_GET_FEATURES

• PAL_PROC_GET_FEATURES

• PAL_MC_REGISTER_MEM1

• PAL_MC_EXPECTED

SAL may call the following procedure to ensure that all outstanding instructions within a processor 
are completed or any potential machine checks due to these transactions get serviced. 

• PAL_MC_DRAIN 

Following are the SAL procedures that may be invoked by OS to register its machine check layer 
interfaces: 

• SAL_MC_SET_PARAMS

• SAL_SET_VECTORS 

OS_MCA may invoke any of the PAL and SAL procedures. Following are typical SAL procedures 
that may be invoked: 

• SAL_MC_RENDEZ

• SAL_GET_STATE_INFO

• SAL_GET_STATE_INFO_SIZE

• SAL_CLEAR_STATE_INFO

4.6 Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerations in MP 
configurations and hence may require a coordination between all processors, by means of a 
processor rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the 
rendezvous mechanism works. 

1. This procedure is intended for use during firmware initialization. It shall not be invoked by the OS during run time 
as this might affect firmware functionality. 
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Rendezvous of processors is done for one of the following reasons:

• When PAL initiates a rendezvous request during an MCA.

• When SAL determines on its own accord that the platform error needs rendezvous.

• When OS sets a flag requesting firmware to perform rendezvous for all MCA errors.

PAL Initiated Rendezvous: If the PAL machine check layer determines that other processors must 
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the 
rendezvous and supplies a return address within PAL in GR19. Upon return, PALE_CHECK 
performs the appropriate action and then calls SAL_CHECK again in the normal manner (with no 
rendezvous indicator).

SAL Initiated Rendezvous: Additionally, there may be platform related machine check situations 
which require SAL firmware to rendezvous processors. For example, if platform hardware were to 
stop forwarding transactions in order to maintain error containment, the other processors in the 
system must be rendezvoused before that platform hardware can resume forwarding transactions. 
Also, one can imagine a platform cache situation similar to the one described above. Suffice it to 
say these conditions exist.

OS Initiated Rendezvous: If the rz_always flag is set through SAL_MC_SET_PARAMS by the OS, 
SAL is expected to rendezvous the system for all detected processor and platform MCA conditions, 
assuming the errors are not corrected by the firmware. If this flag is not set, then rendezvous is done 
only when PAL initiates the rendezvous request during an MCA or if SAL decides to do it on its 
own accord for certain platform MCA, as described above.

In order to facilitate these types of situations, the OS does the following:

• Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS 
function.

• Invoke the SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL 
firmware can signal the non-monarch processors and the mechanism that the OS will employ 
to wake up the non-monarch processors at the end of machine check processing. 

• Invoke the SAL_MC_SET_PARAMS to specify if a rendezvous is always required for an 
MCA.

On receipt of the MC_rendezvous interrupt, the OS on the non-monarch processors will:

• Disable further interrupts.

• Call SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all 
outstanding transactions within the processor and then enter a spin loop within SAL. This SAL 
procedure shall be MP-safe.
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SAL on the monarch processor will wait a specified amount of time for the signalled processors to 
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the 
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and 
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to 
allow the OS to take the appropriate error recovery actions. 

In situations where either the OS has not registered an interrupt vector via the 
SAL_MC_SET_PARAMS call, or where the specified time to wait has elapsed and the signalled 
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the 
remaining processors in order that the machine check handlers in PAL and SAL can proceed. While 
sending an INIT to the other processors may not create an inherently unrecoverable situation, it 
certainly increases the risk for recoverability. This is the rationale for registering the 
MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS procedure. The monarch 
processor must allow sufficient time for the INIT IPI to be processed by the targeted processors and 
reach the rendezvous state. If PAL requests rendezvous of all the processors and SAL is unable to 
do so, SAL will return to PAL with a non-zero value in GR19. Refer to the Intel® IA-64 
Architecture Software Developer’s Manual for details regarding PALE_CHECK processing. 

After the error is corrected by OS_MCA, OS_MCA on the monarch processor will wake up the 
rendezvoused processors using the wake up mechanism specified in the SAL_MC_SET_PARAMS 
call. For processors rendezvoused using the MC_rendezvous interrupt message, the continuation 
point is merely a return from the SAL_MC_RENDEZ procedure. It is the responsibility of the OS 
to clear the IRR bits for the MC_rendezvous interrupt and the wake up interrupt1, if any. The OS 
must re-enable future interrupts and machine checks.

Figure 4-4. Normal SAL Rendezvous Flow
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If some non-monarch processors were rendezvoused using an INIT IPI message, their continuation 
point on wake up would be the OS_INIT procedure registered for the monarch by the 
SAL_SET_VECTORS (INIT) call. OS must register this entrypoint prior to the wake up, else SAL 
will reset the system. Refer to the Section 5.3, “OS_INIT Handoff State” for the parameters on 
entry to the OS_INIT procedure. 

It should be noted that some implementations, under certain machine check circumstances, will 
cause multiple processors to enter PALE_CHECK and SAL_CHECK. PAL code will be generally 
unaware of this, but SAL code should make every effort to take such situations into account. SAL 
code must implement methods of detecting which processors have entered the SAL_CHECK 
entrypoint and avoid steps to rendezvous such processors (using MC_rendezvous interrupt or 
INIT). Some examples of situations when multiple processors experiencing machine checks 
simultaneously are as follows:

• Broadcast machine check (BERR signal) from the platform

• Error during a cast out of a cache line in response to an incoming snoop cycle from another 
processor

When multiple processors experience machine checks simultaneously, SAL selects a “monarch” 
machine check processor to accumulate all the error records at the platform level. Once this is done, 
the OS_MCA procedure will take control of further error handling on all the processors that 
experienced the machine checks. The OS_MCA layer may need to implement a similar “monarch” 
processor selection for the error recovery phase.

Figure 4-5. Failed SAL Rendezvous Flow
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4.7 OS_MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the OS machine check 
handler, OS_MCA. The contents of non-banked and banked general registers at the time of the 
interruption have been saved by PAL in the Min-State Save area and these are available for use by 
SAL and OS_MCA. The following register contents define the OS_MCA handoff state.

The state of the processor is the same as on exiting PALE_CHECK (refer to the Intel® IA-64 
Architecture Software Developer’s Manual) except as below:

GR1 = OS_MCA Global Pointer (GP) registered by OS (OS’s GP)
GRs2-7 = Unspecified

GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint

GR10 = GP (Physical address value) for SAL
GR11 = Rendezvous state information

0 = Rendezvous of other processors was not required by Firmware and hence
was not done

1 = All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt

2 = All other processors in the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT

–1 = Rendezvous of other processors was required by, but was unsuccessful
GR12 = Return address to a location within the SAL_CHECK procedure

GRs13-31 = Refer to the Intel® IA-64 Architecture Software Developer’s Manual
BR0 = Unspecified 

Note: On entry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration. 
The OS shall not make cacheable accesses to the MinState area, otherwise unexpected 
behavior will occur. 

4.7.1 Return from OS_MCA Procedure

The OS_MCA procedure may or may not return to SAL_CHECK in the case of uncorrected 
machine checks. If OS_MCA procedure does return to SAL, it must set appropriate values in the 
Min-State Save area pointed to by GR22, for continuing execution at the interrupted or a new 
context. The OS must restore the processor state to the same as on entry to OS_MCA except as 
follows:

GRs1-7 = Unspecified
GR8 = 0 if error has been corrected by OS_MCA

–1 if error was not corrected by OS_MCA and SAL must warm boot the system
–2 if error was not corrected by OS_MCA and SAL must cold boot the system
–3 if error was not corrected by OS_MCA and SAL must halt the system

GR9 = GP (Physical address value) for SAL
GR10 = 0 if return will be to the same context

1 if return will be to a new context
GRs11-21 = Unspecified

GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values
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in the Min-State Save area.
GRs23-31 = Unspecified

PSR = Same as on entry from SAL_CHECK except that PSR.mc may be either 0 or 1
BR0 = Unspecified
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Initialization Event 5

INIT is an initialization event generated by the platform or by software through a SAPIC message. 
The INIT event causes the processor to execute the processor-dependent INIT handler 
(PALE_INIT), in the IA-64 ISA. The PALE_INIT saves minimum register state and branches to 
SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT). The state of 
the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the Intel® IA-64 
Architecture Software Developer’s Manual. 

5.1 SAL_INIT

SAL_INIT is entered from PALE_INIT via SALE_ENTRY. SAL_INIT’s purpose is to save the 
state of the processor to the platform-specific Processor State Information (PSI) area and either 
invoke an OS INIT handler (OS_INIT) if the same has been registered through a 
SAL_SET_VECTORS call, or warm boot the system otherwise. The SAL_SET_VECTORS 
procedure permits the OS to register separate entrypoints for the first processor (monarch) to enter 
the SAL_INIT layer and subsequent processors (non-monarchs).

INIT is also used during machine check handling in MP environments to transition the 
non-monarch processors to the rendezvous state. SAL code must recognize this condition using its 
internal variables and call SAL_MC_RENDEZ procedure. It must not invoke the OS INIT handler 
for this situation.

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the 
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will 
cause a system-wide warm boot. Note that during the transition from PALE_RESET to 
SAL_RESET via SALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

• During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code 
where it may deposit some minimal processor state information so that PAL code has sufficient 
resources to perform the necessary machine check or INIT processing. This step is performed 
on all the processors on the system.

SAL_INIT saves the minimal processor state information as well as some additional processor 
and platform state information in the SAL data area and provides the same to OS_INIT. 
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

• If the INIT was intended to transition APs to rendezvous state during a MP platform machine 
check, SAL_MC_RENDEZ procedure needs to be invoked. Refer to Section 4.6, “Machine 
Checks in MP Configurations” for details.

• If INIT is not due to a MP platform machine check rendezvous, check if OS_INIT handlers for 
the monarch and non-monarch processors are registered and that both of them are valid. When 
the OS_INIT procedures and their lengths were registered with SAL, SAL would have 
computed and saved the checksums of such code. On receipt of INIT, SAL verifies the 
checksum of the code at the OS_INIT procedure addresses before jumping to the same. 
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• If the code for the OS_INIT handlers are intact, call the OS_INIT handlers for the monarch and 
non-monarch processors.

• If the OS_INIT handler is not registered, set implementation-dependent SAL warm boot 
indicator and reboot the system either by calling SAL_RESET or by generating a reset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT 
processor state is logged at least. There is neither a requirement nor a way to clear a pending INIT 
condition.

On some PC-AT platforms, the platform provides a switch that can generate an NMI signal and this 
is used by IA-32 OSs to effect a crash dump on a hung system. On IA-64 systems, a similar 
function will be performed by an INIT switch as the NMI signal is masked by the PSR.i bit of the 
processor. If SAL_INIT gains control due to the platform’s INIT switch while an IA-32 OS is 
executing, the SAL_INIT layer shall send an SAPIC IPI message to the same processor with the 
interrupt type of NMI and then return to the interrupted context using the PAL_MC_RESUME 
procedure.

Figure 5-1 shows a possible flow of control through SAL_INIT.

5.2 OS_INIT

OS_INIT is an entrypoint into the OS to deal with the initialization event. The exact definition of 
OS_INIT functionality is OS-dependent. SAL_SET_VECTORS is called by the OS prior to the 
initialization event to register the physical addresses and the GP of the OS INIT handlers for the 
monarch and non-monarch processors. If an OS intends to make the monarch selection in the OS 
layer, it could register the same OS_INIT entrypoint for both the monarch and non-monarch 
processors. From the SAL’s perspective, there are no functionality differences between the two 
OS_INIT entrypoints and the hand off state from the SAL to the OS_INIT layer are similar.

When the OS_INIT layer is called by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO 
to get processor/platform state. When it has finished this task, it must call 
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. By 
calling SAL_CLEAR_STATE_INFO, the OS signifies the completion of its INIT processing. 
OS_INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0. 

The OS_INIT handler may return to SAL with an indication to effect a warm reset or a return to the 
interrupted context. OS_INIT may alternatively invoke PAL_MC_RESUME to return to the 
interrupted context. OS_INIT may set new values for registers that are saved by PAL in the 
Min-State Save area. This is achieved by constructing a data structure with the format identical to 
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME 
procedure. Refer to the Intel® IA-64 Architecture Software Developer’s Manual for the layout of 
this structure. 
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Figure 5-1. SAL_INIT Control Flow
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5.3 OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the OS code, OS_INIT. The 
contents of non-banked and bank zero general registers at the time of the interruption have been 
saved by PAL in the Min-State Save area and these are available for use by SAL and OS_INIT. The 
following register contents define the OS_INIT handoff state.

The state of the processor is the same as on exiting PALE_INIT (refer to the Intel® IA-64 
Architecture Software Developer’s Manual) except as below:

GR1 = Physical address of the OS_INIT Global Pointer (GP) registered by OS (OS’s gp)
GRs2-7 = Unspecified

GR8 = Physical address of the PAL_PROC entrypoint
GR9 = Physical address of the SAL_PROC entrypoint

GR10 = GP value (Physical address) for SAL
GR11 = INIT reason code:

0 = Received INIT signal on this processor for events other than CrashDump
switch assertion

1 = Received wake up signal on this processor at the end of an OS_MCA corrected
machine check

2 = Received INIT signal on this processor due to CrashDump switch assertion
GR12 = Return address to a location within the SAL_INIT procedure

GRs13-31 = Refer to the Intel® IA-64 Architecture Software Developer’s Manual
BR0 = Unspecified 

Note: On entry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The 
OS must not make cacheable accesses to the MinState area, else machine checks might 
occur as a result of a cache hit to an uncacheable page.

System state Resources are:

• TLB –TCs and TRs are unchanged.

• Caches – Enabled, coherent and consistent in the absence of hardware failures.

• Memory – Unchanged, except for the updated Processor State Information (PSI) area.

5.4 Return from OS_INIT Procedure

If OS_INIT procedure returns to SAL, it must set appropriate values in the Min-State Save area 
pointed to by GR22, for continuing execution at the interrupted or a new context. The OS must 
restore the processor state to the same as on entry to OS_INIT except as follows:

GRs1-7 = Unspecified
GR8 = 0 if SAL must return to interrupted context using PAL_MC_RESUME

–1 if SAL must warm boot the system
GR9 = GP (Physical address value) for SAL

GR10 = 0 if return will be to the same context
1 if return will be to a new context

GRs11-21 = Unspecified
GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;

PAL_MC_RESUME procedure will restore the register values from this structure;
OS_INIT must supply this parameter even if it does not change the register values
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in the Min-State Save area.
GRs23-31 = Unspecified

PSR = Same as on entry from SAL_INIT except that PSR.mc may be either 0 or 1
BR0 = Unspecified

If OS_INIT requests SAL to reboot the system, it is SAL’s responsibility to rendezvous all the 
processors on the system and then select a BSP for further system initialization. If rebooting is 
required while running an IA-32 OS, SAL will use the currently selected BSP for performing the 
rendezvous of the other processors. 

5.5 MP INIT Support

There are a few situations when processors enter SAL_INIT in MP configurations which deserve 
specific mention.

• If a processor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch 
and non-monarch processors or their checksums are incorrect, then the processor will reset the 
system (warm boot). In the MP environment, the processor performing the reset shall reset the 
system, not just itself.

• If a processor enters SAL_INIT as the result of a platform machine check rendezvous event, 
then the SAL_INIT must invoke the SAL_MC_RENDEZ procedure. Normally, the OS would 
have registered an interrupt using the SAL_MC_SET_PARAMS procedure to register the 
external interrupt vector to be used to interrupt the OS on the processors unaffected by the 
machine check. On receipt of such an interrupt, the OS would invoke the SAL_MC_RENDEZ 
procedure. If for some reason any of the processors do not respond to this interrupt, or if the 
OS fails to register such an interrupt vector, then the processor handling the machine check 
will INIT such processors and they will enter SAL_INIT for the platform machine check 
rendezvous event. Since all the processors reach SAL_MC_RENDEZ, the effect is the same 
(almost) as if the processor had responded to the interrupt. The difference is that processors 
entering SAL_MC_RENDEZ through SAL_INIT will be less likely to be recoverable. 

At the end of machine check processing, OS_MCA procedure on the monarch processor will 
wake up all the other processors using the wake up mechanism specified by the 
SAL_MC_SET_PARAMS procedure. The processors that received the INIT would jump to 
the registered OS_INIT procedure for the monarch processor. The OS_INIT procedure may 
analyze the reason why the processor needed the INIT (or reasons for not responding to the 
MC_rendezvous interrupt). If INIT occurred when PSR.ic bit was 1, there is no loss of 
machine state. OS_INIT can return to SAL specifying resumption of the interrupted context by 
invoking PAL_MC_RESUME. 
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Platform Management Interruptions 6

Platform Management Interruptions (PMIs) provide an OS-independent interrupt mechanism to 
support OEM and vendor-specific hardware events. 

6.1 SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state 
in interruption resources and then calls the SALE_PMI handler. SALE_PMI shall return to the 
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with 
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain 
processor-specific events may also cause PMI interrupts. These are handled entirely within the 
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® IA-64 Architecture 
Software Developer’s Manual for details regarding PALE_PMI processing.

PMI is the highest priority external interrupt and it ranks after Reset, Machine Check and INIT in 
terms of priority. PMI is masked by setting the PSR.ic bit to 0 (interrupt collection disabled). The 
PSR.i bit (interrupt enable) has no effect on masking of PMI events. 

Unlike the System Management Interrupt (SMI) on IA32 systems, the OS can mask PMIs by 
setting PSR.ic bit to 0 (interrupt collection disabled). Also, PMI interrupt processing causes 
execution of PALE_PMI code before entering the SALE_PMI code. To minimize latency in 
entering code in the SALE_PMI layer, the OS must avoid operating with PSR.ic bit set to 0 for long 
durations. Otherwise, some software in the SALE_PMI layer may fail. Note that some real time 
applications may have more stringent timing restrictions as regards operating with interrupt 
collection disabled. 

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It 
also causes special problems if multiple SAPIC messages of PMI delivery type are targeted to the 
same destination processor (see Section 6.4 below). 

One method of software entry into the PMI environment is to send a SAPIC message to the same 
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for 
SAL. 

6.2 SALE_PMI Initialization

During power up, SAL copies the SALE_PMI handler to memory and then invokes the PAL 
procedure PAL_PMI_ENTRYPOINT to set the programmable entrypoint of the SALE_PMI 
procedure. In a MP-environment, this step must be performed on all the processors. The 
SALE_PMI entrypoint can be different for various processors in an MP configuration.
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6.3 SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the 
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from 
SALE_PMI to PALE_PMI are fully documented in the Intel® IA-64 Architecture Software 
Developer’s Manual. 

SALE_PMI is entered in physical mode with PSR.i and PSR.ic bits set to 0 (interrupt and interrupt 
collection bits disabled). SALE_PMI is entered in the IA-64 ISA regardless of the current processor 
state. The processing steps for various PMI events within the SAL layer are platform and SAL 
implementation-dependent. At the end of processing the PMI, SALE_PMI returns to PALE_PMI 
using branch register B0. There is neither a requirement nor a way to clear a pending PMI interrupt. 

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor 
simultaneously. In this situation, only one PMI interrupt will be recognized. This is analogous to 
sending edge triggered external interrupts using the same interrupt vector. To guard against loss of 
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for 
the PMI using memory data structures. 

6.4 Special Considerations for Multiprocessor 
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the 
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with 
delivery type of PMI. In a MP-configuration, there could be conflicts between PMI and machine 
check. One of the processors could be in SAL_CHECK, trying to bring other processors to 
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If the latter were in SALE_PMI, 
the MC_rendezvous external interrupt would not be recognized immediately and this might 
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since 
recoverability from INIT is minimized when PSR.ic is 0, it is recommended that SALE_PMI 
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.
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IA-32 Support 7

7.1 IA-32 Support Model

This chapter describes the IA-32 support within SAL during the booting process. Additionally, it 
provides some guidelines on the choice of IA-32 instructions to SAL developers who plan to re-use 
existing IA-32 BIOS code. 

For details on IA-32 instruction execution on IA-64 processors, refer to Volum e1, Chapte r6 and 
Volume 2, Chapter 10 of the Intel® IA-64 Architecture Software Developer’s Manual.

IA-32 support code in SAL cannot be used after an OS (IA-32 or IA-64) has taken control of the 
translation resources. Most IA-64 OSs will provide their own IA-32 support code and not use the 
code in SAL. If the user boots an IA-32 OS, SAL would have invoked the 
PAL_ENTER_IA_32_ENV procedure which activates the PAL layer in support of IA-32 OSs and 
this PAL firmware layer configures the processor to behave like a Pentium® III processor, obviating 
the need for SAL’s IA-32 support code. For more details, refer to Volume 4, Chapter 8 of the Intel® 
IA-64 Architecture Software Developer’s Manual.

During the platform initialization phase of the boot sequence, the IVA may point to a 32 KB IVT in 
ROM. Some of the trap handlers in the IVT could support execution of IA-32 code. Thus, it is 
possible to execute IA-32 code early in the boot sequence, if needed. Refer to Chapter 3, for 
fault/trap handler support requirements in SAL.

7.2 IA-32 Support Requirements

IA-64 platforms may contain one or more IA-32 adapter cards containing IA-32 Option ROMs. If 
the adapter cards support boot devices, they will need to be initialized in the process of booting the 
OS. The IA-32 support code in SAL will be exercised while executing the IA-32 code. Also, since 
SAL contains IA-32 support code for execution of the IA-32 Option cards, a portion of the IA-64 
SAL layer may itself be coded in IA-32 ISA (i.e. the traditional IA-32 System ROM BIOS may be 
reused). 

7.2.1 Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility:

• PC-AT Memory map:

• Interrupt vector area 0 – 0x3FF: Contains entrypoints for software interrupts in 
offset:segment format.

• BIOS RAM data area 0x400 – 0x4FF: Data variables stored by System BIOS and Option 
ROMs.

• Option ROM space: 0x000C_0000 – 0x000D_FFFF.
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• PC-AT compatibility entrypoints: Addresses in the 0x000F_E000 to 0x000F_FFFF range 
pointing to entrypoints and tables.

It is expected that SAL code would be designed to use identical virtual-to-physical memory mappings and
not conflict with the IA-32 BIOS memory usage.

• PC-AT I/O map: Motherboard I/O ports are in the range of 00 to 0xFF and other IA-32 devices 
occupy the rest of the 64K I/O space. The most important ports used by BIOS code are 
Interrupt controller (0x20, 0x21, 0xA0, 0xA1), Interval timer (0x40 to 0x43) and CMOS RAM 
(0x70, 0x71). 

7.2.2 Overview of IA-32 Support Layer Functionality

IA-32 support layer is mainly required for the following areas: 

• Memory mapped I/O: The processor needs to provide the uncacheable semantics for memory 
mapped I/O to devices such as VGA buffer. Also, the search for memory mapped devices need 
to be performed without caching artifacts. Caches within the processor are enabled by 
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the 
uncacheable memory attribute required for I/O completion is specified by setting bit 63 of the 
memory address, in physical addressing mode. Bit 63 of the physical address has no effect 
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call. 

Since it is not possible to generate an address with bit 63 set while operating in the 32-bit 
IA-32 ISA mode, IA-32 code needs to be executed with translations enabled and TLBs need to 
specify the uncacheable memory attribute. TLBs provide the same functionality as MTRRs on 
a Pentium Pro processor.

• Handle traps during IA-32 code execution.

• Virtualizing PC-AT peripherals: If some legacy devices are not present on the platform, SAL 
may provide the necessary virtualization during IA-32 code execution by setting up TLBs to 
trap the accesses. 

7.2.3 IA-32 Instruction Usage Guidelines

IA-32 System BIOS code executing within the SAL environment must follow these guidelines in its 
usage of IA-32 instructions, in order to limit SAL’s IA-32 support requirements. These restrictions 
do not affect operation of existing IA-32 Option ROMs which are restricted to operating in IA-32 
real mode. Option ROM code on PC-AT compatible platforms are already compliant with the 
following guidelines: 

• IA-32 code shall not use protected mode instructions of the IA-32 ISA. Only real mode and big 
real mode opcodes are permitted. The transitions between real mode and big real mode will 
occur using the IA-64 SAL code that sets up the appropriate IA-32 segment descriptors, and 
not by use of the IA-32 LGDT instruction. The traditional IA-32 BIOS functions requiring 
protected mode usage, such as search for PCI Option ROMs near 4 GB address, can be done 
easily using the big real mode or in the IA-64 ISA. SAL will provide support the Extended 
Memory Move function (IA-32 INT 0x15, sub function 0x87) for moving data to and from 
addresses above 1MB.

• IA-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC. 

• IA-32 code shall not use code involving IA-32 privileged instructions such as LGDT, RDMSR, 
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent IA-64 code. Refer 
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to the Intel® IA-64 Architecture Software Developer’s Manual for a complete list of 
instructions that cause the IA-32 Instruction Intercepts. SAL shall provide necessary emulation 
support for the following instructions:

• CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS, WBINVD

• IA-32 code shall not use code involving IA-32 Call Gates. 

• IA-32 stack must be aligned on an even byte boundary. The IA-32 support layer in SAL will 
need to retrieve or store values into the IA-32 stack in order to emulate instructions such as 
INT, IRET. If the IA-32 stack is aligned on an odd byte boundary, an unaligned data reference 
fault will result and SAL does not provide a handler for this exception. 

The above restrictions are not applicable when the OS kernel takes over. Thus, an IA-32 or IA-64 
OS may set up the environment for IA-32 protected mode and invoke protected mode functions of 
IA-32 BIOS. 

7.2.4 IA-32 Support Environment

This section describes the execution environment for IA-32 code.

1. IA-32 BIOS code will be executed with Instruction translation on, Data translation on and 
RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to 
mask exceptions caused by unaligned memory references during execution of IA-32 code.

2. The following traps will be supported in the Interrupt Vector Table (IVT) for supporting 
IA-32 execution:

• IA-32_Exception vector 

• IA-32_Intercept vector 

• IA-32_ Interrupt vector 

• External interrupt vector 

3. SAL will set up CFLG register which maps to the IA-32 system registers CR0 and CR4. 
When SAL procedures are called by the OS Loader, SAL will set up the appropriate value in 
the CFLG register, if transition to IA-32 ISA mode is required. 

4. The CFLG.io bit will be set to 0 to eliminate the need for Task State Segment (TSS) while 
executing IA-32 code. IA-32 EFLAG.iopl field should be set to 3 to permit IA-32 I/O 
instructions without causing any traps. IOBASE register and translation mechanisms within 
the processor will be set up to automatically convert the IA-32 I/O accesses to the IA-64 
memory load or store operations with the uncacheable memory attribute. If some legacy 
devices are not present on the platform, TLBs may be set up to trap the accesses and SAL 
can either redirect the I/O to a different hardware on the platform or provide suitable 
software emulation. 

5. The PSR.i bit may be set to 1 to enable interrupts in the IA-64 system environment and the 
CFLG.if bit may be set to 1 to allow IA-32 code to control interrupt masking. With these 
settings, the IA-32 EFLAG.if bit will enable or disable external interrupts while executing 
IA-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the IA-64 
instruction set.

6. The CFLG.ii bit may be set to 0 if there is no need to intercept changes to interrupt enable 
flag.
IA-32 Support 7-3



7.2.5 IA-32 Interruption Handler Support 

External interrupts, IA-32 defined exceptions and software interrupts are delivered to the IA-64 
software interruption handlers. All interruption handlers may run with PSR.dt, PSR.rt turned off to 
avoid the Nested TLB fault that can occur while accessing the fault handler’s local variables and 
data structures. SAL will populate the following handlers in the IVT to handle interruption in its 
environment:

• IA-32_Exception vector: This handler will handle exceptions caused by IA-32 instructions 
such as Divide by zero fault. These interruptions should not occur while executing debugged 
IA-32 BIOS code. The exception should be reflected to IA-32 code using the IA-32 real mode 
Interrupt Descriptor Table (IDT) at locations 0 to 0x3FF. Typically, IA-32 code in the IDT will 
display an error message when such exceptions are encountered.

• IA-32_Intercept vector: This handler will handle several categories of intercepted instructions 
as described in the Intel® IA-64 Architecture Software Developer’s Manual. 

• Instruction Intercept: Refer to Section 7.2.3 for a list of the IA-32 instructions that must be 
emulated by SAL. 

• Lock Intercept: This interruption handler will be invoked for CMPXCHG, LOCK, 
XADD, XCHG instructions. This intercept can be avoided by enabling the lock feature in 
the IA-64 Default Control Register (DCR.lc = 0), if the platform can support locked read 
modified writes. If the platform does not support the bus lock signal, 
PAL_BUS_SET_FEATURES may be invoked to execute the locked transactions as a 
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the 
Intel® IA-64 Architecture Software Developer’s Manual for details.

• Gate intercept: Support is not needed for trapping privilege transitions using gates. IA-32 
System BIOS code shall avoid this intercept and Option ROM code is not permitted to use 
privilege transitions using gates. 

• IA-32 System Flag intercept: This intercept can be avoided for the STI, CLI, POPF and 
POPFD instructions by setting CFLG.if bit to 1, which allows the IA-32 code to control 
interrupt masking with the IA-32 EFLAG.if bit. To support the MOV SS and the POP SS 
instructions, SAL shall disable interrupts and execute the next IA-32 instruction with the 
PSR.ss set to 1. This will generate an IA-32_Exception(Debug). The handler for this 
exception will restore the previous value of PSR.i and return to the IA-32 code. 

• IA-32_Interrupt vector: This handler supports the IA-32 INT instruction. SAL will provide the 
necessary emulation support for the Extended Memory Move function (INT 0x15, subvention 
0x87) in order that real mode code may move data to and from addresses over 1MB without 
requiring a transition to the IA-64 instruction set. The rest of the INT instructions will be 
emulated by jumping to the address pointed to by the IA-32 real mode IDT. Following is an 
example of pseudo code:

1. Get the Software interrupt number nn from ISR.vector.

2. Use nn as an index into the IA-32 real mode Interrupt 
Descriptor Table at location 0000h and obtain the 
segment:offset of IA-32 code to be invoked.

3. Store the two byte FLAGS on IA-32 stack.

4. Store the segment:offset address of the IA-32 instruction 
following the INT nn on IA-32 stack.

5. Store the IA-32 segment:offset addresses in the appropriate 
IA-64 registers corresponding to IP, CS selector, CS 
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segment descriptor and transition to IA-32 code using RFI 
instruction.

6. The IA-32 code will terminate by issuing an IRET or a RET 2 
instruction and this will return to the IA-32 instruction 
following the INT nn.

• External interrupt vector: Hardware interrupts will be received by SAL in the IA-64 ISA which 
will obtain the interrupt vector corresponding to the interrupting source. For more details, refer 
to Section 3.3.1. If the interrupts need to be reflected to IA-32 code, the address will be derived 
from the IA-32 Interrupt Descriptor Table. 
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Calling Conventions 8

8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions:

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit 
from a SAL procedure call. The OS Loader must follow the state requirements for PSR shown 
below. SAL calls that invoke PAL procedures may impose additional requirements.

Table 8-1. Definition of Terms

Term Description

entry Start of the first instruction of the SAL procedure.

exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also 
C, it must be the same as the value at entry.

unchanged The SAL procedure must not change these values from their entry values during 
execution of the procedure.

scratch There are no requirements on the state of these values during execution of the 
procedure. The SAL procedure may modify them as necessary during execution of 
the procedure. 

preserved The SAL procedure may modify these values as necessary during execution of the 
procedure. However, they must be restored to their entry values prior to exit from 
the procedure.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class

be Big-endian memory access enable 0 0 preserved

up User performance monitor enable C C unchanged

ac Alignment check C C preserved

mfl Floating-point registers f2-f15 written C C preserved
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mfh Floating-point registers f16-f127 written C C preserved

ic Interruption state collection enable C C preserveda

0 0 unchanged

i Interrupt unmask C C preservedb

pk Protection key validation enable C C unchanged

dt Data address translation enable C C preserveda

dfl Disabled FP register f2 to f15 C C unchanged

dfh Disabled FP register f16 to f127 C C unchanged

sp Secure performance monitors C C unchanged

pp Privileged performance monitor enable C C unchanged

di Disable ISA transition C C preserved

si Secure interval timer C C unchanged

db Debug breakpoint fault enable C C unchanged

lp Lower-privilege transfer trap enable C C unchanged

tb Taken branch trap enable C C unchanged

rt Register stack translation enable C C preserveda

cpl Current privilege level 0 0 unchanged

is Instruction set 0 0 preserved

mc Machine check abort mask C C preservedc

1 1 unchanged

it Instruction address translation enable C C unchanged

id Instruction debug fault disable C C unchanged

da Disable Data access/dirty-bit faults 0 0 unchanged

dd Data debug fault disable 0 0 unchanged

ss Single step trap enable 0 0 unchanged

ri Restart instruction 0 0 preserved

ed Exception deferral 0 0 preserved

bn Register bank 1 1 preserved

ia Disable instruction access-bit faults 0 0 unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as 
unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the 

value on exit shall be 1 and must be classified as unchanged.

Table 8-2. State Requirements for PSR (Continued)

PSR Bit Description Entry Exit Class
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8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class

DCR Default Control Register unchanged

ITM Interval Timer Match Register unchanged

IVA Interruption Vector Address unchanged

PTA Page Table Address unchanged

GPTA Reserved IA-32 Resource unchanged

IPSR Interruption Processor Status Register scratch

ISR Interruption Status Register unchangeda

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may 
cause them to change.

IIP Interruption Instruction Bundle Pointer unchangeda

IFA Interruption Faulting Address unchangeda

ITIR Interruption TLB Insertion Register unchangeda

IIPA Interruption Instruction Previous Address unchangeda

IFS Interruption Function State unchangeda

IIM Interruption Immediate Register unchangeda

IHA Interruption Hash Address unchangeda

LID Local Interrupt ID unchanged

IVR Interrupt Vector Register (read only) unchanged

TPR Task Priority Register unchanged

EOI End Of Interrupt unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) unchangeda

ITV Interval Timer Vector unchanged

PMV Performance Monitoring Vector unchanged

CMCV Corrected Machine Check Vector unchanged

LRR0-LRR1 Local Redirection Registers 0-1 unchanged

RR Region Registers preserved

PKR Protection Key Registers unchanged

TR Translation Registers unchangedb

b. If an implementation provides a means to read TRs through a PAL procedure call, this should be 
preserved.

TC Translation Cache scratch

IBR/DBR Break Point Registers preserved

PMC Performance Monitor Control Registers preserved

PMD Performance Monitor Data Registers unchangedc

c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting 
performance monitor events during a procedure call.
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8.1.4 General Registers

SAL will use the standard calling convention as described in the IA-64 Software Conventions and 
Runtime Architecture Guide. Routines written using this convention may be written either in 
assembly or C or other high level languages.

The GP for the SAL code should be known to system software as SAL passes it as one of the boot 
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum 
16 KB bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB 
bytes of RSE backing store must be available for SAL.

8.1.5 Floating-point Registers

Although there is no SAL procedure that passes floating-point parameters, the floating-point 
register conventions are the similar to those specified by the IA-64 Software Conventions and 
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus 
eliminating the need for the OS to save these registers across SAL procedure calls. All the pending 
floating-point exceptions must be handled before calling SAL if the execution environment for 
calling SAL cannot handle any floating-point exceptions.

8.1.6 Predicate Registers

The conventions for these registers follow the IA-64 Software Conventions and Runtime 
Architecture Guide.

Table 8-4. General Registers – Standard Calling Conventions

Register Conventions

GR0 Always 0

GR1 Special; global data pointer (gp)

GR2 – GR3 Scratch; used with 22 bit immediate add

GR4 – GR7 Preserved

GR8 – GR11 Scratch, procedure return value

GR12 Special, stack pointer. preserved

GR13 Special, thread pointer. preserved

GR14 – GR31 Scratch

Bank 0 Registers
(GR16 – GR23)

Preserved

Bank 0 Registers
(GR 24 – GR31)

Scratch

GR32 – GR127 Stacked registers;
in0 -in95: input arguments (SAL index must be in0)
loc0 – loc95: local variables
out0 – out95: output arguments
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8.1.7 Branch Registers

The conventions for these registers follows the IA-64 Software Conventions and Runtime 
Architecture Guide.

8.1.8 Application Special Registers

The application registers follow the IA-64 Software Conventions and Runtime Architecture Guide. 

8.1.9 Parameter Buffers

The parameter buffers to SAL_PROC must be aligned to the greater of its data type size or 8-byte 
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter 
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of 
the parameter buffers depends on the execution environment of the caller. The following 
conventions are followed for the parameter buffers:

• Until the OS takes over the IVT and translation faults, parameter buffers passed to SAL are 
identity mapped virtual addresses and are accessible by the region register 0 (RR0). In this 
environment, SAL can handle the access faults while accessing parameter buffers if the buffers 
are identity mapped.

• Parameter buffers passed to SAL runtime services can be either physical or virtual. If the 
parameter buffers are virtual, the OS runtime execution environment must provide the proper 
mapping for the parameter buffers.

8.2 Software Interface Conventions for SAL Procedures 

A generic IA-64 interface is provided between IA-64 OS and SAL. IA-64 OS always follows the 
standard calling convention to call SAL functions. The parameters passed to the SAL interface are 
defined as follows:

SAL_PROC(arg0, arg1, ..., arg7)

Where, input parameters (maximum of eight 64-bit values) are:

arg0 – functional identifier. Currently the upper 32 bits are ignored and only the lower 32 bits 
are used. The following functional identifiers are defined:

0x01XXXXXX – Architected SAL functional group

0x02XXXXXX to 0x03XXXXXX – OEM SAL functional group. Each OEM is allowed to 
use the entire range in the 0x02XXXXXX range. The 0x03XXXXXX range is reserved 
exclusively for Firmware vendors. 

0x04XXXXXX to 0xFFFFFFFF – Reserved

arg1 – the first parameter of the architected/OEM specific SAL functions. 

arg2 to arg7 – additional parameters for architected/OEM specific SAL functions.

and return parameters (maximum of four 64-bit values) are:

ret0 – return status: positive number indicates successful, negative number indicates failure. 

ret1 to ret3 – other return parameters.
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8.2.1 Control Flow of the SAL Interface

OS/Loader follows the standard calling convention to call both architected and OEM specific SAL 
functions. OS/Loader sets up the appropriate parameters in IA-64 general registers according to the 
calling convention and calls SAL_PROC. The first parameter passed to SAL_PROC specifies the 
functional identifier and based on the functional identifier, SAL dispatches the function to the 
appropriate functional block. Figure 8-1 shows the control flow of the SAL interface.

8.2.2 Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the OS/Loader sets up arg0 to the appropriate 
architected SAL or OEM specific SAL functional identifier. It then sets up other parameters in arg1 
to arg7 as specified by the SAL functional description and calls SAL_PROC. SAL_PROC 
dispatches this function to either the architected SAL function handler or the OEM specific SAL 
function handler based on the functional identifier. The SAL function returns the status in ret0 and 
the additional return parameters in ret1 to ret3.

8.2.2.1 SAL Return Status Value

SAL procedures return a 64-bit status value in the ret0 parameter. Positive numbers indicate 
success and negative numbers indicate failure. The following table summarizes the error code.

Figure 8-1. Control Flow of the SAL Procedure Interface

OS/Loader

SAL defined IA-64 interfaces:
Setup parameters in IA-64 
registers (arg0...arg7) 
according to standard calling
convention:
arg0 – Function ID,
arg1 to arg7 – parameters.

SAL_PROC (arg0,...,arg7)

Architected SAL Functions OEM SAL Functions
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Table 8-5. SAL Return Status

Register Conventions

0 Call completed without error

1 Call completed without error but some information was lost due to overflow

2 Call completed without error; effect a warm boot of the system to complete the 
update

3 More information is available to be retrieved.

–1 Not implemented

–2 Invalid Argument

–3 Call completed with error due to hardware malfunction or firmware error

–4 Virtual address not registered

–5 No information available

–9 Scratch buffer required 
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SAL Procedures 9

9.1 SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the OS when it is 
executing. These services provide a platform-independent interface for hardware components. 
runtime services contain procedures called by the OS to access platform hardware features on 
behalf of the OS. runtime services should take no more time to perform an action than it would take 
the OS to perform the same action. 

The entire SAL runtime services code must be located in one contiguous memory area. Similarly, 
the SAL runtime services data area must be located in one contiguous memory area. 

SAL runtime services are called from the following execution environment:

• OS runtime execution environment. The normal OS execution environment is with translation 
on and interrupts enabled but OS may choose to call SAL runtime services in physical mode. 

• OS Machine Check and INIT handler. The execution environment for these are provided by 
SAL and are in physical mode with interrupts disabled. 

• SAL PMI handler. The execution environment is in physical mode with interrupts disabled. 

The following general rules govern the operational characteristics of the SAL procedures: 

• SAL runs in privilege level 0 and will return an error if called from other privilege levels.

• SAL runs little endian.

• SAL procedures follow the standard IA-64 calling convention. SAL runtime services shall be 
implemented completely in the IA-64 ISA. 

• SAL procedures are not re-entrant with respect to any runtime service (including itself).

• SAL procedures are not MP-safe except for the SAL_MC_RENDEZ, SAL_CACHE_FLUSH 
and SAL_CACHE_INIT procedures. The OS is required to enforce single threaded access to 
the other SAL procedures. 

• Architected SAL runtime procedures are called either in virtual or physical mode under the OS 
execution environment. OEM specific SAL runtime procedures may not support both virtual 
and physical modes of operation. 

• All SAL procedures that don’t return the status of unimplemented procedure (–1), must be 
implemented.

9.1.1 Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal OS execution 
environment is with translation on and interrupts enabled but OS may choose to call SAL runtime 
services in physical mode. 

The parameters passed to SAL runtime services must be consistent with the addressing 
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the gp register must contain the physical or 
virtual address of the SAL’s gp value provided to the OS in the Entrypoint Descriptor (refer to 
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Table 3-4 on page3-13 ). SAL can compute the addresses of code and data objects within SAL 
using offsets relative to the ip and gp. In other words, SAL code will be position independent. 

The hand-off state from the EFI to the OS Loader will indicate the SAL’s requirements for virtual 
address mappings. (Refer to the EFI Specification for details). In a MP configuration, the virtual 
addresses registered by the OS must be valid globally on all the processors in the system. The EFI 
Specification also provides the interfaces for the OS to register the virtual address mappings. Some 
typical requirements for virtual address mappings are described below: 

1. The code and data areas of PAL and SAL in memory must be mapped contiguously in virtual 
address space. 

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL 
procedures in memory. Prior to invoking the SAL procedures in virtual mode, the OS must 
register the virtual address of the PAL code space in memory. If SAL needs to invoke a PAL 
procedure, SAL shall do so in the same mode in which it was called by the OS (i.e. without 
changing the PSR.dt, PSR.rt and PSR.it bits). While invoking these SAL procedures, the OS 
must provide the appropriate translation resources required by PAL (i.e. ITR and DTC 
covering the PAL code area). However, if a particular PAL procedure needs to be invoked in 
physical mode, SAL will turn off translations and then invoke PAL. 

3. The SAL_UPDATE_PAL procedure will invoke some PAL procedures in the firmware 
address space. The OS must register the virtual address of the firmware address space 
(ending at 4 GB). The OS must provide a contiguous virtual address mapping for the entire 
firmware address space. If the SAL_UPDATE_PAL procedure is called in the virtual mode, 
SAL will compute the virtual addresses of the relevant PAL procedures in the firmware 
address space and shall call the same in virtual mode. 

4. The OS shall register the virtual addresses of the Firmware Reserved Memory if requested 
by the SAL (refer to Table 3-5 on page3-13 ). Such registration must be done prior to 
making SAL calls in virtual mode and the OS must provide a contiguous virtual address 
mapping for each of the data areas. 

.

9.1.2 Access to Resources not Supported by OS

In order to access resources for which the OS does not provide the mapping, SAL runtime services 
will access the platform resources in physical addressing mode. This will be done by disabling the 
interrupts and turning the data translation off before accessing the platform resources. SAL will 
restore the state of the data translation and interrupt enable bits in the PSR after accessing the 
device. The following is a suggested code sequence:

mov r2=psr.l //Save current PSR, low 32 bits
rsm (1<<14) | (1<<17) //Mask Interrupt (PSR bit 14) and

//disable data translation (PSR bit 17)
;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

ld/st....... //Perform load/store to platform specific
//device using physical address

mf.a // Ensure platform acceptance
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;; //End of instruction group
mov psr.l=r2 //Restore original PSR, low 32 bits
;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

The code sequence (from rsm to the second srlz.d) must exist in a single page of memory and the 
translation for this code sequence must exist. The code sequence must not cause any NaT 
consumption faults. All the memory accesses in this code sequence must be naturally aligned to 
avoid unaligned data reference faults. If disabling of interrupt and data translation are done 
separately, interrupts need to be disabled first and then the data translation. The code sequence may 
not work if the data translation is disabled first followed by interrupt disabling. The restoring of the 
processor state must be done in the reverse order. In general, interrupt and data translation should 
be disabled to access the devices in physical mode and then interrupt and data translation must be 
re-enabled as soon as possible. 

The duration of interrupt and data translation disabled state should be kept at a minimum to 
preclude impacting normal OS functions. 

9.2 SAL Procedure Summary

.
Table 9-1. SAL Procedures

Procedure
Function ID 

(hex)
Description

SAL_SET_VECTORS 0x01000000 Register software code locations with SAL

SAL_GET_STATE_INFO 0x01000001 Return Machine State information obtained 
by SAL

SAL_GET_STATE_INFO_SIZE 0x01000002 Obtain size of Machine State information

SAL_CLEAR_STATE_INFO 0x01000003 Clear Machine State information

SAL_MC_RENDEZ 0x01000004 Cause the processor to go into a spin loop 
within SAL 

SAL_MC_SET_PARAMS 0x01000005 Register the machine check interface layer 
with SAL 

SAL_REGISTER_PHYSICAL_
ADDR

0x01000006 Register the physical addresses of locations 
needed by SAL

SAL_CACHE_FLUSH 0x01000008 Flush the instruction or data caches 

SAL_CACHE_INIT 0x01000009 Initialize the instruction and data caches 

SAL_PCI_CONFIG_READ 0x01000010 Read from the PCI configuration space

SAL_PCI_CONFIG_WRITE 0x01000011 Write to the PCI configuration space

SAL_FREQ_BASE 0x01000012 Return the base frequency of the platform

SAL_UPDATE_PAL 0x01000020 Update the contents of firmware blocks
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SAL_CACHE_FLUSH

Purpose: To flush the instruction or data caches.

Calling
Conventions:  Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: Flushes the instruction and/or data caches, at all levels of cache hierarchy, controlled by the 
platform and the processor. The i_or_d parameter specifies the instruction and/or data caches. 
Unified caches are flushed with both instruction and data caches. This procedure has the effect of 
invalidating all instruction cache lines, or causing a write back and then invalidating all data cache 
lines. 

With the i_or_d parameter value of 4, the caller specifies SAL to make the local instruction caches 
coherent with the data caches. This has the effect of ensuring that the local instruction caches see 
the effects of earlier stores of instruction code done by the local processor. 

This SAL procedure invokes the corresponding PAL procedure, PAL_CACHE_FLUSH. Refer to 
the Intel® IA-64 Architecture Software Developer’s Manual for details. This PAL procedure may 
return to SAL without completing the flush operation should there be an intervening interrupt. The 
PAL procedure also returns the external interrupt vector as a return parameter. In order to execute 
the associated external interrupt handler, SAL shall 

• Write to the EOI register (CR.eoi); 

• Repost the interrupt by issuing an IPI message to self with the vector;

• Re-enable interrupts; and

• On return from the external interrupt handler, re-invoke the PAL_CACHE_FLUSH procedure 
specifying the continuation point for the cache flush. 

Argument Description
func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures
i_or_d Unsigned 64-bit integer denoting type of cache flush operation:

1 = Flush instruction cache
2 = Flush data cache
3 = Flush instruction & data cache
4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_FLUSH procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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If interrupts need to be handled on a timely basis, this SAL procedure must be invoked with 
interrupts enabled, i.e. PSR.i set to 1. 

Platform
Requirements:  None 
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SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches.

Calling
Conventions:  Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: Initializes the instruction and data caches controlled by the platform only. The OS is required to 
invoke the PAL_CACHE_INIT procedure to initialize the instruction and data caches within the 
processor. All cache lines will be invalidated without causing a write back. 

Platform
Requirements:  None 

Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–3 Call completed with error
–4 Virtual address not registered 
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SAL_CLEAR_STATE_INFO

Purpose: This procedure is used to invalidate the error record logged by SAL with respect to the machine 
state at the time of MCAs, INITs, CMCs or Corrected Platform Error events.

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will invalidate an error record that is logged by SAL for the specified event type. Once the 
record has been invalidated, any subsequent calls to SAL_GET_STATE_INFO will get a –5 return 
value (no information available). In a MP environment, processor record information pertains to 
the processor on which this call is executed and the platform record information pertains to the 
entire platform. By calling this procedure, the OS also signifies the completion of its machine 
check handling during an MCA or INIT event handling. 

If an MCA has been logged and the OS fails to invalidate the record prior to another MCA, then 
SAL may save the additional error records and would consider this to be a fatal condition with a 
halt or reboot of the system. This means that the error record information should be read as part of 
the OS_MCA handler or OS boot loader and then followed by an explicit clear operation.

SAL returns one error record at a time through the SAL_GET_STATE_INFO procedure. In certain 
cases, SAL may have multiple pending error records, to be retrieved. A return status value of 3 
from this call indicates that SAL can be called to get more error records. Unless the current error 
record is cleared, further error records shall not be provided by the SAL.

Platform
Requirements:  None 

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
3 More Error Records of the type are available to be retrieved and cleared
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_FREQ_BASE

Purpose: This call returns the base frequency of the platform and other clock related information.

Calling
Conventions:  Standard. Callable by the OS in physical or virtual mode.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface to determine the platform clock frequencies and to facilitate 
the OS in selecting the most accurate clock source. This call could, in turn, use the services of 
PAL_FREQ_BASE if the processor implementation provides an output that is used as the platform 
clock. 

The platform base clock frequency (clock_freq return parameter for clock_type of 0), in 
conjunction with the ratios returned by the PAL_FREQ_RATIOS, may be used to determine the 
frequencies of the processor, the front side bus and the interval timer within the processor. 

This procedure must supply the correct value for the platform base clock frequency  (clock_type of 
0) and this value returned cannot be -1. Support for the other clock types and drift information is 
optional. The value in the clock_freq and drift_info fields is set to -1 if the requested information is 
not available.

Platform
Requirements:  IA-64 platforms must provide mechanisms to determine the base frequency of the platform. 

Argument Description
func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures
clock_type Unsigned 64-bit integer specifying the type of clock source:

0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional) 
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_FREQ_BASE procedure
clock_freq Frequency information in ticks per second
drift_info Drift value in parts per million clock ticks (optional)
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_GET_STATE_INFO

Purpose: Provide a programmatic interface to the processor and platform information logged by SAL with 
respect to the machine state at the time of the MCAs, INITs, CMCs or Corrected Platform events.

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the OS (and diagnostic software) to gather information obtained by SAL 
with respect to the machine state at the time of MCAs, INITs, Processor CMCs or Corrected 
Platform events.

This call will return any information logged by SAL for the specified event type. In response to the 
MCA, Processor CMC or Corrected Platform event, the OS must call this procedure to obtain all 
the pending processor and platform error information that triggered the event. 

The OS is expected to call this procedure to retrieve the error record related to an event. The OS 
may retrieve the same information multiple times prior to clearing the record. The record is cleared 
by the OS calling SAL_CLEAR_STATE_INFO. Once all the records have been cleared, any 
subsequent calls will get a –5 return value (no information available). The OS must be prepared to 
handle the –5 return value. In the case of multiple pending error records of the same type, the OS 
has to get and clear the current record before it can get the next one.

The maximum length of the buffer required to hold the requested record information is obtained by 
calling the SAL_GET_STATE_INFO_SIZE procedure. The OS is expected to allocate the memory 
buffer according to the returned size and provide the same for the memaddr argument. SAL returns 
only one error record at a time in the memory buffer area provided by the memaddr argument. SAL 

Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
–5 No information available
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SAL_GET_STATE_INFO
may indicate the existence of more than one error record through an appropriate return status 
during the call to the SAL_CLEAR_STATE_INFO procedure.

In a MP environment, processor record information pertains to the processor on which this call is 
executed and the platform record information pertains to the platform. The information returned in 
the memaddr argument will contain the error information logged for an event for all the error 
devices like the called processor, memory controller, and I/O devices (including host bridges) in the 
system. The exact format of the records will be implementation dependent but the record for each 
type of device will follow an architected structure to allow the OS to parse the records and extract 
the information. Refer to Appendix B, “Error Record Structures” for format of the error record 
information returned in the memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedure is 
invoked for CMC information on a particular processor, SAL will obtain all of the processor error 
information, by invoking the PAL_MC_ERROR_INFO procedure. This procedure will then return 
to the caller both the information buffered by SAL and the information collected from the PAL. 

If an MCA has been logged and the OS fails to clear the log prior to another MCA, then SAL may 
save the additional error records and would consider this to be a fatal condition with a halt or reboot 
of the system. Hence, the MCA log information should be read as part of the OS_MCA handler or 
OS boot loader. On the other hand, if a CMC occurs prior to the OS clearing the CMC error log, the 
same shall not be fatal. If SAL's internal buffers are not sufficient to log multiple errors of the same 
type, SAL shall discard the error logs for the latter occurrences.

An error record shall be available across reboots if the OS has not cleared it already. SAL shall have 
an implementation specific NVM storage for backing up the error records. An OS is expected to 
retrieve and clear all pending error records during system boot time.

Platform
Requirements:  None 
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SAL_GET_STATE_INFO_SIZE

Purpose: This procedure is used to obtain the maximum size of the information that could be logged by SAL 
with respect to the machine state at the time of MCAs, INITs or CMCs.

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will return the maximum size of the processor or platform information logged by SAL for 
the specified event type. The OS must make this call to determine the maximum size of data logged 
by SAL for each type of record. The OS may then allocate suitable buffers, and provide the 
pre-allocated buffers as argument to subsequent calls to the SAL_GET_STATE_INFO procedure. 

Platform
Requirements:  None.

Argument Description
func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL 

procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO_SIZE
size The maximum size of the information logged for the specified type
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_MC_RENDEZ 

Purpose: This procedure causes the processor to go into a spin loop within SAL where SAL awaits a wake up 
from the monarch processor. 

Calling
Conventions:  Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is invoked on non-monarch processors during machine check processing. This 
procedure will disable interrupts and set an implementation dependent check-in flag within the 
SAL data area to indicate to the monarch processor that the non-monarch processor has reached the 
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete all outstanding 
transactions within the processor. The non-monarch processor will then go into a spin loop awaiting 
a wake up signal from the monarch processor. The wake up mechanism may be an external 
interrupt 1or a memory semaphore as set up by the SAL_MC_SET_PARAMS procedure. SAL will 
return an error if a wake up mechanism has not been registered. 

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will poll the local 
SAPIC IRR register for the bit corresponding to the selected wakeup interrupt to be set. 

If a memory semaphore mechanism is chosen, SAL spin loop routine will poll the memory 
semaphore for the unique value that includes the contents of the Local ID Register (refer to 
Figure 3-1). The monarch processor will set this value to wake up one non-monarch processor at a 
time. SAL on the non-monarch processor will clear the memory semaphore to zero and return. This 
procedure may be called in virtual or physical mode but when memory semaphore mechanism is 
chosen, this procedure must be called in the same mode as the previous call to the 
SAL_MC_SET_PARAMS procedure that specified the memory semaphore.

The non-monarch processor will enter the spin loop routine and begin polling the wake up 
mechanism within 1 second after invocation of this call. 

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented 
–3 Call completed with error
–4 Virtual address not registered 

1. The recommended option is for the OS to use memory semaphore for wake-up than an interrupt. If a wake-up 
interrupt is used by the OS, it will have to take into consideration many race conditions.
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When this procedure returns, it is the responsibility of the OS to clear the IRR bits for the 
MC_rendezvous interrupt and the wake up interrupt, if any. 

This procedure is required for MP support. This SAL procedure is required to be MP-safe in order 
that OS on the various non-monarch processors may enter the idle loop within the SAL 
simultaneously. 

Platform
Requirements:  None
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SAL_MC_SET_PARAMS
SAL_MC_SET_PARAMS 

Purpose: This procedure allows the OS to specify the interrupt number to be used by SAL to interrupt the OS 
during the machine check rendezvous sequence as well as the mechanism to wake up the 
non-monarch processors at the end of machine check processing.

Calling
Conventions:  Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is required for MP support. Section 3.2.2.1 provides details on how the rendezvous 
mechanism works in a MP configuration.

There are some machine check conditions which require the other processors in the system to be 
rendezvoused for error containment purposes and to recover from the error condition. This 
procedure allows the OS to register the interrupt number it wishes to use for this purpose. Typically, 
when the OS on the non-monarch processor receives the rendezvous interrupt, it will turn around 
and call SAL_MC_RENDEZ to go into a SAL spin loop routine. If the OS does not register this 
interrupt, SAL_CHECK on the monarch processor will be forced to issue INIT and thereby 

Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures
param_type Unsigned 64-bit integer value for the parameter type of the machine check 

interface:
1 = rendezvous interrupt
2 = wake upa 
3 = Corrected Platform Error Interrupt Vector
Other values are reserved

a. The recommended option is for the OS to use memory semaphore for wake-up than an interrupt. If a 
wake-up interrupt is used by the OS, it will have to take into consideration many race conditions.

i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory 
address is specified:
1 = interrupt vector
2 = memory address
Other values are reserved

i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory 
address associated with the i_or_m parameter specified above. 

time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds). The 
minimum value is 1 second. Any value less than 1000 defaults to 1000.

rz_always A flag set by OS to indicate if a rendezvous should be done by firmware for all 
MCA’s. A non-zero value indicates that rendezvous is always required.

Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented 
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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compromise the recoverability from the machine check condition. This procedure must be called 
before MCAs can be handled by the OS. 

The param_type parameter indicates whether the rendezvous interrupt or wake up mechanism or 
corrected platform error interrupt vector (CPEV) is being specified. If param_type is 1, the i_or_m 
parameter is ignored.

The i_or_m parameter specifies whether an interrupt or memory semaphore is used. Interrupt is the 
only valid choice for the rendezvous function since the idea is to interrupt the non-monarch 
processor as quickly as possible & corrected platform errors. Either interrupt or memory may be 
used for the wake up mechanism and this is OS implementation dependent. 

The i_or_m_val parameter specifies the interrupt vector number or the memory address associated 
with the i_or_m parameter. If memory address is used for the wake up mechanism, the memory 
semaphore must be aligned on an 8-byte boundary and coherent across the system fabric.

For the rendezvous interrupt vector, a value of 0 indicates use of PMI as the interrupt mechanism. 
The PMI interrupt mechanism shall not be employed by IA-64 OSs as either the rendezvous or the 
wake-up interrupt. Only the PAL layer to support IA-32 OSs may use the PMI as the rendezvous 
interrupt since all the external interrupt vectors may be in use by the IA-32 OS. The SAPIC IPI 
message signalling the MC_rendezvous interrupt of PMI type shall specify a value of 13 in the 
vector field of the IPI message. The PMI interrupt mechanism shall not be employed as the 
wake-up interrupt by any OS.

The PMI interrupt mechanism needs to be supported only on platforms that support IA-32 OSs and 
SAL may return an error status on other platforms. 

If the rz_always flag is set to a non-zero value by the OS, SAL is expected to rendezvous the 
system for all detected processor and platform MCA conditions. If this flag is set to zero, then 
rendezvous is done only when PAL initiates the rendezvous request during an MCA or if SAL 
decides to do it for certain platform MCA. This parameter is valid only when the param_type is 
rendezvous interrupt.

For the corrected platform error interrupt vector, the OS would register the same interrupt vector 
number that is programmed into the IOSAPIC redirection table entry for triggering platform 
corrected error interrupts.

Except for the above, the external interrupt vector value must be in the range of 16 to 255 since 
these are the acceptable values that can be transferred using SAPIC IPI messages. A high value 
should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine 
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if 
not using memory semaphore mechanism). This is because the OS is responsible for clearing the 
IRR bit associated with the wake up interrupt vector by reading the IVR and if the wake up 
interrupt bit is not cleared promptly, a later call to the SAL_MC_RENDEZ procedure may return 
prematurely. 

This procedure may be called in virtual or physical mode but when the i_or_m parameter specifies 
a memory address, subsequent calls to the SAL_MC_RENDEZ must be made in the same mode 
(virtual/physical) as this call. 

The time_out field defines the rendezvous time out period in milliseconds with a minimum value of 
1 second. This parameter is only applicable to the param_type of rendezvous interrupt. If the 
non-monarch processor does not invoke SAL_MC_RENDEZ within the time out period, the 
monarch processor will generate an INIT signal to the non-monarch processor. The time out value 
must be sufficient to cover situations where other processors may be in local MCA and thus not be 
capable of servicing external interrupts or INIT.
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Platform
Requirements:  None
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SAL_PCI_CONFIG_READ

Purpose: This procedure is used to read from the PCI configuration space.

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode. Good programming practices dictate 

that indexed accesses to the configuration space be serialized in order to be MP-safe. 

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to read from PCI configuration space. The mechanism 
for accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges 
to implement this mechanism in different ways. 

A non-zero value in the segment field can be used to access devices on platforms with greater than 
256 buses.

Platform
Requirements:  None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
address PCI configuration address:

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number 
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the read.

size PCI config size (1, 2 or 4 bytes)
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_READ procedure
value Value read from config space.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling
Conventions: Standard. Callable by the OS in virtual or physical mode. Good programming practices dictate that 

indexed accesses to the configuration space be serialized in order to be MP-safe.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to write to PCI configuration space. The mechanism for 
accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges to 
implement this mechanism in different ways. This procedure will guarantee the completion of the 
write to the caller.

A non-zero value in the segment field can be used to access devices on platforms with greater than 
256 buses.

Platform
Requirements:None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address: 

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number 
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the write.

size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_REGISTER_PHYSICAL_ADDR

Arguments: Provide a mechanism for software to register the physical addresses of locations needed by SAL
Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is used by the OS to register the new physical addresses of the PAL_PROC 
procedure in memory. If the OS were to copy PAL procedures to a different memory location (using 
the PAL_COPY_PAL procedure), it must register the new PAL_PROC entrypoint address with the 
SAL. The SAL layer will then be in a position to invoke the PAL procedures in physical mode.

The phys_entity argument specifies the entity whose physical address is being registered with the 
SAL and the p_addr argument provides its physical address.

Platform
Requirements:  None

Argument Description
func_id Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL 

procedures
phys_entity The encoded value of the entity whose physical address is registered 

0 = PAL_PROC 
Other values are reserved

p_addr 64-bit integer value denoting the physical address 
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_SET_VECTORS

Purpose: Provide a mechanism for software to register software dependent code locations with SAL. These 
locations are “handlers” or entrypoints where SAL will pass control for the specified event. The 
events handled are for the Boot Rendezvous, MCAs and INIT scenarios. 

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the OS (and diagnostic software) to inform firmware whether it is ready to 
handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely where to vector for 
each case. Since all three events result in having processor execution being controlled by firmware, 
firmware requires these software addresses of the OS or diagnostics in order to pass control. The 
OS registers the physical address where the specific handler resides. SAL uses these addresses to 
vector to on occurrence of the event. 

For the INIT event in an MP configuration, separate arguments must be provided for the first 
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The 
phys_addr_1, gp_1 and length_1 arguments specify the entrypoint, gp-value and the length 
respectively of the OS_INIT procedure for the monarch and the phys_addr_2, gp_2 and length_2 
arguments respectively specify the entrypoint, gp-value and the length of the OS_INIT procedure 
for the non-monarch processors. The entrypoints within the OS for the monarch and non-monarch 
processors could be the same if the OS intends to perform the monarch selection. 

The value in the phys_addr_n argument must be 16-byte aligned. The phys_addr_n argument may 
be checked as to whether it points into legal memory space (as opposed to I/O space or firmware 

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler: 

0 = Machine Check
1 = INIT 
2 = BOOT_RENDEZ
3–64 = Reserved
other values are implementation dependent

phys_addr_1 Physical address of the event handler. 
gp_1 Global pointer (GP) of the event handler. This field must be a 16-byte aligned 

address. 
length_1 Size of the event handler procedure in bytes
phys_addr_2 Physical address of the event handler. 
gp_2 Global pointer (GP) of the event handler. This field must be a 16-byte aligned 

address. 
length_2 Size of the event handler procedure in bytes

Return Value Description
status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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space). Specifying a value of 0 in the phys_addr_n argument invalidates the event handler 
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the 
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it is not possible to invalidate only 
one of the two entrypoints.

The gp_n field has the physical address of the GP for the event handler to be called by SAL. The 
length_n argument contains the length in bytes of the OS procedure (or at least the first level 
OS_MCA, OS_INIT, OS_BOOT_RENDEZ procedure). If the length_n argument is non-zero, SAL 
computes and saves the checksum of the OS procedure. If this procedure were invoked in the 
virtual addressing mode, the OS must provide read access to the code area for calculating the 
checksum. Before invoking the registered OS procedure, SAL shall authenticate the OS code by 
verifying its checksum. 

Platform
Requirements:  None
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SAL_UPDATE_PAL

Purpose: This procedure is used to update the contents of the PAL block in the non-volatile storage device.

Calling
Conventions:    Standard. Callable by the OS in virtual or physical mode. 

Arguments:

Returns:

Status:

Description: This procedure updates the contents of firmware blocks (e.g. PAL_B) in the non-volatile storage 
device and revises the FIT entries pertaining to the firmware blocks. If checksum is implemented 
for the FIT table, this procedure will also revise the same. This procedure is capable of selecting the 
appropriate location in the storage device for the firmware components. In some flash ROM 
architectures, updates may not be possible until the following INIT. This scenario is described later. 

Before performing update of PAL, this procedure will utilize resources within the processor and/or 
PAL to authenticate the contents of the new version of PAL provided by the caller. If the 
authentication is unsuccessful, the current PAL contents will be left intact. 

The param_buf points to a 16-byte aligned data structure in memory with a length of 32 bytes that 
describes the new firmware. This information is organized in the form of a linked list with each 
element describing one firmware component. This procedure will update all the specified firmware 
components as well as their FIT entries if successful, and none of the firmware components if 
errors are encountered. The following table shows the format of each element of the data structure. 
Refer to Section 2.5, “Firmware Interface Table” for explanation of fields within the FIT.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size Unsigned 64-bit integer value for the size of the scratch buffer in bytes 
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req Size of the scratch buffer needed
Reserved 0

Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update. 

–2 Invalid Argument
–3 Call completed with error. See error_code for details
–4 Virtual address not registered 
–9 Insufficient scratch buffer provided

Offset Length Description
0 8 64-bit pointer to the next element (0 if none present)
8 8 64-bit memory address of the update_data_block containing new firmware 

contents
16 1 Checksum flag: 

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry

17 15 Reserved 
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The update_data_block consists of a header of 64 bytes followed by the code for the firmware 
component. The following table shows the contents of the 64 byte header.

This procedure will locate the PAL_B block on a 32K byte aligned boundary on the storage device. 

If the scratch buffer size specified in the scratch_buf_size field is insufficient, the call will fail with 
a status of –7 and the scrbuf_size_req return parameter will specify the size of the scratch buffer 
required.

SAL reads the CPU identification registers on all the processors in the system and maintains the 
processor stepping information. If the PAL_B component is being updated, SAL will ensure that 
the version number of the new PAL_B in the update_data_block is compatible with all the 
processors on the system else return an error status. 

The error_code return parameter provides additional information on the failure when the status 
field contains a value of –3. Following are the definitions for the error_code field. 

In some firmware architectures (e.g. flash), writes to a chip or component containing firmware 
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL 
firmware code for handling machine checks were located on the chip being revised, machine 
checks must be masked on all the processors to avoid possible instruction fetch accesses to the 
firmware address space. In an MP environment, the OS must rendezvous all the other processors on 
the node whose firmware is being updated. At the end of the firmware update, the OS must invoke 
the PAL_MC_ERROR_INFO procedure to ascertain whether any machine checks occurred while 
they were masked and take corrective actions. The OS must then wake up the rendezvoused 
processors and re-enable machine checks. In a multi-node system with multiple copies of firmware, 
it may be possible to redirect interrupts to nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash 
hardware except immediately following a Reset or INIT. The OS may call this procedure in virtual 
mode but it is required to fix the pages containing the new firmware contents in memory, i.e. the OS 

Offset Length Description
0 4 Size of the firmware component in bytes including the header (This field 

must be a multiple of 16) 
4 4 Date of the firmware component in mmddyyyy format: month, day, year 

(e.g. 07/18/99 stored as 0x07181999)
8 2 Version number of the firmware component to be stored in its FIT entry
10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)

1 = PAL_B; 0x0F = PAL_A
11 5 Reserved 
16 8 Firmware Vendor ID 
24 40 Reserved 

Error Code Description
–1 Version number of supplied PAL firmware is not suitable for one or more 

processors in the system
–2 Supplied version of PAL failed the authentication test
–3 Invalid firmware component type
–4 PAL_A firmware not erasable 
–5 to –9 Reserved
–10 Write failure – inability to write to storage device
–11 Erase failure – inability to erase the storage device
–12 Read failure – inability to read the storage device
–13 Insufficient space in the storage device
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must not change the contents of the corresponding physical pages until the firmware update is 
complete. SAL will be aware of flash architecture restrictions and will perform the usual 
authentication steps. If the authentication is successful, SAL will accumulate the physical addresses 
of the new firmware contents by executing the TPA instruction. (There may be several 
non-contiguous physical pages if the OS had called this procedure in virtual mode). SAL will then 
return to the OS a status value of 1 requesting a warm reboot. When SAL regains control following 
the warm reboot, it will conduct the authentication steps again and, if successful, update the 
contents of firmware. 

The firmware update is effective on the next reboot. However, after a successful update, firmware 
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM 
(new code) will be utilized by the machine check and INIT events while the copy in memory (old 
code) will be utilized by the OS. The OS may solve this problem either by rebooting the system 
following a firmware update, or by updating the memory copy of PAL procedures by invoking the 
PAL_COPY_PAL procedure.

If the OS decides to update the memory copy of PAL procedures, there are additional 
considerations in an MP environment: 

1. While the runtime copy of PAL is being revised (during execution of the PAL_COPY_PAL 
procedure), all the processors in the system must be prevented from executing PAL 
procedures in memory. 

2. The monarch processor, after invoking the PAL_COPY_PAL procedure, must invalidate its 
instruction cache by invoking the PAL_CACHE_INIT procedure as it would be 
non-coherent with respect to the data cache.

3. The non-monarch processors on being woken up by the monarch processor must invoke the 
PAL_COPY_PAL procedure to register the new PAL entrypoints for PAL_PMI and 
PAL_FP. The non-monarch processors must do a SRLZ.I instruction to ensure that 
modifications to instruction prefetches are observed. 

4. If the physical address of the PAL_PROC procedure changes, the OS must register the new 
address with SAL by invoking the SAL_REGISTER_PHYSICAL_ADDR procedure. 

Platform
Requirements:   Platform must provide non-volatile storage space to save firmware components.
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Glossary A

ACPI
Advanced Configuration and Power Interface Specification.

AP
Application Processor. One of the processors not responsible for system initialization.

API
Application Programming Interface.

BIOS
Basic Input/Output System. A collection of routines that includes Power On Self-test 
(POST), system configuration and a software layer between the operating system and 
hardware. BIOS is written in IA-32 instruction set.

Boot Block Support
A hardware and/or software implementation that permits the end user to recover PAL/SAL 
layers of software into the flash part after the previous flash programming attempt was 
accidentally aborted.

BSP
Bootstrap Processor. The processor responsible for system initialization.

BSP
Backing Store Pointer (AR.BSP).

CMC
Corrected Machine Check.

Cold Boot vs. Warm Boot
Cold Boot refers to a hardware/software event that sets all circuitry, including all 
processors, system components, add-in cards and control logic, to an initial state. Warm 
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any 
or all of the processor(s) on the system to an initial state. Warm Boot may be triggered by 
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not 
corrupt any pending cycles. Destructive memory tests are not performed during warm 
boot.

Cold Reset vs. Hard Reset
Cold Reset refers to a hardware signal that sets all circuitry, including all processors, 
buses, system components, add-in cards and control logic, to an initial state. Hard Reset is 
triggered by a similar hardware signal. Hard Reset differs from Cold Reset in that some 
sticky error flags in some system components may not be cleared, thereby allowing 
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate 
without regard to cycle boundaries and are typically asserted by the RESET pin. Both 
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.
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Corrected Platform Error Interrupt
Interrupt generated by the platform following a hardware corrected error. The interrupt 
vector is set by the OS (e.g., in the vector field of an I/O SAPIC redirection table entry). 

EFI
Extensible Firmware Interface. Firmware that provides a legacy free API interface to the 
OS. 

EOI
End of Interrupt.

FT
Fault Tolerant.

GP
Global Data Pointer. Every procedure that references statically-allocated data or calls 
another procedure requires a pointer to its data segment in the GP register so that it can 
access its static data and its linkage tables.

Hardware-protected Flash Region
This term refers to a part of the flash storage that is hardware-protected against accidental 
erasure. Usually, this region is programmed by the OEM only. The hardware protection 
can either be on-chip and/or platform supported hardware. 

IA-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software 
Developer’s Manual. 

IA-64
The new ISA with 64-bit instruction capabilities, new performance enhancing features, 
and support for the IA-32 instruction set. 

IA-64 OS
An operating system which is written using the IA-64 code that can run IA-64 applications 
(IA-64, IA-32 code). 

INTA
Interrupt Acknowledge.

IPI
Interprocessor Interrupts.

IPL
Initial Program Load.

ISA
Instruction Set Architecture.

IVT
Interrupt Vector Table.
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MBR
Master Boot Record.

MC_rendezvous Interrupt
An external interrupt vector provided to SAL by the IA-64 OS for interrupting the IA-64 
OS running on the APs.

MCA
Machine Check Abort.

Minimal State Save Area
Area registered by SAL with PAL for saving minimal processor state during machine 
check and INIT processing. This area must be aligned on a 512-byte boundary and must 
be in uncacheable memory. See the PAL EAS for details.

Monarch Processor
The processor selected by SAL to accumulate all the platform error logs and continue with 
the machine check processing, when multiple processors experience machine checks 
simultaneously. 

MP
Multiprocessor.

MPS
Multiprocessor Specification.

NTFS
Windows NT File System.

NVM
Non-volatile Memory.

OS
Operating System.

PAL
Processor Abstraction Layer. Firmware that abstracts processor implementation-specific 
features.

Plabel
Procedure label, a reference or pointer to a function. A plabel takes the form of a pointer to 
a special descriptor (a plabel descriptor) that uniquely identifies the function. The plabel 
descriptor contains the address of the function’s actual entrypoint as well as its linkage 
table pointer.

PMI
Platform Management Interrupt.

SAL
System Abstraction Layer. Firmware that abstracts system implementation differences.
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SAL_REV
The revision number of the IA-64 SAL specification supported by the SAL 
implementation. This information contains two one-byte fields for Major and Minor 
revision numbers and the same are represented in binary coded decimal (BCD) format. 
For example, if this variable contains 02h, 06h, the SAL revision is 2.6. The major version 
is incremented when the SAL API changes.   The minor version is incremented when 
underlying functionality changes but the API remains the same. SAL implementations 
pertaining to a particular IA-64 SAL revision specification shall be compatible with each 
other at the published SAL external interfaces.

SAPIC
Streamlined Advanced Programmable Interrupt Controller. The code name for the high 
performance interrupt architecture for the 64-bit IA-64 ISA extensions to the 32-bit Intel 
Architecture (IA-32). The Local SAPIC resides within the processor and accepts 
interrupts sent on the system bus. The I/O SAPIC resides on the I/O subsystem and 
provides the interrupt input pins on which I/O devices inject interrupts into the system. 

Sector
This term refers to a logical block of 512 bytes.

SP
Memory Stack Pointer.

Swizzling
This term refers to mapping a 32-bit virtual linear address space into four virtual regions 
of the 64-bit virtual address space. Swizzling is defined as:

virtual_address{63} = 0
virtual_address{62:61} = 32-bit_virtual_address{31:30}
virtual_address{60:32} = 0
virtual_address{31:0} = 32-bit_virtual_address{31:0}

TLB
Translation Lookaside Buffer.

TSS
Task State Segment.

USB
Universal Serial Bus.

VHPT
Virtual Hash Page Table.

WBL
Write-back with Limited Speculation.

Corrected Error
All errors of this type are either corrected by the processor/platform hardware/firmware.
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Recoverable Error
Recoverable errors cannot be corrected by either the hardware or firmware. These type of 
errors requires more OS analysis and a corrective action to recover. System operation/state 
is impacted to a some extent. 

Fatal Error
These type of errors cannot be corrected by the processor hardware, firmware, and the OS. 
The integrity of the system, including the IO devices is not guaranteed and may require IO 
device initialization and a system reboot to continue.
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Error Record Structures B

B.1 Overview

The goals of the IA-64 Error Record structures is to keep it generic and flexible enough to be 
extensible and to abstract processor or platform implementation dependencies from the OS layers, 
at the same time providing as much error information as possible to the OS for error handling 
purposes.

B.2  Error Record Structure

The error record structure consist of many different components called sections. Each error record 
captures error information for one error event consisting of multiple sections. The size of the error 
record structure is as indicated by RECORD_LEN and is dynamically set based on the total size of 
all the section headers and section bodies combined. 

An error record consists of a generic header followed by a list of sections with actual error 
information for the event. Each section relates to a particular error device (ex: processor, platform 
memory, platform PCI Bus, platform ISA Bus etc.), having a section header followed by section 
body. Each of the section error information fields will have an associated validation bit(s), which 
are part of the section body. A unique GUID is associated with each section for identification of the 
error device type (ex: processor, platform memory, platform PCI bus etc.).

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

Section-n Header

Section-n  Body
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B.2.1 Record Header

The format of the header for both the platform and processor error record is as shown below:

Refer to the Intel® IA-64 Architecture Software Developer’s Manual for explanation of fields not 
described in this document.

The Device specific error section follows the header. For processor errors, this field will contain an 
area that is architected for all IA-64 processors. For platform errors, this section will contain 
information specific to the platform devices. 

B.2.2 Section Header

The format of the section header for all error devices is as shown below:

Offset Length Field Description
0 8 bytes RECORD_ID Unique monotonically increasing ID for MCA, INIT and 

CMC events Records
8 2 bytes REVISION 2-byte Major and Minor revision number of the Record in 

BCD format
Byte0 – Minor 
Byte1 – Major

10 2 bytes ERR_SEVERITY This encoded field indicates error severity
0 – Recoverable
1 – Fatal
2 – Corrected
Others – Reserved

12 4 bytes RECORD_LEN Length of this error record in bytes, including the header
16 8 bytes TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred in 

BCD format.
Byte 0 – Seconds 
Byte 1 – Minutes 
Byte 2 – Hours
Byte 3 – Reserved 
Byte 4 – Day 
Byte 5 – Month 
Byte 6 – Year 
Byte 7 – Century

Offset Length Field Description
0 16 

bytes
GUID Unique 16-byte GUID for the error device

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in 
BCD format
Byte0 – Minor 
Byte1 – Major

18 2 bytes RESERVED Reserved
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the 

header
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B.2.2.1 Processor Error Device Info

Refer to the Intel® IA-64 Architecture Software Developer’s Manual for explanation of fields.

PROCESSOR_SPECIFIC_ERROR_RECORD STRUCTURE

{

VALIDATION_BITS1 8 bytes

PROC_ERROR_MAP_VALID_BIT Bit 0

PROC_STATE_PARAMETER_VALID_BIT Bit 1

PROC_CR_LID_VALID_BIT Bit 2

PSI_STATIC_STRUCT_VALID_BIT Bit 3

CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15) 

TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)

BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)

REG_FILE_CHECK_NUM Bit 16-19 (REG errors 0 to 15)

MS_CHECK_NUM Bit 20-23 (MS errors 0 to 15)

RESERVED Bits 24-63

PROC_ERROR_MAP 8 bytes

PROC_STATE_PARAMETER 8 bytes

PROC_CR_LID 8 bytes

struct { Nx48 max. bytes (cache errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} CACHE_ERROR_STRUCT[CACHE_CHECK_NUM] 

struct { Nx48 max. bytes (TLB errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} TLB_ERROR_STRUCT[TLB_CHECK_NUM]

struct { Nx48 max. bytes (BUS errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each

} BUS_ERROR_STRUCT[BUS_CHECK_NUM]

REG_FILE_CHECK_INFO[REG_FILE_CHECK_NUM]Nx8 bytes (Reg. File errors 0 to 15)

MS_CHECK_INFO[MS_CHECK_NUM] Nx8 bytes (MS errors 0 to 15)

struct { Processor Static Information

VALID_FIELD_BITS2 8 bytes

Offset Length Field Description
0 16 

bytes
GUID {0xe429faf1, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 

0xc7, 0x3c, 0x88, 0x81}} 
16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in 

BCD format
Byte0 – Minor 
Byte1 – Major

18 2 bytes RESERVED Reserved
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the 

header

1. The amount of information reported by SAL is implementation dependent. The validity of each field is indicated by 
either a validation bit or an encoded number field. Data corresponding to invalid fields will be padded. For 
CACHE, TLB, BUS, REG, MS fields, the encoded NUM field indicates number of 
MOD_ERROR_INFO_STRUCTs for each category, ranging from 0-15. If the NUM field is zero for a specific 
type, then data corresponding to that field will be absent.
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MINSTATE_VALID_BIT Bit 0

BR_VALID_BIT Bit 1

CR_VALID_BIT Bit 2

AR_VALID_BIT Bit 3

RR_VALID_BIT Bit 4

FR_VALID_BIT Bit 5

RESERVED Bit 6-63

Minimal State Save Info Structure3 1024 bytes

BRs 0-7 64 bytes

CRs 0-127 1024 bytes4,5

ARs 0-127 1024 bytes4,5

RRs 0-7 64 bytes

FRs 0-127 2048 bytes

} PSI_STATIC_STRUCT

}

struct{ 48 bytes6(Mod)

VALID_FIELD_BITS 8 bytes

CHECK_INFO_VALID_BIT Bit 0

REQUESTOR_IDENTIFIER_VALID_BIT Bit 1

RESPONDER_IDENTIFIER_VALID_BIT Bit 2

TARGET_IDENTIFIER_VALID_BIT Bit 3

PRECISE_IP_VALID_BIT Bit 4

RESERVED_VALID_BIT Bit 5-63

MOD_CHECK_INFO 8 bytes

MOD_REQUESTOR_IDENTIFIER 8 bytes

MOD_RESPONDER_IDENTIFIER 8 bytes

MOD_TARGET_IDENTIFIER 8 bytes

MOD_PRECISE_IP 8 bytes

} MOD7_ERROR_INFO_STRUCT

B.2.3 Error Device GUID

The GUID structure is as follows:

2. Invalid fields will be padded
3. The size of the MinState Structure is about 1Kbytes. For more details on the size and contents of the structure, 

please refer to the Intel® IA-64 Architecture Software Developer’s Manual
4.  The number of Control and Application registers on a processor is processor implementation dependent.
5.  Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. This 

information is returned by the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile 
registers in this data structure. 

6. The size of this structure will always be 48 bytes, with invalid fields being padded with null values.
7. The MOD structure is common across CACHE, TLB and BUS error records

Offset Length Field Description
0 4 bytes DATA1 Data1
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4
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