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Introduction 1

1.1 Objectives

This document describes the functionality of the System Abstraction Layer (SAL) for 
Itanium™-based systems. 

This document specifies requirements to develop platform firmware for Itanium-based systems. A 
companion document, The Extensible Firmware Interface (EFI) Specification, describes additional 
interfaces that must be implemented to access devices on the platform. The EFI Specification is a 
platform binding specification and is also part of Itanium-based firmware.

This document is intended for firmware designers, system designers, and writers of diagnostic and 
low-level operating system software. This document is an architectural specification and does not 
require a specific implementation. 

The primary objectives of Itanium-based firmware are to:

• Enable boot of Itanium-based operating systems.

• Ensure that the firmware interfaces encapsulate the platform implementation differences 
within the hardware abstraction layers and device driver layers of operating systems.

• Separate the abstraction for the platform hardware from the abstraction for the processor 
hardware.

• Enable platform differentiation, hardware innovation, and optimization of Itanium-based 
platforms.

• Support the scaling of systems from the low-end to the high-end including servers, 
workstations, mainframe alternatives, and supercomputers. Features supported will include 
high availability, error logging & recovery, large memory support, multiprocessing, and 
broader and deeper I/O hierarchies (possibly greater than 100 I/O cards).

• Optionally enable shrink-wrapped versions of the IA-32 operating systems to boot. This will 
involve support of IA-32 industry standard calls and Application Programming Interfaces 
(APIs).

• Enable reuse of IA-32 BIOS code as part of SAL. The extent of the IA-32 BIOS reuse is 
implementation dependent, but all SAL entrypoints from the Processor Abstraction Layer 
(PAL) will use the Itanium processor system environment. 

• Optionally, enable the use of legacy PC peripherals, option ROMs, and PCI cards with IA-32 
Plug-and-Play expansion ROMs.

This document describes the platform dependent firmware interfaces needed to support these goals. 
However, this document is not intended to document PC infrastructure specifications. 
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1.2 Firmware Model

As shown in Figure 1-1, Itanium-based firmware has three components:

1. Processor Abstraction Layer

2. System Abstraction Layer

3. Extended Firmware Interface 

Figure 1-1. Firmware Model
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PAL encapsulates processor implementation-specific features and is part of the Itanium processor 
architecture. PAL operates independently of the number of processors. SAL is the platform-specific 
firmware component that isolates operating systems and other higher level software from 
implementation differences in the platform. EFI is the platform binding specification layer that 
provides a legacy free API interface to the operating system loader.

PAL, SAL, and EFI together provide system initialization and boot, Machine Check Abort (MCA) 
handling, Platform Management Interrupt (PMI) handling, and other processor and system 
functions which would vary between implementations. The interaction of the various functional 
firmware blocks is shown in Figure 1-2.

Figure 1-2. Firmware Services Model
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1.3 System Abstraction Layer Overview

SAL provides the following major pieces of functionality for an Itanium-based platform: 

• Initialize, configure, and test the platform hardware. This includes the memory and I/O 
subsystems, the necessary boot devices, and platform specific hardware.

• Select the bootstrap processor (BSP) in a multiprocessor platform and set the configurable 
processor features. The Itanium processor provides its own PAL firmware for initialization and 
test, but this abstraction has no knowledge of the platform and so further platform-specific 
action is necessary to integrate the processor with the rest of the system. For example, SAL 
must configure, test, and initialize memory before the processor cache to memory interface can 
be established and tested (SAL_RESET interface).

• Optionally encapsulate and provide the environment necessary to run IA-32 BIOS and plug-in 
cards containing IA-32 Option ROMs.

• Provide low level service routines to aid EFI and the operating system loader in establishing 
the environment necessary for the operating system. 

• Provide common data structures to the operating system to convey initialization and 
configuration information.

• Provide the necessary services and common infrastructure to support multiprocessor 
configurations.

• Provide runtime service routines to encapsulate those functions of the platform necessary for 
EFI and the operating system while they are running.

• Provide the functions necessary to aid in the logging and recovery from Machine Check 
conditions (SAL_CHECK and OS_MCA interface).

• Provide the functions necessary to aid in the logging and recovery from INIT conditions 
(SAL_INIT and OS_INIT interface).

• Provide the functions necessary to handle the platform management events (SALE_PMI 
interface).

• Optionally, provide the functions necessary to aid in the recovery from a corrupted boot ROM.

• Optionally, provide an user interface to aid in system configuration, information passing and 
troubleshooting. 

These SAL functions can be divided into the following interface categories:

• SAL entrypoints from PAL: SALE_ENTRY and SALE_PMI.

• Operating system entrypoints from SAL: OS_MCA, OS_INIT and OS_BOOT_RENDEZ.

• SAL runtime service routines.
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1.4 Firmware Entrypoints

1.4.1 Processor Abstraction Layer Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization request

• PMIs

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in 
Figure 1-2 and Figure 1-3):

1. PALE_RESET initializes the processor following power-on or reset. This PAL entrypoint 
calls the SALE_ENTRY entrypoint in the SAL to test for firmware recovery. 
SALE_ENTRY, in turn, calls SAL_RECOVERY_CHECK to perform recovery if the 
firmware recovery indication is present on the platform, otherwise it returns to PAL via 
SALE_ENTRY. If firmware recovery is required, the SAL recovery code will accomplish 

Figure 1-3. Firmware Entrypoints Logical Model

001075

Reset

Power-On

Firmware Recovery
Complete (BSP)

PAL SAL

Application
Processors 
(APs)

Bootstrap
Processor
(BSP)

Error

OS

SAL_BOOT_
_RENDEZ

PALE_RESET SALE_ENTRY SAL_RESET EFI Boot
Manager

OS_LOADER

Wake Up

Wake Up

Initialize

PALE_CHECK SAL_CHECK OS_MCA

SAL_MC_
RENDEZ

PALE_INIT SALE_ENTRY SAL_INIT OS_INIT

PALE_PMI SALE_PMI

SALE_ENTRY

MC Rendezvous Complete MC Rendezvous
Interrupt (APs)

BSP

PMI

Resume



1-6 Introduction

the firmware recovery function, reset the recovery indication, and then trigger a system wide 
reset, causing re-entry into the PALE_RESET. If SAL reports to PAL that a firmware 
recovery condition does not exist, PAL conducts additional processor tests and then branches 
to SALE_ENTRY. SALE_ENTRY then branches to a procedure within SAL called 
SAL_RESET to initialize the system. 

2. PALE_CHECK saves the minimal processor state, determines if errors are processor related, 
saves processor related error information, and corrects errors where possible (for example, 
by flushing a corrupted instruction cache line and marking the cache line as unusable). 
PALE_CHECK then branches to the SALE_ENTRY entrypoint. SALE_ENTRY, in turn, 
branches to SAL_CHECK to complete the error logging, correction, and reporting. 
PALE_CHECK is entered as a response to processor or platform errors.

3. PALE_INIT saves the minimal processor state, initializes the processor, and branches to 
SALE_ENTRY. SALE_ENTRY, in turn, branches to SAL_INIT. PALE_INIT is entered as a 
response to an initialization event. 

4. PALE_PMI determines the type of platform management event and branches to the 
SALE_PMI for certain conditions. PALE_PMI is entered as a response to a platform 
management event.

1.4.2 System Abstraction Layer Entrypoints

Following are the entrypoints from PAL into SAL:

1. SALE_ENTRY is the entrypoint PAL branches to after a power-on, reset, machine check, or 
initialization event. The code at this entrypoint uses the hand-off value in a general register 
to jump to different entrypoints within the SAL for reset, firmware recovery, machine check 
and initialization events. 

SAL_RESET within SAL is entered for system initialization after PAL has initialized the 
processor. SAL_RESET functionality is described in Chapter 3.

SAL_RECOVERY_CHECK within SAL is entered after a power-on reset from PAL to test 
if a firmware recovery condition is present. SAL is the only entity that has knowledge of 
platform resources to determine if a firmware recovery condition is present. 

SAL_CHECK within SAL is entered for logging errors, and correcting platform related 
errors where possible. SAL_CHECK functionality is described in Chapter 4.

SAL_INIT within SAL is entered for saving the state of the system and performing 
additional functions as defined in Chapter 5.

2. SALE_PMI is the entrypoint PAL branches to for handling platform management events in 
an implementation-dependent manner.

1.4.3 Operating System Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent software):

• OS_LOADER is the entrypoint the BSP enters from SAL_RESET after the system has been 
initialized and the operating system loader image has been loaded by the EFI component from 
the boot device. Refer to the EFI Specification for details. 

• OS_BOOT_RENDEZ is the operating system multiprocessor rendezvous handler. Entered 
from SAL when operating system loader on the BSP wakes up the application processors 
(APs), to permit synchronization of APs in an MP environment. 
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• OS_MCA is the operating system machine check abort handler. Called from SAL_CHECK to 
allow the OS to handle the machine checks that are not corrected by hardware, PAL or SAL.

• OS_INIT – Operating system Initialization Handler. Called from SAL_INIT to handle a valid 
initialization event.

1.5 Related Documents

The following documents contain additional material related to Itanium-based platforms:

• Advanced Configuration and Power Interface Specification – Intel/Microsoft/Toshiba

• BIOS Boot Specification, 1996 – Compaq/Phoenix/Intel

• BIOS Enhanced Disk Drive Specification, Version 3.0 – Phoenix

• Bootable CD-ROM Format Specification, 1994 – Phoenix/IBM

• CBIOS for IBM Computers and Compatibles – Phoenix

• Extensible Firmware Interface Specification – Intel

• Itanium™ Software Conventions and Runtime Architecture Guide – HP/Intel

• Intel® Itanium™ Architecture Software Developer’s Manual – Intel

• ItaniumTM Processor Family Error Handling Guide - Intel

• PCI BIOS Specification, 1994 – PCI SIG

• Plug and Play ISA Specification, 1994 – Microsoft

1.6 Revision History

The revision number of the SAL specification supported by the SAL implementation is specified in 
the SAL System Table Header (refer to Table 3-2, “SAL System Table Header”

) 

Date of Revision Description

February 1998 Initial definition.

August 1998 Defined NVM record formats, changes to SAL procedures.

June 1999 Defined handoff to EFI, Removed NVM functionality.

January 2000 Changes to some SAL procedure definitions.

July 2000 Reflected changes in MCA handling due to PAL MCA changes.

January 2001 MCA related changes, Platform Error definition.

July 2001 Platform requirement clarifications, Boot sequence clarifications, Additions to OS 
restrictions for boot sequence, Changes to MCA SAL_CHECK, Platform Errors, and 
OS_MCA sections, Added SAL procedures callable by OS_INIT, Clarification to 
Interface Conventions to SAL Procedures, Added changes regarding re-entrancy of 
SAL Runtime Services, Clarifications to SAL procedure definitions, Added terms to the 
glossary.
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Platform Requirements 2

2.1 Firmware Address Space

The firmware address space occupies the 16 MB region below 4 GB (addresses 0xFF00_0000 
through 0xFFFF_FFFF). This address space is shown in Table 2-1.

The firmware address space is logically partitioned into two major functional blocks: the ROM area 
(shared by the SAL and PAL) and the SAL resources area. The ROM area is placed in the address 
space such that its ending address is 0xFFFF_FFFF. The SAL resources area occupies the portion 
of 16 MB firmware address space not occupied by the ROM area. SAL code can use the special 
hardware resources that the platform has implemented in the SAL Resources area. The hardware 
resources may include scratch RAM, non-volatile memory (NVM), environment control, and status 
registers. The location of the hardware resources within the SAL resources area is platform 
dependent. 

2.2 PAL/SAL ROM Space

The PAL/SAL ROM space within the firmware address space must contain the PAL and SAL code 
areas and a table called the Firmware Interface Table (FIT). See Section 2.5.

PAL code is broken into two subcomponents:

• PAL_A which is processor stepping independent.

• PAL_B which is processor stepping dependent.

These two subcomponents are required and must be separated logically even if they are 
physically located in contiguous spaces. The PAL_A block contains a limited subset of PAL 
procedures that can be invoked by SAL while performing a firmware recovery (refer to 
Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual for details). The 
PAL_B block contains the PAL procedures that can be invoked by SAL and the operating 
system. 

Table 2-1. Firmware Address Space

0xFFFF_FFFF

PAL/SAL ROM

SAL Resources

0xFF00_0000
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In a similar fashion, SAL code can be broken into two subcomponents:

• SAL_A which contains the SALE_ENTRY entrypoint and all the code needed for firmware 
recovery. 

• SAL_B which contains code to test and initialize the platform.

Unlike the PAL, the SAL subcomponents need not be separated from each other logically or 
physically.

The PAL_A, PAL_B, SAL_A and FIT components are architecturally required.

Code in the PAL_A can transition to: 

• Code in the PAL_B using the FIT. First, the beginning address of the PAL_B block is 
determined from the FIT. Then, the entrypoints within the PAL_B block (e.g. PAL_RESET) 
are determined in a PAL implementation-dependent manner. 

• Code in the SAL_A address space at SALE_ENTRY, which serves as the entrypoint for Reset, 
Recovery, Machine Check and INIT events.

In order to conserve space in the firmware ROM, portions of the SAL code may be held in 
compressed format. SAL code that is executed out of ROM such as early stages of the Reset 
sequence and code for handling Machine check and INIT cannot be held in compressed format.

2.3 Simplified Firmware Address Map

A simplified example of the firmware address map that shows the minimum architectural 
components is shown in Figure 2-1. Refer to Section 2.4.1 for description of the fields. This layout 
cannot be used with a protected boot block.

2.4 Firmware Organization using a Protected Boot 
Block

This section describes a typical firmware organization using flash ROM that contains a protected 
boot block. 

A protected boot block refers to a block of the flash ROM that the hardware protects from 
modification. Code in this block can contain logic to restore PAL/SAL code in the erasable portion 
of the flash part after a previous flash programming attempt has been accidentally aborted. 
Firmware using a protected boot block requires some data structures in addition to the minimum 
architectural requirements discussed earlier.

To support the protected boot block, both the PAL_A code and SAL_A code must be within the 
protected boot block of the flash. The SALE_ENTRY entrypoint must be located in the SAL_A 
part of the protected boot block. 
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2.4.1 Firmware Components

The firmware address space is shared by the SAL and the PAL. Some of the SAL/PAL boundaries 
are implementation dependent. The Firmware Address Space contains several regions and locations 
as shown in Figure 2-2 for a typical implementation.

The firmware address space contains the following regions and locations:

• The 16 bytes at (4 GB – 16) contains the IA-32 reset vector for PC-AT* compatibility. Some 
IA-32 operating systems may need the information in this area such as the date, the PC-AT 
model signature, etc. 

Figure 2-1. Simplified Firmware Address Map
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Figure 2-2. Firmware Address Map
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• The 8 bytes at (4 GB – 24) contain the address of the SALE_ENTRY entrypoint. Bit 63 of this 
address must be set to 1 to specify the uncacheable memory attribute in physical addressing 
mode.

• The 8 bytes at (4 GB – 32) contain the pointer to the FIT. Bit 63 of this address must be set to 
1. The FIT need not be located immediately before the protected boot block. However, the FIT 
cannot be moved to a different location since its address is contained in the protected boot 
block. 

• The 16 bytes at (4 GB – 48) describe the characteristics of the PAL_A component in the ROM 
(base address, size, version number, type, etc.) This is represented in the FIT entry format for 
the sake of uniformity. Bit 63 of the address field within this FIT entry must be set to 1 and the 
type field must have a value of 0x0F.

• The 16 bytes at (4 GB – 64) are reserved for future use.

• The PAL_A code resides below the (4 GB – 64) address. This variable size area contains the 
hardware-triggered entrypoints (PALE_RESET, PALE_INIT, and PALE_CHECK) and 
minimal processor initialization code. This code area must be a multiple of 16 bytes in length. 
PAL_A uses the FIT entry of the PAL_B to reach continuation entrypoints in PAL_B for reset, 
machine check, and initialization. 

The code in the PAL_A block contains enough capability to initialize the processor, invoke the 
SALE_ENTRY procedure for test of the recovery indication, and continue with normal PAL 
execution in the PAL_B code area. This code is processor stepping independent. 

• SAL_A code occupies the bottom of the protected boot block. To provide maximum flexibility 
and to conserve space in the protected boot block, this area will primarily contain code for 
firmware recovery. When entered for other conditions such as normal reset, machine check, or 
initialization, the code in this block will find the continuation entrypoints in the SAL_B block 
(using the FIT or other means) and jump to the same. The method by which SALE_ENTRY 
code reaches continuation entrypoints in SAL_B for reset, machine check, and initialization is 
SAL implementation dependent.

The sizes of the PAL_A and SAL_A code blocks shown in Figure 2-2 are not needed during 
firmware execution but may be needed by the utility that merges these components to format 
the protected boot block portion of the flash ROM.

• Underneath the protected boot block is the FIT. It consists of 16-byte entries containing 
starting address and size information of the remaining firmware components in the 
non-recovery portion of the flash ROM – PAL_B, SAL_B, etc. Refer to Section 2.5 for FIT 
details. 

• Underneath the FIT is the code for the IA-32 BIOS, EFI, SAL_B, and PAL_B components. 
There are no ordering requirements for the firmware components within the flash ROM. 

• The PAL_B binary block contains the PAL code that is not required for firmware recovery. The 
PAL_B code area is a multiple of 16 bytes in length and must be aligned on a 32K-byte 
boundary. PAL_B’s FIT entry contains the address and size of the PAL_B binary block.

• The remainder of the SAL/PAL ROM area is occupied by the SAL_B code. SAL_B’s FIT 
entry (if present in the FIT) contains the address and size of the SAL_B binary block. 

• Code within SAL (SAL_A & SAL_B) may include IA-32 code. The location of the SAL_B 
and IA-32 BIOS code within the SAL/PAL ROM area is implementation dependent. Some 
SAL implementations may separate the code containing Itanium instructions and IA-32 
instructions as separate firmware blocks with unique FIT entry types. In a similar fashion, the 
SAL_B component may include the EFI component or a separate FIT entry may point to the 
EFI component. 
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2.5 Firmware Interface Table

The Firmware Interface Table contains starting addresses and sizes for the firmware components 
that are outside the protected boot block. Because these code blocks may be compiled at different 
times and places, code in one block (such as PAL_A) cannot branch to code in another block (such 
as PAL_B) directly. The FIT allows code in one block to find entrypoints in another. The Figure 2-3 
shows the FIT layout.

Each active FIT entry contains information for the corresponding firmware component. The first 
two entries are used to describe the FIT table itself and the PAL_B block respectively and these two 
entries are architecturally required. FIT entries shall be in ascending order of entry types, otherwise 
firmware behavior is unpredictable. The FIT entry format is shown in Figure 2-4.

Address is the base address of the component and it must be aligned on a 16-byte boundary. For the 
FIT Header entry, this field contains the ASCII value of ‘_FIT_<sp><sp> <sp>’ where <sp> 
represents the space character. For the PAL_B entry, bit 63 of the address field must be set to 1 to 
indicate the uncacheable memory attribute in physical addressing mode. The PAL_B component 
must be aligned on a 32K-byte boundary. 

Figure 2-3. Firmware Interface Table

Figure 2-4. Firmware Interface Table Entry
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Size is the size of the component in paragraphs of 16 bytes. 

Version contains the component’s version number. For the FIT Header Entry, the value in this field 
will indicate the revision number of the FIT data structure.

C_V is a one bit field that indicates whether the component has a valid checksum. If this bit is zero, 
the value in the Chksum field is not valid.

Type contains the seven-bit type code for the element. Types are defined in Table 2-2.

The type code of 0x0F is used for PAL_A. Since PAL_A’s binary image is located near the end of 
the 4 GB firmware address space (flash ROM organization with protected boot block), its FIT entry 
is also located within the protected boot block (at 4 GB – 48) and not in the FIT table. The OEM 
may define unique types for one or more blocks of SAL_B, EFI, IA-32 BIOS, etc., within the 
OEM-defined type range of 0x10 to 0x7E.

Chksum contains the component’s checksum. The modulo sum of all the bytes in the component 
and the value in this field (Chksum) must add up to zero. This field is only valid if the C_V field is 
non-zero. The checksum may be verified by firmware or software prior to its use. If the checksum 
option is selected for the FIT in the FIT Header entry (FIT type 0), the modulo sum of all the bytes 
in the FIT table must add up to zero. The PAL_A FIT entry is not part of the FIT table and hence 
not included in the checksum computation of the FIT. 

With this address layout, when one of the firmware components changes only that component’s 
flash portion requires changes. This address layout can also support multiple ROMs for the 
firmware components, and such ROMs are not restricted to reside below 4 GB. 

2.6 Resources Required for PC-AT* Compatibility

All platforms shall implement a minimum of 64 MB of memory. The area of memory below 1 MB 
is defined as the compatibility area and is used by firmware when initializing and executing IA-32 
BIOS (refer to Table 2-3). The requirements specified below need not be implemented on the 
platform if PC-AT compatibility is not required.

Within the 1 MB compatibility memory address space, empty spaces can be mapped to system 
memory. For example, a server platform may choose to implement the system console on a serial 
port and eliminate the VGA frame buffer and the VGA BIOS components. IA-32 stack should be 
allocated in the memory region (0x0000_0500 to 0x0009_FFFF) for use by the real mode IA-32 
BIOS code. 

Table 2-2. FIT Types

Type Meaning

0x00
0x01
0x02-0x0E
0x0F
0x10-0x7E
0x7F

FIT Header entry
PAL_B
Reserved
PAL_A
OEM-defined
Unused
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Itanium-based platforms may optionally use I/O adapter cards containing IA-32 option ROMs 
during the boot process. A portion of the SAL code may also contain IA-32 code. Such IA-32 code 
as well as IA-32 operating systems may rely on the existence of PC-AT compatible components. If 
it is necessary to support such IA-32 code, Itanium-based platforms may implement the I/O ports 
specified in the Table 2-4 or alternatively, the SAL can trap some or all IA-32 I/O instructions and 
emulate the I/O ports that are not present on the platform. Refer to Section 7.2.4, “IA-32 Support 
Environment” for more details. 

2.7 Chipset and Shadowing Requirements

Chipset implementations have the following SAL requirements: 

• The firmware code and data within the firmware address range must be accessible from the 
processor without any special system fabric initialization sequence. This implies that the 
system fabric is implicitly initialized at power on for accessing the firmware address space or 

Table 2-3. 1 MB Compatibility Memory Address Space

0x000F_FFFF
Shadowed IA-32 System BIOS

0x000F_0000

0x000E_FFFF Shadowed IA-32 Extended System BIOS/Option 
ROM/Memory Area0x000E_0000

0x000D_FFFF

Shadowed IA-32 Option ROM BIOS

0x000C_0000

0x000B_FFFF

VGA Frame Buffer

0x000A_0000

0x0009_FFFF

Memory

0x0000_0500

0x0000_04FF
IA-32 BIOS RAM Data Area

0x0000_0400

0x0000_03FF
IA-32 Interrupt Vector Area

0x0000_0000

Table 2-4. IA-32 Compatibility I/O Ports

Port Description

0x20-0x21 Programmable Interrupt Controller (Master)

0x40-0x43 Programmable Interval Timer

0x70-0x71 CMOS NVRAM Address, Data Ports

0xA0-0xA1 Programmable Interrupt Controller (Slave)
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the special hardware that contains the firmware code and data is implemented on the processor 
and not accessed across the system fabric.

• Firmware may copy ROM based code and data structures to RAM to increase performance and 
to allow for updates of ROM based data structures by initialization firmware. Platforms are not 
required to implement any write protection for these shadowed areas. Since hardware events 
such as reset, machine check and initialization enter architected PAL entrypoints in the ROM 
around the 4 GB address, chipsets shall not disable accesses (by aliasing or other means) to the 
PAL/SAL ROM area subsequent to the shadowing of firmware code. 

Itanium instructions provide the necessary memory management features to prevent writes to 
the shadowed RAM areas while executing IA-32 code. The Itanium instruction set architecture 
provides instructions to synchronize the instruction and data caches in the presence of 
self-modifying code. 

• Chipsets need not implement in-line shadowing (Read cycles going to ROM, Write cycles 
going to RAM) for copying IA-32 code segments to memory addresses in the range of 
0xE0000 to 0xFFFFF. 

2.8 Platform Support for Variant Architectural Features

Different platform implementations may vary in the features they implement and remain 
architecturally compliant. As an example, some platforms will implement bus lock while other 
platforms will not. This has implications for software running on these platforms, and therefore this 
information must be communicated to software. SAL firmware is responsible for knowing the 
architecture implementation variations and correctly communicating the information to software. 
How SAL knows about the architectural variant is implementation dependent. The following lists 
the features which fall into this category and describe the method of abstraction to software.

• Bus Lock: If the processor supports the bus lock signal and the platform implements bus lock, 
then SAL shall set the Default Control Register Lock Check Enable bit to 0 (DCR.lc = 0), 
otherwise the DCR.lc shall be set to 1. The operating system shall not alter DCR.lc bit setting 
if it is set to 1. Refer to the PAL call PAL_BUS_ SET_FEATURES in the Intel® Itanium™ 
Architecture Software Developer’s Manual for information on masking bus lock signal and 
executing the locked transaction as a series of non-atomic transactions.

• Lowest Priority Interrupt: SAL shall communicate to the operating system, through the SAL 
System Table (Table 3-7), whether this feature is supported by the platform.

• Address space attributes: SAL shall communicate to software the supportable access attributes 
for all valid address space mappings. This information is provided to the operating system by 
the EFI component. As an example of this architectural implementation options, consider two 
memory controllers where one supports sub-cache line writes to memory and another which 
does not. The first case would be described as write-through or write-back cacheable, whereas 
the second case would be described as supporting only write-back cacheable. Similarly, the 
UCE memory attribute indicates whether the address space permits the exporting of the 
fetchadd operation outside the processor. Memory attribute features for address spaces are 
fully described in the Intel® Itanium™ Architecture Software Developer’s Manual. 
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2.9 Platform Considerations Related to Geographic 
Location

Following are the SAL requirements from the platform pertaining to the geographic locations of 
processors in an MP configuration: 

• The platforms shall provide mechanisms to generate unique geographic identifiers for those 
components that have software visibility. As an example, imagine a complex multiprocessor 
implementation which has more than one main system bus to which processors are attached. A 
processor returns its location on the bus via a call to PAL_FIXED_ADDR, but this PAL call 
does not reflect the multi-bus configuration of the platform. It is therefore required that the 
platform provide some mechanism for SAL to ascertain which bus a processor is attached to. 
SAL will use this value to load the Streamlined Advanced Programmable Interrupt Controller 
(SAPIC) EID field in the Local ID register (CR.LID) of the processor(s). This is necessary for 
supporting interprocessor interrupts. The above example is not meant to limit this requirement 
to processors, as multiple host I/O bridges and multiple memory controllers, etc. may also have 
a similar requirement. 

Platforms may implement unique ways of providing the SAPIC EID value. For example, in a 
non-clustered environment, SAL may use the hardcoded value of 0 for this field. Another 
example is a cluster controller that provides different EID values for processors connected to 
different buses on the system. It is expected that these mechanisms will be very simple, to 
facilitate exchange of interprocessor interrupts between processors (if needed), to determine 
the BSP node and the BSP processor in an MP environment. The BSP selection needs to be 
done very early in the boot sequence and during firmware recovery. Since multiple processors 
may be attempting to read the EID, a scheme that involves writing an index followed by 
reading the value from a cluster controller I/O port or the CMOS NVRAM I/O port may be 
prone to errors. 

• A multi-Translation Lookaside Buffer (TLB) coherence domain platform must provide a 
mechanism for detecting which TLB coherence domain the processor is located in.

2.10 Non-volatile Memory Requirements

Itanium-based platform hardware must provide a minimum of 32KB of NVM to hold the error log 
captured during uncorrected machine check events. There may be additional NVM requirements to 
hold information on the operating systems that can be booted from the platform, the platform 
configuration, etc. Refer to the EFI Specification for requirement details as well as the interfaces to 
the NVM space. 

The NVM must preserve memory contents when the system power is off. Possible NVM 
implementations are battery-backed SRAM and flash memory. The physical address and size of 
each NVM object in the system will be specified in Table 3-5, “Memory Descriptor Entry” with:

• Memory type classification of Regular Memory and Memory Usage classification of Firmware 
Reserved Memory for battery backed SRAM implementation; and

• Memory type classification of Firmware Address Space when NVM is implemented as part of 
the firmware flash ROM.
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2.11 Miscellaneous Platform Requirements

Following are the additional platform requirements for SAL:

• If firmware recovery is supported in SAL, Itanium-based platforms must provide an 
implementation-specific hardware mechanism to reflect the user selected firmware recovery 
condition to all the processors on the platform. 

• Itanium-based platforms must support simple hardware or software implementations for BSP 
selection, e.g. write once port. This is necessary since only the BSP is allowed to execute the 
firmware recovery code.

• Itanium-based platforms must provide mechanisms to determine the base frequency of the 
platform (clock input to the processor).

• Itanium-based platform hardware must provide a mechanism for firmware to reset all 
components within the platform.

• Itanium-based platform hardware must provide a switch or other mechanism that produces an 
INIT signal. This feature, generally known as the CrashDump switch, may be used to effect a 
crash dump on a “hung system”. 

• Itanium-based platform hardware must provide user friendly mechanisms for displaying the 
progress of the boot and firmware recovery, e.g. LCD display. 
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Boot Sequence 3

3.1 Overview of the Code Flow after Hard Reset

This chapter describes the firmware execution sequence from reset to operating system launch.

On reset, the processor(s) begin execution at PALE_RESET, an entrypoint within the PAL_A code 
area near 4 GB in the firmware address space. The exact physical location of PALE_RESET is 
processor implementation dependent. PALE_RESET initializes and tests the processor using 
stepping-independent code. It will then call SALE_ENTRY with the Recovery Check function to 
verify if the user has selected firmware recovery in a platform dependent manner. 

SALE_ENTRY is the common SAL_A entrypoint from code in the PAL_A and PAL_B blocks for 
reset, recovery, machine check, and initialization events. PAL code obtains the SALE_ENTRY 
entrypoint from the 8-byte pointer at 4 GB – 24. The state of the processor on entry into 
SALE_ENTRY is described in the Intel® Itanium™ Architecture Software Developer’s Manual. 
One of the general registers indicates the event causing entry into SALE_ENTRY – reset, recovery 
check, machine check, or initialization. SALE_ENTRY uses this argument to jump to internal 
entrypoints within SAL – SAL_RESET, SAL_RECOVERY_CHECK, SAL_CHECK or 
SAL_INIT.

PAL_A passes status information to SALE_ENTRY on the health of the processor and whether the 
version of the PAL_B in the firmware is compatible with the processor’s stepping. Table 3-1 shows 
the recommended SAL actions based on the self-test state parameter provided by PAL_A.

The code in SAL_A will initiate recovery and update the firmware if: 

• The platform indicates a recovery condition.

• The PAL_A code reports an authentication failure on the PAL_B component in the firmware.

• The PAL_A code reports checksum or other errors in the FIT or the PAL_B component.

• The PAL_A code reports on all the processors that the version of the PAL_B in the firmware is 
incompatible with the stepping level of the processors in the system. 

Table 3-1. SAL Actions Based on Processor Self-test State 

Processor Health SAL Handling

Catastrophic Failure None. PAL disables interrupts and Machine Checks, then keeps the processor 
within a spin loop in PAL.

Healthy Proceed with SAL Reset.

Performance Restricted Proceed with SAL Reset if this is the only processor on the system. Else, try to 
inform the user. The processor may be used as an attached processor in a MP 
configuration. 

Functionally Restricted Try to inform the user. Disable interrupts and Machine Checks, then go into a 
spin loop. Operating systems may not boot successfully if key processor 
functionality is missing. 
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3.1.1 Code Flow during Recovery

If firmware recovery is required, the SAL recovery code shall authenticate the new binary using 
code in the PAL_A block. The SAL code will then accomplish the firmware recovery function, 
reset the recovery indication, and trigger a system wide reset causing re-entry into PALE_RESET. 
SAL recovery code contains the logic to update one or more of the firmware components from 
OEM supported media.

Note: The firmware recovery code in SAL_A must be processor stepping independent and must not 
invoke code in the PAL_B block.

In a multi-processing environment, the recovery code will first select a BSP. SAL shall not select a 
processor as the BSP unless it is reported as healthy or performance restricted by PAL and the 
version of PAL_B on the system is compatible with the processor stepping. The BSP will 
rendezvous the APs and then proceed with the recovery of firmware. Note that the processors that 
are incompatible with the version of PAL_B on the system must not be woken up until the PAL_B 
component is updated, otherwise the system behavior is unpredictable. 

Since PAL_B functionality cannot be invoked during recovery, only a limited set of PAL 
procedures in the PAL_A are available for use by the SAL recovery code (refer to the Intel® 
Itanium™ Architecture Software Developer’s Manual for details). Further, if the SAL_A invokes 
the IA-32 BIOS, the floating-point transcendental instructions listed below cannot be executed 
from the IA-32 instruction set.

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, FYL2XP1

3.1.2 Normal Code Flow

If a recovery condition does not exist, SALE_ENTRY shall return to PALE_RESET on all the 
processors that are compatible with the version of PAL_B on the system, using the return address 
provided by PALE_RESET to effect the second stage of processor test and initialization. If SAL_A 
did not effect such a return, the processor may run in a degraded mode. In any case, the PAL_PROC 
address provided to SALE_ENTRY at the time of Recovery Check supports only a small subset of 
the PAL procedures (see the Intel® Itanium™ Architecture Software Developer’s Manual for 
details). 

On return from SALE_ENTRY, the PALE_RESET code obtains the address of the FIT from 
location (4 GB – 32) and then uses the FIT to get the address of the PAL_B component in the 
non-recovery portion of the flash ROM. PAL_A code will locate the address of the PAL_RESET in 
the PAL_B block and jump to it. The processor stepping-dependent code in the PAL_B block will 
then perform the complete processor testing and initialization and then re-enter the SALE_ENTRY 
with the function value of Normal Reset. Code at SALE_ENTRY will jump to the code in the 
SAL_B block to continue the boot sequence and will eventually boot the machine to the operating 
system. 
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3.2 SAL_RESET

SAL_RESET is responsible for performing platform test and initialization and invoking EFI 
firmware, which loads the first level of operating system loader. SAL_RESET may also be entered 
from SAL_INIT if an OS_INIT handler was not registered with SAL. One of the parameters passed 
into SAL_RESET (zero value in GR32) indicates that SAL_RESET was entered from 
PALE_RESET. In other words, GR32 must be non-zero if SALE_ENTRY is entered from locations 
other than PALE_RESET.

SAL_RESET functionality can be subdivided into the following phases:

• Initialization phase.

• BSP identification phase.

• Platform initialization phase.

• Operating system boot phase.

3.2.1 Initialization Phase

This phase begins execution at SAL_RESET and is performed on all the processors in the system. 
The Local ID (LID register) is architected in the Intel® Itanium™ Architecture Software 
Developer’s Manual. It is the SAL’s responsibility to uniquely initialize this register in each 
processor prior to performing BSP selection and enabling interrupts in an MP system. For 
uniprocessor (UP) systems, SAL must initialize this register prior to enabling interrupts. The 
operating system must not change the value that SAL stored into this register. Otherwise, routing of 
interrupts to the correct processor may not function correctly. The LID register’s format is shown in 
Figure 3-1.

The id field is provided by the PAL during Reset handoff in a general register. This value is the Bus 
Agent ID which corresponds to the slot number on the front side bus that the processor is plugged 
into. For proper functioning of the lowest priority interrupt mechanism, the id field must match the 
Bus Agent ID. Otherwise, interrupts will be redirected to the wrong or non-existent processors. 

SAL must invoke the PAL_PLATFORM_ADDR procedure on all processors to set the physical 
address of the SAPIC Interrupt block memory and the IA-32 I/O port space if the default address 
values are not used. The default address for the SAPIC Interrupt block memory is 
0x00000000_FEE00000 and the default address for the IA-32 I/O port space is the 64 MB space 
below the highest physical address supported by the processor implementation. SAL will use a 
value that does not conflict with other devices on the platform. The operating system shall not 
change both these address values. SAL will set up the IOBASE register (AR.k0) that provides the 
high order bits of the virtual address of the IA-32 I/O port block, to the same value as its physical 
address, to maintain identity mapping. 

Figure 3-1. Local ID Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

id eid reserved

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored
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3.2.2 Bootstrap Processor Identification Phase in an 
Multiprocessor Configuration

This phase is executed on all the processors. All processors may participate in the selection of the 
BSP. The PAL_FIXED_ADDR procedure will be called to obtain a unique address on the bus to 
which the processor is connected. SAL will use this address and bus identification information to 
derive a unique geographical address for the processor and use the same in the selection of the boot 
processor. The derivation of the unique geographical address is implementation-dependent. SAL 
shall not select a processor as the BSP unless it is reported as healthy by PAL and the version of 
PAL_B on the system is compatible with the processor stepping.

Refer to Figure 3-2 for SAL processing steps in an multiprocessor configuration. The APs will set 
up processor-specific resources such as the Interrupt Vector Address (IVA) and wait in the 
rendezvous state (EM_Rendezvous_1 in Figure 3-2) until the SAL on the BSP wakes them up for 
further processing. Processors in rendezvous state will disable external interrupts and poll for the 
rendezvous interrupt vector which the BSP will utilize to wake up the sleeping APs. The BSP will 
continue with platform initialization and when sufficient amount of memory has been tested, it will 
send a rendezvous interrupt to the APs to wake them up to run their late self-test (which requires 
memory to run). After the APs have finished the late self-test, they will return to the rendezvous 
state (EM_Rendezvous_2). 

The BSP continues with platform initialization by loading the EFI firmware, which searches for 
bootable devices, loads the operating system loader, and transfers control to it. These steps are 
described in later sections of this document and the EFI Specification.

3.2.2.1 Rendezvous Functionality

The rendezvous functionality is required only in multiprocessor environments and this 
functionality is utilized in two different situations:

• To wake up the APs during boot: The APs stay in a loop until woken up by the SAL layer on 
the BSP. The BSP wakes up the APs at various stages of booting to conduct processor and 
platform tests. Once these tests are completed, the APs return to the wait loop within SAL. 
Also, once the operating system kernel takes over, it will wake up the APs based on the wake 
up information provided by the SAL (refer to Section 3.2.6 and Table 3-11). 

• To bring the APs to a spin loop during machine check rendezvous and to wake up the APs after 
machine check processing is completed: The operating system specifies the external interrupt 
vector to be used by SAL to bring the APs to a spin loop as well as the external interrupt 
vector/memory variable to be used for the wake up. Refer to “SAL_MC_SET_PARAMS” on 
page 9-15 for details. 

For the wake up functionality, the mechanism could be an external interrupt vector in the range of 
0x10 to 0xFF or a memory variable. 

If external interrupt mechanism is chosen, APs will disable interrupts and poll the local SAPIC IRR 
register for the bit corresponding to the selected rendezvous interrupt to be set. The Task Priority 
Register (TPR) must be set such that a read of the IVR register will return the rendezvous interrupt 
vector (instead of the spurious interrupt), if one is pending. On receipt of the interrupt, the AP will 
read the IVR register and issue an End of Interrupt (EOI) to the local SAPIC to clear the interrupt 
bit. The AP will execute the next phase of SAL code and, if necessary, return to the wait loop.
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Figure 3-2. Control Flow of Boot Process in a Multiprocessor Configuration
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If a memory variable wake-up mechanism is chosen, the APs will disable interrupts and poll the 
memory variable for the unique value that matches the contents of their Local ID Register in bits 
16-31 and a value of 0xFFFF in bits 0-15 (refer to Figure 3-3). The BSP will set this value to wake 
up one AP at a time. The AP will clear the memory variable to zero, execute the next phase of SAL 
code and, if necessary, return to the wait loop. 

SAL exports details of the wake-up mechanism to the operating system through the SAL System 
Table (refer to Table 3-2) so that the operating system kernel code on the BSP may wake up the 
APs when appropriate. While memory variable mechanism may be used by the BSP and APs 
during the platform initialization phase, SAL shall indicate only the external interrupt wake-up 
mechanism to the operating system. The operating system shall not use the indicated external 
interrupt vector f until it takes over the IVA. The operating system on the BSP will invoke the 
SAL_SET_VECTORS procedure to set the continuation point for the APs within the operating 
system kernel (OS_BOOT_RENDEZ) and then trigger the wake up of the APs. SAL will transition 
the APs to the registered OS_BOOT_RENDEZ entrypoint.

3.2.3 Platform Initialization Phase

This phase is primarily executed on the BSP. The APs will execute some of the steps as described 
below. This phase will perform the following functions, the ordering of which is implementation 
dependent:

1. Initialize the IVA to point to a 32 KB Interrupt Vector Table (IVT) in the firmware address 
space. Some SAL implementations may choose to build the IVT in RAM after finding the 
first 64 MB of memory. This step must be accomplished on all the processors in an 
MP-environment.

2. Initialize the system fabric and chipsets. The method of handling the initialization is 
implementation dependent.

3. If SAL_RESET was entered from SAL_INIT, memory shall not be re-initialized. On a cold 
boot, SAL will initialize at least the first 4 MB of memory for BSP late self-test. This 
self-test is done by calling the PAL_TEST_PROC procedure which returns information on 
whether the processor is healthy or not. This PAL procedure tests the path from the processor 
to the memory through the caches and returns information on whether the processor is fully 
functional. This PAL procedure will not return to the SAL if the processor under test 
experiences a catastrophic failure. SAL must contain logic to select a new BSP if necessary. 
SAL shall shut down the system if there are no healthy or a performance restricted 
processors on the system. 

After this point, the memory stack and RSE can be tested and enabled in the Itanium 
processor system environment.

4. Issue a rendezvous interrupt to wake up APs for a late self-test using the PAL_TEST_PROC 
procedure. The SAL code on the BSP must contain sufficient logic to detect APs that 
experience a catastrophic failure during the late self-test. On completion of late self-test, the 

Figure 3-3. Wake-up Memory Variable Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

id eid value of 0xFFFF

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

ignored



Boot Sequence 3-7

BSP will set the APs back to the rendezvous state (EM_Rendezvous_2 in Figure 3-2). After 
this stage, caches may be relied upon. 

5. Search for console using implementation-dependent algorithms. If found, initialize the 
console so that the progress of the boot may be displayed.

6. Determine and initialize memory. This step is not performed if SAL_RESET is entered from 
SAL_INIT. The memory test is implementation dependent. The memory test includes testing 
of refresh logic and testing all the address lines for shorts. On IA-32 systems, memory 
controllers alias the ROM at 0xE0000 to 0xFFFFF and thereby permit memory autoscan 
algorithm to be run from the aliased ROM at 0xE0000 to 0xFFFFF. Since memory aliasing 
is not a requirement for Itanium-based platforms, the autoscan function needs to be 
performed by the firmware SAL code in the ISA for Itanium instructions. 

7. Initialize the interrupt controllers to all interrupts disabled. 

8. Allocate memory for use by PAL and SAL near the top of physical memory. This area 
should be below 4 GB if IA-32 code needs to call the SAL code with Itanium instructions, 
since IA-32 code can only address memory up to 4 GB. 

9. Copy the PAL into memory using the PAL_COPY_PAL procedure. The PAL code in 
memory must be aligned such that the entire PAL space in memory may be covered by one 
Instruction Translation Register (ITR). It is very desirable to copy PAL code and SAL code 
to contiguous locations in order that the operating system may cover the entire space using 
the same ITR. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for 
PAL’s requirements on ITR/DTR.
Note: Until this step, the following floating-point transcendental instructions cannot be 
executed from the IA-32 instruction set:

• F2XM1, FCOS, FPATAN, FPTAN, FPREM, FPREM1, FSIN, FSINCOS, FYL2X, 
FYL2XP1

10. Copy SAL, PMI and IA-32 code to memory. The IA-32 BIOS code will be copied to the 
appropriate addresses in the address of 0x000C_0000 to 0x000F_FFFF. The portion of the 
SAL code containing Itanium instructions will be copied to a high memory address which 
must be above 1 MB. Copying code to RAM speeds up the boot sequence and additionally 
permits some portions of the code to be held in compressed format in the firmware address 
space. Firmware code may then be write protected using the TLB or chipset features. 

11. Set up an IVT in memory aligned on a 32 KB boundary and point the IVA register to it. This 
step must be accomplished on all the processors in an MP environment. 

12. Register the SAL_PMI entrypoint in RAM with PAL. This step must be accomplished on all 
the processors in an MP environment.

13. Call the PAL_MC_REGISTER_MEM procedure on all the processors and specifying 
unique memory areas where the PAL code may deposit some minimal processor state 
information. Additionally, these memory areas provide sufficient resources for the PAL code 
to perform the necessary machine check or INIT processing. Enable the BERR and BINIT 
sampling and signaling by invoking the PAL_BUS_SET_FEATURES procedure. Set the 
CMCI, MCA, and BERR promotion strategy by invoking the 
PAL_PROC_SET_FEATURES procedure. These steps must be accomplished on all the 
processors in an MP environment.

14. Process configuration information in NVRAM and perform full chipset configuration. If 
NVRAM information is invalid, initialize NVRAM to default configuration values. Refer to 
the EFI Specification for details.

15. Initialize and configure I/O buses. Walk all buses, identify all resource requirements and set 
necessary range registers of chipsets. At this point, the complete system topology and 
addresses of all fabric segments are known. 
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16. Construct the ACPI Tables, SAL System Table and other common data structures. 

17. Execute the option ROMs as needed. If these contain IA-32 code, some of the IA-32 
instructions may cause traps into the Itanium instruction set and suitable support needs to be 
provided by the trap/fault handler code. These interactions are more fully described in 
Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Developer’s Manual, 
and Chapter 7 of this specification. As a side effect of supporting IA-32 Option ROMs, it is 
possible to have some of the SAL code implemented in the IA-32 ISA.

18. Copy the EFI code into memory and transfer control to it. Branch register B0 shall be set up 
to point to the instruction following the call to the EFI code. The EFI firmware will search 
for bootable devices, load the operating system loader image and transfer control to it. EFI 
may utilize the underlying SAL and IA-32 BIOS layers for accesses to platform devices. 
Refer to the EFI Specification for interface description.

3.2.4 Operating System Boot Phase

This phase is executed only on the BSP. Refer to the EFI Specification for details of booting 
Itanium-based operating systems. If the selected operating system is a legacy IA-32 operating 
system, SAL does the following:

1. SAL will construct an MP Information Table that provides the mapping between the I/O 
SAPIC ID, EID values and the I/O APIC ID value for use by the legacy IA-32 operating 
system. This table is provided as a parameter to the PAL_ENTER_IA_32_ENV procedure.

SAL will assign unique 4-bit id values for the Local APIC entries of the MP table based on 
the 16-bit eid, id fields of the corresponding Local SAPIC entries. The IDs assigned by SAL 
are suitable for the physical destination mode of the Local APIC. SAL will permit use of a 
maximum of 16 processors while booting a legacy IA-32 operating system. SAL will keep 
any additional processors in a loop within SAL and these processors shall not invoke the 
PAL_ENTER_IA_32_ENV procedure. 

SAL will assign unique 4-bit id values for the I/O APIC entries of the MP table based on the 
16-bit eid, id fields of the corresponding SAPIC entries. The id values assigned by SAL for 
the Local APIC and the I/O APIC entries may overlap. 

SAL will provide the physical address of non-existent memory of a minimum of 4K bytes. 
This area will be specified in the Memory Descriptor Table (Table 3-5) with the Memory 
type classification of Non-existent Memory. 

2. The PAL_ENTER_IA_32_ENV procedure also enables SAL to emulate some I/O ports not 
present on the platform. SAL conveys information on the emulated ports in the SAL I/O 
Intercept Table. Refer to Volume 2, Chapter 11 of the Intel® Itanium™ Architecture 
Software Developer’s Manual for details.

3. Construct Memory Descriptor Table entries suitable for the platform.

4. Load one sector of the Master Boot Record (MBR) code from the boot device at address 
0x7C00. Verify that the last two bytes of the sector end with 0x55 0xAA.

Note: In this document, the term sector refers to a logical block of 512 bytes. 

5. Determine the amount of memory needed by PAL in support of IA-32 operating systems by 
invoking PAL_COPY_INFO procedure and allocate the same with the requested alignment. 
Transition the processor to the IA-32 system environment and jump to the MBR code loaded 
at 0:7C00. This switch is effected by calling PAL_ENTER_IA_32_ENV procedure. (Refer 
to the Intel® Itanium™ Architecture Software Developer’s Manual.) The return address in 
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SAL and the address of SAL_PROC are passed as a parameter to this call. SAL shall set the 
initial IA-32 stack to 0:0x7c00 (SS:ESP).

This PAL procedure will set up the appropriate memory attribute values based on the 
Memory Descriptor Table (Refer Table 3-5). If the IA-32 operating system exits by 
executing a JMPE instruction, PAL will return to the return address in SAL. When SAL 
regains control, it will de-allocate the memory allocated to PAL in support of IA-32 
operating systems and attempt to boot a different operating system. 

6. Some additional parameters are needed in an MP environment. The 
PAL_ENTER_IA_32_ENV procedure requires an input flag that indicates whether the call 
is being made on the BSP or APs and a count of the processors that have already been 
transitioned to the IA-32 system environment. Also, the PAL_ENTER_IA_32_ENV 
procedure requires that the first processor reach the IA-32 starting address before subsequent 
processors invoke the procedure.

SAL implementation is simpler if the BSP transitions to the IA-32 system environment last. 
For example, the BSP can instruct APs to call the PAL_ENTER_IA_32_ENV procedure, 
one at a time. The APs will specify a starting address within the first MB of memory. The 
IA-32 code at this location will perform the check-in to inform the BSP that the transition to 
IA-32 system environment is completed, disable interrupts and go into a spin loop awaiting 
the Startup IPI from the BSP. 

Once all the APs have transitioned to the IA-32 system environment and checked in, SAL on 
the BSP will invoke the PAL_ENTER_IA_32_ENV procedure and specify the starting 
address as 0:7C00 where the MBR code from disk has been loaded. The 
PAL_ENTER_IA_32_ENV procedure will typically set the processor resources of the APs 
such that all processors have an identical view of the platform’s memory attributes.

The IA-32 operating system would be loaded eventually and this will send APIC INIT IPIs 
followed by APIC Startup IPIs to the APs. PAL's APIC emulation layer on the BSP will trap 
the APIC ICR writes and will eventually transition the APs to the starting address 
corresponding to the vector specified in the Startup IPI. 

3.2.5 Firmware to Operating System Loader Handoff State

The handoff to an IA-32 operating system is compatible with the PC-AT industry standards. The 
handoff from firmware to Itanium-based operating system loaders is fully described in the EFI 
Specification. Included in the handoff are:

• The pointer to the SAL System Table (Section 3.2.7).

• The pointer to the Root System Description Pointer as described in the Advanced 
Configuration and Power Interface Specification.

The state of Itanium processor system registers at the time of handoff to the operating system 
loader is as follows:

• AR contents are SAL implementation-dependent except the following:

• CFM: The backing store shall contain a minimum of 8 KB of available storage space 
defined in the SAL Boot Services data area.

• RSC will indicate enforced lazy mode, little-endian.

• IOBASE (AR.k0) will contain the virtual address of the IA-32 I/O port block. 
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• GR contents are SAL implementation-dependent except:

• GR12 = Stack pointer with a minimum of 8 KB of available storage space defined in the 
SAL Boot Services data area.

• PSR:
PSR.ac = 1 (alignment check enabled). 
PSR.ic = 1, PSR.i = 0 (interrupt collection on, interrupts off). There may be some pending 
interrupts.
PSR.it, PSR.dt, PSR.rt = 0 (instruction translation, data translation and RSE translation off).
PSR.bn = 1 (register bank 1 selected).
PSR.dfl, PSR.dfh = same values as on entry from PALE_RESET.
all other bits = 0

• CRs:
DCR: Bus lock setting (DCR.lc) is platform implementation-dependent, all other bits of DCR 
= 0.
IVA = physical address of a SAL implementation-dependent IVT.
PTA.ve = 0 (if the virtual hash page table (VHPT) is disabled).
LID = the unique id/eid value for this processor.

• Data Breakpoint Registers – DBRs: Same as on entry to SALE_ENTRY.

• Instruction Breakpoint Registers – IBRs: Same as on entry to SALE_ENTRY.

• RRs
Region Register 0 will contain an ID of 0x1000. Other Region Registers will have 
implementation-dependent values except that RRs 1-3, if non-zero, will contain Region ID 
values of 0x1001-0x1003 respectively. 

• Protection Key Registers – PKRs, are set to 0.

• TLB
TRs: ITR(0) will map an area that includes the SAL’s IVT and PAL code. All other TR entries 
are invalidated.
TCs: These are implementation-dependent but will likely contain identity mappings (virtual 
address to physical address).

• Caches
Enabled, coherent and consistent with the contents of memory.

3.2.6 OS_BOOT_RENDEZ

OS_BOOT_RENDEZ is the entrypoint for operating system-dependent MP rendezvous code. The 
operating system code on the BSP registers this entrypoint by invoking SAL_SET_VECTORS, 
supplying the physical address of the operating system code that is 16-byte aligned. SAL exports 
details of the wake-up mechanism to the operating system through the SAL System Table (refer to 
Table 3-11) so that the operating system kernel code on the BSP may wake up the APs when 
appropriate. When SAL on the APs receives the wake-up, it will call the registered 
OS_BOOT_RENDEZ entrypoint. Refer to Section 3.2.2.1, “Rendezvous Functionality” for 
additional details. 

The state of the Itanium processor system registers at the time of handoff to the 
OS_BOOT_RENDEZ is similar to that for the BSP with the following exception: 

• B0 = Return address into the SAL Boot_Rendezvous routine. If the OS_BOOT_RENDEZ 
returns to the SAL using the Branch register B0, the SAL will re-enter the spin loop awaiting a 
wake-up by the BSP. 
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3.2.7 SAL System Table

SAL uses the SAL System Table to export a variety of information to the operating system loader. 
The pointer to the SAL System Table is provided by EFI to the operating system loader. Refer to 
the EFI Specification for handoff details. If a recovery condition is present, the SAL System Table 
is not built and a pointer value of 0 is provided. 

The SAL System Table begins with a header which is described in Table 3-2. The SAL System 
Table header will be followed by a variable number of variable length entries. The first byte of each 
entry will identify the entry type and the entries shall be in ascending order by the entry type. Each 
entry type will have a known fixed length. The total length of this table depends upon the 
configuration of the system. operating system software must step through each entry until it reaches 
the ENTRY_COUNT. The entries are sorted on entry type in ascending order. Table 3-3 describes 
each entry type.

.

Table 3-2. SAL System Table Header

Field
Offset

(in Bytes)
Length

(in Bytes)
Description

SIGNATURE 0 4 The ASCII string representation of “SST_”, which 
confirms the presence of the table.

TOTAL_TABLE_ LENGTH 4 4 The length of the entire table in bytes, starting from 
offset zero and including the header and all entries 
indicated by the ENTRY_COUNT field.This field aids 
in calculation of the checksum.

SAL_REV 8 2 The revision number of the Itanium™ Processor 
Family SAL Specification supported by the SAL 
implementation in binary coded decimal (BCD) 
format.
Byte 8 – Minor
Byte 9 – Major 
SAL Revision 3.0 corresponds to SAL Specification, 
January 2001 or July 2001.
SAL Revision 2.9 corresponds to SAL Specification, 
July 2000.
SAL Revision 2.8 corresponds to SAL Specification, 
January 2000.

ENTRY_COUNT 10 2 The number of entries in the variable portion of the 
table. This field helps software in identifying the end of 
the table when stepping through the entries.

CHECKSUM 12 1 A modulo checksum of the entire table and the entries 
following this table. All bytes including the Checksum 
bytes must add up to zero.

RESERVED 13 7 Unused, must be zero.

SAL_A_VERSION 20 2 Version Number of the SAL_A firmware 
implementation in BCD format.
Byte 20 – Minor
Byte 21 – Major 

SAL_B_VERSION 22 2 Version Number of the SAL_B firmware 
implementation in BCD format.
Byte 22 – Minor
Byte 23 – Major 
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Following are the entry types of entries that follow the SAL System Table Header. Unless otherwise 
stated, there is one entry per entry type.

3.2.7.1 Entrypoint Descriptor Entry

The Entrypoint Descriptor Entry (refer to Table 3-4) provides the addresses in memory of 
PAL_PROC, SAL_PROC that may be used by the operating system to invoke the procedures 
within the PAL and the SAL. When the operating system calls SAL_PROC, the gp register must 
contain the physical or virtual address of the SAL’s gp value specified in the Entrypoint Descriptor, 
depending on the mode in which the SAL_PROC procedure is called. 

OEM_ID 24 32 An ASCII identification string which uniquely identifies 
the manufacturer of the system hardware. This string 
can be exactly 32 bytes in length or shorter if null 
terminated. Compliance with the SAL specification 
requires that this string be unique with respect to all 
other manufacturers. It is forbidden to use another 
manufacturer’s identification even if the system is 
otherwise identical.

PRODUCT_ID 56 32 An ASCII identification string which uniquely identifies 
a family of compatible products from the 
manufacturer. This string can be exactly 32 bytes in 
length or shorter if null terminated.

RESERVED 88 8 Unused, must be zero.

Table 3-3. SAL System Table Entry Types

Entry Typea

a. All other types are reserved.

Entry Length 
(in Bytes)

Description

0 48 Entrypoint Descriptor.

1 32 Memory descriptor (one entry for each contiguous block with similar 
attributes).b

b. Not required for Itanium-based operating systems.

2 16 Platform Features Descriptor.

3 32 Translation Register Descriptor (one entry for each TR used by SAL at 
the time of handoff to the operating system).

4 16 Purge Translation Cache (PTC) Coherence Descriptor.

5 16 AP Wake-up Descriptor.

Table 3-4.  Entrypoint Descriptor Entry Format

Offset
(in Bytes)

Length
(in Bytes)

Description

0 1 Entry type = 0 denoting Entrypoint Descriptor type.

1 7 Reserved (must be zero).

8 8 Physical address of the PAL_PROC entrypoint in memory.

16 8 Physical address of the SAL_PROC entrypoint in memory.

24 8 Global Data Pointer (physical address value) for SAL procedures. 

32 16 Reserved (must be zero).

Table 3-2. SAL System Table Header (Cont’d)

Field
Offset

(in Bytes)
Length

(in Bytes)
Description
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3.2.7.2 Memory Descriptor Table Entry

The Memory Descriptor Table (MDT) entries (refer to Table 3-5) are used only while booting an 
IA-32 operating system. Itanium-based operating systems obtain similar information from the EFI 
firmware component. The MDT entries describe all the main memory, firmware memory, memory 
mapped I/O, etc., in the system address space as well as the memory attributes currently set by 
SAL. Each contiguous block with similar memory attribute (WB, WC, UC or UCE) must be 
aligned on a 64 KB boundary as a minimum, for optimal TLB management. Note that memory 
usage values (byte 7 of the MDT entry) may change within a 64 KB memory block and hence it is 
legal to have more than one MDT entry describing a 64 KB memory region as long as the memory 
attribute (WB, WC, UC or UCE) does not change within that 64 K block. 

SAL must provide entries that cover the entire system address space. The firmware must indicate 
its memory usage in order that the same may be not trampled by the operating system. Thus, if the 
SAL uses an underlying IA-32 BIOS layer for part of its functionality, it must report memory usage 
for the real mode interrupt vector table (0-0x3FF), the BIOS Data area (0x400-0x4FF) and the 
Extended BIOS Data area (downwards from 640 K) as Boot Services Data in the Memory Usage 
field of the MDT entries. 

The EFI firmware component communicates the SAL’s requirements for virtual address mappings 
to the operating system. Once the operating system takes control of the memory management and 
the IVA, it must provide TLB mappings for both the code and data accesses to the memory areas 
required by SAL, if those areas are accessed in virtual mode. The operating system must register 
these virtual addresses prior to invoking SAL procedures in virtual mode. 

Table 3-5. Memory Descriptor Entry

Offset
(in Bytes)

Length
(in Bytes)

Descriptiona

(Unsigned Integers)

0 1 Entry type = 1 denoting Memory Descriptor entry type.

1 1 Need virtual address registration for SAL operation in virtual mode:
0: No
1: Yes

2 1 Encoded value of current Memory Attributeb setting in bits 0-2:
000: WB
100: UC
101: UCE
110: WC

3 1 Page Access Rights set up by SAL for the memory rangeb: 

4 1 Memory Attributesb supported:
Bit 0: WB
Bit 1: UC
Bit 2: UCE
Bit 3: WC

5 1 Reserved (must be zero).
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The SAL also provides the memory type and usage information to the EFI. Refer to the EFI 
Specification for details. Table 3-6 specifies the mapping between MDT entries and the information 
provided by the SAL to the EFI. 

6 2 Memory Type (byte 6)
0 = Regular Memory

Memory Usage (byte 7)
0 = Unspecifiedc

1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memoryd

9 = ACPI NVS Memory
10 = SAL PMI Code 
11 = SAL PMI Data
12 = Firmware Reserved Memorye 
128-255 = Reserved for OEM

1 = Memory mapped I/O 0 = Unspecified
1 = I2O Hidden space hole
2 = Video Memory
3-127 = Reserved
128-255 = Reserved for OEM

2 = SAPIC IPI Block 0 = Unspecified

3 = IA-32 I/O Port space 0 = Translated by processor to I/O cycles

4 = Firmware address space 0 = Unspecified

9 = Bad Memory 0 = Unspecified

10 = Non-existent Memory 
(Black hole)

0 = Unspecified

8 8 Physical Address of Memory 

16 4 Length (multiple of 4K pages)

20 4 Reserved (must be zero)

24 8 OEM Reserved 

a. All unused values are reserved.
b. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual, for explanation of this field.
c. Refer to the EFI Specification for the usage description of this memory space.
d. This memory is available to the operating system after it reads the Advanced Configuration and Power 

Interface Specification tables.
e. This area is not visible in the IA-32 operating system environment.

Table 3-5. Memory Descriptor Entry (Cont’d)

Offset
(in Bytes)

Length
(in Bytes)

Descriptiona

(Unsigned Integers)
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3.2.7.3 Platform Features Descriptor Entry

The Platform Features Descriptor Entry (refer to Table 3-7) describes the features implemented on 
the platform. Refer to the Itanium™ Platform Architecture Guide for implementation 
considerations of these platform features. 

Table 3-6. Memory Type Information Provided to the EFI

Memory Type Memory Usage EFI Memory type 

0 = Regular Memory 0 = Unspecified
1 = PAL Code
2 = Boot Services Code
3 = Boot Services Data
4 = Runtime Services Code
5 = Runtime Services Data
6 = IA-32 Option ROM
7 = IA-32 System ROM
8 = ACPI Reclaim Memory
9 = ACPI NVS Memory
10 = SAL PMI Code
11 = SAL PMI Data
12 = Firmware Reserved Memory
128-255 = Reserved for OEM

EfiConventionalMemory
EfiPalCode
EfiBootServicesCode
EfiBootServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesCode
EfiRuntimeServicesCode
EfiACPIReclaimMemory
EfiACPIMemoryNVS
EfiRuntimeServicesCode
EfiRuntimeServicesData
EfiRuntimeServicesData
EfiRuntimeServicesCode

1 = Memory mapped I/O <all values> EfiMemoryMappedIO if virtual address 
registration is required, otherwise 
information not provided to the EFI.

2 = SAPIC IPI Block 0 = Unspecified Information not provided to the EFI.

3 = IA-32 I/O Port space 0 = Translated by processor to I/O 
cycles

EfiMemoryMappedIOPortSpace.

4 = Firmware address space 0 = Unspecified EfiRuntimeServicesData.

9 = Bad Memory 0 = Unspecified EfiUnusableMemory.

10 = Non-existent Memory 
(Black hole)

0 = Unspecified Information not provided to the EFI.

Table 3-7. Platform Features Descriptor Entry

Offset
(in Bytes)

Length
(in Bytes)

Description

0 1 Entry type = 2 denoting Platform Features type.

1 1 Platform Feature List:
Bit 0: 1 if Bus Lock is implemented on the processor as well as the platform.
Bit 1: 1 if the chipset supports redirection hint for interrupt messages originating 
from the platform (lowest priority interrupt).
Bit 2: 1 if the chipset supports redirection hint for IPI messages originating from 
the processors.
Bits 3-7 = Reserved.

2 14 Reserved.
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3.2.7.4 Translation Register Descriptor Entry

The Translation Register Descriptor entries (refer to Table 3-8) describe the parameters used by the 
SAL during insertion of the TRs. These entries will be used by the operating system to purge SAL’s 
TRs after the operating system takes over the IVA. 

3.2.7.5 Purge Translation Cache Coherence Domain Entry (Optional)

The purge translation cache (PTC) Coherence Domain Entry (refer to Table 3-9) describes the 
number of coherence domains and the scope of PTC instruction propagation for each domain. This 
entry is optional. It is required only for MP systems that have multiple coherence domains. 

Platforms must provide a mechanism for detecting which TLB coherence domain a processor lives 
in. SAL captures this information in an implementation-dependent manner and passes the same to 
the operating system.

The coherence domain information is an array of length of (16*Number of coherence domains). As 
shown in Table 3-10, for each coherence domain, there will be two information fields: 

1. Number of processors in the TLB coherence domain.

2. 64-bit memory address of a list of Local ID register values for the processors within the TLB 
coherence domain. Each processor will require two bytes of memory (id field in low order 
byte and eid field in high order byte) to represent the Local ID information.

This information is represented in Table 3-10. 

Table 3-8. Translation Register Descriptor Entry

Offset
(in bytes)

Length

in bytes)
Description

0 1 Entry type = 3 denoting the Translation Register Descriptor type.

1 1 Type of Translation Register:
0: Instruction Translation Register
1: Data Translation Register 
Other values: Reserved 

2 1 Translation Register number.

3 5 Reserved.

8 8 Virtual address of the area covered by the Translation Register. Bits 61-63 of 
this field indicate the Region Register number. 

16 8 Encoded value of the page size covered by the Translation Register. Refer to 
the Intel® Itanium™ Architecture Software Developer’s Manual, Addressing and 
Protection chapter for the format of this field. 

24 8 Reserved.

Table 3-9. Purge Translation Cache Coherence Domain Entry

Offset
(in Bytes)

Length
(in Bytes)

Description

0 1 Entry type = 4 denoting PTC Coherence Domain Entry type.

1 3 Reserved (must be zero).

4 4 Number of coherence domains for the platform.

8 8 64-bit memory address of the coherence domain information.
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3.2.7.6 Application Processor Wake-up Descriptor Entry (Optional)

The AP Wake-up Descriptor Entry (refer to Table 3-11) describes the mechanism for waking up 
APs in an MP environment. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details on 
operating system usage of this entry. This entry is required for MP configurations. 

3.3 Itanium™-based Operating System Loader 
Requirements

The firmware will jump to the Itanium-based operating system loader with the handoff state 
described in the EFI Specification. Included in this state information is a pointer to the SAL 
procedures the operating system can invoke. These procedures are described in Chapter 9.

This section describes the requirements on the operating system loader while operating under the 
SAL execution environment.

Table 3-10. Coherence Domain Information

Offset
(in Bytes)

Length
(in Bytes)

Description

0 8 Number of processors in TLB coherence #1.

8 8 64-bit memory address of a list of Local ID register values for the processors 
within the TLB coherence domain #1.

16 8 Number of processors in TLB coherence #2.

24 8 64-bit memory address of a list of Local ID register values for the processors 
within the TLB coherence domain #2.

... ... ...

... ... ...

16*(N-1) 8 Number of processors in TLB coherence #N.

8+16*(N-1) 8 64-bit memory address of a list of Local ID register values for the processors 
within the TLB coherence domain #N.

Table 3-11. Application Processor Wake-up Descriptor Entry

Offset
(in bytes)

Length
(in bytes)

Description

0 1 Entry type = 5 denoting AP Wake-up Descriptor Entry type.

1 1 Wake-up Mechanism type:
0: External interrupt
Other values: Reserved

2 6 Reserved (must be zero).

8 8 External Interrupt vector in the range of 0x10 to 0xFF.
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3.3.1 Fault Handling

This section describes the guidelines to the operating system loader code as regards fault handling. 

After the operating system is completely loaded, it will take over the IVA, and replace the SAL 
environment with its own memory management. Until that time, the operating system shall use 
SAL’s virtual memory environment — IVA, Interrupt controller mode, TC mappings, etc., and it 
shall not change any of these resources. The operating system is not permitted to replace the fault 
handler entries within the SAL’s Interrupt Vector Table (IVT). 

The operating system loader code may be executed in physical mode with interrupts disabled, or in 
virtual mode with Instruction, Data and RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). 
While executing in virtual mode, the operating system loader code is permitted to cause TLB faults 
for which SAL shall provide the appropriate fault handlers. These TLB faults are:

• Alternate Instruction TLB fault: This TLB fault occurs during instruction fetches if SAL does 
not implement the Virtual Hash Page Table (VHPT). If VHPT is not used, the Page Table 
Address (PTA) need not be initialized and the SAL will turn off the PTA.ve bit to disable the 
processor walking the VHPT. VHPT is an optional feature of the Itanium processor 
architecture. Avoiding VHPT usage also permits the IA-32 support code to operate out of the 
firmware address space. 

• Alternate Data TLB fault: This TLB fault occurs during data accesses if SAL does not 
implement the VHPT. The SAL’s fault handler shall test whether the TLB fault surfaced during 
speculative load accesses (LDx.s). Such an access is indicated if the ISR.sp bit is set. If this bit 
is set, the SAL shall return to the faulting instruction with the IPSR.ed bit thereby turning on 
the NaT bit of the target register for the load. 

• VHPT related faults: VHPT translation fault, Data TLB fault and Nested TLB fault, if SAL 
implements VHPT.

• Instruction and Data Access Rights faults: SAL shall install TCs with the page privilege level 
set to 0 and execute code with the PSR.cpl value to 0. On processor implementations with 
unified TLBs, Access Rights faults may surface if the TC is present but the required page 
permissions are not present, e.g. TC is present with RW page access rights but RX page access 
rights is needed for instruction execution.

• External interrupt: Hardware interrupts will be received by SAL in the Itanium processor 
system environment. This code will read the IVR register. If the vector read is 0, it signifies an 
interrupt from the 8259 interrupt controller and SAL must issue a load to the architected 
INTA_address (default address 0xFEFE_0000) in the processor interrupt delivery block to 
issue an interrupt acknowledge (INTA) bus cycle and obtain the interrupt vector from the 8259. 
SAL will then jump to the appropriate interrupt handler using its internal tables. If the interrupt 
needs to be reflected to IA-32 code, the address will be derived from the IA-32 Interrupt 
Descriptor Table. The operating system loader is restricted from sending IPI messages (i.e. 
causing bits in the SAPIC IRR registers to be set) with vector values other than the one 
specified in the AP Wake-up Descriptor Entry (refer to Table 3-11).

• SAL may install TC entries with the Present, Dirty and Accessed bits on and thereby avoid 
Page not present, Data Dirty bit and Data Access bit faults. 

• SAL may disable Protection Key checking (PSR.pk = 0) and thereby avoid Instruction Key 
miss, Data Key miss and Key Permission faults.

• Speculation fault: Speculation faults are caused by CHK.s, CHK.a and FCHK instructions. 
SAL will provide the transition mechanism to the recovery code. 

• Unaligned fault: The operating system loader shall not make data references to misaligned 
data. However, this fault may arise during speculative load accesses. Such an access is 
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indicated if the ISR.sp bit is set. If this bit is set, the SAL shall return to the faulting instruction 
with the IPSR.ed bit thereby turning on the NaT bit of the target register for the load. A similar 
logic must be incorporated in SAL’s Alternate Data TLB fault handler. 

• SAL shall not use advanced load (LD.a) or check load (LD.c) instructions, hence ALAT entries 
created by operating system loader code are preserved across SAL calls and SAL’s fault 
handlers. 

• Divide by zero: SAL shall display an error message for the Break interrupts caused by the 
run-time checking of integer divide by zero. Refer to the Itanium™ Software Conventions and 
Runtime Architecture Guide.

The operating system must not rely on any other fault handlers installed by SAL. SAL will display 
an error message if an unsupported fault is encountered. SAL will not provide support for the 
following faults:

• Nested TLB fault: ITR(0) will map the SAL’s IVT and the code areas covering SAL’s fault 
handlers. All fault handlers in SAL shall run with PSR.dt, PSR.rt turned off to avoid the Nested 
TLB fault that can occur while accessing the fault handler’s local variables and data structures. 

• NaT Consumption fault: NaT Consumption faults are generated by a load, store or move that 
uses a source register containing a NaT value or by accessing a NaTPage. This fault can be 
avoided by compiling the operating system loader code with speculation off.

• General Exception fault: The operating system loader shall not cause the general exception 
fault by executing illegal operations, invoking SAL procedures in physical/virtual mode with 
arguments specifying unimplemented data addresses.

• Floating-point faults: The operating system loader shall not disable accesses to the 
floating-point register sets by setting PSR.dfl or PSR.dfh bits or cause any floating-point 
exceptions.

• Other traps/faults: The operating system loader must not cause other traps or faults such as 
Debug, Single step, Taken branch, etc. Normally, the operating system kernel provides these 
services after it takes over the IVA. 

Additional fault handlers to support IA-32 execution are described in Chapter 7. 

3.3.2 Memory Management Resources Usage

This section describes SAL’s usage of various memory management resources and provides 
guidelines for their use by the operating system loader code.

3.3.2.1 TLB Resource Partition

SAL will use only TCs and the ITR(0). Use of several TRs by SAL may cause problems with 
booting of some Itanium-based operating systems. The operating system loader is free to use 
Translation Registers (TRs) other than ITR(0). The advantage of this resource partition is that 
hardware interrupts which cause a transition to SAL will not affect the TRs set up by the operating 
system loader. Ideally, the operating system loader will set up the TRs for its memory mappings 
and not cause TLB faults. However, should the operating system loader code cause a TLB miss, the 
TLB Miss handler in SAL would automatically install a TC with identity mapping. The restriction 
on ITR(0) is not relevant after the operating system takes over the memory management and the 
IVA. 
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Use of TCs in SAL code should not cause any performance problems since SAL is not performance 
critical. Most of the SAL code will write and read back memory addresses traversing the entire 
physical address space. Use of additional TRs will not provide improved performance. SAL will 
primarily be limited by memory and I/O speeds. 

SAL will use TC entries with length of 4KB by default and will try to coalesce contiguous entries 
with similar attributes into larger page sizes. 

3.3.2.2 Identity Mapping Usage

The Itanium processor virtual address range is 85 bits wide and the Itanium processor physical 
address range is 63 bits wide. Bits 0 to 60 of the virtual address provide the virtual page number 
and offset. Bits 61 to 63 of the virtual address are used as an index into the Region Registers which 
supplies a Region ID value that can be up to 24 bits wide. Thus the 85-bit virtual address comprises 
the low order 61 bits of the virtual address and the 24-bit Region ID. This 85-bit virtual address is 
transformed into a 63-bit physical address by the Itanium processor’s TLB mechanism as described 
in the Intel® Itanium™ Architecture Software Developer’s Manual.

SAL will use identity mappings (virtual addresses = physical addresses). The advantage of identity 
mapping is that the same pointer can be used to access the same memory location regardless of the 
state of the PSR.dt bit. 

3.3.2.3 Unique Region IDs for SAL

The firmware will load the operating system loader and jump to it. The operating system loader 
will load the rest of the operating system using the firmware boot services procedures. While SAL 
can operate with identity mapping, there may be a need for the operating system loader to use a 
non-identity mapping. As an example, there may be an I/O device at physical address 2.5 GB for 
which SAL would have established an identity mapping with uncacheable memory attribute. The 
operating system loader may need to load additional layers of software and fix up address 
relocations using virtual addressing. The operating system loader may need to load software at 
physical address 0.5 GB mapped to virtual address of 2.5 GB. When operating system refers to the 
virtual address 2.5 GB, it is referring to RAM at 0.5 GB and when SAL refers to 2.5 GB virtual 
address, it is referring to the I/O device at 2.5 GB physical address. Clearly, the operating system 
loader cannot use the TLB mapping set up by SAL for this case. 

This problem can be solved by using unique Region registers and Region ID values for the SAL and 
the operating system. Differing Region ID values ensure that earlier TC/TR entries with a different 
Region ID value no longer cause TLB hits. 

Since SAL code is 64-bit, if the physical address space is less than or equal to 261 bytes, SAL will 
be capable of addressing the entire physical address space using Region Register 0. In general, the 
SAL would need only Region Register 0, leaving the other Region Registers for operating system 
use. SAL shall set up the Region Register 0 with a Region ID value of 0x1000, if physical address 
space is less than or equal to 261 bytes. If the physical memory is larger, it shall load the Region 
Registers 1 to 3 with Region ID values of 0x1001 to 0x1003, respectively. 

The operating system loader shall not change the contents of Region Registers that are in use by 
SAL. If the value in Region Register 0 is changed, access to the IVT is lost and the system will 
crash. Similarly, the operating system loader shall be restricted from using Region ID values of 
0x1000 to 0x1003 until operating system is ready to take over the memory management and the 
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IVA. If this restriction is not followed by the operating system loader, a machine check abort might 
result when SAL attempts to insert a TC entry using the ITC.i or ITC.d instruction. Should the 
operating system loader set up any of the Region Registers unused by SAL, it shall

• Set the ve bit in the Region Register to 0, to disable the VHPT.

• Set the ps bits value to indicate preferred page size of 4 KB.

The operating system loader will need to refer to the data structures common to SAL and operating 
system in the process of loading the operating system kernel. Similarly, the operating system will 
need to pass parameters to SAL through pointers in Memory Stack Pointer (SP) and Global Data 
Pointer (GP) registers. The SAL and the operating system must refer to these common data 
structures using Region Register 0, i.e. the virtual addresses used to address the common data 
structures must have bits 61-63 set to 0. 

3.3.3 Other Restrictions on the Operating System

1. The operating system shall not change the values of the following system resources:

• LID, the unique id/eid value for this processor.

• DCR.lc, the Bus lock setting for the platform, if the same is set to 1. Note that the 
PAL_BUS_SET_FEATURES procedure may be invoked to execute the locked 
transactions as a series of non-atomic transactions. Refer to the Intel® Itanium™ 
Architecture Software Developer’s Manual for details.

• Physical address of the Processor Interrupt Block Address.

• Physical address of the IA-32 I/O Port Block.

• The value in the IOBASE register (AR.k0) until the OS takes over the IVA.

2. The operating system shall not change the Min-State save area which was registered by the 
SAL using the PAL_REGISTER_MEM procedure.

3. The operating system shall not change the location of the PAL procedures within memory. 
SAL copies the PAL procedures into memory using the PAL_COPY_PAL procedure. 

4. The operating system creates virtual address mappings for the PAL and the SAL procedures 
and registers them with the firmware using interfaces provided by the EFI specification. The 
operating system shall not alter the virtual address mappings after such a registration, as this 
is not permitted by the EFI specification. 

5. The operating system may lower the CMCI, MCA, and BERR promotion strategy set by 
SAL by invoking the PAL_PROC_SET_FEATURES procedure, but this is not 
recommended.

6. Refer to Table 9-2 for restrictions on the OS from calling certain PAL procedures.
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Machine Checks 4

Machine checks, including Machine Check Aborts (MCAs), and expected machine checks cause 
processor execution to jump to the PALE_CHECK entrypoint in the Itanium architecture. Please 
refer to Volume 2, Chapter 11 in the Intel® Itanium™ Architecture Software Developer’s Manual 
for details regarding PALE_CHECK processing. Also refer to the Itanium™ Processor Family 
Error Handling Guide for error handling from a system software perspective.

When PALE_CHECK has finished processing, it will pass control to SALE_ENTRY entrypoint in 
the Itanium architecture, which in turn branches to the SAL MCA handler. The entry conditions for 
SALE_ENTRY are described in the Intel® Itanium™ Architecture Software Developer’s Manual. 

This chapter defines the actions required of SAL_CHECK as well as some optional considerations.

Figure 4-1 shows a simplified control flow of Machine Check processing.
 

Uncorrected machine checks refer to errors that cannot be corrected at PAL and SAL layers. These 
may still be fully or partially recoverable at the operating system layer. The control flow differs 
between corrected and uncorrected machine checks. For corrected machine checks, the operating 
system Corrected error interrupt handlers will be invoked some time after returning to the 
interrupted process. Section 4.1 describes the functionality and processing steps for the uncorrected 
machine checks and Section 4.2 describes the corrected machine checks.

4.1 SAL_CHECK

SAL_CHECK has the basic responsibility for the following:

• Record processor and platform error information.

• Save the processor and platform state information.

• Perform any platform hardware-specific corrections.

Figure 4-1. Overview of Machine Check Flow
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• For uncorrected machine checks, validate the OS_MCA entrypoint and branch to it.

• Clear the error record resources and re-enable future information collection.

• Halt the processor or platform as necessary.

• Handle multiprocessor (MP) situations. 

In addition, it is useful to note that where hardware/firmware cannot fix a machine check condition, 
SAL_CHECK should provide the necessary information and conditions to allow the operating 
system to recover whenever possible. It is expected that most of the error recovery is performed at 
the OS_MCA layer. The amount of state information saved by SAL is implementation-dependent 
and the SAL_GET_STATE_INFO procedure provides validation bits indicating the saved state 
information. 

4.1.1 SAL_CHECK Processing Details

During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code where it 
may deposit some minimal processor state information so that PAL code has sufficient resources to 
perform the necessary PALE_CHECK processing. This step is performed on all the processors in 
the system.

During the platform test and initialization stage, SAL may invoke the PAL_MC_EXPECTED 
procedure to notify PAL that a machine check may surface and that PAL must not attempt to correct 
the error. If the machine check was expected by SAL, SAL will check the results of the operation, 
invoke PAL_MC_EXPECTED to notify PAL that machine check is no longer expected, and 
resume execution by calling PAL_MC_RESUME. 

When an unexpected machine check event has occurred and SAL_CHECK is entered, it is the 
responsibility of SAL_CHECK to call back to PAL code (PAL_MC_ERROR_INFO), in order to 
retrieve processor-specific error information which pertains to the machine check taken. In 
addition, SAL_CHECK should interrogate the platform for any platform-specific information 
which pertains to the machine check condition. Once the processor error record information is 
retrieved, SAL_CHECK will call PAL_MC_CLEAR_LOG to enable the processor error logging 
resources for capturing future machine check error information. A similar task is necessary to 
enable platform error logging resources for future events. 

An error due to an MCA event, when corrected by firmware becomes a Processor Corrected 
Machine Check or a Platform Corrected Error event condition. A hand off to the OS_MCA is also 
not required during this event type transformation.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch” 
machine check processor to accumulate all the error records at the platform level and continue with 
the machine check processing. Such a “monarch” status is relevant only for the current MCA error 
event.

SAL is responsible for reporting the state information to the operating system via the SAL_PROC 
get state information calls so that the operating system can make the determination to: 

• Fix the error and return to interrupted or new context through the SAL_MCA, or

• Request the SAL_MCA to reset the platform. 
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SAL_CHECK shall not hide any architectural state from the OS_MCA layer. This permits the 
OS_MCA layer to run unencumbered. OS_MCA can save the processor and platform state and 
re-enable future machine checks as soon as possible. Otherwise, OS_MCA would be constrained to 
operating with machine checks disabled in order to preserve the architectural information at the 
PAL and SAL layers. 

When the operating system registers the OS_MCA entrypoint with SAL, it also supplies the length 
of the code (or at least the length of the first level OS_MCA handler). The operating system may 
optionally supply a modulo checksum of the code area (all bytes of the code area including the 
checksum byte must add up to zero). The SAL saves the checksum for this code area. Prior to 
entering the OS_MCA, it is SAL_CHECK’s responsibility to ensure that the OS_MCA vector is 
valid by verifying the checksum of the OS_MCA code. The SAL code that verifies the integrity of 
the OS_MCA code shall honor the cacheability attribute of the OS_MCA code. Thus, if the 
operating system had provided an uncacheable address for the OS_MCA entry point (bit 63 of 
physical address = 1), the SAL code shall not make cacheable accesses to the OS_MCA code areas 
while verifying the checksum. 

There may be some platform-specific reasons which render the OS_MCA handler invalid. For 
example, since the OS_MCA handler is in memory, if the memory controller which handles that 
portion of memory is no longer functional, it does not make sense to attempt to branch to that code. 
If either the OS_MCA handler was not registered prior to the machine check event, or if the 
OS_MCA handler is otherwise invalid, SAL_CHECK may halt or reboot the system. This action is 
SAL implementation-dependent. When the OS_MCA returns to the SAL indicating that the error 
has been corrected by the operating system layer, SAL will call the PAL_MC_RESUME procedure 
to resume execution. See Section 4.8.1 for other options. 

Figure 4-2 depicts the control flow during corrected and uncorrected machine checks. 

4.2 Corrected Machine Checks

There are different categories of corrected machine checks pertaining to Itanium processors:

• Corrected internally by the processor hardware, e.g. single bit data ECC error on a processor 
cache.

• Corrected by PAL, e.g. double bit data ECC error on a clean processor cache line, during an 
instruction fetch operation. 

• Corrected by the platform hardware, e.g. single bit data ECC error on system memory.

• Corrected by SAL. These are primarily platform errors that can be corrected by SAL without 
immediate involvement of the operating system. 

None of these categories will require a processor rendezvous. 
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The SAL_CHECK processing steps for corrected machine checks are similar to the steps for the 
uncorrected machine checks. SAL will maintain the processor and platform error information and 
save the state of the processor and platform. In the subsequent steps, SAL may do one of the 
following:

• If the error is corrected by PAL, SAL would return to the interrupted context by calling 
PAL_MC_RESUME. PAL_MC_RESUME procedure provides an option for generating a 
Corrected Machine Check interrupt to the operating system for the Processor CMC events. The 
CMCV register specifies the CMC interrupt vector and its mask status.

• SAL will perform any platform hardware-specific correction as described in Section 4.3, 
“Platform Errors”, send a Corrected Platform Error Interrupt (CPEI) to the operating system 
and then call PAL_MC_RESUME, to return to the interrupted context.

For corrected machine checks, SAL does not call the OS_MCA layer immediately but the operating 
system CMC interrupt handler or the operating system Corrected Platform Error interrupt handler 
will be invoked some time after returning to the interrupted process, assuming that the CMC or 
Corrected Platform Error interrupt is enabled in hardware. Some operating systems may choose to 
poll for corrected processor and/or platform errors instead of relying on the CMCI/CPEI interrupts. 
Refer to Section 4.4 for details. 

Figure 4-2. Machine Check Code Flow
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The operating system component that handles the CMC or Corrected Platform Errors shall run with 
interrupts enabled1 and would invoke the SAL_GET_STATE_INFO and the 
SAL_CLEAR_STATE_INFO procedures to process the error information associated with the 
event(s). The operating system must ensure that the entire CMC or Corrected Platform Error 
handler executes on the same processor on which it was signalled. 

The amount of state information saved by SAL is implementation-dependent and SAL provides 
validation bits indicating the saved state information. Thus, for performance reasons, a particular 
SAL implementation may choose not to save ARs, CRs or floating-point registers during a 
corrected machine check. 

4.3 Platform Errors

Platform errors refer to errors signalled by system components other than processors, e.g. memory, 
I/O busses, chipsets, devices, etc. 

Uncorrected platform errors may be signalled by asserting pins such as BERR# or BINIT# or by 
generating a 2xECC2 or a synchronous HardFail response on the processor front side bus (FSB).

Corrected platform errors are usually signalled using an interrupt line. An example of a corrected 
error is a single bit error corrected by the memory controller. An interrupt will be signalled by the 
platform when the data from the memory location is consumed. 

Some platforms may use interrupts to signal a potential uncorrected error. An example of this 
situation is poisoned data stored into memory. A CPEI is signalled to the processor at the time of 
the store and if the poisoned data is consumed later by a processor, that processor will incur a Local 
MCA. 

4.3.1 Scope of Platform Errors

The scope of platform errors is platform & firmware implementation dependent. Depending upon 
the platform topology, a single physical platform may comprise of multiple nodes, each with a set 
of processors and its own error event generation and notification. There may be requirements for 
routing the interrupt signals to specific processors as processors may not have visibility to all the 
platform components in a system. The SAL shall provide details of the interrupt input line(s) and 
the interrupt routing requirements, including the ID and EID of the processor to receive the CPEI 
interrupt to the operating system through the ACPI tables. The number of nodes in a platform is 
implicitly indicated by the SAL by providing multiple entries for Corrected Platform Error 
interrupts in the ACPI tables. Refer to the ACPI Specification for additional details. 

4.3.2 Processing of Corrected Platform Errors

When the operating system wants to be notified of the platform error events through an interrupt, it 
will select a corrected platform error vector (CPEV) and arm the interrupt line(s) to deliver 

1. It is required that the operating system handlers operate with interrupts enabled, so that system firmware can manage its resources (like NVM 
based error records) without impacting the system performance.

2. Also known as data poisoning.
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interrupt(s) to the processor. The operating system is also required to register the chosen interrupt 
vector number with SAL through the SAL_MC_SET_PARAMS procedure. 

The system component responsible for the corrected error (hardware or firmware) sends event 
notification to the operating system. For hardware-corrected platform errors, the hardware device 
sends the Corrected Platform Error Event notification to the operating system by asserting the 
interrupt line of the IOSAPIC. For firmware-corrected errors, SAL reports the platform-corrected 
error event to the operating system by sending an inter-processor interrupt to the processor with the 
CPEV that is registered by the operating system through the SAL_MC_SET_PARAMS procedure.

The operating system on the processor on which the CPEI was signalled, shall invoke the 
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures with the argument 
type of CPE to retrieve and process the corrected platform error information.

4.3.3 Processing of Uncorrected Platform Errors

Uncorrected platform errors will result in a local or a global MCA. The operating system shall 
invoke the SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures with the 
argument type of MCA on all the processors on which the MCA condition is signalled, to retrieve 
and process the uncorrected platform error information. 

The SAL shall return an error record on each of the processors that experienced the MCA 
condition. Some error records may have a processor error section and one or more platform error 
sections while some error records may have only the processor error section. The platform 
section(s) would provide the error information for the node associated with the processor on which 
the SAL call is made. If a SAL implementation is capable of accessing error information for the 
entire multi-node system from one processor, it is permitted to aggregate all the platform error 
sections within one error record.

4.4 Polling for Corrected Errors

Some operating systems may choose to poll for corrected processor and platform error events. For 
the corrected processor events, the operating system must periodically invoke the 
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures on each processor in 
the system. For the corrected platform events, the operating system must periodically invoke the 
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures from a processor on 
each node within the system since some platform errors may only be visible on the node of 
occurrence. 

If the operating system chooses to employ polling for the corrected platform error events, it must 
neither program the IOSAPIC redirection table entry for the interrupt line on which the Corrected 
Platform Error is signalled nor register the CPEV vector with the SAL. Instead, it should 
periodically call the SAL_GET_STATE_INFO procedure on the same processor(s) for which it 
would have programmed the interrupt. All other processing steps are the same as for the interrupt 
driven approach. 
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4.5 OS_MCA

When the operating system is ready to handle machine check events, it should call 
SAL_SET_VECTORS to register the physical address, length and the GP of the OS_MCA handler. 
It is highly recommended that a non-zero length and checksum be supplied by the operating system 
to the SAL so that the SAL can ensure the integrity of the OS_MCA code by verifying its 
checksum. The operating system must use the SAL_SET_VECTORS function if it expects to be 
able to recover from any machine check conditions in which it may have to be involved, or in order 
to retrieve error records and state information and dumping such information for subsequent debug 
analysis. After registering the OS_MCA address, the operating system can re-enable machine 
checks by clearing the PSR.mc bit. The operating system must call the 
SAL_GET_STATE_INFO_SIZE procedure to obtain the maximum size of machine check state 
information that SAL would return for the MCA events. 

When the machine check event occurs, SAL_CHECK will invoke OS_MCA. OS_MCA 
functionality is implementation-dependent. At a minimum, OS_MCA must call 
SAL_GET_STATE_INFO to retrieve the error records and state information. When it has finished 
this task it must call SAL_CLEAR_STATE_INFO1 to release the SAL resources used for logging 
MCA events and state save. The OS_MCA can then re-enable machine checks by clearing the 
PSR.mc bit to 0. Once the operating system has consumed and cleared an error record, it will no 
longer be available from the SAL. SAL error records are always associated with a particular MCA 
or Corrected error event and shall contain all the relevant information packaged together as a 
record, and may contain error information from just the processor or platform or both. This 
information is presented in an error record structure with a Record Header and multiple sections. 
Each section has an associated globally unique ID (GUID) to identify the section type as being 
processor, memory, bus, controller or platform-specific hardware. Refer to the Appendix B for 
details. 

The operating system may perform any corrections on the operating system controlled hardware 
resources. The operating system makes the decision whether it wants to recover the interrupted 
context or not, but it must take into account the state information retrieved from the 
SAL_GET_STATE_INFO call. This information contains relevant data with respect to the 
continuability of the processor/system. Thus, even if the operating system could correct the error, if 
PAL reports that it did not capture the entire processor context, (e.g. Processor state parameter 
states that the GRs are invalid), resumption of the interrupted context will not be possible. The 
operating system must also determine from values in the Min-State Save area whether the machine 
check occurred while operating with PSR.ic set to 0 and whether the processor implements the XIP, 
XPSR and XFS registers necessary for the recovery. 

When OS_MCA returns to SAL or PAL, it is permitted to set new values for the registers that are 
passed by PAL in the Min-State Save area. This is achieved by constructing a data structure with 
the format identical to the Min-State Save area and returning the same to SAL. Refer to the Intel® 
Itanium™ Architecture Software Developer’s Manual for the layout of this structure. 

OS_MCA may select one of the following actions: 

• Correct the error and return to SAL_CHECK with the status of “corrected.” The operating 
system may set a new context in the Min-State save area and SAL will then invoke 
PAL_MC_RESUME to return to the interrupted or the new context. If the interrupted context 

1. The error records maintained by firmware are returned one at a time to the operating system. It is necessary for the consumer (operating 
system) to clear the current error record to be able to retrieve the next unread record.
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was in the firmware address range and the operating system decides to set a new context, the 
operating system must take steps for resumption of the firmware code eventually, otherwise 
the system may become unstable. 

• In the event of an uncorrected error, return to SAL_CHECK with the uncorrected status value 
and an indication to the SAL to halt or reboot the system. 

Figure 4-3 shows the flow of control through SAL_CHECK on the monarch processor.

4.5.1 Unconsumed Error Records across Reboots

There may be situations where the OS_MCA layer could not be invoked or the OS_MCA layer 
could not invoke the SAL_CLEAR_STATE_INFO procedure to clear a pending error record. If the 
SAL implementation had logged the error to NVM, it may be capable of providing the unconsumed 
error information to the operating system following the next reboot of the system. To support this 
capability, following the next reboot of the operating system, the operating system shall invoke the 
SAL_GET_STATE_INFO and the SAL_CLEAR_STATE_INFO procedures (with the type 
argument of MCA) to retrieve the pending error records and optionally log them to persistent 
storage under control of the operating system. These SAL calls to consume the pending error 
records may be made from any of the processors in the system. For additional details, refer to the 
ItaniumTM Processor Family Error Handling Guide. 

If the operating system fails to clear the log before another MCA surfaces, the SAL may overwrite 
the unconsumed NVM log, if there is not space for another record. The SAL implementation may 
additionally escalate the error severity (Section B.2.1, “Record Header”) when the error 
information is subsequently provided to the operating system. 
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Figure 4-3. SAL_CHECK Detailed Flow on the Monarch Processor
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4.6 Procedures used in Machine Check Handling

PAL_CHECK and SAL_CHECK execute out of the firmware address space. SAL_CHECK may, 
however, invoke the PAL procedures in memory after ensuring that the memory area containing the 
PAL procedures is intact. 

Following are typical PAL procedures that may be invoked by SAL_CHECK: 

• PAL_MC_ERROR_INFO

• PAL_MC_RESUME

• PAL_MC_CLEAR_LOG

The following procedures may be called by SAL_RESET to control handling of machine checks:

• PAL_BUS_GET_FEATURES

• PAL_BUS_SET_FEATURES

• PAL_PROC_GET_FEATURES

• PAL_PROC_SET_FEATURES

• PAL_MC_REGISTER_MEM1

• PAL_MC_EXPECTED

SAL may call the following procedure to ensure that all outstanding instructions within a processor 
are completed and any potential machine checks due to these transactions get serviced. 

• PAL_MC_DRAIN 

Following are the SAL procedures that may be invoked by operating system to register its machine 
check layer interfaces: 

• SAL_MC_SET_PARAMS

• SAL_SET_VECTORS 

Following are the typical SAL procedures that may be invoked by the operating system during 
machine check processing: 

• SAL_MC_RENDEZ

• SAL_GET_STATE_INFO

• SAL_GET_STATE_INFO_SIZE

• SAL_CLEAR_STATE_INFO

4.7 Machine Checks in MP Configurations

There are certain machine check scenarios that require additional actions and considerations in MP 
configurations. A local MCA on one or more processors may require the system to be in a 
quiescent state for graceful error handling. This is accomplished by bringing all the processors in 

1. This procedure is intended for use during firmware initialization. It shall not be invoked by the operating system during run time as this 
might affect firmware functionality. 
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the system that are not already in MCA to an idle state. The MCA architecture has defined a 
mechanism for processor rendezvous through firmware and operating system coordination.

4.7.1 Rendezvous Requirements

In MP configurations, a coordination between all processors is required by means of a processor 
rendezvous. Refer to Section 3.2.2.1, “Rendezvous Functionality” for details of how the 
rendezvous mechanism works. 

Rendezvous of processors is done for one of the following reasons:

• When PAL initiates a rendezvous request during an MCA.

• When SAL determines on its own accord that the platform error needs rendezvous.

• When the operating system sets a flag requesting firmware to perform rendezvous for all MCA 
errors.

PAL Initiated Rendezvous: If the PAL machine check layer determines that other processors must 
be rendezvoused for error containment, it passes an indication to SAL_CHECK to perform the 
rendezvous and supplies a return address within PAL in GR19. Upon return, PALE_CHECK 
performs the appropriate action and then calls SAL_CHECK again in the normal manner (with no 
rendezvous indicator). The SAL must determine the state of other processors and bring all 
processors not already in MCA to a spinloop by generating SAPIC interrupt messages. The 
interrupt vector used by SAL to request for rendezvous is the one already registered by the 
operating system during the OS_MCA handler initialization

SAL Initiated Rendezvous: Additionally, there may be platform related machine check situations 
which require SAL firmware to rendezvous processors. For example, if platform hardware were to 
stop forwarding transactions in order to maintain error containment, the other processors in the 
system must be rendezvoused before that platform hardware can be corrected to resume forwarding 
transactions. 

Operating System Initiated Rendezvous: If the operating system sets the rz_always flag during 
invocation of the SAL_MC_SET_PARAMS procedure, the SAL is required to rendezvous all the 
processors in the system for all detected processor and platform MCA conditions, when such errors 
are not corrected by the firmware. If this flag is not set, then rendezvous is done only during the 
PAL or SAL initiated rendezvous conditions described above.

4.7.2 Flow of Control during MCA in MP Configurations

The high level flow of control during MCAs in MP configurations is depicted in Figure 4-4 and 
Figure 4-5. The overall processing steps are as follows:

The flow for a normal MCA rendezvous is as outlined below:

1. Processor detects an MCA event. PAL takes control and attempts an error recovery.

2. PAL may ask SAL to rendezvous for certain errors. SAL may decide to do a rendezvous on 
its own accord or if the operating system has registered a configuration option to rendezvous 
for all MCA errors, if it is not already done at PAL’s request. If rendezvous does not occur, 
then steps 3, 4, 5, and 6 are skipped.

3. SAL sends SAPIC interrupt messages to all the slave processors.
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4. Interrupt handlers of all slaves enter a spin loop by calling SAL_MC_RENDEZ.

5. SAL selects a monarch for handling the error. All slaves processors in SAL_MC_RENDEZ 
check in their status with the SAL on the monarch.

6. After all the slaves check in with SAL, the monarch SAL returns to PAL.

7. PAL starts the actual error handling process with subsequent hand off to SAL.

8. SAL finishes the MCA handling on all the processors that are in MCA and waits for all the 
processors in MCA to synchronize before branching to OS MCA for further processing. 
Note that the hand-off to OS MCA from SAL MCA occurs simultaneously on all processors 
executing in SAL MCA handler.

9. OS_MCA may choose a monarch processor to continue with error handling. After OS_MCA 
completes the error handling, the monarch processor wakes up all the slaves through a 
wake-up message as shown by (9) in Figure 4-4.

During the initial attempt to rendezvous, some processors may fail to respond to the interrupt for an 
extended period of time. The monarch processor SAL forces the failed processors to respond by 
sending an SAPIC INIT message as shown in Figure 4-5. Once all the processors are in the spin 
loop, then the monarch processor that received the MCA will attempt to recover from the error. The 
flow of bringing the processors to a rendezvous state is the same as in Figure 4-4, except for the 
additional Steps 6, 7, 8 and 9.

Figure 4-4. Normal SAL Rendezvous Flow
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4.7.3 OS_MCA Responsibilities

In order to support the MCA events in MP configurations, the operating system does the following:

• Register the address of OS_MCA entrypoint and its gp value using the SAL_SET_VECTORS 
function.

• Invoke the SAL_MC_SET_PARAMS procedure specifying an interrupt vector on which SAL 
firmware can signal the non-monarch processors and the mechanism that the operating system 
will employ to wake up the non-monarch processors at the end of machine check processing. 

• Invoke the SAL_MC_SET_PARAMS procedure specifying if a rendezvous is always required 
for an MCA and whether MCAs should be escalated to BINIT while machine checks are 
masked.

On receipt of the MC_rendezvous interrupt or the INIT for MC_rendezvous, the operating system 
on the non-monarch processors will:

• Disable further interrupts.

• Set an OS implementation specific variable to indicate that a rendezvous interrupt was 
received. Such a variable may be used by the OS_MCA layer on the monarch processor to 
identify the processors that need to be woken up at the end of MCA processing. 

• Call SAL_MC_RENDEZ. This procedure will call PAL_MC_DRAIN to complete all 
outstanding transactions within the processor and then enter a spin loop within SAL. This SAL 
procedure shall be MP-safe. While waiting for the wake-up from the monarch processor, the 
SAL may mask further machine checks and escalate future MCA and BERR events to BINIT 
using the PAL_PROC_SET_FEATURES procedure. 

Figure 4-5. Failed SAL Rendezvous Flow
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SAL on the monarch processor will wait a specified amount of time for the signalled processors to 
enter the SAL_MC_RENDEZ procedure. The wait time is specified as a parameter to the 
SAL_MC_SET_PARAMS procedure. Assuming all processors report in as expected, the PAL and 
SAL will perform the appropriate state save functions and proceed to the OS_MCA entrypoint to 
allow the operating system to take the appropriate error recovery actions. Refer to the Figure 4-4 
for more details on the control flow between the PAL, the SAL and the operating system. 

In situations where either the operating system has not registered an interrupt vector via the 
SAL_MC_SET_PARAMS call, or where the specified time to wait has elapsed and the signalled 
processor did not respond, the SAL firmware on the monarch processor will send an INIT to the 
remaining processors in order that the machine check handlers in PAL and SAL can proceed. This 
scenario is depicted in the Figure 4-5.While sending an INIT to the other processors may not create 
an inherently unrecoverable situation, it certainly increases the risk for recoverability. This is the 
rationale for registering the MC_rendezvous interrupt vector using the SAL_MC_SET_PARAMS 
procedure. The monarch processor must allow sufficient time for the INIT IPI to be processed by 
the targeted processors and reach the rendezvous state.

Note: The PAL_INIT and the SAL_INIT firmware code executes out of the firmware address space and 
contends for firmware accesses with the processors that experienced the machine check events. 

If the PAL requests rendezvous of all the processors and SAL is unable to do so, SAL will return to 
PAL with a non-zero value in GR19. Refer to the Intel® Itanium™ Architecture Software 
Developer’s Manual for details regarding PALE_CHECK processing. 

After the error is corrected by OS_MCA, OS_MCA on the monarch processor will wake up the 
rendezvoused processors using the wake up mechanism specified in the SAL_MC_SET_PARAMS 
call. For the processors rendezvoused using the MC_rendezvous interrupt or the INIT, the 
continuation point is merely a return from the SAL_MC_RENDEZ procedure. It is the 
responsibility of the operating system to clear the IRR bits for the MC_rendezvous interrupt and the 
wake up interrupt, if any. The operating system must re-enable future interrupts and machine 
checks.

It should be noted that some platform implementations, under certain machine check 
circumstances, will cause multiple processors to enter PALE_CHECK and SAL_CHECK. PAL 
code will be generally unaware of this, but SAL code should make every effort to take such 
situations into account. SAL code must implement methods of detecting which processors have 
entered the SAL_CHECK entrypoint and avoid steps to rendezvous such processors (using 
MC_rendezvous interrupt or INIT). Some examples of situations when multiple processors 
experiencing machine checks simultaneously are as follows:

• Broadcast machine check (BERR signal) from the platform.

• Error during a cast out of a cache line in response to an incoming snoop cycle from another 
processor.

When multiple processors experience machine checks simultaneously, SAL selects a “monarch” 
machine check processor to accumulate all the error records at the platform level. Once this is done, 
the OS_MCA procedure will take control of further error handling on all the processors that 
experienced the machine checks. The OS_MCA layer may need to implement a similar “monarch” 
processor selection for the error recovery phase. The operating system will be aware of which 
processors invoked the SAL_MC_RENDEZ procedure in response to the MC_rendezvous 
interrupt or the INIT signal and shall wake up those processors.
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4.7.4 Machine Check Processing Steps within Firmware and 
Operating System

Figure 4-6 depicts the typical flow of machine check processing steps from various firmware and 
software layers in an MP configuration. This figure illustrates the example of two processors (1 and 
2) experiencing a machine check within a four processor system. The error requires the other 
processors to be rendezvoused. 

On entry into SAL_MCA, Processor 1 promotes further MCAs to BINIT for better error 
containment. This is based on an argument supplied by the operating system as part of the 
SAL_MC_SET_PARAMS procedure. The SAL on Processor 1 is not aware of any other 
processors having experienced machine check and hence sends the MC_rendezvous interrupt to all 
the other processors including Processor 2. It also sets a memory semaphore (MCA_In_Prog) to 
indicate that a machine check is in progress. By setting such a semaphore, Processor 1 gains the 
monarch status for this machine check incidence at the SAL layer. Semaphore operations such as 
XCHG, CMPXCHG can only be made to cacheable locations. If the platform provides an 
equivalent mechanism such as a read/write-once port, the same may be employed in lieu of a 
cacheable memory semaphore.

The operating system on the Processor 3 receives the MC_rendezvous interrupt, sets a flag for 
being rendezvoused in the operating system data structures and then calls the SAL_MC_RENDEZ 
procedure. The Processor 4 is running with interrupts masked and does not recognize the 
MC_rendezvous interrupt in a timely manner. Hence, the Processor 1 sends an INIT IPI to the 
Processor 4. This causes the Processor 4 to enter the OS_INIT layer which records the fact of being 
rendezvoused in the operating system data structures and then calls the SAL_MC_RENDEZ 
procedure. 

The SAL on Processor 1, using SAL data structures, recognizes that Processor 2 has reached the 
SAL_CHECK layer and that Processors 3 and 4 have reached the SAL_MC_RENDEZ procedure. 
It clears the MCA_In_Prog semaphore, instructs the Processor 2 to proceed to the OS_MCA layer 
and then proceeds to the OS_MCA layer itself. 

At the OS_MCA layer, the operating system using its data structures, determines that only 
Processors 1 and 2 will reach the OS_MCA layer. The operating system elects a monarch to handle 
the machine check (Processor 2 in Figure 4-6). The operating system makes necessary SAL calls to 
retrieve and clear the processor and platform error information. The operating system on Processor 
2 then instructs Processors 1, 3 and 4 to return to the interrupted contexts. The Processor 1 returns 
via SAL and the PAL_MC_RESUME procedure while Processors 3 and 4 return to the procedure 
that invoked the SAL_MC_RENDEZ procedure. 

Once interrupts are re-enabled, the operating system on the Processor 2 services a spurious 
MC_Rendezvous interrupt and invokes the SAL_MC_RENDEZ procedure. The SAL finds that no 
machine check is in progress and hence returns to the operating system immediately. If the 
operating system chosen wake-up mechanism is an interrupt, the operating system on the 
Processors 3 and 4 will service the wake-up interrupt. As part of servicing these interrupts, the 
operating system reads the CR.IVR register and issues an EOI to the local SAPIC thereby clearing 
the interrupt.
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Figure 4-6. Machine Check Handling in a Typical MP Configuration
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4.8 OS_MCA Handoff State

The OS_MCA interface defines the boundary between SAL_CHECK and the operating system 
machine check handler, OS_MCA. The contents of non-banked and banked general registers at the 
time of the interruption have been saved by PAL in the Min-State Save area and these are available 
for use by SAL and OS_MCA. The following register contents define the OS_MCA handoff state.

The state of the processor is the same as on exiting PALE_CHECK (refer to the Intel® Itanium™ 
Architecture Software Developer’s Manual) except as below:

GR1 = OS_MCA Global Pointer (GP) registered by the operating system (the operating 
system’s GP).

GRs2-7 = Unspecified.
GR8 = Physical address of the PAL_PROC entrypoint.
GR9 = Physical address of the SAL_PROC entrypoint.

GR10 = GP (Physical address value) for SAL.
GR11 = Rendezvous state information:

0 = Rendezvous of other processors was not required by firmware and hence
not done.

1 = All other processors in the system were successfully rendezvoused using
MC_rendezvous interrupt.

2 = All other processors in the system were successfully rendezvoused using a
combination of MC_rendezvous interrupt and INIT.

–1 = Rendezvous of other processors was required but was unsuccessful on one
or more processors.

GR12 = Return address to a location within the SAL_CHECK procedure.
GRs13-31 = Refer to the Intel® Itanium™ Architecture Software Developer’s Manual.

BR0 = Unspecified.

Note: On entry into SAL_CHECK, the RSE has been set to enforced lazy mode configuration. The 
operating system shall not make cacheable accesses to the MinState area, otherwise unexpected 
behavior will occur. 

4.8.1 Return from the OS_MCA Procedure

The OS_MCA procedure shall return to the SAL_CHECK at the end of its MCA processing. When 
the OS_MCA procedure returns to the SAL, it must set appropriate values in the Min-State Save 
area pointed to by GR22, for continuing execution at the interrupted or a new context. The 
operating system must restore the processor state to the same as on entry to OS_MCA except as 
follows:

GRs1-7 = Unspecified.
GR8 = 0 if error has been corrected by OS_MCA:

–1 if error was not corrected by OS_MCA and SAL must warm boot the system.
–2 if error was not corrected by OS_MCA and SAL must cold boot the system.
–3 if error was not corrected by OS_MCA and SAL must halt the system.

GR9 = GP (Physical address value) for SAL.
GR10 = 0 if return will be to the same context.

1 if return will be to a new context.
GRs11-21 = Unspecified.
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GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;
PAL_MC_RESUME procedure will restore the register values from this structure;
OS_MCA must supply this parameter even if it does not change the register values
in the Min-State Save area.

GRs23-31 = Unspecified.
PSR = Same as on entry from SAL_CHECK except that PSR.mc may be either 0 or 1.
BR0 = Unspecified.
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Initialization Event 5

INIT is an initialization event generated by the platform or by software through a SAPIC message. 
The INIT event causes the processor to branch to the processor-dependent INIT handler 
(PALE_INIT) in the Itanium architecture. The PALE_INIT saves minimum register state and 
branches to SALE_ENTRY which, in turn, passes control to the SAL INIT handler (SAL_INIT). 
The state of the processor on exiting PALE_INIT and entering SALE_ENTRY is defined in the 
Intel® Itanium™ Architecture Software Developer’s Manual. 

5.1 SAL_INIT

SAL_INIT is entered from PALE_INIT via SALE_ENTRY. SAL_INIT’s purpose is to save the 
state of the processor to the platform-specific Processor State Information (PSI) area and either 
invoke an operating system INIT handler (OS_INIT) if the same has been registered through a 
SAL_SET_VECTORS call, or warm boot the system otherwise. The SAL_SET_VECTORS 
procedure permits the operating system to register separate entrypoints for the first processor 
(monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs).

The warm boot mechanism is SAL implementation-dependent and can be done either by calling the 
SAL_RESET entrypoint with a non-zero value in GR32, or by generating a reset event that will 
cause a system-wide warm boot. Note that during the transition from PALE_RESET to 
SAL_RESET via SALE_ENTRY, the value in GR32 will be zero.

The following defines the behavior of SAL_INIT:

• During boot, SAL_RESET code will call PAL_MC_REGISTER_MEM to tell PAL code 
where it may deposit some minimal processor state information so that PAL code has sufficient 
resources to perform the necessary machine check or INIT processing. This step is performed 
on all the processors on the system.

SAL_INIT saves the minimal processor state information as well as some additional processor 
and platform state information in the SAL data area and provides the same to OS_INIT. 
PAL_INIT and SAL_INIT shall not hide any architectural state from the OS_INIT layer.

• Check if the OS_INIT handlers for the monarch and non-monarch processors are registered 
and that both of them are valid. When the OS_INIT procedures were registered with the SAL, 
the operating system may optionally supply the modulo checksum for the code areas (all bytes 
of the code area including the checksum byte must add up to zero). The SAL saves the 
checksums for the code areas. On receipt of the INIT condition, the SAL verifies the checksum 
of the code at the OS_INIT procedure addresses before jumping to it. 

• If the code for the OS_INIT handlers are intact, call the OS_INIT handlers for the monarch and 
non-monarch processors.

• If the OS_INIT handler is not registered, set implementation-dependent SAL warm boot 
indicator and reboot the system either by calling SAL_RESET or by generating a reset event.

INITs are masked on entry to SAL_INIT and should remain masked (PSR.mc = 1) until the INIT 
processor state is logged at least. There is neither a requirement nor a way to clear a pending INIT 
condition.
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On some PC-AT platforms, the platform provides a switch that can generate an NMI signal and this 
is used by IA-32 operating systems to effect a crash dump on a hung system. On Itanium-based 
systems, a similar function will be performed by an INIT switch as the NMI signal is masked by the 
PSR.i bit of the processor. If SAL_INIT gains control due to the platform’s INIT switch while an 
IA-32 operating system is executing, the SAL_INIT layer shall send an SAPIC IPI message to the 
same processor with the interrupt type of NMI and then return to the interrupted context using the 
PAL_MC_RESUME procedure.

Figure 5-1 shows a possible flow of control through SAL_INIT.

5.2 OS_INIT

OS_INIT is an entrypoint into the operating system to deal with the initialization event. The exact 
definition of OS_INIT functionality is OS dependent. SAL_SET_VECTORS is called by the 
operating system prior to the initialization event to register the physical addresses and the GP of the 
OS_INIT handlers for the monarch and non-monarch processors. If an operating system intends to 
make the monarch selection in the operating system layer, it could register the same OS_INIT 

Figure 5-1. SAL_INIT Control Flow
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entrypoint for both the monarch and non-monarch processors. From the SAL’s perspective, there 
are no functionality differences between the two OS_INIT entrypoints and the hand off state from 
the SAL to the OS_INIT layer are similar.

Following are the typical SAL procedures that may be invoked by the OS_INIT handler: 

• SAL_MC_RENDEZ.

• SAL_GET_STATE_INFO.

• SAL_GET_STATE_INFO_SIZE.

• SAL_CLEAR_STATE_INFO.

When the OS_INIT layer is called by SAL_INIT, OS_INIT should call SAL_GET_STATE_INFO 
to get processor/platform state. When it has finished this task, it must call 
SAL_CLEAR_STATE_INFO to release these resources for future logging and state save. The 
OS_INIT can then re-enable further INITs and machine checks by clearing the PSR.mc bit to 0. 

The OS_INIT handler shall return to the SAL with an indication to effect a warm reset or a return to 
the interrupted context. The OS_INIT may set new values for registers that are saved by PAL in the 
Min-State Save area. This is achieved by constructing a data structure with the format identical to 
the Min-State Save area and passing the same as an argument to the PAL_MC_RESUME 
procedure. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for the layout 
of this structure. 

5.3 OS_INIT Handoff State

The OS_INIT interface defines the boundary between SAL_INIT and the operating system code, 
OS_INIT. The contents of non-banked and bank zero general registers at the time of the 
interruption have been saved by PAL in the Min-State Save area and these are available for use by 
SAL and OS_INIT. The following register contents define the OS_INIT handoff state.

The state of the processor is the same as on exiting PALE_INIT (refer to the Intel® Itanium™ 
Architecture Software Developer’s Manual) except as below:

GR1 = Physical address of the OS_INIT Global Pointer (GP) registered by the operating
system (the operating system’s gp).

GRs2-7 = Unspecified.
GR8 = Physical address of the PAL_PROC entrypoint.
GR9 = Physical address of the SAL_PROC entrypoint.

GR10 = GP value (Physical address) for SAL.
GR11 = INIT reason code:

0 = Received INIT signal on this processor for reasons other than machine check
rendezvous and CrashDump switch assertion.

1 = Received INIT signal on this processor during machine check rendezvous.
2 = Received INIT signal on this processor due to CrashDump switch assertion.

GR12 = Return address to a location within the SAL_INIT procedure.
GRs13-31 = Refer to the Intel® Itanium™ Architecture Software Developer’s Manual.

BR0 = Unspecified.
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Note: On entry into SAL_INIT, the RSE has been set to enforced lazy mode configuration. The operating 
system must not make cacheable accesses to the MinState area, otherwise unexpected behavior 
will occur. 

System state Resources are:

• TLB –TCs and TRs are unchanged.

• Caches – Enabled, coherent and consistent in the absence of hardware failures.

• Memory – Unchanged, except for the updated Processor State Information (PSI) area.

5.4 Return from OS_INIT Procedure

When the OS_INIT procedure returns to the SAL, it must set appropriate values in the Min-State 
Save area pointed to by GR22, for continuing execution at the interrupted or a new context. The 
operating system must restore the processor state to the same as on entry to OS_INIT except as 
follows:

GRs1-7 = Unspecified.
GR8 = 0 if SAL must return to interrupted context using PAL_MC_RESUME.

–1 if SAL must warm boot the system.
GR9 = GP (Physical address value) for SAL.

GR10 = 0 if return will be to the same context.
1 if return will be to a new context.

GRs11-21 = Unspecified.
GR22 = Pointer to a structure containing new values of registers in the Min-State Save area;

PAL_MC_RESUME procedure will restore the register values from this structure;
OS_INIT must supply this parameter even if it does not change the register values
in the Min-State Save area.

GRs23-31 = Unspecified.
PSR = Same as on entry from SAL_INIT except that PSR.mc may be either 0 or 1.
BR0 = Unspecified.

If OS_INIT requests SAL to reboot the system, it is SAL’s responsibility to rendezvous all the 
processors on the system and then select a BSP for further system initialization. If rebooting is 
required while running an IA-32 operating system, SAL will use the currently selected BSP for 
performing the rendezvous of the other processors. 

5.5 MP INIT Support

There are a few situations when processors enter SAL_INIT in MP configurations which deserve 
specific mention.

• If a processor enters SAL_INIT and there are no registered OS_INIT handlers for the monarch 
and non-monarch processors or their checksums are incorrect, then the processor will reset the 
system (warm boot). In the MP environment, the processor performing the reset shall reset the 
system, not just itself.
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Platform Management Interruptions (PMIs) provide an operating system-independent interrupt 
mechanism to support OEM and vendor-specific hardware events. 

6.1 SALE_PMI Overview

PMI interrupts cause execution of code at PALE_PMI handler. This code saves key processor state 
in interruption resources and then calls the SALE_PMI handler. SALE_PMI shall return to the 
PALE_PMI layer which, in turn, will return to the interrupted context.

PALE_PMI calls SALE_PMI when the PMI pin is asserted, or on receipt of a SAPIC message with 
delivery type of PMI and interrupt vector value in the range reserved for SAL. Certain 
processor-specific events may also cause PMI interrupts. These are handled entirely within the 
PALE_PMI environment and the SAL layer is not notified. Refer to the Intel® Itanium™ 
Architecture Software Developer’s Manual for details regarding PALE_PMI processing.

PMI is the highest priority external interrupt and it ranks after Reset, Machine Check and INIT in 
terms of priority. PMI is masked by setting the PSR.ic bit to 0 (interrupt collection disabled). The 
PSR.i bit (interrupt enable) has no effect on masking of PMI events. 

Unlike the System Management Interrupt (SMI) on IA32 systems, the operating system can mask 
PMIs by setting PSR.ic bit to 0 (interrupt collection disabled). Also, PMI interrupt processing 
causes execution of PALE_PMI code before entering the SALE_PMI code. To minimize latency in 
entering code in the SALE_PMI layer, the operating system must avoid operating with PSR.ic bit 
set to 0 for long durations. Otherwise, some software in the SALE_PMI layer may fail. Note that 
some real time applications may have more stringent timing restrictions as regards operating with 
interrupt collection disabled. 

Operation with PSR.ic bit set to 0 compromises recovery from machine check and INIT events. It 
also causes special problems if multiple SAPIC messages of PMI delivery type are targeted to the 
same destination processor (see Section 6.4). 

One method of software entry into the PMI environment is to send a SAPIC message to the same 
processor. Such a SAPIC message must use the interrupt vector value in the range reserved for 
SAL. 

6.2 SALE_PMI Initialization

During power up, SAL copies the SALE_PMI handler to memory and then invokes the PAL 
procedure PAL_PMI_ENTRYPOINT to set the programmable entrypoint of the SALE_PMI 
procedure. In an MP environment, this step must be performed on all the processors. The 
SALE_PMI entrypoint can be different for various processors in an MP configuration.
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6.3 SALE_PMI Processing

On entry to SALE_PMI, one of the general registers contains the type of PMI interrupt and the 
interrupt vector value. The processor state at entry to SALE_PMI and the exit conditions from 
SALE_PMI to PALE_PMI are fully documented in the Intel® Itanium™ Architecture Software 
Developer’s Manual. 

SALE_PMI is entered in physical mode with PSR.i and PSR.ic bits set to 0 (interrupt and interrupt 
collection bits disabled). SALE_PMI executes in the Itanium processor system environment 
regardless of the current processor state. The processing steps for various PMI events within the 
SAL layer are platform and SAL implementation-dependent. At the end of processing the PMI, 
SALE_PMI returns to PALE_PMI using branch register B0. There is neither a requirement nor a 
way to clear a pending PMI interrupt. 

It is possible for multiple SAPIC messages of PMI delivery type to be delivered to a processor 
simultaneously. In this situation, only one PMI interrupt will be recognized. This is analogous to 
sending edge triggered external interrupts using the same interrupt vector. To guard against loss of 
such PMI messages, SALE_PMI layer on the sending processor may communicate the reason for 
the PMI using memory data structures. 

6.4 Special Considerations for Multiprocessor 
Configurations

Depending on the platform, SALE_PMI may determine whether to bring all the processors on the 
system to the SAL PMI environment. This can be achieved by sending a SAPIC message with 
delivery type of PMI. In an MP configuration, there could be conflicts between PMI and machine 
check. One of the processors could be in SAL_CHECK, trying to bring other processors to 
SAL_MC_RENDEZ using the MC_rendezvous external interrupt. If the latter were in SALE_PMI, 
the MC_rendezvous external interrupt would not be recognized immediately and this might 
necessitate the monarch processor to issue an INIT to the processor in the PMI environment. Since 
recoverability from INIT is minimized when PSR.ic is 0, it is recommended that SALE_PMI 
handler save the interruption resources and set the PSR.ic bit to 1 as early as possible.
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7.1 IA-32 Support Model

This chapter describes the optional IA-32 support within SAL during the booting process. 
Additionally, it provides some guidelines on the choice of IA-32 instructions to SAL developers 
who plan to re-use existing IA-32 BIOS code. 

For details on IA-32 instruction execution on Itanium processors, refer to Volume 1, Chapter 6 and 
Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Developer’s Manual.

IA-32 support code in SAL cannot be used after an operating system (IA-32 operating system or 
Itanium-based operating system) has taken control of the translation resources. Most Itanium-based 
operating systems will provide their own IA-32 support code and not use the code in SAL. If the 
user boots an IA-32 operating system, SAL would have invoked the PAL_ENTER_IA_32_ENV 
procedure which activates the PAL layer in support of IA-32 operating systems and this PAL 
firmware layer configures the processor to behave like a Pentium® III processor, obviating the need 
for SAL’s IA-32 support code. For more details, refer to Volume 4, Chapter 8 of the Intel® 
Itanium™ Architecture Software Developer’s Manual.

During the platform initialization phase of the boot sequence, the IVA may point to a 32 KB IVT in 
the firmware address space. Some of the trap handlers in the IVT could support execution of IA-32 
code. Thus, it is possible to execute IA-32 code early in the boot sequence, if needed. Refer to 
Chapter 3, for fault/trap handler support requirements in SAL.

7.2 IA-32 Support Requirements

Itanium-based platforms may contain one or more IA-32 adapter cards containing IA-32 Option 
ROMs. If the adapter cards support boot devices, they will need to be initialized in the process of 
booting the operating system. The IA-32 support code in SAL will be exercised while executing the 
IA-32 code. Also, since SAL contains IA-32 support code for execution of the IA-32 Option cards, 
a portion of the SAL layer for Itanium-based platforms may itself be coded in IA-32 ISA (i.e. the 
traditional IA-32 System ROM BIOS may be reused). 

7.2.1 Resources Supported by SAL

The following resources need to be supported by SAL for maintaining PC-AT compatibility.

• PC-AT Memory map:

• Interrupt vector area 0 – 0x3FF: Contains entrypoints for software interrupts in 
offset:segment format.

• BIOS RAM data area 0x400 – 0x4FF: Data variables stored by System BIOS and Option 
ROMs.
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• Option ROM space: 0x000C_0000 – 0x000D_FFFF.

• PC-AT compatibility entrypoints: Addresses in the 0x000F_E000 to 0x000F_FFFF range 
pointing to entrypoints and tables.

It is expected that SAL code would be designed to use identical virtual-to-physical memory 
mappings and not conflict with the IA-32 BIOS memory usage.

• PC-AT I/O map: Motherboard I/O ports are in the range of 00 to 0xFF and other IA-32 devices 
occupy the rest of the 64K I/O space. The most important I/O ports used by BIOS code are 
Interrupt controller (0x20, 0x21, 0xA0, 0xA1), Interval timer (0x40 to 0x43) and CMOS RAM 
(0x70, 0x71). 

7.2.2 Overview of IA-32 Support Layer Functionality

IA-32 support layer is mainly required for the following areas: 

• Memory mapped I/O: The processor needs to provide the uncacheable semantics for memory 
mapped I/O to devices such as VGA buffer. Also, the search for memory mapped devices need 
to be performed without caching artifacts. Caches within the processor are enabled by 
invoking the PAL_PROC_SET_FEATURES call. When processor caches are enabled, the 
uncacheable memory attribute required for I/O completion is specified by setting bit 63 of the 
memory address, in physical addressing mode. Bit 63 of the physical address has no effect 
while processor caches have been disabled using the PAL_PROC_SET_FEATURES call. 

Since it is not possible to generate an address with bit 63 set while operating in the 32-bit 
IA-32 ISA mode, IA-32 code needs to be executed with translations enabled and TLBs need to 
specify the uncacheable memory attribute. TLBs provide the same functionality as MTRRs on 
a Pentium Pro processor.

• Handle traps during IA-32 code execution.

• Virtualizing PC-AT peripherals: If some legacy devices are not present on the platform, SAL 
may provide the necessary virtualization during IA-32 code execution by setting up TLBs to 
trap the accesses. 

7.2.3 IA-32 Instruction Usage Guidelines

IA-32 System BIOS code executing within the SAL environment must follow these guidelines in its 
usage of IA-32 instructions, in order to limit SAL’s IA-32 support requirements. These restrictions 
do not affect operation of existing IA-32 Option ROMs which are restricted to operating in IA-32 
real mode. Option ROM code on PC-AT compatible platforms are already compliant with the 
following guidelines: 

• IA-32 code shall not use protected mode instructions of the IA-32 ISA. Only real mode and big 
real mode opcodes are permitted. The transitions between real mode and big real mode will 
occur using the SAL code that sets up the appropriate IA-32 segment descriptors, and not by 
use of the IA-32 LGDT instruction. The traditional IA-32 BIOS functions requiring protected 
mode usage, such as search for PCI Option ROMs near 4 GB address, can be done easily using 
the big real mode or in the Itanium processor system environment. SAL will provide support 
the Extended Memory Move function (IA-32 INT 0x15, sub function 0x87) for moving data to 
and from addresses above 1 MB.

• IA-32 code shall not alter the following bits of EFLAGS: TF, NT, RF, AC. 
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• IA-32 code shall not use code involving IA-32 privileged instructions such as LGDT, RDMSR, 
MOV to CRs, DRs, etc. Such functionality must be replaced by equivalent Itanium 
instructions. Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for a 
complete list of instructions that cause the IA-32 Instruction Intercepts. 

• SAL shall provide necessary emulation support for the following instructions:

• CLI, CLTS, HLT, INT 3, INTO, INVD, INVLPG, IRET, IRETD, MOV SS, POP SS, 
POPF, POPFD, STI, WBINVD.

• IA-32 code shall not use code involving IA-32 Call Gates. 

• IA-32 stack must be aligned on an even byte boundary. The IA-32 support layer in SAL will 
need to retrieve or store values into the IA-32 stack in order to emulate instructions such as 
INT, IRET. If the IA-32 stack is aligned on an odd byte boundary, an unaligned data reference 
fault will result and SAL does not provide a handler for this exception. 

The above restrictions are not applicable when the operating system kernel takes over. Thus, an 
IA-32 or Itanium-based operating system may set up the environment for IA-32 protected mode 
and invoke protected mode functions of IA-32 BIOS. 

7.2.4 IA-32 Support Environment

This section describes the execution environment for IA-32 code.

1. IA-32 BIOS code will be executed with Instruction translation on, Data translation on and 
RSE translation on (PSR.it = 1, PSR.dt = 1, PSR.rt = 1). The PSR.ac bit may be set to 0 to 
mask exceptions caused by unaligned memory references during execution of IA-32 code.

2. The following traps will be supported in the Interrupt Vector Table (IVT) for supporting 
IA-32 execution:

• IA-32_Exception vector.

• IA-32_Intercept vector.

• IA-32_ Interrupt vector.

• External interrupt vector.

3. SAL will set up CFLG register which maps to the IA-32 system registers CR0 and CR4. 
When SAL procedures are called by the operating system loader, SAL will set up the 
appropriate value in the CFLG register, if transition to IA-32 ISA mode is required. 

4. The CFLG.io bit will be set to 0 to eliminate the need for Task State Segment (TSS) while 
executing IA-32 code. IA-32 EFLAG.iopl field should be set to 3 to permit IA-32 I/O 
instructions without causing any traps. IOBASE register and translation mechanisms within 
the processor will be set up to automatically convert the IA-32 I/O accesses to Itanium 
instructions for memory load or store operations with the uncacheable memory attribute. If 
some legacy devices are not present on the platform, TLBs may be set up to trap the accesses 
and SAL can either redirect the I/O to a different hardware on the platform or provide 
suitable software emulation. 

5. The PSR.i bit may be set to 1 to enable interrupts in the Itanium-based system environment 
and the CFLG.if bit may be set to 1 to allow IA-32 code to control interrupt masking. With 
these settings, the IA-32 EFLAG.if bit will enable or disable external interrupts while 
executing IA-32 code. The EFLAG.if bit cannot mask/unmask interrupts while executing the 
Itanium instruction set.
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6. The CFLG.ii bit may be set to 0 if there is no need to intercept changes to interrupt enable 
flag.

7.2.5 IA-32 Interruption Handler Support

External interrupts, IA-32 defined exceptions and software interrupts are delivered to the 
interruption handlers in the Itanium processor system environment. All interruption handlers may 
run with PSR.dt, PSR.rt turned off to avoid the Nested TLB fault that can occur while accessing the 
fault handler’s local variables and data structures. SAL will populate the following handlers in the 
IVT to handle interruption in its environment:

• IA-32_Exception vector: This handler will handle exceptions caused by IA-32 instructions 
such as Divide by zero fault. These interruptions should not occur while executing debugged 
IA-32 BIOS code. The exception should be reflected to IA-32 code using the IA-32 real mode 
Interrupt Descriptor Table (IDT) at locations 0 to 0x3FF. Typically, IA-32 code in the IDT will 
display an error message when such exceptions are encountered.

• IA-32_Intercept vector: This handler will handle several categories of intercepted instructions 
as described in the Intel® Itanium™ Architecture Software Developer’s Manual. 

• Instruction Intercept: Refer to Section 7.2.3 for a list of the IA-32 instructions that must be 
emulated by SAL. 

• Lock Intercept: This interruption handler will be invoked for the LOCK and the XCHG 
instructions. This intercept can be avoided by enabling the lock feature in the Itanium 
processor’s Default Control Register (DCR.lc = 0), if the platform can support locked read 
modified writes. If the platform does not support the bus lock signal, 
PAL_BUS_SET_FEATURES may be invoked to execute the locked transactions as a 
series of non-atomic transactions. This, in effect, will mask the lock intercept. Refer to the 
Intel® Itanium™ Architecture Software Developer’s Manual for details.

• Gate intercept: Support is not needed for trapping privilege transitions using gates. IA-32 
System BIOS code shall avoid this intercept and Option ROM code is not permitted to use 
privilege transitions using gates. 

• IA-32 System Flag intercept: This intercept can be avoided for the STI, CLI, POPF and 
POPFD instructions by setting CFLG.if bit to 1, which allows the IA-32 code to control 
interrupt masking with the IA-32 EFLAG.if bit. To support the MOV SS and the POP SS 
instructions, SAL shall disable interrupts and execute the next IA-32 instruction with the 
PSR.ss set to 1. This will generate an IA-32_Exception (Debug). The handler for this 
exception will restore the previous value of PSR.i and return to the IA-32 code. 

• IA-32_Interrupt vector: This handler supports the IA-32 INT instruction. SAL will provide the 
necessary emulation support for the Extended Memory Move function (INT 0x15, subvention 
0x87) in order that real mode code may move data to and from addresses over 1MB without 
requiring a transition to the Itanium processor system environment. The rest of the INT 
instructions will be emulated by jumping to the address pointed to by the IA-32 real mode 
IDT. Following is an example of pseudo code:

• Get the Software interrupt number nn from ISR.vector.

• Use nn as an index into the IA-32 real mode Interrupt Descriptor Table at location 
0000h and obtain the segment:offset of IA-32 code to be invoked.

• Store the two byte FLAGS on IA-32 stack.
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• Store the segment:offset address of the IA-32 instruction following the INT nn 
on IA-32 stack. Store the IA-32 segment:offset addresses in the appropriate 
Itanium processor registers corresponding to IP, CS selector, CS segment descriptor and 
transition to IA-32 code using RFI instruction.

• The IA-32 code will terminate by issuing an IRET or a RET 2 instruction and this will 
return to the IA-32 instruction following the INT nn.

• External interrupt vector: Hardware interrupts will be received by SAL in the Itanium 
processor system environment which will obtain the interrupt vector corresponding to the 
interrupting source. For more details, refer to Section 3.3.1. If the interrupts need to be 
reflected to IA-32 code, the address will be derived from the IA-32 Interrupt Descriptor Table. 
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8.1 SAL Calling Conventions

The following general rules govern the definition of the SAL procedure calling conventions.

8.1.1 Definition of Terms

The terms used in the definition of the requirements are defined in Table 8-1.

8.1.2 Processor State

Table 8-2 defines the requirements for the Processor Status Register (PSR) at entry to and at exit 
from a SAL procedure call. The operating system loader must follow the state requirements for 
PSR shown below. SAL calls that invoke PAL procedures may impose additional requirements.

Table 8-1. Definition of Terms

Term Description

Entry Start of the first instruction of the SAL procedure.

Exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to or exit from the procedure.

1 Must be one at entry to or exit from the procedure.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it must 
be the same as the value at entry.

Unchanged The SAL procedure must not change these values from their entry values during execution of 
the procedure.

Scratch There are no requirements on the state of these values during execution of the procedure. 
The SAL procedure may modify them as necessary during execution of the procedure. 

Preserved The SAL procedure may modify these values as necessary during execution of the 
procedure. However, they must be restored to their entry values prior to exit from the 
procedure.

Table 8-2. State Requirements for PSR

PSR Bit Description Entry Exit Class

be Big-endian memory access enable 0 0 Preserved

up User performance monitor enable C C Unchanged

ac Alignment check C C Preserved

mfl Floating-point registers f2-f15 written C C Preserved

mfh Floating-point registers f16-f127 written C C Preserved
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ic Interruption state collection enable C C Preserveda

0 0 Unchanged

i Interrupt unmask C C Preservedb

pk Protection key validation enable C C Unchanged

dt Data address translation enable C C Preserveda

dfl Disabled FP register f2 to f15 C C Unchangedc

dfh Disabled FP register f16 to f127 C C Unchangedc

sp Secure performance monitors C C Unchanged

pp Privileged performance monitor enable C C Unchanged

di Disable ISA transition C C Preserved

si Secure interval timer C C Unchanged

db Debug breakpoint fault enable C C Unchanged

lp Lower-privilege transfer trap enable C C Unchanged

tb Taken branch trap enable C C Unchanged

rt Register stack translation enable C C Preserveda

cpl Current privilege level 0 0 Unchanged

is Instruction set 0 0 Preserved

mc Machine check abort mask C C Preservedd

1 1 Unchanged

it Instruction address translation enable C C Unchanged

id Instruction debug fault disable C C Unchanged

da Disable Data access/dirty-bit faults 0 0 Unchanged

dd Data debug fault disable 0 0 Unchanged

ss Single step trap enable 0 0 Unchanged

ri Restart instruction 0 0 Preserved

ed Exception deferral 0 0 Preserved

bn Register bank 1 1 Preserved

ia Disable instruction access-bit faults 0 0 Unchanged

a. If this bit is 0 on entry, the value of this bit shall be 0 on exit and it must be classified as unchanged.
b. SAL procedures shall not enable interrupts if interrupts are disabled on entry.
c. If this bit is 1 on entry, a Disabled FP-register vector fault may occur. 
d. In general, this bit shall be 0 on entry, 0 on exit and of class preserved. If this bit is 1 on entry, the value on exit 

shall be 1 and must be classified as unchanged.

Table 8-2. State Requirements for PSR (Cont’d)

PSR Bit Description Entry Exit Class
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8.1.3 System Registers

Table 8-3. System Register Conventions

Name Description Class

DCR Default Control Register Unchanged

ITM Interval Timer Match Register Unchanged

IVA Interruption Vector Address Unchanged

PTA Page Table Address Unchanged

GPTA Reserved IA-32 Resource Unchanged

IPSR Interruption Processor Status Register Scratch

ISR Interruption Status Register Unchangeda

a. SAL procedures may not update these registers, but the arrival of asynchronous interrupts may cause them to 
change.

IIP Interruption Instruction Bundle Pointer Unchangeda

IFA Interruption Faulting Address Unchangeda

ITIR Interruption TLB Insertion Register Unchangeda

IIPA Interruption Instruction Previous Address Unchangeda

IFS Interruption Function State Unchangeda

IIM Interruption Immediate Register Unchangeda

IHA Interruption Hash Address Unchangeda

LID Local Interrupt ID Unchanged

IVR Interrupt Vector Register (read only) Unchanged

TPR Task Priority Register Unchanged

EOI End of Interrupt Unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) Unchangeda

ITV Interval Timer Vector Unchanged

PMV Performance Monitoring Vector Unchanged

CMCV Corrected Machine Check Vector Unchanged

LRR0-LRR1 Local Redirection Registers 0-1 Unchanged

RR Region Registers Preserved

PKR Protection Key Registers Unchanged

TR Translation Registers Unchangedb

b. If an implementation provides a means to read TRs through a PAL procedure call, this should be preserved.

TC Translation Cache Scratch

IBR/DBR Break Point Registers Preserved

PMC Performance Monitor Control Registers Preserved

PMD Performance Monitor Data Registers Unchangedc

c. No SAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance 
monitor events during a procedure call.
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8.1.4 General Registers

SAL will use the standard calling convention as described in the Itanium™ Software Conventions 
and Runtime Architecture Guide. Routines written using this convention may be written either in 
assembly or C or other high level languages.

The GP for the SAL code should be known to system software as SAL passes it as one of the boot 
parameters. The caller must initialize the GP and SP prior to calling a SAL procedure. A minimum 
16 KB bytes must be available for the stack space of the SAL procedure and a minimum of 16 KB 
bytes of RSE backing store must be available for SAL.

8.1.5 Floating-point Registers

Although there is no SAL procedure that passes floating-point parameters, the floating-point 
register conventions are the similar to those specified by the Itanium™ Software Conventions and 
Runtime Architecture Guide. SAL shall not use the floating-point registers 32 to 127, thus 
eliminating the need for the operating system to save these registers across SAL procedure calls. 
All the pending floating-point exceptions must be handled before calling SAL if the execution 
environment for calling SAL cannot handle any floating-point exceptions.

8.1.6 Predicate Registers

The conventions for these registers follow the Itanium™ Software Conventions and Runtime 
Architecture Guide.

Table 8-4. General Registers – Standard Calling Conventions

Register Conventions

GR0 Always 0.

GR1 Special; global data pointer (gp).

GR2 – GR3 Scratch; used with 22 bit immediate add.

GR4 – GR7 Preserved.

GR8 – GR11 Scratch, procedure return value.

GR12 Special, stack pointer. preserved.

GR13 Special, thread pointer. preserved.

GR14 – GR31 Scratch.

Bank 0 Registers
(GR16 – GR23)

Preserved.

Bank 0 Registers
(GR 24 – GR31)

Scratch.

GR32 – GR127 Stacked registers:
in0 – in95: input arguments (SAL index must be in0)
loc0 – loc95: local variables
out0 – out95: output arguments
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8.1.7 Branch Registers

The conventions for these registers follows the Itanium™ Software Conventions and Runtime 
Architecture Guide.

8.1.8 Application Special Registers

The application registers follow the Itanium™ Software Conventions and Runtime Architecture 
Guide. 

8.1.9 Parameter Buffers

The parameter buffers to SAL_PROC must be aligned to the greater of its data type size or 8-byte 
aligned. Addresses passed to SAL procedures as buffers for return parameters or input parameter 
may be physical or virtual and must be consistent with the PSR.dt value. The addressing mode of 
the parameter buffers depends on the execution environment of the caller. The following 
conventions are followed for the parameter buffers:

• Until the operating system takes over the IVT and translation faults, parameter buffers passed 
to SAL are identity mapped virtual addresses and are accessible by the region register 0 (RR0). 
In this environment, SAL can handle the access faults while accessing parameter buffers if the 
buffers are identity mapped.

• Parameter buffers passed to SAL runtime services can be either physical or virtual. If the 
parameter buffers are virtual, the operating system runtime execution environment must 
provide the proper mapping for the parameter buffers.

8.2 Software Interface Conventions for SAL Procedures 

A generic interface is provided between the Itanium-based operating system and SAL. An 
Itanium-based operating system always follows the standard calling convention to call SAL 
functions. The parameters passed to the SAL interface are defined as follows:

SAL_PROC(arg0, arg1, ..., arg7)

Where, input parameters (maximum of eight 64-bit values) are:

arg0 – functional identifier. Currently the upper 32 bits are ignored and only the lower 32 bits 
are used. The following functional identifiers are defined:

0x01XXXXXX – Architected SAL functional group.

0x02XXXXXX to 0x03XXXXXX – OEM SAL functional group. Each OEM is allowed to 
use the entire range in the 0x02XXXXXX to 0x03XXXXXX range. 

0x04XXXXXX to 0xFFFFFFFF – Reserved.

arg1 – the first parameter of the architected/OEM specific SAL functions. 

arg2 to arg7 – additional parameters for architected/OEM specific SAL functions.

and return parameters (maximum of four 64-bit values) are:

ret0 – return status: positive number indicates successful, negative number indicates failure. 

ret1 to ret3 – other return parameters.
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8.2.1 Control Flow of the SAL Interface

The operating system loader follows the standard calling convention to call both architected and 
OEM specific SAL functions. The operating system loader sets up the appropriate parameters in the 
Itanium processor’s general registers according to the calling convention and calls SAL_PROC. 
The first parameter passed to SAL_PROC specifies the functional identifier and based on the 
functional identifier, SAL dispatches the function to the appropriate functional block. Figure 8-1 
shows the control flow of the SAL interface.

8.2.2 Calling Architected/OEM SAL Functions

To call an architected or OEM specific SAL function, the operating system loader sets up arg0 to 
the appropriate architected SAL or OEM specific SAL functional identifier. It then sets up other 
parameters in arg1 to arg7 as specified by the SAL functional description and calls SAL_PROC. 
All reserved arguments shall contain the value of 0 else SAL shall return to the caller with the 
status of “Invalid argument”. SAL_PROC dispatches this function to either the architected SAL 
function handler or the OEM specific SAL function handler based on the functional identifier. The 
SAL function returns the status in ret0 and the additional return parameters in ret1 to ret3. If the 
SAL function is not implemented, the SAL shall return with the Not Implemented return status. 

8.2.2.1 SAL Return Status Value

SAL procedures return a 64-bit status value in the ret0 parameter. Positive numbers indicate 
success and negative numbers indicate failure. Table 8-5 summarizes the error code.

Figure 8-1. Control Flow of the SAL Procedure Interface

001079

OS/Loader

SAL-defined interface: Set up
parameters in registers
(arg0...arg7) according to
standard calling convention:
arg0 – Function ID
arg1 to arg7 – parameters

Architected SAL Functions OEM SAL Functions

SAL_PROC (arg0...arg7)
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Table 8-5. SAL Return Status

Register Conventions

0 Call completed without error.

1 Call completed without error but some information was lost due to overflow.

2 Call completed without error; effect a warm boot of the system to complete the update.

3 More information is available for retrieval.

–1 Not implemented.

–2 Invalid Argument.

–3 Call completed with error due to hardware malfunction or firmware error.

–4 Virtual address not registered.

–5 No information available.

–9 Scratch buffer required.
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SAL Procedures 9

9.1 SAL Runtime Services Overview

SAL runtime services are the firmware procedures which provide abstractions to the operating 
system when it is executing. These services provide a platform-independent interface for hardware 
components. Runtime services contain procedures called by the operating system to access 
platform hardware features on behalf of the operating system. Runtime services should take no 
more time to perform an action than it would take the operating system to perform the same action. 

The entire SAL runtime services code must be located in one contiguous memory area. Similarly, 
the SAL runtime services data area must be located in one contiguous memory area. 

SAL runtime services are called from the following execution environment:

• Operating system runtime execution environment. The normal operating system execution 
environment is with translation on and interrupts enabled but the operating system may choose 
to call SAL runtime services in physical mode. 

• Operating system machine check and initialization handler. The execution environment for 
these are provided by SAL and are in physical mode with interrupts disabled. 

• SAL PMI handler. The execution environment is in physical mode with interrupts disabled. 

The following general rules govern the operational characteristics of the SAL procedures: 

• SAL runs in privilege level 0 and will return an error if called from other privilege levels.

• SAL runs little endian.

• SAL procedures follow the standard calling convention for the Itanium processors. The SAL 
runtime services shall be implemented completely in the Itanium processor system 
environment. 

• Some SAL procedures are primarily intended for use during OS initialization and designed to 
be called on one processor. These are not required to be re-entrant. Some SAL procedures are 
required to be called on multiple processors simultaneously. These are required to be MP-safe 
but need not be re-entrant. Some SAL procedures may be re-invoked on the same processor, 
e.g., the invocation of the SAL_GET_STATE_INFO procedure for a CPE event may be 
interrupted by the invocation of the same procedure for an MCA event on the same processor. 
Such procedures need to be re-entrant as well as MP-safe. These requirements are specified in 
Table 9.3. For the procedures that are not re-entrant, the operating system is required to enforce 
single threaded access. 

• The operating system must ensure that SAL procedures run to completion on the same 
processor, i.e. the SAL procedure cannot migrate to another processor due to OS context 
switching. 

• Architected SAL runtime procedures are called either in virtual or physical mode under the 
operating system execution environment. OEM specific SAL Runtime procedures may not 
support both virtual and physical modes of operation. 

• All SAL procedures that don’t return the status of unimplemented procedure (–1), must be 
implemented.
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9.1.1 Invoking SAL Runtime Services in Virtual Mode

SAL runtime services may be called either in virtual or physical mode. The normal operating 
system execution environment is with translation on and interrupts enabled but operating system 
may choose to call SAL runtime services in physical mode. 

The parameters passed to SAL runtime services must be consistent with the addressing 
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the gp register must contain the physical or 
virtual address of the SAL’s gp value provided to the operating system in the Entrypoint Descriptor 
(refer to Table 3-4). SAL can compute the addresses of code and data objects within SAL using 
offsets relative to the ip and gp. In other words, SAL code will be position independent. 

The hand-off state from the EFI to the operating system loader will indicate the SAL’s requirements 
for virtual address mappings. (Refer to the EFI Specification for details). In an MP configuration, 
the virtual addresses registered by the operating system must be valid globally on all the processors 
in the system. The EFI Specification also provides the interfaces for the operating system to register 
the virtual address mappings. Some typical requirements for virtual address mappings are described 
below: 

1. The code and data areas of PAL and SAL in memory must be mapped contiguously in virtual 
address space. 

2. Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL 
procedures in memory. Prior to invoking the SAL procedures in virtual mode, the operating 
system must register the virtual address of the PAL code space in memory. If SAL needs to 
invoke a PAL procedure, SAL shall do so in the same mode in which it was called by the 
operating system (i.e. without changing the PSR.dt, PSR.rt and PSR.it bits). While invoking 
these SAL procedures, the operating system must provide the appropriate translation 
resources required by PAL (i.e. ITR and DTC covering the PAL code area). 

3. The SAL_UPDATE_PAL procedure will invoke some PAL procedures in the firmware 
address space. The operating system must register the virtual address of the firmware 
address space (ending at 4 GB). The operating system must provide a contiguous virtual 
address mapping for the entire firmware address space. If the SAL_UPDATE_PAL 
procedure is called in the virtual mode, SAL will compute the virtual addresses of the 
relevant PAL procedures in the firmware address space and invoke them in the virtual 
addressing mode. 

4. The operating system shall register the virtual addresses of the Firmware Reserved Memory 
if requested by the SAL (refer to Table 3-5). Such registration must be done prior to making 
SAL calls in virtual mode and the operating system must provide a contiguous virtual 
address mapping for each of the data areas. 

9.1.2 Access to Resources not Supported by the Operating 
System

In order to access resources for which the operating system does not provide the mapping, SAL 
runtime services will access the platform resources in physical addressing mode. This will be done 
by disabling the interrupts and turning the data translation off before accessing the platform 
resources. SAL will restore the state of the data translation and interrupt enable bits in the PSR after 
accessing the device. The following is a suggested code sequence:

mov r2=psr.l //Save current PSR, low 32 bits
rsm (1<<14) | (1<<17) //Mask Interrupt (PSR bit 14) and

//disable data translation (PSR bit 17)
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;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

ld/st....... //Perform load/store to platform specific
//device using physical address

mf.a //Ensure platform acceptance

;; //End of instruction group
mov psr.l=r2 //Restore original PSR, low 32 bits
;; //End of instruction group
srlz.d //Serialize
;; //End of instruction group

The code sequence (from rsm to the second srlz.d) must exist in a single page of memory and the 
translation for this code sequence must exist. The code sequence must not cause any NaT 
consumption faults. All the memory accesses in this code sequence must be naturally aligned to 
avoid unaligned data reference faults. If disabling of interrupt and data translation are done 
separately, interrupts need to be disabled first and then the data translation. The code sequence may 
not work if the data translation is disabled first followed by interrupt disabling. The restoring of the 
processor state must be done in the reverse order. In general, interrupt and data translation should 
be disabled to access the devices in physical mode and then interrupt and data translation must be 
re-enabled as soon as possible. 

The duration of interrupt and data translation disabled state should be kept at a minimum to 
preclude impacting normal operating system functions. 

9.2 SAL Procedures that Invoke PAL Procedures

Some of the SAL procedures incorporate both processor and platform functionality. To perform the 
processor functionality, these SAL procedures invoke the underlying PAL procedures. These 
dependencies are listed in Table 9-1. The operating system is required to call the SAL procedures 
instead of directly calling the PAL procedures. 

Table 9-1. SAL Procedures Invoking PAL Procedures

SAL Procedure PAL Procedure

SAL_CACHE_FLUSH PAL_CACHE_FLUSH

SAL_CLEAR_STATE_INFO PAL_MC_CLEAR_LOG

SAL_GET_STATE_INFO PAL_MC_ERROR_INFO

Return to SAL at the end of OS_MCA, OS_INIT PAL_MC_RESUME
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9.3 SAL Procedure Summary
.

Table 9-2. SAL Procedures

Procedure
Function ID 

(hex)
Description

Re-entrancy
Requirement

SAL_SET_VECTORS 0x01000000 Register software code 
locations with SAL.

None

SAL_GET_STATE_INFO 0x01000001 Return Machine State 
information obtained by SAL.

Yes

SAL_GET_STATE_INFO_SIZE 0x01000002 Obtain size of Machine State 
information.

Yes

SAL_CLEAR_STATE_INFO 0x01000003 Clear Machine State 
information.

Yes

SAL_MC_RENDEZ 0x01000004 Cause the processor to go 
into a spin loop within SAL.

MP-safe

SAL_MC_SET_PARAMS 0x01000005 Register the machine check 
interface layer with SAL. 

None

SAL_REGISTER_PHYSICAL_ADDR 0x01000006 Register the physical 
addresses of locations 
needed by SAL.

None

SAL_CACHE_FLUSH 0x01000008 Flush the instruction or data 
caches. 

MP-safe

SAL_CACHE_INIT 0x01000009 Initialize the instruction and 
data caches. 

MP-safe

SAL_PCI_CONFIG_READ 0x01000010 Read from the PCI 
configuration space.

Yes

SAL_PCI_CONFIG_WRITE 0x01000011 Write to the PCI configuration 
space.

Yes

SAL_FREQ_BASE 0x01000012 Return the base frequency of 
the platform.

MP-safe

SAL_UPDATE_PAL 0x01000020 Update the contents of 
firmware blocks.

None
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SAL_CACHE_FLUSH

SAL_CACHE_FLUSH

Purpose: To flush the instruction or data caches on the current processor as well as the platform.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: Flushes the instruction and/or data caches to memory from all levels of cache hierarchy, controlled 
by the platform and the processor on which this procedure is invoked. If the platform caches are 
coherent with the memory hierarchy, the SAL implementation is not required to perform flushes of 
such caches. If platform caches are node specific, this SAL procedure must be invoked on each 
node. 

The i_or_d parameter specifies the instruction and/or data caches. Unified caches are flushed with 
both instruction and data caches. This procedure has the effect of invalidating all instruction cache 
lines, or causing a write back and then invalidating all data cache lines. 

With the i_or_d parameter value of 4, the caller specifies SAL to make the local instruction caches 
coherent with the data caches. This has the effect of ensuring that the local instruction caches see 
the effects of earlier stores of instruction code done by the local processor. 

This SAL procedure invokes the corresponding PAL procedure, PAL_CACHE_FLUSH. Refer to 
the Intel® Itanium™ Architecture Software Developer’s Manual for details. This PAL procedure 
may return to SAL without completing the flush operation should there be an intervening interrupt. 
The PAL procedure also returns the external interrupt vector as a return parameter. In order to 
execute the associated external interrupt handler, SAL shall:

• Write to the EOI register (CR.eoi); 

• Repost the interrupt by issuing an IPI message to self with the vector;

• Re-enable interrupts; and

Argument Description
func_id Function ID of SAL_CACHE_FLUSH within the list of SAL procedures
i_or_d Unsigned 64-bit integer denoting type of cache flush operation:

1 = Flush instruction cache
2 = Flush data cache
3 = Flush instruction & data cache
4 = Make local instruction caches coherent with the data caches
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_FLUSH procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_CACHE_FLUSH

• On return from the external interrupt handler, re-invoke the PAL_CACHE_FLUSH procedure 
specifying the continuation point for the cache flush. 

If interrupts need to be handled on a timely basis, this SAL procedure must be invoked with 
interrupts enabled, i.e. PSR.i set to 1. 

This SAL procedure is required to be MP-safe to permit the operating system on the various 
processors to invoke this SAL procedure simultaneously. 

Platform
Requirements: None 
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SAL_CACHE_INIT

SAL_CACHE_INIT

Purpose: To initialize the instruction and data caches on the platform.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Initializes the instruction and data caches controlled by the platform only. The operating system is 
required to invoke the PAL_CACHE_INIT procedure to initialize the instruction and data caches 
within the processor. All cache lines will be invalidated without causing a write back. 

If platform caches are node specific, this SAL procedure must be invoked on each node.

This SAL procedure is required to be MP-safe to permit the operating system on the various 
processors to invoke this SAL procedure simultaneously. 

Platform
Requirements: None 

Argument Description
func_id Function ID of SAL_CACHE_INIT within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CACHE_INIT procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–3 Call completed with error
–4 Virtual address not registered 
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SAL_CLEAR_STATE_INFO

SAL_CLEAR_STATE_INFO

Purpose: This procedure is used to invalidate the error record logged by SAL with respect to the machine 
state at the time of MCAs, INITs, CMCs or Corrected Platform Error events.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will invalidate an error record that is logged by SAL for the specified event type. Once the 
record has been invalidated, any subsequent calls to SAL_GET_STATE_INFO will get a –5 return 
value (no information available). In an MP environment, processor record information pertains to 
the processor on which this call is executed and the platform record information pertains to the 
entire platform. By calling this procedure, the operating system indicates that the resources used by 
the SAL to record the event are available for re-use. 

If an MCA has been logged and the operating system fails to invalidate the record prior to another 
MCA, then SAL may save the additional error records and would consider this to be a fatal 
condition with a halt or reboot of the system. This means that the error record information should 
be read as part of the OS_MCA handler or the operating system boot loader and then followed by 
an explicit clear operation.

SAL returns one error record at a time through the SAL_GET_STATE_INFO procedure. In certain 
cases, SAL may have multiple pending error records, to be retrieved. A return status value of 3 
from this call indicates that SAL can be called to get more error records. Unless the current error 
record is cleared, further error records shall not be provided by the SAL.

Platform
Requirements: None 

Argument Description
func_id Function ID of SAL_CLEAR_STATE_INFO call within the list of SAL procedures.
type The type of information being invalidated:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_CLEAR_STATE_INFO
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
3 More Error Records of the type are available to be retrieved and cleared
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_FREQ_BASE

SAL_FREQ_BASE

Purpose: This call returns the base frequency of the platform and other clock related information.

Calling
Conventions: Standard. Callable by the operating system in physical or virtual mode.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface to determine the platform clock frequencies and to facilitate 
the operating system in selecting the most accurate clock source. This call could, in turn, use the 
services of PAL_FREQ_BASE if the processor implementation provides an output that is used as 
the platform clock. 

This call is used in determining the frequencies of the processor, the front side bus and the interval 
timer within the processor. First, the platform base clock frequency is determined by invoking this 
SAL procedure with the clock_type value of 0. The clock_freq return parameter provides the 
platform base clock frequency which is also the frequency of the clock input to the processor. The 
next step is for the operating system to invoke the PAL_FREQ_RATIOS and this procedure 
supplies the ratios of processor frequency, bus frequency and the interval timer frequency relative 
to the clock input to the processor. The products of the clock_freq return parameter and the various 
ratios provide the frequencies of the processor, the front side bus and the interval timer within the 
processor.

This procedure must supply the correct value for the platform base clock frequency (clock_type of 
0) and this value returned cannot be –1. Support for the other clock types and drift information is 
optional. The value in the clock_freq and drift_info fields is set to –1 if the requested information is 
not available.

Platform
Requirements: Itanium-based platforms must provide mechanisms to determine the base frequency of the 

platform. 

Argument Description
func_id Function ID of SAL_FREQ_BASE within the list of SAL procedures
clock_type Unsigned 64-bit integer specifying the type of clock source:

0 = Platform base clock frequency (clock input to the processor)
1 = Input frequency to the Interval Timer on the platform (optional)
2 = Input frequency to the Real time clock on the platform (optional) 
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_FREQ_BASE procedure
clock_freq Frequency information in ticks per second
drift_info Drift value in parts per million clock ticks (optional)
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_GET_STATE_INFO

SAL_GET_STATE_INFO

Purpose: Provide a programmatic interface to the processor and platform information logged by SAL with 
respect to the machine state at the time of the MCAs, INITs, CMCs or Corrected Platform events.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the operating system (and diagnostic software) to gather information 
obtained by SAL with respect to the machine state at the time of MCAs, INITs, Processor CMCs or 
Corrected Platform events.

This call will return any information logged by SAL for the specified event type. In response to the 
MCA, Processor CMC or Corrected Platform event, the operating system must call this procedure 
to obtain all the pending processor and platform error information that triggered the event. 

The operating system is expected to call this procedure to retrieve the error record related to an 
event. The operating system may retrieve the same information multiple times prior to clearing the 
record. The record is cleared by the operating system calling SAL_CLEAR_STATE_INFO. Once 
all the records have been cleared, any subsequent calls will get a –5 return value (no information 
available). The operating system must be prepared to handle the –5 return value. In the case of 
multiple pending error records of the same type, the operating system has to get and clear the 
current record before it can get the next one.

The maximum length of the buffer required to hold the requested record information is obtained by 
calling the SAL_GET_STATE_INFO_SIZE procedure. The operating system is expected to 
allocate the memory buffer according to the returned size and provide the same for the memaddr 
argument. SAL returns only one error record at a time in the memory buffer area provided by the 

Argument Description
func_id Function ID of SAL_GET_STATE_INFO call within the list of SAL procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
memaddr Memory address of the buffer where the requested information should be written
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO
total_len Size in bytes of the error information returned to the caller
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
1 Call completed without error but some information was lost due to overflow

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
–5 No information available
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SAL_GET_STATE_INFO

memaddr argument. SAL may indicate the existence of more than one error record through an 
appropriate return status during the call to the SAL_CLEAR_STATE_INFO procedure.

In an MP environment, processor record information pertains to the processor on which this call is 
executed and the platform record information pertains to the platform. The information returned in 
the memaddr argument will contain the error information logged for an event for all the error 
devices like the called processor, memory controller, and I/O devices (including host bridges) in the 
system. The exact format of the records will be implementation dependent but the record for each 
type of device will follow an architected structure to allow the operating system to parse the records 
and extract the information. Refer to Appendix B, “Error Record Structures” for format of the error 
record information returned in the memaddr argument.

Some categories of CMCs are entirely corrected by processor hardware. When this procedure is 
invoked for CMC information on a particular processor, SAL will obtain all of the processor error 
information, by invoking the PAL_MC_ERROR_INFO procedure. This procedure will then return 
to the caller both the information buffered by SAL and the information collected from the PAL. 

If an MCA has been logged and the operating system fails to clear the log prior to another MCA, 
then SAL may save the additional error records and would consider this to be a fatal condition with 
a halt or reboot of the system. Hence, the MCA log information should be read as part of the 
OS_MCA handler or the operating system boot loader. On the other hand, if a CMC occurs prior to 
the operating system clearing the CMC error log, the same shall not be fatal. If SAL's internal 
buffers are not sufficient to log multiple errors of the same type, SAL shall discard the error logs for 
the latter occurrences.

An error record for an MCA event shall be available across reboots if the operating system has not 
cleared it already. SAL shall have an implementation specific NVM storage for backing up the 
MCA error records. The SAL is not required to log CMC or CPE error records to the NVM storage. 
An operating system is expected to retrieve and clear all pending error records during system boot 
time. If the operating system fails to clear the log before another MCA surfaces, the SAL may 
overwrite the unconsumed NVM log, if there is not space for another record.

Platform
Requirements: None 
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SAL_GET_STATE_INFO_SIZE

SAL_GET_STATE_INFO_SIZE

Purpose: This procedure is used to obtain the maximum size of the information that could be logged by SAL 
with respect to the machine state at the time of MCAs, INITs or CMCs.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This call will return the maximum size of the processor or platform information logged by SAL for 
the specified event type. The operating system must make this call to determine the maximum size 
of data logged by SAL for each type of record. The operating system may then allocate suitable 
buffers, and provide the pre-allocated buffers as argument to subsequent calls to the 
SAL_GET_STATE_INFO procedure. 

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_GET_STATE_INFO_SIZE call within the list of SAL procedures.
type The type of information being requested:

0 – MCA event information
1 – INIT event information
2 – Processor CMC event information
3 – Corrected Platform Event information
Other values are reserved

Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_GET_STATE_INFO_SIZE
size The maximum size of the information logged for the specified type
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 



SAL Procedures 9-13

SAL_MC_RENDEZ

SAL_MC_RENDEZ 

Purpose: This procedure causes the processor to go into a spin loop within SAL where SAL awaits a wake up 
from the monarch processor. 

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is invoked on non-monarch processors during machine check processing. This 
procedure will disable interrupts and set an implementation dependent check-in flag within the 
SAL data area to indicate to the monarch processor that the non-monarch processor has reached the 
SAL layer. Next, it will call the PAL_MC_DRAIN procedure to complete all outstanding 
transactions within the processor. The non-monarch processor will then go into a spin loop awaiting 
a wake up signal from the monarch processor. The wake up mechanism may be an external 
interrupt or a memory variable as set up by the SAL_MC_SET_PARAMS procedure. SAL will 
return an error if a wake up mechanism has not been registered. 

If the external interrupt wake up mechanism is chosen, SAL spin loop routine will poll the local 
SAPIC IRR register for the bit corresponding to the selected wakeup interrupt to be set. 

If a memory variable mechanism is chosen, SAL spin loop routine will poll the memory variable 
for the unique value that includes the contents of the Local ID Register (refer to Figure 3-1). The 
monarch processor will set this value to wake up one non-monarch processor at a time. SAL on the 
non-monarch processor will clear the memory variable to zero and return. This procedure may be 
called in virtual or physical mode but when memory variable mechanism is chosen, this procedure 
must be called in the same mode as the previous call to the SAL_MC_SET_PARAMS procedure 
that specified the memory variable.

While waiting for the wake-up from the monarch processor, the SAL on the non-monarch 
processors shall mask further machine checks and escalate future MCA and BERR events to BINIT 
using the PAL_PROC_SET_FEATURES procedure. This step is important from error containment 
perspective. On receipt of the wake-up signal from the monarch, the SAL shall restore the original 
setting for error promotion and return to the operating system. 

Argument Description
func_id Function ID of SAL_MC_RENDEZ call within the list of SAL procedures
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_RENDEZ procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented 
–3 Call completed with error
–4 Virtual address not registered 
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When this procedure returns, it is the responsibility of the operating system to clear the IRR bits for 
the MC_rendezvous interrupt and the wake up interrupt, if any. 

This procedure is required for MP support. This SAL procedure is required to be MP-safe in order 
that operating system on the various non-monarch processors may enter the idle loop within the 
SAL simultaneously. 

Platform
Requirements: None
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SAL_MC_SET_PARAMS

Purpose: This procedure allows the operating system to specify the interrupt number to be used by SAL to 
interrupt the operating system during the machine check rendezvous sequence as well as the 
mechanism to wake up the non-monarch processors at the end of machine check processing.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure allows the OS to specify parameters to the SAL for use during machine check 
processing. The parameters specified by the OS are applicable to all the processors within the 
system.This procedure is required for MP support. Section 3.2.2.1 provides details on how the 
rendezvous mechanism works in an MP configuration.

There are some machine check conditions which require the other processors in the system to be 
rendezvoused for error containment purposes and to recover from the error condition. This 
procedure allows the operating system to register the interrupt number it wishes to use for this 
purpose. Typically, when the operating system on the non-monarch processor receives the 
rendezvous interrupt, it will invoke the SAL_MC_RENDEZ procedure to go into a SAL spin loop 
routine. If the operating system does not register this interrupt, SAL_CHECK on the monarch 
processor will be forced to issue INIT and thereby compromise the recoverability from the machine 
check condition. This procedure must be called before MCAs can be handled by the operating 
system. 

Argument Description
func_id Function ID of SAL_MC_SET_PARAMS call within the list of SAL procedures
param_type Unsigned 64-bit integer value for the parameter type of the machine check interface:

1 = rendezvous interrupt
2 = wake up
3 = Corrected Platform Error Vector
Other values are reserved

i_or_m Unsigned 64-bit integer value indicating whether interrupt vector or memory address is 
specified:
1 = interrupt vector
2 = memory address
Other values are reserved

i_or_m_val Unsigned 64-bit integer value specifying the interrupt vector or the memory address 
associated with the i_or_m parameter specified above. 

time_out Unsigned 64-bit integer value for rendezvous time out (in milliseconds). 
mca_opt Options set by the operating system for MCA handling within SAL. 
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_MC_SET_PARAMS procedure
time_out_min Unsigned 64-bit integer value specifying the minimum rendezvous time out (in milliseconds)
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–1 Not implemented 
–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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The param_type parameter indicates whether the rendezvous interrupt or wake up mechanism or 
corrected platform error vector (CPEV) is being specified. 

The i_or_m parameter specifies whether an interrupt or memory variable is used and this parameter 
is meaningful only for the param_type of 2. Interrupt is the only valid choice for the rendezvous 
function since the idea is to interrupt the non-monarch processor as quickly as possible and correct 
the error. Either interrupt or memory may be used for the wake up mechanism and this is operating 
system implementation dependent. 

The i_or_m_val parameter specifies the interrupt vector number or the memory address associated 
with the i_or_m parameter. If memory address is used for the wake up mechanism, the memory 
variable must be aligned on an 8-byte boundary and coherent across the system fabric. The 
operating system shall not change the physical address of the memory variable specified in the 
i_or_m_val parameter. 

For the rendezvous interrupt vector, a value of 0 indicates use of PMI as the interrupt mechanism. 
The PMI interrupt mechanism shall not be employed by Itanium-based operating systems as either 
the rendezvous or the wake-up interrupt. Only the PAL layer to support IA-32 operating systems 
may use the PMI as the rendezvous interrupt since all the external interrupt vectors may be in use 
by the IA-32 operating system. The SAPIC IPI message signalling the MC_rendezvous interrupt of 
PMI type shall specify a value of 13 in the vector field of the IPI message. The PMI interrupt 
mechanism shall not be employed as the wake-up interrupt by any operating system.

The PMI interrupt mechanism needs to be supported only on platforms that support IA-32 
operating systems and SAL may return an error status on other platforms. 

The mca_opt argument specifies the options that the SAL_MCA is required to follow during 
machine check handling. This parameter is valid only when the param_type is rendezvous 
interrupt. Following is the format of this argument:

If the rz_always flag is set to 1, the SAL is expected to rendezvous the system for all detected 
processor and platform MCA conditions. If this flag is set to zero, then rendezvous is done only 
when PAL initiates the rendezvous request during an MCA or if SAL decides to do it for certain 
platform MCA conditions. 

During machine check processing, the SAL operates with machine checks masked and hence does 
not immediately recognize subsequent machine checks. If the operating system wishes to recognize 
subsequent machine checks in this condition, it will set the binit_escalate flag to 1. This is the 
recommended setting for error containment. When the binit_escalate flag is set, the SAL shall 
escalate future MCAs and BERR events to BINIT using the PAL_PROC_SET_FEATURES 
procedure. On return from the operating system, the SAL shall restore the original setting. 

If the operating system intends to use interrupts for corrected platform events, it shall register the 
same interrupt vector number that is programmed into the I/O SAPIC redirection table entry for 
triggering platform corrected error interrupts. If the operating system intends to use polling to 
collect this information, it shall neither register an interrupt vector with the SAL nor program the 
I/O SAPIC redirection table entry.

Bit Positions Length in Bits Description

0 1 rz_always flag. 

1 1 binit_escalate flag 

2-63 61 Reserved, must be zero
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Except for the PMI interrupt above, the external interrupt vector value must be in the range of 16 to 
255 since these are the acceptable values that can be transferred using SAPIC IPI messages. A high 
value should be chosen for the rendezvous interrupt vector to facilitate prompt handling of machine 
checks. Even a higher value (close to 255) may need to be used for the wake up interrupt vector (if 
not using memory variable mechanism). This is because the operating system is responsible for 
clearing the IRR bit associated with the wake up interrupt vector by reading the IVR and issuing the 
EOI to the local SAPIC. If the wake up interrupt bit is not cleared promptly, a later call to the 
SAL_MC_RENDEZ procedure may return prematurely. 

This procedure may be called in virtual or physical mode but when the i_or_m parameter specifies 
a memory address, subsequent calls to the SAL_MC_RENDEZ must be made in the same mode 
(virtual/physical) as this call. 

The time_out field defines the rendezvous time out period in milliseconds. This parameter is only 
applicable to the param_type of rendezvous interrupt. If the non-monarch processor does not 
invoke the SAL_MC_RENDEZ procedure within the time out period, the monarch processor will 
generate an INIT signal to the non-monarch processor. The time out value must be sufficient to 
cover situations where other processors may be executing firmware code in local MCA and thus 
not be capable of servicing external interrupts or INIT. If the time_out input parameter is 
insufficient, the SAL shall return with a status of –2 and the time_out_min return argument shall 
specify the minimum time out interval required by the SAL. 

Platform
Requirements: None
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SAL_PCI_CONFIG_READ

Purpose: This procedure is used to read from the PCI configuration space.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode. Good programming prac-

tices dictate that indexed accesses to the configuration space be serialized in order to be MP-safe. 

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to read from PCI configuration space. The mechanism 
for accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges 
to implement this mechanism in different ways. 

A non-zero value in the segment field can be used to access devices on platforms with greater than 
256 buses.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_READ within the list of SAL procedures
address PCI configuration address:

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the read.

size PCI config size (1, 2 or 4 bytes)
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_READ procedure
value Value read from config space.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_PCI_CONFIG_WRITE

Purpose: This procedure is used to write to the PCI configuration space.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode. Good programming prac-

tices dictate that indexed accesses to the configuration space be serialized in order to be MP-safe.

Arguments:

Returns:

Status:

Description: This procedure is a runtime interface used to write to PCI configuration space. The mechanism for 
accessing PCI configuration space is abstracted by this procedure, thereby allowing host bridges to 
implement this mechanism in different ways. This procedure will guarantee the completion of the 
write to the caller.

A non-zero value in the segment field can be used to access devices on platforms with greater than 
256 buses.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_PCI_CONFIG_WRITE within the list of SAL procedures
address PCI configuration address:

Bits 0..7 – Register address
Bits 8..10 – Function number
Bits 11..15 – Device number
Bits 16..23 – Bus number
Bits 24..31 – Segment number
Bits 32..63 – Reserved (0)
Must be naturally aligned with respect to the size of the write.

size PCI config size (1, 2 or 4 bytes)
value Value to write to PCI config space
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_PCI_CONFIG_WRITE procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_REGISTER_PHYSICAL_ADDR

Arguments: Provide a mechanism for software to register the physical addresses of locations needed by SAL
Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure is used by the operating system to register the new physical addresses of the 
PAL_PROC procedure in memory. If the operating system were to copy PAL procedures to a 
different memory location (using the PAL_COPY_PAL procedure), it must register the new 
PAL_PROC entrypoint address with the SAL. The SAL layer will then be in a position to invoke 
the PAL procedures in physical mode.

The phys_entity argument specifies the entity whose physical address is being registered with the 
SAL and the p_addr argument provides its physical address.

Platform
Requirements: None

Argument Description
func_id Function ID of SAL_REGISTER_PHYSICAL_ADDR call within the list of SAL procedures
phys_entity The encoded value of the entity whose physical address is registered

0 = PAL_PROC
Other values are reserved

p_addr 64-bit integer value denoting the physical address 
Reserved 0
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_REGISTER_PHYSICAL_ADDR procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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SAL_SET_VECTORS

Purpose: Provide a mechanism for software to register software dependent code locations with SAL. These 
locations are “handlers” or entrypoints where SAL will pass control for the specified event. The 
events handled are for the Boot Rendezvous, MCAs and INIT scenarios. 

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode.

Arguments:

Returns:

Status:

Description: This procedure enables the operating system (and diagnostic software) to inform firmware whether 
it is ready to handle the Machine Check, BOOT_RENDEZ, and INIT events and precisely where to 
vector for each case. Since all three events result in having processor execution being controlled by 
firmware, firmware requires these software addresses of the operating system or diagnostics in 
order to pass control. The operating system registers the physical address where the specific 
handler resides. SAL uses these addresses to vector to on occurrence of the event. The parameters 
specified by the OS are applicable to all the processors within the system.

For the INIT event in an MP configuration, separate arguments must be provided for the first 
processor (monarch) to enter the SAL_INIT layer and subsequent processors (non-monarchs). The 
phys_addr_1, gp_1 and length_cs_1 arguments specify the entrypoint, gp-value and the length 
details respectively of the OS_INIT procedure for the monarch and the phys_addr_2, gp_2 and 
length_cs_2 arguments respectively specify the entrypoint, gp-value and the length details of the 
OS_INIT procedure for the non-monarch processors. By having different entrypoints for the 
monarch and non-monarch processors, the operating system can easily put the non-monarch 
processors into a wait loop. It is permissible to have the same arguments for the monarch and 
non-monarch processors. In this case, the operating system will need to perform the monarch 
selection on entry into the OS_INIT procedure. 

Argument Description
func_id Function ID of SAL_SET_VECTORS call within the list of SAL procedures
vector_type Type of event handler:

0 = Machine Check
1 = INIT
2 = BOOT_RENDEZ
3–64 = Reserved
other values are implementation dependent

phys_addr_1 Physical address of the event handler. This field must be a 16-byte aligned address.
gp_1 Global pointer (GP) of the event handler. 
length_cs_1 Size of the event handler procedure and its checksum information 
phys_addr_2 Physical address of the event handler. This field must be a 16-byte aligned address.
gp_2 Global pointer (GP) of the event handler. 
length_cs_2 Size of the event handler procedure and its checksum information 

Return Value Description
status Return status of SAL_SET_VECTORS procedure
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

–2 Invalid Argument
–3 Call completed with error
–4 Virtual address not registered 
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The value in the phys_addr_n argument must be 16-byte aligned. The phys_addr_n argument may 
be checked as to whether it points into legal memory space (as opposed to I/O space or firmware 
space). Specifying a value of 0 in the phys_addr_n argument invalidates the event handler 
procedure. For the INIT event in an MP configuration, the values in the phys_addr_1 and the 
phys_addr_2 arguments must both be zeroes or non-zeroes, i.e. it is not possible to invalidate only 
one of the two entrypoints. The phys_addr_2, gp_2 and length_cs_2 arguments for the OS_MCA 
and the OS_BOOT_RENDEZ vector_type are reserved.

The gp_n field has the physical address of the GP for the event handler to be called by SAL. 

The length_cs_n argument has the format shown below:

The operating system has the option of registering the length and checksum of the operating system 
procedure (or at least the first level OS_MCA, OS_INIT, OS_BOOT_RENDEZ procedure). If the 
length argument is non-zero, the SAL saves the operating system provided checksum for the 
procedure. Before invoking the registered operating system procedure, SAL shall authenticate the 
operating system code by verifying its checksum. 

Platform
Requirements: None

Bit Positions Length in Bits Description

0-31 32 Length of the operating system procedure in bytes (this field must be 
a multiple of 16).

32 1 0 = Checksum information not provided by the operating system.
1 = Checksum information provided by the operating system in bits 
40-47.

40-47 8 The modulo checksum of the operating system procedure code 
area. All bytes including the checksum byte must add up to zero.

48-63 16 Reserved.
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SAL_UPDATE_PAL

Purpose: This procedure is used to update the contents of the PAL block in the non-volatile storage device.

Calling
Conventions: Standard. Callable by the operating system in virtual or physical mode. 

Arguments:

Returns:

Status:

Description: This procedure updates the contents of firmware blocks (e.g. PAL_B) in the non-volatile storage 
device and revises the FIT entries pertaining to the firmware blocks. If checksum is implemented 
for the FIT table, this procedure will also revise the same. This procedure is capable of selecting the 
appropriate location in the storage device for the firmware components. In some flash ROM 
architectures, updates may not be possible until the following INIT. This scenario is described later. 

Before performing update of PAL, this procedure will utilize resources within the processor and/or 
PAL to authenticate the contents of the new version of PAL provided by the caller. If the 
authentication is unsuccessful, the current PAL contents will be left intact. 

The param_buf points to a 16-byte aligned data structure in memory with a length of 32 bytes that 
describes the new firmware. This information is organized in the form of a linked list with each 
element describing one firmware component. This procedure will update all the specified firmware 
components as well as their FIT entries if successful, and none of the firmware components if 
errors are encountered. The following table shows the format of each element of the data structure. 
Refer to Section 2.5, “Firmware Interface Table” for explanation of fields within the FIT.

Argument Description
func_id Function ID of the SAL_UPDATE_PAL within the list of SAL procedures
param_buf Pointer to a buffer containing information about the new firmware block(s).
scratch_buf Pointer to a scratch buffer.
scratch_buf_size Unsigned 64-bit integer value for the size of the scratch buffer in bytes 
Reserved 0
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of SAL_UPDATE_PAL procedure
error_code Additional information pertaining to the error
scrbuf_size_req Size of the scratch buffer needed
Reserved 0

Status Value Description
0 Call completed without error
2 Effect a warm boot of the system to complete the update. 

–2 Invalid Argument
–3 Call completed with error. See error_code for details
–4 Virtual address not registered 
–9 Insufficient scratch buffer provided

Offset Length Description
0 8 64-bit pointer to the next element (0 if none present)
8 8 64-bit memory address of the update_data_block containing new firmware contents
16 1 Checksum flag:

0= Do not store checksum of this component in its FIT entry
1=Calculate & store checksum of this component in its FIT entry

17 15 Reserved 
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The update_data_block consists of a header of 64 bytes followed by the code for the firmware 
component. The following table shows the contents of the 64 byte header.

This procedure will locate the PAL_B block on a 32K byte aligned boundary on the storage device. 

If the scratch buffer size specified in the scratch_buf_size field is insufficient, the call will fail with 
a status of –7 and the scrbuf_size_req return parameter will specify the size of the scratch buffer 
required.

SAL reads the CPU identification registers on all the processors in the system and maintains the 
processor stepping information. If the PAL_B component is being updated, SAL will ensure that 
the version number of the new PAL_B in the update_data_block is compatible with all the 
processors on the system else return an error status. 

The error_code return parameter provides additional information on the failure when the status 
field contains a value of –3. Following are the definitions for the error_code field. 

In some firmware architectures (e.g. flash), writes to a chip or component containing firmware 
would prevent the same chip being available for code execution. For this reason, if the PAL or SAL 
firmware code for handling machine checks were located on the chip being revised, machine 
checks must be masked on all the processors to avoid possible instruction fetch accesses to the 
firmware address space. In an MP environment, the operating system must rendezvous all the other 
processors on the node whose firmware is being updated. At the end of the firmware update, the 
operating system must invoke the PAL_MC_ERROR_INFO procedure to ascertain whether any 
machine checks occurred while they were masked and take corrective actions. The operating 
system must then wake up the rendezvoused processors and re-enable machine checks. In a 
multi-node system with multiple copies of firmware, it may be possible to redirect interrupts to 
nodes other than the one being updated.

In some flash architectures, writes to firmware address space may be prevented by the flash 
hardware except immediately following a Reset or INIT. The operating system may call this 
procedure in virtual mode but it is required to fix the pages containing the new firmware contents in 
memory, i.e. the operating system must not change the contents of the corresponding physical 
pages until the firmware update is complete. SAL will be aware of flash architecture restrictions 

Offset Length Description
0 4 Size of the firmware component in bytes including the header (This field must be a 

multiple of 16) 
4 4 Date of the firmware component in mmddyyyy format: month, day, year (e.g. 

07/18/99 stored as 0x07181999)
8 2 Version number of the firmware component to be stored in its FIT entry
10 1 Type of firmware component (Refer to Table 2-2 on page 2-7)

1 = PAL_B; 0x0F = PAL_A
11 5 Reserved 
16 8 Firmware Vendor ID 
24 40 Reserved 

Error Code Description
–1 Version number of supplied PAL firmware is not suitable for one or more processors in the 

system
–2 Supplied version of PAL failed the authentication test
–3 Invalid firmware component type
–4 PAL_A firmware not erasable 
–5 to –9 Reserved
–10 Write failure – inability to write to storage device
–11 Erase failure – inability to erase the storage device
–12 Read failure – inability to read the storage device
–13 Insufficient space in the storage device
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and will perform the usual authentication steps. If the authentication is successful, SAL will 
accumulate the physical addresses of the new firmware contents by executing the TPA instruction. 
(There may be several non-contiguous physical pages if the operating system had called this 
procedure in virtual mode). SAL will then return to the operating system a status value of 1 
requesting a warm reboot. When SAL regains control following the warm reboot, it will conduct 
the authentication steps again and, if successful, update the contents of firmware. 

The firmware update is effective on the next reboot. However, after a successful update, firmware 
contents in the non-volatile storage device and memory will be inconsistent. The copy in ROM 
(new code) will be utilized by the machine check and INIT events while the copy in memory (old 
code) will be utilized by the operating system. The operating system may solve this problem either 
by rebooting the system following a firmware update, or by updating the memory copy of PAL 
procedures by invoking the PAL_COPY_PAL procedure.

If the operating system decides to update the memory copy of PAL procedures, there are additional 
considerations in an MP environment: 

1. While the runtime copy of PAL is being revised (during execution of the PAL_COPY_PAL 
procedure), all the processors in the system must be prevented from executing PAL 
procedures in memory. 

2. The monarch processor, after invoking the PAL_COPY_PAL procedure, must make the 
local instruction caches coherent with the data caches by invoking the 
SAL_CACHE_FLUSH procedure (with the i_or_d parameter value of 4). 

3. The non-monarch processors on being woken up by the monarch processor must invoke the 
PAL_COPY_PAL procedure to register the new PAL entrypoints for PAL_PMI and 
PAL_FP. The non-monarch processors must do a SRLZ.I instruction to ensure that 
modifications to instruction prefetches are observed. 

4. If the physical address of the PAL_PROC procedure changes, the operating system must 
register the new address with SAL by invoking the SAL_REGISTER_PHYSICAL_ADDR 
procedure. 

Platform
Requirements:  Platform must provide non-volatile storage space to save firmware components.
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Glossary A

ACPI
Advanced Configuration and Power Interface Specification.

AP
Application Processor. One of the processors not responsible for system initialization.

API
Application Programming Interface.

Bank
The memory modules on a card are organized into banks for better performance. The bank 
number identifies a bank on a memory card. 

BIOS
Basic Input/Output System. A collection of routines that includes Power On Self-test 
(POST), system configuration and a software layer between the operating system and 
hardware. BIOS is written in IA-32 instruction set.

Boot Block Support
A hardware and/or software implementation that permits the end user to recover PAL/SAL 
layers of software into the flash part after the previous flash programming attempt was 
accidentally aborted.

BSP
Bootstrap Processor. The processor responsible for system initialization.

BSP
Backing Store Pointer (AR.BSP).

Card
The card number identifies the specific memory card attached to a memory controller. One 
or more memory cards may be attached to a memory controller. Each card consists of a 
number of memory modules organized in banks.

CMC
Corrected Machine Check.

Cold Boot vs. Warm Boot
Cold Boot refers to a hardware/software event that sets all circuitry, including all 
processors, system components, add-in cards and control logic, to an initial state. Warm 
Boot, on the other hand, refers to a hardware/software event that sets the circuitry of any 
or all of the processor(s) on the system to an initial state. Warm Boot may be triggered by 
the INIT event. Both Cold and Warm Boot events occur at cycle boundaries and do not 
corrupt any pending cycles. Destructive memory tests are not performed during warm 
boot.
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Cold Reset vs. Hard Reset
Cold Reset refers to a hardware signal that sets all circuitry, including all processors, 
buses, system components, add-in cards and control logic, to an initial state. Hard Reset is 
triggered by a similar hardware signal. Hard Reset differs from Cold Reset in that some 
sticky error flags in some system components may not be cleared, thereby allowing 
determination of the cause of the Reset. Both Cold Reset and Hard Reset signals operate 
without regard to cycle boundaries and are typically asserted by the RESET pin. Both 
Cold Reset and Hard Reset signals will include the functionality of the Cold Boot event.

Corrected Platform Error Interrupt (CPEI)
Interrupt generated by the platform following a hardware corrected error. The interrupt 
vector is set by the operating system (e.g. in the vector field of an I/O SAPIC redirection 
table entry). 

CPE
Corrected Platform Errors are the errors originating due to platform detected errors.

CPEV
Corrected Platform Error interrupt vector.

Device Number
Each memory module consists of a number of DRAM devices. The device number 
identifies a specific device (h/w component or chip) on a module.

EFI
Extensible Firmware Interface. Firmware that provides a legacy free API interface to the 
operating system. 

EOI
End of Interrupt.

Error Categories
Corrected Error 
All errors of this type are either corrected by the processor/platform hardware/firmware. 
This severity is for logging purposes only. There is no architectural damage to the 
detecting and reporting functions. Corrected errors require no operating system 
intervention to correct the error.

Fatal Error
An uncorrected error occurred which has corrupted state, and the state information may 
not be known. These type of errors cannot be corrected by the hardware, firmware, or the 
operating system. The integrity of the system, including the IO devices is not guaranteed 
and may require IO device initialization and a system reboot to continue. Fatal errors may 
or may not have been contained within the processor or memory hierarchy. If the error is 
not contained, it must be reported as fatal. 

Recoverable Error
An uncorrected error occurred which had corrupted state, and the state information is 
known. Recoverable errors cannot be corrected by either the hardware or firmware. This 
type of errors requires operating system analysis and a corrective action to recover. 
System operation/state may be impacted.
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FSB
Processor Frontside Bus. 

FT
Fault Tolerant.

GP
Global Data Pointer. Every procedure that references statically-allocated data or calls 
another procedure requires a pointer to its data segment in the GP register so that it can 
access its static data and its linkage tables.

GUID
A 16 byte Globally Unique Identifier/Universally Unique Identifier representing an entity 
that needs to be uniquely identified.

Hardware-protected Flash Region
This term refers to a part of the flash storage that is hardware-protected against accidental 
erasure. Usually, this region is programmed by the OEM only. The hardware protection 
can either be on-chip and/or platform supported hardware. 

IA-32 Architecture
The 32-bit and 16-bit Intel Architecture as described in the Intel® Itanium™ Architecture 
Software Developer’s Manual. 

Itanium-based Operating System
An operating system which is written in the Itanium instruction set that can run 
Itanium-based applications (code containing Itanium instructions and/or IA-32 
instructions). 

INTA
Interrupt Acknowledge.

IPI
Inter processor interrupt signaling using the local SAPIC within the processor.

IPL
Initial Program Load.

ISA
Instruction Set Architecture.

IVT
Interrupt Vector Table.

MBR
Master Boot Record.

MC_rendezvous Interrupt
An external interrupt vector provided to SAL by the Itanium-based operating system for 
interrupting the operating system running on the APs.
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MCA
Machine Check Abort.

Minimal State Save Area
Area registered by SAL with PAL for saving minimal processor state during machine 
check and INIT processing. This area must be aligned on a 512-byte boundary and must 
be in uncacheable memory. See the PAL EAS for details.

Module or Rank
A module consists of a number of DRAM devices on a PCB board, which plugs into a 
socket. DIMM, RIMM are examples of memory modules. Module number identifies a 
module on a memory card (specifically, within a bank on the memory card). On smaller 
systems, the rank/module might match the DIMM slot number. On larger systems, a 
particular DIMM might not be able to be called out and the module/rank number is the 
lowest FRU.

Monarch Processor
The processor selected by SAL to accumulate all the platform error logs and continue with 
the machine check processing, when multiple processors experience machine checks 
simultaneously. 

MP
Multiprocessor.

MP-safe procedure
A procedure that can be invoked concurrently by multiple processors.

MPS
Multiprocessor Specification.

Node
A node consists of processors, memory and, in some cases, I/O devices. A system may 
contain multiple nodes. 

NTFS
Windows NT File System.

NVM
Non-volatile Memory.

OS
Operating System.

PAL
Processor Abstraction Layer. Firmware that abstracts processor implementation-specific 
features.
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Plabel
Procedure label, a reference or pointer to a function. A plabel takes the form of a pointer to 
a special descriptor (a plabel descriptor) that uniquely identifies the function. The plabel 
descriptor contains the address of the function’s actual entrypoint as well as its linkage 
table pointer.

PMI
Platform Management Interrupt.

Re-entrant procedure
A procedure that may be invoked multiple times concurrently from the same processor or 
from multiple processors. 

Row, Column
Memory cells (a cell may hold one more Bits of data) on a DRAM is organized as an array 
indexed by rows and columns. Row address and column address together uniquely 
identify a cell.

SAL
System Abstraction Layer. Firmware that abstracts system implementation differences.

SAL_REV
The revision number of the SAL specification supported by the SAL implementation. This 
information contains two one-byte fields for Major and Minor revision numbers and the 
same are represented in binary coded decimal (BCD) format. For example, if this variable 
contains 02h, 06h, the SAL revision is 2.6. The major version is incremented when the 
SAL API changes.   The minor version is incremented when underlying functionality 
changes but the API remains the same. SAL implementations pertaining to a particular 
SAL revision specification shall be compatible with each other at the published SAL 
external interfaces.

SAPIC
Streamlined Advanced Programmable Interrupt Controller. The code name for the high 
performance interrupt architecture for the Itanium processor. The Local SAPIC resides 
within the processor and accepts interrupts sent on the system bus. The I/O SAPIC resides 
on the I/O subsystem and provides the interrupt input pins on which I/O devices inject 
interrupts into the system. 

Sector
This term refers to a logical block of 512 bytes.

SP
Memory Stack Pointer.

TLB
Translation Lookaside Buffer.

TSS
Task State Segment.
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USB
Universal Serial Bus.

VHPT
Virtual Hash Page Table.

Wakeup Interrupt
Interrupt sent by the operating system to wake up the APs from the SAL_MC_RENDEZ 
spin loop. This interrupt vector is registered by an Itanium-based operating system with 
the SAL. 

WBL
Write-back with Limited Speculation.
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Error Record Structures B

B.1 Overview

The goals of the Error Record structures is to keep it generic and flexible enough to be extensible 
and to abstract processor or platform implementation dependencies from the operating system 
layers, at the same time providing as much error information as possible to the operating system for 
error handling purposes.

B.2  Error Record Structure

The error record structure consist of many different components called sections. Each error record 
captures error information for one error event consisting of multiple sections. The size of the error 
record structure is as indicated by RECORD_LEN and is dynamically set based on the total size of 
all the section headers and section bodies combined. 

An error record consists of a generic header followed by a list of sections with actual error 
information for the event. Each section relates to a particular error device (e.g. processor, platform 
memory, platform PCI Bus, platform ISA Bus etc.), having a section header followed by section 
body. 

Record Header

Section-0 Header

Section-0 Body

Section-1 Header

Section-1 Body

Section-n Header

Section-n  Body
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B.2.1 Record Header

The format of the header for both the platform and processor error record is as shown below: The 
ERR_SEVERITY information reflects the error severity based on the PROC_STATE_PARAMETER 
field in the processor section. The SAL may increase the severity if a platform component has 
experienced severe errors. The operating system is free to analyze the section error information, 
decide if it can correct or continue without the device represented by the section and ignore the fatal 
severity. 

Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for explanation of fields 
not described in this document.

B.2.2 Section Header

The Device specific error section follows the header. For processor errors, this field will contain an 
area that is architected for all Itanium processors. For platform errors, this section will contain 
information specific to the platform devices. A unique GUID is associated with each section for 
identification of the error device type (ex: processor, platform memory, platform PCI bus etc.).

Offset Length Field Description
0 8 bytes RECORD_ID Unique monotonically increasing ID for MCA, INIT, CMC and CPE 

event Records.
8 2 bytes REVISION 2-byte Major and Minor revision number of the Record in BCD 

format:
Byte0 – Minor (02)
Byte1 – Major (00)

10 1 byte ERR_SEVERITY This encoded field indicates error severity. See glossary section 
for details on the definition:
0 – Recoverable
1 – Fatal
2 – Corrected
Others – Reserved

11 1byte VALIDATION_BITS Bit 0 = If 1, the OEM_PLATFORM_ID field below contains valid 
information. 

Bits 1-7 – Reserved, must be zero.
12 4 bytes RECORD_LEN Length of this error record in bytes, including the header.
16 8 bytes TIME_STAMP Timestamp recorded when MCA, INIT or CMC occurred in BCD 

format:
Byte 0 – Seconds
Byte 1 – Minutes
Byte 2 – Hours
Byte 3 – Reserved
Byte 4 – Day
Byte 5 – Month
Byte 6 – Year
Byte 7 – Century

24 16 bytes OEM_PLATFORM_ID A unique identifier of the OEM platform.
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The format of the section header for all error devices is as shown below:

Table B-1. GUID Format

The GUID structure is as follows:

SAL may examine several platform hardware resources to collect information pertaining to the 
error and provide such information in various sections. Not all sections may be present in each 
record but the SAL shall provide all the information significant for logging, identification of the 
errant component and recovery. The section error information fields will have associated validation 
bit(s), as part of the section body.

Multiple sections with the same GUID may be present within a single error record. In this situation, 
the ordering of the sections does not imply the chronological sequence of the errors. The first error 
among the sections, if known to firmware, shall be indicated by setting the First Error bit (see 
Table B-3) in the error status field within the section. 

The ERROR_SEVERITY_INFO field in some sections may indicate that the error has already 
been corrected. It is acceptable to provide corrected error information for some platform 
components as part of the MCA record, but the SAL must not provide uncorrected MCA 
information in response to the request for CMC or CPE errors. 

If the Containment Warning bit is set in the ERROR_SEVERITY_INFO field, the SAL firmware 
may set the ERR_SEVERITY field in the Record Header (Section B.2.1) as “fatal”. Some 
operating systems or device drivers having a complete chronology of accesses to the platform 
component and knowledge of recovery capabilities within the device, may effect a recovery despite 
such a status.

Offset Length Field Description
0 16 bytes GUID Unique 16-byte GUID for the error device. Refer to Table B-1 for 

the format.
16 2 bytes REVISION 2-byte Major and Minor revision number of the Section in BCD 

format:
Byte0 – Minor (02)
Byte1 – Major (00)

18 1 byte ERROR_RECOVERY_
INFO

Bit 7 = If 1, remaining bits contain information about the error.
Bit 6-3 = Reserved, must be 0.
Bit 2 = Reset. If set, the component must be re-initialized or 

re-enabled by the operating system prior to use. 
Bit 1 = Containment Warning. If set, the error was not 

contained within the processor or memory hierarchy and 
the error may have propagated to persistent storage or 
network. 

Bit 0 = If set, the error has been corrected.
19 1 byte RESERVED Reserved.
20 4 bytes SECTION_LEN Length of this error device section in bytes, including the header.

Offset Length Field Description
0 4 bytes DATA1 Data1
4 2 bytes DATA2 Data2
6 2 bytes DATA3 Data3
8 8 bytes DATA4 Data4
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B.2.3 Processor Device Error Info

Refer to the Intel® Itanium™ Architecture Software Developer’s Manual for explanation of fields.

PROCESSOR_SPECIFIC_ERROR_RECORD SECTION BODY STRUCTURE
{

VALIDATION_BITS1 8 bytes
PROC_ERROR_MAP_VALID_BIT Bit 0
PROC_STATE_PARAMETER_VALID_BIT Bit 1
PROC_CR_LID_VALID_BIT Bit 2
PSI_STATIC_STRUCT_VALID_BIT Bit 3
CACHE_CHECK_NUM Bit 4-7 (Cache errors 0 to 15) 
TLB_CHECK_NUM Bit 8-11 (TLB errors 0 to 15)
BUS_CHECK_NUM Bit 12-15(BUS errors 0 to 15)
REG_FILE_CHECK_NUM Bit 16-19 (REG errors 0 to 15)
MS_CHECK_NUM Bit 20-23 (MS errors 0 to 15)
CPUID_INFO_VALID_BIT Bit 24 
RESERVED Bits 24-63

PROC_ERROR_MAP 8 bytes
PROC_STATE_PARAMETER 8 bytes
PROC_CR_LID 8 bytes
struct { Nx48 max. bytes (cache errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each
} CACHE_ERROR_STRUCT[CACHE_CHECK_NUM] 
struct { Nx48 max. bytes (TLB errors 0 to 15)

MOD_ERROR_INFO_STRUCT 48 bytes each
} TLB_ERROR_STRUCT[TLB_CHECK_NUM]

struct { Nx48 max. bytes (BUS errors 0 to 15)
MOD_ERROR_INFO_STRUCT 48 bytes each

} BUS_ERROR_STRUCT[BUS_CHECK_NUM]
struct { Nx48 max. bytes (Reg.File errors 0 to 
15)

MOD_ERROR_INFO_STRUCT 48 bytes each
} REG_FILE_CHECK_INFO[REG_FILE_CHECK_NUM]

struct { Nx48 max. bytes (MS errors 0 to 15)
MOD_ERROR_INFO_STRUCT 48 bytes each

} MS_CHECK_INFO[MS_CHECK_NUM]
struct { 48 bytes

CPUID_INFO  40 bytes (CPUID registers 0 to 4)
RESERVED 8 bytes

} CPUID_INFO_STRUCT 
struct { Processor Static Information

VALID_FIELD_BITS2 8 bytes
MINSTATE_VALID_BIT Bit 0
BR_VALID_BIT Bit 1
CR_VALID_BIT Bit 2

Offset Length Field Description
0 16 bytes GUID {0xe429faf1, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details. 

1. The amount of information reported by SAL is implementation dependent. The validity of each field is indicated by either a validation bit 
or an encoded number field. Data areas corresponding to invalid fields will be padded. For CACHE, TLB, BUS, REG, MS fields, the 
encoded NUM field indicates the number of MOD_ERROR_INFO_STRUCTs for each category, ranging from 0-15. For these five 
categories only, if the encoded NUM field is zero, then the data area corresponding to that category will be absent.

2. Data areas corresponding to Invalid fields will be padded.
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AR_VALID_BIT Bit 3
RR_VALID_BIT Bit 4
FR_VALID_BIT Bit 5
RESERVED Bit 6-63

Minimal State Save Info Structure1 1024 bytes
BRs 0-7 64 bytes
CRs 0-127 1024 bytes2,3

ARs 0-127 1024 bytes2,3

RRs 0-7 64 bytes
FRs 0-127 2048 bytes

} PSI_STATIC_STRUCT
}

The MOD_ERROR_INFO_STRUCT structure is defined as below:
struct{ 48 bytes4(Mod)

VALID_FIELD_BITS 8 bytes
CHECK_INFO_VALID_BIT Bit 0
REQUESTOR_IDENTIFIER_VALID_BIT Bit 1
RESPONDER_IDENTIFIER_VALID_BIT Bit 2
TARGET_IDENTIFIER_VALID_BIT Bit 3
PRECISE_IP_VALID_BIT Bit 4
RESERVED_VALID_BIT Bit 5-63

MOD_CHECK_INFO 8 bytes
MOD_REQUESTOR_IDENTIFIER 8 bytes
MOD_RESPONDER_IDENTIFIER 8 bytes
MOD_TARGET_IDENTIFIER 8 bytes
MOD_PRECISE_IP 8 bytes

} MOD5_ERROR_INFO_STRUCT

B.2.4 Platform Errors

There are no standard platform errors defined in existing specifications. This section attempts to 
define some typical generic platform error information data structures. OEMs and platform vendors 
can define additional platform error sections with unique GUIDs customized to their platform 
topology. 

B.2.4.1 Platform Memory Device Error Info

This section describes error information from the memory sub-system.

1. The size of the MinState Structure is about 1Kbytes. For more details on the size and contents of the structure, please refer to the Intel® 
Itanium™ Architecture Software Developer’s Manual.

2.  The number of Control and Application registers on a processor is processor implementation dependent.
3.  Some Application and Control registers (e.g. CR.IVR) are volatile and cannot be read without side effects. This information is returned by 

the PAL_REGISTER_INFO procedure. SAL shall not read and store such volatile registers in this data structure. 
4. The size of this structure will always be 48 bytes, with invalid fields being padded with null values.
5. The MOD structure is common across CACHE, TLB, BUS, REGISTER_FILE and Microarchitectural structure error records.

Offset Length Field Description
0 16 bytes GUID {0xe429faf2, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details.
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PLATFORM_MEMORY_ERROR_RECORD SECTION BODY STRUCTURE

Table B-2. Format of Variable Length Info Structure

Offset Length Field Description
0 8 VALIDATION_BitS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – MEM_ERROR_STATUS_VALID_BIT
Bit 1 – MEM_PHYSICAL_ADDR_VALID_BIT
Bit 2– MEM_ADDR_MASK_BIT
Bit 3 – MEM_NODE_VALID_BIT
Bit 4 – MEM_CARD_VALID_BIT
Bit 5 – MEM_MODULE_VALID_BIT
Bit 6 – MEM_BANK_VALID_BIT
Bit 7 – MEM_DEVICE_VALID_BIT
Bit 8 – MEM_ROW_VALID_BIT
Bit 9 – MEM_COLUMN_VALID_BIT
Bit 10 – MEM_BIT_POSITION_VALID_BIT
Bit 11 – MEM_PLATFORM_REQUESTOR_ID_VALID_BIT
Bit 12 – MEM_PLATFORM_RESPONDER_ID_VALID_BIT
Bit 13 – MEM_PLATFORM_TARGET_VALID_BIT
Bit 14 – MEM_PLATFORM_BUS_SPECIFIC_DATA_VALID_BIT
Bit 15 – MEM_PLATFORM_OEM_ID_VALID_BIT
Bit 16 – MEM_PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 17-63 – RESERVED

8 8 bytes MEM_ERROR_STATUS Memory device error status fields (see Table B-3).
16 8 bytes MEM_PHYSICAL_

ADDR
64-Bit physical address of the memory error.

24 8 bytes MEM_PHYSICAL_
ADDR_MASK 

Defines the valid address Bits in the 64-Bit physical address of the 
memory error. The mask specifies the granularity of the physical 
address which is dependent on the h/w implementation factors such 
as interleaving.

32 2 bytes MEM_NODE In a multi-node system, this value identifies the node containing the 
memory in error.

34 2 bytes MEM_CARD The Card number of the memory error location.
36 2 bytes MEM_MODULE The Module or RANK number of the memory error location.
38 2 bytes MEM_BANK The Bank number of the memory error location.
40 2 bytes MEM_DEVICE The Device number of the memory error location.
42 2 bytes MEM_ROW The Row number of the memory error location.
44 2 bytes MEM_COLUMN The Column number of the memory error location.
46 2 bytes MEM_BIT_POSITION Bit position specifies the Bit within the memory word that is in error.
48 8 bytes REQUESTOR_ID Hardware address of the device or component initiating transaction.
56 8 bytes RESPONDER_ID Hardware address of the responder to transaction.
64 8 bytes TARGET_ID Hardware address of intended target of transaction.
72 8 bytes BUS_SPECIFIC_DATA OEM specific bus dependent data. 
80 16 bytes MEM_PLATFORM_

OEM_ID
OEM specific data containing identification information for the 
Memory Controller.

96 N bytes MEM_PLATFORM_
OEM_DATA_STRUCT

OEM specific data of variable length. See Table B-2 for the format of 
this structure. 

Offset Length Field Description
0 2 bytes LENGTH Length of this structure in bytes. Length is 2 + M bytes.
2 M bytes VARIABLE_INFO OEM defined variable size data. 
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B.2.4.2 Platform PCI Bus Error Info

This section describes the errors that occur on the PCI bus itself (e.g. parity error, target abort, etc.). 
Errors within a PCI component are described in Section B.2.4.3. An error within a PCI component 
that results in error signalling on the PCI bus will result in both sections being present in the error 
record. 

PLATFORM_PCI_BUS_ERROR_RECORD SECTION BODY STRUCTURE

Offset Length Field Description
0 16 bytes GUID {0xe429faf4, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details. 

Offset Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – PCI_BUS_ERROR_STATUS_VALID_BIT
Bit 1 – PCI_BUS_ERROR_TYPE_VALID_BIT
Bit 2 – PCI_BUS_ID_VALID_BIT
Bit 3 – PCI_BUS_ADDRESS_VALID_BIT
Bit 4 – PCI_BUS_DATA_VALID_BIT
Bit 5 – PCI_BUS_CMD_VALID_BIT
Bit 6 – PCI_BUS_REQUESTOR_ID_VALID_BIT
Bit 7 – PCI_BUS_RESPONDER_ID_VALID_BIT
Bit 8 – PCI_BUS_TARGET_ID_VALID_BIT
Bit 9 – PCI_BUS_OEM_ID_VALID_BIT
Bit 10 – PCI_BUS_OEM_DATA_STRUCT_VALID_BIT
Bit 11..63– RESERVED

8 8 bytes PCI_BUS_ERROR_
STATUS

PCI Bus error status fields (see Table B-3).

16 2 bytes PCI_BUS_ERROR_
TYPE

PCI Bus error types
Byte0:
0 – Unknown or OEM System Specific Error
1 – Data Parity Error
2 – System Error
3 – Master Abort
4 – Bus Time Out or No Device Present (No DEVSEL#)
5 – Master Data Parity Error
6 – Address Parity Error
7 – Command Parity Error
Others – Reserved
Byte1:
RESERVED

18 2 bytes PCI_BUS_ID Designated PCI Bus identifier encountering error.
Bits 0..7 – Bus Number
Bits 8..15 – Segment Number

20 4 bytes Reserved
24 8 bytes PCI_BUS_ADDRESS Memory or IO address on the PCI bus at the time of the event.
32 8 bytes PCI_BUS_DATA Data on the PCI bus at the time of the event.
40 8 bytes PCI_BUS_CMD Bus command or operation at the time of the event.
48 8 bytes PCI_BUS_

REQUESTOR_ID
PCI Bus Requestor ID at the time of the event.

56 8 bytes PCI_BUS_
RESPONDER_ID

PCI Bus Responder ID at the time of the event.

64 8 bytes PCI_BUS_TARGET_IDa PCI Bus intended Target ID at the time of the event.
72 16 bytes PCI_BUS_OEM_ID OEM specific data containing identification information for the PCI 

Bus.
88 N bytes PCI_BUS_OEM_DATA_

STRUCT
OEM specific data of variable length. See Table B-2 for the format of 
this structure. 
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Refer to the PCI Specification (http://www.pcisig.com) for further details.

B.2.4.3 Platform PCI Component Error Info

PLATFORM_PCI_COMPONENT_ERROR_RECORD SECTION BODY STRUCTURE

Refer to the PCI Bus Specification (http://www.pcisig.com) for further details. The above section 
definition does not specify which chipset registers are required in the error section. To decode the 
chipset errors completely, the error status registers may not be sufficient. Other 
implementation-dependent chipset configuration registers may be required to decode the error 
status information. The error handler is expected to have an intimate knowledge of the chipset and 
the platform to parse the error information.

a. This could be a memory or I/O port address.

Offset Length Field Description
0 16 bytes GUID {0xe429faf6, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details.

Offset Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – PCI_COMP_ERROR_STATUS_VALID_BIT
Bit 1 – PCI_COMP_INFO_VALID_BIT
Bit 2 – PCI_COMP_MEM_NUM_VALID_BIT
Bit 3 – PCI_COMP_IO_NUM_VALID_BIT
Bit 4 – PCI_COMP_REGS_DATA_PAIR_VALID_BIT
Bit 5 – PCI_COMP_OEM_DATA_STRUCT_VALID_BIT
Bit 6..63– RESERVED

8 8 bytes PCI_COMP_ERROR_
STATUS

PCI Component error status fields (see Table B-3).

16 16 bytes PCI_COMP_INFO PCI Component Information to identify the device:
Bytes 0-1 – Vendor ID
Bytes 2-3 – Device ID
Bytes 4-6 – Class Code
Byte 7 – Function Number
Byte 8 – Device Number
Byte 9 – Bus Number
Byte 10 – Segment Number
Bytes 11-15 - Reserved (0)

38 4 bytes PCI_COMP_MEM_NUM Number of PCI Component Memory Mapped register address/data 
pair values present in this structure.

36 4 bytes PCI_COMP_IO_NUM Number of PCI Component Programmed IO register address/data 
pair values present in this structure.

40 2 x 8 x N 
bytes

PCI_COMP_REGS_
DATA_PAIR

An array of PCI Component address/data register pair values.

40+2x
8xN

N bytes PCI_COMP_OEM_
DATA_STRUCT

OEM specific data of variable length. See Table B-2 for the format of 
this structure. 
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B.2.4.4 Platform SEL Device Error Info

PLATFORM_SYSTEM_EVENT_LOG_RECORD SECTION BODY STRUCTURE

Refer to the IPMI Specification (http://developer.intel.com/design/servers/ipmi) for further details.

Offset Length Field Description
0 16 bytes GUID {0xe429faf3, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details.

Offset Length Field Description
0 8 VALIDATION_BIT_BITS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – SEL_RECORD_ID_VALID_BIT
Bit 1 – SEL_RECORD_TYPE_VALID_BIT
Bit 3 – SEL_GENERATOR_ID_VALID_BIT
Bit 3 – SEL_EVM_REV_VALID_BIT
Bit 4 – SEL_SENSOR_TYPE_VALID_BIT
Bit 5 – SEL_SENSOR_NUM_VALID_BIT
Bit 6 – SEL_EVENT_DIR_TYPE_VALID_BIT
Bit 7 – SEL_EVENT_DATA1_VALID_BIT
Bit 8 – SEL_EVENT_DATA2_VALID_BIT
Bit 9 – SEL_EVENT_DATA3_VALID_BIT
Bit 10-63– RESERVED

8 2 bytes SEL_RECORD_ID Record ID used for SEL record access.
10 1 bytes SEL_RECORD_TYPE Indicates the record type:

0x02 – System Event Record
0xC0-0xDF – OEM time stamped, bytes 8-16 OEM defined
0xE0-0xFF – OEM non-time stamped, bytes 4-16 OEM defined

11 4 bytes SEL_TIME_STAMP Time stamp of the event log
15 2 bytes SEL_GENERATOR_ID Software ID if event was generated by software

Byte1:
Bit 7:1 – 7-Bit system software ID.
Bit 0 – set to one (1) when using system software.
Byte 2:
Bit 7:2 – Reserved. Write as 0, ignore when read.
Bit 1:0 – IPMB device LUN if byte 1 holds slave address, 0x0 
otherwise.

17 1 bytes SEL_EVM_REV The error message format version.
18 1 bytes SEL_SENSOR_TYPE Sensor type code of the sensor that generated the event.
19 1 bytes SEL_SENSOR_NUM Number of the sensor that generated the event.
20 1 bytes SEL_EVENT_DIR_

TYPE
Event Dir:
Bit 7 – 0 for assertion; 1 for de-assertion.
Event Type:
Type of trigger for the event, e.g. critical threshold going high, state 
asserted, etc. Also indicates class of the event. E.g. discrete, 
threshold, or OEM. The Event Type field is encoded using the 
Event/Reading Type Code. See Section 30.1, Event/Reading Type 
Codes.
Bit 6:0 – Event Type Code

21 1 bytes SEL_DATA1 Event data field.
22 1 bytes SEL_DATA2 Event data field.
23 1bytes SEL_DATA3 Event data field.
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B.2.4.5 Platform SMBIOS Device Error Info

PLATFORM_SMBIOS_ERROR_RECORD SECTION BODY STRUCTURE

Refer to the SMBIOS Specification (http://download.intel.com/ial/wfm/smbios.pdf) for further 
details.

B.2.4.6 Platform Specific Error Info

This section provides information on the OEM hardware errors that cannot be described by other 
sections. The operating system could handle the error in a generic way by examining the section 
GUID, the ERROR_RECOVERY_INFO, the PLATFORM_ERROR_STATUS, and the TARGET 
address fields. Refer to the respective platform document for further details. 

PLATFORM_GENERIC_ERROR_RECORD SECTION BODY STRUCTURE

Offset Length Field Description

0 16 bytes GUID {0xe429faf5, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 
0x88, 0x81}} 

16-23 8 bytes See Section B.2.2 for details.

Offset Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – SMBIOS_EVENT_TYPE_VALID_BIT
Bit 1 – SMBIOS_LENGTH_VALID_BIT
Bit 3 – SMBIOS_TIME_STAMP_VALID_BIT
Bit 3 – SMBIOS_DATA_VALID_BIT
Bit 4-63– RESERVED

8 1 bytes SMBIOS_EVENT_TYPE Event Type - enum see SMBIOS 2.3 - 3.3.16.6.1.
9 1 bytes SMBIOS_LENGTH Length of the error information in bytes.
10 6 bytes SMBIOS_TIME_STAMP Time stamp in BCD.
16 N bytes SMBIOS_DATA OEM specific data of variable length. See Table B-2 for the format of 

this structure. 

Offset Length Field Description
0 16 bytes GUID {0xe429faf7, 0x3cb7, 0x11d4, {0xbc, 0xa7, 0x0, 0x80, 0xc7, 0x3c, 

0x88, 0x81}} 
16-23 8 bytes See Section B.2.2 for details.

Offset Length Field Description
0 8 VALIDATION_BITS Validation Bits to indicate the validity of each of the subsequent 

fields:
Bit 0 – PLATFORM_ERROR_STATUS_VALID_BIT
Bit 1 – PLATFORM_REQUESTOR_ID_VALID_BIT
Bit 2 – PLATFORM_RESPONDER_ID_VALID_BIT
Bit 3 – PLATFORM_TARGET_VALID_BIT
Bit 4 – PLATFORM_SPECIFIC_DATA_VALID_BIT
Bit 5 – PLATFORM_OEM_ID_VALID_BIT
Bit 6 – PLATFORM_OEM_DATA_STRUCT_VALID_BIT
Bit 7 – PLATFORM_OEM_DEVICE_PATH_VALID_BIT
Bit 8..63 – RESERVED

8 8 bytes PLATFORM_ERROR_
STATUS

Platform generic error status fields (see Table B-3).

16 8 bytes PLATFORM_
REQUESTOR_ID

Requestor ID at the time of the event.

24 8 bytes PLATFORM_
RESPONDER_ID

Responder ID at the time of the event.

32 8 bytes PLATFORM_TARGET_
ID

Target ID at the time of the event.
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B.2.5 Error Status

The error status definition provides the capability to abstract information from implementation 
specific error registers into generic error codes in order that the operating systems may deal with 
the errors without an intimate knowledge of the underlying platform. 

40 8 bytes PLATFORM_BUS_
SPECIFIC_DATA

OEM specific Bus dependent data.

48 16 bytes OEM_COMPONENT_
ID

A unique ID of the component reporting the error. 

64 N bytes PLATFORM_OEM_
DATA_STRUCT

OEM specific data of variable length. See Table B-2 for the format of 
this structure. 

64+N 
bytes

X bytes PLATFORM_OEM_DEV
ICE_PATH

OEM specific Vendor Device Path. Please refer to the EFI 
Specification for the format of this field.

Table B-3. Error Status Fields

Bit Position Description

Bit 0-Bit7 Reserved.

Bit8 - Bit 15 Encoded value for the Error_Typea (see Table B-4).

a. Error_Type: Error_Type provides information about the type of error detected. If it is not possible to determine the exact
cause of the error, the type may be promoted to one of the two values of 1 or 16 as described in Table B-4.

Bit 16 Address: Error was detected on the address signals or on the address portion of the 
transaction.

Bit 17 Control: Error was detected on the control signals or in the control portion of the transaction.

Bit 18 Data: Error was detected on the data signals or in the data portion of the transaction.

Bit 19 Responder: Error was detected by the responder of the transaction.

Bit 20 Requestor: Error was detected by the requestor of the transaction.

Bit 21 First error: If multiple errors are logged for a section type, this is the first error in chronological 
sequence. Setting of this bit is optional. 

Bit 22 Overflow: Additional errors occurred and were not logged due to lack of logging resources. 

Bit 23..63 Reserved.

Table B-4. Error Types

Encoding Description

1 ERR_INTERNAL Error detected internal to the component.

16 ERR_BUS Error detected in the bus.

Detailed Internal Errors

4 ERR_MEM Storage error in memory (DRAM).

5 ERR_TLB Storage error in TLB.

6 ERR_CACHE Storage error in cache.

7 ERR_FUNCTION Error in one or more functional units.

8 ERR_SELFTEST component failed self test.

9 ERR_FLOW Overflow or Undervalue of internal queue.

Offset Length Field Description
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Detailed Bus Errors

17 ERR_MAP Virtual address not found on IO-TLB or IO-PDIR.

18 ERR_IMPROPER Improper access error.

19 ERR_UNIMPL Access to a memory address which is not mapped to any component.

20 ERR_LOL Loss Of Lockstep.

21 ERR_RESPONSE Response not associated with a request.

22 ERR_PARITY Bus parity error (must also set the A, C, or D Bits).

23 ERR_PROTOCOL Detection of a protocol error.

24 ERR_ERROR Detection of PATH_ERROR.

25 ERR_TIMEOUT Bus operation time-out.

26 ERR_POISONED A read was issued to data that has been poisoned.

All Others Reserved.

Table B-4. Error Types (Cont’d)
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