tel.

ltanium™ Processor Family
System Abstraction Layer
Specification

July 2001

Document Number: 245359-005

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Itanium™ processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-
4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
Copyright © 2001, Intel Corporation.

*Other names and brands may be claimed as the property of others.

ii Itanium™ Processor Family System Abstraction Layer Specification

intel.

Contents

1 INEFOAUCTION 1ttt ettt r e see e sae e e nr e e nenes
1.1 (0] 0] =101 1)Y= SRR
1.2 FIrmMware MOOEcoviiiiiiiie e
1.3 System Abstraction Layer Overview...

14 Firmware Entrypoints
14.1 Processor Abstraction Layer ENtrypointsccccoevveeeeiiieeiiiee e sees s 1-5
1.4.2 System Abstraction Layer Entrypoints ..1-6
1.4.3 Operating System Entrypoints ...1-6
15 Related DOCUMENLSccocviiviviiiiiiicciieee, Y4
1.6 REVISION HISTOIYiiiiiie ettt e s bt e e ee e e nraeeennes 1-7
2 Platform REQUITEMENTS ...ttt e ee e st e e et e e enbe e e ennbe e e snneeesnneee 2-1
2.1 FiIrmware AdAreSS SPACEceeiuiiiiiiiieeiiie ettt ee ettt ee st st e e snneeeenneeeeenees 2-1
2.2 PAL/SAL ROM Space..........cccccuveee wn2-1
2.3 Simplified Firmware Address Map .2-2
2.4 Firmware Organization using a Protected Boot Block
24.1 Firmware COMPONENTSoviiiiiieeiiieeiiiie ettt ee e sae e e seeesnnees
25 Firmware Interface Table ..o
2.6 Resources Required for PC-AT* Compatibility ..
2.7 Chipset and Shadowing REQUIFEMENTSeiiiuieeiiiieeiieeesiiee e sseeee e seee e e
2.8 Platform Support for Variant Architectural FEatUresccccoveeveiiieeiiiie e eniee s
2.9 Platform Considerations Related to Geographic Location. o
2.10 Non-volatile Memory REQUIFEMENLScccuuveiiiiiiiiiiie et
2.11 Miscellaneous Platform ReqUIrEMENLSccoiuiiiiiieiiiiee e
3 BOOT SEQUENCE. ...ttt e e et e e e e e e et e e e e eas
3.1 Overview of the Code Flow after Hard ReSetcccovviiiiiiiiciiiiciie e
3.11 Code Flow during Recovery
3.1.2 Normal Code Flow.................
3.2 SAL RESET ..ttt e e e
321 INItIAlIZALION PRASE......ciiiiiii it
3.2.2 Bootstrap Processor Identification Phase in an Multiprocessor
(0] 11 To [] =11 0] o H PRSPPI
3.2.3 Platform Initialization Phaseccoooiiiiiiiiie e
3.24 Operating System Boot Phase
3.25 Firmware to Operating System Loader Handoff State
3.2.6 OS_BOOT_RENDEZ ..ottt eee e e e ee e eeen e
3.2.7 SAL System Table........ccoooiiiiii
3.3 Itanium™-based Operating System Loader Requirements...............
3.3.1 Fault Handlingcoooiiiiiiiiee e
3.3.2 Memory Management Resources USage...........cccvvvveeeenn. .
3.3.3 Other Restrictions on the Operating SYStemcooccvvviiviiiieeeniiee e,
4 MACNTNE CRECKS......ciiiiiiiie ettt sr e ere e
4.1 SAL_CHECKiiiiiiiiiiiieirecrec e
41.1 SAL_CHECK Processing Details ...
4.2 Corrected Machine Checksc.ccocevnnnne. .
4.3 PIAFOIM EITOTS....ciitieii ittt
43.1 Scope Of Platform EITOTSooocviiiiiiie e

Itanium™ Processor Family System Abstraction Layer Specification iii

4.3.2 Processing of Corrected Platform Errors.............ooooiiiiiiiie e

4.3.3 Processing of Uncorrected Platform Errors
4.4 Polling for Corrected Errors...
45 OS_MCA ..o

45.1 Unconsumed Error Records across Reboots
4.6 Procedures used in Machine Check Handling..............eeeooiiiiiiiiiiniiiiice e
4.7 Machine Checks in MP Configurations

4.7.1 Rendezvous REQUIFEMENTScooiiiiiiiiiiiee ettt

4.7.2 Flow of Control during MCA in MP Configurations...........cccccoeccvviieenaiinnnns 4-11

4.7.3 OS_MCA ReSPONSIDINIIESeeiiiiiiiiiiiieeiiiiie et 4-13

4.7.4 Machine Check Processing Steps within Firmware and

Operating System

4.8 OS_MCA Handoff Statecccvveeeeeiiciiiineeeeens

4.8.1 Return from the OS_MCA ProCedUIe.........cccoviiviiiieiiiiiieee e 4-17
INIIAIIZALION EVENT ..ottt ettt n e nbe e e sane e
5.1 SAL INIT ettt ettt ettt et
5.2 O _INIT ettt bt et
5.3 OS_INIT Handoff STALE.....cceiiiiiiiiieie ettt e et e e e e s naaaaeaee e
5.4 Return from OS_INIT Procedure
55 LY L N ST U o] o Lo o S TP PP T PP PP P PPPPPPPPPO
Platform Management INTerrUPLIONSccueii ittt e
6.1 SALE_PMI OVEIVIEWuvviiiieiciiiie ettt e ettt e e e ettt e e e e e et e e e e e e s st e aeaeeantanaeaeaeean
6.2 SALE_PMI INIGIANZALION ..uviiiiiiiiiiieec ettt e et ee e e e s e ae e
6.3 SALE_PMI PrOCESSING ...vvtieiititeititieiie ettt ettt et e e s nnaeeennneeenees
6.4 Special Considerations for Multiprocessor Configurationsccceveveeiieeenieeennne 6-2
IA-32 SUPPOTIE (OPLIONAD) .eiiiiiee ittt ettt snnb e e b e e s steeeenneeeeanns
7.1 (1 AT o] o o] 1Y (o T [PSPPI
7.2 IA-32 Support Requirements....................

7.2.1 Resources Supported by SAL

7.2.2 Overview of I1A-32 Support Layer Functionalityc.ccccccveeveeeeniieniieeenee. 7-2

7.2.3 IA-32 Instruction Usage Guidelines

7.2.4 1A-32 SUPPOIt ENVIFONMENTeiiiiiiiiiiie ittt

7.2.5 IA-32 Interruption Handler Support

(= 1111 g To I @01 1V =T o 4 o] o 1= 3OS OTP
8.1 SAL Calling CONVENTIONSvviieiiiiieiie e itieeesiee st ee et eeesae e e eeennbe e e snneeessneeeesnees
8.11 Definition Of TEIMS ...eeiiiiiiiiiiie e et n
8.1.2 Processor State...........ccocceveeeiiniennen.
8.1.3 System RegiStersccovvvevieeennnns
8.14 General Registersccvvveviiennnnns
8.15 Floating-point Registers
8.1.6 Predicate Registersccccoecvvveennnee..
8.1.7 Branch Registers.......cccccceevvvvveennnen.
8.1.8 Application Special REJISErS........ccoiiiiiiiiiie i
8.1.9 Parameter BUfEIScooiiiiiiie e e
8.2 Software Interface Conventions for SAL Procedures
8.2.1 Control Flow of the SAL INterfaceccovuiiiiiiiiiiie e
8.2.2 Calling Architected/OEM SAL FUNCHONS..........ccoveiiiiiiiiiiie e

Itanium™ Processor Family System Abstraction Layer Specification

9 YV o fo Tod=To (U] =2 TP P PPPR TSR 9-1
9.1 SAL RUNIME SErVICES OVEIVIEWeiiiiiiiiiiiitie ettt e e e e et iee e e ettt e e e e s abaeeaaaeaeennneees 9-1
9.1.1 Invoking SAL Runtime Services in Virtual Modeccoocveeiieiiiiiiiiieeenene 9-2
9.1.2 Access to Resources not Supported by the Operating System.................... 9-2
9.2 SAL Procedures that Invoke PAL Procedures
9.3 SAL Procedure Summary
A GlOSSAIY ittt ettt e e oo oo bbbt e e e e e oo a bttt e e e e oA ba bt te e e e e bbb bt ee e e et beeae e e e nnraee e s
B Error RECOIT STIUCTUIESueiiiiiii ittt ettt e e e et e e e e s e bebe e e e e e enntanaeaeaeeanns B-1
B.1 OVerviewccccccuvveeeenn. . B-1
B.2 Error Record Structure .. .B-1
B.2.1 Record Header.. ...B-2
B.2.2 SeCHON HEAUEKcoi ittt B-2
B.2.3 Processor Device Error INfO ... B-4
B.2.4 Platform Errors
B.2.5 Error Status
Figures
11 Firmware Model.............ccccec....
1-2 Firmware Services Model
1-3 Firmware Entrypoints LOGICal MOEL...........coooiiiiiiiiiiiiie e e 1-5
2-1 Simplified FIrmware AdAreSS IMAPccooouiiiii ittt e e e snnabeeae s 2-3
2-2 Firmware Address Map................ wn2-4
2-3 Firmware Interface Table............. . 2-6
2-4 Firmware Interface Table Entry 2-6
3-1 LocCal ID REGISIEr FOMMAL..........uuiiiiii ettt ettt ettt e e e s bbb e e e e e s st beee e e e e nanbeeaeens 3-3
3-2 Control Flow of Boot Process in a Multiprocessor Configuration............cccceveeiiiiiiiieee e 3-5
3-3 Wake-up Memory Variable Format............cccccceiiiiiiiinieeniiien.
4-1 Overview of Machine Check Flow ..
4-2 Machine Check Code FIow...........ccccooiiiieiiiiiiiiiiieeee.
4-3 SAL_CHECK Detailed Flow on the Monarch ProCESSOrccccuiiiiiiaiiiiiiiieee et
4-4 Normal SAL RENAEZVOUS FIOWccoiiiiiiiiiiiae ettt e e
4-5 Failed SAL Rendezvous FIOW...........cocccuieieiiiiiiiiineeen.
4-6 Machine Check Handling in a Typical MP Configuration..
5-1 SAL_INIT Control FIOWcoooiiiiiiiiiieiiiiiiee e
8-1 Control Flow of the SAL Procedure INterface ..o

Itanium™ Processor Family System Abstraction Layer Specification \Y

Tables

2-1 FIrmware AAreSS SPACEccviieiiiieiitiiee ettt sttt e e s sn bt e et e e e ntbee e steeeanneeesnneee s
2-2 FIT Types

2-3 1 MB Compatibility Memory Address Space..

2-4 1A-32 Compatibility I/O POrS........cccceevveeeiiiienen.

3-1 SAL Actions Based on Processor Self-test State

3-2 SAL System Table Header..........ccoocveeviieerieeeennns

3-3 SAL System Table Entry Types

3-4 Entrypoint Descriptor ENtry FOMMAL..........coviiiiiiiiieiiie et s e snnee s nneeee e
3-5 Memory Descriptor Entry

3-6 Memory Type Information Provided to the EFl..........cccooiiiiiiii e
3-7 Platform Features DeSCHPLOr ENIYiiiiiie it
3-8 Translation Register Descriptor Entry

3-9 Purge Translation Cache Coherence Domain Entry

3-10 Coherence Domain INfOMMALIONcooviiiiiiiiiiiie it
3-11 Application Processor Wake-up Descriptor Entry
8-1 DefiNItioN Of TEIMS ..ot
8-2 State RequiremMents fOr PSRcoi ittt et ee e nae e s ee e eees
8-3 System Register CoONventionS.........ccccoevevevieeeiiveeenineen.

8-4 General Registers — Standard Calling Conventions

8-5 SAL Return Statusc.coccveviiiiiiniiie e

9-1 SAL Procedures Invoking PAL Procedures ...

9-2 SAL Procedures

B-1 GUID FOrmat........ccoceeeviiiiiiieciieee e
B-2 Format of Variable Length INfO SIHUCIUIEoioiiiiiiiiiieie e
B-3 EITOr StAtUS FIEIOSooiiiiiiiicee et et
B-4 L= (0] G Y/ 01 OO PSP T PP PP PP S PPPPPPPPPPPRN
Vi Itanium™ Processor Family System Abstraction Layer Specification

intel.

Introduction 1

1.1

Objectives

This document describes the functionality of the System Abstraction Layer (SAL) for
Itanium™-based systems.

This document specifies requirements to devel op platform firmware for Itanium-based systems. A
companion document, The Extensible Firmware I nterface (EFI) Specification, describes additional
interfaces that must be implemented to access devices on the platform. The EFI Specificationisa
platform binding specification and is also part of Itanium-based firmware.

This document is intended for firmware designers, system designers, and writers of diagnostic and
low-level operating system software. This document is an architectural specification and does not
require a specific implementation.

The primary objectives of Itanium-based firmware are to:

Enable boot of Itanium-based operating systems.

Ensure that the firmware interfaces encapsul ate the platform implementation differences
within the hardware abstraction layers and device driver layers of operating systems.

Separate the abstraction for the platform hardware from the abstraction for the processor
hardware.

Enable platform differentiation, hardware innovation, and optimization of Itanium-based
platforms.

Support the scaling of systems from the low-end to the high-end including servers,
workstations, mainframe alternatives, and supercomputers. Features supported will include
high availahility, error logging & recovery, large memory support, multiprocessing, and
broader and deeper 1/0 hierarchies (possibly greater than 100 1/O cards).

Optionally enable shrink-wrapped versions of the | A-32 operating systems to boot. Thiswill
involve support of 1A-32 industry standard calls and Application Programming Interfaces
(APIs).

Enable reuse of 1A-32 BIOS code as part of SAL. The extent of the |A-32 BIOS reuseis
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer
(PAL) will use the Itanium processor system environment.

Optionally, enable the use of legacy PC peripherals, option ROMs, and PCI cards with 1A-32
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals.
However, this document is not intended to document PC infrastructure specifications.

1-1

1.2

Firmware Model

As shown in Figure 1-1, Itanium-based firmware has three components:

1. Processor Abstraction Layer
2. System Abstraction Layer
3. Extended Firmware Interface

Figure 1-1. Firmware Model

Operating System Software

A EFI A A
Transfe_rs to OS 0OS Boot
Entrypoints Handoff Procedure
for Hardware Calls
Events))
S Extensible Firmware
B Interface (EFI)
Y
OSBoOt | | >
Selection N 7
SAL Procedure o
Calls
Instruction
Platform/System Abstraction Layer Execution
(SAL) Interrupts,
Traps and
Faults
Acess to PAL Procedure 7
Platform <
Resources T
<7 Transfers to SAL
S Entrypoints
T
Processor Abstraction Layer
(PAL)
Processor (Hardware)
A
- Performance Critical
Hardware Events,
Non-performance Critical e.g. Interrupts
Hardware Events, e.g. AN
Reset, Machine Checks .
4

Platform (Hardware)

000950

1-2

Introduction

PAL encapsulates processor implementation-specific features and is part of the Itanium processor
architecture. PAL operatesindependently of the number of processors. SAL isthe platform-specific
firmware component that isolates operating systems and other higher level software from
implementation differences in the platform. EFI is the platform binding specification layer that
provides alegacy free APl interface to the operating system loader.

PAL, SAL, and EFI together provide system initialization and boot, Machine Check Abort (MCA)
handling, Platform Management Interrupt (PM1) handling, and other processor and system
functions which would vary between implementations. The interaction of the various functional
firmware blocksis shown in Figure 1-2.

Figure 1-2. Firmware Services Model

Introduction

Operating System Software
OS Machine .
OS Loader Check OS Init
Handler
Handler
[Y
A A
L ' EFI
. oS
Run'{lme Boot
Services .
Services
A Y
RN SAL
: Boot :
| Services |
| (Transient) :
Y | A \
Platfc_)rm Platform Platform Platform Platform
Runtime .
- Reset Error Init PMI
Services Handler Handl Handler Handler
(Procedures) analer
J Y A ; Y A
________ Reset Event,
|
T
v v Y PAL
Proce_s sor Processor Processor Processor Processor
Runtime R
Services Reset Error Init PMI
Handler Handler Handler Handler
(Procedures)
A Y
Reset / Machine Initialization PMI
Power On Check Event Event
Platform/Processor Hardware

000933

1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an Itanium-based platform:

* Initialize, configure, and test the platform hardware. This includes the memory and 1/0
subsystems, the necessary boot devices, and platform specific hardware.

« Select the bootstrap processor (BSP) in amultiprocessor platform and set the configurable
processor features. The Itanium processor providesits own PAL firmware for initialization and
test, but this abstraction has no knowledge of the platform and so further platform-specific
action is necessary to integrate the processor with the rest of the system. For example, SAL
must configure, test, and initialize memory before the processor cache to memory interface can
be established and tested (SAL_RESET interface).

Optionally encapsulate and provide the environment necessary to run 1A-32 BIOS and plug-in
cards containing |A-32 Option ROMs.

Provide low level service routines to aid EFI and the operating system loader in establishing
the environment necessary for the operating system.

* Provide common data structures to the operating system to convey initialization and
configuration information.

* Provide the necessary services and common infrastructure to support multiprocessor
configurations.

Provide runtime service routines to encapsul ate those functions of the platform necessary for
EFI and the operating system while they are running.

Provide the functions necessary to aid in the logging and recovery from Machine Check
conditions (SAL_CHECK and OS_MCA interface).

Provide the functions necessary to aid in the logging and recovery from INIT conditions
(SAL_INIT and OS_INIT interface).

Provide the functions necessary to handle the platform management events (SALE_PMI
interface).

Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

Optionally, provide an user interface to aid in system configuration, information passing and
troubleshooting.

These SAL functions can be divided into the following interface categories:
» SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.
» Operating system entrypoints from SAL: OS MCA, OS_INIT and OS BOOT_RENDEZ.
» SAL runtime service routines.

1-4 Introduction

intel.

1.4

Firmware Entrypoints

Figure 1-3. Firmware Entrypoints Logical Model

141

Introduction

PAL SAL (O]
SALBOOT_ | Wake Up
_RENDEZ !
|
Firmware Recovery Application Bootstrap |
Complete (BSP) Processors Processor :
+ (APs) (BSP) |
|
Reset
PALE_RESET | SALE_ENTRY l SAL_RESET |pf EFIBOOL Il 55 | 0ADER
Power-On Manager
SAL_MC_ Wake Up
RENDEZ T T
I
I
MC Rendezvous Complete MC Rendezvous I
+ Interrupt (APs) |
|
Error
} PALE_CHECK » SALE_ENTRY » SAL_CHECK » OS_MCA
BSP
Initialize
— > PALE_INIT SALE_ENTRY SAL_INIT OS_INIT
—_Pm -
PALE_PMI "| SALE_PMI
Resume
001075

Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:
* Power-on/reset
« Hardware errors (both correctable and uncorrectabl €)

« Initia
* PMIs

ization request

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 1-2 and Figure 1-3):

1. PALE_RESET initializes the processor following power-on or reset. This PAL entrypoint

calsthe SALE_ENTRY entrypoint in the SAL to test for firmware recovery.

SALE_ENTRY, inturn, cals SAL_RECOVERY_CHECK to perform recovery if the
firmware recovery indication is present on the platform, otherwise it returnsto PAL via
SALE_ENTRY. If firmware recovery is required, the SAL recovery code will accomplish

1-5

intel.

the firmware recovery function, reset the recovery indication, and then trigger a system wide
reset, causing re-entry into the PALE_RESET. If SAL reportsto PAL that afirmware
recovery condition does not exist, PAL conducts additional processor tests and then branches
to SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL called
SAL_RESET toinitidize the system.

2. PALE_CHECK savesthe minimal processor state, determinesif errors are processor related,
saves processor related error information, and corrects errors where possible (for example,
by flushing a corrupted instruction cache line and marking the cache line as unusable).
PALE_CHECK then branchesto the SALE_ENTRY entrypoint. SALE_ENTRY, in turn,
branchesto SAL_CHECK to complete the error logging, correction, and reporting.
PALE_CHECK isentered as aresponse to processor or platform errors.

3. PALE_INIT savesthe minimal processor state, initializes the processor, and branches to
SALE _ENTRY. SALE_ENTRY, inturn, branchesto SAL_INIT. PALE_INIT isentered asa
response to an initialization event.

4. PALE_PMI determines the type of platform management event and branches to the
SALE_PMI for certain conditions. PALE_PMI is entered as a response to a platform
management event.

1.4.2 System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1. SALE_ENTRY istheentrypoint PAL branchesto after a power-on, reset, machine check, or
initialization event. The code at this entrypoint uses the hand-off value in a general register
to jump to different entrypoints within the SAL for reset, firmware recovery, machine check
and initialization events.

SAL_RESET within SAL is entered for system initialization after PAL hasinitialized the
processor. SAL_RESET functionality is described in Chapter 3.

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test
if afirmware recovery condition is present. SAL isthe only entity that has knowledge of
platform resources to determineif afirmware recovery condition is present.

SAL_CHECK within SAL isentered for logging errors, and correcting platform related
errors where possible. SAL_CHECK functionality is described in Chapter 4.

SAL_INIT within SAL is entered for saving the state of the system and performing
additional functions as defined in Chapter 5.

2. SALE _PMI istheentrypoint PAL branchesto for handling platform management eventsin
an implementati on-dependent manner.

1.4.3 Operating System Entrypoints

There are severa entrypoints from SAL into an operating system (or equivalent software):

* OS_LOADER isthe entrypoint the BSP enters from SAL_RESET after the system has been
initialized and the operating system loader image has been loaded by the EFI component from
the boot device. Refer to the EFI Specification for details.

* OS BOOT_RENDEZ isthe operating system multiprocessor rendezvous handler. Entered
from SAL when operating system loader on the BSP wakes up the application processors
(APs), to permit synchronization of APsin an MP environment.

1-6 Introduction

¢ OS_MCA isthe operating system machine check abort handler. Called from SAL_CHECK to
allow the OS to handle the machine checks that are not corrected by hardware, PAL or SAL.

¢ OS_INIT — Operating system Initialization Handler. Called from SAL_INIT to handle avalid
initialization event.

1.5 Related Documents

The following documents contain additional material related to Itanium-based platforms:
« Advanced Configuration and Power |nterface Specification — Intel/Microsoft/Toshiba
« BIOS Boot Specification, 1996 — Compag/Phoenix/Intel
« BIOSEnhanced Disk Drive Specification, Version 3.0 — Phoenix

Bootable CD-ROM Format Specification, 1994 — Phoenix/IBM

CBIOSfor IBM Computers and Compatibles — Phoenix

« Extensible Firmware Interface Specification — Intel

¢ |tanium™ Software Conventions and Runtime Architecture Guide — HP/Intel

¢ Intel® Itanium™ Architecture Software Developer’s Manual — Intel

Itanium™ Processor Family Error Handling Guide - Intel

» PCI BIOS Specification, 1994 — PCI SIG

Plug and Play | SA Specification, 1994 — Microsoft

1.6 Revision History

Therevision number of the SAL specification supported by the SAL implementation is specified in
the SAL System Table Header (refer to Table 3-2, “SAL System Table Header”

Date of Revision Description

February 1998 Initial definition.

August 1998 Defined NVM record formats, changes to SAL procedures.

June 1999 Defined handoff to EFI, Removed NVM functionality.

January 2000 Changes to some SAL procedure definitions.

July 2000 Reflected changes in MCA handling due to PAL MCA changes.

January 2001 MCA related changes, Platform Error definition.

July 2001 Platform requirement clarifications, Boot sequence clarifications, Additions to OS
restrictions for boot sequence, Changes to MCA SAL_CHECK, Platform Errors, and
OS_MCA sections, Added SAL procedures callable by OS_INIT, Clarification to
Interface Conventions to SAL Procedures, Added changes regarding re-entrancy of
SAL Runtime Services, Clarifications to SAL procedure definitions, Added terms to the
glossary.

Introduction 1-7

1-8

Introduction

intel.

Platform Requirements 2

2.1 Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000
through OxFFFF_FFFF). This address space is shown in Table 2-1.

Table 2-1. Firmware Address Space

OXFFFF_FFFF
PAL/SAL ROM

SAL Resources

0xFFO00_0000

Thefirmware address spaceislogically partitioned into two major functional blocks: the ROM area
(shared by the SAL and PAL) and the SAL resources area. The ROM areais placed in the address
space such that its ending address is OxFFFF_FFFF. The SAL resources area occupies the portion
of 16 MB firmware address space not occupied by the ROM area. SAL code can use the special
hardware resources that the platform has implemented in the SAL Resources area. The hardware
resources may include scratch RAM, non-volatile memory (NVM), environment control, and status
registers. The location of the hardware resources within the SAL resources areais platform
dependent.

2.2 PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code
areas and atable called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:
* PAL_A which is processor stepping independent.
e PAL_B which s processor stepping dependent.

These two subcomponents are required and must be separated logically even if they are
physically located in contiguous spaces. The PAL_A block contains a limited subset of PAL
procedures that can be invoked by SAL while performing a firmware recovery (refer to
Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual for details). The
PAL_B block contains the PAL procedures that can be invoked by SAL and the operating
system.

2-1

2.3

2.4

2-2

intel.

In asimilar fashion, SAL code can be broken into two subcomponents:

» SAL_A which containsthe SALE_ENTRY entrypoint and al the code needed for firmware
recovery.

» SAL_B which contains code to test and initiaize the platform.
Unlike the PAL, the SAL subcomponents need not be separated from each other logically or
physically.
The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Codeinthe PAL_A can transition to:

* Codeinthe PAL_B using the FIT. First, the beginning address of the PAL_B block is
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET)
are determined in a PAL implementation-dependent manner.

» Codeinthe SAL_A address space at SALE_ENTRY, which serves as the entrypoint for Reset,
Recovery, Machine Check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be held in
compressed format. SAL code that is executed out of ROM such as early stages of the Reset
sequence and code for handling Machine check and INIT cannot be held in compressed format.

Simplified Firmware Address Map

A simplified example of the firmware address map that shows the minimum architectural
components is shown in Figure 2-1. Refer to Section 2.4.1 for description of the fields. This layout
cannot be used with a protected boot block.

Firmware Organization using a Protected Boot
Block

This section describes atypical firmware organization using flash ROM that contains a protected
boot block.

A protected boot block refersto ablock of the flash ROM that the hardware protects from
modification. Codein thisblock can contain logic to restore PAL/SAL code in the erasable portion
of the flash part after a previous flash programming attempt has been accidentally aborted.
Firmware using a protected boot block requires some data structures in addition to the minimum
architectural requirements discussed earlier.

To support the protected boot block, both the PAL_A code and SAL_A code must be within the
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A
part of the protected boot block.

Platform Requirements

intel.

Figure 2-1. Simplified Firmware Address Map

4GB —»
IA-32 Reset Vector (16 bytes)
4GB-16 SALE int (SALE_ENTRY) (8 bytes)
ntrypoint es) |-———f—————
4 GB-24 > P — ik
4GB.32 Firmware Interface Table Address (8bytes) -———F——— 3
" | FIT entry for PAL_A (16 bytes) | 64bytes |
4 GB-48 —» !
Reserved (16 bytes) !
4 GB-64 > :
(GPU Fesel)_PALE_RESET —»- ro
(Tnit_D>—PALE_INIT —»| PAL_A Binary Block (multiple of 16 bytes) PAL QS') |
- 1ze
PALE_CHECK—> ‘ I
I
I
A |
I
B I
PAL_B Binary Block (multiple of 16 bytes) | (SAL_B Size) :
I
I
4 GB — (A+B+64) >) :
I
Firmware Interface Table (FIT) (multiple of 16 bytes) (FITYSize) :
I
-
SAL_A Binary Block (multiple of 16 bytes)
C
(SAL_A Size)
SALE ENTRY — | € - - - - — - — - — — — F———fF-————-
4GB -
(A+B+64+Y+C)
Available ROM Space
4 GB-16 MB —»

16 MB
(Maximum
ROM)

001078

24.1

Firmware Components

The firmware address spaceis shared by the SAL and the PAL. Some of the SAL/PAL boundaries
are implementation dependent. The Firmware Address Space contains several regions and locations
as shown in Figure 2-2 for atypical implementation.

The firmware address space contains the following regions and locations:

* The 16 bytes at (4 GB — 16) contains the | A-32 reset vector for PC-AT* compatibility. Some
1A-32 operating systems may need the information in this area such as the date, the PC-AT
model signature, etc.

Platform Requirements

2-3

Figure 2-2. Firmware Address Map

4GB >
IA-32 Reset Vector (16 bytes)
4 GB-16 >
SALE_ENTRY Address (8 bytes) -r———t+———|-—-— 1
4 GB-24 »—
4 GB-32 _ | Firmware Interface Table Address (8bytes) r———F———f-—— :— e
- > |
4 GB-48 - PAL_A FIT Entry (16 bytes) 64 bytes N : |
Reserved (16 bytes) l (Protected | :
I
4 GB-64 > Bootblock) | :
|
PALE_RESET—» N
- : A I
PALE_I NI T—»| PAL_A Block (multiple of 16 bytes) (PAL_A Size) : :
PALE_CHECK— i
N
1 N
SAL_A Block B ||
(Itanium™ instructions and (multiple of 16 bytes) | (SAL_A Size) [
optional 1A-32 code) : :
I
4 GB-X - Y.!!
SALE_ENTRY — - !
. . Y
|
Firmware Interface Table (FIT) (multiple of 16 bytes) (FIT Size) |
4 GB-(X+Y) _ J
FIT_BASE o) N
Reserved PAL Space (optional) (multiple of 16 bytes)
16 MB
PAL_B Block (multiple of 16 bytes) (Maximum ROM)
C
(PAL_B Size)
4 GB-(X+Y+C) _
PAL_BASE > - -
Reserved SAL Space (optional) (multiple of 16 bytes)
SAL_B Block (multiple of 16 bytes)
D
(SAL_B Size)

4 GB-(X+Y+C+D)

SAL_BASE >

4 GB-16 MB >

Available ROM Space

000935

2-4

Platform Requirements

* The8bytesat (4 GB — 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this
address must be set to 1 to specify the uncacheable memory attribute in physical addressing
mode.

The 8 bytes at (4 GB — 32) contain the pointer to the FIT. Bit 63 of this address must be set to
1. The FIT need not be located immediately before the protected boot block. However, the FIT
cannot be moved to a different location since its address is contained in the protected boot
block.

¢ The 16 bytes at (4 GB — 48) describe the characteristics of the PAL_A component in the ROM
(base address, size, version number, type, etc.) Thisis represented in the FIT entry format for
the sake of uniformity. Bit 63 of the address field within this FIT entry must be set to 1 and the
type field must have a value of OxOF.

e The 16 bytes at (4 GB — 64) are reserved for future use.

e The PAL_A code resides below the (4 GB — 64) address. This variable size area contains the
hardware-triggered entrypoints (PALE_RESET, PALE_INIT, and PALE_CHECK) and
minimal processor initialization code. This code area must be a multiple of 16 bytesin length.
PAL_A usesthe FIT entry of the PAL_B to reach continuation entrypointsin PAL_B for reset,
machine check, and initialization.

The codein the PAL_A block contains enough capability to initialize the processor, invoke the
SALE _ENTRY procedure for test of the recovery indication, and continue with normal PAL
executionin the PAL_B code area. This code is processor stepping independent.

¢ SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility
and to conserve space in the protected boot block, this areawill primarily contain code for
firmware recovery. When entered for other conditions such as normal reset, machine check, or
initialization, the code in this block will find the continuation entrypointsin the SAL_B block
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY
code reaches continuation entrypointsin SAL_B for reset, machine check, and initialization is
SAL implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during
firmware execution but may be needed by the utility that merges these components to format
the protected boot block portion of the flash ROM.

» Underneath the protected boot block is the FIT. It consists of 16-byte entries containing
starting address and size information of the remaining firmware componentsin the
non-recovery portion of the flash ROM — PAL_B, SAL_B, etc. Refer to Section 2.5 for FIT
details.

« Underneath the FIT isthe code for the IA-32 BIOS, EFI, SAL_B, and PAL_B components.
There are no ordering requirements for the firmware components within the flash ROM.

* The PAL_B binary block containsthe PAL code that is not required for firmware recovery. The
PAL_B code areaisamultiple of 16 bytesin length and must be aligned on a 32K-byte
boundary. PAL_B’s FIT entry contains the address and size of the PAL_B binary block.

¢ Theremainder of the SAL/PAL ROM areais occupied by the SAL_B code. SAL_B'sHIT
entry (if present in the FIT) contains the address and size of the SAL_B binary block.

¢ Codewithin SAL (SAL_A & SAL_B) may include |A-32 code. The location of the SAL_B
and |A-32 BIOS code within the SAL/PAL ROM area is implementation dependent. Some
SAL implementations may separate the code containing Itanium instructions and | A-32
instructions as separate firmware blocks with unique FIT entry types. In asimilar fashion, the
SAL_B component may include the EFI component or a separate FIT entry may point to the
EFI component.

Platform Requirements 2-5

2.5

Firmware Interface Table

The Firmware Interface Table contains starting addresses and sizes for the firmware components
that are outside the protected boot block. Because these code blocks may be compiled at different
times and places, code in one block (such as PAL_A) cannot branch to code in another block (such
asPAL_B) directly. The FIT allows code in one block to find entrypointsin another. The Figure 2-3
showsthe FIT layout.

Figure 2-3. Firmware Interface Table

1 1
| |
4 GB-X -
Unused entry (16 bytes)
Unused entry (16 bytes)
Y
Unused entry (16 bytes)
Unused entry (16 bytes)
PAL_B entry (16 bytes)
FIT Header entry (16 bytes)
4 GB-(X+Y) -
| |
1 1

Each active FIT entry contains information for the corresponding firmware component. The first
two entries are used to describe the FIT tableitself and the PAL_B block respectively and these two
entries are architecturally required. FIT entries shall be in ascending order of entry types, otherwise
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Figure 2-4. Firmware Interface Table Entry

2-6

Start + 16 63 56 55 54 4847 3231 24 23 0
IChecksum [C_V. T)
(1e ;yf:)m 1 bit* (7yk’))ifs) Version (2 bytes) R?ie;)\,/gi Size (3 bytes)
Start + 8 .
Address 8 bytes)
Start of entry ——» (8 bytes)

Addressis the base address of the component and it must be aligned on a 16-byte boundary. For the
FIT Header entry, thisfield containsthe ASCII value of ©_FIT_<sp><sp> <sp>' where <sp>
represents the space character. For the PAL_B entry, bit 63 of the address field must be set to 1 to
indi cate the uncacheable memory attribute in physical addressing mode. The PAL_B component
must be aligned on a 32K-byte boundary.

Platform Requirements

Szeisthe size of the component in paragraphs of 16 bytes.

\ersion contains the component’s version number. For the FIT Header Entry, thevaluein thisfield
will indicate the revision number of the FIT data structure.

C_Visaonebit field that indicates whether the component has avalid checksum. If thisbit is zero,
the value in the Chksum field is not valid.

Type contains the seven-bit type code for the element. Types are defined in Table 2-2.

Table 2-2. FIT Types

2.6

Type Meaning
0x00 FIT Header entry
0x01 PAL_B
0x02-0x0E Reserved
OxOF PAL_A
0x10-0x7E OEM-defined
OX7F Unused

The type code of OxOF isused for PAL_A. Since PAL_A's binary image is located near the end of
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry
is also located within the protected boot block (at 4 GB —48) and not in the FIT table. The OEM
may define unique types for one or more blocks of SAL_B, EFI, IA-32 BIOS, etc., within the
OEM-defined type range of 0x10 to OX7E.

Chksum contains the component’s checksum. The modulo sum of al the bytes in the component
and the value in this field (Chksum) must add up to zero. Thisfield isonly valid if the C_V field is
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum
option is selected for the FIT in the FIT Header entry (FIT type 0), the modulo sum of al the bytes
inthe FIT table must add up to zero. The PAL_A FIT entry is not part of the FIT table and hence
not included in the checksum computation of the FIT.

With this address layout, when one of the firmware components changes only that component’s
flash portion requires changes. This address layout can also support multiple ROMs for the
firmware components, and such ROMs are not restricted to reside below 4 GB.

Resources Required for PC-AT* Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB
is defined as the compatibility areaand is used by firmware when initializing and executing |A-32
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the
platform if PC-AT compatibility is not required.

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system
memory. For example, a server platform may choose to implement the system console on a serial
port and eliminate the VGA frame buffer and the VGA BIOS components. |A-32 stack should be
alocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode |A-32
BIOS code.

Platform Requirements 2-7

Table 2-3. 1 MB Compatibility Memory Address Space

0x000F_FFFF

Shadowed IA-32 System BIOS
0x000F_0000

O0x000E_FFFF Shadowed IA-32 Extended System BIOS/Option
0x000E_0000 ROM/Memory Area

0x000D_FFFF
Shadowed IA-32 Option ROM BIOS
0x000C_0000
0x000B_FFFF

VGA Frame Buffer
0x000A_0000
0x0009_FFFF

Memory

0x0000_0500
0x0000_04FF
0x0000_0400
0x0000_03FF
0x0000_0000

IA-32 BIOS RAM Data Area

IA-32 Interrupt Vector Area

Itanium-based platforms may optionally use /O adapter cards containing |A-32 option ROMs
during the boot process. A portion of the SAL code may also contain |A-32 code. Such |A-32 code
aswell as |A-32 operating systems may rely on the existence of PC-AT compatible components. If
it is necessary to support such 1A-32 code, Itanium-based platforms may implement the 1/0 ports
specified in the Table 2-4 or aternatively, the SAL can trap someor all 1A-32 1/O instructions and
emulate the /O ports that are not present on the platform. Refer to Section 7.2.4, “1A-32 Support
Environment” for more details.

Table 2-4. 1A-32 Compatibility 1/0 Ports

Port Description
0x20-0x21 Programmable Interrupt Controller (Master)
0x40-0x43 Programmable Interval Timer
0x70-0x71 CMOS NVRAM Address, Data Ports
0xA0-0xA1l Programmable Interrupt Controller (Slave)

2.7 Chipset and Shadowing Requirements

Chipset implementations have the following SAL requirements:

 The firmware code and data within the firmware address range must be accessible from the
processor without any specia system fabric initialization sequence. Thisimplies that the
system fabric isimplicitly initialized at power on for accessing the firmware address space or

2-8 Platform Requirements

2.8

the special hardware that contains the firmware code and data isimplemented on the processor
and not accessed across the system fabric.

¢ Firmware may copy ROM based code and data structuresto RAM to increase performance and
to allow for updates of ROM based data structures by initialization firmware. Platforms are not
required to implement any write protection for these shadowed areas. Since hardware events
such as reset, machine check and initialization enter architected PAL entrypointsin the ROM
around the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the
PAL/SAL ROM area subsequent to the shadowing of firmware code.

Itanium instructions provide the necessary memory management features to prevent writes to
the shadowed RAM areas while executing | A-32 code. The Itanium instruction set architecture
provides instructions to synchronize the instruction and data caches in the presence of
self-modifying code.

Chipsets need not implement in-line shadowing (Read cycles going to ROM, Write cycles
going to RAM) for copying 1A-32 code segments to memory addresses in the range of
0xE0000 to OXFFFFF.

Platform Support for Variant Architectural Features

Different platform implementations may vary in the features they implement and remain
architecturally compliant. As an example, some platforms will implement bus lock while other
platformswill not. This hasimplications for software running on these platforms, and therefore this
information must be communicated to software. SAL firmware is responsible for knowing the
architecture implementation variations and correctly communicating the information to software.
How SAL knows about the architectural variant isimplementation dependent. The following lists
the features which fall into this category and describe the method of abstraction to software.

¢ BusLock: If the processor supports the bus lock signal and the platform implements bus lock,
then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.Ic = 0),
otherwise the DCR.Ic shall be set to 1. The operating system shall not alter DCR.Ic bit setting
if itissetto 1. Refer tothe PAL call PAL_BUS SET _FEATURESIn the Intel® Itanium™
Architecture Software Developer’s Manual for information on masking bus lock signal and
executing the locked transaction as a series of non-atomic transactions.

Lowest Priority Interrupt: SAL shall communicate to the operating system, through the SAL
System Table (Table 3-7), whether this feature is supported by the platform.

Address space attributes: SAL shall communicate to software the supportable access attributes
for all valid address space mappings. Thisinformation is provided to the operating system by
the EFI component. As an example of this architectural implementation options, consider two
memory controllers where one supports sub-cache line writes to memory and another which
does not. Thefirst case would be described as write-through or write-back cacheable, whereas
the second case would be described as supporting only write-back cacheable. Similarly, the
UCE memory attribute indicates whether the address space permits the exporting of the
fetchadd operation outside the processor. Memory attribute features for address spaces are
fully described in the Intel® Itanium™ Architecture Software Devel oper’s Manual.

Platform Requirements 2-9

2.9

2.10

intel.

Platform Considerations Related to Geographic
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of
processors in an MP configuration:

 The platforms shall provide mechanisms to generate unique geographic identifiers for those
components that have software visibility. As an example, imagine a complex multiprocessor
implementation which has more than one main system bus to which processors are attached. A
processor returns its location on the busviaacall to PAL_FIXED_ADDR, but this PAL call
does not reflect the multi-bus configuration of the platform. It is therefore required that the
platform provide some mechanism for SAL to ascertain which bus a processor is attached to.
SAL will use thisvalue to load the Streamlined Advanced Programmable Interrupt Controller
(SAPIC) EID field in the Local ID register (CR.LID) of the processor(s). Thisis necessary for
supporting interprocessor interrupts. The above example is not meant to limit this requirement
to processors, as multiple host 1/0 bridges and multiple memory controllers, etc. may also have
asimilar requirement.

Platforms may implement unique ways of providing the SAPIC EID vaue. For example, ina
non-clustered environment, SAL may use the hardcoded value of O for this field. Another
exampleisacluster controller that provides different EID values for processors connected to
different buses on the system. It is expected that these mechanisms will be very simple, to
facilitate exchange of interprocessor interrupts between processors (if needed), to determine
the BSP node and the BSP processor in an MP environment. The BSP selection needs to be
done very early in the boot sequence and during firmware recovery. Since multiple processors
may be attempting to read the EID, a scheme that involves writing an index followed by
reading the value from a cluster controller I/O port or the CMOS NVRAM /O port may be
prone to errors.

« A multi-Trangation Lookaside Buffer (TLB) coherence domain platform must provide a
mechanism for detecting which TLB coherence domain the processor is located in.

Non-volatile Memory Requirements

Itanium-based platform hardware must provide aminimum of 32KB of NVM to hold the error log
captured during uncorrected machine check events. There may be additional NVM requirementsto
hold information on the operating systems that can be booted from the platform, the platform
configuration, etc. Refer to the EFI Specification for requirement details aswell astheinterfacesto
the NVM space.

The NVM must preserve memory contents when the system power is off. Possible NVM
implementations are battery-backed SRAM and flash memory. The physical address and size of
each NVM object in the system will be specified in Table 3-5, “Memory Descriptor Entry” with:

* Memory type classification of Regular Memory and Memory Usage classification of Firmware
Reserved Memory for battery backed SRAM implementation; and

* Memory type classification of Firmware Address Space when NVM isimplemented as part of
the firmware flash ROM.

Platform Requirements

intel.

2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

If firmware recovery is supported in SAL, Itanium-based platforms must provide an
implementation-specific hardware mechanism to reflect the user selected firmware recovery
condition to all the processors on the platform.

Itanium-based platforms must support simple hardware or software implementations for BSP
selection, e.g. write once port. Thisis necessary since only the BSP is allowed to execute the
firmware recovery code.

Itanium-based platforms must provide mechanisms to determine the base frequency of the
platform (clock input to the processor).

Itanium-based platform hardware must provide a mechanism for firmware to reset all
components within the platform.

Itanium-based platform hardware must provide a switch or other mechanism that produces an
INIT signal. Thisfeature, generally known as the CrashDump switch, may be used to effect a
crash dump on a“hung system”.

Itanium-based platform hardware must provide user friendly mechanisms for displaying the
progress of the boot and firmware recovery, e.g. LCD display.

Platform Requirements 2-11

2-12

Platform Requirements

Boot Sequence

tel.

3.1

Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from reset to operating system launch.

On reset, the processor(s) begin execution at PALE_RESET, an entrypoint within the PAL_A code
areanear 4 GB in the firmware address space. The exact physical location of PALE_RESET is
processor implementation dependent. PALE_RESET initializes and tests the processor using
stepping-independent code. It will then call SALE_ENTRY with the Recovery Check function to
verify if the user has selected firmware recovery in a platform dependent manner.

SALE _ENTRY isthe common SAL_A entrypoint from codeinthe PAL_A and PAL_B blocksfor
reset, recovery, machine check, and initialization events. PAL code obtainsthe SALE_ENTRY
entrypoint from the 8-byte pointer at 4 GB — 24. The state of the processor on entry into
SALE_ENTRY isdescribed in the Intel® Itanium™ Architecture Software Developer’s Manual .
One of the general registersindicates the event causing entry into SALE_ENTRY — reset, recovery
check, machine check, or initialization. SALE_ENTRY uses this argument to jump to interna
entrypoints within SAL — SAL_RESET, SAL_RECOVERY_CHECK, SAL_CHECK or
SAL_INIT.

PAL_A passes status information to SALE_ENTRY on the health of the processor and whether the
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

Table 3-1. SAL Actions Based on Processor Self-test State

Processor Health SAL Handling

Catastrophic Failure None. PAL disables interrupts and Machine Checks, then keeps the processor
within a spin loop in PAL.

Healthy Proceed with SAL Reset.

Performance Restricted Proceed with SAL Reset if this is the only processor on the system. Else, try to
inform the user. The processor may be used as an attached processor in a MP
configuration.

Functionally Restricted Try to inform the user. Disable interrupts and Machine Checks, then go into a

spin loop. Operating systems may not boot successfully if key processor
functionality is missing.

The codein SAL_A will initiate recovery and update the firmware if:
¢ The platform indicates arecovery condition.
e The PAL_A code reports an authentication failure on the PAL_B component in the firmware.
¢ The PAL_A code reports checksum or other errorsin the FIT or the PAL_B component.

* The PAL_A codereportson all the processors that the version of the PAL_B in the firmware is
incompatible with the stepping level of the processorsin the system.

3-1

3.1.1

3.1.2

3-2

Note:

Code Flow during Recovery

If firmware recovery isrequired, the SAL recovery code shall authenticate the new binary using
codeinthe PAL_A block. The SAL code will then accomplish the firmware recovery function,
reset the recovery indication, and trigger a system wide reset causing re-entry into PALE_RESET.
SAL recovery code contains the logic to update one or more of the firmware components from
OEM supported media.

The firmware recovery codein SAL_A must be processor stepping independent and must not
invoke codeinthe PAL_B block.

In amulti-processing environment, the recovery code will first select aBSP. SAL shall not select a
processor as the BSP unlessiit is reported as healthy or performance restricted by PAL and the
version of PAL_B on the system is compatible with the processor stepping. The BSP will
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B
component is updated, otherwise the system behavior is unpredictable.

Since PAL_B functionality cannot be invoked during recovery, only alimited set of PAL
proceduresin the PAL_A are available for use by the SAL recovery code (refer to the Intel®
Itanium™ Architecture Software Developer’s Manual for details). Further, if the SAL_A invokes
the |A-32 BIOS, the floating-point transcendental instructions listed below cannot be executed
from the |A-32 instruction set.

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

Normal Code Flow

If arecovery condition does not exist, SALE_ENTRY shall returnto PALE_RESET on al the
processors that are compatible with the version of PAL_B on the system, using the return address
provided by PALE_RESET to effect the second stage of processor test and initialization. If SAL_A
did not effect such areturn, the processor may run in adegraded mode. In any case, the PAL_PROC
address provided to SALE_ENTRY at the time of Recovery Check supports only asmall subset of
the PAL procedures (see the Intel® Itanium™ Architecture Software Developer’s Manual for
details).

Onreturn from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from
location (4 GB — 32) and then uses the FIT to get the address of the PAL_B component in the
non-recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in
the PAL_B block and jump to it. The processor stepping-dependent code in the PAL_B block will
then perform the complete processor testing and initialization and then re-enter the SALE_ENTRY
with the function value of Normal Reset. Code at SALE_ENTRY will jump to the codein the
SAL_B block to continue the boot sequence and will eventually boot the machine to the operating
system.

Boot Sequence

3.2

3.21

SAL_RESET

SAL_RESET isresponsible for performing platform test and initialization and invoking EFI
firmware, which loads the first level of operating system loader. SAL_RESET may also be entered
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from
PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY isentered from locations
other than PALE_RESET.

SAL_RESET functionality can be subdivided into the following phases:
« Initialization phase.
* BSPidentification phase.
¢ Platform initialization phase.

» Operating system boot phase.

Initialization Phase

This phase begins execution at SAL_RESET and is performed on all the processorsin the system.
TheLocal ID (LID register) is architected in the Intel® Itanium™ Architecture Software
Developer’s Manual. It isthe SAL's responsibility to uniquely initialize this register in each
processor prior to performing BSP selection and enabling interrupts in an MP system. For
uniprocessor (UP) systems, SAL must initialize thisregister prior to enabling interrupts. The
operating system must not change the value that SAL stored into this register. Otherwise, routing of
interruptsto the correct processor may not function correctly. The LID register’sformat isshownin
Figure 3-1.

Figure 3-1. Local ID Register Format

Boot Sequence

| | | | | | | | |
'31 30 20 28'27 26 25 24'23 22 21 20'19 18 17 16'15 14 13 12'11 10 9 8 7 6 5 4 '3 2 1 0

id eid reserved |

| | | | | | | | |
'63 62 61 60 50 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored ‘

Theid field is provided by the PAL during Reset handoff in ageneral register. Thisvalueisthe Bus
Agent 1D which corresponds to the slot number on the front side bus that the processor is plugged
into. For proper functioning of the lowest priority interrupt mechanism, the id field must match the
Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors.

SAL must invoke the PAL_PLATFORM_ADDR procedure on all processors to set the physical
address of the SAPIC Interrupt block memory and the | A-32 /O port space if the default address
values are not used. The default address for the SAPIC Interrupt block memory is
0x00000000_FEEO0000 and the default address for the | A-32 /O port space is the 64 MB space
below the highest physical address supported by the processor implementation. SAL will use a
value that does not conflict with other devices on the platform. The operating system shall not
change both these address values. SAL will set up the IOBASE register (AR.kO) that provides the
high order bits of the virtual address of the | A-32 1/0O port block, to the same value as its physical
address, to maintain identity mapping.

3-3

3.2.2

3.22.1

3-4

Bootstrap Processor Identification Phase in an
Multiprocessor Configuration

This phase is executed on all the processors. All processors may participate in the selection of the
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the busto
which the processor is connected. SAL will use this address and bus identification information to
derive a unique geographical address for the processor and use the same in the sel ection of the boot
processor. The derivation of the unique geographical address is implementation-dependent. SAL
shall not select a processor asthe BSP unlessit is reported as healthy by PAL and the version of
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing steps in an multiprocessor configuration. The APs will set
up processor-specific resources such as the Interrupt Vector Address (IVA) and wait in the
rendezvous state (EM_Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for
further processing. Processors in rendezvous state will disable external interrupts and poll for the
rendezvous interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will
continue with platform initialization and when sufficient anount of memory has been tested, it will
send arendezvous interrupt to the APs to wake them up to run their late self-test (which requires
memory to run). After the APs have finished the late self-test, they will return to the rendezvous
state (EM_Rendezvous_2).

The BSP continues with platform initialization by loading the EFI firmware, which searches for
bootable devices, |oads the operating system loader, and transfers control to it. These steps are
described in later sections of this document and the EFI Specification.

Rendezvous Functionality

The rendezvous functionality is required only in multiprocessor environments and this
functionality is utilized in two different situations:

» To wake up the APs during boot: The APs stay in aloop until woken up by the SAL layer on
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and
platform tests. Once these tests are completed, the APs return to the wait loop within SAL.
Also, once the operating system kernel takes over, it will wake up the APs based on the wake
up information provided by the SAL (refer to Section 3.2.6 and Table 3-11).

To bring the APsto a spin loop during machine check rendezvous and to wake up the APs after
machine check processing is completed: The operating system specifies the external interrupt
vector to be used by SAL to bring the APs to a spin loop as well as the external interrupt
vector/memory variable to be used for the wake up. Refer to“SAL_MC_SET_PARAMS’ on
page 9-15 for details.

For the wake up functionality, the mechanism could be an external interrupt vector in the range of
0x10 to OXFF or amemory variable.

If externa interrupt mechanism is chosen, APswill disableinterrupts and poll the local SAPIC IRR
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority
Register (TPR) must be set such that aread of the I VR register will return the rendezvous interrupt
vector (instead of the spurious interrupt), if one is pending. On receipt of the interrupt, the AP will
read the VR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.

Boot Sequence

Figure 3-2. Control Flow of Boot Process in a Multiprocessor Configuration

PALE_RESET

PAL_RESET

PAL

Recovery?

SALE_ENTRY
SAL_RESET

BSP Selection

Optional

Update Firmware,
do System Reset

APs

Yes

Initialization &
Memory Test

PAL Late Self-test

Wake APs for
PAL Late Self-test

.

Load OSLoader
from Boot Device

EFI

IA-32 OS

Itanium™-based OS

Handoff to the
Itanium-based OS

OS_Loader

Initializatize 1A-32
system params,
enter |1A-32 system
environment

Rendez
Interrupt?

Ren

Interrupt?

Yes

Itanium™

Processor OS IA-32 OS

Initializatize 1A-32
system params,

Handoff to the
Itanium-based OS

enter |A-32 system

bi

environment
CALL to OS i
BOOT_RENDEZ
Wait for 1A-32
Startup IPI

v

Set Wakeup Entry, | |
Wakeup APs

Itanium-based OS
will wake up the APs

1A-32 OS will issue
Startup IPI to
wake up the APs

000937a

Boot Sequence

intel.

If amemory variable wake-up mechanism is chosen, the APs will disable interrupts and poll the
memory variable for the unique value that matches the contents of their Local ID Register in bits
16-31 and avalue of OxFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake
upone AP at atime. The AP will clear the memory variable to zero, execute the next phase of SAL
code and, if necessary, return to the wait loop.

Figure 3-3. Wake-up Memory Variable Format

3.2.3

3-6

L | | | | | | | |
‘31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8‘7 6 5 4‘3 2 1 O‘

‘ id eid ‘ value of OXFFFF |

L | | | | | | | |
‘63 62 61 60‘59 58 57 56‘55 54 53 52‘51 50 49 48‘47 46 45 44‘43 42 41 40‘39 38 37 36‘35 34 33 32‘

‘ ignored ‘

SAL exports details of the wake-up mechanism to the operating system through the SAL System
Table (refer to Table 3-2) so that the operating system kernel code on the BSP may wake up the
APs when appropriate. While memory variable mechanism may be used by the BSP and APs
during the platform initialization phase, SAL shall indicate only the external interrupt wake-up
mechanism to the operating system. The operating system shall not use the indicated externa
interrupt vector f until it takes over the IVA. The operating system on the BSP will invoke the
SAL_SET_VECTORS procedure to set the continuation point for the APs within the operating
system kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will transition
the APs to the registered OS_BOOT_RENDEZ entrypoint.

Platform Initialization Phase

This phase is primarily executed on the BSP. The APswill execute some of the steps as described
below. This phase will perform the following functions, the ordering of which isimplementation
dependent:

1. Initidizethe VA to point to a 32 KB Interrupt Vector Table (IVT) in the firmware address
space. Some SAL implementations may choose to build the IVT in RAM after finding the
first 64 MB of memory. This step must be accomplished on al the processorsin an
MP-environment.

2. Initialize the system fabric and chipsets. The method of handling the initidization is
implementation dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not bere-initialized. On a cold
boot, SAL will initialize at least the first 4 MB of memory for BSP |ate self-test. This
self-test is done by calling the PAL_TEST_PROC procedure which returns information on
whether the processor is healthy or not. This PAL procedure tests the path from the processor
to the memory through the caches and returns information on whether the processor is fully
functional. This PAL procedure will not return to the SAL if the processor under test
experiences a catastrophic failure. SAL must contain logic to select anew BSP if necessary.
SAL shall shut down the system if there are no healthy or a performance restricted
processors on the system.

After this point, the memory stack and RSE can be tested and enabled in the Itanium
processor system environment.

4. Issuearendezvous interrupt to wake up APsfor alate self-test using the PAL_TEST_PROC
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that
experience a catastrophic failure during the late self-test. On completion of late self-test, the

Boot Sequence

Boot Sequence

10.

12.

13.

14.

15.

BSP will set the APs back to the rendezvous state (EM_Rendezvous 2 in Figure 3-2). After
this stage, caches may be relied upon.

Search for console using implementation-dependent algorithms. If found, initialize the
console so that the progress of the boot may be displayed.

Determine and initialize memory. This stepis not performed if SAL_RESET isentered from
SAL_INIT. Thememory test isimplementation dependent. The memory test includes testing
of refresh logic and testing all the address lines for shorts. On | A-32 systems, memory
controllers alias the ROM at 0OxE0000 to OxFFFFF and thereby permit memory autoscan
algorithm to be run from the aliased ROM at 0xEO000 to OxFFFFF. Since memory aliasing
is not arequirement for Itanium-based platforms, the autoscan function needs to be
performed by the firmware SAL code in the | SA for Itanium instructions.

Initidlize the interrupt controllersto all interrupts disabled.

Allocate memory for use by PAL and SAL near the top of physical memory. This area
should be below 4 GB if 1A-32 code needsto call the SAL code with Itanium instructions,
since |A-32 code can only address memory up to 4 GB.

Copy the PAL into memory using the PAL_COPY _PAL procedure. The PAL codein
memory must be aligned such that the entire PAL space in memory may be covered by one
Instruction Tranglation Register (ITR). It isvery desirable to copy PAL code and SAL code
to contiguous locations in order that the operating system may cover the entire space using
the same ITR. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for
PAL'srequirementson ITR/DTR.

Note: Until this step, the following floating-point transcendental instructions cannot be
executed from the |A-32 instruction set:

* F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X,
FYL2XP1

Copy SAL, PMI and IA-32 code to memory. The IA-32 BIOS code will be copied to the
appropriate addresses in the address of 0x000C_0000 to OX000F_FFFF. The portion of the
SAL code containing Itanium instructions will be copied to a high memory address which
must be above 1 MB. Copying code to RAM speeds up the boot sequence and additionally
permits some portions of the code to be held in compressed format in the firmware address
space. Firmware code may then be write protected using the TLB or chipset features.

. Setupan VT in memory aligned on a 32 KB boundary and point the IVA register to it. This

step must be accomplished on all the processorsin an MP environment.

Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on al
the processors in an MP environment.

Call the PAL_MC_REGISTER_MEM procedure on all the processors and specifying
unique memory areas where the PAL code may deposit some minimal processor state
information. Additionally, these memory areas provide sufficient resources for the PAL code
to perform the necessary machine check or INIT processing. Enable the BERR and BINIT
sampling and signaling by invoking the PAL_BUS SET FEATURES procedure. Set the
CMCI, MCA, and BERR promotion strategy by invoking the

PAL_PROC_SET FEATURES procedure. These steps must be accomplished on all the
processors in an MP environment.

Process configuration information in NVRAM and perform full chipset configuration. If
NVRAM information isinvalid, initialize NVRAM to default configuration values. Refer to
the EFI Specification for details.

Initialize and configure 1/0 buses. Walk all buses, identify all resource requirements and set
necessary range registers of chipsets. At this point, the complete system topology and
addresses of all fabric segments are known.

3-7

3.24

3-8

16.
17.

18.

intel.

Construct the ACPI Tables, SAL System Table and other common data structures.

Execute the option ROM s as needed. If these contain |A-32 code, some of the |A-32
instructions may cause trapsinto the Itanium instruction set and suitable support needs to be
provided by the trap/fault handler code. These interactions are more fully described in
Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Devel oper’s Manual,
and Chapter 7 of this specification. As a side effect of supporting 1A-32 Option ROMs, it is
possible to have some of the SAL code implemented in the |A-32 I SA.

Copy the EFI code into memory and transfer control to it. Branch register BO shall be set up
to point to the instruction following the call to the EFI code. The EFI firmware will search
for bootable devices, load the operating system loader image and transfer control to it. EFI
may utilize the underlying SAL and |A-32 BIOS layers for accesses to platform devices.
Refer to the EFI Specification for interface description.

Operating System Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specification for details of booting
Itanium-based operating systems. If the selected operating system is alegacy | A-32 operating
system, SAL does the following:

1

SAL will construct an MP Information Table that provides the mapping between the 1/0
SAPICID, EID vaues and the /O APIC ID vaue for use by the legacy 1A-32 operating
system. Thistable is provided as a parameter to the PAL_ENTER_|IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a
maximum of 16 processors while booting alegacy | A-32 operating system. SAL will keep
any additional processorsin aloop within SAL and these processors shall not invoke the
PAL_ENTER_IA_32 ENV procedure.

SAL will assign unique 4-bit id values for the 1/0O APIC entries of the MP table based on the
16-bit eid, id fields of the corresponding SAPIC entries. Theid values assigned by SAL for
the Local APIC and the I/O APIC entries may overlap.

SAL will provide the physical address of non-existent memory of aminimum of 4K bytes.
Thisareawill be specified in the Memory Descriptor Table (Table 3-5) with the Memory
type classification of Non-existent Memory.

The PAL_ENTER_IA_32 ENV procedure also enables SAL to emulate some 1/O ports not
present on the platform. SAL conveysinformation on the emulated portsin the SAL 1/0
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® Itanium™ Architecture
Software Devel oper’s Manual for details.

Construct Memory Descriptor Table entries suitable for the platform.

Load one sector of the Master Boot Record (MBR) code from the boot device at address
0x7C00. Verify that the last two bytes of the sector end with 0x55 OxAA.

Note: Inthis document, the term sector refersto alogical block of 512 bytes.

5.

Determine the amount of memory needed by PAL in support of 1A-32 operating systems by
invoking PAL_COPY _INFO procedure and allocate the same with the requested alignment.
Transition the processor to the | A-32 system environment and jump to the MBR code | oaded
at 0:7C00. This switch is effected by calling PAL_ENTER_1A_32 ENV procedure. (Refer
to the Intel® Itanium™ Architecture Software Developer’s Manual.) The return addressin

Boot Sequence

SAL and the address of SAL_PROC are passed as a parameter to this call. SAL shall set the
initial 1A-32 stack to 0:0x7c00 (SS.ESP).

This PAL procedure will set up the appropriate memory attribute values based on the
Memory Descriptor Table (Refer Table 3-5). If the | A-32 operating system exits by
executing a IMPE instruction, PAL will return to the return addressin SAL. When SAL
regains control, it will de-allocate the memory allocated to PAL in support of 1A-32
operating systems and attempt to boot a different operating system.

6. Some additional parameters are needed in an MP environment. The
PAL_ENTER_IA_32_ENV procedure requires an input flag that indicates whether the call
is being made on the BSP or APs and a count of the processors that have already been
transitioned to the A-32 system environment. Also, the PAL_ENTER IA_32 _ENV
procedure requiresthat the first processor reach the | A-32 starting address before subsequent
processors invoke the procedure.

SAL implementation is simpler if the BSP transitions to the | A-32 system environment last.
For example, the BSP can instruct APsto call the PAL_ENTER_|A_32_ENV procedure,
oneat atime. The APs will specify a starting address within the first MB of memory. The
IA-32 code at thislocation will perform the check-in to inform the BSP that the transition to
| A-32 system environment is completed, disable interrupts and go into a spin loop awaiting
the Startup IPI from the BSP.

Once all the APs havetransitioned to the | A-32 system environment and checked in, SAL on
the BSP will invokethe PAL_ENTER_IA_32 ENV procedure and specify the starting
address as 0:7C00 where the MBR code from disk has been |loaded. The
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs
such that al processors have an identical view of the platform’s memory attributes.

The |A-32 operating system would be loaded eventually and thiswill send APIC INIT IPIs
followed by APIC Startup IPIsto the APs. PAL's APIC emulation layer on the BSP will trap
the APIC ICR writes and will eventually transition the APs to the starting address
corresponding to the vector specified in the Startup IPI.

3.25 Firmware to Operating System Loader Handoff State

The handoff to an |A-32 operating system is compatible with the PC-AT industry standards. The
handoff from firmware to Itanium-based operating system loadersis fully described in the EFI
Fecification. Included in the handoff are:

* The pointer to the SAL System Table (Section 3.2.7).

¢ The pointer to the Root System Description Pointer as described in the Advanced
Configuration and Power Interface Specification.

The state of Itanium processor system registers at the time of handoff to the operating system
loader isasfollows:

* AR contents are SAL implementation-dependent except the following:

e CFM: The backing store shall contain a minimum of 8 KB of available storage space
defined in the SAL Boot Services data area.

* RSC will indicate enforced lazy mode, little-endian.
¢ IOBASE (AR.kO0) will contain the virtual address of the |A-32 /O port block.

Boot Sequence 3-9

3.2.6

intel.

* GR contents are SAL implementation-dependent except:

* GR12 = Stack pointer with aminimum of 8 KB of available storage space defined in the
SAL Boot Services data area.

* PSR:
PSR.ac = 1 (alignment check enabled).
PSR.ic = 1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending
interrupts.
PSR.it, PSR.dt, PSR.rt = 0 (instruction trandation, data translation and RSE translation off).
PSR.bn = 1 (register bank 1 selected).
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits=0

* CRs
DCR: Buslock setting (DCR.Ic) is platform implementation-dependent, all other bits of DCR
=0.
IVA = physical address of a SAL implementation-dependent IVT.
PTA.ve =0 (if the virtual hash page table (VHPT) is disabled).
LID =theunique id/eid value for this processor.

» DataBreakpoint Registers — DBRs: Same as on entry to SALE_ENTRY.
Instruction Breakpoint Registers — IBRs: Same as on entry to SALE_ENTRY.

* RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registerswill have
implementati on-dependent values except that RRs 1-3, if non-zero, will contain Region ID
values of 0x1001-0x1003 respectively.

Protection Key Registers— PKRs, are set to 0.

« TLB
TRs: ITR(0) will map an areathat includesthe SAL’s VT and PAL code. All other TR entries
are invalidated.
TCs: These are implementation-dependent but will likely contain identity mappings (virtual
address to physical address).

» Caches
Enabled, coherent and consistent with the contents of memory.

OS_BOOT_RENDEZ

OS BOOT_RENDEZ isthe entrypoint for operating system-dependent MP rendezvous code. The
operating system code on the BSP registers this entrypoint by invoking SAL_SET VECTORS,
supplying the physical address of the operating system code that is 16-byte aligned. SAL exports
details of the wake-up mechanism to the operating system through the SAL System Table (refer to
Table 3-11) so that the operating system kernel code on the BSP may wake up the APs when
appropriate. When SAL on the APs receives the wake-up, it will call the registered

OS BOOT_RENDEZ entrypoint. Refer to Section 3.2.2.1, “Rendezvous Functionality” for
additional details.

The state of the Itanium processor system registers at the time of handoff to the
OS BOOT_RENDEZ issimilar to that for the BSP with the following exception:

* BO = Return addressinto the SAL Boot_Rendezvous routine. If the OS BOOT_RENDEZ
returnsto the SAL using the Branch register BO, the SAL will re-enter the spin loop awaiting a
wake-up by the BSP.

Boot Sequence

3.2.7 SAL System Table

SAL usesthe SAL System Table to export avariety of information to the operating system loader.
The pointer to the SAL System Tableis provided by EFI to the operating system loader. Refer to

the EFI Specification for handoff details. If arecovery condition is present, the SAL System Table
isnot built and a pointer value of 0 is provided.

The SAL System Table begins with a header which is described in Table 3-2. The SAL System
Table header will befollowed by avariable number of variable length entries. Thefirst byte of each
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each
entry type will have a known fixed length. The total length of this table depends upon the
configuration of the system. operating system software must step through each entry until it reaches
the ENTRY_COUNT. The entries are sorted on entry type in ascending order. Table 3-3 describes

each entry type.

Table 3-2. SAL System Table Header

. Offset Length .
Field (in Bytes) | (in Bytes) Description

SIGNATURE 0 4 The ASCII string representation of “SST_", which
confirms the presence of the table.

TOTAL_TABLE_ LENGTH 4 4 The length of the entire table in bytes, starting from
offset zero and including the header and all entries
indicated by the ENTRY_COUNT field.This field aids
in calculation of the checksum.

SAL_REV 8 2 The revision number of the Itanium™ Processor
Family SAL Specification supported by the SAL
implementation in binary coded decimal (BCD)
format.

Byte 8 — Minor

Byte 9 — Major

SAL Revision 3.0 corresponds to SAL Specification,
January 2001 or July 2001.

SAL Revision 2.9 corresponds to SAL Specification,
July 2000.

SAL Revision 2.8 corresponds to SAL Specification,
January 2000.

ENTRY_COUNT 10 2 The number of entries in the variable portion of the
table. This field helps software in identifying the end of
the table when stepping through the entries.

CHECKSUM 12 1 A modulo checksum of the entire table and the entries
following this table. All bytes including the Checksum
bytes must add up to zero.

RESERVED 13 Unused, must be zero.

SAL_A_VERSION 20 Version Number of the SAL_A firmware
implementation in BCD format.

Byte 20 — Minor
Byte 21 — Major
SAL_B_VERSION 22 2 Version Number of the SAL_B firmware

implementation in BCD format.
Byte 22 — Minor
Byte 23 — Major

Boot Sequence

3-11

Table 3-2. SAL System Table Header (Cont’d)

Offset
(in Bytes)

Length

Field (in Bytes)

Description

OEM_ID 24 32

An ASCII identification string which uniquely identifies
the manufacturer of the system hardware. This string
can be exactly 32 bytes in length or shorter if null
terminated. Compliance with the SAL specification
requires that this string be unique with respect to all
other manufacturers. It is forbidden to use another
manufacturer’s identification even if the system is
otherwise identical.

PRODUCT_ID 56 32

An ASCII identification string which uniquely identifies
a family of compatible products from the
manufacturer. This string can be exactly 32 bytes in
length or shorter if null terminated.

RESERVED 88 8

Unused, must be zero.

Following arethe entry types of entriesthat follow the SAL System Table Header. Unless otherwise

stated, there is one entry per entry type.

Table 3-3. SAL System Table Entry Types

3.2.7.1

Entry Type? ErzitI:yBl;ttagsg)th Description
0 48 Entrypoint Descriptor.
1 32 Memory descriptor (one entry for each contiguous block with similar
attributes).P
2 16 Platform Features Descriptor.
3 32 Translation Register Descriptor (one entry for each TR used by SAL at
the time of handoff to the operating system).
16 Purge Translation Cache (PTC) Coherence Descriptor.
16 AP Wake-up Descriptor.

a. All other types are reserved.
b. Not required for Itanium-based operating systems.

Entrypoint Descriptor Entry

The Entrypoint Descriptor Entry (refer to Table 3-4) provides the addresses in memory of
PAL_PROC, SAL_PROC that may be used by the operating system to invoke the procedures
within the PAL and the SAL. When the operating system calls SAL_PROC, the gp register must
contain the physical or virtual address of the SAL’sgp value specified in the Entrypoint Descriptor,
depending on the mode in which the SAL_PROC procedure is called.

Table 3-4. Entrypoint Descriptor Entry Format

. Offset lLength Description
(in Bytes) (in Bytes)
0 1 Entry type = 0 denoting Entrypoint Descriptor type.
1 7 Reserved (must be zero).
8 8 Physical address of the PAL_PROC entrypoint in memory.
16 8 Physical address of the SAL_PROC entrypoint in memory.
24 8 Global Data Pointer (physical address value) for SAL procedures.
32 16 Reserved (must be zero).

Boot Sequence

3.2.7.2

Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries (refer to Table 3-5) are used only while booting an
1A-32 operating system. Itanium-based operating systems obtain similar information from the EFI
firmware component. The MDT entries describe al the main memory, firmware memory, memory
mapped 1/0, etc., in the system address space as well as the memory attributes currently set by
SAL. Each contiguous block with similar memory attribute (WB, WC, UC or UCE) must be
aligned on a64 KB boundary as a minimum, for optimal TLB management. Note that memory
usage values (byte 7 of the MDT entry) may change within a 64 KB memory block and henceit is
legal to have more than one MDT entry describing a 64 KB memory region as long as the memory
attribute (WB, WC, UC or UCE) does not change within that 64 K block.

SAL must provide entries that cover the entire system address space. The firmware must indicate
its memory usage in order that the same may be not trampled by the operating system. Thus, if the
SAL usesan underlying |A-32 BIOS layer for part of its functionality, it must report memory usage
for the real mode interrupt vector table (0-Ox3FF), the BIOS Data area (0x400-0x4FF) and the
Extended BIOS Data area (downwards from 640 K) as Boot Services Datain the Memory Usage
field of the MDT entries.

The EFI firmware component communicates the SAL's requirements for virtual address mappings
to the operating system. Once the operating system takes control of the memory management and
the IVA, it must provide TLB mappings for both the code and data accesses to the memory areas
required by SAL, if those areas are accessed in virtual mode. The operating system must register
these virtual addresses prior to invoking SAL proceduresin virtual mode.

Table 3-5. Memory Descriptor Entry

Boot Sequence

Offset Length Description?
(in Bytes) (in Bytes) (Unsigned Integers)

0 1 Entry type = 1 denoting Memory Descriptor entry type.

1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes

2 1 Encoded value of current Memory Attribute? setting in bits 0-2:
000: WB
100: UC
101: UCE
110: WC

3 1 Page Access Rights set up by SAL for the memory rangeb:

4 1 Memory Attributes? supported:
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC

5 1 Reserved (must be zero).

Table 3-5. Memory Descriptor Entry (Cont’d)

3-14

Offset Length Description?
(in Bytes) (in Bytes) (Unsigned Integers)
6 2 Memory Type (byte 6) Memory Usage (byte 7)
0 = Regular Memory 0 = Unspecified®
1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memory®
9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memory®
128-255 = Reserved for OEM
1 = Memory mapped I/O 0 = Unspecified
1 =120 Hidden space hole
2 = Video Memory
3-127 = Reserved
128-255 = Reserved for OEM
2 = SAPIC IPI Block 0 = Unspecified
3 =1A-32 1/0 Port space 0 = Translated by processor to I/O cycles
4 = Firmware address space | 0 = Unspecified
9 = Bad Memory 0 = Unspecified
10 = Non-existent Memory 0 = Unspecified
(Black hole)
8 8 Physical Address of Memory
16 4 Length (multiple of 4K pages)
20 4 Reserved (must be zero)
24 8 OEM Reserved

a. All unused values are reserved.
b. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.
d. This memory is available to the operating system after it reads the Advanced Configuration and Power

Interface Specification tables.
e. This area is not visible in the IA-32 operating system environment.

The SAL also provides the memory type and usage information to the EFI. Refer to the EFI
Specification for details. Table 3-6 specifies the mapping between MDT entries and the information
provided by the SAL to the EFI.

Boot Sequence

intel.

Table 3-6. Memory Type Information Provided to the EFI

3.2.7.3

Memory Type

Memory Usage

EFI Memory type

0 = Regular Memory

0 = Unspecified

1 = PAL Code

2 = Boot Services Code

3 = Boot Services Data

4 = Runtime Services Code
5 = Runtime Services Data

6 = 1A-32 Option ROM

7 = 1A-32 System ROM

8 = ACPI Reclaim Memory

9 = ACPI NVS Memory

10 = SAL PMI Code

11 = SAL PMI Data

12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped 1/O

<all values>

EfiMemoryMapped|O if virtual address

registration is required, otherwise
information not provided to the EFI.

2 = SAPIC IPI Block

0 = Unspecified

Information not provided to the EFI.

3 =1A-32 I/O Port space

0 = Translated by processor to I/O
cycles

EfiMemoryMappedIOPortSpace.

4 = Firmware address space

0 = Unspecified

EfiRuntimeServicesData.

9 = Bad Memory

0 = Unspecified

EfiUnusableMemory.

10 = Non-existent Memory
(Black hole)

0 = Unspecified

Information not provided to the EFI.

Platform Features Descriptor Entry

Table 3-7. Platform Features Descriptor Entry

Boot Sequence

The Platform Features Descriptor Entry (refer to Table 3-7) describes the features implemented on
the platform. Refer to the Itanium™ Platform Architecture Guide for implementation
considerations of these platform features.

Offset Length Description
(in Bytes) (in Bytes) P

0 1 Entry type = 2 denoting Platform Features type.

1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented on the processor as well as the platform.
Bit 1: 1 if the chipset supports redirection hint for interrupt messages originating
from the platform (lowest priority interrupt).
Bit 2: 1 if the chipset supports redirection hint for IPI messages originating from
the processors.
Bits 3-7 = Reserved.

2 14 Reserved.

3.2.7.4

intel.

Translation Register Descriptor Entry

The Translation Register Descriptor entries (refer to Table 3-8) describe the parameters used by the
SAL during insertion of the TRs. These entries will be used by the operating system to purge SAL's
TRs after the operating system takes over the IVA.

Table 3-8. Translation Register Descriptor Entry

3.2.7.5

Offset Length -
(in bytes) Description
in bytes)
0 1 Entry type = 3 denoting the Translation Register Descriptor type.
1 1 Type of Translation Register:
0: Instruction Translation Register
1: Data Translation Register
Other values: Reserved
2 1 Translation Register number.
5 Reserved.
8 8 Virtual address of the area covered by the Translation Register. Bits 61-63 of
this field indicate the Region Register number.
16 8 Encoded value of the page size covered by the Translation Register. Refer to
the Intel® Itanium™ Architecture Software Developer’'s Manual, Addressing and
Protection chapter for the format of this field.
24 8 Reserved.

Purge Translation Cache Coherence Domain Entry (Optional)

The purge trandlation cache (PTC) Coherence Domain Entry (refer to Table 3-9) describes the
number of coherence domains and the scope of PTC instruction propagation for each domain. This
entry isoptional. It isrequired only for MP systems that have multiple coherence domains.

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives
in. SAL captures thisinformation in an implementati on-dependent manner and passes the same to
the operating system.

Table 3-9. Purge Translation Cache Coherence Domain Entry

. Offset lLength Description
(in Bytes) (in Bytes)
0 1 Entry type = 4 denoting PTC Coherence Domain Entry type.
1 3 Reserved (must be zero).
4 4 Number of coherence domains for the platform.
8 8 64-bit memory address of the coherence domain information.

The coherence domain information is an array of length of (16* Number of coherence domains). As
shown in Table 3-10, for each coherence domain, there will be two information fields:

1. Number of processorsin the TLB coherence domain.

2. 64-bit memory address of alist of Local ID register values for the processorswithinthe TLB
coherence domain. Each processor will require two bytes of memory (id field in low order
byte and eid field in high order byte) to represent the Local 1D information.

Thisinformation is represented in Table 3-10.

Boot Sequence

intel.

Table 3-10. Coherence Domain Information

Offset Length Description
(in Bytes) (in Bytes) P
0 8 Number of processors in TLB coherence #1.
8 8 64-bit memory address of a list of Local ID register values for the processors
within the TLB coherence domain #1.
16 Number of processors in TLB coherence #2.
24 64-bit memory address of a list of Local ID register values for the processors
within the TLB coherence domain #2.
16%(N-1) 8 Number of processors in TLB coherence #N.
8+16*(N-1) 64-bit memory address of a list of Local ID register values for the processors
within the TLB coherence domain #N.

3.2.7.6 Application Processor Wake-up Descriptor Entry (Optional)

The AP Wake-up Descriptor Entry (refer to Table 3-11) describes the mechanism for waking up
APsin an MP environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on
operating system usage of thisentry. This entry is required for MP configurations.

Table 3-11. Application Processor Wake-up Descriptor Entry

Offset Length Description
(in bytes) | (in bytes) P
0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type.
1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved
2 6 Reserved (must be zero).
8 8 External Interrupt vector in the range of 0x10 to OXFF.
3.3 ltanium™-based Operating System Loader

Requirements

The firmware will jump to the Itanium-based operating system loader with the handoff state
described in the EFI Specification. Included in this state information is a pointer to the SAL
procedures the operating system can invoke. These procedures are described in Chapter 9.

This section describes the requirements on the operating system loader while operating under the
SAL execution environment.

Boot Sequence

3.3.1

Fault Handling

This section describes the guidelines to the operating system loader code as regards fault handling.

After the operating system is completely loaded, it will take over the IVA, and replace the SAL
environment with its own memory management. Until that time, the operating system shall use
SAL’svirtual memory environment — I VA, Interrupt controller mode, TC mappings, etc., and it
shall not change any of these resources. The operating system is not permitted to replace the fault
handler entrieswithin the SAL’s Interrupt Vector Table (IVT).

The operating system loader code may be executed in physical mode with interrupts disabled, or in
virtual mode with Instruction, Data and RSE tranglation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1).
While executing in virtual mode, the operating system loader code is permitted to cause TLB faults
for which SAL shall provide the appropriate fault handlers. These TLB faults are:

 Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does
not implement the Virtual Hash Page Table (VHPT). If VHPT is not used, the Page Table
Address (PTA) need not beinitialized and the SAL will turn off the PTA.ve bit to disable the
processor walking the VHPT. VHPT is an optional feature of the Itanium processor
architecture. Avoiding VHPT usage also permits the | A-32 support code to operate out of the
firmware address space.

Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not
implement the VHPT. The SAL's fault handler shall test whether the TLB fault surfaced during
speculative load accesses (LDx.s). Such an accessisindicated if the ISR.sp bit is set. If this bit
is set, the SAL shall return to the faulting instruction with the |PSR.ed bit thereby turning on
the NaT bit of the target register for the load.

» VHPT related faults: VHPT translation fault, Data TLB fault and Nested TLB fault, if SAL
implements VHPT.

* Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with
unified TLBs, Access Rights faults may surfaceif the TC is present but the required page
permissions are not present, e.g. TC is present with RW page access rights but RX page access
rights is needed for instruction execution.

« External interrupt: Hardware interrupts will be received by SAL in the Itanium processor
system environment. This code will read the IVR register. If the vector read is 0, it signifiesan
interrupt from the 8259 interrupt controller and SAL must issue aload to the architected
INTA_address (default address OxFEFE_0000) in the processor interrupt delivery block to
issue an interrupt acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259.
SAL will then jump to the appropriate interrupt handler using itsinternal tables. If the interrupt
needs to be reflected to 1A-32 code, the address will be derived from the |A-32 Interrupt
Descriptor Table. The operating system loader is restricted from sending 1Pl messages (i.e.
causing bitsin the SAPIC IRR registers to be set) with vector values other than the one
specified in the AP Wake-up Descriptor Entry (refer to Table 3-11).

* SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid
Page not present, Data Dirty bit and Data Access bit faults.

» SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key
miss, Data Key miss and Key Permission faults.

 Speculation fault: Speculation faults are caused by CHK.s, CHK.aand FCHK instructions.
SAL will provide the transition mechanism to the recovery code.

» Unaligned fault: The operating system loader shall not make data references to misaligned
data. However, this fault may arise during speculative load accesses. Such an accessis

Boot Sequence

3.3.2

3.3.21

Boot Sequence

indicated if the ISR.sp bit isset. If thisbit is set, the SAL shall return to the faulting instruction
with the IPSR.ed bit thereby turning on the NaT bit of the target register for the load. A similar
logic must beincorporated in SAL's Alternate Data TLB fault handler.

¢ SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT entries
created by operating system loader code are preserved across SAL calls and SAL's fault
handlers.

« Divide by zero: SAL shall display an error message for the Break interrupts caused by the
run-time checking of integer divide by zero. Refer to the Itanium™ Software Conventions and
Runtime Architecture Guide.

The operating system must not rely on any other fault handlersinstalled by SAL. SAL will display
an error message if an unsupported fault is encountered. SAL will not provide support for the
following faults:

¢ Nested TLB fault: ITR(0) will map the SAL’s VT and the code areas covering SAL’s fault
handlers. All fault handlersin SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested
TLB fault that can occur while accessing the fault handler’slocal variables and data structures.

e NaT Consumption fault: NaT Consumption faults are generated by aload, store or move that
uses a source register containing a NaT value or by accessing a NaTPage. This fault can be
avoided by compiling the operating system loader code with speculation off.

« General Exception fault: The operating system loader shall not cause the general exception
fault by executing illegal operations, invoking SAL procedures in physical/virtual mode with
arguments specifying unimplemented data addresses.

Floating-point faults: The operating system loader shall not disable accesses to the
floating-point register sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point
exceptions.

Other traps/faults: The operating system loader must not cause other traps or faults such as
Debug, Single step, Taken branch, etc. Normally, the operating system kernel provides these
services after it takes over the IVA.

Additional fault handlers to support | A-32 execution are described in Chapter 7.

Memory Management Resources Usage

This section describes SAL's usage of various memory management resources and provides
guidelines for their use by the operating system loader code.

TLB Resource Partition

SAL will use only TCsand the ITR(0). Use of several TRsby SAL may cause problems with
booting of some Itanium-based operating systems. The operating system loader is free to use
Trandation Registers (TRs) other than ITR(0). The advantage of this resource partition is that
hardware interrupts which cause atransition to SAL will not affect the TRs set up by the operating
system loader. |deally, the operating system loader will set up the TRsfor its memory mappings
and not cause TLB faults. However, should the operating system loader code cause a TLB miss, the
TLB Miss handler in SAL would automatically install a TC with identity mapping. The restriction
on ITR(0) isnot relevant after the operating system takes over the memory management and the
IVA.

3.3.2.2

3.3.2.3

intel.

Useof TCsin SAL code should not cause any performance problems since SAL is not performance
critical. Most of the SAL code will write and read back memory addresses traversing the entire
physical address space. Use of additional TRswill not provide improved performance. SAL will
primarily be limited by memory and 1/O speeds.

SAL will use TC entries with length of 4KB by default and will try to coalesce contiguous entries
with similar attributes into larger page sizes.

Identity Mapping Usage

The Itanium processor virtual address rangeis 85 bits wide and the Itanium processor physical
addressrange is 63 bits wide. Bits 0 to 60 of the virtual address provide the virtual page number
and offset. Bits 61 to 63 of the virtual address are used as an index into the Region Registers which
supplies aRegion ID valuethat can be up to 24 bitswide. Thus the 85-bit virtual address comprises
the low order 61 bits of the virtual address and the 24-bit Region ID. This 85-bit virtual addressis
transformed into a 63-bit physical address by the Itanium processor’s TLB mechanism as described
in the Intel® Itanium™ Architecture Software Developer’s Manual.

SAL will use identity mappings (virtual addresses = physical addresses). The advantage of identity
mapping is that the same pointer can be used to access the same memory location regardless of the
state of the PSR.dt bit.

Unique Region IDs for SAL

The firmware will load the operating system loader and jump to it. The operating system loader
will load the rest of the operating system using the firmware boot services procedures. While SAL
can operate with identity mapping, there may be a need for the operating system loader to use a
non-identity mapping. As an example, there may be an 1/0O device at physical address 2.5 GB for
which SAL would have established an identity mapping with uncacheable memory attribute. The
operating system loader may need to load additional layers of software and fix up address
relocations using virtual addressing. The operating system loader may need to load software at
physical address 0.5 GB mapped to virtual address of 2.5 GB. When operating system refersto the
virtual address 2.5 GB, it isreferring to RAM at 0.5 GB and when SAL refersto 2.5 GB virtua
address, it isreferring to the 1/0 device at 2.5 GB physical address. Clearly, the operating system
loader cannot use the TLB mapping set up by SAL for this case.

This problem can be solved by using unique Region registers and Region ID valuesfor the SAL and
the operating system. Differing Region ID values ensure that earlier TC/TR entries with a different
Region ID value no longer cause TLB hits.

Since SAL codeis 64-hit, if the physical address space is less than or equal to 261 bytes, SAL will
be capable of addressing the entire physical address space using Region Register 0. In general, the
SAL would need only Region Register 0, leaving the other Region Registers for operating system
use. SAL shall set up the Region Register 0 with a Region ID value of 0x1000, if physical address
spaceislessthan or equal to 2 bytes. If the physical memory islarger, it shall load the Region
Registers 1 to 3 with Region ID values of 0x1001 to 0x1003, respectively.

The operating system loader shall not change the contents of Region Registersthat are in use by
SAL. If the valuein Region Register 0 is changed, accessto the IVT islost and the system will
crash. Similarly, the operating system loader shall be restricted from using Region ID values of
0x1000 to 0x1003 until operating system is ready to take over the memory management and the

Boot Sequence

3.3.3

Boot Sequence

IVA. If thisrestriction is not followed by the operating system loader, a machine check abort might
result when SAL attemptsto insert a TC entry using the ITC.i or ITC.d instruction. Should the
operating system loader set up any of the Region Registers unused by SAL, it shall

* Set the ve hit in the Region Register to 0, to disable the VHPT.

« Set the ps bits value to indicate preferred page size of 4 KB.
The operating system |oader will need to refer to the data structures common to SAL and operating
system in the process of loading the operating system kernel. Similarly, the operating system will
need to pass parameters to SAL through pointersin Memory Stack Pointer (SP) and Global Data
Pointer (GP) registers. The SAL and the operating system must refer to these common data

structures using Region Register 0, i.e. the virtual addresses used to address the common data
structures must have bits 61-63 set to 0.

Other Restrictions on the Operating System

1. Theoperating system shall not change the values of the following system resources:
e LID, theuniqueid/eid value for this processor.

¢ DCRu.lc, the Buslock setting for the platform, if the sameis set to 1. Note that the
PAL_BUS SET_FEATURES procedure may be invoked to execute the locked
transactions as a series of non-atomic transactions. Refer to the Intel® Itanium™
Architecture Software Developer’s Manual for details.

« Physical address of the Processor Interrupt Block Address.
¢ Physical address of the 1A-32 1/O Port Block.
e Thevaueinthe IOBASE register (AR.kO) until the OS takes over the IVA.

2. The operating system shall not change the Min-State save area which was registered by the
SAL using the PAL_REGISTER_MEM procedure.

3. Theoperating system shall not change the location of the PAL procedures within memory.
SAL copies the PAL procedures into memory using the PAL_COPY _PAL procedure.

4. The operating system creates virtual address mappings for the PAL and the SAL procedures
and registers them with the firmware using interfaces provided by the EF| specification. The
operating system shall not alter the virtual address mappings after such aregistration, asthis
is not permitted by the EFI specification.

5. The operating system may lower the CMCI, MCA, and BERR promoation strategy set by
SAL by invoking the PAL_PROC_SET_FEATURES procedure, but thisis not
recommended.

6. Refer to Table 9-2 for restrictions on the OS from calling certain PAL procedures.

Boot Sequence

intel.

Mach

Ine Checks 4

Machine checks, including Machine Check Aborts (MCAS), and expected machine checks cause
processor execution to jump to the PALE_CHECK entrypoint in the Itanium architecture. Please
refer to Volume 2, Chapter 11 in the Intel® Itanium™ Architecture Software Devel oper’s Manual
for detailsregarding PALE_CHECK processing. Also refer to the Itanium™ Processor Family
Error Handling Guide for error handling from a system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY entrypoint in
the Itanium architecture, which in turn branches to the SAL MCA handler. The entry conditions for
SALE _ENTRY are described in the Intel® Itanium™ Architecture Software Developer’s Manual.

This chapter defines the actions required of SAL_CHECK as well as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.

Figure 4-1. Overview of Machine Check Flow

4.1

PAL SAL OS_MCA
Uncorrected MC

Correct Error,
Set New/
Interrupted
Context

System
Halt/
Reboot

Correctible
by 0S?

Error

—»| PALE_CHECK |—»{ SALE_ SALE_

ENTRY CHECK

Return
<— PAL_MC_RESUME

SAL_CHECK
_______ Optional

001076

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These
may still be fully or partialy recoverable at the operating system layer. The control flow differs
between corrected and uncorrected machine checks. For corrected machine checks, the operating
system Corrected error interrupt handlers will be invoked some time after returning to the
interrupted process. Section 4.1 describes the functionality and processing steps for the uncorrected
machine checks and Section 4.2 describes the corrected machine checks.

SAL_CHECK

SAL_CHECK hasthe basic responsibility for the following:
 Record processor and platform error information.
« Savethe processor and platform state information.

 Perform any platform hardware-specific corrections.

a1

411

42

* For uncorrected machine checks, vaidate the OS_MCA entrypoint and branch to it.
* Clear the error record resources and re-enable future information collection.

* Halt the processor or platform as necessary.

» Handle multiprocessor (MP) situations.

In addition, it isuseful to note that where hardware/firmware cannot fix amachine check condition,
SAL_CHECK should provide the necessary information and conditions to allow the operating
system to recover whenever possible. It is expected that most of the error recovery is performed at
the OS_MCA layer. The amount of state information saved by SAL isimplementation-dependent
and the SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state
information.

SAL_CHECK Processing Details

During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code where it
may deposit some minimal processor state information so that PAL code has sufficient resources to
perform the necessary PALE_CHECK processing. This step is performed on all the processorsin
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED
procedureto notify PAL that amachine check may surface and that PAL must not attempt to correct
the error. If the machine check was expected by SAL, SAL will check the results of the operation,
invoke PAL_MC_EXPECTED to notify PAL that machine check is no longer expected, and
resume execution by calling PAL_MC_RESUME.

When an unexpected machine check event has occurred and SAL_CHECK is entered, it isthe
responsibility of SAL_CHECK to call back to PAL code (PAL_MC_ERROR_INFO), in order to
retrieve processor-specific error information which pertains to the machine check taken. In
addition, SAL_CHECK should interrogate the platform for any platform-specific information
which pertains to the machine check condition. Once the processor error record informationis
retrieved, SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging
resources for capturing future machine check error information. A similar task is necessary to
enable platform error logging resources for future events.

An error due to an MCA event, when corrected by firmware becomes a Processor Corrected
Machine Check or a Platform Corrected Error event condition. A hand off to the OS MCA isaso
not required during this event type transformation.

When multiple processors experience machine checks simultaneously, SAL selects a“monarch”
machine check processor to accumulate al the error records at the platform level and continue with
the machine check processing. Such a“monarch” statusisrelevant only for the current MCA error
event.

SAL isresponsible for reporting the state information to the operating system viathe SAL_PROC
get state information calls so that the operating system can make the determination to:

* Fix the error and return to interrupted or new context through the SAL_MCA, or
* Request the SAL_MCA to reset the platform.

Machine Checks

4.2

SAL_CHECK shall not hide any architectural state from the OS_MCA layer. This permits the
OS_MCA layer to run unencumbered. OS_MCA can save the processor and platform state and
re-enable future machine checks as soon as possible. Otherwise, OS_MCA would be constrained to
operating with machine checks disabled in order to preserve the architectural information at the
PAL and SAL layers.

When the operating system registers the OS_MCA entrypoint with SAL, it also supplies the length
of the code (or at least the length of thefirst level OS_MCA handler). The operating system may
optionally supply a modulo checksum of the code area (all bytes of the code areaincluding the
checksum byte must add up to zero). The SAL saves the checksum for this code area. Prior to
entering the OS_MCA, it is SAL_CHECK's responsibility to ensure that the OS_MCA vector is
valid by verifying the checksum of the OS_MCA code. The SAL code that verifies the integrity of
the OS_MCA code shall honor the cacheability attribute of the OS_MCA code. Thus, if the
operating system had provided an uncacheable address for the OS_MCA entry point (bit 63 of
physical address = 1), the SAL code shall not make cacheable accesses to the OS_MCA code areas
while verifying the checksum.

There may be some platform-specific reasons which render the OS_MCA handler invalid. For
example, sincethe OS_MCA handler isin memory, if the memory controller which handles that
portion of memory isno longer functional, it does not make sense to attempt to branch to that code.
If either the OS_MCA handler was not registered prior to the machine check event, or if the
OS_MCA handler is otherwiseinvalid, SAL_CHECK may halt or reboot the system. Thisactionis
SAL implementation-dependent. When the OS_MCA returns to the SAL indicating that the error
has been corrected by the operating system layer, SAL will call the PAL_MC_RESUME procedure
to resume execution. See Section 4.8.1 for other options.

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks.

Corrected Machine Checks

There are different categories of corrected machine checks pertaining to Itanium processors:

 Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor
cache.

Corrected by PAL, e.g. double bit data ECC error on a clean processor cache line, during an
instruction fetch operation.

Corrected by the platform hardware, e.g. single bit data ECC error on system memory.

¢ Corrected by SAL. These are primarily platform errorsthat can be corrected by SAL without
immediate involvement of the operating system.

None of these categories will require a processor rendezvous.

Machine Checks 4-3

4-4

Figure 4-2. Machine Check Code Flow

Execution Mode: Itanium™ Instructions

PALE_CHECK

A

SAL_CHECK

L Translation Turned Off

Error Logged

|
OS Notified (intr) |
|

Yes Did OS Fix
{* 7777777777777777 Error?
Corrected Error Interrupt |
|
I No
OSHandler g __ PAL_MC_RESUME
Logging System Reset

000288a

The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the
uncorrected machine checks. SAL will maintain the processor and platform error information and
save the state of the processor and platform. In the subsequent steps, SAL may do one of the
following:

« If theerroris corrected by PAL, SAL would return to the interrupted context by calling
PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option for generating a
Corrected Machine Check interrupt to the operating system for the Processor CMC events. The
CMCYV register specifies the CMC interrupt vector and its mask status.

» SAL will perform any platform hardware-specific correction as described in Section 4.3,
“Platform Errors’, send a Corrected Platform Error Interrupt (CPEI) to the operating system
and then call PAL_MC_RESUME, to return to the interrupted context.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the operating
system CMC interrupt handler or the operating system Corrected Platform Error interrupt handler
will be invoked some time after returning to the interrupted process, assuming that the CMC or
Corrected Platform Error interrupt is enabled in hardware. Some operating systems may choose to
poll for corrected processor and/or platform errorsinstead of relying on the CMCI/CPEI interrupts.
Refer to Section 4.4 for details.

Machine Checks

4.3

43.1

4.3.2

The operating system component that handlesthe CMC or Corrected Platform Errors shall run with
interrupts enabled! and would invoke the SAL_GET_STATE_INFO and the
SAL_CLEAR_STATE_INFO procedures to process the error information associated with the
event(s). The operating system must ensure that the entire CMC or Corrected Platform Error
handler executes on the same processor on which it was signalled.

The amount of state information saved by SAL isimplementation-dependent and SAL provides
validation bits indicating the saved state information. Thus, for performance reasons, a particular
SAL implementation may choose not to save ARs, CRs or floating-point registers during a
corrected machine check.

Platform Errors

Platform errorsrefer to errors signalled by system components other than processors, e.g. memory,
1/0 busses, chipsets, devices, etc.

Uncorrected platform errors may be signalled by asserting pins such as BERR# or BINIT# or by
generating a 2xECC? or a synchronous HardFail response on the processor front side bus (FSB).

Corrected platform errors are usualy signalled using an interrupt line. An example of a corrected
error isasingle bit error corrected by the memory controller. An interrupt will be signalled by the
platform when the data from the memory location is consumed.

Some platforms may use interrupts to signal a potential uncorrected error. An example of this
situation is poisoned data stored into memory. A CPEI is signalled to the processor at the time of
the store and if the poisoned dataiis consumed later by a processor, that processor will incur aLocal
MCA.

Scope of Platform Errors

The scope of platform errorsis platform & firmware implementation dependent. Depending upon
the platform topology, asingle physical platform may comprise of multiple nodes, each with a set
of processors and its own error event generation and notification. There may be reguirements for
routing the interrupt signals to specific processors as processors may not have visibility to al the
platform componentsin a system. The SAL shall provide details of the interrupt input line(s) and
the interrupt routing requirements, including the ID and EID of the processor to receive the CPEI
interrupt to the operating system through the ACPI tables. The number of nodesin aplatformis
implicitly indicated by the SAL by providing multiple entries for Corrected Platform Error
interrupts in the ACPI tables. Refer to the ACPI Specification for additional details.

Processing of Corrected Platform Errors

When the operating system wants to be notified of the platform error events through an interrupt, it
will select a corrected platform error vector (CPEV) and arm the interrupt line(s) to deliver

1. Itisrequiredthat the operating system handlersoperate with interrupts enabled, so that system firmware can manageitsresources (like NVM
based error records) without impacting the system performance.
2. Also known as data poisoning.

Machine Checks 4-5

4.3.3

4.4

46

intel.

interrupt(s) to the processor. The operating system is also reguired to register the chosen interrupt
vector number with SAL through the SAL_MC_SET_PARAMS procedure.

The system component responsible for the corrected error (hardware or firmware) sends event
notification to the operating system. For hardware-corrected platform errors, the hardware device
sends the Corrected Platform Error Event notification to the operating system by asserting the
interrupt line of the IOSAPIC. For firmware-corrected errors, SAL reports the platform-corrected
error event to the operating system by sending an inter-processor interrupt to the processor with the
CPEV that is registered by the operating system through the SAL_MC_SET_PARAMS procedure.

The operating system on the processor on which the CPEI was signalled, shall invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures with the argument
type of CPE to retrieve and process the corrected platform error information.

Processing of Uncorrected Platform Errors

Uncorrected platform errorswill result in alocal or aglobal MCA. The operating system shall
invoke the SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures with the
argument type of MCA on al the processors on which the MCA condition is signalled, to retrieve
and process the uncorrected platform error information.

The SAL shall return an error record on each of the processors that experienced the MCA
condition. Some error records may have a processor error section and one or more platform error
sections while some error records may have only the processor error section. The platform
section(s) would provide the error information for the node associated with the processor on which
the SAL call ismade. If a SAL implementation is capable of accessing error information for the
entire multi-node system from one processor, it is permitted to aggregate all the platform error
sections within one error record.

Polling for Corrected Errors

Some operating systems may choose to poll for corrected processor and platform error events. For
the corrected processor events, the operating system must periodically invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures on each processor in
the system. For the corrected platform events, the operating system must periodically invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures from a processor on
each node within the system since some platform errors may only be visible on the node of
occurrence.

If the operating system chooses to employ polling for the corrected platform error events, it must
neither program the IOSAPIC redirection table entry for the interrupt line on which the Corrected
Platform Error is signalled nor register the CPEV vector with the SAL. Instead, it should
periodicaly call the SAL_GET_STATE_INFO procedure on the same processor(s) for which it
would have programmed the interrupt. All other processing steps are the same as for the interrupt
driven approach.

Machine Checks

4.5

OS_MCA

When the operating system is ready to handle machine check events, it should call
SAL_SET_VECTORSto register the physical address, length and the GP of the OS_MCA handler.
It ishighly recommended that a non-zero length and checksum be supplied by the operating system
to the SAL so that the SAL can ensure the integrity of the OS_MCA code by verifying its
checksum. The operating system must use the SAL_SET VECTORS function if it expectsto be
able to recover from any machine check conditions in which it may have to be involved, or in order
to retrieve error records and state information and dumping such information for subsequent debug
analysis. After registering the OS_MCA address, the operating system can re-enable machine
checks by clearing the PSR.mc bit. The operating system must call the
SAL_GET_STATE_INFO_SIZE procedure to obtain the maximum size of machine check state
information that SAL would return for the MCA events.

When the machine check event occurs, SAL_CHECK will invoke OS MCA. OS MCA
functionality isimplementation-dependent. At aminimum, OS_MCA must call
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished
thistask it must call SAL_CLEAR_STATE_INFO! to release the SAL resources used for logging
MCA events and state save. The OS_MCA can then re-enable machine checks by clearing the
PSR.mc bit to 0. Once the operating system has consumed and cleared an error record, it will no
longer be available from the SAL. SAL error records are always associated with a particular MCA
or Corrected error event and shall contain al the relevant information packaged together as a
record, and may contain error information from just the processor or platform or both. This
information is presented in an error record structure with a Record Header and multiple sections.
Each section has an associated globally unique ID (GUID) to identify the section type as being
processor, memory, bus, controller or platform-specific hardware. Refer to the Appendix B for
details.

The operating system may perform any corrections on the operating system controlled hardware
resources. The operating system makes the decision whether it wants to recover the interrupted
context or not, but it must take into account the state information retrieved from the
SAL_GET_STATE_INFO call. Thisinformation contains relevant data with respect to the
continuability of the processor/system. Thus, even if the operating system could correct the error, if
PAL reportsthat it did not capture the entire processor context, (e.g. Processor state parameter
states that the GRs are invalid), resumption of the interrupted context will not be possible. The
operating system must also determine from values in the Min-State Save area whether the machine
check occurred while operating with PSR.ic set to 0 and whether the processor implements the X1P,
XPSR and XFS registers necessary for the recovery.

When OS_MCA returnsto SAL or PAL, it is permitted to set new values for the registers that are
passed by PAL in the Min-State Save area. Thisis achieved by constructing a data structure with
the format identical to the Min-State Save area and returning the same to SAL. Refer to the Intel®
Itanium™ Architecture Software Developer’s Manual for the layout of this structure.

OS_MCA may select one of the following actions:

« Correct the error and return to SAL_CHECK with the status of “corrected.” The operating
system may set a new context in the Min-State save areaand SAL will then invoke
PAL_MC_RESUME to return to the interrupted or the new context. If the interrupted context

1. Theerror records maintained by firmware are returned one at atime to the operating system. It is necessary for the consumer (operating
system) to clear the current error record to be able to retrieve the next unread record.

Machine Checks 4-7

45.1

48

intel.

was in the firmware address range and the operating system decides to set a new context, the
operating system must take steps for resumption of the firmware code eventually, otherwise
the system may become unstable.

« Inthe event of an uncorrected error, return to SAL_CHECK with the uncorrected status value
and an indication to the SAL to halt or reboot the system.

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

Unconsumed Error Records across Reboots

There may be situations where the OS_MCA layer could not be invoked or the OS M CA layer
could not invokethe SAL_CLEAR_STATE_INFO procedure to clear a pending error record. If the
SAL implementation had logged the error to NV M, it may be capable of providing the unconsumed
error information to the operating system following the next reboot of the system. To support this
capability, following the next reboot of the operating system, the operating system shall invoke the
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures (with the type
argument of MCA) to retrieve the pending error records and optionally log them to persistent
storage under control of the operating system. These SAL calls to consume the pending error
records may be made from any of the processorsin the system. For additional details, refer to the
Itanium™ Processor Family Error Handling Guide.

If the operating system fails to clear the log before another MCA surfaces, the SAL may overwrite
the unconsumed NV M log, if there is not space for another record. The SAL implementation may
additionally escalate the error severity (Section B.2.1, “Record Header”) when the error
information is subsequently provided to the operating system.

Machine Checks

intel.

Figure 4-3. SAL_CHECK Detailed Flow on the Monarch Processor

SAL_CHECK

PAL wants to

Yes

A

Rendezvous
processors?

Send MC_rendezvous interrupt
if registered, else send INIT to
all other processors

Log processor & platform error into
SAL implementation-dependent area

Wait for all processors
to reach
MC_rendezvous state

Send INIT
to failed
processors

Yes

Restore original
processor state to
SAL_CHECK entry

Corrected
by OS

OS_MCA
Correct error if
possible; Wake up | by OS
APs

!

Call PAL_MC_CLEAR_LOG to clear
processor error log resources

Y

Check
expected by
SAL?

No

PAL
corrected?

Yes

Corrected
by SAL?

OS_MCA
valid?

Yes

If valid Generate
Corrected Platform
Error Interrupt

No

Uncorrected

Call PAL_MC_RESUME with

CMClI indicator set to restore

state & return to interrupted
process

System Halt/Reboot

Return to PAL
through GR19

Call PAL_MC_RESUME to
restore state & return to
interrupted process

Resume execution

001077

Machine Checks

4.6

4.7

Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may,
however, invoke the PAL proceduresin memory after ensuring that the memory area containing the
PAL proceduresisintact.
Following are typical PAL procedures that may be invoked by SAL_CHECK:

* PAL_MC_ERROR_INFO

* PAL_MC_RESUME

* PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:

» PAL_BUS GET_FEATURES

« PAL_BUS SET_FEATURES

» PAL_PROC_GET_FEATURES

« PAL_PROC_SET_FEATURES

« PAL_MC_REGISTER MEM?

« PAL_MC_EXPECTED
SAL may call the following procedure to ensure that all outstanding instructions within a processor
are completed and any potential machine checks due to these transactions get serviced.

* PAL_MC _DRAIN
Following are the SAL procedures that may be invoked by operating system to register its machine
check layer interfaces:

« SAL_MC_SET_PARAMS

» SAL_SET_VECTORS
Following are the typical SAL procedures that may be invoked by the operating system during
machine check processing:

« SAL_MC_RENDEZ

+ SAL_GET_STATE_INFO

« SAL_GET_STATE INFO_SIZE

+ SAL_CLEAR_STATE_INFO

Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerationsin MP
configurations. A local MCA on one or more processors may require the systemto bein a
quiescent state for graceful error handling. Thisis accomplished by bringing all the processorsin

1. Thisprocedureisintended for use during firmware initialization. It shall not be invoked by the operating system during run time as this
might affect firmware functionality.

Machine Checks

4.7.1

4.7.2

the system that are not already in MCA to an idle state. The MCA architecture has defined a
mechanism for processor rendezvous through firmware and operating system coordination.

Rendezvous Requirements

In MP configurations, a coordination between all processorsis required by means of a processor
rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the
rendezvous mechanism works.

Rendezvous of processors is done for one of the following reasons:
* When PAL initiates arendezvous request during an MCA.
* When SAL determines on its own accord that the platform error needs rendezvous.

* When the operating system sets aflag requesting firmware to perform rendezvous for all MCA
errors.

PAL Initiated Rendezvous: If the PAL machine check layer determines that other processors must
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the
rendezvous and supplies areturn address within PAL in GR19. Upon return, PALE_CHECK
performs the appropriate action and then calls SAL_CHECK again in the norma manner (with no
rendezvous indicator). The SAL must determine the state of other processors and bring all
processors not aready in MCA to a spinloop by generating SAPIC interrupt messages. The
interrupt vector used by SAL to request for rendezvousisthe one aready registered by the
operating system during the OS_MCA handler initialization

SAL Initiated Rendezvous: Additionally, there may be platform related machine check situations
which require SAL firmware to rendezvous processors. For example, if platform hardware were to
stop forwarding transactions in order to maintain error containment, the other processors in the
system must be rendezvoused before that platform hardware can be corrected to resume forwarding
transactions.

Operating System Initiated Rendezvous: If the operating system sets the rz_always flag during
invocation of the SAL_MC_SET_PARAMS procedure, the SAL isrequired to rendezvous all the
processors in the system for all detected processor and platform MCA conditions, when such errors
are not corrected by the firmware. If this flag is not set, then rendezvous is done only during the
PAL or SAL initiated rendezvous conditions described above.

Flow of Control during MCA in MP Configurations

The high level flow of control during MCAsin MP configurationsis depicted in Figure 4-4 and
Figure 4-5. The overdl processing steps are as follows:
Theflow for anormal MCA rendezvousis as outlined below:

1. Processor detects an MCA event. PAL takes control and attempts an error recovery.

2. PAL may ask SAL to rendezvous for certain errors. SAL may decide to do arendezvous on
itsown accord or if the operating system has registered a configuration option to rendezvous
for al MCA errors, if it isnot already done at PAL’s request. If rendezvous does not occur,
then steps 3, 4, 5, and 6 are skipped.

3. SAL sends SAPIC interrupt messages to all the slave processors.

Machine Checks 4-11

intel.

Interrupt handlers of all slaves enter aspin loop by calling SAL_MC_RENDEZ.

SAL selects amonarch for handling the error. All slaves processorsin SAL_MC_RENDEZ
check in their status with the SAL on the monarch.

After all the slaves check in with SAL, the monarch SAL returnsto PAL.
PAL startsthe actual error handling process with subsequent hand off to SAL.

SAL finishesthe MCA handling on all the processors that arein MCA and waits for all the
processors in MCA to synchronize before branching to OS MCA for further processing.
Note that the hand-off to OS MCA from SAL MCA occurs simultaneously on all processors
executing in SAL MCA handler.

9. OS_MCA may choose amonarch processor to continue with error handling. After OS_ MCA
completes the error handling, the monarch processor wakes up all the slaves through a
wake-up message as shown by (9) in Figure 4-4.

During the initial attempt to rendezvous, some processors may fail to respond to theinterrupt for an
extended period of time. The monarch processor SAL forces the failed processors to respond by
sending an SAPIC INIT message as shown in Figure 4-5. Once al the processors are in the spin
|oop, then the monarch processor that received the MCA will attempt to recover from the error. The
flow of bringing the processors to arendezvous state is the same asin Figure 4-4, except for the
additional Steps6, 7, 8 and 9.

Figure 4-4. Normal SAL Rendezvous Flow

Ret
(Retum) SAPIC
Machine 1 PAL < 2 SAL | _3_ |RenceAlin > OS Rendez
Check ——P MCA 7 MCA Interrupt Handler
Timeout
4 10
Loop 9
8
SAL_Rendezvous > Polling
4
1
0S_MCA 9|
1
1
Monarch Prgcessor : WakeUp Signal : SLAVE Propessor
Domains Domain
Direct Flow
————Interrupt Signaling
000289a

4-12 Machine Checks

Figure 4-5. Failed SAL Rendezvous Flow

SAPIC INIT
CPUx Message
. PAL SAL
Failed 1+ —— —> —P OS INIT [
Rendezvous 7 iy 8 ¥Ihw 9 -
16
(Return)
12 hd
Machine 1 PAL Mz SAL
Check — P MCA 13 MCA
Timeout 10
Loop 5,11
SAL_Rendezvous > Polling
14
A
[
1
I
1
0OS_MCA 15:
1
WakeUp |
Monarch Processor } Signal 1 SLAVE Processor
Domain L ! Domain
Direct Flow

————Interrupt Signaling
000290a

4.7.3 OS_MCA Responsibilities

In order to support the MCA eventsin MP configurations, the operating system does the following:

* Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS
function.

¢ Invokethe SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL
firmware can signal the non-monarch processors and the mechanism that the operating system
will employ to wake up the non-monarch processors at the end of machine check processing.

¢ Invokethe SAL_MC_SET_PARAMS procedure specifying if arendezvousis always required
for an MCA and whether MCA s should be escalated to BINIT while machine checks are
masked.

On receipt of the MC_rendezvous interrupt or the INIT for MC_rendezvous, the operating system
on the non-monarch processors will:

 Disablefurther interrupts.

¢ Set an OS implementation specific variable to indicate that a rendezvous interrupt was
received. Such avariable may be used by the OS_MCA layer on the monarch processor to
identify the processors that need to be woken up at the end of MCA processing.

e Cdl SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all
outstanding transactions within the processor and then enter a spin loop within SAL. This SAL
procedure shall be MP-safe. While waiting for the wake-up from the monarch processor, the
SAL may mask further machine checks and escalate future MCA and BERR eventsto BINIT
using the PAL_PROC_SET_FEATURES procedure.

Machine Checks 4-13

4-14

Note:

intel.

SAL on the monarch processor will wait a specified amount of time for the signalled processorsto
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to
allow the operating system to take the appropriate error recovery actions. Refer to the Figure 4-4
for more details on the control flow between the PAL, the SAL and the operating system.

In situations where either the operating system has not registered an interrupt vector viathe
SAL_MC_SET_PARAMScal, or where the specified time to wait has elapsed and the signalled
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the
remaining processors in order that the machine check handlersin PAL and SAL can proceed. This
scenario is depicted in the Figure 4-5.While sending an INIT to the other processors may not create
an inherently unrecoverable situation, it certainly increases the risk for recoverability. Thisisthe
rationale for registering the MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS
procedure. The monarch processor must allow sufficient time for the INIT IPI to be processed by
the targeted processors and reach the rendezvous state.

The PAL_INIT and the SAL_INIT firmware code executes out of the firmware address space and
contends for firmware accesses with the processors that experienced the machine check events.

If the PAL requests rendezvous of all the processors and SAL isunableto do so, SAL will return to
PAL with anon-zero value in GR19. Refer to the Intel® Itanium™ Architecture Software
Developer’s Manual for details regarding PALE_CHECK processing.

After the error is corrected by OS MCA, OS_MCA on the monarch processor will wake up the
rendezvoused processors using the wake up mechanism specified inthe SAL_MC_SET_PARAMS
call. For the processors rendezvoused using the MC_rendezvous interrupt or the INIT, the
continuation point is merely areturn from the SAL_MC_RENDEZ procedure. It isthe
responsibility of the operating system to clear the IRR bitsfor the MC_rendezvousinterrupt and the
wake up interrupt, if any. The operating system must re-enable future interrupts and machine
checks.

It should be noted that some platform implementations, under certain machine check
circumstances, will cause multiple processorsto enter PALE_CHECK and SAL_CHECK. PAL
code will be generally unaware of this, but SAL code should make every effort to take such
situations into account. SAL code must implement methods of detecting which processors have
entered the SAL_CHECK entrypoint and avoid steps to rendezvous such processors (using
MC_rendezvous interrupt or INIT). Some examples of situations when multiple processors
experiencing machine checks simultaneously are as follows:

» Broadcast machine check (BERR signal) from the platform.

* Error during acast out of a cache line in response to an incoming snoop cycle from another
processor.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch”
machine check processor to accumulate all the error records at the platform level. Oncethisisdone,
the OS_MCA procedure will take control of further error handling on all the processors that
experienced the machine checks. The OS_MCA layer may need to implement asimilar “monarch”
processor selection for the error recovery phase. The operating system will be aware of which
processors invoked the SAL_MC_RENDEZ procedure in response to the MC_rendezvous
interrupt or the INIT signal and shall wake up those processors.

Machine Checks

4.7.4

Machine Check Processing Steps within Firmware and
Operating System

Figure 4-6 depicts the typical flow of machine check processing steps from various firmware and
software layersin an MP configuration. Thisfigureillustrates the example of two processors (1 and
2) experiencing a machine check within afour processor system. The error requires the other
processors to be rendezvoused.

On entry into SAL_MCA, Processor 1 promotes further MCAsto BINIT for better error
containment. Thisis based on an argument supplied by the operating system as part of the
SAL_MC_SET_PARAMS procedure. The SAL on Processor 1 is not aware of any other
processors having experienced machine check and hence sends the MC_rendezvous interrupt to all
the other processors including Processor 2. It also sets a memory semaphore (MCA_In_Prog) to
indicate that a machine check isin progress. By setting such a semaphore, Processor 1 gains the
monarch status for this machine check incidence at the SAL layer. Semaphore operations such as
XCHG, CMPXCHG can only be made to cacheable locations. If the platform provides an
equivalent mechanism such as a read/write-once port, the same may be employed in lieu of a
cacheable memory semaphore.

The operating system on the Processor 3 receives the MC_rendezvous interrupt, sets a flag for
being rendezvoused in the operating system data structures and then callsthe SAL_MC_RENDEZ
procedure. The Processor 4 is running with interrupts masked and does not recognize the
MC_rendezvous interrupt in a timely manner. Hence, the Processor 1 sendsan INIT IPI to the
Processor 4. This causes the Processor 4 to enter the OS_INIT layer which records the fact of being
rendezvoused in the operating system data structures and then callsthe SAL_MC_RENDEZ
procedure.

The SAL on Processor 1, using SAL data structures, recognizes that Processor 2 has reached the
SAL_CHECK layer and that Processors 3 and 4 have reached the SAL_MC_RENDEZ procedure.
It clearsthe MCA_In_Prog semaphore, instructs the Processor 2 to proceed to the OS_MCA layer
and then proceeds to the OS_MCA layer itself.

At the OS_MCA layer, the operating system using its data structures, determines that only
Processors 1 and 2 will reach the OS_MCA layer. The operating system elects amonarch to handle
the machine check (Processor 2 in Figure 4-6). The operating system makes necessary SAL callsto
retrieve and clear the processor and platform error information. The operating system on Processor
2 then instructs Processors 1, 3 and 4 to return to the interrupted contexts. The Processor 1 returns
via SAL and the PAL_MC_RESUME procedure while Processors 3 and 4 return to the procedure
that invoked the SAL_MC_RENDEZ procedure.

Once interrupts are re-enabled, the operating system on the Processor 2 services a spurious
MC_Rendezvousinterrupt and invokes the SAL_MC_RENDEZ procedure. The SAL finds that no
meachine check isin progress and hence returns to the operating system immediately. If the
operating system chosen wake-up mechanism is an interrupt, the operating system on the
Processors 3 and 4 will service the wake-up interrupt. As part of servicing these interrupts, the
operating system reads the CR.IVR register and issues an EOI to the local SAPIC thereby clearing
theinterrupt.

Machine Checks 4-15

Figure 4-6. Machine Check Handling in a Typical MP Configuration

Processor 1
Receives MCA

PAL_MCA

SAL_MCA
Set MCA_In_Prog
SEMAPHORE

Promote MCA to BINIT.
Send Rendez Int to

2,3,4.

Wait time set by
MC_Set_Params

Send INIT to failed
processors & Wait
for specified time

4

Clear MCA_In_Prog.
SAL_Check_In seen from
2,3,4.

v

Tell P2 to Jump to
OS_MCA

Processor 2

SAL_MCA
If MCA_In_Prog
already set,
Set SAL_Check_in

flag

!

Promote MCA to
BINIT. Wait for
signal from

4 SAL_Monarch

Processor 3

Processor 4

Receives Rendez
Int, then INIT

PAL_INIT

Set OS_Rendez Flag
for P3. Call
SAL_MC_Rendez

Yes

OS_MCA: (Most
likely Monarch)
Call
SalGetStatelnfo

Set
SAL_Check_lIn.
Promote MCA to
BINIT

A4

OS Wakes up 3, 4.
Tell P1 to return to
SAL.

Jump to OS_MCA

Return to
SAL_MCA.
Restore MCA to
BINIT promotion

SAL calls
PAL_MC_Resume

to return to OS

v

Return to SAL_MCA.
Restore MCA to BINIT
promotion

Wait for Wake up
Memory/Interrupt

Restore MCA to
BINIT promotion

SAL calls
PAL_MC_Resume

to return to OS

OS MC_Rendez
Interrupt Handler

Rendez_Int
received, OS calls
SAL_MC_Rendez

MCA_In_Prog?

Return to OS Int
Handler, which
does EOI, RFI

Return to OS Rendez
IntHandler -

OS clears
OS_Rendez Flag
for P3

EOI
RFI

OS Wake-up
Interrupt Handler

SAL_INIT
OS_INIT

Set OS_Rendez
Flag for P4
Call
SAL_MC_Rendez

MCA_In_Prog?
<

Call MC_DRAIN

Return to OS_INIT
Handler

OS clears

OS_Rendez Flag
for P4

Return to

SAL calls
PAL_MC_Resume
to return to New
OS context

OS MC_Rendez
Interrupt Handler

001080

4-16

Machine Checks

4.8

4.8.1

Note:

OS_MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the operating system

machine check handler, OS_MCA. The contents of non-banked and banked general registers at the
time of the interruption have been saved by PAL in the Min-State Save area and these are available
for use by SAL and OS_MCA. The following register contents define the OS_MCA handoff state.

The state of the processor isthe same as on exiting PALE_CHECK (refer to the Intel® Itanium™
Architecture Software Developer’s Manual) except as bel ow:

GR1= OS MCA Global Pointer (GP) registered by the operating system (the operating
system’s GP).
GRs2-7=Unspecified.
GR8 = Physical address of the PAL_PROC entrypoint.
GR9 = Physical address of the SAL_PROC entrypoint.
GR10= GP (Physical addressvalue) for SAL.
GR11= Rendezvous state information:
0= Rendezvous of other processors was not required by firmware and hence
not done.
1= All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt.
2= All other processorsin the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT.
—1 = Rendezvous of other processors was required but was unsuccessful on one
Or MOore Processors.
GR12 = Return addressto alocation within the SAL_CHECK procedure.
GRs13-31= Refer to the Intel® Itanium™ Architecture Software Devel oper’s Manual.
BRO = Unspecified.

On entry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration. The
operating system shall not make cacheable accesses to the MinState area, otherwise unexpected
behavior will occur.

Return from the OS_MCA Procedure

The OS_MCA procedure shall return to the SAL_CHECK at the end of its MCA processing. When
the OS_MCA procedure returnsto the SAL, it must set appropriate values in the Min-State Save
area pointed to by GR22, for continuing execution at the interrupted or a new context. The
operating system must restore the processor state to the same as on entry to OS_MCA except as
follows:

GRs1-7= Unspecified.
GR8= 0if error has been corrected by OS MCA:
—1if error was not corrected by OS MCA and SAL must warm boot the system.
—2 if error was not corrected by OS MCA and SAL must cold boot the system.
=3 if error was not corrected by OS MCA and SAL must halt the system.
GR9= GP (Physical addressvalue) for SAL.
GR10=O0if return will be to the same context.
1if return will be to anew context.
GRs11-21 = Unspecified.

Machine Checks 4-17

GR22 =

GRs23-31=
PSR =
BRO =

intel.

Pointer to a structure containing new values of registersin the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values
in the Min-State Save area.

Unspecified.

Same as on entry from SAL_CHECK except that PSR.mc may be either O or 1.
Unspecified.

Machine Checks

intel.

Initialization Event 5

5.1

INIT isaninitialization event generated by the platform or by software through a SAPIC message.
The INIT event causes the processor to branch to the processor-dependent INIT handler
(PALE_INIT) in the Itanium architecture. The PALE_INIT saves minimum register state and
branchesto SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT).
The state of the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the
Intel® Itanium™ Architecture Software Devel oper’s Manual.

SAL_INIT

SAL_INIT isentered from PALE_INIT viaSALE_ENTRY. SAL_INIT’s purpose isto save the
state of the processor to the platform-specific Processor State Information (PSl) areaand either
invoke an operating system INIT handler (OS_INIT) if the same has been registered through a
SAL_SET VECTORScall, or warm boot the system otherwise. The SAL_SET_VECTORS
procedure permits the operating system to register separate entrypoints for the first processor
(monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs).

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will
cause a system-wide warm boot. Note that during the transition from PALE_RESET to
SAL_RESET viaSALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

e During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code
whereit may deposit some minimal processor state information so that PAL code has sufficient
resources to perform the necessary machine check or INIT processing. This step is performed
on al the processors on the system.

SAL_INIT savesthe minimal processor state information as well as some additional processor
and platform state information in the SAL data area and provides the sameto OS_INIT.
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

Check if the OS_INIT handlers for the monarch and non-monarch processors are registered
and that both of them are valid. When the OS_INIT procedures were registered with the SAL,
the operating system may optionally supply the modulo checksum for the code areas (all bytes
of the code areaincluding the checksum byte must add up to zero). The SAL saves the
checksumsfor the code areas. On receipt of the INIT condition, the SAL verifiesthe checksum
of the code at the OS_INIT procedure addresses before jumping to it.

If the code for the OS_INIT handlersareintact, call the OS_INIT handlersfor the monarch and
non-monarch processors.

If the OS_INIT handler is not registered, set implementati on-dependent SAL warm boot
indicator and reboot the system either by calling SAL_RESET or by generating areset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT
processor state islogged at least. Thereis neither a requirement nor away to clear apending INIT
condition.

5-1

intel.

On some PC-AT platforms, the platform provides a switch that can generate an NM| signal and this
isused by | A-32 operating systems to effect a crash dump on a hung system. On Itanium-based
systems, asimilar function will be performed by an INIT switch asthe NMI signal is masked by the
PSR.i bit of the processor. If SAL_INIT gains control due to the platform’s INIT switch while an

| A-32 operating system is executing, the SAL_INIT layer shall send an SAPIC IPl message to the
same processor with the interrupt type of NMI and then return to the interrupted context using the
PAL_MC_RESUME procedure.

Figure 5-1 shows a possible flow of control through SAL_INIT.

Figure 5-1. SAL_INIT Control Flow

INIT Event ——»{ PAL_INIT

A 4

SAL_INIT

Write processor/
platform info to save
area

!

OS_INIT CrashDump
procedures Switch
valid? & 1A-32 0S?
No
A
Inject NMI IPI into
OS_INIT
- IA-32 OS
Y
Warm Boot Return value
from OS
Return to
Interrupted
SAL implementation- P Context

specific warm boot
(SAL_RESET or reset Y
event) PAL_MC_RESUME

000938a

5.2

5-2

OS_INIT

OS_INIT isan entrypoint into the operating system to deal with theinitialization event. The exact
definition of OS_INIT functionality is OS dependent. SAL_SET VECTORS s called by the
operating system prior to theinitialization event to register the physical addresses and the GP of the
OS_INIT handlers for the monarch and non-monarch processors. If an operating system intends to
make the monarch selection in the operating system layer, it could register the same OS_INIT

Initialization Event

5.3

entrypoint for both the monarch and non-monarch processors. From the SAL's perspective, there
are no functionality differences between thetwo OS_INIT entrypoints and the hand off state from
the SAL tothe OS_INIT layer are similar.

Following are the typical SAL procedures that may be invoked by the OS _INIT handler:
« SAL_MC_RENDEZ.
- SAL_GET_STATE_INFO.
e SAL_GET_STATE_INFO_SIZE.
« SAL_CLEAR_STATE_INFO.

When the OS_INIT layer iscaled by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO
to get processor/platform state. When it has finished thistask, it must call
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. The
OS_INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0.

The OS _INIT handler shall return to the SAL with an indication to effect awarm reset or areturn to
theinterrupted context. The OS_INIT may set new valuesfor registersthat are saved by PAL inthe
Min-State Save area. Thisis achieved by constructing a data structure with the format identical to
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME
procedure. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for the layout
of this structure.

OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the operating system code,
OS_INIT. The contents of non-banked and bank zero general registers at the time of the
interruption have been saved by PAL in the Min-State Save area and these are available for use by
SAL and OS_INIT. The following register contents define the OS_INIT handoff state.

The state of the processor isthe same as on exiting PALE_INIT (refer to the Intel® Itanium™
Architecture Software Devel oper’s Manual) except as bel ow:

GR1= Physica address of the OS_INIT Global Pointer (GP) registered by the operating
system (the operating system’s gp).
GRs2-7=Unspecified.
GR8=Physica address of the PAL_PROC entrypoint.
GR9 = Physical address of the SAL_PROC entrypoint.
GR10= GP vaue (Physical address) for SAL.
GR11= INIT reason code:
0= Received INIT signa on this processor for reasons other than machine check
rendezvous and CrashDump switch assertion.
1= Received INIT signal on this processor during machine check rendezvous.
2= Received INIT signa on this processor due to CrashDump switch assertion.
GR12 = Return addressto alocation within the SAL_INIT procedure.
GRs13-31= Refer to the Intel® Itanium™ Architecture Software Developer’s Manual.
BRO = Unspecified.

Initialization Event 5-3

5.4

5.5

5-4

Note:

intel.

Onentry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The operating
system must not make cacheable accesses to the MinState area, otherwise unexpected behavior
will occur.

System state Resources are:
e TLB —TCsand TRs are unchanged.
 Caches— Enabled, coherent and consistent in the absence of hardware failures.
* Memory — Unchanged, except for the updated Processor State Information (PSI) area.

Return from OS_INIT Procedure

When the OS_INIT procedure returns to the SAL, it must set appropriate values in the Min-State
Save area pointed to by GR22, for continuing execution at the interrupted or a new context. The
operating system must restore the processor state to the same as on entry to OS_INIT except as
follows:

GRs1-7=Unspecified.
GR8= 0if SAL must return to interrupted context using PAL_MC_RESUME.
—1if SAL must warm boot the system.
GR9= GP (Physica addressvalue) for SAL.
GR10=O0if return will be to the same context.
1if return will be to a new context.
GRs11-21 = Unspecified.
GR22 = Pointer to a structure containing new values of registersin the Min-State Save areg;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS _INIT must supply this parameter even if it does not change the register values
in the Min-State Save area.
GRs23-31= Unspecified.
PSR = Sameason entry from SAL_INIT except that PSR.mc may be either 0 or 1.
BRO= Unspecified.

If OS_INIT requests SAL to reboot the system, it is SAL’sresponsibility to rendezvous al the

processors on the system and then select a BSP for further system initialization. If rebootingis
required while running an | A-32 operating system, SAL will use the currently selected BSP for
performing the rendezvous of the other processors.

MP INIT Support

There are afew situations when processors enter SAL_INIT in MP configurations which deserve
specific mention.

* |f aprocessor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch
and non-monarch processors or their checksums are incorrect, then the processor will reset the
system (warm boot). In the MP environment, the processor performing the reset shall reset the
system, not just itself.

Initialization Event

intel.

Platform Management Interruptions

6

Platform Management Interruptions (PMIs) provide an operating system-independent interrupt

mechanism to support OEM and vendor-specific hardware events.

6.1 SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state

in interruption resources and then callsthe SALE_PMI handler. SALE_PMI shall return to the

PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with

delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain
processor-specific events may also cause PMI interrupts. These are handled entirely within the
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® Itanium™
Architecture Software Developer’s Manual for details regarding PALE_PMI processing.

PMI isthe highest priority external interrupt and it ranks after Reset, Machine Check and INIT in
terms of priority. PMI is masked by setting the PSR.ic bit to O (interrupt collection disabled). The

PSR.i bit (interrupt enable) has no effect on masking of PMI events.

Unlike the System Management Interrupt (SMI) on 1A32 systems, the operating system can mask

PMIs by setting PSR.ic bit to O (interrupt collection disabled). Also, PMI interrupt processing

causes execution of PALE_PMI code before entering the SALE_PMI code. To minimize latency in
entering code in the SALE_PMI layer, the operating system must avoid operating with PSR.ic bit
set to O for long durations. Otherwise, some software in the SALE_PMI layer may fail. Note that
some real time applications may have more stringent timing restrictions as regards operating with

interrupt collection disabled.

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It
also causes specid problems if multiple SAPIC messages of PMI delivery type are targeted to the

same destination processor (see Section 6.4).

One method of software entry into the PMI environment isto send a SAPIC message to the same

processor. Such a SAPIC message must use the interrupt vector value in the range reserved for

SAL.

6.2 SALE_PMI Initialization

During power up, SAL copiesthe SALE_PMI handler to memory and then invokes the PAL
procedure PAL_PMI_ENTRY POINT to set the programmable entrypoint of the SALE_PMI
procedure. In an MP environment, this step must be performed on all the processors. The
SALE_PMI entrypoint can be different for various processors in an MP configuration.

6-1

6.3

6.4

6-2

SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from
SALE_PMI to PALE_PMI are fully documented in the Intel® Itanium™ Architecture Software
Developer’s Manual.

SALE_PMI isentered in physical mode with PSR.i and PSR.ic bits set to O (interrupt and interrupt
collection bits disabled). SALE_PMI executes in the Itanium processor system environment
regardless of the current processor state. The processing steps for various PMI events within the
SAL layer are platform and SAL implementation-dependent. At the end of processing the PMI,
SALE_PMI returnsto PALE_PMI using branch register BO. Thereis neither a requirement nor a
way to clear apending PMI interrupt.

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor
simultaneously. In this situation, only one PMI interrupt will be recognized. Thisis analogousto
sending edge triggered external interrupts using the same interrupt vector. To guard against |oss of
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for
the PMI using memory data structures.

Special Considerations for Multiprocessor
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with
delivery type of PMI. In an MP configuration, there could be conflicts between PMI and machine
check. One of the processors could bein SAL_CHECK, trying to bring other processorsto
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. |f thelatter werein SALE_PMI,
the MC_rendezvous external interrupt would not be recognized immediately and this might
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since
recoverability from INIT is minimized when PSR.icis 0, it is recommended that SALE_PMI
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.

Platform Management Interruptions

intel.

|A-32

Support (Optional) 7

7.1

7.2

7.2.1

IA-32 Support Model

This chapter describes the optional |A-32 support within SAL during the booting process.
Additionally, it provides some guidelines on the choice of 1A-32 instructionsto SAL developers
who plan to re-use existing 1A-32 BIOS code.

For details on 1A-32 instruction execution on Itanium processors, refer to Volume 1, Chapter 6 and
Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Devel oper’s Manual.

1A-32 support code in SAL cannot be used after an operating system (IA-32 operating system or
Itanium-based operating system) hastaken control of the trandation resources. Most Itanium-based
operating systems will provide their own | A-32 support code and not use the code in SAL. If the
user boots an |A-32 operating system, SAL would have invoked the PAL_ENTER_|A_32 ENV
procedure which activates the PAL layer in support of 1A-32 operating systems and this PAL
firmware layer configures the processor to behave like a Penti um® 111 processor, obviating the need
for SAL's 1A-32 support code. For more details, refer to Volume 4, Chapter 8 of the Intel®
Itanium™ Architecture Software Devel oper’s Manual.

During the platform initialization phase of the boot sequence, the IVA may pointtoa32 KB IVT in
the firmware address space. Some of the trap handlersin the IVT could support execution of 1A-32
code. Thus, it is possible to execute A-32 code early in the boot sequence, if needed. Refer to
Chapter 3, for fault/trap handler support requirementsin SAL.

IA-32 Support Requirements

Itanium-based platforms may contain one or more 1 A-32 adapter cards containing 1A-32 Option
ROMs. If the adapter cards support boot devices, they will need to be initialized in the process of
booting the operating system. The | A-32 support codein SAL will be exercised while executing the
1A-32 code. Also, since SAL contains | A-32 support code for execution of the | A-32 Option cards,
aportion of the SAL layer for Itanium-based platforms may itself be coded in 1A-32 ISA (i.e. the
traditional 1A-32 System ROM BIOS may be reused).

Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility.
e PC-AT Memory map:

* Interrupt vector area 0 — Ox3FF: Contains entrypoints for software interruptsin
offset:segment format.

* BIOS RAM data area 0x400 — Ox4FF: Data variables stored by System BIOS and Option
ROMs.

7-1

7.2.2

7.2.3

7-2

intel.

» Option ROM space: 0x000C_0000 — 0x000D_FFFF.

* PC-AT compatibility entrypoints: Addressesin the 0xO00F_EOQO to OxO00F _FFFF range
pointing to entrypoints and tables.

It is expected that SAL code would be designed to use identical virtual-to-physical memory
mappings and not conflict with the |A-32 BIOS memory usage.

* PC-AT 1/0O map: Motherboard 1/0 ports are in the range of 00 to OxFF and other 1A-32 devices
occupy therest of the 64K 1/0O space. The most important /O ports used by BIOS code are
Interrupt controller (0x20, 0x21, 0XAO, OxA1), Interval timer (0x40 to 0x43) and CMOS RAM
(0x70, 0x71).

Overview of IA-32 Support Layer Functionality

IA-32 support layer ismainly required for the following areas:

* Memory mapped |/O: The processor needs to provide the uncacheable semantics for memory
mapped I/0 to devices such as VGA buffer. Also, the search for memory mapped devices need
to be performed without caching artifacts. Caches within the processor are enabled by
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the
uncacheable memory attribute required for 1/0 completion is specified by setting bit 63 of the
memory address, in physical addressing mode. Bit 63 of the physical address has no effect
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call.

Since it is not possible to generate an address with bit 63 set while operating in the 32-bit
IA-32 1SA mode, | A-32 code needs to be executed with translations enabled and TLBs need to
specify the uncacheable memory attribute. TLBs provide the same functionality as MTRRs on
a Pentium Pro processor.

Handle traps during | A-32 code execution.

Virtualizing PC-AT peripherals: If some legacy devices are not present on the platform, SAL
may provide the necessary virtualization during 1A-32 code execution by setting up TLBsto
trap the accesses.

IA-32 Instruction Usage Guidelines

|A-32 System BIOS code executing within the SAL environment must follow these guidelinesin its
usage of 1A-32 instructions, in order to limit SAL’s 1 A-32 support requirements. These restrictions
do not affect operation of existing | A-32 Option ROMs which are restricted to operating in 1A-32
real mode. Option ROM code on PC-AT compatible platforms are already compliant with the
following guidelines:

* |A-32 code shall not use protected mode instructions of the|A-32 1SA. Only real mode and big
real mode opcodes are permitted. The transitions between real mode and big real mode will
occur using the SAL code that sets up the appropriate | A-32 segment descriptors, and not by
use of the lA-32 LGDT instruction. The traditional 1A-32 BIOS functions requiring protected
mode usage, such as search for PCI Option ROMs near 4 GB address, can be done easily using
the big real mode or in the Itanium processor system environment. SAL will provide support
the Extended Memory Movefunction (IA-32 INT 0x15, sub function 0x87) for moving datato
and from addresses above 1 MB.

* |A-32 code shal not alter the following bits of EFLAGS: TF, NT, RF, AC.

IA-32 Support (Optional)

1A-32 code shall not use codeinvolving | A-32 privileged instructions such asLGDT, RDM SR,
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent Itanium
instructions. Refer to the Intel® Itanium™ Architecture Software Devel oper’s Manual for a
complete list of instructions that cause the | A-32 Instruction | ntercepts.

SAL shall provide necessary emulation support for the following instructions:

e CLI, CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS,
POPF, POPFD, STI, WBINVD.

1A-32 code shall not use code involving |A-32 Call Gates.

1A-32 stack must be aligned on an even byte boundary. The | A-32 support layer in SAL will
need to retrieve or store values into the | A-32 stack in order to emulate instructions such as
INT, IRET. If the |A-32 stack is aligned on an odd byte boundary, an unaligned data reference
fault will result and SAL does not provide a handler for this exception.

The above restrictions are not applicable when the operating system kernel takes over. Thus, an
1A-32 or Itanium-based operating system may set up the environment for |A-32 protected mode
and invoke protected mode functions of 1A-32 BIOS.

7.2.4 IA-

32 Support Environment

This section describes the execution environment for 1A-32 code.

1

IA-32 BIOS code will be executed with Instruction translation on, Data translation on and
RSE trandation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to
mask exceptions caused by unaligned memory references during execution of 1A-32 code.

The following traps will be supported in the Interrupt Vector Table (IVT) for supporting
|A-32 execution:

* 1A-32_Exception vector.
¢ 1A-32_Intercept vector.
¢ 1A-32_ Interrupt vector.
« External interrupt vector.

SAL will set up CFLG register which mapsto the 1A-32 system registers CRO and CRA4.
When SAL procedures are called by the operating system loader, SAL will set up the
appropriate value in the CFLG register, if transition to |A-32 ISA modeis required.

The CFLG.io bit will be set to 0 to eliminate the need for Task State Segment (TSS) while
executing |A-32 code. |A-32 EFLAG.iopl field should be set to 3 to permit 1A-321/0
instructions without causing any traps. IOBASE register and translation mechanisms within
the processor will be set up to automatically convert the 1A-32 /O accesses to Itanium
instructions for memory load or store operations with the uncacheable memory attribute. If
some legacy devices are not present on the platform, TLBs may be set up to trap the accesses
and SAL can either redirect the 1/0 to a different hardware on the platform or provide
suitable software emulation.

The PSR.i bit may be set to 1 to enable interruptsin the |tanium-based system environment
and the CFLG.if bit may be set to 1 to allow | A-32 code to control interrupt masking. With
these settings, the |A-32 EFLAG.if bit will enable or disable externa interrupts while
executing |A-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the
[tanium instruction set.

IA-32 Support (Optional) 7-3

intel.

6. The CFLG.ii bit may be set to 0if thereis no need to intercept changes to interrupt enable
flag.

7.2.5 IA-32 Interruption Handler Support

External interrupts, |A-32 defined exceptions and software interrupts are delivered to the
interruption handlersin the Itanium processor system environment. All interruption handlers may
run with PSR.dt, PSR.rt turned off to avoid the Nested TL B fault that can occur while accessing the
fault handler’slocal variables and data structures. SAL will popul ate the following handlersin the
IVT to handle interruption in its environment:

* |A-32_Exception vector: This handler will handle exceptions caused by 1A-32 instructions
such as Divide by zero fault. These interruptions should not occur while executing debugged
|A-32 BIOS code. The exception should be reflected to | A-32 code using the |A-32 real mode
Interrupt Descriptor Table (IDT) at locations 0 to Ox3FF. Typically, |A-32 codein the IDT will
display an error message when such exceptions are encountered.

* |A-32_Intercept vector: Thishandler will handle several categories of intercepted instructions
as described in the Intel® Itanium™ Architecture Software Developer’s Manual.

* Instruction Intercept: Refer to Section 7.2.3 for alist of the |A-32 instructions that must be
emulated by SAL.

Lock Intercept: Thisinterruption handler will be invoked for the LOCK and the XCHG
instructions. Thisintercept can be avoided by enabling the lock feature in the Itanium
processor’s Default Control Register (DCR.Ic = 0), if the platform can support locked read
modified writes. If the platform does not support the bus lock signal,

PAL_BUS SET_FEATURES may be invoked to execute the locked transactions as a
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the
Intel® Itanium™ Architecture Software Devel oper’s Manual for details.

» Gateintercept: Support is not needed for trapping privilege transitions using gates. |A-32
System BIOS code shall avoid thisintercept and Option ROM code is not permitted to use
privilege transitions using gates.

* |A-32 System Flag intercept: This intercept can be avoided for the STI, CLI, POPF and
POPFD instructions by setting CFLG.if bit to 1, which allows the | A-32 code to control
interrupt masking with the 1A-32 EFLAG.if bit. To support the MOV SS and the POP SS
instructions, SAL shall disable interrupts and execute the next | A-32 instruction with the
PSR.ss set to 1. Thiswill generate an |A-32_Exception (Debug). The handler for this
exception will restore the previous value of PSR.i and return to the |A-32 code.

* |A-32_Interrupt vector: This handler supportsthe IA-32 INT instruction. SAL will provide the
necessary emulation support for the Extended Memory Move function (INT 0x15, subvention
0x87) in order that real mode code may move data to and from addresses over 1M B without
requiring atransition to the Itanium processor system environment. The rest of the INT
instructions will be emulated by jumping to the address pointed to by the | A-32 real mode
IDT. Following is an example of pseudo code:

» Get the Software interrupt number nn from | SR.vector.

* Use nn asanindex into the |A-32 real mode Interrupt Descriptor Table at location
0000h and obtainthesegment : of f set of 1A-32 code to be invoked.

 Storethetwo byte FLAGS on |A-32 stack.

7-4 IA-32 Support (Optional)

« Storethe segnent : of f set addressof the|A-32 instruction following the | NT nn
on |A-32 stack. Storethe 1A-32 segnent : of f set addressesin the appropriate
Itanium processor registers corresponding to |P, CS selector, CS segment descriptor and
transition to IA-32 code using RFI instruction.

e ThelA-32 code will terminate by issuing an IRET or a RET 2 instruction and this will
return to the 1A-32 instruction following the | NT nn.

« External interrupt vector: Hardware interrupts will be received by SAL in the Itanium
processor system environment which will obtain the interrupt vector corresponding to the
interrupting source. For more details, refer to Section 3.3.1. If the interrupts need to be
reflected to | A-32 code, the address will be derived from the |A-32 Interrupt Descriptor Table.

IA-32 Support (Optional) 7-5

7-6

IA-32 Support (Optional)

Calling Conventions 8

8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions.

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

Table 8-1. Definition of Terms

Term Description

Entry Start of the first instruction of the SAL procedure.

Exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it must
be the same as the value at entry.

Unchanged The SAL procedure must not change these values from their entry values during execution of
the procedure.

Scratch There are no requirements on the state of these values during execution of the procedure.
The SAL procedure may modify them as necessary during execution of the procedure.

Preserved The SAL procedure may modify these values as necessary during execution of the
procedure. However, they must be restored to their entry values prior to exit from the
procedure.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit
from a SAL procedure call. The operating system loader must follow the state requirements for
PSR shown below. SAL callsthat invoke PAL procedures may impose additional requirements.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class
be Big-endian memory access enable 0 0 Preserved
up User performance monitor enable C C Unchanged
ac Alignment check C C Preserved
mfl Floating-point registers f2-f15 written C C Preserved
mfh Floating-point registers f16-f127 written C C Preserved

8-1

8-2

Table 8-2. State Requirements for PSR (Cont’d)

intel.

PSR Bit Description Entry Exit Class
ic Interruption state collection enable C Preserved?
0 Unchanged
i Interrupt unmask C C Preserved®
pk Protection key validation enable C Cc Unchanged
dt Data address translation enable C C Preserved?®
dfl Disabled FP register f2 to f15 C C Unchanged®
dfh Disabled FP register f16 to f127 C C Unchanged®
sp Secure performance monitors C C Unchanged
pp Privileged performance monitor enable C C Unchanged
di Disable ISA transition C C Preserved
si Secure interval timer C C Unchanged
db Debug breakpoint fault enable C C Unchanged
Ip Lower-privilege transfer trap enable C C Unchanged
tb Taken branch trap enable C C Unchanged
rt Register stack translation enable C C Preserved?
cpl Current privilege level 0 0 Unchanged
is Instruction set 0 0 Preserved
mc Machine check abort mask C C Preserved?
1 1 Unchanged
it Instruction address translation enable C C Unchanged
id Instruction debug fault disable C C Unchanged
da Disable Data access/dirty-bit faults 0 0 Unchanged
dd Data debug fault disable 0 0 Unchanged
Ss Single step trap enable 0 0 Unchanged
ri Restart instruction 0 0 Preserved
ed Exception deferral 0 0 Preserved
bn Register bank 1 1 Preserved
ia Disable instruction access-bit faults 0 0 Unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as unchanged.

b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. If this bit is 1 on entry, a Disabled FP-register vector fault may occur.

d. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the value on exit
shall be 1 and must be classified as unchanged.

Calling Conventions

intel.

8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class
DCR Default Control Register Unchanged
I™ Interval Timer Match Register Unchanged
IVA Interruption Vector Address Unchanged
PTA Page Table Address Unchanged
GPTA Reserved IA-32 Resource Unchanged
IPSR Interruption Processor Status Register Scratch
ISR Interruption Status Register Unchanged?
P Interruption Instruction Bundle Pointer Unchanged?
IFA Interruption Faulting Address Unchanged?
ITIR Interruption TLB Insertion Register Unchanged?
IIPA Interruption Instruction Previous Address Unchanged?
IFS Interruption Function State Unchanged?
IIM Interruption Immediate Register Unchanged?
IHA Interruption Hash Address Unchanged?
LID Local Interrupt ID Unchanged
IVR Interrupt Vector Register (read only) Unchanged
TPR Task Priority Register Unchanged
EOI End of Interrupt Unchanged
IRRO-IRR3 Interrupt Request Registers 0-3 (read only) Unchanged?
ITV Interval Timer Vector Unchanged
PMV Performance Monitoring Vector Unchanged
CMCV Corrected Machine Check Vector Unchanged
LRRO-LRR1 Local Redirection Registers 0-1 Unchanged
RR Region Registers Preserved
PKR Protection Key Registers Unchanged
TR Translation Registers Unchangedb
TC Translation Cache Scratch
IBR/DBR Break Point Registers Preserved
PMC Performance Monitor Control Registers Preserved
PMD Performance Monitor Data Registers Unchanged®

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may cause them to

change.

b. If an implementation provides a means to read TRs through a PAL procedure call, this should be preserved.
c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance
monitor events during a procedure call.

Calling Conventions

8-3

8.1.4

General Registers

SAL will use the standard calling convention as described in the Itanium™ Software Conventions
and Runtime Architecture Guide. Routines written using this convention may be written either in
assembly or C or other high level languages.

Table 8-4. General Registers — Standard Calling Conventions

8.1.5

8.1.6

8-4

Register Conventions
GRO Always 0.
GR1 Special; global data pointer (gp).
GR2 -GR3 Scratch; used with 22 bit immediate add.
GR4 - GR7 Preserved.
GR8 - GR11 Scratch, procedure return value.
GR12 Special, stack pointer. preserved.
GR13 Special, thread pointer. preserved.
GR14 - GR31 Scratch.
Bank 0 Registers Preserved.
(GR16 — GR23)
Bank 0 Registers Scratch.

(GR 24 — GR31)

GR32 - GR127

Stacked registers:

in0 — in95: input arguments (SAL index must be in0)
locO — loc95: local variables
out0 — out95: output arguments

The GP for the SAL code should be known to system software as SAL passes it as one of the boot
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum
16 KB bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB
bytes of RSE backing store must be available for SAL.

Floating-point Registers

Although thereisno SAL procedure that passes floating-point parameters, the floating-point
register conventions are the similar to those specified by the [tanium™ Software Conventions and
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus
eliminating the need for the operating system to save these registers across SAL procedure calls.
All the pending floating-point exceptions must be handled before calling SAL if the execution
environment for calling SAL cannot handle any floating-point exceptions.

Predicate Registers

The conventions for these registers follow the Itanium™ Software Conventions and Runtime
Architecture Guide.

Calling Conventions

8.1.7

8.1.8

8.1.9

8.2

Branch Registers

The conventions for these registers follows the Itanium™ Software Conventions and Runtime
Architecture Guide.

Application Special Registers

The application registers follow the Itanium™ Software Conventions and Runtime Architecture
Guide.

Parameter Buffers

The parameter buffersto SAL_PROC must be aligned to the greater of its data type size or 8-byte
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of
the parameter buffers depends on the execution environment of the caller. The following
conventions are followed for the parameter buffers:

¢ Until the operating system takes over the IVT and translation faults, parameter buffers passed
to SAL areidentity mapped virtual addresses and are accessible by the region register 0 (RRO).
In this environment, SAL can handle the access faults while accessing parameter buffersif the
buffers areidentity mapped.

« Parameter buffers passed to SAL runtime services can be either physical or virtual. If the
parameter buffers are virtual, the operating system runtime execution environment must
provide the proper mapping for the parameter buffers.

Software Interface Conventions for SAL Procedures

A generic interface is provided between the Itanium-based operating system and SAL. An
Itanium-based operating system always follows the standard calling convention to call SAL
functions. The parameters passed to the SAL interface are defined as follows:

SAL_PROC(arg0, argl, ..., arg7)
Where, input parameters (maximum of eight 64-bit values) are:

arg0 —functional identifier. Currently the upper 32 bits are ignored and only the lower 32 bits
are used. The following functional identifiers are defined:

OXOLXXXXXX — Architected SAL functional group.

OX02X XX XXX to OXO3XXXXXX —OEM SAL functiona group. Each OEM is allowed to
use the entire range in the Ox02X XX XXX to 0x03XX XX XX range.

OX04XXXXXX to OXFFFFFFFF — Reserved.
argl —thefirst parameter of the architected/OEM specific SAL functions.
arg2 to arg7 — additional parameters for architected/OEM specific SAL functions.
and return parameters (maximum of four 64-bit values) are:
retO — return status: positive number indicates successful, negative number indicates failure.
retl to ret3 — other return parameters.

Calling Conventions 8-5

8.2.1

Control Flow of the SAL Interface

The operating system |loader follows the standard calling convention to call both architected and
OEM specific SAL functions. The operating system loader sets up the appropriate parametersin the
Itanium processor’s general registers according to the calling convention and calls SAL_PROC.
Thefirst parameter passed to SAL_PROC specifies the functional identifier and based on the
functional identifier, SAL dispatches the function to the appropriate functional block. Figure 8-1
shows the control flow of the SAL interface.

Figure 8-1. Control Flow of the SAL Procedure Interface

8.2.2

8.2.2.1

8-6

C OS/Loader)

SAL-defined interface: Set up
parameters in registers
(arg0...arg7) according to
standard calling convention:
arg0 — Function ID

argl to arg7 — parameters

'

’ SAL_PROC (arg0...arg7) ‘

A e

’ Architected SAL Functions ‘ ’ OEM SAL Functions

001079

Calling Architected/OEM SAL Functions

To cal an architected or OEM specific SAL function, the operating system loader sets up arg0 to
the appropriate architected SAL or OEM specific SAL functional identifier. It then sets up other
parametersin argl to arg7 as specified by the SAL functional description and calls SAL_PROC.
All reserved arguments shall contain the value of 0 else SAL shall return to the caller with the
status of “Invalid argument”. SAL_PROC dispatches this function to either the architected SAL
function handler or the OEM specific SAL function handler based on the functiona identifier. The
SAL function returns the statusin retO and the additiona return parametersin retl to ret3. If the
SAL function is not implemented, the SAL shall return with the Not Implemented return status.

SAL Return Status Value

SAL procedures return a 64-bit status value in ther et 0 parameter. Positive numbers indicate
success and negative numbers indicate failure. Table 8-5 summarizes the error code.

Calling Conventions

intel.

Table 8-5. SAL Return Status

Register Conventions
0 Call completed without error.
1 Call completed without error but some information was lost due to overflow.
2 Call completed without error; effect a warm boot of the system to complete the update.
3 More information is available for retrieval.
-1 Not implemented.
-2 Invalid Argument.
-3 Call completed with error due to hardware malfunction or firmware error.
-4 Virtual address not registered.
-5 No information available.
-9 Scratch buffer required.

Calling Conventions

Calling Conventions

intel.

SAL Procedures 9

9.1

SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the operating
system when it is executing. These services provide a platform-independent interface for hardware
components. Runtime services contain procedures called by the operating system to access
platform hardware features on behalf of the operating system. Runtime services should take no
more time to perform an action than it would take the operating system to perform the same action.

The entire SAL runtime services code must be located in one contiguous memory area. Similarly,
the SAL runtime services data area must be located in one contiguous memory area.

SAL runtime services are called from the following execution environment:

« Operating system runtime execution environment. The normal operating system execution
environment iswith trandlation on and interrupts enabled but the operating system may choose
to call SAL runtime servicesin physical mode.

 Operating system machine check and initialization handler. The execution environment for
these are provided by SAL and are in physical mode with interrupts disabled.

e SAL PMI handler. The execution environment isin physical mode with interrupts disabled.

Thefollowing general rules govern the operational characteristics of the SAL procedures:
e SAL runsin privilege level 0 and will return an error if called from other privilege levels.
» SAL runslittle endian.

« SAL procedures follow the standard calling convention for the Itanium processors. The SAL
runtime services shall be implemented completely in the Itanium processor system
environment.

* Some SAL procedures are primarily intended for use during OS initialization and designed to
be called on one processor. These are not required to be re-entrant. Some SAL procedures are
required to be called on multiple processors simultaneously. These are required to be M P-safe
but need not be re-entrant. Some SAL procedures may be re-invoked on the same processor,
e.g., theinvocation of the SAL_GET_STATE_INFO procedure for a CPE event may be
interrupted by the invocation of the same procedure for an MCA event on the same processor.
Such procedures need to be re-entrant as well as MP-safe. These requirements are specified in
Table 9.3. For the proceduresthat are not re-entrant, the operating system isrequired to enforce
single threaded access.

The operating system must ensure that SAL procedures run to completion on the same
processor, i.e. the SAL procedure cannot migrate to another processor due to OS context
switching.

Architected SAL runtime procedures are called either in virtua or physical mode under the
operating system execution environment. OEM specific SAL Runtime procedures may not
support both virtual and physical modes of operation.

All SAL procedures that don't return the status of unimplemented procedure (—1), must be
implemented.

9-1

9.11

9.1.2

9-2

Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal operating
system execution environment is with translation on and interrupts enabled but operating system
may choose to call SAL runtime servicesin physical mode.

The parameters passed to SAL runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the gp register must contain the physical or
virtual address of the SAL’s gp value provided to the operating system in the Entrypoint Descriptor
(refer to Table 3-4). SAL can compute the addresses of code and data objects within SAL using
offsetsrelativeto thei p and gp. In other words, SAL code will be position independent.

The hand-off state from the EFI to the operating system loader will indicate the SAL’s requirements
for virtual address mappings. (Refer to the EFl Specification for details). In an MP configuration,
the virtual addresses registered by the operating system must be valid globally on all the processors
in the system. The EFI Specification also provides the interfaces for the operating system to register
the virtual address mappings. Sometypical requirementsfor virtual address mappings are described
below:

1. Thecodeand dataareas of PAL and SAL in memory must be mapped contiguously in virtual
address space.

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures in memory. Prior to invoking the SAL proceduresin virtual mode, the operating
system must register the virtual address of the PAL code space in memory. If SAL needsto
invoke a PAL procedure, SAL shall do so in the same mode in which it was called by the
operating system (i.e. without changing the PSR.dt, PSR.rt and PSR.it bits). While invoking
these SAL procedures, the operating system must provide the appropriate trandlation
resources required by PAL (i.e. ITR and DTC covering the PAL code areq).

3. The SAL_UPDATE_PAL procedure will invoke some PAL proceduresin the firmware
address space. The operating system must register the virtual address of the firmware
address space (ending at 4 GB). The operating system must provide a contiguous virtual
address mapping for the entire firmware address space. If the SAL_UPDATE_PAL
procedureiscaled in the virtual mode, SAL will compute the virtual addresses of the
relevant PAL proceduresin the firmware address space and invoke them in the virtual
addressing mode.

4. The operating system shall register the virtual addresses of the Firmware Reserved Memory
if requested by the SAL (refer to Table 3-5). Such registration must be done prior to making

SAL callsin virtual mode and the operating system must provide a contiguous virtual
address mapping for each of the data areas.

Access to Resources not Supported by the Operating
System

In order to access resources for which the operating system does not provide the mapping, SAL
runtime services will access the platform resources in physical addressing mode. Thiswill be done
by disabling the interrupts and turning the data trandation off before accessing the platform
resources. SAL will restore the state of the data trandation and interrupt enable bitsin the PSR after
accessing the device. Thefollowing is a suggested code sequence:

nov r2=psr. | //Save current PSR, low 32 bits
rsm (1<<14) | (1<<17) [/MNask Interrupt (PSR bit 14) and
//disable data translation (PSR bit 17)

SAL Procedures

9.2

/1 End of instruction group
//Serialize

/1 End of instruction group
//Performload/store to platformspecific
/I devi ce usi ng physi cal address

| Ensur e pl atform accept ance

/1 End of instruction group

/I Restore original PSR low 32 bits
/1 End of instruction group
/lSerialize

/1 End of instruction group

The code sequence (from rsmto the second srlz.d) must exist in a single page of memory and the
tranglation for this code sequence must exist. The code sequence must not cause any NaT
consumption faults. All the memory accesses in this code sequence must be naturally aligned to
avoid unaligned datareference faults. If disabling of interrupt and data translation are done
separately, interrupts need to be disabled first and then the data trandlation. The code sequence may
not work if the datatranslation is disabled first followed by interrupt disabling. The restoring of the
processor state must be done in the reverse order. In general, interrupt and data translation should
be disabled to access the devices in physical mode and then interrupt and data translation must be

re-enabled as soon as possible.

The duration of interrupt and data translation disabled state should be kept at a minimum to
preclude impacting normal operating system functions.

SAL Procedures that Invoke PAL Procedures

Some of the SAL proceduresincorporate both processor and platform functionality. To perform the
processor functionality, these SAL procedures invoke the underlying PAL procedures. These
dependencies are listed in Table 9-1. The operating system is required to call the SAL procedures
instead of directly calling the PAL procedures.

Table 9-1. SAL Procedures Invoking PAL Procedures

SAL Procedure

PAL Procedure

SAL_CACHE_FLUSH

PAL_CACHE_FLUSH

SAL_CLEAR_STATE_INFO PAL_MC_CLEAR_LOG
SAL_GET_STATE_INFO PAL_MC_ERROR_INFO
Return to SAL at the end of OS_MCA, OS_INIT PAL_MC_RESUME

SAL Procedures

9-3

9.3

Table 9-2. SAL Procedures

9-4

SAL Procedure Summary

Function ID A Re-entrancy
Procedure Description R
(hex) Requirement

SAL_SET_VECTORS 0x01000000 Register software code None
locations with SAL.

SAL_GET_STATE_INFO 0x01000001 Return Machine State Yes
information obtained by SAL.

SAL_GET_STATE_INFO_SIZE 0x01000002 Obtain size of Machine State | Yes
information.

SAL_CLEAR_STATE_INFO 0x01000003 Clear Machine State Yes
information.

SAL_MC_RENDEZ 0x01000004 Cause the processor to go MP-safe
into a spin loop within SAL.

SAL_MC_SET_PARAMS 0x01000005 Register the machine check None
interface layer with SAL.

SAL_REGISTER_PHYSICAL_ADDR 0x01000006 Register the physical None
addresses of locations
needed by SAL.

SAL_CACHE_FLUSH 0x01000008 Flush the instruction or data MP-safe
caches.

SAL_CACHE_INIT 0x01000009 Initialize the instruction and MP-safe
data caches.

SAL_PCI_CONFIG_READ 0x01000010 Read from the PCI Yes
configuration space.

SAL_PCI_CONFIG_WRITE 0x01000011 Write to the PCI configuration | Yes
space.

SAL_FREQ_BASE 0x01000012 Return the base frequency of | MP-safe
the platform.

SAL_UPDATE_PAL 0x01000020 Update the contents of None
firmware blocks.

SAL Procedures

intel.

SAL_CACHE_FLUSH

SAL_CACHE_FLUSH

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

To flush the instruction or data caches on the current processor as well as the platform.

Standard. Callable by the operating system in virtual or physica mode.

Argument Description

func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures

i_or_d Unsigned 64-bit integer denoting type of cache flush operation:
1 = Flush instruction cache
2 = Flush data cache
3 = Flush instruction & data cache
4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_CACHE_FLUSH procedure

Reserved 0

Reserved 0

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

Flushes the instruction and/or data caches to memory from al levels of cache hierarchy, controlled
by the platform and the processor on which this procedure isinvoked. If the platform caches are
coherent with the memory hierarchy, the SAL implementation is not required to perform flushes of
such caches. If platform caches are node specific, this SAL procedure must be invoked on each
node.

Thei_or_d parameter specifies the instruction and/or data caches. Unified caches are flushed with
both instruction and data caches. This procedure has the effect of invalidating al instruction cache
lines, or causing awrite back and then invalidating all data cache lines.

With thei_or_d parameter value of 4, the caller specifies SAL to make the local instruction caches
coherent with the data caches. This has the effect of ensuring that the local instruction caches see
the effects of earlier stores of instruction code done by the local processor.

This SAL procedure invokes the corresponding PAL procedure, PAL_CACHE_FLUSH. Refer to
the Intel® Itanium™ Architecture Software Devel oper’s Manual for details. This PAL procedure
may return to SAL without completing the flush operation should there be an intervening interrupt.
The PAL procedure also returns the external interrupt vector as a return parameter. In order to
execute the associated external interrupt handler, SAL shal:

* Write to the EOI register (CR.e0i);
¢ Repost the interrupt by issuing an 1Pl message to self with the vector;
¢ Re-enableinterrupts; and

SAL Procedures 9-5

SAL_CACHE_FLUSH |nte| .

 On return from the external interrupt handler, re-invoke the PAL_CACHE_FLUSH procedure
specifying the continuation point for the cache flush.

If interrupts need to be handled on atimely basis, this SAL procedure must be invoked with
interrupts enabled, i.e. PSR.i setto 1.

This SAL procedure is required to be MP-safe to permit the operating system on the various
processors to invoke this SAL procedure simultaneously.

Platform
Requirements: None

9-6 SAL Procedures

intel.

SAL_CACHE_INIT

SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches on the platform.
Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.
Arguments: Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-3 Call completed with error
-4 Virtual address not registered

Initializes the instruction and data caches controlled by the platform only. The operating system is
required to invoke the PAL_CACHE_INIT procedure to initialize the instruction and data caches
within the processor. All cache lines will be invalidated without causing a write back.

If platform caches are node specific, this SAL procedure must be invoked on each node.

This SAL procedureis required to be MP-safe to permit the operating system on the various
processors to invoke this SAL procedure simultaneously.

Platform
Requirements: None

SAL Procedures

SAL_CLEAR_STATE_INFO I nt9| ®

SAL_CLEAR_STATE_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedure is used to invalidate the error record logged by SAL with respect to the machine
state at the time of MCAS, INITs, CMCs or Corrected Platform Error events.

Standard. Callable by the operating system in virtua or physical mode.

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:
0 — MCA event information
1 — INIT event information
2 — Processor CMC event information
3 — Corrected Platform event information
Other values are reserved
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
3 More Error Records of the type are available to be retrieved and cleared
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Thiscall will invalidate an error record that islogged by SAL for the specified event type. Once the
record has been invalidated, any subsequent callsto SAL_GET_STATE_INFO will get a—5 return
value (no information available). In an MP environment, processor record information pertains to
the processor on which this call is executed and the platform record information pertains to the
entire platform. By calling this procedure, the operating system indicates that the resources used by
the SAL to record the event are available for re-use.

If an MCA has been logged and the operating system fails to invalidate the record prior to another
MCA, then SAL may save the additional error records and would consider thisto be afatal
condition with ahalt or reboot of the system. This means that the error record information should
be read as part of the OS_MCA handler or the operating system boot loader and then followed by
an explicit clear operation.

SAL returns one error record at atime through the SAL_GET_STATE_INFO procedure. In certain
cases, SAL may have multiple pending error records, to beretrieved. A return status value of 3
from this call indicates that SAL can be called to get more error records. Unless the current error
record is cleared, further error records shall not be provided by the SAL.

Requirements: None

9-8

SAL Procedures

intel.

SAL_FREQ BASE

SAL_FREQ BASE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform
Requirements:

This call returns the base frequency of the platform and other clock related information.

Standard. Callable by the operating system in physica or virtual mode.

Argument Description

func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures

clock_type Unsigned 64-bit integer specifying the type of clock source:
0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional)
Other values are reserved

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_FREQ_BASE procedure

clock_freq Frequency information in ticks per second

drift_info Drift value in parts per million clock ticks (optional)

Reserved 0

Status Value Description

0 Call completed without error

-2 Invalid Argument

-3 Call completed with error

-4 Virtual address not registered

This procedure is a runtime interface to determine the platform clock frequencies and to facilitate
the operating system in selecting the most accurate clock source. Thiscall could, in turn, use the
services of PAL_FREQ BASE if the processor implementation provides an output that is used as
the platform clock.

This call isused in determining the frequencies of the processor, the front side bus and the interval
timer within the processor. First, the platform base clock frequency is determined by invoking this
SAL procedure with the clock _type value of 0. The clock_freq return parameter provides the
platform base clock frequency which is also the frequency of the clock input to the processor. The
next step isfor the operating system to invoke the PAL_FREQ RATIOS and this procedure
supplies the ratios of processor frequency, bus frequency and the interval timer frequency relative
to the clock input to the processor. The products of the clock _freq return parameter and the various
ratios provide the frequencies of the processor, the front side bus and the interval timer within the
processor.

This procedure must supply the correct value for the platform base clock frequency (clock_type of
0) and this value returned cannot be—1. Support for the other clock types and drift information is
optional. Thevaluein the clock freq and drift_info fieldsis set to -1 if the requested information is
not available.

Itanium-based platforms must provide mechanisms to determine the base frequency of the
platform.

SAL Procedures 9-9

SAL_GET_STATE_INFO int9| ®

SAL_GET_STATE_INFO

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Provide a programmatic interface to the processor and platform information logged by SAL with
respect to the machine state at the time of the MCASs, INITs, CMCs or Corrected Platform events.

Standard. Callable by the operating system in virtua or physical mode.

Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:
0 — MCA event information
1 — INIT event information
2 — Processor CMC event information
3 — Corrected Platform Event information
Other values are reserved
Reserved 0
memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered
-5 No information available

This procedure enabl es the operating system (and diagnostic software) to gather information
obtained by SAL with respect to the machine state at the time of MCAS, INITs, Processor CMCs or
Corrected Platform events.

Thiscall will return any information logged by SAL for the specified event type. In response to the
MCA, Processor CMC or Corrected Platform event, the operating system must call this procedure
to obtain all the pending processor and platform error information that triggered the event.

The operating system is expected to call this procedure to retrieve the error record related to an
event. The operating system may retrieve the same information multiple times prior to clearing the
record. The record is cleared by the operating system calling SAL_CLEAR_STATE_INFO. Once
all the records have been cleared, any subsequent calls will get a—5 return value (no information
available). The operating system must be prepared to handle the -5 return value. In the case of
multiple pending error records of the same type, the operating system has to get and clear the
current record before it can get the next one.

The maximum length of the buffer required to hold the requested record information is obtained by
calling the SAL_GET_STATE_INFO_SIZE procedure. The operating system is expected to
alocate the memory buffer according to the returned size and provide the same for the memaddr
argument. SAL returns only one error record at atime in the memory buffer area provided by the

SAL Procedures

Platform

SAL_GET_STATE_INFO

memaddr argument. SAL may indicate the existence of more than one error record through an
appropriate return status during the call to the SAL_CLEAR_STATE_INFO procedure.

In an MP environment, processor record information pertains to the processor on which thiscal is
executed and the platform record information pertains to the platform. The information returned in
the memaddr argument will contain the error information logged for an event for all the error
deviceslike the called processor, memory controller, and 1/0 devices (including host bridges) in the
system. The exact format of the records will be implementation dependent but the record for each
type of devicewill follow an architected structure to allow the operating system to parse the records
and extract the information. Refer to Appendix B, “Error Record Structures’ for format of the error
record information returned in the memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedure is
invoked for CMC information on a particular processor, SAL will obtain al of the processor error
information, by invoking the PAL_MC_ERROR_INFO procedure. This procedure will then return
to the caller both the information buffered by SAL and the information collected from the PAL.

If an MCA has been logged and the operating system fails to clear thelog prior to another MCA,
then SAL may save the additional error records and would consider thisto be afata condition with
ahalt or reboot of the system. Hence, the MCA log information should be read as part of the
OS_MCA handler or the operating system boot loader. On the other hand, if a CMC occurs prior to
the operating system clearing the CMC error log, the same shall not be fatal. If SAL'sinternal
buffers are not sufficient to log multiple errors of the same type, SAL shall discard the error logs for
the latter occurrences.

An error record for an MCA event shall be available across reboots if the operating system has not
cleared it aready. SAL shall have an implementation specific NVM storage for backing up the
MCA error records. The SAL isnot required tolog CMC or CPE error records to the NVM storage.
An operating system is expected to retrieve and clear all pending error records during system boot
time. If the operating system fails to clear the log before another MCA surfaces, the SAL may
overwrite the unconsumed NV M log, if thereis not space for another record.

Requirements: None

SAL Procedures 9-11

SAL_GET_STATE_INFO_SIZE

intel.

SAL_GET_STATE_INFO_SIZE

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

This procedureis used to obtain the maximum size of the information that could be logged by SAL
with respect to the machine state at the time of MCAs, INITs or CMCs.

Standard. Callable by the operating system in virtua or physical mode.

Argument Description
func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL procedures.
type The type of information being requested:
0 — MCA event information
1 - INIT event information
2 — Processor CMC event information
3 — Corrected Platform Event information
Other values are reserved
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description

status
size
Reserved
Reserved

Status Value

Return status of SAL_GET_STATE_INFO_SIZE

The maximum size of the information logged for the specified type
0

0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This call will return the maximum size of the processor or platform information logged by SAL for
the specified event type. The operating system must make this call to determine the maximum size
of datalogged by SAL for each type of record. The operating system may then allocate suitable
buffers, and provide the pre-allocated buffers as argument to subsequent callsto the
SAL_GET_STATE_INFO procedure.

Requirements: None

SAL Procedures

intel.

SAL_MC_

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

SAL_MC_RENDEZ

RENDEZ

This procedure causes the processor to go into aspin loop within SAL where SAL awaits awake up
from the monarch processor.

Standard. Callable by the operating system in virtual or physica mode.

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-3 Call completed with error
-4 Virtual address not registered

This procedure is invoked on non-monarch processors during machine check processing. This
procedure will disable interrupts and set an implementation dependent check-in flag within the
SAL dataareato indicate to the monarch processor that the non-monarch processor has reached the
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete al outstanding
transactions within the processor. The non-monarch processor will then go into a spinloop awaiting
awake up signal from the monarch processor. The wake up mechanism may be an external
interrupt or amemory variable as set up by the SAL_MC_SET_PARAMS procedure. SAL will
return an error if awake up mechanism has not been registered.

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will poll the local
SAPIC IRR register for the bit corresponding to the selected wakeup interrupt to be set.

If amemory variable mechanism is chosen, SAL spin loop routine will poll the memory variable
for the unique value that includes the contents of the Local ID Register (refer to Figure 3-1). The
monarch processor will set this value to wake up one non-monarch processor at atime. SAL onthe
non-monarch processor will clear the memory variable to zero and return. This procedure may be
called in virtual or physical mode but when memory variable mechanism is chosen, this procedure
must be called in the same mode as the previous call to the SAL_MC_SET_PARAMS procedure
that specified the memory variable.

While waiting for the wake-up from the monarch processor, the SAL on the non-monarch
processors shall mask further machine checks and escalate future MCA and BERR eventsto BINIT
usingthe PAL_PROC_SET FEATURES procedure. This step isimportant from error containment
perspective. On receipt of the wake-up signal from the monarch, the SAL shall restore the original
setting for error promotion and return to the operating system.

SAL Procedures 9-13

SAL_MC_RENDEZ int9|o

Platform

When this procedure returns, it isthe responsibility of the operating system to clear the IRR bitsfor
the MC_rendezvous interrupt and the wake up interrupt, if any.

This procedureis required for MP support. This SAL procedureisrequired to be MP-safe in order
that operating system on the various non-monarch processors may enter the idle loop within the
SAL simultaneously.

Requirements: None

9-14

SAL Procedures

intel.

SAL_MC_

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

SAL_MC_SET_PARAMS

SET_PARAMS

This procedure allows the operating system to specify the interrupt number to be used by SAL to
interrupt the operating system during the machine check rendezvous sequence as well as the
mechanism to wake up the non-monarch processors at the end of machine check processing.

Standard. Callable by the operating system in virtual or physica mode.

Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures
param_type Unsigned 64-bit integer value for the parameter type of the machine check interface:
1 = rendezvous interrupt
2 = wake up
3 = Corrected Platform Error Vector
Other values are reserved
i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory address is
specified:
1 = interrupt vector
2 = memory address
Other values are reserved
i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory address
associated with the i_or_m parameter specified above.
time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds).
mca_opt Options set by the operating system for MCA handling within SAL.
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
time_out_min Unsigned 64-bit integer value specifying the minimum rendezvous time out (in milliseconds)
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-1 Not implemented
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedure allows the OS to specify parameters to the SAL for use during machine check

processing. The parameters specified by the OS are applicable to all the processors within the

system.This procedure is required for MP support. Section 3.2.2.1 provides details on how the
rendezvous mechanism works in an MP configuration.

There are some machine check conditions which require the other processorsin the system to be
rendezvoused for error containment purposes and to recover from the error condition. This
procedure alows the operating system to register the interrupt number it wishesto use for this
purpose. Typically, when the operating system on the non-monarch processor receives the
rendezvous interrupt, it will invoke the SAL_MC_RENDEZ procedure to go into a SAL spin loop
routine. If the operating system does not register this interrupt, SAL_CHECK on the monarch
processor will beforced toissue INIT and thereby compromise the recoverability from the machine
check condition. This procedure must be called before MCAs can be handled by the operating
system.

SAL Procedures 9-15

SAL_MC_SET_PARAMS i nt9| ®

The param_type parameter indicates whether the rendezvous interrupt or wake up mechanism or
corrected platform error vector (CPEV) is being specified.

Thei_or_m parameter specifies whether an interrupt or memory variable is used and this parameter
is meaningful only for the param_type of 2. Interrupt isthe only valid choice for the rendezvous
function since the ideaisto interrupt the non-monarch processor as quickly as possible and correct
the error. Either interrupt or memory may be used for the wake up mechanism and thisis operating
system implementation dependent.

Thei_or_m val parameter specifies the interrupt vector number or the memory address associated
with thei_or_m parameter. If memory addressis used for the wake up mechanism, the memory
variable must be aligned on an 8-byte boundary and coherent across the system fabric. The
operating system shall not change the physical address of the memory variable specified in the
i_or_m val parameter.

For the rendezvous interrupt vector, avalue of O indicates use of PMI as the interrupt mechanism.
The PMI interrupt mechanism shall not be employed by Itanium-based operating systems as either
the rendezvous or the wake-up interrupt. Only the PAL layer to support |A-32 operating systems
may use the PMI as the rendezvousinterrupt since al the externa interrupt vectors may bein use
by the |A-32 operating system. The SAPIC IPl message signalling the MC_rendezvous interrupt of
PMI type shall specify avalue of 13 in the vector field of the IPI message. The PMI interrupt
mechanism shall not be employed as the wake-up interrupt by any operating system.

The PMI interrupt mechanism needs to be supported only on platforms that support 1A-32
operating systems and SAL may return an error status on other platforms.

The mca_opt argument specifies the options that the SAL_MCA isrequired to follow during
machine check handling. This parameter isvalid only when the param_type is rendezvous
interrupt. Following is the format of this argument:

Bit Positions Length in Bits Description
0 1 rz_always flag.
1 1 binit_escalate flag
2-63 61 Reserved, must be zero

If therz_alwaysflagisset to 1, the SAL is expected to rendezvous the system for all detected
processor and platform MCA conditions. If thisflag is set to zero, then rendezvous is done only
when PAL initiates the rendezvous request during an MCA or if SAL decidesto do it for certain
platform MCA conditions.

During machine check processing, the SAL operates with machine checks masked and hence does
not immediately recognize subsequent machine checks. If the operating system wishes to recognize
subsequent machine checks in this condition, it will set the binit_escalate flag to 1. Thisisthe
recommended setting for error containment. When the binit_escalate flag is set, the SAL shall
escalate future MCAs and BERR eventsto BINIT using the PAL_PROC_SET_FEATURES
procedure. On return from the operating system, the SAL shall restore the original setting.

If the operating system intends to use interrupts for corrected platform events, it shall register the
same interrupt vector number that is programmed into the I/O SAPIC redirection table entry for
triggering platform corrected error interrupts. If the operating system intends to use polling to
collect thisinformation, it shall neither register an interrupt vector with the SAL nor program the
1/0 SAPIC redirection table entry.

SAL Procedures

inte|® SAL_MC_SET_PARAMS

Except for the PMI interrupt above, the external interrupt vector value must bein the range of 16 to
255 since these are the acceptable values that can be transferred using SAPIC | Pl messages. A high
value should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if
not using memory variable mechanism). Thisis because the operating system is responsible for
clearing the IRR bit associated with the wake up interrupt vector by reading the |V R and issuing the
EOI to the local SAPIC. If the wake up interrupt bit is not cleared promptly, alater cal to the
SAL_MC_RENDEZ procedure may return prematurely.

This procedure may be called in virtua or physical mode but when thei_or_m parameter specifies
amemory address, subsequent callsto the SAL_MC_RENDEZ must be made in the same mode
(virtual/physical) asthiscall.

The time_out field defines the rendezvous time out period in milliseconds. This parameter is only
applicable to the param_type of rendezvous interrupt. If the non-monarch processor does not
invoke the SAL_MC_RENDEZ procedure within the time out period, the monarch processor will
generate an INIT signal to the non-monarch processor. The time out value must be sufficient to
cover situations where other processors may be executing firmware code in local MCA and thus
not be capable of servicing external interrupts or INIT. If thetime_out input parameter is
insufficient, the SAL shall return with a status of —2 and the time_out_min return argument shall
specify the minimum time out interval required by the SAL.

Platform
Requirements: None

SAL Procedures 9-17

SAL_PCI_CONFIG_READ

SAL_PCI_CONFIG_READ

This procedure is used to read from the PCI configuration space.

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform
Requirements:

Standard. Callable by the operating system in virtual or physical mode. Good programming prac-
tices dictate that indexed accesses to the configuration space be serialized in order to be MP-safe.

Argument Description
func_id Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
address PCI configuration address:
Bits 0..7 — Register address
Bits 8..10 — Function number
Bits 11..15 — Device number
Bits 16..23 — Bus number
Bits 24..31 — Segment number
Bits 32..63 — Reserved (0)
Must be naturally aligned with respect to the size of the read.
size PCI config size (1, 2 or 4 bytes)
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description

status
value
Reserved
Reserved

Status Value

Return status of SAL_PCI_CONFIG_READ procedure
Value read from config space.

0

0

Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This procedure is aruntime interface used to read from PCI configuration space. The mechanism
for accessing PCI configuration spaceis abstracted by this procedure, thereby allowing host bridges
to implement this mechanism in different ways.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

None

SAL Procedures

intel.

SAL_PCI_CONFIG_WRITE

SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling

Conventions: Standard. Callable by the operating system in virtual or physical mode. Good programming prac-
tices dictate that indexed accesses to the configuration space be seriaized in order to be MP-safe.

Arguments: Argument Description
func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address:
Bits 0..7 — Register address
Bits 8..10 — Function number
Bits 11..15 — Device number
Bits 16..23 — Bus number
Bits 24..31 — Segment number
Bits 32..63 — Reserved (0)
Must be naturally aligned with respect to the size of the write.
size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Returns: Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0
Status: Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

Description: This procedure is a runtime interface used to write to PCI configuration space. The mechanism for
accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges to
implement this mechanism in different ways. This procedure will guarantee the completion of the

writeto the caller.

A non-zero value in the segment field can be used to access devices on platforms with greater than

256 buses.

Platform
Requirements: None

SAL Procedures

SAL_REGISTER_PHYSICAL_ADDR Int9| ®

SAL_REGISTER_PHYSICAL_ADDR

Arguments:
Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Platform

Provide a mechanism for software to register the physical addresses of locations needed by SAL

Standard. Callable by the operating system in virtua or physical mode.

Argument Description

func_id Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL procedures

phys_entity The encoded value of the entity whose physical address is registered
0 =PAL_PROC
Other values are reserved

p_addr 64-bit integer value denoting the physical address

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Reserved 0

Return Value Description

status Return status of SAL_REGISTER_PHYSICAL_ADDR procedure

Reserved 0

Reserved 0

Reserved 0

Status Value Description

0
-2
-3
-4

Call completed without error
Invalid Argument

Call completed with error
Virtual address not registered

This procedure is used by the operating system to register the new physical addresses of the
PAL_PROC procedurein memory. If the operating system were to copy PAL proceduresto a
different memory location (using the PAL_COPY_PAL procedure), it must register the new
PAL_PROC entrypoint address with the SAL. The SAL layer will then be in aposition to invoke
the PAL procedures in physical mode.

The phys_entity argument specifies the entity whose physical addressis being registered with the
SAL and the p_addr argument provides its physical address.

Requirements: None

9-20

SAL Procedures

intel.

SAL_SET_VECTORS

SAL_SET_VECTORS

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

Provide a mechanism for software to register software dependent code locations with SAL. These
locations are “handlers’ or entrypoints where SAL will pass control for the specified event. The
events handled are for the Boot Rendezvous, MCAs and INIT scenarios.

Standard. Callable by the operating system in virtual or physica mode.

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:
0 = Machine Check
1=INIT
2 =BOOT_RENDEZ
3-64 = Reserved
other values are implementation dependent
phys_addr_1 Physical address of the event handler. This field must be a 16-byte aligned address.
gp_1 Global pointer (GP) of the event handler.
length_cs_1 Size of the event handler procedure and its checksum information
phys_addr_2 Physical address of the event handler. This field must be a 16-byte aligned address.
gp_2 Global pointer (GP) of the event handler.
length_cs_2 Size of the event handler procedure and its checksum information
Return Value Description
status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0
Status Value Description
0 Call completed without error
-2 Invalid Argument
-3 Call completed with error
-4 Virtual address not registered

This procedure enables the operating system (and diagnostic software) to inform firmware whether
it isready to handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely whereto
vector for each case. Since all three events result in having processor execution being controlled by
firmware, firmware requires these software addresses of the operating system or diagnosticsin
order to pass control. The operating system registers the physical address where the specific
handler resides. SAL uses these addresses to vector to on occurrence of the event. The parameters
specified by the OS are applicable to al the processors within the system.

For the INIT event in an M P configuration, separate arguments must be provided for the first
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The
phys addr_1, gp_1 and length_cs_1 arguments specify the entrypoint, gp-value and the length
details respectively of the OS_INIT procedure for the monarch and the phys_addr_2, gp_2 and
length_cs 2 arguments respectively specify the entrypoint, gp-value and the length details of the
OS_INIT procedure for the non-monarch processors. By having different entrypoints for the
monarch and non-monarch processors, the operating system can easily put the non-monarch
processors into await loop. It is permissible to have the same arguments for the monarch and
non-monarch processors. In this case, the operating system will need to perform the monarch
selection on entry into the OS_INIT procedure.

SAL Procedures 9-21

SAL_SET_VECTORS |n'|:e|o

Platform

Thevaluein the phys_addr_n argument must be 16-byte aligned. The phys_addr_n argument may
be checked as to whether it points into legal memory space (as opposed to 1/0 space or firmware
space). Specifying avalue of 0in the phys_addr_n argument invalidates the event handler
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it is not possible to invalidate only
one of the two entrypoints. The phys _addr_2, gp_2 and length_cs 2 arguments for the OS_MCA
and the OS_BOOT_RENDEZ vector_type are reserved.

The gp_n field has the physical address of the GP for the event handler to be called by SAL.

The length_cs_n argument has the format shown bel ow:

Bit Positions Length in Bits Description
0-31 32 Length of the operating system procedure in bytes (this field must be
a multiple of 16).
32 1 0 = Checksum information not provided by the operating system.
1 = Checksum information provided by the operating system in bits
40-47.
40-47 8 The modulo checksum of the operating system procedure code

area. All bytes including the checksum byte must add up to zero.

48-63 16 Reserved.

The operating system has the option of registering the length and checksum of the operating system
procedure (or at least thefirst level OS_MCA, OS_INIT, OS BOOT_RENDEZ procedure). If the
length argument is non-zero, the SAL saves the operating system provided checksum for the
procedure. Before invoking the registered operating system procedure, SAL shall authenticate the
operating system code by verifying its checksum.

Requirements: None

SAL Procedures

intel.

SAL_UPDATE_PAL

SAL_UPDATE_PAL

Purpose:

Calling
Conventions:

Arguments:

Returns:

Status:

Description:

This procedure is used to update the contents of the PAL block in the non-volatile storage device.

Standard. Callable by the operating system in virtual or physica mode.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size | Unsigned 64-bit integer value for the size of the scratch buffer in bytes
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req Size of the scratch buffer needed
Reserved 0
Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update.
-2 Invalid Argument
-3 Call completed with error. See error_code for details
-4 Virtual address not registered
-9 Insufficient scratch buffer provided

This procedure updates the contents of firmware blocks (e.g. PAL_B) in the non-volatile storage
device and revisesthe FIT entries pertaining to the firmware blocks. If checksum is implemented
for the FIT table, this procedure will aso revise the same. This procedure is capable of selecting the
appropriate location in the storage device for the firmware components. In some flash ROM
architectures, updates may not be possible until the following INIT. This scenario is described | ater.

Before performing update of PAL, this procedure will utilize resources within the processor and/or
PAL to authenticate the contents of the new version of PAL provided by the caller. If the
authentication is unsuccessful, the current PAL contents will be left intact.

The param_buf pointsto a 16-byte aligned data structure in memory with alength of 32 bytes that
describes the new firmware. Thisinformation is organized in the form of alinked list with each
element describing one firmware component. This procedure will update all the specified firmware
components aswell astheir FIT entriesif successful, and none of the firmware components if
errors are encountered. The following table shows the format of each element of the data structure.
Refer to Section 2.5, “Firmware Interface Table” for explanation of fields within the FIT.

Offset | Length | Description

0 8 64-bit pointer to the next element (O if none present)

8 8 64-bit memory address of the update_data_block containing new firmware contents
16 1 Checksum flag:

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry
17 15 Reserved

SAL Procedures 9-23

SAL_UPDATE_PAL i nt9| ®

9-24

The update_data_block consists of a header of 64 bytes followed by the code for the firmware
component. The following table shows the contents of the 64 byte header.

Offset Length Description

0 4 Size of the firmware component in bytes including the header (This field must be a
multiple of 16)

4 4 Date of the firmware component in mmddyyyy format: month, day, year (e.g.
07/18/99 stored as 0x07181999)

8 2 Version number of the firmware component to be stored in its FIT entry

10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)
1=PAL_B; OxOF = PAL_A

11 5 Reserved

16 8 Firmware Vendor ID

24 40 Reserved

This procedure will locate the PAL_B block on a32K byte aligned boundary on the storage device.

If the scratch buffer size specified in the scratch_buf_sizefield isinsufficient, the call will fail with
a status of —7 and the scrbuf_size req return parameter will specify the size of the scratch buffer
required.

SAL reads the CPU identification registerson al the processorsin the system and maintains the
processor stepping information. If the PAL_B component is being updated, SAL will ensure that
the version number of the new PAL_B in the update_data_block is compatible with all the
processors on the system else return an error status.

The error_code return parameter provides additional information on the failure when the status
field contains a value of —3. Following are the definitions for the error_code field.

Error Code Description

-1 Version number of supplied PAL firmware is not suitable for one or more processors in the
system

-2 Supplied version of PAL failed the authentication test

-3 Invalid firmware component type

-4 PAL_A firmware not erasable

-5t0 -9 Reserved

-10 Write failure — inability to write to storage device

-11 Erase failure — inability to erase the storage device

-12 Read failure — inability to read the storage device

-13 Insufficient space in the storage device

In some firmware architectures (e.g. flash), writes to a chip or component containing firmware
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL
firmware code for handling machine checks were located on the chip being revised, machine
checks must be masked on all the processors to avoid possible instruction fetch accesses to the
firmware address space. In an MP environment, the operating system must rendezvous al the other
processors on the node whose firmware is being updated. At the end of the firmware update, the
operating system must invoke the PAL_MC_ERROR_INFO procedure to ascertain whether any
machine checks occurred while they were masked and take corrective actions. The operating
system must then wake up the rendezvoused processors and re-enable machine checks. In a
multi-node system with multiple copies of firmware, it may be possible to redirect interrupts to
nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash
hardware except immediately following a Reset or INIT. The operating system may call this
procedurein virtual mode but it is required to fix the pages containing the new firmware contentsin
memory, i.e. the operating system must not change the contents of the corresponding physical
pages until the firmware update is complete. SAL will be aware of flash architecture restrictions

SAL Procedures

Platform
Requirements:

SAL Procedures

SAL_UPDATE_PAL

and will perform the usual authentication steps. If the authentication is successful, SAL will
accumul ate the physical addresses of the new firmware contents by executing the TPA instruction.
(There may be several non-contiguous physical pagesif the operating system had called this
procedurein virtual mode). SAL will then return to the operating system a status value of 1
requesting awarm reboot. When SAL regains control following the warm reboot, it will conduct
the authentication steps again and, if successful, update the contents of firmware.

The firmware update is effective on the next reboot. However, after a successful update, firmware
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM
(new code) will be utilized by the machine check and INIT events while the copy in memory (old
code) will be utilized by the operating system. The operating system may solve this problem either
by rebooting the system following afirmware update, or by updating the memory copy of PAL
procedures by invoking the PAL_COPY_PAL procedure.

If the operating system decides to update the memory copy of PAL procedures, there are additional
considerationsin an MP environment:

1. Whilethe runtime copy of PAL isbeing revised (during execution of the PAL_COPY_PAL
procedure), al the processors in the system must be prevented from executing PAL
proceduresin memory.

2. The monarch processor, after invoking the PAL_COPY _PAL procedure, must make the
local instruction caches coherent with the data caches by invoking the
SAL_CACHE_FLUSH procedure (with thei_or_d parameter value of 4).

3. The non-monarch processors on being woken up by the monarch processor must invoke the
PAL_COPY _PAL procedure to register the new PAL entrypoints for PAL_PMI and
PAL_FP. The non-monarch processors must do a SRLZ.| instruction to ensure that
modifications to instruction prefetches are observed.

4. If the physical address of the PAL_PROC procedure changes, the operating system must
register the new address with SAL by invoking the SAL_REGISTER_PHYSICAL_ADDR
procedure.

Platform must provide non-volatile storage space to save firmware components.

SAL_UPDATE_PAL

9-26

SAL Procedures

intel.

Glossary A

ACPI

AP

API

Bank

BIOS

Advanced Configuration and Power Interface Specification.

Application Processor. One of the processors not responsible for system initiaization.

Application Programming Interface.

The memory modules on acard are organized into banks for better performance. The bank
number identifies a bank on amemory card.

Basic Input/Output System. A collection of routines that includes Power On Self-test
(POST), system configuration and a software layer between the operating system and
hardware. BIOS iswritten in |A-32 instruction set.

Boot Block Support

BSP

BSP

Card

CMC

A hardware and/or software implementation that permitsthe end user to recover PAL/SAL
layers of software into the flash part after the previous flash programming attempt was
accidentally aborted.

Bootstrap Processor. The processor responsible for system initialization.

Backing Store Pointer (AR.BSP).

The card number identifies the specific memory card attached to amemory controller. One
or more memory cards may be attached to a memory controller. Each card consists of a
number of memory modules organized in banks.

Corrected Machine Check.

Cold Boot vs. Warm Boot

Cold Boot refers to a hardware/software event that setsall circuitry, including all
processors, system components, add-in cards and control logic, to aninitia state. Warm
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any
or al of the processor(s) on the system to aninitial state. Warm Boot may be triggered by
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not
corrupt any pending cycles. Destructive memory tests are not performed during warm
boot.

A-1

A-2

intel.

Cold Reset vs. Hard Reset
Cold Reset refersto a hardware signal that sets all circuitry, including all processors,
buses, system components, add-in cards and control logic, to aninitial state. Hard Reset is
triggered by a similar hardware signal. Hard Reset differs from Cold Reset in that some
sticky error flags in some system components may not be cleared, thereby alowing
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate
without regard to cycle boundaries and are typically asserted by the RESET pin. Both
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.

Corrected Platform Error Interrupt (CPEI)
Interrupt generated by the platform following a hardware corrected error. The interrupt
vector is set by the operating system (e.g. in the vector field of an I/O SAPIC redirection
table entry).

CPE
Corrected Platform Errors are the errors originating due to platform detected errors.

CPEV
Corrected Platform Error interrupt vector.

Device Number
Each memory module consists of a number of DRAM devices. The device number
identifies a specific device (h/w component or chip) on a module.

EFI
Extensible Firmware Interface. Firmware that provides alegacy free API interface to the
operating system.

EOI
End of Interrupt.

Error Categories
Corrected Error
All errors of thistype are either corrected by the processor/platform hardware/firmware.
This severity isfor logging purposes only. There is no architectural damage to the
detecting and reporting functions. Corrected errors require no operating system
intervention to correct the error.

Fatal Error

An uncorrected error occurred which has corrupted state, and the state information may
not be known. These type of errors cannot be corrected by the hardware, firmware, or the
operating system. Theintegrity of the system, including the 10 devicesis not guaranteed
and may require 10 device initialization and a system reboot to continue. Fatal errors may
or may not have been contained within the processor or memory hierarchy. If the error is
not contained, it must be reported as fatal.

Recoverable Error

An uncorrected error occurred which had corrupted state, and the state information is
known. Recoverable errors cannot be corrected by either the hardware or firmware. This
type of errors requires operating system analysis and a corrective action to recover.
System operation/state may be impacted.

Glossary

Glossary

FSB
Processor Frontside Bus.

FT
Fault Tolerant.

GP
Global Data Pointer. Every procedure that references statically-allocated data or calls
another procedure requires a pointer to its data segment in the GP register so that it can
access its static data and its linkage tables.

GUID

A 16 byte Globally Unique Identifier/Universally Unique Identifier representing an entity
that needs to be uniquely identified.

Har dwar e-protected Flash Region
Thisterm refersto a part of the flash storage that is hardware-protected against accidental
erasure. Usually, this region is programmed by the OEM only. The hardware protection
can either be on-chip and/or platform supported hardware.

1A-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel® Itanium™ Architecture
Software Developer’s Manual.

Itanium-based Operating System
An operating system which is written in the Itanium instruction set that can run
Itanium-based applications (code containing Itanium instructions and/or 1A-32

instructions).
INTA

Interrupt Acknowledge.
IPI

Inter processor interrupt signaling using the local SAPIC within the processor.
1PL

Initial Program Load.
ISA

Instruction Set Architecture.
IVT

Interrupt Vector Table.
MBR

Master Boot Record.
MC_rendezvous I nterrupt

An external interrupt vector provided to SAL by the Itanium-based operating system for
interrupting the operating system running on the APs.

A-3

A4

MCA
Machine Check Abort.

Minimal State Save Area
Arearegistered by SAL with PAL for saving minimal processor state during machine
check and INIT processing. This area must be aligned on a 512-byte boundary and must
be in uncacheable memory. See the PAL EASfor details.

Module or Rank
A module consists of a number of DRAM devices on a PCB board, which plugsinto a
socket. DIMM, RIMM are examples of memory modules. Module number identifies a
module on amemory card (specifically, within abank on the memory card). On smaller
systems, the rank/module might match the DIMM slot number. On larger systems, a
particular DIMM might not be able to be called out and the module/rank number isthe
lowest FRU.

Monarch Processor
The processor selected by SAL to accumulate al the platform error logs and continue with
the machine check processing, when multiple processors experience machine checks
simultaneously.

MP
Multiprocessor.

M P-safe procedure
A procedure that can be invoked concurrently by multiple processors.

MPS

Multiprocessor Specification.
Node

A node consists of processors, memory and, in some cases, |/O devices. A system may

contain multiple nodes.
NTFS

Windows NT File System.
NVM

Non-volatile Memory.
(O}

Operating System.
PAL

Processor Abstraction Layer. Firmware that abstracts processor implementation-specific
features.

Glossary

Glossary

Plabel

PMI

Procedure label, areference or pointer to afunction. A plabel takes the form of a pointer to
aspecial descriptor (aplabel descriptor) that uniquely identifies the function. The plabel
descriptor contains the address of the function’s actual entrypoint as well asits linkage
table pointer.

Platform Management I nterrupt.

Re-entrant procedure

A procedure that may be invoked multiple times concurrently from the same processor or
from multiple processors.

Row, Column

Memory cells (acell may hold one more Bits of data) on aDRAM is organized as an array
indexed by rows and columns. Row address and column address together uniquely
identify acell.

System Abstraction Layer. Firmware that abstracts system implementation differences.

SAL_REV

SAPIC

Sector

SP

TLB

TSS

The revision number of the SAL specification supported by the SAL implementation. This
information contains two one-byte fields for Major and Minor revision numbers and the
same are represented in binary coded decimal (BCD) format. For example, if thisvariable
contains 02h, 06h, the SAL revision is2.6. The major version isincremented when the
SAL API changes. The minor version is incremented when underlying functionality
changes but the API remains the same. SAL implementations pertaining to a particular
SAL revision specification shall be compatible with each other at the published SAL
external interfaces.

Streamlined Advanced Programmable I nterrupt Controller. The code name for the high
performance interrupt architecture for the Itanium processor. The L ocal SAPIC resides
within the processor and accepts interrupts sent on the system bus. The I/O SAPIC resides
on the 1/O subsystem and provides the interrupt input pins on which 1/O devices inject
interrupts into the system.

Thisterm refersto alogical block of 512 bytes.

Memory Stack Pointer.

Translation Lookaside Buffer.

Task State Segment.

A-5

A-6

UsB
Universal Serial Bus.

VHPT
Virtual Hash Page Table.

Wakeup Interrupt
Interrupt sent by the operating system to wake up the APs from the SAL_MC_RENDEZ
spin loop. Thisinterrupt vector isregistered by an Itanium-based operating system with
the SAL.

WBL
Write-back with Limited Speculation.

Glossary

intel.

Error

Record Structures B

B.1

B.2

Overview

The goals of the Error Record structures is to keep it generic and flexible enough to be extensible
and to abstract processor or platform implementation dependencies from the operating system
layers, at the sametime providing as much error information as possible to the operating system for
error handling purposes.

Error Record Structure

The error record structure consist of many different components called sections. Each error record
captures error information for one error event consisting of multiple sections. The size of the error
record structureis asindicated by RECORD_LEN and is dynamically set based on the total size of
all the section headers and section bodies combined.

An error record consists of a generic header followed by alist of sections with actua error
information for the event. Each section relates to a particular error device (e.g. processor, platform
memory, platform PCI Bus, platform |SA Bus etc.), having a section header followed by section
body.

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

Section-n Header

Section-n Body

B-1

B.2.1

B.2.2

B-2

intel.

Record Header

The format of the header for both the platform and processor error record is as shown below: The
ERR_SEVERITY information reflects the error severity based on the PROC_STATE_PARAMETER
field in the processor section. The SAL may increase the severity if a platform component has
experienced severe errors. The operating system is free to analyze the section error information,
decideif it can correct or continue without the device represented by the section and ignore the fatal
severity.

Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for explanation of fields
not described in this document.

Offset Length Field Description

0 8 bytes RECORD_ID Unique monotonically increasing ID for MCA, INIT, CMC and CPE
event Records.

8 2 bytes REVISION 2-byte Major and Minor revision number of the Record in BCD
format:

Byte0 — Minor (02)

Bytel — Major (00)

10 1 byte ERR_SEVERITY This encoded field indicates error severity. See glossary section
for details on the definition:

0 — Recoverable

1 — Fatal

2 — Corrected

Others — Reserved

11 lbyte VALIDATION_BITS Bit0 = If1, the OEM_PLATFORM_ID field below contains valid
information.
Bits 1-7 — Reserved, must be zero.
12 4 bytes RECORD_LEN Length of this error record in bytes, including the header.
16 8 bytes TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred in BCD
format:

Byte 0 — Seconds

Byte 1 — Minutes

Byte 2 — Hours

Byte 3 — Reserved

Byte 4 — Day

Byte 5 — Month

Byte 6 — Year

Byte 7 — Century

24 16 bytes OEM_PLATFORM_ID A unique identifier of the OEM platform.

Section Header

The Device specific error section follows the header. For processor errors, thisfield will contain an
areathat is architected for all Itanium processors. For platform errors, this section will contain
information specific to the platform devices. A unique GUID is associated with each section for
identification of the error device type (ex: processor, platform memory, platform PCI bus etc.).

Error Record Structures

The format of the section header for al error devicesis as shown below:

Offset Length Field Description

0 16 bytes GUID Unique 16-byte GUID for the error device. Refer to Table B-1 for
the format.

16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in BCD
format:

Byte0 — Minor (02)
Bytel — Major (00)
18 1 byte ERROR_RECOVERY_ Bit7 = If 1, remaining bits contain information about the error.
INFO Bit 6-3 = Reserved, must be 0.
Bit2 = Reset. If set, the component must be re-initialized or
re-enabled by the operating system prior to use.
Bit1= Containment Warning. If set, the error was not
contained within the processor or memory hierarchy and
the error may have propagated to persistent storage or

network.
Bit 0 = If set, the error has been corrected.
19 1byte RESERVED Reserved.
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the header.
Table B-1. GUID Format
The GUID structureis as follows:
Offset ‘ Length Field Description
0 4 bytes DATAL Datal
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4

SAL may examine several platform hardware resources to collect information pertaining to the
error and provide such information in various sections. Not all sections may be present in each
record but the SAL shall provide all the information significant for logging, identification of the
errant component and recovery. The section error information fields will have associated validation
bit(s), as part of the section body.

Multiple sections with the same GUID may be present within asingle error record. In this situation,
the ordering of the sections does not imply the chronological sequence of the errors. Thefirst error
among the sections, if known to firmware, shall be indicated by setting the First Error bit (see
Table B-3) in the error status field within the section.

The ERROR_SEVERITY_INFO field in some sections may indicate that the error has aready
been corrected. It is acceptable to provide corrected error information for some platform
components as part of the MCA record, but the SAL must not provide uncorrected MCA
information in response to the request for CMC or CPE errors.

If the Containment Warning bit is set in the ERROR_SEVERITY_INFO field, the SAL firmware
may set the ERR_SEVERITY field in the Record Header (Section B.2.1) as“fatal”. Some
operating systems or device drivers having a complete chronology of accessesto the platform
component and knowledge of recovery capabilities within the device, may effect arecovery despite
such a status.

Error Record Structures B-3

intel.

B.2.3 Processor Device Error Info

Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for explanation of fields.

Offset \ Length Field Description

0 16 bytes GUID {Oxe429fafl, 0x3cb7, 0x11d4, {Oxbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c,
0x88, 0x81}}

16-23 8 bytes See Section B.2.2 for details.

PROCESSOR_SPECI FI C_ERROR_RECORD SECTI ON BODY STRUCTURE

VAL| DATI ON_BI TS! 8 bytes
PROC_ERROR_MAP_VALID BIT Bit 0
PROC_STATE_PARAMETER VALID BI T Bit 1
PROC CR LID VALID BI T Bit 2
PSI _STATI C_ STRUCT_VALID BIT Bit 3
CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15)
TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)
BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)
REG FI LE_CHECK_NUM Bit 16-19 (REGerrors 0 to 15)
MS_CHECK_NUM Bit 20-23 (Ms errors 0 to 15)
CPUI D_I NFO VALID BI T Bit 24
RESERVED Bits 24-63
PROC_ERROR_MAP 8 bytes
PROC_STATE_PARAMETER 8 bytes
PROC CR LID 8 bytes
struct { Nx48 max. bytes (cache errors 0 to 15)
MOD_ERROR | NFO_STRUCT 48 bytes each
} CACHE_ERROR_STRUCT[CACHE_CHECK_NUM
struct { Nx48 max. bytes (TLB errors 0 to 15)
MOD_ERROR | NFO_STRUCT 48 bytes each
} TLB_ERROR_STRUCT[TLB_CHECK_NUM
struct { Nx48 max. bytes (BUS errors 0 to 15)
MOD_ERROR | NFO_STRUCT 48 bytes each
} BUS_ERROR_STRUCT[BUS_CHECK_NUM
struct { Nx48 max. bytes (Reg.File errors 0 to
15)
MOD_ERROR | NFO_STRUCT 48 bytes each
} REG FI LE_CHECK_I| NFO REG_FI LE_CHECK_NUM
struct { Nx48 max. bytes (Ms errors 0 to 15)
MOD_ERROR | NFO_STRUCT 48 bytes each
} MS_CHECK_| NFO M5_CHECK_NUM
struct { 48 bytes
CPUI D_I NFO 40 bytes (CPUD registers 0 to 4)
RESERVED 8 bytes
} CPUI D_I NFO_STRUCT
struct { Processor Static |nfornation
VALI D_FI ELD_BI TS? 8 bytes
M NSTATE_VALID BI T Bit 0
BR VALID BI T Bit 1
CR VALIDBIT Bit 2

1. Theamount of information reported by SAL isimplementation dependent. The validity of each field isindicated by either avalidation bit
or an encoded number field. Data areas corresponding to invalid fields will be padded. For CACHE, TLB, BUS, REG MSfidds, the
encoded NUM field indicates the number of MOD_ERROR_INFO_STRUCTSs for each category, ranging from 0-15. For these five
categories only, if the encoded NUM field is zero, then the data area corresponding to that category will be absent.

2. Dataareascorresponding to Invalid fields will be padded.

B-4 Error Record Structures

B.2.4

B.24.1

AR VALID BI T Bit 3
RR VALID BI T Bit 4
FR VALID BI T Bit 5
RESERVED Bit 6-63
Mninal State Save Info Structurel 1024 bytes
BRs 0-7 64 bytes
CRs 0-127 1024 bytes? 3
ARs 0-127 1024 bytes?3
RRs 0-7 64 bytes
FRs 0-127 2048 bytes
} PSI _STATI C_STRUCT
}

The MOD_ERROR | NFO_STRUCT structure is defined as bel ow
struct{ 48 byt es*(Mod)
VALI D_FI ELD BI TS 8 bytes

CHECK_| NFO VALID BI T Bit O

REQUESTOR | DENTI FIER_VALID BI' T Bit 1
RESPONDER_| DENTI FI ER_VALI D BI T Bit 2
3

TARGET_| DENTI FI ER VALID BI T Bi t

PRECI SE_| P_VALID BI T Bit 4

RESERVED VALID BI T Bit 5-63
MOD_CHECK_| NFO 8 bytes
MOD_REQUESTOR | DENTI FI ER 8 bytes
MOD_RESPONDER | DENTI FI ER 8 bytes
MOD_TARGET | DENTI FI ER 8 bytes
MOD_PRECI SE_| P 8 bytes

} MOD®_ERROR | NFO_STRUCT

Platform Errors

There are no standard platform errors defined in existing specifications. This section attempts to
define some typical generic platform error information data structures. OEMs and platform vendors
can define additional platform error sections with unique GUIDs customized to their platform

topol ogy.

Platform Memory Device Error Info

This section describes error information from the memory sub-system.

Offset \ Length Field Description

0 16 bytes GUID {Oxe429faf2, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, 0xc7, 0x3c,
0x88, 0x81}}

16-23 | 8 bytes See Section B.2.2 for details.

1. Thesizeof the MinState Structure is about 1K bytes. For more details on the size and contents of the structure, please refer to the Intel®
Itanium™ Architecture Software Devel oper’s Manual .

w N

The number of Control and Application registers on a processor is processor implementation dependent.
Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. Thisinformation is returned by

the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile registersin this data structure.
4. Thesize of thisstructure will always be 48 bytes, with invalid fields being padded with null values.
5. The MOD structure is common across CACHE, TLB, BUS, REGISTER_FILE and Microarchitectural structure error records.

Error Record Structures B-5

PLATFORM_MEMORY_ERROR_RECORD SECTI ON BODY STRUCTURE

Offset| Length Field Description
0 8 VALIDATION_BItS Validation Bits to indicate the validity of each of the subsequent
fields:
Bit 0 - MEM_ERROR_STATUS_VALID_BIT
Bit 1 - MEM_PHYSICAL_ADDR_VALID_BIT
Bit 2- MEM_ADDR_MASK_BIT
Bit 3— MEM_NODE_VALID_BIT
Bit 4 —- MEM_CARD_VALID_BIT
Bit 5 — MEM_MODULE_VALID_BIT
Bit 6 —- MEM_BANK_VALID_BIT
Bit 7 — MEM_DEVICE_VALID_BIT
Bit 8 —- MEM_ROW_VALID_BIT
Bit 9 — MEM_COLUMN_VALID_BIT
Bit 10 —- MEM_BIT_POSITION_VALID_BIT
Bit 11 - MEM_PLATFORM_REQUESTOR_ID_VALID_BIT
Bit 12 - MEM_PLATFORM_RESPONDER_ID_VALID_BIT
Bit 13 - MEM_PLATFORM_TARGET_VALID_BIT
Bit 14 — MEM_PLATFORM_BUS_SPECIFIC_DATA_VALID_BIT
Bit 15 - MEM_PLATFORM_OEM_ID_VALID_BIT
Bit 16 —- MEM_PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 17-63 — RESERVED
8 8 bytes MEM_ERROR_STATUS Memory device error status fields (see Table B-3).
16 8 bytes MEM_PHYSICAL_ 64-Bit physical address of the memory error.
ADDR
24 8 bytes MEM_PHYSICAL_ Defines the valid address Bits in the 64-Bit physical address of the
ADDR_MASK memory error. The mask specifies the granularity of the physical
address which is dependent on the h/w implementation factors such
as interleaving.
32 2 bytes MEM_NODE In a multi-node system, this value identifies the node containing the
memory in error.
34 2 bytes MEM_CARD The Card number of the memory error location.
36 2 bytes MEM_MODULE The Module or RANK number of the memory error location.
38 2 bytes MEM_BANK The Bank number of the memory error location.
40 2 bytes MEM_DEVICE The Device number of the memory error location.
42 2 bytes MEM_ROW The Row number of the memory error location.
44 2 bytes MEM_COLUMN The Column number of the memory error location.
46 2 bytes MEM_BIT_POSITION Bit position specifies the Bit within the memory word that is in error.
48 8 bytes REQUESTOR_ID Hardware address of the device or component initiating transaction.
56 8 bytes RESPONDER_ID Hardware address of the responder to transaction.
64 8 bytes TARGET_ID Hardware address of intended target of transaction.
72 8 bytes BUS_SPECIFIC_DATA OEM specific bus dependent data.
80 16 bytes MEM_PLATFORM_ OEM specific data containing identification information for the
OEM_ID Memory Controller.
96 N bytes MEM_PLATFORM_ OEM specific data of variable length. See Table B-2 for the format of

OEM_DATA_STRUCT

this structure.

Table B-2. Format of Variable Length Info Structure

Offset

Length Field

Description

0
2

2 bytes LENGTH
M bytes VARIABLE_INFO

Length of this structure in bytes. Length is 2 + M bytes.
OEM defined variable size data.

Error Record Structures

B.2.4.2 Platform PCI Bus Error Info

This section describes the errors that occur on the PCI busitself (e.g. parity error, target abort, etc.).
Errors within a PCl component are described in Section B.2.4.3. An error within a PCl component
that resultsin error signalling on the PCI bus will result in both sections being present in the error

record.
Offset | Length Field Description
0 16 bytes GUID {Oxe429faf4, 0x3ch7, 0x11d4, {Oxbc, 0xa7, 0x0, 0x80, 0xc7, Ox3c,
0x88, 0x81}}
16-23 | 8 bytes See Section B.2.2 for details.
PLATFORM_PCl _BUS_ERROR_RECORD SECTI ON BODY STRUCTURE
Offset | Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:
Bit 0 - PCI_BUS_ERROR_STATUS_VALID_BIT
Bit 1 - PCI_BUS_ERROR_TYPE_VALID_BIT
Bit 2 - PCI_BUS_ID_VALID_BIT
Bit 3 - PCI_BUS_ADDRESS_VALID_BIT
Bit 4 - PCI_BUS_DATA_VALID_BIT
Bit5 - PCI_BUS_CMD_VALID_BIT
Bit 6 - PCI_BUS_REQUESTOR_ID_VALID_BIT
Bit 7 — PCI_BUS_RESPONDER_ID_VALID_BIT
Bit 8 - PCI_BUS_TARGET_ID_VALID_BIT
Bit 9 — PCI_BUS_OEM_ID_VALID_BIT
Bit 10 — PCI_BUS_OEM_DATA_STRUCT_VALID_BIT
Bit 11..63— RESERVED
8 8 bytes PCI_BUS_ERROR_ PCI Bus error status fields (see Table B-3).
STATUS
16 2 bytes PCI_BUS_ERROR_ PCI Bus error types
TYPE ByteO:
0 — Unknown or OEM System Specific Error
1 — Data Parity Error
2 — System Error
3 — Master Abort
4 — Bus Time Out or No Device Present (No DEVSEL#)
5 — Master Data Parity Error
6 — Address Parity Error
7 — Command Parity Error
Others — Reserved
Bytel:
RESERVED
18 2 bytes PCI_BUS_ID Designated PCI Bus identifier encountering error.
Bits 0..7 — Bus Number
Bits 8..15 — Segment Number
20 4 bytes Reserved
24 8 bytes PCI_BUS_ADDRESS Memory or |0 address on the PCI bus at the time of the event.
32 8 bytes PCI_BUS_DATA Data on the PCI bus at the time of the event.
40 8 bytes PCI_BUS_CMD Bus command or operation at the time of the event.
48 8 bytes PCI_BUS_ PCI Bus Requestor ID at the time of the event.
REQUESTOR_ID
56 8 bytes PCI_BUS_ PCI Bus Responder ID at the time of the event.
RESPONDER_ID
64 8 bytes PCI_BUS_TARGET_ID? PCI Bus intended Target ID at the time of the event.
72 16 bytes PCI_BUS_OEM_ID OEM specific data containing identification information for the PCI
Bus.
88 N bytes PCI_BUS_OEM_DATA_ OEM specific data of variable length. See Table B-2 for the format of
STRUCT this structure.

Error Record Structures

B-7

B.2.4.3

B-8

a. This could be a memory or I/O port address.

Refer to the PCI Specification (http://mww.pcisig.com) for further details.

Platform PCI Component Error Info

Offset

Length

Field

Description

0

16-23

PLATF

Offset

16 bytes

8 bytes

Length

GUID

Field

{Oxe429faf6, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, Oxc7, Ox3c,
0x88, 0x81}}
See Section B.2.2 for details.

ORM PCl _COMPONENT_ERROR_RECORD SECTI ON BCDY STRUCTURE

Description

0

16

38

36

40

40+2x

8

8 bytes

16 bytes

4 bytes
4 bytes
2x8xN

bytes
N bytes

8xN

VALIDATION_BITS

PCI_COMP_ERROR_
STATUS
PCI_COMP_INFO

Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 — PCI_COMP_ERROR_STATUS_VALID_BIT

Bit 1 — PCI_COMP_INFO_VALID_BIT

Bit 2 — PCI_COMP_MEM_NUM_VALID_BIT

Bit 3 — PCI_COMP_IO_NUM_VALID_BIT

Bit 4 — PCI_COMP_REGS_DATA_PAIR_VALID_BIT

Bit 5 — PCI_COMP_OEM_DATA_STRUCT_VALID_BIT

Bit 6..63— RESERVED

PCI Component error status fields (see Table B-3).

PCI Component Information to identify the device:
Bytes 0-1 — Vendor ID

Bytes 2-3 — Device ID

Bytes 4-6 — Class Code

Byte 7 — Function Number

Byte 8 — Device Number

Byte 9 — Bus Number

Byte 10 — Segment Number

Bytes 11-15 - Reserved (0)

PCI_COMP_MEM_NUM Number of PCI Component Memory Mapped register address/data

PCI_COMP_IO_NUM

PCI_COMP_REGS_
DATA_PAIR
PCI_COMP_OEM_
DATA_STRUCT

pair values present in this structure.

Number of PCI Component Programmed 10 register address/data
pair values present in this structure.

An array of PCI Component address/data register pair values.

OEM specific data of variable length. See Table B-2 for the format of
this structure.

Refer to the PCI Bus Specification (http: //mamw.pcisig.com) for further details. The above section
definition does not specify which chipset registers are required in the error section. To decode the
chipset errors completely, the error status registers may not be sufficient. Other

implementati on-dependent chipset configuration registers may be required to decode the error
status information. The error handler is expected to have an intimate knowledge of the chipset and
the platform to parse the error information.

Error Record Structures

B.2.4.4 Platform SEL Device Error Info

Offset

Length

Field

Description

0

16-23

PLATF

Offset

16 bytes GUID

8 bytes

{Oxe429faf3, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, Oxc7, 0x3c,
0x88, 0x81}}
See Section B.2.2 for details.

ORM_SYSTEM EVENT_LOG_RECORD SECTI ON BODY STRUCTURE

Length

Field

Description

0

10

11
15

17
18
19
20

21
22
23

8

2 bytes
1 bytes

4 bytes
2 bytes

1 bytes
1 bytes
1 bytes
1 bytes

1 bytes
1 bytes
1bytes

VALIDATION_BIT_BITS

SEL_RECORD_ID
SEL_RECORD_TYPE

SEL_TIME_STAMP
SEL_GENERATOR_ID

SEL_EVM_REV
SEL_SENSOR_TYPE
SEL_SENSOR_NUM
SEL_EVENT_DIR_
TYPE

SEL_DATA1L
SEL_DATA2
SEL_DATA3

Validation Bits to indicate the validity of each of the subsequent
fields:

Bit 0 - SEL_RECORD_ID_VALID_BIT

Bit 1 - SEL_RECORD_TYPE_VALID_BIT

Bit 3 - SEL_GENERATOR_ID_VALID_BIT

Bit 3 - SEL_EVM_REV_VALID_BIT

Bit 4 - SEL_SENSOR_TYPE_VALID_BIT

Bit 5 — SEL_SENSOR_NUM_VALID_BIT

Bit 6 — SEL_EVENT_DIR_TYPE_VALID_BIT

Bit 7 — SEL_EVENT_DATA1_VALID_BIT

Bit 8 - SEL_EVENT_DATA2_VALID_BIT

Bit 9 — SEL_EVENT_DATA3_VALID_BIT

Bit 10-63— RESERVED

Record ID used for SEL record access.

Indicates the record type:

0x02 — System Event Record

0xCO0-0xDF — OEM time stamped, bytes 8-16 OEM defined
0XEO0-OXFF — OEM non-time stamped, bytes 4-16 OEM defined
Time stamp of the event log

Software ID if event was generated by software

Bytel:

Bit 7:1 — 7-Bit system software ID.

Bit 0 — set to one (1) when using system software.

Byte 2:

Bit 7:2 — Reserved. Write as 0, ignore when read.

Bit 1:0 — IPMB device LUN if byte 1 holds slave address, 0x0
otherwise.

The error message format version.

Sensor type code of the sensor that generated the event.
Number of the sensor that generated the event.

Event Dir:

Bit 7 — O for assertion; 1 for de-assertion.

Event Type:

Type of trigger for the event, e.g. critical threshold going high, state
asserted, etc. Also indicates class of the event. E.g. discrete,
threshold, or OEM. The Event Type field is encoded using the
Event/Reading Type Code. See Section 30.1, Event/Reading Type
Codes.

Bit 6:0 — Event Type Code

Event data field.

Event data field.

Event data field.

Refer to the IPMI Specification (http://devel oper.intel.convdesign/server s/ipmi) for further details.

Error Record Structure!

S

B-9

B.2.4.5

B.2.4.6

B-10

Platform SMBIOS Device Error Info

Offset | Length Field Description
0 16 bytes GUID {Oxe429faf5, 0x3cb7, 0x11d4, {Oxbc, Oxa7, 0x0, 0x80, Oxc7, 0x3c,
0x88, 0x81}}
16-23 | 8 bytes See Section B.2.2 for details.
PLATFORM _SMBI OS_ERROR_RECCRD SECTI ON BODY STRUCTURE
Offset| Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:
Bit 0 — SMBIOS_EVENT_TYPE_VALID_BIT
Bit 1 — SMBIOS_LENGTH_VALID_BIT
Bit 3 — SMBIOS_TIME_STAMP_VALID_BIT
Bit 3 — SMBIOS_DATA_VALID_BIT
Bit 4-63— RESERVED
8 1 bytes SMBIOS_EVENT_TYPE Event Type - enum see SMBIOS 2.3 - 3.3.16.6.1.
9 1bytes SMBIOS_LENGTH Length of the error information in bytes.
10 6 bytes SMBIOS_TIME_STAMP Time stamp in BCD.
16 N bytes SMBIOS_DATA OEM specific data of variable length. See Table B-2 for the format of

this structure.

Refer to the SMBIOS Specification (http://download.intel.comvial /iwfry/smbios.pdf) for further

details

Platform Specific Error Info

This section provides information on the OEM hardware errors that cannot be described by other
sections. The operating system could handle the error in a generic way by examining the section
GUID, the ERROR_RECOVERY_INFO, the PLATFORM_ERROR_STATUS, and the TARGET
address fields. Refer to the respective platform document for further details.

Offset| Length Field Description
0 16 bytes GUID {Oxe429faf7, 0x3cb7, Ox11d4, {Oxbc, Oxa7, 0x0, 0x80, Oxc7, Ox3c,
0x88, 0x81}}
16-23 | 8 bytes See Section B.2.2 for details.
PLATFORM_CGENERI C_ERROR_RECORD SECTI ON BODY STRUCTURE
Offset| Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent
fields:
Bit 0 - PLATFORM_ERROR_STATUS_VALID_BIT
Bit 1 - PLATFORM_REQUESTOR_ID_VALID_BIT
Bit 2 - PLATFORM_RESPONDER_ID_VALID_BIT
Bit 3 - PLATFORM_TARGET_VALID_BIT
Bit 4 - PLATFORM_SPECIFIC_DATA_VALID_BIT
Bit 5 — PLATFORM_OEM_ID_VALID_BIT
Bit 6 — PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 7 - PLATFORM_OEM_DEVICE_PATH_VALID_BIT
Bit 8..63 - RESERVED
8 8 bytes PLATFORM_ERROR_ Platform generic error status fields (see Table B-3).
STATUS
16 8 bytes PLATFORM_ Requestor ID at the time of the event.
REQUESTOR_ID
24 8 bytes PLATFORM_ Responder ID at the time of the event.
RESPONDER_ID
32 8 bytes PLATFORM_TARGET_ Target ID at the time of the event.

ID

Error Record Structures

Offset | Length Field Description

40 8 bytes PLATFORM_BUS_ OEM specific Bus dependent data.
SPECIFIC_DATA

48 16 bytes OEM_COMPONENT_ A unique ID of the component reporting the error.

ID

64 N bytes PLATFORM_OEM_ OEM specific data of variable length. See Table B-2 for the format of
DATA_STRUCT this structure.

64+N | X bytes PLATFORM_OEM_DEV OEM specific Vendor Device Path. Please refer to the EFI

bytes ICE_PATH Specification for the format of this field.

B.2.5 Error Status
The error status definition provides the capability to abstract information from implementation
specific error registersinto generic error codes in order that the operating systems may deal with

the errors without an intimate knowledge of the underlying platform.

Table B-3. Error Status Fields

Bit Position Description

Bit 0-Bit7 Reserved.

Bit8 - Bit 15 Encoded value for the Error_Type? (see Table B-4).

Bit 16 Address: Error was detected on the address signals or on the address portion of the
transaction.

Bit 17 Control: Error was detected on the control signals or in the control portion of the transaction.

Bit 18 Data: Error was detected on the data signals or in the data portion of the transaction.

Bit 19 Responder: Error was detected by the responder of the transaction.

Bit 20 Requestor: Error was detected by the requestor of the transaction.

Bit 21 First error: If multiple errors are logged for a section type, this is the first error in chronological
sequence. Setting of this bit is optional.

Bit 22 Overflow: Additional errors occurred and were not logged due to lack of logging resources.

Bit 23..63 Reserved.

a. Error_Type: Error_Type provides information about the type of error detected. If it is not possible to determine the exact
cause of the error, the type may be promoted to one of the two values of 1 or 16 as described in Table B-4.

Table B-4. Error Types

Encoding Description
1 ERR_INTERNAL Error detected internal to the component.
16 ERR_BUS Error detected in the bus.

Detailed Internal Errors

ERR_MEM Storage error in memory (DRAM).
ERR_TLB Storage error in TLB.

ERR_CACHE Storage error in cache.
ERR_FUNCTION Error in one or more functional units.
ERR_SELFTEST component failed self test.
ERR_FLOW Overflow or Undervalue of internal queue.

©| 0| N o] O ~

Error Record Structures B-11

Table B-4.

Error Types (Cont'd)

Detailed Bus Errors

B-12

17 ERR_MAP Virtual address not found on I10-TLB or 10-PDIR.

18 ERR_IMPROPER Improper access error.

19 ERR_UNIMPL Access to a memory address which is not mapped to any component.
20 ERR_LOL Loss Of Lockstep.

21 ERR_RESPONSE Response not associated with a request.

22 ERR_PARITY Bus parity error (must also set the A, C, or D Bits).

23 ERR_PROTOCOL Detection of a protocol error.

24 ERR_ERROR Detection of PATH_ERROR.

25 ERR_TIMEOUT Bus operation time-out.

26 ERR_POISONED A read was issued to data that has been poisoned.
All Others Reserved.

Error Record Structures

	1 Introduction
	1.1 Objectives
	1.2 Firmware Model
	1.3 System Abstraction Layer Overview
	1.4 Firmware Entrypoints
	1.4.1 Processor Abstraction Layer Entrypoints
	1.4.2 System Abstraction Layer Entrypoints
	1.4.3 Operating System Entrypoints

	1.5 Related Documents
	1.6 Revision History

	2 Platform Requirements
	2.1 Firmware Address Space
	2.2 PAL/SAL ROM Space
	2.3 Simplified Firmware Address Map
	2.4 Firmware Organization using a Protected Boot Block
	2.4.1 Firmware Components

	2.5 Firmware Interface Table
	2.6 Resources Required for PC-AT* Compatibility
	2.7 Chipset and Shadowing Requirements
	2.8 Platform Support for Variant Architectural Features
	2.9 Platform Considerations Related to Geographic Location
	2.10 Non-volatile Memory Requirements
	2.11 Miscellaneous Platform Requirements

	3 Boot Sequence
	3.1 Overview of the Code Flow after Hard Reset
	3.1.1 Code Flow during Recovery
	3.1.2 Normal Code Flow

	3.2 SAL_RESET
	3.2.1 Initialization Phase
	3.2.2 Bootstrap Processor Identification Phase in an Multiprocessor Configuration
	3.2.3 Platform Initialization Phase
	3.2.4 Operating System Boot Phase
	3.2.5 Firmware to Operating System Loader Handoff State
	3.2.6 OS_BOOT_RENDEZ
	3.2.7 SAL System Table

	3.3 Itanium™-based Operating System Loader Requirements
	3.3.1 Fault Handling
	3.3.2 Memory Management Resources Usage
	3.3.3 Other Restrictions on the Operating System

	4 Machine Checks
	4.1 SAL_CHECK
	4.1.1 SAL_CHECK Processing Details

	4.2 Corrected Machine Checks
	4.3 Platform Errors
	4.3.1 Scope of Platform Errors
	4.3.2 Processing of Corrected Platform Errors
	4.3.3 Processing of Uncorrected Platform Errors

	4.4 Polling for Corrected Errors
	4.5 OS_MCA
	4.5.1 Unconsumed Error Records across Reboots

	4.6 Procedures used in Machine Check Handling
	4.7 Machine Checks in MP Configurations
	4.7.1 Rendezvous Requirements
	4.7.2 Flow of Control during MCA in MP Configurations
	4.7.3 OS_MCA Responsibilities
	4.7.4 Machine Check Processing Steps within Firmware and Operating System

	4.8 OS_MCA Handoff State
	4.8.1 Return from the OS_MCA Procedure

	5 Initialization Event
	5.1 SAL_INIT
	5.2 OS_INIT
	5.3 OS_INIT Handoff State
	5.4 Return from OS_INIT Procedure
	5.5 MP INIT Support

	6 Platform Management Interruptions
	6.1 SALE_PMI Overview
	6.2 SALE_PMI Initialization
	6.3 SALE_PMI Processing
	6.4 Special Considerations for Multiprocessor Configurations

	7 IA-32 Support (Optional)
	7.1 IA-32 Support Model
	7.2 IA-32 Support Requirements
	7.2.1 Resources Supported by SAL
	7.2.2 Overview of IA-32 Support Layer Functionality
	7.2.3 IA-32 Instruction Usage Guidelines
	7.2.4 IA-32 Support Environment
	7.2.5 IA-32 Interruption Handler Support

	8 Calling Conventions
	8.1 SAL Calling Conventions
	8.1.1 Definition of Terms
	8.1.2 Processor State
	8.1.3 System Registers
	8.1.4 General Registers
	8.1.5 Floating-point Registers
	8.1.6 Predicate Registers
	8.1.7 Branch Registers
	8.1.8 Application Special Registers
	8.1.9 Parameter Buffers

	8.2 Software Interface Conventions for SAL Procedures
	8.2.1 Control Flow of the SAL Interface
	8.2.2 Calling Architected/OEM SAL Functions

	9 SAL Procedures
	9.1 SAL Runtime Services Overview
	9.1.1 Invoking SAL Runtime Services in Virtual Mode
	9.1.2 Access to Resources not Supported by the Operating System

	9.2 SAL Procedures that Invoke PAL Procedures
	9.3 SAL Procedure Summary

	A Glossary
	B Error Record Structures
	B.1 Overview
	B.2 Error Record Structure
	B.2.1 Record Header
	B.2.2 Section Header
	B.2.3 Processor Device Error Info
	B.2.4 Platform Errors
	B.2.5 Error Status

